
Microchip	Graphics	Library Contents	|	Index	|	Home Next

Introduction
	

This	document	explains	how	to	get	started	with	Microchip
Graphics	Library	solution.	It	presents	the	available	resources	and
where	to	obtain	these	resources.	It	also	includes	the	Application
Programming	Interface	(API)	of	the	Microchip	Graphics	Library.

The	Microchip	Graphics	Library	is	highly	modular	and	is
optimized	for	Microchip’s	16-bit	microcontrollers.	Additionally,	the
library	is	free	for	Microchip	customers,	easy	to	use,	and	has	an
open	documented	interface	for	new	driver	support,	which
requires	creation	of	only	one	C	file.	

The	Microchip	Graphics	Library	Software	Version	3.06.02
supports	the	following	features:

Configurable	graphic	resolution
Up	to	16-bit	or	65K	colors
2D	objects	such	as	line,	circle,	text,	rectangle,	polygon,	bar
3D	objects	such	as	buttons,	meter,	dial,	list	box,	edit	box,	check
box,	radio	buttons,	window,	group	box,	slider.
Image,	animation
Variety	of	user	input	device	such	as	touch	screen,	keypad	etc...
Multiple	fonts
Unicode	fonts
PIC24	support,	PIC32	support

Introduction

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Release	Notes
	

Microchip	Graphics	Library	Release	Notes	

Version	3.06.02	(2012-10-15)	

This	library	provides	support	for	the	display	modules	with	built	in
graphics	controller	and	displays	connected	to	external	graphics
controller.	Documentation	for	the	Microchip	Graphics	Library	can
be	found	in	this	file:

Graphics	Library	Help.chm

Version	Log	

New:	

None	

Changes:	

None.	

Fixes:	

Fix	PutImage()	function	to	support	RLE	compression	of	images
with	the	following	attributes	and	system	level	settings:

image	has	16	bit	wide	palette	entries
color	depth	of	image	is	8	bpp	or	4	bpp
USE_PALETTE	enabled
COLOR_DEPTH	set	to	8	or	4	bpp

Fix	anti-aliased	fonts	issue	when	calculating	the	25%	blending
value	of	the	foreground	and	background	colors.

Deprecated	Items:	

None	added	on	this	release.	

Migration	Changes:	

None.	

Known	Issues:	

Extended	glyph	for	certain	font	(such	as	Thai)	when	used	with
Static	text	widget	is	clipped.	Future	version	will	add	additional
vertical	text	alignment	to	the	static	text	widget
Anti-aliasing	and	extended	glyph	features	are	not	supported	when
using	PIC24FJ256DA210	CHRGPU.
SPI	flash	programming	on	the	Epson	S1D13517	PICtail	board	Rev
1.1	is	not	always	reliable,	the	S1D13517	demo	no	longer	uses
external	memory	flash	in	the	example.
When	using	PIC24FJ256GB210	PIM	with	Explorer	16	board	that
has	a	5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run
correctly.
When	using	XC16	Compiler	V1.00,	add	"-fno-ivopts"	compile
option.	This	is	a	known	issue	in	V1.00	of	XC16.
When	using	ListBox	Widget,	the	widget	height	should	be	greater
than	the	height	of	the	font	used	for	the	widget.
When	using	PutImage()	function	with	RLE	compressed	images	and
USE_PALETTE	enabled,	images	with	24	bit	wide	palette	entry	is
not	supported.
FillCircle()	and	Circle()	function	output	does	not	match	when
rendering	with	small	radius.

Application	Notes

AN1136	How	to	Use	Widgets	in	Microchip	Graphics	Library
AN1182	Fonts	in	the	Microchip	Graphics	Library
AN1227	Using	a	Keyboard	with	the	Microchip	Graphics	Library
AN1246	How	to	Create	Widgets	in	Microchip	Graphics	Library
AN1368	Developing	Graphics	Applications	using	PIC	MCU	with

Integrated	Graphics	Controller

PIC	Family	

This	version	of	the	library	supports	PIC24,	dsPIC	and	PIC32

Family.	

Development	Tools	

This	graphics	library	release	(Version	3.06.02)	was	tested	with
IDEs	MPLAB	v8.85	and	MPLAB	X	1.20;	compilers	XC16	v1.00
and	XC32	v1.00.	

There	is	a	known	compatibility	issue	between	the	graphics	library
and	C30	v3.25.	using	C30	3.25	is	not	recommended	for	graphics
library	development.	

Documentation	of	Resources	and	Utilities	

The	Graphics	Library	Help	File	and	API	document	is	located	in
<install_dir>/Microchip/Help.

Graphics	Library	Help.pdf
"Graphics	Resource	Converter"	documentation	is	located	in
<install_dir>/Microchip/Graphics/bin/grc.

Graphics	Resource	Converter	Help.pdf
External	Memory	Programmer	documentation	is	located	in
<install_dir>/Microchip/Graphics/bin/memory_programmer.

External	Memory	Programmer	Help.pdf

where:	"install_dir"	-	is	the	location	of	the	Microchip	Application
Library	installation.	

Display	Modules	

The	display	driver	layer	of	the	library	is	organized	to	easily	switch
from	one	display	driver	to	another.	Use	of	customized	display
driver	is	allowed	and	in	the	Display	Device	Driver	Layer	section.
Following	graphics	controllers	are	supported	in	this	version:

Display	Module	 Interface	 File	Names	

Microchip	Graphics	Display
Driver	-	customizable	driver	for
RGB	Glass.	Currently	used	in

RGB	 mchpGfxDrv.c,
mchpGfxDrv.h	

PIC24FJ256DA210	device
family.	

Microchip	Low-Cost
Controllerless	(LCC)	Graphics
Display	Driver	-	customizable
driver	for	RGB	Glass.	Currently
used	for	selected	PIC32MX
device	families.	

RGB	 mchpGfxLCC.c,
mchpGfxLCC.h	

Samsung	S6D0129/S6D0139	 8/16	bit
PMP	

drvTFT001.c,
drvTFT001.h	

LG	LGDP4531	 8/16	bit
PMP	

drvTFT001.c,
drvTFT001.h	

Renesas	R61505U/R61580	 8/16	bit
PMP	

drvTFT001.c,
drvTFT001.h	

Orise	Technology	SPDF5408	 8/16	bit
PMP	

drvTFT001.c,
drvTFT001.h	

Epson	S1D13517	 8/16	bit
PMP	

S1D13517.c,
S1D13517.h	

Epson	S1D13522	 8/16	bit
PMP,
SPI	

S1D13522.c,
S1D13522.h	

Solomon	Systech	SSD1926	 8/16	bit
PMP	

SSD1926.c,
SSD1926.h	

Solomon	Systech	SSD1289	 8/16	bit
PMP	

drvTFT002.c,
drvTFT002.h	

Solomon	Systech	SSD1339	for
OLED	displays	

8	bit
PMP	

SSD1339.c,
SSD1339.h	

Solomon	Systech	SSD1303	for
OLED	displays	

8	bit
PMP	

SH1101A_SSD1303.c,
SH1101A_SSD1303.h	

Solomon	Systech	SSD1305	for 8	bit SSD1305.c,

OLED	displays	 PMP	 SSD1305.h	

Solomon	Systech	SSD2119	 8/16	bit
PMP	

drvTFT002.c,
drvTFT002.h	

Sino	Wealth	SH1101A	for
OLED	displays	

8	bit
PMP	

SH1101A_SSD1303.c,
SH1101A_SSD1303.h	

Sitronix	ST7529	 8	bit
PMP	

ST7529.c,	ST7529.h	

Hitech	Electronics	HIT1270	 8	bit
PMP	

HIT1270.c,	HIT1270.h	

Ilitek	ILI9320	 8/16	bit
PMP	

drvTFT001.c,
drvTFT001.h	

Himax	HX8347	 8/16	bit
PMP	

HX8347.c,	HX8347.h	

UltraChip	UC1610	 8	bit
PMP	

UC1610.c,	UC1610.h	

Please	refer	to	Adding	New	Device	Driver	section	to	get	more
information	on	adding	support	for	another	LCD	controller.	

Widgets	

In	this	version	the	following	widgets	are	implemented:

Analog	Clock
Button
Chart
Checkbox
Dial
Digital	Meter
Edit	Box
Grid
Group	Box
List	Box

Meter
Picture	Control
Progress	Bar
Radio	Button
Slider	/	Scroll	Bar
Static	Text
Text	Entry
Window

This	version	of	the	library	supports	touch	screen,	side	buttons
and	a	variety	of	key	pad	configurations	as	a	user	input	device.	

	

Required	Resources	

The	library	utilizes	the	following	estimated	MCU	resources	(in	#
of	bytes):

Module	 	 XC16
(Note
2)	

	 	 XC32
(Note
2)	

	

	 Heap	 RAM	 Flash	 Heap	 RAM	 Flash	

Primitives
Layer	

0	 98	 10242	 0	 103	 8266	

GOL	 26	(per
style

scheme)	

36	 2547	 26	(per
style

scheme)	

54	 2308	

Button	 36	(per
instance)	

16	 2262	 36	(per
instance)	

24	 1916	

Chart	 56	(per
instance)	

128	 12330	 56	(per
instance)	

148	 12132	

Check
Box	

30	(per
instance)	

4	 1119	 30	(per
instance)	

8	 916	

Dial	 48	(per
instance)	

20	 1572	 48	(per
instance)	

24	 1460	

Digital
Meter	

36	(per
instance)	

52	 1263	 36	(per
instance)	

56	 972	

Edit	Box	 34	(per
instance)	

10	 1248	 34	(per
instance)	

16	 1064	

Grid	 40	(per
instance)	

0	 2238	 40	(per
instance)	

0	 2104	

Group
Box	

32	(per
instance)	

8	 1083	 32	(per
instance)	

12	 860	

List	Box	 36	(per
instance),
12	(per
item)	

8	 2271	 36	(per
instance),
12	(per
item)	

16	 1848	

Meter	 60	(per
instance)	

44	 3087	 60	(per
instance)	

48	 2704	

Picture
Control	

38	(per
instance)	

10	 834	 38	(per
instance)	

12	 724	

Progress
Bar	

34	(per
instance)	

28	 1632	 34	(per
instance)	

32	 1264
	

Radio
Button	

36	(per
instance)	

14	 1218	 36	(per
instance)	

20	 992	

Slider	/
Scroll
Bar	

40	(per
instance)	

22	 2481	 40	(per
instance)	

28	 2152	

Static
Text	

30	(per
instance)	

8	 912	 30	(per
instance)	

12	 740	

Text
Entry	

52	(per
instance),
(24	per

24	 2832	 52	(per
instance),
(24	per

28	 2372	

key)	 key)	

Window	 32	(per
instance)	

2	 969	 32	(per
instance)	

4	 784	

Notes:

1.	 Data	is	collected	using	16-bit	color	depth.
2.	 Data	is	collected	using	's'	optimization.	XC32	data	is	using	16-bit

build	mode.
3.	 The	collected	data	are	based	on	the	most	common	used

configuration	of	the	library	and	may	change	depending	on	the
compile	time	options	listed	in	Graphics	Library	Configuration
section	of	this	document.

4.	 Data	is	based	on	Graphics	Library	version	3.06.02.

	

The	heap	is	the	dynamic	memory	requirement.	When	using	a
strategy	of	dynamically	creating	objects	for	the	active	screen,
then	the	heap	memory	used	will	be	released	when	the	screen	is
changed.	A	new	set	of	objects	will	be	created	and	the	required
heap	will	be	allocated.	In	this	scenario,	when	calculating	for	the
worst	case	heap	requirement,	consider	the	screen	with	maximum
number	of	objects.	If	for	worse	case	you	have	6	buttons,	2	sliders
and	2	edit	box	on	screen	that	utilizes	three	style	schemes	then
worse	case	dynamic	memory	requirement	will	be	6*36	+	2*40	+
2*34	+	3*26;	442	bytes.	The	RAM	requirements	(columns	3	&	6),
however,	is	not	dependent	on	the	number	of	instances.	If	the
object	is	included	in	the	build,	then	it	will	use	a	fixed	amount	of
RAM	irrespective	of	its	usage.	

Each	font,	depending	on	the	height,	will	require	program
memory.	For	an	English	font	with	32-127	character	IDs	and	a
height	of	18-26	pixels,	the	required	memory	will	be	in	the	range
of	7	–	10KB	of	program	memory.	This	requirement	may	change
for	other	languages	with	additional	characters.	

Images	require	additional	memory.	The	memory	requirement	for
images	depends	on	color	depth	and	size.	

The	fonts	and	images	can	be	stored	in	internal	memory	or
external	memory.	The	external	memory	can	be	anything	serial
EEPROM,	parallel	Flash,	SD	card	etc.	The	application	provides
physical	interface	code	for	these	devices.	

	

Previous	Versions	Log	

v3.06	(2012-08-22)	

New:	

Partial	rendering	of	images	now	supported	(see	PutImagePartial()).
Double	Buffering	is	now	supported	in	Microchip	Low-Cost
Controllerless	(LCC)	Graphics	Display	Driver.
Added	dsPIC33EPXXX	device	family	support.
Added	S1D13522	EPD	Controller	Driver.
Added	E-Paper	Epson	Demo.
Added	Alpha-Blend	support	for	Bar()	function.
Graphics	Resource	Converter	(GRC)	now	allows	for	padding	and
non-padding	bitmap	images.	Bitmap	images	are	padded	which
means	that	each	horizontal	line	will	start	on	a	byte	boundary.	The
option	has	been	added	to	allow	for	conversion	of	bitmap	resources
to	be	non-padded	which	allows	the	least	resource	space	and
controllers	with	windowing	that	auto	increments	to	use	them.
For	XC16	or	C30	builds,	internal	fonts	can	now	be	placed	program
memory.	If	the	font	data	or	a	combination	of	font	data	resources
exceed	the	32	Kbyte	limit	of	the	data	memory	space,	a	define,
USE_GFX_FONT_IN_PROGRAM_SECTION,	should	be	defined	in
graphics	configuration	header	(GraphicsConfig.h).	This	will	place
the	font	resource	data	in	program	memory	space.

Changes:

Graphics	Object	Demo	now	uses	images	that	are	RLE

compressed.
Address	range	check	for	GFX_EPMP_CS1_MEMORY_SIZE	and
GFX_EPMP_CS2_MEMORY_SIZE	in	Graphics	Module	in
PIC24FJ256DA210	Display	Driver	file	(mchpGfxDrv.c)	is	modified
for	strict	checks	of	allocated	address	pins	for	the	EPMP.	See
"Migration	Changes"	below	for	the	address	lines	needed	to	be
allocated.
Swapped	the	bit	orientation	for	the	1	BPP	bitmap	images.	The
previous	versions	of	the	library	expects	the	left	most	pixel	at	the
MSBit.	This	has	been	changed	so	the	the	left	most	pixel	is	located
at	the	LSBit.	The	change	was	made	to	accommodate	controllers
that	have	windowing.	This	also	makes	the	pixel	orientation
consistent	with	the	pixel	orientation	of	4bpp	images.

Fixes:

Fix	FillBevel()	&	FillCircle()	to	avoid	rendering	lines	more	than
once.

Deprecated	Items:	

The	following	Resistive	Touch	Screen	macro	names	are	replaced
for	readability	and	flexibility	if	use:

TRIS_XPOS	-	replaced	by
ResistiveTouchScreen_XPlus_Config_As_Input()
TRIS_YPOS	-	replaced	by
ResistiveTouchScreen_YPlus_Config_As_Input()
TRIS_XNEG	-	replaced	by
ResistiveTouchScreen_XMinus_Config_As_Input()
TRIS_YNEG	-	replaced	by
ResistiveTouchScreen_YMinus_Config_As_Output()
LAT_XPOS	-	replaced	by
ResistiveTouchScreen_XPlus_Drive_High()
LATS_YPOS	-	replaced	by
ResistiveTouchScreen_YPlus_Drive_High()
LAT_XNEG	-	replaced	by
ResistiveTouchScreen_XMinus_Drive_Low()
LAT_YNEG	-	replaced	by

ResistiveTouchScreen_YMinus_Drive_Low()

Migration	Changes:

To	use	the	new	Resistive	Touchscreen	macros,	replace	the
TouchScreenResistive.c	file	with	the	version	in	this	release.	Then
replace	the	hardware	profile	macros	to	use	the	new	macro	names.
Existing	hardware	profile	can	still	be	used	but	build	warnings	will
appear.
If	custom	display	driver	is	used	and	the	PutImage()	functions	are
implemented	for	faster	rendering,	the	new	partial	image	rendering
feature	requires	these	PutImage()	functions	to	be	modified.	See
PutImagePartial()	API	description	and	implementation	in	Primitive.c
for	details.
Address	range	check	for	GFX_EPMP_CS1_MEMORY_SIZE	and
GFX_EPMP_CS2_MEMORY_SIZE	that	are	defined	in	hardware
profile	are	modified	when	using	the	Graphics	Module	in
PIC24FJ256DA210	Device	and	using	external	memory	for	display
buffer,	the	driver	file	(mchpGfxDrv.c).	This	check	allocates	address
pins	for	the	EPMP.	Modify	the	GFX_EPMP_CS1_MEMORY_SIZE
and	GFX_EPMP_CS2_MEMORY_SIZE	values	set	in	the	hardware
profile	to	match	the	table	shown	below.

GFX_EPMP_CSx_MEMORY_SIZE	<=	0x20000	(bytes)	-

Use	PMA[15:0]

0x20000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x40000(bytes)	-	Use	PMA[16:0]

0x40000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x80000(bytes)	-	Use	PMA[17:0]

0x80000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x100000(bytes)	-	Use	PMA[18:0]

0x100000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x200000(bytes)	-	Use	PMA[19:0]

0x200000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x400000(bytes)	-	Use	PMA[20:0]

0x400000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x800000(bytes)	-	Use	PMA[21:0]

0x800000	(bytes)	<	GFX_EPMP_CSx_MEMORY_SIZE	<=

0x1000000(bytes)	-	Use	PMA[22:0]

1BPP	images	needs	to	be	regenerated	using	the	"Graphics
Resource	Converter"	since	the	bit	orientation	is	swapped.	When
rendering	a	1	BPP	image,	the	PutImage()	function	will	expect	the
left	most	pixel	to	be	located	in	the	LSBit	of	each	word.
To	utilize	the	new	feature	where	the	fonts	can	be	placed	in	the
program	memory,	to	remove	the	32	KByte	limit	for	data	space	in
XC16	or	C30	builds,	fonts	must	be	regenerated	using	the
"Graphics	Resource	Converter"	and	then	add	#define
USE_GFX_FONT_IN_PROGRAM_SECTION	in	GraphicsConfig.h.

Known	Issues:

Extended	glyph	for	certain	font	(such	as	Thai)	when	used	with
Static	text	widget	is	clipped.	Future	version	will	add	additional
vertical	text	alignment	to	the	static	text	widget
Anti-aliasing	and	extended	glyph	features	are	not	supported	when
using	PIC24FJ256DA210	CHRGPU.
SPI	flash	programming	on	the	Epson	S1D13517	PICtail	board	Rev
1.1	is	not	always	reliable,	the	S1D13517	demo	no	longer	uses
external	memory	flash	in	the	example.
When	using	PIC24FJ256GB210	PIM	with	Explorer	16	board	that
has	a	5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run
correctly.
When	using	XC16	Compiler	V1.00,	add	"-fno-ivopts"	compile
option.	This	is	a	known	issue	V1.00	of	XC16.
When	using	ListBox	Widget,	the	widget	height	should	be	greater
than	the	height	of	the	font	used	for	the	widget.

	

v3.04.01	(2012-04-03)	

New:

No	new	items	on	this	release.

Changes:

Structure	of	this	help	file	is	modified.	Section	names	that	list	APIs

now	has	the	API	in	the	name.

Fixes:

Fix	BarGradient()	and	BevelGradient()	when
USE_NONBLOCKING_CONFIG	config	is	enabled.
Added	missing	GbSetText()	function	in	GroupBox	widget.
Fix	SetPalette()	to	work	with	palette	stored	in	external	memory.

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH
BITMAP_RAM	-	replaced	by	IMAGE_RAM
BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA
EEPROM.h	and	EEPROM.c	are	replaced	by	the	following	files:

MCHP25LC256.c	-	source	code
MCHP25LC256.h	-	header	file
in	the	HardwareProfile.h	add	#define	USE_MCHP25LC256	to
use	the	new	driver.

Migration	Changes:

none

Known	Issues:

Extended	glyph	for	certain	font	(such	as	Thai)	when	used	with
Static	text	widget	is	clipped.	Future	version	will	add	additional
vertical	text	alignment	to	the	static	text	widget
Anti-aliasing	and	extended	glyph	features	are	not	supported	when
using	PIC24FJ256DA210	CHRGPU.
SPI	flash	programming	on	the	Epson	S1D13517	PICtail	board	Rev
1.1	is	not	always	reliable,	the	S1D13517	demo	no	longer	uses
external	memory	flash	in	the	example.
When	using	PIC24FJ256GB210	PIM	with	Explorer	15	board	with	a
5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run	correctly.

	

v3.04	(2012-02-15)	

New:

Font	Table	is	updated	to	version	2	to	accommodate	anti-alias	font,
and	extended	glyph.

Added	anti-aliasing	support	for	fonts	(2bpp).	See	Primitive
demo	for	an	example.
Added	extended-glyph	support	for	fonts.	See	demo	in	the
AppNote	demo	-	AN1182,	This	demo	now	includes	Hindi	and
Thai	font.

Added	32-bit	CRC	code	for	resources	to	be	placed	in	external
memory.	This	CRC	value	can	be	used	to	verify	if	the	data	in
external	memory	is	valid	or	not.	Refer	to	Graphics	Resource
Converter	release	notes	for	details.	Demos	that	uses	external
memory	as	a	resource	are	now	checking	the	CRC	value,	and	if
invalid,	automatically	requests	for	external	memory	resource
programming.
Added	new	demos	specific	to	PIC24FJ256DA210:

Elevator	Demo	-	This	demo	shows	an	elevator	status	monitor
that	indicates	the	current	location	of	the	elevator	car.
RCCGPU-IPU	Demo	-	formerly	PIC24F_DA	Demo.	This	demo
shows	how	RCCGPU	and	IPU	modules	are	used.
Color	Depth	Demo	-	This	demos	shows	how	1bpp,	4bpp	and	8
bpp	color	depths	applications	are	implemented.
Remote	Control	Demo	-	This	demo	shows	how	a	universal
remote	control	can	be	implemented	using	RF4CE
communication	protocol.	This	demo	also	integrates	the
MRF24J40MA	(a	certified	2.4	GHz	IEEE	802.15.4	radio
transceiver	module)	for	sending	RF4CE	messages	to	the
paired	device.

Added	driver	for	Solomon	Systech	132x64	OLED/PLED	Display
Controller	SSD1305

Changes:

Modified	Resistive	Touch	Screen	calibration.	Now	the	calibration
stores	the	8	touch	points	to	support	large	touch	panels.

Modified	4-wire	Resistive	Touch	Screen	driver	to	support	build	time
setting	of	single	samples	and	auto-sampling	of	resistive	touch
inputs.
Naming	of	internal	and	external	resource	files	(files	that	defined
fonts	and	images)	in	most	demos	are	now	standardized	to	use	the
same	naming	convention.
Support	for	Graphics	PICTail	v2	(AC164127)	is	now	discontinued.
Merged	"JPEG"	demo	and	"Image	Decoders"	demo	to	"Image
Decoder"	demo.
Graphics	Resource	Converter	upgrade	(Version	3.17.47)	-	refer	to
"Graphics	Resource	Converter	Help.pdf"	located	in	<Install
Directory>\Microchip	Solutions\Microchip\Graphics\bin\grc	for
details.
External	Memory	Programmer	upgrade	(Version	1.00.01)	-	refer	to
"External	Memory	Programmer	Help.pdf"	located	in	<Install
Directory>\Microchip
Solutions\Microchip\Graphics\bin\memory_programmer	for
details.

Fixes:

Fix	PushRectangle()	issue	where	one	line	of	pixel	is	not	being
updated.
Fix	TextEntry	widget	issue	where	the	string	is	not	displayed	when
the	allocated	string	buffer	length	is	equal	to	the	maximum	string
length	set	in	the	widget.
Fonts	maximum	character	height	is	now	set	to	2^16.

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH
BITMAP_RAM	-	replaced	by	IMAGE_RAM
BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA
EEPROM.h	and	EEPROM.c	are	replaced	by	the	following	files:

MCHP25LC256.c	-	source	code
MCHP25LC256.h	-	header	file
in	the	HardwareProfile.h	add	#define	USE_MCHP25LC256	to

use	the	new	driver.

Migration	Changes:

For	existing	code	that	wants	to	use	the	new	anti-aliased	fonts	or
extended	glyph	features:	regenerate	the	font	tables	using	the
"Graphics	Resource	Converter"	with	the	check	box	for	the	required
feature	set	to	be	enabled.	For	anti-aliased	fonts,	add	the	macro
#define	USE_ANTIALIASED_FONTS	in	the	GraphicsConfig.h

Known	Issues:

Extended	glyph	for	certain	font	(such	as	Thai)	when	used	with
Static	text	widget	is	clipped.	Future	version	will	add	additional
vertical	text	alignment	to	the	static	text	widget
Anti-aliasing	and	extended	glyph	features	are	not	supported	when
using	PIC24FJ256DA210	CHRGPU.
SPI	flash	programming	on	the	Epson	S1D13517	PICtail	board	Rev
1.1	is	not	always	reliable,	the	S1D13517	demo	no	longer	uses
external	memory	flash	in	the	example.
When	using	PIC24FJ256GB210	PIM	with	Explorer	15	board	with	a
5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run	correctly.

v3.03	(v3.02)	

New:

Added	custom	video	playback	from	SD	Card	in	SSD1926	Demo.
Video	frames	are	formatted	to	RGB565	format.
Added	support	for	1bpp,	4bpp	and	8	bpp	color	depth	on	Chart
widget.
Added	support	for	Display	Boards	from	Semitron

Seiko	35QVW1T
Seiko	43WVW1T

Changes:

Maximum	font	height	is	now	256	pixels.
Modified	EditBox	behavior

Caret	is	now	by	default	enabled.
Caret	can	now	be	shown	even	if	USE_FOCUS	is	disabled.

Applications	can	now	respond	to	touchscreen	event	on
EditBoxes	when	USE_FOCUS	is	disabled.

Modified	resistive	touchscreen	calibration	sequence.
Graphics	Resource	Converter	upgrade	(Version	3.8.21)	-	refer	to
"Graphics	Resource	Converter	Help.pdf"	located	in	<Install
Directory>\Microchip	Solutions\Microchip\Graphics\bin\grc	for
details.
External	Memory	Programmer	upgrade	(Version	1.00.01)	-	refer	to
"External	Memory	Programmer	Help.pdf"	located	in	<Install
Directory>\Microchip
Solutions\Microchip\Graphics\bin\memory_programmer	for
details.

Fixes:

Fix	Low	Cost	Controller	display	driver	issue	when	run	with
Resistive	Touch	Screen	driver	that	uses	single	samples.
Fix	issue	on	PIC24FJ256DA210	display	driver	PutImage()'s	issue
when	using	palette	on	4	bpp	and	1	bpp	images.
Fix	issue	on	PIC24FJ256DA210	display	driver	PutImage()'s
missing	lines	when	the	image	last	pixel	row	or	column	falls	on	the
edge	of	the	screen.
Fix	Resistive	Touch	Screen	driver	issue	on	rotated	screens.
Fix	GetImageHeight()	GetImageWidth()	issues	for	images	that	are
RLE	compressed.
EPMP	module	is	now	disabled	when	memory	range	defined	for
display	buffer	is	located	in	internal	memory.
Add	default	color	definitions	in	gfxcolors.h	for	1bpp,	4bpp	8bpp	and
16	bpp.	Added	back	legacy	colors.
Fix	HX8347	driver	WritePixel()	macro	when	using	16bit	PMP	mode.
Fix	PIC24FJ256DA210	display	driver	issue	on	source	data
(continuous	and	discontinuous	data)	when	doing	block	copies	of
memory	using	RCCGPU.

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH

BITMAP_RAM	-	replaced	by	IMAGE_RAM
BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA
EEPROM.h	and	EEPROM.c	are	replaced	by	the	following	files:

MCHP25LC256.c	-	source	code
MCHP25LC256.h	-	header	file
in	the	HardwareProfile.h	add	#define	USE_MCHP25LC256	to
use	the	new	driver.

Migration	Changes:

EditBox	widget's	caret	behavior	is	now	by	default	enabled	when
USE_FOCUS	is	set.	To	disable,	ignore	all	messages	for	the	edit
box	by	returning	a	zero	when	in	GOLMsgCallback().

Known	Issues:

PutImage()	does	not	work	when	using	PIC24FJ256DA210	and	look
up	table	is	used	on	images	located	at	EDS	memory	with	color
depth	less	than	8bpp.
External	Memory	Programmer	utility	does	not	work	with	Graphics
PICTail	v2	(AC164127)
When	using	PIC24FJ256GB210	PIM	with	Explorer	15	board	with	a
5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run	correctly.
Font	tables	are	limited	to	256	pixel	character	height.

v3.02	

New:

Added	custom	video	playback	from	SD	Card	in	SSD1926	Demo.
Video	frames	are	formatted	to	RGB565	format.
Added	support	for	1bpp,	4bpp	and	8	bpp	color	depth	on	Chart
widget.
Added	support	for	Display	Boards	from	Semitron

Seiko	35QVW1T
Seiko	43WVW1T

Changes:

Maximum	font	height	is	now	256	pixels.
Modified	EditBox	behavior

Caret	is	now	by	default	enabled.
Caret	can	now	be	shown	even	if	USE_FOCUS	is	disabled.
Applications	can	now	respond	to	touchscreen	event	on
EditBoxes	when	USE_FOCUS	is	disabled.

Modified	resistive	touchscreen	calibration	sequence.
Graphics	Resource	Converter	upgrade	(Version	3.8.21)	-	refer	to
"Graphics	Resource	Converter	Help.pdf"	located	in	<Install
Directory>\Microchip	Solutions\Microchip\Graphics\bin\grc	for
details.
External	Memory	Programmer	upgrade	(Version	1.00.01)	-	refer	to
"External	Memory	Programmer	Help.pdf"	located	in	<Install
Directory>\Microchip
Solutions\Microchip\Graphics\bin\memory_programmer	for
details.

Fixes:

Fix	issue	on	PIC24FJ256DA210	display	driver	PutImage()'s
missing	lines	when	the	image	last	pixel	row	or	column	falls	on	the
edge	of	the	screen.
Fix	Resistive	Touch	Screen	driver	issue	on	rotated	screens.
Fix	GetImageHeight()	GetImageWidth()	issues	for	images	that	are
RLE	compressed.
EPMP	module	is	now	disabled	when	memory	range	defined	for
display	buffer	is	located	in	internal	memory.
Add	default	color	definitions	in	gfxcolors.h	for	1bpp,	4bpp	8bpp	and
16	bpp.	Added	back	legacy	colors.
Fix	HX8347	driver	WritePixel()	macro	when	using	16bit	PMP	mode.
Fix	PIC24FJ256DA210	display	driver	issue	on	source	data
(continuous	and	discontinuous	data)	when	doing	block	copies	of
memory	using	RCCGPU.

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH
BITMAP_RAM	-	replaced	by	IMAGE_RAM
BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA

EEPROM.h	and	EEPROM.c	are	replaced	by	the	following	files:
MCHP25LC256.c	-	source	code
MCHP25LC256.h	-	header	file
in	the	HardwareProfile.h	add	#define	USE_MCHP25LC256	to
use	the	new	driver.

Migration	Changes:

EditBox	widget's	caret	behavior	is	now	by	default	enabled	when
USE_FOCUS	is	set.	To	disable,	ignore	all	messages	for	the	edit
box	by	returning	a	zero	when	in	GOLMsgCallback().

Known	Issues:

PutImage()	does	not	work	when	using	PIC24FJ256DA210	and	look
up	table	is	used	on	images	located	at	EDS	memory	with	color
depth	less	than	8bpp.
External	Memory	Programmer	utility	does	not	work	with	Graphics
PICTail	v2	(AC164127)
When	using	PIC24FJ256GB210	PIM	with	Explorer	15	board	with	a
5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run	correctly.
Font	tables	are	limited	to	256	pixel	character	height.

v3.01	(v3.00)	

New:

Graphics	External	Memory	Programmer	ported	to	java	version.
Two	options	to	program	boards:

UART	option	if	the	board	supports	UART	interface
USB	option	if	the	board	support	USB	device	interface

when	installing	the	USB	drivers	for	the	programmer	utility	Use
the	drivers	located	in	"<install
directory>\Microchip\Utilities\USB	Drivers\MPLABComm"
For	detailed	usage,	please	refer	to	the	External	Programmer
help	file

Added	Analog	Clock	widget.
Added	new	driver	Epson	S1D13517	display	driver	with	additional
driver	features:

Gradient

Alpha	Blending
16/24	bits	per	pixel	(bpp)

Added	new	Graphics	PICtail	Plus	Epson	S1D13517	Board
(AC164127-7)
Added	new	Graphics	Display	Truly	5.7"	640x480	Board
(AC164127-8)
Added	new	Graphics	Display	Truly	7"	800x480	Board	(AC164127-
9)
Added	24bpp	support.
Added	a	specific	PIC24FJ256DA210	demo,	PIC24F_DA
Graphics	Resource	Converter	-	refer	to	the	Graphics	Resource
Converter	help	file	for	release	note	information.
New	PIC32MX	Low-Cost	Controllerless	Graphics	PICTail	Board
(AC164144)
Added	Run	Length	Encoding	(RLE)	compression	for	bitmap
images.

RLE4	-	compression	for	4-bit	palette	(16	color)	images
RLE8	-	compression	for	8-bit	palette	(256	color)	images

Added	Transparency	feature	for	PutImage()	functions	in	Primitive
Layer.	For	Driver	Layer,	this	feature	is	enabled	in	the	following
drivers:

mchpGfxDrv	-	Microchip	Graphics	Controller	Driver
SSD1926	-	Solomon	Systech	Display	Controller	Driver

Added	new	demo	for	Graphics	PICtail	Plus	Epson	S1D13517
Board	(S1D13517	Demo)
Added	AR1020	Resistive	Touch	Screen	Controller	beta	support.
Added	support	for	MikroElektronika	"mikroMMB	for	PIC24"	board.
Added	DisplayBrightness()	function	for	display	drivers	that	have	an
option	to	control	the	display	back	light.
MPLAB	X	demo	project	support	(BETA)

Tested	with	MPLAB	X	Beta	6
Each	demo	project	contains	multiple	configuration	schemes

The	graphics	object	layer	uses	a	default	scheme	structure.	If	the
application	wishes	to	use	a	different	default	scheme,	the
application	will	need	to	define	GFX_SCHEMEDEFAULT	in
GraphicsConfig	header	file.

Changes:

Relocated	all	Graphics	Demo	projects	under	Graphics	directory
(<install	directory>/Graphics).
Works	with	Graphics	Display	Designer	version	2.1
Works	with	Graphics	Resource	Converter	version	3.3
Removed	IPU	decoding	from	the	Primitive	demo
Removed	ImageFileConverter	application	from	Image	Decoder
demo

Use	Graphics	Resource	Converter	to	generate	output	for	the
demo.

Shorten	file	name	by	using	abbreviated	names
Refer	to	abbreviations.htm	in	the	Microchip	help	directory	for
details

Change	the	"Alternative	Configurations"	directory	in	the	demos	to
"Configs"
Changed	the	"Precompiled	Demos"	directory	in	the	demos	to
"Precompiled	Hex"
Combined	all	application	note	demos	(AN1136,	AN1182,	AN1227
and	AN1246)	into	one	demo	project	(AppNotes).
Modified	External	Memory	and	JPEG	demos	to	include	USB
device	mode	to	program	external	flash	memory.
Moved	the	location	of	the	COLOR_DEPTH	setting	from	the
HardwareProfile.h	to	the	GraphicsConfig.h
Removed	USE_DRV_FUNCTIONNAME	(example
USE_DRV_LINE	to	implement	the	Line()	function	in	the	driver)
option	to	implement	Primitive	Layer	functions	in	the	Driver	Layer.
The	Primitive	Layer	functions	are	now	modified	to	have	weak
attributes,	so	when	the	driver	layer	implements	the	same	function,
the	one	in	the	driver	will	be	used	at	build	time.
Modified	HardwareProfile.h	for	Graphics	demo	boards	and
development	Platforms.

When	using	Resistive	Touch	Screen:	add	macro
USE_TOUCHSCREEN_RESISTIVE
When	using	AR1020	as	the	touch	screen	controller:	add
macro	USE_TOUCHSCREEN_AR1020
When	using	SPI	Flash	Memory	(SST25VF016)	in	Graphics
Development	Boards:	add	macro	USE_SST25VF016

When	using	Parallel	Flash	Memory	(SST39LF400)	in
PIC24FJ256DA210	Development	Board:	add	macro
USE_SST39LF400
When	using	Parallel	Flash	Memory	(SST39LF400)	in
PIC24FJ256DA210	Development	Board:	add	macro
USE_SST39LF400
Added	function	pointers	for	Non-Volatile	Memories	when	used
in	the	Demos.

NVM_SECTORERASE_FUNC	-	function	pointer	to	sector
erase	function.
NVM_WRITE_FUNC	-	function	pointer	to	write	function.
NVM_READ_FUNC	-	function	pointer	to	read	function.

Display	Driver	Layer	architecture	is	changed.	Refer	to	Adding	New
Device	Driver	for	new	requirements.
Modified	Resistive	Touch	Driver	calibration
In	the	PIC24FJ256DA210	driver,	CopyWindow()	is	modified	to
CopyBlock().

Fixes:

Fixed	issue	on	vertical	Progress	Bar	rendering.
Updated	demos	Google	map	and	JPEG	to	use	the	proper
GFX_RESOURCE	identifiers	for	JPEG	resources
HX8347	driver	now	compiles	and	works	with	'mikroMMB	for	PIC24'
Bug	fixes	in	the	digital	meet	and	cross	hair	widgets
Removed	references	to	the	PIC24	configuration	bit	COE_OFF.
Fixed	issue	on	PutImage()	when	using	PIC24FJ256DA210	and
look	up	table	is	used	on	images	located	at	internal	or	external	SPI
flash	with	color	depth	less	than	8bpp.
Fixed	issue	on	Line()	in	the	SSD1926	and	mchpGfxDrv	driver	files.
The	stored	coordinates	after	a	successful	rendering	of	a	line	will	be
at	the	end	point	(x2,y2).

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH
BITMAP_RAM	-	replaced	by	IMAGE_RAM

BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA

Migration	Changes:

DisplayDriver.c	is	not	used	to	select	the	display	driver	(the	file	is
not	a	part	of	the	graphics	library	release	package).

The	application	should	include	the	driver(s)	in	the	project.
Multiple	driver	files	can	be	included	in	one	project	because	the
hardware	profile	will	define	the	driver	and	only	that	driver's
source	code	will	be	used.

For	example,	a	project	may	be	designed	to	use	the
Microchip's	PIC24FJ256DA210	graphics	controller	and
the	SSD1926	depending	on	the	hardware	profile	used.
The	project	will	include	the	following	source	files,
SSD1926.c	and	mchpGfxDrv.c,	among	the	graphics
source	files.	The	hardware	profile	will	contain	the
following	macros,
GFX_USE_DISPLAY_CONTROLLER_SSD1926	and
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210,	to
select	the	SSD1926	and	Microchip's	PIC24FJ256DA210
graphics	controller,	respectively.

When	using	PIC24FJ256DA210,	the	driver	files	are	now	changed
to:

mchpGfxDrv.c	-	source	code
mchpGfxDrv.h	-	header	file
mchpGfxDrvBuffer.c	-	source	code	that	declares	display	buffer,
work	areas	and	cache	areas	for	IPU	operations	in	EDS.

The	touch	screen	drivers	in	the	"Board	Support	Package"	directory
are	renamed	to:

TouchScreenResistive.c	-	internal	resistive	touch	source	code
TouchScreenResistive.h	-	internal	resistive	touch	header	file
TouchScreenAR1020.c	-	external	AR1020	touch	source	code
TouchScreenAR1020.h	-	external	AR1020	touch	header	file
The	two	original	files	(TouchScreen.c	and	TouchScreen.h)	are
still	needed	since	they	are	defining	common	interfaces	to
resistive	touch	drivers.
When	using	the	internal	resistive	touch	module,	the	project	will
contain	TouchScreenResistive.c	and	TouchScreen.c.	All

modules	that	reference	touch	screen	APIs	will	include
TouchScreen.h	header	file.
When	using	the	external	AR1020	touch	module,	the	project
will	contain	TouchScreenAR1020.c	and	TouchScreen.c.	All
modules	that	reference	touch	screen	APIs	will	include
TouchScreen.h	header	file.
The	touch	screen	initialization	routine	API	has	changed.	The
new	TouchInit	API	has	four	parameters	passed.	Please	refer
to	the	API	definition	for	more	details.

When	using	the	Potentiometer	on	the	graphics	development
boards,	include	in	your	project	the	following	files	found	in	the
"Board	Support	Package"	directory	:

TouchScreenResistive.c	-	source	code
TouchScreenResistive.h	-	header	file
Potentiometer.h	-	contains	the	APIs	for	the	A/D	interface.

EEPROM.h	and	EEPROM.c	are	going	to	be	deprecated.	Use	the
two	new	files:

MCHP25LC256.c	-	source	code
MCHP25LC256.h	-	header	file
in	the	HardwareProfile.h	add	#define	USE_MCHP25LC256	to
use	the	new	driver.

A	SPI	driver	has	been	created	to	support	projects	with	multiple
devices	on	one	SPI	channel.

Projects	will	need	to	include	the	source	file	drv_spi.c	in
projects	that	use	devices	on	a	SPI	channel.

SPI	Flash	initialization	routines	will	need	to	pass	a
DRV_SPI_INIT_DATA	structure.	This	structure	defines	the	SPI
control	and	bit	rate	used	by	the	SPI	Flash	module.
The	COLOR_DEPTH	macro	has	been	moved	from	the	hardware
profile	header	file	to	the	GraphicsConfig.h	header	file.
For	project	migration	please	refer	the	graphics	demos	for
examples.

Known	Issues:

PutImage()	does	not	work	when	using	PIC24FJ256DA210	and	look
up	table	is	used	on	images	located	at	EDS	memory	with	color
depth	less	than	8bpp.

PutImage()	of	when	using	PIC24FJ256DA210	for	8bpp	images	is
missing	the	last	row	and	last	column	of	the	bitmap	when	the	image
is	from	external	memory,	look	up	table	is	used	and	the	screen	is
rotated	90	degrees.
When	compiling	the	Analog	Clock	source	code	with	C30	v3.24	the
optimization	setting	must	be	set	to	0	(none).
External	Memory	Programmer	utility	does	not	work	with	Graphics
PICTail	v2	(AC164127)
When	using	PIC24FJ256GB210	PIM	with	Explorer	15	board	with	a
5v	Lumex	LCD	display,	the	S1D13517	demo	does	not	run	correctly.
Font	tables	are	limited	to	256	pixel	character	height.	For	fonts
generated	for	external	memory,	the	maximum	height	limitation	is
128	pixels.

v2.11	

New:

Graphics	Resource	Converter	(GRC)	ported	to	java	version.
Added	support	for	Inflate	Processing	Unit	(IPU)	and	Character
Processing	Unit	(CHRGPU)of	the	Microchip	Graphics	Module
implemented	in	PIC24FJ256DA210.
Added	new	"Google	Map	Demo"	for	PIC32MX795F512L	and
PIC24FJ256DA210	device.
Added	SST39LF400	Parallel	Flash	Memory	driver	in	"Board
Support	Package".	This	is	the	driver	for	the	parallel	flash	on	the
"PIC24FJ256DA210	Development	Board".
Added	demo	support	for	PIC32	MultiMedia	Expansion	Board
(DM320005).
Added	GFX_IMAGE_HEADER	structure.	This	structure	defines
how	the	image(s)	are	accessed	and	processed	by	the	Graphics
Library.
Added	a	third	option	(#define	XCHAR	unsigned	char)	on	the
XCHAR	usage.	This	is	provided	as	an	option	to	use	characters
with	IDs	above	127	and	below	256.	With	this	option,	European
fonts	that	uses	characters	with	character	IDs	above	127	and	below
256	can	now	be	generated	and	used	in	the	library.
Added	a	scheme	to	replace	the	default	font	GOLFontDefault	in	the

library	with	any	user	defined	fonts.	Refer	to	"Changing	the	default
Font"	for	details.

Changes:

Added	compile	switches	to	all	drivers	in	"Board	Support	Package"
for	options	to	compile	out	when	not	used	in	specific	projects.
Replaced	TYPE_MEMORY	with	GFX_RESOURCE	type
enumeration	and	expanded	the	enumeration	for	graphics
resources	(such	as	images	and	fonts).	GFX_RESOURCE	type	will
determine	the	source	and	the	data	format	of	the	resource
(compressed	or	uncompressed).
Changes	on	the	macros	used	on	the	"Graphics	JPEG	Demo":

Copy	Code
//	Valid	values	of	the	first	field	for	JPEG_FLASH	and	JPEG_EXTERNAL	structures

#define	FILE_JPEG_FLASH					2			//	the	JPEG	file	is	located	in	internal	flash

#define	FILE_JPEG_EXTERNAL		3			//	the	JPEG	file	is	located	in	external	memory

to

Copy	Code
//	Valid	values	of	the	first	field	for	JPEG_FLASH	and	JPEG_EXTERNAL	structures

#define	FILE_JPEG_FLASH					0			//	the	JPEG	file	is	located	in	internal	flash

#define	FILE_JPEG_EXTERNAL		1			//	the	JPEG	file	is	located	in	external	memory

Added	function	pointers	to	GOL	structure	OBJ_HEADER.	These
function	pointers	makes	it	easier	to	add	user	created	objects	in	the
Graphics	Library.

DRAW_FUNC	-	function	pointer	to	object	drawing	function.
FREE_FUNC	-	function	pointer	to	object	free	function.	Only	for
objects	that	needs	free	routines	to	effectively	free	up	memory
used	by	the	object	create	function.
MSG_FUNC	-	function	pointer	to	object	message	function.
MSG_DEFAULT_FUNC	-	function	pointer	to	object	default
message	function.

Merged	"Graphics	External	Memory	Demo"	and	"Graphics	External
Memory	Programmer"	into	one	demo	"Graphics	External	Memory

Programmer	and	Demo".

Fixes:

TouchScreen	driver	now	checks	display	orientation	and	adjusts	the
touch	to	be	aligned	to	the	display	orientation.
Fixed	GOLFocusNext()	issue	on	list	that	does	not	contain	an	object
that	can	be	focused.
Removed	redundant	code	in	GOLRedrawRec().
Added	an	option	in	XCHAR	to	use	unsigned	char.

Deprecated	Items:

TYPE_MEMORY	-	replaced	by	GFX_RESOURCE
EXTDATA	-	replaced	by	GFX_EXTDATA
BITMAP_FLASH	-	replaced	by	IMAGE_FLASH
BITMAP_RAM	-	replaced	by	IMAGE_RAM
BITMAP_EXTERNAL	-	replaced	by	GFX_EXTDATA

Migration	Changes:

To	use	drivers	located	in	"Board	Support	Package"	directory,	add
the	USE_DRIVERNAME	macro	in	application	code	(in	the	demos
these	are	added	in	the	HardwareProfile.h)	to	include	the	drivers.
Refer	to	the	specific	driver	code	for	the	correct
USE_DRIVERNAME	macro	name.
The	new	version	of	the	Graphics	Resource	Converter	generates
graphics	application	resources	(fonts	and	images)	using	the	new
GFX_IMAGE_HEADER	structure	for	images	and	new
GFX_RESOURCE	type	defines	to	specify	location	of	the
resources.	Because	of	this,	some	structures	are	deprecated	and
replaced	with	more	appropriate	structures.	To	remove	the
deprecation	warnings,	regenerate	the	fonts	and	images	files	using
the	new	Graphics	Resource	Converter.

Known	Issues:

Graphics	SSD1926	JPEG	and	SD	Card	Demo	does	not	support
Graphics	Display	Powertip	4.3"	480x272	Board
(PH480272T_005_I11Q).	As	is,	there's	not	enough	spare	memory

space	to	carry	out	the	hardware	JPEG	decoding	operation	by	the
SSD1926.	A	potential	work	around	is	to	reduce	the	active	display
area	size	to	reserve	more	memory	space	for	the	JPEG	decoding
operation.
SSD1926	hardware	acceleration	for	eclipse	is	disabled	due	to
missing	pixels	at	Angle	0.
PIC32MX460	PIM	(not	Starter	Kit)	does	not	support	16-bit	PMP
mode	with	Graphics	PICtail™	Plus	Board	Version	3	(SSD1926)
Board.	It	only	supports	8-bit	PMP	mode.	This	is	due	to	pin	mapping
conflicts	on	the	boards.
This	version	of	Graphics	Library	is	not	compatible	with	Graphics
Display	Designer	v2.0.0.9c

v2.10	

New:

Added	new	demo	"Graphics	Object	Layer	Palette	Demo"	for
PIC24FJ256DA210	device.
Added	support	for	PIC32MX795F512L	device.
Added	documentation	for	the	Grid	object.
Added	Vertical	Mode	to	Progress	Bar.
Added	MicrochipGraphicsModule	display	driver.
Added	"Board	Support	Package"	directory.	This	contains	common
hardware	drivers	for	Microchip	demo	boards.
Added	OBJ_MSG_PASSIVE	as	a	translated	message	on	the	slider
to	detect	a	touch	screen	release	message.	This	has	no	effect	on
the	state	of	the	slider.	Applications	that	does	not	qualify	for	touch
press	and	touch	move	event	must	now	qualify	the	messages	for
the	slider	object	to	avoid	processing	messages	for	touch	release.

Changes:

To	improve	speed	modified	gfxpmp.c	and	gfxepmp.c	to	be	inline
functions	in	gfxpmp.h	and	gfxepmp.h	respectively.
Changed	HX8347A.c	to	HX8347.c	(both	the	D	and	A	driver	version
is	implemented	in	the	new	file).	To	select	set	the
DISPLAY_CONTROLLER	to	be	HX8347A	or	HX8347D	in	the
hardware	profile.

Modified	malloc()	and	free()	to	be	defined	by	macros	in
GraphicsConfig.h	file.	For	applications	using	Operating	System,
the	macros	can	be	redefined	to	match	the	OS	malloc	and	free
functions.	The	default	settings	are:

#define	GFX_malloc(size)	malloc(size)
#define	GFX_free(ptr)	free(ptr)

Merged	GOL	Demo	English	and	Chinese	demo	into	one	demo.
Removed	the	macro	"GRAPHICS_HARDWARE_PLATFORM".
This	is	specific	to	Microchip	demo	boards.
Abstracted	the	timer	from	the	touch	screen	driver.
Moved	the	following	hardware	drivers	to	the	"Board	Support
Package"	directory

Touch	screen	driver:	TouchScreen.c	and	TouchScreen.h	files.
SPI	Flash	driver:	SST25VF016.c	and	SST25VF016.h	files.
Graphics	PICtail	Version	2	Parallel	Flash	driver:
SST39VF040.c	and	SST39VF040.h	files.
Explorer	16	SPI	EEPROM	Flash	driver:	EEPROM.c	and
EEPROM.h	files.
Graphics	PICtail	Version	2	Beeper	driver:	Beep.c	and	Beep.h
files.

Revised	the	Seiko	3.5"	320x240	display	panel	schematic	to
revision	B.	Corrected	the	pin	numbering	on	the	hirose	connector.
See	"Schematic	for	Graphics	Display	Seiko	3.5in	320x240	Board
Rev	B.pdf"	file	on	the	\Microchip
Solutions\Microchip\Graphics\Documents\Schematics	directory.

Fixes:

Fixed	TextEntry	object	issue	on	output	string	maximum	length.
Fixed	Slider	increment/decrement	issue	on	Keyboard	messages.
Fixed	GOLGetFocusNext()	bug	when	none	of	the	objects	in	the	list
can	be	focused.

Migration	Changes:

pmp	interface	files	are	converted	to	header	files	and	functions	are
now	inline	functions	to	speed	up	pmp	operations.	Projects	must	be
modified	to:

include	gfxpmp.h	and	gfxepmp.h	source	files	in	the	project.

gfxepmp.c	file	is	retained	but	will	only	contain	the	definition	of
the	EPMP	pmp_data.

Converted	the	macro:	#define
GRAPHICS_HARDWARE_PLATFORM	HARDWARE_PLATFORM
where	HARDWARE_PLATFORM	is	one	of	the	supported	hardware
platforms	defined	in	the	section	Graphics	Hardware	Platform	to	just
simply	#define	HARDWARE_PLATFORM.
Since	the	timer	module	is	abstracted	from	the	touch	screen	driver
in	the	"Board	Support	Package",	the	timer	or	the	module	that	calls
for	the	sampling	of	the	touch	screen	must	be	implemented	in	the
application	code.	Call	the	function	TouchProcessTouch()	to	sample
the	touch	screen	driver	if	the	user	has	touched	the	touch	screen	or
not.

Example:

Copy	Code
//	to	indicate	the	hardware	platform	used	is	the

//	Graphics	PICtail™	Plus	Board	Version	3

#define	GFX_PICTAIL_V3

Projects	which	uses	the	following	hardware	drivers	will	need	to	use
the	latest	version	of	the	drivers	located	in	the	"Board	Support
Package"	directory.

Touch	screen	driver:	TouchScreen.c	and	TouchScreen.h	files.
SPI	Flash	driver:	SST25VF016.c	and	SST25VF016.h	files.
Graphics	PICtail	Version	2	Parallel	Flash	driver:
SST39VF040.c	and	SST39VF040.h	files.
Explorer	16	SPI	EEPROM	Flash	driver:	EEPROM.c	and
EEPROM.h	files.
Graphics	PICtail	Version	2	Beeper	driver:	Beep.c	and	Beep.h
files.

In	the	TouchScreen	driver,	the	timer	initialization	and	timer	interrupt
sub-routine	(ISR)	are	abstracted	out	of	the	driver.	The	initialization
and	the	ISR	should	be	defined	in	the	application	code.	the
TouchProcessTouch()	function	in	the	driver	should	be	called	in	the
ISR	to	process	the	touch.

Known	Issues:

Graphics	SSD1926	JPEG	and	SD	Card	Demo	does	not	support
Graphics	Display	Powertip	4.3"	480x272	Board
(PH480272T_005_I11Q).	As	is,	there's	not	enough	spare	memory
space	to	carry	out	the	hardware	JPEG	decoding	operation	by	the
SSD1926.	A	potential	work	around	is	to	reduce	the	active	display
area	size	to	reserve	more	memory	space	for	the	JPEG	decoding
operation.
SSD1926	hardware	acceleration	for	eclipse	is	disabled	due	to
missing	pixels	at	Angle	0.
PIC32MX460	PIM	(not	Starter	Kit)	does	not	support	16-bit	PMP
mode	with	Graphics	PICtail™	Plus	Board	Version	3	(SSD1926)
Board.	It	only	supports	8-bit	PMP	mode.	This	is	due	to	pin	mapping
conflicts	on	the	boards.
This	version	of	Graphics	Library	is	not	compatible	with	Graphics
Display	Designer	v2.0.0.9c

v2.01	

Changes:

Modified	drivers	for	abstraction	of	pmp	and	epmp	interfaces.	they
have	a	common	header	file	DisplayDriverInterface.h.
DisplayDriverInterface.h	is	added	to	the	Graphics.h	file.
DelayMs()	API	is	abstracted	from	the	driver	files.	TimeDelay.c	and
TimeDelay.h	is	added.

Fixes:

Fixed	background	color	bug	in	StaticText	and	Digital	Meter	object.
Fixed	ListBox	LbSetFocusedItem()	bug	on	empty	lists.
Graphics	SSD1926	JPEG	and	SD	Card	Demo	is	fixed	to	support
SD	card	of	size	2GB	or	bigger

Migration	Changes:

pmp	interface	is	abstracted	from	the	driver.	Projects	must	be
modified	to:

include	gfxpmp.c	and	gfxepmp.c	source	files	in	the	project.

DelayMs()	is	abstracted	from	the	drivers.
Add	TimeDelay.c	source	file	in	the	project.
Add	TimeDelay.h	header	file	in	the	project.

v2.00	

Changes:

"Graphics	PICtail	Board	Memory	Programmer"	has	been	renamed
to	"Graphics	External	Memory	Programmer".
"Bitmap	&	Font	Converter"	utility	has	been	renamed	to	"Graphics
Resource	Converter".
Font	format	has	changed.	The	bit	order	has	been	reversed.
Necessary	for	cross	compatibility.
Added	2	new	directories	in	each	demo

Precompiled	Demos	-	this	directory	contains	all	pre-compiled
demos	for	all	hardware	and	PIC	devices	supported	by	the
demo.
Alternative	Configurations	-	this	directory	contains	all	the
Hardware	Profiles	for	all	hardware	and	PIC	devices	supported
by	the	demo.

Moved	all	hardware	and	display	parameters	from	GraphicsConfig.h
to	HardwareProfile.h.HardwareProfile.h	references	a	hardware
profile	file	in	"Alternative	Configurations"	directory	based	on	the
PIC	device	selected.

Fixes:

Fixed	BtnSetText()	bug	when	using	Multi-Line	Text	in	Buttons.
Fixed	SDSectorWrite()	function	in	SSD1926_SDCard.c	in	the
"Graphics	SSD1926	JPEG	and	SD	Card	Demo".

Migration	Changes:

Move	all	hardware	and	display	parameters	from	GraphicsConfig.h
to	HardwareProfile.h

panel	type,	display	controller,	vertical	and	horizontal
resolution,	front	and	back	porches,	synchronization	signal
timing	and	polarity	settings	etc.

GRAPHICS_PICTAIL_VERSION,1,2,250,3	options	are	now

deprecated,	new	usages	are:
#define	GRAPHICS_HARDWARE_PLATFORM
GFX_PICTAIL_V1
#define	GRAPHICS_HARDWARE_PLATFORM
GFX_PICTAIL_V2
#define	GRAPHICS_HARDWARE_PLATFORM
GFX_PICTAIL_V3

The	font	format	has	changed,	run	Graphics	Resource	Converter	to
regenerate	font	files,	the	bit	order	is	reversed.	No	legacy	support	is
provided.	Primitive/Driver	layers	now	expects	the	new	format.
The	initialization	sequence	of	GOLInit()	relative	to	the	flash
memory	initialization	is	sensitive	due	to	the	sharing	of	hardware
resources,	i.e.	SPI	or	PMP.	Care	should	be	taken	to	make	sure	the
peripheral	and	I/O	port	settings	are	correct	when	accessing
different	devices.
A	number	of	configuration	options	have	been	moved	from
GraphicsConfig.h	to	HardwareProfile.h,	this	is	required	to	maintain
a	more	logical	flow.
HardwareProfile.h	now	points	to	one	of	many	Alternative
Configuration	files,	each	one	specific	to	a	certain	hardware	board
setup.
DelayMs	routine	in	SH1101A-SSD1303.c/h	is	now	a	private
function,	no	public	API	is	exposed.	In	future	releases,	DelayMS	will
be	removed	from	all	drivers	and	be	replaced	by	an	independent
module.
GenericTypeDefs.h	has	been	updated	with	new	definitions,	this
should	not	impact	any	legacy	codes.

v1.75b	

Changes:

None.

Fixes:

Fixed	Line2D()	bug	in	SSD1926.c.
Fixed	remainder	error	in	JPEG	decoding	in	JpegDecoder.c.
Fixed	pinout	labels	for	reference	design	schematic	"Schematic	for

Graphics	Display	Powertip	4.3in	480x272	Board	Rev	2.pdf".

Migration	Changes:

None.

v1.75	Release	(July	10,	2009)	

Changes:

Added	2D	acceleration	support	for	controllers	with	accelerated
primitive	drawing	functions.
Added	Digital	Meter	Widget	for	fast	display	refresh	using	fixed
width	fonts.
Added	support	for	selected	PIC24H	Family	of	devices.
Added	support	for	selected	dsPIC33	Family	of	devices.
Updated	all	primitive	functions	to	return	success	or	fail	status	when
executed.	This	is	used	to	evaluate	if	the	primitive	function	has
finished	rendering.
Updated	Solomon	Systech	SSD1926	driver	to	use	2D	accelerated
functions.
New	Display	Controller	Driver	supported:

Ilitek	ILI9320
Solomon	Systech	SSD1289
Himax	HX8347
Renesas	R61580

New	demos	are	added:
PIC24F	Starter	Kit	Demo
PIC24H	Starter	Kit	Demo	1
Graphics	JPEG	Demo	using	internal	and	external	flash
memory	for	image	storage
Graphics	SSD1926	JPEG	and	SD	Card	Demo	using	SD	Card
for	image	storage

Added	JPEG	support	to	"Font	and	Bitmap	Converter	Utility".
Modified	Button	Widget	for	new	options:

Use	multi-line	text	(set	USE_BUTTON_MULTI_LINE)
Detect	continuous	touch	screen	press	event	using	messaging

Added	Touch	Screen	event	EVENT_STILLPRESS	to	support
continuous	press	detection.

New	reference	design	schematics	added:
Schematic	for	Graphics	Display	DisplayTech	3.2in	240x320
Board.pdf
Schematic	for	Graphics	Display	Newhaven	2.2in	240x320	with
HX8347.pdf
Schematic	for	Graphics	Display	Seiko	3.5in	320x240
Board.pdf
Schematic	for	Graphics	Displays	DisplayTech	and	Truly	3.2in
240x320	with	SSD1289.pdf
Schematic	for	ILI9320.pdf

Fixes:

Fixed	dimension	calculation	for	quarter	sized	meter.

Migration	Changes:

When	using	accelerated	primitive	functions	while
USE_NONBLOCKING_CONFIG	is	enabled,	the	accelerated
primitive	must	be	checked	if	it	succesfully	rendered.	Refer	to	the
coding	example	for	details.
Replaced	LGDP4531_R61505_S6D0129_S6D0139_SPFD5408.c
and	LGDP4531_R61505_S6D0129_S6D0139_SPFD5408.h	files
with	drvTFT001.c	and	drvTFT001.h	respectively.

v1.65	Release	(March	13,	2009)	

Changes:

Added	support	for	the	new	Graphics	PICtail™	Plus	Daughter
Board	(AC164127-3).	This	new	board	comes	in	two	components:
the	controller	board	and	the	display	board.	The	display	board	uses
RGB	type	displays	driven	by	the	controller	board.	This
configuration	allows	easy	replacement	of	the	display	glass.
Added	application	note	AN1246	"How	to	Create	Widgets".
New	Display	Controller	Driver	supported

UltraChip	UC1610
New	demos	are	added

Graphics	AN1246	Demo	showing	the	TextEntry	Widget.
Graphics	Multi-App	Demo	showing	USB	HID,	USB	MSD	and

SD	MSD	demos	using	the	Microchip	Graphics	Library.
Modified	Meter	Widget	for	new	options:

Set	Title	and	Value	Font	at	creation	time
Added	GOLGetFocusPrev()	for	focus	control	on	GOL	Objects.
Added	work	spaces	to	demo	releases.
Graphics	PICtail™	Plus	Board	1	is	obsolete.	All	references	to	this
board	is	removed	from	documentation.
New	reference	design	schematics	added:

Schematic	for	Graphics	Display	Ampire	5.7in	320x240	Board
Rev	A.pdf
Schematic	for	Graphics	Display	Powertip	3.5in	320x240	Board
Rev	B.pdf
Schematic	for	Graphics	Display	Powertip	4.3in	480x272	Board
Rev	B.pdf
Schematic	for	Graphics	Display	Truly	3.5in	320x240	Board
Rev	A.pdf
Schematic	for	Truly	TOD9M0043.pdf

Fixes:

Fixed	drawing	bug	on	TextEntry	Widget
Added	missing	documentation	on	Chart	and	Text	Entry	Widgets

Migration	Changes:

none

v1.60	Release	(December	3,	2008)	

Changes:

Added	TextEntry	Widget.
Modified	Meter	Widget	for	new	options:

Define	different	fonts	for	value	and	title	displayed.
Add	option	for	resolution	of	one	decimal	point	when	displaying
values.
Add	color	options	to	all	six	arcs	of	the	Meter.
Meter	range	is	not	defined	by	a	minimum	value	and	a
maximum	value.

Added	feature	to	a	the	Button	Widget	to	allow	cancelling	of	press

by	moving	away	the	touch	and	releasing	from	the	Button's	face.
Added	font	sizes	options	of	3,4,5,6	&	7	in	Font	&	Bitmap	Converter
Utility	when	converting	fonts	from	TTF	files.
Enhanced	the	architecture	of	the	Display	Device	Driver	Layer.

Fixes:

Fixed	Font	&	Bitmap	Converter	Utility	generation	of	reference
strings	to	be	set	to	const	section.
Fixed	panel	rendering	to	always	draw	the	panel	face	color	even	if
bitmaps	are	present.

Migration	Changes:

Added	the	following	files	in	the	Display	Device	Driver	Layer	to
easily	switch	from	one	display	driver	to	another.

DisplayDriver.h
DisplayDriver.c

Modified	implementation	of	GraphicsConfig.h	file	to	support	new
Display	Device	Driver	Layer	architecture.
Moved	the	definitions	of	pins	used	in	device	drivers	implemented	in
all	the	demos	to	HardwareProfile.h	file.

EEPROM	Driver
Touch	Screen	Driver
Beeper	Driver
Flash	Memory	Driver
Display	Drivers

Modified	GOL.c	and	GOL.h	to	include	processing	of	TextEntry
object	when	enabled	by	application.

v1.52	Release	(August	29,	2008)	

Changes:

Added	Chart	Widget.
Added	Property	State	for	Window	Widget.	Text	in	Title	Area	can
now	be	centered.
Added	Supplementary	Library	for	Image	Decoders.
Added	documentation	of	Default	Actions	on	widgets.
Replaced	USE_MONOCHROME	compile	switch	with

COLOR_DEPTH	to	define	color	depth	of	the	display.
Added	GOL_EMBOSS_SIZE	to	be	user	defined	in
GraphicsConfig.h.
Simplified	initialization	code	for	SSD1906	driver.

Fixes:

Fixed	touch	screen	algorithm.
Fixed	file	path	error	in	Font	&	Bitmap	Converter	Utility.

Migration	Changes:

USE_GOL	must	be	defined	when	using	any	Widgets.
New	include	directory	paths	are	added	to	demo	projects:

..\..\..\Your	Project	Directory	Name

..\..\Include
Moved	all	driver	files	to	new	directory

C	files	from	..\Microchip\Graphics	to
..\Microchip\Graphics\Drivers

GOL_EMBOSS_SIZE	can	now	be	defined	by	the	user	in
GraphicsConfig.h.	If	user	does	not	define	this	in	GraphicsConfig.h
the	default	value	in	GOL.h	is	used.

v1.4	Release	(April	18,	2008)	

Changes:

Added	full	support	for	PIC32	families.
Added	Application	Note	demo	on	fonts.
Added	images	for	end	designs	using	PIC	devices.

Fixes:

Fixed	GetPixel	error	in	SSD1906	Driver.
Fixed	SST39VF040	parallel	flash	driver	reading	instability.
Fixed	error	in	64Kbytes	rollover	in	utility	conversion	of	bitmaps	and
SST39VF040	parallel	flash	driver.
Fixed	milli-second	delay	on	PIC32.
Fixed	compile	time	option	errors	for	PIC32.
Fixed	Graphics	Object	Layer	Demo	error	in	PIC32	when	time	and
date	are	set.

Fixed	Picture	widget	bug	in	detecting	touchscreen	in	translating
messages.

v1.3	Release	(March	07,	2008)	

Changes:

none

Fixes:

Fixed	an	inaccurate	ADC	reading	problem	with	some	Explorer	16
Development	Boards	that	uses	5V	LCD	display.
Editbox	allocation	of	memory	for	text	is	corrected.
Fix	slider	SetRange()	bug.
Set	PIC32	configuration	bits	related	to	PLL	to	correct	values.
Touch	screen	portrait	mode	bug	is	fixed.

v1.2	Release	(February	15,	2008)	

Changes:

Added	support	for	Graphics	PICtail	Plus	Board	Version	2
Added	support	for	foreign	language	fonts
Version	1.2	of	the	font	and	bitmap	utility

Support	for	multi-language	scripts
Support	for	generating	font	table	from	installed	fonts
Support	to	reduce	font	table	size	by	removing	unused
characters
Support	to	select	between	C30	and	C32	compiler	when
generating	bitmaps	and	font	tables.

Added	Chinese	version	of	Graphics	Object	Layer	Demo.
New	Display	Controller	Drivers	supported

Solomon	Systech	SSD1906
Orise	Technology	SPDF5408

Replaced	USE_UNICODE	compile	switch	to
USE_MULTIBYTECHAR	compile	switch	to	define	XCHAR	as	2-
byte	character.
Added	compile	switches

GRAPHICS_PICTAIL_VERSION	-	sets	the	PICtail	board

version	being	used.
USE_MONOCHROME	–	to	enable	monochrome	mode.
USE_PORTRAIT	-	to	enable	the	portrait	mode	of	the	display
without	changing	the	display	driver	files.

Added	beta	support	for	PIC32	device

Fixes:

Specification	changes	to	List	Box	widget.	Bitmap	is	added	to	List
Box	items.
Fixed	List	Box	LbDelItemsList()	error	in	not	resetting	item	pointer	to
NULL	when	items	are	removed.
Editbox	allocation	of	memory	for	text	is	corrected.
Static	Text	multi-byte	character	failure	is	fixed.
Bar()	function	erroneous	call	to	MoveTo()	is	removed	since	it
causes	the	drawing	cursor	to	be	displaced.
Removed	SCREEN_HOR_SIZE	and	SCREEN_VER_SIZE	macros
from	documentation.	Maximum	X	and	Y	sizes	are	to	be	obtained	by
GetMaxX()	and	GetMaxY()	macros.

v1.0	Release	(November	1,	2007)	

Changes:

Edit	Box,	List	Box,	Meter,	Dial	widgets	are	added.
Button	is	modified.	New	options	for	the	object	are	added.
Modified	OBJ_REMOVE	definition	to	OBJ_HIDE	(example
BTN_REMOVE	to	BTN_HIDE).
Modified	GOLPanelDraw()	function	to	include	rounded	panels.
External	memory	support	for	the	fonts	and	bitmaps	is	implemented.
SSD1339	and	LGDP4531	controllers	support	is	added.
Bevel(),	FillBevel()	and	Arc()	functions	are	added.
Modified	Graphics	Object	Layer	Demo.
Added	Graphics	External	Memory	Demo	&	Graphics	PICtailTM
Board	Memory	Programmer	Demo.
Added	Graphics	Application	Note	(AN1136-	How	to	use	widgets.)
Demo.

Fixes:	none	

v0.93	Beta	release	(August	29,	2007)	

Changes:	none	

Fixes:

In	demo	code	the	bitmap	images	couldn’t	be	compiled	without
optimization.	bmp2c.exe	utility	output	is	changed	to	fix	this	bug.
In	demo	code	“volatile”	is	added	for	global	variables	used	in	ISRs.

v0.92	Beta	release	(July	25,	2007)	

Changes:

Keyboard	and	side	buttons	support	is	added.
Keyboard	focus	support	is	added.
PutImage()	parameters	are	changed.	Instead	of	pointer	to	the
bitmap	image	the	pointer	to	BITMAP_FLASH	structure	must	be
passed.
GOLSuspend()	and	GOLResume()	are	removed.
GOLMsg()	doesn’t	check	object	drawing	status.	It	should	be	called
if	GOL	drawing	is	completed.
GOLStartNewList()	is	replaced	with	GOLNewList().
Line()	function	calls	are	replaced	with	Bar()	function	calls	for
vertical	and	horizontal	lines.
Parameter	“change”	is	removed	for	SldIncVal()	and	SldDecVal()	.
Some	optimization	and	cleanup.
Slider	API	is	changed:

SldSetVal()	is	changed	to	SldSetPos()
SldGetVal()	is	changed	to	SldGetPos()
SldIncVal()	is	changed	to	SldIncPos()
SldDecVal()	is	changed	to	SldDecPos()
SldCreate()	input	parameter	are	changed:

“delta”		changed	to	“res”

Fixes:

PutImage().
Line().
FillCircle().

For	vertical	slider	the	relation	between	thumb	location	and	slider
position	is	changed.	For	position	=	0	thumb	will	be	located	at	the
bottom.	For	position	=	range	it	will	be	at	the	top.

v0.9	Beta	release	(July	06,	2007)	

Changes:

Background	color	support	is	removed.
Non-blocking	configuration	for	graphics	primitives	is	added.
GetImageWidth(),	GetImageHeight()	are	added.
OutText(),	OutTextXY()	and	GetTextWidth()	functions	are
terminated	by	control	characters	(<	32).
Graphics	Objects	Layer	(GOL)	is	added.
Button,	Slider,	Checkbox,	Radio	Button,	Static	Text,	Picture	control,
Progress	Bar,	Window,	Group	Box	are	implemented.
Touch	screen	support	is	added.

Fixes:

ReadFlashByte().
GetTextWidth().

v0.1	(June	05,	2007)	

Changes:

Initial	release	includes	driver	and	graphic	primitive	layers	only.
Only	driver	for	Samsung	S6D0129	controller	is	available.

Fixes:

None.

	

Known	Issues	

None	

	

Release	Notes

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Getting	Started
Directory	Structure
The	Microchip	Graphics	Library	installation	follows	the	standard
directory	structure	for	all	Microchip	library	solutions.	Installing	the
library	will	give	the	following	structure:

One	of	the	demo	subdirectories	(example:	Graphics	or	Combo)
may	become	"Your	Applications	Directory"	that	will	contain	your
application	source	code.	You	can	add	code	and	modules	here
that	will	use	and	interact	with	the	library.	The	library	specific
folders	are	the	following:

The	Microchip	folder	will	contain	the	library	components.
The	Help	sub-folder	under	Microchip	folder	will	contain	this
document	(Graphics	Library	Help.chm	file).
The	Graphics	sub-folder	under	the	Microchip	folder	is	where	the
C	files,	documentation	and	utilities	are	located.

Inside	this	Graphics	sub-folder	are	the	directories	for	the
Drivers,	Documents,	GDD,	Images	and	bin	directories.	It	will
also	contain	the	directory	for	the	Image	Decoders	source
files.
The	GDD	(Graphics	Display	Designer)	directory	contains	the
GDD	project	template.	Use	this	to	start	projects	using	the
Graphics	Display	Designer.
The	bin	directory	contains	the	Graphics	Resource	Converter
utility	and	External	Memory	Programmer	both	implemented	in
java.

The	Include	sub-folder	under	the	Microchip	folder	will	contain
common	header	files	to	all	Microchip	library	solutions.
Another	Graphics	directory	is	included	in	the	Include	sub	folder.
This	will	hold	the	Graphics	Library	header	files	as	well	as	the
header	files	for	the	Image	Decoders.
The	Board	Support	Package	folder	will	contain	hardware	specific
drivers	that	are	common	to	the	Microchip	Demo	Boards	(such	as
Explorer	16,	display	panels	or	PICtail™	Plus	Daughter	Boards).

All	subdirectories	and	files	under	the	Microchip	directory	should
not	be	modified.	In	case	your	project	will	use	more	than	one
Microchip	library	solution,	this	directory	will	contain	all	the	library
files	you	install.	Thus,	it	is	important	to	maintain	the	files	in	this
directory.	The	Microchip	Solutions	directory	may	become	your
"MyProjects"	directory	that	will	contain	all	your	projects	using	the
different	Microchip	solutions.	

	

How	to	Get	Started
There	are	various	ways	to	get	started	with	Microchip	Graphics
Library:

1.	 Obtain	Development	Boards	from	the	"Getting	Started"	section	of
the	Microchip	graphics	website	(www.microchip.com/graphics):
1.	 Explorer	16	Starter	Kit	(DV164003)	with	any	of	the	Graphics

PICtail™	Plus	Daughter	Boards.
2.	 PIC24FJ256DA210	Development	Board	(DV164039)	with	any

of	the	individual	Graphics	Display	Boards.
3.	 A	PIC32	Starter	Kit	and	Graphics	LCD	Controller	PICtail™

Plus	SSD1926	Board	(AC164127-5)	with	any	of	the	individual
Graphics	Display	Boards.

4.	 A	PIC32	Starter	Kit	and	Graphics	PICtail	Plus	Epson
S1D13517	Board	(AC164127-7)	with	any	of	the	individual
Graphics	Display	Boards.

5.	 A	PIC32	Starter	Kit	and	Multi-Media	Expansion	Board
(DM320005).

2.	 Graphics	PICtail™	Plus	Daughter	Board	available:
AC164127-3	-	Graphics	PICtail	Plus	Daughter	Board	with
Truly	3.2"	Display	Kit

AC164127-5	-	Graphics	LCD	Controller	PICtail	Plus	SSD1926
Board.	This	board	is	the	same	board	used	in	AC164127-3	PIctail
Plus	and	Display	Panel	combo	shown	above.

.

AC164127-7	-	Graphics	PICtail	Plus	Epson	S1D13517	Board.

AC164144	-	Low-Cost	Controllerless	(LCC)	Graphics	PICtail	Plus
Daughter	Board.

3.	 Graphics	Display	Boards	available:
AC164127-4	-	Graphics	Display	Truly	3.2"	240x320	Board

AC164127-6	-	Graphics	Display	Powertip	4.3"	480x272	Board

AC164127-8	-	Graphics	Display	Truly	5.7"	640x480	Board

AC164127-9	-	Graphics	Display	Truly	7"	800x480	Board

AC164139	-	Graphics	Display	Prototype	Board

4.	 Refer	to	Web	Seminar	4	on	“Microchip	Graphics	Library
Architecture”	from	the	"Training	and	Support"	section	for	an
overview	of	the	structure	and	the	different	layers	of	the	library.	It
also	gives	a	brief	information	on	how	to	use	the	library.

5.	 Refer	to	Microchip's	Regional	Training	Center	class	on	Graphics
Library:

HIF	2131	–	Designing	with	Microchip	Graphics	Library

6.	 For	a	much	detailed	look	on	the	usage,	you	can	refer	to	the
following	application	notes	from	the	"Training	and	Support"	section.

AN1136	How	to	Use	Widgets	in	Microchip	Graphics	Library.
This	application	note	introduces	the	basic	functions	needed	to
create	and	manage	Widgets.
AN1182	Fonts	in	the	Microchip	Graphics	Library.	This

application	note	describes	the	format	of	the	Microchip
Graphics	Library's	font	image.	It	also	tells	how	to	reduce	the
number	of	characters	in	a	font	and	automate	the	creation	of
the	character	arrays	referring	to	an	application's	strings.
AN1227	Using	a	Keyboard	with	the	Microchip	Graphics

Library.	This	application	note	describes	how	to	implement	a
keyboard-based	GUI.
AN1246	How	to	Create	Widgets	in	Microchip	Graphics

Library.	This	application	note	serves	as	a	useful	guide	in
creating	customized	Widgets.	The	essential	components	of	a
Widget	are	enumerated	and	described	in	this	document.	This
application	note	also	outlines	the	process	of	integrating	the
new	Widget	into	the	Graphics	Library	in	order	to	utilize	the
already	implemented	routines	for	processing	messages	and
rendering	Widgets.
AN1368	Developing	Graphics	Applications	using	PIC	MCUs

with	Integrated	Graphics	Controller.	This	application	note	is
intended	for	engineers	who	are	designing	their	first	graphic
application.	It	describes	the	basic	definitions	and	jargons	of
graphics	applications	and	it	helps	the	engineer	to	understand
the	theory,	necessary	decision	factors,	hardware
considerations,	available	microcontrollers	and	development
tools.

7.	 Finally,	you	can	obtain	the	free	licensed	Microchip	Graphics	library
also	from	the	"Getting	Started"	section.

	

	

	

How	to	Build	Projects	for	the	PIC24FJ256DA210
Development	Board

1.	 In	the	application	specific	HardwareProfile.h	file	of	your	project	set
the	hardware	platform	to	PIC24FJ256DA210	Development	Board:

Copy	Code
#define	PIC24FJ256DA210_DEV_BOARD

2.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	the	correct	display	controller	and	the	display	panel
combination.	Selecting	the	correct	display	panel	will	choose	the
correct	parameter	settings	for	the	display.	Examples	of	these
parameters	are	horizontal	and	vertical	resolution,	display
orientation,	vertical	and	horizontal	pulse	width,	and	front	and	back
porch	settings.

When	using	the	Truly	3.2"	display	on	AC164127-4	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

When	using	the	Powertip	4.3"	display	on	AC164127-6	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q

3.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	following	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	PMP	interface

#define	USE_16BIT_PMP

//	set	the	Graphics	Clock	Divider	that	generates	the	Pixel	clock.

//	Refer	to	display	data	sheet	for	pixel	clock	frequency	requirement

//	and	Family	Reference	Manual	-	Oscillator	for	details	on	GCLK	divider	(GCLKDIV).

#define	GFX_GCLK_DIVIDER	38

//	set	the	display	buffer	start	address.

#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00020000ul

//	set	the	EPMP	CS1	base	address	if	using	external	memory	on	EPMP	CS	1	space	and	its	size

#define	GFX_EPMP_CS1_BASE_ADDRESS	0x00020000ul

#define	GFX_EPMP_CS1_MEMORY_SIZE		0x40000ul

//	set	the	EPMP	CS2	base	address	if	using	external	memory	on	EPMP	CS	1	space	and	its	size

#define	GFX_EPMP_CS2_BASE_ADDRESS	0x00080000ul

#define	GFX_EPMP_CS2_MEMORY_SIZE		0x80000ul

4.	 In	the	the	project's	GraphicsConfig.h	set	the	color	depth	to	the
desired	bpp	value	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	color	depth	used

#define	COLOR_DEPTH	16

	

How	to	Build	Projects	for	Graphics	PICtail™	Plus	Board

Version	3:

1.	 In	the	application	specific	HardwareProfile.h	file	of	your	project	set
the	hardware	platform	to	Graphics	PICtail™	Plus	Board	Version	3:

Copy	Code
#define	GFX_PICTAIL_V3

2.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	the	correct	display	controller	and	the	display	panel
combination.	Selecting	the	correct	display	panel	will	choose	the
correct	parameter	settings	for	the	display.	Examples	of	these
parameters	are	horizontal	and	vertical	resolution,	display
orientation,	vertical	and	horizontal	pulse	width,	and	front	and	back
porch	settings.

When	using	the	Truly	3.2"	display	on	AC164127-4	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_SSD1926

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

When	using	the	Powertip	4.3"	display	on	AC164127-6	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_SSD1926

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q

3.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	following	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	hardware	platform

#define	EXPLORER_16

//	set	the	PMP	interface

#define	USE_8BIT_PMP

4.	 In	the	the	project's	GraphicsConfig.h	set	the	color	depth	to	the
desired	bpp	value	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	color	depth	used

#define	COLOR_DEPTH	16

	

How	to	Build	Projects	for	Graphics	PICtail™	Plus	Epson
S1D13517	Board

1.	 In	the	application	specific	HardwareProfile.h	file	of	your	project	set
the	hardware	platform	to	Graphics	PICtail™	Plus	Epson	S1D13517
Board:

Copy	Code
#define	GFX_PICTAIL_V3E

2.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	the	correct	display	controller	and	the	display	panel
combination.	Selecting	the	correct	display	panel	will	choose	the
correct	parameter	settings	for	the	display.	Examples	of	these
parameters	are	horizontal	and	vertical	resolution,	display
orientation,	vertical	and	horizontal	pulse	width,	and	front	and	back
porch	settings.

When	using	the	Truly	3.2"	display	on	AC164127-4	board

Copy	Code

//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_S1D13517

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

When	using	the	Powertip	4.3"	display	on	AC164127-6	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_S1D13517

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q

3.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	following	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	hardware	platform

#define	EXPLORER_16

//	set	the	PMP	interface

#define	USE_8BIT_PMP

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

4.	 In	the	the	project's	GraphicsConfig.h	set	the	color	depth	to	the
desired	bpp	value	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	color	depth	used

#define	COLOR_DEPTH	16

	

Low-Cost	Controllerless	(LCC)	Graphics	PICtail	Plus
Daughter	Board:

1.	 In	the	application	specific	HardwareProfile.h	file	of	your	project	set
the	hardware	platform	to	Low-Cost	Controllerless	(LCC)	Graphics
PICtail	Plus	Daughter	Board:

Copy	Code
#define	GFX_PICTAIL_LCC

2.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	the	correct	display	controller	and	the	display	panel
combination.	Selecting	the	correct	display	panel	will	choose	the
correct	parameter	settings	for	the	display.	Examples	of	these
parameters	are	horizontal	and	vertical	resolution,	display
orientation,	vertical	and	horizontal	pulse	width,	and	front	and	back
porch	settings.

When	using	the	Truly	3.2"	display	on	AC164127-4	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_DMA

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

When	using	the	Powertip	4.3"	display	on	AC164127-6	board

Copy	Code
//	set	the	display	controller

#define	GFX_USE_DISPLAY_CONTROLLER_DMA

//	set	the	display	panel

#define	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q

3.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	following	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	hardware	platform

#define	EXPLORER_16		//	or	you	can	use	PIC_SK	if	using	Starter	Kits

//	set	the	PMP	interface

#define	USE_8BIT_PMP

4.	 In	the	the	project's	GraphicsConfig.h	set	the	color	depth	to	the
desired	bpp	value	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	color	depth	used

#define	COLOR_DEPTH	16

	

How	to	Build	Projects	for	the	Multimedia	Expansion	Board

1.	 In	the	application	specific	HardwareProfile.h	file	of	your	project	set
the	hardware	platform	to	Graphics	PICtail™	Plus	Epson	S1D13517
Board:

Copy	Code
#define	MEB_BOARD

2.	 In	the	application	specific	HardwareProfile.h	file	of	your	project,	set
the	correct	display	controller.

Copy	Code
#define	GFX_USE_DISPLAY_CONTROLLER_SSD1926

3.	 In	the	the	same	application	specific	HardwareProfile.h	file	of	your
project,	set	following	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	PMP	interface

#define	USE_8BIT_PMP

//	set	the	Starter	Kit	used

#define	PIC32_GP_SK	//	use	generic	PIC32	Starter	Kit

	or

#define	PIC32_USB_SK	//	use	PIC32	USB	Starter	Kit

or

#define	PIC32_ETH_SK	//	use	PIC32	Ethernet	Starter	Kit

4.	 In	the	the	project's	GraphicsConfig.h	set	the	color	depth	to	the
desired	bpp	value	(Refer	to	each	demo	hardware	profiles	for
examples):

Copy	Code
//	set	the	color	depth	used

#define	COLOR_DEPTH	16

	

	

Demo	Projects
The	Microchip	Graphics	Library	documentation	has	several
components	that	covers	installation,	customization	and	usage	of
the	library.	Several	demo	projects	are	included	in	the	installation
to	help	you	get	started.	Detailed	information	on	each	demo
project	is	available	from	the	"Getting	Started"	help	file	located	in
each	of	the	demo	folders.	

	

Schematics
The	library	installation	also	includes	schematics	of	currently
supported	controllers	and	glass.	These	can	be	found	in	the
../<install	directory>/Microchip/Graphics/Documents/Schematics
directory.

Schematic	for	Graphics	Display	Ampire	5.7in	320x240	Board	Rev
A.pdf
Schematic	for	Graphics	Display	Powertip	3.5in	320x240	Board	Rev
B.pdf
Schematic	for	Graphics	Display	Powertip	4.3in	480x272	Board	Rev
B.pdf
Schematic	for	Graphics	Display	Truly	3.2in	240x320	Board	Rev
4.pdf
Schematic	for	Graphics	Display	Truly	3.5in	320x240	Board	Rev
A.pdf
Schematic	for	Graphics	LCD	Controller	PICtail	SSD1926	Board
Rev	2.pdf
Schematic	for	Solomon	Systech	SSD1906.pdf
Schematic	for	Truly	GG1N1291UTSW-W-TP-E.pdf
Schematic	for	Truly	TFT-G240320UTSW-92W-TP.pdf
Schematic	for	Truly	TOD9M0043.pdf
Schematic	for	Microtips	MTF-T022BHNLP.pdf
Schematic	for	Densitron	TSR67802.pdf
Schematic	for	Graphics	Display	DisplayTech	3.2in	240x320
Board.pdf
Schematic	for	Graphics	Display	Newhaven	2.2in	240x320	with
HX8347.pdf
Schematic	for	Graphics	Display	Seiko	3.5in	320x240	Board.pdf
Schematic	for	Graphics	Displays	DisplayTech	and	Truly	3.2in
240x320	with	SSD1289.pdf
Schematic	for	ILI9320.pdf
Schematic	for	Graphics	Display	Prototype	Board	Rev	1.pdf
Schematic	for	Graphics	Display	Truly	5.7in	640x480	Board	Rev
2.pdf
Schematic	for	Graphics	Display	Truly	7in	800x480	Board	Rev	2.pdf

Schematic	for	Graphics	LCD	Controller	PICTail	Plus	S1D13517
Rev	1.1.pdf
Schematic	for	Low-Cost	Controllerless	(LCC)	Graphics	Board	Rev
1.pdf
Schematic	for	PIC24FJ256DA210	Development	Board	Rev	1.1.pdf

	

Images
The	library	allows	displaying	1bpp,	4bpp,	8bpp,	16bpp	and
24bpp	images.	They	can	be	located	in	program	flash	space	or
external	memory.	To	convert	the	bitmap	format	file	(BMP
extension)	or	JPEG	format	file	into	source	C	file	containing	data
array	for	internal	memory	or	Intel	hex	file	for	external	memory	the
“Graphics	Resource	Converter”	included	in	the	library
installation	can	be	used.	Refer	to	the	utility	help	file	for	details	on
usage.	

	

Fonts
The	library	operates	with	8-bit	character	encoded	strings.	It
covers	languages	defined	in	IS0	8859	standards.	East	Asian	and
any	other	languages	support	is	available	for	UNICODE	encoded
fonts.	Font	can	be	stored	in	internal	flash	as	an	array	in	const
section	(this	limits	font	image	size	by	32Kbytes)	or	can	be
located	in	external	memory.	To	convert	the	font	file	into	source	C
file	containing	data	array	for	internal	memory	or	Intel	hex	file	for
external	memory	the	“Graphics	Resource	Converter”	utility
can	be	used.	The	utility	allows	importing	raster	font	files	(FNT
extension)	or	true	font	files	(TTF	extension).	Refer	to	the	help
built	in	the	utility	for	details.	Raster	font	files	can	be	extracted
from	MS	Windows	bitmap	font	package	file	(FNT	extension)	or
converted	from	true	type	font	file	(TTF	extension)	with	a	third
party	font	editor.	One	such	freeware	editor	Fony	is	available	at	
http://hukka.furtopia.org/.	Another	example	is	

http://fontforge.sourceforge.net.	

The	utility	also	allows	reducing	the	generated	fonts	to	include
only	the	characters	that	the	application	will	use.	This	can	be
done	by	using	font	filtering.	Please	refer	to	application	note
"AN1182:	Fonts	in	the	Microchip	Graphics	Library"	from	the
"Training	and	Support"	section	of	the	Microchip	graphics	website
for	details	of	implementing	reduced	fonts.	

	

How	to	use	the	API	Documentation
This	help	file	includes	the	API	description	of	the	library.	The	way
the	API	is	structured	is	similar	to	the	library	layers.

1.	 The	Device	Driver	Layer	presents	all	the	API	included	to	initialize
and	use	the	display	controller	and	the	glass.	This	section	also
contains	information	on	how	to	add	new	Device	Driver.

2.	 The	Graphics	Primitive	Layer	is	a	hardware	independent	layer	that
contains	the	API	for	basic	rendering	functions.	Use	this	section	to
render	basic	shapes	like	lines,	rectangles,	filled	circle	etc.

3.	 The	Graphics	Object	Layer	contains	the	API	specific	to	each
Widget	type.	Use	this	section	to	create	and	manage	Widgets	as
well	as	pages	or	screens	of	different	Widgets.	Messaging	and
rendering	of	Widgets	are	also	included	in	this	section.

	

Updates	and	News
Refer	to	the	Microchip	graphics	website	
www.microchip.com/graphics	for	the	latest	version	of	the
Microchip	Graphics	Library,	webinars,	application	notes,	FAQs
and	latest	news	and	updates.

Getting	Started

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Demo	Projects
Topics

Summary	of	demo	projects	that	comes	with	the	installation	of	the
Microchip	Graphics	Library.

Topics

Name	 Description	

Demo	Summary	 This	is	the	current	list	of	demo	projects	released
with	the	Graphics	Library.	

Microchip
Application
Library
Abbreviations	

Summary	of	Microchip	Applications	Library
Abbreviations	used.	

Demo
Compatibility
Matrix	

Refer	to	the	Demo	Compatibility	matrix	located	in
the	<install
directory>/Microchip/Graphics/Documents/Getting
Started/Getting	Started	-	Demo	Compatibility
Matrix.htm	for	details.	

Links

Topics

Demo	Projects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Demo	Summary

Demo
Name	

Description	(see	Note)	

Primitive
Layer	

Shows	how	primitive	functions	are	used.	

Object
Layer	

Shows	how	objects	are	used	with	user	messages
interacting	with	objects.	

Object
Layer
Palette	

The	same	as	the	Object	Layer	demo	but	uses	the
Color	Look	Up	Table	of	the	Microchip	Graphics
Module.	

External
Memory	

A	simple	demo	showing	how	images	and	fonts	from
external	memory	are	used	in	a	graphics	application.	

Multi-App	 A	demo	showing	USB	Framework,	Memory	Disk	Drive,
Image	Decoders	and	Graphics	libraries	and	stacks	are
integrated	into	one	application.	

PIC32
LCC	

A	demo	showing	how	the	Graphics	LCD	Controller
PICtail™	Plus	LCC	Board	(AC164144)	can	be
connected	to	either	the	Explorer	16	board	(with	a
PIC32	PIM)	or	connected	to	a	PIC32	Starter	Kits.	

SSD1926	 A	demo	showing	the	Solomon	Systech	Controller
JPEG	decoder	module	on	the	Graphics	LCD	Controller
PICtail™	Plus	SSD1926	Board	(AC164127-5)	and
Multi-Media	Expansion	Board	(DM320005)	displaying
JPEG	images	from	an	SD	Card.	

S1D13517	 A	demo	showing	the	different	features	of	the	Epson
S1D13517	Controller	in	the	Graphics	PICtail	Plus
Epson	S1D13517	Board	(AC164127-7)	

E-Paper
Epson	

A	demo	showing	how	the	E-paper	Display	PICtail™
Plus	Board	with	Epson	Controller	(Epson	P/N

S5U13522C100S00)	can	be	used	with	the	Microchip
Graphics	Library.	

Color
Depth	

Demo	showing	how	the	graphics	module	in
PIC24FJ256DA210	is	used	in	applications	using	color
depths	of	1,	4	and	8	BPP.
(Location:	<install_dir>/Graphics/PIC24F	DA/Color
Depth)	

Elevator	 A	mock	up	of	Elevator	Monitor	showing	the	location	of
the	elevator	car	and	the	direction	it	is	moving.
(Location:	<install_dir>/Graphics/PIC24F	DA/Elevator)	

RCCGPU-
IPU	

A	demo	showing	how	Rectangle	Copy	Graphical
Processing	Unit	(RCCGPU)	and	Inflate	Processing
Unit	(IPU)	of	the	Graphics	Module	in
PIC24FJ256DA10	is	used.
(Location:	<install_dir>/Graphics/PIC24F
DA/RCCGPU-IPU)	

Remote
Control	

This	is	a	demo	showing	how	to	create	a	universal
remote	control	device	with	Graphical	Interface	using
RF4CE	protocol.
(Location:	<install_dir>/Combo/Remote	Control)	

AppNotes	 A	collection	of	application	notes	demo
-	Demo	for	Application	Note	AN1136
-	Demo	for	Application	Note	AN1182
-	Demo	for	Application	Note	AN1227
-	Demo	for	Application	Note	AN1246	

Image
Decoders	

A	demo	showing	the	Image	Decoder	library	rendering
bitmaps	and	jpeg	images.	

PIC24F
Starter	Kit	

Demo	for	the	PIC24F	Starter	Kit.
(Location:	<install_dir>/PIC24F	Starter	Kit)	

PIC24H
Starter	Kit	

Demo	for	the	PIC24H	Starter	Kit.
(Location:	<install_dir>/PIC24H	Starter	Kit)	

Google
Map	

A	demo	showing	the	TCPIP	Stack	and	Graphics
Library	combined	in	an	application.
(Location:	<install_dir>/Combo/Google	Map)	

Note:	

Unless	otherwise	specified,	the	demos	are	located	in
<install_dir>/Graphics.	

where:	install_dir	-	is	the	directory	location	of	the	MLA
installation.

Links

Demo	Projects

Demo	Projects	>	Demo	Summary

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Microchip	Application	Library	Abbreviations
Microchip	Application	Library	Configuration	File	and	Project
Name	Abbreviations.	A	summary	of	the	abbreviations	used	can
be	found	at	<Install	Directory>/Microchip/Help/Abbreviations.htm

Links

Demo	Projects

Demo	Projects	>	Microchip	Application	Library	Abbreviations

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Demo	Compatibility	Matrix
Refer	to	the	Demo	Compatibility	matrix	located	in	the	<install
directory>/Microchip/Graphics/Documents/Getting
Started/Getting	Started	-	Demo	Compatibility	Matrix.htm	for
details.

Links

Demo	Projects

Demo	Projects	>	Demo	Compatibility	Matrix

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Library	Architecture
Topics

	

The	Microchip	Graphics	Library	structure	is	shown	in	the
following	figure.

	

Microchip	Graphics	Library	Architecture

1.	 Application	Layer	–	This	is	the	program	that	utilizes	the	Graphics
Library.

2.	 User	Message	Interface-	This	layer	should	be	implemented	by	user
to	provide	messages	for	the	library.

3.	 Graphics	Object	Layer	–	This	layer	renders	the	widgets	controls
such	as	button,	slider,	window	and	so	on.

4.	 Graphics	Primitives	Layer	–	This	layer	implements	the	primitive
drawing	functions.

5.	 Device	Display	Driver	–	This	layer	is	dependent	on	the	display
device	being	used.

6.	 Graphics	Display	Module	–	This	is	the	display	device	being	used.

The	library	provides	two	configurations	(Blocking	and	Non-
Blocking).	

For	Blocking	configuration,	all	draw	functions	are	blocking	calls
that	delay	the	execution	of	program	until	rendering	is	done.	For
Non-Blocking	configuration,	draw	functions	do	not	wait	for	the
drawing	completion	and	release	control	to	the	program.	In	this
configuration,	a	draw	function	should	be	called	repeatedly	until
the	rendering	of	that	particular	draw	function	is	complete.	This
allows	efficient	use	of	microcontroller	CPU	time	since	it	can
perform	other	tasks	if	the	rendering	is	not	yet	done.

Topics

Name	 Description	

Graphics	Object	Layer	 Describes	the	Graphics	Object	Layer	(GOL)
structure	and	its	components.	

Graphics	Primitive
Layer	

Describes	the	Graphics	Primitive	Layer
structure	and	its	components.	

Display	Device	Driver
Layer	

Describes	the	Display	Driver	Layer	structure
and	its	components.	

Links

Topics

Library	Architecture

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Object	Layer
Topics

The	Graphics	Object	Layer	(GOL)	implements	the	Widgets	and
the	Graphics	Library	managed	messaging	and	rendering.	All
Widget	drawing	are	based	on	the	Primitive	Layer	rendering
functions.	

	

The	Graphics	Object	Layer	organization	is	shown	on	the	figure
below:

Topics

Name	 Description	

Object	Rendering	 Describes	the	difference	between	the
Blocking	or	Non-Blocking	configuration
when	rendering	Objects.	

Links

Library	Architecture,	Topics

Library	Architecture	>	Graphics	Object	Layer

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Object	Rendering
The	library	can	render	objects	in	a	Blocking	or	a	Non-Blocking
manner.	The	Non-Blocking	configuration	is	implemented	by	the
use	of	drawing	state	machine.	Each	drawing	functions	groups
the	rendering	steps	into	states.	Every	time	a	rendering	step	is
executed,	the	drawing	state	is	updated.	Before	each	step	is
executed,	the	display	device	is	checked	if	it	is	still	busy	with	the
previous	rendering	operation.	If	it	is	busy	it	returns	a	non-zero
value.	This	indicates	that	the	draw	function	must	be	called	again
to	complete	the	rendering.	The	drawing	function	can	be	called
several	times	until	rendering	is	completed.

	

State	Machine	Controlled	Rendering

For	Blocking	configuration	linear	flow	of	rendering	is	executed.
Display	device	always	return	a	non-busy	status.	

The	GOL	level	uses	the	active	object	linked	list	for	drawing	of
objects.	Each	object’s	state	in	the	list	is	parsed	to	determine	if
the	object	needs	to	be	redrawn	or	not.	The	drawing	order	is	from
the	head	to	the	tail	of	the	list.	This	sequence	is	executed	by
GOLDraw()	function.	The	figure	below	explains	the	rendering
loop	of	the	GOLDraw()	function.	

	

	

GOL	Object	Rendering	Loop

The	loop	shows	two	exit	points	in	the	sequence.	First	is	when	the
end	of	the	list	is	reached	and	the	second	is	when	an	OBJDraw()
returns	a	NOT	DONE	status.	Reaching	the	end	of	the	list	is	a
normal	exit.	This	means	that	all	the	state	machines	of	the	draw
functions	of	each	object	have	reset	to	default.	Exiting	with	a	NOT
DONE	status	means	that	the	latest	executed	draw	function	was
pended	and	the	object	is	not	yet	fully	rendered.	To	complete	the
rendering,	GOLDraw()	function	should	be	called	again.	The	next
call	to	GOLDraw()	will	pickup	the	rendering	on	the	last	object	that
returned	a	not	DONE	status.	This	operation	makes	the	rendering
functions	non-blocking	and	gives	opportunity	to	release	control	to
program	without	waiting	for	the	rendering	completion.	

When	all	objects	in	the	active	object	linked	list	are	drawn
GOLDraw()	calls	user	defined	GOLDrawCallback()	function.	User
drawing	can	be	done	in	this	callback	function.	If	the	function
returns	a	zero,	drawing	of	GOL	objects	in	the	active	list	is
suspended.	In	this	case	color,	clipping	region,	line	type	and
graphic	cursor	will	not	be	modified	by	GOL.	If	it	returns	a	1
drawing	control	is	returned	to	GOL.	GOLDraw()	resume
rendering	of	objects	in	the	current	active	list.	Inside	the
GOLDrawCallback()	function,	the	active	object	list	is	not	used	by
GOLDraw().	It	is	safe	to	perform	modification	of	the	list.	Please
refer	to	Configuration	Settings	to	set	Blocking	or	Non-Blocking
configuration.

Links

Graphics	Object	Layer

Library	Architecture	>	Graphics	Object	Layer	>	Object	Rendering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Primitive	Layer
This	is	a	hardware	independent	layer	that	contains	basic
rendering	functions.	These	functions	can	be	implemented	in	the
device	driver	layer	if	the	display	device	supports	hardware
acceleration	of	the	function.	

	

The	Primitive	Layer	organization	is	shown	on	the	figure	below:

Links

Library	Architecture

Library	Architecture	>	Graphics	Primitive	Layer

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Device	Driver	Layer
The	Device	Driver	Layer	is	the	layer	that	comprises	the	selection
of	the	display	driver	file	based	on	the	settings	specified	in	the
HardwareProfile.h	file	implemented	on	the	application	layer.	

The	Device	Driver	Layer	organization	is	shown	on	the	figure
below:

An	option	to	use	a	customized	driver	is	also	supported	by	this
scheme.	The	application	need	only	to	define	custom	display
macro	in	the	HardwareProfile	header	file.	This	macro	must	be
unique	to	the	display	driver.	For	example	the	display	macro	for
the	SSD1926	driver	is

GFX_USE_DISPLAY_CONTROLLER_SSD1926.	It	is
recommended	that	the	application	keep	the	same	format	when
naming	the	display	macro,
GFX_USE_DISPLAY_CONTROLLER_<DRIVER	NAME>.

Links

Library	Architecture

Library	Architecture	>	Display	Device	Driver	Layer

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Library	API
Topics

The	Microchip	Graphics	Library	is	implemented	in	layers.	This
section	describes	the	APIs	for	each	layer	as	well	as	the	Graphics
Library	Configuration.	In	addition	Advanced	Display	Device
Driver	Layer	APIs	that	exists	in	specific	drivers	are	also
described.

Topics

Name	 Description	

Graphics	Library
Configuration	

The	Graphics	Library	can	be	customized	by
adding	or	specifying	the	compile	time
options	located	in	the	application	code
named	GraphicsConfig.h	or	the
HardwareProfile.h	files.	The	following
compile	time	options	are	supported	by	the
library.	

Graphics	Object	Layer
API	

Description	of	Graphics	Object	Layer	API.	

Graphics	Primitive
Layer	API	

Description	of	Graphics	Primitive	Layer
API.	

Display	Device	Driver
Layer	API	

Description	of	Display	Device	Driver	Layer
API.	

Links

Topics

Library	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Library	Configuration
Topics

Topics

Name	 Description	

Graphics	Object	Layer
Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Object
Layer.	

Graphics	Primitive
Layer	Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Primitive
Layer.	

Display	Device	Driver
Layer	Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Display
Device	Driver	Layer.	The	choices	are	based
on	the	specific	hardware	used.
See	Hardware	Profile	for	more	options.	

Application
Configuration	

	

Hardware	Profile	 These	functions	and	macros	are	used	to
determine	hardware	profile	settings	on	the
chosen	PIC	microcontroller	and	hardware
such	as	demo	boards	used.	

Links

Library	API,	Topics

Library	API	>	Graphics	Library	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Object	Layer	Configuration
Topics

The	following	compile	time	options	configures	the	Graphics
Library's	Object	Layer.

Topics

Name	 Description	

Input	Device	Selection	 The	Graphics	Library	comes	with	two	pre-
defined	user	interface.	These	are	the:

Keyboard	interface
Touchscreen	interface

Enabling	one	or	both	requires	the
declaration	of	the	compile	switch	macros	in
the	GraphicsConfig.h	file.
GOL	widgets	which	supports	the	enabled
input	device's	messages	will	respond	to	the
user	inputs.
For	Example:
When	using	Button	Widget.
#define	USE_TOUCHSCREEN	-	will	enable
the	buttons	response	to	user	touch	on	the
button	widget.	The	button	will	automatically
be	drawn	with	a	pressed	state	when
pressed	and	release	state	when	user
removes	the	touch	on	the	screen.

The	compile	option	selects	the	input	devices
used	by...	more	

Focus	Support
Selection	

This	compile	option	allows	keyboard	input
focus.	GOLSetFocus(),	GOLGetFocus(),
GOLCanBeFocused(),	GOLGetFocusNext()

functions	will	be	available.	Focus	is	also
changed	by	touch	screen.
The	USE_FOCUS	option	is	located	in	the
GraphicsConfig.h	header	file.	

Graphics	Object
Selection	

These	compile	options	selects	objects	used.
Remove	definitions	for	unused	objects	to
reduce	code	size.
The	USE_GOL	and	USE_OBJECT	options
are	located	in	the	GraphicsConfig.h	header
file.	USE_GOL	should	be	included	if	any	of
the	objects	are	to	be	used.	

Links

Graphics	Library	Configuration,	Topics

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Input	Device	Selection
Macros

The	Graphics	Library	comes	with	two	pre-defined	user	interface.
These	are	the:

Keyboard	interface
Touchscreen	interface

Enabling	one	or	both	requires	the	declaration	of	the	compile
switch	macros	in	the	GraphicsConfig.h	file.	

GOL	widgets	which	supports	the	enabled	input	device's
messages	will	respond	to	the	user	inputs.	

For	Example:	

When	using	Button	Widget.	

#define	USE_TOUCHSCREEN	-	will	enable	the	buttons
response	to	user	touch	on	the	button	widget.	The	button	will
automatically	be	drawn	with	a	pressed	state	when	pressed	and
release	state	when	user	removes	the	touch	on	the	screen.	

	

The	compile	option	selects	the	input	devices	used	by	GOL
widgets.	Remove	or	comment	out	the	macro	declarations	for
unused	input	devices	to	reduce	code	size.

Macros

Name	 Description	

USE_KEYBOARD	 Input	devices	macros	that	defines	the
messages	that	Objects	will	process.	The
following	definitions	indicate	the	usage	of
the	different	input	devices:

USE_TOUCHSCREEN	-	enables	the
touch	screen	support.
USE_KEYBOARD	-	enables	the	key
board	support.

Define	in	GraphicsConfig.h	

USE_TOUCHSCREEN	 Input	devices	macros	that	defines	the
messages	that	Objects	will	process.	The
following	definitions	indicate	the	usage	of
the	different	input	devices:

USE_TOUCHSCREEN	-	enables	the
touch	screen	support.
USE_KEYBOARD	-	enables	the	key
board	support.

Define	in	GraphicsConfig.h	

Links

Graphics	Object	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Input	Device	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_KEYBOARD	Macro
C
#define	USE_KEYBOARD	

Overview

Input	devices	macros	that	defines	the	messages	that	Objects	will
process.	The	following	definitions	indicate	the	usage	of	the
different	input	devices:

USE_TOUCHSCREEN	-	enables	the	touch	screen	support.
USE_KEYBOARD	-	enables	the	key	board	support.

Define	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Input	Device	Selection	>	USE_KEYBOARD	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_TOUCHSCREEN	Macro
C
#define	USE_TOUCHSCREEN	

Overview

Input	devices	macros	that	defines	the	messages	that	Objects	will
process.	The	following	definitions	indicate	the	usage	of	the
different	input	devices:

USE_TOUCHSCREEN	-	enables	the	touch	screen	support.
USE_KEYBOARD	-	enables	the	key	board	support.

Define	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Input	Device	Selection	>	USE_TOUCHSCREEN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Focus	Support	Selection
Macros

This	compile	option	allows	keyboard	input	focus.
GOLSetFocus(),	GOLGetFocus(),	GOLCanBeFocused(),
GOLGetFocusNext()	functions	will	be	available.	Focus	is	also
changed	by	touch	screen.	

The	USE_FOCUS	option	is	located	in	the	GraphicsConfig.h
header	file.

Macros

Name	 Description	

USE_FOCUS	 Keyboard	control	on	some	objects	can	be
used	by	enabling	the	GOL	Focus
(USE_FOCUS)support.	Define	this	in
GraphicsConfig.h	

Links

Graphics	Object	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Focus	Support	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_FOCUS	Macro
C
#define	USE_FOCUS	

Overview

Keyboard	control	on	some	objects	can	be	used	by	enabling	the
GOL	Focus	(USE_FOCUS)support.	Define	this	in
GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Focus	Support	Selection	>	USE_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Object	Selection
Macros

These	compile	options	selects	objects	used.	Remove	definitions
for	unused	objects	to	reduce	code	size.	

The	USE_GOL	and	USE_OBJECT	options	are	located	in	the
GraphicsConfig.h	header	file.	USE_GOL	should	be	included	if
any	of	the	objects	are	to	be	used.

Macros

Name	 Description	

USE_ANALOGCLOCK	 Enable	Analog	Clock	Object.	

USE_BUTTON	 Enable	Button	Object.	

USE_BUTTON_MULTI_LINE	 Enable	Multi-Line	Button	Object	

USE_CHECKBOX	 Enable	Checkbox	Object.	

USE_DIGITALMETER	 Enable	DigitalMeter	Object.	

USE_EDITBOX	 Enable	Edit	Box	Object.	

USE_GROUPBOX	 Enable	Group	Box	Object.	

USE_LISTBOX	 Enable	List	Box	Object.	

USE_METER	 Enable	Meter	Object.	

USE_PICTURE	 Enable	Picture	Object.	

USE_PROGRESSBAR	 Enable	Progress	Bar	Object.	

USE_RADIOBUTTON	 Enable	Radio	Button	Object.	

USE_ROUNDDIAL	 Enable	Dial	Object.	

USE_SLIDER	 Enable	Slider	or	Scroll	Bar	Object.	

USE_STATICTEXT	 Enable	Static	Text	Object.	

USE_WINDOW	 Enable	Window	Object.	

USE_CUSTOM	 Enable	Custom	Control	Object	(an
example	to	create	customized
Object).	

USE_GOL	 Enable	Graphics	Object	Layer.	

USE_TEXTENTRY	 Enable	TextEntry	Object.	

Links

Graphics	Object	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_ANALOGCLOCK	Macro
C
#define	USE_ANALOGCLOCK	

Description

Enable	Analog	Clock	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_ANALOGCLOCK
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_BUTTON	Macro
C
#define	USE_BUTTON	

Description

Enable	Button	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_BUTTON	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_BUTTON_MULTI_LINE	Macro
C
#define	USE_BUTTON_MULTI_LINE	

Description

Enable	Multi-Line	Button	Object

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>
USE_BUTTON_MULTI_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_CHECKBOX	Macro
C
#define	USE_CHECKBOX	

Description

Enable	Checkbox	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_CHECKBOX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_DIGITALMETER	Macro
C
#define	USE_DIGITALMETER	

Description

Enable	DigitalMeter	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_DIGITALMETER
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_EDITBOX	Macro
C
#define	USE_EDITBOX	

Description

Enable	Edit	Box	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_EDITBOX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_GROUPBOX	Macro
C
#define	USE_GROUPBOX	

Description

Enable	Group	Box	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_GROUPBOX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_LISTBOX	Macro
C
#define	USE_LISTBOX	

Description

Enable	List	Box	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_LISTBOX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_METER	Macro
C
#define	USE_METER	

Description

Enable	Meter	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_METER	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_PICTURE	Macro
C
#define	USE_PICTURE	

Description

Enable	Picture	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_PICTURE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_PROGRESSBAR	Macro
C
#define	USE_PROGRESSBAR	

Description

Enable	Progress	Bar	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_PROGRESSBAR
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_RADIOBUTTON	Macro
C
#define	USE_RADIOBUTTON	

Description

Enable	Radio	Button	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_RADIOBUTTON
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_ROUNDDIAL	Macro
C
#define	USE_ROUNDDIAL	

Description

Enable	Dial	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_ROUNDDIAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_SLIDER	Macro
C
#define	USE_SLIDER	

Description

Enable	Slider	or	Scroll	Bar	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_SLIDER	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_STATICTEXT	Macro
C
#define	USE_STATICTEXT	

Description

Enable	Static	Text	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_STATICTEXT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_WINDOW	Macro
C
#define	USE_WINDOW	

Description

Enable	Window	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_WINDOW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_CUSTOM	Macro
C
#define	USE_CUSTOM	

Description

Enable	Custom	Control	Object	(an	example	to	create	customized
Object).

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_CUSTOM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_GOL	Macro
C
#define	USE_GOL	

Description

Enable	Graphics	Object	Layer.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_GOL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_TEXTENTRY	Macro
C
#define	USE_TEXTENTRY	

Description

Enable	TextEntry	Object.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection	>	USE_TEXTENTRY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Primitive	Layer	Configuration
Topics

The	following	compile	time	options	configures	the	Graphics
Library's	Primitive	Layer.

Topics

Name	 Description	

Image	Compression
Option	

These	compile	options	to	set	if	the	images
used	for	OutImage()	are	RLE	compressed
or	IPU	compressed.	

Font	Type	Selection	 This	compile	option	selects	if	the	support	for
unicode	fonts,	unsigned	char	or	the	default
signed	char	type	fonts.

There	are	three	types	of	font	(characters)
that	can	be	used	in	the	Graphics	Library.
This	gives	the	user	the	option	to	implement
multi-language	application	or	use	the	default
signed	char	type.
	

Advanced	Font
Features	Selection	

This	compile	option	enables	the	advanced
font	features.	

Gradient	Bar
Rendering	

This	compile	option	enables	the	usage	of
the	Gradient	Bar	and	Bevel	function	in	the
Primitive	Layer.	

Transparent	Color
Feature	in	PutImage()	

This	compile	option	enables	the	transparent
color	feature	in	PutImage().	

Alpha	Blend	Option	 This	compile	option	enables	the	Alpha-

Blend	feature	in	Primitive	Layer.	

External	Memory
Buffer	

see	EXTERNAL_FONT_BUFFER_SIZE	

Links

Graphics	Library	Configuration,	Topics

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Image	Compression	Option
Macros

These	compile	options	to	set	if	the	images	used	for	OutImage()
are	RLE	compressed	or	IPU	compressed.

Macros

Name	 Description	

USE_COMP_IPU	 To	enable	support	for	DEFLATE
compressed	images	for	PutImage().	When
this	macro	is	enabled,	the	PutImage()
function	will	be	able	to	process	images
generated	by	the	Graphics	Resource
Converter	(GRC)	that	are	compressed	using
the	DEFLATE	algorithm.	PutImage()	will
need	the	IPU	module	of	the	Microchip
Graphics	Module	to	decompress.	Enable
this	feature	only	when	the	driver	features
the	IPU	module	(example:
PIC24FJ2456DA210).	Define	this	in
GraphicsConfig.h	

USE_COMP_RLE	 To	enable	support	for	RLE	compressed
images	for	PutImage().	When	this	macro	is
enabled,	the	PutImage()	function	will	be
able	to	process	images	generated	by	the
Graphics	Resource	Converter	(GRC)	that
are	RLE	compressed.	Define	this	in
GraphicsConfig.h	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Image	Compression	Option

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_COMP_IPU	Macro
C
#define	USE_COMP_IPU	

Overview

To	enable	support	for	DEFLATE	compressed	images	for
PutImage().	When	this	macro	is	enabled,	the	PutImage()	function
will	be	able	to	process	images	generated	by	the	Graphics
Resource	Converter	(GRC)	that	are	compressed	using	the
DEFLATE	algorithm.	PutImage()	will	need	the	IPU	module	of	the
Microchip	Graphics	Module	to	decompress.	Enable	this	feature
only	when	the	driver	features	the	IPU	module	(example:
PIC24FJ2456DA210).	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Image	Compression	Option	>	USE_COMP_IPU	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_COMP_RLE	Macro
C
#define	USE_COMP_RLE	

Overview

To	enable	support	for	RLE	compressed	images	for	PutImage().
When	this	macro	is	enabled,	the	PutImage()	function	will	be	able
to	process	images	generated	by	the	Graphics	Resource
Converter	(GRC)	that	are	RLE	compressed.	Define	this	in
GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Image	Compression	Option	>	USE_COMP_RLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Font	Type	Selection
Macros

This	compile	option	selects	if	the	support	for	unicode	fonts,
unsigned	char	or	the	default	signed	char	type	fonts.	

	

There	are	three	types	of	font	(characters)	that	can	be	used	in	the
Graphics	Library.	This	gives	the	user	the	option	to	implement
multi-language	application	or	use	the	default	signed	char	type.	

	

Define	in
GraphicsConfig.h	

XCHAR
type	

Description	

#define
USE_MULTIBYTECHAR	

#define
XCHAR
unsigned
short	

Enable	support	for
multi-byte	fonts	such
as	Unicode	fonts.	

#define
USE_UNSIGNED_XCHAR	

#define
XCHAR
unsigned
char	

Enable	support	for
character	range	of	0-
255.	

none	of	the	two	are
defined	

#define
XCHAR	char	

Character	range	is	set
to	0-127.	

	

Note:	Only	one	of	the	two	or	none	at	all	are	defined	in
GraphicsConfig.h.	

-	#define	USE_MULTIBYTECHAR	

-	#define	USE_UNSIGNED_XCHAR	

-	when	none	are	defined,	XCHAR	defaults	to	type	char.	

	

See	XCHAR	for	details.

Macros

Name	 Description	

USE_MULTIBYTECHAR	 To	enable	support	for	unicode	fonts,
USE_MULTIBYTECHAR	must	be
defined.	This	sets	the	XCHAR	definition
(0-2^16	range).	See	XCHAR	for	details.
Define	this	in	GraphicsConfig.h	

USE_UNSIGNED_XCHAR	 To	enable	support	for	unsigned
characters	data	type	for	fonts,
USE_UNSIGNED_XCHAR	must	be
defined.	This	sets	the	XCHAR	definition
(0-255	range).	See	XCHAR	for	details.
Define	this	in	GraphicsConfig.h	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Font	Type	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_MULTIBYTECHAR	Macro
C
#define	USE_MULTIBYTECHAR	

Overview

To	enable	support	for	unicode	fonts,	USE_MULTIBYTECHAR
must	be	defined.	This	sets	the	XCHAR	definition	(0-2^16	range).
See	XCHAR	for	details.	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Font	Type	Selection	>	USE_MULTIBYTECHAR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_UNSIGNED_XCHAR	Macro
C
#define	USE_UNSIGNED_XCHAR	

Overview

To	enable	support	for	unsigned	characters	data	type	for	fonts,
USE_UNSIGNED_XCHAR	must	be	defined.	This	sets	the
XCHAR	definition	(0-255	range).	See	XCHAR	for	details.	Define
this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Font	Type	Selection	>	USE_UNSIGNED_XCHAR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Advanced	Font	Features	Selection
Macros

This	compile	option	enables	the	advanced	font	features.

Macros

Name	 Description	

USE_ANTIALIASED_FONTS	 To	enable	support	for	Anti-aliased
fonts.	Use	this	feature	if	the	font	table
generated	through	the	"Graphics
Resource	Converter"	tool	has	the
anti-aliasing	enabled.	Define	this	in
GraphicsConfig.h	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Advanced	Font	Features	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_ANTIALIASED_FONTS	Macro
C
#define	USE_ANTIALIASED_FONTS	

Overview

To	enable	support	for	Anti-aliased	fonts.	Use	this	feature	if	the
font	table	generated	through	the	"Graphics	Resource	Converter"
tool	has	the	anti-aliasing	enabled.	Define	this	in
GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Advanced	Font	Features	Selection	>
USE_ANTIALIASED_FONTS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Gradient	Bar	Rendering
Macros

This	compile	option	enables	the	usage	of	the	Gradient	Bar	and
Bevel	function	in	the	Primitive	Layer.

Macros

Name	 Description	

USE_GRADIENT	 To	enable	support	for	Gradient	bars	and
bevel	primitives.	Define	this	in
GraphicsConfig.h.	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Gradient	Bar	Rendering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_GRADIENT	Macro
C
#define	USE_GRADIENT	

Overview

To	enable	support	for	Gradient	bars	and	bevel	primitives.	Define
this	in	GraphicsConfig.h.

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Gradient	Bar	Rendering	>	USE_GRADIENT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Transparent	Color	Feature	in	PutImage()
Macros

This	compile	option	enables	the	transparent	color	feature	in
PutImage().

Macros

Name	 Description	

USE_TRANSPARENT_COLOR	 To	enable	support	for	transparent
color	in	PutImage().	Enabling	this
macro	enables	the	use	of	a
transparent	color	(set	by
TransparentColorEnable())	in
rendering	images	by	PutImage().
When	a	pixel	in	the	image	matches
the	transparent	color	set,	the	pixel
is	not	rendered	to	the	screen.	This
is	useful	in	rendering	rounded
icons	or	images	to	the	screen	with
a	complex	background.	Define	this
in	GraphicsConfig.h	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Transparent	Color	Feature	in	PutImage()

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_TRANSPARENT_COLOR	Macro
C
#define	USE_TRANSPARENT_COLOR	

Overview

To	enable	support	for	transparent	color	in	PutImage().	Enabling
this	macro	enables	the	use	of	a	transparent	color	(set	by
TransparentColorEnable())	in	rendering	images	by	PutImage().
When	a	pixel	in	the	image	matches	the	transparent	color	set,	the
pixel	is	not	rendered	to	the	screen.	This	is	useful	in	rendering
rounded	icons	or	images	to	the	screen	with	a	complex
background.	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Transparent	Color	Feature	in	PutImage()	>
USE_TRANSPARENT_COLOR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Alpha	Blend	Option
Macros

This	compile	option	enables	the	Alpha-Blend	feature	in	Primitive
Layer.

Macros

Name	 Description	

USE_ALPHABLEND_LITE	 To	enable	support	for	Alpha	Blending	on
the	Primitive	Layer.	This	feature	is	only
limited	on	Alpha-Blending	a	Bar()	of	a
specified	color	(set	by	SetColor()	to	the
destination	defined	by	the	parameters	of
the	Bar()	function	call.	The	Alpha	level
used	is	set	by	SetAlpha().	Define	this	in
GraphicsConfig.h	

Links

Graphics	Primitive	Layer	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Alpha	Blend	Option

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_ALPHABLEND_LITE	Macro
C
#define	USE_ALPHABLEND_LITE	

Overview

To	enable	support	for	Alpha	Blending	on	the	Primitive	Layer.	This
feature	is	only	limited	on	Alpha-Blending	a	Bar()	of	a	specified
color	(set	by	SetColor()	to	the	destination	defined	by	the
parameters	of	the	Bar()	function	call.	The	Alpha	level	used	is	set
by	SetAlpha().	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Alpha	Blend	Option	>	USE_ALPHABLEND_LITE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

External	Memory	Buffer
see	EXTERNAL_FONT_BUFFER_SIZE

Links

Graphics	Primitive	Layer	Configuration

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	External	Memory	Buffer

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Device	Driver	Layer	Configuration
Macros

The	following	compile	time	options	configures	the	Graphics
Library's	Display	Device	Driver	Layer.	The	choices	are	based	on
the	specific	hardware	used.	

See	Hardware	Profile	for	more	options.

Macros

Name	 Description	

USE_ALPHABLEND	 To	enable	support	for	Alpha	Blending.
Use	this	feature	only	if	the	display
driver	used	can	support	alpha
blending.	Define	this	in
GraphicsConfig.h	

USE_DOUBLE_BUFFERING	 To	enable	support	for	double
buffering.	Use	this	feature	only	if	the
display	driver	used	can	support
double	buffering.	Define	this	in
GraphicsConfig.h	

GFX_LCD_TYPE	 Sets	the	type	of	display	glass	used.
Define	this	in	the	Hardware	Profile.

#define	GFX_LCD_TYPE
GFX_LCD_TFT	-	sets	type	TFT
display
#define	GFX_LCD_TYPE
GFX_LCD_CSTN	-	sets	type
color	STN	display
#define	GFX_LCD_TYPE
GFX_LCD_MSTN	-	sets	type
mon	STN	display

#define	GFX_LCD_TYPE
GFX_LCD_OFF	-	display	is
turned	off

	

STN_DISPLAY_WIDTH	 Sets	the	STN	glass	data	width.
Define	this	in	the	Hardware	Profile.

#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_4	-	use
4-bit	wide	interface
#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_8	-	Use
8-bit	wide	interface
#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_16	-
Use	16-bit	wide	interface

	

Links

Graphics	Library	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_ALPHABLEND	Macro
C
#define	USE_ALPHABLEND	

Overview

To	enable	support	for	Alpha	Blending.	Use	this	feature	only	if	the
display	driver	used	can	support	alpha	blending.	Define	this	in
GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	USE_ALPHABLEND	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_DOUBLE_BUFFERING	Macro
C
#define	USE_DOUBLE_BUFFERING	

Overview

To	enable	support	for	double	buffering.	Use	this	feature	only	if
the	display	driver	used	can	support	double	buffering.	Define	this
in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	USE_DOUBLE_BUFFERING	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_LCD_TYPE	Macro
Macros

C
#define	GFX_LCD_TYPE	

Overview

Sets	the	type	of	display	glass	used.	Define	this	in	the	Hardware
Profile.

#define	GFX_LCD_TYPE	GFX_LCD_TFT	-	sets	type	TFT	display
#define	GFX_LCD_TYPE	GFX_LCD_CSTN	-	sets	type	color	STN
display
#define	GFX_LCD_TYPE	GFX_LCD_MSTN	-	sets	type	mon	STN
display
#define	GFX_LCD_TYPE	GFX_LCD_OFF	-	display	is	turned	off

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_LCD_CSTN	Macro
C
#define	GFX_LCD_CSTN	0x03												//	Type	Color	STN	Display

Description

Type	Color	STN	Display

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro	>	GFX_LCD_CSTN
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_LCD_MSTN	Macro
C
#define	GFX_LCD_MSTN	0x02												//	Type	Mono	STN	Display

Description

Type	Mono	STN	Display

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro	>	GFX_LCD_MSTN
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_LCD_OFF	Macro
C
#define	GFX_LCD_OFF	0x00												//	display	is	turned	off

Description

display	is	turned	off

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro	>	GFX_LCD_OFF	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_LCD_TFT	Macro
C
#define	GFX_LCD_TFT	0x01												//	Type	TFT	Display

Description

Type	TFT	Display

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro	>	GFX_LCD_TFT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

STN_DISPLAY_WIDTH	Macro
Macros

C
#define	STN_DISPLAY_WIDTH	

Overview

Sets	the	STN	glass	data	width.	Define	this	in	the	Hardware
Profile.

#define	STN_DISPLAY_WIDTH	STN_DISPLAY_WIDTH_4	-	use	4-
bit	wide	interface
#define	STN_DISPLAY_WIDTH	STN_DISPLAY_WIDTH_8	-	Use
8-bit	wide	interface
#define	STN_DISPLAY_WIDTH	STN_DISPLAY_WIDTH_16	-	Use
16-bit	wide	interface

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	STN_DISPLAY_WIDTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

STN_DISPLAY_WIDTH_16	Macro
C
#define	STN_DISPLAY_WIDTH_16	0x02				//	display	interface	is	16	bits	wide

Description

display	interface	is	16	bits	wide

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	STN_DISPLAY_WIDTH	Macro	>
STN_DISPLAY_WIDTH_16	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

STN_DISPLAY_WIDTH_4	Macro
C
#define	STN_DISPLAY_WIDTH_4	0x00				//	display	interface	is	4	bits	wide

Description

display	interface	is	4	bits	wide

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	STN_DISPLAY_WIDTH	Macro	>
STN_DISPLAY_WIDTH_4	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

STN_DISPLAY_WIDTH_8	Macro
C
#define	STN_DISPLAY_WIDTH_8	0x01				//	display	interface	is	8	bits	wide

Description

display	interface	is	8	bits	wide

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	STN_DISPLAY_WIDTH	Macro	>
STN_DISPLAY_WIDTH_8	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Application	Configuration
Topics

Topics

Name	 Description	

Configuration
Setting	

This	selects	the	configuration	of	the	library.
When	Non-blocking	configuration	is	selected,
state	machine	based	rendering	is	used	to
perform	object	rendering.
When	blocking	configuration	is	used,	this	line
MUST	be	commented.	In	this	case	object
rendering	will	not	exit	until	the	object	is	fully
rendered.
The	USE_NONBLOCKING_CONFIG	option	is
located	in	the	GraphicsConfig.h	header	file.	

Font	Source
Selection	

Font	data	can	be	placed	in	multiple	locations.
Set	these	options	in	the	GraphicsConfig.h
header	file.
-	USE_FONT_FLASH	-	Font	in	internal	flash
memory	support.	When	placed	in	internal
flash	memory,	it	can	further	classified	to	be
placed	in	program	flash	by	adding
USE_GFX_FONT_IN_PROGRAM_SECTION.
-	USE_FONT_EXTERNAL	-	Font	in	external
memory	support.	Use	this	for	fonts	located	in
external	memory	like	SPI	Flash	or	external
memory	mapped	to	Extended	Data	Space.	

Image	Source
Selection	

Similar	to	Font	data	bitmaps	can	also	be
placed	in	two	locations.	One	is	in	FLASH
memory	and	the	other	is	from	external
memory.	Definining	one	or	both	enables	the

support	for	bitmaps	located	in	internal	flash
and	external	memory.
The	USE_BITMAP_FLASH	and
USE_BITMAP_EXTERNAL	options	are
located	in	the	GraphicsConfig.h	header	file.	

Miscellaneous	 This	contains	miscellaneous	macros	and
functions	that	can	be	redefined	for	various
system	support	such	as	Operating	System
defined	functions.	

GraphicsConfig.h
Example	

This	is	an	example	of	the	GraphicsConfig.h
file	implementation:
	

Links

Graphics	Library	Configuration,	Topics

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Configuration	Setting
Macros

This	selects	the	configuration	of	the	library.	When	Non-blocking
configuration	is	selected,	state	machine	based	rendering	is	used
to	perform	object	rendering.	

When	blocking	configuration	is	used,	this	line	MUST	be
commented.	In	this	case	object	rendering	will	not	exit	until	the
object	is	fully	rendered.	

The	USE_NONBLOCKING_CONFIG	option	is	located	in	the
GraphicsConfig.h	header	file.

Macros

Name	 Description	

USE_NONBLOCKING_CONFIG	 Blocking	and	Non-Blocking
configuration	selection.	To	enable
non-blocking	configuration
USE_NONBLOCKING_CONFIG
must	be	defined.	If	this	is	not
defined,	blocking	configuration	is
assumed.	Define	this	in
GraphicsConfig.h	

Links

Application	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Configuration	Setting

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_NONBLOCKING_CONFIG	Macro
C
#define	USE_NONBLOCKING_CONFIG	

Overview

Blocking	and	Non-Blocking	configuration	selection.	To	enable
non-blocking	configuration	USE_NONBLOCKING_CONFIG	must
be	defined.	If	this	is	not	defined,	blocking	configuration	is
assumed.	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Configuration	Setting	>	USE_NONBLOCKING_CONFIG	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Font	Source	Selection
Macros

Font	data	can	be	placed	in	multiple	locations.	Set	these	options
in	the	GraphicsConfig.h	header	file.	

-	USE_FONT_FLASH	-	Font	in	internal	flash	memory	support.
When	placed	in	internal	flash	memory,	it	can	further	classified	to
be	placed	in	program	flash	by	adding
USE_GFX_FONT_IN_PROGRAM_SECTION.	

-	USE_FONT_EXTERNAL	-	Font	in	external	memory	support.
Use	this	for	fonts	located	in	external	memory	like	SPI	Flash	or
external	memory	mapped	to	Extended	Data	Space.

Macros

Name	 Description	

USE_FONT_FLASH	 Font	data	can	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is
from	external	memory.	Definining	one	or	both
enables	the	support	for	fonts	located	in
internal	flash	and	external	memory.	Define
this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal
flash	memory	support.
USE_FONT_EXTERNAL
external	memory	support	(including
external	memory	mapped	to	EDS).

	

USE_FONT_EXTERNAL	 Font	data	can	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is
from	external	memory.	Definining	one	or	both

enables	the	support	for	fonts	located	in
internal	flash	and	external	memory.	Define
this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal
flash	memory	support.
USE_FONT_EXTERNAL
external	memory	support	(including
external	memory	mapped	to	EDS).

	

USE_GFX_FONT_IN_PROGRAM_SECTION	 For	XC16	or	C30	builds	only:	When	placing
fonts	in	internal	data	memory,	there	is	a	32K
limit	for	data	space.	The	total	data	should	not
exceed	32K.	When	this	is	unavoidable,	the
macro
USE_GFX_FONT_IN_PROGRAM_SECTION
will	relocate	the	font	in	program	space.	This
will	remove	the	32K	restriction	but	at	the
expense	of	slower	access.	Define	this	in
GraphicsConfig.h	to	enable	the	font	to	be
placed	in	program	space.	

Links

Application	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Font	Source	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_FONT_FLASH	Macro
C
#define	USE_FONT_FLASH	

Overview

Font	data	can	be	placed	in	two	locations.	One	is	in	FLASH
memory	and	the	other	is	from	external	memory.	Definining	one	or
both	enables	the	support	for	fonts	located	in	internal	flash	and
external	memory.	Define	this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal	flash	memory	support.
USE_FONT_EXTERNAL	-	Font	in	external	memory	support
(including	external	memory	mapped	to	EDS).

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Font	Source	Selection	>	USE_FONT_FLASH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_FONT_EXTERNAL	Macro
C
#define	USE_FONT_EXTERNAL	

Overview

Font	data	can	be	placed	in	two	locations.	One	is	in	FLASH
memory	and	the	other	is	from	external	memory.	Definining	one	or
both	enables	the	support	for	fonts	located	in	internal	flash	and
external	memory.	Define	this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal	flash	memory	support.
USE_FONT_EXTERNAL	-	Font	in	external	memory	support
(including	external	memory	mapped	to	EDS).

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Font	Source	Selection	>	USE_FONT_EXTERNAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_GFX_FONT_IN_PROGRAM_SECTION
Macro
C
#define	USE_GFX_FONT_IN_PROGRAM_SECTION	

Overview

For	XC16	or	C30	builds	only:	When	placing	fonts	in	internal	data
memory,	there	is	a	32K	limit	for	data	space.	The	total	data	should
not	exceed	32K.	When	this	is	unavoidable,	the	macro
USE_GFX_FONT_IN_PROGRAM_SECTION	will	relocate	the
font	in	program	space.	This	will	remove	the	32K	restriction	but	at
the	expense	of	slower	access.	Define	this	in	GraphicsConfig.h	to
enable	the	font	to	be	placed	in	program	space.

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Font	Source	Selection	>	USE_GFX_FONT_IN_PROGRAM_SECTION
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Image	Source	Selection
Macros

Similar	to	Font	data	bitmaps	can	also	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is	from	external	memory.
Definining	one	or	both	enables	the	support	for	bitmaps	located	in
internal	flash	and	external	memory.	

The	USE_BITMAP_FLASH	and	USE_BITMAP_EXTERNAL
options	are	located	in	the	GraphicsConfig.h	header	file.

Macros

Name	 Description	

USE_BITMAP_FLASH	 Similar	to	Font	data	bitmaps	can	also
be	placed	in	two	locations.	One	is	in
FLASH	memory	and	the	other	is	from
external	memory.	Definining	one	or
both	enables	the	support	for	bitmaps
located	in	internal	flash	and	external
memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images
located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-
Images	located	in	external	memory
(including	external	memory
mapped	to	EDS)..

	

USE_BITMAP_EXTERNAL	 Similar	to	Font	data	bitmaps	can	also
be	placed	in	two	locations.	One	is	in
FLASH	memory	and	the	other	is	from
external	memory.	Definining	one	or

both	enables	the	support	for	bitmaps
located	in	internal	flash	and	external
memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images
located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-
Images	located	in	external	memory
(including	external	memory
mapped	to	EDS)..

	

Links

Application	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Image	Source	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_BITMAP_FLASH	Macro
C
#define	USE_BITMAP_FLASH	

Overview

Similar	to	Font	data	bitmaps	can	also	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is	from	external	memory.
Definining	one	or	both	enables	the	support	for	bitmaps	located	in
internal	flash	and	external	memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images	located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-	Images	located	in	external	memory
(including	external	memory	mapped	to	EDS)..

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Image	Source	Selection	>	USE_BITMAP_FLASH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_BITMAP_EXTERNAL	Macro
C
#define	USE_BITMAP_EXTERNAL	

Overview

Similar	to	Font	data	bitmaps	can	also	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is	from	external	memory.
Definining	one	or	both	enables	the	support	for	bitmaps	located	in
internal	flash	and	external	memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images	located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-	Images	located	in	external	memory
(including	external	memory	mapped	to	EDS)..

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Image	Source	Selection	>	USE_BITMAP_EXTERNAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Miscellaneous
Macros

This	contains	miscellaneous	macros	and	functions	that	can	be
redefined	for	various	system	support	such	as	Operating	System
defined	functions.

Macros

Name	 Description	

USE_BITMAP_NO_PADDING_LINE	 When	this	macro	is	enabled,
bitmap	images	used	has	no
padding.	Define	this	in
GraphicsConfig.h.	When
converting	images	for	use	in
the	Graphics	Library,	the
Graphics	Resource	Converter
has	an	option	to	set	the
images	to	be	padded	or	not
padded.	When	bitmaps	are
padded,	this	means	that	each
horizontal	line	will	start	on	a
byte	boundary.	Unpadded
bitmaps	allows	the	least
resource	space	for	a	bitmap.
Unpadded	bitmaps	also	allows
support	for	display	controllers
with	windowing	and	auto-
increment	features.	

USE_PALETTE_EXTERNAL	 Palettes	can	also	be	specified
to	reside	in	external	memory
similar	to	fonts	and	images.
Use	this	when	the	palette	is
located	in	external	memory.

Define	this	in
GraphicsConfig.h	

USE_PALETTE	 Using	Palettes,	different	colors
can	be	used	with	the	same	bit
depth.	Define	this	in
GraphicsConfig.h	

COLOR_DEPTH	 Specifies	the	color	depth	used
in	the	application	defined	in
GraphicsConfig.h.	

GFX_free	 When	using	Operating
Systems	(OS),	define	the	OS
specific	malloc()	and	free()
functions	for	compatibility	with
the	OS	based	systems.	Define
these	in	GraphicsConfig.h	

GFX_malloc	 When	using	Operating
Systems	(OS),	define	the	OS
specific	malloc()	and	free()
functions	for	compatibility	with
the	OS	based	systems.	Define
these	in	GraphicsConfig.h	

Links

Application	Configuration,	Macros

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_BITMAP_NO_PADDING_LINE	Macro
C
#define	USE_BITMAP_NO_PADDING_LINE	

Overview

When	this	macro	is	enabled,	bitmap	images	used	has	no
padding.	Define	this	in	GraphicsConfig.h.	When	converting
images	for	use	in	the	Graphics	Library,	the	Graphics	Resource
Converter	has	an	option	to	set	the	images	to	be	padded	or	not
padded.	When	bitmaps	are	padded,	this	means	that	each
horizontal	line	will	start	on	a	byte	boundary.	Unpadded	bitmaps
allows	the	least	resource	space	for	a	bitmap.	Unpadded	bitmaps
also	allows	support	for	display	controllers	with	windowing	and
auto-increment	features.

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	USE_BITMAP_NO_PADDING_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_PALETTE_EXTERNAL	Macro
C
#define	USE_PALETTE_EXTERNAL	

Overview

Palettes	can	also	be	specified	to	reside	in	external	memory
similar	to	fonts	and	images.	Use	this	when	the	palette	is	located
in	external	memory.	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	USE_PALETTE_EXTERNAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_PALETTE	Macro
C
#define	USE_PALETTE	

Overview

Using	Palettes,	different	colors	can	be	used	with	the	same	bit
depth.	Define	this	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	USE_PALETTE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

COLOR_DEPTH	Macro
C
#define	COLOR_DEPTH	16

Overview

Specifies	the	color	depth	used	in	the	application	defined	in
GraphicsConfig.h.

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	COLOR_DEPTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_free	Macro
C
#define	GFX_free(pObj)	free(pObj)								//	<COPY	GFX_malloc>

Overview

When	using	Operating	Systems	(OS),	define	the	OS	specific
malloc()	and	free()	functions	for	compatibility	with	the	OS	based
systems.	Define	these	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	GFX_free	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_malloc	Macro
C
#define	GFX_malloc(size)	malloc(size)

Overview

When	using	Operating	Systems	(OS),	define	the	OS	specific
malloc()	and	free()	functions	for	compatibility	with	the	OS	based
systems.	Define	these	in	GraphicsConfig.h

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous	>	GFX_malloc	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GraphicsConfig.h	Example
This	is	an	example	of	the	GraphicsConfig.h	file	implementation:	

	

Copy	Code
////////////////////	COMPILE	OPTIONS	AND	DEFAULTS	////////////////////

#define					USE_NONBLOCKING_CONFIG					//	Comment	this	line	to	use	blocking	configuration

#define					USE_FOCUS																		//	Comment	this	line	when	not	using	FOCUS

#define					USE_TOUCHSCREEN												//	Enable	touch	screen	support.

#define					USE_KEYBOARD															//	Enable	key	board	support.

#define					USE_GOL																				//	Enable	Graphics	Object	Layer.

#define					USE_BUTTON																	//	Enable	Button	Object.

#define					USE_CHART																		//	Enable	Chart	Object.

#define					USE_WINDOW																	//	Enable	Window	Object.

#define					USE_CHECKBOX															//	Enable	Checkbox	Object.

#define					USE_RADIOBUTTON												//	Enable	Radio	Button	Object.

#define					USE_EDITBOX																//	Enable	Edit	Box	Object.

#define					USE_LISTBOX																//	Enable	List	Box	Object.

#define					USE_SLIDER																	//	Enable	Slider	or	Scroll	Bar	Object.

#define					USE_PROGRESSBAR												//	Enable	Progress	Bar	Object.

#define					USE_STATICTEXT													//	Enable	Static	Text	Object.

#define					USE_PICTURE																//	Enable	Picture	Object.

#define					USE_GROUPBOX															//	Enable	Group	Box	Object.

#define					USE_ROUNDDIAL														//	Enable	Dial	Object.

#define					USE_METER																		//	Enable	Meter	Object.

#define					USE_TEXTENTRY														//	Enable	Text	Entry	Object.

#define					USE_CUSTOM																	//	Enable	Custom	Control	Object	(an	example	to	create	customized	Object).

#define					USE_MULTIBYTECHAR										//	Enable	unicode	derived	characters

#define					USE_FONT_FLASH													//	Support	for	fonts	located	in	internal	flash

#define					USE_BITMAP_FLASH											//	Support	for	bitmaps	located	in	internal	flash

#define					GOL_EMBOSS_SIZE												2

#define					COLOR_DEPTH																16		//	The	color	depth	used

Links

Application	Configuration

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	GraphicsConfig.h	Example

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Hardware	Profile
Topics

These	functions	and	macros	are	used	to	determine	hardware
profile	settings	on	the	chosen	PIC	microcontroller	and	hardware
such	as	demo	boards	used.

Topics

Name	 Description	

PMP	Interface	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).	

Development	Platform
Used	

Specifies	the	Development	Platform	used
for	the	Microchip	Graphics	Library	demos.	

Graphics	PICtail	Used	 Specifies	the	Graphics	PICtail	Display	Panel
used.	

Display	Controller
Used	

Specifies	the	controller	used	in	the	Graphics
Library	supplied	demo.	

Display	Panel	Used	 Specifies	the	Graphics	Display	Panel	used.	

Device	Driver	Options	 The	options	Graphics	Hardware	Platform,
DISPLAY_CONTROLLER	and
DISPLAY_PANEL	are	specific	to	the
hardware	used.	The	Graphics	Hardware
Platform	selects	the	Graphics	PICtail™	Plus
Board	version,	PIC24FJ256DA210
Development	Board	or	any	other	Microchip
demo	boards	for	the	Graphics	Library.
Currently	there	are	two	Graphics	PICtail™
Plus	Board	versions	supported	as	shown	in

the	Getting	Started	section.
The	rest	of	the	settings	are	used	to	specify
the	the	display	parameters	when	using	an
RGB	type	display	controller	such	as
SSD1906	and	SSD1926	from	Solomon
Systech.	The	table	below	summarizes	the
generic	parameters	found	in	RGB	type
display	controllers	and	when	each	type	is
used....	more	

HardwareProfile.h
Example	

This	is	an	example	of	the	HardwareProfile.h
file	implementation:
	

Links

Graphics	Library	Configuration,	Topics

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PMP	Interface
Macros

Specifies	the	interface	type	to	the	Parallel	Master	Port	(PMP)	or
Enhanced	Parallel	Master	Port	(EPMP).

Macros

Name	 Description	

USE_8BIT_PMP	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to
PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface
to	PMP	or	EPMP

	

USE_16BIT_PMP	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to
PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface
to	PMP	or	EPMP

	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	PMP
Interface

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_8BIT_PMP	Macro
C
#define	USE_8BIT_PMP	

Overview

Specifies	the	interface	type	to	the	Parallel	Master	Port	(PMP)	or
Enhanced	Parallel	Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to	PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface	to	PMP	or	EPMP

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	PMP
Interface	>	USE_8BIT_PMP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

USE_16BIT_PMP	Macro
C
#define	USE_16BIT_PMP	

Overview

Specifies	the	interface	type	to	the	Parallel	Master	Port	(PMP)	or
Enhanced	Parallel	Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to	PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface	to	PMP	or	EPMP

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	PMP
Interface	>	USE_16BIT_PMP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Development	Platform	Used
Macros

Specifies	the	Development	Platform	used	for	the	Microchip
Graphics	Library	demos.

Macros

Name	 Description	

EXPLORER_16	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

PIC24FJ256DA210_DEV_BOARD	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board

(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

MEB_BOARD	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

PIC_SK	 Specifies	the	Development	Platform

used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EXPLORER_16	Macro
C
#define	EXPLORER_16	

Overview

Specifies	the	Development	Platform	used	for	the	Microchip
Graphics	Library	demos.

EXPLORER_16	-	Using	the	Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD	-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC	Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32	USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit	(DM320004)).

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used	>	EXPLORER_16	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC24FJ256DA210_DEV_BOARD	Macro
C
#define	PIC24FJ256DA210_DEV_BOARD	

Overview

Specifies	the	Development	Platform	used	for	the	Microchip
Graphics	Library	demos.

EXPLORER_16	-	Using	the	Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD	-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC	Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32	USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit	(DM320004)).

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used	>	PIC24FJ256DA210_DEV_BOARD	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MEB_BOARD	Macro
C
#define	MEB_BOARD	

Overview

Specifies	the	Development	Platform	used	for	the	Microchip
Graphics	Library	demos.

EXPLORER_16	-	Using	the	Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD	-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC	Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32	USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit	(DM320004)).

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used	>	MEB_BOARD	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC_SK	Macro
C
#define	PIC_SK	

Overview

Specifies	the	Development	Platform	used	for	the	Microchip
Graphics	Library	demos.

EXPLORER_16	-	Using	the	Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD	-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC	Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32	USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit	(DM320004)).

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used	>	PIC_SK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	PICtail	Used
Macros

Specifies	the	Graphics	PICtail	Display	Panel	used.

Macros

Name	 Description	

GFX_PICTAIL_LCC	 Specifies	the	Graphics	PICtail	Display	Panel
used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

GFX_PICTAIL_V3	 Specifies	the	Graphics	PICtail	Display	Panel
used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

GFX_PICTAIL_V3E	 Specifies	the	Graphics	PICtail	Display	Panel
used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Graphics	PICtail	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_PICTAIL_LCC	Macro
C
#define	GFX_PICTAIL_LCC	

Overview

Specifies	the	Graphics	PICtail	Display	Panel	used.

GFX_PICTAIL_V3	-	Graphics	LCD	Controller	PICtail	Plus
SSD1926	Board	(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD	Controller	PICtail	Plus
S1D13517	Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost	Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Graphics	PICtail	Used	>	GFX_PICTAIL_LCC	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_PICTAIL_V3	Macro
C
#define	GFX_PICTAIL_V3	

Overview

Specifies	the	Graphics	PICtail	Display	Panel	used.

GFX_PICTAIL_V3	-	Graphics	LCD	Controller	PICtail	Plus
SSD1926	Board	(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD	Controller	PICtail	Plus
S1D13517	Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost	Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Graphics	PICtail	Used	>	GFX_PICTAIL_V3	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_PICTAIL_V3E	Macro
C
#define	GFX_PICTAIL_V3E	

Overview

Specifies	the	Graphics	PICtail	Display	Panel	used.

GFX_PICTAIL_V3	-	Graphics	LCD	Controller	PICtail	Plus
SSD1926	Board	(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD	Controller	PICtail	Plus
S1D13517	Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost	Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Graphics	PICtail	Used	>	GFX_PICTAIL_V3E	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Controller	Used
Macros

Specifies	the	controller	used	in	the	Graphics	Library	supplied
demo.

Macros

Name	 Description	

GFX_USE_DISPLAY_CONTROLLER_DMA	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display

Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_S1D13517	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_SSD1926	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_CONTROLLER_DMA	Macro
C
#define	GFX_USE_DISPLAY_CONTROLLER_DMA	

Overview

Specifies	the	controller	used	in	the	Graphics	Library	supplied
demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using	the	PIC32	Low
Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	-	Use	the
Microchip	Graphics	Module	that	comes	with	the	PIC
Microcontroller	(PIC24FJ256DA210	Device	Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926	-	Using	the
Solomon	Systech	SSD1926	Display	Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517	-	Using	the
Epson	S1D13517	Display	Controller.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used	>	GFX_USE_DISPLAY_CONTROLLER_DMA
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
Macro
C
#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	

Overview

Specifies	the	controller	used	in	the	Graphics	Library	supplied
demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using	the	PIC32	Low
Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	-	Use	the
Microchip	Graphics	Module	that	comes	with	the	PIC
Microcontroller	(PIC24FJ256DA210	Device	Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926	-	Using	the
Solomon	Systech	SSD1926	Display	Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517	-	Using	the
Epson	S1D13517	Display	Controller.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used	>
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_CONTROLLER_S1D13517
Macro
C
#define	GFX_USE_DISPLAY_CONTROLLER_S1D13517	

Overview

Specifies	the	controller	used	in	the	Graphics	Library	supplied
demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using	the	PIC32	Low
Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	-	Use	the
Microchip	Graphics	Module	that	comes	with	the	PIC
Microcontroller	(PIC24FJ256DA210	Device	Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926	-	Using	the
Solomon	Systech	SSD1926	Display	Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517	-	Using	the
Epson	S1D13517	Display	Controller.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used	>
GFX_USE_DISPLAY_CONTROLLER_S1D13517	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_CONTROLLER_SSD1926
Macro
C
#define	GFX_USE_DISPLAY_CONTROLLER_SSD1926	

Overview

Specifies	the	controller	used	in	the	Graphics	Library	supplied
demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using	the	PIC32	Low
Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	-	Use	the
Microchip	Graphics	Module	that	comes	with	the	PIC
Microcontroller	(PIC24FJ256DA210	Device	Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926	-	Using	the
Solomon	Systech	SSD1926	Display	Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517	-	Using	the
Epson	S1D13517	Display	Controller.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used	>
GFX_USE_DISPLAY_CONTROLLER_SSD1926	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Panel	Used
Macros

Specifies	the	Graphics	Display	Panel	used.

Macros

Name	 Description	

GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)

GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
Macro
C
#define	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	

Overview

Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	-	3.2
inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	-	4.3	inch
WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	-	5.7	inch	VGA
Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	-	7	inch	WVGA
Truly	TFT	Display	Board	(AC164127-8)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used	>
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
Macro
C
#define	GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	

Overview

Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	-	3.2
inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	-	4.3	inch
WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	-	5.7	inch	VGA
Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	-	7	inch	WVGA
Truly	TFT	Display	Board	(AC164127-8)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used	>	GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
Macro
C
#define	GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	

Overview

Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	-	3.2
inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	-	4.3	inch
WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	-	5.7	inch	VGA
Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	-	7	inch	WVGA
Truly	TFT	Display	Board	(AC164127-8)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used	>	GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
Macro
C
#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	

Overview

Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	-	3.2
inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	-	4.3	inch
WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	-	5.7	inch	VGA
Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	-	7	inch	WVGA
Truly	TFT	Display	Board	(AC164127-8)

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used	>
GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Device	Driver	Options
Macros

The	options	Graphics	Hardware	Platform,
DISPLAY_CONTROLLER	and	DISPLAY_PANEL	are	specific	to
the	hardware	used.	The	Graphics	Hardware	Platform	selects	the
Graphics	PICtail™	Plus	Board	version,	PIC24FJ256DA210
Development	Board	or	any	other	Microchip	demo	boards	for	the
Graphics	Library.	Currently	there	are	two	Graphics	PICtail™	Plus
Board	versions	supported	as	shown	in	the	Getting	Started
section.	

The	rest	of	the	settings	are	used	to	specify	the	the	display
parameters	when	using	an	RGB	type	display	controller	such	as
SSD1906	and	SSD1926	from	Solomon	Systech.	The	table	below
summarizes	the	generic	parameters	found	in	RGB	type	display
controllers	and	when	each	type	is	used.

Options	 Color
STN	

Mono
STN	

TFT	

DISP_DATA_WIDTH	 YES	 YES	 YES	

DISP_ORIENTATION	 YES	 YES	 YES	

DISP_HOR_RESOLUTION	 YES	 YES	 YES	

DISP_VER_RESOLUTION	 YES	 YES	 YES	

DISP_HOR_BACK_PORCH	 NO	 NO	 YES	

DISP_HOR_FRONT_PORCH	 NO	 NO	 YES	

DISP_VER_FRONT_PORCH	 NO	 NO	 YES	

DISP_VER_BACK_PORCH	 NO	 NO	 YES	

DISP_HOR_PULSE_WIDTH	 YES	 YES	 YES	

DISP_VER_PULSE_WIDTH	 YES	 YES	 YES	

DISP_INV_LSHIFT	 YES	 YES	 YES	

All	the	options	listed	here	are	set	in	the	HardwareProfile.h
header	file	implemented	in	the	application	layer.	An	example	of
this	file	is	shown	in	HardwareProfile.h	Example	section.

Macros

Name	 Description	

DISP_DATA_WIDTH	 Defines	the	display	controller's
physical	interface	to	the	display
panel.	Valid	Values:

1,	4,	8,	16,	18,	24
1,	4,	8	are	usually	used	in	MSTN
and	CSTN	displays
16,	18	and	24	are	usually	used
in	TFT	displays.

	

DISP_ORIENTATION	 Defines	the	display	rotation	with
respect	to	its	native	orientation.	For
example,	if	the	display	has	a
resolution	specifications	that	says
240x320	(QVGA),	the	display	is
natively	in	portrait	mode.	If	the
application	uses	the	display	in
landscape	mode	(320x240),	then	the
orientation	must	be	defined	as	90	or
180	degree	rotation.	Graphics
Library	will	calculate	the	actual	pixel
location	to	rotate	the	contents	of	the
screen.	So	when	users	view	the
display,	the	image	on	the	screen	will
come	out	in	the	correct	orientation.

Valid	values:

0	:	display	in	its	native
orientation
90	:	rotated	90	degrees
clockwise...	more	

DISP_HOR_RESOLUTION	 Defines	the	native	horizontal
dimension	of	the	screen.	This	is	the
horizontal	pixel	count	given	by	the
display's	data	sheet.	For	example	a
320x240	display	will	have
DISP_HOR_RESOLUTION	of	320.
Valid	Values:

dependent	on	the	display	glass
resolution	used.

	

DISP_VER_RESOLUTION	 Defines	the	native	vertical	dimension
of	the	screen.	This	is	the	vertical
pixel	count	given	by	the	display's
data	sheet.	For	xxample	a	320x240
display	will	have
DISP_VER_RESOLUTION	of	240.
Valid	Values:

dependent	on	the	display	glass
resolution	used.

	

DISP_HOR_FRONT_PORCH	 Defines	the	horizontal	front	porch.
DISP_HOR_BACK_PORCH	+
DISP_HOR_FRONT_PORCH	+
DISP_HOR_PULSE_WIDTH	makes
up	the	horizontal	blanking	period.
Value	used	will	be	based	on	the
display	panel	used.	

DISP_HOR_BACK_PORCH	 Defines	the	horizontal	back	porch.

DISP_HOR_BACK_PORCH	+
DISP_HOR_FRONT_PORCH	+
DISP_HOR_PULSE_WIDTH	makes
up	the	horizontal	blanking	period.
Value	used	will	be	based	on	the
display	panel	used.	

DISP_VER_FRONT_PORCH	 Defines	the	vertical	front	porch.
DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+
DISP_VER_PULSE_WIDTH	makes
up	the	vertical	blanking	period.	Value
used	will	be	based	on	the	display
panel	used.	

DISP_VER_BACK_PORCH	 Defines	the	vertical	back	porch.
DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+
DISP_VER_PULSE_WIDTH	makes
up	the	vertical	blanking	period.	Value
used	will	be	based	on	the	display
panel	used.	

DISP_HOR_PULSE_WIDTH	 Defines	the	horizontal	sync	signal
pulse	width	in	pixels.	Value	used	will
be	based	on	the	display	panel	used.	

DISP_VER_PULSE_WIDTH	 Defines	the	vertical	sync	signal	pulse
width	in	lines.	Value	used	will	be
based	on	the	display	panel	used.	

DISP_INV_LSHIFT	 Indicates	that	the	color	data	is
sampled	in	the	falling	edge	of	the
pixel	clock.	

Links

Hardware	Profile,	Macros

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_DATA_WIDTH	Macro
C
#define	DISP_DATA_WIDTH	18

Overview

Defines	the	display	controller's	physical	interface	to	the	display
panel.	Valid	Values:

1,	4,	8,	16,	18,	24
1,	4,	8	are	usually	used	in	MSTN	and	CSTN	displays
16,	18	and	24	are	usually	used	in	TFT	displays.

Example

Copy	Code
//	define	in	Hardware	Profile

#define	DISP_DATA_WIDTH	18

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_DATA_WIDTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_ORIENTATION	Macro
C
#define	DISP_ORIENTATION	0

Overview

Defines	the	display	rotation	with	respect	to	its	native	orientation.
For	example,	if	the	display	has	a	resolution	specifications	that
says	240x320	(QVGA),	the	display	is	natively	in	portrait	mode.	If
the	application	uses	the	display	in	landscape	mode	(320x240),
then	the	orientation	must	be	defined	as	90	or	180	degree
rotation.	Graphics	Library	will	calculate	the	actual	pixel	location
to	rotate	the	contents	of	the	screen.	So	when	users	view	the
display,	the	image	on	the	screen	will	come	out	in	the	correct
orientation.	Valid	values:

0	:	display	in	its	native	orientation
90	:	rotated	90	degrees	clockwise	direction
180	:	rotated	180	degrees	clockwise	direction
270	:	rotated	270	degrees	clockwise	direction

Example

Copy	Code
//	define	in	Hardware	Profile

#define	DISP_ORIENTATION	90

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_ORIENTATION	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_HOR_RESOLUTION	Macro
C
#define	DISP_HOR_RESOLUTION	320

Overview

Defines	the	native	horizontal	dimension	of	the	screen.	This	is	the
horizontal	pixel	count	given	by	the	display's	data	sheet.	For
example	a	320x240	display	will	have	DISP_HOR_RESOLUTION
of	320.	Valid	Values:

dependent	on	the	display	glass	resolution	used.

Example

Copy	Code
//	define	in	Hardware	Profile

#define	DISP_HOR_RESOLUTION	320

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_HOR_RESOLUTION	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_VER_RESOLUTION	Macro
C
#define	DISP_VER_RESOLUTION	240

Overview

Defines	the	native	vertical	dimension	of	the	screen.	This	is	the
vertical	pixel	count	given	by	the	display's	data	sheet.	For
xxample	a	320x240	display	will	have	DISP_VER_RESOLUTION
of	240.	Valid	Values:

dependent	on	the	display	glass	resolution	used.

Example

Copy	Code
//	define	in	Hardware	Profile

#define	DISP_VER_RESOLUTION	240

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_VER_RESOLUTION	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_HOR_FRONT_PORCH	Macro
C
#define	DISP_HOR_FRONT_PORCH	10

Overview

Defines	the	horizontal	front	porch.	DISP_HOR_BACK_PORCH	+
DISP_HOR_FRONT_PORCH	+	DISP_HOR_PULSE_WIDTH
makes	up	the	horizontal	blanking	period.	Value	used	will	be
based	on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_HOR_FRONT_PORCH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_HOR_BACK_PORCH	Macro
C
#define	DISP_HOR_BACK_PORCH	20

Overview

Defines	the	horizontal	back	porch.	DISP_HOR_BACK_PORCH	+
DISP_HOR_FRONT_PORCH	+	DISP_HOR_PULSE_WIDTH
makes	up	the	horizontal	blanking	period.	Value	used	will	be
based	on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_HOR_BACK_PORCH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_VER_FRONT_PORCH	Macro
C
#define	DISP_VER_FRONT_PORCH	5

Overview

Defines	the	vertical	front	porch.	DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+	DISP_VER_PULSE_WIDTH
makes	up	the	vertical	blanking	period.	Value	used	will	be	based
on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_VER_FRONT_PORCH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_VER_BACK_PORCH	Macro
C
#define	DISP_VER_BACK_PORCH	20

Overview

Defines	the	vertical	back	porch.	DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+	DISP_VER_PULSE_WIDTH
makes	up	the	vertical	blanking	period.	Value	used	will	be	based
on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_VER_BACK_PORCH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_HOR_PULSE_WIDTH	Macro
C
#define	DISP_HOR_PULSE_WIDTH	10

Overview

Defines	the	horizontal	sync	signal	pulse	width	in	pixels.	Value
used	will	be	based	on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_HOR_PULSE_WIDTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_VER_PULSE_WIDTH	Macro
C
#define	DISP_VER_PULSE_WIDTH	5

Overview

Defines	the	vertical	sync	signal	pulse	width	in	lines.	Value	used
will	be	based	on	the	display	panel	used.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_VER_PULSE_WIDTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISP_INV_LSHIFT	Macro
C
#define	DISP_INV_LSHIFT	18

Overview

Indicates	that	the	color	data	is	sampled	in	the	falling	edge	of	the
pixel	clock.

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options	>	DISP_INV_LSHIFT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

HardwareProfile.h	Example
This	is	an	example	of	the	HardwareProfile.h	file	implementation:	

	

Copy	Code
/***

*	GetSystemClock()	returns	system	clock	frequency.

*	GetPeripheralClock()	returns	peripheral	clock	frequency.

*	GetInstructionClock()	returns	instruction	clock	frequency.

**/

/***

*	Macro:	#define				GetSystemClock()

*	Overview:	This	macro	returns	the	system	clock	frequency	in	Hertz.

*												*	value	is	8	MHz	x	4	PLL	for	PIC24

*												*	value	is	8	MHz/2	x	18	PLL	for	PIC32

**/

				#if	defined(__PIC24F__)

								#define	GetSystemClock()				(32000000ul)

				#elif	defined(__PIC32MX__)

								#define	GetSystemClock()				(72000000ul)

				#elif	defined(__dsPIC33F__)	||	defined(__PIC24H__)

								#define	GetSystemClock()				(80000000ul)

				#endif

/***

*	Macro:	#define				GetPeripheralClock()

*	Overview:	This	macro	returns	the	peripheral	clock	frequency

*												used	in	Hertz.

*												*	value	for	PIC24	is	<PRE>(GetSystemClock()/2)	</PRE>

*												*	value	for	PIC32	is	<PRE>(GetSystemClock()/(1<<OSCCONbits.PBDIV))	</PRE>

**/

				#if	defined(__PIC24F__)	||	defined(__PIC24H__)	||	defined(__dsPIC33F__)

								#define	GetPeripheralClock()				(GetSystemClock()	/	2)

				#elif	defined(__PIC32MX__)

								#define	GetPeripheralClock()				(GetSystemClock()	/	(1	<<	OSCCONbits.PBDIV))

				#endif

/***

*	Macro:	#define				GetInstructionClock()

*	Overview:	This	macro	returns	instruction	clock	frequency

*												used	in	Hertz.

*												*	value	for	PIC24	is	<PRE>(GetSystemClock()/2)	</PRE>

*												*	value	for	PIC32	is	(GetSystemClock()/PFMWSbits.CHECON)	</PRE>

**/

				#if	defined(__PIC24F__)	||	defined(__PIC24H__)	||	defined(__dsPIC33F__)

								#define	GetInstructionClock()			(GetSystemClock()	/	2)

				#elif	defined(__PIC32MX__)

								#define	GetInstructionClock()			(GetSystemClock()	/	PFMWSbits.CHECON)

				#endif

//Auto	Generated	Code

#define	PIC24FJ256DA210_DEV_BOARD

#define	USE_16BIT_PMP

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E

#define	GFX_GCLK_DIVIDER	61

#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00020000ul

#define	GFX_DISPLAY_BUFFER_LENGTH	0x00025800ul

#define	GFX_EPMP_CS1_BASE_ADDRESS	0x00020000ul

#define	GFX_EPMP_CS1_MEMORY_SIZE	0x40000ul

//End	Auto	Generated	Code

/***

*	External	Memory	Programmer	Settings

***/

#if	defined	(EXPLORER_16)

				#define	USE_COMM_PKT_MEDIA_SERIAL_PORT

				#define	BAUDRATE2															115200UL

				#define	BRG_DIV2																4

				#define	BRGH2																			1

#else

				#define	USE_COMM_PKT_MEDIA_USB

				//#define	USE_SELF_POWER_SENSE_IO

				#define	tris_self_power					TRISAbits.TRISA2				

				#define	self_power										1

				//#define	USE_USB_BUS_SENSE_IO

				#define	tris_usb_bus_sense		TRISBbits.TRISB5				

				#define	USB_BUS_SENSE							U1OTGSTATbits.SESVD	

#endif

#define	COMM_PKT_RX_MAX_SIZE				(1024)

.....

Links

Hardware	Profile

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
HardwareProfile.h	Example

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Object	Layer	API
Topics

Topics

Name	 Description	

GOL	Objects	 The	Graphics	Object	Layer	(GOL)	contains
the	Advanced	Graphics	Objects	or
commonly	known	as	widgets.	

Object	States	 Objects	rendered	on	the	display	are	based
on	their	current	Property	States	and	the
Drawing	States.	

Object	Management	 This	section	describes	the	API	functions	and
macros	that	are	used	to	create,	maintain
and	render	individual	and	list	of	objects.	

GOL	Messages	 The	library	provides	an	interface	to	accept
messages	from	the	input	devices.	

Style	Scheme	 All	objects	uses	a	style	scheme	structure
that	defines	the	font	and	colors	used.	

GOL	Global	Variables	 Graphics	Object	Layer	global	variables.	

Links

Library	API,	Topics

Library	API	>	Graphics	Object	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL	Objects
Enumerations	|	Modules	|	Structures	|	Types

All	the	GOL	objects	that	will	be	shown	in	the	display	have	a
corresponding	data	structure	that	keeps	and	maintains	its
parameters.	

Each	object	type	has	a	set	of	functions	that	enables	the	user	to
change	the	state	of	the	object.	The	Microchip	graphics	library
supports	the	following	set	of	GOL	objects.

Object	 Type	Definition	

Button	 OBJ_BUTTON	

Chart	 OBJ_CHART	

Checkbox	 OBJ_CHECKBOX	

Dial	 OBJ_ROUNDDIAL	

Digital	Meter	 OBJ_DIGITALMETER	

Edit	Box	 OBJ_EDITBOX	

Grid	 OBJ_GRID	

Group	Box	 OBJ_GROUPBOX	

List	Box	 OBJ_LISTBOX	

Meter	 OBJ_METER	

Picture	 OBJ_PICTURE	

Progress	Bar	 OBJ_PROGRESSBAR	

Radio	Button	 OBJ_RADIOBUTTON	

Slider	 OBJ_SLIDER	

Static	Text	 OBJ_STATICTEXT	

Text	Entry	 OBJ_TEXTENTRY	

Window	 OBJ_WINDOW	

Each	GOL	object	type	uses	a	style	scheme.	The	style	scheme
defines	the	font	and	color	settings.	User	can	create	new	style
schemes	and	assign	it	to	objects.	Multiple	style	schemes	can	be
used	for	different	objects.	

To	efficiently	manage	the	different	objects	the	first	9	fields	of	the
structure	for	each	object	are	defined	the	same.	Collectively	they
are	referred	to	as	the	object	header	structure	(OBJ_HEADER).
Defining	the	OBJ_HEADER	enables	the	common	APIs	to
manage	the	objects	of	different	types	in	the	same	manner.	

The	GOL	operation	is	centered	on	two	major	processes.	First	is
the	rendering	process	and	second	is	the	messaging	process.
These	processes	make	use	of	linked	list	objects.	The	field
pNxtObj	in	OBJ_HEADER	makes	this	possible.	To	manage	the
list	a	global	pointer	_pGolObjects	is	utilized.	It	defines	the	current
active	linked	list.	Newly	created	objects	are	automatically	added
to	the	end	of	this	list.	The	active	linked	list	is	the	list	that	the
messaging	and	rendering	operation	parses	to	evaluate	if	the
messages	received	affect	the	objects	and	if	objects	need	to	be
redrawn.	

The	use	of	the	_pGolObjects	pointer	also	provides	a	way	to
easily	manage	objects.	In	applications	where	multiple	pages	are
displayed	on	the	screen,	objects	can	be	grouped	according	to
pages.	The	pointer	can	be	manipulated	to	switch	from	one	page
to	another	depending	on	the	page	currently	shown	on	the
screen.

	

Implementation	of	Multi-Page	Objects

User	can	remove	an	object	from	a	list	by	pointer	manipulation.
Objects	that	are	removed	from	the	list	are	not	accessible	by	the
rendering	and	messaging	processes.

Enumerations

Name	 Description	

GOL_OBJ_TYPE	 This	structure	defines	the	Object	types	used
in	the	library.	

Modules

Name	 Description	

Analog	Clock	 Analog	Clock	is	an	Object	that	emulates	an
analog	clock	with	moving	hands.	It	can	be
used	with	or	without	a	bitmap	image	as	the
background	source.	

Button	 Button	is	an	Object	that	emulates	a	press
and	release	effect	when	operated	upon.	

Chart	 Chart	is	an	Object	that	draws	a	bar	chart	or
a	pie	chart	representation	of	a	single	data	or
series	of	data.	

Checkbox	 Check	Box	is	an	Object	that	simulates	a
check	box	on	paper.	Usually	it	is	used	as	an
option	setting	where	the	checked	or	filled
state	means	the	option	is	enabled	and	the
unfilled	or	unchecked	state	means	the
option	is	disabled.	

Round	Dial	 Dial	is	an	Object	that	can	be	used	to	display
emulate	a	turn	dial	that	can	both	go	in
clockwise	or	counterclockwise.	

Digital	Meter	 DigitalMeter	is	an	Object	that	can	be	used	to
display	a	value	of	a	sampled	variable.	This
Object	is	ideal	when	fast	refresh	of	the	value
is	needed.	The	Object	refreshes	only	the
digits	that	needs	to	change.	A	limitation	of
this	Object	is	that	the	font	used	should	have
equal	character	widths.	

Edit	Box	 Edit	Box	is	is	an	Object	that	emulates	a	cell
or	a	text	area	that	can	be	edited
dynamically.	

Grid	 Grid	is	an	Object	that	draws	a	grid	on	the

screen	with	each	cell	capable	of	displaying
an	image	or	a	string.	

Group	Box	 Group	Box	is	an	Object	that	can	be	used	to
group	Objects	together	in	the	screen.	

List	Box	 List	Box	is	an	Object	that	defines	a
scrollable	area	where	items	are	listed.	User
can	select	a	single	item	or	set	of	items.	

Meter	 Meter	is	an	Object	that	can	be	used	to
graphically	display	a	sampled	input.	

Picture	Control	 Picture	is	an	Object	that	can	be	used	to
transform	a	bitmap	to	be	an	Object	in	the
screen	and	have	control	on	the	bitmap
rendering.	This	object	can	be	used	to	create
animation	using	a	series	of	bitmaps.	

Progress	Bar	 Progress	Bar	is	an	Object	that	can	be	used
to	display	the	progress	of	a	task	such	as	a
file	download	or	transfer.	

Radio	Button	 Radio	Button	is	an	Object	that	can	be	used
to	offer	set	of	choices	to	the	user.	Only	one
of	the	choices	is	selectable.	Changing
selection	automatically	removes	the
selection	on	the	previous	option.	

Slider/Scroll	Bar	 Slider	or	Scrollbar	is	an	Object	that	can	be
used	to	display	a	value	or	scrolling	location
in	a	predefined	area.	

Static	Text	 Static	Text	is	an	Object	that	can	be	used	to
display	a	single	or	multi-line	string	of	text	in
a	predefined	location.	

Text	Entry	 Text	Entry	is	an	Object	that	can	be	used	to

emulate	a	key	pad	entry	with	a	display	area
for	the	entered	characters.	The	Object	has	a
feature	where	you	can	define	a	key	to	reply
with	a	translated	message	that	signifies	a
command	key	was	pressed.	A	command
key	example	can	be	your	enter	or	carriage
return	key	or	an	escape	key.	Multiple	keys
can	be	assigned	command	keys.
Application	can	utilize	the	command	key	to
define	the	behavior	of	the	program	based	on
a	command	key	press.	

Window	 Window	is	an	Object	that	can	be	used	to
encapsulate	objects	into	a	group.	Unlike	the
Group	Box	Object,	the	Window	Object	has
additional	features	such	as	displaying	an
icon	or	a	small	bitmap	on	its	Title	Bar.	It	also
has	additional	controls	for	both	Title	Bar	and
Client	Area.	

Structures

Name	 Description	

OBJ_HEADER	 This	structure	defines	the	first	nine	fields	of
the	Objects	structure.	This	allows	generic
operations	on	library	Objects.	

Types

Name	 Description	

DRAW_FUNC	 object	draw	function	pointer	typedef	

FREE_FUNC	 object	free	function	pointer	typedef	

MSG_DEFAULT_FUNC	 object	default	message	function	pointer
typedef	

MSG_FUNC	 object	message	function	pointer	typedef	

Links

Enumerations,	Graphics	Object	Layer	API,	Modules,	Structures,
Types

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL_OBJ_TYPE	Enumeration
C
typedef	enum	{

		OBJ_BUTTON,

		OBJ_WINDOW,

		OBJ_CHECKBOX,

		OBJ_RADIOBUTTON,

		OBJ_EDITBOX,

		OBJ_LISTBOX,

		OBJ_SLIDER,

		OBJ_PROGRESSBAR,

		OBJ_STATICTEXT,

		OBJ_PICTURE,

		OBJ_GROUPBOX,

		OBJ_CUSTOM,

		OBJ_ROUNDDIAL,

		OBJ_METER,

		OBJ_GRID,

		OBJ_CHART,

		OBJ_TEXTENTRY,

		OBJ_DIGITALMETER,

		OBJ_ANALOGCLOCK,

		OBJ_UNKNOWN

}	GOL_OBJ_TYPE;

Overview

This	structure	defines	the	Object	types	used	in	the	library.

Members

Members	 Description	

OBJ_BUTTON	 Type	defined	for	Button	Object.	

OBJ_WINDOW	 Type	defined	for	Window	Object.	

OBJ_CHECKBOX	 Type	defined	for	Check	Box	Object.	

OBJ_RADIOBUTTON	 Type	defined	for	Radio	Button	Object.	

OBJ_EDITBOX	 Type	defined	for	Edit	Box	Object.	

OBJ_LISTBOX	 Type	defined	for	List	Box	Object.	

OBJ_SLIDER	 Type	defined	for	Slider	and/or	Scroll	Bar
Object.	

OBJ_PROGRESSBAR	 Type	defined	for	Progress	Object.	

OBJ_STATICTEXT	 Type	defined	for	Static	Text	Object.	

OBJ_PICTURE	 Type	defined	for	Picture	or	Bitmap	Object.	

OBJ_GROUPBOX	 Type	defined	for	Group	Box	Object.	

OBJ_CUSTOM	 Type	defined	for	Custom	Object.	

OBJ_ROUNDDIAL	 Type	defined	for	Dial	Object.	

OBJ_METER	 Type	defined	for	Meter	Object.	

OBJ_GRID	 Type	defined	for	Grid	Object.	

OBJ_CHART	 Type	defined	for	Chart	Object.	

OBJ_TEXTENTRY	 Type	defined	for	Text-Entry	Object.	

OBJ_DIGITALMETER	 Type	defined	for	DIGITALMETER	Object.	

OBJ_ANALOGCLOCK	 Type	defined	for	ANALOGCLOCK	Object.	

OBJ_UNKNOWN	 Type	is	undefined	and	not	supported	by	the
library.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>
GOL_OBJ_TYPE	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

OBJ_HEADER	Structure
C
typedef	struct	{

		WORD	ID;

		void	*	pNxtObj;

		GOL_OBJ_TYPE	type;

		WORD	state;

		SHORT	left;

		SHORT	top;

		SHORT	right;

		SHORT	bottom;

		GOL_SCHEME	*	pGolScheme;

		DRAW_FUNC	DrawObj;

		FREE_FUNC	FreeObj;

		MSG_FUNC	MsgObj;

		MSG_DEFAULT_FUNC	MsgDefaultObj;

}	OBJ_HEADER;

Overview

This	structure	defines	the	first	nine	fields	of	the	Objects	structure.
This	allows	generic	operations	on	library	Objects.

Members

Members	 Description	

WORD	ID;	 Unique	id	assigned	for	referencing.	

void	*	pNxtObj;	 A	pointer	to	the	next	object.	

GOL_OBJ_TYPE	type;	 Identifies	the	type	of	GOL	object.	

WORD	state;	 State	of	object.	

SHORT	left;	 Left	position	of	the	Object.	

SHORT	top;	 Top	position	of	the	Object.	

SHORT	right;	 Right	position	of	the	Object.	

SHORT	bottom;	 Bottom	position	of	the	Object.	

GOL_SCHEME	*
pGolScheme;	

Pointer	to	the	scheme	used.	

DRAW_FUNC
DrawObj;	

function	pointer	to	the	object	draw	function	

FREE_FUNC	FreeObj;	 function	pointer	to	the	object	free	function	

MSG_FUNC	MsgObj;	 function	pointer	to	the	object	message
function	

MSG_DEFAULT_FUNC
MsgDefaultObj;	

function	pointer	to	the	object	default
message	function	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>
OBJ_HEADER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DRAW_FUNC	Type
C
typedef	WORD	(*	DRAW_FUNC)(void	*);

Description

object	draw	function	pointer	typedef

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	DRAW_FUNC
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FREE_FUNC	Type
C
typedef	void	(*	FREE_FUNC)(void	*);

Description

object	free	function	pointer	typedef

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	FREE_FUNC
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MSG_DEFAULT_FUNC	Type
C
typedef	void	(*	MSG_DEFAULT_FUNC)(WORD,	void	*,	GOL_MSG	*);

Description

object	default	message	function	pointer	typedef

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>
MSG_DEFAULT_FUNC	Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MSG_FUNC	Type
C
typedef	WORD	(*	MSG_FUNC)(void	*,	GOL_MSG	*);

Description

object	message	function	pointer	typedef

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	MSG_FUNC
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Analog	Clock
Functions	|	Structures	|	Topics

The	Analog	Clock	object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments	for
the	clock.	

	

	

Functions

	 Name	 Description	

	 AcCreate	 This	function	creates	an	Analog	Clock
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the
address	of	the	object.	

	 AcDraw	 This	function	renders	the	object	on	the

screen	using	the	current	parameter	settings.
Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The
colors	used	are	dependent	on	the	state	of
the	object.	The	font	used	is	determined	by
the	style	scheme	set.	

	 AcSetHour	 Sets	the	hour	value	of	the	analog	clock.	

	 AcSetMinute	 Sets	the	minute	value	of	the	analog	clock.	

	 AcSetSecond	 Sets	the	second	value	of	the	analog	clock.	

Structures

Name	 Description	

ANALOGCLOCK	 Defines	the	parameters	required	for	a	clock
Object.	The	following	relationships	of	the
parameters	determines	the	general	shape	of
the	clock:
1.	 centerx	and	centery	determine	the

middle	of	the	clock.
2.	 radius	defines	the	radius	of	the	clock.
4.	 *pBitmap	points	to	the	background

image	for	the	analog	clock.
	

Topics

Name	 Description	

Analog	Clock	States	 List	of	Analog	Clock	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Analog	Clock	States
Macros	|	Analog	Clock

List	of	Analog	Clock	bit	states.

Macros

Name	 Description	

AC_DRAW	 Bit	to	indicate	button	must	be	redrawn.	

AC_DISABLED	 Bit	for	disabled	state.	

AC_HIDE	 Bit	to	indicate	button	must	be	removed	from
screen.	

AC_PRESSED	 Bit	for	press	state.	

AC_TICK	 Bit	to	tick	second	hand	

UPDATE_HOUR	 Bit	to	indicate	hour	hand	must	be	redrawn	

UPDATE_MINUTE	 Bit	to	indicate	minute	hand	must	be
redrawn	

UPDATE_SECOND	 Bit	to	indicate	minute	hand	must	be
redrawn	

Module

Analog	Clock

Links

Macros,	Analog	Clock

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

>	Analog	Clock	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AC_DRAW	Macro
C
#define	AC_DRAW	0x4000			//	Bit	to	indicate	button	must	be	redrawn.

Description

Bit	to	indicate	button	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	AC_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AC_DISABLED	Macro
C
#define	AC_DISABLED	0x0002			//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	AC_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AC_HIDE	Macro
C
#define	AC_HIDE	0x8000			//	Bit	to	indicate	button	must	be	removed	from	screen.

Description

Bit	to	indicate	button	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	AC_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AC_PRESSED	Macro
C
#define	AC_PRESSED	0x0004			//	Bit	for	press	state.

Description

Bit	for	press	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	AC_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AC_TICK	Macro
C
#define	AC_TICK	0x1000			//	Bit	to	tick	second	hand

Description

Bit	to	tick	second	hand

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	AC_TICK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

UPDATE_HOUR	Macro
C
#define	UPDATE_HOUR	0x2000			//	Bit	to	indicate	hour	hand	must	be	redrawn

Description

Bit	to	indicate	hour	hand	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	UPDATE_HOUR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

UPDATE_MINUTE	Macro
C
#define	UPDATE_MINUTE	0x0100			//	Bit	to	indicate	minute	hand	must	be	redrawn

Description

Bit	to	indicate	minute	hand	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	UPDATE_MINUTE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

UPDATE_SECOND	Macro
C
#define	UPDATE_SECOND	0x0200			//	Bit	to	indicate	minute	hand	must	be	redrawn

Description

Bit	to	indicate	minute	hand	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States	>	UPDATE_SECOND	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AcCreate	Function
Analog	Clock

C
ANALOGCLOCK	*	AcCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				SHORT	hour,	

				SHORT	minute,	

				SHORT	radius,	

				BOOL	sechand,	

				WORD	state,	

				void	*	pBitmap,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	an	Analog	Clock	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

SHORT	hour	 Initial	hour	value.	

SHORT	minute	 Initial	minute	value.	

SHORT	radius	 Sets	the	radius	of	the	clock.	

BOOL	sechand	 Flag	to	indicate	if	the	second	hand	will	be
drawn	or	not.	

WORD	state	 Sets	the	initial	state	of	the	object.	

void	*	pBitmap	 Pointer	to	the	bitmap	used	on	the	face	of	the
analog	clock	dimension	of	the	image	must
match	the	dimension	of	the	widget.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

WORD	state;

				pScheme	=	GOLCreateScheme();

				state	=	AC_DRAW;

				AnalogClock	=	AcCreate(ANALOGCLOCK_ID,	20,	64,	50,	118,	1,	20,	30,	FALSE,	state,	NULL,	pScheme);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	AcCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AcDraw	Function
Analog	Clock

C
WORD	AcDraw(

				void	*	pAc

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.

Input	Parameters

Input	Parameters	 Description	

void	*	pAc	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

Copy	Code
void	MyGOLDraw(){

				static	OBJ_HEADER	*pCurrentObj	=	NULL;

				int	done;

				

				//	There	are	no	objects

				if(GOLGetList()	==	NULL)

								return;

				//	If	it's	last	object	jump	to	head

				if(pCurrentObj	==	NULL)

								pCurrentObj	=	GOLGetList();

				done	=	0;

				//	this	only	process	Button	and	Window

				while(pCurrentObj	!=	NULL){

								//	check	if	object	state	indicates	redrawing

								if(pCurrentObj->state&0xFC00)	{

												switch(pCurrentObj->type){

																case	OBJ_ANALOGCLOCK:

																				done	=	AcDraw((ANALOGCLOCK*)pCurrentObj);

																				break;

																case	OBJ_WINDOW:

																				done	=	WndDraw((WINDOW*)pCurrentObj);

																				break;

																default:	

																				done	=	1;

																				break;

												}

												if(done){

																//	reset	only	the	state	if	drawing	was	finished

																pCurrentObj->state	=	0;

												}else{

																//	done	processing	the	list

																return;

												}

								}

								//	go	to	next	object

								pCurrentObj	=	pCurrentObj->pNxtObj;

				}

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	AcDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AcSetHour	Function
Analog	Clock

C
void	AcSetHour(

				ANALOGCLOCK	*	pAc,	

				SHORT	hour

);

Overview

Sets	the	hour	value	of	the	analog	clock.

Input	Parameters

Input	Parameters	 Description	

ANALOGCLOCK	*
pAc	

The	pointer	to	the	object	whose	hands	will
be	modified.	

SHORT	hour	 New	hour	time.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

>	AcSetHour	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AcSetMinute	Function
Analog	Clock

C
void	AcSetMinute(

				ANALOGCLOCK	*	pAc,	

				SHORT	minute

);

Overview

Sets	the	minute	value	of	the	analog	clock.

Input	Parameters

Input	Parameters	 Description	

ANALOGCLOCK	*
pAc	

The	pointer	to	the	object	whose	hands	will
be	modified.	

SHORT	minute	 New	minute	time.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

>	AcSetMinute	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AcSetSecond	Function
Analog	Clock

C
void	AcSetSecond(

				ANALOGCLOCK	*	pAc,	

				SHORT	second

);

Overview

Sets	the	second	value	of	the	analog	clock.

Input	Parameters

Input	Parameters	 Description	

ANALOGCLOCK	*
pAc	

The	pointer	to	the	object	whose	hands	will
be	modified.	

SHORT	second	 New	second	time.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

>	AcSetSecond	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ANALOGCLOCK	Structure
Analog	Clock

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	radius;

		SHORT	centerx;

		SHORT	centery;

		SHORT	valueS;

		SHORT	prev_valueS;

		SHORT	valueM;

		SHORT	prev_valueM;

		SHORT	valueH;

		SHORT	prev_valueH;

		void	*	pBitmap;

}	ANALOGCLOCK;

Overview

Defines	the	parameters	required	for	a	clock	Object.	The	following
relationships	of	the	parameters	determines	the	general	shape	of
the	clock:

1.	 centerx	and	centery	determine	the	middle	of	the	clock.
2.	 radius	defines	the	radius	of	the	clock.
4.	 *pBitmap	points	to	the	background	image	for	the	analog	clock.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	radius;	 Radius	of	the	clock.	

SHORT	centerx;	 center	location	in	X-axis.	

SHORT	centery;	 center	location	in	Y-axis.	

SHORT	valueS;	 time	in	Second	

SHORT	prev_valueS;	 previous	time	in	Second	

SHORT	valueM;	 time	in	Minute	

SHORT	prev_valueM;	 previous	time	in	Minute	

SHORT	valueH;	 time	in	Hour	

SHORT	prev_valueH;	 previous	time	in	Hour	

void	*	pBitmap;	 Pointer	to	bitmap	used.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	ANALOGCLOCK	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Button
Functions	|	Macros	|	Structures	|	Topics

Button	supports	Keyboard	and	Touchscreen	inputs,	replying	to
their	events	with	the	following	messages:	

1.	BTN_MSG_PRESSED	

2.	BTN_MSG_RELEASED	

	

The	button	object	is	rendered	using	the	assigned	style	scheme.
The	following	figure	illustrates	the	color	assignments	for	the
button.	

	

	

A	variant	of	the	button	widget,	is	to	implement	it	as	a	two	tone
button.	The	button	object	is	rendered	using	the	modified	color
assignments	in	the	style	scheme.	The	two	tone	button	is
rendered	when	the	BTN_TWOTONE	object	state	bit	is	set.	

	

	

	

When	using	images	on	the	button	widget,	the	image	is	drawn	on
the	center	of	the	widget.	If	the	image	size	is	larger	than	the
widget	dimension,	the	image	will	cover	the	widget.	When	this
happens,	it	is	recommended	to	disable	the	rendering	of	the
button	panel	so	no	time	is	spent	rendering	the	panel	which	will
be	covered	by	the	image.	To	do	this	enable	the	BTN_NOPANEL
object	state	bit.	

The	text	or	string	used	with	the	button	widget	is	always	rendered
last.	Even	with	images,	the	string	will	always	be	rendered	on	top
of	the	image.	Text	rendering	on	the	button	widget	is	not	affected
by	BTN_NOPANEL	object	state	bit.	Text	will	only	be	affected	by
the	following	object	state	bits	BTN_TEXTRIGHT,
BTN_TEXTLEFT,	BTN_TEXTBOTTOM,	and	BTN_TEXTTOP.	

To	enable	multiple	lines	of	text	on	the	button	widget,	enable	the
USE_BUTTON_MULTI_LINE	in	the	GraphicsConfig.h.	Enabling
the	USE_BUTTON	will	only	enable	single	lines	of	text.

Functions

	 Name	 Description	

	 BtnCreate	 This	function	creates	a	BUTTON	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 BtnDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
The	text	on	the	face	of	the	button	is	drawn
on	top	of	the	bitmap.	Text	is	always
rendered	centered	on	the	face	of	the
button.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid...	more	

	 BtnSetText	 This	function	sets	the	string	used	for	the
object.	

	 BtnMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are

supported:		

	 BtnTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

BtnGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

BtnGetBitmap	 This	macro	returns	the	location	of	the
currently	used	bitmap	for	the	object.	

BtnSetBitmap	 This	macro	sets	the	bitmap	used	in	the
object.	The	size	of	the	bitmap	must	match
the	face	of	the	button.	

Structures

Name	 Description	

BUTTON	 Defines	the	parameters	required	for	a	button
Object.	The	following	relationships	of	the
parameters	determines	the	general	shape	of
the	button:
1.	 Width	is	determined	by	right	-	left.
2.	 Height	is	determined	by	top	-	bottom.
3.	 Radius	-	specifies	if	the	button	will	have

a	rounded	edge.	If	zero	then	the	button
will	have	sharp	(cornered)	edge.

4.	 If	2*radius	=	height	=	width,	the	button

is	a	circular	button.
	

Topics

Name	 Description	

Button	States	 List	of	Button	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Button	States
Macros	|	Button

List	of	Button	bit	states.

Macros

Name	 Description	

BTN_DISABLED	 Bit	for	disabled	state.	

BTN_DRAW	 Bit	to	indicate	button	must	be	redrawn.	

BTN_DRAW_FOCUS	 Bit	to	indicate	focus	must	be	redrawn.	

BTN_FOCUSED	 Bit	for	focus	state.	

BTN_HIDE	 Bit	to	indicate	button	must	be	removed	from
screen.	

BTN_PRESSED	 Bit	for	press	state.	

BTN_TEXTBOTTOM	 Bit	to	indicate	text	is	top	aligned.	

BTN_TEXTLEFT	 Bit	to	indicate	text	is	left	aligned.	

BTN_TEXTRIGHT	 Bit	to	indicate	text	is	right	aligned.	

BTN_TEXTTOP	 Bit	to	indicate	text	is	bottom	aligned.	

BTN_TOGGLE	 Bit	to	indicate	button	will	have	a	toggle
behavior.	

BTN_TWOTONE	 Bit	to	indicate	the	button	is	a	two	tone	type.	

BTN_NOPANEL	 Bit	to	indicate	the	button	will	be	drawn
without	a	panel	(for	faster	drawing	when	the

button	image	used	is	larger	than	the	button
panel).	

Module

Button

Links

Macros,	Button

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_DISABLED	Macro
C
#define	BTN_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_DRAW	Macro
C
#define	BTN_DRAW	0x4000		//	Bit	to	indicate	button	must	be	redrawn.

Description

Bit	to	indicate	button	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_DRAW_FOCUS	Macro
C
#define	BTN_DRAW_FOCUS	0x2000		//	Bit	to	indicate	focus	must	be	redrawn.

Description

Bit	to	indicate	focus	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_FOCUSED	Macro
C
#define	BTN_FOCUSED	0x0001		//	Bit	for	focus	state.

Description

Bit	for	focus	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_HIDE	Macro
C
#define	BTN_HIDE	0x8000		//	Bit	to	indicate	button	must	be	removed	from	screen.

Description

Bit	to	indicate	button	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_PRESSED	Macro
C
#define	BTN_PRESSED	0x0004		//	Bit	for	press	state.

Description

Bit	for	press	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TEXTBOTTOM	Macro
C
#define	BTN_TEXTBOTTOM	0x0040		//	Bit	to	indicate	text	is	top	aligned.

Description

Bit	to	indicate	text	is	top	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TEXTBOTTOM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TEXTLEFT	Macro
C
#define	BTN_TEXTLEFT	0x0020		//	Bit	to	indicate	text	is	left	aligned.

Description

Bit	to	indicate	text	is	left	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TEXTLEFT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TEXTRIGHT	Macro
C
#define	BTN_TEXTRIGHT	0x0010		//	Bit	to	indicate	text	is	right	aligned.

Description

Bit	to	indicate	text	is	right	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TEXTRIGHT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TEXTTOP	Macro
C
#define	BTN_TEXTTOP	0x0080		//	Bit	to	indicate	text	is	bottom	aligned.

Description

Bit	to	indicate	text	is	bottom	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TEXTTOP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TOGGLE	Macro
C
#define	BTN_TOGGLE	0x0008		//	Bit	to	indicate	button	will	have	a	toggle	behavior.

Description

Bit	to	indicate	button	will	have	a	toggle	behavior.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TOGGLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_TWOTONE	Macro
C
#define	BTN_TWOTONE	0x0100		//	Bit	to	indicate	the	button	is	a	two	tone	type.

Description

Bit	to	indicate	the	button	is	a	two	tone	type.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_TWOTONE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BTN_NOPANEL	Macro
C
#define	BTN_NOPANEL	0x0200		//	Bit	to	indicate	the	button	will	be	drawn	without	a	panel	(for	faster	drawing	when	the	button	image	used	is	larger	than	the	button	panel).

Description

Bit	to	indicate	the	button	will	be	drawn	without	a	panel	(for	faster
drawing	when	the	button	image	used	is	larger	than	the	button
panel).

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States	>	BTN_NOPANEL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnCreate	Function
Button

C
BUTTON	*	BtnCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				SHORT	radius,	

				WORD	state,	

				void	*	pBitmap,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	BUTTON	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

SHORT	radius	 Radius	of	the	rounded	edge.	

WORD	state	 Sets	the	initial	state	of	the	object.	

void	*	pBitmap	 Pointer	to	the	bitmap	used	on	the	face	of	the
button	dimension	of	the	bitmap	must	match
the	dimension	of	the	button.	

XCHAR	*	pText	 Pointer	to	the	text	of	the	button.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

BUTTON	*buttons[3];

WORD	state;

				pScheme	=	GOLCreateScheme();

				state	=	BTN_DRAW;

				buttons[0]	=	BtnCreate(1,20,64,50,118,0,	state,	NULL,	"ON",	pScheme);

				//	check	if	button	0	is	created

				if	(buttons[0]	==	NULL)					

							return	0;

				buttons[1]	=	BtnCreate(2,52,64,82,118,0,	state,	NULL,	"OFF",	pScheme);

				//	check	if	button	1	is	created

				if	(buttons[1]	==	NULL)

							return	0;

				buttons[2]	=	BtnCreate(3,84,64,114,118,0,	state,	NULL,	"HI",	pScheme);

				//	check	if	button	2	is	created

				if	(buttons[2]	==	NULL)

							return	0;

				return	1;

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnDraw	Function
Button

C
WORD	BtnDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

The	text	on	the	face	of	the	button	is	drawn	on	top	of	the	bitmap.
Text	is	always	rendered	centered	on	the	face	of	the	button.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pB	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

Copy	Code
void	MyGOLDraw(){

				static	OBJ_HEADER	*pCurrentObj	=	NULL;

				int	done;

				

				//	There	are	no	objects

				if(GOLGetList()	==	NULL)

								return;

				//	If	it's	last	object	jump	to	head

				if(pCurrentObj	==	NULL)

								pCurrentObj	=	GOLGetList();

				done	=	0;

				//	this	only	process	Button	and	Window

				while(pCurrentObj	!=	NULL){

								//	check	if	object	state	indicates	redrawing

								done	=	pCurrentObj->draw(pCurrentObj);

												if(done){

																//	reset	only	the	state	if	drawing	was	finished

																pCurrentObj->state	=	0;

												}else{

																//	done	processing	the	list

																return;

												}

								}

								//	go	to	next	object

								pCurrentObj	=	pCurrentObj->pNxtObj;

				}

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnGetText	Macro
Button

C
#define	BtnGetText(pB)	((BUTTON	*)pB)->pText

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	object.

Input	Parameters

Input	Parameters	 Description	

pB	 Pointer	to	the	object.	

Returns

Returns	pointer	to	the	text	string	being	used.

Preconditions

none

Side	Effects

none

Example

Copy	Code
XCHAR	*pChar;

BUTTON	Button[2];

pChar	=	BtnGetText(Button[0]);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnSetText	Function
Button

C
void	BtnSetText(

				BUTTON	*	pB,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	string	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

BUTTON	*	pB	 The	pointer	to	the	object	whose	text	will	be
modified.	

XCHAR	*	pText	 Pointer	to	the	text	that	will	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
XCHAR	Label0[]	=	“ON”;

XCHAR	Label1[]	=	“OFF”;

BUTTON	Button[2];

				

				BtnSetText(Button[0],	Label0);

				BtnSetText(Button[1],	Label1);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnGetBitmap	Macro
Button

C
#define	BtnGetBitmap(pB)	((BUTTON	*)pB)->pBitmap

Overview

This	macro	returns	the	location	of	the	currently	used	bitmap	for
the	object.

Input	Parameters

Input	Parameters	 Description	

pB	 Pointer	to	the	object.	

Returns

Returns	the	pointer	to	the	current	bitmap	used.

Preconditions

none

Side	Effects

none

Example

Copy	Code
BUTTON	*pButton;

BITMAP_FLASH	*pUsedBitmap;

				pUsedbitmap	=	BtnGetBitmap(pButton);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnGetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnSetBitmap	Macro
Button

C
#define	BtnSetBitmap(pB,	pBtmap)	((BUTTON	*)pB)->pBitmap	=	pBtmap

Overview

This	macro	sets	the	bitmap	used	in	the	object.	The	size	of	the
bitmap	must	match	the	face	of	the	button.

Input	Parameters

Input	Parameters	 Description	

pB	 Pointer	to	the	object.	

pBitmap	 Pointer	to	the	bitmap	to	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
extern	BITMAP_FLASH	myIcon;

BUTTON	*pButton;

				BtnSetBitmap(pButton	,	&myIcon);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnSetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnMsgDefault	Function
Button

C
void	BtnMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	 State
Bit	

Description	

BTN_MSG_PRESSED	 Touch
Screen,
Keyboard	

Set
BTN_PRESSED	

Button
be	 redrawn
in	 the
pressed
state.	

BTN_MSG_RELEASED	 Touch
Screen,
Keyboard	

Clear
BTN_PRESSED	

Button
be	 redrawn
in	 the
unpressed
state.	

BTN_MSG_CANCELPRESS	 Touch
Screen,	

Clear
BTN_PRESSED	

Button
be	 redrawn
in	 the
unpressed
state.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

void	*	pObj	 The	pointer	to	the	object	whose	state	will	be
modified.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BtnTranslateMsg	Function
Button

C
WORD	BtnTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Set/Clear	State	Bit	 Description	

BTN_MSG_PRESSED	 Touch
Screen	

EVENT_PRESS,
EVENT_MOVE	

If	events	occurs	and	the	x,y
position	 falls	 in	 the	 face	 of
the	 button	 while	 the	 button
is	not	pressed.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_CR_PRESSED
SCAN_SPACE_PRESSED
while	 the	 button	 is	 not
pressed.	

BTN_MSG_STILLPRESSED	 Touch
Screen	

EVENT_STILLPRESS	 If	 event	 occurs	 and	 the	 x,y
position	 does	 not	 change
from	 the	 previous	 press
position	 in	 the	 face	 of	 the
button.	

BTN_MSG_RELEASED	 Touch
Screen	

EVENT_RELEASE	 If	 the	 event	 occurs	 and	 the
x,y	position	 falls	 in	 the	 face
of	 the	 button	 while	 the
button	is	pressed.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_CR_RELEASED
SCAN_SPACE_RELEASED
while	the	button	is	pressed.	

BTN_MSG_CANCELPRESS	 Touch
Screen	

EVENT_MOVE	 If	 the	 event	 occurs	 outside
the	 face	 of	 the	 button	 and
the	 button	 is	 currently
pressed.	

OBJ_MSG_INVALID	 Any	 Any	 If	the	message	did	not	affect
the	object.	

Input	Parameters

Input	Parameters	 Description	

void	*	pObj	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

BTN_MSG_PRESSED	–	Button	is	pressed
BTN_MSG_RELEASED	–	Button	is	released
BTN_MSG_CANCELPRESS	–	Button	will	be	released,	user
cancels	press	action	on	the	button
OBJ_MSG_INVALID	–	Button	is	not	affected

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	MyGOLMsg(GOL_MSG	*pMsg){

				OBJ_HEADER	*pCurrentObj;

				WORD	objMsg;

								

				if(pMsg->uiEvent	==	EVENT_INVALID)

								return;

				pCurrentObj	=	GOLGetList();

				

				while(pCurrentObj	!=	NULL){

								//	If	the	object	must	be	redrawn

								//	It	cannot	accept	message

								if(!IsObjUpdated(pCurrentObj)){

												translatedMsg	=	pCurrentObj->MsgObj(pCurrentObj,	pMsg);

													if(translatedMsg	!=	OBJ_MSG_INVALID)

													{

																	if(GOLMsgCallback(translatedMsg,	pCurrentObj,	pMsg))

																					if(pCurrentObj->MsgDefaultObj)

																									pCurrentObj->MsgDefaultObj(translatedMsg,	pCurrentObj,	pMsg);

													}

								}

				}

				pCurrentObj	=	pCurrentObj->pNxtObj;

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BtnTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BUTTON	Structure
Button

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	radius;

		SHORT	textWidth;

		SHORT	textHeight;

		XCHAR	*	pText;

		void	*	pBitmap;

		GFX_COLOR	previousAlphaColor;

}	BUTTON;

Overview

Defines	the	parameters	required	for	a	button	Object.	The
following	relationships	of	the	parameters	determines	the	general
shape	of	the	button:

1.	 Width	is	determined	by	right	-	left.
2.	 Height	is	determined	by	top	-	bottom.
3.	 Radius	-	specifies	if	the	button	will	have	a	rounded	edge.	If	zero

then	the	button	will	have	sharp	(cornered)	edge.
4.	 If	2*radius	=	height	=	width,	the	button	is	a	circular	button.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	radius;	 Radius	for	rounded	buttons.	

SHORT	textWidth;	 Computed	text	width,	done	at	creation.	

SHORT	textHeight;	 Computed	text	height,	done	at	creation.	

XCHAR	*	pText;	 Pointer	to	the	text	used.	

void	*	pBitmap;	 Pointer	to	bitmap	used.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
BUTTON	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Chart
Functions	|	Macros	|	Structures	|	Topics

It	supports	only	Keyboard	inputs,	replying	to	any	touch	screen
events	with	the	message:	CH_MSG_SELECTED.	

	

The	Chart	Object	is	rendered	using	the	assigned	style	scheme.
The	following	figure	illustrates	the	color	assignments.	

	

	

	

	

Chart	Terminologies

1.	 Value	Axis	-	This	is	the	vertical	range	of	a	chart	for	normal	bar
charts	and	horizontal	range	of	the	chart	for	horizontally	drawn	bar
charts.	In	most	cases	this	axis	will	represent	values	($	amounts),
temperatures,	or	other	numeric	data.

2.	 Sample	Axis	-	This	is	the	horizontal	range	of	a	chart	for	normal	bar

charts	and	vertical	range	of	the	chart	for	horizontally	drawn	bar
charts.	In	most	cases	this	axis	will	represent	categories,	such	as
months,	sample	segments,	or	other	non-numeric	data.

3.	 Title	-	The	text	used	to	define	the	Title	of	the	chart.
4.	 Data	Points	(or	the	sample	points)	These	are	the	individual	points

where	a	value	is	graphed,	as	a	point	on	a	line,	a	bar,	or	a	pie	slice.
5.	 Data	Series	-	A	complete	series	of	data,	distinguished	by	the	same

color	and	type	of	sample	point.
6.	 Legend	-	Labels	that	indicate	how	each	data	series	is	displayed	on

the	chart.	Each	color	represents	a	different	data	series.	For	pie
charts	with	only	one	data	series	shown,	each	color	represents	one
sector	or	one	sample	point.

7.	 Data	Sample	Range	-	The	scale	for	the	data	sample	axis.
Example:	months	from	January	to	December.	Internally,	this	range
is	represented	by:

Numeric	Sequence	1,	2,	3,	...	and	so	on
Alphabet	Sequence	A,	B,	C,	..	and	so	on.

8.	 Value	Range	-	The	scale	for	the	value	axis.	Example:	range	of
numbers	from	the	lowest	to	the	highest	to	be	charted.

Functions

	 Name	 Description	

	 ChCreate	 This	function	creates	a	CHART	object
with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 ChDraw	 This	function	renders	the	object	on
the	screen	using	the	current
parameter	settings.	Location	of	the
object	is	determined	by	the	left,	top,
right	and	bottom	parameters.	The
colors	used	are	dependent	on	the
state	of	the	object.	The	font	used	is

determined	by	the	style	scheme	set.
The	colors	of	the	bars	of	the	bar	chart
or	sectors	of	the	pie	chart	can	be	the
default	color	table	or	user	defined
color	table	set	by	ChSetColorTable()
function.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is...	more	

	 ChAddDataSeries	 This	function	creates	a	DATASERIES
object	and	populates	the	structure
with	the	given	parameters.	

	 ChRemoveDataSeries	 This	function	removes	DATASERIES
object	from	the	list	of	DATASERIES
objects	and	frees	the	memory	used	of
that	removed	object.	The	position	of
the	object	to	be	removed	is	specified
by	the	number	parameter.	If	the	list
has	only	one	member,	it	removes	the
member	regardless	of	the	number
given.	

	 ChSetValueRange	 This	function	sets	the	minimum	and
maximum	range	of	values	that	the	bar
chart	will	show.	The	criteria	is	that	min
<=	max.	

	 ChSetPercentRange	 This	function	sets	the	minimum	and
maximum	range	of	percentage	that
the	bar	chart	will	show.	The	criteria	is
that	min	<=	max.	This	affects	bar
charts	only	and	CH_PERCENTAGE
bit	state	is	set.	

	 ChSetSampleRange	 This	function	sets	the	sample	start
and	sample	end	when	drawing	the
chart.	Together	with	the	data	series'
SHOW_DATA	flags	the	different	way
of	displaying	the	chart	data	is
achieved.
	

	 ChFreeDataSeries	 This	function	removes	DATASERIES
object	from	the	list	of	DATASERIES
objects	and	frees	the	memory	used	of
that	removed	object.	

	 ChTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect
the	object	or	not.	The	table	below
enumerates	the	translated	messages
for	each	event	of	the	touch	screen
and	keyboard	inputs.
	

Macros

Name	 Description	

ChShowSeries	 This	macro	sets	the	specified	data	series
number	show	flag	to	be	set	to
SHOW_DATA.	

ChHideSeries	 This	macro	sets	the	specified	data	series
number	show	flag	to	be	set	to
HIDE_DATA.	

ChGetShowSeriesCount	 This	macro	shows	the	number	of	data
series	that	has	its	show	flag	set	to
SHOW_DATA	

ChGetShowSeriesStatus	 This	macro	returns	the	show	ID	status	of
the	DATASERIES.	

ChSetValueLabel	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	value	axis
label	of	the	bar	chart.	

ChGetValueLabel	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	value	axis
label	of	the	bar	chart.	

ChGetValueMax	 This	macro	returns	the	current	maximum
value	that	will	be	drawn	for	bar	charts.	

ChGetValueMin	 This	macro	returns	the	current	minimum
value	that	will	be	drawn	for	bar	charts.	

ChGetValueRange	 This	macro	gets	the	current	range	for	bar
charts.	The	value	returned	is	calculated
from	the	current	(valMax	-	valMin)	set.	To
get	the	minimum	use	ChGetValueMin()
and	to	get	the	maximum	use
ChGetValueMax().	

ChSetSampleLabel	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	sample
axis	label	of	the	bar	chart.	

ChGetSampleLabel	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	sample
axis	label	of	the	bar	chart.	

ChGetSampleStart	 This	macro	returns	the	sampling	start
value.	

ChGetSampleEnd	 This	macro	returns	the	sampling	end
value.	

ChGetPercentRange	 This	macro	gets	the	percentage	range	for
bar	charts.	The	value	returned	is
calculated	from	percentage	max	-	min.	To
get	the	minimum	use	ChGetPercentMin()
and	to	get	the	maximum	use
ChGetPercentMax().	

ChGetSampleRange	 This	macro	gets	the	sample	range	for	pie
or	bar	charts.	The	value	returned	is
calculated	from	smplEnd	-	smplStart.	

ChGetPercentMax	 This	macro	returns	the	current	maximum
value	of	the	percentage	range	that	will	be
drawn	for	bar	charts	when
CH_PERCENTAGE	bit	state	is	set.	

ChGetPercentMin	 This	macro	returns	the	current	minimum
value	of	the	percentage	range	that	will	be
drawn	for	bar	charts	when
CH_PERCENTAGE	bit	state	is	set.	

ChSetColorTable	 This	macro	sets	the	color	table	used	to
draw	the	data	in	pie	and	bar	charts.	

ChGetColorTable	 This	macro	returns	the	current	color	table
used	for	the	pie	and	bar	charts.	

ChSetTitle	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	title	of	the
chart.	

ChGetTitle	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	title	of	the
chart.	

ChSetTitleFont	 This	macro	sets	the	location	of	the	font
used	for	the	title	of	the	chart.	

ChGetTitleFont	 This	macro	returns	the	location	of	the	font
used	for	the	title	of	the	chart.	

ChGetAxisLabelFont	 This	macro	returns	the	location	of	the	font
used	for	the	X	and	Y	axis	labels	of	the
chart.	

ChSetAxisLabelFont	 This	macro	sets	the	location	of	the	font
used	for	the	X	and	Y	axis	labels	of	the
chart.	

ChGetGridLabelFont	 This	macro	returns	the	location	of	the	font
used	for	the	X	and	Y	axis	grid	labels	of
the	chart.	

ChSetGridLabelFont	 This	macro	sets	the	location	of	the	font
used	for	the	X	and	Y	axis	grid	labels	of
the	chart.	

Structures

Name	 Description	

CHART	 Defines	the	parameters	required	for	a	chart
Object.	

DATASERIES	 Defines	a	variable	for	the	CHART	object.	It
specifies	the	number	of	samples,	pointer	to
the	array	of	samples	for	the	data	series	and
pointer	to	the	next	data	series.	A	member	of
this	structure	(show)	is	used	as	a	flag	to
determine	if	the	series	is	to	be	drawn	or	not.
Together	with	the	smplStart	and	smplEnd	it
will	determine	what	kind	of	chart	will	be
drawn.	

CHARTPARAM	 Defines	the	parameters	for	the	CHART

object.	

Topics

Name	 Description	

Chart	States	 List	of	Chart	bit	states.	

Data	Series	Status
Settings	

Data	Series	show	status	flag	settings.	

Chart	Examples	 Examples	of	generated	bar	charts	based	on
settings.	

Color	Table	 Default	color	table	used	to	draw	data	points
in	a	chart.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Chart	States
Macros	|	Chart

List	of	Chart	bit	states.

Macros

Name	 Description	

CH_DISABLED	 Bit	for	disabled	state.	

CH_DRAW	 Bit	to	indicate	chart	must	be	redrawn.	

CH_DRAW_DATA	 Bit	to	indicate	data	portion	of	the	chart	must
be	redrawn.	

CH_3D_ENABLE	 Bit	to	indicate	that	bar	charts	are	to	be
drawn	with	3-D	effect	

CH_BAR	 Bit	to	indicate	the	chart	is	type	bar.	If	both
PIE	and	BAR	types	are	set	BAR	type	has
higher	priority.	

CH_BAR_HOR	 These	bits	(with	CH_BAR	bit	set),	sets	the
bar	chart	to	be	drawn	horizontally.	

CH_DONUT	 These	bits	(with	CH_PIE	bit	set),	sets	the
pie	chart	to	be	drawn	in	a	donut	shape.	

CH_LEGEND	 Bit	to	indicate	that	legend	is	to	be	shown.
Usable	only	when	seriesCount	>	1.	

CH_NUMERIC	 This	bit	is	used	only	for	bar	charts.	If	this	bit
is	set,	it	indicates	that	the	bar	chart	labels
for	variables	are	numeric.	If	this	bit	is	not
set,	it	indicates	that	the	bar	chart	labels	for
variables	are	alphabets.	

CH_PERCENT	 Bit	to	indicate	that	the	pie	chart	will	be
drawn	with	percentage	values	shown	for	the
sample	data.	For	bar	chart,	if	CH_VALUE	is
set,	it	toggles	the	value	shown	to
percentage.	

CH_PIE	 Bit	to	indicate	the	chart	is	type	pie.	If	both
PIE	and	BAR	types	are	set	BAR	type	has
higher	priority.	

CH_VALUE	 Bit	to	indicate	that	the	values	of	the	bar
chart	data	or	pie	chart	data	are	to	be	shown	

CH_HIDE	 Bit	to	indicate	chart	must	be	removed	from
screen.	

Module

Chart

Links

Macros,	Chart

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_DISABLED	Macro
C
#define	CH_DISABLED	0x0002						//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_DRAW	Macro
C
#define	CH_DRAW	0x4000						//	Bit	to	indicate	chart	must	be	redrawn.

Description

Bit	to	indicate	chart	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_DRAW_DATA	Macro
C
#define	CH_DRAW_DATA	0x2000						//	Bit	to	indicate	data	portion	of	the	chart	must	be	redrawn.

Description

Bit	to	indicate	data	portion	of	the	chart	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_DRAW_DATA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_3D_ENABLE	Macro
C
#define	CH_3D_ENABLE	0x0008						//	Bit	to	indicate	that	bar	charts	are	to	be	drawn	with	3-D	effect

Description

Bit	to	indicate	that	bar	charts	are	to	be	drawn	with	3-D	effect

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_3D_ENABLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_BAR	Macro
C
#define	CH_BAR	0x0200						//	Bit	to	indicate	the	chart	is	type	bar.	If	both	PIE	and	BAR	types	are	set	BAR	type	has	higher	priority.

Description

Bit	to	indicate	the	chart	is	type	bar.	If	both	PIE	and	BAR	types
are	set	BAR	type	has	higher	priority.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_BAR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_BAR_HOR	Macro
C
#define	CH_BAR_HOR	0x0240						//	These	bits	(with	CH_BAR	bit	set),	sets	the	bar	chart	to	be	drawn	horizontally.

Description

These	bits	(with	CH_BAR	bit	set),	sets	the	bar	chart	to	be	drawn
horizontally.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_BAR_HOR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_DONUT	Macro
C
#define	CH_DONUT	0x0140						//	These	bits	(with	CH_PIE	bit	set),	sets	the	pie	chart	to	be	drawn	in	a	donut	shape.

Description

These	bits	(with	CH_PIE	bit	set),	sets	the	pie	chart	to	be	drawn
in	a	donut	shape.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_DONUT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_LEGEND	Macro
C
#define	CH_LEGEND	0x0001						//	Bit	to	indicate	that	legend	is	to	be	shown.	Usable	only	when	seriesCount	>	1.

Description

Bit	to	indicate	that	legend	is	to	be	shown.	Usable	only	when
seriesCount	>	1.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_LEGEND	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_NUMERIC	Macro
C
#define	CH_NUMERIC	0x0080						//	This	bit	is	used	only	for	bar	charts.	If	this	bit	is	set,	it	indicates	that	the

Description

This	bit	is	used	only	for	bar	charts.	If	this	bit	is	set,	it	indicates
that	the	bar	chart	labels	for	variables	are	numeric.	If	this	bit	is	not
set,	it	indicates	that	the	bar	chart	labels	for	variables	are
alphabets.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_NUMERIC	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_PERCENT	Macro
C
#define	CH_PERCENT	0x0010						//	Bit	to	indicate	that	the	pie	chart	will	be	drawn	with	percentage	values	shown	for	the	sample	data.

Description

Bit	to	indicate	that	the	pie	chart	will	be	drawn	with	percentage
values	shown	for	the	sample	data.	For	bar	chart,	if	CH_VALUE	is
set,	it	toggles	the	value	shown	to	percentage.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_PERCENT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_PIE	Macro
C
#define	CH_PIE	0x0100						//	Bit	to	indicate	the	chart	is	type	pie.	If	both	PIE	and	BAR	types	are	set	BAR	type	has	higher	priority.

Description

Bit	to	indicate	the	chart	is	type	pie.	If	both	PIE	and	BAR	types	are
set	BAR	type	has	higher	priority.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_PIE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_VALUE	Macro
C
#define	CH_VALUE	0x0004						//	Bit	to	indicate	that	the	values	of	the	bar	chart	data	or	pie	chart	data	are	to	be	shown

Description

Bit	to	indicate	that	the	values	of	the	bar	chart	data	or	pie	chart
data	are	to	be	shown

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_VALUE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_HIDE	Macro
C
#define	CH_HIDE	0x8000						//	Bit	to	indicate	chart	must	be	removed	from	screen.

Description

Bit	to	indicate	chart	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States	>	CH_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Data	Series	Status	Settings
Macros	|	Chart

Data	Series	show	status	flag	settings.

Macros

Name	 Description	

HIDE_DATA	 Macro	used	to	reset	the	data	series	show
flag	or	indicate	that	the	data	series	will	be
not	be	shown	when	the	chart	is	drawn.	

SHOW_DATA	 Macro	used	to	set	the	data	series	show	flag
or	indicate	that	the	data	series	will	be	shown
when	the	chart	is	drawn.	

Module

Chart

Links

Macros,	Chart

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Data
Series	Status	Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDE_DATA	Macro
C
#define	HIDE_DATA	0															//	Macro	used	to	reset	the	data	series	show	flag	or	indicate	that	the	data	series	will	be	not	be	shown	when	the	chart	is	drawn.

Description

Macro	used	to	reset	the	data	series	show	flag	or	indicate	that	the
data	series	will	be	not	be	shown	when	the	chart	is	drawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Data
Series	Status	Settings	>	HIDE_DATA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SHOW_DATA	Macro
C
#define	SHOW_DATA	1															//	Macro	used	to	set	the	data	series	show	flag	or	indicate	that	the	data	series	will	be	shown	when	the	chart	is	drawn.

Description

Macro	used	to	set	the	data	series	show	flag	or	indicate	that	the
data	series	will	be	shown	when	the	chart	is	drawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Data
Series	Status	Settings	>	SHOW_DATA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Chart	Examples
Chart

The	following	are	some	examples	of	settings	and	output	chart
that	will	be	generated.	

	

	

	

Module

Chart

Links

Chart

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
Examples

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChCreate	Function
Chart

C
CHART	*	ChCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				DATASERIES	*	pData,	

				CHARTPARAM	*	pParam,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	CHART	object	with	the	parameters	given.
It	automatically	attaches	the	new	object	into	a	global	linked	list	of
objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

DATASERIES	*	pData	 Pointer	to	the	data	for	the	contents	of	the
chart.	NULL	can	be	assigned	initially	when
creating	the	object.	

CHARTPARAM	*
pParam	

Pointer	to	the	chart	parameters.	NULL	can
be	assigned	initially	when	creating	the
object	and	the	chart	parameters	can	be
populated	using	the	API	provided.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	When	set
to	NULL,	the	default	style	scheme	will	be
used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
extern	const	FONT_FLASH	GOLSmallFont;

extern	const	FONT_FLASH	GOLMediumFont;						

//	Note	that	strings	are	declared	as	such	to	cover	cases	

//	where	XCHAR	type	is	declared	as	short	(2	bytes).

XCHAR	ChTitle[]					=	{'E','x','a','m','p','l','e',0};

XCHAR	SampleName[]		=	{'C','a','t','e','g','o','r','y',0};

XCHAR	ValueName[]			=	{'#','H','i','t','s',0};

XCHAR	SeriesName[2]	=	{

																							{'V','1',0},

																							{'V','2',0},

																						};

V1Data[2]	=	{	50,	100};

V2Data[2]	=	{	5,		10};

GOL_SCHEME		*pScheme;

CHART							*pChart;

CHARTPARAM			Contents;

WORD									state;

				pScheme	=	GOLCreateScheme();

				state	=	CH_BAR|CH_DRAW|CH_BAR_HOR;		//	Bar	Chart	to	be	drawn	with	horizontal	orientation

				pChart	=	ChCreate(0x01,																									

																						0,	0,																									

																						GetMaxX(),

																						GetMaxY(),				

																						state,																								

																						NULL,																									

																						NULL,																									

																						pScheme);																					

				if	(pMyChart	==	NULL)																											

								return	0;

				ChSetTitleFont(pChart,	(void*)&GOLMediumFont);

				ChSetTitle(pChart,	ChTitle);																				

				

				//	set	the	grid	labels	and	axis	labels	font	

				ChSetGridLabelFont(pChart,	(void*)&GOLSmallFont);

				ChSetAxisLabelFont(pChart,	(void*)&GOLSmallFont);

				

				//	set	the	labels	for	the	X	and	Y	axis

				ChSetSampleLabel(pChart,	(XCHAR*)SampleName);

				ChSetValueLabel(pChart,	(XCHAR*)ValueName);

				

				ChAddDataSeries(pChart,	2,	V1Data,	(XCHAR*)SeriesName[0]);	

				ChAddDataSeries(pChart,	2,	V2Data,	(XCHAR*)SeriesName[1]);

				//	set	the	range	of	the	sample	values

				ChSetValueRange(pChart,	0,	100);

				//	show	all	two	samples	to	be	displayed	(start	=	1,	end	=	2)

				ChSetSampleRange(pChart,	1,	2);					

				

				GOLDraw();																																						

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChDraw	Function
Chart

C
WORD	ChDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

The	colors	of	the	bars	of	the	bar	chart	or	sectors	of	the	pie	chart
can	be	the	default	color	table	or	user	defined	color	table	set	by
ChSetColorTable()	function.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and

0	-	If	the	rendering	is	not	yet	finished.
Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChAddDataSeries	Function
Chart

C
DATASERIES	*	ChAddDataSeries(

				CHART	*	pCh,	

				WORD	nSamples,	

				WORD	*	pData,	

				XCHAR	*	pName

);

Overview

This	function	creates	a	DATASERIES	object	and	populates	the
structure	with	the	given	parameters.

Input	Parameters

Input	Parameters	 Description	

CHART	*	pCh	 Pointer	to	the	chart	object.	

WORD	nSamples	 The	number	of	samples	or	data	points.	

WORD	*	pData	 Pointer	to	the	array	of	samples	or	data
points.	

XCHAR	*	pName	 Pointer	to	the	string	used	to	label	the	data
series.	

Returns

Returns	the	pointer	to	the	data	variable	(DATASERIES)	object
created.	If	NULL	is	returned,	the	addition	of	the	new	object	failed
due	to	not	enough	memory	for	the	object.

Preconditions

none

Side	Effects

Appends	to	the	list	of	DATASERIES	that	the	chart	is	operating
on.	By	default,	the	show	flag	of	the	newly	added	data	series	is
set	to	SHOW_DATA	or	enabled.

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChAddDataSeries	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChRemoveDataSeries	Function
Chart

C
void	ChRemoveDataSeries(

				CHART	*	pCh,	

				WORD	number

);

Overview

This	function	removes	DATASERIES	object	from	the	list	of
DATASERIES	objects	and	frees	the	memory	used	of	that
removed	object.	The	position	of	the	object	to	be	removed	is
specified	by	the	number	parameter.	If	the	list	has	only	one
member,	it	removes	the	member	regardless	of	the	number	given.

Input	Parameters

Input	Parameters	 Description	

CHART	*	pCh	 Pointer	to	the	chart	object.	

WORD	number	 The	position	of	the	object	to	be	removed	in
the	list	where	the	first	object	in	the	list	is
assigned	a	value	of	1.	If	this	parameter	is
set	to	zero,	the	whole	list	of	DATA_SERIES
is	removed.	

Returns

none.

Preconditions

none

Side	Effects

none.

Example

Copy	Code
void	ClearChartData(CHART	*pCh)	{

				if(pCh->pChData	!=	NULL)

								//	remove	the	all	data	series

								ChRemoveDataSeries(pCh,	0);

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChRemoveDataSeries	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChShowSeries	Macro
Chart

C
#define	ChShowSeries(pCh,	seriesNum)	(ChSetDataSeries(pCh,	seriesNum,	SHOW_DATA))

Overview

This	macro	sets	the	specified	data	series	number	show	flag	to	be
set	to	SHOW_DATA.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

seriesNum	 The	data	series	number	that	will	be
modified.	If	this	number	is	zero,	all	the
entries'	flag	in	the	list	will	be	set	to
SHOW_DATA.	

Returns

Returns	the	same	passed	number	if	successful	otherwise	-1	if
unsuccesful.

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	from	the	example	in		ChCreate()	we	change	the	items	to	be	shown	when

//	GOLDraw()	is	called.

//	reset	all	data	series	to	be	HIDE_DATA

ChHideSeries(pMyChart,	0);

//	set	data	series	1	(V1Data)	to	be	shown

ChShowSeries(pMyChart,	1);

//	draw	the	chart

GOLDraw();

.....

*

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChShowSeries	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChHideSeries	Macro
Chart

C
#define	ChHideSeries(pCh,	seriesNum)	(ChSetDataSeries(pCh,	seriesNum,	HIDE_DATA))

Overview

This	macro	sets	the	specified	data	series	number	show	flag	to	be
set	to	HIDE_DATA.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

seriesNum	 The	data	series	number	that	will	be
modified.	If	this	number	is	zero,	all	the
entries'	flag	in	the	list	will	be	set	to
HIDE_DATA.	

Returns

Returns	the	same	passed	number	if	successful	otherwise	-1	if
unsuccesful.

Preconditions

none

Side	Effects

none

Example

See	ChShowSeries()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChHideSeries	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetShowSeriesCount	Macro
Chart

C
#define	ChGetShowSeriesCount(pCh)	(pCh->prm.seriesCount)

Overview

This	macro	shows	the	number	of	data	series	that	has	its	show
flag	set	to	SHOW_DATA

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	number	of	data	series	with	its	show	flag	set	to
SHOW_DATA.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetShowSeriesCount	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetShowSeriesStatus	Macro
Chart

C
#define	ChGetShowSeriesStatus(pDSeries)	(pDSeries->show)

Overview

This	macro	returns	the	show	ID	status	of	the	DATASERIES.

Input	Parameters

Input	Parameters	 Description	

pDSeries	 Pointer	to	the	data	series(DATASERIES)
that	is	being	checked.	

Returns

Returns	the	status	of	the	show	flag.	1	-	(SHOW_DATA)	means
that	the	show	status	flag	is	set.	0	-	(HIDE_DATA)	means	that	the
show	status	flag	is	not	set.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetShowSeriesStatus	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetValueLabel	Macro
Chart

C
#define	ChSetValueLabel(pCh,	pNewValueLabel)	(((CHART	*)pCh)->prm.pValLabel	=	pNewValueLabel)

Overview

This	macro	sets	the	address	of	the	current	text	string	used	for
the	value	axis	label	of	the	bar	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewYLabel	 pointer	to	the	string	to	be	used	as	an	value
axis	label	of	the	bar	chart.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetValueLabel	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetValueLabel	Macro
Chart

C
#define	ChGetValueLabel(pCh)	(((CHART	*)pCh)->prm.pValLabel)

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	value	axis	label	of	the	bar	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	pointer	to	the	current	value	axis	label	text	of	the	bar
chart.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetValueLabel	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetValueMax	Macro
Chart

C
#define	ChGetValueMax(pCh)	(pCh->prm.valMax)

Overview

This	macro	returns	the	current	maximum	value	that	will	be	drawn
for	bar	charts.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	maximum	value	set	when	bar	charts	are	drawn.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetValueMax	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetValueMin	Macro
Chart

C
#define	ChGetValueMin(pCh)	(pCh->prm.valMin)

Overview

This	macro	returns	the	current	minimum	value	that	will	be	drawn
for	bar	charts.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	minimum	value	set	when	bar	charts	are	drawn.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetValueMin	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetValueRange	Function
Chart

C
void	ChSetValueRange(

				CHART	*	pCh,	

				WORD	min,	

				WORD	max

);

Overview

This	function	sets	the	minimum	and	maximum	range	of	values
that	the	bar	chart	will	show.	The	criteria	is	that	min	<=	max.

Input	Parameters

Input	Parameters	 Description	

CHART	*	pCh	 Pointer	to	the	chart	object.	

WORD	min	 Minimum	value	that	will	be	displayed	in	the
bar	chart.	

WORD	max	 Maximum	value	that	will	be	displayed	in	the
bar	chart.	

Returns

none.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetValueRange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetValueRange	Macro
Chart

C
#define	ChGetValueRange(pCh)	(pCh->prm.valMax	-	pCh->prm.valMin)

Overview

This	macro	gets	the	current	range	for	bar	charts.	The	value
returned	is	calculated	from	the	current	(valMax	-	valMin)	set.	To
get	the	minimum	use	ChGetValueMin()	and	to	get	the	maximum
use	ChGetValueMax().

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

Returns

Value	range	computed	from	valMax-valMin.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetValueRange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetSampleLabel	Macro
Chart

C
#define	ChSetSampleLabel(pCh,	pNewXLabel)	(((CHART	*)pCh)->prm.pSmplLabel	=	pNewXLabel)

Overview

This	macro	sets	the	address	of	the	current	text	string	used	for
the	sample	axis	label	of	the	bar	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewXLabel	 pointer	to	the	string	to	be	used	as	an
sample	axis	label	of	the	bar	chart.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetSampleLabel	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetSampleLabel	Macro
Chart

C
#define	ChGetSampleLabel(pCh)	(((CHART	*)pCh)->prm.pSmplLabel)

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	sample	axis	label	of	the	bar	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	pointer	to	the	current	sample	axis	label	text	of	the
bar	chart.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetSampleLabel	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetSampleStart	Macro
Chart

C
#define	ChGetSampleStart(pCh)	(((CHART	*)pCh)->prm.smplStart)

Overview

This	macro	returns	the	sampling	start	value.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	sample	start	point.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetSampleStart	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetSampleEnd	Macro
Chart

C
#define	ChGetSampleEnd(pCh)	((CHART	*)pCh)->prm.smplEnd

Overview

This	macro	returns	the	sampling	end	value.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	sample	end	point.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetSampleEnd	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetPercentRange	Function
Chart

C
void	ChSetPercentRange(

				CHART	*	pCh,	

				WORD	min,	

				WORD	max

);

Overview

This	function	sets	the	minimum	and	maximum	range	of
percentage	that	the	bar	chart	will	show.	The	criteria	is	that	min
<=	max.	This	affects	bar	charts	only	and	CH_PERCENTAGE	bit
state	is	set.

Input	Parameters

Input	Parameters	 Description	

CHART	*	pCh	 Pointer	to	the	chart	object.	

WORD	min	 Minimum	percentage	value	that	will	be
displayed	in	the	bar	chart.	

WORD	max	 Maximum	percentage	value	that	will	be
displayed	in	the	bar	chart.	

Returns

none.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetPercentRange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetPercentRange	Macro
Chart

C
#define	ChGetPercentRange(pCh)	(pCh->prm.perMax	-	pCh->prm.perMin)

Overview

This	macro	gets	the	percentage	range	for	bar	charts.	The	value
returned	is	calculated	from	percentage	max	-	min.	To	get	the
minimum	use	ChGetPercentMin()	and	to	get	the	maximum	use
ChGetPercentMax().

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

Returns

Percentage	range	computed	from	max-min.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetPercentRange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetSampleRange	Function
Chart

C
void	ChSetSampleRange(

				CHART	*	pCh,	

				WORD	start,	

				WORD	end

);

Overview

This	function	sets	the	sample	start	and	sample	end	when
drawing	the	chart.	Together	with	the	data	series'	SHOW_DATA
flags	the	different	way	of	displaying	the	chart	data	is	achieved.	

	

Start	 &
End
Value	

The	 #
of
Data
Series
Flag
Set	

Chart	Description	

Start
<=	End	

1	 Show	the	data	indicated	by	Start	and	End	points
of	the	DATASERIES	with	the	flag	set	

Start	 =
End	

1	 Show	the	data	indicated	by	Start	or	End	points	of
the	DATASERIES	with	the	flag	set	

Start,
End	 =
don't
care	

>	1	 Show	 the	 data	 indicated	 by	 Start	 point	 of	 the
DATASERIES	with	the	flag	set.	Each	samples	of
all	 checked	 data	 series	 are	 grouped	 together
according	to	sample	number.	

Input	Parameters

Input	Parameters	 Description	

CHART	*	pCh	 Pointer	to	the	chart	object.	

WORD	start	 Start	point	of	the	data	samples	to	be
displayed.	

WORD	end	 End	point	of	the	data	samples	to	be
displayed.	

Returns

none.

Preconditions

none

Side	Effects

none.

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetSampleRange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetSampleRange	Macro
Chart

C
#define	ChGetSampleRange(pCh)	(ChGetSampleEnd(pCh)	-	ChGetSampleStart(pCh))

Overview

This	macro	gets	the	sample	range	for	pie	or	bar	charts.	The
value	returned	is	calculated	from	smplEnd	-	smplStart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

Returns

Sample	range	computed	from	smplEnd	-	smplStart.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetSampleRange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetPercentMax	Macro
Chart

C
#define	ChGetPercentMax(pCh)	(pCh->prm.perMax)

Overview

This	macro	returns	the	current	maximum	value	of	the	percentage
range	that	will	be	drawn	for	bar	charts	when	CH_PERCENTAGE
bit	state	is	set.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	maximum	percentage	value	set	when	bar	charts	are
drawn.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetPercentMax	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetPercentMin	Macro
Chart

C
#define	ChGetPercentMin(pCh)	(pCh->prm.perMin)

Overview

This	macro	returns	the	current	minimum	value	of	the	percentage
range	that	will	be	drawn	for	bar	charts	when	CH_PERCENTAGE
bit	state	is	set.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	minimum	percentage	value	when	bar	charts	are
drawn.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetPercentMin	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetColorTable	Macro
Chart

C
#define	ChSetColorTable(pCh,	pNewTable)	((((CHART	*)pCh)->prm.pColor)	=	pNewTable)

Overview

This	macro	sets	the	color	table	used	to	draw	the	data	in	pie	and
bar	charts.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewTable	 Pointer	to	the	color	table	that	will	be	used.	

Returns

none.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetColorTable	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetColorTable	Macro
Chart

C
#define	ChGetColorTable(pCh)	(((CHART	*)pCh)->prm.pColor)

Overview

This	macro	returns	the	current	color	table	used	for	the	pie	and
bar	charts.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	address	of	the	color	table	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetColorTable	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetTitle	Macro
Chart

C
#define	ChSetTitle(pCh,	pNewTitle)	(((CHART	*)pCh)->prm.pTitle	=	pNewTitle)

Overview

This	macro	sets	the	address	of	the	current	text	string	used	for
the	title	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewTitle	 pointer	to	the	string	to	be	used	as	a	title	of
the	chart.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetTitle	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetTitle	Macro
Chart

C
#define	ChGetTitle(pCh)	(((CHART	*)pCh)->prm.pTitle)

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	title	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	pointer	to	the	current	title	text	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetTitle	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetTitleFont	Macro
Chart

C
#define	ChSetTitleFont(pCh,	pNewFont)	(((CHART	*)pCh)->prm.pTitleFont	=	pNewFont)

Overview

This	macro	sets	the	location	of	the	font	used	for	the	title	of	the
chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewFont	 Pointer	to	the	font	used.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetTitleFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetTitleFont	Macro
Chart

C
#define	ChGetTitleFont(pCh)	(((CHART	*)pCh)->prm.pTitleFont)

Overview

This	macro	returns	the	location	of	the	font	used	for	the	title	of	the
chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	address	of	the	current	font	used	for	the	title	text.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetTitleFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetAxisLabelFont	Macro
Chart

C
#define	ChGetAxisLabelFont(pCh)	(((CHART	*)pCh)->prm.pAxisLabelsFont)

Overview

This	macro	returns	the	location	of	the	font	used	for	the	X	and	Y
axis	labels	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	address	of	the	current	font	used	for	the	title	text.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetAxisLabelFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetAxisLabelFont	Macro
Chart

C
#define	ChSetAxisLabelFont(pCh,	pNewFont)	(((CHART	*)pCh)->prm.pAxisLabelsFont	=	pNewFont)

Overview

This	macro	sets	the	location	of	the	font	used	for	the	X	and	Y	axis
labels	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewFont	 Pointer	to	the	font	used.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetAxisLabelFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChGetGridLabelFont	Macro
Chart

C
#define	ChGetGridLabelFont(pCh)	(((CHART	*)pCh)->prm.pGridLabelsFont)

Overview

This	macro	returns	the	location	of	the	font	used	for	the	X	and	Y
axis	grid	labels	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

Returns

Returns	the	address	of	the	current	font	used	for	the	title	text.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChGetGridLabelFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChSetGridLabelFont	Macro
Chart

C
#define	ChSetGridLabelFont(pCh,	pNewFont)	(((CHART	*)pCh)->prm.pGridLabelsFont	=	pNewFont)

Overview

This	macro	sets	the	location	of	the	font	used	for	the	X	and	Y	axis
grid	labels	of	the	chart.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	object.	

pNewFont	 Pointer	to	the	font	used.	

Returns

none.

Preconditions

none

Side	Effects

none

Example

See	ChCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChSetGridLabelFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChFreeDataSeries	Function
Chart

C
void	ChFreeDataSeries(

				void	*	pObj

);

Overview

This	function	removes	DATASERIES	object	from	the	list	of
DATASERIES	objects	and	frees	the	memory	used	of	that
removed	object.

Input	Parameters

Input	Parameters	 Description	

pCh	 Pointer	to	the	chart	object.	

Returns

none.

Preconditions

none

Side	Effects

none.

Example

Copy	Code

void	ClearChartData(CHART	*pCh)	{

				if(pCh->pChData	!=	NULL)

								//	remove	the	all	data	series

								ChFreeDataSeries(pCh;

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChFreeDataSeries	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ChTranslateMsg	Function
Chart

C
WORD	ChTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

CH_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE,
EVENT_MOVE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	the	chart.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pCh	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

CH_MSG_SELECTED	–	Chart	area	is	selected
OBJ_MSG_INVALID	–	Chart	is	not	affected

	

none.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
ChTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CHART	Structure
Chart

C
typedef	struct	{

		OBJ_HEADER	hdr;

		CHARTPARAM	prm;

		DATASERIES	*	pChData;

}	CHART;

Overview

Defines	the	parameters	required	for	a	chart	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

CHARTPARAM	prm;	 Structure	for	the	parameters	of	the	chart.	

DATASERIES	*
pChData;	

Pointer	to	the	first	chart	data	series	in	the
link	list	of	data	series.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
CHART	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DATASERIES	Structure
Chart

C
typedef	struct	{

		XCHAR	*	pSData;

		WORD	samples;

		BYTE	show;

		WORD	*	pData;

		void	*	pNextData;

}	DATASERIES;

Overview

Defines	a	variable	for	the	CHART	object.	It	specifies	the	number
of	samples,	pointer	to	the	array	of	samples	for	the	data	series
and	pointer	to	the	next	data	series.	A	member	of	this	structure
(show)	is	used	as	a	flag	to	determine	if	the	series	is	to	be	drawn
or	not.	Together	with	the	smplStart	and	smplEnd	it	will	determine
what	kind	of	chart	will	be	drawn.

Members

Members	 Description	

XCHAR	*	pSData;	 Pointer	to	the	data	series	name.	

WORD	samples;	 Indicates	the	number	of	data	samples	(or
data	points)	contained	in	the	array	specified
by	pData.	

BYTE	show;	 The	flag	to	indicate	if	the	data	series	will	be
shown	or	not.	If	this	flag	is	set	to
SHOW_DATA,	the	data	series	will	be
shown.	If	HIDE_DATA,	the	data	series	will

not	be	shown.	

WORD	*	pData;	 Pointer	to	the	array	of	data	samples.	

void	*	pNextData;	 Pointer	to	the	next	data	series.	NULL	if	no
other	data	series	follows.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
DATASERIES	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CHARTPARAM	Structure
Chart

C
typedef	struct	{

		XCHAR	*	pTitle;

		XCHAR	*	pSmplLabel;

		XCHAR	*	pValLabel;

		SHORT	seriesCount;

		WORD	smplStart;

		WORD	smplEnd;

		WORD	valMax;

		WORD	valMin;

		WORD	perMax;

		WORD	perMin;

		GFX_COLOR	*	pColor;

		void	*	pTitleFont;

		void	*	pAxisLabelsFont;

		void	*	pGridLabelsFont;

}	CHARTPARAM;

Overview

Defines	the	parameters	for	the	CHART	object.

Members

Members	 Description	

XCHAR	*	pTitle;	 Pointer	to	the	Title	of	the	chart.	

XCHAR	*	pSmplLabel;	 Pointer	to	the	bar	chart	sample	axis	label.
Depending	

XCHAR	*	pValLabel;	 Pointer	to	the	bar	chart	value	axis	label.

Depending	

SHORT	seriesCount;	 Number	of	data	series	that	will	be	displayed
when	chart	is	drawn.	

WORD	smplStart;	 Start	point	of	data	sample	range	to	be
displayed	(minimum/default	value	=	1)	

WORD	smplEnd;	 End	point	of	data	sample	range	to	be
displayed.	

WORD	valMax;	 Maximum	value	of	a	sample	that	can	be
displayed.	

WORD	valMin;	 Minimum	value	of	a	sample	that	can	be
displayed.	

WORD	perMax;	 Maximum	value	of	the	percentage	range
that	can	be	displayed.	

WORD	perMin;	 Minimum	value	of	the	percentage	range	that
can	be	displayed.	

GFX_COLOR	*
pColor;	

Pointer	to	the	color	table	used	to	draw	the
chart	data.	

void	*	pTitleFont;	 Pointer	to	the	font	used	for	the	title	label	of
the	chart.	

void	*
pAxisLabelsFont;	

Pointer	to	the	font	used	for	X	and	Y	axis
labels.	

void	*
pGridLabelsFont;	

Pointer	to	the	font	used	for	X	and	Y	axis	grid
labels.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>
CHARTPARAM	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Color	Table
Macros	|	Chart

Default	color	table	used	to	draw	data	points	in	a	chart.

Macros

Name	 Description	

CH_CLR0	 Bright	Blue	

CH_CLR1	 Bright	Red	

CH_CLR2	 Bright	Green	

CH_CLR3	 Bright	Yellow	

CH_CLR4	 Orange	

CH_CLR5	 Blue	

CH_CLR6	 Red	

CH_CLR7	 Green	

CH_CLR8	 Yellow	

CH_CLR9	 Dark	Orange	

CH_CLR10	 Light	Blur	

CH_CLR11	 Light	Red	

CH_CLR12	 Light	Green	

CH_CLR13	 Light	Yellow	

CH_CLR14	 Light	Orange	

CH_CLR15	 Gold	

Module

Chart

Links

Macros,	Chart

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR0	Macro
C
#define	CH_CLR0	WHITE

Description

Bright	Blue

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR0	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR1	Macro
C
#define	CH_CLR1	BLACK

Description

Bright	Red

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR1	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR2	Macro
C
#define	CH_CLR2	WHITE

Description

Bright	Green

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR2	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR3	Macro
C
#define	CH_CLR3	BLACK

Description

Bright	Yellow

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR3	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR4	Macro
C
#define	CH_CLR4	WHITE

Description

Orange

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR4	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR5	Macro
C
#define	CH_CLR5	BLACK

Description

Blue

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR5	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR6	Macro
C
#define	CH_CLR6	WHITE

Description

Red

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR6	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR7	Macro
C
#define	CH_CLR7	BLACK

Description

Green

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR7	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR8	Macro
C
#define	CH_CLR8	WHITE

Description

Yellow

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR8	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR9	Macro
C
#define	CH_CLR9	BLACK

Description

Dark	Orange

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR9	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR10	Macro
C
#define	CH_CLR10	WHITE

Description

Light	Blur

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR10	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR11	Macro
C
#define	CH_CLR11	BLACK

Description

Light	Red

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR11	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR12	Macro
C
#define	CH_CLR12	WHITE

Description

Light	Green

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR12	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR13	Macro
C
#define	CH_CLR13	BLACK

Description

Light	Yellow

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR13	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR14	Macro
C
#define	CH_CLR14	WHITE

Description

Light	Orange

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR14	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CH_CLR15	Macro
C
#define	CH_CLR15	BLACK

Description

Gold

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table	>	CH_CLR15	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Checkbox
Functions	|	Macros	|	Structures	|	Topics

Check	Box	supports	Keyboard	and	Touchscreen	inputs,	replying
to	their	events	with	the	following	messages:	

1.	CB_MSG_UNCHECKED	-	When	the	check	box	is	unchecked.	

2.	CB_MSG_CHECKED	-	When	check	box	is	unchecked.	

	

The	Check	Box	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 CbCreate	 This	function	creates	a	CHECKBOX	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 CbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 CbSetText	 This	function	sets	the	text	that	will	be
used.	

	 CbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 CbTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

CbGetText	 This	macro	returns	the	location	of	the	text
used	for	the	check	box.	

Structures

Name	 Description	

CHECKBOX	 The	structure	contains	check	box	data	

Topics

Name	 Description	

Check	Box	States	 List	of	Checkbox	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Check	Box	States
Macros	|	Checkbox

List	of	Checkbox	bit	states.

Macros

Name	 Description	

CB_CHECKED	 Checked	state	

CB_DISABLED	 Disabled	state	

CB_DRAW	 Whole	check	box	must	be	redrawn	

CB_DRAW_CHECK	 Check	box	mark	should	be	redrawn	

CB_DRAW_FOCUS	 Focus	must	be	redrawn	

CB_FOCUSED	 Focus	state	

CB_HIDE	 Check	box	must	be	removed	from	screen	

Module

Checkbox

Links

Macros,	Checkbox

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_CHECKED	Macro
C
#define	CB_CHECKED	0x0004		//	Checked	state

Description

Checked	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_CHECKED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_DISABLED	Macro
C
#define	CB_DISABLED	0x0002		//	Disabled	state

Description

Disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_DRAW	Macro
C
#define	CB_DRAW	0x4000		//	Whole	check	box	must	be	redrawn

Description

Whole	check	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_DRAW_CHECK	Macro
C
#define	CB_DRAW_CHECK	0x1000		//	Check	box	mark	should	be	redrawn

Description

Check	box	mark	should	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_DRAW_CHECK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_DRAW_FOCUS	Macro
C
#define	CB_DRAW_FOCUS	0x2000		//	Focus	must	be	redrawn

Description

Focus	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_FOCUSED	Macro
C
#define	CB_FOCUSED	0x0001		//	Focus	state

Description

Focus	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CB_HIDE	Macro
C
#define	CB_HIDE	0x8000		//	Check	box	must	be	removed	from	screen

Description

Check	box	must	be	removed	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States	>	CB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbCreate	Function
Checkbox

C
CHECKBOX	*	CbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	CHECKBOX	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object	

SHORT	bottom	 Bottom	most	position	of	the	object	

WORD	state	 Sets	the	initial	state	of	the	object	

XCHAR	*	pText	 Pointer	to	the	text	of	the	check	box.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	

Returns

Returns	the	pointer	to	the	object	created

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

CHECKBOX	*pCb[2];

				pScheme	=	GOLCreateScheme();

				pCb	=	CbCreate(ID_CHECKBOX1,										//	ID

																			20,135,150,175,								//	dimension

																			CB_DRAW,															//	Draw	the	object

																			"Scale",															//	text

																			pScheme);														//	use	this	scheme

				pCb	=	CbCreate(ID_CHECKBOX2,										//	ID

																			170,135,300,175,							//	dimension

																			CB_DRAW,															//	Draw	the	object

																			"Animate",													//	text

																			pScheme);														//	use	this	scheme

				while(!CbDraw(pCb[0]));															//	draw	the	objects

				while(!CbDraw(pCb[1]));

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbDraw	Function
Checkbox

C
WORD	CbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pCb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

	

Next	call	to	the	function	will	resume	the	rendering	on	the	pending

drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	CbCreate()	Example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbGetText	Macro
Checkbox

C
#define	CbGetText(pCb)	pCb->pText

Overview

This	macro	returns	the	location	of	the	text	used	for	the	check
box.

Input	Parameters

Input	Parameters	 Description	

pCb	 Pointer	to	the	object	

Returns

Returns	the	location	of	the	text	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CbGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbSetText	Function
Checkbox

C
void	CbSetText(

				CHECKBOX	*	pCb,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	text	that	will	be	used.

Input	Parameters

Input	Parameters	 Description	

CHECKBOX	*	pCb	 The	pointer	to	the	check	box	whose	text	will
be	modified.	

XCHAR	*	pText	 The	pointer	to	the	text	that	will	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>

CbSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbMsgDefault	Function
Checkbox

C
void	CbMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	State
Bit	

Description	

CB_MSG_CHECKED	 Touch
Screen,
Keyboard	

Set
CB_CHECKED	

Check	 Box
will	 be
redrawn	 in
checked
state.	

CB_MSG_UNCHECKED	 Touch
Screen,
Keyboard	

Clear
CB_CHECKED	

Check	 Box
will	 be
redrawn	 in
un-checked
state.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message	

pCb	 The	pointer	to	the	object	whose	state	will	be
modified	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CbMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CbTranslateMsg	Function
Checkbox

C
WORD	CbTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

CB_MSG_CHECKED	 Touch
Screen	

EVENT_PRESS	 If	 events	 occurs	 and	 the
x,y	 position	 falls	 in	 the
area	 of	 the	 check	 box
while	 the	 check	 box	 is
unchecked.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	 the	 object’s	 ID
and	 parameter	 2	 passed
matches
SCAN_CR_PRESSED
SCAN_SPACE_PRESSED
while	 the	 check	 box	 is
unchecked.	

CB_MSG_UNCHECKED	 Touch
Screen	

EVENT_PRESS	 If	 events	 occurs	 and	 the
x,y	 position	 falls	 in	 the
area	 of	 the	 check	 box
while	 the	 check	 box	 is
checked.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	 the	 object’s	 ID
and	 parameter	 2	 passed
matches
SCAN_CR_PRESSED
SCAN_SPACE_PRESSED
while	 the	 check	 box	 is
checked.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the	 message	 did	 not
affect	the	object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 pointer	to	the	message	struct	containing	the
message	the	user	

pCb	 the	pointer	to	the	object	where	the	message
will	be	evaluated	to	check	if	the	message
will	affect	the	object	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

CB_MSG_CHECKED	–	Check	Box	is	checked.
CB_MSG_UNCHECKED	–	Check	Box	is	unchecked.

OBJ_MSG_INVALID	–	Check	Box	is	not	affected.

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CHECKBOX	Structure
Checkbox

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textHeight;

		XCHAR	*	pText;

}	CHECKBOX;

Overview

The	structure	contains	check	box	data

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textHeight;	 Pre-computed	text	height	

XCHAR	*	pText;	 Pointer	to	text	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
CHECKBOX	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Round	Dial
Functions	|	Macros	|	Structures	|	Topics

Dial	supports	only	Touchscreen	inputs,	replying	to	their	events
with	the	following	messages:	

1.	RD_MSG_CLOCKWISE	-	When	movement	of	the	touch	is	in
the	face	of	the	dial	and	in	the	clockwise	direction.	

2.	RD_MSG_CTR_CLOCKWISE	-	When	movement	of	the	touch
is	in	the	face	of	the	dial	and	in	the	counter	clockwise	direction.	

	

The	Dial	object	is	rendered	using	the	assigned	style	scheme.
The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 RdiaCreate	 This	function	creates	a	ROUNDDIAL
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 RdiaDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	center	(x,y)	postion
and	the	radius	parameters.	The	colors
used	are	dependent	on	the	state	of	the
object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 RdiaMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 RdiaTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of
the	touch	screen	inputs.
	

Macros

Name	 Description	

RdiaIncVal	 Used	to	directly	increment	the	value.	The
delta	change	used	is	the	resolution	setting
(res).	

RdiaDecVal	 Used	to	directly	decrement	the	value.	The
delta	change	used	is	the	resolution	setting
(res).	

RdiaGetVal	 Returns	the	current	dial	value.	Value	is
always	in	the	0-max	range	inclusive.	

RdiaSetVal	 Sets	the	value	to	the	given	new	value.	Value
set	must	be	in	0-max	range	inclusive.	

Structures

Name	 Description	

ROUNDDIAL	 Defines	the	parameters	required	for	a	dial
Object.	The	curr_xPos,	curr_yPos,
new_xPos	and	new_yPos	parameters	are
internally	generated	to	aid	in	the	redrawing
of	the	dial.	User	must	avoid	modifying	these
values.	

Topics

Name	 Description	

Dial	States	 List	of	Dial	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Dial	States
Macros	|	Round	Dial

List	of	Dial	bit	states.

Macros

Name	 Description	

RDIA_DISABLED	 Bit	for	disabled	state.	

RDIA_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

RDIA_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

RDIA_ROT_CCW	 Bit	for	rotate	counter	clockwise	state.	

RDIA_ROT_CW	 Bit	for	rotate	clockwise	state.	

Module

Round	Dial

Links

Macros,	Round	Dial

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RDIA_DISABLED	Macro
C
#define	RDIA_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States	>	RDIA_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RDIA_DRAW	Macro
C
#define	RDIA_DRAW	0x4000		//	Bit	to	indicate	object	must	be	redrawn.

Description

Bit	to	indicate	object	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States	>	RDIA_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RDIA_HIDE	Macro
C
#define	RDIA_HIDE	0x8000		//	Bit	to	indicate	object	must	be	removed	from	screen.

Description

Bit	to	indicate	object	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States	>	RDIA_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RDIA_ROT_CCW	Macro
C
#define	RDIA_ROT_CCW	0x0008		//	Bit	for	rotate	counter	clockwise	state.

Description

Bit	for	rotate	counter	clockwise	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States	>	RDIA_ROT_CCW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RDIA_ROT_CW	Macro
C
#define	RDIA_ROT_CW	0x0004		//	Bit	for	rotate	clockwise	state.

Description

Bit	for	rotate	clockwise	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States	>	RDIA_ROT_CW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaCreate	Function
Round	Dial

C
ROUNDDIAL	*	RdiaCreate(

				WORD	ID,	

				SHORT	x,	

				SHORT	y,	

				SHORT	radius,	

				WORD	state,	

				SHORT	res,	

				SHORT	value,	

				SHORT	max,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	ROUNDDIAL	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	x	 Location	of	the	center	of	the	dial	in	the	x
coordinate.	

SHORT	y	 Location	of	the	center	of	the	dial	in	the	y
coordinate.	

SHORT	radius	 Defines	the	radius	of	the	dial.	

WORD	state	 Sets	the	initial	state	of	the	object.	

SHORT	res	 Sets	the	resolution	of	the	dial	when	rotating
clockwise	or	counter	clockwise.	

SHORT	value	 Sets	the	initial	value	of	the	dial.	

SHORT	max	 Sets	the	maximum	value	of	the	dial.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

ROUNDDIAL	*pDial;

WORD	state;

				pScheme	=	GOLCreateScheme();

				state	=	RDIA_DRAW;

				//	creates	a	dial	at	(50,50)	x,y	location,	with	an	initial	value

				//	of	50,	a	resolution	of	2	and	maximum	value	of	100.

				pDial	=	RdiaCreate(1,50,50,25,118,0,	state,	2,	50,	100,	pScheme);

				//	check	if	dial	was	created

				if	(pDial	==	NULL)						

							return	0;

				return	1;

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaDraw	Function
Round	Dial

C
WORD	RdiaDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
center	(x,y)	postion	and	the	radius	parameters.	The	colors	used
are	dependent	on	the	state	of	the	object.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pDia	 Pointer	to	the	object	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaIncVal	Macro
Round	Dial

C
#define	RdiaIncVal(pDia)	RdiaSetVal(pDia,	(pDia->val	+	pDia->res))

Overview

Used	to	directly	increment	the	value.	The	delta	change	used	is
the	resolution	setting	(res).

Input	Parameters

Input	Parameters	 Description	

pDia	 Pointer	to	the	object.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	updatedVal,	prevVal;

ROUNDDIAL	*pDia;

				//	assuming	pDia	is	initialized	to	an	existing	dial	Object

				//	assume	GetInput()	is	a	function	that	retrieves	source	data

				prevVal	=	RdiaGetVal(pDia);

				updatedVal	=	GetInput();

				if	(updatedVal	>	prevVal)

								RdiaIncVal(pDia);

				if	(updatedVal	<	prevVal)

								RdiaDecVal(pDia);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaIncVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaDecVal	Macro
Round	Dial

C
#define	RdiaDecVal(pDia)	RdiaSetVal(pDia,	(pDia->pos	-	pDia->res))

Overview

Used	to	directly	decrement	the	value.	The	delta	change	used	is
the	resolution	setting	(res).

Input	Parameters

Input	Parameters	 Description	

pDia	 Pointer	to	the	object.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Refer	to	RdiaIncVal()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaDecVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaGetVal	Macro
Round	Dial

C
#define	RdiaGetVal(pDia)	(pDia)->value

Overview

Returns	the	current	dial	value.	Value	is	always	in	the	0-max
range	inclusive.

Input	Parameters

Input	Parameters	 Description	

pDia	 Pointer	to	the	object.	

Returns

Returns	the	current	value	of	the	dial.

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	currVal;

ROUNDDIAL	*pDia;

				//	assuming	pDia	is	initialized	to	an	existing	dial	Object

				currVal	=	RdiaGetVal(pDia);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaGetVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaSetVal	Macro
Round	Dial

C
#define	RdiaSetVal(pDia,	newVal)	(pDia)->value	=	newVal

Overview

Sets	the	value	to	the	given	new	value.	Value	set	must	be	in	0-
max	range	inclusive.

Input	Parameters

Input	Parameters	 Description	

pDia	 Pointer	to	the	object.	

newVal	 New	dial	value.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	updatedVal;

ROUNDDIAL	*pDia;

				//	assuming	pDia	is	initialized	to	an	existing	dial	Object

				//	assume	GetInput()	is	a	function	that	retrieves	source	data

				updatedVal	=	GetInput();

				RdiaSetVal(pDia,	updatedVal);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaSetVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaMsgDefault	Function
Round	Dial

C
void	RdiaMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	 State
Bit	

Description	

RD_MSG_CLOCKWISE	 Touch
Screen	

Set
RDIA_ROT_CW,
Set	RDIA_DRAW	

Dial	 will	 be
redrawn	with
clockwise
update.	

RD_MSG_CTR_CLOCKWISE	 Touch
Screen	

Set
RDIA_ROT_CCW,
Set	RDIA_DRAW	

Dial	 will	 be
redrawn	with
counter
clockwise
update.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message	

pDia	 The	pointer	to	the	object	whose	state	will	be
modified	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	RdiaTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RdiaTranslateMsg	Function
Round	Dial

C
WORD	RdiaTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

RD_MSG_CLOCKWISE	 Touch
Screen	

EVENT_MOVE	 If	 events
occurs	 and
the	 x,y
position	 falls
in	the	face	of
the	 Dial
moving	 in
the
clockwise
rotation.	

RD_MSG_CTR_CLOCKWISE	 Touch
Screen	

EVENT_MOVE	 If	 events
occurs	 and
the	 x,y
position	 falls
in	the	face	of

the	 Dial
moving	 in
the	 counter
clockwise
rotation.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pDia	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

RD_MSG_CLOCKWISE	–	Dial	is	moved	in	a	clockwise	direction.
RD_MSG_CTR_CLOCKWISE	–	Dial	is	moved	in	a	counter
clockwise	direction.
OBJ_MSG_INVALID	–	Dial	is	not	affected

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	MyGOLMsg(GOL_MSG	*pMsg){

				OBJ_HEADER	*pCurrentObj;

				WORD	objMsg;

								

				if(pMsg->event	==	EVENT_INVALID)

								return;

				pCurrentObj	=	GOLGetList();

				

				while(pCurrentObj	!=	NULL){

								//	Process	only	ROUNDDIAL

								if(!IsObjUpdated(pCurrentObj)){

												switch(pCurrentObj->type){

																case	OBJ_ROUNDIAL:

																				objMsg	=	RdiaTranslateMsg((ROUNDDIAL*)pCurrentObj,	pMsg);

																				if(objMsg	==	OBJ_MSG_INVALID)

																								break;

																				if(GOLMsgCallback(objMsg,pCurrentObj,pMsg))

																								RdiaMsgDefault(objMsg,(ROUNDDIAL*)pCurrentObj);

																				break;

																default:	break;	

												}

								}

				}

				pCurrentObj	=	pCurrentObj->pNxtObj;

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
RdiaTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ROUNDDIAL	Structure
Round	Dial

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	xCenter;

		SHORT	yCenter;

		SHORT	radius;

		SHORT	value;

		WORD	max;

		WORD	res;

		SHORT	curr_xPos;

		SHORT	curr_yPos;

		SHORT	new_xPos;

		SHORT	new_yPos;

		SHORT	vAngle;

}	ROUNDDIAL;

Overview

Defines	the	parameters	required	for	a	dial	Object.	The
curr_xPos,	curr_yPos,	new_xPos	and	new_yPos	parameters	are
internally	generated	to	aid	in	the	redrawing	of	the	dial.	User	must
avoid	modifying	these	values.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	xCenter;	 x	coordinate	center	position.	

SHORT	yCenter;	 y	coordinate	center	position.	

SHORT	radius;	 Radius	of	the	dial.	

SHORT	value;	 Initial	value	of	the	dial.	

WORD	max;	 Maximum	value	of	variable	value	(maximum
=	65535).	

WORD	res;	 Resolution	of	movement.	

SHORT	curr_xPos;	 Current	x	position.	

SHORT	curr_yPos;	 Current	y	position.	

SHORT	new_xPos;	 New	x	position.	

SHORT	new_yPos;	 New	y	position.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
ROUNDDIAL	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Digital	Meter
Functions	|	Macros	|	Structures	|	Topics

DigitalMeter	supports	only	Touchscreen	inputs,	replying	to	touch
screen	events	with	the	message:	

DM_MSG_SELECTED.	

	

The	DigitalMeter	object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments	for
the	digital	meter.	

	

	

Functions

	 Name	 Description	

	 DmCreate	 This	function	creates	a	DIGITALMETER
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 DmDraw	 This	function	renders	the	object	on	the

screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 DmSetValue	 This	function	sets	the	value	that	will	be
used	for	the	object.	

	 DmTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

DmGetValue	 This	macro	returns	the	current	value	used
for	the	object.	

DmDecVal	 This	macro	is	used	to	directly	decrement	the
value.	

DmIncVal	 This	macro	is	used	to	directly	increment	the
value.	

Structures

Name	 Description	

DIGITALMETER	 Defines	the	parameters	required	for	a	Digital
Meter	Object.	

Topics

Name	 Description	

Digital	Meter	States	 List	of	Digital	Meter	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Digital	Meter	States
Macros	|	Digital	Meter

List	of	Digital	Meter	bit	states.

Macros

Name	 Description	

DM_DISABLED	 Bit	for	disabled	state.	

DM_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

DM_HIDE	 Bit	to	remove	object	from	screen.	

DM_CENTER_ALIGN	 Bit	to	indicate	value	is	center	aligned.	

DM_RIGHT_ALIGN	 Bit	to	indicate	value	is	left	aligned.	

DM_FRAME	 Bit	to	indicate	frame	is	displayed.	

DM_UPDATE	 Bit	to	indicate	that	only	text	must	be
redrawn.	

Module

Digital	Meter

Links

Macros,	Digital	Meter

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_DISABLED	Macro
C
#define	DM_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_DRAW	Macro
C
#define	DM_DRAW	0x4000		//	Bit	to	indicate	object	must	be	redrawn.

Description

Bit	to	indicate	object	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_HIDE	Macro
C
#define	DM_HIDE	0x8000		//	Bit	to	remove	object	from	screen.

Description

Bit	to	remove	object	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_CENTER_ALIGN	Macro
C
#define	DM_CENTER_ALIGN	0x0008		//	Bit	to	indicate	value	is	center	aligned.

Description

Bit	to	indicate	value	is	center	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_CENTER_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_RIGHT_ALIGN	Macro
C
#define	DM_RIGHT_ALIGN	0x0004		//	Bit	to	indicate	value	is	left	aligned.

Description

Bit	to	indicate	value	is	left	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_RIGHT_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_FRAME	Macro
C
#define	DM_FRAME	0x0010		//	Bit	to	indicate	frame	is	displayed.

Description

Bit	to	indicate	frame	is	displayed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_FRAME	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DM_UPDATE	Macro
C
#define	DM_UPDATE	0x2000		//	Bit	to	indicate	that	only	text	must	be	redrawn.

Description

Bit	to	indicate	that	only	text	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States	>	DM_UPDATE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmCreate	Function
Digital	Meter

C
DIGITALMETER	*	DmCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				DWORD	Value,	

				BYTE	NoOfDigits,	

				BYTE	DotPos,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	DIGITALMETER	object	with	the
parameters	given.	It	automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

DWORD	Value	 Sets	the	initial	value	to	be	displayed	

BYTE	NoOfDigits	 Sets	the	number	of	digits	to	be	displayed	

BYTE	DotPos	 Sets	the	position	of	decimal	point	in	the
display	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme.	Set	to	NULL	if
default	style	scheme	is	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

GOL_SCHEME	*pScheme;
DIGITALMETER	*pDm;
				
				pScheme	=	GOLCreateScheme();
				state	=	DM_DRAW	|	DM_FRAME	|	DM_CENTER_ALIGN;
				DmCreate(ID_DIGITALMETER1,										//	ID
													30,80,235,160,											//	dimension
													state,																			//	has	frame	and	center	aligned
													789,4,1,																	//	to	display	078.9
													pScheme);																//	use	given	scheme

				
				while(!DmDraw(pDm));														//	draw	the	object

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmDraw	Function
Digital	Meter

C
WORD	DmDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pDm	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	DmCreate()	Example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmGetValue	Macro
Digital	Meter

C
#define	DmGetValue(pDm)	pDm->Cvalue

Overview

This	macro	returns	the	current	value	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

pDm	 Pointer	to	the	object.	

Returns

Returns	the	value	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmGetValue	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmSetValue	Function
Digital	Meter

C
void	DmSetValue(

				DIGITALMETER	*	pDm,	

				DWORD	Value

);

Overview

This	function	sets	the	value	that	will	be	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

DIGITALMETER	*
pDm	

The	pointer	to	the	object	whose	value	will	be
modified.	

DWORD	Value	 New	value	to	be	set	for	the	Digital	Meter.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>

DmSetValue	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmDecVal	Macro
Digital	Meter

C
#define	DmDecVal(pDm,	deltaValue)	DmSetValue(pDm,	(pDm->Cvalue	-	deltaValue))

Overview

This	macro	is	used	to	directly	decrement	the	value.

Input	Parameters

Input	Parameters	 Description	

pDm	 Pointer	to	the	object.	

deltaValue	 Number	to	be	subtracted	to	the	current
Digital	Meter	value.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmDecVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmIncVal	Macro
Digital	Meter

C
#define	DmIncVal(pDm,	deltaValue)	DmSetValue(pDm,	(pDm->Cvalue	+	deltaValue))

Overview

This	macro	is	used	to	directly	increment	the	value.

Input	Parameters

Input	Parameters	 Description	

pDm	 Pointer	to	the	object.	

deltaValue	 Number	to	be	added	to	the	current	Digital
Meter	value.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmIncVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DmTranslateMsg	Function
Digital	Meter

C
WORD	DmTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

DM_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	 the	Digital
Meter.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pDm	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

DM_MSG_SELECTED	–	Digital	Meter	is	selected
OBJ_MSG_INVALID	–	Digital	Meter	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DmTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DIGITALMETER	Structure
Digital	Meter

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textHeight;

		DWORD	Cvalue;

		DWORD	Pvalue;

		BYTE	NoOfDigits;

		BYTE	DotPos;

}	DIGITALMETER;

Overview

Defines	the	parameters	required	for	a	Digital	Meter	Object.

Description

Structure:	DIGITALMETER

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textHeight;	 Pre-computed	text	height	

DWORD	Cvalue;	 Current	value	

DWORD	Pvalue;	 Previous	value	

BYTE	NoOfDigits;	 Number	of	digits	to	be	displayed	

BYTE	DotPos;	 Position	of	decimal	point	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
DIGITALMETER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Edit	Box
Functions	|	Macros	|	Structures	|	Topics

Edit	Box	supports	only	Keyboard	inputs,	replying	to	their	events
with	the	following	messages:	

1.	EB_MSG_CHAR	-	when	a	character	is	to	be	inserted	at	the
end	of	the	current	text.	

2.	EB_MSG_DEL	-	when	a	character	is	to	be	removed	from	the
current	text.	

	

The	Edit	Box	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 EbCreate	 This	function	creates	a	EDITBOX	object
with	the	parameters	given	and	initializes
the	default	settings.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 EbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and	bottom
parameters.	The	colors	used	are

dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 EbSetText	 This	function	sets	the	text	to	be	used	for
the	object.	

	 EbAddChar	 This	function	inserts	a	character	at	the	end
of	the	text	used	by	the	object.	

	 EbDeleteChar	 This	function	removes	a	character	at	the
end	of	the	text	used	by	the	object.	

	 EbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 EbTranslateMsg	 This	function	evaluates	the	message	from	a
user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

EbGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Structures

Name	 Description	

EDITBOX	 Defines	the	parameters	required	for	a	Edit
Box	Object.	

Topics

Name	 Description	

Edit	Box	States	 List	of	Edit	Box	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Edit	Box	States
Macros	|	Edit	Box

List	of	Edit	Box	bit	states.

Macros

Name	 Description	

EB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned.	

EB_DISABLED	 Bit	for	disabled	state.	

EB_DRAW	 Bit	to	indicate	whole	edit	box	must	be
redrawn.	

EB_HIDE	 Bit	to	remove	object	from	screen.	

EB_FOCUSED	 Bit	for	focused	state.	Cursor	caret	will	be
drawn	when	EB_DRAW_CARET	is	also
set.	

EB_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned.	

EB_DRAW_CARET	 Bit	to	indicate	the	cursor	caret	will	be	drawn
if	EB_FOCUSED	state	bit	is	set	and	erase
when	EB_FOCUSED	state	bit	is	not	set.	

EB_CARET	 Bit	to	indicate	the	cursor	caret	will	always	be
shown.	

Module

Edit	Box

Links

Macros,	Edit	Box

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_CENTER_ALIGN	Macro
C
#define	EB_CENTER_ALIGN	0x0008		//	Bit	to	indicate	text	is	center	aligned.

Description

Bit	to	indicate	text	is	center	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_CENTER_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_DISABLED	Macro
C
#define	EB_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_DRAW	Macro
C
#define	EB_DRAW	0x4000		//	Bit	to	indicate	whole	edit	box	must	be	redrawn.

Description

Bit	to	indicate	whole	edit	box	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_HIDE	Macro
C
#define	EB_HIDE	0x8000		//	Bit	to	remove	object	from	screen.

Description

Bit	to	remove	object	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_FOCUSED	Macro
C
#define	EB_FOCUSED	0x0001		//	Bit	for	focused	state.	Cursor	caret	will	be	drawn	when	EB_DRAW_CARET	is	also	set.

Description

Bit	for	focused	state.	Cursor	caret	will	be	drawn	when
EB_DRAW_CARET	is	also	set.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_RIGHT_ALIGN	Macro
C
#define	EB_RIGHT_ALIGN	0x0004		//	Bit	to	indicate	text	is	left	aligned.

Description

Bit	to	indicate	text	is	left	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_RIGHT_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_DRAW_CARET	Macro
C
#define	EB_DRAW_CARET	0x2000		//	Bit	to	indicate	the	cursor	caret	will	be	drawn	if	EB_FOCUSED	state	bit	is	set	and	erase	when	EB_FOCUSED	state	bit	is	not	set.

Description

Bit	to	indicate	the	cursor	caret	will	be	drawn	if	EB_FOCUSED
state	bit	is	set	and	erase	when	EB_FOCUSED	state	bit	is	not
set.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_DRAW_CARET	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EB_CARET	Macro
C
#define	EB_CARET	0x0010		//	Bit	to	indicate	the	cursor	caret	will	always	be	shown.

Description

Bit	to	indicate	the	cursor	caret	will	always	be	shown.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States	>	EB_CARET	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbCreate	Function
Edit	Box

C
EDITBOX	*	EbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				WORD	charMax,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	EDITBOX	object	with	the	parameters
given	and	initializes	the	default	settings.	It	automatically	attaches
the	new	object	into	a	global	linked	list	of	objects	and	returns	the
address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

XCHAR	*	pText	 Pointer	to	the	text	to	be	used.	

WORD	charMax	 Defines	the	maximum	number	of	characters
in	the	edit	box.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
#define	ID_MYEDITBOX				101

EDITBOX	*pEb;

pEb	=	EbCreate(ID_MYEDITBOX,				//	ID

													10,																//	left

													10,																//	top

													100,															//	right

													30,																//	bottom

													EB_DRAW,											//	redraw	after	creation																				

													NULL,														//	no	text	yet

													4,																	//	display	only	four	characters

													pScheme);										//	pointer	to	the	style	scheme									

if(pEb	==	NULL)

{

				//	MEMORY	ERROR.	Object	was	not	created.

}

				

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbDraw	Function
Edit	Box

C
WORD	EbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pEb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

	

Next	call	to	the	function	will	resume	the	rendering	on	the	pending

drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbGetText	Macro
Edit	Box

C
#define	EbGetText(pEb)	(pEb->pBuffer)

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	object.

Input	Parameters

Input	Parameters	 Description	

pEb	 Pointer	to	the	object	

Returns

Returns	pointer	to	the	text	string	being	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbSetText	Function
Edit	Box

C
void	EbSetText(

				EDITBOX	*	pEb,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	text	to	be	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

EDITBOX	*	pEb	 The	pointer	to	the	object	whose	text	will	be
modified.	

XCHAR	*	pText	 Pointer	to	the	text	that	will	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>

EbSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbAddChar	Function
Edit	Box

C
void	EbAddChar(

				EDITBOX	*	pEb,	

				XCHAR	ch

);

Overview

This	function	inserts	a	character	at	the	end	of	the	text	used	by
the	object.

Input	Parameters

Input	Parameters	 Description	

EDITBOX	*	pEb	 The	pointer	to	the	object	whose	text	will	be
modified.	

XCHAR	ch	 Character	to	be	inserted.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbAddChar	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbDeleteChar	Function
Edit	Box

C
void	EbDeleteChar(

				EDITBOX	*	pEb

);

Overview

This	function	removes	a	character	at	the	end	of	the	text	used	by
the	object.

Input	Parameters

Input	Parameters	 Description	

EDITBOX	*	pEb	 The	pointer	to	the	object	to	be	modified.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbDeleteChar	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbMsgDefault	Function
Edit	Box

C
void	EbMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated
Message	

Input
Source	

Set/Clear
State	Bit	

Description	

EB_MSG_CHAR	 Keyboard	 Set
EB_DRAW	

New	 character	 is
added	 and	 Edit	 Box
will	be	redrawn.	

EB_MSG_DEL	 Keyboard	 Set
EB_DRAW	

Last	 character	 is
removed	and	Edit	Box
will	be	redrawn.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pEb	 The	pointer	to	the	object	whose	state	will	be

modified.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnMsgDefault()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EbTranslateMsg	Function
Edit	Box

C
WORD	EbTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated
Message	

Input
Source	

Events	 Description	

EB_MSG_CHAR	 Keyboard	 EVENT_CHARCODE	 New
character
should	 be
added.	

EB_MSG_DEL	 Keyboard	 EVENT_KEYPRESS	 Last
character
should	 be
removed.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pEb	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

EB_MSG_CHAR	–	New	character	should	be	added.
EB_MSG_DEL	–	Last	character	should	be	removed.
OBJ_MSG_INVALID	–	Object	is	not	affected.

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EDITBOX	Structure
Edit	Box

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textHeight;

		XCHAR	*	pBuffer;

		WORD	charMax;

		WORD	length;

}	EDITBOX;

Overview

Defines	the	parameters	required	for	a	Edit	Box	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textHeight;	 Pre-computed	text	height.	

XCHAR	*	pBuffer;	 Pointer	to	text	buffer.	

WORD	charMax;	 Maximum	number	of	characters	in	the	edit
box.	

WORD	length;	 Current	text	length.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
EDITBOX	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Grid
Functions	|	Macros	|	Structures	|	Topics

Grid	supports	Keyboard	and	Touchscreen	inputs,	replying	to	their
events	with	the	following	messages:	

1.	GRID_MSG_TOUCHED	

2.	GRID_MSG_ITEM_SELECTED	

3.	GRID_MSG_LEFT	

4.	GRID_MSG_RIGHT	

5.	GRID_MSG_UP	

6.	GRID_MSG_DOWN	

See	GridTranslateMsg()	and	GridMsgDefault()	for	details.	

	

The	Grid	lines	are	drawn	using	the	EmbossLitColor,	the	string
drawn	using	the	TextColor0	and	the	background	is	drawn	using
the	CommonBkColor.

Functions

	 Name	 Description	

	 GridCreate	 This	function	creates	a	GRID	object	with
the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the
address	of	the	object.	

	 GridDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter

settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is	started.	This	is	to	avoid
incomplete	object	rendering.	

	 GridClearCellState	 This	function	clears	the	state	of	the	cell
(or	Grid	Item)	specified	by	the	column
and	row.	

	 GridFreeItems	 This	function	removes	all	grid	items	for
the	given	Grid	and	frees	the	memory
used.	

	 GridGetCell	 This	function	removes	all	grid	items	for
the	given	Grid	and	frees	the	memory
used.	

	 GridSetCell	 This	function	sets	the	Grid	Item	state	and
data.	

	 GridSetCellState	 This	function	sets	the	state	of	the	Grid
Item	or	cell.	

	 GridSetFocus	 This	function	sets	the	focus	of	the
specified	Grid	Item	or	cell.	

	 GridMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 GridTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect	the
object	or	not.	The	table	below
enumerates	the	translated	messages	for
each	event	of	the	touch	screen	and
keyboard	inputs.
	

Macros

Name	 Description	

GridGetFocusX	 This	macro	returns	the	x	position	of	the
focused	cell.	

GridGetFocusY	 This	macro	returns	the	y	position	of	the
focused	cell.	

GRID_OUT_OF_BOUNDS	 Status	of	an	out	of	bounds	cell
GridSetCell()	operation.	

GRID_SUCCESS	 Status	of	a	successful	GridSetCell()
operation.	

Structures

Name	 Description	

GRID	 Defines	the	parameters	required	for	a	grid
Object.	Clipping	is	not	supported	in	grid
object.	

GRIDITEM	 Defines	the	grid	item.	

Topics

Name	 Description	

Grid	States	 List	of	Grid	bit	states.	

Grid	Item	States	 List	of	Grid	Items	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Grid	States
Macros	|	Grid

List	of	Grid	bit	states.

Macros

Name	 Description	

GRID_FOCUSED	 Bit	for	focused	state	

GRID_DISABLED	 Bit	for	disabled	state	

GRID_SHOW_LINES	 Display	grid	lines	

GRID_SHOW_FOCUS	 Highlight	the	focused	cell.	

GRID_SHOW_BORDER_ONLY	 Draw	only	the	outside	border
of	the	grid.	

GRID_SHOW_SEPARATORS_ONLY	 Draw	only	the	lines	between
cells	(like	Tic-tac-toe)	

GRID_DRAW_ITEMS	 Bit	to	indicate	that	at	least
one	item	must	be	redrawn,
but	not	the	entire	grid.	

GRID_DRAW_ALL	 Bit	to	indicate	whole	edit	box
must	be	redrawn	

GRID_HIDE	 Bit	to	remove	object	from
screen	

Module

Grid

Links

Macros,	Grid

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_FOCUSED	Macro
C
#define	GRID_FOCUSED	0x0001		//	Bit	for	focused	state

Description

Bit	for	focused	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_DISABLED	Macro
C
#define	GRID_DISABLED	0x0002		//	Bit	for	disabled	state

Description

Bit	for	disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_SHOW_LINES	Macro
C
#define	GRID_SHOW_LINES	0x0004		//	Display	grid	lines

Description

Display	grid	lines

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_SHOW_LINES	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_SHOW_FOCUS	Macro
C
#define	GRID_SHOW_FOCUS	0x0008		//	Highlight	the	focused	cell.

Description

Highlight	the	focused	cell.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_SHOW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_SHOW_BORDER_ONLY	Macro
C
#define	GRID_SHOW_BORDER_ONLY	0x0010		//	Draw	only	the	outside	border	of	the	grid.

Description

Draw	only	the	outside	border	of	the	grid.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_SHOW_BORDER_ONLY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_SHOW_SEPARATORS_ONLY	Macro
C
#define	GRID_SHOW_SEPARATORS_ONLY	0x0020		//	Draw	only	the	lines	between	cells	(like	Tic-tac-toe)

Description

Draw	only	the	lines	between	cells	(like	Tic-tac-toe)

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_SHOW_SEPARATORS_ONLY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_DRAW_ITEMS	Macro
C
#define	GRID_DRAW_ITEMS	0x1000		//	Bit	to	indicate	that	at	least	one	item	must	be	redrawn,	but	not	the	entire	grid.

Description

Bit	to	indicate	that	at	least	one	item	must	be	redrawn,	but	not	the
entire	grid.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_DRAW_ITEMS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_DRAW_ALL	Macro
C
#define	GRID_DRAW_ALL	0x4000		//	Bit	to	indicate	whole	edit	box	must	be	redrawn

Description

Bit	to	indicate	whole	edit	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_DRAW_ALL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_HIDE	Macro
C
#define	GRID_HIDE	0x8000		//	Bit	to	remove	object	from	screen

Description

Bit	to	remove	object	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States	>	GRID_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Grid	Item	States
Macros	|	Grid

List	of	Grid	Items	bit	states.

Macros

Name	 Description	

GRIDITEM_SELECTED	 The	cell	is	selected.	

GRIDITEM_IS_TEXT	 The	grid	item	is	a	text	string.	

GRIDITEM_IS_BITMAP	 The	grid	item	is	a	bitmap.	

GRIDITEM_TEXTBOTTOM	 Bit	to	indicate	text	is	top	aligned.	

GRIDITEM_TEXTLEFT	 Text	in	the	cell	is	left	aligned.	

GRIDITEM_TEXTRIGHT	 Text	in	the	cell	is	right	aligned.	

GRIDITEM_TEXTTOP	 Bit	to	indicate	text	is	bottom	aligned.	

GRIDITEM_DRAW	 Draw	this	cell	

Module

Grid

Links

Macros,	Grid

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_SELECTED	Macro
C
#define	GRIDITEM_SELECTED	0x0001		//	The	cell	is	selected.

Description

The	cell	is	selected.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_SELECTED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_IS_TEXT	Macro
C
#define	GRIDITEM_IS_TEXT	0x0000		//	The	grid	item	is	a	text	string.

Description

The	grid	item	is	a	text	string.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_IS_TEXT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_IS_BITMAP	Macro
C
#define	GRIDITEM_IS_BITMAP	0x0008		//	The	grid	item	is	a	bitmap.

Description

The	grid	item	is	a	bitmap.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_IS_BITMAP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_TEXTBOTTOM	Macro
C
#define	GRIDITEM_TEXTBOTTOM	0x0040		//	Bit	to	indicate	text	is	top	aligned.

Description

Bit	to	indicate	text	is	top	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_TEXTBOTTOM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_TEXTLEFT	Macro
C
#define	GRIDITEM_TEXTLEFT	0x0020		//	Text	in	the	cell	is	left	aligned.

Description

Text	in	the	cell	is	left	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_TEXTLEFT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_TEXTRIGHT	Macro
C
#define	GRIDITEM_TEXTRIGHT	0x0010		//	Text	in	the	cell	is	right	aligned.

Description

Text	in	the	cell	is	right	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_TEXTRIGHT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_TEXTTOP	Macro
C
#define	GRIDITEM_TEXTTOP	0x0080		//	Bit	to	indicate	text	is	bottom	aligned.

Description

Bit	to	indicate	text	is	bottom	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_TEXTTOP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM_DRAW	Macro
C
#define	GRIDITEM_DRAW	0x0100		//	Draw	this	cell

Description

Draw	this	cell

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States	>	GRIDITEM_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridCreate	Function
Grid

C
GRID	*	GridCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				SHORT	numColumns,	

				SHORT	numRows,	

				SHORT	cellWidth,	

				SHORT	cellHeight,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	GRID	object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into	a	global	linked	list	of
objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

SHORT	numColumns	 Sets	the	number	of	columns	for	the	grid.	

SHORT	numRows	 Sets	the	number	of	rows	for	the	grid.	

SHORT	cellWidth	 Sets	the	width	of	each	cell	of	the	grid.	

SHORT	cellHeight	 Sets	the	height	of	each	cell	of	the	grid.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used	for	the
object.	Set	to	NULL	if	default	style	scheme
is	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridDraw	Function
Grid

C
WORD	GridDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pGb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridClearCellState	Function
Grid

C
void	GridClearCellState(

				GRID	*	pGrid,	

				SHORT	column,	

				SHORT	row,	

				WORD	state

);

Overview

This	function	clears	the	state	of	the	cell	(or	Grid	Item)	specified
by	the	column	and	row.

Input	Parameters

Input	Parameters	 Description	

GRID	*	pGrid	 Pointer	to	the	object.	

SHORT	column	 column	index	of	the	cell	

SHORT	row	 row	index	of	the	cell	

atate	 specifies	the	state	to	be	cleared.	See	Grid
Item	State.	

Returns

none.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridClearCellState	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridGetFocusX	Macro
Grid

C
#define	GridGetFocusX(pGrid)	pGrid->focusX

Overview

This	macro	returns	the	x	position	of	the	focused	cell.

Input	Parameters

Input	Parameters	 Description	

pGrid	 Pointer	to	the	object.	

Returns

Returns	the	x	position	of	the	focused	cell.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridGetFocusX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridGetFocusY	Macro
Grid

C
#define	GridGetFocusY(pGrid)	pGrid->focusY

Overview

This	macro	returns	the	y	position	of	the	focused	cell.

Input	Parameters

Input	Parameters	 Description	

pGrid	 Pointer	to	the	object.	

Returns

Returns	the	y	position	of	the	focused	cell.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridGetFocusY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_OUT_OF_BOUNDS	Macro
Grid

C
#define	GRID_OUT_OF_BOUNDS	0x0001		//	Status	of	an	out	of	bounds	cell	GridSetCell()	operation.

Description

Status	of	an	out	of	bounds	cell	GridSetCell()	operation.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GRID_OUT_OF_BOUNDS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID_SUCCESS	Macro
Grid

C
#define	GRID_SUCCESS	0x0000				//	Status	of	a	successful	GridSetCell()	operation.

Description

Status	of	a	successful	GridSetCell()	operation.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GRID_SUCCESS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridFreeItems	Function
Grid

C
void	GridFreeItems(

				void	*	pObj

);

Overview

This	function	removes	all	grid	items	for	the	given	Grid	and	frees
the	memory	used.

Input	Parameters

Input	Parameters	 Description	

pGrid	 The	pointer	to	the	Grid	object.	

Returns

none.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridFreeItems	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridGetCell	Function
Grid

C
void	*	GridGetCell(

				GRID	*	pGrid,	

				SHORT	column,	

				SHORT	row,	

				WORD	*	cellType

);

Overview

This	function	removes	all	grid	items	for	the	given	Grid	and	frees
the	memory	used.

Input	Parameters

Input	Parameters	 Description	

GRID	*	pGrid	 The	pointer	to	the	Grid	object.	

SHORT	column	 the	column	index	of	the	cell	

SHORT	row	 the	row	index	of	the	cell	

WORD	*	cellType	 pointer	that	will	receive	the	type	of	grid	item
or	cell	(GRIDITEM_IS_TEXT	or
GRIDITEM_IS_BITMAP).	

Returns

Returns	a	pointer	to	the	grid	item	or	cell	data.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridGetCell	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridSetCell	Function
Grid

C
WORD	GridSetCell(

				GRID	*	pGrid,	

				SHORT	column,	

				SHORT	row,	

				WORD	state,	

				void	*	data

);

Overview

This	function	sets	the	Grid	Item	state	and	data.

Input	Parameters

Input	Parameters	 Description	

GRID	*	pGrid	 The	pointer	to	the	Grid	object.	

SHORT	column	 the	column	index	of	the	cell	

SHORT	row	 the	row	index	of	the	cell	

WORD	state	 sets	the	state	of	the	Grid	Item	specified.	

void	*	data	 pointer	to	the	data	used	for	the	Grid	Item.	

Returns

Returns	the	status	of	the	operation

GRID_SUCCESS	-	if	the	set	succeeded
GRID_OUT_OF_BOUNDS	-	if	the	row	and	column	given	results	in

an	out	of	bounds	location.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridSetCell	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridSetCellState	Function
Grid

C
void	GridSetCellState(

				GRID	*	pGrid,	

				SHORT	column,	

				SHORT	row,	

				WORD	state

);

Overview

This	function	sets	the	state	of	the	Grid	Item	or	cell.

Input	Parameters

Input	Parameters	 Description	

GRID	*	pGrid	 The	pointer	to	the	Grid	object.	

SHORT	column	 the	column	index	of	the	cell	

SHORT	row	 the	row	index	of	the	cell	

WORD	state	 sets	the	state	of	the	Grid	Item	specified.	

Returns

none.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridSetCellState	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridSetFocus	Function
Grid

C
void	GridSetFocus(

				GRID	*	pGrid,	

				SHORT	column,	

				SHORT	row

);

Overview

This	function	sets	the	focus	of	the	specified	Grid	Item	or	cell.

Input	Parameters

Input	Parameters	 Description	

GRID	*	pGrid	 The	pointer	to	the	Grid	object.	

SHORT	column	 the	column	index	of	the	cell	

SHORT	row	 the	row	index	of	the	cell	

Returns

none.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridSetFocus	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridMsgDefault	Function
Grid

C
void	GridMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	State	Bit	

GRID_MSG_TOUCHED	 Touch
Screen	

none	

GRID_MSG_ITEM_SELECTED	 Keyboard	 Set
GRIDITEM_SELECTED

	 	 GRID_DRAW_ITEMS	

GRID_MSG_UP	 Keyboard	 Set	GRIDITEM_DRAW

	 	 GRID_DRAW_ITEMS	

GRID_MSG_DOWN	 Keyboard	 Set	GRIDITEM_DRAW

	 	 GRID_DRAW_ITEMS	

GRID_MSG_LEFT	 Keyboard	 Set	GRIDITEM_DRAW

	 	 GRID_DRAW_ITEMS	

GRID_MSG_RIGHT	 Keyboard	 Set	GRIDITEM_DRAW

	 	 GRID_DRAW_ITEMS	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pGrid	 The	pointer	to	the	object	whose	state	will	be

modified.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GridTranslateMsg	Function
Grid

C
WORD	GridTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Set/Clear	State	Bit	 Description	

GRID_MSG_TOUCHED	 Touch
Screen	

none	 If	 any	 touch	 events	 occurs
and	 the	x,y	position	 falls	 in
the	face	of	the	grid.	

GRID_MSG_ITEM_SELECTED	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_SPACE_PRESSED
or	

GRID_MSG_UP	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and

parameter	 2	 passed
matches
SCAN_UP_PRESSED

GRID_MSG_DOWN	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_DOWN_PRESSED

GRID_MSG_LEFT	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_LEFT_PRESSED

GRID_MSG_RIGHT	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_RIGHT_PRESSED

OBJ_MSG_INVALID	 Any	 Any	 If	 the	 message	 did	 not
affect	the	object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pGrid	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

GRID_MSG_TOUCHED	-	when	the	grid	object	is	touched.
GRID_MSG_ITEM_SELECTED	–	when	key	scan
SCAN_SPACE_PRESSED	or	SCAN_CR_PRESSED	are	detected.
GRID_MSG_UP	–	when	key	scan	SCAN_UP_PRESSED	is
detected.
GRID_MSG_DOWN	–	when	key	scan	SCAN_DOWN_PRESSED
is	detected.
GRID_MSG_LEFT	–	when	key	scan	SCAN_LEFT_PRESSED	is
detected.
GRID_MSG_RIGHT	–	when	key	scan	SCAN_RIGHT_PRESSED	is
detected.
OBJ_MSG_INVALID	–	Button	is	not	affected

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GridTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRID	Structure
Grid

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	numColumns;

		SHORT	numRows;

		SHORT	cellHeight;

		SHORT	cellWidth;

		SHORT	focusX;

		SHORT	focusY;

		GRIDITEM	*	gridObjects;

}	GRID;

Overview

Defines	the	parameters	required	for	a	grid	Object.	Clipping	is	not
supported	in	grid	object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	numColumns;	 Number	of	columns	drawn	for	the	Grid.	

SHORT	numRows;	 Number	of	rows	drawn	for	the	Grid.	

SHORT	cellHeight;	 The	height	of	each	cell	in	pixels.	

SHORT	cellWidth;	 The	width	of	each	cell	in	pixels.	

SHORT	focusX;	 The	x	position	of	the	cell	to	be	focused.	

SHORT	focusY;	 The	y	position	of	the	cell	to	be	focused.	

GRIDITEM	*
gridObjects;	

The	pointer	to	grid	items	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	GRID
Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRIDITEM	Structure
Grid

C
typedef	struct	{

		void	*	data;

		WORD	status;

}	GRIDITEM;

Overview

Defines	the	grid	item.

Members

Members	 Description	

void	*	data;	 Indicates	if	the	Grid	Item	is	type
GRIDITEM_IS_TEXT	or
GRIDITEM_IS_BITMAP	

WORD	status;	 indicates	the	status	of	the	Grid	Item	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>
GRIDITEM	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Group	Box
Functions	|	Macros	|	Structures	|	Topics

Group	Box	supports	only	Touchscreen	inputs,	replying	to	their
events	with	the	message:	

GB_MSG_SELECTED	-	when	the	touch	is	within	the	dimension
of	the	object.	

	

The	Group	box	object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 GbCreate	 This	function	creates	a	GROUPBOX	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 GbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter

settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 GbSetText	 This	function	sets	the	text	used	by	passing
the	pointer	to	the	static	string.	

	 GbTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	inputs.
	

Macros

Name	 Description	

GbGetText	 This	macro	returns	the	location	of	the	text
used.	

Structures

Name	 Description	

GROUPBOX	 Defines	the	parameters	required	for	a	group
box	Object.	The	textwidth	and	textHeight	is
not	checked	with	the	actual	dimension	of	the
object.	Clipping	is	not	supported	in	group

box	object.	It	is	possible	for	the	text	to
exceed	the	dimension	of	the	Object.	

Topics

Name	 Description	

Group	Box	States	 List	of	Group	Box	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Group	Box	States
Macros	|	Group	Box

List	of	Group	Box	bit	states.

Macros

Name	 Description	

GB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned	

GB_DISABLED	 Bit	for	disabled	state	

GB_DRAW	 Bit	to	indicate	group	box	must	be	redrawn	

GB_HIDE	 Bit	to	remove	object	from	screen	

GB_RIGHT_ALIGN	 Bit	to	indicate	text	is	right	aligned	

Module

Group	Box

Links

Macros,	Group	Box

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GB_CENTER_ALIGN	Macro
C
#define	GB_CENTER_ALIGN	0x0008		//	Bit	to	indicate	text	is	center	aligned

Description

Bit	to	indicate	text	is	center	aligned

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States	>	GB_CENTER_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GB_DISABLED	Macro
C
#define	GB_DISABLED	0x0002		//	Bit	for	disabled	state

Description

Bit	for	disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States	>	GB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GB_DRAW	Macro
C
#define	GB_DRAW	0x4000										//	Bit	to	indicate	group	box	must	be	redrawn

Description

Bit	to	indicate	group	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States	>	GB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GB_HIDE	Macro
C
#define	GB_HIDE	0x8000										//	Bit	to	remove	object	from	screen

Description

Bit	to	remove	object	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States	>	GB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GB_RIGHT_ALIGN	Macro
C
#define	GB_RIGHT_ALIGN	0x0004		//	Bit	to	indicate	text	is	right	aligned

Description

Bit	to	indicate	text	is	right	aligned

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States	>	GB_RIGHT_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GbCreate	Function
Group	Box

C
GROUPBOX	*	GbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	GROUPBOX	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

XCHAR	*	pText	 The	pointer	to	the	text	used	for	the	group
box.	Length	of	string	must	be	checked	not	to
exceed	the	object’s	width.	Clipping	is	not
supported	for	the	text	of	this	object.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used	for	the
object.	Set	to	NULL	if	default	style	scheme
is	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

GROUPBOX	*groupbox[2];

WORD	state;

pScheme	=	GOLCreateScheme();

state	=	GB_DRAW	|	GB_RIGHT_ALIGN;

groupbox[0]	=	GbCreate(10,	14,48,152,122,

																								state,	"Power",	scheme);

if	(groupbox[0]	==	NULL)

				return	0;

state	=	GB_DRAW;

groupbox[1]	=	GbCreate(11,	160,48,298,122,

																								state,	"Pressure",	scheme);

if	(groupbox[1]	==	NULL)

				return	0;

while(!GbDraw(groupbox[0]));

while(!GbDraw(groupbox[1]));

return	1;

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GbDraw	Function
Group	Box

C
WORD	GbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pGb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	GbCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GbGetText	Macro
Group	Box

C
#define	GbGetText(pB)	pGb->pText

Overview

This	macro	returns	the	location	of	the	text	used.

Input	Parameters

Input	Parameters	 Description	

pGb	 Pointer	to	the	object.	

Returns

Returns	the	address	of	the	text	string	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GbGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GbSetText	Function
Group	Box

C
void	GbSetText(

				GROUPBOX	*	pGb,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	text	used	by	passing	the	pointer	to	the
static	string.

Input	Parameters

Input	Parameters	 Description	

GROUPBOX	*	pGb	 the	pointer	to	the	object	whose	state	will	be
modified.	

XCHAR	*	pText	 pointer	to	the	text	that	will	be	used.	

Returns

none

Preconditions

The	style	scheme	used	for	the	object	MUST	be	initialized	with	a
valid	font.	If	font	is	not	valid,	textWidth	and	textHeight	parameter
of	GROUPBOX	will	be	undefined.

Side	Effects

Modifies	the	object	width	and	height	depending	on	the	selected
string	width	and	font	height.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GbSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GbTranslateMsg	Function
Group	Box

C
WORD	GbTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

GB_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	 the	 group
box.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pGb	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

GB_MSG_SELECTED	–	Group	Box	is	selected
OBJ_MSG_INVALID	–	Group	Box	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GROUPBOX	Structure
Group	Box

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textWidth;

		SHORT	textHeight;

		XCHAR	*	pText;

}	GROUPBOX;

Overview

Defines	the	parameters	required	for	a	group	box	Object.	The
textwidth	and	textHeight	is	not	checked	with	the	actual	dimension
of	the	object.	Clipping	is	not	supported	in	group	box	object.	It	is
possible	for	the	text	to	exceed	the	dimension	of	the	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textWidth;	 Pre-computed	text	width.	

SHORT	textHeight;	 Pre-computed	text	height.	

XCHAR	*	pText;	 Text	string	used.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
GROUPBOX	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

List	Box
Functions	|	Macros	|	Structures	|	Topics

List	Box	supports	both	Touchscreen	and	Keyboard	inputs,
replying	to	their	events	with	the	following	messages:	

LB_MSG_TOUCHSCREEN	–	Item	is	selected	using	touch
screen	

LB_MSG_MOVE	–	Focus	is	moved	to	the	next	item	depending
on	the	key	pressed	(UP	or	DOWN	key).	

LB_MSG_SEL	–	Selection	is	set	to	the	currently	focused	item.	

	

The	List	Box	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.
Icons	can	be	added	to	each	item	when	adding	items	to	the	list
using	LbAddItem().	

	

	

Functions

	 Name	 Description	

	 LbCreate	 This	function	creates	a	LISTBOX	object
with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 LbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
The	font	used	is	determined	by	the	style
scheme	set.
The	text	or	items	drawn	in	the	visible
window	of	the	list	box	is	dependent	on

the	alignment	set.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is	started.	This	is	to	avoid
incomplete	object	rendering.	

	 LbAddItem	 This	function	allocates	memory	for	the
LISTITEM	and	adds	it	to	the	list	box.	The
newly	created	LISTITEM	will	store	the
location	of	pText,	pBitmap	and	other
parameters	describing	the	added	item.	

	 LbDelItem	 This	function	removes	an	item	from	the
list	box	and	frees	the	memory	used.	

	 LbChangeSel	 This	function	changes	the	selection
status	of	an	item	in	the	list	box.	If	the
item	is	currently	selected,	it	resets	the
selection.	If	the	item	is	currently	not
selected	it	is	set	to	be	selected.	

	 LbGetSel	 This	function	searches	for	selected	items
from	the	list	box.	A	starting	position	can
optionally	be	given.	If	starting	position	is
set	to	NULL,	search	will	begin	from	the
first	item	list.	It	returns	the	pointer	to	the
first	selected	item	found	or	NULL	if	there
are	no	items	selected.	

	 LbGetFocusedItem	 This	function	returns	the	index	of	the
focused	item	in	the	list	box.	

	 LbSetFocusedItem	 This	function	sets	the	focus	for	the	item
with	the	given	index.	

	 LbDelItemsList	 This	function	removes	all	items	from	the
list	box	and	frees	the	memory	used.	

	 LbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated
message	given.	The	following	state
changes	are	supported:		

	 LbTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect	the
object	or	not.	The	table	below
enumerates	the	translated	messages	for
each	event	of	the	touch	screen	and
keyboard	inputs.
	

Macros

Name	 Description	

LbGetItemList	 This	function	returns	the	pointer	to	the
current	item	list	used	in	the	list	box.	

LbSetSel	 This	macro	sets	the	selection	status	of	an
item	to	selected.	

LbGetCount	 This	macro	returns	the	number	of	items	in
the	list	box.	

LbGetVisibleCount	 This	macro	returns	the	number	of	items
visible	in	the	list	box	window.	

LbSetBitmap	 This	macro	sets	the	bitmap	used	in	the
item.	

LbGetBitmap	 This	macro	returns	the	location	of	the
currently	used	bitmap	for	the	item.	

Structures

Name	 Description	

LISTBOX	 Defines	the	parameters	required	for	a	list
box	Object.	

LISTITEM	 Defines	the	parameters	required	for	a	list
item	used	in	list	box.	

Topics

Name	 Description	

List	Box	States	 List	of	List	Box	bit	states.	

List	Item	Status	 List	of	Items	status.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

List	Box	States
Macros	|	List	Box

List	of	List	Box	bit	states.

Macros

Name	 Description	

LB_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned	

LB_SINGLE_SEL	 Bit	to	indicate	the	only	item	can	be	selected	

LB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned	

LB_DISABLED	 Bit	for	disabled	state	

LB_DRAW	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_DRAW_FOCUS	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_DRAW_ITEMS	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_FOCUSED	 Bit	for	focused	state	

LB_HIDE	 Bit	to	remove	object	from	screen	

Module

List	Box

Links

Macros,	List	Box

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_RIGHT_ALIGN	Macro
C
#define	LB_RIGHT_ALIGN	0x0004		//	Bit	to	indicate	text	is	left	aligned

Description

Bit	to	indicate	text	is	left	aligned

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_RIGHT_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_SINGLE_SEL	Macro
C
#define	LB_SINGLE_SEL	0x0010		//	Bit	to	indicate	the	only	item	can	be	selected

Description

Bit	to	indicate	the	only	item	can	be	selected

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_SINGLE_SEL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_CENTER_ALIGN	Macro
C
#define	LB_CENTER_ALIGN	0x0008		//	Bit	to	indicate	text	is	center	aligned

Description

Bit	to	indicate	text	is	center	aligned

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_CENTER_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_DISABLED	Macro
C
#define	LB_DISABLED	0x0002		//	Bit	for	disabled	state

Description

Bit	for	disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_DRAW	Macro
C
#define	LB_DRAW	0x4000		//	Bit	to	indicate	whole	edit	box	must	be	redrawn

Description

Bit	to	indicate	whole	edit	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_DRAW_FOCUS	Macro
C
#define	LB_DRAW_FOCUS	0x2000		//	Bit	to	indicate	whole	edit	box	must	be	redrawn

Description

Bit	to	indicate	whole	edit	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_DRAW_ITEMS	Macro
C
#define	LB_DRAW_ITEMS	0x1000		//	Bit	to	indicate	whole	edit	box	must	be	redrawn

Description

Bit	to	indicate	whole	edit	box	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_DRAW_ITEMS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_FOCUSED	Macro
C
#define	LB_FOCUSED	0x0001		//	Bit	for	focused	state

Description

Bit	for	focused	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_HIDE	Macro
C
#define	LB_HIDE	0x8000		//	Bit	to	remove	object	from	screen

Description

Bit	to	remove	object	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States	>	LB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

List	Item	Status
Macros	|	List	Box

List	of	Items	status.

Macros

Name	 Description	

LB_STS_SELECTED	 Item	is	selected.	

LB_STS_REDRAW	 Item	is	to	be	redrawn.	

Module

List	Box

Links

Macros,	List	Box

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Item	Status

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_STS_SELECTED	Macro
C
#define	LB_STS_SELECTED	0x0001		//	Item	is	selected.

Description

Item	is	selected.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Item	Status	>	LB_STS_SELECTED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LB_STS_REDRAW	Macro
C
#define	LB_STS_REDRAW	0x0002		//	Item	is	to	be	redrawn.

Description

Item	is	to	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Item	Status	>	LB_STS_REDRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbCreate	Function
List	Box

C
LISTBOX	*	LbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	LISTBOX	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	Object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

XCHAR	*	pText	 Pointer	to	the	initialization	text	for	the	items.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
#define	LISTBOX_ID			10

const	XCHAR	ItemList[]	=	"Line1n"	"Line2n";

GOL_SCHEME	*pScheme;

LISTBOX	*pLb;

XCHAR	*pTemp;		

WORD	state,	counter;

				pScheme	=	GOLCreateScheme();

				state	=	LB_DRAW;

				

				//	create	an	empty	listbox	with	default	style	scheme

				pLb	=	LbCreate(LISTBOX_ID,									//	ID	number

																				10,10,150,200,						//	dimension

																				state,														//	initial	state

																				NULL,															//	set	items	to	be	empty

																				NULL);														//	use	default	style	scheme

				//	check	if	Listbox	was	created

				if	(pLb	==	NULL)								

							return	0;

				

				//	create	the	list	of	items	to	be	placed	in	the	listbox

				//	Add	items	(each	line	will	become	one	item,	

				//	lines	must	be	separated	by	'n'	character)

				pTemp	=	ItemList;

				counter	=	0;

				while(*pTemp){

								//	since	each	item	is	appended	NULL	is	assigned	to	

								//	LISTITEM	pointer.

								if(NULL	==	LbAddItem(pLb,	NULL,	pTemp,	NULL,	0,	counter))

												break;

								while((unsigned	XCHAR)*pTemp++	>	(unsigned	XCHAR)31);

								if(*(pTemp-1)	==	0)

												break;

								counter++;

				}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbDraw	Function
List	Box

C
WORD	LbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

The	text	or	items	drawn	in	the	visible	window	of	the	list	box	is
dependent	on	the	alignment	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pLb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetItemList	Macro
List	Box

C
#define	LbGetItemList(pLb)	((LISTITEM	*)((LISTBOX	*)pLb)->pItemList)

Overview

This	function	returns	the	pointer	to	the	current	item	list	used	in
the	list	box.

Input	Parameters

Input	Parameters	 Description	

pLb	 The	pointer	to	the	list	box	object.	

Returns

Returns	the	pointer	to	the	LISTITEM	used	in	the	list	box.

Preconditions

none

Side	Effects

none

Example

See	LbAddItem()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetItemList	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbAddItem	Function
List	Box

C
LISTITEM	*	LbAddItem(

				LISTBOX	*	pLb,	

				LISTITEM	*	pPrevItem,	

				XCHAR	*	pText,	

				void	*	pBitmap,	

				WORD	status,	

				WORD	data

);

Overview

This	function	allocates	memory	for	the	LISTITEM	and	adds	it	to
the	list	box.	The	newly	created	LISTITEM	will	store	the	location
of	pText,	pBitmap	and	other	parameters	describing	the	added
item.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

LISTITEM	*	pPrevItem	 Pointer	to	the	item	after	which	a	new	item
must	be	inserted,	if	this	pointer	is	NULL,	the
item	will	be	appended	at	the	end	of	the
items	list.	

XCHAR	*	pText	 Pointer	to	the	text	that	will	be	inserted.	Text
must	persist	in	memory	for	as	long	as	it	is
referenced	by	an	item	in	the	list	box.	

void	*	pBitmap	 Pointer	to	the	bitmap	for	the	item.	Bitmap
must	persist	in	memory	for	as	long	as	it	is
referenced	by	the	an	item	in	the	list	box.	

WORD	status	 This	parameter	specifies	if	the	item	being
added	will	be	selected	or	redrawn
(LB_STS_SELECTED	or
LB_STS_REDRAW).	Refer	to	LISTITEM
structure	for	details.	

WORD	data	 User	assigned	data	associated	with	the
item.	

Returns

Return	a	pointer	to	the	item	created,	NULL	if	the	operation	was
not	successful.

Preconditions

none

Side	Effects

none

Example

Copy	Code
const	XCHAR	ItemList[]	=	"Line1n"	"Line2n"	"Line3n";

extern	BITMAP_FLASH	myIcon;

LISTBOX	*pLb;

LISTITEM	*pItem,	*pItemList;

XCHAR	*pTemp;		

//	Assume	that	pLb	is	pointing	to	an	existing	list	box	in	memory	

//	that	is	empty	(no	list).

//	Create	the	list	of	the	list	box

//	Initialize	this	to	NULL	to	indicate	that	items	will	be	added	

//	at	the	end	of	the	list	if	the	list	exist	on	the	list	box	or	

//	start	a	new	list	if	the	list	box	is	empty.	

pItem	=	NULL;															

pTemp	=	ItemList;

pItem	=	LbAddItem(pLb,	pItem,	pTemp,	NULL,	LB_STS_SELECTED,	1)

if(pItem	==	NULL)

				return	0;

LbSetBitmap(pItem,	&myIcon);

//	Adjust	pTemp	to	point	to	the	next	line

while((unsigned	XCHAR)*pTemp++	>	(unsigned	XCHAR)31);

//	add	the	next	item

pItem	=	LbAddItem(pLb,	pItem,	pTemp,	NULL,	0,	2)

if(pItem	==	NULL)

				return	0;

LbSetBitmap(pItem,	&myIcon);

//	Adjust	pTemp	to	point	to	the	next	line

while((unsigned	XCHAR)*pTemp++	>	(unsigned	XCHAR)31);

//	this	time	insert	the	next	item	after	the	first	item	on	the	list

pItem	=	LbGetItemList(pLb);	

pItem	=	LbAddItem(pLb,	pItem,	pTemp,	NULL,	0,	3)

if(pItem	==	NULL)

				return	0;

LbSetBitmap(pItem,	&myIcon);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbAddItem	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbDelItem	Function
List	Box

C
void	LbDelItem(

				LISTBOX	*	pLb,	

				LISTITEM	*	pItem

);

Overview

This	function	removes	an	item	from	the	list	box	and	frees	the
memory	used.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

LISTITEM	*	pItem	 The	pointer	to	the	item	that	will	be
removed.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbDelItem	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbChangeSel	Function
List	Box

C
void	LbChangeSel(

				LISTBOX	*	pLb,	

				LISTITEM	*	pItem

);

Overview

This	function	changes	the	selection	status	of	an	item	in	the	list
box.	If	the	item	is	currently	selected,	it	resets	the	selection.	If	the
item	is	currently	not	selected	it	is	set	to	be	selected.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

LISTITEM	*	pItem	 The	pointer	to	the	item	the	selection	status
will	be	changed.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbChangeSel	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbSetSel	Macro
List	Box

C
#define	LbSetSel(pLb,	pItem)	\

				if(!(pItem->status	&	LB_STS_SELECTED))	\

								LbChangeSel((LISTBOX	*)pLb,	pItem);

Overview

This	macro	sets	the	selection	status	of	an	item	to	selected.

Input	Parameters

Input	Parameters	 Description	

pLb	 The	pointer	to	the	list	box	object.	

pItem	 The	pointer	to	the	item	the	selection	status
will	be	set.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbSetSel	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetSel	Function
List	Box

C
LISTITEM	*	LbGetSel(

				LISTBOX	*	pLb,	

				LISTITEM	*	pFromItem

);

Overview

This	function	searches	for	selected	items	from	the	list	box.	A
starting	position	can	optionally	be	given.	If	starting	position	is	set
to	NULL,	search	will	begin	from	the	first	item	list.	It	returns	the
pointer	to	the	first	selected	item	found	or	NULL	if	there	are	no
items	selected.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

LISTITEM	*
pFromItem	

The	pointer	to	the	item	the	search	must	start
from,	if	the	pointer	is	NULL	the	search
begins	from	the	start	of	the	items	list.	

Returns

pointer	to	the	selected	item,	NULL	if	there	are	no	items	selected

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetSel	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetFocusedItem	Function
List	Box

C
SHORT	LbGetFocusedItem(

				LISTBOX	*	pLb

);

Overview

This	function	returns	the	index	of	the	focused	item	in	the	list	box.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

Returns

Returns	the	index	of	the	focused	item	in	the	list	box.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetFocusedItem	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbSetFocusedItem	Function
List	Box

C
void	LbSetFocusedItem(

				LISTBOX	*	pLb,	

				SHORT	index

);

Overview

This	function	sets	the	focus	for	the	item	with	the	given	index.

Input	Parameters

Input	Parameters	 Description	

LISTBOX	*	pLb	 The	pointer	to	the	list	box	object.	

SHORT	index	 The	index	number	of	the	item	to	be	focused.
First	item	on	the	list	is	always	indexed	0.	

Returns

none.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>

LbSetFocusedItem	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetCount	Macro
List	Box

C
#define	LbGetCount(pLb)	((LISTBOX	*)pLb)->itemsNumber

Overview

This	macro	returns	the	number	of	items	in	the	list	box.

Input	Parameters

Input	Parameters	 Description	

pLb	 The	pointer	to	the	list	box	object.	

Returns

The	number	of	items	the	list	box	contains.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetCount	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetVisibleCount	Macro
List	Box

C
#define	LbGetVisibleCount(pLb)	\

								(\

												(((LISTBOX	*)pLb)->hdr.bottom	-	((LISTBOX	*)pLb)->hdr.top	-	2	*	(GOL_EMBOSS_SIZE	+	LB_INDENT))	/	\

																((LISTBOX	*)pLb)->textHeight																																																																	\

)

Overview

This	macro	returns	the	number	of	items	visible	in	the	list	box
window.

Input	Parameters

Input	Parameters	 Description	

pLb	 The	pointer	to	the	list	box	object.	

Returns

The	number	of	items	visible	in	the	list	box	window.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetVisibleCount	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbSetBitmap	Macro
List	Box

C
#define	LbSetBitmap(pItem,	pBtmap)	((LISTITEM	*)pItem)->pBitmap	=	pBtmap

Overview

This	macro	sets	the	bitmap	used	in	the	item.

Input	Parameters

Input	Parameters	 Description	

pItem	 Pointer	to	the	item.	

pBtmap	 Pointer	to	the	bitmap	to	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	LbAddItem()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>

LbSetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbGetBitmap	Macro
List	Box

C
#define	LbGetBitmap(pItem)	((LISTITEM	*)pItem)->pBitmap

Overview

This	macro	returns	the	location	of	the	currently	used	bitmap	for
the	item.

Input	Parameters

Input	Parameters	 Description	

pItem	 Pointer	to	the	list	item.	

Returns

Returns	the	pointer	to	the	current	bitmap	used.

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	Assume	pLb	is	initialized	to	an	existing	list	box

LISTITEM	*pItem;	

void	*pBitmap;

pItem	=	LbGetItemList(pLb);	

pBitmap	=	LbGetBitmap(pItem);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbGetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbDelItemsList	Function
List	Box

C
void	LbDelItemsList(

				void	*	pObj

);

Overview

This	function	removes	all	items	from	the	list	box	and	frees	the
memory	used.

Input	Parameters

Input	Parameters	 Description	

pLb	 The	pointer	to	the	list	box	object.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbDelItemsList	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbMsgDefault	Function
List	Box

C
void	LbMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	State	Bit	 Description	

LB_MSG_TOUCHSCREEN	 Touch
Screen	

Set	LB_FOCUSED,	 If	 focus	 is	 enabled,
the	 focus	 state	 bit
LB_FOCUSED
be	 set.
LB_DRAW_FOCUS
draw	 state	 bit	 will
force	

	 	 Set
LB_DRAW_FOCUS	

the	 List	 Box	 to	 be
redrawn	 with
focus.	

	 	 Set
LB_DRAW_ITEMS	

List	 Box	 will	 be
redrawn	 with
selected	item(s).	

LB_MSG_MOVE	 KeyBoard	 Set List	 Box	 will	 be

LB_DRAW_ITEMS	 redrawn	 with	 focus
on	one	item.	

LB_MSG_SEL	 KeyBoard	 Set
LB_DRAW_ITEMS	

List	 Box	 will	 be
redrawn	 with
selection	 on	 the
current	 item
focused.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pB	 The	pointer	to	the	object	whose	state	will	be
modified.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LbTranslateMsg	Function
List	Box

C
WORD	LbTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

LB_MSG_TOUCHSCREEN	 Touch
Screen	

Any	 Item	 is
selected	using
touch	screen.	

LB_MSG_MOVE	 Keyboard	 EVENT_KEYSCAN	 Focus	 is
moved	 to	 the
next	 item
depending	 on
the	 key
pressed	 (UP
or	 DOWN
key).	

LB_MSG_SEL	 Keyboard	 EVENT_KEYSCAN	 LB_MSG_SEL
–	 Selection	 is

set	 to	 the
currently
focused	item.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	 did
not	 affect	 the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pLB	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

LB_MSG_TOUCHSCREEN	–	Item	is	selected	using	touch	screen.
LB_MSG_MOVE	–	Focus	is	moved	to	the	next	item	depending	on
the	key	pressed	(UP	or	DOWN	key).
LB_MSG_SEL	–	Selection	is	set	to	the	currently	focused	item.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LISTBOX	Structure
List	Box

C
typedef	struct	{

		OBJ_HEADER	hdr;

		LISTITEM	*	pItemList;

		LISTITEM	*	pFocusItem;

		WORD	itemsNumber;

		SHORT	scrollY;

		SHORT	textHeight;

}	LISTBOX;

Overview

Defines	the	parameters	required	for	a	list	box	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

LISTITEM	*	pItemList;	 Pointer	to	the	list	of	items.	

LISTITEM	*
pFocusItem;	

Pointer	to	the	focused	item.	

WORD	itemsNumber;	 Number	of	items	in	the	list	box.	

SHORT	scrollY;	 Scroll	displacement	for	the	list.	

SHORT	textHeight;	 Pre-computed	text	height.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LISTBOX	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LISTITEM	Structure
List	Box

C
typedef	struct	{

		void	*	pPrevItem;

		void	*	pNextItem;

		WORD	status;

		XCHAR	*	pText;

		void	*	pBitmap;

		WORD	data;

}	LISTITEM;

Overview

Defines	the	parameters	required	for	a	list	item	used	in	list	box.

Members

Members	 Description	

void	*	pPrevItem;	 Pointer	to	the	next	item	

void	*	pNextItem;	 Pointer	to	the	next	item	

WORD	status;	 Specifies	the	status	of	the	item.	

XCHAR	*	pText;	 Pointer	to	the	text	for	the	item	

void	*	pBitmap;	 Pointer	to	the	bitmap	

WORD	data;	 Some	data	associated	with	the	item	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>
LISTITEM	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Meter
Functions	|	Macros	|	Structures	|	Topics

There	are	three	meter	types	that	you	can	draw:

1.	 MTR_WHOLE_TYPE
2.	 MTR_HALF_TYPE
3.	 MTR_QUARTER_TYPE
It	supports	only	System	inputs,	replying	to	the	event
EVENT_SET	with	the	message:	MTR_MSG_SET	(see
MtrTranslateMsg()	for	details).	This	action	ID	means	that	the
message	contains	the	new	value	of	the	meter	on	the	parameter	2
of	the	message.	

	

The	Meter	Object	is	rendered	using	the	assigned	style	scheme,
value	range	colors	(see	MtrSetScaleColors()	for	details)	and
compile	time	settings.	The	following	figure	illustrates	the
assignments	for	a	MTR_HALF_TYPE	meter.	

	

	

	

	

Functions

	 Name	 Description	

	 MtrCreate	 This	function	creates	a	METER	object	with
the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of

the	object.	

	 MtrDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
Depending	on	the	defined	settings,	value
of	the	meter	will	displayed	or	hidden.
Displaying	the	value	will	require	a	little	bit
more	rendering	time	depending	on	the	size
of	the	meter	and	font	used.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the...	more	

	 MtrSetVal	 This	function	sets	the	value	of	the	meter	to
the	passed	newVal.	newVal	is	checked	to
be	in	the	minValue-maxValue	range
inclusive.	If	newVal	is	not	in	the	range,
minValue	maxValue	is	assigned	depending
on	the	given	newVal	if	less	than	minValue
or	above	maxValue.	

	 MtrMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	Meter	value	is	set	based	on
parameter	2	of	the	message	given.	The
following	state	changes	are	supported:		

	 MtrTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.

	

Macros

Name	 Description	

MtrGetVal	 This	macro	returns	the	current	value	of	the
meter.	Value	is	always	in	the	minValue-
maxValue	range	inclusive.	

MtrDecVal	 This	macro	is	used	to	directly	decrement	the
value.	

MtrIncVal	 This	macro	is	used	to	directly	increment	the
value.	

MtrSetScaleColors	 Scale	colors	can	be	used	to	highlight	values
of	the	meter.	User	can	set	these	colors	to
define	the	arc	colors	and	scale	colors.	This
also	sets	the	color	of	the	meter	value	when
displayed.	Limitation	is	that	color	settings
are	set	to	the	following	angles:	Color
Boundaries	Type	Whole	Type	Half	Type
Quarter	Arc	6	225	to	180	not	used	not	used
Arc	5	179	to	135	179	to	135	not	used	Arc	4
134	to	90	134	to	90	not	used	Arc	3	89	to	45
89	to	45	89	to	45	Arc	2	44	to	0	44...	more	

MtrSetTitleFont	 This	function	sets	the	font	of	title.	

MtrSetValueFont	 This	function	sets	the	font	of	value.	

METER_TYPE	 This	is	a	compile	time	setting	to	select	the
type	if	meter	shape.	There	are	three	types:

MTR_WHOLE_TYPE	-	Meter	drawn
with	6	octants	used.
MTR_HALF_TYPE	-	Meter	drawn	with

semi	circle	shape.
MTR_QUARTER_TYPE	-	Meter	drawn
with	quarter	circle	shape.

Set	only	one	value	at	a	time.	This	is	done	to
save	code	space.	User	can	define	the	colors
of	the	arcs	for	each	type.
MTR_WHOLE_TYPE	will	use	all	the	arc
colors	(arcColor1	-	arcColor6)
MTR_HALF_TYPE	will	use	arc	colors
(arcColor5,	arcColor4,	arcColor3,	arcColor2)
MTR_QUARTER_TYPE	will	use	arc	colors
(arcColor3,	arcColor2)	Set	the	meter	type	in
Meter.h	file	and...	more	

MTR_ACCURACY	 Sets	the	meter	accuracy	to	one	decimal
places	when	displaying	the	values.
Application	must	multiply	the	minValue,
maxValue	and	values	passed	to	the	widget
by	RESOLUTION.	

Structures

Name	 Description	

METER	 Defines	the	parameters	required	for	a	meter
Object.	Depending	on	the	type	selected	the
meter	is	drawn	with	the	defined	shape
parameters	and	values	set	on	the	given
fields.	

Topics

Name	 Description	

Meter	States	 List	of	Meter	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Meter	States
Macros	|	Meter

List	of	Meter	bit	states.

Macros

Name	 Description	

MTR_DISABLED	 Bit	for	disabled	state.	

MTR_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

MTR_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

MTR_RING	 Bit	for	ring	type,	scales	are	drawn	over	the
ring	default	is	only	scales	drawn.	

MTR_DRAW_UPDATE	 Bit	to	indicate	an	update	only.	

Module

Meter

Links

Macros,	Meter

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_DISABLED	Macro
C
#define	MTR_DISABLED	0x0002						//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States	>	MTR_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_DRAW	Macro
C
#define	MTR_DRAW	0x4000						//	Bit	to	indicate	object	must	be	redrawn.

Description

Bit	to	indicate	object	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States	>	MTR_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_HIDE	Macro
C
#define	MTR_HIDE	0x8000						//	Bit	to	indicate	object	must	be	removed	from	screen.

Description

Bit	to	indicate	object	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States	>	MTR_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_RING	Macro
C
#define	MTR_RING	0x0004						//	Bit	for	ring	type,	scales	are	drawn	over	the	ring

Description

Bit	for	ring	type,	scales	are	drawn	over	the	ring	default	is	only
scales	drawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States	>	MTR_RING	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_DRAW_UPDATE	Macro
C
#define	MTR_DRAW_UPDATE	0x1000						//	Bit	to	indicate	an	update	only.

Description

Bit	to	indicate	an	update	only.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States	>	MTR_DRAW_UPDATE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrCreate	Function
Meter

C
METER	*	MtrCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				SHORT	value,	

				SHORT	minValue,	

				SHORT	maxValue,	

				void	*	pTitleFont,	

				void	*	pValueFont,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	METER	object	with	the	parameters	given.
It	automatically	attaches	the	new	object	into	a	global	linked	list	of
objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

SHORT	value	 Initial	value	set	to	the	meter.	

SHORT	minValue	 The	minimum	value	the	meter	will	display.	

SHORT	maxValue	 The	maximum	value	the	meter	will	display.	

void	*	pTitleFont	 Pointer	to	the	font	used	for	the	Title.	

XCHAR	*	pText	 Pointer	to	the	text	label	of	the	meter.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	font	used	for	the	Value.
Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
#define	ID_METER	101

extern	const	FONT_FLASH	GOLMediumFont;						//	medium	font

extern	const	FONT_FLASH	GOLSmallFont;							//	small	font

GOL_SCHEME	*pMeterScheme;

METER	*pMtr;

				pMeterScheme	=	GOLCreateScheme();

				pMtr	=	MtrCreate(

												ID_METER,															//	assign	ID

												30,	50,	150,	180,							//	set	dimension

												MTR_DRAW|MTR_RING,						//	draw	object	after	creation

												0,																						//	set	initial	value

												0,	100,																	//	set	minimum	and	maximum	value

												(void*)&GOLMediumFont,		//	set	title	font

												(void*)&GOLSmallFont,			//	set	value	font

												"Speed",																//	Text	Label

												pMeterScheme);										//	style	scheme			

														

				//	check	if	meter	was	created

				if	(pMtr	==	NULL)							

							return	0;

				//	Change	range	colors:	Normal	values	to	WHITE

				//																						Critical	values	to	BLUE

				//																						Danger	values	to	RED

				//	assume	that	WHITE,	GREEN,	YELLOW	and	RED	have	been	defined.

				MtrSetScaleColors(pMtr,	WHITE,	WHITE,	WHITE,	GREEN,	YELLOW,	RED);															

				//	use	GOLDraw()	to	draw	the	meter	and	all	other	objects	you	created

				while(!GOLDraw());

				//	OR	to	draw	the	meter	manually	use	this:

				//while(!MtrDraw(pMtr);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrDraw	Function
Meter

C
WORD	MtrDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

Depending	on	the	defined	settings,	value	of	the	meter	will
displayed	or	hidden.	Displaying	the	value	will	require	a	little	bit
more	rendering	time	depending	on	the	size	of	the	meter	and	font
used.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	MtrCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrSetVal	Function
Meter

C
void	MtrSetVal(

				METER	*	pMtr,	

				SHORT	newVal

);

Overview

This	function	sets	the	value	of	the	meter	to	the	passed	newVal.
newVal	is	checked	to	be	in	the	minValue-maxValue	range
inclusive.	If	newVal	is	not	in	the	range,	minValue	maxValue	is
assigned	depending	on	the	given	newVal	if	less	than	minValue	or
above	maxValue.

Input	Parameters

Input	Parameters	 Description	

METER	*	pMtr	 The	pointer	to	the	object.	

SHORT	newVal	 New	value	to	be	set	for	the	Meter.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrSetVal	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrGetVal	Macro
Meter

C
#define	MtrGetVal(pMtr)	((pMtr)->value)

Overview

This	macro	returns	the	current	value	of	the	meter.	Value	is
always	in	the	minValue-maxValue	range	inclusive.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

Returns

Returns	current	value	of	the	meter.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrGetVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrDecVal	Macro
Meter

C
#define	MtrDecVal(pMtr,	deltaValue)	MtrSetVal(pMtr,	((pMtr)->value	-	deltaValue))

Overview

This	macro	is	used	to	directly	decrement	the	value.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

deltaValue	 Number	to	be	subtracted	to	the	current
Meter	value.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrDecVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrIncVal	Macro
Meter

C
#define	MtrIncVal(pMtr,	deltaValue)	MtrSetVal(pMtr,	((pMtr)->value	+	deltaValue))

Overview

This	macro	is	used	to	directly	increment	the	value.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

deltaValue	 Number	to	be	added	to	the	current	Meter
value.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrIncVal	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrSetScaleColors	Macro
Meter

C
#define	MtrSetScaleColors(pMtr,	arc1,	arc2,	arc3,	arc4,	arc5,	arc6)	\

				{																																																																			\

								pMtr->arcColor6	=	arc6;																																									\

								pMtr->arcColor5	=	arc5;																																									\

								pMtr->arcColor4	=	arc4;																																									\

								pMtr->arcColor3	=	arc3;																																									\

								pMtr->arcColor2	=	arc2;																																									\

								pMtr->arcColor1	=	arc1;																																									\

				}

Overview

Scale	colors	can	be	used	to	highlight	values	of	the	meter.	User
can	set	these	colors	to	define	the	arc	colors	and	scale	colors.
This	also	sets	the	color	of	the	meter	value	when	displayed.
Limitation	is	that	color	settings	are	set	to	the	following	angles:
Color	Boundaries	Type	Whole	Type	Half	Type	Quarter	Arc	6	225
to	180	not	used	not	used	Arc	5	179	to	135	179	to	135	not	used
Arc	4	134	to	90	134	to	90	not	used	Arc	3	89	to	45	89	to	45	89	to
45	Arc	2	44	to	0	44	to	0	44	to	0	Arc	1	-45	to	-1	not	used	not	used
As	the	meter	is	drawn	colors	are	changed	depending	on	the
angle	of	the	scale	and	label	being	drawn.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

arc1	 color	for	arc	1.	

arc2	 color	for	arc	2.	

arc3	 color	for	arc	3.	

arc4	 color	for	arc	4.	

arc5	 color	for	arc	5.	

arc6	 color	for	arc	6.	

Returns

none

Preconditions

The	object	must	be	created	(using	MtrCreate())	before	a	call	to
this	macro	is	performed.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrSetScaleColors	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrSetTitleFont	Macro
Meter

C
#define	MtrSetTitleFont(pMtr,	pNewFont)	(((METER	*)pMtr)->pTitleFont	=	pNewFont)

Overview

This	function	sets	the	font	of	title.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

pNewFont	 Pointer	to	the	new	font	used	for	the	title.	

Returns

N/A

Preconditions

Font	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrSetTitleFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrSetValueFont	Macro
Meter

C
#define	MtrSetValueFont(pMtr,	pNewFont)	(((METER	*)pMtr)->pValueFont	=	pNewFont)

Overview

This	function	sets	the	font	of	value.

Input	Parameters

Input	Parameters	 Description	

pMtr	 Pointer	to	the	object.	

pNewFont	 Pointer	to	the	new	font	used	for	the	value.	

Returns

N/A

Preconditions

Font	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrSetValueFont	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

METER_TYPE	Macro
Meter

C
#define	METER_TYPE	MTR_WHOLE_TYPE

Overview

This	is	a	compile	time	setting	to	select	the	type	if	meter	shape.
There	are	three	types:

MTR_WHOLE_TYPE	-	Meter	drawn	with	6	octants	used.
MTR_HALF_TYPE	-	Meter	drawn	with	semi	circle	shape.
MTR_QUARTER_TYPE	-	Meter	drawn	with	quarter	circle	shape.

Set	only	one	value	at	a	time.	This	is	done	to	save	code	space.
User	can	define	the	colors	of	the	arcs	for	each	type.
MTR_WHOLE_TYPE	will	use	all	the	arc	colors	(arcColor1	-
arcColor6)	MTR_HALF_TYPE	will	use	arc	colors	(arcColor5,
arcColor4,	arcColor3,	arcColor2)	MTR_QUARTER_TYPE	will
use	arc	colors	(arcColor3,	arcColor2)	Set	the	meter	type	in
Meter.h	file	and	arc	colors	using	MtrSetScaleColors(pMtr,	arc1,
arc2,	arc3,	arc4,	arc5,	arc6)	macro.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
METER_TYPE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MTR_ACCURACY	Macro
Meter

C
#define	MTR_ACCURACY	0x0008						//	Sets	the	meter	accuracy	to	one	decimal	places

Description

Sets	the	meter	accuracy	to	one	decimal	places	when	displaying
the	values.	Application	must	multiply	the	minValue,	maxValue
and	values	passed	to	the	widget	by	RESOLUTION.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MTR_ACCURACY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrMsgDefault	Function
Meter

C
void	MtrMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	Meter	value	is	set	based	on
parameter	2	of	the	message	given.	The	following	state	changes
are	supported:

Translated
Message	

Input
Source	

Set/Clear	State	Bit	 Description	

MTR_MSG_SET	 System	 Set
MTR_DRAW_UPDATE	

Meter	will	be
redrawn	 to
update	 the
needle
position	 and
value
displayed.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pMtr	 The	pointer	to	the	object	whose	state	will	be
modified.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MtrTranslateMsg	Function
Meter

C
WORD	MtrTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated
Message	

Input
Source	

Events	 Description	

MTR_MSG_SET	 System	 EVENT_SET	 If	event	set	occurs
and	 the	 meter	 ID
is	 sent	 in
parameter	1.	

OBJ_MSG_INVALID	 Any	 Any	 If	the	message	did
not	 affect	 the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pMtr	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

MTR_MSG_SET	-	Meter	ID	is	given	in	parameter	1	for	a
TYPE_SYSTEM	message.
OBJ_MSG_INVALID	-	Meter	is	not	affected.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
MtrTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

METER	Structure
Meter

C
typedef	struct	{

		OBJ_HEADER	hdr;

		XCHAR	*	pText;

		SHORT	value;

		SHORT	minValue;

		SHORT	maxValue;

		SHORT	xCenter;

		SHORT	yCenter;

		SHORT	radius;

		SHORT	xPos;

		SHORT	yPos;

		GFX_COLOR	arcColor6;

		GFX_COLOR	arcColor5;

		GFX_COLOR	arcColor4;

		GFX_COLOR	arcColor3;

		GFX_COLOR	arcColor2;

		GFX_COLOR	arcColor1;

		void	*	pTitleFont;

		void	*	pValueFont;

}	METER;

Overview

Defines	the	parameters	required	for	a	meter	Object.	Depending
on	the	type	selected	the	meter	is	drawn	with	the	defined	shape
parameters	and	values	set	on	the	given	fields.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

XCHAR	*	pText;	 The	text	label	of	the	meter.	

SHORT	value;	 Current	value	of	the	meter.	

SHORT	minValue;	 minimum	value	the	meter	can	display	

SHORT	maxValue;	 maximum	value	the	meter	can	display
(range	is	maxValue	-	minValue)	

SHORT	xCenter;	 The	x	coordinate	center	position.	This	is
computed	automatically.	

SHORT	yCenter;	 The	y	coordinate	center	position.	This	is
computed	automatically.	

SHORT	radius;	 Radius	of	the	meter,	also	defines	the	needle
length.	

SHORT	xPos;	 The	current	x	position	of	the	needle.	This	is
computed	automatically.	

SHORT	yPos;	 The	current	y	position	of	the	needle.	This	is
computed	automatically.	

GFX_COLOR
arcColor6;	

Arc	6	color	parameter.	

GFX_COLOR
arcColor5;	

Arc	5	color	parameter	

GFX_COLOR
arcColor4;	

Arc	4	color	parameter	

GFX_COLOR
arcColor3;	

Arc	3	color	parameter	

GFX_COLOR
arcColor2;	

Arc	2	color	parameter	

GFX_COLOR
arcColor1;	

Arc	1	color	parameter	

void	*	pTitleFont;	 Pointer	to	the	font	used	in	the	title	of	the
meter	

void	*	pValueFont;	 Pointer	to	the	font	used	in	the	current
reading	(if	displayed)	of	the	meter	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>
METER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Picture	Control
Functions	|	Macros	|	Structures	|	Topics

It	supports	only	Keyboard	inputs,	replying	to	any	touch	screen
events	with	the	message:	PICT_MSG_SELECTED.	

	

The	Picture	Object	is	rendered	using	the	assigned	style	scheme.
The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 PictCreate	 This	function	creates	a	PICTURE	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the
address	of	the	object.	

	 PictDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is

determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 PictTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event
accepted	by	the	PICTURE	Object.
	

Macros

Name	 Description	

PictSetBitmap	 This	macro	sets	the	bitmap	used	in	the
object.	

PictGetBitmap	 This	macro	returns	the	pointer	to	the	bitmap
used	in	the	object.	

PictGetScale	 This	macro	returns	the	current	scale	factor
used	to	render	the	bitmap.	

PictSetScale	 This	macro	sets	the	scale	factor	used	to
render	the	bitmap	used	in	the	object.	

Structures

Name	 Description	

PICTURE	 The	structure	contains	data	for	picture

control	

Topics

Name	 Description	

Picture	States	 List	of	Picture	Control	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Picture	States
Macros	|	Picture	Control

List	of	Picture	Control	bit	states.

Macros

Name	 Description	

PICT_DISABLED	 Bit	to	indicate	Picture	is	in	a	disabled	state.	

PICT_DRAW	 Bit	to	indicate	Picture	will	be	redrawn.	

PICT_FRAME	 Bit	to	indicate	Picture	has	a	frame.	

PICT_HIDE	 Bit	to	indicate	Picture	must	be	hidden.	

Module

Picture	Control

Links

Macros,	Picture	Control

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PICT_DISABLED	Macro
C
#define	PICT_DISABLED	0x0002		//	Bit	to	indicate	Picture	is	in	a	disabled	state.

Description

Bit	to	indicate	Picture	is	in	a	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States	>	PICT_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PICT_DRAW	Macro
C
#define	PICT_DRAW	0x4000		//	Bit	to	indicate	Picture	will	be	redrawn.

Description

Bit	to	indicate	Picture	will	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States	>	PICT_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PICT_FRAME	Macro
C
#define	PICT_FRAME	0x0004		//	Bit	to	indicate	Picture	has	a	frame.

Description

Bit	to	indicate	Picture	has	a	frame.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States	>	PICT_FRAME	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PICT_HIDE	Macro
C
#define	PICT_HIDE	0x8000		//	Bit	to	indicate	Picture	must	be	hidden.

Description

Bit	to	indicate	Picture	must	be	hidden.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States	>	PICT_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictCreate	Function
Picture	Control

C
PICTURE	*	PictCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				char	scale,	

				void	*	pBitmap,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	PICTURE	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

char	scale	 Sets	the	scale	factor	used	to	render	the
bitmap.	

void	*	pBitmap	 Pointer	to	the	bitmap	that	will	be	used.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	

radius	 Radius	of	the	rounded	edge.	

Returns

Returns	the	pointer	to	the	object	created

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictDraw	Function
Picture	Control

C
WORD	PictDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pPict	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictSetBitmap	Macro
Picture	Control

C
#define	PictSetBitmap(pPict,	pBtmap)	((PICTURE*)pPict)->pBitmap	=	pBtmap

Overview

This	macro	sets	the	bitmap	used	in	the	object.

Input	Parameters

Input	Parameters	 Description	

pPict	 Pointer	to	the	object	

pBtMap	 Pointer	to	the	bitmap	to	be	used	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictSetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictGetBitmap	Macro
Picture	Control

C
#define	PictGetBitmap(pPict)	((PICTURE*)pPict)->pBitmap

Overview

This	macro	returns	the	pointer	to	the	bitmap	used	in	the	object.

Input	Parameters

Input	Parameters	 Description	

pPict	 Pointer	to	the	object	

Returns

Returns	the	pointer	to	the	bitmap	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictGetBitmap	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictGetScale	Macro
Picture	Control

C
#define	PictGetScale(pPict)	pPict->scale

Overview

This	macro	returns	the	current	scale	factor	used	to	render	the
bitmap.

Input	Parameters

Input	Parameters	 Description	

pPict	 Pointer	to	the	object	

Returns

Returns	the	current	scale	factor	used	to	display	the	bitmap.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictGetScale	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictSetScale	Macro
Picture	Control

C
#define	PictSetScale(pPict,	scl)	pPict->scale	=	scl

Overview

This	macro	sets	the	scale	factor	used	to	render	the	bitmap	used
in	the	object.

Input	Parameters

Input	Parameters	 Description	

pPict	 Pointer	to	the	object	

scl	 The	scale	factor	that	will	be	used	to	display
the	bitmap.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictSetScale	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PictTranslateMsg	Function
Picture	Control

C
WORD	PictTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	accepted	by	the	PICTURE
Object.	

	

Translated	Message	 Input
Source	

Events	 Description	

PICT_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE,
EVENT_MOVE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	 the
picture.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pPict	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

PICT_MSG_SELECTED	–	Picture	is	touched.
OBJ_MSG_INVALID	–	Picture	is	not	affected

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PictTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PICTURE	Structure
Picture	Control

C
typedef	struct	{

		OBJ_HEADER	hdr;

		char	scale;

		void	*	pBitmap;

		PUTIMAGE_PARAM	partial;

}	PICTURE;

Overview

The	structure	contains	data	for	picture	control

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

char	scale;	 Scale	factor	for	the	bitmap	

void	*	pBitmap;	 Pointer	to	the	bitmap	

PUTIMAGE_PARAM
partial;	

structure	containing	parital	image	data	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	PICTURE	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Progress	Bar
Functions	|	Macros	|	Structures	|	Topics

Progress	Bar	supports	only	Touchscreen	inputs,	replying	to	their
events	with	the	message:	PB_MSG_SELECTED.	

	

The	Progress	Bar	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 PbCreate	 This	function	creates	a	PROGRESSBAR
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the
address	of	the	object.	

	 PbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and	bottom
parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 PbSetRange	 This	function	sets	the	range	of	the	progress
bar.	Calling	this	function	also	resets	the
position	equal	to	the	new	range	value.	

	 PbSetPos	 This	function	sets	the	position	of	the
progress	bar.	Position	should	be	in	the
given	range	inclusive.	

	 PbTranslateMsg	 This	function	evaluates	the	message	from	a
user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	inputs.
	

Macros

Name	 Description	

PbGetRange	 This	macro	returns	the	current	range	of	the
progress	bar.	

PbGetPos	 This	macro	returns	the	current	progress	bar

position.	

Structures

Name	 Description	

PROGRESSBAR	 The	structure	contains	data	for	the	progress
bar	

Topics

Name	 Description	

Progress	Bar	States	 List	of	Progress	Bar	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Progress	Bar	States
Macros	|	Progress	Bar

List	of	Progress	Bar	bit	states.

Macros

Name	 Description	

PB_DISABLED	 Bit	to	indicate	Progress	Bar	is	in	a	disabled
state.	

PB_DRAW	 Bit	to	indicate	Progress	Bar	must	be
redrawn.	

PB_DRAW_BAR	 Bit	to	indicate	Progress	Bar	must	be
redrawn.	

PB_HIDE	 Bit	to	indicate	Progress	Bar	must	be
hidden.	

PB_VERTICAL	 Bit	for	orientation	(0	-	horizontal,	1	-
vertical)	

Module

Progress	Bar

Links

Macros,	Progress	Bar

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PB_DISABLED	Macro
C
#define	PB_DISABLED	0x0002		//	Bit	to	indicate	Progress	Bar	is	in	a	disabled	state.

Description

Bit	to	indicate	Progress	Bar	is	in	a	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States	>	PB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PB_DRAW	Macro
C
#define	PB_DRAW	0x4000		//	Bit	to	indicate	Progress	Bar	must	be	redrawn.

Description

Bit	to	indicate	Progress	Bar	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States	>	PB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PB_DRAW_BAR	Macro
C
#define	PB_DRAW_BAR	0x2000		//	Bit	to	indicate	Progress	Bar	must	be	redrawn.

Description

Bit	to	indicate	Progress	Bar	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States	>	PB_DRAW_BAR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PB_HIDE	Macro
C
#define	PB_HIDE	0x8000		//	Bit	to	indicate	Progress	Bar	must	be	hidden.

Description

Bit	to	indicate	Progress	Bar	must	be	hidden.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States	>	PB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PB_VERTICAL	Macro
C
#define	PB_VERTICAL	0x0004		//	Bit	for	orientation		(0	-	horizontal,	1	-	vertical)

Description

Bit	for	orientation	(0	-	horizontal,	1	-	vertical)

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States	>	PB_VERTICAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbCreate	Function
Progress	Bar

C
PROGRESSBAR	*	PbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				WORD	pos,	

				WORD	range,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	PROGRESSBAR	object	with	the
parameters	given.	It	automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	Object.	

WORD	state	 Sets	the	initial	state	of	the	Object.	

WORD	pos	 Defines	the	initial	position	of	the	progress.	

WORD	range	 This	specifies	the	maximum	value	of	the
progress	bar	when	the	progress	bar	is	at
100%	position.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used	for	the
object.	Set	to	NULL	if	default	style	scheme
is	used.	

Returns

Returns	the	pointer	to	the	object	created

Preconditions

none

Side	Effects

none

Example

Copy	Code
PROGRESSBAR	*pPBar;

void	CreateProgressBar(){

				pPBar	=	PbCreate(ID_PROGRESSBAR1,				//	ID

																					50,90,270,140,						//	dimension

																					PB_DRAW,												//	Draw	the	object

																					25,																	//	position

																					50,																	//	set	the	range

																					NULL);														//	use	default	GOL	scheme

				while(!PbDraw(pPBar));

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbDraw	Function
Progress	Bar

C
WORD	PbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pPb	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	PbCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbSetRange	Function
Progress	Bar

C
void	PbSetRange(

				PROGRESSBAR	*	pPb,	

				WORD	range

);

Overview

This	function	sets	the	range	of	the	progress	bar.	Calling	this
function	also	resets	the	position	equal	to	the	new	range	value.

Input	Parameters

Input	Parameters	 Description	

PROGRESSBAR	*
pPb	

Pointer	to	the	object	

Returns

none.

Preconditions

none

Side	Effects

Sets	the	position	equal	to	the	new	range.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbSetRange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbGetRange	Macro
Progress	Bar

C
#define	PbGetRange(pPb)	(pPb->range)

Overview

This	macro	returns	the	current	range	of	the	progress	bar.

Input	Parameters

Input	Parameters	 Description	

pPb	 Pointer	to	the	object	

Returns

Returns	the	range	value.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbGetRange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbSetPos	Function
Progress	Bar

C
void	PbSetPos(

				PROGRESSBAR	*	pPb,	

				WORD	position

);

Overview

This	function	sets	the	position	of	the	progress	bar.	Position
should	be	in	the	given	range	inclusive.

Input	Parameters

Input	Parameters	 Description	

PROGRESSBAR	*
pPb	

Pointer	to	the	object	

WORD	position	 New	position.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
PROGRESSBAR	*pPb;

BYTE		direction	=	1;

				

				//	this	code	increments	and	decrements	the	progress	bar	by	1

				//	assume	progress	bar	was	created	and	initialized	before

				while	(1)	{

								if(direction)	{

												if(pPb	->pos	==	pPb	->range)

																direction	=	0;

												else

																PbSetPos(pPb,PbGetPos(pPb)+1);

								}	else	{

												if(pPb	->pos	==	0)

																direction	=	1;

												else

																PbSetPos(pPb,PbGetPos(pPb)-1);

								}

				}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbSetPos	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbGetPos	Macro
Progress	Bar

C
#define	PbGetPos(pPb)	pPb->pos

Overview

This	macro	returns	the	current	progress	bar	position.

Input	Parameters

Input	Parameters	 Description	

pPb	 Pointer	to	the	object	

Returns

Returns	the	progress	bar	position.

Preconditions

none

Side	Effects

none

Example

See	PbSetPos()	exmaple.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbGetPos	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PbTranslateMsg	Function
Progress	Bar

C
WORD	PbTranslateMsg(

				PROGRESSBAR	*	pPb,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

PB_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE,
EVENT_MOVE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	 the
progress
bar.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

PROGRESSBAR	*
pPb	

The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

PB_MSG_SELECTED	–	Progress	Bar	is	selected.
OBJ_MSG_INVALID	–	Progress	Bar	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PROGRESSBAR	Structure
Progress	Bar

C
typedef	struct	{

		OBJ_HEADER	hdr;

		WORD	pos;

		WORD	prevPos;

		WORD	range;

}	PROGRESSBAR;

Overview

The	structure	contains	data	for	the	progress	bar

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

WORD	pos;	 Current	progress	position.	

WORD	prevPos;	 Previous	progress	position.	

WORD	range;	 Sets	the	range	of	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	PROGRESSBAR	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Radio	Button
Functions	|	Macros	|	Structures	|	Topics

Radio	Button	supports	both	Keyboard	and	Touchscreen	inputs,
replying	to	their	events	with	the	message:
RB_MSG_CHECKED.	

	

The	Radio	Button	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 RbCreate	 This	function	creates	a	RADIOBUTTON

object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 RbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 RbGetCheck	 This	function	returns	the	ID	of	the	currently
checked	Radio	Button	in	the	group.	

	 RbSetCheck	 This	function	sets	the	Radio	Button	with	the
given	ID	to	its	checked	state.	

	 RbSetText	 This	function	sets	the	string	used	for	the
object.	

	 RbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 RbTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.

	

Macros

Name	 Description	

RbGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Structures

Name	 Description	

RADIOBUTTON	 the	structure	contains	data	for	the	Radio
Button	

Topics

Name	 Description	

Radio	Button	States	 List	of	Radio	Button	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Radio	Button	States
Macros	|	Radio	Button

List	of	Radio	Button	bit	states.

Macros

Name	 Description	

RB_CHECKED	 Bit	to	indicate	Radio	Button	is	checked.	

RB_DISABLED	 Bit	for	disabled	state.	

RB_DRAW	 Bit	to	indicate	whole	Radio	Button	must	be
redrawn.	

RB_DRAW_CHECK	 Bit	to	indicate	check	mark	should	be
redrawn.	

RB_DRAW_FOCUS	 Bit	to	indicate	focus	must	be	redrawn.	

RB_FOCUSED	 Bit	for	focused	state.	

RB_GROUP	 Bit	to	indicate	the	first	Radio	Button	in	the
group.	

RB_HIDE	 Bit	to	indicate	that	button	must	be	removed
from	screen.	

Module

Radio	Button

Links

Macros,	Radio	Button

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_CHECKED	Macro
C
#define	RB_CHECKED	0x0004		//	Bit	to	indicate	Radio	Button	is	checked.

Description

Bit	to	indicate	Radio	Button	is	checked.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_CHECKED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_DISABLED	Macro
C
#define	RB_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_DRAW	Macro
C
#define	RB_DRAW	0x4000		//	Bit	to	indicate	whole	Radio	Button	must	be	redrawn.

Description

Bit	to	indicate	whole	Radio	Button	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_DRAW_CHECK	Macro
C
#define	RB_DRAW_CHECK	0x1000		//	Bit	to	indicate	check	mark	should	be	redrawn.

Description

Bit	to	indicate	check	mark	should	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_DRAW_CHECK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_DRAW_FOCUS	Macro
C
#define	RB_DRAW_FOCUS	0x2000		//	Bit	to	indicate	focus	must	be	redrawn.

Description

Bit	to	indicate	focus	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_FOCUSED	Macro
C
#define	RB_FOCUSED	0x0001		//	Bit	for	focused	state.

Description

Bit	for	focused	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_GROUP	Macro
C
#define	RB_GROUP	0x0008		//	Bit	to	indicate	the	first	Radio	Button	in	the	group.

Description

Bit	to	indicate	the	first	Radio	Button	in	the	group.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_GROUP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RB_HIDE	Macro
C
#define	RB_HIDE	0x8000		//	Bit	to	indicate	that	button	must	be	removed	from	screen.

Description

Bit	to	indicate	that	button	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States	>	RB_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbCreate	Function
Radio	Button

C
RADIOBUTTON	*	RbCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	RADIOBUTTON	object	with	the
parameters	given.	It	automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object	

SHORT	bottom	 Bottom	most	position	of	the	object	

WORD	state	 Sets	the	initial	state	of	the	object	pText	–
The	pointer	to	the	text	used	for	the	Radio
Button.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

RADIOBUTTON	*pRb[3];

				pScheme	=	GOLCreateScheme();

				pRb[0]	=	RbCreate(ID_RADIOBUTTON1,														

																						255,40,310,80,																

																						RB_DRAW|RB_GROUP|RB_CHECKED,		

																																																				

																																																				

																						"RB1",																								

																						pScheme);																					

				pRb[1]	=	RbCreate(ID_RADIOBUTTON2,														

																						255,85,310,125,															

																						RB_DRAW,																						

																																																				

																						"RB2",																								

																						pScheme);																					

				pRb[2]	=	RbCreate(ID_RADIOBUTTON3,														

																						255,130,310,170,														

																						RB_DRAW,																						

																																																				

																						"RB3",																								

																						pScheme);																					

				while(!RbDraw(pRb[0]));																									

				while(!RbDraw(pRb[1]));

				while(!RbDraw(pRb[2]));

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbDraw	Function
Radio	Button

C
WORD	RbDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pB	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	RbCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbGetCheck	Function
Radio	Button

C
WORD	RbGetCheck(

				RADIOBUTTON	*	pRb

);

Overview

This	function	returns	the	ID	of	the	currently	checked	Radio
Button	in	the	group.

Input	Parameters

Input	Parameters	 Description	

RADIOBUTTON	*	pRb	 Pointer	to	the	Radio	Button	in	the	group.	

Returns

Returns	the	ID	of	the	selected	button	in	the	group.	It	returns	-1	if
there	is	no	object	checked.

Preconditions

none

Side	Effects

none

Example

Copy	Code

GOL_SCHEME	*pScheme;

RADIOBUTTON	*pRb[3];

SHORT	ID;

				pScheme	=	GOLCreateScheme();

				pRb[0]	=	RbCreate(ID_RADIOBUTTON1,														

																						255,40,310,80,																

																						RB_DRAW|RB_GROUP|RB_CHECKED,		

																																																				

																																																				

																						"RB1",																								

																						pScheme);																					

				pRb[1]	=	RbCreate(ID_RADIOBUTTON2,														

																						255,85,310,125,															

																						RB_DRAW,																						

																																																				

																						"RB2",																								

																						pScheme);																					

				pRb[2]	=	RbCreate(ID_RADIOBUTTON3,														

																						255,130,310,170,														

																						RB_DRAW,																						

																																																				

																						"RB3",																								

																						pScheme);																					

				//	draw	the	Radio	Buttons	here

				

				ID	=	RbGetCheck(pRb[2]);																								

																																																				

																																																				

																																																				

																																																				

				if	(ID	==	ID_RADIOBUTTON1)	{

								//	do	something	here	then	clear	the	check

								ClrState(pRb[0],	RB_CHECKED);															

								//	Change	the	checked	object.	Pointer	used	is	any	of	the	three.

								//	the	ID	used	will	find	the	correct	object	to	be	checked			

								RbSetCheck(pRb[3],	ID_RADIOBUTTON2);								

				}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbGetCheck	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbSetCheck	Function
Radio	Button

C
void	RbSetCheck(

				RADIOBUTTON	*	pRb,	

				WORD	ID

);

Overview

This	function	sets	the	Radio	Button	with	the	given	ID	to	its
checked	state.

Input	Parameters

Input	Parameters	 Description	

RADIOBUTTON	*	pRb	 Pointer	to	the	Radio	Button	in	the	group.	

WORD	ID	 ID	of	the	object	to	be	checked.	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	RbGetCheck()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbSetCheck	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbGetText	Macro
Radio	Button

C
#define	RbGetText(pRb)	pRb->pText

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	object.

Input	Parameters

Input	Parameters	 Description	

pRb	 Pointer	to	the	object	

Returns

Returns	pointer	to	the	text	string	being	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbSetText	Function
Radio	Button

C
void	RbSetText(

				RADIOBUTTON	*	pRb,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	string	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

RADIOBUTTON	*	pRb	 The	pointer	to	the	object	whose	text	will	be
modified	

XCHAR	*	pText	 Pointer	to	the	text	that	will	be	used	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

>	RbSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbMsgDefault	Function
Radio	Button

C
void	RbMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	State
Bit	

Description	

RB_MSG_CHECKED	 Touch
Screen,	

Set
RB_DRAW,	

Depending	 on
the	 current
value	 of
RB_CHECKED
Check	 Box	 will
be	redrawn.	

	 Keyboard	 Set/Clear
RB_CHECKED	

	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message	

pRb	 The	pointer	to	the	object	whose	state	will	be
modified	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RbTranslateMsg	Function
Radio	Button

C
WORD	RbTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

RB_MSG_CHECKED	 Touch
Screen	

EVENT_PRESS	 If	event	occurs	and	the	x,y
position	falls	in	the	area	of
the	Radio	
Radio	 Button
checked.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	 the	 object’s	 ID
and	 parameter	 2	 passed
matches
SCAN_CR_PRESSED
SCAN_SPACE_PRESSED
while	 the	 Radio	
not	checked.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the	 message	 did	 not
affect	the	object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pRb	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

RB_MSG_CHECKED	–	Radio	Button	is	checked
OBJ_MSG_INVALID	–	Radio	Button	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RbTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RADIOBUTTON	Structure
Radio	Button

C
typedef	struct	{

		OBJ_HEADER	hdr;

		OBJ_HEADER	*	pHead;

		OBJ_HEADER	*	pNext;

		SHORT	textHeight;

		XCHAR	*	pText;

}	RADIOBUTTON;

Overview

the	structure	contains	data	for	the	Radio	Button

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

OBJ_HEADER	*
pHead;	

Pointer	to	the	first	Radio	Button	in	the
group	

OBJ_HEADER	*
pNext;	

Pointer	to	the	next	Radio	Button	in	the
group	

SHORT	textHeight;	 Pre-computed	text	height	

XCHAR	*	pText;	 Pointer	to	the	text	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	RADIOBUTTON	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Slider/Scroll	Bar
Functions	|	Macros	|	Structures	|	Topics

Slider	or	Scrollbar	supports	both	Keyboard	and	Touchscreen
inputs,	replying	to	their	events	with	the	following	messages:	

1.	SLD_MSG_INC	-	when	the	thumb	is	to	be	incremented	in
position	

2.	SLD_MSG_DEC	-	when	the	thumb	is	to	be	decremented	in
position	

	

The	Slider	object	is	rendered	using	the	assigned	style	scheme.
The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 SldCreate	 This	function	creates	a	SLIDER	object	with
the	parameters	given.	Depending	on	the
SLD_SCROLLBAR	state	bit	slider	or
scrollbar	mode	is	set.	If	SLD_SCROLLBAR
is	set,	mode	is	scrollbar;	if	not	set	mode	is
slider.	It	automatically	attaches	the	new
object	into	a	global	linked	list	of	objects
and	returns	the	address	of	the	object.	

	 SldDraw	 This	function	renders	the	object	on	the

screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 SldSetPage	 This	sets	the	page	size	of	the	object.	Page
size	defines	the	delta	change	of	the	thumb
position	when	incremented	via	SldIncPos()
or	decremented	via	SldDecPos().	Page
size	minimum	value	is	1.	Maximum	value	is
range/2.	

	 SldSetPos	 This	function	sets	the	position	of	the	slider
thumb.	Value	should	be	in	the	set	range
inclusive.	Object	must	be	redrawn	to	reflect
the	change.	

	 SldSetRange	 This	sets	the	range	of	the	thumb.	If	this
field	is	changed	Object	must	be	completely
redrawn	to	reflect	the	change.	

	 SldMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 SldTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

SldGetPage	 Returns	the	current	page	size	of	the	object.
Page	size	defines	the	delta	change	of	the
thumb	position	when	incremented	via
SldIncPos()	or	decremented	via
SldDecPos().	Page	size	minimum	value	is	1.
Maximum	value	is	range/2.	

SldGetPos	 Returns	returns	the	current	position	of	the
slider	thumb.	

SldGetRange	 Returns	the	current	range	of	the	thumb.	

SldIncPos	 This	macro	increment	the	slider	position	by
the	delta	change	(page)	value	set.	Object
must	be	redrawn	after	this	function	is	called
to	reflect	the	changes	to	the	object.	

SldDecPos	 This	macro	decrement	the	slider	position	by
the	delta	change	(page)	value	set.	Object
must	be	redrawn	after	this	function	is	called
to	reflect	the	changes	to	the	object.	

Structures

Name	 Description	

SLIDER	 Defines	the	parameters	required	for	a
slider/scrollbar	Object.	Depending	on	the
SLD_SCROLLBAR	state	bit	slider	or
scrollbar	mode	is	set.	If	SLD_SCROLLBAR
is	set,	mode	is	scrollbar;	if	not	set	mode	is
slider.	For	scrollbar	mode,	focus	rectangle	is

not	drawn.	

Topics

Name	 Description	

Slider	States	 List	of	Slider	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Slider	States
Macros	|	Slider/Scroll	Bar

List	of	Slider	bit	states.

Macros

Name	 Description	

SLD_DISABLED	 Bit	for	disabled	state	

SLD_DRAW	 Bit	to	indicate	whole	slider	must	be	redrawn	

SLD_DRAW_FOCUS	 Bit	to	indicate	that	only	the	focus	will	be
redrawn	

SLD_DRAW_THUMB	 Bit	to	indicate	that	only	thumb	area	must	be
redrawn	

SLD_FOCUSED	 Bit	for	focus	state	

SLD_HIDE	 Bit	to	remove	object	from	screen	

SLD_SCROLLBAR	 Bit	for	type	usage	(0	-	Slider,	1	-	ScrollBar)	

SLD_VERTICAL	 Bit	for	orientation	(0	-	horizontal,	1	-
vertical)	

Module

Slider/Scroll	Bar

Links

Macros,	Slider/Scroll	Bar

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll

Bar	>	Slider	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_DISABLED	Macro
C
#define	SLD_DISABLED	0x0002		//	Bit	for	disabled	state

Description

Bit	for	disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_DRAW	Macro
C
#define	SLD_DRAW	0x4000		//	Bit	to	indicate	whole	slider	must	be	redrawn

Description

Bit	to	indicate	whole	slider	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_DRAW_FOCUS	Macro
C
#define	SLD_DRAW_FOCUS	0x2000		//	Bit	to	indicate	that	only	the	focus	will	be	redrawn

Description

Bit	to	indicate	that	only	the	focus	will	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_DRAW_THUMB	Macro
C
#define	SLD_DRAW_THUMB	0x1000		//	Bit	to	indicate	that	only	thumb	area	must	be	redrawn

Description

Bit	to	indicate	that	only	thumb	area	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_DRAW_THUMB	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_FOCUSED	Macro
C
#define	SLD_FOCUSED	0x0001		//	Bit	for	focus	state

Description

Bit	for	focus	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_HIDE	Macro
C
#define	SLD_HIDE	0x8000		//	Bit	to	remove	object	from	screen

Description

Bit	to	remove	object	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_SCROLLBAR	Macro
C
#define	SLD_SCROLLBAR	0x0010		//	Bit	for	type	usage	(0	-	Slider,	1	-	ScrollBar)

Description

Bit	for	type	usage	(0	-	Slider,	1	-	ScrollBar)

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_SCROLLBAR	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLD_VERTICAL	Macro
C
#define	SLD_VERTICAL	0x0004		//	Bit	for	orientation		(0	-	horizontal,	1	-	vertical)

Description

Bit	for	orientation	(0	-	horizontal,	1	-	vertical)

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States	>	SLD_VERTICAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldCreate	Function
Slider/Scroll	Bar

C
SLIDER	*	SldCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				WORD	range,	

				WORD	page,	

				WORD	pos,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	SLIDER	object	with	the	parameters
given.	Depending	on	the	SLD_SCROLLBAR	state	bit	slider	or
scrollbar	mode	is	set.	If	SLD_SCROLLBAR	is	set,	mode	is
scrollbar;	if	not	set	mode	is	slider.	It	automatically	attaches	the
new	object	into	a	global	linked	list	of	objects	and	returns	the
address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	Object.	

WORD	state	 This	defines	the	initial	state	of	the	Object.	

WORD	range	 This	specifies	the	maximum	value	of	the
slider	when	the	thumb	is	on	the	rightmost
position	for	a	horizontal	orientation	and
bottom	most	position	for	the	vertical
orientation.	Minimum	value	is	always	at
zero.	

WORD	page	 This	is	the	incremental	change	of	the	slider
when	user	action	requests	to	move	the
slider	thumb.	This	value	is	added	or
subtracted	to	the	current	position	of	the
thumb.	

WORD	pos	 This	defines	the	initial	position	of	the
thumb.	

GOL_SCHEME	*
pScheme	

The	pointer	to	the	style	scheme	used	for	the
Object.	Set	to	NULL	if	default	style	scheme
is	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

SLIDER	*slider[3];

WORD	state;

				pScheme	=	GOLCreateScheme();

				

				//	create	a	slider	with

				//							range	=	[0	–	50000]

				//							delta	=	500

				//							initial	position	=	25000

				state	=	SLD_DRAW;

				slider[0]	=	SldCreate(5,

																												150,	145,	285,	181,

																												state,

																												50000,	500,	25000,

																												pScheme);

				if	(slider[0]	==	NULL)

								return	0;

				//	create	a	scrollbar	with

				//							range	=	[0	–	100]

				//							delta	=	20

				//							initial	position	=	0

				state	=	SLD_DRAW|SLD_SCROLLBAR;

				slider[1]	=	SldCreate(6,

																												150,	190,	285,	220,

																												state,

																												100,	20,	0,

																												pScheme);

				if	(slider[1]	==	NULL)

								return	0;

	

				//	create	a	vertical	slider	with

				//							range	=	[0	–	30]

				//							delta	=	2

				//							initial	position	=	20

				state	=	SLD_DRAW|SLD_VERTICAL;

				slider[2]	=	SldCreate(7,

																												120,	145,	140,	220,

																												state,

																												30,	2,	20,

																												pScheme);

				if	(slider[2]	==	NULL)

								return	0;

				//	draw	the	sliders

				while(!sldDraw(slider[0]);						//	draw	the	horizontal	slider

				while(!sldDraw(slider[1]);						//	draw	the	horizontal	scroll	bar

				while(!sldDraw(slider[2]);						//	draw	the	vertical	slider

				return	1;

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldDraw	Function
Slider/Scroll	Bar

C
WORD	SldDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	SldCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldSetPage	Function
Slider/Scroll	Bar

C
void	SldSetPage(

				SLIDER	*	pSld,	

				WORD	newPage

);

Overview

This	sets	the	page	size	of	the	object.	Page	size	defines	the	delta
change	of	the	thumb	position	when	incremented	via	SldIncPos()
or	decremented	via	SldDecPos().	Page	size	minimum	value	is	1.
Maximum	value	is	range/2.

Input	Parameters

Input	Parameters	 Description	

SLIDER	*	pSld	 Pointer	to	the	object.	

WORD	newPage	 Value	of	the	new	page	used.	

Returns

None.

Preconditions

none

Side	Effects

Position	of	the	thumb	may	change	when	redrawn.

Example

See	SldIncPos()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldSetPage	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldGetPage	Macro
Slider/Scroll	Bar

C
#define	SldGetPage(pSld)	(((SLIDER*)pSld)->page)

Overview

Returns	the	current	page	size	of	the	object.	Page	size	defines
the	delta	change	of	the	thumb	position	when	incremented	via
SldIncPos()	or	decremented	via	SldDecPos().	Page	size
minimum	value	is	1.	Maximum	value	is	range/2.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object.	

Returns

Returns	the	current	value	of	the	slider	page.

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	page;

SLIDER	*pSld;

				page	=	SldGetPage(pSld);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldGetPage	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldSetPos	Function
Slider/Scroll	Bar

C
void	SldSetPos(

				SLIDER	*	pSld,	

				SHORT	newPos

);

Overview

This	function	sets	the	position	of	the	slider	thumb.	Value	should
be	in	the	set	range	inclusive.	Object	must	be	redrawn	to	reflect
the	change.

Input	Parameters

Input	Parameters	 Description	

SLIDER	*	pSld	 Pointer	to	the	object.	

SHORT	newPos	 The	new	position	of	the	slider's	thumb.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
SLIDER	*pSlider;

DWORD	ctr	=	0;

				//	create	slider	here	and	initialize	parameters

				SetState(pSlider,	SLD_DRAW);

				SldDraw(pSlider);

				while("some	condition")	{

								SldSetPos(pSlider,	ctr);

								SetState(pSlider,	SLD_DRAW_THUMB);

								SldDraw(pSlider);

								//	update	ctr	here

								ctr	=	"some	source	of	value";

				}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldSetPos	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldGetPos	Macro
Slider/Scroll	Bar

C
#define	SldGetPos(pSld)	(((SLIDER*)pSld)->pos)

Overview

Returns	returns	the	current	position	of	the	slider	thumb.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object.	

Returns

Returns	the	current	position	of	the	slider's	thumb.

Preconditions

none

Side	Effects

none

Example

Copy	Code
#define	MAXVALUE	100;

SLIDER	*pSlider;

DWORD	ctr	=	0;

				//	create	slider	here	and	initialize	parameters

				SetState(pSlider,	SLD_DRAW);

				SldDraw(pSlider);

				while("some	condition")	{

								SldSetPos(pSlider,	ctr);

								SetState(pSlider,	SLD_DRAW_THUMB);

								SldDraw(pSlider);

								//	update	ctr	here

								ctr	=	"some	source	of	value";

				}

				if	(SldGetPos(pSlider)	>	(MAXVALUE	–	1))

							return	0;

				else		

								"do	something	else"

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldGetPos	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldSetRange	Function
Slider/Scroll	Bar

C
void	SldSetRange(

				SLIDER	*	pSld,	

				SHORT	newRange

);

Overview

This	sets	the	range	of	the	thumb.	If	this	field	is	changed	Object
must	be	completely	redrawn	to	reflect	the	change.

Input	Parameters

Input	Parameters	 Description	

SLIDER	*	pSld	 Pointer	to	the	object.	

SHORT	newRange	 Value	of	the	new	range	used.	

Returns

None.

Preconditions

none

Side	Effects

Position	of	the	thumb	may	change	when	redrawn.

Example

Copy	Code
SLIDER	*pSld;

				SldSetRange(pSld,	100);

				//	to	completely	redraw	the	object	when	GOLDraw()	is	executed.

				SetState(pSld,	SLD_DRAW);							

																																												

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldSetRange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldGetRange	Macro
Slider/Scroll	Bar

C
#define	SldGetRange(pSld)	(((SLIDER*)pSld)->range)

Overview

Returns	the	current	range	of	the	thumb.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object.	

Returns

Returns	the	current	range	of	the	slider	thumb.

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	range;

SLIDER	*pSld;

				range	=	SldGetRange(pSld);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldGetRange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldIncPos	Macro
Slider/Scroll	Bar

C
#define	SldIncPos(pSld)	\

				SldSetPos																																																																																						\

				(\

								pSld,																																																																																						\

								(((DWORD)	pSld->pos	+	(DWORD)	((SLIDER*)pSld)->page)	<=	(DWORD)	((SLIDER*)pSld)->range)	?		\

																								(((SLIDER*)pSld)->pos	+	((SLIDER*)pSld)->page)	:	((SLIDER*)pSld)->range				\

)

Overview

This	macro	increment	the	slider	position	by	the	delta	change
(page)	value	set.	Object	must	be	redrawn	after	this	function	is
called	to	reflect	the	changes	to	the	object.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	ControlSpeed(SLIDER*	pSld,	int	setSpeed,	int	curSpeed)

{

				SldSetPage(pSld,	1);																				//	set	page	size	to	1

				if	(setSpeed	<	curSpeed)	{

								while(SldGetPos(pSld)	<	SetSpeed)

												SldIncPos(pSld);																//	increment	by	1

				}

				else	if	(setSpeed	>	curSpeed)	{

								while(SldGetPos(pSld)	>	SetSpeed)			

												SldDecPos(pSld);																//	decrement	by	1

				}

}

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldIncPos	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldDecPos	Macro
Slider/Scroll	Bar

C
#define	SldDecPos(pSld)	\

				SldSetPos																																																																																						\

				(\

								pSld,																																																																																						\

								(((LONG)	((SLIDER*)pSld)->pos	-	(LONG)	((SLIDER*)pSld)->page)	>=	0)	?																						\

																								(((SLIDER*)pSld)->pos	-	((SLIDER*)pSld)->page)	:	0																									\

)

Overview

This	macro	decrement	the	slider	position	by	the	delta	change
(page)	value	set.	Object	must	be	redrawn	after	this	function	is
called	to	reflect	the	changes	to	the	object.

Input	Parameters

Input	Parameters	 Description	

pSld	 Pointer	to	the	object.	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	SldIncPos()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldDecPos	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldMsgDefault	Function
Slider/Scroll	Bar

C
void	SldMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated
Message	

Input
Source	

Set/Clear	State	Bit	 Description	

SLD_MSG_INC	 Touch
Screen,
Keyboard	

Set
SLD_DRAW_THUMB	

Slider	will	be
redrawn	with
thumb	 in	 the
incremented
position.	

SLD_MSG_DEC	 Touch
Screen,
Keyboard	

Set
SLD_DRAW_THUMB	

Slider	will	be
redrawn	with
thumb	 in	 the
decremented
position.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pSld	 The	pointer	to	the	object	whose	state	will	be
modified.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SldTranslateMsg	Function
Slider/Scroll	Bar

C
WORD	SldTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

SLD_MSG_INC	 Touch
Screen	

EVENT_PRESS,
EVENT_MOVE	

If	events	occurs	and	the	x,y
position	 falls	 in	 the	area	of
the	 slider	 and	 the	 slider
position	 is	 to	 the	 LEFT	 of
the	 x,y	 position	 for	 a
horizontal	slider	or	BELOW
the	 x,y	 position	 for	 a
vertical	slider.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_UP_PRESSED

SCAN_LEFT_PRESSED

SLD_MSG_DEC	 Touch
Screen	

EVENT_PRESS,
EVENT_MOVE	

If	events	occurs	and	the	x,y
position	 falls	 in	 the	area	of
the	 slider	 and	 the	 slider
position	 is	 to	 the	RIGHT	of
the	 x,y	 position	 for	 a
horizontal	 slider	 or	ABOVE
the	 x,y	 position	 for	 a
vertical	slider.	

	 Keyboard	 EVENT_KEYSCAN	 If	 event	 occurs	 and
parameter1	 passed
matches	the	object’s	ID	and
parameter	 2	 passed
matches
SCAN_DOWN_PRESSED
or
SCAN_RIGHT_PRESSED

OBJ_MSG_PASSIVE	 Touch
Screen	

EVENT_RELEASE	 If	events	occurs	and	the	x,y
position	 falls	 in	 the	area	of
the	slider.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the	 message	 did	 not
affect	the	object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pSld	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

SLD_MSG_INC	–	Increment	slider	position
SLD_MSG_DEC	–	Decrement	slider	position
OBJ_MSG_PASSIVE	–	Slider	is	not	affected
OBJ_MSG_INVALID	–	Slider	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SldTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SLIDER	Structure
Slider/Scroll	Bar

C
typedef	struct	{

		OBJ_HEADER	hdr;

		WORD	currPos;

		WORD	prevPos;

		WORD	range;

		WORD	pos;

		WORD	page;

		WORD	thWidth;

		WORD	thHeight;

}	SLIDER;

Overview

Defines	the	parameters	required	for	a	slider/scrollbar	Object.
Depending	on	the	SLD_SCROLLBAR	state	bit	slider	or	scrollbar
mode	is	set.	If	SLD_SCROLLBAR	is	set,	mode	is	scrollbar;	if	not
set	mode	is	slider.	For	scrollbar	mode,	focus	rectangle	is	not
drawn.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

WORD	currPos;	 Position	of	the	slider	relative	to	minimum.	

WORD	prevPos;	 Previous	position	of	the	slider	relative	to
minimum.	

WORD	range;	 User	defined	range	of	the	slider.	Minimum
value	at	0	and	maximum	at	0x7FFF.	

WORD	pos;	 Position	of	the	slider	in	range	domain.	

WORD	page;	 User	specified	resolution	to	incrementally
change	the	position	

WORD	thWidth;	 Thumb	width.	This	is	computed	internally.	

WORD	thHeight;	 Thumb	width.	This	is	computed	internally.
User	must	not	change	this	value.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	SLIDER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Static	Text
Functions	|	Macros	|	Structures	|	Topics

Static	Text	supports	only	Touchscreen	inputs,	replying	to	their
events	with	the	message:	

ST_MSG_SELECTED	-	when	the	touch	is	within	the	dimension
of	the	object.	

	

The	Static	Text	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 StCreate	 This	function	creates	a	STATICTEXT	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of	the
object.	

	 StDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter	settings.
Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The

colors	used	are	dependent	on	the	state	of
the	object.	The	font	used	is	determined	by
the	style	scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 StSetText	 This	function	sets	the	string	that	will	be	used
for	the	object.	

	 StTranslateMsg	 This	function	evaluates	the	message	from	a
user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Macros

Name	 Description	

StGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Structures

Name	 Description	

STATICTEXT	 Defines	the	parameters	required	for	a	Static
Text	Object.	

Topics

Name	 Description	

Static	Text	States	 List	of	Static	Text	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Static	Text	States
Macros	|	Static	Text

List	of	Static	Text	bit	states.

Macros

Name	 Description	

ST_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned.	

ST_DISABLED	 Bit	for	disabled	state.	

ST_DRAW	 Bit	to	indicate	static	text	must	be	redrawn.	

ST_FRAME	 Bit	to	indicate	frame	is	displayed.	

ST_HIDE	 Bit	to	remove	object	from	screen.	

ST_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned.	

ST_UPDATE	 Bit	to	indicate	that	text	area	only	is	redrawn.	

Module

Static	Text

Links

Macros,	Static	Text

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_CENTER_ALIGN	Macro
C
#define	ST_CENTER_ALIGN	0x0008		//	Bit	to	indicate	text	is	center	aligned.

Description

Bit	to	indicate	text	is	center	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_CENTER_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_DISABLED	Macro
C
#define	ST_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_DRAW	Macro
C
#define	ST_DRAW	0x4000		//	Bit	to	indicate	static	text	must	be	redrawn.

Description

Bit	to	indicate	static	text	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_FRAME	Macro
C
#define	ST_FRAME	0x0010		//	Bit	to	indicate	frame	is	displayed.

Description

Bit	to	indicate	frame	is	displayed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_FRAME	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_HIDE	Macro
C
#define	ST_HIDE	0x8000		//	Bit	to	remove	object	from	screen.

Description

Bit	to	remove	object	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_RIGHT_ALIGN	Macro
C
#define	ST_RIGHT_ALIGN	0x0004		//	Bit	to	indicate	text	is	left	aligned.

Description

Bit	to	indicate	text	is	left	aligned.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_RIGHT_ALIGN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ST_UPDATE	Macro
C
#define	ST_UPDATE	0x2000		//	Bit	to	indicate	that	text	area	only	is	redrawn.

Description

Bit	to	indicate	that	text	area	only	is	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States	>	ST_UPDATE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

StCreate	Function
Static	Text

C
STATICTEXT	*	StCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	STATICTEXT	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

XCHAR	*	pText	 Pointer	to	the	text	used	in	the	static	text.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme.	Set	to	NULL	if
default	style	scheme	is	used.	

Returns

Returns	the	pointer	to	the	object	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme;

STATICTEXT	*pSt;

				

				pScheme	=	GOLCreateScheme();

				state	=	ST_DRAW	|	ST_FRAME	|	ST_CENTER_ALIGN;

				StCreate(ID_STATICTEXT1,										//	ID

													30,80,235,160,											//	dimension

													state,																			//	has	frame	and	center	aligned

													"Static	Textn	Example",	//	text

													pScheme);																//	use	given	scheme

				

				while(!StDraw(pSt));														//	draw	the	object

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
StCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

StDraw	Function
Static	Text

C
WORD	StDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pSt	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	StCreate()	Example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
StDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

StGetText	Macro
Static	Text

C
#define	StGetText(pSt)	pSt->pText

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	object.

Input	Parameters

Input	Parameters	 Description	

pSt	 Pointer	to	the	object.	

Returns

Returns	the	pointer	to	the	text	string	used.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
StGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

StSetText	Function
Static	Text

C
void	StSetText(

				STATICTEXT	*	pSt,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	string	that	will	be	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

STATICTEXT	*	pSt	 The	pointer	to	the	object	whose	text	string
will	be	modified.	

XCHAR	*	pText	 The	pointer	to	the	string	that	will	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>

StSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

StTranslateMsg	Function
Static	Text

C
WORD	StTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	and
keyboard	inputs.	

	

Translated	Message	 Input
Source	

Events	 Description	

ST_MSG_SELECTED	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 area
of	 the	 static
text.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pSt	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

ST_MSG_SELECTED	–	Static	Text	is	selected
OBJ_MSG_INVALID	–	Static	Text	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
StTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

STATICTEXT	Structure
Static	Text

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textHeight;

		XCHAR	*	pText;

}	STATICTEXT;

Overview

Defines	the	parameters	required	for	a	Static	Text	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textHeight;	 Pre-computed	text	height.	

XCHAR	*	pText;	 The	pointer	to	text	used.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
STATICTEXT	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Text	Entry
Functions	|	Macros	|	Structures	|	Topics

Text	Entry	supports	only	Touchscreen	inputs,	replying	to	their
events	with	the	following	messages:	

1.	TE_MSG_RELEASE	–	A	key	has	been	released.	

2.	TE_MSG_PRESS	–	A	key	is	pressed.	

3.	TE_MSG_ADD_CHAR	–	A	key	was	released	with	character
assigned.	

4.	TE_MSG_DELETE	–	A	key	was	released	with	delete
command	assigned.	

5.	TE_MSG_SPACE	-	A	key	was	released	with	space	command
assigned.	

6.	TE_MSG_ENTER	-	A	key	was	released	with	enter	command
assigned.	

	

The	Text	Entry	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 TeCreate	 This	function	creates	a	TEXTENTRY
object	with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 TeDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used
are	dependent	on	the	state	of	the

object.
This	widget	will	draw	the	keys	using
the	function	GOLPanelDraw().	The
number	of	keys	will	depend	on	the
horizontal	and	vertical	parameters
given	(horizontalKeys*verticakKeys).	

	 TeSetBuffer	 This	function	sets	the	buffer	used	to
display	text.	If	the	buffer	is	initialized
with	a	string,	the	string	must	be	a	null
terminated	string.	If	the	string	length	is
greater	than	MaxSize,	string	will	be
truncated	to	MaxSize.	pText	must
point	to	a	valid	memory	location	with
size	equal	to	MaxSize+1.	The	+1	is
used	for	the	string	terminator.	

	 TeClearBuffer	 This	function	will	clear	the	data	in	the
display.	You	must	set	the	drawing
state	bit	TE_UPDATE_TEXT	to	update
the	TEXTENTRY	on	the	screen.	

	 TeGetKeyCommand	 This	function	will	return	the	currently
used	command	by	a	key	with	the
given	index.	

	 TeSetKeyCommand	 This	function	will	assign	a	command
(TE_DELETE_COM,
TE_SPACE_COM	or
TE_ENTER_COM)	to	a	key	with	the
given	index.	

	 TeCreateKeyMembers	 This	function	will	create	the	list	of
KEYMEMBERS	that	holds	the
information	on	each	key.	The	number
of	keys	is	determined	by	the	equation
(verticalKeys*horizontalKeys).	The

object	creates	the	information	holder
for	each	key	automatically	and	assigns
each	entry	in	the	*pText[]	array	with
the	first	entry	automatically	assigned
to	the	key	with	an	index	of	1.	The
number	of	entries	to	*pText[]	must	be
equal	or	greater	than
(verticalKeys*horizontalKeys).	The	last
key	is	assigned	with	an	index	of
(verticalKeys*horizontalKeys)-1.	No
checking	is	performed	on	the	length	of
*pText[]	entries	to	match
(verticalKeys*horizontalKeys).	

	 TeAddChar	 This	function	will	insert	a	character	to
the	end	of	the	buffer.	The	character
inserted	is	dependent	on	the	currently
pressed	key.	Drawing	states
TE_UPDATE_TEXT	or	TE_DRAW
must	be	set	to	see	the	effect	of	this
insertion.	

	 TeIsKeyPressed	 This	function	will	test	if	a	key	given	by
its	index	in	the	TextEntry	object	has
been	pressed.	

	 TeSpaceChar	 This	function	will	insert	a	space
character	to	the	end	of	the	buffer.
Drawing	states	TE_UPDATE_TEXT	or
TE_DRAW	must	be	set	to	see	the
effect	of	this	insertion.	

	 TeDelKeyMembers	 This	function	will	delete	the
KEYMEMBER	list	assigned	to	the
object	from	memory.	Pointer	to	the
KEYMEMBER	list	is	then	initialized	to
NULL.	

	 TeSetKeyText	 This	function	will	set	the	test	assigned
to	a	key	with	the	given	index.	

	 TeMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated
message	given.	The	following	state
changes	are	supported:		

	 TeTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect
the	object	or	not.	If	the	message	is
valid,	the	keys	in	the	Text	Entry	object
will	be	scanned	to	detect	which	key
was	pressed.	If	True,	the
corresponding	text	will	be	displayed,
the	‘text’	will	also	be	stored	in	the
TeOutput	parameter	of	the	object.
	

Macros

Name	 Description	

TeGetBuffer	 This	macro	will	return	the	currently	used
buffer	in	the	TextEntry	object.	

Structures

Name	 Description	

TEXTENTRY	 Defines	the	parameters	required	for	a
TextEntry	Object.	

KEYMEMBER	 Defines	the	parameters	and	the	strings
assigned	for	each	key.	

Topics

Name	 Description	

TextEntry	States	 List	of	Text	Entry	bit	states.	

Key	Command	Types	 List	of	available	Key	command	types.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TextEntry	States
Macros	|	Text	Entry

List	of	Text	Entry	bit	states.

Macros

Name	 Description	

TE_KEY_PRESSED	 Bit	for	press	state	of	one	of	the	keys.	

TE_DISABLED	 Bit	for	disabled	state.	

TE_ECHO_HIDE	 Bit	to	hide	the	entered	characters	and
instead	echo	"*"	characters	to	the	display.	

TE_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

TE_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

TE_UPDATE_KEY	 Bit	to	indicate	redraw	of	a	key	is	needed.	

TE_UPDATE_TEXT	 Bit	to	indicate	redraw	of	the	text	displayed	is
needed.	

Module

Text	Entry

Links

Macros,	Text	Entry

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_KEY_PRESSED	Macro
C
#define	TE_KEY_PRESSED	0x0004		//	Bit	for	press	state	of	one	of	the	keys.

Description

Bit	for	press	state	of	one	of	the	keys.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_KEY_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_DISABLED	Macro
C
#define	TE_DISABLED	0x0002		//	Bit	for	disabled	state.

Description

Bit	for	disabled	state.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_ECHO_HIDE	Macro
C
#define	TE_ECHO_HIDE	0x0008		//	Bit	to	hide	the	entered	characters	and	instead	echo	"*"	characters	to	the	display.

Description

Bit	to	hide	the	entered	characters	and	instead	echo	"*"
characters	to	the	display.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_ECHO_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_DRAW	Macro
C
#define	TE_DRAW	0x4000		//	Bit	to	indicate	object	must	be	redrawn.

Description

Bit	to	indicate	object	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_HIDE	Macro
C
#define	TE_HIDE	0x8000		//	Bit	to	indicate	object	must	be	removed	from	screen.

Description

Bit	to	indicate	object	must	be	removed	from	screen.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_UPDATE_KEY	Macro
C
#define	TE_UPDATE_KEY	0x2000		//	Bit	to	indicate	redraw	of	a	key	is	needed.

Description

Bit	to	indicate	redraw	of	a	key	is	needed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_UPDATE_KEY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_UPDATE_TEXT	Macro
C
#define	TE_UPDATE_TEXT	0x1000		//	Bit	to	indicate	redraw	of	the	text	displayed	is	needed.

Description

Bit	to	indicate	redraw	of	the	text	displayed	is	needed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States	>	TE_UPDATE_TEXT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Key	Command	Types
Macros	|	Text	Entry

List	of	available	Key	command	types.

Macros

Name	 Description	

TE_DELETE_COM	 This	macro	is	used	to	assign	a	"delete"
command	on	a	key.	

TE_ENTER_COM	 This	macro	is	used	to	assign	an	"enter"
(carriage	return)	command	on	a	key.	

TE_SPACE_COM	 This	macro	is	used	to	assign	an	insert
"space"	command	on	a	key.	

Module

Text	Entry

Links

Macros,	Text	Entry

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
Key	Command	Types

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_DELETE_COM	Macro
C
#define	TE_DELETE_COM	0x01				//	This	macro	is	used	to	assign	a	"delete"	command	on	a	key.

Description

This	macro	is	used	to	assign	a	"delete"	command	on	a	key.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
Key	Command	Types	>	TE_DELETE_COM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_ENTER_COM	Macro
C
#define	TE_ENTER_COM	0x03				//	This	macro	is	used	to	assign	an	"enter"	(carriage	return)	command	on	a	key.

Description

This	macro	is	used	to	assign	an	"enter"	(carriage	return)
command	on	a	key.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
Key	Command	Types	>	TE_ENTER_COM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TE_SPACE_COM	Macro
C
#define	TE_SPACE_COM	0x02				//	This	macro	is	used	to	assign	an	insert	"space"	command	on	a	key.

Description

This	macro	is	used	to	assign	an	insert	"space"	command	on	a
key.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
Key	Command	Types	>	TE_SPACE_COM	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeCreate	Function
Text	Entry

C
TEXTENTRY	*	TeCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				SHORT	horizontalKeys,	

				SHORT	verticalKeys,	

				XCHAR	*	pText[],	

				void	*	pBuffer,	

				WORD	bufferLength,	

				void	*	pDisplayFont,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	TEXTENTRY	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance	

SHORT	left	 Left	most	position	of	the	object.	

SHORT	top	 Top	most	position	of	the	object.	

SHORT	right	 Right	most	position	of	the	object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 state	of	the	widget.	

SHORT
horizontalKeys	

Number	of	horizontal	keys	

SHORT	verticalKeys	 Number	of	vertical	keys	

XCHAR	*	pText[]	 array	of	pointer	to	the	custom	"text"
assigned	by	the	user.	

void	*	pBuffer	 pointer	to	the	buffer	that	holds	the	text	to	be
displayed.	

WORD	bufferLength	 length	of	the	buffer	assigned	by	the	user.	

void	*	pDisplayFont	 pointer	to	the	font	image	to	be	used	on	the
editbox	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.
Output	Returns	the	pointer	to	the	object
created.	

Preconditions

If	the	object	will	use	customized	keys,	the	structure
CUSTOMEKEYS	must	be	populated	before	calling	this	function.

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>

TeCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeDraw	Function
Text	Entry

C
WORD	TeDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	

This	widget	will	draw	the	keys	using	the	function
GOLPanelDraw().	The	number	of	keys	will	depend	on	the
horizontal	and	vertical	parameters	given
(horizontalKeys*verticakKeys).

Input	Parameters

Input	Parameters	 Description	

pTe	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeGetBuffer	Macro
Text	Entry

C
#define	TeGetBuffer(pTe)	(((TEXTENTRY	*)pTe)->pTeOutput)

Overview

This	macro	will	return	the	currently	used	buffer	in	the	TextEntry
object.

Input	Parameters

Input	Parameters	 Description	

pTe	 pointer	to	the	object	

Returns

It	will	return	a	pointer	to	the	buffer	used.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeGetBuffer	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeSetBuffer	Function
Text	Entry

C
void	TeSetBuffer(

				TEXTENTRY	*	pTe,	

				XCHAR	*	pText,	

				WORD	MaxSize

);

Overview

This	function	sets	the	buffer	used	to	display	text.	If	the	buffer	is
initialized	with	a	string,	the	string	must	be	a	null	terminated
string.	If	the	string	length	is	greater	than	MaxSize,	string	will	be
truncated	to	MaxSize.	pText	must	point	to	a	valid	memory
location	with	size	equal	to	MaxSize+1.	The	+1	is	used	for	the
string	terminator.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

XCHAR	*	pText	 pointer	to	the	new	text	buffer	to	be
displayed	

maxSize	 maximum	length	of	the	new	buffer	to	be
used.	

Returns

none.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeSetBuffer	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeClearBuffer	Function
Text	Entry

C
void	TeClearBuffer(

				TEXTENTRY	*	pTe

);

Overview

This	function	will	clear	the	data	in	the	display.	You	must	set	the
drawing	state	bit	TE_UPDATE_TEXT	to	update	the	TEXTENTRY
on	the	screen.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

Returns

none

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeClearBuffer	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeGetKeyCommand	Function
Text	Entry

C
WORD	TeGetKeyCommand(

				TEXTENTRY	*	pTe,	

				WORD	index

);

Overview

This	function	will	return	the	currently	used	command	by	a	key
with	the	given	index.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

WORD	index	 index	to	the	key	in	the	link	list	

Returns

It	will	return	the	command	ID	currently	set	for	the	key.	If	the	given
index	is	not	in	the	list	the	function	returns	zero.	0x00	-	no
command	is	assigned	or	the	index	given	does	not	exist.	0x01	-
TE_DELETE_COM	0x02	-	TE_SPACE_COM	0x03	-
TE_ENTER_COM

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeGetKeyCommand	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeSetKeyCommand	Function
Text	Entry

C
BOOL	TeSetKeyCommand(

				TEXTENTRY	*	pTe,	

				WORD	index,	

				WORD	command

);

Overview

This	function	will	assign	a	command	(TE_DELETE_COM,
TE_SPACE_COM	or	TE_ENTER_COM)	to	a	key	with	the	given
index.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

WORD	index	 index	to	the	key	in	the	link	list	

WORD	command	 command	assigned	for	the	key	

Returns

Returns	TRUE	if	successful	and	FALSE	if	not.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeSetKeyCommand	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeCreateKeyMembers	Function
Text	Entry

C
KEYMEMBER	*	TeCreateKeyMembers(

				TEXTENTRY	*	pTe,	

				XCHAR	*	pText[]

);

Overview

This	function	will	create	the	list	of	KEYMEMBERS	that	holds	the
information	on	each	key.	The	number	of	keys	is	determined	by
the	equation	(verticalKeys*horizontalKeys).	The	object	creates
the	information	holder	for	each	key	automatically	and	assigns
each	entry	in	the	*pText[]	array	with	the	first	entry	automatically
assigned	to	the	key	with	an	index	of	1.	The	number	of	entries	to
*pText[]	must	be	equal	or	greater	than
(verticalKeys*horizontalKeys).	The	last	key	is	assigned	with	an
index	of	(verticalKeys*horizontalKeys)-1.	No	checking	is
performed	on	the	length	of	*pText[]	entries	to	match
(verticalKeys*horizontalKeys).

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

XCHAR	*	pText[]	 pointer	to	the	text	defined	by	the	user	

Returns

Returns	the	pointer	to	the	newly	created	KEYMEMBER	list.	A

NULL	is	returned	if	the	list	is	not	created	succesfully.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeCreateKeyMembers	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeAddChar	Function
Text	Entry

C
void	TeAddChar(

				TEXTENTRY	*	pTe

);

Overview

This	function	will	insert	a	character	to	the	end	of	the	buffer.	The
character	inserted	is	dependent	on	the	currently	pressed	key.
Drawing	states	TE_UPDATE_TEXT	or	TE_DRAW	must	be	set	to
see	the	effect	of	this	insertion.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeAddChar	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeIsKeyPressed	Function
Text	Entry

C
BOOL	TeIsKeyPressed(

				TEXTENTRY	*	pTe,	

				WORD	index

);

Overview

This	function	will	test	if	a	key	given	by	its	index	in	the	TextEntry
object	has	been	pressed.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

WORD	index	 index	to	the	key	in	the	link	list	

Returns

Returns	a	TRUE	if	the	key	is	pressed.	FALSE	if	key	is	not
pressed	or	the	given	index	does	not	exist	in	the	list.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeIsKeyPressed	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeSpaceChar	Function
Text	Entry

C
void	TeSpaceChar(

				TEXTENTRY	*	pTe

);

Overview

This	function	will	insert	a	space	character	to	the	end	of	the	buffer.
Drawing	states	TE_UPDATE_TEXT	or	TE_DRAW	must	be	set	to
see	the	effect	of	this	insertion.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

Returns

none.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeSpaceChar	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeDelKeyMembers	Function
Text	Entry

C
void	TeDelKeyMembers(

				void	*	pObj

);

Overview

This	function	will	delete	the	KEYMEMBER	list	assigned	to	the
object	from	memory.	Pointer	to	the	KEYMEMBER	list	is	then
initialized	to	NULL.

Input	Parameters

Input	Parameters	 Description	

pTe	 pointer	to	the	object	

Returns

none.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeDelKeyMembers	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeSetKeyText	Function
Text	Entry

C
BOOL	TeSetKeyText(

				TEXTENTRY	*	pTe,	

				WORD	index,	

				XCHAR	*	pText

);

Overview

This	function	will	set	the	test	assigned	to	a	key	with	the	given
index.

Input	Parameters

Input	Parameters	 Description	

TEXTENTRY	*	pTe	 pointer	to	the	object	

WORD	index	 index	to	the	key	in	the	link	list	

XCHAR	*	pText	 pointer	to	the	new	string	to	be	used	

Returns

Returns	TRUE	if	successful	and	FALSE	if	not.

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeSetKeyText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeMsgDefault	Function
Text	Entry

C
void	TeMsgDefault(

				WORD	translatedMsg,	

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	performs	the	actual	state	change	based	on	the
translated	message	given.	The	following	state	changes	are
supported:

Translated	Message	 Input
Source	

Set/Clear	State	Bit	 Description	

TE_MSG_ADD_CHAR	 Touch
Screen,	

Set
TE_UPDATE_TEXT,
TE_UPDATE_KEY,	

Add	 a
character	 in
the	 buffer
and	 update
the	 text
displayed.	

	 	 Clear
TE_KEY_PRESSED	

	

TE_MSG_SPACE	 Touch
Screen,	

Set
TE_UPDATE_TEXT,
TE_UPDATE_KEY,	

Insert	 a
space
character	 in
the	 buffer
and	 update
the	 text
displayed.	

	 	 Clear
TE_KEY_PRESSED	

	

TE_MSG_DELETE	 Touch
Screen,	

Set
TE_UPDATE_TEXT,
TE_UPDATE_KEY,	

Delete	 the
most	 recent
character	 in
the	 buffer
and	 update
the	 text
displayed.	

	 	 Clear
TE_KEY_PRESSED	

	

TE_MSG_ENTER	 Touch
Screen,	

Set
TE_UPDATE_TEXT,
TE_UPDATE_KEY,	

User	 can
define	 the
use	 of	 this
event	 in	 the
message
callback.
Object	 will
just	 update
the	key.	

	 	 Clear
TE_KEY_PRESSED	

	

TE_MSG_RELEASED	 Touch
Screen,	

Clear
TE_KEY_PRESSED	

A	Key	 in	 the
object	will	be
redrawn	 in
the
unpressed
state.	

	 	 Set
Te_UPDATE_KEY	

	

TE_MSG_PRESSED	 Touch
Screen,	

Set
TE_KEY_PRESSED
TE_UPDATE_KEY	

A	Key	 in	 the
object	will	be
redrawn	 in

the	 pressed
state.	

Input	Parameters

Input	Parameters	 Description	

WORD	translatedMsg	 The	translated	message.	

GOL_MSG	*	pMsg	 The	pointer	to	the	GOL	message.	

pTe	 The	pointer	to	the	object	whose	state	will	be
modified.	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeMsgDefault	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TeTranslateMsg	Function
Text	Entry

C
WORD	TeTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	If	the	message	is	valid,	the	keys	in
the	Text	Entry	object	will	be	scanned	to	detect	which	key	was
pressed.	If	True,	the	corresponding	text	will	be	displayed,	the
‘text’	will	also	be	stored	in	the	TeOutput	parameter	of	the	object.	

	

Translated	Message	 Input
Source	

Events	 Description	

TE_MSG_PRESS	 Touch
Screen	

EVENT_PRESS,
EVENT_MOVE	

If	 the	 event
occurs	 and
the	 x,y
position	 falls
in	the	face	of
one	 of	 the
keys	 of	 the
object	 while
the	 key	 is
unpressed.	

TE_MSG_RELEASED	 Touch
Screen	

EVENT_MOVE	 If	 the	 event
occurs	 and
the	 x,y

position	 falls
outside	 the
face	 of	 one
of	 the	 keys
of	 the	 object
while	the	key
is	pressed.	

TE_MSG_RELEASED	 Touch
Screen	

EVENT_RELEASE	 If	 the	 event
occurs	 and
the	 x,y
position	 falls
does	 not
falls	 inside
any	 of	 the
faces	 of	 the
keys	 of	 the
object.	

TE_MSG_ADD_CHAR	 Touch
Screen	

EVENT_RELEASE,
EVENT_MOVE	

If	 the	 event
occurs	 and
the	 x,y
position	 falls
in	the	face	of
one	 of	 the
keys	 of	 the
object	 while
the	 key	 is
unpressed
and	 the	 key
is	associated
with	 no
commands.	

TE_MSG_DELETE	 Touch
Screen	

EVENT_RELEASE,
EVENT_MOVE	

If	 the	 event
occurs	 and
the	 x,y
position	 falls

in	the	face	of
one	 of	 the
keys	 of	 the
object	 while
the	 key	 is
unpressed
and	 the	 key
is	associated
with	 delete
command.	

TE_MSG_SPACE	 Touch
Screen	

EVENT_RELEASE,
EVENT_MOVE	

If	 the	 event
occurs	 and
the	 x,y
position	 falls
in	the	face	of
one	 of	 the
keys	 of	 the
object	 while
the	 key	 is
unpressed
and	 the	 key
is	associated
with	 space
command.	

TE_MSG_ENTER	 Touch
Screen	

EVENT_RELEASE,
EVENT_MOVE	

If	 the	 event
occurs	 and
the	 x,y
position	 falls
in	the	face	of
one	 of	 the
keys	 of	 the
object	 while
the	 key	 is
unpressed
and	 the	 key
is	associated

with	 enter
command.	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pTe	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

TE_MSG_PRESS	–	A	key	is	pressed
TE_MSG_RELEASED	-	A	key	was	released	(generic	for	keys	with
no	commands	or	characters	assigned)
TE_MSG_ADD_CHAR	–	A	key	was	released	with	character
assigned
TE_MSG_DELETE	–	A	key	was	released	with	delete	command
assigned
TE_MSG_SPACE	-	A	key	was	released	with	space	command
assigned
TE_MSG_ENTER	-	A	key	was	released	with	enter	command
assigned
OBJ_MSG_INVALID	–	Text	Entry	is	not	affected

Preconditions

none

Side	Effects

none.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TeTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TEXTENTRY	Structure
Text	Entry

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	horizontalKeys;

		SHORT	verticalKeys;

		XCHAR	*	pTeOutput;

		WORD	CurrentLength;

		WORD	outputLenMax;

		KEYMEMBER	*	pActiveKey;

		KEYMEMBER	*	pHeadOfList;

		void	*	pDisplayFont;

}	TEXTENTRY;

Overview

Defines	the	parameters	required	for	a	TextEntry	Object.

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	objects	(see
OBJ_HEADER).	

SHORT
horizontalKeys;	

Number	of	horizontal	keys	

SHORT	verticalKeys;	 Number	of	vertical	keys	

XCHAR	*	pTeOutput;	 Pointer	to	the	buffer	assigned	by	the	user
which	holds	the	text	shown	in	the	editbox.	

WORD Current	length	of	the	string	in	the	buffer.	The

CurrentLength;	 maximum	value	of	this	is	equal	to
outputLenMax.	

WORD	outputLenMax;	 Maximum	expected	length	of	output	buffer
pTeOutput	

KEYMEMBER	*
pActiveKey;	

Pointer	to	the	active	key	KEYMEMBER.
This	is	only	used	by	the	Widget.	User	must
not	change	

KEYMEMBER	*
pHeadOfList;	

Pointer	to	head	of	the	list	

void	*	pDisplayFont;	 Pointer	to	the	font	used	in	displaying	the
text.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TEXTENTRY	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

KEYMEMBER	Structure
Text	Entry

C
typedef	struct	{

		SHORT	left;

		SHORT	top;

		SHORT	right;

		SHORT	bottom;

		SHORT	index;

		WORD	state;

		BOOL	update;

		WORD	command;

		XCHAR	*	pKeyName;

		SHORT	textWidth;

		SHORT	textHeight;

		void	*	pNextKey;

}	KEYMEMBER;

Overview

Defines	the	parameters	and	the	strings	assigned	for	each	key.

Members

Members	 Description	

SHORT	left;	 Left	position	of	the	key	

SHORT	top;	 Top	position	of	the	key	

SHORT	right;	 Right	position	of	the	key	

SHORT	bottom;	 Bottom	position	of	the	key	

SHORT	index;	 Index	of	the	key	in	the	list	

WORD	state;	 State	of	the	key.	Either	Pressed
(TE_KEY_PRESSED)	or	Released	(0)	

BOOL	update;	 flag	to	indicate	key	is	to	be	redrawn	with	the
current	state	

WORD	command;	 Command	of	the	key.	Either
TE_DELETE_COM,	TE_SPACE_COM	or
TE_ENTER_COM.	

XCHAR	*	pKeyName;	 Pointer	to	the	custom	text	assigned	to	the
key.	This	is	displayed	over	the	face	of	the
key.	

SHORT	textWidth;	 Computed	text	width,	done	at	creation.
Used	to	predict	size	and	position	of	text	on
the	key	face.	

SHORT	textHeight;	 Computed	text	height,	done	at	creation.
Used	to	predict	size	and	position	of	text	on
the	key	face.	

void	*	pNextKey;	 Pointer	to	the	next	key	parameters.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
KEYMEMBER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Window
Functions	|	Macros	|	Structures	|	Topics

Window	supports	only	Touchscreen	inputs,	replying	to	their
events	with	the	following	messages:	

1.	WND_MSG_TITLE	–	Title	area	is	selected.	

2.	WND_MSG_CLIENT	–	Client	area	is	selected.	

	

The	Window	Object	is	rendered	using	the	assigned	style
scheme.	The	following	figure	illustrates	the	color	assignments.	

	

	

Functions

	 Name	 Description	

	 WndCreate	 This	function	creates	a	WINDOW	object
with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 WndDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is

determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 WndSetText	 This	function	sets	the	string	used	for	the
title	bar.	

	 WndTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of
the	touch	screen	inputs.
	

Macros

Name	 Description	

WndGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	title	bar.	

Structures

Name	 Description	

WINDOW	 The	structure	contains	data	for	the	window	

Topics

Name	 Description	

Window	States	 List	of	Window	bit	states.	

Links

Functions,	GOL	Objects,	Legend,	Macros,	Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Window	States
Macros	|	Window

List	of	Window	bit	states.

Macros

Name	 Description	

WND_DISABLED	 Bit	for	disabled	state	

WND_DRAW	 Bits	to	indicate	whole	window	must	be
redrawn	

WND_DRAW_CLIENT	 Bit	to	indicate	client	area	must	be	redrawn	

WND_DRAW_TITLE	 Bit	to	indicate	title	area	must	be	redrawn	

WND_FOCUSED	 Bit	for	focus	state	

WND_HIDE	 Bit	to	indicate	window	must	be	removed
from	screen	

WND_TITLECENTER	 Bit	to	center	the	text	on	the	Title	Area	

Module

Window

Links

Macros,	Window

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_DISABLED	Macro
C
#define	WND_DISABLED	0x0002		//	Bit	for	disabled	state

Description

Bit	for	disabled	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_DRAW	Macro
C
#define	WND_DRAW	0x6000		//	Bits	to	indicate	whole	window	must	be	redrawn

Description

Bits	to	indicate	whole	window	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_DRAW_CLIENT	Macro
C
#define	WND_DRAW_CLIENT	0x4000		//	Bit	to	indicate	client	area	must	be	redrawn

Description

Bit	to	indicate	client	area	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_DRAW_CLIENT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_DRAW_TITLE	Macro
C
#define	WND_DRAW_TITLE	0x2000		//	Bit	to	indicate	title	area	must	be	redrawn

Description

Bit	to	indicate	title	area	must	be	redrawn

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_DRAW_TITLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_FOCUSED	Macro
C
#define	WND_FOCUSED	0x0001		//	Bit	for	focus	state

Description

Bit	for	focus	state

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_HIDE	Macro
C
#define	WND_HIDE	0x8000		//	Bit	to	indicate	window	must	be	removed	from	screen

Description

Bit	to	indicate	window	must	be	removed	from	screen

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WND_TITLECENTER	Macro
C
#define	WND_TITLECENTER	0x0004		//	Bit	to	center	the	text	on	the	Title	Area

Description

Bit	to	center	the	text	on	the	Title	Area

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States	>	WND_TITLECENTER	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WndCreate	Function
Window

C
WINDOW	*	WndCreate(

				WORD	ID,	

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				WORD	state,	

				void	*	pBitmap,	

				XCHAR	*	pText,	

				GOL_SCHEME	*	pScheme

);

Overview

This	function	creates	a	WINDOW	object	with	the	parameters
given.	It	automatically	attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the	address	of	the	object.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 Unique	user	defined	ID	for	the	object
instance.	

SHORT	left	 Left	most	position	of	the	Object.	

SHORT	top	 Top	most	position	of	the	Object.	

SHORT	right	 Right	most	position	of	the	Object.	

SHORT	bottom	 Bottom	most	position	of	the	object.	

WORD	state	 Sets	the	initial	state	of	the	object.	

void	*	pBitmap	 Pointer	to	the	bitmap	used	in	the	title	bar.	

XCHAR	*	pText	 Pointer	to	the	text	used	as	a	title	of	the
window.	

GOL_SCHEME	*
pScheme	

Pointer	to	the	style	scheme	used.	

Returns

Returns	the	pointer	to	the	object	created

Preconditions

none

Side	Effects

none

Example

Copy	Code
WINDOW	*pWindow;

				pWindow		=	WndCreate(ID_WINDOW1,																

																									0,0,GetMaxX(),GetMaxY(),			

																									WND_DRAW,																		

																									(char*)myIcon,													

																									"Place	Title	Here.",							

																									NULL);																					

				if	(pWindow	==	NULL)

								return	0;

				WndDraw(pWindow);

				return	1;

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WndCreate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WndDraw	Function
Window

C
WORD	WndDraw(

				void	*	pObj

);

Overview

This	function	renders	the	object	on	the	screen	using	the	current
parameter	settings.	Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.	

When	rendering	objects	of	the	same	type,	each	object	must	be
rendered	completely	before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object	rendering.

Input	Parameters

Input	Parameters	 Description	

pW	 Pointer	to	the	object	to	be	rendered.	

Returns

Returns	the	status	of	the	drawing

1	-	If	the	rendering	was	completed	and
0	-	If	the	rendering	is	not	yet	finished.

Next	call	to	the	function	will	resume	the	rendering	on	the	pending
drawing	state.

Preconditions

Object	must	be	created	before	this	function	is	called.

Side	Effects

none

Example

See	WndCreate()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WndDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WndGetText	Macro
Window

C
#define	WndGetText(pW)	pW->pText

Overview

This	macro	returns	the	address	of	the	current	text	string	used	for
the	title	bar.

Input	Parameters

Input	Parameters	 Description	

pW	 Pointer	to	the	object	

Returns

Returns	pointer	to	the	text	string	being	used.

Preconditions

none

Side	Effects

none

Example

Copy	Code
WINDOW	*pWindow;

XCHAR	textUsed	=	“USE	THIS!”;

				if	(WndGetText(pWindow)	==	NULL)

								WndSetText(&textUsed);

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WndGetText	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WndSetText	Function
Window

C
void	WndSetText(

				WINDOW	*	pW,	

				XCHAR	*	pText

);

Overview

This	function	sets	the	string	used	for	the	title	bar.

Input	Parameters

Input	Parameters	 Description	

WINDOW	*	pW	 The	pointer	to	the	object	whose	text	will	be
modified	

XCHAR	*	pText	 Pointer	to	the	text	that	will	be	used	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	WndGetText()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WndSetText	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WndTranslateMsg	Function
Window

C
WORD	WndTranslateMsg(

				void	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

This	function	evaluates	the	message	from	a	user	if	the	message
will	affect	the	object	or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the	touch	screen	inputs.	

	

Translated
Message	

Input
Source	

Events	 Description	

WND_MSG_TITLE	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE,
EVENT_MOVE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the	 TITLE
area	 of	 the
window	

WND_MSG_CLIENT	 Touch
Screen	

EVENT_PRESS,
EVENT_RELEASE,
EVENT_MOVE	

If	 events
occurs	 and
the	 x,y
position	 falls
in	 the
CLIENT
area	 of	 the
window	

OBJ_MSG_INVALID	 Any	 Any	 If	 the
message	did
not	affect	the
object.	

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	message	struct	containing	the
message	from	the	user	interface.	

pW	 The	pointer	to	the	object	where	the
message	will	be	evaluated	to	check	if	the
message	will	affect	the	object.	

Returns

Returns	the	translated	message	depending	on	the	received	GOL
message:

WND_MSG_TITLE	–	Title	area	is	selected
WND_MSG_CLIENT	–	Client	area	is	selected
OBJ_MSG_INVALID	–	Window	is	not	affected

Preconditions

none

Side	Effects

none

Example

Usage	is	similar	to	BtnTranslateMsg()	example.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WndTranslateMsg	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WINDOW	Structure
Window

C
typedef	struct	{

		OBJ_HEADER	hdr;

		SHORT	textHeight;

		XCHAR	*	pText;

		void	*	pBitmap;

}	WINDOW;

Overview

The	structure	contains	data	for	the	window

Members

Members	 Description	

OBJ_HEADER	hdr;	 Generic	header	for	all	Objects	(see
OBJ_HEADER).	

SHORT	textHeight;	 Pre-computed	text	height	

XCHAR	*	pText;	 Pointer	to	the	title	text	

void	*	pBitmap;	 Pointer	to	the	bitmap	for	the	title	bar	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
WINDOW	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Object	States
Macros	|	Topics

The	GOL	objects	follow	two	types	of	states,	the	Property	States
and	the	Drawing	States.	Property	States	defines	action	and
appearance	of	objects.	Drawing	States	on	the	other	hand
indicate	if	the	object	needs	to	be	hidden,	partially	redrawn,	or
fully	redrawn	in	the	display.	To	store	the	states,	the	field	state
defined	in	OBJ_HEADER	structure	is	used.	Six	most	significant
bits	are	allocated	for	Drawing	States	and	the	rest	is	allocated	for
the	Property	States.	Some	common	Property	States	and
Drawing	States	are	shown	in	the	following	table.

State	 Type	 Bit
Location	

Description	

OBJ_FOCUSED	 P	 0x0001	 Object	is	in	the	focused
state.	This	is	usually
used	to	show	selection
of	the	object.	Not	all
objects	have	this
feature.	

OBJ_DISABLED	 P	 0x0002	 Object	is	disabled	and
will	ignore	all
messages.	

OBJ_DRAW_FOCUS	 D	 0x2000	 Focus	for	the	object
should	be	redrawn.	

OBJ_DRAW	 D	 0x4000	 Object	should	be
redrawn	completely.	

OBJ_HIDE	 D	 0x8000	 Object	will	be	hidden	by
filling	the	area	occupied
by	the	object	with	the
common	background

color.	This	has	the
highest	priority	over	all
Drawing	States.	When
an	object	is	set	to	be
hidden,	all	other
drawing	states	are
overridden.	

Where:

OBJ	–	represent	the	prefix	assigned	to	a	GOL	object.
P	–	Property	states,	D	–	Drawing	states

Individual	Object	drawing	function	(e.g.	BtnDraw(),	SldDraw(),
etc...)	does	not	reset	the	draw	states	instead	use	GOLDraw()	to
automatically	reset	and	manage	the	draw	states.	If	the	call	to
individual	drawing	function	cannot	be	avoided,	draw	states	must
be	reset	manually	after	the	drawing	functions	returns	a	1.

Macros

Name	 Description	

GetState	 This	macro	retrieves	the	current	value	of	the
state	bits	of	an	object.	It	is	possible	to	get
several	state	bits.	

ClrState	 This	macro	clear	the	state	bits	of	an	object.
Object	must	be	redrawn	to	display	the
changes.	It	is	possible	to	clear	several	state
bits	with	this	macro.	

SetState	 This	macro	sets	the	state	bits	of	an	object.
Object	must	be	redrawn	to	display	the
changes.	It	is	possible	to	set	several	state
bits	with	this	macro.	

Topics

Name	 Description	

Common	Object
States	

List	of	common	Object	bit	states.	

Links

Graphics	Object	Layer	API,	Macros,	Topics

Library	API	>	Graphics	Object	Layer	API	>	Object	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Common	Object	States
Macros

List	of	common	Object	bit	states.

Macros

Name	 Description	

FOCUSED	 Focus	state	bit.	

DISABLED	 Disabled	state	bit.	

HIDE	 Object	hide	state	bit.	Object	will	be	hidden
from	the	screen	by	drawing	over	it	the
common	background	color.	

DRAW	 Object	redraw	state	bit.	The	whole	Object
must	be	redrawn.	

DRAW_FOCUS	 Focus	redraw	state	bit.	The	focus	rectangle
must	be	redrawn.	

DRAW_UPDATE	 Partial	Object	redraw	state	bit.	A	part	or
parts	of	of	the	Object	must	be	redrawn	to
show	updated	state.	

Links

Object	States,	Macros

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FOCUSED	Macro
C
#define	FOCUSED	0x0001

Description

Focus	state	bit.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	FOCUSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DISABLED	Macro
C
#define	DISABLED	0x0002

Description

Disabled	state	bit.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	DISABLED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

HIDE	Macro
C
#define	HIDE	0x8000

Description

Object	hide	state	bit.	Object	will	be	hidden	from	the	screen	by
drawing	over	it	the	common	background	color.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	HIDE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DRAW	Macro
C
#define	DRAW	0x7C00

Description

Object	redraw	state	bit.	The	whole	Object	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	DRAW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DRAW_FOCUS	Macro
C
#define	DRAW_FOCUS	0x2000

Description

Focus	redraw	state	bit.	The	focus	rectangle	must	be	redrawn.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	DRAW_FOCUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DRAW_UPDATE	Macro
C
#define	DRAW_UPDATE	0x3C00

Description

Partial	Object	redraw	state	bit.	A	part	or	parts	of	of	the	Object
must	be	redrawn	to	show	updated	state.

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States	>	DRAW_UPDATE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetState	Macro
C
#define	GetState(pObj,	stateBits)	(((OBJ_HEADER	*)pObj)->state	&	(stateBits))

Overview

This	macro	retrieves	the	current	value	of	the	state	bits	of	an
object.	It	is	possible	to	get	several	state	bits.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

stateBits	 Defines	which	state	bits	are	requested.
Please	refer	to	specific	objects	for	object
state	bits	definition	for	details	

Returns

Macro	returns	a	non-zero	if	any	bit	in	the	stateBits	mask	is	set.

Preconditions

none

Side	Effects

none

Example

Copy	Code

#define	BTN_HIDE	0x8000

BUTTON	*pB;

//	pB	is	created	and	initialized

//	do	something	here	to	set	state

//	Hide	the	button	(remove	from	screen)

if	(GetState(pB,BTN_HIDE))	{

				SetColor(pB->pGolScheme->CommonBkColor);

				Bar(pB->left,pB->top,pB->right,pB->bottom);

}

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	GetState
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ClrState	Macro
C
#define	ClrState(pObj,	stateBits)	((OBJ_HEADER	*)pObj)->state	&=	(~(stateBits))

Overview

This	macro	clear	the	state	bits	of	an	object.	Object	must	be
redrawn	to	display	the	changes.	It	is	possible	to	clear	several
state	bits	with	this	macro.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

stateBits	 Defines	which	state	bits	are	to	be	cleared.
Please	refer	to	specific	objects	for	object
state	bits	definition	for	details	

Returns

none

Preconditions

none

Side	Effects

none

Example

See	example	for	SetState().

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	ClrState
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetState	Macro
C
#define	SetState(pObj,	stateBits)	((OBJ_HEADER	*)pObj)->state	|=	(stateBits)

Overview

This	macro	sets	the	state	bits	of	an	object.	Object	must	be
redrawn	to	display	the	changes.	It	is	possible	to	set	several	state
bits	with	this	macro.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

stateBits	 Defines	which	state	bits	are	to	be	set.
Please	refer	to	specific	objects	for	object
state	bits	definition	for	details	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	BtnMsgDefault(WORD	msg,	BUTTON*	pB){

				switch(msg){

								case	BTN_MSG_PRESSED:

												//	set	pressed	and	redraw

												SetState(pB,	BTN_PRESSED|BTN_DRAW);

												break;

								case	BTN_MSG_RELEASED:

												ClrState(pB,	BTN_PRESSED);							//	reset	pressed

												SetState(pB,	BTN_DRAW);										//	redraw

												break;

				}

}

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	SetState
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Object	Management
Functions	|	Macros

This	section	describes	the	API	functions	and	macros	that	are
used	to	create,	maintain	and	render	individual	and	list	of	objects.

Functions

	 Name	 Description	

	 GOLAddObject	 This	function	adds	an	object	to
the	tail	of	the	active	list	pointed	to
by	_pGolObjects.	The	new	list	tail
is	set	to	point	to	NULL.	

	 GOLFindObject	 This	function	finds	an	object	in
the	active	list	pointed	to	by
_pGolObjects	using	the	given
object	ID.	

	 GOLRedrawRec	 This	function	marks	all	objects	in
the	active	list	intersected	by	the
given	rectangular	area	to	be
redrawn.	

	 GOLDraw	 This	function	loops	through	the
active	list	and	redraws	objects
that	need	to	be	redrawn.	Partial
redrawing	or	full	redraw	is
performed	depending	on	the
drawing	states	of	the	objects.
GOLDrawCallback()	function	is
called	by	GOLDraw()	when
drawing	of	objects	in	the	active
list	is	completed.	

	 GOLDrawCallback	 GOLDrawCallback()	function
MUST	BE	implemented	by	the
user.	This	is	called	inside	the
GOLDraw()	function	when	the
drawing	of	objects	in	the	active
list	is	completed.	User	drawing
must	be	done	here.	Drawing
color,	line	type,	clipping	region,
graphic	cursor	position	and
current	font	will	not	be	changed
by	GOL	if	this	function	returns	a
zero.	To	pass	drawing	control	to
GOL	this	function	must	return	a
non-zero	value.	If	GOL
messaging	is	not	using	the	active
link	list,	it	is	safe	to	modify	the	list
here.	

	 GOLFree	 This	function	frees	all	the	memory
used	by	objects	in	the	active	list
and	initializes	_pGolObjects
pointer	to	NULL	to	start	a	new
empty	list.	This	function	must	be
called	only	inside	the
GOLDrawCallback()function
when	using	GOLDraw()	and
GOLMsg()	functions.	This
requirement	assures	that
primitive	rendering	settings	are
not	altered	by	the	rendering	state
machines	of	the	objects.	

	 GOLDeleteObject	 deletes	an	object	to	the	linked	list
objects	for	the	current	screen.	

	 GOLDeleteObjectByID	 Deletes	an	object	in	the	current
active	linked	list	of	objects	using

the	ID	parameter	of	the	object.	

	 GOLSetFocus	 This	function	sets	the	keyboard
input	focus	to	the	object.	If	the
object	cannot	accept	keyboard
messages	focus	will	not	be
changed.	This	function	resets
FOCUSED	state	for	the	object
was	in	focus	previously,	set
FOCUSED	state	for	the	required
object	and	marks	the	objects	to
be	redrawn.	

	 GOLInit	 This	function	initializes	the
graphics	library	and	creates	a
default	style	scheme	with	default
settings	referenced	by	the	global
scheme	pointer.	GOLInit()
function	must	be	called	before
GOL	functions	can	be	used.	It	is
not	necessary	to	call	GraphInit()
function	if	this	function	is	used.	

	 GOLCanBeFocused	 This	function	returns	non-zero	if
the	object	can	be	focused.	Only
button,	check	box,	radio	button,
slider,	edit	box,	list	box,	scroll	bar
can	accept	focus.	If	the	object	is
disabled	it	cannot	be	set	to
focused	state.	

	 GOLGetFocusNext	 This	function	returns	the	pointer
to	the	next	object	in	the	active
linked	list	which	is	able	to	receive
keyboard	input.	

	 GOLGetFocusPrev	 This	function	returns	the	pointer
to	the	previous	object	in	the

active	linked	list	which	is	able	to
receive	keyboard	input.	

	 GOLPanelDrawTsk	 This	function	draws	a	panel	on
the	screen	with	parameters	set	by
GOLPanelDraw()	macro.	This
function	must	be	called
repeatedly	(depending	on	the
return	value)	for	a	successful
rendering	of	the	panel.	

	 GOLTwoTonePanelDrawTsk	 This	function	draws	a	two	tone
panel	on	the	screen	with
parameters	set	by
GOLPanelDraw()	macro.	This
function	must	be	called
repeatedly	(depending	on	the
return	value)	for	a	successful
rendering	of	the	panel.	

Macros

Name	 Description	

GOLRedraw	 This	macro	sets	the	object	to	be	redrawn.
For	the	redraw	to	be	effective,	the	object
must	be	in	the	current	active	list.	If	not,	the
redraw	action	will	not	be	performed	until	the
list	where	the	object	is	currently	inserted	will
be	set	to	be	the	active	list.	

GOLDrawComplete	 This	macro	resets	the	drawing	states	of	the
object	(6	MSBits	of	the	objectï¿½s	state).	

GetObjType	 This	macro	returns	the	object	type.	

GetObjID	 This	macro	returns	the	object	ID.	

GetObjNext	 This	macro	returns	the	next	object	after	the
specified	object.	

GOLNewList	 This	macro	starts	a	new	linked	list	of	objects
and	resets	the	keyboard	focus	to	none.	This
macro	assigns	the	current	active	list
_pGolObjects	and	current	receiving
keyboard	input	_pObjectFocused	object
pointers	to	NULL.	Any	keyboard	inputs	at
this	point	will	be	ignored.	Previous	active	list
must	be	saved	in	another	pointer	if	to	be
referenced	later.	If	not	needed	anymore
memory	used	by	that	list	should	be	freed	by
GOLFree()	function.	

GOLGetList	 This	macro	gets	the	current	active	list.	

GOLSetList	 This	macro	sets	the	given	object	list	as	the
active	list	and	resets	the	keyboard	focus	to
none.	This	macro	assigns	the	receiving
keyboard	input	object	_pObjectFocused
pointer	to	NULL.	If	the	new	active	list	has	an
objectï¿½s	state	set	to	focus,	the
_pObjectFocused	pointer	must	be	set	to	this
object	or	the	objectï¿½s	state	must	be
change	to	unfocused.	This	is	to	avoid	two
objects	displaying	a	focused	state	when
only	one	object	in	the	active	list	must	be	set
to	a	focused	state	at	anytime.	

IsObjUpdated	 This	macro	tests	if	the	object	is	pending	to
be	redrawn.	This	is	done	by	testing	the	6
MSBits	of	objectï¿½s	state	to	detect	if	the
object	must	be	redrawn.	

GOLGetFocus	 This	macro	returns	the	pointer	to	the	current
object	receiving	keyboard	input.	

GOLPanelDraw	 This	is	macro	GOLPanelDraw.	

Links

Functions,	Graphics	Object	Layer	API,	Legend,	Macros

Library	API	>	Graphics	Object	Layer	API	>	Object	Management

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLAddObject	Function
C
void	GOLAddObject(

				OBJ_HEADER	*	object

);

Overview

This	function	adds	an	object	to	the	tail	of	the	active	list	pointed	to
by	_pGolObjects.	The	new	list	tail	is	set	to	point	to	NULL.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	to	be	added	on	the
current	active	list.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	MoveObject(OBJ_HEADER	*pSrcList,	OBJ_HEADER	*pDstList,

				OBJ_HEADER	*pObjtoMove)	{

				OBJ_HEADER	*pTemp	=	pSrcList;

				

				if(pTemp	!=	pObjtoMove)	{

								while(pTemp->pNxtObj	!=	pObjtoMove)

												pTemp	=	pTemp->pNxtObj;

				}

				pTemp->pNxtObj	=	pObjtoMove	->pNxt;	//	remove	object	from	list

				GOLSetList(pDstList);															//	destination	as	active	list

				GOLAddObject(pObjtoMove);											//	add	object	to	active	list

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLAddObject	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLFindObject	Function
C
OBJ_HEADER	*	GOLFindObject(

				WORD	ID

);

Overview

This	function	finds	an	object	in	the	active	list	pointed	to	by
_pGolObjects	using	the	given	object	ID.

Input	Parameters

Input	Parameters	 Description	

WORD	ID	 User	assigned	value	set	during	the	creation
of	the	object.	

Returns

Pointer	to	the	object	with	the	given	ID.

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	CopyObject(OBJ_HEADER	*pSrcList,	OBJ_HEADER	*pDstList,	WORD	ID)	

{

				OBJ_HEADER	*pTemp;

				

				pTemp	=	GOLFindObject(ID);														//	find	the	object

				if	(pTemp	!=	NULL)	{

								GOLSetList(pDstList);															//	destination	as	active	list

								GOLAddObject(pObj);																	//	add	object	to	active	list

				}

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLFindObject	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLRedraw	Macro
C
#define	GOLRedraw(pObj)	((OBJ_HEADER	*)pObj)->state	|=	0x7c00;

Overview

This	macro	sets	the	object	to	be	redrawn.	For	the	redraw	to	be
effective,	the	object	must	be	in	the	current	active	list.	If	not,	the
redraw	action	will	not	be	performed	until	the	list	where	the	object
is	currently	inserted	will	be	set	to	be	the	active	list.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	to	be	redrawn.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	GOLRedrawRec(SHORT	left,	SHORT	top,	SHORT	right,	SHORT	bottom)	{		

				//	set	all	objects	encompassed	by	the	rectangle	to	be	redrawn

				OBJ_HEADER	*pCurrentObj;

				

				pCurrentObj	=	GOLGetList();

				while(pCurrentObj	!=	NULL){

								if	(

												((pCurrentObj->left	>=	left)	&&	(pCurrentObj->left	<=	right))	||

												((pCurrentObj->right	>=	left)	&&	(pCurrentObj->right	<=	right))||

												((pCurrentObj->top	>=	top)	&&	(pCurrentObj->top	<=	bottom))	||

												((pCurrentObj->bottom	>=	top)	&&	(pCurrentObj->bottom	<=	bottom))){

																GOLRedraw(pCurrentObj);

								}

								pCurrentObj	=	pCurrentObj->pNxtObj;											

				}//end	of	while

}																															

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLRedraw	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLRedrawRec	Function
C
void	GOLRedrawRec(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom

);

Overview

This	function	marks	all	objects	in	the	active	list	intersected	by	the
given	rectangular	area	to	be	redrawn.

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 Defines	the	left	most	border	of	the	rectangle
area.	

SHORT	top	 Defines	the	top	most	border	of	the	rectangle
area.	

SHORT	right	 Defines	the	right	most	border	of	the
rectangle	area.	

SHORT	bottom	 Defines	the	bottom	most	border	of	the
rectangle	area.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
OBJ_HEADER	*pTemp;

OBJ_HEADER	*pAllObjects;

//	assume	*pAllObjects	points	to	a	list	of	all	existing	objects

//	created	and	initialized

//	mark	all	objects	inside	the	rectangle	to	be	redrawn

GOLRedrawRec(10,10,100,100);

pTemp	=	pAllObjects;																				

GOLStartNewList();																						//	reset	active	list

while(pTemp->pNxtObj	!=	NULL)	{

				if	(pTemp->state&0x7C00)												//	add	only	objects	to	be

				GOLAddObject(pTemp);																//	redrawn	to	the	active	list

				pTemp	=	pTemp->pNxtObj;

}

GOLDraw();																														//	redraw	active	list

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLRedrawRec	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLDraw	Function
C
WORD	GOLDraw();

Overview

This	function	loops	through	the	active	list	and	redraws	objects
that	need	to	be	redrawn.	Partial	redrawing	or	full	redraw	is
performed	depending	on	the	drawing	states	of	the	objects.
GOLDrawCallback()	function	is	called	by	GOLDraw()	when
drawing	of	objects	in	the	active	list	is	completed.

Returns

Non-zero	if	the	active	link	list	drawing	is	completed.

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	Assume	objects	are	created	&	states	are	set	to	draw	objects

while(1){

				if(GOLDraw()){														//	parse	active	list	and	redraw	objects	that	needs	to	be	redrawn

	

								//	here	GOL	drawing	is	completed

								//	it	is	safe	to	modify	objects	states	and	linked	list

								TouchGetMsg(&msg);						//	evaluate	messages	from	touch	screen	device

								GOLMsg(&msg);											//	evaluate	each	object	is	affected	by	the	message

				}

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLDraw	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLDrawComplete	Macro
C
#define	GOLDrawComplete(pObj)	((OBJ_HEADER	*)pObj)->state	&=	0x03ff

Overview

This	macro	resets	the	drawing	states	of	the	object	(6	MSBits	of
the	objectï¿½s	state).

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	This	function	should	be	called	again	whenever	an	incomplete

//	rendering	(done	=	0)	of	an	object	occurs.

//	internal	states	in	the	BtnDraw()	or	WndDraw()	should	pickup

//	on	the	state	where	it	left	off	to	continue	rendering.

void	GOLDraw()	{

				static	OBJ_HEADER	*pCurrentObj	=	NULL;

				SHORT	done;

				if(pCurrentObj	==	NULL)	{

								if(GOLDrawCallback())	{

												//	If	it's	last	object	jump	to	head

												pCurrentObj	=	GOLGetList();

								}	else	{

												return;

								}

				}

				done	=	0;

				while(pCurrentObj	!=	NULL)	{

								if(IsObjUpdated(pCurrentObj))	{

												done	=	pCurrentObj->draw(pCurrentObj);

												if(done){

																GOLDrawComplete(pCurrentObj);

												}else{

																return;

												}

								}

								pCurrentObj	=	pCurrentObj->pNxtObj;

				}

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLDrawComplete	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLDrawCallback	Function
C
WORD	GOLDrawCallback();

Overview

GOLDrawCallback()	function	MUST	BE	implemented	by	the
user.	This	is	called	inside	the	GOLDraw()	function	when	the
drawing	of	objects	in	the	active	list	is	completed.	User	drawing
must	be	done	here.	Drawing	color,	line	type,	clipping	region,
graphic	cursor	position	and	current	font	will	not	be	changed	by
GOL	if	this	function	returns	a	zero.	To	pass	drawing	control	to
GOL	this	function	must	return	a	non-zero	value.	If	GOL
messaging	is	not	using	the	active	link	list,	it	is	safe	to	modify	the
list	here.

Returns

Return	a	one	if	GOLDraw()	will	have	drawing	control	on	the
active	list.	Return	a	zero	if	user	wants	to	keep	the	drawing
control.

Preconditions

none

Side	Effects

none

Example

Copy	Code

#define	SIG_STATE_SET			0

#define	SIG_STATE_DRAW		1

WORD	GOLDrawCallback(){

				static	BYTE	state	=	SIG_STATE_SET;

				if(state	==	SIG_STATE_SET){

								//	Draw	the	button	with	disabled	colors

								GOLPanelDraw(SIG_PANEL_LEFT,SIG_PANEL_TOP,

																					SIG_PANEL_RIGHT,SIG_PANEL_BOTTOM,	0,

																					WHITE,	altScheme->EmbossLtColor,

																					altScheme->EmbossDkColor,

																					NULL,	GOL_EMBOSS_SIZE);

								state	=	SIG_STATE_DRAW;

				}

				

				if(!GOLPanelDrawTsk()){

								//	do	not	return	drawing	control	to	GOL

								//	drawing	is	not	complete

								return	0;

				}else{

								state	=	SIG_STATE_SET;

								//	return	drawing	control	to	GOL,	drawing	is	complete

								return	1;

				}

}											

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLDrawCallback	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLFree	Function
C
void	GOLFree();

Overview

This	function	frees	all	the	memory	used	by	objects	in	the	active
list	and	initializes	_pGolObjects	pointer	to	NULL	to	start	a	new
empty	list.	This	function	must	be	called	only	inside	the
GOLDrawCallback()function	when	using	GOLDraw()	and
GOLMsg()	functions.	This	requirement	assures	that	primitive
rendering	settings	are	not	altered	by	the	rendering	state
machines	of	the	objects.

Returns

none

Preconditions

none

Side	Effects

All	objects	in	the	active	list	are	deleted	from	memory.

Example

Copy	Code
void	DeletePage(OBJ_HEADER	*pPage)	{

				OBJ_HEADER	*pTemp;

				

				//	assuming	pPage	is	different	from	the	current	active	list

				pTemp	=	GOLGetList();															//	save	the	active	list

				GOLSetList(pPage);																		//	set	list	as	active	list

				GolFree();																										//	pPage	objects	are	deleted

				

				GOLSetList(pTemp);																		//	restore	the	active	list

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLFree	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetObjType	Macro
C
#define	GetObjType(pObj)	((OBJ_HEADER	*)pObj)->type

Overview

This	macro	returns	the	object	type.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

Returns	the	OBJ_TYPE	of	the	object.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GetObjType	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetObjID	Macro
C
#define	GetObjID(pObj)	((OBJ_HEADER	*)pObj)->ID

Overview

This	macro	returns	the	object	ID.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

Returns	the	ID	of	the	object.

Preconditions

none

Side	Effects

none

Example

Copy	Code
void	UseOfGetObjID(OBJ_HEADER	*pObj)	{

				WORD	id;

								switch(id	=	GetObjID(pObj))	{

												case	ID_WINDOW1:

																//	do	something

												case	ID_WINDOW2:

																//	do	something	else

												case	ID_WINDOW3:

																//	do	something	else

												default:

																//	do	something	else

								}

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GetObjID	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetObjNext	Macro
C
#define	GetObjNext(pObj)	((OBJ_HEADER	*)pObj)->pNxtObj

Overview

This	macro	returns	the	next	object	after	the	specified	object.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

Returns	the	pointer	of	the	next	object.

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	This	is	the	same	example	for	the	GetObjType()	macro

//	We	just	replaced	one	line

void	RedrawButtons(void)	{

				OBJ_HEADER	*pCurr;

				

				pCurr	=	GOLGetList();															//	get	active	list

				while(pCurr->pNxtObj	!=	NULL)	{

								if	(GetObjType(pCurr)	==	BUTTON)

												pCurr->state	=	BTN_DRAW;				//	set	button	to	be	redrawn

								pCurr	=	GetObjNext(pCurr);						//	Use	of	GetObjNext()	macro

								//	replaces	the	old	line

				}

				GolDraw();																										//	redraw	all	buttons	in	the

																																								//	active	list

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GetObjNext	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLDeleteObject	Function
C
BOOL	GOLDeleteObject(

				OBJ_HEADER	*	object

);

Overview

deletes	an	object	to	the	linked	list	objects	for	the	current	screen.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLDeleteObject	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLDeleteObjectByID	Function
C
BOOL	GOLDeleteObjectByID(

				WORD	ID

);

Overview

Deletes	an	object	in	the	current	active	linked	list	of	objects	using
the	ID	parameter	of	the	object.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLDeleteObjectByID	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLNewList	Macro
C
#define	GOLNewList	\

				_pGolObjects	=	NULL;	\

				_pObjectFocused	=	NULL

Overview

This	macro	starts	a	new	linked	list	of	objects	and	resets	the
keyboard	focus	to	none.	This	macro	assigns	the	current	active
list	_pGolObjects	and	current	receiving	keyboard	input
_pObjectFocused	object	pointers	to	NULL.	Any	keyboard	inputs
at	this	point	will	be	ignored.	Previous	active	list	must	be	saved	in
another	pointer	if	to	be	referenced	later.	If	not	needed	anymore
memory	used	by	that	list	should	be	freed	by	GOLFree()	function.

Returns

none

Preconditions

none

Side	Effects

This	macro	sets	the	focused	object	pointer	(_pObjectFocused)	to
NULL.

Example

Copy	Code
OBJ_HEADER	*pSave;

pSave	=	GOLGetList();												//	save	current	list

GOLNewList();																				//	start	the	new	list

																																	//	current	list	is	now	NULL

//	assume	that	objects	are	already	created

//	you	can	now	add	objects	to	the	new	list

GOLAddObject(pButton);

GOLAddObject(pWindow);

GOLAddObject(pSlider);

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLNewList	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetList	Macro
C
#define	GOLGetList	_pGolObjects

Overview

This	macro	gets	the	current	active	list.

Returns

Returns	the	pointer	to	the	current	active	list.

Preconditions

none

Side	Effects

none

Example

See	GOLNewList()	example.

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLGetList	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLSetList	Macro
C
#define	GOLSetList(objsList)	\

				_pGolObjects	=	objsList;					\

				_pObjectFocused	=	NULL

Overview

This	macro	sets	the	given	object	list	as	the	active	list	and	resets
the	keyboard	focus	to	none.	This	macro	assigns	the	receiving
keyboard	input	object	_pObjectFocused	pointer	to	NULL.	If	the
new	active	list	has	an	objectï¿½s	state	set	to	focus,	the
_pObjectFocused	pointer	must	be	set	to	this	object	or	the
objectï¿½s	state	must	be	change	to	unfocused.	This	is	to	avoid
two	objects	displaying	a	focused	state	when	only	one	object	in
the	active	list	must	be	set	to	a	focused	state	at	anytime.

Input	Parameters

Input	Parameters	 Description	

objsList	 The	pointer	to	the	new	active	list.	

Returns

none

Preconditions

none

Side	Effects

This	macro	sets	the	focused	object	pointer	(_pObjectFocused)	to

NULL.	Previous	active	list	should	be	saved	if	needed	to	be
referenced	later.	If	not,	use	GOLFree()	function	to	free	the
memory	used	by	the	objects	before	calling	GOLSetList().

Example

Copy	Code
OBJ_HEADER	*pSave;

pSave	=	GOLGetList();											//	save	current	list

GOLNewList();																			//	start	the	new	list

																																//	current	list	is	now	NULL

//	you	can	now	add	objects	to	the	current	list

//	assume	that	objects	are	already	created

GOLAddObject(pButton);

GOLAddObject(pWindow);

GOLAddObject(pSlider);

//	do	something	here	on	the	new	list

//	return	the	old	list

GOLSetList(pSave);

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLSetList	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLSetFocus	Function
C
void	GOLSetFocus(

				OBJ_HEADER	*	object

);

Overview

This	function	sets	the	keyboard	input	focus	to	the	object.	If	the
object	cannot	accept	keyboard	messages	focus	will	not	be
changed.	This	function	resets	FOCUSED	state	for	the	object	was
in	focus	previously,	set	FOCUSED	state	for	the	required	object
and	marks	the	objects	to	be	redrawn.

Input	Parameters

Input	Parameters	 Description	

OBJ_HEADER	*
object	

Pointer	to	the	object	of	interest.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>

GOLSetFocus	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IsObjUpdated	Macro
C
#define	IsObjUpdated(pObj)	(((OBJ_HEADER	*)pObj)->state	&	0xfc00)

Overview

This	macro	tests	if	the	object	is	pending	to	be	redrawn.	This	is
done	by	testing	the	6	MSBits	of	objectï¿½s	state	to	detect	if	the
object	must	be	redrawn.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

Returns	a	nonzero	value	if	the	object	needs	to	be	redrawn.	Zero
if	not.

Preconditions

none

Side	Effects

none

Example

Copy	Code
int	DrawButtonWindowOnly()	{

				static	OBJ_HEADER	*pCurrentObj	=	NULL;

				SHORT	done	=	0;

				if	(pCurrentObj	==	NULL)

								pCurrentObj	=	GOLGetList();									//	get	current	list

				while(pCurrentObj	!=	NULL){

								if(IsObjUpdated(pCurrentObj)){

												done	=	pCurrentObj->draw(pCurrentObj);														

													

												//	reset	state	of	object	if	done

												if	(done)

																GOLDrawComplete(pCurrentObj)

												//	Return	if	not	done.	This	means	that	BtnDraw()

												//	was	terminated	prematurely	by	device	busy	status

												//	and	must	be	recalled	to	finish	rendering	of

												//	objects	in	the	list	that	have	new	states.

												else

																return	0;

								}

								//	go	to	the	next	object	in	the	list

								pCurrentObj	=	pCurrentObj->pNxtObj;

				}

				return	1;

}

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
IsObjUpdated	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLInit	Function
C
void	GOLInit();

Overview

This	function	initializes	the	graphics	library	and	creates	a	default
style	scheme	with	default	settings	referenced	by	the	global
scheme	pointer.	GOLInit()	function	must	be	called	before	GOL
functions	can	be	used.	It	is	not	necessary	to	call	GraphInit()
function	if	this	function	is	used.

Returns

none

Preconditions

none

Side	Effects

This	sets	the	line	type	to	SOLID_LINE,	sets	the	screen	to	all
BLACK,	sets	the	current	drawing	color	to	WHITE,	sets	the
graphic	cursor	position	to	upper	left	corner	of	the	screen,	sets
active	and	visual	pages	to	page	#0,	clears	the	active	page	and
disables	clipping.	This	also	creates	a	default	style	scheme.

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLInit	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetFocus	Macro
C
#define	GOLGetFocus	_pObjectFocused

Overview

This	macro	returns	the	pointer	to	the	current	object	receiving
keyboard	input.

Returns

Returns	the	pointer	to	the	object	receiving	keyboard	input.	If
there	is	no	object	in	focus	NULL	is	returned.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLGetFocus	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLCanBeFocused	Function
C
WORD	GOLCanBeFocused(

				OBJ_HEADER	*	object

);

Overview

This	function	returns	non-zero	if	the	object	can	be	focused.	Only
button,	check	box,	radio	button,	slider,	edit	box,	list	box,	scroll
bar	can	accept	focus.	If	the	object	is	disabled	it	cannot	be	set	to
focused	state.

Input	Parameters

Input	Parameters	 Description	

OBJ_HEADER	*
object	

Pointer	to	the	object	of	interest.	

Returns

This	returns	a	non-zero	if	the	object	can	be	focused	and	zero	if
not.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>

GOLCanBeFocused	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetFocusNext	Function
C
OBJ_HEADER	*	GOLGetFocusNext();

Overview

This	function	returns	the	pointer	to	the	next	object	in	the	active
linked	list	which	is	able	to	receive	keyboard	input.

Returns

This	returns	the	pointer	of	the	next	object	in	the	active	list
capable	of	receiving	keyboard	input.	If	there	is	no	object	capable
of	receiving	keyboard	inputs	(i.e.	none	can	be	focused)	NULL	is
returned.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLGetFocusNext	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetFocusPrev	Function
C
OBJ_HEADER	*	GOLGetFocusPrev();

Overview

This	function	returns	the	pointer	to	the	previous	object	in	the
active	linked	list	which	is	able	to	receive	keyboard	input.

Returns

This	returns	the	pointer	of	the	previous	object	in	the	active	list
capable	of	receiving	keyboard	input.	If	there	is	no	object	capable
of	receiving	keyboard	inputs	(i.e.	none	can	be	focused)	NULL	is
returned.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLGetFocusPrev	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLPanelDraw	Macro
C
#define	GOLPanelDraw(left,	top,	right,	bottom,	radius,	faceClr,	embossLtClr,	embossDkClr,	pBitmap,	embossSize)	\

				_rpnlX1	=	left;																																																																																\

				_rpnlY1	=	top;																																																																																	\

				_rpnlX2	=	right;																																																																															\

				_rpnlY2	=	bottom;																																																																														\

				_rpnlR	=	radius;																																																																															\

				_rpnlFaceColor	=	faceClr;																																																																						\

				_rpnlEmbossLtColor	=	embossLtClr;																																																														\

				_rpnlEmbossDkColor	=	embossDkClr;																																																														\

				_pRpnlBitmap	=	pBitmap;																																																																								\

				_rpnlEmbossSize	=	embossSize;																																																																		\

Description

This	is	macro	GOLPanelDraw.

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLPanelDraw	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLPanelDrawTsk	Function
C
WORD	GOLPanelDrawTsk();

Overview

This	function	draws	a	panel	on	the	screen	with	parameters	set	by
GOLPanelDraw()	macro.	This	function	must	be	called	repeatedly
(depending	on	the	return	value)	for	a	successful	rendering	of	the
panel.

Returns

Returns	the	status	of	the	panel	rendering

Copy	Code
							0	ï¿½	Rendering	of	the	panel	is	not	yet	finished.

							1	ï¿½	Rendering	of	the	panel	is	finished.

Preconditions

Parameters	of	the	panel	must	be	set	by	GOLPanelDraw()	macro.

Side	Effects

none

Example

See	GOLPanelDraw()	example.

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLPanelDrawTsk	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLTwoTonePanelDrawTsk	Function
C
WORD	GOLTwoTonePanelDrawTsk();

Overview

This	function	draws	a	two	tone	panel	on	the	screen	with
parameters	set	by	GOLPanelDraw()	macro.	This	function	must
be	called	repeatedly	(depending	on	the	return	value)	for	a
successful	rendering	of	the	panel.

Returns

Returns	the	status	of	the	panel	rendering

Copy	Code
							0	ï¿½	Rendering	of	the	panel	is	not	yet	finished.

							1	ï¿½	Rendering	of	the	panel	is	finished.

Preconditions

Parameters	of	the	panel	must	be	set	by	GOLPanelDraw()	macro.

Side	Effects

none

Example

Usage	is	similar	to	GOLPanelDraw()	example.

Library	API	>	Graphics	Object	Layer	API	>	Object	Management	>
GOLTwoTonePanelDrawTsk	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL	Messages
Enumerations	|	Functions	|	Structures	|	Topics

To	facilitate	the	processing	of	user	actions	on	the	objects,
messaging	are	used.	

User	passes	messages	from	the	input	devices	to	GOL	using	the
GOL	message	structure.	The	structure	is	described	by	the
following	table.

Copy	Code
				typedef	struct	{

								BYTE									type;

								BYTE									uiEvent;

								int										param1;

								int										param2;

				}	GOL_MSG;

Field	 Description	

type	 Defines	the	type	of	device	where	the	message	was
created.	These	are	the	devices	implemented	in	the	User
Interface	Layer.	Possible	device	types	are	the	following:
TYPE_UNKNOWN
TYPE_KEYBOARD
TYPE_TOUCHSCREEN
TYPE_MOUSE
	

uiEvent	 Event	ID	of	the	user	or	device	type	action	on	the	object.
Possible	event	IDs	are	the	following:
EVENT_INVALID
EVENT_MOVE
EVENT_PRESS
EVENT_STILLPRESS
EVENT_RELEASE

EVENT_KEYSCAN
EVENT_CHARCODE
	

param1
param2	

Parameters	1	and	2	definition	varies	from	device	types.
For	example,	param1	and	param2	are	defined	as	x-
coordinate	position	and	y-coordinate	position	respectively
for	TYPE_TOUCHSCREEN.	For	TYPE_KEYBOARD,
param1	is	defined	as	the	ID	of	the	receiving	object	and
param2	is	defined	as	the	keyboard	scan	or	character
code.

	

GOLMsg()	function	accepts	this	structure	and	processes	the
message	for	all	objects	in	the	active	list.

	

Messaging	Flow

The	messaging	mechanism	follows	this	flow:

1.	 User	Interface	Module	(touch	screen,	keypad)	sends	a	GOL
message	(the	GOL_MSG	structure).

2.	 A	loop	evaluates	which	object	is	affected	by	the	message.	This	is
done	inside	GOLMsg()	function.

3.	 Affected	object	returns	the	translated	message	based	on	the	GOL
message	parameters.

4.	 User	can	change	default	action	with	the	callback	function.	If	the	call

back	function	returns	a	non-zero	value	message	will	be	processed
by	default.

5.	 Object	should	be	redrawn	to	reflect	new	state.
The	translated	message	is	a	set	of	actions	unique	to	each	object
type.	Please	refer	to	each	object	translated	message	ID	for
details.	

Objects	that	are	disabled	will	not	accept	any	messages.
GOLMsg()	function	must	be	called	when	GOL	drawing	is
completed.	In	this	case	all	objects	have	been	drawn	and	it	is	safe
to	change	objects	states.	GOLMsg()	call	can	be	done	if
GOLDraw()	function	returns	non-zero	or	inside
GOLDrawCallback()	function.

Enumerations

Name	 Description	

TRANS_MSG	 This	structure	defines	the	list	of	translated
messages	for	GOL	Objects	used	in	the
library.	

INPUT_DEVICE_EVENT	 This	structure	defines	the	types	of	GOL
message	events	used	in	the	library.	

INPUT_DEVICE_TYPE	 This	structure	defines	the	types	of	input
devices	used	in	the	library.	

Functions

	 Name	 Description	

	 GOLMsg	 This	function	receives	a	GOL	message
from	user	and	loops	through	the	active	list
of	objects	to	check	which	object	is
affected	by	the	message.	For	affected

objects	the	message	is	translated	and
GOLMsgCallback()	is	called.	In	the	call
back	function,	user	has	the	ability	to
implement	action	for	the	message.	If	the
call	back	function	returns	non-zero
OBJMsgDefault()	is	called	to	process
message	for	the	object	by	default.	If	zero
is	returned	OBJMsgDefault()	is	not	called.
Please	refer	to	GOL	Messages	section	for
deatils.
This	function	should	be	called	when	GOL
drawing	is	completed.	It	can	be	done...
more	

	 GOLMsgCallback	 The	user	MUST	implement	this	function.
GOLMsg()	calls	this	function	when	a	valid
message	for	an	object	in	the	active	list	is
received.	User	action	for	the	message
should	be	implemented	here.	If	this
function	returns	non-zero,	the	message
for	the	object	will	be	processed	by	default.
If	zero	is	returned,	GOL	will	not	perform
any	action.	

Structures

Name	 Description	

GOL_MSG	 This	structure	defines	the	GOL	message
used	in	the	library.

The	types	must	be	one	of	the
INPUT_DEVICE_TYPE:

TYPE_UNKNOWN
TYPE_KEYBOARD
TYPE_TOUCHSCREEN
TYPE_MOUSE

uiEvent	must	be	one	of	the

INPUT_DEVICE_EVENT.
for	touch	screen:

EVENT_INVALID
EVENT_MOVE
EVENT_PRESS
EVENT_STILLPRESS
EVENT_RELEASE

for	keyboard:
EVENT_KEYSCAN	(param2
contains	scan	code)
EVENT_KEYCODE	(param2
contains	character	code)

param1:
for	touch	screen	is	the	x	position
for	keyboard	ID	of	object	receiving
the	message

param2
for	touch	screen	y	position
for	keyboard	scan	or	key	code

	

Topics

Name	 Description	

Scan	Key	Codes	 The	defined	scan	codes	for	AT	keyboard.	

Links

Enumerations,	Functions,	Graphics	Object	Layer	API,	Legend,
Structures,	Topics

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLMsg	Function
C
void	GOLMsg(

				GOL_MSG	*	pMsg

);

Overview

This	function	receives	a	GOL	message	from	user	and	loops
through	the	active	list	of	objects	to	check	which	object	is	affected
by	the	message.	For	affected	objects	the	message	is	translated
and	GOLMsgCallback()	is	called.	In	the	call	back	function,	user
has	the	ability	to	implement	action	for	the	message.	If	the	call
back	function	returns	non-zero	OBJMsgDefault()	is	called	to
process	message	for	the	object	by	default.	If	zero	is	returned
OBJMsgDefault()	is	not	called.	Please	refer	to	GOL	Messages
section	for	deatils.	

This	function	should	be	called	when	GOL	drawing	is	completed.
It	can	be	done	when	GOLDraw()	returns	non-zero	value	or	inside
GOLDrawCallback()	function.

Input	Parameters

Input	Parameters	 Description	

GOL_MSG	*	pMsg	 Pointer	to	the	GOL	message	from	user.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	Assume	objects	are	created	&	states	are	set	to	draw	objects

while(1){

				if(GOLDraw()){

								//	GOL	drawing	is	completed	here

								//	it	is	safe	to	change	objects

								TouchGetMsg(&msg);									//	from	user	interface	module

								GOLMsg(&msg);

				}

}																											

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	GOLMsg
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLMsgCallback	Function
C
WORD	GOLMsgCallback(

				WORD	objMsg,	

				OBJ_HEADER	*	pObj,	

				GOL_MSG	*	pMsg

);

Overview

The	user	MUST	implement	this	function.	GOLMsg()	calls	this
function	when	a	valid	message	for	an	object	in	the	active	list	is
received.	User	action	for	the	message	should	be	implemented
here.	If	this	function	returns	non-zero,	the	message	for	the	object
will	be	processed	by	default.	If	zero	is	returned,	GOL	will	not
perform	any	action.

Input	Parameters

Input	Parameters	 Description	

WORD	objMsg	 Translated	message	for	the	object	or	the
action	ID	response	from	the	object.	

OBJ_HEADER	*	pObj	 Pointer	to	the	object	that	processed	the
message.	

GOL_MSG	*	pMsg	 Pointer	to	the	GOL	message	from	user.	

Returns

Return	a	non-zero	if	the	message	will	be	processed	by	default.	If
a	zero	is	returned,	the	message	will	not	be	processed	by	GOL.

Preconditions

none

Side	Effects

none

Example

Copy	Code
WORD	GOLMsgCallback(WORD	objMsg,	OBJ_HEADER*	pObj,	GOL_MSG	*pMsg){

				static	char	focusSwitch	=	1;

				switch(GetObjID(pObj)){

								case	ID_BUTTON1:

												//	Change	text	and	focus	state

												if(objMsg	==	BTN_MSG_RELEASED){

																focusSwitch	^=	1;

																if(focusSwitch){

																				BtnSetText((BUTTON*)pObj,	"Focused");

																				SetState(pObj,BTN_FOCUSED);

																}else{

																				BtnSetText((BUTTON*)pObj,	"Unfocused");

																				ClrState(pObj,BTN_FOCUSED);

																}

												}

												//	Process	by	default

												return	1;

								case	ID_BUTTON2:

												//	Change	text

												if(objMsg	==	BTN_MSG_PRESSED){

																BtnSetText((BUTTON*)pObj,	"Pressed");

												}

												if(objMsg	==	BTN_MSG_RELEASED){

																BtnSetText((BUTTON*)pObj,	"Released");

												}

												//	Process	by	default

												return	1;

								case	ID_BUTTON3:

												//	Change	face	picture

												if(objMsg	==	BTN_MSG_PRESSED){

																BtnSetBitmap(pObj,arrowLeft);

												}

												if(objMsg	==	BTN_MSG_RELEASED){

																BtnSetBitmap(pObj,(char*)arrowRight);

												}

												//	Process	by	default

												return	1;

								case	ID_BUTTON_NEXT:

												if(objMsg	==	BTN_MSG_RELEASED){

																screenState	=	CREATE_CHECKBOXES;

												}

												//	Process	by	default

												return	1;

								case	ID_BUTTON_BACK:

												return	1;

								default:

												return	1;

				}

}															

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>
GOLMsgCallback	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL_MSG	Structure
C
typedef	struct	{

		BYTE	type;

		BYTE	uiEvent;

		SHORT	param1;

		SHORT	param2;

}	GOL_MSG;

Overview

This	structure	defines	the	GOL	message	used	in	the	library.

The	types	must	be	one	of	the	INPUT_DEVICE_TYPE:
TYPE_UNKNOWN
TYPE_KEYBOARD
TYPE_TOUCHSCREEN
TYPE_MOUSE

uiEvent	must	be	one	of	the	INPUT_DEVICE_EVENT.
for	touch	screen:

EVENT_INVALID
EVENT_MOVE
EVENT_PRESS
EVENT_STILLPRESS
EVENT_RELEASE

for	keyboard:
EVENT_KEYSCAN	(param2	contains	scan	code)
EVENT_KEYCODE	(param2	contains	character	code)

param1:
for	touch	screen	is	the	x	position
for	keyboard	ID	of	object	receiving	the	message

param2
for	touch	screen	y	position
for	keyboard	scan	or	key	code

Members

Members	 Description	

BYTE	type;	 Type	of	input	device.	

BYTE	uiEvent;	 The	generic	events	for	input	device.	

SHORT	param1;	 Parameter	1	meaning	is	dependent	on	the
type	of	input	device.	

SHORT	param2;	 Parameter	2	meaning	is	dependent	on	the
type	of	input	device.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	GOL_MSG
Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TRANS_MSG	Enumeration
C
typedef	enum	{

		OBJ_MSG_INVALID	=	0,

		CB_MSG_CHECKED,

		CB_MSG_UNCHECKED,

		RB_MSG_CHECKED,

		WND_MSG_CLIENT,

		WND_MSG_TITLE,

		BTN_MSG_PRESSED,

		BTN_MSG_STILLPRESSED,

		BTN_MSG_RELEASED,

		BTN_MSG_CANCELPRESS,

		PICT_MSG_SELECTED,

		GB_MSG_SELECTED,

		CC_MSG_SELECTED,

		SLD_MSG_INC,

		SLD_MSG_DEC,

		ST_MSG_SELECTED,

		DM_MSG_SELECTED,

		PB_MSG_SELECTED,

		RD_MSG_CLOCKWISE,

		RD_MSG_CTR_CLOCKWISE,

		MTR_MSG_SET,

		EB_MSG_CHAR,

		EB_MSG_DEL,

		EB_MSG_TOUCHSCREEN,

		LB_MSG_SEL,

		LB_MSG_MOVE,

		LB_MSG_TOUCHSCREEN,

		GRID_MSG_TOUCHED,

		GRID_MSG_ITEM_SELECTED,

		GRID_MSG_UP,

		GRID_MSG_DOWN,

		GRID_MSG_LEFT,

		GRID_MSG_RIGHT,

		CH_MSG_SELECTED,

		TE_MSG_RELEASED,

		TE_MSG_PRESSED,

		TE_MSG_ADD_CHAR,

		TE_MSG_DELETE,

		TE_MSG_SPACE,

		TE_MSG_ENTER,

		AC_MSG_PRESSED,

		AC_MSG_RELEASED,

		OBJ_MSG_PASSIVE

}	TRANS_MSG;

Overview

This	structure	defines	the	list	of	translated	messages	for	GOL
Objects	used	in	the	library.

Members

Members	 Description	

OBJ_MSG_INVALID	=	0	 Invalid	message	response.	

CB_MSG_CHECKED	 Check	Box	check	action	ID.	

CB_MSG_UNCHECKED	 Check	Box	un-check	action	ID.	

RB_MSG_CHECKED	 Radio	Button	check	action	ID.	

WND_MSG_CLIENT	 Window	client	area	selected	action
ID.	

WND_MSG_TITLE	 Window	title	bar	selected	action
ID.	

BTN_MSG_PRESSED	 Button	pressed	action	ID.	

BTN_MSG_STILLPRESSED	 Button	is	continuously	pressed	ID.	

BTN_MSG_RELEASED	 Button	released	action	ID.	

BTN_MSG_CANCELPRESS	 Button	released	action	ID	with
button	press	canceled.	

PICT_MSG_SELECTED	 Picture	selected	action	ID.	

GB_MSG_SELECTED	 Group	Box	selected	action	ID.	

CC_MSG_SELECTED	 Custom	Control	selected	action
ID.	

SLD_MSG_INC	 Slider	or	Scroll	Bar	increment
action	ID.	

SLD_MSG_DEC	 Slider	or	Scroll	Bar	decrement
action	ID.	

ST_MSG_SELECTED	 Static	Text	selected	action	ID.	

DM_MSG_SELECTED	 Digital	Meter	selected	action	ID.	

PB_MSG_SELECTED	 Progress	Bar	selected	action	ID.	

RD_MSG_CLOCKWISE	 Dial	move	clockwise	action	ID.	

RD_MSG_CTR_CLOCKWISE	 Dial	move	counter	clockwise	action
ID.	

MTR_MSG_SET	 Meter	set	value	action	ID.	

EB_MSG_CHAR	 Edit	Box	insert	character	action
ID.	

EB_MSG_DEL	 Edit	Box	remove	character	action
ID.	

EB_MSG_TOUCHSCREEN	 Edit	Box	touchscreen	selected
action	ID.	

LB_MSG_SEL	 List	Box	item	select	action	ID.	

LB_MSG_MOVE	 List	Box	item	move	action	ID.	

LB_MSG_TOUCHSCREEN	 List	Box	touchscreen	selected
action	ID.	

GRID_MSG_TOUCHED	 Grid	item	touched	action	ID.	

GRID_MSG_ITEM_SELECTED	 Grid	item	selected	action	ID.	

GRID_MSG_UP	 Grid	up	action	ID.	

GRID_MSG_DOWN	 Grid	down	action	ID.	

GRID_MSG_LEFT	 Grid	left	action	ID.	

GRID_MSG_RIGHT	 Grid	right	action	ID.	

CH_MSG_SELECTED	 Chart	selected	action	ID	

TE_MSG_RELEASED	 TextEntry	released	action	ID	

TE_MSG_PRESSED	 TextEntry	pressed	action	ID	

TE_MSG_ADD_CHAR	 TextEntry	add	character	action	ID	

TE_MSG_DELETE	 TextEntry	delete	character	action
ID	

TE_MSG_SPACE	 TextEntry	add	space	character
action	ID	

TE_MSG_ENTER	 TextEntry	enter	action	ID	

AC_MSG_PRESSED	 Analog	Clock	Pressed	Action	

AC_MSG_RELEASED	 Analog	Clock	Released	Action	

OBJ_MSG_PASSIVE	 Passive	message	response.	No
change	in	object	needed.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>
TRANS_MSG	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

INPUT_DEVICE_EVENT	Enumeration
C
typedef	enum	{

		EVENT_INVALID	=	0,

		EVENT_MOVE,

		EVENT_PRESS,

		EVENT_STILLPRESS,

		EVENT_RELEASE,

		EVENT_KEYSCAN,

		EVENT_CHARCODE,

		EVENT_SET,

		EVENT_SET_STATE,

		EVENT_CLR_STATE

}	INPUT_DEVICE_EVENT;

Overview

This	structure	defines	the	types	of	GOL	message	events	used	in
the	library.

Members

Members	 Description	

EVENT_INVALID	=	0	 An	invalid	event.	

EVENT_MOVE	 A	move	event.	

EVENT_PRESS	 A	press	event.	

EVENT_STILLPRESS	 A	continuous	press	event.	

EVENT_RELEASE	 A	release	event.	

EVENT_KEYSCAN	 A	keyscan	event,	parameters	has	the	object

ID	keyboard	scan	code.	

EVENT_CHARCODE	 Character	code	is	presented	at	the
parameters.	

EVENT_SET	 A	generic	set	event.	

EVENT_SET_STATE	 A	set	state	event.	

EVENT_CLR_STATE	 A	clear	state	event.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>
INPUT_DEVICE_EVENT	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

INPUT_DEVICE_TYPE	Enumeration
C
typedef	enum	{

		TYPE_UNKNOWN	=	0,

		TYPE_KEYBOARD,

		TYPE_TOUCHSCREEN,

		TYPE_MOUSE,

		TYPE_TIMER,

		TYPE_SYSTEM

}	INPUT_DEVICE_TYPE;

Overview

This	structure	defines	the	types	of	input	devices	used	in	the
library.

Members

Members	 Description	

TYPE_UNKNOWN	=	0	 Unknown	device.	

TYPE_KEYBOARD	 Keyboard.	

TYPE_TOUCHSCREEN	 Touchscreen.	

TYPE_MOUSE	 Mouse.	

TYPE_TIMER	 Timer.	

TYPE_SYSTEM	 System	Messages.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>
INPUT_DEVICE_TYPE	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Scan	Key	Codes
Macros

The	defined	scan	codes	for	AT	keyboard.

Macros

Name	 Description	

SCAN_BS_PRESSED	 Back	space	key	pressed.	

SCAN_BS_RELEASED	 Back	space	key	released.	

SCAN_CR_PRESSED	 Carriage	return	pressed.	

SCAN_CR_RELEASED	 Carriage	return	released.	

SCAN_DEL_PRESSED	 Delete	key	pressed.	

SCAN_DEL_RELEASED	 Delete	key	released.	

SCAN_DOWN_PRESSED	 Down	key	pressed.	

SCAN_DOWN_RELEASED	 Down	key	released.	

SCAN_END_PRESSED	 End	key	pressed.	

SCAN_END_RELEASED	 End	key	released.	

SCAN_HOME_PRESSED	 Home	key	pressed.	

SCAN_HOME_RELEASED	 Home	key	released.	

SCAN_LEFT_PRESSED	 Left	key	pressed.	

SCAN_LEFT_RELEASED	 Left	key	released.	

SCAN_PGDOWN_PRESSED	 Page	down	key	pressed.	

SCAN_PGDOWN_RELEASED	 Page	down	key	released.	

SCAN_PGUP_PRESSED	 Page	up	key	pressed.	

SCAN_PGUP_RELEASED	 Page	up	key	released.	

SCAN_RIGHT_PRESSED	 Right	key	pressed.	

SCAN_RIGHT_RELEASED	 Right	key	released.	

SCAN_SPACE_PRESSED	 Space	key	pressed.	

SCAN_SPACE_RELEASED	 Space	key	released.	

SCAN_TAB_PRESSED	 Tab	key	pressed.	

SCAN_TAB_RELEASED	 Tab	key	released.	

SCAN_UP_PRESSED	 Up	key	pressed.	

SCAN_UP_RELEASED	 Up	key	released.	

Links

GOL	Messages,	Macros

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_BS_PRESSED	Macro
C
#define	SCAN_BS_PRESSED	0x0E

Description

Back	space	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_BS_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_BS_RELEASED	Macro
C
#define	SCAN_BS_RELEASED	0x8E

Description

Back	space	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_BS_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_CR_PRESSED	Macro
C
#define	SCAN_CR_PRESSED	0x1C

Description

Carriage	return	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_CR_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_CR_RELEASED	Macro
C
#define	SCAN_CR_RELEASED	0x9C

Description

Carriage	return	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_CR_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_DEL_PRESSED	Macro
C
#define	SCAN_DEL_PRESSED	0x53

Description

Delete	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_DEL_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_DEL_RELEASED	Macro
C
#define	SCAN_DEL_RELEASED	0xD3

Description

Delete	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_DEL_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_DOWN_PRESSED	Macro
C
#define	SCAN_DOWN_PRESSED	0x50

Description

Down	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_DOWN_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_DOWN_RELEASED	Macro
C
#define	SCAN_DOWN_RELEASED	0xD0

Description

Down	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_DOWN_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_END_PRESSED	Macro
C
#define	SCAN_END_PRESSED	0x4F

Description

End	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_END_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_END_RELEASED	Macro
C
#define	SCAN_END_RELEASED	0xCF

Description

End	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_END_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_HOME_PRESSED	Macro
C
#define	SCAN_HOME_PRESSED	0x47

Description

Home	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_HOME_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_HOME_RELEASED	Macro
C
#define	SCAN_HOME_RELEASED	0xC7

Description

Home	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_HOME_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_LEFT_PRESSED	Macro
C
#define	SCAN_LEFT_PRESSED	0x4B

Description

Left	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_LEFT_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_LEFT_RELEASED	Macro
C
#define	SCAN_LEFT_RELEASED	0xCB

Description

Left	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_LEFT_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_PGDOWN_PRESSED	Macro
C
#define	SCAN_PGDOWN_PRESSED	0x51

Description

Page	down	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_PGDOWN_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_PGDOWN_RELEASED	Macro
C
#define	SCAN_PGDOWN_RELEASED	0xD1

Description

Page	down	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_PGDOWN_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_PGUP_PRESSED	Macro
C
#define	SCAN_PGUP_PRESSED	0x49

Description

Page	up	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_PGUP_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_PGUP_RELEASED	Macro
C
#define	SCAN_PGUP_RELEASED	0xC9

Description

Page	up	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_PGUP_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_RIGHT_PRESSED	Macro
C
#define	SCAN_RIGHT_PRESSED	0x4D

Description

Right	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_RIGHT_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_RIGHT_RELEASED	Macro
C
#define	SCAN_RIGHT_RELEASED	0xCD

Description

Right	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_RIGHT_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_SPACE_PRESSED	Macro
C
#define	SCAN_SPACE_PRESSED	0x39

Description

Space	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_SPACE_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_SPACE_RELEASED	Macro
C
#define	SCAN_SPACE_RELEASED	0xB9

Description

Space	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_SPACE_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_TAB_PRESSED	Macro
C
#define	SCAN_TAB_PRESSED	0x0F

Description

Tab	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_TAB_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_TAB_RELEASED	Macro
C
#define	SCAN_TAB_RELEASED	0x8F

Description

Tab	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_TAB_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_UP_PRESSED	Macro
C
#define	SCAN_UP_PRESSED	0x48

Description

Up	key	pressed.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_UP_PRESSED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SCAN_UP_RELEASED	Macro
C
#define	SCAN_UP_RELEASED	0xC8

Description

Up	key	released.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes	>	SCAN_UP_RELEASED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Style	Scheme
Functions	|	Macros	|	Structures	|	Topics	|	Variables

All	objects	uses	a	style	scheme	structure	that	defines	the	font
and	colors	used.	Upon	the	object’s	creation	a	user	defined	style
scheme	can	be	assigned	to	the	object.	In	the	absence	of	the
user	defined	scheme,	the	default	scheme	is	used.

Copy	Code
				typedef	struct	{

								WORD															EmbossDkColor;

								WORD															EmbossLtColor;

								WORD															TextColor0;

								WORD															TextColor1;

								WORD															TextColorDisabled;

								WORD															Color0;

								WORD															Color1;

								WORD															ColorDisabled;

								WORD															CommonBkColor;

								BYTE															*pFont;

								BYTE															AlphaValue;

								GFX_GRADIENT_STYLE	gradientScheme;

				}	GOL_SCHEME;

	

Field	 Description	

EmbossDkColor	 Dark	emboss	color	used	for	the	3-D	effect	of
the	object.	

EmbossLtColor	 Light	emboss	color	used	for	the	3-D	effect	of
the	object.	

TextColor0
TextColor1	

Generic	text	colors	used	by	the	objects.	Usage
may	vary	from	one	object	type	to	another.	

TextColorDisabled	 Text	color	used	for	objects	that	are	disabled.	

Color0
Color1	

Generic	colors	used	to	render	objects.	Usage
may	vary	from	one	object	type	to	another.	

ColorDisabled	 Color	used	to	render	objects	that	are	disabled.	

CommonBkColor	 A	common	background	color	of	objects.
Typically	used	to	hide	objects	from	the	screen.	

pFont	 Pointer	to	the	font	table	used	by	the	object.	

AlphaValue	 Alpha	value	used	for	alpha	blending,	this	is
only	available	only	when	USE_ALPHABLEND
is	defined	in	the	GraphicsConfig.h.	

gradientScheme	 Gradient	Scheme	for	supported	widgets,	this	is
available	only	when	USE_GRADIENT	is
defined	in	the	GraphicsConfig.h.	

TextColorDisabled	and	ColorDisabled	are	used	when	the	object
is	in	the	disabled	state.	Otherwise,	TextColor0,	TextColor1,
Color0	and	Color1	are	used.	When	object	Draw	state	is	set	to
HIDE,	the	CommonBkColor	is	used	to	fill	area	occupied	by
object.	

Style	scheme	can	be	created	with	GOLCreateScheme()	function
that	returns	a	pointer	to	the	newly	created	GOL_SCHEME
structure	with	default	values	automatically	assigned.	The	default
settings	of	the	style	scheme	for	a	16bpp	setup	are	shown	below:

Style	Parameter	 Default	Value	

EmbossDkColor	 EMBOSSDKCOLORDEFAULT	

EmbossLtColor	 EMBOSSLTCOLORDEFAULT	

Textcolor0	 TEXTCOLOR0DEFAULT	

Textcolor1	 TEXTCOLOR1DEFAULT	

TextColorDisabled	 TEXTCOLORDISABLEDDEFAULT	

Color0	 COLOR0DEFAULT	

Color1	 COLOR1DEFAULT	

ColorDisabled	 COLORDISABLEDDEFAULT	

CommonBkColor	 COMMONBACKGROUNDCOLORDEFAULT	

pFont	 FONTDEFAULT	

AlphaValue	 0	

gradientScheme	 {	GRAD_NONE,	RGBConvert(0xA9,	0xDB,
0xEF),	RGBConvert(0x26,	0xC7,	0xF2),	50	}	

The	default	values	can	be	changed	in	the	GOLSchemeDefault.c
file.	

	

The	application	code	can	define	its	own	default	style	scheme	by
defining	the	macro	GFX_SCHEMEDEFAULT	in	the
GraphicsConfig.h.	

Then	GOL_SCHEME	GOLSchemeDefault	must	be	defined	in	the
application	code	with	each	structure	member	initialized	to	the
desired	values.	See	GOLSchemeDefault.c	file	for	an	example	on
how	to	initialize	the	style	scheme.

Functions

	 Name	 Description	

	 GOLCreateScheme	 This	function	creates	a	new	style
scheme	object	and	initializes	the
parameters	to	default	values.	Default
values	are	based	on	the
GOLSchemeDefault	defined	in

GOLSchemeDefault.c	file.	Application
code	can	override	this	initialization,	See
GOLSchemeDefault.	

Macros

Name	 Description	

GOLSetScheme	 This	macro	sets	the	GOL	scheme	to	be
used	for	the	object.	

GOLGetScheme	 This	macro	gets	the	GOL	scheme	used	by
the	given	object.	

GOLGetSchemeDefault	 This	macro	returns	the	default	GOL
scheme	pointer.	

GOL_EMBOSS_SIZE	 This	option	defines	the	3-D	effect	emboss
size	for	objects.	The	default	value	of	this	is
3	set	in	GOL.h.	If	it	is	not	defined	in
GraphicsConfig.h	file	then	the	default	value
is	used.	

RGBConvert	 This	macro	converts	the	color	data	to	the
selected	COLOR_DEPTH.	This	macro	is
only	valid	when	COLOR_DEPTH	is	8,	16,
or	24.
	

Structures

Name	 Description	

GOL_SCHEME	 GOL	scheme	defines	the	style	scheme	to	be
used	by	an	object.	

Topics

Name	 Description	

Default	Style	Scheme
Settings	

Lists	the	default	settings	for	the	style
scheme.	

Variables

Name	 Description	

GOLFontDefault	 This	is	variable	GOLFontDefault.	

GOLSchemeDefault	 This	defines	a	default	GOL	scheme	that
gets	populated	when	an	application	calls	the
GOLCreateScheme().	The	application	can
override	this	definition	by	defining	the	macro
GFX_SCHEMEDEFAULT	in	the
GraphicsConfig.h	header	file	and	defining
GOLSchemeDefault	structure	in	the
application	code.	It	is	important	to	use	the
same	structure	name	since	the	library
assumes	that	this	object	exists	and	assigns
the	default	style	scheme	pointer	to	this
object.	

Links

Functions,	Graphics	Object	Layer	API,	Legend,	Macros,
Structures,	Topics,	Variables

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLCreateScheme	Function
C
GOL_SCHEME	*	GOLCreateScheme();

Overview

This	function	creates	a	new	style	scheme	object	and	initializes
the	parameters	to	default	values.	Default	values	are	based	on
the	GOLSchemeDefault	defined	in	GOLSchemeDefault.c	file.
Application	code	can	override	this	initialization,	See
GOLSchemeDefault.

Returns

Pointer	to	the	new	GOL_SCHEME	created.

Preconditions

none

Side	Effects

none

Example

Copy	Code
extern	const	char	Font22[]	__attribute__((aligned(2)));

extern	const	char	Font16[]	__attribute__((aligned(2)));

GOL_SCHEME	*pScheme1,	*pScheme2;

pScheme1	=	GOLCreateScheme();

pScheme2	=	GOLCreateScheme();

pScheme1->pFont	=	(BYTE*)Font22;

pScheme2->pFont	=	(BYTE*)Font16;

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLCreateScheme	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLSetScheme	Macro
C
#define	GOLSetScheme(pObj,	pScheme)	((OBJ_HEADER	*)pObj)->pGolScheme	=	pScheme

Overview

This	macro	sets	the	GOL	scheme	to	be	used	for	the	object.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

pScheme	 Pointer	to	the	style	scheme	to	be	used.	

Returns

none

Preconditions

none

Side	Effects

none

Example

Copy	Code
extern	FONT_FLASH	Gentium12;

GOL_SCHEME	*pScheme1;

BUTTON	*pButton;

pScheme1	=	GOLCreateScheme();

pScheme1->pFont	=	&Gentium12;

//	assume	button	is	created	and	initialized

//	reassign	the	scheme	used	by	pButton	to	pScheme1

GOLSetScheme(pButton,	pScheme1);

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLSetScheme	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetScheme	Macro
C
#define	GOLGetScheme(pObj)	((OBJ_HEADER	*)pObj)->pGolScheme

Overview

This	macro	gets	the	GOL	scheme	used	by	the	given	object.

Input	Parameters

Input	Parameters	 Description	

pObj	 Pointer	to	the	object	of	interest.	

Returns

Returns	the	style	scheme	used	by	the	given	object.

Preconditions

none

Side	Effects

none

Example

Copy	Code
GOL_SCHEME	*pScheme2;

BUTTON	*pButton;

//	assume	button	is	created	and	initialized

//	get	the	scheme	assigned	to	pButton

pScheme2	=	GOLGetScheme(pButton);

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLGetScheme	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLGetSchemeDefault	Macro
C
#define	GOLGetSchemeDefault	_pDefaultGolScheme

Overview

This	macro	returns	the	default	GOL	scheme	pointer.

Returns

Returns	the	pointer	to	the	default	style	scheme.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLGetSchemeDefault	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL_SCHEME	Structure
C
typedef	struct	{

		GFX_COLOR	EmbossDkColor;

		GFX_COLOR	EmbossLtColor;

		GFX_COLOR	TextColor0;

		GFX_COLOR	TextColor1;

		GFX_COLOR	TextColorDisabled;

		GFX_COLOR	Color0;

		GFX_COLOR	Color1;

		GFX_COLOR	ColorDisabled;

		GFX_COLOR	CommonBkColor;

		void	*	pFont;

		WORD	AlphaValue;

		GFX_GRADIENT_STYLE	gradientScheme;

}	GOL_SCHEME;

Overview

GOL	scheme	defines	the	style	scheme	to	be	used	by	an	object.

Members

Members	 Description	

GFX_COLOR
EmbossDkColor;	

Emboss	dark	color	used	for	3d	effect.	

GFX_COLOR
EmbossLtColor;	

Emboss	light	color	used	for	3d	effect.	

GFX_COLOR
TextColor0;	

Character	color	0	used	for	objects	that
supports	text.	

GFX_COLOR Character	color	1	used	for	objects	that

TextColor1;	 supports	text.	

GFX_COLOR
TextColorDisabled;	

Character	color	used	when	object	is	in	a
disabled	state.	

GFX_COLOR	Color0;	 Color	0	usually	assigned	to	an	Object
state.	

GFX_COLOR	Color1;	 Color	1	usually	assigned	to	an	Object
state.	

GFX_COLOR
ColorDisabled;	

Color	used	when	an	Object	is	in	a
disabled	state.	

GFX_COLOR
CommonBkColor;	

Background	color	used	to	hide	Objects.	

void	*	pFont;	 Font	selected	for	the	scheme.	

WORD	AlphaValue;	 Alpha	value	used	for	alpha	blending,	this
is	available	only	when
USE_ALPHABLEND	is	defined	in	the
GraphicsConfig.h.	

GFX_GRADIENT_STYLE
gradientScheme;	

Gradient	Scheme	for	widgets,	this	is
available	only	when	USE_GRADIENT	is
defined	in	the	GraphicsConfig.h.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOL_SCHEME	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Default	Style	Scheme	Settings
Variables

Lists	the	default	settings	for	the	style	scheme.

Variables

Name	 Description	

FONTDEFAULT	 Default	GOL	font.	

Links

Style	Scheme,	Variables

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>	Default	Style
Scheme	Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FONTDEFAULT	Variable
C
const	FONT_FLASH	FONTDEFAULT;

Description

Default	GOL	font.

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>	Default	Style
Scheme	Settings	>	FONTDEFAULT	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLFontDefault	Variable
C
const	FONT_FLASH	GOLFontDefault	=	{	(FLASH	|	COMP_NONE),	(GFX_FONT_SPACE	

Description

This	is	variable	GOLFontDefault.

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLFontDefault	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL_EMBOSS_SIZE	Macro
C
#define	GOL_EMBOSS_SIZE	3

Overview

This	option	defines	the	3-D	effect	emboss	size	for	objects.	The
default	value	of	this	is	3	set	in	GOL.h.	If	it	is	not	defined	in
GraphicsConfig.h	file	then	the	default	value	is	used.

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOL_EMBOSS_SIZE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOLSchemeDefault	Variable
C
const	GOL_SCHEME	GOLSchemeDefault	=	{	BLACK,	WHITE,	WHITE,	BLACK,	WHITE,	BLACK,	WHITE,	BLACK,	BLACK,	GRAY006,	GRAY010,	WHITE,	BLACK,	GRAY012,	GRAY008,	GRAY004,	GRAY014,	BLACK,	RGBConvert(0x2B,	0x55,	0x87),	RGBConvert(0xD4,	0xE4,	0xF7),	RGBConvert(0x07,	0x1E,	0x48),	RGBConvert(0xFF,	0xFF,	0xFF),	RGBConvert(245,	245,	220),	RGBConvert(0xA9,	0xDB,	0xEF),	RGBConvert(0x26,	0xC7,	0xF2),	RGBConvert(0xB6,	0xD2,	0xFB),	RGBConvert(0xD4,	0xED,	0xF7),	(

Overview

This	defines	a	default	GOL	scheme	that	gets	populated	when	an
application	calls	the	GOLCreateScheme().	The	application	can
override	this	definition	by	defining	the	macro
GFX_SCHEMEDEFAULT	in	the	GraphicsConfig.h	header	file
and	defining	GOLSchemeDefault	structure	in	the	application
code.	It	is	important	to	use	the	same	structure	name	since	the
library	assumes	that	this	object	exists	and	assigns	the	default
style	scheme	pointer	to	this	object.

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>
GOLSchemeDefault	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RGBConvert	Macro
C
#define	RGBConvert(red,	green,	blue)	(GFX_COLOR)	(((GFX_COLOR)(red)	<<	16)	|	((GFX_COLOR)(green)	<<	8)	|	(GFX_COLOR)(blue))

Overview

This	macro	converts	the	color	data	to	the	selected
COLOR_DEPTH.	This	macro	is	only	valid	when
COLOR_DEPTH	is	8,	16,	or	24.	

	

COLOR_DEPTH	 Conversion	

8	 8-8-8	to	3-3-2	conversion	

16	 8-8-8	to	to	5-6-5	conversion	

24	 8-8-8	to	8-8-8	conversion	or	no	conversion	

Input	Parameters

Input	Parameters	 Description	

red	 red	component	of	the	color.	

green	 green	component	of	the	color.	

blue	 blue	component	of	the	color.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>	RGBConvert
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GOL	Global	Variables
Variables

Graphics	Object	Layer	global	variables.

Variables

Name	 Description	

_pDefaultGolScheme	 Pointer	to	the	GOL	default	scheme
(GOL_SCHEME).	This	scheme	is	created	in
GOLInit()	function.	GOL	scheme	defines	the
style	scheme	to	be	used	by	an	object.	Use
GOLGetSchemeDefault()	to	get	this	pointer.	

_pGolObjects	 Pointer	to	the	current	linked	list	of	objects
displayed	and	receiving	messages.
GOLDraw()	and	GOLMsg()	process	objects
referenced	by	this	pointer.	

_pObjectFocused	 Pointer	to	the	object	receiving	keyboad
input.	This	pointer	is	used	or	modified	by	the
following	APIs:

GOLSetFocus()
GOLGetFocus()
GOLGetFocusNext()
GOLGetFocusPrev()
GOLCanBeFocused()

	

Links

Graphics	Object	Layer	API,	Variables

Library	API	>	Graphics	Object	Layer	API	>	GOL	Global	Variables

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_pDefaultGolScheme	Variable
C
GOL_SCHEME	*	_pDefaultGolScheme;

Overview

Pointer	to	the	GOL	default	scheme	(GOL_SCHEME).	This
scheme	is	created	in	GOLInit()	function.	GOL	scheme	defines
the	style	scheme	to	be	used	by	an	object.	Use
GOLGetSchemeDefault()	to	get	this	pointer.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Global	Variables	>
_pDefaultGolScheme	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_pGolObjects	Variable
C
OBJ_HEADER	*	_pGolObjects;

Overview

Pointer	to	the	current	linked	list	of	objects	displayed	and
receiving	messages.	GOLDraw()	and	GOLMsg()	process	objects
referenced	by	this	pointer.

Library	API	>	Graphics	Object	Layer	API	>	GOL	Global	Variables	>
_pGolObjects	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_pObjectFocused	Variable
C
OBJ_HEADER	*	_pObjectFocused;

Overview

Pointer	to	the	object	receiving	keyboad	input.	This	pointer	is
used	or	modified	by	the	following	APIs:

GOLSetFocus()
GOLGetFocus()
GOLGetFocusNext()
GOLGetFocusPrev()
GOLCanBeFocused()

Library	API	>	Graphics	Object	Layer	API	>	GOL	Global	Variables	>
_pObjectFocused	Variable

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphics	Primitive	Layer	API
Enumerations	|	Structures	|	Topics

Enumerations

Name	 Description	

GFX_RESOURCE	 Memory	type	enumeration	to	determine	the
source	of	data.	Used	in	interpreting	bitmap
and	font	from	different	memory	sources.	

Structures

Name	 Description	

GFX_IMAGE_HEADER	 Structure	for	images	stored	in	various
system	memory	(Flash,	External	Memory
(SPI,	Parallel	Flash,	or	memory	in	EPMP).	

IMAGE_FLASH	 Structure	for	images	stored	in	FLASH
memory.	

IMAGE_RAM	 Structure	for	images	stored	in	RAM
memory.	

GFX_EXTDATA	 This	structure	is	used	to	describe	external
memory.	

Topics

Name	 Description	

Text	Functions	 This	lists	the	Primitive	level	text	functions.	

Gradient	 Gradients	can	be	drawn	dynamically	with

the	Microchip	Graphics	Library.	

Line	Functions	 This	lists	the	Primitive	line	text	functions.	

Rectangle	Functions	 This	lists	the	Primitive	level	rectangle
functions.	

Circle	Functions	 This	lists	the	Primitive	level	circle	functions.	

Graphic	Cursor	 This	lists	the	functions	to	control	the
graphics	cursor.	

Alpha	Blending
Functions	

This	lists	the	functions	to	control	Alpha
Blending.	This	feature	is	enabled	only	in
selected	drivers.	

Bitmap	Functions	 This	lists	the	functions	to	display	bitmaps.	

External	Memory	 This	lists	the	external	memory	access
functions	and	descriptions.	

Set	Up	Functions	 This	lists	the	Primitive	set	up	and
initialization	functions.	

Links

Enumerations,	Library	API,	Structures,	Topics

Library	API	>	Graphics	Primitive	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Text	Functions
Functions	|	Macros	|	Structures	|	Topics	|	Types

This	lists	the	Primitive	level	text	functions.

Functions

	 Name	 Description	

	 SetFont	 This	function	sets	the	current	font	used	in
OutTextXY(),	OutText()	and	OutChar()
functions.	

	 OutChar	 This	function	outputs	a	character	from	the
current	graphic	cursor	position.	OutChar()
uses	the	current	active	font	set	with
SetFont().	

	 OutText	 This	function	outputs	a	string	of	characters
starting	at	the	current	graphic	cursor
position.	The	string	must	be	terminated	by	a
line	feed	or	zero.	For	Non-Blocking
configuration,	OutText()	may	return	control
to	the	program	due	to	display	device	busy
status.	When	this	happens	zero	is	returned
and	OutText()	must	be	called	again	to
continue	the	outputting	of	the	string.	For
Blocking	configuration,	this	function	always
returns	a	1.	OutText()	uses	the	current
active	font	set	with	SetFont().	

	 OutTextXY	 This	function	outputs	a	string	of	characters
starting	at	the	given	x,	y	position.	The	string
must	be	terminated	by	a	line	feed	or	zero.
For	Non-Blocking	configuration,
OutTextXY()	may	return	control	to	the

program	due	to	display	device	busy	status.
When	this	happens	zero	is	returned	and
OutTextXY()	must	be	called	again	to
continue	the	outputting	of	the	string.	For
Blocking	configuration,	this	function	always
returns	a	1.	OutTextXY()	uses	the	current
active	font	set	with	SetFont().	

	 GetTextHeight	 This	macro	returns	the	height	of	the
specified	font.	All	characters	in	a	given	font
table	have	a	constant	height.	

	 GetTextWidth	 This	function	returns	the	width	of	the
specified	string	for	the	specified	font.	The
string	must	be	terminated	by	a	line	feed	or
zero.	

Macros

Name	 Description	

GetFontOrientation	 Returns	font	orientation.	

SetFontOrientation	 Sets	font	orientation	vertical	or
horizontal.	

GFX_Font_GetAntiAliasType	 Returns	the	font	anti-alias	type.	

GFX_Font_SetAntiAliasType	 Sets	font	anti-alias	type	to	either
Translucent	or	opaque.	

XCHAR	 This	macro	sets	the	data	type	for	the
strings	and	characters.	There	are
three	types	used	for	XCHAR	and	the
type	is	selected	by	adding	one	of	the
macros	in	GraphicsConfig.h.		

Structures

Name	 Description	

FONT_HEADER	 Structure	describing	the	font	header.	

FONT_FLASH	 Structure	for	font	stored	in	FLASH	memory.	

Topics

Name	 Description	

Anti-Alias	Type	 Anti-alias	type	definitions.	

Types

Name	 Description	

FONT_EXTERNAL	 Structure	for	font	stored	in	EXTERNAL
memory	space.	(example:	External	SPI	or
parallel	Flash,	EDS_EPMP)	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros,
Structures,	Topics,	Types

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FONT_HEADER	Structure
C
typedef	struct	{

		BYTE	fontID;

		BYTE	extendedGlyphEntry	:	1;

		BYTE	res1	:	1;

		BYTE	bpp	:	2;

		BYTE	orientation	:	2;

		BYTE	res2	:	2;

		WORD	firstChar;

		WORD	lastChar;

		WORD	height;

}	FONT_HEADER;

Overview

Structure	describing	the	font	header.

Members

Members	 Description	

BYTE	fontID;	 User	assigned	value	

BYTE
extendedGlyphEntry	:
1;	

Extended	Glyph	entry	flag.	When	set	font
has	extended	glyph	feature	enabled.	

BYTE	res1	:	1;	 Reserved	for	future	use	(must	be	set	to	0)	

BYTE	bpp	:	2;	 Actual	BPP	=	2bpp
0	-	1	BPP
1	-	2	BPP
2	-	4	BPP
3	-	8	BPP

	

BYTE	orientation	:	2;	 Orientation	of	the	character	glyphs
(0,90,180,270	degrees)

00	-	Normal
01	-	Characters	rotated	270	degrees
clockwise
10	-	Characters	rotated	180	degrees
11	-	Characters	rotated	90	degrees
clockwise

	

BYTE	res2	:	2;	 Reserved	for	future	use	(must	be	set	to	0).	

WORD	firstChar;	 Character	code	of	first	character	(e.g.	32).	

WORD	lastChar;	 Character	code	of	last	character	in	font	(e.g.
3006).	

WORD	height;	 Font	characters	height	in	pixels.	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
FONT_HEADER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FONT_FLASH	Structure
C
typedef	struct	{

		GFX_RESOURCE	type;

		GFX_FONT_SPACE	char	*	address;

}	FONT_FLASH;

Overview

Structure	for	font	stored	in	FLASH	memory.

Members

Members	 Description	

GFX_RESOURCE
type;	

must	be	FLASH	

GFX_FONT_SPACE
char	*	address;	

font	image	address	in	FLASH	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
FONT_FLASH	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FONT_EXTERNAL	Type
C
typedef	GFX_EXTDATA	FONT_EXTERNAL;

Overview

Structure	for	font	stored	in	EXTERNAL	memory	space.	(example:
External	SPI	or	parallel	Flash,	EDS_EPMP)

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
FONT_EXTERNAL	Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetFont	Function
C
void	SetFont(

				void	*	pFont

);

Overview

This	function	sets	the	current	font	used	in	OutTextXY(),	OutText()
and	OutChar()	functions.

Input	Parameters

Input	Parameters	 Description	

void	*	pFont	 Pointer	to	the	new	font	image	to	be	used.	

Returns

none

Side	Effects

none

Example

See	OutTextXY()	example.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	SetFont
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetFontOrientation	Macro
C
#define	GetFontOrientation	_fontOrientation

Overview

Returns	font	orientation.

Returns

Return	the	current	font	orientation.

1	when	font	orientation	is	vertical
0	when	font	orientation	is	horizontal

Preconditions

none

Example

Copy	Code
void	PlaceText(SHORT	x,	SHORT	y,	WORD	space,	XCHAR	*pString)

{

				SHORT	width;

				

				SetColor(BRIGHTRED);																//	set	color

				SetFont(pMyFont);																			//	set	to	use	global	font	

				

				//	get	string	width

				width	=	GetTextWidth(pString,	pMyFont);

				//	check	if	it	fits

				if	(space	<	width)

				{

								if	(GetFontOrientation()	==	0)

												//	reset	the	orientation	to	vertical	

												SetFontOrientation(1);

				}

				else

				{

								if	(GetFontOrientation()	==	1)

												//	reset	the	orientation	to	horizontal

												SetFontOrientation(0);

				}

				//	place	string	in	the	middle	of	the	screen

				OutTextXY(x,	y,	pString);

}

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
GetFontOrientation	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetFontOrientation	Macro
C
#define	SetFontOrientation(orient)	_fontOrientation	=	orient;

Overview

Sets	font	orientation	vertical	or	horizontal.

Input	Parameters

Input	Parameters	 Description	

orient	 sets	font	orientation	when	rendering
characters	and	strings.

1	when	font	orientation	is	vertical
0	when	font	orientation	is	horizontal

	

Returns

none

Preconditions

none

Example

See	GetFontOrientation()	example.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
SetFontOrientation	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_Font_GetAntiAliasType	Macro
C
#define	GFX_Font_GetAntiAliasType	

Overview

Returns	the	font	anti-alias	type.

Returns

Return	the	current	font	anti-alias	type.

ANTIALIAS_TRANSLUCENT	-	(or	1)	when	font	anti-alias	is	type
translucent
ANTIALIAS_OPAQUE	-	(or	0)	when	font	anti-alias	is	type	opaque

Preconditions

Compiler	switch	USE_ANTIALIASED_FONTS	must	be	enabled

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
GFX_Font_GetAntiAliasType	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_Font_SetAntiAliasType	Macro
C
#define	GFX_Font_SetAntiAliasType(transparency)	

Overview

Sets	font	anti-alias	type	to	either	Translucent	or	opaque.

Input	Parameters

Input	Parameters	 Description	

transparency	 sets	font	font	anti-alias	type
ANTIALIAS_TRANSLUCENT	-	(or	1)
when	font	anti-alias	type	is	translucent
ANTIALIAS_OPAQUE	-	(or	0)	when
font	anti-alias	type	is	opaque

	

Returns

none

Preconditions

Compiler	switch	USE_ANTIALIASED_FONTS	must	be	enabled

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
GFX_Font_SetAntiAliasType	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

OutChar	Function
C
WORD	OutChar(

				XCHAR	ch

);

Overview

This	function	outputs	a	character	from	the	current	graphic	cursor
position.	OutChar()	uses	the	current	active	font	set	with
SetFont().

Input	Parameters

Input	Parameters	 Description	

XCHAR	ch	 The	character	code	to	be	displayed.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	character	is	not	yet
completely	drawn.
Returns	1	when	the	character	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Preconditions

none

Side	Effects

After	the	function	is	completed,	the	graphic	cursor	position	is
moved	in	the	horizontal	direction	by	the	character	width.	Vertical
position	of	the	graphic	cursor	is	not	changed.

Example

Copy	Code
static	WORD	counter	=	0;

XCHAR			ch;

//	render	characters	until	null	character

while((XCHAR)(ch	=	*(textString	+	counter))	!=	0)

{

				if(OutChar(ch)	==	0)

								return	(0);

				counter++;

}

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	OutChar
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

OutText	Function
C
WORD	OutText(

				XCHAR	*	textString

);

Overview

This	function	outputs	a	string	of	characters	starting	at	the	current
graphic	cursor	position.	The	string	must	be	terminated	by	a	line
feed	or	zero.	For	Non-Blocking	configuration,	OutText()	may
return	control	to	the	program	due	to	display	device	busy	status.
When	this	happens	zero	is	returned	and	OutText()	must	be	called
again	to	continue	the	outputting	of	the	string.	For	Blocking
configuration,	this	function	always	returns	a	1.	OutText()	uses	the
current	active	font	set	with	SetFont().

Input	Parameters

Input	Parameters	 Description	

XCHAR	*	textString	 Pointer	to	the	string	to	be	displayed.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	string	is	not	yet	outputted	completely.
Returns	1	when	string	is	outputted	completely.

For	Blocking	configuration:
Always	return	1.

Side	Effects

Current	horizontal	graphic	cursor	position	will	be	moved	to	the
end	of	the	text.	The	vertical	graphic	cursor	position	will	not	be
changed.

Example

Copy	Code
				SetFont(pMyFont);

				SetColor(WHITE);

				//	place	the	string	at	the	upper	left	corner	of	the	screen								

				MoveTo(0,	0);

				OutText("Test	String!");

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	OutText
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

OutTextXY	Function
C
WORD	OutTextXY(

				SHORT	x,	

				SHORT	y,	

				XCHAR	*	textString

);

Overview

This	function	outputs	a	string	of	characters	starting	at	the	given
x,	y	position.	The	string	must	be	terminated	by	a	line	feed	or
zero.	For	Non-Blocking	configuration,	OutTextXY()	may	return
control	to	the	program	due	to	display	device	busy	status.	When
this	happens	zero	is	returned	and	OutTextXY()	must	be	called
again	to	continue	the	outputting	of	the	string.	For	Blocking
configuration,	this	function	always	returns	a	1.	OutTextXY()	uses
the	current	active	font	set	with	SetFont().

Input	Parameters

Input	Parameters	 Description	

SHORT	x	 Defines	the	x	starting	position	of	the	string.	

SHORT	y	 Defines	the	y	starting	position	of	the	string.	

XCHAR	*	textString	 Pointer	to	the	string	to	be	displayed.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	string	is	not	yet	outputted	completely.

Returns	1	when	string	is	outputted	completely.
For	Blocking	configuration:

Always	return	1.

Side	Effects

Current	horizontal	graphic	cursor	position	will	be	moved	to	the
end	of	the	text.	The	vertical	graphic	cursor	position	will	not	be
changed.

Example

Copy	Code
void	PlaceText(void)

{

				SHORT	width,	height;

				static	const	XCHAR	text[]	=	"Touch	screen	to	continue";

				

				SetColor(BRIGHTRED);																//	set	color

				SetFont(pMyFont);																			//	set	font	to	my	font

				

				//	get	string	width	&	height

				width	=	GetTextWidth(text,	pMyFont);

				height	=	GetTextHeight(pMyFont);

				

				//	place	string	in	the	middle	of	the	screen

				OutTextXY((GetMaxX()	-	width)	>>	1,	

				(GetMaxY()	–	height)	>>	1,	

				(char*)text);

}

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	OutTextXY
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetTextHeight	Function
C
SHORT	GetTextHeight(

				void	*	pFont

);

Overview

This	macro	returns	the	height	of	the	specified	font.	All	characters
in	a	given	font	table	have	a	constant	height.

Input	Parameters

Input	Parameters	 Description	

void	*	pFont	 Pointer	to	the	font	image.	

Returns

Returns	the	font	height.

Side	Effects

none

Example

See	OutTextXY()	example.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>
GetTextHeight	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetTextWidth	Function
C
SHORT	GetTextWidth(

				XCHAR	*	textString,	

				void	*	pFont

);

Overview

This	function	returns	the	width	of	the	specified	string	for	the
specified	font.	The	string	must	be	terminated	by	a	line	feed	or
zero.

Input	Parameters

Input	Parameters	 Description	

XCHAR	*	textString	 Pointer	to	the	string.	

void	*	pFont	 Pointer	to	the	font	image.	

Returns

Returns	the	string	width	in	the	specified	font.

Side	Effects

none

Example

See	OutTextXY()	example.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>

GetTextWidth	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

XCHAR	Macro
C
#define	XCHAR	char

Overview

This	macro	sets	the	data	type	for	the	strings	and	characters.
There	are	three	types	used	for	XCHAR	and	the	type	is	selected
by	adding	one	of	the	macros	in	GraphicsConfig.h.

In	GraphicsConfig.h	 XCHAR	 Description	

#define
USE_MULTIBYTECHAR	

#define
XCHAR
unsigned
short	

Use	 multibyte
characters	 (0-2^16
range).	

#define
USE_UNSIGNED_XCHAR	

#define
XCHAR
unsigned	char	

Use	 unsigned	 char
(0-255	range).	

none	of	the	two	defined	 #define
XCHAR	char	

Use	 signed	 char	 (0-
127	range).	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	XCHAR
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Anti-Alias	Type
Macros

Anti-alias	type	definitions.

Macros

Name	 Description	

ANTIALIAS_OPAQUE	 Mid	colors	are	calculated	only	once
while	rendering	each	character.	This
is	ideal	for	rendering	text	over	a
constant	background.	

ANTIALIAS_TRANSLUCENT	 Mid	values	are	calculated	for	every
necessary	pixel.	This	feature	is	useful
when	rendering	text	over	an	image	or
when	the	background	is	not	one	flat
color.	

Links

Text	Functions,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	Anti-Alias
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ANTIALIAS_OPAQUE	Macro
C
#define	ANTIALIAS_OPAQUE	0

Description

Mid	colors	are	calculated	only	once	while	rendering	each
character.	This	is	ideal	for	rendering	text	over	a	constant
background.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	Anti-Alias
Type	>	ANTIALIAS_OPAQUE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ANTIALIAS_TRANSLUCENT	Macro
C
#define	ANTIALIAS_TRANSLUCENT	1

Description

Mid	values	are	calculated	for	every	necessary	pixel.	This	feature
is	useful	when	rendering	text	over	an	image	or	when	the
background	is	not	one	flat	color.

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	Anti-Alias
Type	>	ANTIALIAS_TRANSLUCENT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Gradient
Enumerations	|	Functions	|	Structures

Enumerations

Name	 Description	

GFX_GRADIENT_TYPE	 Enumeration	for	gradient	type	

Functions

	 Name	 Description	

	 BarGradient	 This	renders	a	bar	onto	the	screen,	but
instead	of	one	color,	a	gradient	is	drawn
depending	on	the	direction
(GFX_GRADIENT_TYPE),	length,	and
colors	chosen.	This	function	is	a	blocking
call.	

	 BevelGradient	 This	renders	a	filled	bevel	with	gradient
color	on	the	fill.	It	works	the	same	as	the
fillbevel	function,	except	a	gradient	out	of
color1	and	color2	is	drawn	depending	on
the	direction	(GFX_GRADIENT_TYPE).
This	function	is	a	blocking	call.	

Structures

Name	 Description	

GFX_GRADIENT_STYLE	 This	structure	is	used	to	describe	the
gradient	style.	

Links

Enumerations,	Functions,	Graphics	Primitive	Layer	API,	Legend,
Structures

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BarGradient	Function
C
WORD	BarGradient(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				GFX_COLOR	color1,	

				GFX_COLOR	color2,	

				DWORD	length,	

				BYTE	direction

);

Overview

This	renders	a	bar	onto	the	screen,	but	instead	of	one	color,	a
gradient	is	drawn	depending	on	the	direction
(GFX_GRADIENT_TYPE),	length,	and	colors	chosen.	This
function	is	a	blocking	call.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 x	position	of	the	left	top	corner.	

SHORT	top	 y	position	of	the	left	top	corner.	

SHORT	right	 x	position	of	the	right	bottom	corner.	

SHORT	bottom	 y	position	of	the	right	bottom	corner.	

GFX_COLOR	color1	 start	color	for	the	gradient	

GFX_COLOR	color2	 end	color	for	the	gradient	

DWORD	length	 From	0-100%.	How	much	of	a	gradient	is
wanted	

BYTE	direction	 Gradient	Direction	

Returns

Always	returns	a	1	since	it	is	a	blocking	function.

Preconditions

USE_GRADIENT	macro	must	be	defined	(in	GraphicsConfig.h)

Side	Effects

none

Example

Copy	Code
//	draw	a	full	screen	gradient	background

//	with	color	transitioning	from	BRIGHTRED	to	

//	BLACK	in	the	upward	direction.		

GFX_GRADIENT_STYLE		gradScheme;

gradScheme.gradientType									=	GRAD_UP;	

gradScheme.gradientStartColor			=	BRIGHTRED;

gradScheme.gradientEndColor					=	BLACK;

	BarGradient(0,																																									

													0,																																									

													GetMaxX(),																																	

													GetMaxY(),																																	

													gradScheme.gradientStartColor,

													gradScheme.gradientEndColor,

													50,																																								

																																																								

																																																								

																																																								

													gradScheme.gradientType);																		

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient	>	BarGradient
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BevelGradient	Function
C
WORD	BevelGradient(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				SHORT	rad,	

				GFX_COLOR	color1,	

				GFX_COLOR	color2,	

				DWORD	length,	

				BYTE	direction

);

Overview

This	renders	a	filled	bevel	with	gradient	color	on	the	fill.	It	works
the	same	as	the	fillbevel	function,	except	a	gradient	out	of	color1
and	color2	is	drawn	depending	on	the	direction
(GFX_GRADIENT_TYPE).	This	function	is	a	blocking	call.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 x	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	top	 y	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	right	 x	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	bottom	 y	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	rad	 defines	the	redius	of	the	circle,	that	draws
the	rounded	corners.	When	rad	=	0,	the
object	drawn	is	a	rectangular	gradient.	

GFX_COLOR	color1	 start	color	for	the	gradient	

GFX_COLOR	color2	 end	color	for	the	gradient	

DWORD	length	 From	0-100%.	How	much	of	a	gradient	is
wanted	

BYTE	direction	 see	GFX_GRADIENT_TYPE	

Returns

Always	returns	a	1	since	it	is	a	blocking	function.

Preconditions

USE_GRADIENT	macro	must	be	defined	(in	GraphicsConfig.h)

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient	>	BevelGradient
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_GRADIENT_TYPE	Enumeration
C
typedef	enum	{

		GRAD_NONE	=	0,

		GRAD_DOWN,

		GRAD_RIGHT,

		GRAD_UP,

		GRAD_LEFT,

		GRAD_DOUBLE_VER,

		GRAD_DOUBLE_HOR

}	GFX_GRADIENT_TYPE;

Overview

Enumeration	for	gradient	type

Members

Members	 Description	

GRAD_NONE	=	0	 No	Gradients	to	be	drawn	

GRAD_DOWN	 gradient	changes	in	the	vertical	direction	

GRAD_RIGHT	 gradient	change	in	the	horizontal	direction	

GRAD_UP	 gradient	changes	in	the	vertical	direction	

GRAD_LEFT	 gradient	change	in	the	horizontal	direction	

GRAD_DOUBLE_VER	 two	gradient	transitions	in	the	vertical
direction	

GRAD_DOUBLE_HOR	 two	gradient	transitions	in	the	horizontal
direction	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient	>
GFX_GRADIENT_TYPE	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_GRADIENT_STYLE	Structure
C
typedef	struct	{

		GFX_GRADIENT_TYPE	gradientType;

		DWORD	gradientStartColor;

		DWORD	gradientEndColor;

		DWORD	gradientLength;

}	GFX_GRADIENT_STYLE;

Overview

This	structure	is	used	to	describe	the	gradient	style.

Members

Members	 Description	

GFX_GRADIENT_TYPE
gradientType;	

selected	the	gradient	type	

DWORD
gradientStartColor;	

sets	the	starting	color	of	gradient	transition	

DWORD
gradientEndColor;	

sets	the	ending	color	of	gradient	transition	

DWORD
gradientLength;	

defines	the	length	of	the	gradient	transition
in	pixels	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient	>
GFX_GRADIENT_STYLE	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Line	Functions
Functions	|	Macros	|	Topics

This	lists	the	Primitive	line	text	functions.

Functions

	 Name	 Description	

	 Line	 This	function	draws	a	line	with	the	current
line	type	from	the	start	point	to	the	end
point.	

Macros

Name	 Description	

LineRel	 This	macro	draws	a	line	with	the	current	line
type	from	the	current	graphic	cursor	position
to	the	position	defined	by	displacement.	

LineTo	 This	macro	draws	a	line	with	the	current	line
type	from	the	current	graphic	cursor	position
to	the	given	x,	y	position.	

SetLineThickness	 This	macro	sets	sets	line	thickness	to	1
pixel	or	3	pixels.	

SetLineType	 This	macro	sets	the	line	type	to	draw.	

Topics

Name	 Description	

Line	Types	 Line	type	definitions.	

Line	Size	 Line	sizes	definition.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros,	Topics

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Line	Function
C
WORD	Line(

				SHORT	x1,	

				SHORT	y1,	

				SHORT	x2,	

				SHORT	y2

);

Overview

This	function	draws	a	line	with	the	current	line	type	from	the	start
point	to	the	end	point.

Input	Parameters

Input	Parameters	 Description	

SHORT	x1	 x	coordinate	of	the	start	point.	

SHORT	y1	 y	coordinate	of	the	start	point.	

SHORT	x2	 x	coordinate	of	the	end	point.	

SHORT	y2	 y	coordinate	of	the	end	point.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

The	graphic	cursor	position	is	moved	to	the	end	point	of	the	line.

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LineRel	Macro
C
#define	LineRel(dX,	dY)	Line(GetX(),	GetY(),	GetX()	+	dX,	GetY()	+	dY)

Overview

This	macro	draws	a	line	with	the	current	line	type	from	the
current	graphic	cursor	position	to	the	position	defined	by
displacement.

Input	Parameters

Input	Parameters	 Description	

dX	 Displacement	from	the	current	x	position.	

dY	 Displacement	from	the	current	y	position.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

The	graphic	cursor	position	is	moved	to	the	end	point	of	the	line.

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	LineRel
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LineTo	Macro
C
#define	LineTo(x,	y)	Line(_cursorX,	_cursorY,	x,	y)

Overview

This	macro	draws	a	line	with	the	current	line	type	from	the
current	graphic	cursor	position	to	the	given	x,	y	position.

Input	Parameters

Input	Parameters	 Description	

x	 End	point	x	position.	

y	 End	point	y	poisiton.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

The	graphic	cursor	position	is	moved	to	the	end	point	of	the	line.

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	LineTo
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetLineThickness	Macro
C
#define	SetLineThickness(lnThickness)	_lineThickness	=	lnThickness;

Overview

This	macro	sets	sets	line	thickness	to	1	pixel	or	3	pixels.

Input	Parameters

Input	Parameters	 Description	

lnThickness	 Line	thickness	code
NORMAL_LINE	:	1	pixel
THICK_LINE	:	3	pixels

	

Returns

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>
SetLineThickness	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetLineType	Macro
C
#define	SetLineType(lnType)	_lineType	=	lnType;

Overview

This	macro	sets	the	line	type	to	draw.

Input	Parameters

Input	Parameters	 Description	

lnType	 The	type	of	line	to	be	used.	Supported	line
types:

SOLID_LINE
DOTTED_LINE
DASHED_LINE

	

Returns

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>
SetLineType	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Line	Types
Macros

Line	type	definitions.

Macros

Name	 Description	

SOLID_LINE	 Solid	Line	Style	

DASHED_LINE	 Dashed	Line	Style	

DOTTED_LINE	 Dotted	Line	Style	

Links

Line	Functions,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Types

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SOLID_LINE	Macro
C
#define	SOLID_LINE	0

Description

Solid	Line	Style

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Types
>	SOLID_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DASHED_LINE	Macro
C
#define	DASHED_LINE	4

Description

Dashed	Line	Style

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Types
>	DASHED_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DOTTED_LINE	Macro
C
#define	DOTTED_LINE	1

Description

Dotted	Line	Style

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Types
>	DOTTED_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Line	Size
Macros

Line	sizes	definition.

Macros

Name	 Description	

NORMAL_LINE	 Normal	Line	(thickness	is	1	pixel)	

THICK_LINE	 Thick	Line	(thickness	is	3	pixels)	

Links

Line	Functions,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Size

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

NORMAL_LINE	Macro
C
#define	NORMAL_LINE	0

Description

Normal	Line	(thickness	is	1	pixel)

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Size
>	NORMAL_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

THICK_LINE	Macro
C
#define	THICK_LINE	1

Description

Thick	Line	(thickness	is	3	pixels)

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Size
>	THICK_LINE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Rectangle	Functions
Functions	|	Macros

This	lists	the	Primitive	level	rectangle	functions.

Functions

	 Name	 Description	

	 Bar	 This	function	draws	a	bar	given	the	left,	top
and	right,	bottom	corners	with	the	current
set	color	(SetColor()).	When	alpha	blending
is	enabled	the	bar	is	alpha	blended	with	the
existing	pixels	specified	by	the	parameters.
The	alpha	percentage	used	is	the	last	value
set	by	SetAlpha().	

	 DrawPoly	 This	function	draws	a	polygon	with	the
current	line	type	using	the	given	number	of
points.	The	polygon	points	(polyPoints)	are
stored	in	an	array	arranged	in	the	following
order:		

Macros

Name	 Description	

Rectangle	 This	macro	draws	a	rectangle	with	the	given
left,	top	and	right,	bottom	corners.	Current
line	type	is	used.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Bar	Function
C
WORD	Bar(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom

);

Overview

This	function	draws	a	bar	given	the	left,	top	and	right,	bottom
corners	with	the	current	set	color	(SetColor()).	When	alpha
blending	is	enabled	the	bar	is	alpha	blended	with	the	existing
pixels	specified	by	the	parameters.	The	alpha	percentage	used	is
the	last	value	set	by	SetAlpha().

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 x	position	of	the	left	top	corner.	

SHORT	top	 y	position	of	the	left	top	corner.	

SHORT	right	 x	position	of	the	right	bottom	corner.	

SHORT	bottom	 y	position	of	the	right	bottom	corner.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely

drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions	>	Bar
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Rectangle	Macro
C
#define	Rectangle(left,	top,	right,	bottom)	Bevel(left,	top,	right,	bottom,	0)

Overview

This	macro	draws	a	rectangle	with	the	given	left,	top	and	right,
bottom	corners.	Current	line	type	is	used.

Input	Parameters

Input	Parameters	 Description	

left	 x	position	of	the	left	top	corner.	

top	 y	position	of	the	left	top	corner.	

right	 x	position	of	the	right	bottom	corner.	

bottom	 y	position	of	the	right	bottom	corner.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions	>
Rectangle	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DrawPoly	Function
C
WORD	DrawPoly(

				SHORT	numPoints,	

				SHORT	*	polyPoints

);

Overview

This	function	draws	a	polygon	with	the	current	line	type	using	the
given	number	of	points.	The	polygon	points	(polyPoints)	are
stored	in	an	array	arranged	in	the	following	order:

									SHORT	polyPoints[size]	=	{x0,	y0,	x1,	y1,	x2,	y2	…	xn,	yn};
									Where	n	=	#	of	polygon	sides
															size	=	numPoints	*	2

DrawPoly()	draws	any	shape	defined	by	the	polyPoints.	The
function	will	just	draw	the	lines	connecting	all	the	x,y	points
enumerated	by	polyPoints[].

Input	Parameters

Input	Parameters	 Description	

SHORT	numPoints	 Defines	the	number	of	x,y	points	in	the
polygon.	

SHORT	*	polyPoints	 Pointer	to	the	array	of	polygon	points.	The
array	defines	the	x,y	points	of	the	polygon.
The	sequence	should	be	x0,	y0,	x1,	y1,	x2,
y2,	...	xn,	yn	where	n	is	the	#	of	polygon
sides.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Example

Copy	Code
				SHORT	OpenShapeXYPoints[6]	=	{10,	10,	20,	10,	20,	20};

				SHORT	ClosedShapeXYPoints[8]	=	{10,	10,	20,	10,	20,	20,	10,	10};

				SetColor(WHITE);																									//	set	color	to	WHITE

				SetLineType(SOLID_LINE);																	//	set	line	to	solid	line

				SetLineThickness(THICK_LINE);												//	set	line	to	thick	line

				DrawPoly(6,	OpenShapeXYPoints);										//	draw	the	open	shape		

				DrawPoly(8,	ClosedShapeXYPoints);								//	draw	the	closed	shape		

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions	>
DrawPoly	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Circle	Functions
Functions	|	Macros

This	lists	the	Primitive	level	circle	functions.

Functions

	 Name	 Description	

	 Arc	 Draws	the	octant	arc	of	the	beveled	figure
with	the	given	centers,	radii	and	octant
mask.	When	octant	=	0xFF	and	the
following	are	true:
1.	 xL	=	xR,	yT	=	yB	,	r1	=	0	and	r2	=	z,	a

filled	circle	is	drawn	with	a	radius	of	z.
2.	 radii	have	values	(where	r1	<	r2),	a	full

ring	with	thickness	of	(r2-r1)	is	drawn.
3.	 xL	!=	xR,	yT	!=	yB	,	r1	=	0	and	r2	=	0

(where	xR	>	xL	and	yB	>	yT)	a
rectangle	is	drawn.	xL,	yT	specifies	the
left	top	corner	and	xR,...	more	

	 DrawArc	 This	renders	an	arc	with	from	startAngle	to
endAngle	with	the	thickness	of	r2-r1.	The
function	returns	1	when	the	arc	is	rendered
successfuly	and	returns	a	0	when	it	is	not
yet	finished.	The	next	call	to	the	function	will
continue	the	rendering.	

	 Bevel	 Draws	a	beveled	figure	on	the	screen.
When	x1	=	x2	and	y1	=	y2,	a	circular	object
is	drawn.	When	x1	<	x2	and	y1	<	y2	and	rad
(radius)	=	0,	a	rectangular	object	is	drawn.	

	 FillBevel	 Draws	a	filled	beveled	figure	on	the	screen.
For	a	filled	circular	object	x1	=	x2	and	y1	=

y2.	For	a	filled	rectangular	object	radius	=
0.	

Macros

Name	 Description	

Circle	 This	macro	draws	a	circle	with	the	given
center	and	radius.	

FillCircle	 This	macro	draws	a	filled	circle.	Uses	the
FillBevel()	function.	

SetBevelDrawType	 This	macro	sets	the	fill	bevel	type	to	be
drawn.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Circle	Macro
C
#define	Circle(x,	y,	radius)	Bevel(x,	y,	x,	y,	radius)

Overview

This	macro	draws	a	circle	with	the	given	center	and	radius.

Input	Parameters

Input	Parameters	 Description	

x	 Center	x	position.	

y	 Center	y	position.	

radius	 the	radius	of	the	circle.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	Circle
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FillCircle	Macro
C
#define	FillCircle(x1,	y1,	rad)	FillBevel(x1,	y1,	x1,	y1,	rad)

Overview

This	macro	draws	a	filled	circle.	Uses	the	FillBevel()	function.

Input	Parameters

Input	Parameters	 Description	

x1	 x	coordinate	position	of	the	center	of	the
circle.	

y1	 y	coordinate	position	of	the	center	of	the
circle.	

rad	 defines	the	redius	of	the	circle.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	FillCircle

Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Arc	Function
C
WORD	Arc(

				SHORT	xL,	

				SHORT	yT,	

				SHORT	xR,	

				SHORT	yB,	

				SHORT	r1,	

				SHORT	r2,	

				BYTE	octant

);

Overview

Draws	the	octant	arc	of	the	beveled	figure	with	the	given	centers,
radii	and	octant	mask.	When	octant	=	0xFF	and	the	following	are
true:

1.	 xL	=	xR,	yT	=	yB	,	r1	=	0	and	r2	=	z,	a	filled	circle	is	drawn	with	a
radius	of	z.

2.	 radii	have	values	(where	r1	<	r2),	a	full	ring	with	thickness	of	(r2-r1)
is	drawn.

3.	 xL	!=	xR,	yT	!=	yB	,	r1	=	0	and	r2	=	0	(where	xR	>	xL	and	yB	>	yT)
a	rectangle	is	drawn.	xL,	yT	specifies	the	left	top	corner	and	xR,	yB
specifies	the	right	bottom	corner.

When	octant	!=	0xFF	the	figure	drawn	is	the	subsection	of	the	8
section	figure	where	each	non-zero	bit	of	the	octant	value
specifies	the	octants	that	will	be	drawn.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	xL	 x	location	of	the	upper	left	center	in	the	x,y
coordinate.	

SHORT	yT	 y	location	of	the	upper	left	center	in	the	x,y
coordinate.	

SHORT	xR	 x	location	of	the	lower	right	center	in	the	x,y
coordinate.	

SHORT	yB	 y	location	of	the	lower	right	center	in	the	x,y
coordinate.	

SHORT	r1	 The	smaller	radius	of	the	two	concentric
cicles	that	defines	the	thickness	of	the
object.	

SHORT	r2	 The	larger	of	radius	the	two	concentric
circles	that	defines	the	thickness	of	the
object.	

BYTE	octant	 Bitmask	of	the	octant	that	will	be	drawn.
Moving	in	a	clockwise	direction	from	x	=	0,	y
=	+radius

bit0	:	first	octant
bit1	:	second	octant
bit2	:	third	octant
bit3	:	fourth	octant
bit4	:	fifth	octant
bit5	:	sixth	octant
bit6	:	seventh	octant
bit7	:	eight	octant

	

Returns

Returns	the	rendering	status.	1	-	If	the	rendering	was	completed
and	0	-	If	the	rendering	is	not	yet	finished.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	Arc
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DrawArc	Function
C
WORD	DrawArc(

				SHORT	cx,	

				SHORT	cy,	

				SHORT	r1,	

				SHORT	r2,	

				SHORT	startAngle,	

				SHORT	endAngle

);

Overview

This	renders	an	arc	with	from	startAngle	to	endAngle	with	the
thickness	of	r2-r1.	The	function	returns	1	when	the	arc	is
rendered	successfuly	and	returns	a	0	when	it	is	not	yet	finished.
The	next	call	to	the	function	will	continue	the	rendering.

Input	Parameters

Input	Parameters	 Description	

SHORT	cx	 the	location	of	the	center	of	the	arc	in	the	x
direction.	

SHORT	cy	 the	location	of	the	center	of	the	arc	in	the	y
direction.	

SHORT	r1	 the	smaller	radius	of	the	arc.	

SHORT	r2	 the	larger	radius	of	the	arc.	

SHORT	startAngle	 start	angle	of	the	arc.	

SHORT	endAngle	 end	angle	of	the	arc.	

Returns

Returns	1	if	the	rendering	is	done,	0	if	not	yet	done.

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	DrawArc
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Bevel	Function
C
WORD	Bevel(

				SHORT	x1,	

				SHORT	y1,	

				SHORT	x2,	

				SHORT	y2,	

				SHORT	rad

);

Overview

Draws	a	beveled	figure	on	the	screen.	When	x1	=	x2	and	y1	=
y2,	a	circular	object	is	drawn.	When	x1	<	x2	and	y1	<	y2	and	rad
(radius)	=	0,	a	rectangular	object	is	drawn.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	x1	 x	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	y1	 y	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	x2	 x	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	y2	 y	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	rad	 defines	the	redius	of	the	circle,	that	draws
the	rounded	corners.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	Bevel
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

FillBevel	Function
C
WORD	FillBevel(

				SHORT	x1,	

				SHORT	y1,	

				SHORT	x2,	

				SHORT	y2,	

				SHORT	rad

);

Overview

Draws	a	filled	beveled	figure	on	the	screen.	For	a	filled	circular
object	x1	=	x2	and	y1	=	y2.	For	a	filled	rectangular	object	radius
=	0.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	x1	 x	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	y1	 y	coordinate	position	of	the	upper	left	center
of	the	circle	that	draws	the	rounded
corners.	

SHORT	x2	 x	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	y2	 y	coordinate	position	of	the	lower	right
center	of	the	circle	that	draws	the	rounded
corners.	

SHORT	rad	 defines	the	redius	of	the	circle,	that	draws
the	rounded	corners.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	shape	is	not	yet	completely
drawn.
Returns	1	when	the	shape	is	completely	drawn.

For	Blocking	configuration:
Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>	FillBevel
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetBevelDrawType	Macro
C
#define	SetBevelDrawType(type)	(_bevelDrawType	=	type)

Overview

This	macro	sets	the	fill	bevel	type	to	be	drawn.

Input	Parameters

Input	Parameters	 Description	

type	 is	set	using	the	following.
DRAWFULLBEVEL	to	draw	the	full
shape
DRAWTOPBEVEL	to	draw	the	upper
half	portion
DRAWBOTTOMBEVEL	to	draw	the
lower	half	portion

	

Returns

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions	>
SetBevelDrawType	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Graphic	Cursor
Macros

This	lists	the	functions	to	control	the	graphics	cursor.

Macros

Name	 Description	

GetX	 This	macro	returns	the	current	graphic
cursor	x-coordinate.	

GetY	 This	macro	returns	the	current	graphic
cursor	y-coordinate.	

MoveRel	 This	macro	moves	the	graphic	cursor
relative	to	the	current	location.	The	given	dX
and	dY	displacement	can	be	positive	or
negative	numbers.	

MoveTo	 This	macro	moves	the	graphic	cursor	to	new
x,y	position.	

Links

Graphics	Primitive	Layer	API,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetX	Macro
C
#define	GetX	_cursorX

Overview

This	macro	returns	the	current	graphic	cursor	x-coordinate.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor	>	GetX
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetY	Macro
C
#define	GetY	_cursorY

Overview

This	macro	returns	the	current	graphic	cursor	y-coordinate.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor	>	GetY
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MoveRel	Macro
C
#define	MoveRel(dX,	dY)	\

				_cursorX	+=	dX;									\

				_cursorY	+=	dY;

Overview

This	macro	moves	the	graphic	cursor	relative	to	the	current
location.	The	given	dX	and	dY	displacement	can	be	positive	or
negative	numbers.

Input	Parameters

Input	Parameters	 Description	

dX	 Specifies	the	displacement	of	the	graphic
cursor	for	the	horizontal	direction.	

dY	 Specifies	the	displacement	of	the	graphic
cursor	for	the	vertical	direction.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor	>	MoveRel
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MoveTo	Macro
C
#define	MoveTo(x,	y)	\

				_cursorX	=	x;								\

				_cursorY	=	y;

Overview

This	macro	moves	the	graphic	cursor	to	new	x,y	position.

Input	Parameters

Input	Parameters	 Description	

x	 Specifies	the	new	x	position	of	the	graphic
cursor.	

y	 Specifies	the	new	y	position	of	the	graphic
cursor.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor	>	MoveTo
Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Alpha	Blending	Functions
Functions	|	Macros

Alpha-Blend	support	are	two	levels.	USE_ALPHABLEND_LITE
and	USE_ALPHA_BLEND.	

	

USE_ALPHABLEND_LITE	

When	this	macro	is	enabled	in	GraphicsConfig.h,	Primitive	Layer
support	for	an	Alpha-Blended	Bar()	is	enabled.	

A	rectangular	area	can	be	Alpha-Blended	with	a	specific	color	by
doing	the	following:

1.	 SetAlpha()	-	this	will	set	the	Alpha-Blend	value
2.	 SetColor()	-	this	will	define	the	color	that	will	be	Alpha-Blended	to

the	rectangular	area
3.	 Bar(left,	top,	right,	bottom)	-	this	will	perform	the	Alpha-Blending	on

the	rectangular	area	defined	by	left,	top,	right	and	bottom
parameters.

	

USE_ALPHABLEND	

This	is	full	Alpha-Blend	support	but	is	mainly	performed	by	the
display	driver	used.	Windows	can	be	Alpha-Blended	using	the
driver	level	routines	with	or	without	the	hardware	acceleration.
Refer	to	the	specific	display	driver	for	support.

Functions

	 Name	 Description	

	 AlphaBlendWindow	 This	Alpha-Blends	a	foreground	and	a
background	stored	in	frames	to	a

destination	window.	A	frame	is	a
memory	area	that	contain	array	of	pixels
information.	An	example	would	be	a
display	buffer.	This	operation	can	be
performed	on	a	single	frame	(where
foregroundArea,	backgroundArea	and
destinationArea	all	points	to	the	same
frame),	2	frames	(where	two	of	the	three
areas	are	pointing	to	the	same	frame
and	one	is	another	frame),	or	3	frames
(where	each	area	is	a	separate	frame).
The	Alpha-Blending	is	performed	on	the
windows	inside	the	specified	frames.
These	windows	are	defined	by	the
offsets...	more	

Macros

Name	 Description	

SetAlpha	 This	macro	sets	the	alpha	value.	Enabling
this	feature	requires	the	macros
USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.	See
USE_ALPHABLEND_LITE	for	information
on	supported	primitive	rendering	functions.	

GetAlpha	 This	macro	returns	the	current	alpha	value.
Enabling	this	feature	requires	the	macros
USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetAlpha	Macro
C
#define	SetAlpha(alpha)	(_alpha	=	alpha)

Overview

This	macro	sets	the	alpha	value.	Enabling	this	feature	requires
the	macros	USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.	See	USE_ALPHABLEND_LITE	for
information	on	supported	primitive	rendering	functions.

Input	Parameters

Input	Parameters	 Description	

alpha	 Defines	the	alpha	blending	percentage	of
the	new	color	set	by	SetColor()	to	the
existing	pixel	color.	Valid	values	for	alpha	for
pure	primitive	layer	implementation	are:

100	:	no	alpha	blending,	color	set	by
last	SetColor()	call	will	replace	the
pixels.
75	:	alpha	blending	with	new	color	set
by	last	SetColor()	call	will	be	alpha
blended	with	75%	to	the	existing	pixel
colors.
50	:	alpha	blending	with	new	color	set
by	last	SetColor()	call	will	be	alpha
blended	with	50%	to	the	existing	pixel
colors.
25	:	alpha	blending	with	new	color	set
by	last	SetColor()	call	will	be	alpha
blended	with	25%	to	the	existing	pixel
colors.

	

Returns

None

Side	Effects

none

Example

Copy	Code
SetAlpha(50);							//	set	alpha	level

SetColor(BLUE);					//	set	color	to	use

Bar(5,10,30,50);				//	render	an	alpha	blended	Bar	

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions	>
SetAlpha	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetAlpha	Macro
C
#define	GetAlpha	(_alpha)

Overview

This	macro	returns	the	current	alpha	value.	Enabling	this	feature
requires	the	macros	USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.

Returns

Returns	the	current	alpha	value	set	by	the	last	call	to	SetAlpha().

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions	>
GetAlpha	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

AlphaBlendWindow	Function
C
WORD	AlphaBlendWindow(

				DWORD	foregroundArea,	

				SHORT	foregroundLeft,	

				SHORT	foregroundTop,	

				DWORD	backgroundArea,	

				SHORT	backgroundLeft,	

				SHORT	backgroundTop,	

				DWORD	destinationArea,	

				SHORT	destinationLeft,	

				SHORT	destinationTop,	

				WORD	width,	

				WORD	height,	

				BYTE	alphaPercentage

);

Overview

This	Alpha-Blends	a	foreground	and	a	background	stored	in
frames	to	a	destination	window.	A	frame	is	a	memory	area	that
contain	array	of	pixels	information.	An	example	would	be	a
display	buffer.	This	operation	can	be	performed	on	a	single	frame
(where	foregroundArea,	backgroundArea	and	destinationArea	all
points	to	the	same	frame),	2	frames	(where	two	of	the	three
areas	are	pointing	to	the	same	frame	and	one	is	another	frame),
or	3	frames	(where	each	area	is	a	separate	frame).	The	Alpha-
Blending	is	performed	on	the	windows	inside	the	specified
frames.	These	windows	are	defined	by	the	offsets	for	each	frame
and	the	given	width	and	height.	The	Alpha-Blended	windows	are
always	equal	in	sizes.	This	function	is	only	available	when	it	is
supported	by	the	display	driver	used.	Enabling	this	feature
requires	the	macros	USE_ALPHABLEND_LITE	or

USE_ALPHABLEND	defined	in	the	GraphicsConfig.h.

Input	Parameters

Input	Parameters	 Description	

DWORD
foregroundArea	

Defines	the	starting	address/page	of	the
foreground	window.	

SHORT
foregroundLeft	

Defines	the	foreground	horizontal	offset	in
pixels	starting	from	the	starting
address/page	defined	by	foregroundArea.	

SHORT
foregroundTop	

Defines	the	foreground	vertical	offset	in
pixels	starting	from	the	starting
address/page	defined	by	foregroundArea.	

DWORD
backgroundArea	

Defines	the	starting	address/page	of	the
background	window.	

SHORT
backgroundLeft	

Defines	the	background	horizontal	offset	in
pixels	starting	from	the	starting
address/page	defined	by	backgroundArea.	

SHORT
backgroundTop	

Defines	the	background	vertical	offset	in
pixels	starting	from	the	starting
address/page	defined	by	backgroundArea.	

DWORD
destinationArea	

Defines	the	starting	address/page	of	the
destination	window.	

SHORT
destinationLeft	

Defines	the	destination	horizontal	offset	in
pixels	starting	from	the	starting
address/page	defined	by	destinationArea.	

SHORT
destinationTop	

Defines	the	destination	vertical	offset	in
pixels	starting	from	the	starting
address/page	defined	by	destinationArea.	

WORD	width	 Defines	the	width	of	the	window	to	be	alpha
blended.	

WORD	height	 Defines	the	height	of	the	window	to	be	alpha
blended.	

BYTE
alphaPercentage	

This	defines	the	amount	of	transparency	to
give	the	foreground	Window.	Valid	range	is
0-100.	Actual	allowed	values	may	be	limited
by	the	driver	used.	Refer	to	the	specific
driver	for	allowed	values.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions	>
AlphaBlendWindow	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Bitmap	Functions
Functions	|	Macros	|	Structures	|	Topics

This	lists	the	functions	to	display	bitmaps.

Functions

	 Name	 Description	

	 PutImagePartial	 This	function	outputs	a	full	or	a	partial
image	starting	from	left,top	coordinates.
The	partial	image	starts	at	xoffset	and
yoffset.	Size	is	specified	by	the	given	width
and	height	parameters.	

	 GetImageHeight	 This	function	returns	the	image	height.	

	 GetImageWidth	 This	function	returns	the	image	width.	

Macros

Name	 Description	

PutImage	 This	renders	the	image	pointed	to	by
"image"	starting	from	left,	top	coordinates.	

Structures

Name	 Description	

BITMAP_HEADER	 Structure	describing	the	bitmap	header.	

Topics

Name	 Description	

Bitmap	Settings	 Bitmap	rendering	settings.	

Bitmap	Source	 Bitmap	data	structure	is	dependent	on	the
location.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros,
Structures,	Topics

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PutImage	Macro
C
#define	PutImage(left,	top,	image,	stretch)	PutImagePartial(left,	top,	image,	stretch,	0,	0,	0,	0)

Overview

This	renders	the	image	pointed	to	by	"image"	starting	from	left,
top	coordinates.

Input	Parameters

Input	Parameters	 Description	

left	 horizontal	starting	position	of	the	full	image
on	the	screen	

top	 vertical	starting	position	of	the	full	image	on
the	screen	

image	 pointer	to	the	image	location.	

stretch	 The	image	stretch	factor.
IMAGE_NORMAL	:	no	stretch
IMAGE_X2	:	image	is	stretched	to	twice
its	width	and	height

	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	image	is	not	yet	completely
drawn.
Returns	1	when	the	image	is	completely	drawn.

For	Blocking	configuration:

Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>
PutImage	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PutImagePartial	Function
C
WORD	PutImagePartial(

				SHORT	left,	

				SHORT	top,	

				void	*	image,	

				BYTE	stretch,	

				SHORT	xoffset,	

				SHORT	yoffset,	

				WORD	width,	

				WORD	height

);

Overview

This	function	outputs	a	full	or	a	partial	image	starting	from	left,top
coordinates.	The	partial	image	starts	at	xoffset	and	yoffset.	Size
is	specified	by	the	given	width	and	height	parameters.

Description

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 horizontal	starting	position	of	full	or	partial
image	on	the	screen	

SHORT	top	 vertical	starting	position	of	full	or	partial
image	on	the	screen,	

void	*	image	 pointer	to	the	image	location.	

BYTE	stretch	 The	image	stretch	factor.
IMAGE_NORMAL	:	no	stretch
IMAGE_X2	:	image	is	stretched	to	twice
its	width	and	height

	

SHORT	xoffset	 Specifies	the	horizontal	offset	in	pixels	of	the
selected	partial	image	from	the	left	most
pixel	of	the	full	image.	

SHORT	yoffset	 Specifies	the	vertical	offset	in	pixels	of	the
selected	partial	image	from	the	top	most
pixel	of	the	full	image.	

WORD	width	 width	of	the	partial	image	to	be	rendered.
xoffset	+	width	must	not	exceed	the	full
image	width.	

WORD	height	 height	of	the	partial	image	to	be	rendered.
yoffset	+	height	must	not	exceed	the	full
image	height.	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	the	image	is	not	yet	completely
drawn.
Returns	1	when	the	image	is	completely	drawn.

For	Blocking	configuration:

Always	return	1.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>
PutImagePartial	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetImageHeight	Function
C
SHORT	GetImageHeight(

				void	*	bitmap

);

Overview

This	function	returns	the	image	height.

Input	Parameters

Input	Parameters	 Description	

void	*	bitmap	 Pointer	to	the	bitmap.	

Returns

Returns	the	image	height	in	pixels.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>
GetImageHeight	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetImageWidth	Function
C
SHORT	GetImageWidth(

				void	*	bitmap

);

Overview

This	function	returns	the	image	width.

Input	Parameters

Input	Parameters	 Description	

void	*	bitmap	 Pointer	to	the	bitmap.	

Returns

Returns	the	image	width	in	pixels.

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>
GetImageWidth	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BITMAP_HEADER	Structure
C
typedef	struct	{

		BYTE	compression;

		BYTE	colorDepth;

		SHORT	height;

		SHORT	width;

}	BITMAP_HEADER;

Overview

Structure	describing	the	bitmap	header.

Members

Members	 Description	

BYTE	compression;	 Compression	setting	

BYTE	colorDepth;	 Color	depth	used	

SHORT	height;	 Image	height	

SHORT	width;	 Image	width	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>
BITMAP_HEADER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Bitmap	Settings
Macros

Bitmap	rendering	settings.

Macros

Name	 Description	

IMAGE_NORMAL	 Normal	image	stretch	code	

IMAGE_X2	 Stretched	image	stretch	code	

Links

Bitmap	Functions,	Macros

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>	Bitmap
Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMAGE_NORMAL	Macro
C
#define	IMAGE_NORMAL	1

Description

Normal	image	stretch	code

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>	Bitmap
Settings	>	IMAGE_NORMAL	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMAGE_X2	Macro
C
#define	IMAGE_X2	2

Description

Stretched	image	stretch	code

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>	Bitmap
Settings	>	IMAGE_X2	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Bitmap	Source
Bitmap	data	structure	is	dependent	on	the	location.

Links

Bitmap	Functions

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>	Bitmap
Source

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

External	Memory
Functions	|	Macros	|	Topics

Bitmaps	and	Fonts	can	be	located	in	external	memory.	To	refer
the	data,	EXTDATA	structure	is	used:

Copy	Code
typedef	struct	_EXTDATA_

{

			TYPE_MEMORY			type;									//	must	be	set	to	EXTERNAL

			WORD										ID;											//	memory	ID

			DWORD									address;						//	bitmap	or	font	image	address

}	EXTDATA;

where:

type	–	shows	type	of	memory	used.
0	–	internal
1	-	external.

ID	–	unique	number	must	be	assigned	by	application	to	have	a	way
distinguishing	memory	chips	if	the	application	has	several	of	them.
address	–	start	address	of	the	bitmap	or	font	image	in	the	external
memory.

To	use	the	bitmap	or	font	the	pointer	to	EXTDATA	structure	must
be	passed	into	corresponding	function	(PutImage()	or	SetFont()).
Each	time	the	library	will	need	data	it	will	call	special	call	back
function	ExternalMemoryCallback().	

This	function	must	be	implemented	in	the	application.	Inside,	the
application	must	copy	requested	bytes	quantity	into	the	buffer
provided.	Data	start	address	can	be	calculated	as	a	sum	of	the
start	image	address	specified	in	EXTDATA	structure	and	offset
provided.

Functions

	 Name	 Description	

	 ExternalMemoryCallback	 This	function	must	be	implemented
in	the	application.	The	library	will
call	this	function	each	time	when
the	external	memory	data	will	be
required.	The	application	must	copy
requested	bytes	quantity	into	the
buffer	provided.	Data	start	address
in	external	memory	is	a	sum	of	the
address	in	GFX_EXTDATA
structure	and	offset.	

Macros

Name	 Description	

EXTERNAL_FONT_BUFFER_SIZE	 This	defines	the	size	of	the
buffer	used	by	font	functions	to
retrieve	font	data	from	the
external	memory.	The	buffer
size	can	be	increased	to
accommodate	large	font	sizes.
The	user	must	be	aware	of	the
expected	glyph	sizes	of	the
characters	stored	in	the	font
table.	To	modify	the	size	used,
declare	this	macro	in	the
GraphicsConfig.h	file	with	the
desired	size.	

Topics

Name	 Description	

Memory	Type	 Memory	type	enumeration	to	determine	the

source	of	data.	Used	in	interpreting	bitmap
and	font	from	different	memory	sources.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend,	Macros,	Topics

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ExternalMemoryCallback	Function
C
WORD	ExternalMemoryCallback(

				GFX_EXTDATA	*	memory,	

				LONG	offset,	

				WORD	nCount,	

				void	*	buffer

);

Overview

This	function	must	be	implemented	in	the	application.	The	library
will	call	this	function	each	time	when	the	external	memory	data
will	be	required.	The	application	must	copy	requested	bytes
quantity	into	the	buffer	provided.	Data	start	address	in	external
memory	is	a	sum	of	the	address	in	GFX_EXTDATA	structure	and
offset.

Input	Parameters

Input	Parameters	 Description	

GFX_EXTDATA	*
memory	

Pointer	to	the	external	memory	bitmap	or
font	structures	(FONT_EXTERNAL	or
BITMAP_EXTERNAL).	

LONG	offset	 Data	offset.	

WORD	nCount	 Number	of	bytes	to	be	transferred	into	the
buffer.	

void	*	buffer	 Pointer	to	the	buffer.	

Returns

Returns	the	number	of	bytes	were	transferred.

Side	Effects

none

Example

Copy	Code
//	If	there	are	several	memories	in	the	system	they	can	be	selected	by	IDs.

//	In	this	example,	ID	for	memory	device	used	is	assumed	to	be	0.

#define	X_MEMORY	0

WORD	ExternalMemoryCallback(GFX_EXTDATA*	memory,	LONG	offset,	WORD	nCount,	

				int	i;

				long	address;

				//	Address	of	the	requested	data	is	a	start	address	of	the	object	referred	by	GFX_EXTDATA	structure	plus	offset

				address	=	memory->address+offset;

				if(memory->ID	==	X_MEMORY){

								//	MemoryXReadByte()	is	some	function	implemented	to	access	external	memory.	

								//	Implementation	will	be	specific	to	the	memory	used.	In	this	example	

								//	it	reads	byte	each	time	it	is	called.	

								i	=	0;

								while	(i	<	nCount)	{

												(BYTE*)buffer	=	MemoryXReadByte(address++);

												i++;

								}

			}

			//	return	the	actual	number	of	bytes	retrieved

			return	(i);

}

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory	>
ExternalMemoryCallback	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EXTERNAL_FONT_BUFFER_SIZE	Macro
C
#define	EXTERNAL_FONT_BUFFER_SIZE	600

Overview

This	defines	the	size	of	the	buffer	used	by	font	functions	to
retrieve	font	data	from	the	external	memory.	The	buffer	size	can
be	increased	to	accommodate	large	font	sizes.	The	user	must	be
aware	of	the	expected	glyph	sizes	of	the	characters	stored	in	the
font	table.	To	modify	the	size	used,	declare	this	macro	in	the
GraphicsConfig.h	file	with	the	desired	size.

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory	>
EXTERNAL_FONT_BUFFER_SIZE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Memory	Type
Memory	type	enumeration	to	determine	the	source	of	data.	Used
in	interpreting	bitmap	and	font	from	different	memory	sources.

Links

External	Memory

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory	>	Memory
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Set	Up	Functions
Functions

This	lists	the	Primitive	set	up	and	initialization	functions.

Functions

	 Name	 Description	

	 ClearDevice	 This	function	clears	the	screen	with	the
current	color	and	sets	the	graphic	cursor
position	to	(0,	0).	Clipping	is	NOT	supported
by	ClearDevice().	

	 InitGraph	 This	function	initializes	the	display
controller,	sets	the	line	type	to	SOLID_LINE,
sets	the	screen	to	all	BLACK,	sets	the
current	drawing	color	to	WHITE,	sets	the
graphic	cursor	position	to	upper	left	corner
of	the	screen,	sets	active	and	visual	pages
to	page	#0,	clears	the	active	page	and
disables	clipping.	This	function	should	be
called	before	using	the	Graphics	Primitive
Layer.	

Links

Functions,	Graphics	Primitive	Layer	API,	Legend

Library	API	>	Graphics	Primitive	Layer	API	>	Set	Up	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ClearDevice	Function
C
void	ClearDevice();

Overview

This	function	clears	the	screen	with	the	current	color	and	sets	the
graphic	cursor	position	to	(0,	0).	Clipping	is	NOT	supported	by
ClearDevice().

Returns

none

Side	Effects

none

Example

Copy	Code
void	ClearScreen(void)

{

				SetColor(WHITE);								//	set	color	to	WHITE

				ClearDevice();										//	set	screen	to	all	WHITE

}

Library	API	>	Graphics	Primitive	Layer	API	>	Set	Up	Functions	>
ClearDevice	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

InitGraph	Function
C
void	InitGraph();

Overview

This	function	initializes	the	display	controller,	sets	the	line	type	to
SOLID_LINE,	sets	the	screen	to	all	BLACK,	sets	the	current
drawing	color	to	WHITE,	sets	the	graphic	cursor	position	to
upper	left	corner	of	the	screen,	sets	active	and	visual	pages	to
page	#0,	clears	the	active	page	and	disables	clipping.	This
function	should	be	called	before	using	the	Graphics	Primitive
Layer.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Graphics	Primitive	Layer	API	>	Set	Up	Functions	>
InitGraph	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_RESOURCE	Enumeration
C
typedef	enum	{

		FLASH	=	0x0000,

		EXTERNAL	=	0x0001,

		FLASH_JPEG	=	0x0002,

		EXTERNAL_JPEG	=	0x0003,

		RAM	=	0x0004,

		EDS_EPMP	=	0x0005,

		IMAGE_MBITMAP	=	0x0000,

		IMAGE_JPEG	=	0x0100,

		COMP_NONE	=	0x0000,

		COMP_RLE	=	0x1000,

		COMP_IPU	=	0x2000

}	GFX_RESOURCE;

Overview

Memory	type	enumeration	to	determine	the	source	of	data.	Used
in	interpreting	bitmap	and	font	from	different	memory	sources.

Members

Members	 Description	

FLASH	=	0x0000	 internal	flash	

EXTERNAL	=	0x0001	 external	memory	

FLASH_JPEG	=
0x0002	

internal	flash	

EXTERNAL_JPEG	=
0x0003	

external	memory	

RAM	=	0x0004	 RAM	

EDS_EPMP	=	0x0005	 memory	in	EPMP,	base	addresses	are	are
set	in	the	hardware	profile	

IMAGE_MBITMAP	=
0x0000	

data	resource	is	type	Microchip	bitmap	

IMAGE_JPEG	=
0x0100	

data	resource	is	type	JPEG	

COMP_NONE	=
0x0000	

no	compression	

COMP_RLE	=	0x1000	 compressed	with	RLE	

COMP_IPU	=	0x2000	 compressed	with	DEFLATE	(for	IPU)	

Library	API	>	Graphics	Primitive	Layer	API	>	GFX_RESOURCE
Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_IMAGE_HEADER	Structure
C
typedef	struct	{

		GFX_RESOURCE	type;

		WORD	ID;

		union	{

				DWORD	extAddress;

				FLASH_BYTE	*	progByteAddress;

				FLASH_WORD	*	progWordAddress;

				const	char	*	constAddress;

				char	*	ramAddress;

				__eds__	char	*	edsAddress;

		}	LOCATION;

		WORD	width;

		WORD	height;

		DWORD	param1;

		DWORD	param2;

		WORD	colorDepth;

}	GFX_IMAGE_HEADER;

Overview

Structure	for	images	stored	in	various	system	memory	(Flash,
External	Memory	(SPI,	Parallel	Flash,	or	memory	in	EPMP).

Members

Members	 Description	

GFX_RESOURCE
type;	

Graphics	resource	type,	determines	the	type
and	location	of	data	

WORD	ID;	 memory	ID,	user	defined	value	to
differentiate	between	graphics	resources	of

the	same	type	When	using	EDS_EPMP	the
following	ID	values	are	reserved	and	used
by	the	Microchip	display	driver	0	-	reserved
(do	not	use)	1	-	reserved	for	base	address
of	EPMP	CS1	2	-	reserved	for	base	address
of	EPMP	CS2	

DWORD	extAddress;	 generic	address	

FLASH_BYTE	*
progByteAddress;	

for	addresses	in	program	section	

FLASH_WORD	*
progWordAddress;	

for	addresses	in	program	section	

const	char	*
constAddress;	

for	addresses	in	FLASH	

char	*	ramAddress;	 for	addresses	in	RAM	

__eds__	char	*
edsAddress;	

for	addresses	in	EDS	

WORD	width;	 width	of	the	image	

WORD	height;	 height	of	the	image	

DWORD	param1;	 Parameters	used	for	the	GFX_RESOURCE.
Depending	on	the	GFX_RESOURCE	type
definition	of	param1	can	change.	For	IPU
and	RLE	compressed	images,	param1
indicates	the	compressed	size	of	the
image.	

DWORD	param2;	 Parameters	used	for	the	GFX_RESOURCE.
Depending	on	the	GFX_RESOURCE	type
definition	of	param2	can	change.	For	IPU
and	RLE	compressed	images,	param2

indicates	the	uncompressed	size	of	the
image.	

WORD	colorDepth;	 color	depth	of	the	image	

Library	API	>	Graphics	Primitive	Layer	API	>	GFX_IMAGE_HEADER
Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMAGE_FLASH	Structure
C
typedef	struct	{

		GFX_RESOURCE	type;

		FLASH_BYTE	*	address;

}	IMAGE_FLASH;

Overview

Structure	for	images	stored	in	FLASH	memory.

Members

Members	 Description	

GFX_RESOURCE
type;	

must	be	FLASH	

FLASH_BYTE	*
address;	

image	address	in	FLASH	

Library	API	>	Graphics	Primitive	Layer	API	>	IMAGE_FLASH	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMAGE_RAM	Structure
C
typedef	struct	{

		GFX_RESOURCE	type;

		DWORD	*	address;

}	IMAGE_RAM;

Overview

Structure	for	images	stored	in	RAM	memory.

Members

Members	 Description	

GFX_RESOURCE
type;	

must	be	RAM	

DWORD	*	address;	 image	address	in	RAM	

Library	API	>	Graphics	Primitive	Layer	API	>	IMAGE_RAM	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_EXTDATA	Structure
C
typedef	struct	{

		GFX_RESOURCE	type;

		WORD	ID;

		DWORD	address;

}	GFX_EXTDATA;

Overview

This	structure	is	used	to	describe	external	memory.

Members

Members	 Description	

GFX_RESOURCE
type;	

Resource	type.	Valid	types	are:
EXTERNAL
EDS_EPMP

	

WORD	ID;	 Memory	ID,	user	defined	value	to
differentiate	between	graphics	resources	of
the	same	type.	When	using	EDS_EPMP	the
following	ID	values	are	reserved	and	used
by	the	Microchip	display	driver

0	-	reserved	(do	not	use)
1	-	reserved	for	base	address	of	EPMP
CS1
2	-	reserved	for	base	address	of	EPMP
CS2

	

DWORD	address;	 Data	image	address	(user	data,	bitmap	or
font)	

Library	API	>	Graphics	Primitive	Layer	API	>	GFX_EXTDATA	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Device	Driver	Layer	API
Modules	|	Topics

Modules

Name	 Description	

Advanced	Display
Driver	Features	

This	section	lists	advanced	Display	Device
Driver	Features	implemented	in	select
Display	Device	Driver.	

Topics

Name	 Description	

Display	Device	Driver
Level	Primitives	

This	lists	the	Device	Level	Primitive
rendering	functions	and	macros.	

Display	Device	Driver
Control	

This	lists	the	device	control	functions	and
macros.	

Links

Library	API,	Modules,	Topics

Library	API	>	Display	Device	Driver	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Device	Driver	Level	Primitives
Functions	|	Macros	|	Topics

Functions

	 Name	 Description	

	 GetPixel	 Returns	pixel	color	at	the	given	x,y
coordinate	position.	

	 PutPixel	 Puts	pixel	with	the	given	x,y
coordinate	position.	

	 SetClip	 Enables/disables	clipping.	

	 SetClipRgn	 Sets	clipping	region.	

	 TransparentColorEnable	 Sets	current	transparent	color.
PutImage()	will	not	render	pixels	that
matches	the	set	transparent	color.	To
enable	Transparent	Color	feature,
define	the	macro
USE_TRANSPARENT_COLOR	in
the	GraphicsConfig.h	file.	

	 DisplayBrightness	 Sets	the	brightness	of	the	display.	

	 CopyBlock	 Copies	a	block	of	data	from	source
specified	by	srcAddr	and	srcOffset	to
the	destination	specified	by	dstAddr
and	dstOffset.	This	is	similar	to	the
CopyWindow()	and	but	instead	of
using	left,	top	position	of	the	source
and	destination,	it	uses	offsets
instead.	This	is	a	blocking	function.	

	 CopyPageWindow	 This	is	a	blocking	call.	A	windows	is
a	rectangular	area	with	the	given
width	and	height	of	a	page.	The
source	and	destination	window	can
be	located	in	different	pages	and
each	page	is	assumed	to	have	the
same	dimensions	(equal	width	and
height).	

	 CopyWindow	 A	windows	is	a	rectangular	area	with
the	given	width	and	height	located	in
the	given	base	source	address.	The
source	and	destination	window	can
be	located	in	the	same	base
address.	If	this	is	the	case,	then
srcAddr	=	dstAddr.	The	operation	is
similar	to	CopyPageWindow()	but
instead	of	using	page	numbers,
addresses	are	used	for	versatility.
This	is	a	blocking	function.	

	 SetActivePage	 Sets	active	graphic	page.	

	 SetVisualPage	 Sets	graphic	page	to	display.	

Macros

Name	 Description	

GetColor	 Returns	current	drawing
color.	

SetColor	 Sets	current	drawing	color.	

GetMaxX	 Returns	maximum	horizontal
coordinate.	

GetMaxY	 Returns	maximum	vertical
coordinate.	

GetClipBottom	 Returns	bottom	clipping
border.	

GetClipLeft	 Returns	left	clipping	border.	

GetClipRight	 Returns	right	clipping	border.	

GetClipTop	 Returns	top	clipping	border.	

CLIP_DISABLE	 Disables	clipping.	

CLIP_ENABLE	 Enables	clipping.	

TransparentColorDisable	 Disables	the	transparent	color
function.	

GetTransparentColorStatus	 Returns	the	current
transparent	color	function
enable	status.	

GetTransparentColor	 Returns	the	current
transparent	color	value.	

TRANSPARENT_COLOR_DISABLE	 Check	of	transparent	color	is
not	performed	

TRANSPARENT_COLOR_ENABLE	 Check	pixel	if	color	is	equal	to
transparent	color,	if	equal	do
not	render	pixel	

GetPageAddress	 Returns	the	address	of	the
given	page.	

Topics

Name	 Description	

Color	Definition	 The	device	driver	must	also	implement	the
definition	of	standard	color	set	based	on	the
color	format	used.	

Links

Functions,	Display	Device	Driver	Layer	API,	Legend,	Macros,
Topics

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetPixel	Function
C
GFX_COLOR	GetPixel(

				SHORT	x,	

				SHORT	y

);

Overview

Returns	pixel	color	at	the	given	x,y	coordinate	position.

Input	Parameters

Input	Parameters	 Description	

SHORT	x	 x	position	of	the	pixel.	

SHORT	y	 y	position	of	the	pixel.	

Returns

pixel	color

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetPixel	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PutPixel	Function
C
void	PutPixel(

				SHORT	x,	

				SHORT	y

);

Overview

Puts	pixel	with	the	given	x,y	coordinate	position.

Input	Parameters

Input	Parameters	 Description	

SHORT	x	 x	position	of	the	pixel.	

SHORT	y	 y	position	of	the	pixel.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	PutPixel	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetColor	Macro
C
#define	GetColor	_color

Overview

Returns	current	drawing	color.

Returns

Color	where	coding	is	based	on	GFX_COLOR	definition.
GFX_COLOR	definition	is	based	on	the	color	depth
(COLOR_DEPTH)	used.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetColor	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetColor	Macro
C
#define	SetColor(color)	_color	=	(color)

Overview

Sets	current	drawing	color.

Input	Parameters

Input	Parameters	 Description	

color	 Color	coding	is	based	on	GFX_COLOR
definition.	GFX_COLOR	definition	is	based
on	the	color	depth	(COLOR_DEPTH)	used.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	SetColor	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetMaxX	Macro
C
#define	GetMaxX	(DISP_HOR_RESOLUTION	-	1)

Overview

Returns	maximum	horizontal	coordinate.

Returns

Maximum	horizontal	coordinate.

Preconditions

none

Side	Effects

none

Example

Copy	Code
//	Create	a	window	that	will	occupy	the	whole	screen.

WndCreate(0xFF,																					//	ID

										0,0,

										GetMaxX(),GetMaxY(),						//	dimension

										WND_DRAW,																	//	will	be	dislayed	after	creation

										(void*)&mchpIcon,									//	use	icon	used

										pText,																				//	set	to	text	pointed	to	by	pText

										NULL);																				//	use	default	scheme	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetMaxX	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetMaxY	Macro
C
#define	GetMaxY	(DISP_VER_RESOLUTION	-	1)

Overview

Returns	maximum	vertical	coordinate.

Returns

Maximum	vertical	coordinate.

Preconditions

none

Side	Effects

none

Example

(see	GetMaxX())	example.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetMaxY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetClip	Function
C
void	SetClip(

				BYTE	control

);

Overview

Enables/disables	clipping.

Input	Parameters

Input	Parameters	 Description	

BYTE	control	 Enables	or	disables	the	clipping.
CLIP_DISABLE:	Disable	clipping
CLIP_ENABLE:	Enable	clipping

	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	SetClip	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetClipRgn	Function
C
void	SetClipRgn(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom

);

Overview

Sets	clipping	region.

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 Defines	the	left	clipping	region	border.	

SHORT	top	 Defines	the	top	clipping	region	border.	

SHORT	right	 Defines	the	right	clipping	region	border.	

SHORT	bottom	 Defines	the	bottom	clipping	region	border.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	SetClipRgn	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetClipBottom	Macro
C
#define	GetClipBottom	_clipBottom

Overview

Returns	bottom	clipping	border.

Returns

Bottom	clipping	border.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetClipBottom	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetClipLeft	Macro
C
#define	GetClipLeft	_clipLeft

Overview

Returns	left	clipping	border.

Returns

Left	clipping	border.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetClipLeft	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetClipRight	Macro
C
#define	GetClipRight	_clipRight

Overview

Returns	right	clipping	border.

Returns

Right	clipping	border.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetClipRight	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetClipTop	Macro
C
#define	GetClipTop	_clipTop

Overview

Returns	top	clipping	border.

Returns

Top	clipping	border.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetClipTop	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CLIP_DISABLE	Macro
C
#define	CLIP_DISABLE	0			//	Disables	clipping.

Description

Disables	clipping.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	CLIP_DISABLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CLIP_ENABLE	Macro
C
#define	CLIP_ENABLE	1			//	Enables	clipping.

Description

Enables	clipping.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	CLIP_ENABLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TransparentColorEnable	Function
C
void	TransparentColorEnable(

				GFX_COLOR	color

);

Overview

Sets	current	transparent	color.	PutImage()	will	not	render	pixels
that	matches	the	set	transparent	color.	To	enable	Transparent
Color	feature,	define	the	macro	USE_TRANSPARENT_COLOR
in	the	GraphicsConfig.h	file.

Description

Input	Parameters

Input	Parameters	 Description	

GFX_COLOR	color	 Chosen	transparent	color.	

Returns

none

Preconditions

none

Side	Effects

None

Example

Copy	Code
TransparentColorEnable(BLACK);

PutImage(0,0,	(void*)&ScreenBackground);

PutImage(0,0,	(void*)&RibbonIcon);

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	TransparentColorEnable	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TransparentColorDisable	Macro
C
#define	TransparentColorDisable	_colorTransparentEnable	=	TRANSPARENT_COLOR_DISABLE;

Overview

Disables	the	transparent	color	function.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	TransparentColorDisable	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetTransparentColorStatus	Macro
C
#define	GetTransparentColorStatus	_colorTransparentEnable

Overview

Returns	the	current	transparent	color	function	enable	status.

Returns

Returns	the	current	transparent	color	function	enable	status

Copy	Code
							0	–	Transparent	color	function	is	disabled.

							1	–	Transparent	color	function	is	enabled.

Preconditions

none

Side	Effects

None

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetTransparentColorStatus	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetTransparentColor	Macro
C
#define	GetTransparentColor	_colorTransparent

Overview

Returns	the	current	transparent	color	value.

Returns

Returns	the	current	transparent	color	used.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetTransparentColor	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TRANSPARENT_COLOR_DISABLE	Macro
C
#define	TRANSPARENT_COLOR_DISABLE	0			//	Check	of	transparent	color	is	not	performed

Description

Check	of	transparent	color	is	not	performed

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	TRANSPARENT_COLOR_DISABLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

TRANSPARENT_COLOR_ENABLE	Macro
C
#define	TRANSPARENT_COLOR_ENABLE	1			//	Check	pixel	if	color	is	equal	to	transparent	color,	if	equal	do	not	render	pixel

Description

Check	pixel	if	color	is	equal	to	transparent	color,	if	equal	do	not
render	pixel

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	TRANSPARENT_COLOR_ENABLE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DisplayBrightness	Function
C
void	DisplayBrightness(

				WORD	level

);

Overview

Sets	the	brightness	of	the	display.

Input	Parameters

Input	Parameters	 Description	

WORD	level	 Brightness	level.	Valid	values	are	0	to	100.
0:	brightness	level	is	zero	or	display	is
turned	off
1:	brightness	level	is	maximum

	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	DisplayBrightness	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetPageAddress	Macro
C
#define	GetPageAddress(page)	(_PageTable[page])

Overview

Returns	the	address	of	the	given	page.

Returns

Address	in	memory	of	the	given	page	number.	The	number	of
pages	is	dictated	by	GFX_DRV_PAGE_COUNT	value	defined	in
the	hardware	profile.	GFX_DRV_PAGE_COUNT	is	not
mandatory.	Drivers	that	do	not	have	enough	memory	for	paging
may	not	define	this	constant.	If	GFX_DRV_PAGE_COUNT	is	not
defined,	all	API's	related	to	paging	operation	is	will	not	be
available.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	GetPageAddress	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CopyBlock	Function
C
WORD	CopyBlock(

				DWORD	srcAddr,	

				DWORD	dstAddr,	

				DWORD	srcOffset,	

				DWORD	dstOffset,	

				WORD	width,	

				WORD	height

);

Overview

Copies	a	block	of	data	from	source	specified	by	srcAddr	and
srcOffset	to	the	destination	specified	by	dstAddr	and	dstOffset.
This	is	similar	to	the	CopyWindow()	and	but	instead	of	using	left,
top	position	of	the	source	and	destination,	it	uses	offsets	instead.
This	is	a	blocking	function.

Input	Parameters

Input	Parameters	 Description	

DWORD	srcAddr	 the	base	address	of	the	data	to	be	moved	

DWORD	dstAddr	 the	base	address	of	the	new	location	of	the
moved	data	

DWORD	srcOffset	 offset	of	the	data	to	be	moved	with	respect
to	the	source	base	address.	

DWORD	dstOffset	 offset	of	the	new	location	of	the	moved	data
respect	to	the	source	base	address.	

WORD	width	 width	of	the	block	of	data	to	be	moved	

WORD	height	 height	of	the	block	of	data	to	be	moved	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	CopyBlock	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CopyPageWindow	Function
C
void	CopyPageWindow(

				BYTE	srcPage,	

				BYTE	dstPage,	

				\	WORD	srcX,	

				WORD	srcY,	

				\	WORD	dstX,	

				WORD	dstY,	

				\	WORD	width,	

				WORD	height

);

Overview

This	is	a	blocking	call.	A	windows	is	a	rectangular	area	with	the
given	width	and	height	of	a	page.	The	source	and	destination
window	can	be	located	in	different	pages	and	each	page	is
assumed	to	have	the	same	dimensions	(equal	width	and	height).

Input	Parameters

Input	Parameters	 Description	

BYTE	srcPage	 page	number	of	the	source	window,	

BYTE	dstPage	 page	number	of	the	destination	window,	

\	WORD	srcX	 x	location	of	the	left	top	corner	of	the	source
window	respect	to	the	srcPage.	

WORD	srcY	 y	location	of	the	left	top	corner	of	the	source
window	respect	to	the	srcPage.	

\	WORD	dstX	 x	location	of	the	left	top	corner	of	the

destination	window	respect	to	the	dstPage.	

WORD	dstY	 y	location	of	the	left	top	corner	of	the
destination	window	respect	to	the	dstPage.	

\	WORD	width	 the	width	in	pixels	of	the	window	to	copy	

WORD	height	 the	height	in	pixels	of	the	window	to	copy	

Returns

None

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	CopyPageWindow	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CopyWindow	Function
C
WORD	CopyWindow(

				DWORD	srcAddr,	

				DWORD	dstAddr,	

				\	WORD	srcX,	

				WORD	srcY,	

				\	WORD	dstX,	

				WORD	dstY,	

				\	WORD	width,	

				WORD	height

);

Overview

A	windows	is	a	rectangular	area	with	the	given	width	and	height
located	in	the	given	base	source	address.	The	source	and
destination	window	can	be	located	in	the	same	base	address.	If
this	is	the	case,	then	srcAddr	=	dstAddr.	The	operation	is	similar
to	CopyPageWindow()	but	instead	of	using	page	numbers,
addresses	are	used	for	versatility.	This	is	a	blocking	function.

Input	Parameters

Input	Parameters	 Description	

DWORD	srcAddr	 Base	Address	of	the	source	window,	

\	WORD	srcX	 x	location	of	the	left	top	corner	of	the	source
window	respect	to	the	srcPage.	

WORD	srcY	 y	location	of	the	left	top	corner	of	the	source
window	respect	to	the	srcPage.	

\	WORD	dstX	 x	location	of	the	left	top	corner	of	the
destination	window	respect	to	the	dstPage.	

WORD	dstY	 y	location	of	the	left	top	corner	of	the
destination	window	respect	to	the	dstPage.	

\	WORD	width	 the	width	in	pixels	of	the	window	to	copy	

WORD	height	 the	height	in	pixels	of	the	window	to	copy	

dstPage	 Base	Address	of	the	destination	window,	

Returns

None

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	CopyWindow	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetActivePage	Function
C
void	SetActivePage(

				WORD	page

);

Overview

Sets	active	graphic	page.

Description

Functions:	SetActivePage(page)

Input	Parameters

Input	Parameters	 Description	

WORD	page	 Graphic	page	number.	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	SetActivePage	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetVisualPage	Function
C
void	SetVisualPage(

				WORD	page

);

Overview

Sets	graphic	page	to	display.

Description

Functions:	SetVisualPage(page)

Input	Parameters

Input	Parameters	 Description	

WORD	page	 Graphic	page	number	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	SetVisualPage	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Color	Definition
Macros

The	following	lists	sample	color	definitions	for	a	16-bpp	color
encoding.

Macros

Name	 Description	

BLACK	 not	USE_PALETTE	

BLUE	 This	is	macro	BLUE.	

BRIGHTBLUE	 This	is	macro	BRIGHTBLUE.	

BRIGHTCYAN	 This	is	macro	BRIGHTCYAN.	

BRIGHTGREEN	 This	is	macro	BRIGHTGREEN.	

BRIGHTMAGENTA	 This	is	macro	BRIGHTMAGENTA.	

BRIGHTRED	 This	is	macro	BRIGHTRED.	

BRIGHTYELLOW	 This	is	macro	BRIGHTYELLOW.	

BROWN	 This	is	macro	BROWN.	

CYAN	 This	is	macro	CYAN.	

DARKGRAY	 This	is	macro	DARKGRAY.	

GRAY0	 This	is	macro	GRAY0.	

GRAY1	 This	is	macro	GRAY1.	

GRAY2	 This	is	macro	GRAY2.	

GRAY3	 This	is	macro	GRAY3.	

GRAY4	 This	is	macro	GRAY4.	

GRAY5	 This	is	macro	GRAY5.	

GRAY6	 This	is	macro	GRAY6.	

GREEN	 This	is	macro	GREEN.	

LIGHTBLUE	 This	is	macro	LIGHTBLUE.	

LIGHTCYAN	 This	is	macro	LIGHTCYAN.	

LIGHTGRAY	 This	is	macro	LIGHTGRAY.	

LIGHTGREEN	 This	is	macro	LIGHTGREEN.	

LIGHTMAGENTA	 This	is	macro	LIGHTMAGENTA.	

LIGHTRED	 This	is	macro	LIGHTRED.	

MAGENTA	 This	is	macro	MAGENTA.	

RED	 This	is	macro	RED.	

WHITE	 This	is	macro	WHITE.	

YELLOW	 This	is	macro	YELLOW.	

Links

Display	Device	Driver	Level	Primitives,	Macros

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BLACK	Macro
C
#define	BLACK	RGBConvert(0,	0,	0)

Description

not	USE_PALETTE

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BLACK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BLUE	Macro
C
#define	BLUE	RGBConvert(0,	0,	128)

Description

This	is	macro	BLUE.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BLUE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTBLUE	Macro
C
#define	BRIGHTBLUE	RGBConvert(0,	0,	255)

Description

This	is	macro	BRIGHTBLUE.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTBLUE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTCYAN	Macro
C
#define	BRIGHTCYAN	RGBConvert(0,	255,	255)

Description

This	is	macro	BRIGHTCYAN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTCYAN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTGREEN	Macro
C
#define	BRIGHTGREEN	RGBConvert(0,	255,	0)

Description

This	is	macro	BRIGHTGREEN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTGREEN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTMAGENTA	Macro
C
#define	BRIGHTMAGENTA	RGBConvert(255,	0,	255)

Description

This	is	macro	BRIGHTMAGENTA.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTMAGENTA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTRED	Macro
C
#define	BRIGHTRED	RGBConvert(255,	0,	0)

Description

This	is	macro	BRIGHTRED.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTRED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BRIGHTYELLOW	Macro
C
#define	BRIGHTYELLOW	RGBConvert(255,	255,	0)

Description

This	is	macro	BRIGHTYELLOW.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BRIGHTYELLOW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

BROWN	Macro
C
#define	BROWN	RGBConvert(255,	128,	0)

Description

This	is	macro	BROWN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	BROWN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

CYAN	Macro
C
#define	CYAN	RGBConvert(0,	128,	128)

Description

This	is	macro	CYAN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	CYAN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DARKGRAY	Macro
C
#define	DARKGRAY	RGBConvert(64,	64,	64)

Description

This	is	macro	DARKGRAY.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	DARKGRAY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY0	Macro
C
#define	GRAY0	RGBConvert(224,	224,	224)

Description

This	is	macro	GRAY0.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY0	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY1	Macro
C
#define	GRAY1	RGBConvert(192,	192,	192)

Description

This	is	macro	GRAY1.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY1	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY2	Macro
C
#define	GRAY2	RGBConvert(160,	160,	160)

Description

This	is	macro	GRAY2.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY2	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY3	Macro
C
#define	GRAY3	RGBConvert(128,	128,	128)

Description

This	is	macro	GRAY3.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY3	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY4	Macro
C
#define	GRAY4	RGBConvert(96,	96,	96)

Description

This	is	macro	GRAY4.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY4	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY5	Macro
C
#define	GRAY5	RGBConvert(64,	64,	64)

Description

This	is	macro	GRAY5.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY5	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GRAY6	Macro
C
#define	GRAY6	RGBConvert(32,	32,	32)

Description

This	is	macro	GRAY6.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GRAY6	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GREEN	Macro
C
#define	GREEN	RGBConvert(0,	128,	0)

Description

This	is	macro	GREEN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	GREEN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTBLUE	Macro
C
#define	LIGHTBLUE	RGBConvert(128,	128,	255)

Description

This	is	macro	LIGHTBLUE.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTBLUE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTCYAN	Macro
C
#define	LIGHTCYAN	RGBConvert(128,	255,	255)

Description

This	is	macro	LIGHTCYAN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTCYAN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTGRAY	Macro
C
#define	LIGHTGRAY	RGBConvert(128,	128,	128)

Description

This	is	macro	LIGHTGRAY.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTGRAY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTGREEN	Macro
C
#define	LIGHTGREEN	RGBConvert(128,	255,	128)

Description

This	is	macro	LIGHTGREEN.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTGREEN	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTMAGENTA	Macro
C
#define	LIGHTMAGENTA	RGBConvert(255,	128,	255)

Description

This	is	macro	LIGHTMAGENTA.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTMAGENTA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

LIGHTRED	Macro
C
#define	LIGHTRED	RGBConvert(255,	128,	128)

Description

This	is	macro	LIGHTRED.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	LIGHTRED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

MAGENTA	Macro
C
#define	MAGENTA	RGBConvert(128,	0,	128)

Description

This	is	macro	MAGENTA.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	MAGENTA	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RED	Macro
C
#define	RED	RGBConvert(128,	0,	0)

Description

This	is	macro	RED.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	RED	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

WHITE	Macro
C
#define	WHITE	RGBConvert(255,	255,	255)

Description

This	is	macro	WHITE.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	WHITE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

YELLOW	Macro
C
#define	YELLOW	RGBConvert(255,	255,	128)

Description

This	is	macro	YELLOW.

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition	>	YELLOW	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Display	Device	Driver	Control
Functions

Functions

	 Name	 Description	

	 IsDeviceBusy	 Returns	non-zero	if	LCD	controller	is	busy
(previous	drawing	operation	is	not
completed).	

	 ResetDevice	 Initializes	LCD	module.	

Links

Functions,	Display	Device	Driver	Layer	API,	Legend

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IsDeviceBusy	Function
C
WORD	IsDeviceBusy();

Overview

Returns	non-zero	if	LCD	controller	is	busy	(previous	drawing
operation	is	not	completed).

Returns

Busy	status.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Control	>	IsDeviceBusy	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ResetDevice	Function
C
void	ResetDevice();

Overview

Initializes	LCD	module.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Control	>	ResetDevice	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Advanced	Display	Driver	Features
Topics

Topics

Name	 Description	

Alpha	Blending	 The	following	APIs	are	used	to	implement
alpha	blending	features	in	the	Epson
S1D13517	Controller.	

Transitions	 This	section	describes	screen	transition
effect	when	changing	screens.	

Double	Buffering	 In	the	Microchip	Graphics	Library,	if	double-
buffering	is	enabled,	the	frame	buffer	and
draw	buffer	are	exchanged	after	the
changes	of	all	the	widgets	on	a	screen	are
done	(i.e.,	the	new	screen	appears	after	the
whole	screen	is	updated	and	not	after
updating	an	individual	widget).	This	feature
is	enabled	only	on	the	following	drivers:

Microchip	Graphics	Display	Driver	-
customizable	driver	for	RGB	Glass.
Currently	used	in	PIC24FJ256DA210
device	family.
Microchip	Low-Cost	Controllerless
(LCC)	Graphics	Display	Driver	-
customizable	driver	for	RGB	Glass.
Currently	used	for	selected	PIC32MX
device	families.

	

Microchip	Graphics
Controller	

This	is	the	generic	display	driver	is	intended
for	the	Microchip	Graphics	Controller
Module	implemented	in	PIC24F	device

family.	This	driver	will	drive	TFT,	CSTN	and
STN	displays.	

Links

Display	Device	Driver	Layer	API,	Topics

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Alpha	Blending
Functions	|	Advanced	Display	Driver	Features

Alpha	Blending	in	Epson	Controller	uses	blocks	of	pixels	in	the
memory	called	Windows.	A	window	can	be	any	rectangular	area
in	a	display	buffer.	The	display	buffer	is	also	considered	as	a
page.	For	a	QVGA	display	buffer	a	page	would	be	320x240
pixels.	A	window	is	a	certain	width	and	height	contained	inside	a
page.	

	

	

Alpha	blending	equation:	

OutPut	Window	=	Foreground	Window	*	(Alpha)	+	Background
Window	*	(1-Alpha)	

when	done	in	software	requires	a	lot	of	CPU	bandwith.	Epson
Controller	implements	alpha	blending	in	hardware	which	offloads
the	CPU.	

The	Display	Driver	Layer	of	the	Graphics	Library	utilizes	the
Epson	Controller	alpha	blending	through	the
AlphaBlendWindow()	function.	Three	windows	are	specified	with
equal	widths	and	heights.	An	alpha	parameter	is	passed	to
define	the	level	of	alpha	blending.	The	logical	flow	of	the
operation	is	shown	below:

	

An	icon	image	with	a	given	width	(w)	and	height	(h)	is	needed	to
be	alpha	blended	into	the	display	buffer.

Buffer	A	is	allocated	in	memory	and	its	location	set	by
foregroundWindowAddr
Buffer	B	is	allocated	in	memory	and	its	location	set	by

backgroundWindowAddr	and
Buffer	C	is	allocated	in	memory	and	its	location	set	by
destinationWindowAddr.	Note	that	the	destination	window	can	be
located	within	the	display	buffer.	Doing	this	removes	an
intermediate	step	after	AlphaBlendWindow()	call	to	put	the	result	of
alpha	blend	in	the	display	buffer.

The	final	location	of	the	icon	on	the	Display	Buffer	is	used	to
locate	the	affected	pixels	in	the	Display	Buffer.	These	affected
pixels	are	copied	into	Buffer	B	while	Buffer	A	is	filled	up	with	the
Icon	Image.	Once	Buffers	A	and	B	are	ready	they	are	alpha
blended	to	Buffer	C.	Buffer	C	is	then	copied	to	the	Display
Buffer.	

	

Note	that	the	Icon	Image	has	a	background	color	of	ORANGE.
To	have	the	effect	of	the	final	output	Display	Buffer,	set	the
Epson	Controllers	transparent	color	to	ORANGE.	This	is	set	in
the	TRANSPARENTCOLOR	macro	defined	in	the	Epson
S1D13517	Driver.	This	TRANSPARENTCOLOR	macro	is	not	to
be	confused	with	the	TransparentColorEnable()	function	of	the
Display	Device	Driver	Level	Primitives.	TRANSPARENTCOLOR
is	set	at	build	time.	In	the	future	release	of	the	Epson	driver,	this
will	be	converted	to	use	the	TransparentColorEnable()	function.

Functions

	 Name	 Description	

	 GFXGetPageOriginAddress	 This	function	calculates	the
address	of	a	certain	0,0	location
of	a	page	in	memory	

	 GFXGetPageXYAddress	 This	function	calculates	the
address	of	a	certain	x,y	location
in	memory	

Module

Advanced	Display	Driver	Features

Links

Functions,	Legend,	Advanced	Display	Driver	Features

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Alpha	Blending

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXGetPageOriginAddress	Function
C
DWORD	GFXGetPageOriginAddress(

				SHORT	pageNumber

);

Overview

This	function	calculates	the	address	of	a	certain	0,0	location	of	a
page	in	memory

Input	Parameters

Input	Parameters	 Description	

SHORT	pageNumber	 the	page	number	

Returns

The	address	of	the	start	of	a	certain	page	in	memory

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Alpha	Blending	>	GFXGetPageOriginAddress	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXGetPageXYAddress	Function
C
DWORD	GFXGetPageXYAddress(

				SHORT	pageNumber,	

				WORD	x,	

				WORD	y

);

Overview

This	function	calculates	the	address	of	a	certain	x,y	location	in
memory

Input	Parameters

Input	Parameters	 Description	

SHORT	pageNumber	 the	page	number	

WORD	x	 the	x	(horizontal)	offset	from	0,0	of	the
pagenumber	

WORD	y	 the	y	(vertical)	offset	from	the	0,0	of	the
pagenumber	

Returns

The	address	of	an	XY	position	of	a	certain	page	in	memory

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Alpha	Blending	>	GFXGetPageXYAddress	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Transitions
Enumerations	|	Functions	|	Advanced	Display	Driver	Features

Applications	often	require	some	transition	effects	while	changing
screens	in	order	to	enhance	the	look	and	feel	which	can	be
achieved	by	using	Transition	APIs	provided	with	the	Microchip
Graphics	Library.	Refer	to	Appendix	C	of	the	application	note	
AN1368:	Developing	Embedded	Graphics	Applications	using
PIC®	Microcontrollers	with	Integrated	Graphics	Controller	for	a
graphical	illustration	of	how	transitions	can	be	achieved.	

	

In	order	to	translate	a	new	screen,	the	new	screen	has	to	be
developed	in	a	separate	buffer	and	has	to	be	copied	to	the	frame
buffer	(visible	display	buffer)	part	by	part.	The	way	the	new
screen	data	is	copied	into	the	frame	buffer	determines	the
transition	effect.	A	number	of	transition	effects	can	be	achieved
by	using	the	API:	GFXTransition(left,	top,	right,	bottom,	type,
srcpageaddr,	destpageaddr,	delay_ms,	param1,	param2).	This
API	copies	the	rectangular	area	defined	by	left,	top,	right	and
bottom	from	address	defined	by	srcpageaddr	to	the
destpageaddr	as	per	the	transition	defined	by	type,	param1	and
param2.	The	srcpageaddr	should	contain	the	new	screen	data
and	the	destpageaddr	must	be	the	frame	buffer	address.	The
speed	of	the	transition	can	be	configured	by	the	parameter
delay_ms	which	determines	the	delay	between	each	copy
operations.	Note	that	this	API	must	be	called	only	at	the	end	of
GOLDrawCallback()	function	in	order	to	ensure	that	the	new
screen	is	fully	created	in	the	RAM.	

	

If	double	buffering	is	enabled,	then	using	transitions	is	made
easier	by	another	API:	GFXSetupTransition(left,	top,	right,

bottom,	type,	delay_ms,	param1,	param2).	This	API	can	be
called	immediately	after	creating	the	new	screen	and	the
graphics	library	will	store	the	request	and	initiate	the	transition
after	the	new	screen	is	fully	created	in	the	RAM.	Note	that	this
API	doesn’t	have	address	parameters	as	the	address	of	draw-
buffer	is	already	known	to	the	double	buffering	subsystem	of	the
graphics	engine.

Enumerations

Name	 Description	

GFX_TRANSITION_DIRECTION	 Direction	enumeration	to
determine	the	direction	of	the
selected
GFX_TRANSITION_TYPE.	

GFX_TRANSITION_TYPE	 Transition	type	enumeration	to
determine	the	type	of	the
transition.	Each	type	will	require
specific	parameters	when	setting
up	the	transition	operation
(GFXSetupTransition()	or
GFXTransition()).
	

Functions

	 Name	 Description	

	 GFXTransition	 This	immediately	executes	the
transition	effect	using	the
GFX_TRANSITION_TYPE	and
the	given	parameters.	

	 GFXSetupTransition	 This	sets	up	the	transition	effect

using	the
GFX_TRANSITION_TYPE	and
the	given	parameters.	The
actual	transition	execution	will
occur	when
GFXExecutePendingTransition()
is	called.	When
DOUBLE_BUFFERING	is
enabled,
GFXExecutePendingTransition()
is	executed	after	the	current
screen	is	fully	rendered.	

	 GFXExecutePendingTransition	 This	function	executes	the
transition	that	was	set	up	by
GFXSetupTransition().	Status	of
the	transition	is	returned	to
indicate	if	the	transition	was
executed	or	not.	This	function	is
used	by	the	double	buffering
feature
(USE_DOUBLE_BUFFERING)
to	perform	transition	operation
after	the	current	screen	is	fully
rendered.	This	function
assumes	that	the	source	page
and	destination	page	are
already	set	up.	

	 GFXIsTransitionPending	 This	function	returns	the	status
of	a	pending	transition,	set	up
by	GFXSetupTransition(),
waiting	to	be	executed.	

Module

Advanced	Display	Driver	Features

Links

Enumerations,	Functions,	Legend,	Advanced	Display	Driver
Features

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXTransition	Function
C
BYTE	GFXTransition(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				GFX_TRANSITION_TYPE	type,	

				DWORD	srcpageaddr,	

				DWORD	destpageaddr,	

				WORD	delay_ms,	

				WORD	param1,	

				WORD	param2

);

Overview

This	immediately	executes	the	transition	effect	using	the
GFX_TRANSITION_TYPE	and	the	given	parameters.

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 left	x	coordinate	

SHORT	top	 top	y	coordinate	

SHORT	right	 right	x	coordinate	

SHORT	bottom	 bottom	y	coordinate	

GFX_TRANSITION_TYPE
type	

Transition	type	

DWORD	srcpageaddr	 Source	page	address	for	the	transition	

DWORD	destpageaddr	 Destination	page	address	for	the
transition	

WORD	delay_ms	 Delay	in	milli	seconds	between	redraws
in	the	screen	while	executing	the
transition	

WORD	param1	 Transition-type	specific	parameter	

WORD	param2	 Transition-type	specific	parameter	

Returns

Returns	status	of	transition

0	:	Transition	executed	successfully
-1	:	Transition	not	executed

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions	>	GFXTransition	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXSetupTransition	Function
C
BYTE	GFXSetupTransition(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				GFX_TRANSITION_TYPE	type,	

				WORD	delay_ms,	

				WORD	param1,	

				WORD	param2

);

Overview

This	sets	up	the	transition	effect	using	the
GFX_TRANSITION_TYPE	and	the	given	parameters.	The	actual
transition	execution	will	occur	when
GFXExecutePendingTransition()	is	called.	When
DOUBLE_BUFFERING	is	enabled,
GFXExecutePendingTransition()	is	executed	after	the	current
screen	is	fully	rendered.

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 left	x	coordinate	

SHORT	top	 top	y	coordinate	

SHORT	right	 right	x	coordinate	

SHORT	bottom	 bottom	y	coordinate	

GFX_TRANSITION_TYPE
type	

Transition	type	

WORD	delay_ms	 Delay	in	milli	seconds	between	redraws
in	the	screen	while	executing	the
transition	

WORD	param1	 Transition-type	specific	parameter	

WORD	param2	 Transition-type	specific	parameter	

Returns

Returns	success	of	the	setup

0	:	Parameters	successfully	saved	for	the	new	transition
-1	:	Parameters	not	saved,	there	is	a	pending	transition

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions	>	GFXSetupTransition	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXExecutePendingTransition	Function
C
BYTE	GFXExecutePendingTransition(

				DWORD	srcpageaddr,	

				DWORD	destpageaddr

);

Overview

This	function	executes	the	transition	that	was	set	up	by
GFXSetupTransition().	Status	of	the	transition	is	returned	to
indicate	if	the	transition	was	executed	or	not.	This	function	is
used	by	the	double	buffering	feature
(USE_DOUBLE_BUFFERING)	to	perform	transition	operation
after	the	current	screen	is	fully	rendered.	This	function	assumes
that	the	source	page	and	destination	page	are	already	set	up.

Input	Parameters

Input	Parameters	 Description	

DWORD	srcpageaddr	 Source	page	address	for	the	transition	

DWORD
destpageaddr	

Destination	page	address	for	the	transition	

Returns

Returns	status	of	transition

0	:	Transition	executed	successfully
-1	:	Transition	not	executed

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver

Features	>	Transitions	>	GFXExecutePendingTransition	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFXIsTransitionPending	Function
C
BYTE	GFXIsTransitionPending();

Overview

This	function	returns	the	status	of	a	pending	transition,	set	up	by
GFXSetupTransition(),	waiting	to	be	executed.

Returns

Returns	transition	status

0	:	No	pending	transition
1	:	There	is	a	pending	transition

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions	>	GFXIsTransitionPending	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_TRANSITION_DIRECTION	Enumeration
C
typedef	enum	{

		LEFT_TO_RIGHT	=	0,

		RIGHT_TO_LEFT,

		TOP_TO_BOTTOM,

		BOTTOM_TO_TOP,

		HORIZONTAL,

		VERTICAL

}	GFX_TRANSITION_DIRECTION;

Overview

Direction	enumeration	to	determine	the	direction	of	the	selected
GFX_TRANSITION_TYPE.

Members

Members	 Description	

LEFT_TO_RIGHT	=	0	 option	used	in	SLIDE,	PUSH	transition	type
(GFX_TRANSITION_TYPE)	

RIGHT_TO_LEFT	 option	used	in	SLIDE,	PUSH	transition	type
(GFX_TRANSITION_TYPE)	

TOP_TO_BOTTOM	 option	used	in	SLIDE,	PUSH	transition	type
(GFX_TRANSITION_TYPE)	

BOTTOM_TO_TOP	 option	used	in	SLIDE,	PUSH	transition	type
(GFX_TRANSITION_TYPE)	

HORIZONTAL	 option	used	in	EXPANDING_LINE	and
CONTRACTING_LINE	transition	type
(GFX_TRANSITION_TYPE)	

VERTICAL	 option	used	in	EXPANDING_LINE	and
CONTRACTING_LINE	transition	type
(GFX_TRANSITION_TYPE)	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions	>	GFX_TRANSITION_DIRECTION	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_TRANSITION_TYPE	Enumeration
C
typedef	enum	{

		PLAIN	=	0,

		SLIDE,

		PUSH,

		EXPANDING_RECTANGLE,

		CONTRACTING_RECTANGLE,

		EXPANDING_LINE,

		CONTRACTING_LINE

}	GFX_TRANSITION_TYPE;

Overview

Transition	type	enumeration	to	determine	the	type	of	the
transition.	Each	type	will	require	specific	parameters	when
setting	up	the	transition	operation	(GFXSetupTransition()	or
GFXTransition()).	

	

GFX_TRANSITION_TYPE	 param1	 param2	 (sets	 the
direction	 of
transition)	

PLAIN	 pixel
block
size	

not	used	

EXPANDING_RECTANGLE	 pixel
block
size	

not	used	

CONTRACTING_RECTANGLE	 pixel
block

not	used	

size	

SLIDE	 pixel
block
size	

LEFT_TO_RIGHT,
RIGHT_TO_LEFT,
TOP_TO_BOTTOM,
BOTTOM_TO_TOP	

PUSH	 pixel
block
size	

LEFT_TO_RIGHT,
RIGHT_TO_LEFT,
TOP_TO_BOTTOM,
BOTTOM_TO_TOP	

EXPANDING_LINE	 pixel
block
size	

HORIZONTAL,
VERTICAL	

CONTRACTING_LINE	 pixel
block
size	

HORIZONTAL,
VERTICAL	

Members

Members	 Description	

PLAIN	=	0	 no	transition	effect	

SLIDE	 param1	->	Pixel-block	size,	param2	->	Sliding	direction
LEFT_TO_RIGHT/RIGHT_TO_LEFT/TOP_TO_BOTTOM/BOTTOM_TO_TOP	

PUSH	 param1	->	Pixel-block	size,	param2	->	Sliding	direction
LEFT_TO_RIGHT/RIGHT_TO_LEFT/TOP_TO_BOTTOM/BOTTOM_TO_TOP	

EXPANDING_RECTANGLE	 param1	->	Pixel-block	size	

CONTRACTING_RECTANGLE	 param1	->	Pixel-block	size	

EXPANDING_LINE	 param1	->	Pixel-block	size,	param2	->	direction	HORIZONTAL/VERTICAL	

CONTRACTING_LINE	 param1	->	Pixel-block	size,	param2	->	direction	HORIZONTAL/VERTICAL	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions	>	GFX_TRANSITION_TYPE	Enumeration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Double	Buffering
Functions	|	Advanced	Display	Driver	Features

Manipulating	pixels	on	the	screen	requires	direct	writes	to	the
frame	buffer.	While	these	changes	are	being	executed,	the
screen	is	also	refreshed.	This	means	that	the	changes	are
displayed	immediately	as	the	frame	buffer	is	being	updated.	This
is	not	a	suitable	scheme	when	the	changes	are	slow,	for
example,	decoding	an	image	or	having	a	large	number	of
widgets	on	a	screen.	The	display	may	appear	slow	in	that	case.
One	solution	to	this	problem	is	to	use	a	double-buffering	scheme
supported	by	the	Microchip	Graphics	Library.	In	this	scheme,	the
changes	are	not	directly	written	to	the	frame	buffer,	but	instead,
they	are	written	to	a	separate	buffer,	called	the	‘Draw	Buffer’.
After	all	the	changes	are	made,	the	draw	buffer	and	frame	buffer
are	exchanged.	Now	the	draw	buffer	becomes	the	frame	buffer,
and	because	of	all	the	changes	drawn	there,	the	changes	appear
spontaneous	to	the	user.	Of	course,	there	will	be	a	delay,	as	all
the	changes	have	to	be	written	to	the	draw	buffer	before
displaying	it.	This	delay	is	generally	more	tolerable	than
displaying	the	changes	slowly.	After	exchanging	of	the	buffers,
the	latest	buffer	(which	is	now	the	frame	buffer)	is	copied	to	the
new	draw	buffer	in	the	background	and	then	the	new	draw	buffer
is	in	sync	with	what	is	being	displayed.	New	changes	are	then
written	to	the	draw	buffer	and	the	cycle	continues.	As	the	double-
buffering	scheme	uses	two	buffers,	the	RAM	requirement	will
double.	

	

In	the	Microchip	Graphics	Library,	if	double-buffering	is	enabled,
the	frame	buffer	and	draw	buffer	are	exchanged	after	the
changes	of	all	the	widgets	on	a	screen	are	done	(i.e.,	the	new
screen	appears	after	the	whole	screen	is	updated	and	not	after

updating	an	individual	widget).	

	

The	work	flow	of	double-buffering	is	graphically	explained	along
with	tips	on	deciding	when	to	use	double	buffering	in	the
APPENDIX	B	of	the	Application	note	AN1368:	Developing
Embedded	Graphics	Applications	using	PIC®	Microcontrollers
with	Integrated	Graphics	Controller.	

	

To	use	double	buffering	in	an	application,	follow	the	steps
described	below:	

	

1.	Enable	the	option	USE_DOUBLE_BUFFERING	in
GraphicsConfig.h	

2.	Update	GFX_DISPLAY_BUFFER_LENGTH	to	include	both
the	buffers	in	HardwareProfile.h.	Note	that	when	using	external
memory	the	GFX_DISPLAY_BUFFER_LENGTH	must	fit	into	the
external	memory	size.	For	example	in	PIC24FJ256DA210
external	memory	can	be	added	using	EPMP.	External	memory
mapped	to	the	EPMP	must	be	big	enough	to	accommodate	the
display	buffers	required	by	double	buffering.	See	Set	Up	Display
Interface	for	more	information	on	memory	requirements.	

3.	Check	the	jumper	settings	to	enable	the	required	RAM
address	space	on	the	development	board	

	

If	Graphics	Objects	Layer	(GOL)	is	used	in	the	application,	the
switching	of	buffers	is	handled	automatically	in	order	to	keep	the
switching	task	transparent	to	the	users.	If	double	buffering	is
enabled	in	applications	using	only	the	Primitive	layer,	then	the

switching	of	buffers	has	to	be	handled	by	the	application	itself	as
explained	in	the	following	steps.	

	

Steps	required	for	manually	handling	the	switching	of	buffers:	

	

1.	After	InitGraph()	is	called,	call	the	APIs	InvalidateAll()	followed
by	UpdateDisplayNow().	The	two	buffers	are	properly	setup	after
these	calls	and	from	this	point	onwards,	the	drawing	happens	on
the	draw-buffer.	

2.	When	a	shape	is	drawn	on	the	draw	buffer,	that	rectangular
area	has	to	be	marked	as	invalid	by	using	the	API
InvalidateRectangle(left,	top,	right,	bottom).	Only	the	invalidated
rectangular	areas	are	copied	to	the	frame	buffer	in	order	to
reduce	the	copy	operations	thereby	reducing	the	overall	time	and
energy	required	to	sync	the	two	buffers.	Hence,	it	is	important	to
invalidate	the	changed	rectangular	areas	failing	which	the
change	doesn’t	show	up	on	the	display.	

3.	Call	either	RequestDisplayUpdate()	or	UpdateDisplayNow()	to
sync	the	two	buffers	and	as	a	result	the	changes	appear	on	the
display.	The	former	API	exchanges	the	buffers	during	the	next
display	blanking	period	on	TFT	LCDs	causing	the	change	to
appear	smooth	and	immediate	whereas	the	latter	API	exchanges
the	two	buffers	at	the	time	of	the	API	call	probably	causing	a
slight	flicker	on	the	display.	On	displays	which	doesn’t	support
blanking	periods	(e.g.	CSTN	LCDs),	the	effect	of
RequestDisplayUpdate()	is	same	as	that	of
UpdateDisplayNow().	

	

Even	if	double	buffering	is	enabled	at	compile	time,	it	can	be

switched	off	and	on	at	run	time	using	APIs
SwitchOffDoubleBuffering()	and	SwitchOnDoubleBuffering().
Switching	double	buffering	on/off	at	runtime	is	useful	in
applications	which	need	some	screens	having	fast	updates	like
waveform	or	animation	which	requires	double	buffering	to	be
switched	off	and	some	other	screens	where	double	buffering	is
beneficial.	

	

Note:	In	applications	using	Graphics	Objects	Layer	and	double
buffering,	the	double	buffering	is	not	immediately	enabled	after
the	API	GOLInit()	is	called	in	order	to	support	hassles	splash
screens	but	is	automatically	enabled	from	the	second	screen
update	onwards.	If	double	buffering	is	needed	from	the	first
screen	itself,	then	follow	step	1	immediately	after	calling
GOLInit().

Functions

	 Name	 Description	

	 SwitchOffDoubleBuffering	 Switches	off	the	double	buffering.	All
rendering	will	be	performed	on	the
frame	buffer.	Calls	to
UpdateDisplayNow()	or
RequestDisplayUpdate()	will	have
no	effect.	

	 SwitchOnDoubleBuffering	 Switches	on	the	double	buffering.
Double	buffering	utilizes	two	buffers.
The	frame	buffer	and	the	draw
buffer.	The	frame	buffer	is	the	buffer
that	is	being	displayed	while	the
draw	buffer	is	used	for	all	rendering.
When	this	function	is	called,	it
copies	the	contents	of	the	frame

buffer	to	the	draw	buffer	once	and
all	succeeding	rendering	will	be
performed	on	the	draw	buffer.	To
update	the	frame	buffer	with	newly
drawn	items	on	the	draw	buffer	call
UpdateDisplayNow()	or
RequestDisplayUpdate().	

	 InvalidateRectangle	 Invalidates	the	specified	rectangular
area.	This	increments	the	number	of
invalidated	areas	and	if	the	number
of	invalidated	areas	exceed	the
GFX_MAX_INVALIDATE_AREAS,
the	whole	frame	buffer	is
invalidated.	

	 RequestDisplayUpdate	 Synchronizes	the	draw	and	frame
buffers	at	next	VBlank	

	 UpdateDisplayNow	 Synchronizes	the	draw	and	frame
buffers	immediately.	

Module

Advanced	Display	Driver	Features

Links

Functions,	Legend,	Advanced	Display	Driver	Features

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SwitchOffDoubleBuffering	Function
C
void	SwitchOffDoubleBuffering();

Overview

Switches	off	the	double	buffering.	All	rendering	will	be	performed
on	the	frame	buffer.	Calls	to	UpdateDisplayNow()	or
RequestDisplayUpdate()	will	have	no	effect.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering	>	SwitchOffDoubleBuffering	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SwitchOnDoubleBuffering	Function
C
void	SwitchOnDoubleBuffering();

Overview

Switches	on	the	double	buffering.	Double	buffering	utilizes	two
buffers.	The	frame	buffer	and	the	draw	buffer.	The	frame	buffer	is
the	buffer	that	is	being	displayed	while	the	draw	buffer	is	used	for
all	rendering.	When	this	function	is	called,	it	copies	the	contents
of	the	frame	buffer	to	the	draw	buffer	once	and	all	succeeding
rendering	will	be	performed	on	the	draw	buffer.	To	update	the
frame	buffer	with	newly	drawn	items	on	the	draw	buffer	call
UpdateDisplayNow()	or	RequestDisplayUpdate().

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering	>	SwitchOnDoubleBuffering	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

InvalidateRectangle	Function
C
void	InvalidateRectangle(

				WORD	left,	

				WORD	top,	

				WORD	right,	

				WORD	bottom

);

Overview

Invalidates	the	specified	rectangular	area.	This	increments	the
number	of	invalidated	areas	and	if	the	number	of	invalidated
areas	exceed	the	GFX_MAX_INVALIDATE_AREAS,	the	whole
frame	buffer	is	invalidated.

Input	Parameters

Input	Parameters	 Description	

WORD	left	 left	position	

WORD	top	 top	position	

WORD	right	 right	position	

WORD	bottom	 bottom	position	

Returns

None

Preconditions

None

Side	Effects

Copies	back	the	invalidated	areas	only	to	the	draw	buffer	after
the	exchange	of	draw	and	frame	buffers.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering	>	InvalidateRectangle	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RequestDisplayUpdate	Function
C
void	RequestDisplayUpdate();

Overview

Synchronizes	the	draw	and	frame	buffers	at	next	VBlank

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering	>	RequestDisplayUpdate	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

UpdateDisplayNow	Function
C
void	UpdateDisplayNow();

Overview

Synchronizes	the	draw	and	frame	buffers	immediately.

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering	>	UpdateDisplayNow	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Microchip	Graphics	Controller
Advanced	Display	Driver	Features	|	Topics

The	Microchip	Graphics	Controller	has	several	advanced
features	that	can	be	enabled	by	declaring	macros	in	the
Graphics	Config	(GraphicsConfig.h)	and	Hardware	Profile
(HardwareProfile.h)	of	the	project.	Below	is	a	summary	of	all
macros	that	pertains	to	the	Microchip	Graphics	Controller	driver.	

	

Macro	Name	 Description	

GFX_DISPLAY_BUFFER_START_ADDRESS	 Defines	the	starting	address	of	the	display	buffer.	

GFX_DISPLAY_BUFFER_LENGTH	 Defines	the	size	of	the	display	buffer.	This	macro	is
used	to	map	memory	in	RAM	when:
1.	 Double	buffering	is	enabled.	This	is	enabled	by

the	macro	
2.	 IPU	module	is	used.	This	is	enabled	by	the

macro	USE_COMP_IPU
If	the	application	is	designed	to	fit	into	the	internal
memory,	and	with	the	If	the	double	buffering	and/or
IPU	module	is	enabled,	the	memory	required	must	fit
into	the	internal	memory.

NOTE:	If	the	display	buffer	is	located	in	external
memory	(i.e	in	PIC24FJ256DA210)	then
GFX_DISPLAY_BUFFER_LENGTH
than	or	equal	to	the	chip	select	region	size

GFX_DISPLAY_BUFFER_LENGTH
GFX_EPMP_CS1_MEMORY_SIZE
chip	select	1	(CS1)	region
GFX_DISPLAY_BUFFER_LENGTH
GFX_EPMP_CS2_MEMORY_SIZE

chip	select	2	(CS2)	region
	

USE_PALETTE	 Macro	that	enables	the	palette	mode	in	Graphics
Library	and	the	Microchip	Graphics	Controller.	

USE_DOUBLE_BUFFERING	 Optional	feature.	This	enables	the	double	buffering
feature.	Memory	required	for	display	buffer	will
double	in	size.	There	will	be	two	display	buffers	used
and	these	buffers	are	swapped	automatically	by	the
library	draw	operations	or	application	can	manage
the	swapping.	See	
Buffer	Location	(Mapping):
Display	Buffer	1	=
GFX_DISPLAY_BUFFER_START_ADDRESS
Display	Buffer	2	=
GFX_DISPLAY_BUFFER_START_ADDRESS
GFX_DISPLAY_BUFFER_LENGTH

NOTE:	If	the	display	buffers	are	located	in	external
memory	(i.e	in	PIC24FJ256DA210)	then	the	total
display	buffer	memory	needed	must	be	less	than	or
equal	to	the	chip	select	region	size

(GFX_DISPLAY_BUFFER_LENGTH
GFX_EPMP_CS1_MEMORY_SIZE
chip	select	1	(CS1)	region
(GFX_DISPLAY_BUFFER_LENGTH
GFX_EPMP_CS2_MEMORY_SIZE
chip	select	2	(CS2)	region

	

USE_COMP_IPU	 Optional	feature.	This	enables	the	usage	of	the	IPU
module	in	the	Microchip	Graphics	Controller.
Memory	required	for	IPU	is	dictated	by	the	location
of	the	compressed	data:

When	compressed	data	is	from	external	memory	or
program	memory:

GFX_COMPRESSED_BUFFER_SIZE	-	defines	the
memory	cache	size	needed	for	compressed	data
GFX_DECOMPRESSED_BUFFER_SIZE	-	defines
the	memory	cache	size	needed	for	decompressed
data
GFX_IPU_TEMP_DATA_TRANSFER_ARRAY_SIZE
-	defines	the	memory	cache	size	needed	for
transferring	the	compressed	data	from	external
memory	(not	mapped	to	EDS)	or	program	memory
to	RAM	location.	This	cache	memory	is	created	at
initialization	and	will	automatically	be	mapped.	The
size	cannot	not	be	greater	than	32K.

Buffer	Location	(Mapping)	(double	buffering
enabled):
Display	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
Decompressed	Data	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
(GFX_DISPLAY_BUFFER_LENGTH
Compressed	Data	Buffer	=	Decompressed	Data
Buffer	+	GFX_DECOMPRESSED_BUFFER_SIZE

Buffer	Location	(Mapping)	(double	buffering
disabled):
Display	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
Decompressed	Data	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
GFX_DISPLAY_BUFFER_LENGTH
Compressed	Data	Buffer	=	Decompressed	Data
Buffer	+	GFX_DECOMPRESSED_BUFFER_SIZE

When	compressed	data	is	Extended	Data	Space
(RAM	or	external	memory	mapped	in	EDS):
GFX_DECOMPRESSED_BUFFER_SIZE	-	defines
the	memory	cache	size	needed	for	decompressed

data

Buffer	Location	(Mapping)	(double	buffering
enabled):
Display	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
Decompressed	Data	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
(GFX_DISPLAY_BUFFER_LENGTH

Buffer	Location	(Mapping)	(double	buffering
disabled):
Display	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
Decompressed	Data	Buffer	=
GFX_DISPLAY_BUFFER_START_ADDRESS
GFX_DISPLAY_BUFFER_LENGTH

NOTE:	If	the	display	buffers	are	located	in	external
memory	(i.e	in	PIC24FJ256DA210)	then	the	total
display,	compressed	and	uncompressed	buffers
needed	must	be	less	than	or	equal	to	the	chip	select
region	size
External	CS	Memory	Requirement

Double	Buffering	disabled:
(GFX_DISPLAY_BUFFER_LENGTH
GFX_COMPRESSED_BUFFER_SIZE	+
GFX_DECOMPRESSED_BUFFER_SIZE)
<=	GFX_EPMP_CS1_MEMORY_SIZE
located	in	chip	select	1	(CS1)	region
(GFX_DISPLAY_BUFFER_LENGTH
GFX_COMPRESSED_BUFFER_SIZE	+
GFX_DECOMPRESSED_BUFFER_SIZE)
<=	GFX_EPMP_CS2_MEMORY_SIZE
located	in	chip	select	2	(CS2)	region

Double	Buffering	enabled:
((GFX_DISPLAY_BUFFER_LENGTH

GFX_COMPRESSED_BUFFER_SIZE	+
GFX_DECOMPRESSED_BUFFER_SIZE)
<=	GFX_EPMP_CS1_MEMORY_SIZE
located	in	chip	select	1	(CS1)	region
((GFX_DISPLAY_BUFFER_LENGTH
GFX_COMPRESSED_BUFFER_SIZE	+
GFX_DECOMPRESSED_BUFFER_SIZE)
<=	GFX_EPMP_CS2_MEMORY_SIZE
located	in	chip	select	2	(CS2)	region

	

GFX_EPMP_CS1_BASE_ADDRESS	 For	PIC	Device	Families	with	Enhanced	Parallel
Master	Port	(EPMP)	(example	PIC24FJ256DA210
Family	of	Devices).
Defines	the	location	of	the	EPMP	Chip	Select	1	base
address.	When	this	macro	is	defined,	the	driver
automatically	enables	the	EPMP.	The
GFX_EPMP_CS1_MEMORY_SIZE
determines	how	many	address	lines	of	the	EPMP
will	be	enabled.
Use	this	macro	together	with
GFX_EPMP_CS1_MEMORY_SIZE
memory	to	EPMP	Chip	Select	1	for	use	by	the
Microchip	Graphics	Controller.	

GFX_EPMP_CS1_MEMORY_SIZE	 Defines	the	size	of	the	memory	mapped	to	EPMP
Chip	Select	1.	Always	used	with
GFX_EPMP_CS1_BASE_ADDRESS

NOTE:	Refer	to
GFX_DISPLAY_BUFFER_LENGTH
USE_DOUBLE_BUFFERING
description	for	the	relationship	between
GFX_EPMP_CS1_MEMORY_SIZE
memory	requirements	when	external	memory	is
used	for	display	buffers.	

GFX_EPMP_CS2_BASE_ADDRESS	 For	PIC	Device	Families	with	Enhanced	Parallel

Master	Port	(EPMP)	(example	PIC24FJ256DA210
Family	of	Devices).
Defines	the	location	of	the	EPMP	Chip	Select	2	base
address.	

GFX_EPMP_CS2_MEMORY_SIZE	 Defines	the	size	of	the	memory	mapped	to	EPMP
Chip	Select	2.	Always	used	with
GFX_EPMP_CS2_BASE_ADDRESS

NOTE:	Refer	to
GFX_DISPLAY_BUFFER_LENGTH
USE_DOUBLE_BUFFERING
description	for	the	relationship	between
GFX_EPMP_CS1_MEMORY_SIZE
memory	requirements	when	external	memory	is
used	for	display	buffers.	

GFX_COMPRESSED_BUFFER_SIZE	 Macro	used	with	
memory	cache	size	needed	for	compressed	data.
The	value	chosen	is	based	on	the	largest
compressed	data	when	multiple	compressed
images/data	are	used.	

GFX_DECOMPRESSED_BUFFER_SIZE	 Macro	used	with	
memory	cache	size	needed	for	decompressed	data.
The	value	chosen	is	based	on	the	largest
decompressed	data	when	multiple	compressed
images/data	are	used.	

GFX_IPU_TEMP_DATA_TRANSFER_ARRAY_SIZE	 Macro	used	with	
memory	cache	size	needed	for	transferring	the
compressed	data	from	external	memory	(not
mapped	to	EDS)	or	program	memory	to	RAM
location.
The	size	chosen	must	not	exceed	32Kbytes.
Allowed	size	is	further	reduced	by	application
variables	and	dynamic	memory	requirements.	

	

Enabling	Internal/External	Memory	

The	Microchip	Graphics	Controller	can	use	internal	memory	or
external	memory	for	the	display	buffers.	The	driver	decides	on
the	location	of	the	buffers	based	on	the
GFX_DISPLAY_BUFFER_START_ADDRESS	macro.	For	the
PIC24FJ256DA210	device	family,	there	are	two	variants	for
internal	memory	sizes,	96	Kbytes	and	24	Kbytes.	For	the	96
Kbytes	variants,	the	external	memory	can	be	immediately
mapped	after	the	internal	RAM	address.	for	the	24KBytes
variants,	the	external	memory	cannot	be	mapped	after	the
internal	RAM	address.	Refer	to	the	PIC24FJ256DA210	Family
Data	Sheet	for	details	on	the	mapping	of	external	memory
(Section	4.2	Data	Memory	Space).	

External	Memory	Example:

Copy	Code
//	Settings	for	Hardware	Profile	to	use	External	Memory

//	on	PIC24FJ256DA210	Development	Board

//	Microchip	Development	Board	Specific	macros

		#define	PIC24FJ256DA210_DEV_BOARD																				

		#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	

//	Microchip	Graphics	Controller	specific	macros

		//	PMP	port	data	bus	width	(for	Microchip	Graphics	Controller	only	16bit	is	allowed)

		#define	USE_16BIT_PMP

		//	Use	Microchip	Display	Controller

		#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210

		//	Microchip	Graphics	Controller	pixel	clock	divider

		//	The	value	used	is	derived	from	display's	refresh	rate	requirement	(usually	60	Hz)

		#define	GFX_GCLK_DIVIDER	61

		//	Display	Buffer	start	address

		//	Note	that	the	value	is	mapped	to	external	memory	location

		//	see		PIC24FJ256DA210	Family	Data	Sheet	for	details

		#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00020000ul

		//	Display	Buffer	size

		#define	GFX_DISPLAY_BUFFER_LENGTH	0x00025800ul

		//	Since	Display	Buffer	is	mapped	to	external	memory

		//	EPMP	needs	to	be	enabled

		#define	GFX_EPMP_CS1_BASE_ADDRESS	0x00020000ul

		#define	GFX_EPMP_CS1_MEMORY_SIZE	0x80000ul

		//	EPMP	CS2	can	also	be	used	as	an	external	memory	resource

		#define	GFX_EPMP_CS2_BASE_ADDRESS	(0x00020000ul	+	GFX_EPMP_CS1_MEMORY_SIZE)

		#define	GFX_EPMP_CS2_MEMORY_SIZE	0x80000ul

Internal	Memory	Example:

Copy	Code
//	Settings	for	Hardware	Profile	to	use	Internal	Memory

//	on	PIC24FJ256DA210	Development	Board

//	Hardware	Profile

//	Microchip	Development	Board	Specific	macros

		#define	PIC24FJ256DA210_DEV_BOARD																				

		#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	

//	Microchip	Graphics	Controller	specific	macros

		//	Use	Microchip	Display	Controller

		#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210

		//	Microchip	Graphics	Controller	pixel	clock	divider

		//	The	value	used	is	derived	from	display's	refresh	rate	requirement	(usually	60	Hz)

		#define	GFX_GCLK_DIVIDER	61

		//	Display	Buffer	start	address

		//	Note	that	the	value	is	mapped	to	external	memory	location

		//	see		PIC24FJ256DA210	Family	Data	Sheet	for	details

		#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00004B00ul

		//	Display	Buffer	size

		#define	GFX_DISPLAY_BUFFER_LENGTH	0x0004B000ul

	

Enabling	Double	Buffering	

See	Double	Buffering.	

	

Enabling	Color	Look	Up	Table	

The	Graphics	Controller	Module	can	be	set	to	operate	on	1,	2,	4,
8	and	16	bpp.	Color	depths	1,	2,	4,	and	8	can	be	used	with	the
256	entries	Color	Look	Up	Table	(CLUT).	When	using	external
memory,	only	the	8bpp	mode	can	be	used	with	the	CLUT
enabled.	When	using	internal	memory,	1,2,4	and	8	bpp	can	be
used.	

Enabling	Color	Look	Up	Table	Example:

Copy	Code
//	Settings	for	GraphicsConfig.h	to	use	the	CLUT	at	8BPP	mode.

		//	enable	the	palette	mode

		#define	USE_PALETTE

		//	set	the	color	depth

		#define	COLOR_DEPTH				8

	

Enabling	the	IPU	Module	

Currently,	the	IPU	module	is	an	option	to	reduce	memory
external	or	internal	flash	memory	when	storing	images	for	the
Graphics	Library.	The	Graphics	Resource	Converter	tool
provides	an	option	to	convert	images	to	be	saved	in	compressed
format	for	IPU	decompression.	

Enabling	IPU	Decompression	Example:

Copy	Code
//	Settings	for	GraphicsConfig.h	to	use	the	IPU	Module.

		//	enable	the	use	of	IPU	module

		#define	USE_COMP_IPU

	

Copy	Code
//	Settings	for	Hardware	Profile	to	use	IPU	Module

//	on	PIC24FJ256DA210	Development	Board

//	Use	this	when	compressed	data	is	from	memory	not	mapped	to	EDS

		//	define	the	size	of	the	compressed	buffer

		#define	GFX_COMPRESSED_BUFFER_SIZE														(13950)

		//	define	the	size	of	the	decompressed	buffer

		#define	GFX_DECOMPRESSED_BUFFER_SIZE												(19216)

		//	define	the	size	of	the	temporary	buffer	to	transfer	compressed

		//	data	from	memory	not	mapped	in	EDS

		//	(example:	External	SPI	memory,	Program	Flash)

		#define	GFX_IPU_TEMP_DATA_TRANSFER_ARRAY_SIZE			(1024)

	

Copy	Code
//	Settings	for	Hardware	Profile	to	use	IPU	Module

//	on	PIC24FJ256DA210	Development	Board

//	Use	this	when	compressed	data	is	from	memory	mapped	to	EDS

		//	define	the	size	of	the	decompressed	buffer

		#define	GFX_DECOMPRESSED_BUFFER_SIZE												(19216)

Module

Advanced	Display	Driver	Features

Topics

Name	 Description	

Rectangle	Copy
Operations	

The	following	APIs	are	used	move	blocks	of
data	from	one	memory	location	to	another.	

Decompressing
DEFLATEd	data	

The	Microchip	Graphics	Controller	features
a	decompression	module	for	data
compressed	using	the	DEFLATE	algorithm.
Compressed	data	are	limited	to	fixed
huffman	codes.	Compressed	data	with
dynamic	huffman	codes	are	not	supported.	

Palette	Mode	 The	Microchip	Graphics	Controller	features
a	palette	mode	for	a	smaller	frame	buffer
requirement.	This	option	uses	the	built-in
256	entry	Color	Look-up	Table	(CLUT)	to
represent	pixels	from	the	display	buffer	in
memory.	If	the	CLUT	is	enabled,	each	pixel
in	the	display	buffer	is	assumed	to	contain
the	color	index.	This	color	index	is	used	as
the	address	of	the	CLUT	entry	that	contains
the	color	value	that	will	be	used	for	the
given	pixel.	

Set	Up	Display
Interface	

	

External	or	Internal
Memory	and	Palettes	

This	section	shows	examples	on	how	to	set
up	applications	using	external	memory,
internal	memory	or	use	palettes	for
Microchip	Graphics	Module.		

Links

Advanced	Display	Driver	Features,	Topics

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Rectangle	Copy	Operations
Functions	|	Macros

Functions

	 Name	 Description	

	 ROPBlock	 Performs	a	Raster	Operation	(ROP)	on
source	and	destination.	The	type	of	ROP	is
decided	by	the	rop	and	the	copyOp
parameter.	

	 Scroll	 Scrolls	the	rectangular	area	defined	by	left,
top,	right,	bottom	by	delta	pixels.	

Macros

Name	 Description	

RCC_SRC_ADDR_CONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous

RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_SRC_ADDR_DISCONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_DEST_ADDR_CONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-

source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_DEST_ADDR_DISCONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_ROP_0	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D

RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_1	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_2	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)

RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_3	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_4	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK

RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_5	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_6	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is

performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_7	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_8	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_9	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D

RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_A	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_B	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))

RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_C	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_D	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK

RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_E	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_F	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is

performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_COPY	 Type	of	Rectangle	Copy	Operations.	Select
one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

RCC_SOLID_FILL	 Type	of	Rectangle	Copy	Operations.	Select

one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

RCC_TRANSPARENT_COPY	 Type	of	Rectangle	Copy	Operations.	Select
one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

Links

Functions,	Microchip	Graphics	Controller,	Legend,	Macros

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ROPBlock	Function
C
WORD	ROPBlock(

				DWORD	srcAddr,	

				DWORD	dstAddr,	

				DWORD	srcOffset,	

				DWORD	dstOffset,	

				WORD	srcType,	

				WORD	dstType,	

				WORD	copyOp,	

				WORD	rop,	

				WORD	color,	

				WORD	width,	

				WORD	height

);

Overview

Performs	a	Raster	Operation	(ROP)	on	source	and	destination.
The	type	of	ROP	is	decided	by	the	rop	and	the	copyOp
parameter.

Input	Parameters

Input	Parameters	 Description	

DWORD	srcAddr	 the	base	address	of	the	data	to	be	moved	

DWORD	dstAddr	 the	base	address	of	the	new	location	of	the
moved	data	

DWORD	srcOffset	 offset	of	the	data	to	be	moved	with	respect
to	the	source	base	address.	

DWORD	dstOffset	 offset	of	the	new	location	of	the	moved	data

respect	to	the	source	base	address.	

WORD	srcType	 sets	the	source	type
(GFX_DATA_CONTINUOUS	or
GFX_DATA_DISCONTINUOUS)	

WORD	dstType	 sets	the	destination	type
(GFX_DATA_CONTINUOUS	or
GFX_DATA_DISCONTINUOUS)	

WORD	copyOp	 sets	the	type	of	copy	operation

RCC_SOLID_FILL:	Solid	fill	of	the	set
color
RCC_COPY:	direct	copy	of	source	to
destination
RCC_TRANSPARENT_COPY:	copy
with	transparency.	Transparency	color
is	set	by	color

	

WORD	rop	 sets	the	raster	operation	equation

RCC_ROP_0:	Solid	black	color	fill
RCC_ROP_1:	not	(Source	or
Destination)
RCC_ROP_2:	(not	Source)	and
Destination
RCC_ROP_3:	not	Source
RCC_ROP_4:	Source	and	(not
Destination)
RCC_ROP_5:	not	Destination
RCC_ROP_6:	Source	xor	Destination
RCC_ROP_7:	not	(Source	and
Destination)
RCC_ROP_8:	Source	and	Destination
RCC_ROP_9:	not	(Source	xor
Destination)

RCC_ROP_A:	Destination
RCC_ROP_B:	(not	Source)	or
Destination
RCC_ROP_C:	Source
RCC_ROP_D:	Source	or	(not
Destination)
RCC_ROP_E:	Source	or	Destination
RCC_ROP_F:	Solid	white	color	fill

	

WORD	color	 color	value	used	when	transparency
operation	is	set	or	using	solid	color	fill	

WORD	width	 width	of	the	block	of	data	to	be	moved	

WORD	height	 height	of	the	block	of	data	to	be	moved	

Returns

For	NON-Blocking	configuration:

Returns	0	when	device	is	busy	and	operation	is	not	completely
performed.
Returns	1	when	the	operation	is	completely	performed.

For	Blocking	configuration:
Always	return	1.

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver

Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations
>	ROPBlock	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Scroll	Function
C
WORD	Scroll(

				SHORT	left,	

				SHORT	top,	

				SHORT	right,	

				SHORT	bottom,	

				SHORT	delta,	

				WORD	dir

);

Overview

Scrolls	the	rectangular	area	defined	by	left,	top,	right,	bottom	by
delta	pixels.

Input	Parameters

Input	Parameters	 Description	

SHORT	left	 left	position	of	the	scrolled	rectangle	

SHORT	top	 top	position	of	the	scrolled	rectangle	

SHORT	right	 right	position	of	the	scrolled	rectangle	

SHORT	bottom	 bottom	position	of	the	scrolled	rectangle	

SHORT	delta	 defines	the	scroll	delta	

WORD	dir	 defines	the	direction	of	the	scroll.

0	:	scroll	to	the	left
1	:	scroll	to	the	right

	

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations
>	Scroll	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RCC_SRC_ADDR_CONTINUOUS	Macro
C
#define	RCC_SRC_ADDR_CONTINUOUS	0x00000002ul

#define	RCC_SRC_ADDR_DISCONTINUOUS	0x00000000ul

#define	RCC_DEST_ADDR_CONTINUOUS	0x00000004ul

#define	RCC_DEST_ADDR_DISCONTINUOUS	0x00000000ul

Overview

Source	(S)	and	Destination	(D)	data	type.	When	performing
executing	commands	on	the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination	data	can	be	treated	as	a
continuous	block	of	data	in	memory	or	a	discontinuous	data	in
memory.	This	gives	flexibility	to	the	operation	where	an	copy
operation	can	be	performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data	memory.	Both	source	and
destination	data	can	be	set	to	continuous	or	discontinuous	data.
These	macros	are	only	used	in	RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-	source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS	-	source	data	is
discontinuous
RCC_DEST_ADDR_CONTINUOUS	-	destination	data	is
continuous
RCC_DEST_ADDR_DISCONTINUOUS	-	destination	data	is
discontinuous

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations
>	RCC_SRC_ADDR_CONTINUOUS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RCC_ROP_0	Macro
C
#define	RCC_ROP_0	0x00000000ul

#define	RCC_ROP_1	0x00000008ul								//	not	(S	or	D)

#define	RCC_ROP_2	0x00000010ul								//	(not	S)	and	D

#define	RCC_ROP_3	0x00000018ul								//	not	(S)

#define	RCC_ROP_4	0x00000020ul								//	S	and	not	(D)

#define	RCC_ROP_5	0x00000028ul								//	not	(D)

#define	RCC_ROP_6	0x00000030ul								//	S	xor	D

#define	RCC_ROP_7	0x00000038ul								//	not	(S	and	D)

#define	RCC_ROP_8	0x00000040ul								//	S	and	D

#define	RCC_ROP_9	0x00000048ul								//	not	(S	xor	D)

#define	RCC_ROP_A	0x00000050ul								//	D

#define	RCC_ROP_B	0x00000058ul								//	not	(S)	or	D

#define	RCC_ROP_C	0x00000060ul								//	S

#define	RCC_ROP_D	0x00000068ul								//	S	or	not	(D)

#define	RCC_ROP_E	0x00000070ul								//	S	or	D

#define	RCC_ROP_F	0x00000078ul								//	1	(WHITE)

Overview

Raster	Operation	(ROP)	option.	Select	one	of	the	following	16
raster	operation	options	whenever	Rectangle	Copy	Processing
Unit	(RCCGPU)	is	used.	The	raster	operation	is	performed	on
the	source	(S)	and	destination	(D)	data.	and	the	result	written	to
the	destination	(D).

RCC_ROP_0	-	0	(BLACK)
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D

RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B	-	not	(S)	or	D
RCC_ROP_C	-	S
RCC_ROP_D	-	S	or	not	(D)
RCC_ROP_E	-	S	or	D
RCC_ROP_F	-	1	(WHITE)

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations
>	RCC_ROP_0	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RCC_COPY	Macro
C
#define	RCC_COPY	0x00000080ul

#define	RCC_SOLID_FILL	0x00000000ul

#define	RCC_TRANSPARENT_COPY	0x00000300ul

Overview

Type	of	Rectangle	Copy	Operations.	Select	one	of	the	following
rectangle	copy	operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and	transparency	are
evaluated	on	each	pixel	and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data	to	the	destination	address
with	the	selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified	rectangle	with	the	current
color	set.
RCC_TRANSPARENT_COPY	-	Operation	is	the	same	as	the
COPY	operation	except	that	the	source	data	is	compared	against
the	current	color	set.	If	the	values	match,	the	source	data	is	not
written	to	the	destination.	The	source	image	is,	therefore,
transparent	at	such	a	location,	allowing

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations
>	RCC_COPY	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Decompressing	DEFLATEd	data
Functions

Functions

	 Name	 Description	

	 Decompress	 Decompresses	the	nbytes	number	of	data
at	SrcAddress	and	places	starting	from
DestAddress.	(Blocking)	

Links

Functions,	Microchip	Graphics	Controller,	Legend

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Decompressing	DEFLATEd
data

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Decompress	Function
C
BYTE	Decompress(

				DWORD	SrcAddress,	

				DWORD	DestAddress,	

				DWORD	nbytes

);

Overview

Decompresses	the	nbytes	number	of	data	at	SrcAddress	and
places	starting	from	DestAddress.	(Blocking)

Input	Parameters

Input	Parameters	 Description	

DWORD	SrcAddress	 Source	address	

DWORD	DestAddress	 Destination	address	

DWORD	nbytes	 Number	of	bytes	to	be	decompressed	

Returns

error	flag

Preconditions

SrcAddress	must	point	to	the	start	of	a	compressed	block.

Side	Effects

Modifies	workarea_1	&	workarea_2	registers.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Decompressing	DEFLATEd
data	>	Decompress	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Palette	Mode
Files	|	Functions	|	Macros	|	Structures	|	Types

Files

Name	 Description	

Palette.h	 This	is	file	Palette.h.	

Functions

	 Name	 Description	

	 ClearPaletteChangeError	 Clears	the	Palette	change	error
status	

	 DisablePalette	 Disables	the	Palette	mode.	

	 EnablePalette	 Enables	the	Palette	mode.	

	 GetPaletteChangeError	 Returns	the	Palette	change	error
status	

	 IsPaletteEnabled	 Returns	if	the	Palette	mode	is
enabled	or	not.	

	 PaletteInit	 Initializes	the	color	look	up	table
(CLUT).	

	 RequestPaletteChange	 Loads	the	palettes	from	the	flash
during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

	 SetPalette	 Programs	a	block	of	palette	entries
starting	from	startEntry	and	until

startEntry	+	length	from	the	flash
immediately.	

	 SetPaletteBpp	 Sets	the	color	look	up	table	(CLUT)
number	of	valid	entries.	

	 SetPaletteFlash	 Loads	the	palettes	from	the	flash
immediately.	

Macros

Name	 Description	

RequestEntirePaletteChange	 Loads	all	the	palette	entries	from	the
flash	during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

SetEntirePalette	 Programs	the	whole	256	entry	palette
with	new	color	values	from	flash.	

Structures

Name	 Description	

PALETTE_FLASH	 Structure	for	the	palette	stored	in	FLASH
memory.	

PALETTE_HEADER	 Structure	for	the	palette	header.	

Types

Name	 Description	

PALETTE_EXTERNAL	 Structure	for	palette	stored	in	EXTERNAL
memory	space.	(example:	External	SPI	or

parallel	Flash,	EDS_EPMP)	

Links

Files,	Functions,	Microchip	Graphics	Controller,	Legend,	Macros,
Structures,	Types

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ClearPaletteChangeError	Function
Palette.h

C
void	ClearPaletteChangeError();

Overview

Clears	the	Palette	change	error	status

Returns

none

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
ClearPaletteChangeError	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

DisablePalette	Function
Palette.h

C
void	DisablePalette();

Overview

Disables	the	Palette	mode.

Returns

none

Preconditions

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
DisablePalette	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

EnablePalette	Function
Palette.h

C
void	EnablePalette();

Overview

Enables	the	Palette	mode.

Returns

none

Preconditions

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
EnablePalette	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GetPaletteChangeError	Function
Palette.h

C
BYTE	GetPaletteChangeError();

Overview

Returns	the	Palette	change	error	status

Returns

Returns	the	palette	change	status.	1	-	If	the	palette	change	error
occured	0	-	If	no	palette	change	error	occured

Preconditions

none

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
GetPaletteChangeError	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IsPaletteEnabled	Function
Palette.h

C
BYTE	IsPaletteEnabled();

Overview

Returns	if	the	Palette	mode	is	enabled	or	not.

Returns

Returns	the	palette	mode	status.	1	-	If	the	palette	mode	is
enabled	0	-	If	the	palette	mode	is	disabled

Preconditions

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
IsPaletteEnabled	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PaletteInit	Function
Palette.h

C
void	PaletteInit();

Overview

Initializes	the	color	look	up	table	(CLUT).

Returns

none

Preconditions

none

Side	Effects

All	rendering	will	use	the	new	palette	entries.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	PaletteInit
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RequestPaletteChange	Function
Palette.h

C
void	RequestPaletteChange(

				void	*	pPalette,	

				WORD	startEntry,	

				WORD	length

);

Overview

Loads	the	palettes	from	the	flash	during	vertical	blanking	period	if
possible,	otherwise	loads	immediately.

Input	Parameters

Input	Parameters	 Description	

void	*	pPalette	 Pointer	to	the	palette	structure	

WORD	startEntry	 Start	entry	to	load	(inclusive)	

WORD	length	 Number	of	entries	

Returns

none

Preconditions

Palette	must	be	initialized	by	PaletteInit().

Side	Effects

There	may	be	a	slight	flicker	when	the	Palette	entries	are	getting
loaded	one	by	one.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
RequestPaletteChange	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetPalette	Function
Palette.h

C
BYTE	SetPalette(

				void	*	pPalette,	

				WORD	startEntry,	

				WORD	length

);

Overview

Programs	a	block	of	palette	entries	starting	from	startEntry	and
until	startEntry	+	length	from	the	flash	immediately.

Input	Parameters

Input	Parameters	 Description	

void	*	pPalette	 Pointer	to	the	palette	structure	

WORD	startEntry	 Start	entry	to	load	(inclusive)	

WORD	length	 Number	of	entries	

Returns

Returns	the	status	of	the	palette	set.	0	-	Set	was	successful	1	-
Set	was	not	successful

Preconditions

Palette	must	be	initialized	by	PaletteInit().

Side	Effects

There	may	be	a	slight	flicker	when	the	Palette	entries	are	getting
loaded	one	by	one.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	SetPalette
Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetPaletteBpp	Function
Palette.h

C
BYTE	SetPaletteBpp(

				BYTE	bpp

);

Overview

Sets	the	color	look	up	table	(CLUT)	number	of	valid	entries.

Input	Parameters

Input	Parameters	 Description	

BYTE	bpp	 Bits	per	pixel	

Returns

Returns	the	status	of	the	change.	0	-	Change	was	successful	1	-
Change	was	not	successful

Preconditions

Palette	must	be	initialized	by	PaletteInit().

Side	Effects

none

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
SetPaletteBpp	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetPaletteFlash	Function
Palette.h

C
BYTE	SetPaletteFlash(

				PALETTE_ENTRY	*	pPaletteEntry,	

				WORD	startEntry,	

				WORD	length

);

Overview

Loads	the	palettes	from	the	flash	immediately.

Input	Parameters

Input	Parameters	 Description	

PALETTE_ENTRY	*
pPaletteEntry	

Pointer	to	the	palette	table	in	ROM	

WORD	startEntry	 Start	entry	to	load	(inclusive)	

WORD	length	 Number	of	entries	

Returns

Returns	the	status	of	the	palette	set.	0	-	Set	was	successful	1	-
Set	was	not	successful

Preconditions

Palette	must	be	initialized	by	PaletteInit().

Side	Effects

There	may	be	a	slight	flicker	when	the	Palette	entries	are	getting
loaded	one	by	one.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
SetPaletteFlash	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PALETTE_FLASH	Structure
Palette.h

C
typedef	struct	{

		SHORT	type;

		PALETTE_HEADER	header;

		PALETTE_ENTRY	*	pPaletteEntry;

}	PALETTE_FLASH;

Overview

Structure	for	the	palette	stored	in	FLASH	memory.

Members

Members	 Description	

SHORT	type;	 Type	must	be	FLASH	

PALETTE_HEADER
header;	

Contains	information	on	the	palette	

PALETTE_ENTRY	*
pPaletteEntry;	

Pointer	to	the	palette.	Number	of	entries	is
determined	by	the	header.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
PALETTE_FLASH	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PALETTE_HEADER	Structure
Palette.h

C
typedef	struct	{

		WORD	id;

		WORD	length;

}	PALETTE_HEADER;

Overview

Structure	for	the	palette	header.

Members

Members	 Description	

WORD	id;	 User	defined	ID	

WORD	length;	 number	of	palette	entries	(number	of	colors
in	the	palette)	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
PALETTE_HEADER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

PALETTE_EXTERNAL	Type
Palette.h

C
typedef	GFX_EXTDATA	PALETTE_EXTERNAL;

Overview

Structure	for	palette	stored	in	EXTERNAL	memory	space.
(example:	External	SPI	or	parallel	Flash,	EDS_EPMP)

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
PALETTE_EXTERNAL	Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

RequestEntirePaletteChange	Macro
Palette.h

C
#define	RequestEntirePaletteChange(pPalette)	RequestPaletteChange(pPalette,	0,	256)

Overview

Loads	all	the	palette	entries	from	the	flash	during	vertical
blanking	period	if	possible,	otherwise	loads	immediately.

Input	Parameters

Input	Parameters	 Description	

pPalette	 Pointer	to	the	palette	structure	

Returns

none

Preconditions

PPalette	must	be	initialized	by	PaletteInit().

Side	Effects

There	may	be	a	slight	flicker	when	the	Palette	entries	are	getting
loaded	one	by	one.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
RequestEntirePaletteChange	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

SetEntirePalette	Macro
Palette.h

C
#define	SetEntirePalette(pPalette)	SetPalette(pPalette,	0,	256)

Overview

Programs	the	whole	256	entry	palette	with	new	color	values	from
flash.

Input	Parameters

Input	Parameters	 Description	

pPalette	 Pointer	to	the	palette	structure	

Returns

Returns	the	status	of	the	palette	set.	0	-	Set	was	successful	1	-
Set	was	not	successful

Preconditions

Palette	must	be	initialized	by	PaletteInit().

Side	Effects

There	may	be	a	slight	flicker	when	the	Palette	entries	are	getting
loaded	one	by	one.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>
SetEntirePalette	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Palette.h
Functions	|	Macros	|	Structures	|	Types

This	is	file	Palette.h.

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	Palette.h

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Set	Up	Display	Interface
Macros

Macros

Name	 Description	

GFX_GCLK_DIVIDER	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS1_BASE_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider

for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS1_MEMORY_SIZE	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS2_BASE_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)

(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS2_MEMORY_SIZE	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_DISPLAY_BUFFER_LENGTH	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_DISPLAY_BUFFER_START_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External

memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

Links

Microchip	Graphics	Controller,	Macros

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_GCLK_DIVIDER	Macro
C
#define	GFX_GCLK_DIVIDER	61

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_GCLK_DIVIDER	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_EPMP_CS1_BASE_ADDRESS	Macro
C
#define	GFX_EPMP_CS1_BASE_ADDRESS	0x00020000ul												

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_EPMP_CS1_BASE_ADDRESS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_EPMP_CS1_MEMORY_SIZE	Macro
C
#define	GFX_EPMP_CS1_MEMORY_SIZE	0x40000ul																

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_EPMP_CS1_MEMORY_SIZE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_EPMP_CS2_BASE_ADDRESS	Macro
C
#define	GFX_EPMP_CS2_BASE_ADDRESS	0x00020000ul												

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_EPMP_CS2_BASE_ADDRESS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_EPMP_CS2_MEMORY_SIZE	Macro
C
#define	GFX_EPMP_CS2_MEMORY_SIZE	0x40000ul																

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_EPMP_CS2_MEMORY_SIZE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_DISPLAY_BUFFER_LENGTH	Macro
C
#define	GFX_DISPLAY_BUFFER_LENGTH	0x00025800ul												

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many
EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_DISPLAY_BUFFER_LENGTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

GFX_DISPLAY_BUFFER_START_ADDRESS
Macro
C
#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00020000ul				

Overview

The	following	are	additional	Hardware	Profile	macros	used	when
using	the	driver	for	the	Microchip	Graphics	Module	that	comes
with	the	PIC	Microcontroller	(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD).

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider	for	the	pixel
clock.
GFX_DISPLAY_BUFFER_START_ADDRESS	-	Set	the
Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH	-	Set	the	Display	Buffer
length	(size)	in	bytes.	This	is	calculated	by	the	display's
width*height*(color	depth/2).

When	using	external	memory	only.	External	memory	may	be
placed	in	chip	select	1	(CS1)	and/or	chip	select	2	(CS2)	regions.
Refer	to	EPMP	Family	Reference	Manual	for	details	on	how	to	use
EPMP	for	graphics	applications.

GFX_EPMP_CS1_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS1.
GFX_EPMP_CS2_BASE_ADDRESS	-	Set	the	location	of	the
external	memory	mapped	to	the	EPMP	CS2.
GFX_EPMP_CS1_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS1.	This	value	sets	how	many
EPMP	address	lines	will	be	used.
GFX_EPMP_CS2_MEMORY_SIZE	-	Set	the	size	of	the
memory	mapped	to	the	EPMP	CS2.	This	value	sets	how	many

EPMP	address	lines	will	be	used.

If	the	display	buffer	is	located	in	external	memory	(i.e	in
PIC24FJ256DA210)	then	the	memory	requirement	for	the
graphics	use	must	fit	into	the	chip	select	region	size.	The	table
below	summarizes	the	requirements.

Buffer	Name	 Enabled	Features	

GFX_EPMP_CS1_MEMORY_SIZE	 none	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS1_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

GFX_EPMP_CS2_MEMORY_SIZE	 none	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING	

GFX_EPMP_CS2_MEMORY_SIZE	 USE_DOUBLE_BUFFERING
+	USE_COMP_IPU	

	

Equation	 Description	

EQ1	 GFX_EPMP_CS1_MEMORY_SIZE	 >=

GFX_DISPLAY_BUFFER_LENGTH	

EQ2	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ3	 GFX_EPMP_CS1_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

EQ4	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
GFX_DISPLAY_BUFFER_LENGTH	

EQ5	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	

EQ6	 GFX_EPMP_CS2_MEMORY_SIZE	 >=
(GFX_DISPLAY_BUFFER_LENGTH*2)	 +
GFX_COMPRESSED_BUFFER_SIZE	 +
GFX_DECOMPRESSED_BUFFER_SIZE	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface	>
GFX_DISPLAY_BUFFER_START_ADDRESS	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

External	or	Internal	Memory	and	Palettes
Applications	can	run	in	in	PIC24FJ256DA210	Device	Family
using	internal	memory	or	external	memory	with	palette	enabled
or	disabled.	The	table	below	summarizes	the	allowed	color	depth
when	combining	palette	with	the	use	of	internal	or	external
memory.

Memory
Location	

Palette
Mode	

Color
Depth
(BPP)	

Notes	

Internal	 enabled	 1,	2,
4,	8	

When	using	internal	memory	and
running	TFT	display,	palette	mode
must	be	enabled.	

External	 enabled	 8,	16	 Palette	mode	can	only	be	used	for
8BPP	color	depth	when	using
external	memory.	

External	 disabled	 16	 When	using	external	memory	and
palette	is	disabled	and	running	TFT
display,	16	BPP	color	depth	must	be
used.	

	

Applications	Using	Palettes		

Settings	in	Graphics	Configuration	(GraphicsConfig.h)

Copy	Code
#define	USE_PALETTE																																					

#define	USE_PALETTE_EXTERNAL																												

																																																								

//	(note:	PIC24FJ256DA210	Device	Family	color	palette	has	a	maximum	of	256	

//	entries,	therefore	the	maximum	color	depth	that	can	be	used	for	applications	

//	using	palette	is	8	BPP)	

#define	COLOR_DEPTH			8																																	

	

Settings	in	Hardware	Profile	(HardwareProfile.h)

Copy	Code
///

//	Microchip	Specific	Development	Tools

///

#define	PIC24FJ256DA210_DEV_BOARD																							

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E				

///

//	PIC24FJ256DA210	Graphics	Module	required	settings

///

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210											

#define	GFX_GCLK_DIVIDER	38																													

																																																								

#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00004B00ul			

																																																								

																																																								

#define	GFX_DISPLAY_BUFFER_LENGTH	0x0004B000ul										

																																																								

																																																								

																																																								

//	If	using	external	memory	add	macros	to	enable	EPMP	CS1	or	CS2	here	and	adjust

//	location	of		GFX_DISPLAY_BUFFER_START_ADDRESS	(see	Application	Using	External	Memory)																																

																				

	

In	application	code	initialize	and	enable	palette	before	initializing
the	Graphics	Library

Copy	Code
//	set	the	palette	color	depth	

SetPaletteBpp(8);

//	initialize	the	palette

SetPalette((void*)&MainPalette,	0,	256);

//	enable	the	use	of	the	palette

EnablePalette();				

				

	

Applications	Using	Internal	Memory		

Settings	in	Graphics	Configuration	(GraphicsConfig.h)

Copy	Code
//	define	the	color	depth	to	use	(1,	2,	4,	or	8BPP)

#define	COLOR_DEPTH			8																																	

	

Settings	in	Graphics	Configuration	(GraphicsConfig.h)	Settings	in
Hardware	Profile	(HardwareProfile.h)

Copy	Code
///

//	Microchip	Specific	Development	Tools

///

#define	PIC24FJ256DA210_DEV_BOARD																							

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E				

///

//	PIC24FJ256DA210	Graphics	Module	required	settings

///

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210											

#define	GFX_GCLK_DIVIDER	38																													

																																																								

#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00004B00ul			

																																																								

#define	GFX_DISPLAY_BUFFER_LENGTH	0x0004B000ul										

																																																								

																																																								

	

Applications	Using	External	Memory		

Settings	in	Graphics	Configuration	(GraphicsConfig.h)

Copy	Code
//	define	the	color	depth	to	use	(8	or	16BPP)

#define	COLOR_DEPTH			16																																				

	

Settings	in	Hardware	Profile	(HardwareProfile.h)

Copy	Code
///

//	Microchip	Specific	Development	Tools

///

#define	PIC24FJ256DA210_DEV_BOARD																							

#define	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E				

///

//	PIC24FJ256DA210	Graphics	Module	required	settings

///

#define	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210											

#define	GFX_GCLK_DIVIDER	61																													

																																																								

#define	USE_16BIT_PMP																																			

#define	GFX_DISPLAY_BUFFER_START_ADDRESS	0x00020000ul			

																																																								

#define	GFX_DISPLAY_BUFFER_LENGTH	0x00025800ul										

																																																								

																																																								

																																																								

																																																								

#define	GFX_EPMP_CS1_BASE_ADDRESS	0x00020000ul										

																																																								

#define	GFX_EPMP_CS1_MEMORY_SIZE	0x80000ul														

																																																								

																																																								

#define	GFX_EPMP_CS2_BASE_ADDRESS	0x000A0000ul										

																																																								

#define	GFX_EPMP_CS2_MEMORY_SIZE	0x80000ul														

																																																								

Links

Microchip	Graphics	Controller

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	External	or	Internal	Memory
and	Palettes

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Image	Decoders
Demo	Project

The	Image	Decoder	Library	supports	the	decoding	of	images	in
JPEG,	BMP,	and	GIF	format	in	PIC24,	dsPIC,	and	PIC32
devices.	This	is	a	supplement	to	the	Graphics	Library	but	could
be	used	without	the	Graphics	Library.	It	not	only	supports	input
data	through	the	Microchip's	MDD	file	system	but	it	can	also	be
configured	to	support	user	specific	inputs	from	ROM,	external
EEPROM,	etc.	The	output	can	be	sent	to	the	Graphics	Display
through	the	driver	provided	with	the	Graphics	Library	or	to	a
callback	function	where	user	can	further	render	the	decoded
image	(even	if	Graphics	Library	is	not	used).	The	individual
decoders	provided	uses	the	stack	for	the	work	memory	and
hence	a	heap	is	not	required.	

	

Design	

The	Image	Decoder	library	includes	the	following	files:

1.	 Configuration	file

ImageDecoderConfig.h

2.	 Header	files

Main	Header

ImageDecoder.h

Individual	decoder	headers

JpegDecoder.h
BmpDecoder.h
GifDecoder.h

3.	 Source	files

Main	Source	file

ImageDecoder.c

Individual	Source	files

JpegDecoder.c
BmpDecoder.c
GifDecoder.c

4.	 Support	files

jidctint.c

	

This	can	be	diagrammatically	explained	as	below:

The	user	application	interacts	with	the	Image	Decoder	Library	as
per	the	diagram	below:

User	can	use	the	Graphics	Library	for	output	or	can	provide
his/her	own	output	pixel	handler	callback	function.	Similarly,	user
can	use	MDD	file	system	or	provide	his/her	own	input	source
which	implements	some	specific	APIs	explained	later.	

	

Configuration	

The	compile	time	configurations	can	be	done	using	the
ImageDecoderConfig.h	file.	This	file	must	be	copied	into	the
application	folder	like	the	other	config	files.	The	options	provided
are	as	explained	below:	

	

1.	Image	format	support	

The	image	formats	which	are	not	required	can	be	compiled	out
by	commenting	out	the	respective	defines.	The	below	section
says	that	GIF	support	to	be	excluded.

Copy	Code

/*	Comment	out	the	image	formats	which	are	not	required	*/

#define	IMG_SUPPORT_BMP

#define	IMG_SUPPORT_JPEG

//#define	IMG_SUPPORT_GIF

2.	Optimize	for	Graphics	Library	

If	user	application	requires	to	output	the	image	directly	to	the
display	without	any	double	buffering,	then	the	code	can	be
optimized	by	defining	as	below:

Copy	Code
/*	Comment	out	if	output	has	to	be	given	through	a	callback	function	*/

/*	If	defined,	the	code	is	optimized	to	use	only	the	graphics	driver,	only	16-bit-565-color-format	is	supported	*/

#define	IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT

If	either	double	buffering	has	to	be	done	or	if	user	specific
rendering	has	to	be	done,	comment	out	the	above	mentioned
line	and	provide	a	callback	function	to	render	the	pixel	values.
The	callback	function	will	be	explained	in	the	API	section.	If
commented	out,	then	the	width	and	height	of	the	display	screen
has	to	be	provided	using	the	following	defines

Copy	Code
/*	If	the	above	define	is	commented	out	(Graphics	driver	is	not	included	by	default),	then	the	below	defines	has	to	be	set	by	the	user	*/

#ifndef	IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT

								#define	DISP_HOR_RESOLUTION							320

								#define	DISP_VER_RESOLUTION							240

#endif

3.	Optimize	for	MDD	file	system	

If	user	application	uses	only	the	MDD	file	system	provided	by
Microchip	Technology	Inc.,	the	code	can	be	optimized	by	defining
as	below:

Copy	Code

/*	If	defined,	the	code	is	optimized	to	use	only	the	MDD	file	system	*/

#define	IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT

If	MDD	file	system	is	not	used	or	if	additional	input	formats	have
to	be	supported,	the	above	define	has	to	be	commented	out	and
a	structure	pointing	to	the	required	APIs
(IMG_FILE_SYSTEM_API	defined	in	ImageDecoder.h)	must	be
provided	by	the	user.	

4.	Loop	callback	support	

Since	decoder	takes	up	significant	amount	of	time	decoding	an
image	and	user	may	want	to	update	some	information	on	the
display	or	to	send/receive	data	through	communication	channel,
etc…	it	is	possible	to	release	processing	power	in	the	middle	of
decoding	process	by	calling	a	callback	function	provided	by	the
user.	The	user	can	do	all	the	housekeeping	activities	inside	the
function.	This	option	can	be	enabled	by	defining	as	below:

Copy	Code
/*	If	defined,	the	a	loop	callback	function	is	called	in	every

			decoding	loop	so	that	application	can	do	maintenance	activities	such	as

			getting	data,	updating	display,	etc...	*/

#define	IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK

The	JPEG	decoder	calls	the	callback	function	after	every	8x8
pixel	block	decode	while	the	BMP	and	GIF	decoders	calls	after
every	row	decode.	

If	this	support	is	not	required,	then	this	define	can	be	commented
out.	

Footprint	

The	following	are	typical	values	for	PIC24	with	default	compiler
configuration.	Actual	values	may	vary	with	various	factors	such
as	compiler	optimization	levels	and	device	used	(PIC24/PIC32).

	 RAM
(stack)	

ROM
(no	compiler
optimizations)	

	

Image
Decoder
Core
Code	

30	Bytes	 1	KBytes	 	

Image
Types	

	 	 Decode	Time	(in
seconds)

Using	16	MIPS	&
Compiler	Optimization

Level	3	

BMP	 1	KBytes	 10	KBytes	 21	

JPEG	 3	KBytes	 13	KBytes	 21	

GIF	 11
KBytes(13
KBytes2)	

6	KBytes	 21	

(1)	Approximate	value	for	average	quality	image	file	with	a	pixel
resolution	of	320x240.	Additional	variance	in	time	can	be
observed	due	to	image	quality/image	size	and	file	access	time.	

(2)	GIF	code	"Crush"	optimization
(GIF_CRUSH_PREV_SYMBOL_PTR_TABLE)	is	turned	off.	This
compile	switch	can	be	found	in	GifDecoder.h	file.	Enabling	this
will	have	an	additional	effect	on	the	GIF	decoding	time.

Demo	Project

Name	 Description	

Image	Decoder	Demo	 This	demo	demonstrates	the	decoding	of
images	with	JPEG	and	BMP	file	formats.	

Links

Demo	Project

Image	Decoders

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Image	Decoders	API
Functions	|	Macros	|	Structures	|	Topics

The	Image	Decoder	Library	distributed	with	the	Graphics	Library
supports	the	decoding	of	images	in	JPEG,	BMP,	and	GIF	format
in	PIC24,	dsPIC,	and	PIC32	devices.	This	is	a	supplement	to	the
Graphics	Library	but	could	be	used	without	the	Graphics	Library.
This	section	describes	the	APIs	for	Image	Decoder	Library.

Functions

	 Name	 Description	

	 ImageDecode	 This	function	decodes	and
displays	the	image	on	the
screen	

	 ImageDecoderInit	 This	function	initializes	the
global	variables	to	0	and	then
initializes	the	driver.	This	must
be	called	once	before	any	other
function	of	the	library	is	called	

	 ImageLoopCallbackRegister	 This	function	registers	the	loop
callback	function	so	that	the
decoder	calls	this	function	in
every	decoding	loop.	This	can
be	used	by	the	application
program	to	do	maintainance
activities	such	as	fetching	data,
updating	the	display,	etc...	

	 ImageDecodeTask	 This	function	completes	one
small	part	of	the	image	decode
function	

Macros

Name	 Description	

ImageFullScreenDecode	 This	function	decodes	and	displays	the
image	on	the	screen	in	fullscreen	mode
with	center	aligned	and	downscaled	if
required	

ImageAbort	 This	function	sets	the	Image	Decoder's
Abort	flag	so	that	decoding	aborts	in	the
next	decoding	loop.	

Structures

	 Name	 Description	

	 _BMPDECODER	 DATA	STRUCTURES	

	 _GIFDECODER	 DATA	STRUCTURES	

	 _JPEGDECODER	 DATA	STRUCTURES	

Topics

Name	 Description	

Image	Decoder
Configuration	

The	Image	Decoder	Library	can	be
customized	by	adding	or	specifying	the
compile	time	options	located	in	the
application	file	named
ImageDecoderConfig.h.	

Links

Functions,	Legend,	Macros,	Structures,	Topics

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Image	Decoder	Configuration
Macros

Macros

Name	 Description	

IMG_SUPPORT_BMP	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for
bitmap	image	format
decoding.	

IMG_SUPPORT_GIF	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for	gif
image	format	decoding.	

IMG_SUPPORT_JPEG	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for
jpeg	image	format
decoding.	

IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK	 The	decoder	may	takes
up	significant	amount	of
time	decoding	an	image
and	user	may	want	to
update	some
information	on	the
display	or	to
send/receive	data
through	some
communication
channels.	It	is	possible
to	release	processing

power	in	the	middle	of
decoding	process	by
calling	a	callback
function	provided	by	the
user.	The	user	should
do	all	the	housekeeping
activities	inside	the
function.	This	option	can
be	enabled	by	adding
this	macro	in
ImageDecoderConfig.h.	

IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT	 Add	this	macro	in
ImageDecoderConfig.h
to	optimize	code	for
graphics	driver	that
supports	16-bit	5-6-5
color	format	and
rendering	is	done
directly	to	the	display
buffer.	If	either	double
buffering	has	to	be	done
or	if	user	specific
rendering	has	to	be
done,	comment	out	the
above	mentioned	line
and	provide	a	callback
function	to	render	the
pixel	values.	The
callback	function	will	be
explained	in	the	API
section.	If	commented
out,	then	the	width	and
height	of	the	display
screen	has	to	be
provided	using	the
following	defines	

IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	 Add	this	macro	in
ImageDecoderConfig.h
to	optimize	code	to	use
Memory	Disk	Drive	File
System(MDDFS)	of
Microchip	MDD	File
System	Interface	Library
.	

Links

Image	Decoders	API,	Macros

Image	Decoders	API	>	Image	Decoder	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_SUPPORT_BMP	Macro
C
#define	IMG_SUPPORT_BMP	

Overview

Add	this	macro	in	ImageDecoderConfig.h	to	enable	support	for
bitmap	image	format	decoding.

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_SUPPORT_BMP	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_SUPPORT_GIF	Macro
C
#define	IMG_SUPPORT_GIF	

Overview

Add	this	macro	in	ImageDecoderConfig.h	to	enable	support	for
gif	image	format	decoding.

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_SUPPORT_GIF	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_SUPPORT_JPEG	Macro
C
#define	IMG_SUPPORT_JPEG	

Overview

Add	this	macro	in	ImageDecoderConfig.h	to	enable	support	for
jpeg	image	format	decoding.

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_SUPPORT_JPEG	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK
Macro
C
#define	IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK	

Overview

The	decoder	may	takes	up	significant	amount	of	time	decoding
an	image	and	user	may	want	to	update	some	information	on	the
display	or	to	send/receive	data	through	some	communication
channels.	It	is	possible	to	release	processing	power	in	the	middle
of	decoding	process	by	calling	a	callback	function	provided	by
the	user.	The	user	should	do	all	the	housekeeping	activities
inside	the	function.	This	option	can	be	enabled	by	adding	this
macro	in	ImageDecoderConfig.h.

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT
Macro
C
#define	IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT	

Overview

Add	this	macro	in	ImageDecoderConfig.h	to	optimize	code	for
graphics	driver	that	supports	16-bit	5-6-5	color	format	and
rendering	is	done	directly	to	the	display	buffer.	If	either	double
buffering	has	to	be	done	or	if	user	specific	rendering	has	to	be
done,	comment	out	the	above	mentioned	line	and	provide	a
callback	function	to	render	the	pixel	values.	The	callback	function
will	be	explained	in	the	API	section.	If	commented	out,	then	the
width	and	height	of	the	display	screen	has	to	be	provided	using
the	following	defines

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT
Macro
C
#define	IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	

Overview

Add	this	macro	in	ImageDecoderConfig.h	to	optimize	code	to	use
Memory	Disk	Drive	File	System(MDDFS)	of	Microchip	MDD	File
System	Interface	Library	.

Image	Decoders	API	>	Image	Decoder	Configuration	>
IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageDecode	Function
C
BYTE	ImageDecode(

				IMG_FILE	*	pImageFile,	

				IMG_FILE_FORMAT	eImgFormat,	

				WORD	wStartx,	

				WORD	wStarty,	

				WORD	wWidth,	

				WORD	wHeight,	

				WORD	wFlags,	

				IMG_FILE_SYSTEM_API	*	pFileAPIs,	

				IMG_PIXEL_OUTPUT	pPixelOutput

);

Overview

This	function	decodes	and	displays	the	image	on	the	screen

Returns

Error	code	->	0	means	no	error

Side	Effects

None

Example

void	main(void)
{
				IMG_FILE	pImageFile;
				IMG_vInitialize();
				pImageFile	=	IMG_FOPEN("Image.jpg",	"r");
				if(pImageFile	==	NULL)
				{

														<-	Error	handling	->
				}
				IMG_bDecode(pImageFile,	IMG_JPEG,	0,	0,	320,	240,	0,	NULL,	NULL);
				IMG_FCLOSE(pImageFile);
				while(1);
}

Image	Decoders	API	>	ImageDecode	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageDecoderInit	Function
C
void	ImageDecoderInit();

Overview

This	function	initializes	the	global	variables	to	0	and	then
initializes	the	driver.	This	must	be	called	once	before	any	other
function	of	the	library	is	called

Returns

None

Side	Effects

The	graphics	driver	will	be	reset

Example

void	main(void)
{
				ImageInit();
				...
}

Image	Decoders	API	>	ImageDecoderInit	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageLoopCallbackRegister	Function
C
void	ImageLoopCallbackRegister(

				IMG_LOOP_CALLBACK	pFn

);

Overview

This	function	registers	the	loop	callback	function	so	that	the
decoder	calls	this	function	in	every	decoding	loop.	This	can	be
used	by	the	application	program	to	do	maintainance	activities
such	as	fetching	data,	updating	the	display,	etc...

Returns

None

Side	Effects

The	graphics	driver	will	be	reset

Example

void	Mainantance(void)
{
				...
}

void	main(void)
{
				ImageInit();
				ImageLoopCallbackRegister(Mainantance);							
				...
}

Image	Decoders	API	>	ImageLoopCallbackRegister	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageDecodeTask	Function
C
BYTE	ImageDecodeTask();

Overview

This	function	completes	one	small	part	of	the	image	decode
function

Returns

Status	code	-	'1'	means	decoding	is	completed

'0'	means	decoding	is	not	yet	completed,	call	this	function	again

Side	Effects

None

Example

				IMG_bFullScreenDecode(pImageFile,	IMG_JPEG,	NULL,	NULL);
				while(!ImageDecodeTask());

Image	Decoders	API	>	ImageDecodeTask	Function

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageFullScreenDecode	Macro
C
#define	ImageFullScreenDecode(pImageFile,	eImgFormat,	pFileAPIs,	pPixelOutput)	\

								ImageDecode(pImageFile,	eImgFormat,	0,	0,	IMG_SCREEN_WIDTH,	IMG_SCREEN_HEIGHT,	(IMG_ALIGN_CENTER	|	IMG_DOWN_SCALE),	pFileAPIs,	pPixelOutput)

Overview

This	function	decodes	and	displays	the	image	on	the	screen	in
fullscreen	mode	with	center	aligned	and	downscaled	if	required

Returns

Error	code	->	0	means	no	error

Side	Effects

None

Example

void	main(void)
{
				IMG_FILE	pImageFile;
				IMG_vInitialize();
				pImageFile	=	IMG_FOPEN("Image.jpg",	"r");
				if(pImageFile	==	NULL)
				{
														<-	Error	handling	->
				}
				IMG_bFullScreenDecode(pImageFile,	IMG_JPEG,	NULL,	NULL);
				IMG_FCLOSE(pImageFile);
				while(1);
}

Image	Decoders	API	>	ImageFullScreenDecode	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

ImageAbort	Macro
C
#define	ImageAbort	IMG_blAbortImageDecoding	=	1;

Overview

This	function	sets	the	Image	Decoder's	Abort	flag	so	that
decoding	aborts	in	the	next	decoding	loop.

Returns

None

Side	Effects

None

Example

void	callback(void);
void	main(void)
{
				IMG_FILE	pImageFile;
				IMG_vInitialize();
				ImageLoopCallbackRegister(callback);
				pImageFile	=	IMG_FOPEN("Image.jpg",	"r");
				if(pImageFile	==	NULL)
				{
														<-	Error	handling	->
				}
				IMG_bFullScreenDecode(pImageFile,	IMG_JPEG,	NULL,	NULL);
				IMG_FCLOSE(pImageFile);
				while(1);
}

void	callback(void)
{
				if(<-	check	for	abort	condition	->)
				{
								ImageAbort();
				}
}

Image	Decoders	API	>	ImageAbort	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_BMPDECODER	Structure
C
struct	_BMPDECODER	{

		IMG_FILE	*	pImageFile;

		LONG	lWidth;

		LONG	lHeight;

		LONG	lImageOffset;

		WORD	wPaletteEntries;

		BYTE	bBitsPerPixel;

		BYTE	bHeaderType;

		BYTE	blBmMarkerFlag	:	1;

		BYTE	blCompressionType	:	3;

		BYTE	bNumOfPlanes	:	3;

		BYTE	b16bit565flag	:	1;

		BYTE	aPalette[256][3];

};

Description

DATA	STRUCTURES

Members

Members	 Description	

IMG_FILE	*
pImageFile;	

Image	file	pointer	

BYTE	aPalette[256]
[3];	

Each	palette	entry	has	RGB	

Image	Decoders	API	>	_BMPDECODER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_GIFDECODER	Structure
C
struct	_GIFDECODER	{

		IMG_FILE	*	pImageFile;

		WORD	wImageWidth;

		WORD	wImageHeight;

		WORD	wImageX;

		WORD	wImageY;

		WORD	wScreenWidth;

		WORD	wScreenHeight;

		WORD	wGlobalPaletteEntries;

		WORD	wLocalPaletteEntries;

		BYTE	bBgColorIndex;

		BYTE	bPixelAspectRatio;

		BYTE	blGifMarkerFlag	:	1;

		BYTE	blGloabalColorTableFlag	:	1;

		BYTE	blLocalColorTableFlag	:	1;

		BYTE	blInterlacedFlag	:	1;

		BYTE	blFirstcodeFlag	:	1;

		BYTE	bInterlacePass	:	3;

		BYTE	aPalette[256][3];

		WORD	awPalette[256];

		BYTE	abSymbol[4096];

		WORD	awPrevSymbolPtr[(4096	*	3)/4];

		WORD	wInitialSymbols;

		WORD	wMaxSymbol;

		BYTE	bInitialSymbolBits;

		BYTE	bMaxSymbolBits;

		LONG	lGlobalColorTablePos;

		BYTE	bWorkBits;

		BYTE	bRemainingDataInBlock;

		BYTE	bRemainingBits;

		WORD	wCurrentX;

		WORD	wCurrentY;

};

Description

DATA	STRUCTURES

Members

Members	 Description	

IMG_FILE	*
pImageFile;	

Image	file	pointer	

BYTE	aPalette[256]
[3];	

Each	palette	entry	has	RGB	

WORD
awPalette[256];	

Each	palette	entry	has	RGB	

BYTE
abSymbol[4096];	

For	decoding	

BYTE	bWorkBits;	 Work	memory	

Image	Decoders	API	>	_GIFDECODER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

_JPEGDECODER	Structure
C
struct	_JPEGDECODER	{

		IMG_FILE	*	pImageFile;

		BYTE	blJFIF;

		BYTE	bMajorRev;

		BYTE	bMinorRev;

		BYTE	bDataBits;

		WORD	wWidth;

		WORD	wHeight;

		BYTE	bChannels;

		BYTE	abChannelType[MAX_CHANNELS];

		BYTE	abChannelHSampFactor[MAX_CHANNELS];

		BYTE	abChannelVSampFactor[MAX_CHANNELS];

		BYTE	abChannelQuantTableMap[MAX_CHANNELS];

		BYTE	blQuantUses16bits;

		WORD	awQuantTable[MAX_CHANNELS][64];

		WORD	wRestartInterval;

		BYTE	bHuffTables;

		BYTE	abHuffAcSymLen[MAX_HUFF_TABLES][16];

		BYTE	abHuffAcSymbol[MAX_HUFF_TABLES][256];

		BYTE	abHuffDcSymLen[MAX_HUFF_TABLES][16];

		BYTE	abHuffDcSymbol[MAX_HUFF_TABLES][16];

		WORD	awHuffAcSymStart[MAX_HUFF_TABLES][16];

		WORD	awHuffDcSymStart[MAX_HUFF_TABLES][16];

		BYTE	abChannelHuffAcTableMap[MAX_CHANNELS];

		BYTE	abChannelHuffDcTableMap[MAX_CHANNELS];

		BYTE	bError;

		WORD	wWorkBits;

		BYTE	bBitsAvailable;

		BYTE	bBlocksInOnePass;

		SHORT	asOneBlock[MAX_BLOCKS][64];

		WORD	wBlockNumber;

		BYTE	abChannelMap[MAX_BLOCKS];

		BYTE	bSubSampleType;

		SHORT	asPrevDcValue[MAX_CHANNELS];

		BYTE	*	pbCurrentHuffSymLenTable;

		BYTE	*	pbCurrentHuffSymbolTable;

		WORD	*	pwCurrentHuffSymStartTable;

		WORD	*	pwCurrentQuantTable;

		BYTE	abDataBuffer[MAX_DATA_BUF_LEN];

		WORD	wBufferLen;

		WORD	wBufferIndex;

		BYTE	bFirstBit;

		WORD	wPrevX;

		WORD	wPrevY;

};

Description

DATA	STRUCTURES

Members

Members	 Description	

IMG_FILE	*	pImageFile;	 Image	file	pointer	

BYTE	blJFIF;	 JFIF	marker	found
flag	

BYTE	bMajorRev;	 Should	be	1	

BYTE	bMinorRev;	 Should	be	0-2	but
is	not	a	show
stopper	-------	The
x/y	densities	and
thumbnail	data	are
ignored		

BYTE	bDataBits;	 Data	precision,	can

be	8(,	12	or	16)	

WORD	wWidth;	 Width	in	pixels	

WORD	wHeight;	 Height	in	pixels	

BYTE	bChannels;	 Number	of
channels	e.g.
YCbCr	=	3	

BYTE	blQuantUses16bits;	 If	flag	is	set,	it	is	an
error	as	16	bit	is
not	supported	

WORD	awQuantTable[MAX_CHANNELS][64];	 Supports	only	8	&
16	bit	resolutions	

WORD	wRestartInterval;	 The	restart	interval
in	blocks	

BYTE	bHuffTables;	 From	DHT	

BYTE	abHuffAcSymLen[MAX_HUFF_TABLES]
[16];	

Supports	only	8	bit
resolution	

BYTE	abHuffAcSymbol[MAX_HUFF_TABLES]
[256];	

Maximum	possible
symbols	are	256	

BYTE	abHuffDcSymLen[MAX_HUFF_TABLES]
[16];	

Supports	only	8	bit
resolution	

BYTE	abHuffDcSymbol[MAX_HUFF_TABLES]
[16];	

Maximum	possible
symbols	are	16	for
DC	:-)	

WORD
awHuffAcSymStart[MAX_HUFF_TABLES][16];	

Starting	symbol	for
each	length	

WORD
awHuffDcSymStart[MAX_HUFF_TABLES][16];	

Starting	symbol	for
each	length	

BYTE
abChannelHuffAcTableMap[MAX_CHANNELS];	

From	SOS	

WORD	wWorkBits;	 Work	memory	

SHORT	asOneBlock[MAX_BLOCKS][64];	 Temporary	storage
for	a	8x8	block	

Image	Decoders	API	>	_JPEGDECODER	Structure

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Next

Miscellaneous	Topics
Topics

This	section	contains	common	procedures	to	start	using	the
library	or	to	modify	the	library.

Topics

Name	 Description	

Starting	a	New	Project	 This	outlines	the	procedure	to	create	a	new
project	that	uses	the	Microchip	Graphics
Library	from	scratch.	

Changing	the	default
Font	

The	library	comes	with	the	default	font
(Gentium	18).	This	font	can	be	changed	in
two	ways.	

Advanced	Font
Features	

Fonts	used	in	the	library	can	be	configured
to	use	anti-aliasing	and	extended	glyph
support.	

Using	Primitive
Rendering	Functions	in
Blocking	and	Non-
Blocking	Modes	

Basic	rendering	functions	such	as	Line(),
Rectangle(),	Circle()	etc	are	referred	to	as
functions	in	the	Graphics	Primitive	Layer.
These	functions	can	also	be	implemented	in
the	device	driver	layer	if	the	display	device
supports	hardware	acceleration	of	the
function.	Applications	that	directly	calls
these	functions	can	take	advantage	of	the
hardware	accelerated	primitives.	How	these
functions	are	used	will	depend	on	the
"Configuration	Setting".	

Using	Microchip
Graphics	Module	Color

Utilizing	the	Color	Look	Up	Table	(CLUT)	of
the	Microchip	Graphics	Module	saves

Look	Up	Table	in
Applications	

memory	for	both	storage	and	display	buffer.
This	short	instructional	manual	outlines	the
procedure	to	create	source	code	files	to	use
the	CLUT	of	the	Microchip	Graphics	Module
and	enable	the	Microchip	Graphics	Library
to	use	the	hardware	feature.	

Converting	Images	to
Use	a	Common	Palette
in	GIMP	

This	manual	describes	how	to	convert	an
image	or	a	set	of	images	to	use	a	common
palette	in	GIMP.	

How	to	Define	Colors
in	your	Applications	

In	most	cases,	the	application	will	define	its
own	set	of	colors	and	not	use	the	default
colors	that	comes	with	the	Graphics	Library.
This	section	shows	an	example	on	how	to
do	it.	

Connecting	RGB	data
bus	

Display	glasses	will	require	24	bit	or	18	bit
RGB	color	data.	How	do	you	do	the
connection	when	your	display	controller	only
puts	out	16	bit	RGB	data	bus?	

Adding	New	Device
Driver	

This	is	a	summary	of	the	requirements	to
add	a	new	device	driver.	

Links

Topics

Miscellaneous	Topics

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Starting	a	New	Project
The	following	is	a	step	by	step	instruction	to	create	a	New
Project	from	scratch	with	the	Microchip	Graphics	Library	

Step	1:	Install	the	Microchip	Application	Libraries	to	get	the
Microchip	Graphics	Library.	The	Microchip	Application	Library
installer	can	be	downloaded	from	 www.microchip.com/MLA.
Once	installed	the	Microchip	Graphics	Library	files	will	be	located
in	the	directory	structure	shown	below.		

Copy	Code
	<MyProjects>

				|

				Board	Support	Package

				Graphics

				GraphicsProjects1

				Microchip

								|

								Help

								Graphics

												|

												Drivers

								Include

												|

												Graphics

MyProjects	can	be	any	name	and	is	the	directory	name	that	you
chose	when	you	installed	the	Microchip	Application	Libraries.
Graphics	directory	will	contain	demos	distributed	with	the	Graphics
Library.
Board	Support	Package	directory	will	contain	drivers	for
components	on	Microchip	Development	Boards	that	are	used	by
the	demos.
GraphicsProject1	directory	can	be	any	directory	name	that	you
specify	later	for	your	own	project.

Microchip	directory	will	contain	all	the	library	files.
Under	Microchip	directory,	the	Help	directory	will	contain	the
"Graphics.chm"	file.
Under	Microchip	directory,	the	Graphics	directory	under	the
Microchip	directory	will	contain	all	the	source	(C)	files	for	the
Graphics	Library	except	the	actual	display	driver	files.	Under	the
Drivers	directory,	all	the	supported	driver	files	released	with	the
library	is	located.
Under	Microchip	directory,	the	Include	directory	will	have	another
Graphics	directory	that	will	contain	all	the	header	files	for	the
Graphics	Library.	All	other	header	files	will	be	located	under
Microchip/Include	directory.

	

Step	2:	Creating	the	MPLAB	project

1.	 Open	MPLAB	Project.
2.	 Go	to	Project	tab	and	select	New

	

	

3.	 New	Project	dialog	box	will	appear.	In	this	dialog	box	enter	your
Project	Name	and	Project	Directory.	Click	OK.	Project	will	be
created	or	prompted	to	create	the	directory	if	your	project	directory
does	not	exist	(refer	to	figure	below).

4.	 The	MPLAB	Project	view	will	appear	as	soon	as	the	project	is
created.	If	it	does	not	appear	go	to	View	tab	and	click	Project.

5.	 Right	click	on	the	Source	Files	and	click	Add	Files.	Browse	to
MyApplication->Microchip->Graphics	directory.	Select	appropriate
c	files	and	click	Open.	The	C	files	that	you	select	will	depend	on
the	application	that	you	will	be	creating.	The	following	tables	shows
the	minimum	files	required	for	each	layer	of	the	Graphics	Library.

	

	

Display	Driver
Layer	

	

DisplayDriver.h	 Header	that	contains	required	APIs	for	display
driver	to	be	compatible	with	Microchip	Graphics
Library.	

gfxepmp.c
gfxepmp.h	

Required	if	using	display	drivers	for	external
display	controller	that	will	use	the	Enhanced
Parallel	Master	Port	(EPMP)	for	display	controller
communications.	

gfxpmp.h	 Required	if	using	display	drivers	for	external
display	controller	that	will	use	the	Parallel	Master
Port	(PMP)	for	display	controller	communications.	

gfxtcon.h	 Required	if	using	Microchip	supplied	display
drivers	that	requires	timing	controller	initialization.
If	creating	your	own	display	controller	driver,	you
may	integrate	the	timing	controller	initialization
into	your	display	driver	file.	

Display	Driver	c
and	h	files	

These	are	the	display	driver	files	needed.	These
can	be	your	own	created	display	driver	or
Microchip	supplied	display	drivers	distributed	with
the	Graphics	Library.	

	

Primitive	Layer	 	

Primitive.c
Primitive.h	

These	two	files	implements	the	Primitive
Layer	of	the	Microchip	Graphics	Library.	

Transitions.c
Transitions.h
Transitions_weak.c	

Implements	the	extended	primitive	functions
for	screen	transitions.	The	Screen	Transition
features	are	only	supported	by	the	Epson
driver	(S1D13517.c	and	S1D13517.h)	and	the
PIC24FJ256DA210	driver	(mchpGfxDrv.c	and
mchpGfxDrv.h)	

	

Graphics	Object
Layer	

	

GOL.c
GOL.h	

These	two	files	along	with	the	individual
widget	files	implements	the	Graphics
Object	Layer	of	the	Microchip	Graphics
Library.	

GOLFontDefault.c	 This	is	the	default	font	used	for	the
Graphics	Object	Layer.	

GOLSchemeDefault.c	 This	is	the	default	style	scheme	used	for
the	Graphics	Object	Layer.	

Widget	files	(example:
Button.c	Button.h)	

Required	files	when	using	the	widgets	in
the	Graphics	Object	Layer.	

	

Configuration	 	

Graphics.h	 Required	file	that	loads	the	different
components	of	the	Graphics	Library.	

GraphicsConfig.h	 Required	file	to	determine	the	features	and
modes	that	are	enabled	in	the	Graphics
Library.	

HardwareProfile.h	 Required	file	when	running	demos	distributed
with	the	Microchip	Graphics	Library	or	using
drivers	distributed	in	"Board	Support
Package".	

	

6.	 Right	click	on	the	Header	Files	and	click	Add	Files.	Browse	to
MyApplication->Microchip->Include	directory.	Select
GenericTypeDefs.h	file	and	click	Open.

7.	 Right	click	on	the	Header	Files	and	click	Add	Files.	Browse	to
MyApplication->Microchip->Include->Graphics	directory.	Select	all
the	h	files	and	click	Open.	The	header	files	to	include	will	depend
on	the	application	as	described	in	5.

	

Step	3:	Setting	the	project	directories.

1.	 In	MPLAB	Project,	go	to	Project	tab	and	point	to	Build	Options.

	

	

2.	 A	menu	will	appear	showing	all	your	files	and	the	Project	option.
Select	the	Project	option.	The	Build	Options	window	will	open.

3.	 Select	the	Directories	tab.

4.	 In	the	Directories	tab,	Directories	and	Search	Paths	group	box
and	Show	directories	for:	select	Include	Search	Path.	Click
New.

5.	 Click	the	button	with	(…)	and	browse	and	select	your	project
directory.	Click	OK.	This	will	add	your	project	directory.

6.	 Click	New	again	for	each	of	the	following	paths:

1.	 .
2.	 ..\..\Microchip\Include
3.	 ..\..\Board	Support	Package	(do	this	only	if	you	are	using	the

drivers	supplied	in	the	"Board	Support	Package"	director_)

7.	 Directories	and	Search	Paths	group	box	and	Show	directories
for:	select	Library	Search	Path.	Click	New.

8.	 Enter	the	path	to	the	MPLAB	C30	lib.	For	example:	C:\Program
Files\Microchip\MPLAB	C30\lib.	Click	OK.

9.	 Change	from	the	Directories	tab	to	MPLAB	LINK	30	tab.	In	the
Generate	Command	Line	group	box	enter	3000	in	the	Heap	Size
setting.

10.	Click	Apply	and	then	OK.	

	

Step	4:	Create	your	application	files.

1.	 In	MPLAB	Project,	select	File	tab	and	click	New.	The	file	editor	will
open.

2.	 Create	your	GraphicsConfig.h	file.	For	now	add	the	following
lines:

	

	

Copy	Code
#define	USE_NONBLOCKING_CONFIG	//	Comment	this	line	to	use	blocking	configuration

#define	USE_BUTTON													//	Enable	Button	Object.

#define	USE_SLIDER													//	Enable	Slider	or	Scroll	Bar	Object.

#define	USE_FONT_FLASH									//	Support	for	fonts	located	in	internal	flash

#define	USE_BITMAP_FLASH							//	Support	for	bitmaps	located	in	internal	flash

The	file	name	is	important.	If	the	file	name	is	changed,	library	will
not	compile	properly.

3.	 Save	the	file	into	your	GraphicsProject1	directory.
4.	 Similarly,	create	your	application	header	file	code	by	following

steps	1	and	2.	For	simplicity	just	use	this	code	for	now:

Copy	Code
#define	SYSCLK	32000000								//	8MHz	x	4PLL	Oscillator	frequency

//	includes

#include	<p24Fxxxx.h>

#include	"GenericTypeDefs.h"

#include	"Graphics.h"

5.	 Save	the	file	in	your	GraphicsProject1	directory.
6.	 After	saving	the	two	header	files,	add	these	files	to	your	project.
7.	 Create	your	application	code.	For	simplicity	just	use	this	code	for

now:

Copy	Code
#include	"GraphicsProject.h"								//	header	file	you	saved	earlier

//	Configuration	bits

_CONFIG2(FNOSC_PRIPLL	&	POSCMOD_XT)	//	Primary	XT	OSC	with	PLL

_CONFIG1(JTAGEN_OFF	&	FWDTEN_OFF)			//	JTAG	off,	watchdog	timer	off

int	main(void){

				GOL_MSG	msg;	//	GOL	message	structure	to	interact	with	GOL

Copy	Code
				GOLInit();	//	initialize	graphics	library	&

Copy	Code

Copy	Code
				BtnCreate(1,																			//	object’s	ID

															20,	160,	150,	210,			//	object’s	dimension

															0,																			//	radius	of	the	rounded	edge

															BTN_DRAW,												//	draw	the	object	after	creation

															NULL,																//	no	bitmap	used

															"LEFT",														//	use	this	text

															NULL);															//	use	alternative	style	scheme

Copy	Code

Copy	Code
				BtnCreate(2,

															170,	160,	300,	210,

															0,

															BTN_DRAW,

															NULL,

															"RIGHT",

															NULL);

Copy	Code

Copy	Code
				SldCreate(3,																				//	object’s	ID

														20,	105,	300,	150,				//	object’s	dimension

														SLD_DRAW,													//	draw	the	object	after	creation

														100,																		//	range

														5,																				//	page

														50,																			//	initial	position

														NULL);																//	use	default	style	scheme

Copy	Code
				while(1){

								if	(GOLDraw())	{												//	Draw	GOL	object

								}

				}

}

WORD	GOLMsgCallback(WORD	objMsg,	OBJ_HEADER*	pObj,	GOL_MSG*	pMsg){

				return	1;

}

WORD	GOLDrawCallback(){

				return	1;

}

8.	 Save	the	file	in	your	GraphicsProject1	directory.
9.	 After	saving	the	application	file,	add	the	file	to	your	project.

	

Step	5	Now	build	your	project.	To	build	go	to	MPLAB	Project	tab
and	click	Build	All.	Notice	there	will	be	some	warnings	that	may
come	out	in	the	build	log.	This	is	due	to	the	fact	that	we	have	not
used	most	of	the	Objects.	We	only	used	the	Slider	and	Button.	

	

Step	6:	Downloading	your	application	-	To	download	your
generated	code	to	the	Explorer	16	board	follow	the	steps	below.

1.	 In	the	MPLAB	Programmer	tab	click	Select	Programmer.
2.	 Select	MPLAB	ICD2	or	REAL	ICE	depending	on	your	setup.
3.	 After	connection	and	testing	is	done	go	to	Programmer	tab	and

click	Program.

Note	that	you	can	also	do	the	steps	in	the	Downloading	the
Demos	sub-section	in	the	Getting	Started	section	to	download
your	application	to	the	Explorer	16	board	using	your	generated
hex	file.	

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Starting	a	New	Project

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Changing	the	default	Font
This	instructions	assumes	that	you	have	performed	the
conversion	of	your	raster	font	or	True	Type	font	into	C	file.	For
the	conversion	of	your	raster	font	please	see	the	help	file	of	the
Graphics	Resource	Converter	utility	that	comes	with	the
Graphics	Library.	

There	are	two	ways	to	replace	the	default	font	in	the	Graphics
Library.	

	

Renaming	User	Font	to	GOLFontDefault:

1.	 Open	the	generated	font	file	(generated	by	the	"Graphics	Resource
Converter"	utility)	and	change	the	font	structure	name	to
GOLFontDefault	(see	figure	below).

2.	 Remove	the	file	GOLFONTDefault.c	in	the	project	and	replace	it
with	your	own	font	file	that	contains	the	GOLFontDefault.

3.	 Build	and	test	your	new	font.

	

Replacing	the	GOLFontDefault	with	any	user	defined	fonts

1.	 Open	the	GraphicsConfig.h	file	and	add	the	following	lines:

Copy	Code
#define	FONTDEFAULT	yourFontName

2.	 In	the	project,	add	the	generated	font	file	(generated	by	the
"Graphics	Resource	Converter"	utility).

3.	 Build	and	test	your	new	font.

In	this	method,	GOL.h	and	GOLFontDefault.c	files	checks	if
FONTDEFAULT	is	defined.	If	it	is,	it	skips	the	declaration	of	the
GOLFontDefault	and	uses	the	user	defined	font.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Changing	the	default	Font

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Advanced	Font	Features
Font	Anti-Aliasing	

Anti-aliasing	is	a	technique	used	to	make	the	edges	of	text
appear	smooth.	This	is	useful	especially	with	characters	like	'A',
'O',	etc	which	has	slant	or	curved	lines.	Since	the	pixels	of	the
display	are	arranged	in	rectangular	fashion,	slant	edges	can't	be
represented	smoothly.	To	make	them	appear	smooth,	a	pixel
adjacent	to	the	pixels	is	painted	with	an	average	of	the
foreground	and	background	colors	as	depicted	in	Figure	1.	

	

	

Figure	1:	Font	with	Anti-Aliasing	

	

	

Figure	2:	Font	with	No	Anti-Aliasing

	

When	anti-aliasing	is	turned	off,	the	pixels	abruptly	changes	from
background	color	to	foreground	color	shown	in	Figure	2.	To
implement	anti-aliasing,	adjacent	pixels	transitions	from
background	to	foreground	color	using	25%	or	75%	mid-color
values	from	background	to	foreground	colors.	This	feature	in
fonts	will	require	roughly	twice	the	size	of	memory	storage
required	for	font	glyphs	with	no	anti-aliasing.	

Since	the	average	of	foreground	and	background	colors	needs	to
be	calculated	at	runtime,	the	rendering	of	anti-aliased	fonts	take
more	time	than	rendering	normal	fonts.	To	optimize	the	rendering
speed,	a	macro	named	GFX_Font_SetAntiAliasType()	is
available	where	anti-alias	type	can	be	set	to
ANTIALIAS_OPAQUE	or	ANTIALIAS_TRANSLUCENT.

ANTIALIAS_OPAQUE	(default	after	initialization	of	graphics)	-	mid
colors	are	calculated	once	while	rendering	each	character	which	is
ideal	for	rendering	text	over	a	constant	background.
ANTIALIAS_TRANSLUCENT	-	the	mid	values	are	calculated	for
every	necessary	pixel	and	this	feature	is	useful	while	rendering	text
over	an	image	or	on	a	non-constant	color	background.

As	a	result,	rendering	anti-aliased	text	takes	longer	with
ANTIALIAS_TRANSLUCENT	type	than	compared	to
ANTIALIAS_OPAQUE	type.	

	

To	use	anti-aliasing,	enable	the	compiler	switch	#define
USE_ANTIALIASED_FONTS	in	the	GraphicsConfig.h	file	and
enable	the	anti-alias	checkbox	in	the	Graphics	Resource
Converter	(GRC)	tool	while	selecting	the	font.	

	

Note:	Even	when	anti-aliasing	is	enabled,	normal	fonts	can	be
used	without	the	antialias	effect.	

	

Extended	Glyphs	

Extended	glyphs	are	needed	to	render	characters	of	certain
languages	which	use	more	than	one	byte	to	represent	a	single
character.	For	example:	Asian	languages	like	Thai,	Hindi,	etc.	In
these	character	set,	more	than	one	glyph	overlaps	each	other	to
form	a	single	character	of	that	language	as	shown	in	Figure	3.	To
use	this	feature,	enable	the	Extended	Glyph	checkbox	in	the
Graphics	Resource	Converter	(GRC)	tool	while	selecting	the
font.	

	

	

Figure	3:	Example	of	a	Character	that	is	Formed	by	Two
Overlapping	Glyphs

	

Note:	The	fonts	used	with	extended	glyphs	are	normal	ANSI
fonts	and	not	Unicode	fonts.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Advanced	Font	Features

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Using	Primitive	Rendering	Functions	in	Blocking
and	Non-Blocking	Modes
All	primitive	rendering	functions	returns	a	status.

0	–	when	the	primitive	was	not	successfully	rendered
1	–	when	the	primitive	was	successfully	rendered

When	using	Graphics	Library	you	can	enable	the	non-blocking
mode	when	calling	drawing/rendering	functions.	This	is	done	by
adding	this	line	in	your	GraphicsConfig.h	file:

Copy	Code
#define	USE_NONBLOCKING_CONFIG	//	Comment	this	line	to	use	blocking	configuration

When	using	a	display	controller	with	hardware	accelerated
primitives	(like	SSD1926	which	is	on	the	Graphics	PICtail™	Plus
Board	Version	3	(AC164127-3)	faster	primitive	rendering	on
Line(),	Rectangle()	and	Bar()	functions	will	be	performed.
Compiling	with	the	Blocking	or	Non-Blocking	mode	set	will	still
use	the	accelerated	primitives	but	the	application	code	directly
calling	the	primitive	functions	will	have	to	be	coded	accordingly.	

To	explain	the	two	modes	when	directly	calling	the	primitive
functions	please	take	a	look	at	the	example	below.	

Case	1:	USE_NONBLOCKING_CONFIG	disabled

Copy	Code
//	all	primitives	are	blocking	calls

Line(a,b);

Rectangle(c,d,e,f);

Bar(c+2,	d+2,	e-2,	f-2)

Case	2:	USE_NONBLOCKING_CONFIG	enabled

Copy	Code
//	all	primitives	are	non-blocking	calls

while(!Line(a,b));

while(!Rectangle(c,d,e,f));

while(!Bar(c+2,	d+2,	e-2,	f-2));

If	the	while	check	is	not	in	place,	it	possible	that	the	only	primitive
that	you	will	see	in	the	screen	is	the	Line().	

For	case	2,	one	can	also	be	creative	in	the	application	code	and
implement	some	form	of	non-blocking	scheme	and	make	use	of
the	time	while	waiting	for	the	primitives	to	render.	

Another	example	for	case	2:

Copy	Code
WORD	DrawMyFigure(a,	b,	c,	d,	e,	f)

{

				typedef	enum	{

							DRAW_LINE,

							DRAW_RECT,

							DRAW_BAR,

}	DRAW_MYFIGURE_STATES;

static	DRAW_MYFIGURE_STATES	state	=	DRAW_LINE;

				if(IsDeviceBusy())	//	checks	if	the	hardware	is	still	busy

								return	0;

				switch(state){

								case	DRAW_LINE:

												if	(!Line(a,	b))

																return	0;

												state	=	DRAW_RECT;

								case	DRAW_RECT:

												if(!Rectangle(c,d,e,f))

																return	0;

												state	=	DRAW_BAR;

								case	DRAW_BAR:

												if(!Bar(c+2,	d+2,	e-2,	f-2));

																return	0;

												state	=	DRAW_LINE;

												return	1;

				}

}

This	non-blocking	code	can	be	used	in	the	application	and	the
application	can	do	other	tasks	whenever	DrawMyFigure()	returns
0.	Application	should	call	DrawMyFigure()	again	until	it	return	a	1
signifying	that	the	Line,	Rectangle	and	Bar	were	drawn
successfully.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Using	Primitive	Rendering	Functions	in	Blocking
and	Non-Blocking	Modes

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Using	Microchip	Graphics	Module	Color	Look
Up	Table	in	Applications
Apart	from	regular	RGB	scheme	of	representing	colors,	colors
may	also	be	represented	using	a	Color	Look	Up	Table	(CLUT)
also	called	Palette	table,	where	there	is	a	table	of	colors	and	the
color	is	specified	by	the	index	of	the	table.	Depending	on	the	size
of	the	table,	the	bits	used	to	represent	the	index	will	vary.	For
example	256	entries	of	RGB	(8	bit	index),	16	entries	of	RGB	(4
bit	index),	4	entries	of	RGB	(2	bit	index)	and	2	entries	of	RGB	(1
bit	index).	This	scheme	is	mainly	used	to	save	memory.	See
Figure-1	for	an	example	of	16-entry	(4-bit)	CLUT	where	a	shade
of	Green	is	represented	by	an	index	value	of	3	consuming	4-bits.
To	figure	the	memory	requirement	for	a	give	screen	size	at	a
color	depth,	bits	per	pixel,	the	follow	equations	is	used:	total
number	of	pixels	x	bits	per	pixel	/	8	bits	per	byte.	For	example
the	memory	required	for	a	320x240	with	16	BPP	screen;	(320	x
240)	x	(16	/	8)	=	153,600	Bytes.	If	only	16	different	colors	are
used	in	the	screen,	then	instead	of	using	raw	RGB,	a	16-entry	(4-
bit)	CLUT	may	be	used	requiring	a	memory	of	(320	x	240)	x	(4/8)
=	38,400	bytes;	thereby	saving	75%	of	memory.

	

Figure	1.	A	16-Entry	(4-bit)	Color	Look	Up	Table

	

If	the	display	driver	hardware	supports	CLUT,	the	index	values
are	translated	to	the	RGB	values	by	the	hardware	automatically
when	the	signals	are	sent	out	to	the	display.	

If	the	CLUT	is	enabled,	since	a	CLUT	affects	the	whole	screen,
all	the	color	patterns	like	basic	shapes	and	images	which	are
displayed	on	the	screen	must	use	the	same	CLUT.	It	means	that
color	defines	like	RED,	GREEN,	etc…	must	use	the	index	values
instead	of	the	absolute	RGB	values.	The	bitmap	images	used
must	also	use	the	same	CLUT	in	order	to	appear	properly	on	the
screen.	Note	that	the	chosen	CLUT	length	(1,	4,	16,	or	256)	must
accommodate	all	the	different	colors	needed	by	a	screen.	The
following	section	explains	how	to	create	such	a	CLUT	for	a
screen.	

	

Creating	CLUT
Creating	CLUT	has	2	steps:

1.	 Creating	a	part	of	CLUT	manually.
2.	 Filling	the	remaining	part	with	the	colors	of	the	images	used.
3.	 Using	the	Graphics	Resource	Converter	to	generate	a	CLUt	based

on	the	images	to	convert.

Creating	a	part	of	CLUT	manually	-	Since	users	need	to	select
specific	colors	for	the	shapes	and	the	widgets,	they	must	enter
these	specific	colors	in	the	CLUT.	This	can	be	done	by	manually
creating	a	new	CLUT	table	using	a	text	editor.	Create	a	text	file
and	save	it	with	a	.gpl	extension	with	the	form:

Copy	Code
GIMP	Palette

Name:	16_colors

Columns:	4

#

		0			0			0				BLACK

		0			0			128		BLUE

		128	0			0				RED

		0			0			0				Unused

		0			0			0				Unused

The	second	line	specifies	the	name	of	the	palette	which	must	be
unique.	The	palette	table	data	starts	with	line	5	which	represent
index	0	with	the	RGB	values	and	a	caption.	The	number	of	such
data	lines	must	be	equal	to	the	length	of	the	CLUT.	In	the
example,	only	3	colors	are	used.	

Filling	the	remaining	part	with	the	colors	of	the	images	used
-	Suppose	256	entries	CLUT	is	being	used,	since	3	colors	are
manually	set,	only	256	–	3	=	253	entries	are	available	for	the
images	to	be	displayed	on	the	same	screen.	If	more	than	one
image	is	used	on	the	screen,	it	further	implies	that

All	images	on	the	screen	must	use	the	same	CLUT	table.
Different	colors	used	for	all	the	images	along	with	the	fixed	colors
must	not	exceed	the	size	of	the	CLUT	table	being	used.

If	the	source	images	are	of	RGB	type,	they	must	be	converted
into	CLUT	based	images.	This	can	be	done	using	free	PC	tools
like	GIMP	(www.gimp.org).	

The	following	steps	shows	how	to	convert	the	images	using
GIMP:	

Step	1:	

Create	a	new	image	with	sufficient	size	to	paste	all	the	images
required	on	the	screen	using	File->New	in	the	GIMP	(see	Figure-
2).

	

Figure	2.	Creating	New	File	in	GIMP

Step	2:	

Copy	and	paste	all	the	images	to	be	displayed	on	the	screen	into
this	image	like	in	Figure	3.	If	256	colors	is	enough	for	the	entire
application,	a	single	CLUT	can	be	used.	If	not	multiple	CLUT	can
be	used.	Each	CLUT	can	be	configured	to	use	one	or	more
screens.	In	this	case,	switching	from	one	screen	to	another	may
require	re-initializing	the	hardware	CLUT	entries	before	the
screen	is	displayed.

	

Figure	3.	Images	Used	in	One	Screen

Step	3:	

Set	the	mode	to	CLUT	by	selecting	Image->Mode->Indexed	in
the	GIMP.	Select	to	generate	optimum	palette	with	256	–	3	=	253
entries	(because	we	already	have	3	fixed	entries)	as	shown	in
Figure	4	and	save	it	as	a	BMP	(e.g.	Collage.bmp)	image	by
selecting	File->SaveAs	menu.

	

Figure	4.	Generate	a	Palette	Table	(CLUT)

Step	4:	

The	next	step	is	to	extract	the	CLUT	from	the	generated	image.
To	do	that,	go	to	the	palette	selection	mode	by	selecting	Image-
>Mode->RGB	and	then	again	Image->Mode->Indexed.	Select
Use	Custom	Palette	and	open	the	palette	selection	dialog	as
shown	in	Figure	5	and	import	the	previously	saved	bitmap	image
(Collage.bmp)	as	shown	in	Figure	6	and	Figure	7.	The	palette	file
will	be	created	in	the	[Home	Folder]\.gimp-x.y\palettes	folder	as	a

*.gpl	file.

	

Figure	5.	Palette	Selection	Dialog

	

	

Figure	6.	Import	Palette	Dialog

	

	

Figure	7.	Import	Collage	Bitmap

Step	5:	

Manually	edit	this	and	add	the	fixed	color	entries	from	the

previously	stored	fixed	palette	file.	(Manual	step).	Now	a	master
palette	file	is	created	which	has	to	be	used	in	the	application.	

Step	6:	

Open	individual	images	in	GIMP	and	apply	this	master	palette	to
all	of	them	through	Image->Mode->Indexed	and	selecting	Use
Custom	Palette.	Select	the	master	palette	which	was	generated
and	save	the	images.	This	will	make	all	the	images	palette
ready.	

Step	7:	

The	next	step	is	to	convert	this	Palette.gpl	and	the	images	into
the	format	recognizable	by	the	Microchip	Graphics	Library.	Start
the	Microchip’s	Graphics	Resource	Converter	tool	and	enable
the	C30	Build	(palette	support	is	currently	on	selected	PIC24F
devices	only)	mode	as	shown	in	Figure	8.	Open	the	master
palette	file	previously	generated	by	pressing	Add	Palette	button
and	save	it	as	a	.c	file	(for	storing	in	internal	flash)	or	as	a	.hex
file	(for	storing	in	external	memory)	similar	to	bitmap	or	font
conversion	as	shown	in	Figure	10.

	

Figure	8.	Load	Palette

	

	

Figure	9.	Convert	Palette

	

Step	8:	

Convert	all	the	palette	ready	images	to	C	file	(*.c)	or	Hex	file
(*.hex)	by	pressing	the	Add	Images	button.	

	

Step	9:	

Import	the	palette	with	the	extern	statement	like	in	“extern	const
PALETTE_FLASH	_GOL_Palette_Demo;”	in	the	application.	See
MainDemo.c	in	“Graphics	Object	Layer	Palette	Demo”.	Set	the
palette	using	the	APIs	SetPaletteBpp()	and	SetPalette()	and	then
enable	the	palette	using	the	API	EnablePalette()	as	shown	in	the
below	code	example.	

	

Copy	Code

GOLInit();

SetPaletteBpp(8);

SetPalette((void*)&_GOL_Palette_Demo,	0,	256);

EnablePalette();

Step	10:	

Import	the	images	as	usual	and	use	them	after	setting	and
enabling	the	palette.	

See	“Graphics	Object	Layer	Palette	Demo”	as	a	practical
example.	

	

Using	the	Graphis	Resource	Converter	to	generate	a	CLUT
based	on	the	images	to	convert	-	The	Graphics	Resource
Converter	will	generate	a	CLUT	based	on	the	images	to	be
converted.	Please	refer	to	the	Graphics	Resource	Converter	help
file	for	more	information.	

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Using	Microchip	Graphics	Module	Color	Look	Up
Table	in	Applications

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Converting	Images	to	Use	a	Common	Palette	in
GIMP
INTRODUCTION	

Some	controllers	have	predefined	palettes	associated	with	them.
The	palette’s	colors	can	not	be	altered.	When	converting	images,
it	is	desired	to	have	the	images	use	the	controller’s	predefined
color	palette.	For	example,	a	controller	may	have	a	grayscale
palette	of	16	colors.	An	image	may	use	a	palette	of	16	grayscale
colors,	but	the	palette	may	define	grayscale	colors	that	are	not
the	same	as	the	controller’s	palette.	By	using	the	GNU	Image
Manipulation	Program,	GIMP,	images	can	be	converted	using	a
palette	matching	the	grayscale	colors	of	the	controller.	After
converting	the	image	to	use	this	palette,	it	can	be	converted	by
the	Graphics	Resource	Converter,	GRC,	to	be	used	by
Microchip’s	Graphics	Library.	

	

DOWNLOADS	

The	following	are	helpful	websites	for	downloaded	the	tools	and
firmware	needed:

GIMP	2.6	–	GNU	Image	Manipulation	Program	(www.gimp.org)
Graphics	Library	–	This	library	is	part	of	the	Microchip	Application
Libraries	(www.microchip.com/mla)

	

CONVERTING	AN	IMAGE	

Follow	these	steps	to	convert	an	image	to	use	a	predefined	color
palette	(for	this	example,	the	palette	used	has	16	grayscale
colors):

1.	 Open	the	GIMP	application.
2.	 Load	the	image.	FILE->Open

If	the	image	is	not	a	Bitmap,	you	will	need	to	save	it	as	one.

1.	 FILE-Save	as…
2.	 Choose	the	Select	File	Type	(By	Extension)

	

	

3.	 Select	Windows	BMP	Image

	

	

4.	 Select	Save
5.	 Select	Save	under	the	Save	as	BMP	dialog

	

	

3.	 Select	WINDOWS->Dockable	Dialogs->Palettes

	

	

The	Palette	Dialog	will	appear.

	

	

4.	 In	the	Palette	Dialog	Select	Import	Palette.	This	can	be	done	by	a
right	click	on	any	of	the	Palettes	on	the	Palette	Dialog.

	

	

The	Import	Palette	Dialog	will	appear.

	

	

5.	 Select	the	Palette	file	radio	button.

Select	the	palette	file	.gpl	(For	example:	Grayscale-Palette-
4bpp.gpl)	(see	image	in	Step	4).

6.	 Select	the	Import	button.

The	palette,	Grayscale-Palette-4bpp,	will	show	up	in	the
Palette	Dialog.

7.	 Select	IMAGE->Mode->Indexed…

	

	

8.	 In	the	Indexed	Color	Conversion	dialog,	select	the	Use	custom
palette	radio	button

Type	the	name	of	the	palette.
IMPORTANT:	Make	sure	that	the	"Remove	unused	color	from
colormap"	is	unchecked.
Select	Convert

	

	

9.	 The	image	will	now	be	converted	using	a	16	grayscale	color
palette.

10.	 Save	the	image	as	a	Bitmap.

	

This	image	can	now	be	converted	by	the	GRC	for	use	with	the
Microchip	Graphics	Library.	

	

Here	is	an	example	of	a	palette	file	*.gpl	(Grayscale-Palette-
4bpp.gpl)

Copy	Code
GIMP	Palette

Name:	Greyscale	Palette	4bpp

Columns:	0

#

		0			0			0				BLACK

	17		17		17				Untitled

	34		34		34				Untitled

	51		51		51				Untitled

	68		68		68				Untitled

	85		85		85				Untitled

102	102	102				Untitled

119	119	119				Untitled

136	136	136				Untitled

153	153	153				Untitled

170	170	170				Untitled

187	187	187				Untitled

204	204	204				Untitled

221	221	221				Untitled

238	238	238				Untitled

255	255	255				WHITE

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Converting	Images	to	Use	a	Common	Palette	in
GIMP

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

How	to	Define	Colors	in	your	Applications
To	override	or	define	a	new	set	of	colors	follow	this	steps:

1.	 Create	a	new	color	header	file.	The	color	values	and	data	types	will
depend	on	the	GFX_COLOR	type	used.	This	data	type	is	defined
by	the	COLOR_DEPTH	macro.	See	COLOR_DEPTH	for	details.

2.	 In	the	application	code,	include	the	created	color	header	file	ahead
of	the	#include	"Graphics/Graphics.h".	When	Graphics.h	includes
the	gfxcolors.h	it	will	ignore	color	macros	that	has	been	defined
already	in	the	new	color	header	file.

In	the	GOL	Palette	Demo,	there	is	an	example	on	how	it	is	done.
In	that	project	there	is	a	file	in	the	application	(or	project
directory)	named	PaletteColorDefines.h.	This	file	contains	all	the
color	definition	used	in	the	demo.	The	main	header	file	of	the
demo	(Main.h)	includes	the	PaletteColorDefines.h	file	ahead	of
the	Graphics	Library	header	files.	Since	the
PaletteColorDefines.h	declared	the	color	values,	the	macros
redefined	in	gfxcolors.h	will	be	ignored.	How	is	this	done?	If	you
look	at	the	gfxcolors.h	file	you	will	notice	that	all	colors	defined
have	a	check	(for	example	BLACK):	

#ifndef	BLACK	

#define	BLACK	0	

#endif	

So	if	BLACK	is	defined	previously,	the	definition	in	gfxcolors.h
will	not	take	effect.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	How	to	Define	Colors	in	your	Applications

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Connecting	RGB	data	bus
To	connect	the	16-bit	RGB	data	bus	to	a	24-bit	or	18-bit	RGB
data	bus	of	a	display	glass	follow	the	recommended	connection
to	evenly	spread	the	color	coverage.	

	

16-bit	(5-6-5)	RGB	Display
Controller	Data	Bus	

18-bit	(6-6-6)
RGB	Display
Data	Bus	

24-bit	(8-8-8)
RGB	Display
Data	Bus	

Red[4:0]	 	 	

Controller	Red[4:0]	 Display
Red[5:1]	

Display	Red[7:3]	

Controller	Red[4]	 Display	Red[0]	 Display	Red[2:0]	

Green[4:0]	 	 	

Controller	Green[5:0]	 Display
Green[5:0]	

Display
Green[7:2]	

Controller	Green[5]	 Display
Green[5]	

Display
Green[1:0]	

Blue[4:0]	 	 	

Controller	Blue[4:0]	 Display
Blue[5:1]	

Display	Blue[7:3]	

Controller	Blue[4]	 Display	Blue[0]	 Display	Blue[2:0]	

	

To	illustrate	the	connection	take	the	Red	for	example:	

	

To	connect	the	Display	Controller	Red	Data	Bus	to	the	Red
data	bus	of	a	RGB	Glass	with	18	bit	color	data	bus.	

Connect	the	5	Red	signals	from	the	display	controller	to	the	most
significant	bits	of	the	glass	red	signals.	

Controller	Red[4:0]	->	Display	Red[5:1]	

	

The	remaining	Display	Red[0]	signal	will	be	connected	to	the
most	significant	bit	of	the	display	controller	red.	

Controller	Red[4]	->	Display	Red[0]	

	

To	connect	the	Display	Controller	Red	Data	Bus	to	the	Red
data	bus	of	a	RGB	Glass	with	24	bit	color	data	bus.	

Connect	the	5	Red	signals	from	the	display	controller	to	the	most
significant	bits	of	the	glass	red	signals.	

Controller	Red[4:0]	->	Display	Red[7:3]	

	

The	remaining	Display	Red[2:0]	signals	will	be	connected	to	the
most	significant	bit	of	the	display	controller	red.	

Controller	Red[4]	->	Display	Red[2]	

Controller	Red[4]	->	Display	Red[1]	

Controller	Red[4]	->	Display	Red[0]	

	

Doing	this	spreads	out	the	color	coverage	while	at	the	same	time
pure	black	and	pure	white	colors	are	achieved.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Connecting	RGB	data	bus

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Adding	New	Device	Driver
Adding	a	new	display	device	driver	requires	the	following
functions	and	macros	to	be	implemented.	Please	refer	to	the	API
section	of	the	Device	Driver	Layer	for	details.

Function/Macro	 Description	

ResetDevice()	 Initializes	the	display	device.	

GetMaxX()	 Returns	the	maximum	x-coordinate	for	the
display.	

GetMaxY()	 Returns	the	maximum	y-coordinate	for	the
display.	

SetColor()	 Sets	the	current	drawing	color.	

GetColor()	 Returns	the	current	drawing	color.	

SetActivePage()	 Sets	the	current	active	graphic	page	(optional).	

SetVisualPage()	 Sets	the	current	visual	graphic	page	(optional).	

PutPixel()	 Modifies	pixel	on	the	screen.	

GetPixel()	 Returns	the	pixel	color.	

PutImage()	 Renders	an	image	on	the	screen.	This	function
is	dependent	on	the	color	format	used.	

SetClipRgn()	 Set	the	current	clipping	region	borders.	

GetClipLeft(),
GetClipTop(),
GetClipRight(),
GetClipBottom()	

Returns	the	left,	top,	right	and	bottom	clipping
borders.	

SetClip()	 Enables	or	disables	the	clipping	region.	

IsDeviceBusy()	 Checks	if	the	display	controller	is	busy	executing

the	previous	rendering	operation.	

SetPalette()	 Sets	the	palette	register	of	the	device.	

	

Adding	new	Display	Device	Drivers	

The	DisplayDriver.h	file	should	be	used	as	a	guide	to	make	your
new	driver	compatible	with	the	Microchip	Graphics	Library.	All
the	API's	defined	in	this	header	file	are	required	functions	to	be
implemented	in	the	driver.	There	are	portions	of	that	file	that
states	optional	functions.	These	functions	are	not	needed	to
interface	to	the	Graphics	Library.	These	are	only	implemented	if
the	display	controller	used	has	hardware	features	that	can
implement	these	functions.	

The	best	way	to	implement	this	is	to	try	to	find	the	nearest
existing	driver	and	modify	the	C	and	H	files.	Most	graphics
controllers	has	a	lot	of	control	registers	to	be	initialized.	Values
programmed	into	the	registers	depends	on	the	specification	of
the	LCD	glass	used.	If	LCD	module	has	a	built-in	graphics
controller,	initialization	code	for	the	glass	can	be	found	in	the
LCD	specifications	or	get	this	information	from	the	manufacturer.

Links

Miscellaneous	Topics

Miscellaneous	Topics	>	Adding	New	Device	Driver

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous

References
1.	 " MPLAB	C32	C	COMPILER	USER'S	GUIDE"	(DS51686),

Microchip	Technology	Incorporated.
2.	 " MPLAB	C	COMPILER	FOR	PIC24	MCUs	AND	dsPIC	DSCs

USER'S	GUIDE"	(DS51284),	Microchip	Technology	Incorporated.
3.	 Microchip	Application	Note	 AN1136,	“How	to	Use	Widgets	in

Microchip	Graphics	Library”	(DS01136),	Microchip	Technology
Incorporated.

4.	 Microchip	Application	Note	 AN1182,	“Fonts	in	the	Microchip
Graphics	Library”	(DS01182),	Microchip	Technology	Incorporated.

5.	 Microchip	Application	Note	 AN1227,	“Using	a	Keyboard	with	the
Microchip	Graphics	Library”	(DS01227),	Microchip	Technology
Incorporated.

6.	 Microchip	Application	Note	 AN1246,	“How	to	Create	Widgets	in
Microchip	Graphics	Library”	(DS01246),	Microchip	Technology
Incorporated.

7.	 HIF	2131	–	Designing	with	Microchip	Graphics	Library,	Microchip
Regional	Training	Center	web	site	(www.microchip.com/rtc).

References

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Contents
This	is	the	table	of	contents	of	this	documentation.

Introduction
Release	Notes
Getting	Started
Demo	Projects
Demo	Summary
Microchip	Application	Library	Abbreviations
Demo	Compatibility	Matrix

Library	Architecture
Graphics	Object	Layer
Object	Rendering

Graphics	Primitive	Layer
Display	Device	Driver	Layer

Library	API
Graphics	Library	Configuration
Graphics	Object	Layer	Configuration
Input	Device	Selection
USE_KEYBOARD	Macro
USE_TOUCHSCREEN	Macro

Focus	Support	Selection
USE_FOCUS	Macro

Graphics	Object	Selection
USE_ANALOGCLOCK	Macro
USE_BUTTON	Macro
USE_BUTTON_MULTI_LINE	Macro
USE_CHECKBOX	Macro
USE_DIGITALMETER	Macro
USE_EDITBOX	Macro
USE_GROUPBOX	Macro
USE_LISTBOX	Macro

USE_METER	Macro
USE_PICTURE	Macro
USE_PROGRESSBAR	Macro
USE_RADIOBUTTON	Macro
USE_ROUNDDIAL	Macro
USE_SLIDER	Macro
USE_STATICTEXT	Macro
USE_WINDOW	Macro
USE_CUSTOM	Macro
USE_GOL	Macro
USE_TEXTENTRY	Macro

Graphics	Primitive	Layer	Configuration
Image	Compression	Option
USE_COMP_IPU	Macro
USE_COMP_RLE	Macro

Font	Type	Selection
USE_MULTIBYTECHAR	Macro
USE_UNSIGNED_XCHAR	Macro

Advanced	Font	Features	Selection
USE_ANTIALIASED_FONTS	Macro

Gradient	Bar	Rendering
USE_GRADIENT	Macro

Transparent	Color	Feature	in	PutImage()
USE_TRANSPARENT_COLOR	Macro

Alpha	Blend	Option
USE_ALPHABLEND_LITE	Macro

External	Memory	Buffer
Display	Device	Driver	Layer	Configuration
USE_ALPHABLEND	Macro
USE_DOUBLE_BUFFERING	Macro
GFX_LCD_TYPE	Macro
GFX_LCD_CSTN	Macro

GFX_LCD_MSTN	Macro
GFX_LCD_OFF	Macro
GFX_LCD_TFT	Macro

STN_DISPLAY_WIDTH	Macro
STN_DISPLAY_WIDTH_16	Macro
STN_DISPLAY_WIDTH_4	Macro
STN_DISPLAY_WIDTH_8	Macro

Application	Configuration
Configuration	Setting
USE_NONBLOCKING_CONFIG	Macro

Font	Source	Selection
USE_FONT_FLASH	Macro
USE_FONT_EXTERNAL	Macro
USE_GFX_FONT_IN_PROGRAM_SECTION	Macro

Image	Source	Selection
USE_BITMAP_FLASH	Macro
USE_BITMAP_EXTERNAL	Macro

Miscellaneous
USE_BITMAP_NO_PADDING_LINE	Macro
USE_PALETTE_EXTERNAL	Macro
USE_PALETTE	Macro
COLOR_DEPTH	Macro
GFX_free	Macro
GFX_malloc	Macro

GraphicsConfig.h	Example
Hardware	Profile
PMP	Interface
USE_8BIT_PMP	Macro
USE_16BIT_PMP	Macro

Development	Platform	Used
EXPLORER_16	Macro
PIC24FJ256DA210_DEV_BOARD	Macro

MEB_BOARD	Macro
PIC_SK	Macro

Graphics	PICtail	Used
GFX_PICTAIL_LCC	Macro
GFX_PICTAIL_V3	Macro
GFX_PICTAIL_V3E	Macro

Display	Controller	Used
GFX_USE_DISPLAY_CONTROLLER_DMA	Macro
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	Macro
GFX_USE_DISPLAY_CONTROLLER_S1D13517	Macro
GFX_USE_DISPLAY_CONTROLLER_SSD1926	Macro

Display	Panel	Used
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	Macro
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	Macro
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	Macro
GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	Macro

Device	Driver	Options
DISP_DATA_WIDTH	Macro
DISP_ORIENTATION	Macro
DISP_HOR_RESOLUTION	Macro
DISP_VER_RESOLUTION	Macro
DISP_HOR_FRONT_PORCH	Macro
DISP_HOR_BACK_PORCH	Macro
DISP_VER_FRONT_PORCH	Macro
DISP_VER_BACK_PORCH	Macro
DISP_HOR_PULSE_WIDTH	Macro
DISP_VER_PULSE_WIDTH	Macro
DISP_INV_LSHIFT	Macro

HardwareProfile.h	Example
Graphics	Object	Layer	API
GOL	Objects
GOL_OBJ_TYPE	Enumeration

OBJ_HEADER	Structure
DRAW_FUNC	Type
FREE_FUNC	Type
MSG_DEFAULT_FUNC	Type
MSG_FUNC	Type
Analog	Clock
Analog	Clock	States
AC_DRAW	Macro
AC_DISABLED	Macro
AC_HIDE	Macro
AC_PRESSED	Macro
AC_TICK	Macro
UPDATE_HOUR	Macro
UPDATE_MINUTE	Macro
UPDATE_SECOND	Macro

AcCreate	Function
AcDraw	Function
AcSetHour	Function
AcSetMinute	Function
AcSetSecond	Function
ANALOGCLOCK	Structure

Button
Button	States
BTN_DISABLED	Macro
BTN_DRAW	Macro
BTN_DRAW_FOCUS	Macro
BTN_FOCUSED	Macro
BTN_HIDE	Macro
BTN_PRESSED	Macro
BTN_TEXTBOTTOM	Macro
BTN_TEXTLEFT	Macro
BTN_TEXTRIGHT	Macro
BTN_TEXTTOP	Macro

BTN_TOGGLE	Macro
BTN_TWOTONE	Macro
BTN_NOPANEL	Macro

BtnCreate	Function
BtnDraw	Function
BtnGetText	Macro
BtnSetText	Function
BtnGetBitmap	Macro
BtnSetBitmap	Macro
BtnMsgDefault	Function
BtnTranslateMsg	Function
BUTTON	Structure

Chart
Chart	States
CH_DISABLED	Macro
CH_DRAW	Macro
CH_DRAW_DATA	Macro
CH_3D_ENABLE	Macro
CH_BAR	Macro
CH_BAR_HOR	Macro
CH_DONUT	Macro
CH_LEGEND	Macro
CH_NUMERIC	Macro
CH_PERCENT	Macro
CH_PIE	Macro
CH_VALUE	Macro
CH_HIDE	Macro

Data	Series	Status	Settings
HIDE_DATA	Macro
SHOW_DATA	Macro

Chart	Examples
ChCreate	Function
ChDraw	Function

ChAddDataSeries	Function
ChRemoveDataSeries	Function
ChShowSeries	Macro
ChHideSeries	Macro
ChGetShowSeriesCount	Macro
ChGetShowSeriesStatus	Macro
ChSetValueLabel	Macro
ChGetValueLabel	Macro
ChGetValueMax	Macro
ChGetValueMin	Macro
ChSetValueRange	Function
ChGetValueRange	Macro
ChSetSampleLabel	Macro
ChGetSampleLabel	Macro
ChGetSampleStart	Macro
ChGetSampleEnd	Macro
ChSetPercentRange	Function
ChGetPercentRange	Macro
ChSetSampleRange	Function
ChGetSampleRange	Macro
ChGetPercentMax	Macro
ChGetPercentMin	Macro
ChSetColorTable	Macro
ChGetColorTable	Macro
ChSetTitle	Macro
ChGetTitle	Macro
ChSetTitleFont	Macro
ChGetTitleFont	Macro
ChGetAxisLabelFont	Macro
ChSetAxisLabelFont	Macro
ChGetGridLabelFont	Macro
ChSetGridLabelFont	Macro
ChFreeDataSeries	Function

ChTranslateMsg	Function
CHART	Structure
DATASERIES	Structure
CHARTPARAM	Structure
Color	Table
CH_CLR0	Macro
CH_CLR1	Macro
CH_CLR2	Macro
CH_CLR3	Macro
CH_CLR4	Macro
CH_CLR5	Macro
CH_CLR6	Macro
CH_CLR7	Macro
CH_CLR8	Macro
CH_CLR9	Macro
CH_CLR10	Macro
CH_CLR11	Macro
CH_CLR12	Macro
CH_CLR13	Macro
CH_CLR14	Macro
CH_CLR15	Macro

Checkbox
Check	Box	States
CB_CHECKED	Macro
CB_DISABLED	Macro
CB_DRAW	Macro
CB_DRAW_CHECK	Macro
CB_DRAW_FOCUS	Macro
CB_FOCUSED	Macro
CB_HIDE	Macro

CbCreate	Function
CbDraw	Function
CbGetText	Macro

CbSetText	Function
CbMsgDefault	Function
CbTranslateMsg	Function
CHECKBOX	Structure

Round	Dial
Dial	States
RDIA_DISABLED	Macro
RDIA_DRAW	Macro
RDIA_HIDE	Macro
RDIA_ROT_CCW	Macro
RDIA_ROT_CW	Macro

RdiaCreate	Function
RdiaDraw	Function
RdiaIncVal	Macro
RdiaDecVal	Macro
RdiaGetVal	Macro
RdiaSetVal	Macro
RdiaMsgDefault	Function
RdiaTranslateMsg	Function
ROUNDDIAL	Structure

Digital	Meter
Digital	Meter	States
DM_DISABLED	Macro
DM_DRAW	Macro
DM_HIDE	Macro
DM_CENTER_ALIGN	Macro
DM_RIGHT_ALIGN	Macro
DM_FRAME	Macro
DM_UPDATE	Macro

DmCreate	Function
DmDraw	Function
DmGetValue	Macro
DmSetValue	Function

DmDecVal	Macro
DmIncVal	Macro
DmTranslateMsg	Function
DIGITALMETER	Structure

Edit	Box
Edit	Box	States
EB_CENTER_ALIGN	Macro
EB_DISABLED	Macro
EB_DRAW	Macro
EB_HIDE	Macro
EB_FOCUSED	Macro
EB_RIGHT_ALIGN	Macro
EB_DRAW_CARET	Macro
EB_CARET	Macro

EbCreate	Function
EbDraw	Function
EbGetText	Macro
EbSetText	Function
EbAddChar	Function
EbDeleteChar	Function
EbMsgDefault	Function
EbTranslateMsg	Function
EDITBOX	Structure

Grid
Grid	States
GRID_FOCUSED	Macro
GRID_DISABLED	Macro
GRID_SHOW_LINES	Macro
GRID_SHOW_FOCUS	Macro
GRID_SHOW_BORDER_ONLY	Macro
GRID_SHOW_SEPARATORS_ONLY	Macro
GRID_DRAW_ITEMS	Macro
GRID_DRAW_ALL	Macro

GRID_HIDE	Macro
Grid	Item	States
GRIDITEM_SELECTED	Macro
GRIDITEM_IS_TEXT	Macro
GRIDITEM_IS_BITMAP	Macro
GRIDITEM_TEXTBOTTOM	Macro
GRIDITEM_TEXTLEFT	Macro
GRIDITEM_TEXTRIGHT	Macro
GRIDITEM_TEXTTOP	Macro
GRIDITEM_DRAW	Macro

GridCreate	Function
GridDraw	Function
GridClearCellState	Function
GridGetFocusX	Macro
GridGetFocusY	Macro
GRID_OUT_OF_BOUNDS	Macro
GRID_SUCCESS	Macro
GridFreeItems	Function
GridGetCell	Function
GridSetCell	Function
GridSetCellState	Function
GridSetFocus	Function
GridMsgDefault	Function
GridTranslateMsg	Function
GRID	Structure
GRIDITEM	Structure

Group	Box
Group	Box	States
GB_CENTER_ALIGN	Macro
GB_DISABLED	Macro
GB_DRAW	Macro
GB_HIDE	Macro
GB_RIGHT_ALIGN	Macro

GbCreate	Function
GbDraw	Function
GbGetText	Macro
GbSetText	Function
GbTranslateMsg	Function
GROUPBOX	Structure

List	Box
List	Box	States
LB_RIGHT_ALIGN	Macro
LB_SINGLE_SEL	Macro
LB_CENTER_ALIGN	Macro
LB_DISABLED	Macro
LB_DRAW	Macro
LB_DRAW_FOCUS	Macro
LB_DRAW_ITEMS	Macro
LB_FOCUSED	Macro
LB_HIDE	Macro

List	Item	Status
LB_STS_SELECTED	Macro
LB_STS_REDRAW	Macro

LbCreate	Function
LbDraw	Function
LbGetItemList	Macro
LbAddItem	Function
LbDelItem	Function
LbChangeSel	Function
LbSetSel	Macro
LbGetSel	Function
LbGetFocusedItem	Function
LbSetFocusedItem	Function
LbGetCount	Macro
LbGetVisibleCount	Macro
LbSetBitmap	Macro

LbGetBitmap	Macro
LbDelItemsList	Function
LbMsgDefault	Function
LbTranslateMsg	Function
LISTBOX	Structure
LISTITEM	Structure

Meter
Meter	States
MTR_DISABLED	Macro
MTR_DRAW	Macro
MTR_HIDE	Macro
MTR_RING	Macro
MTR_DRAW_UPDATE	Macro

MtrCreate	Function
MtrDraw	Function
MtrSetVal	Function
MtrGetVal	Macro
MtrDecVal	Macro
MtrIncVal	Macro
MtrSetScaleColors	Macro
MtrSetTitleFont	Macro
MtrSetValueFont	Macro
METER_TYPE	Macro
MTR_ACCURACY	Macro
MtrMsgDefault	Function
MtrTranslateMsg	Function
METER	Structure

Picture	Control
Picture	States
PICT_DISABLED	Macro
PICT_DRAW	Macro
PICT_FRAME	Macro
PICT_HIDE	Macro

PictCreate	Function
PictDraw	Function
PictSetBitmap	Macro
PictGetBitmap	Macro
PictGetScale	Macro
PictSetScale	Macro
PictTranslateMsg	Function
PICTURE	Structure

Progress	Bar
Progress	Bar	States
PB_DISABLED	Macro
PB_DRAW	Macro
PB_DRAW_BAR	Macro
PB_HIDE	Macro
PB_VERTICAL	Macro

PbCreate	Function
PbDraw	Function
PbSetRange	Function
PbGetRange	Macro
PbSetPos	Function
PbGetPos	Macro
PbTranslateMsg	Function
PROGRESSBAR	Structure

Radio	Button
Radio	Button	States
RB_CHECKED	Macro
RB_DISABLED	Macro
RB_DRAW	Macro
RB_DRAW_CHECK	Macro
RB_DRAW_FOCUS	Macro
RB_FOCUSED	Macro
RB_GROUP	Macro
RB_HIDE	Macro

RbCreate	Function
RbDraw	Function
RbGetCheck	Function
RbSetCheck	Function
RbGetText	Macro
RbSetText	Function
RbMsgDefault	Function
RbTranslateMsg	Function
RADIOBUTTON	Structure

Slider/Scroll	Bar
Slider	States
SLD_DISABLED	Macro
SLD_DRAW	Macro
SLD_DRAW_FOCUS	Macro
SLD_DRAW_THUMB	Macro
SLD_FOCUSED	Macro
SLD_HIDE	Macro
SLD_SCROLLBAR	Macro
SLD_VERTICAL	Macro

SldCreate	Function
SldDraw	Function
SldSetPage	Function
SldGetPage	Macro
SldSetPos	Function
SldGetPos	Macro
SldSetRange	Function
SldGetRange	Macro
SldIncPos	Macro
SldDecPos	Macro
SldMsgDefault	Function
SldTranslateMsg	Function
SLIDER	Structure

Static	Text

Static	Text	States
ST_CENTER_ALIGN	Macro
ST_DISABLED	Macro
ST_DRAW	Macro
ST_FRAME	Macro
ST_HIDE	Macro
ST_RIGHT_ALIGN	Macro
ST_UPDATE	Macro

StCreate	Function
StDraw	Function
StGetText	Macro
StSetText	Function
StTranslateMsg	Function
STATICTEXT	Structure

Text	Entry
TextEntry	States
TE_KEY_PRESSED	Macro
TE_DISABLED	Macro
TE_ECHO_HIDE	Macro
TE_DRAW	Macro
TE_HIDE	Macro
TE_UPDATE_KEY	Macro
TE_UPDATE_TEXT	Macro

Key	Command	Types
TE_DELETE_COM	Macro
TE_ENTER_COM	Macro
TE_SPACE_COM	Macro

TeCreate	Function
TeDraw	Function
TeGetBuffer	Macro
TeSetBuffer	Function
TeClearBuffer	Function
TeGetKeyCommand	Function

TeSetKeyCommand	Function
TeCreateKeyMembers	Function
TeAddChar	Function
TeIsKeyPressed	Function
TeSpaceChar	Function
TeDelKeyMembers	Function
TeSetKeyText	Function
TeMsgDefault	Function
TeTranslateMsg	Function
TEXTENTRY	Structure
KEYMEMBER	Structure

Window
Window	States
WND_DISABLED	Macro
WND_DRAW	Macro
WND_DRAW_CLIENT	Macro
WND_DRAW_TITLE	Macro
WND_FOCUSED	Macro
WND_HIDE	Macro
WND_TITLECENTER	Macro

WndCreate	Function
WndDraw	Function
WndGetText	Macro
WndSetText	Function
WndTranslateMsg	Function
WINDOW	Structure

Object	States
Common	Object	States
FOCUSED	Macro
DISABLED	Macro
HIDE	Macro
DRAW	Macro
DRAW_FOCUS	Macro

DRAW_UPDATE	Macro
GetState	Macro
ClrState	Macro
SetState	Macro

Object	Management
GOLAddObject	Function
GOLFindObject	Function
GOLRedraw	Macro
GOLRedrawRec	Function
GOLDraw	Function
GOLDrawComplete	Macro
GOLDrawCallback	Function
GOLFree	Function
GetObjType	Macro
GetObjID	Macro
GetObjNext	Macro
GOLDeleteObject	Function
GOLDeleteObjectByID	Function
GOLNewList	Macro
GOLGetList	Macro
GOLSetList	Macro
GOLSetFocus	Function
IsObjUpdated	Macro
GOLInit	Function
GOLGetFocus	Macro
GOLCanBeFocused	Function
GOLGetFocusNext	Function
GOLGetFocusPrev	Function
GOLPanelDraw	Macro
GOLPanelDrawTsk	Function
GOLTwoTonePanelDrawTsk	Function

GOL	Messages
GOLMsg	Function

GOLMsgCallback	Function
GOL_MSG	Structure
TRANS_MSG	Enumeration
INPUT_DEVICE_EVENT	Enumeration
INPUT_DEVICE_TYPE	Enumeration
Scan	Key	Codes
SCAN_BS_PRESSED	Macro
SCAN_BS_RELEASED	Macro
SCAN_CR_PRESSED	Macro
SCAN_CR_RELEASED	Macro
SCAN_DEL_PRESSED	Macro
SCAN_DEL_RELEASED	Macro
SCAN_DOWN_PRESSED	Macro
SCAN_DOWN_RELEASED	Macro
SCAN_END_PRESSED	Macro
SCAN_END_RELEASED	Macro
SCAN_HOME_PRESSED	Macro
SCAN_HOME_RELEASED	Macro
SCAN_LEFT_PRESSED	Macro
SCAN_LEFT_RELEASED	Macro
SCAN_PGDOWN_PRESSED	Macro
SCAN_PGDOWN_RELEASED	Macro
SCAN_PGUP_PRESSED	Macro
SCAN_PGUP_RELEASED	Macro
SCAN_RIGHT_PRESSED	Macro
SCAN_RIGHT_RELEASED	Macro
SCAN_SPACE_PRESSED	Macro
SCAN_SPACE_RELEASED	Macro
SCAN_TAB_PRESSED	Macro
SCAN_TAB_RELEASED	Macro
SCAN_UP_PRESSED	Macro
SCAN_UP_RELEASED	Macro

Style	Scheme

GOLCreateScheme	Function
GOLSetScheme	Macro
GOLGetScheme	Macro
GOLGetSchemeDefault	Macro
GOL_SCHEME	Structure
Default	Style	Scheme	Settings
FONTDEFAULT	Variable

GOLFontDefault	Variable
GOL_EMBOSS_SIZE	Macro
GOLSchemeDefault	Variable
RGBConvert	Macro

GOL	Global	Variables
_pDefaultGolScheme	Variable
_pGolObjects	Variable
_pObjectFocused	Variable

Graphics	Primitive	Layer	API
Text	Functions
FONT_HEADER	Structure
FONT_FLASH	Structure
FONT_EXTERNAL	Type
SetFont	Function
GetFontOrientation	Macro
SetFontOrientation	Macro
GFX_Font_GetAntiAliasType	Macro
GFX_Font_SetAntiAliasType	Macro
OutChar	Function
OutText	Function
OutTextXY	Function
GetTextHeight	Function
GetTextWidth	Function
XCHAR	Macro
Anti-Alias	Type
ANTIALIAS_OPAQUE	Macro

ANTIALIAS_TRANSLUCENT	Macro
Gradient
BarGradient	Function
BevelGradient	Function
GFX_GRADIENT_TYPE	Enumeration
GFX_GRADIENT_STYLE	Structure

Line	Functions
Line	Function
LineRel	Macro
LineTo	Macro
SetLineThickness	Macro
SetLineType	Macro
Line	Types
SOLID_LINE	Macro
DASHED_LINE	Macro
DOTTED_LINE	Macro

Line	Size
NORMAL_LINE	Macro
THICK_LINE	Macro

Rectangle	Functions
Bar	Function
Rectangle	Macro
DrawPoly	Function

Circle	Functions
Circle	Macro
FillCircle	Macro
Arc	Function
DrawArc	Function
Bevel	Function
FillBevel	Function
SetBevelDrawType	Macro

Graphic	Cursor

GetX	Macro
GetY	Macro
MoveRel	Macro
MoveTo	Macro

Alpha	Blending	Functions
SetAlpha	Macro
GetAlpha	Macro
AlphaBlendWindow	Function

Bitmap	Functions
PutImage	Macro
PutImagePartial	Function
GetImageHeight	Function
GetImageWidth	Function
BITMAP_HEADER	Structure
Bitmap	Settings
IMAGE_NORMAL	Macro
IMAGE_X2	Macro

Bitmap	Source
External	Memory
ExternalMemoryCallback	Function
EXTERNAL_FONT_BUFFER_SIZE	Macro
Memory	Type

Set	Up	Functions
ClearDevice	Function
InitGraph	Function

GFX_RESOURCE	Enumeration
GFX_IMAGE_HEADER	Structure
IMAGE_FLASH	Structure
IMAGE_RAM	Structure
GFX_EXTDATA	Structure

Display	Device	Driver	Layer	API
Display	Device	Driver	Level	Primitives

GetPixel	Function
PutPixel	Function
GetColor	Macro
SetColor	Macro
GetMaxX	Macro
GetMaxY	Macro
SetClip	Function
SetClipRgn	Function
GetClipBottom	Macro
GetClipLeft	Macro
GetClipRight	Macro
GetClipTop	Macro
CLIP_DISABLE	Macro
CLIP_ENABLE	Macro
TransparentColorEnable	Function
TransparentColorDisable	Macro
GetTransparentColorStatus	Macro
GetTransparentColor	Macro
TRANSPARENT_COLOR_DISABLE	Macro
TRANSPARENT_COLOR_ENABLE	Macro
DisplayBrightness	Function
GetPageAddress	Macro
CopyBlock	Function
CopyPageWindow	Function
CopyWindow	Function
SetActivePage	Function
SetVisualPage	Function
Color	Definition
BLACK	Macro
BLUE	Macro
BRIGHTBLUE	Macro
BRIGHTCYAN	Macro
BRIGHTGREEN	Macro

BRIGHTMAGENTA	Macro
BRIGHTRED	Macro
BRIGHTYELLOW	Macro
BROWN	Macro
CYAN	Macro
DARKGRAY	Macro
GRAY0	Macro
GRAY1	Macro
GRAY2	Macro
GRAY3	Macro
GRAY4	Macro
GRAY5	Macro
GRAY6	Macro
GREEN	Macro
LIGHTBLUE	Macro
LIGHTCYAN	Macro
LIGHTGRAY	Macro
LIGHTGREEN	Macro
LIGHTMAGENTA	Macro
LIGHTRED	Macro
MAGENTA	Macro
RED	Macro
WHITE	Macro
YELLOW	Macro

Display	Device	Driver	Control
IsDeviceBusy	Function
ResetDevice	Function

Advanced	Display	Driver	Features
Alpha	Blending
GFXGetPageOriginAddress	Function
GFXGetPageXYAddress	Function

Transitions
GFXTransition	Function

GFXSetupTransition	Function
GFXExecutePendingTransition	Function
GFXIsTransitionPending	Function
GFX_TRANSITION_DIRECTION	Enumeration
GFX_TRANSITION_TYPE	Enumeration

Double	Buffering
SwitchOffDoubleBuffering	Function
SwitchOnDoubleBuffering	Function
InvalidateRectangle	Function
RequestDisplayUpdate	Function
UpdateDisplayNow	Function

Microchip	Graphics	Controller
Rectangle	Copy	Operations
ROPBlock	Function
Scroll	Function
RCC_SRC_ADDR_CONTINUOUS	Macro
RCC_ROP_0	Macro
RCC_COPY	Macro

Decompressing	DEFLATEd	data
Decompress	Function

Palette	Mode
ClearPaletteChangeError	Function
DisablePalette	Function
EnablePalette	Function
GetPaletteChangeError	Function
IsPaletteEnabled	Function
PaletteInit	Function
RequestPaletteChange	Function
SetPalette	Function
SetPaletteBpp	Function
SetPaletteFlash	Function
PALETTE_FLASH	Structure
PALETTE_HEADER	Structure

PALETTE_EXTERNAL	Type
RequestEntirePaletteChange	Macro
SetEntirePalette	Macro
Palette.h

Set	Up	Display	Interface
GFX_GCLK_DIVIDER	Macro
GFX_EPMP_CS1_BASE_ADDRESS	Macro
GFX_EPMP_CS1_MEMORY_SIZE	Macro
GFX_EPMP_CS2_BASE_ADDRESS	Macro
GFX_EPMP_CS2_MEMORY_SIZE	Macro
GFX_DISPLAY_BUFFER_LENGTH	Macro
GFX_DISPLAY_BUFFER_START_ADDRESS	Macro

External	or	Internal	Memory	and	Palettes
Image	Decoders
Image	Decoders	API
Image	Decoder	Configuration
IMG_SUPPORT_BMP	Macro
IMG_SUPPORT_GIF	Macro
IMG_SUPPORT_JPEG	Macro
IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK	Macro
IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT	Macro
IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	Macro

ImageDecode	Function
ImageDecoderInit	Function
ImageLoopCallbackRegister	Function
ImageDecodeTask	Function
ImageFullScreenDecode	Macro
ImageAbort	Macro
_BMPDECODER	Structure
_GIFDECODER	Structure
_JPEGDECODER	Structure

Miscellaneous	Topics
Starting	a	New	Project

Changing	the	default	Font
Advanced	Font	Features
Using	Primitive	Rendering	Functions	in	Blocking	and	Non-Blocking	Modes
Using	Microchip	Graphics	Module	Color	Look	Up	Table	in	Applications
Converting	Images	to	Use	a	Common	Palette	in	GIMP
How	to	Define	Colors	in	your	Applications
Connecting	RGB	data	bus
Adding	New	Device	Driver

References

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Index
These	are	all	topics	and	symbols	available	in	this	documentation.
_	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	K	|	L	|	M	|	N	|	O	|	P	|	R	|	S	|	T	|	U	|	W	|
X	|	Y

_
_BMPDECODER	structure
_GIFDECODER	structure
_JPEGDECODER	structure
_pDefaultGolScheme	variable
_pGolObjects	variable
_pObjectFocused	variable

A
AC_DISABLED	macro
AC_DRAW	macro
AC_HIDE	macro
AC_PRESSED	macro
AC_TICK	macro
AcCreate	function
AcDraw	function
AcSetHour	function
AcSetMinute	function
AcSetSecond	function
Adding	New	Device	Driver
Advanced	Display	Driver	Features
Advanced	Font	Features
Advanced	Font	Features	Selection
Alpha	Blend	Option
Alpha	Blending
Alpha	Blending	Functions
AlphaBlendWindow	function

GridSetCellState	function
GridSetFocus	function
GridTranslateMsg	function
Group	Box
Group	Box	States
GROUPBOX	structure

H
Hardware	Profile
HardwareProfile.h	Example
HIDE	macro
HIDE_DATA	macro
How	to	Define	Colors	in	your	Applications

I
Image	Compression	Option
Image	Decoder	Configuration
Image	Decoder	Demo
Image	Decoders
Image	Decoders	API
Image	Source	Selection
IMAGE_FLASH	structure
IMAGE_NORMAL	macro
IMAGE_RAM	structure
IMAGE_X2	macro
ImageAbort	macro
ImageDecode	function
ImageDecoderInit	function

Analog	Clock
Analog	Clock	States
ANALOGCLOCK	structure
Anti-Alias	Type
ANTIALIAS_OPAQUE	macro
ANTIALIAS_TRANSLUCENT	macro
Application	Configuration
Arc	function

B
Bar	function
BarGradient	function
Bevel	function
BevelGradient	function
Bitmap	Functions
Bitmap	Settings
Bitmap	Source
BITMAP_HEADER	structure
BLACK	macro
BLUE	macro
BRIGHTBLUE	macro
BRIGHTCYAN	macro
BRIGHTGREEN	macro
BRIGHTMAGENTA	macro
BRIGHTRED	macro
BRIGHTYELLOW	macro
BROWN	macro
BTN_DISABLED	macro
BTN_DRAW	macro
BTN_DRAW_FOCUS	macro
BTN_FOCUSED	macro
BTN_HIDE	macro
BTN_NOPANEL	macro

ImageDecodeTask	function
ImageFullScreenDecode	macro
ImageLoopCallbackRegister	function
IMG_SUPPORT_BMP	macro
IMG_SUPPORT_GIF	macro
IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK
macro
IMG_SUPPORT_JPEG	macro
IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT
macro
IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	macro
InitGraph	function
Input	Device	Selection
INPUT_DEVICE_EVENT	enumeration
INPUT_DEVICE_TYPE	enumeration
Introduction
InvalidateRectangle	function
IsDeviceBusy	function
IsObjUpdated	macro
IsPaletteEnabled	function

K
Key	Command	Types
KEYMEMBER	structure

L
LB_CENTER_ALIGN	macro
LB_DISABLED	macro
LB_DRAW	macro
LB_DRAW_FOCUS	macro
LB_DRAW_ITEMS	macro
LB_FOCUSED	macro
LB_HIDE	macro

BTN_PRESSED	macro
BTN_TEXTBOTTOM	macro
BTN_TEXTLEFT	macro
BTN_TEXTRIGHT	macro
BTN_TEXTTOP	macro
BTN_TOGGLE	macro
BTN_TWOTONE	macro
BtnCreate	function
BtnDraw	function
BtnGetBitmap	macro
BtnGetText	macro
BtnMsgDefault	function
BtnSetBitmap	macro
BtnSetText	function
BtnTranslateMsg	function
Button
Button	States
BUTTON	structure

C
CB_CHECKED	macro
CB_DISABLED	macro
CB_DRAW	macro
CB_DRAW_CHECK	macro
CB_DRAW_FOCUS	macro
CB_FOCUSED	macro
CB_HIDE	macro
CbCreate	function
CbDraw	function
CbGetText	macro
CbMsgDefault	function
CbSetText	function
CbTranslateMsg	function

LB_RIGHT_ALIGN	macro
LB_SINGLE_SEL	macro
LB_STS_REDRAW	macro
LB_STS_SELECTED	macro
LbAddItem	function
LbChangeSel	function
LbCreate	function
LbDelItem	function
LbDelItemsList	function
LbDraw	function
LbGetBitmap	macro
LbGetCount	macro
LbGetFocusedItem	function
LbGetItemList	macro
LbGetSel	function
LbGetVisibleCount	macro
LbMsgDefault	function
LbSetBitmap	macro
LbSetFocusedItem	function
LbSetSel	macro
LbTranslateMsg	function
Library	API
Library	Architecture
LIGHTBLUE	macro
LIGHTCYAN	macro
LIGHTGRAY	macro
LIGHTGREEN	macro
LIGHTMAGENTA	macro
LIGHTRED	macro
Line	function
Line	Functions
Line	Size
Line	Types

CH_3D_ENABLE	macro
CH_BAR	macro
CH_BAR_HOR	macro
CH_CLR0	macro
CH_CLR1	macro
CH_CLR10	macro
CH_CLR11	macro
CH_CLR12	macro
CH_CLR13	macro
CH_CLR14	macro
CH_CLR15	macro
CH_CLR2	macro
CH_CLR3	macro
CH_CLR4	macro
CH_CLR5	macro
CH_CLR6	macro
CH_CLR7	macro
CH_CLR8	macro
CH_CLR9	macro
CH_DISABLED	macro
CH_DONUT	macro
CH_DRAW	macro
CH_DRAW_DATA	macro
CH_HIDE	macro
CH_LEGEND	macro
CH_NUMERIC	macro
CH_PERCENT	macro
CH_PIE	macro
CH_VALUE	macro
ChAddDataSeries	function
Changing	the	default	Font
Chart
Chart	Examples

LineRel	macro
LineTo	macro
List	Box
List	Box	States
List	Item	Status
LISTBOX	structure
LISTITEM	structure

M
MAGENTA	macro
MEB_BOARD	macro
Memory	Type
Meter
Meter	States
METER	structure
METER_TYPE	macro
Microchip	Application	Library	Abbreviations
Microchip	Graphics	Controller
Miscellaneous
Miscellaneous	Topics
MoveRel	macro
MoveTo	macro
MSG_DEFAULT_FUNC	type
MSG_FUNC	type
MTR_ACCURACY	macro
MTR_DISABLED	macro
MTR_DRAW	macro
MTR_DRAW_UPDATE	macro
MTR_HIDE	macro
MTR_RING	macro
MtrCreate	function
MtrDecVal	macro
MtrDraw	function

Chart	States
CHART	structure
CHARTPARAM	structure
ChCreate	function
ChDraw	function
Check	Box	States
Checkbox
CHECKBOX	structure
ChFreeDataSeries	function
ChGetAxisLabelFont	macro
ChGetColorTable	macro
ChGetGridLabelFont	macro
ChGetPercentMax	macro
ChGetPercentMin	macro
ChGetPercentRange	macro
ChGetSampleEnd	macro
ChGetSampleLabel	macro
ChGetSampleRange	macro
ChGetSampleStart	macro
ChGetShowSeriesCount	macro
ChGetShowSeriesStatus	macro
ChGetTitle	macro
ChGetTitleFont	macro
ChGetValueLabel	macro
ChGetValueMax	macro
ChGetValueMin	macro
ChGetValueRange	macro
ChHideSeries	macro
ChRemoveDataSeries	function
ChSetAxisLabelFont	macro
ChSetColorTable	macro
ChSetGridLabelFont	macro
ChSetPercentRange	function

MtrGetVal	macro
MtrIncVal	macro
MtrMsgDefault	function
MtrSetScaleColors	macro
MtrSetTitleFont	macro
MtrSetVal	function
MtrSetValueFont	macro
MtrTranslateMsg	function

N
NORMAL_LINE	macro

O
OBJ_HEADER	structure
Object	Management
Object	Rendering
Object	States
OutChar	function
OutText	function
OutTextXY	function

P
Palette	Mode
Palette.h
PALETTE_EXTERNAL	type
PALETTE_FLASH	structure
PALETTE_HEADER	structure
PaletteInit	function
PB_DISABLED	macro
PB_DRAW	macro
PB_DRAW_BAR	macro
PB_HIDE	macro
PB_VERTICAL	macro

ChSetSampleLabel	macro
ChSetSampleRange	function
ChSetTitle	macro
ChSetTitleFont	macro
ChSetValueLabel	macro
ChSetValueRange	function
ChShowSeries	macro
ChTranslateMsg	function
Circle	Functions
Circle	macro
ClearDevice	function
ClearPaletteChangeError	function
CLIP_DISABLE	macro
CLIP_ENABLE	macro
ClrState	macro
Color	Definition
Color	Table
COLOR_DEPTH	macro
Common	Object	States
Configuration	Setting
Connecting	RGB	data	bus
Converting	Images	to	Use	a	Common	Palette	in	GIMP
CopyBlock	function
CopyPageWindow	function
CopyWindow	function
CYAN	macro

D
DARKGRAY	macro
DASHED_LINE	macro
Data	Series	Status	Settings
DATASERIES	structure
Decompress	function

PbCreate	function
PbDraw	function
PbGetPos	macro
PbGetRange	macro
PbSetPos	function
PbSetRange	function
PbTranslateMsg	function
PIC_SK	macro
PIC24FJ256DA210_DEV_BOARD	macro
PICT_DISABLED	macro
PICT_DRAW	macro
PICT_FRAME	macro
PICT_HIDE	macro
PictCreate	function
PictDraw	function
PictGetBitmap	macro
PictGetScale	macro
PictSetBitmap	macro
PictSetScale	macro
PictTranslateMsg	function
Picture	Control
Picture	States
PICTURE	structure
PMP	Interface
Progress	Bar
Progress	Bar	States
PROGRESSBAR	structure
PutImage	macro
PutImagePartial	function
PutPixel	function

R
Radio	Button

Decompressing	DEFLATEd	data
Default	Style	Scheme	Settings
Demo	Compatibility	Matrix
Demo	Projects
Demo	Summary
Development	Platform	Used
Device	Driver	Options
Dial	States
Digital	Meter
Digital	Meter	States
DIGITALMETER	structure
DISABLED	macro
DisablePalette	function
DISP_DATA_WIDTH	macro
DISP_HOR_BACK_PORCH	macro
DISP_HOR_FRONT_PORCH	macro
DISP_HOR_PULSE_WIDTH	macro
DISP_HOR_RESOLUTION	macro
DISP_INV_LSHIFT	macro
DISP_ORIENTATION	macro
DISP_VER_BACK_PORCH	macro
DISP_VER_FRONT_PORCH	macro
DISP_VER_PULSE_WIDTH	macro
DISP_VER_RESOLUTION	macro
Display	Controller	Used
Display	Device	Driver	Control
Display	Device	Driver	Layer
Display	Device	Driver	Layer	API
Display	Device	Driver	Layer	Configuration
Display	Device	Driver	Level	Primitives
Display	Panel	Used
DisplayBrightness	function
DM_CENTER_ALIGN	macro

Radio	Button	States
RADIOBUTTON	structure
RB_CHECKED	macro
RB_DISABLED	macro
RB_DRAW	macro
RB_DRAW_CHECK	macro
RB_DRAW_FOCUS	macro
RB_FOCUSED	macro
RB_GROUP	macro
RB_HIDE	macro
RbCreate	function
RbDraw	function
RbGetCheck	function
RbGetText	macro
RbMsgDefault	function
RbSetCheck	function
RbSetText	function
RbTranslateMsg	function
RCC_COPY	macro
RCC_DEST_ADDR_CONTINUOUS	macro
RCC_DEST_ADDR_DISCONTINUOUS	macro
RCC_ROP_0	macro
RCC_ROP_1	macro
RCC_ROP_2	macro
RCC_ROP_3	macro
RCC_ROP_4	macro
RCC_ROP_5	macro
RCC_ROP_6	macro
RCC_ROP_7	macro
RCC_ROP_8	macro
RCC_ROP_9	macro
RCC_ROP_A	macro
RCC_ROP_B	macro

DM_DISABLED	macro
DM_DRAW	macro
DM_FRAME	macro
DM_HIDE	macro
DM_RIGHT_ALIGN	macro
DM_UPDATE	macro
DmCreate	function
DmDecVal	macro
DmDraw	function
DmGetValue	macro
DmIncVal	macro
DmSetValue	function
DmTranslateMsg	function
DOTTED_LINE	macro
Double	Buffering
DRAW	macro
DRAW_FOCUS	macro
DRAW_FUNC	type
DRAW_UPDATE	macro
DrawArc	function
DrawPoly	function

E
EB_CARET	macro
EB_CENTER_ALIGN	macro
EB_DISABLED	macro
EB_DRAW	macro
EB_DRAW_CARET	macro
EB_FOCUSED	macro
EB_HIDE	macro
EB_RIGHT_ALIGN	macro
EbAddChar	function
EbCreate	function

RCC_ROP_C	macro
RCC_ROP_D	macro
RCC_ROP_E	macro
RCC_ROP_F	macro
RCC_SOLID_FILL	macro
RCC_SRC_ADDR_CONTINUOUS	macro
RCC_SRC_ADDR_DISCONTINUOUS	macro
RCC_TRANSPARENT_COPY	macro
RDIA_DISABLED	macro
RDIA_DRAW	macro
RDIA_HIDE	macro
RDIA_ROT_CCW	macro
RDIA_ROT_CW	macro
RdiaCreate	function
RdiaDecVal	macro
RdiaDraw	function
RdiaGetVal	macro
RdiaIncVal	macro
RdiaMsgDefault	function
RdiaSetVal	macro
RdiaTranslateMsg	function
Rectangle	Copy	Operations
Rectangle	Functions
Rectangle	macro
RED	macro
References
Release	Notes
RequestDisplayUpdate	function
RequestEntirePaletteChange	macro
RequestPaletteChange	function
ResetDevice	function
RGBConvert	macro
ROPBlock	function

EbDeleteChar	function
EbDraw	function
EbGetText	macro
EbMsgDefault	function
EbSetText	function
EbTranslateMsg	function
Edit	Box
Edit	Box	States
EDITBOX	structure
EnablePalette	function
EXPLORER_16	macro
External	Memory
External	Memory	Buffer
External	or	Internal	Memory	and	Palettes
EXTERNAL_FONT_BUFFER_SIZE	macro
ExternalMemoryCallback	function

F
FillBevel	function
FillCircle	macro
Focus	Support	Selection
FOCUSED	macro
Font	Source	Selection
Font	Type	Selection
FONT_EXTERNAL	type
FONT_FLASH	structure
FONT_HEADER	structure
FONTDEFAULT	variable
FREE_FUNC	type

G
GB_CENTER_ALIGN	macro
GB_DISABLED	macro

Round	Dial
ROUNDDIAL	structure

S
Scan	Key	Codes
SCAN_BS_PRESSED	macro
SCAN_BS_RELEASED	macro
SCAN_CR_PRESSED	macro
SCAN_CR_RELEASED	macro
SCAN_DEL_PRESSED	macro
SCAN_DEL_RELEASED	macro
SCAN_DOWN_PRESSED	macro
SCAN_DOWN_RELEASED	macro
SCAN_END_PRESSED	macro
SCAN_END_RELEASED	macro
SCAN_HOME_PRESSED	macro
SCAN_HOME_RELEASED	macro
SCAN_LEFT_PRESSED	macro
SCAN_LEFT_RELEASED	macro
SCAN_PGDOWN_PRESSED	macro
SCAN_PGDOWN_RELEASED	macro
SCAN_PGUP_PRESSED	macro
SCAN_PGUP_RELEASED	macro
SCAN_RIGHT_PRESSED	macro
SCAN_RIGHT_RELEASED	macro
SCAN_SPACE_PRESSED	macro
SCAN_SPACE_RELEASED	macro
SCAN_TAB_PRESSED	macro
SCAN_TAB_RELEASED	macro
SCAN_UP_PRESSED	macro
SCAN_UP_RELEASED	macro
Scroll	function
Set	Up	Display	Interface

GB_DRAW	macro
GB_HIDE	macro
GB_RIGHT_ALIGN	macro
GbCreate	function
GbDraw	function
GbGetText	macro
GbSetText	function
GbTranslateMsg	function
GetAlpha	macro
GetClipBottom	macro
GetClipLeft	macro
GetClipRight	macro
GetClipTop	macro
GetColor	macro
GetFontOrientation	macro
GetImageHeight	function
GetImageWidth	function
GetMaxX	macro
GetMaxY	macro
GetObjID	macro
GetObjNext	macro
GetObjType	macro
GetPageAddress	macro
GetPaletteChangeError	function
GetPixel	function
GetState	macro
GetTextHeight	function
GetTextWidth	function
Getting	Started
GetTransparentColor	macro
GetTransparentColorStatus	macro
GetX	macro
GetY	macro

Set	Up	Functions
SetActivePage	function
SetAlpha	macro
SetBevelDrawType	macro
SetClip	function
SetClipRgn	function
SetColor	macro
SetEntirePalette	macro
SetFont	function
SetFontOrientation	macro
SetLineThickness	macro
SetLineType	macro
SetPalette	function
SetPaletteBpp	function
SetPaletteFlash	function
SetState	macro
SetVisualPage	function
SHOW_DATA	macro
SLD_DISABLED	macro
SLD_DRAW	macro
SLD_DRAW_FOCUS	macro
SLD_DRAW_THUMB	macro
SLD_FOCUSED	macro
SLD_HIDE	macro
SLD_SCROLLBAR	macro
SLD_VERTICAL	macro
SldCreate	function
SldDecPos	macro
SldDraw	function
SldGetPage	macro
SldGetPos	macro
SldGetRange	macro
SldIncPos	macro

GFX_DISPLAY_BUFFER_LENGTH	macro
GFX_DISPLAY_BUFFER_START_ADDRESS	macro
GFX_EPMP_CS1_BASE_ADDRESS	macro
GFX_EPMP_CS1_MEMORY_SIZE	macro
GFX_EPMP_CS2_BASE_ADDRESS	macro
GFX_EPMP_CS2_MEMORY_SIZE	macro
GFX_EXTDATA	structure
GFX_Font_GetAntiAliasType	macro
GFX_Font_SetAntiAliasType	macro
GFX_free	macro
GFX_GCLK_DIVIDER	macro
GFX_GRADIENT_STYLE	structure
GFX_GRADIENT_TYPE	enumeration
GFX_IMAGE_HEADER	structure
GFX_LCD_CSTN	macro
GFX_LCD_MSTN	macro
GFX_LCD_OFF	macro
GFX_LCD_TFT	macro
GFX_LCD_TYPE	macro
GFX_malloc	macro
GFX_PICTAIL_LCC	macro
GFX_PICTAIL_V3	macro
GFX_PICTAIL_V3E	macro
GFX_RESOURCE	enumeration
GFX_TRANSITION_DIRECTION	enumeration
GFX_TRANSITION_TYPE	enumeration
GFX_USE_DISPLAY_CONTROLLER_DMA	macro
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	macro
GFX_USE_DISPLAY_CONTROLLER_S1D13517	macro
GFX_USE_DISPLAY_CONTROLLER_SSD1926	macro
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	macro
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	macro
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	macro

SldMsgDefault	function
SldSetPage	function
SldSetPos	function
SldSetRange	function
SldTranslateMsg	function
Slider	States
SLIDER	structure
Slider/Scroll	Bar
SOLID_LINE	macro
ST_CENTER_ALIGN	macro
ST_DISABLED	macro
ST_DRAW	macro
ST_FRAME	macro
ST_HIDE	macro
ST_RIGHT_ALIGN	macro
ST_UPDATE	macro
Starting	a	New	Project
Static	Text
Static	Text	States
STATICTEXT	structure
StCreate	function
StDraw	function
StGetText	macro
STN_DISPLAY_WIDTH	macro
STN_DISPLAY_WIDTH_16	macro
STN_DISPLAY_WIDTH_4	macro
STN_DISPLAY_WIDTH_8	macro
StSetText	function
StTranslateMsg	function
Style	Scheme
SwitchOffDoubleBuffering	function
SwitchOnDoubleBuffering	function

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
macro
GFXExecutePendingTransition	function
GFXGetPageOriginAddress	function
GFXGetPageXYAddress	function
GFXIsTransitionPending	function
GFXSetupTransition	function
GFXTransition	function
GOL	Global	Variables
GOL	Messages
GOL	Objects
GOL_EMBOSS_SIZE	macro
GOL_MSG	structure
GOL_OBJ_TYPE	enumeration
GOL_SCHEME	structure
GOLAddObject	function
GOLCanBeFocused	function
GOLCreateScheme	function
GOLDeleteObject	function
GOLDeleteObjectByID	function
GOLDraw	function
GOLDrawCallback	function
GOLDrawComplete	macro
GOLFindObject	function
GOLFontDefault	variable
GOLFree	function
GOLGetFocus	macro
GOLGetFocusNext	function
GOLGetFocusPrev	function
GOLGetList	macro
GOLGetScheme	macro
GOLGetSchemeDefault	macro
GOLInit	function

T
TE_DELETE_COM	macro
TE_DISABLED	macro
TE_DRAW	macro
TE_ECHO_HIDE	macro
TE_ENTER_COM	macro
TE_HIDE	macro
TE_KEY_PRESSED	macro
TE_SPACE_COM	macro
TE_UPDATE_KEY	macro
TE_UPDATE_TEXT	macro
TeAddChar	function
TeClearBuffer	function
TeCreate	function
TeCreateKeyMembers	function
TeDelKeyMembers	function
TeDraw	function
TeGetBuffer	macro
TeGetKeyCommand	function
TeIsKeyPressed	function
TeMsgDefault	function
TeSetBuffer	function
TeSetKeyCommand	function
TeSetKeyText	function
TeSpaceChar	function
TeTranslateMsg	function
Text	Entry
Text	Functions
TextEntry	States
TEXTENTRY	structure
THICK_LINE	macro
TRANS_MSG	enumeration

GOLMsg	function
GOLMsgCallback	function
GOLNewList	macro
GOLPanelDraw	macro
GOLPanelDrawTsk	function
GOLRedraw	macro
GOLRedrawRec	function
GOLSchemeDefault	variable
GOLSetFocus	function
GOLSetList	macro
GOLSetScheme	macro
GOLTwoTonePanelDrawTsk	function
Gradient
Gradient	Bar	Rendering
Graphic	Cursor
Graphics	Library	Configuration
Graphics	Object	Layer
Graphics	Object	Layer	API
Graphics	Object	Layer	Configuration
Graphics	Object	Selection
Graphics	PICtail	Used
Graphics	Primitive	Layer
Graphics	Primitive	Layer	API
Graphics	Primitive	Layer	Configuration
GraphicsConfig.h	Example
GRAY0	macro
GRAY1	macro
GRAY2	macro
GRAY3	macro
GRAY4	macro
GRAY5	macro
GRAY6	macro
GREEN	macro

Transitions
Transparent	Color	Feature	in	PutImage()
TRANSPARENT_COLOR_DISABLE	macro
TRANSPARENT_COLOR_ENABLE	macro
TransparentColorDisable	macro
TransparentColorEnable	function

U
UPDATE_HOUR	macro
UPDATE_MINUTE	macro
UPDATE_SECOND	macro
UpdateDisplayNow	function
USE_16BIT_PMP	macro
USE_8BIT_PMP	macro
USE_ALPHABLEND	macro
USE_ALPHABLEND_LITE	macro
USE_ANALOGCLOCK	macro
USE_ANTIALIASED_FONTS	macro
USE_BITMAP_EXTERNAL	macro
USE_BITMAP_FLASH	macro
USE_BITMAP_NO_PADDING_LINE	macro
USE_BUTTON	macro
USE_BUTTON_MULTI_LINE	macro
USE_CHECKBOX	macro
USE_COMP_IPU	macro
USE_COMP_RLE	macro
USE_CUSTOM	macro
USE_DIGITALMETER	macro
USE_DOUBLE_BUFFERING	macro
USE_EDITBOX	macro
USE_FOCUS	macro
USE_FONT_EXTERNAL	macro
USE_FONT_FLASH	macro

Grid
Grid	Item	States
Grid	States
GRID	structure
GRID_DISABLED	macro
GRID_DRAW_ALL	macro
GRID_DRAW_ITEMS	macro
GRID_FOCUSED	macro
GRID_HIDE	macro
GRID_OUT_OF_BOUNDS	macro
GRID_SHOW_BORDER_ONLY	macro
GRID_SHOW_FOCUS	macro
GRID_SHOW_LINES	macro
GRID_SHOW_SEPARATORS_ONLY	macro
GRID_SUCCESS	macro
GridClearCellState	function
GridCreate	function
GridDraw	function
GridFreeItems	function
GridGetCell	function
GridGetFocusX	macro
GridGetFocusY	macro
GRIDITEM	structure
GRIDITEM_DRAW	macro
GRIDITEM_IS_BITMAP	macro
GRIDITEM_IS_TEXT	macro
GRIDITEM_SELECTED	macro
GRIDITEM_TEXTBOTTOM	macro
GRIDITEM_TEXTLEFT	macro
GRIDITEM_TEXTRIGHT	macro
GRIDITEM_TEXTTOP	macro
GridMsgDefault	function
GridSetCell	function

USE_GFX_FONT_IN_PROGRAM_SECTION	macro
USE_GOL	macro
USE_GRADIENT	macro
USE_GROUPBOX	macro
USE_KEYBOARD	macro
USE_LISTBOX	macro
USE_METER	macro
USE_MULTIBYTECHAR	macro
USE_NONBLOCKING_CONFIG	macro
USE_PALETTE	macro
USE_PALETTE_EXTERNAL	macro
USE_PICTURE	macro
USE_PROGRESSBAR	macro
USE_RADIOBUTTON	macro
USE_ROUNDDIAL	macro
USE_SLIDER	macro
USE_STATICTEXT	macro
USE_TEXTENTRY	macro
USE_TOUCHSCREEN	macro
USE_TRANSPARENT_COLOR	macro
USE_UNSIGNED_XCHAR	macro
USE_WINDOW	macro
Using	Microchip	Graphics	Module	Color	Look	Up	Table	in
Applications
Using	Primitive	Rendering	Functions	in	Blocking	and	Non-
Blocking	Modes

W
WHITE	macro
Window
Window	States
WINDOW	structure
WND_DISABLED	macro

WND_DRAW	macro
WND_DRAW_CLIENT	macro
WND_DRAW_TITLE	macro
WND_FOCUSED	macro
WND_HIDE	macro
WND_TITLECENTER	macro
WndCreate	function
WndDraw	function
WndGetText	macro
WndSetText	function
WndTranslateMsg	function

X
XCHAR	macro

Y
YELLOW	macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Contents	|	Index
	

	
	
	

Microchip	Graphics	Library
	
	
	
	

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Demo	Projects

Topics

Name	 Description	

Demo	Summary	 This	is	the	current	list	of	demo	projects	released
with	the	Graphics	Library.	

Microchip
Application
Library
Abbreviations	

Summary	of	Microchip	Applications	Library
Abbreviations	used.	

Demo
Compatibility
Matrix	

Refer	to	the	Demo	Compatibility	matrix	located	in
the	<install
directory>/Microchip/Graphics/Documents/Getting
Started/Getting	Started	-	Demo	Compatibility
Matrix.htm	for	details.	

Demo	Projects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Library	Architecture

Topics

Name	 Description	

Graphics	Object	Layer	 Describes	the	Graphics	Object	Layer	(GOL)
structure	and	its	components.	

Graphics	Primitive
Layer	

Describes	the	Graphics	Primitive	Layer
structure	and	its	components.	

Display	Device	Driver
Layer	

Describes	the	Display	Driver	Layer	structure
and	its	components.	

Library	Architecture

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Object	Layer

Topics

Name	 Description	

Object	Rendering	 Describes	the	difference	between	the
Blocking	or	Non-Blocking	configuration
when	rendering	Objects.	

Library	Architecture	>	Graphics	Object	Layer

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Library	API

Topics

Name	 Description	

Graphics	Library
Configuration	

The	Graphics	Library	can	be	customized	by
adding	or	specifying	the	compile	time
options	located	in	the	application	code
named	GraphicsConfig.h	or	the
HardwareProfile.h	files.	The	following
compile	time	options	are	supported	by	the
library.	

Graphics	Object	Layer
API	

Description	of	Graphics	Object	Layer	API.	

Graphics	Primitive
Layer	API	

Description	of	Graphics	Primitive	Layer
API.	

Display	Device	Driver
Layer	API	

Description	of	Display	Device	Driver	Layer
API.	

Library	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Library	Configuration

Topics

Name	 Description	

Graphics	Object	Layer
Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Object
Layer.	

Graphics	Primitive
Layer	Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Primitive
Layer.	

Display	Device	Driver
Layer	Configuration	

The	following	compile	time	options
configures	the	Graphics	Library's	Display
Device	Driver	Layer.	The	choices	are	based
on	the	specific	hardware	used.
See	Hardware	Profile	for	more	options.	

Application
Configuration	

	

Hardware	Profile	 These	functions	and	macros	are	used	to
determine	hardware	profile	settings	on	the
chosen	PIC	microcontroller	and	hardware
such	as	demo	boards	used.	

Library	API	>	Graphics	Library	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Object	Layer	Configuration

Topics

Name	 Description	

Input	Device	Selection	 The	Graphics	Library	comes	with	two	pre-
defined	user	interface.	These	are	the:

Keyboard	interface
Touchscreen	interface

Enabling	one	or	both	requires	the
declaration	of	the	compile	switch	macros	in
the	GraphicsConfig.h	file.
GOL	widgets	which	supports	the	enabled
input	device's	messages	will	respond	to	the
user	inputs.
For	Example:
When	using	Button	Widget.
#define	USE_TOUCHSCREEN	-	will	enable
the	buttons	response	to	user	touch	on	the
button	widget.	The	button	will	automatically
be	drawn	with	a	pressed	state	when
pressed	and	release	state	when	user
removes	the	touch	on	the	screen.

The	compile	option	selects	the	input	devices
used	by...	more	

Focus	Support
Selection	

This	compile	option	allows	keyboard	input
focus.	GOLSetFocus(),	GOLGetFocus(),
GOLCanBeFocused(),	GOLGetFocusNext()
functions	will	be	available.	Focus	is	also
changed	by	touch	screen.
The	USE_FOCUS	option	is	located	in	the

GraphicsConfig.h	header	file.	

Graphics	Object
Selection	

These	compile	options	selects	objects	used.
Remove	definitions	for	unused	objects	to
reduce	code	size.
The	USE_GOL	and	USE_OBJECT	options
are	located	in	the	GraphicsConfig.h	header
file.	USE_GOL	should	be	included	if	any	of
the	objects	are	to	be	used.	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Input	Device	Selection	Macros
Input	Device	Selection

Macros

Name	 Description	

USE_KEYBOARD	 Input	devices	macros	that	defines	the
messages	that	Objects	will	process.	The
following	definitions	indicate	the	usage	of
the	different	input	devices:

USE_TOUCHSCREEN	-	enables	the
touch	screen	support.
USE_KEYBOARD	-	enables	the	key
board	support.

Define	in	GraphicsConfig.h	

USE_TOUCHSCREEN	 Input	devices	macros	that	defines	the
messages	that	Objects	will	process.	The
following	definitions	indicate	the	usage	of
the	different	input	devices:

USE_TOUCHSCREEN	-	enables	the
touch	screen	support.
USE_KEYBOARD	-	enables	the	key
board	support.

Define	in	GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Input	Device	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Focus	Support	Selection	Macros
Focus	Support	Selection

Macros

Name	 Description	

USE_FOCUS	 Keyboard	control	on	some	objects	can	be
used	by	enabling	the	GOL	Focus
(USE_FOCUS)support.	Define	this	in
GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Focus	Support	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Graphics	Object	Selection	Macros
Graphics	Object	Selection

Macros

Name	 Description	

USE_ANALOGCLOCK	 Enable	Analog	Clock	Object.	

USE_BUTTON	 Enable	Button	Object.	

USE_BUTTON_MULTI_LINE	 Enable	Multi-Line	Button	Object	

USE_CHECKBOX	 Enable	Checkbox	Object.	

USE_DIGITALMETER	 Enable	DigitalMeter	Object.	

USE_EDITBOX	 Enable	Edit	Box	Object.	

USE_GROUPBOX	 Enable	Group	Box	Object.	

USE_LISTBOX	 Enable	List	Box	Object.	

USE_METER	 Enable	Meter	Object.	

USE_PICTURE	 Enable	Picture	Object.	

USE_PROGRESSBAR	 Enable	Progress	Bar	Object.	

USE_RADIOBUTTON	 Enable	Radio	Button	Object.	

USE_ROUNDDIAL	 Enable	Dial	Object.	

USE_SLIDER	 Enable	Slider	or	Scroll	Bar	Object.	

USE_STATICTEXT	 Enable	Static	Text	Object.	

USE_WINDOW	 Enable	Window	Object.	

USE_CUSTOM	 Enable	Custom	Control	Object	(an
example	to	create	customized
Object).	

USE_GOL	 Enable	Graphics	Object	Layer.	

USE_TEXTENTRY	 Enable	TextEntry	Object.	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Object	Layer
Configuration	>	Graphics	Object	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Primitive	Layer	Configuration

Topics

Name	 Description	

Image	Compression
Option	

These	compile	options	to	set	if	the	images
used	for	OutImage()	are	RLE	compressed
or	IPU	compressed.	

Font	Type	Selection	 This	compile	option	selects	if	the	support	for
unicode	fonts,	unsigned	char	or	the	default
signed	char	type	fonts.

There	are	three	types	of	font	(characters)
that	can	be	used	in	the	Graphics	Library.
This	gives	the	user	the	option	to	implement
multi-language	application	or	use	the	default
signed	char	type.
	

Advanced	Font
Features	Selection	

This	compile	option	enables	the	advanced
font	features.	

Gradient	Bar
Rendering	

This	compile	option	enables	the	usage	of
the	Gradient	Bar	and	Bevel	function	in	the
Primitive	Layer.	

Transparent	Color
Feature	in	PutImage()	

This	compile	option	enables	the	transparent
color	feature	in	PutImage().	

Alpha	Blend	Option	 This	compile	option	enables	the	Alpha-
Blend	feature	in	Primitive	Layer.	

External	Memory see	EXTERNAL_FONT_BUFFER_SIZE	

Buffer	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Compression	Option	Macros
Image	Compression	Option

Macros

Name	 Description	

USE_COMP_IPU	 To	enable	support	for	DEFLATE
compressed	images	for	PutImage().	When
this	macro	is	enabled,	the	PutImage()
function	will	be	able	to	process	images
generated	by	the	Graphics	Resource
Converter	(GRC)	that	are	compressed	using
the	DEFLATE	algorithm.	PutImage()	will
need	the	IPU	module	of	the	Microchip
Graphics	Module	to	decompress.	Enable
this	feature	only	when	the	driver	features
the	IPU	module	(example:
PIC24FJ2456DA210).	Define	this	in
GraphicsConfig.h	

USE_COMP_RLE	 To	enable	support	for	RLE	compressed
images	for	PutImage().	When	this	macro	is
enabled,	the	PutImage()	function	will	be
able	to	process	images	generated	by	the
Graphics	Resource	Converter	(GRC)	that
are	RLE	compressed.	Define	this	in
GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Image	Compression	Option

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Font	Type	Selection	Macros
Font	Type	Selection

Macros

Name	 Description	

USE_MULTIBYTECHAR	 To	enable	support	for	unicode	fonts,
USE_MULTIBYTECHAR	must	be
defined.	This	sets	the	XCHAR	definition
(0-2^16	range).	See	XCHAR	for	details.
Define	this	in	GraphicsConfig.h	

USE_UNSIGNED_XCHAR	 To	enable	support	for	unsigned
characters	data	type	for	fonts,
USE_UNSIGNED_XCHAR	must	be
defined.	This	sets	the	XCHAR	definition
(0-255	range).	See	XCHAR	for	details.
Define	this	in	GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Font	Type	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Advanced	Font	Features	Selection	Macros
Advanced	Font	Features	Selection

Macros

Name	 Description	

USE_ANTIALIASED_FONTS	 To	enable	support	for	Anti-aliased
fonts.	Use	this	feature	if	the	font	table
generated	through	the	"Graphics
Resource	Converter"	tool	has	the
anti-aliasing	enabled.	Define	this	in
GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Advanced	Font	Features	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Gradient	Bar	Rendering	Macros
Gradient	Bar	Rendering

Macros

Name	 Description	

USE_GRADIENT	 To	enable	support	for	Gradient	bars	and
bevel	primitives.	Define	this	in
GraphicsConfig.h.	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Gradient	Bar	Rendering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Transparent	Color	Feature	in	PutImage()	Macros
Transparent	Color	Feature	in	PutImage()

Macros

Name	 Description	

USE_TRANSPARENT_COLOR	 To	enable	support	for	transparent
color	in	PutImage().	Enabling	this
macro	enables	the	use	of	a
transparent	color	(set	by
TransparentColorEnable())	in
rendering	images	by	PutImage().
When	a	pixel	in	the	image	matches
the	transparent	color	set,	the	pixel
is	not	rendered	to	the	screen.	This
is	useful	in	rendering	rounded
icons	or	images	to	the	screen	with
a	complex	background.	Define	this
in	GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Transparent	Color	Feature	in	PutImage()

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Alpha	Blend	Option	Macros
Alpha	Blend	Option

Macros

Name	 Description	

USE_ALPHABLEND_LITE	 To	enable	support	for	Alpha	Blending	on
the	Primitive	Layer.	This	feature	is	only
limited	on	Alpha-Blending	a	Bar()	of	a
specified	color	(set	by	SetColor()	to	the
destination	defined	by	the	parameters	of
the	Bar()	function	call.	The	Alpha	level
used	is	set	by	SetAlpha().	Define	this	in
GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Graphics	Primitive	Layer
Configuration	>	Alpha	Blend	Option

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Device	Driver	Layer	Configuration	Macros
Display	Device	Driver	Layer	Configuration

Macros

Name	 Description	

USE_ALPHABLEND	 To	enable	support	for	Alpha	Blending.
Use	this	feature	only	if	the	display
driver	used	can	support	alpha
blending.	Define	this	in
GraphicsConfig.h	

USE_DOUBLE_BUFFERING	 To	enable	support	for	double
buffering.	Use	this	feature	only	if	the
display	driver	used	can	support
double	buffering.	Define	this	in
GraphicsConfig.h	

GFX_LCD_TYPE	 Sets	the	type	of	display	glass	used.
Define	this	in	the	Hardware	Profile.

#define	GFX_LCD_TYPE
GFX_LCD_TFT	-	sets	type	TFT
display
#define	GFX_LCD_TYPE
GFX_LCD_CSTN	-	sets	type
color	STN	display
#define	GFX_LCD_TYPE
GFX_LCD_MSTN	-	sets	type
mon	STN	display
#define	GFX_LCD_TYPE
GFX_LCD_OFF	-	display	is
turned	off

	

STN_DISPLAY_WIDTH	 Sets	the	STN	glass	data	width.
Define	this	in	the	Hardware	Profile.

#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_4	-	use
4-bit	wide	interface
#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_8	-	Use
8-bit	wide	interface
#define	STN_DISPLAY_WIDTH
STN_DISPLAY_WIDTH_16	-
Use	16-bit	wide	interface

	

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GFX_LCD_TYPE	Macro	Macros
GFX_LCD_TYPE	Macro

Macros

Name	 Description	

GFX_LCD_CSTN	 Type	Color	STN	Display	

GFX_LCD_MSTN	 Type	Mono	STN	Display	

GFX_LCD_OFF	 display	is	turned	off	

GFX_LCD_TFT	 Type	TFT	Display	

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	GFX_LCD_TYPE	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

STN_DISPLAY_WIDTH	Macro	Macros
STN_DISPLAY_WIDTH	Macro

Macros

Name	 Description	

STN_DISPLAY_WIDTH_16	 display	interface	is	16	bits	wide	

STN_DISPLAY_WIDTH_4	 display	interface	is	4	bits	wide	

STN_DISPLAY_WIDTH_8	 display	interface	is	8	bits	wide	

Library	API	>	Graphics	Library	Configuration	>	Display	Device	Driver
Layer	Configuration	>	STN_DISPLAY_WIDTH	Macro

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Application	Configuration

Topics

Name	 Description	

Configuration
Setting	

This	selects	the	configuration	of	the	library.
When	Non-blocking	configuration	is	selected,
state	machine	based	rendering	is	used	to
perform	object	rendering.
When	blocking	configuration	is	used,	this	line
MUST	be	commented.	In	this	case	object
rendering	will	not	exit	until	the	object	is	fully
rendered.
The	USE_NONBLOCKING_CONFIG	option	is
located	in	the	GraphicsConfig.h	header	file.	

Font	Source
Selection	

Font	data	can	be	placed	in	multiple	locations.
Set	these	options	in	the	GraphicsConfig.h
header	file.
-	USE_FONT_FLASH	-	Font	in	internal	flash
memory	support.	When	placed	in	internal
flash	memory,	it	can	further	classified	to	be
placed	in	program	flash	by	adding
USE_GFX_FONT_IN_PROGRAM_SECTION.
-	USE_FONT_EXTERNAL	-	Font	in	external
memory	support.	Use	this	for	fonts	located	in
external	memory	like	SPI	Flash	or	external
memory	mapped	to	Extended	Data	Space.	

Image	Source
Selection	

Similar	to	Font	data	bitmaps	can	also	be
placed	in	two	locations.	One	is	in	FLASH
memory	and	the	other	is	from	external
memory.	Definining	one	or	both	enables	the
support	for	bitmaps	located	in	internal	flash

and	external	memory.
The	USE_BITMAP_FLASH	and
USE_BITMAP_EXTERNAL	options	are
located	in	the	GraphicsConfig.h	header	file.	

Miscellaneous	 This	contains	miscellaneous	macros	and
functions	that	can	be	redefined	for	various
system	support	such	as	Operating	System
defined	functions.	

GraphicsConfig.h
Example	

This	is	an	example	of	the	GraphicsConfig.h
file	implementation:
	

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Configuration	Setting	Macros
Configuration	Setting

Macros

Name	 Description	

USE_NONBLOCKING_CONFIG	 Blocking	and	Non-Blocking
configuration	selection.	To	enable
non-blocking	configuration
USE_NONBLOCKING_CONFIG
must	be	defined.	If	this	is	not
defined,	blocking	configuration	is
assumed.	Define	this	in
GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Configuration	Setting

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Font	Source	Selection	Macros
Font	Source	Selection

Macros

Name	 Description	

USE_FONT_FLASH	 Font	data	can	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is
from	external	memory.	Definining	one	or	both
enables	the	support	for	fonts	located	in
internal	flash	and	external	memory.	Define
this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal
flash	memory	support.
USE_FONT_EXTERNAL
external	memory	support	(including
external	memory	mapped	to	EDS).

	

USE_FONT_EXTERNAL	 Font	data	can	be	placed	in	two	locations.
One	is	in	FLASH	memory	and	the	other	is
from	external	memory.	Definining	one	or	both
enables	the	support	for	fonts	located	in
internal	flash	and	external	memory.	Define
this	in	GraphicsConfig.h

USE_FONT_FLASH	-	Font	in	internal
flash	memory	support.
USE_FONT_EXTERNAL
external	memory	support	(including
external	memory	mapped	to	EDS).

	

USE_GFX_FONT_IN_PROGRAM_SECTION	 For	XC16	or	C30	builds	only:	When	placing

fonts	in	internal	data	memory,	there	is	a	32K
limit	for	data	space.	The	total	data	should	not
exceed	32K.	When	this	is	unavoidable,	the
macro
USE_GFX_FONT_IN_PROGRAM_SECTION
will	relocate	the	font	in	program	space.	This
will	remove	the	32K	restriction	but	at	the
expense	of	slower	access.	Define	this	in
GraphicsConfig.h	to	enable	the	font	to	be
placed	in	program	space.	

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Font	Source	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Source	Selection	Macros
Image	Source	Selection

Macros

Name	 Description	

USE_BITMAP_FLASH	 Similar	to	Font	data	bitmaps	can	also
be	placed	in	two	locations.	One	is	in
FLASH	memory	and	the	other	is	from
external	memory.	Definining	one	or
both	enables	the	support	for	bitmaps
located	in	internal	flash	and	external
memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images
located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-
Images	located	in	external	memory
(including	external	memory
mapped	to	EDS)..

	

USE_BITMAP_EXTERNAL	 Similar	to	Font	data	bitmaps	can	also
be	placed	in	two	locations.	One	is	in
FLASH	memory	and	the	other	is	from
external	memory.	Definining	one	or
both	enables	the	support	for	bitmaps
located	in	internal	flash	and	external
memory.	Define	this	in
GraphicsConfig.h

USE_BITMAP_FLASH	-	Images
located	in	internal	flash	memory.
USE_BITMAP_EXTERNAL	-

Images	located	in	external	memory
(including	external	memory
mapped	to	EDS)..

	

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Image	Source	Selection

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Miscellaneous	Macros
Miscellaneous

Macros

Name	 Description	

USE_BITMAP_NO_PADDING_LINE	 When	this	macro	is	enabled,
bitmap	images	used	has	no
padding.	Define	this	in
GraphicsConfig.h.	When
converting	images	for	use	in
the	Graphics	Library,	the
Graphics	Resource	Converter
has	an	option	to	set	the
images	to	be	padded	or	not
padded.	When	bitmaps	are
padded,	this	means	that	each
horizontal	line	will	start	on	a
byte	boundary.	Unpadded
bitmaps	allows	the	least
resource	space	for	a	bitmap.
Unpadded	bitmaps	also	allows
support	for	display	controllers
with	windowing	and	auto-
increment	features.	

USE_PALETTE_EXTERNAL	 Palettes	can	also	be	specified
to	reside	in	external	memory
similar	to	fonts	and	images.
Use	this	when	the	palette	is
located	in	external	memory.
Define	this	in
GraphicsConfig.h	

USE_PALETTE	 Using	Palettes,	different	colors

can	be	used	with	the	same	bit
depth.	Define	this	in
GraphicsConfig.h	

COLOR_DEPTH	 Specifies	the	color	depth	used
in	the	application	defined	in
GraphicsConfig.h.	

GFX_free	 When	using	Operating
Systems	(OS),	define	the	OS
specific	malloc()	and	free()
functions	for	compatibility	with
the	OS	based	systems.	Define
these	in	GraphicsConfig.h	

GFX_malloc	 When	using	Operating
Systems	(OS),	define	the	OS
specific	malloc()	and	free()
functions	for	compatibility	with
the	OS	based	systems.	Define
these	in	GraphicsConfig.h	

Library	API	>	Graphics	Library	Configuration	>	Application	Configuration
>	Miscellaneous

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Hardware	Profile

Topics

Name	 Description	

PMP	Interface	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).	

Development	Platform
Used	

Specifies	the	Development	Platform	used
for	the	Microchip	Graphics	Library	demos.	

Graphics	PICtail	Used	 Specifies	the	Graphics	PICtail	Display	Panel
used.	

Display	Controller
Used	

Specifies	the	controller	used	in	the	Graphics
Library	supplied	demo.	

Display	Panel	Used	 Specifies	the	Graphics	Display	Panel	used.	

Device	Driver	Options	 The	options	Graphics	Hardware	Platform,
DISPLAY_CONTROLLER	and
DISPLAY_PANEL	are	specific	to	the
hardware	used.	The	Graphics	Hardware
Platform	selects	the	Graphics	PICtail™	Plus
Board	version,	PIC24FJ256DA210
Development	Board	or	any	other	Microchip
demo	boards	for	the	Graphics	Library.
Currently	there	are	two	Graphics	PICtail™
Plus	Board	versions	supported	as	shown	in
the	Getting	Started	section.
The	rest	of	the	settings	are	used	to	specify
the	the	display	parameters	when	using	an
RGB	type	display	controller	such	as

SSD1906	and	SSD1926	from	Solomon
Systech.	The	table	below	summarizes	the
generic	parameters	found	in	RGB	type
display	controllers	and	when	each	type	is
used....	more	

HardwareProfile.h
Example	

This	is	an	example	of	the	HardwareProfile.h
file	implementation:
	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

PMP	Interface	Macros
PMP	Interface

Macros

Name	 Description	

USE_8BIT_PMP	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to
PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface
to	PMP	or	EPMP

	

USE_16BIT_PMP	 Specifies	the	interface	type	to	the	Parallel
Master	Port	(PMP)	or	Enhanced	Parallel
Master	Port	(EPMP).

USE_8BIT_PMP	-	Use	8-bit	interface	to
PMP	or	EPMP
USE_16BIT_PMP	-	Use	16-bit	interface
to	PMP	or	EPMP

	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	PMP
Interface

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Development	Platform	Used	Macros
Development	Platform	Used

Macros

Name	 Description	

EXPLORER_16	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

PIC24FJ256DA210_DEV_BOARD	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD

-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

MEB_BOARD	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

PIC_SK	 Specifies	the	Development	Platform
used	for	the	Microchip	Graphics
Library	demos.

EXPLORER_16	-	Using	the
Explorer	16	Development	Board
(DM240001).
PIC24FJ256DA210_DEV_BOARD
-	Using	the	PIC24FJ256DA210
Development	Board	(DM240312).
MEB_BOARD	-	Using	the	Multi-
Media	Expansion	Board
(DM320005).
PIC_SK	-	Using	PIC32	or	dsPIC
Starter	Kit	(examples:	PIC32
Starter	Kit	(DM320001),	PIC32
USB	Starter	Kit	II	(DM320003-2),
PIC32	Ethernet	Starter	Kit
(DM320004)).

	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Development	Platform	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Graphics	PICtail	Used	Macros
Graphics	PICtail	Used

Macros

Name	 Description	

GFX_PICTAIL_LCC	 Specifies	the	Graphics	PICtail	Display	Panel
used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

GFX_PICTAIL_V3	 Specifies	the	Graphics	PICtail	Display	Panel
used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

GFX_PICTAIL_V3E	 Specifies	the	Graphics	PICtail	Display	Panel

used.

GFX_PICTAIL_V3	-	Graphics	LCD
Controller	PICtail	Plus	SSD1926	Board
(AC164127-5)
GFX_PICTAIL_V3E	-	Graphics	LCD
Controller	PICtail	Plus	S1D13517
Board	(AC164127-7)
GFX_PICTAIL_LCC	-	Low	Cost
Controllerless	(LCC)	Graphics
PICtailâ„¢	Plus	Board	(AC164144)

	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Graphics	PICtail	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Controller	Used	Macros
Display	Controller	Used

Macros

Name	 Description	

GFX_USE_DISPLAY_CONTROLLER_DMA	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517

Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_S1D13517	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

GFX_USE_DISPLAY_CONTROLLER_SSD1926	 Specifies	the	controller	used	in	the	Graphics	Library
supplied	demo.

GFX_USE_DISPLAY_CONTROLLER_DMA	-	Using
the	PIC32	Low	Cost	Controllerless	(LCC)	solution.
GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210
-	Use	the	Microchip	Graphics	Module	that	comes	with
the	PIC	Microcontroller	(PIC24FJ256DA210	Device
Family)
GFX_USE_DISPLAY_CONTROLLER_SSD1926
Using	the	Solomon	Systech	SSD1926	Display
Controller.
GFX_USE_DISPLAY_CONTROLLER_S1D13517
Using	the	Epson	S1D13517	Display	Controller.

	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Controller	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Panel	Used	Macros
Display	Panel	Used

Macros

Name	 Description	

GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_640480_8_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_800480_33_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)

GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E	 Specifies	the	Graphics	Display	Panel	used.

GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E
-	3.2	inch	QVGA	Truly	TFT	Display	Board	(AC164127-4)
GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q
inch	WQVGA	Powertip	TFT	Display	Board	(AC164127-6)
GFX_USE_DISPLAY_PANEL_TFT_640480_8_E
VGA	Truly	TFT	Display	Board	(AC164127-8)
GFX_USE_DISPLAY_PANEL_TFT_800480_33_E
WVGA	Truly	TFT	Display	Board	(AC164127-8)

	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>
Display	Panel	Used

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Device	Driver	Options	Macros
Device	Driver	Options

Macros

Name	 Description	

DISP_DATA_WIDTH	 Defines	the	display	controller's
physical	interface	to	the	display
panel.	Valid	Values:

1,	4,	8,	16,	18,	24
1,	4,	8	are	usually	used	in	MSTN
and	CSTN	displays
16,	18	and	24	are	usually	used
in	TFT	displays.

	

DISP_ORIENTATION	 Defines	the	display	rotation	with
respect	to	its	native	orientation.	For
example,	if	the	display	has	a
resolution	specifications	that	says
240x320	(QVGA),	the	display	is
natively	in	portrait	mode.	If	the
application	uses	the	display	in
landscape	mode	(320x240),	then	the
orientation	must	be	defined	as	90	or
180	degree	rotation.	Graphics
Library	will	calculate	the	actual	pixel
location	to	rotate	the	contents	of	the
screen.	So	when	users	view	the
display,	the	image	on	the	screen	will
come	out	in	the	correct	orientation.
Valid	values:

0	:	display	in	its	native

orientation
90	:	rotated	90	degrees
clockwise...	more	

DISP_HOR_RESOLUTION	 Defines	the	native	horizontal
dimension	of	the	screen.	This	is	the
horizontal	pixel	count	given	by	the
display's	data	sheet.	For	example	a
320x240	display	will	have
DISP_HOR_RESOLUTION	of	320.
Valid	Values:

dependent	on	the	display	glass
resolution	used.

	

DISP_VER_RESOLUTION	 Defines	the	native	vertical	dimension
of	the	screen.	This	is	the	vertical
pixel	count	given	by	the	display's
data	sheet.	For	xxample	a	320x240
display	will	have
DISP_VER_RESOLUTION	of	240.
Valid	Values:

dependent	on	the	display	glass
resolution	used.

	

DISP_HOR_FRONT_PORCH	 Defines	the	horizontal	front	porch.
DISP_HOR_BACK_PORCH	+
DISP_HOR_FRONT_PORCH	+
DISP_HOR_PULSE_WIDTH	makes
up	the	horizontal	blanking	period.
Value	used	will	be	based	on	the
display	panel	used.	

DISP_HOR_BACK_PORCH	 Defines	the	horizontal	back	porch.
DISP_HOR_BACK_PORCH	+

DISP_HOR_FRONT_PORCH	+
DISP_HOR_PULSE_WIDTH	makes
up	the	horizontal	blanking	period.
Value	used	will	be	based	on	the
display	panel	used.	

DISP_VER_FRONT_PORCH	 Defines	the	vertical	front	porch.
DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+
DISP_VER_PULSE_WIDTH	makes
up	the	vertical	blanking	period.	Value
used	will	be	based	on	the	display
panel	used.	

DISP_VER_BACK_PORCH	 Defines	the	vertical	back	porch.
DISP_VER_BACK_PORCH	+
DISP_VER_FRONT_PORCH	+
DISP_VER_PULSE_WIDTH	makes
up	the	vertical	blanking	period.	Value
used	will	be	based	on	the	display
panel	used.	

DISP_HOR_PULSE_WIDTH	 Defines	the	horizontal	sync	signal
pulse	width	in	pixels.	Value	used	will
be	based	on	the	display	panel	used.	

DISP_VER_PULSE_WIDTH	 Defines	the	vertical	sync	signal	pulse
width	in	lines.	Value	used	will	be
based	on	the	display	panel	used.	

DISP_INV_LSHIFT	 Indicates	that	the	color	data	is
sampled	in	the	falling	edge	of	the
pixel	clock.	

Library	API	>	Graphics	Library	Configuration	>	Hardware	Profile	>	Device
Driver	Options

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Object	Layer	API

Topics

Name	 Description	

GOL	Objects	 The	Graphics	Object	Layer	(GOL)	contains
the	Advanced	Graphics	Objects	or
commonly	known	as	widgets.	

Object	States	 Objects	rendered	on	the	display	are	based
on	their	current	Property	States	and	the
Drawing	States.	

Object	Management	 This	section	describes	the	API	functions	and
macros	that	are	used	to	create,	maintain
and	render	individual	and	list	of	objects.	

GOL	Messages	 The	library	provides	an	interface	to	accept
messages	from	the	input	devices.	

Style	Scheme	 All	objects	uses	a	style	scheme	structure
that	defines	the	font	and	colors	used.	

GOL	Global	Variables	 Graphics	Object	Layer	global	variables.	

Library	API	>	Graphics	Object	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Objects	Enumerations
GOL	Objects

Enumerations

Name	 Description	

GOL_OBJ_TYPE	 This	structure	defines	the	Object	types	used
in	the	library.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Modules
GOL	Objects

Modules

Name	 Description	

Analog	Clock	 Analog	Clock	is	an	Object	that	emulates	an
analog	clock	with	moving	hands.	It	can	be
used	with	or	without	a	bitmap	image	as	the
background	source.	

Button	 Button	is	an	Object	that	emulates	a	press
and	release	effect	when	operated	upon.	

Chart	 Chart	is	an	Object	that	draws	a	bar	chart	or
a	pie	chart	representation	of	a	single	data	or
series	of	data.	

Checkbox	 Check	Box	is	an	Object	that	simulates	a
check	box	on	paper.	Usually	it	is	used	as	an
option	setting	where	the	checked	or	filled
state	means	the	option	is	enabled	and	the
unfilled	or	unchecked	state	means	the
option	is	disabled.	

Round	Dial	 Dial	is	an	Object	that	can	be	used	to	display
emulate	a	turn	dial	that	can	both	go	in
clockwise	or	counterclockwise.	

Digital	Meter	 DigitalMeter	is	an	Object	that	can	be	used	to
display	a	value	of	a	sampled	variable.	This
Object	is	ideal	when	fast	refresh	of	the	value
is	needed.	The	Object	refreshes	only	the
digits	that	needs	to	change.	A	limitation	of
this	Object	is	that	the	font	used	should	have

equal	character	widths.	

Edit	Box	 Edit	Box	is	is	an	Object	that	emulates	a	cell
or	a	text	area	that	can	be	edited
dynamically.	

Grid	 Grid	is	an	Object	that	draws	a	grid	on	the
screen	with	each	cell	capable	of	displaying
an	image	or	a	string.	

Group	Box	 Group	Box	is	an	Object	that	can	be	used	to
group	Objects	together	in	the	screen.	

List	Box	 List	Box	is	an	Object	that	defines	a
scrollable	area	where	items	are	listed.	User
can	select	a	single	item	or	set	of	items.	

Meter	 Meter	is	an	Object	that	can	be	used	to
graphically	display	a	sampled	input.	

Picture	Control	 Picture	is	an	Object	that	can	be	used	to
transform	a	bitmap	to	be	an	Object	in	the
screen	and	have	control	on	the	bitmap
rendering.	This	object	can	be	used	to	create
animation	using	a	series	of	bitmaps.	

Progress	Bar	 Progress	Bar	is	an	Object	that	can	be	used
to	display	the	progress	of	a	task	such	as	a
file	download	or	transfer.	

Radio	Button	 Radio	Button	is	an	Object	that	can	be	used
to	offer	set	of	choices	to	the	user.	Only	one
of	the	choices	is	selectable.	Changing
selection	automatically	removes	the
selection	on	the	previous	option.	

Slider/Scroll	Bar	 Slider	or	Scrollbar	is	an	Object	that	can	be
used	to	display	a	value	or	scrolling	location

in	a	predefined	area.	

Static	Text	 Static	Text	is	an	Object	that	can	be	used	to
display	a	single	or	multi-line	string	of	text	in
a	predefined	location.	

Text	Entry	 Text	Entry	is	an	Object	that	can	be	used	to
emulate	a	key	pad	entry	with	a	display	area
for	the	entered	characters.	The	Object	has	a
feature	where	you	can	define	a	key	to	reply
with	a	translated	message	that	signifies	a
command	key	was	pressed.	A	command
key	example	can	be	your	enter	or	carriage
return	key	or	an	escape	key.	Multiple	keys
can	be	assigned	command	keys.
Application	can	utilize	the	command	key	to
define	the	behavior	of	the	program	based	on
a	command	key	press.	

Window	 Window	is	an	Object	that	can	be	used	to
encapsulate	objects	into	a	group.	Unlike	the
Group	Box	Object,	the	Window	Object	has
additional	features	such	as	displaying	an
icon	or	a	small	bitmap	on	its	Title	Bar.	It	also
has	additional	controls	for	both	Title	Bar	and
Client	Area.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Objects	Structures
GOL	Objects

Structures

Name	 Description	

OBJ_HEADER	 This	structure	defines	the	first	nine	fields	of
the	Objects	structure.	This	allows	generic
operations	on	library	Objects.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Objects	Types
GOL	Objects

Types

Name	 Description	

DRAW_FUNC	 object	draw	function	pointer	typedef	

FREE_FUNC	 object	free	function	pointer	typedef	

MSG_DEFAULT_FUNC	 object	default	message	function	pointer
typedef	

MSG_FUNC	 object	message	function	pointer	typedef	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Analog	Clock	Functions
Analog	Clock

Functions

	 Name	 Description	

	 AcCreate	 This	function	creates	an	Analog	Clock
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the
address	of	the	object.	

	 AcDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter	settings.
Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The
colors	used	are	dependent	on	the	state	of
the	object.	The	font	used	is	determined	by
the	style	scheme	set.	

	 AcSetHour	 Sets	the	hour	value	of	the	analog	clock.	

	 AcSetMinute	 Sets	the	minute	value	of	the	analog	clock.	

	 AcSetSecond	 Sets	the	second	value	of	the	analog	clock.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Analog	Clock	Structures
Analog	Clock

Structures

Name	 Description	

ANALOGCLOCK	 Defines	the	parameters	required	for	a	clock
Object.	The	following	relationships	of	the
parameters	determines	the	general	shape	of
the	clock:

1.	 centerx	and	centery	determine	the
middle	of	the	clock.

2.	 radius	defines	the	radius	of	the	clock.
4.	 *pBitmap	points	to	the	background

image	for	the	analog	clock.

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Analog	Clock

Topics

Name	 Description	

Analog	Clock	States	 List	of	Analog	Clock	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Analog	Clock

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Analog	Clock	States	Macros
Analog	Clock	States

Macros

Name	 Description	

AC_DRAW	 Bit	to	indicate	button	must	be	redrawn.	

AC_DISABLED	 Bit	for	disabled	state.	

AC_HIDE	 Bit	to	indicate	button	must	be	removed	from
screen.	

AC_PRESSED	 Bit	for	press	state.	

AC_TICK	 Bit	to	tick	second	hand	

UPDATE_HOUR	 Bit	to	indicate	hour	hand	must	be	redrawn	

UPDATE_MINUTE	 Bit	to	indicate	minute	hand	must	be
redrawn	

UPDATE_SECOND	 Bit	to	indicate	minute	hand	must	be
redrawn	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Analog	Clock
>	Analog	Clock	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Button	Functions
Button

Functions

	 Name	 Description	

	 BtnCreate	 This	function	creates	a	BUTTON	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 BtnDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
The	text	on	the	face	of	the	button	is	drawn
on	top	of	the	bitmap.	Text	is	always
rendered	centered	on	the	face	of	the
button.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid...	more	

	 BtnSetText	 This	function	sets	the	string	used	for	the
object.	

	 BtnMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are

supported:		

	 BtnTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Button	Macros
Button

Macros

Name	 Description	

BtnGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

BtnGetBitmap	 This	macro	returns	the	location	of	the
currently	used	bitmap	for	the	object.	

BtnSetBitmap	 This	macro	sets	the	bitmap	used	in	the
object.	The	size	of	the	bitmap	must	match
the	face	of	the	button.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Button	Structures
Button

Structures

Name	 Description	

BUTTON	 Defines	the	parameters	required	for	a	button
Object.	The	following	relationships	of	the
parameters	determines	the	general	shape	of
the	button:

1.	 Width	is	determined	by	right	-	left.
2.	 Height	is	determined	by	top	-	bottom.
3.	 Radius	-	specifies	if	the	button	will	have

a	rounded	edge.	If	zero	then	the	button
will	have	sharp	(cornered)	edge.

4.	 If	2*radius	=	height	=	width,	the	button
is	a	circular	button.

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Button

Topics

Name	 Description	

Button	States	 List	of	Button	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Button

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Button	States	Macros
Button	States

Macros

Name	 Description	

BTN_DISABLED	 Bit	for	disabled	state.	

BTN_DRAW	 Bit	to	indicate	button	must	be	redrawn.	

BTN_DRAW_FOCUS	 Bit	to	indicate	focus	must	be	redrawn.	

BTN_FOCUSED	 Bit	for	focus	state.	

BTN_HIDE	 Bit	to	indicate	button	must	be	removed	from
screen.	

BTN_PRESSED	 Bit	for	press	state.	

BTN_TEXTBOTTOM	 Bit	to	indicate	text	is	top	aligned.	

BTN_TEXTLEFT	 Bit	to	indicate	text	is	left	aligned.	

BTN_TEXTRIGHT	 Bit	to	indicate	text	is	right	aligned.	

BTN_TEXTTOP	 Bit	to	indicate	text	is	bottom	aligned.	

BTN_TOGGLE	 Bit	to	indicate	button	will	have	a	toggle
behavior.	

BTN_TWOTONE	 Bit	to	indicate	the	button	is	a	two	tone	type.	

BTN_NOPANEL	 Bit	to	indicate	the	button	will	be	drawn
without	a	panel	(for	faster	drawing	when	the
button	image	used	is	larger	than	the	button
panel).	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Button	>
Button	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Chart	Functions
Chart

Functions

	 Name	 Description	

	 ChCreate	 This	function	creates	a	CHART	object
with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 ChDraw	 This	function	renders	the	object	on
the	screen	using	the	current
parameter	settings.	Location	of	the
object	is	determined	by	the	left,	top,
right	and	bottom	parameters.	The
colors	used	are	dependent	on	the
state	of	the	object.	The	font	used	is
determined	by	the	style	scheme	set.
The	colors	of	the	bars	of	the	bar	chart
or	sectors	of	the	pie	chart	can	be	the
default	color	table	or	user	defined
color	table	set	by	ChSetColorTable()
function.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is...	more	

	 ChAddDataSeries	 This	function	creates	a	DATASERIES
object	and	populates	the	structure
with	the	given	parameters.	

	 ChRemoveDataSeries	 This	function	removes	DATASERIES

object	from	the	list	of	DATASERIES
objects	and	frees	the	memory	used	of
that	removed	object.	The	position	of
the	object	to	be	removed	is	specified
by	the	number	parameter.	If	the	list
has	only	one	member,	it	removes	the
member	regardless	of	the	number
given.	

	 ChSetValueRange	 This	function	sets	the	minimum	and
maximum	range	of	values	that	the	bar
chart	will	show.	The	criteria	is	that	min
<=	max.	

	 ChSetPercentRange	 This	function	sets	the	minimum	and
maximum	range	of	percentage	that
the	bar	chart	will	show.	The	criteria	is
that	min	<=	max.	This	affects	bar
charts	only	and	CH_PERCENTAGE
bit	state	is	set.	

	 ChSetSampleRange	 This	function	sets	the	sample	start
and	sample	end	when	drawing	the
chart.	Together	with	the	data	series'
SHOW_DATA	flags	the	different	way
of	displaying	the	chart	data	is
achieved.
	

	 ChFreeDataSeries	 This	function	removes	DATASERIES
object	from	the	list	of	DATASERIES
objects	and	frees	the	memory	used	of
that	removed	object.	

	 ChTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect
the	object	or	not.	The	table	below
enumerates	the	translated	messages

for	each	event	of	the	touch	screen
and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Chart	Macros
Chart

Macros

Name	 Description	

ChShowSeries	 This	macro	sets	the	specified	data	series
number	show	flag	to	be	set	to
SHOW_DATA.	

ChHideSeries	 This	macro	sets	the	specified	data	series
number	show	flag	to	be	set	to
HIDE_DATA.	

ChGetShowSeriesCount	 This	macro	shows	the	number	of	data
series	that	has	its	show	flag	set	to
SHOW_DATA	

ChGetShowSeriesStatus	 This	macro	returns	the	show	ID	status	of
the	DATASERIES.	

ChSetValueLabel	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	value	axis
label	of	the	bar	chart.	

ChGetValueLabel	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	value	axis
label	of	the	bar	chart.	

ChGetValueMax	 This	macro	returns	the	current	maximum
value	that	will	be	drawn	for	bar	charts.	

ChGetValueMin	 This	macro	returns	the	current	minimum
value	that	will	be	drawn	for	bar	charts.	

ChGetValueRange	 This	macro	gets	the	current	range	for	bar
charts.	The	value	returned	is	calculated
from	the	current	(valMax	-	valMin)	set.	To
get	the	minimum	use	ChGetValueMin()
and	to	get	the	maximum	use
ChGetValueMax().	

ChSetSampleLabel	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	sample
axis	label	of	the	bar	chart.	

ChGetSampleLabel	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	sample
axis	label	of	the	bar	chart.	

ChGetSampleStart	 This	macro	returns	the	sampling	start
value.	

ChGetSampleEnd	 This	macro	returns	the	sampling	end
value.	

ChGetPercentRange	 This	macro	gets	the	percentage	range	for
bar	charts.	The	value	returned	is
calculated	from	percentage	max	-	min.	To
get	the	minimum	use	ChGetPercentMin()
and	to	get	the	maximum	use
ChGetPercentMax().	

ChGetSampleRange	 This	macro	gets	the	sample	range	for	pie
or	bar	charts.	The	value	returned	is
calculated	from	smplEnd	-	smplStart.	

ChGetPercentMax	 This	macro	returns	the	current	maximum
value	of	the	percentage	range	that	will	be
drawn	for	bar	charts	when
CH_PERCENTAGE	bit	state	is	set.	

ChGetPercentMin	 This	macro	returns	the	current	minimum

value	of	the	percentage	range	that	will	be
drawn	for	bar	charts	when
CH_PERCENTAGE	bit	state	is	set.	

ChSetColorTable	 This	macro	sets	the	color	table	used	to
draw	the	data	in	pie	and	bar	charts.	

ChGetColorTable	 This	macro	returns	the	current	color	table
used	for	the	pie	and	bar	charts.	

ChSetTitle	 This	macro	sets	the	address	of	the
current	text	string	used	for	the	title	of	the
chart.	

ChGetTitle	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	title	of	the
chart.	

ChSetTitleFont	 This	macro	sets	the	location	of	the	font
used	for	the	title	of	the	chart.	

ChGetTitleFont	 This	macro	returns	the	location	of	the	font
used	for	the	title	of	the	chart.	

ChGetAxisLabelFont	 This	macro	returns	the	location	of	the	font
used	for	the	X	and	Y	axis	labels	of	the
chart.	

ChSetAxisLabelFont	 This	macro	sets	the	location	of	the	font
used	for	the	X	and	Y	axis	labels	of	the
chart.	

ChGetGridLabelFont	 This	macro	returns	the	location	of	the	font
used	for	the	X	and	Y	axis	grid	labels	of
the	chart.	

ChSetGridLabelFont	 This	macro	sets	the	location	of	the	font
used	for	the	X	and	Y	axis	grid	labels	of

the	chart.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Chart	Structures
Chart

Structures

Name	 Description	

CHART	 Defines	the	parameters	required	for	a	chart
Object.	

DATASERIES	 Defines	a	variable	for	the	CHART	object.	It
specifies	the	number	of	samples,	pointer	to
the	array	of	samples	for	the	data	series	and
pointer	to	the	next	data	series.	A	member	of
this	structure	(show)	is	used	as	a	flag	to
determine	if	the	series	is	to	be	drawn	or	not.
Together	with	the	smplStart	and	smplEnd	it
will	determine	what	kind	of	chart	will	be
drawn.	

CHARTPARAM	 Defines	the	parameters	for	the	CHART
object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Chart

Topics

Name	 Description	

Chart	States	 List	of	Chart	bit	states.	

Data	Series	Status
Settings	

Data	Series	show	status	flag	settings.	

Chart	Examples	 Examples	of	generated	bar	charts	based	on
settings.	

Color	Table	 Default	color	table	used	to	draw	data	points
in	a	chart.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Chart

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Chart	States	Macros
Chart	States

Macros

Name	 Description	

CH_DISABLED	 Bit	for	disabled	state.	

CH_DRAW	 Bit	to	indicate	chart	must	be	redrawn.	

CH_DRAW_DATA	 Bit	to	indicate	data	portion	of	the	chart	must
be	redrawn.	

CH_3D_ENABLE	 Bit	to	indicate	that	bar	charts	are	to	be
drawn	with	3-D	effect	

CH_BAR	 Bit	to	indicate	the	chart	is	type	bar.	If	both
PIE	and	BAR	types	are	set	BAR	type	has
higher	priority.	

CH_BAR_HOR	 These	bits	(with	CH_BAR	bit	set),	sets	the
bar	chart	to	be	drawn	horizontally.	

CH_DONUT	 These	bits	(with	CH_PIE	bit	set),	sets	the
pie	chart	to	be	drawn	in	a	donut	shape.	

CH_LEGEND	 Bit	to	indicate	that	legend	is	to	be	shown.
Usable	only	when	seriesCount	>	1.	

CH_NUMERIC	 This	bit	is	used	only	for	bar	charts.	If	this	bit
is	set,	it	indicates	that	the	bar	chart	labels
for	variables	are	numeric.	If	this	bit	is	not
set,	it	indicates	that	the	bar	chart	labels	for
variables	are	alphabets.	

CH_PERCENT	 Bit	to	indicate	that	the	pie	chart	will	be

drawn	with	percentage	values	shown	for	the
sample	data.	For	bar	chart,	if	CH_VALUE	is
set,	it	toggles	the	value	shown	to
percentage.	

CH_PIE	 Bit	to	indicate	the	chart	is	type	pie.	If	both
PIE	and	BAR	types	are	set	BAR	type	has
higher	priority.	

CH_VALUE	 Bit	to	indicate	that	the	values	of	the	bar
chart	data	or	pie	chart	data	are	to	be	shown	

CH_HIDE	 Bit	to	indicate	chart	must	be	removed	from
screen.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Chart
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Data	Series	Status	Settings	Macros
Data	Series	Status	Settings

Macros

Name	 Description	

HIDE_DATA	 Macro	used	to	reset	the	data	series	show
flag	or	indicate	that	the	data	series	will	be
not	be	shown	when	the	chart	is	drawn.	

SHOW_DATA	 Macro	used	to	set	the	data	series	show	flag
or	indicate	that	the	data	series	will	be	shown
when	the	chart	is	drawn.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Data
Series	Status	Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Color	Table	Macros
Color	Table

Macros

Name	 Description	

CH_CLR0	 Bright	Blue	

CH_CLR1	 Bright	Red	

CH_CLR2	 Bright	Green	

CH_CLR3	 Bright	Yellow	

CH_CLR4	 Orange	

CH_CLR5	 Blue	

CH_CLR6	 Red	

CH_CLR7	 Green	

CH_CLR8	 Yellow	

CH_CLR9	 Dark	Orange	

CH_CLR10	 Light	Blur	

CH_CLR11	 Light	Red	

CH_CLR12	 Light	Green	

CH_CLR13	 Light	Yellow	

CH_CLR14	 Light	Orange	

CH_CLR15	 Gold	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Chart	>	Color
Table

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Checkbox	Functions
Checkbox

Functions

	 Name	 Description	

	 CbCreate	 This	function	creates	a	CHECKBOX	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 CbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 CbSetText	 This	function	sets	the	text	that	will	be
used.	

	 CbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 CbTranslateMsg	 This	function	evaluates	the	message	from

a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Checkbox	Macros
Checkbox

Macros

Name	 Description	

CbGetText	 This	macro	returns	the	location	of	the	text
used	for	the	check	box.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Checkbox	Structures
Checkbox

Structures

Name	 Description	

CHECKBOX	 The	structure	contains	check	box	data	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Checkbox

Topics

Name	 Description	

Check	Box	States	 List	of	Checkbox	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Checkbox

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Check	Box	States	Macros
Check	Box	States

Macros

Name	 Description	

CB_CHECKED	 Checked	state	

CB_DISABLED	 Disabled	state	

CB_DRAW	 Whole	check	box	must	be	redrawn	

CB_DRAW_CHECK	 Check	box	mark	should	be	redrawn	

CB_DRAW_FOCUS	 Focus	must	be	redrawn	

CB_FOCUSED	 Focus	state	

CB_HIDE	 Check	box	must	be	removed	from	screen	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Checkbox	>
Check	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Round	Dial	Functions
Round	Dial

Functions

	 Name	 Description	

	 RdiaCreate	 This	function	creates	a	ROUNDDIAL
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 RdiaDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	center	(x,y)	postion
and	the	radius	parameters.	The	colors
used	are	dependent	on	the	state	of	the
object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 RdiaMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 RdiaTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of
the	touch	screen	inputs.

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Round	Dial	Macros
Round	Dial

Macros

Name	 Description	

RdiaIncVal	 Used	to	directly	increment	the	value.	The
delta	change	used	is	the	resolution	setting
(res).	

RdiaDecVal	 Used	to	directly	decrement	the	value.	The
delta	change	used	is	the	resolution	setting
(res).	

RdiaGetVal	 Returns	the	current	dial	value.	Value	is
always	in	the	0-max	range	inclusive.	

RdiaSetVal	 Sets	the	value	to	the	given	new	value.	Value
set	must	be	in	0-max	range	inclusive.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Round	Dial	Structures
Round	Dial

Structures

Name	 Description	

ROUNDDIAL	 Defines	the	parameters	required	for	a	dial
Object.	The	curr_xPos,	curr_yPos,
new_xPos	and	new_yPos	parameters	are
internally	generated	to	aid	in	the	redrawing
of	the	dial.	User	must	avoid	modifying	these
values.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Round	Dial

Topics

Name	 Description	

Dial	States	 List	of	Dial	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Round	Dial

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Dial	States	Macros
Dial	States

Macros

Name	 Description	

RDIA_DISABLED	 Bit	for	disabled	state.	

RDIA_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

RDIA_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

RDIA_ROT_CCW	 Bit	for	rotate	counter	clockwise	state.	

RDIA_ROT_CW	 Bit	for	rotate	clockwise	state.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Round	Dial	>
Dial	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Digital	Meter	Functions
Digital	Meter

Functions

	 Name	 Description	

	 DmCreate	 This	function	creates	a	DIGITALMETER
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 DmDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 DmSetValue	 This	function	sets	the	value	that	will	be
used	for	the	object.	

	 DmTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Digital	Meter	Macros
Digital	Meter

Macros

Name	 Description	

DmGetValue	 This	macro	returns	the	current	value	used
for	the	object.	

DmDecVal	 This	macro	is	used	to	directly	decrement	the
value.	

DmIncVal	 This	macro	is	used	to	directly	increment	the
value.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Digital	Meter	Structures
Digital	Meter

Structures

Name	 Description	

DIGITALMETER	 Defines	the	parameters	required	for	a	Digital
Meter	Object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Digital	Meter

Topics

Name	 Description	

Digital	Meter	States	 List	of	Digital	Meter	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Digital	Meter

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Digital	Meter	States	Macros
Digital	Meter	States

Macros

Name	 Description	

DM_DISABLED	 Bit	for	disabled	state.	

DM_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

DM_HIDE	 Bit	to	remove	object	from	screen.	

DM_CENTER_ALIGN	 Bit	to	indicate	value	is	center	aligned.	

DM_RIGHT_ALIGN	 Bit	to	indicate	value	is	left	aligned.	

DM_FRAME	 Bit	to	indicate	frame	is	displayed.	

DM_UPDATE	 Bit	to	indicate	that	only	text	must	be
redrawn.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Digital	Meter	>
Digital	Meter	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Edit	Box	Functions
Edit	Box

Functions

	 Name	 Description	

	 EbCreate	 This	function	creates	a	EDITBOX	object
with	the	parameters	given	and	initializes
the	default	settings.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 EbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and	bottom
parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 EbSetText	 This	function	sets	the	text	to	be	used	for
the	object.	

	 EbAddChar	 This	function	inserts	a	character	at	the	end
of	the	text	used	by	the	object.	

	 EbDeleteChar	 This	function	removes	a	character	at	the
end	of	the	text	used	by	the	object.	

	 EbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 EbTranslateMsg	 This	function	evaluates	the	message	from	a
user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Edit	Box	Macros
Edit	Box

Macros

Name	 Description	

EbGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Edit	Box	Structures
Edit	Box

Structures

Name	 Description	

EDITBOX	 Defines	the	parameters	required	for	a	Edit
Box	Object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Edit	Box

Topics

Name	 Description	

Edit	Box	States	 List	of	Edit	Box	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Edit	Box

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Edit	Box	States	Macros
Edit	Box	States

Macros

Name	 Description	

EB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned.	

EB_DISABLED	 Bit	for	disabled	state.	

EB_DRAW	 Bit	to	indicate	whole	edit	box	must	be
redrawn.	

EB_HIDE	 Bit	to	remove	object	from	screen.	

EB_FOCUSED	 Bit	for	focused	state.	Cursor	caret	will	be
drawn	when	EB_DRAW_CARET	is	also
set.	

EB_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned.	

EB_DRAW_CARET	 Bit	to	indicate	the	cursor	caret	will	be	drawn
if	EB_FOCUSED	state	bit	is	set	and	erase
when	EB_FOCUSED	state	bit	is	not	set.	

EB_CARET	 Bit	to	indicate	the	cursor	caret	will	always	be
shown.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Edit	Box	>
Edit	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Grid	Functions
Grid

Functions

	 Name	 Description	

	 GridCreate	 This	function	creates	a	GRID	object	with
the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the
address	of	the	object.	

	 GridDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is	started.	This	is	to	avoid
incomplete	object	rendering.	

	 GridClearCellState	 This	function	clears	the	state	of	the	cell
(or	Grid	Item)	specified	by	the	column
and	row.	

	 GridFreeItems	 This	function	removes	all	grid	items	for
the	given	Grid	and	frees	the	memory
used.	

	 GridGetCell	 This	function	removes	all	grid	items	for

the	given	Grid	and	frees	the	memory
used.	

	 GridSetCell	 This	function	sets	the	Grid	Item	state	and
data.	

	 GridSetCellState	 This	function	sets	the	state	of	the	Grid
Item	or	cell.	

	 GridSetFocus	 This	function	sets	the	focus	of	the
specified	Grid	Item	or	cell.	

	 GridMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 GridTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect	the
object	or	not.	The	table	below
enumerates	the	translated	messages	for
each	event	of	the	touch	screen	and
keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Grid	Macros
Grid

Macros

Name	 Description	

GridGetFocusX	 This	macro	returns	the	x	position	of	the
focused	cell.	

GridGetFocusY	 This	macro	returns	the	y	position	of	the
focused	cell.	

GRID_OUT_OF_BOUNDS	 Status	of	an	out	of	bounds	cell
GridSetCell()	operation.	

GRID_SUCCESS	 Status	of	a	successful	GridSetCell()
operation.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Grid	Structures
Grid

Structures

Name	 Description	

GRID	 Defines	the	parameters	required	for	a	grid
Object.	Clipping	is	not	supported	in	grid
object.	

GRIDITEM	 Defines	the	grid	item.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Grid

Topics

Name	 Description	

Grid	States	 List	of	Grid	bit	states.	

Grid	Item	States	 List	of	Grid	Items	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Grid

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Grid	States	Macros
Grid	States

Macros

Name	 Description	

GRID_FOCUSED	 Bit	for	focused	state	

GRID_DISABLED	 Bit	for	disabled	state	

GRID_SHOW_LINES	 Display	grid	lines	

GRID_SHOW_FOCUS	 Highlight	the	focused	cell.	

GRID_SHOW_BORDER_ONLY	 Draw	only	the	outside	border
of	the	grid.	

GRID_SHOW_SEPARATORS_ONLY	 Draw	only	the	lines	between
cells	(like	Tic-tac-toe)	

GRID_DRAW_ITEMS	 Bit	to	indicate	that	at	least
one	item	must	be	redrawn,
but	not	the	entire	grid.	

GRID_DRAW_ALL	 Bit	to	indicate	whole	edit	box
must	be	redrawn	

GRID_HIDE	 Bit	to	remove	object	from
screen	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Grid	Item	States	Macros
Grid	Item	States

Macros

Name	 Description	

GRIDITEM_SELECTED	 The	cell	is	selected.	

GRIDITEM_IS_TEXT	 The	grid	item	is	a	text	string.	

GRIDITEM_IS_BITMAP	 The	grid	item	is	a	bitmap.	

GRIDITEM_TEXTBOTTOM	 Bit	to	indicate	text	is	top	aligned.	

GRIDITEM_TEXTLEFT	 Text	in	the	cell	is	left	aligned.	

GRIDITEM_TEXTRIGHT	 Text	in	the	cell	is	right	aligned.	

GRIDITEM_TEXTTOP	 Bit	to	indicate	text	is	bottom	aligned.	

GRIDITEM_DRAW	 Draw	this	cell	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Grid	>	Grid
Item	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Group	Box	Functions
Group	Box

Functions

	 Name	 Description	

	 GbCreate	 This	function	creates	a	GROUPBOX	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 GbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 GbSetText	 This	function	sets	the	text	used	by	passing
the	pointer	to	the	static	string.	

	 GbTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Group	Box	Macros
Group	Box

Macros

Name	 Description	

GbGetText	 This	macro	returns	the	location	of	the	text
used.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Group	Box	Structures
Group	Box

Structures

Name	 Description	

GROUPBOX	 Defines	the	parameters	required	for	a	group
box	Object.	The	textwidth	and	textHeight	is
not	checked	with	the	actual	dimension	of	the
object.	Clipping	is	not	supported	in	group
box	object.	It	is	possible	for	the	text	to
exceed	the	dimension	of	the	Object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Group	Box

Topics

Name	 Description	

Group	Box	States	 List	of	Group	Box	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Group	Box

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Group	Box	States	Macros
Group	Box	States

Macros

Name	 Description	

GB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned	

GB_DISABLED	 Bit	for	disabled	state	

GB_DRAW	 Bit	to	indicate	group	box	must	be	redrawn	

GB_HIDE	 Bit	to	remove	object	from	screen	

GB_RIGHT_ALIGN	 Bit	to	indicate	text	is	right	aligned	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Group	Box	>
Group	Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

List	Box	Functions
List	Box

Functions

	 Name	 Description	

	 LbCreate	 This	function	creates	a	LISTBOX	object
with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 LbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
The	font	used	is	determined	by	the	style
scheme	set.
The	text	or	items	drawn	in	the	visible
window	of	the	list	box	is	dependent	on
the	alignment	set.
When	rendering	objects	of	the	same
type,	each	object	must	be	rendered
completely	before	the	rendering	of	the
next	object	is	started.	This	is	to	avoid
incomplete	object	rendering.	

	 LbAddItem	 This	function	allocates	memory	for	the
LISTITEM	and	adds	it	to	the	list	box.	The
newly	created	LISTITEM	will	store	the
location	of	pText,	pBitmap	and	other
parameters	describing	the	added	item.	

	 LbDelItem	 This	function	removes	an	item	from	the
list	box	and	frees	the	memory	used.	

	 LbChangeSel	 This	function	changes	the	selection
status	of	an	item	in	the	list	box.	If	the
item	is	currently	selected,	it	resets	the
selection.	If	the	item	is	currently	not
selected	it	is	set	to	be	selected.	

	 LbGetSel	 This	function	searches	for	selected	items
from	the	list	box.	A	starting	position	can
optionally	be	given.	If	starting	position	is
set	to	NULL,	search	will	begin	from	the
first	item	list.	It	returns	the	pointer	to	the
first	selected	item	found	or	NULL	if	there
are	no	items	selected.	

	 LbGetFocusedItem	 This	function	returns	the	index	of	the
focused	item	in	the	list	box.	

	 LbSetFocusedItem	 This	function	sets	the	focus	for	the	item
with	the	given	index.	

	 LbDelItemsList	 This	function	removes	all	items	from	the
list	box	and	frees	the	memory	used.	

	 LbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated
message	given.	The	following	state
changes	are	supported:		

	 LbTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect	the
object	or	not.	The	table	below
enumerates	the	translated	messages	for
each	event	of	the	touch	screen	and
keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

List	Box	Macros
List	Box

Macros

Name	 Description	

LbGetItemList	 This	function	returns	the	pointer	to	the
current	item	list	used	in	the	list	box.	

LbSetSel	 This	macro	sets	the	selection	status	of	an
item	to	selected.	

LbGetCount	 This	macro	returns	the	number	of	items	in
the	list	box.	

LbGetVisibleCount	 This	macro	returns	the	number	of	items
visible	in	the	list	box	window.	

LbSetBitmap	 This	macro	sets	the	bitmap	used	in	the
item.	

LbGetBitmap	 This	macro	returns	the	location	of	the
currently	used	bitmap	for	the	item.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

List	Box	Structures
List	Box

Structures

Name	 Description	

LISTBOX	 Defines	the	parameters	required	for	a	list
box	Object.	

LISTITEM	 Defines	the	parameters	required	for	a	list
item	used	in	list	box.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
List	Box

Topics

Name	 Description	

List	Box	States	 List	of	List	Box	bit	states.	

List	Item	Status	 List	of	Items	status.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
List	Box

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

List	Box	States	Macros
List	Box	States

Macros

Name	 Description	

LB_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned	

LB_SINGLE_SEL	 Bit	to	indicate	the	only	item	can	be	selected	

LB_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned	

LB_DISABLED	 Bit	for	disabled	state	

LB_DRAW	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_DRAW_FOCUS	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_DRAW_ITEMS	 Bit	to	indicate	whole	edit	box	must	be
redrawn	

LB_FOCUSED	 Bit	for	focused	state	

LB_HIDE	 Bit	to	remove	object	from	screen	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Box	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

List	Item	Status	Macros
List	Item	Status

Macros

Name	 Description	

LB_STS_SELECTED	 Item	is	selected.	

LB_STS_REDRAW	 Item	is	to	be	redrawn.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	List	Box	>	List
Item	Status

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Meter	Functions
Meter

Functions

	 Name	 Description	

	 MtrCreate	 This	function	creates	a	METER	object	with
the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of
the	object.	

	 MtrDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
Depending	on	the	defined	settings,	value
of	the	meter	will	displayed	or	hidden.
Displaying	the	value	will	require	a	little	bit
more	rendering	time	depending	on	the	size
of	the	meter	and	font	used.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the...	more	

	 MtrSetVal	 This	function	sets	the	value	of	the	meter	to
the	passed	newVal.	newVal	is	checked	to
be	in	the	minValue-maxValue	range
inclusive.	If	newVal	is	not	in	the	range,
minValue	maxValue	is	assigned	depending
on	the	given	newVal	if	less	than	minValue

or	above	maxValue.	

	 MtrMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	Meter	value	is	set	based	on
parameter	2	of	the	message	given.	The
following	state	changes	are	supported:		

	 MtrTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Meter	Macros
Meter

Macros

Name	 Description	

MtrGetVal	 This	macro	returns	the	current	value	of	the
meter.	Value	is	always	in	the	minValue-
maxValue	range	inclusive.	

MtrDecVal	 This	macro	is	used	to	directly	decrement	the
value.	

MtrIncVal	 This	macro	is	used	to	directly	increment	the
value.	

MtrSetScaleColors	 Scale	colors	can	be	used	to	highlight	values
of	the	meter.	User	can	set	these	colors	to
define	the	arc	colors	and	scale	colors.	This
also	sets	the	color	of	the	meter	value	when
displayed.	Limitation	is	that	color	settings
are	set	to	the	following	angles:	Color
Boundaries	Type	Whole	Type	Half	Type
Quarter	Arc	6	225	to	180	not	used	not	used
Arc	5	179	to	135	179	to	135	not	used	Arc	4
134	to	90	134	to	90	not	used	Arc	3	89	to	45
89	to	45	89	to	45	Arc	2	44	to	0	44...	more	

MtrSetTitleFont	 This	function	sets	the	font	of	title.	

MtrSetValueFont	 This	function	sets	the	font	of	value.	

METER_TYPE	 This	is	a	compile	time	setting	to	select	the
type	if	meter	shape.	There	are	three	types:

MTR_WHOLE_TYPE	-	Meter	drawn

with	6	octants	used.
MTR_HALF_TYPE	-	Meter	drawn	with
semi	circle	shape.
MTR_QUARTER_TYPE	-	Meter	drawn
with	quarter	circle	shape.

Set	only	one	value	at	a	time.	This	is	done	to
save	code	space.	User	can	define	the	colors
of	the	arcs	for	each	type.
MTR_WHOLE_TYPE	will	use	all	the	arc
colors	(arcColor1	-	arcColor6)
MTR_HALF_TYPE	will	use	arc	colors
(arcColor5,	arcColor4,	arcColor3,	arcColor2)
MTR_QUARTER_TYPE	will	use	arc	colors
(arcColor3,	arcColor2)	Set	the	meter	type	in
Meter.h	file	and...	more	

MTR_ACCURACY	 Sets	the	meter	accuracy	to	one	decimal
places	when	displaying	the	values.
Application	must	multiply	the	minValue,
maxValue	and	values	passed	to	the	widget
by	RESOLUTION.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Meter	Structures
Meter

Structures

Name	 Description	

METER	 Defines	the	parameters	required	for	a	meter
Object.	Depending	on	the	type	selected	the
meter	is	drawn	with	the	defined	shape
parameters	and	values	set	on	the	given
fields.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Meter

Topics

Name	 Description	

Meter	States	 List	of	Meter	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Meter

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Meter	States	Macros
Meter	States

Macros

Name	 Description	

MTR_DISABLED	 Bit	for	disabled	state.	

MTR_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

MTR_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

MTR_RING	 Bit	for	ring	type,	scales	are	drawn	over	the
ring	default	is	only	scales	drawn.	

MTR_DRAW_UPDATE	 Bit	to	indicate	an	update	only.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Meter	>	Meter
States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Picture	Control	Functions
Picture	Control

Functions

	 Name	 Description	

	 PictCreate	 This	function	creates	a	PICTURE	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global
linked	list	of	objects	and	returns	the
address	of	the	object.	

	 PictDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 PictTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event
accepted	by	the	PICTURE	Object.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Picture	Control	Macros
Picture	Control

Macros

Name	 Description	

PictSetBitmap	 This	macro	sets	the	bitmap	used	in	the
object.	

PictGetBitmap	 This	macro	returns	the	pointer	to	the	bitmap
used	in	the	object.	

PictGetScale	 This	macro	returns	the	current	scale	factor
used	to	render	the	bitmap.	

PictSetScale	 This	macro	sets	the	scale	factor	used	to
render	the	bitmap	used	in	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Picture	Control	Structures
Picture	Control

Structures

Name	 Description	

PICTURE	 The	structure	contains	data	for	picture
control	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Picture	Control

Topics

Name	 Description	

Picture	States	 List	of	Picture	Control	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Picture	Control

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Picture	States	Macros
Picture	States

Macros

Name	 Description	

PICT_DISABLED	 Bit	to	indicate	Picture	is	in	a	disabled	state.	

PICT_DRAW	 Bit	to	indicate	Picture	will	be	redrawn.	

PICT_FRAME	 Bit	to	indicate	Picture	has	a	frame.	

PICT_HIDE	 Bit	to	indicate	Picture	must	be	hidden.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Picture
Control	>	Picture	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Progress	Bar	Functions
Progress	Bar

Functions

	 Name	 Description	

	 PbCreate	 This	function	creates	a	PROGRESSBAR
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into	a
global	linked	list	of	objects	and	returns	the
address	of	the	object.	

	 PbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and	bottom
parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 PbSetRange	 This	function	sets	the	range	of	the	progress
bar.	Calling	this	function	also	resets	the
position	equal	to	the	new	range	value.	

	 PbSetPos	 This	function	sets	the	position	of	the
progress	bar.	Position	should	be	in	the
given	range	inclusive.	

	 PbTranslateMsg	 This	function	evaluates	the	message	from	a

user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Progress	Bar	Macros
Progress	Bar

Macros

Name	 Description	

PbGetRange	 This	macro	returns	the	current	range	of	the
progress	bar.	

PbGetPos	 This	macro	returns	the	current	progress	bar
position.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Progress	Bar	Structures
Progress	Bar

Structures

Name	 Description	

PROGRESSBAR	 The	structure	contains	data	for	the	progress
bar	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Progress	Bar

Topics

Name	 Description	

Progress	Bar	States	 List	of	Progress	Bar	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Progress	Bar

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Progress	Bar	States	Macros
Progress	Bar	States

Macros

Name	 Description	

PB_DISABLED	 Bit	to	indicate	Progress	Bar	is	in	a	disabled
state.	

PB_DRAW	 Bit	to	indicate	Progress	Bar	must	be
redrawn.	

PB_DRAW_BAR	 Bit	to	indicate	Progress	Bar	must	be
redrawn.	

PB_HIDE	 Bit	to	indicate	Progress	Bar	must	be
hidden.	

PB_VERTICAL	 Bit	for	orientation	(0	-	horizontal,	1	-
vertical)	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Progress	Bar
>	Progress	Bar	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Radio	Button	Functions
Radio	Button

Functions

	 Name	 Description	

	 RbCreate	 This	function	creates	a	RADIOBUTTON
object	with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 RbDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 RbGetCheck	 This	function	returns	the	ID	of	the	currently
checked	Radio	Button	in	the	group.	

	 RbSetCheck	 This	function	sets	the	Radio	Button	with	the
given	ID	to	its	checked	state.	

	 RbSetText	 This	function	sets	the	string	used	for	the
object.	

	 RbMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 RbTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Radio	Button	Macros
Radio	Button

Macros

Name	 Description	

RbGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Radio	Button	Structures
Radio	Button

Structures

Name	 Description	

RADIOBUTTON	 the	structure	contains	data	for	the	Radio
Button	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Radio	Button

Topics

Name	 Description	

Radio	Button	States	 List	of	Radio	Button	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Radio	Button

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Radio	Button	States	Macros
Radio	Button	States

Macros

Name	 Description	

RB_CHECKED	 Bit	to	indicate	Radio	Button	is	checked.	

RB_DISABLED	 Bit	for	disabled	state.	

RB_DRAW	 Bit	to	indicate	whole	Radio	Button	must	be
redrawn.	

RB_DRAW_CHECK	 Bit	to	indicate	check	mark	should	be
redrawn.	

RB_DRAW_FOCUS	 Bit	to	indicate	focus	must	be	redrawn.	

RB_FOCUSED	 Bit	for	focused	state.	

RB_GROUP	 Bit	to	indicate	the	first	Radio	Button	in	the
group.	

RB_HIDE	 Bit	to	indicate	that	button	must	be	removed
from	screen.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Radio	Button
>	Radio	Button	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Slider/Scroll	Bar	Functions
Slider/Scroll	Bar

Functions

	 Name	 Description	

	 SldCreate	 This	function	creates	a	SLIDER	object	with
the	parameters	given.	Depending	on	the
SLD_SCROLLBAR	state	bit	slider	or
scrollbar	mode	is	set.	If	SLD_SCROLLBAR
is	set,	mode	is	scrollbar;	if	not	set	mode	is
slider.	It	automatically	attaches	the	new
object	into	a	global	linked	list	of	objects
and	returns	the	address	of	the	object.	

	 SldDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 SldSetPage	 This	sets	the	page	size	of	the	object.	Page
size	defines	the	delta	change	of	the	thumb
position	when	incremented	via	SldIncPos()
or	decremented	via	SldDecPos().	Page
size	minimum	value	is	1.	Maximum	value	is
range/2.	

	 SldSetPos	 This	function	sets	the	position	of	the	slider

thumb.	Value	should	be	in	the	set	range
inclusive.	Object	must	be	redrawn	to	reflect
the	change.	

	 SldSetRange	 This	sets	the	range	of	the	thumb.	If	this
field	is	changed	Object	must	be	completely
redrawn	to	reflect	the	change.	

	 SldMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated	message
given.	The	following	state	changes	are
supported:		

	 SldTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Slider/Scroll	Bar	Macros
Slider/Scroll	Bar

Macros

Name	 Description	

SldGetPage	 Returns	the	current	page	size	of	the	object.
Page	size	defines	the	delta	change	of	the
thumb	position	when	incremented	via
SldIncPos()	or	decremented	via
SldDecPos().	Page	size	minimum	value	is	1.
Maximum	value	is	range/2.	

SldGetPos	 Returns	returns	the	current	position	of	the
slider	thumb.	

SldGetRange	 Returns	the	current	range	of	the	thumb.	

SldIncPos	 This	macro	increment	the	slider	position	by
the	delta	change	(page)	value	set.	Object
must	be	redrawn	after	this	function	is	called
to	reflect	the	changes	to	the	object.	

SldDecPos	 This	macro	decrement	the	slider	position	by
the	delta	change	(page)	value	set.	Object
must	be	redrawn	after	this	function	is	called
to	reflect	the	changes	to	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Slider/Scroll	Bar	Structures
Slider/Scroll	Bar

Structures

Name	 Description	

SLIDER	 Defines	the	parameters	required	for	a
slider/scrollbar	Object.	Depending	on	the
SLD_SCROLLBAR	state	bit	slider	or
scrollbar	mode	is	set.	If	SLD_SCROLLBAR
is	set,	mode	is	scrollbar;	if	not	set	mode	is
slider.	For	scrollbar	mode,	focus	rectangle	is
not	drawn.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Slider/Scroll	Bar

Topics

Name	 Description	

Slider	States	 List	of	Slider	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Slider/Scroll	Bar

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Slider	States	Macros
Slider	States

Macros

Name	 Description	

SLD_DISABLED	 Bit	for	disabled	state	

SLD_DRAW	 Bit	to	indicate	whole	slider	must	be	redrawn	

SLD_DRAW_FOCUS	 Bit	to	indicate	that	only	the	focus	will	be
redrawn	

SLD_DRAW_THUMB	 Bit	to	indicate	that	only	thumb	area	must	be
redrawn	

SLD_FOCUSED	 Bit	for	focus	state	

SLD_HIDE	 Bit	to	remove	object	from	screen	

SLD_SCROLLBAR	 Bit	for	type	usage	(0	-	Slider,	1	-	ScrollBar)	

SLD_VERTICAL	 Bit	for	orientation	(0	-	horizontal,	1	-
vertical)	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Slider/Scroll
Bar	>	Slider	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Static	Text	Functions
Static	Text

Functions

	 Name	 Description	

	 StCreate	 This	function	creates	a	STATICTEXT	object
with	the	parameters	given.	It	automatically
attaches	the	new	object	into	a	global	linked
list	of	objects	and	returns	the	address	of	the
object.	

	 StDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter	settings.
Location	of	the	object	is	determined	by	the
left,	top,	right	and	bottom	parameters.	The
colors	used	are	dependent	on	the	state	of
the	object.	The	font	used	is	determined	by
the	style	scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 StSetText	 This	function	sets	the	string	that	will	be	used
for	the	object.	

	 StTranslateMsg	 This	function	evaluates	the	message	from	a
user	if	the	message	will	affect	the	object	or
not.	The	table	below	enumerates	the
translated	messages	for	each	event	of	the
touch	screen	and	keyboard	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Static	Text	Macros
Static	Text

Macros

Name	 Description	

StGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Static	Text	Structures
Static	Text

Structures

Name	 Description	

STATICTEXT	 Defines	the	parameters	required	for	a	Static
Text	Object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Static	Text

Topics

Name	 Description	

Static	Text	States	 List	of	Static	Text	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Static	Text

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Static	Text	States	Macros
Static	Text	States

Macros

Name	 Description	

ST_CENTER_ALIGN	 Bit	to	indicate	text	is	center	aligned.	

ST_DISABLED	 Bit	for	disabled	state.	

ST_DRAW	 Bit	to	indicate	static	text	must	be	redrawn.	

ST_FRAME	 Bit	to	indicate	frame	is	displayed.	

ST_HIDE	 Bit	to	remove	object	from	screen.	

ST_RIGHT_ALIGN	 Bit	to	indicate	text	is	left	aligned.	

ST_UPDATE	 Bit	to	indicate	that	text	area	only	is	redrawn.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Static	Text	>
Static	Text	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Entry	Functions
Text	Entry

Functions

	 Name	 Description	

	 TeCreate	 This	function	creates	a	TEXTENTRY
object	with	the	parameters	given.	It
automatically	attaches	the	new	object
into	a	global	linked	list	of	objects	and
returns	the	address	of	the	object.	

	 TeDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used
are	dependent	on	the	state	of	the
object.
This	widget	will	draw	the	keys	using
the	function	GOLPanelDraw().	The
number	of	keys	will	depend	on	the
horizontal	and	vertical	parameters
given	(horizontalKeys*verticakKeys).	

	 TeSetBuffer	 This	function	sets	the	buffer	used	to
display	text.	If	the	buffer	is	initialized
with	a	string,	the	string	must	be	a	null
terminated	string.	If	the	string	length	is
greater	than	MaxSize,	string	will	be
truncated	to	MaxSize.	pText	must
point	to	a	valid	memory	location	with
size	equal	to	MaxSize+1.	The	+1	is
used	for	the	string	terminator.	

	 TeClearBuffer	 This	function	will	clear	the	data	in	the
display.	You	must	set	the	drawing
state	bit	TE_UPDATE_TEXT	to	update
the	TEXTENTRY	on	the	screen.	

	 TeGetKeyCommand	 This	function	will	return	the	currently
used	command	by	a	key	with	the
given	index.	

	 TeSetKeyCommand	 This	function	will	assign	a	command
(TE_DELETE_COM,
TE_SPACE_COM	or
TE_ENTER_COM)	to	a	key	with	the
given	index.	

	 TeCreateKeyMembers	 This	function	will	create	the	list	of
KEYMEMBERS	that	holds	the
information	on	each	key.	The	number
of	keys	is	determined	by	the	equation
(verticalKeys*horizontalKeys).	The
object	creates	the	information	holder
for	each	key	automatically	and	assigns
each	entry	in	the	*pText[]	array	with
the	first	entry	automatically	assigned
to	the	key	with	an	index	of	1.	The
number	of	entries	to	*pText[]	must	be
equal	or	greater	than
(verticalKeys*horizontalKeys).	The	last
key	is	assigned	with	an	index	of
(verticalKeys*horizontalKeys)-1.	No
checking	is	performed	on	the	length	of
*pText[]	entries	to	match
(verticalKeys*horizontalKeys).	

	 TeAddChar	 This	function	will	insert	a	character	to
the	end	of	the	buffer.	The	character
inserted	is	dependent	on	the	currently
pressed	key.	Drawing	states

TE_UPDATE_TEXT	or	TE_DRAW
must	be	set	to	see	the	effect	of	this
insertion.	

	 TeIsKeyPressed	 This	function	will	test	if	a	key	given	by
its	index	in	the	TextEntry	object	has
been	pressed.	

	 TeSpaceChar	 This	function	will	insert	a	space
character	to	the	end	of	the	buffer.
Drawing	states	TE_UPDATE_TEXT	or
TE_DRAW	must	be	set	to	see	the
effect	of	this	insertion.	

	 TeDelKeyMembers	 This	function	will	delete	the
KEYMEMBER	list	assigned	to	the
object	from	memory.	Pointer	to	the
KEYMEMBER	list	is	then	initialized	to
NULL.	

	 TeSetKeyText	 This	function	will	set	the	test	assigned
to	a	key	with	the	given	index.	

	 TeMsgDefault	 This	function	performs	the	actual	state
change	based	on	the	translated
message	given.	The	following	state
changes	are	supported:		

	 TeTranslateMsg	 This	function	evaluates	the	message
from	a	user	if	the	message	will	affect
the	object	or	not.	If	the	message	is
valid,	the	keys	in	the	Text	Entry	object
will	be	scanned	to	detect	which	key
was	pressed.	If	True,	the
corresponding	text	will	be	displayed,
the	‘text’	will	also	be	stored	in	the
TeOutput	parameter	of	the	object.

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Entry	Macros
Text	Entry

Macros

Name	 Description	

TeGetBuffer	 This	macro	will	return	the	currently	used
buffer	in	the	TextEntry	object.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Entry	Structures
Text	Entry

Structures

Name	 Description	

TEXTENTRY	 Defines	the	parameters	required	for	a
TextEntry	Object.	

KEYMEMBER	 Defines	the	parameters	and	the	strings
assigned	for	each	key.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Text	Entry

Topics

Name	 Description	

TextEntry	States	 List	of	Text	Entry	bit	states.	

Key	Command	Types	 List	of	available	Key	command	types.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Text	Entry

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

TextEntry	States	Macros
TextEntry	States

Macros

Name	 Description	

TE_KEY_PRESSED	 Bit	for	press	state	of	one	of	the	keys.	

TE_DISABLED	 Bit	for	disabled	state.	

TE_ECHO_HIDE	 Bit	to	hide	the	entered	characters	and
instead	echo	"*"	characters	to	the	display.	

TE_DRAW	 Bit	to	indicate	object	must	be	redrawn.	

TE_HIDE	 Bit	to	indicate	object	must	be	removed	from
screen.	

TE_UPDATE_KEY	 Bit	to	indicate	redraw	of	a	key	is	needed.	

TE_UPDATE_TEXT	 Bit	to	indicate	redraw	of	the	text	displayed	is
needed.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
TextEntry	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Key	Command	Types	Macros
Key	Command	Types

Macros

Name	 Description	

TE_DELETE_COM	 This	macro	is	used	to	assign	a	"delete"
command	on	a	key.	

TE_ENTER_COM	 This	macro	is	used	to	assign	an	"enter"
(carriage	return)	command	on	a	key.	

TE_SPACE_COM	 This	macro	is	used	to	assign	an	insert
"space"	command	on	a	key.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Text	Entry	>
Key	Command	Types

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Window	Functions
Window

Functions

	 Name	 Description	

	 WndCreate	 This	function	creates	a	WINDOW	object
with	the	parameters	given.	It
automatically	attaches	the	new	object	into
a	global	linked	list	of	objects	and	returns
the	address	of	the	object.	

	 WndDraw	 This	function	renders	the	object	on	the
screen	using	the	current	parameter
settings.	Location	of	the	object	is
determined	by	the	left,	top,	right	and
bottom	parameters.	The	colors	used	are
dependent	on	the	state	of	the	object.	The
font	used	is	determined	by	the	style
scheme	set.
When	rendering	objects	of	the	same	type,
each	object	must	be	rendered	completely
before	the	rendering	of	the	next	object	is
started.	This	is	to	avoid	incomplete	object
rendering.	

	 WndSetText	 This	function	sets	the	string	used	for	the
title	bar.	

	 WndTranslateMsg	 This	function	evaluates	the	message	from
a	user	if	the	message	will	affect	the	object
or	not.	The	table	below	enumerates	the
translated	messages	for	each	event	of
the	touch	screen	inputs.
	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Window	Macros
Window

Macros

Name	 Description	

WndGetText	 This	macro	returns	the	address	of	the
current	text	string	used	for	the	title	bar.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Window	Structures
Window

Structures

Name	 Description	

WINDOW	 The	structure	contains	data	for	the	window	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Window

Topics

Name	 Description	

Window	States	 List	of	Window	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Window

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Window	States	Macros
Window	States

Macros

Name	 Description	

WND_DISABLED	 Bit	for	disabled	state	

WND_DRAW	 Bits	to	indicate	whole	window	must	be
redrawn	

WND_DRAW_CLIENT	 Bit	to	indicate	client	area	must	be	redrawn	

WND_DRAW_TITLE	 Bit	to	indicate	title	area	must	be	redrawn	

WND_FOCUSED	 Bit	for	focus	state	

WND_HIDE	 Bit	to	indicate	window	must	be	removed
from	screen	

WND_TITLECENTER	 Bit	to	center	the	text	on	the	Title	Area	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Objects	>	Window	>
Window	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Object	States	Macros
Object	States

Macros

Name	 Description	

GetState	 This	macro	retrieves	the	current	value	of	the
state	bits	of	an	object.	It	is	possible	to	get
several	state	bits.	

ClrState	 This	macro	clear	the	state	bits	of	an	object.
Object	must	be	redrawn	to	display	the
changes.	It	is	possible	to	clear	several	state
bits	with	this	macro.	

SetState	 This	macro	sets	the	state	bits	of	an	object.
Object	must	be	redrawn	to	display	the
changes.	It	is	possible	to	set	several	state
bits	with	this	macro.	

Library	API	>	Graphics	Object	Layer	API	>	Object	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Object	States

Topics

Name	 Description	

Common	Object
States	

List	of	common	Object	bit	states.	

Library	API	>	Graphics	Object	Layer	API	>	Object	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Common	Object	States	Macros
Common	Object	States

Macros

Name	 Description	

FOCUSED	 Focus	state	bit.	

DISABLED	 Disabled	state	bit.	

HIDE	 Object	hide	state	bit.	Object	will	be	hidden
from	the	screen	by	drawing	over	it	the
common	background	color.	

DRAW	 Object	redraw	state	bit.	The	whole	Object
must	be	redrawn.	

DRAW_FOCUS	 Focus	redraw	state	bit.	The	focus	rectangle
must	be	redrawn.	

DRAW_UPDATE	 Partial	Object	redraw	state	bit.	A	part	or
parts	of	of	the	Object	must	be	redrawn	to
show	updated	state.	

Library	API	>	Graphics	Object	Layer	API	>	Object	States	>	Common
Object	States

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Object	Management	Functions
Object	Management

Functions

	 Name	 Description	

	 GOLAddObject	 This	function	adds	an	object	to
the	tail	of	the	active	list	pointed	to
by	_pGolObjects.	The	new	list	tail
is	set	to	point	to	NULL.	

	 GOLFindObject	 This	function	finds	an	object	in
the	active	list	pointed	to	by
_pGolObjects	using	the	given
object	ID.	

	 GOLRedrawRec	 This	function	marks	all	objects	in
the	active	list	intersected	by	the
given	rectangular	area	to	be
redrawn.	

	 GOLDraw	 This	function	loops	through	the
active	list	and	redraws	objects
that	need	to	be	redrawn.	Partial
redrawing	or	full	redraw	is
performed	depending	on	the
drawing	states	of	the	objects.
GOLDrawCallback()	function	is
called	by	GOLDraw()	when
drawing	of	objects	in	the	active
list	is	completed.	

	 GOLDrawCallback	 GOLDrawCallback()	function
MUST	BE	implemented	by	the
user.	This	is	called	inside	the

GOLDraw()	function	when	the
drawing	of	objects	in	the	active
list	is	completed.	User	drawing
must	be	done	here.	Drawing
color,	line	type,	clipping	region,
graphic	cursor	position	and
current	font	will	not	be	changed
by	GOL	if	this	function	returns	a
zero.	To	pass	drawing	control	to
GOL	this	function	must	return	a
non-zero	value.	If	GOL
messaging	is	not	using	the	active
link	list,	it	is	safe	to	modify	the	list
here.	

	 GOLFree	 This	function	frees	all	the	memory
used	by	objects	in	the	active	list
and	initializes	_pGolObjects
pointer	to	NULL	to	start	a	new
empty	list.	This	function	must	be
called	only	inside	the
GOLDrawCallback()function
when	using	GOLDraw()	and
GOLMsg()	functions.	This
requirement	assures	that
primitive	rendering	settings	are
not	altered	by	the	rendering	state
machines	of	the	objects.	

	 GOLDeleteObject	 deletes	an	object	to	the	linked	list
objects	for	the	current	screen.	

	 GOLDeleteObjectByID	 Deletes	an	object	in	the	current
active	linked	list	of	objects	using
the	ID	parameter	of	the	object.	

	 GOLSetFocus	 This	function	sets	the	keyboard
input	focus	to	the	object.	If	the

object	cannot	accept	keyboard
messages	focus	will	not	be
changed.	This	function	resets
FOCUSED	state	for	the	object
was	in	focus	previously,	set
FOCUSED	state	for	the	required
object	and	marks	the	objects	to
be	redrawn.	

	 GOLInit	 This	function	initializes	the
graphics	library	and	creates	a
default	style	scheme	with	default
settings	referenced	by	the	global
scheme	pointer.	GOLInit()
function	must	be	called	before
GOL	functions	can	be	used.	It	is
not	necessary	to	call	GraphInit()
function	if	this	function	is	used.	

	 GOLCanBeFocused	 This	function	returns	non-zero	if
the	object	can	be	focused.	Only
button,	check	box,	radio	button,
slider,	edit	box,	list	box,	scroll	bar
can	accept	focus.	If	the	object	is
disabled	it	cannot	be	set	to
focused	state.	

	 GOLGetFocusNext	 This	function	returns	the	pointer
to	the	next	object	in	the	active
linked	list	which	is	able	to	receive
keyboard	input.	

	 GOLGetFocusPrev	 This	function	returns	the	pointer
to	the	previous	object	in	the
active	linked	list	which	is	able	to
receive	keyboard	input.	

	 GOLPanelDrawTsk	 This	function	draws	a	panel	on
the	screen	with	parameters	set	by
GOLPanelDraw()	macro.	This
function	must	be	called
repeatedly	(depending	on	the
return	value)	for	a	successful
rendering	of	the	panel.	

	 GOLTwoTonePanelDrawTsk	 This	function	draws	a	two	tone
panel	on	the	screen	with
parameters	set	by
GOLPanelDraw()	macro.	This
function	must	be	called
repeatedly	(depending	on	the
return	value)	for	a	successful
rendering	of	the	panel.	

Library	API	>	Graphics	Object	Layer	API	>	Object	Management

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Object	Management	Macros
Object	Management

Macros

Name	 Description	

GOLRedraw	 This	macro	sets	the	object	to	be	redrawn.
For	the	redraw	to	be	effective,	the	object
must	be	in	the	current	active	list.	If	not,	the
redraw	action	will	not	be	performed	until	the
list	where	the	object	is	currently	inserted	will
be	set	to	be	the	active	list.	

GOLDrawComplete	 This	macro	resets	the	drawing	states	of	the
object	(6	MSBits	of	the	objectï¿½s	state).	

GetObjType	 This	macro	returns	the	object	type.	

GetObjID	 This	macro	returns	the	object	ID.	

GetObjNext	 This	macro	returns	the	next	object	after	the
specified	object.	

GOLNewList	 This	macro	starts	a	new	linked	list	of	objects
and	resets	the	keyboard	focus	to	none.	This
macro	assigns	the	current	active	list
_pGolObjects	and	current	receiving
keyboard	input	_pObjectFocused	object
pointers	to	NULL.	Any	keyboard	inputs	at
this	point	will	be	ignored.	Previous	active	list
must	be	saved	in	another	pointer	if	to	be
referenced	later.	If	not	needed	anymore
memory	used	by	that	list	should	be	freed	by
GOLFree()	function.	

GOLGetList	 This	macro	gets	the	current	active	list.	

GOLSetList	 This	macro	sets	the	given	object	list	as	the
active	list	and	resets	the	keyboard	focus	to
none.	This	macro	assigns	the	receiving
keyboard	input	object	_pObjectFocused
pointer	to	NULL.	If	the	new	active	list	has	an
objectï¿½s	state	set	to	focus,	the
_pObjectFocused	pointer	must	be	set	to	this
object	or	the	objectï¿½s	state	must	be
change	to	unfocused.	This	is	to	avoid	two
objects	displaying	a	focused	state	when
only	one	object	in	the	active	list	must	be	set
to	a	focused	state	at	anytime.	

IsObjUpdated	 This	macro	tests	if	the	object	is	pending	to
be	redrawn.	This	is	done	by	testing	the	6
MSBits	of	objectï¿½s	state	to	detect	if	the
object	must	be	redrawn.	

GOLGetFocus	 This	macro	returns	the	pointer	to	the	current
object	receiving	keyboard	input.	

GOLPanelDraw	 This	is	macro	GOLPanelDraw.	

Library	API	>	Graphics	Object	Layer	API	>	Object	Management

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Object	Management

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	Object	Management

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Messages	Enumerations
GOL	Messages

Enumerations

Name	 Description	

TRANS_MSG	 This	structure	defines	the	list	of	translated
messages	for	GOL	Objects	used	in	the
library.	

INPUT_DEVICE_EVENT	 This	structure	defines	the	types	of	GOL
message	events	used	in	the	library.	

INPUT_DEVICE_TYPE	 This	structure	defines	the	types	of	input
devices	used	in	the	library.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Messages	Functions
GOL	Messages

Functions

	 Name	 Description	

	 GOLMsg	 This	function	receives	a	GOL	message
from	user	and	loops	through	the	active	list
of	objects	to	check	which	object	is
affected	by	the	message.	For	affected
objects	the	message	is	translated	and
GOLMsgCallback()	is	called.	In	the	call
back	function,	user	has	the	ability	to
implement	action	for	the	message.	If	the
call	back	function	returns	non-zero
OBJMsgDefault()	is	called	to	process
message	for	the	object	by	default.	If	zero
is	returned	OBJMsgDefault()	is	not	called.
Please	refer	to	GOL	Messages	section	for
deatils.
This	function	should	be	called	when	GOL
drawing	is	completed.	It	can	be	done...
more	

	 GOLMsgCallback	 The	user	MUST	implement	this	function.
GOLMsg()	calls	this	function	when	a	valid
message	for	an	object	in	the	active	list	is
received.	User	action	for	the	message
should	be	implemented	here.	If	this
function	returns	non-zero,	the	message
for	the	object	will	be	processed	by	default.
If	zero	is	returned,	GOL	will	not	perform
any	action.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Messages	Structures
GOL	Messages

Structures

Name	 Description	

GOL_MSG	 This	structure	defines	the	GOL	message
used	in	the	library.

The	types	must	be	one	of	the
INPUT_DEVICE_TYPE:

TYPE_UNKNOWN
TYPE_KEYBOARD
TYPE_TOUCHSCREEN
TYPE_MOUSE

uiEvent	must	be	one	of	the
INPUT_DEVICE_EVENT.

for	touch	screen:

EVENT_INVALID
EVENT_MOVE
EVENT_PRESS
EVENT_STILLPRESS
EVENT_RELEASE

for	keyboard:

EVENT_KEYSCAN	(param2
contains	scan	code)
EVENT_KEYCODE	(param2
contains	character	code)

param1:

for	touch	screen	is	the	x	position
for	keyboard	ID	of	object	receiving
the	message

param2

for	touch	screen	y	position
for	keyboard	scan	or	key	code

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
GOL	Messages

Topics

Name	 Description	

Scan	Key	Codes	 The	defined	scan	codes	for	AT	keyboard.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
GOL	Messages

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Scan	Key	Codes	Macros
Scan	Key	Codes

Macros

Name	 Description	

SCAN_BS_PRESSED	 Back	space	key	pressed.	

SCAN_BS_RELEASED	 Back	space	key	released.	

SCAN_CR_PRESSED	 Carriage	return	pressed.	

SCAN_CR_RELEASED	 Carriage	return	released.	

SCAN_DEL_PRESSED	 Delete	key	pressed.	

SCAN_DEL_RELEASED	 Delete	key	released.	

SCAN_DOWN_PRESSED	 Down	key	pressed.	

SCAN_DOWN_RELEASED	 Down	key	released.	

SCAN_END_PRESSED	 End	key	pressed.	

SCAN_END_RELEASED	 End	key	released.	

SCAN_HOME_PRESSED	 Home	key	pressed.	

SCAN_HOME_RELEASED	 Home	key	released.	

SCAN_LEFT_PRESSED	 Left	key	pressed.	

SCAN_LEFT_RELEASED	 Left	key	released.	

SCAN_PGDOWN_PRESSED	 Page	down	key	pressed.	

SCAN_PGDOWN_RELEASED	 Page	down	key	released.	

SCAN_PGUP_PRESSED	 Page	up	key	pressed.	

SCAN_PGUP_RELEASED	 Page	up	key	released.	

SCAN_RIGHT_PRESSED	 Right	key	pressed.	

SCAN_RIGHT_RELEASED	 Right	key	released.	

SCAN_SPACE_PRESSED	 Space	key	pressed.	

SCAN_SPACE_RELEASED	 Space	key	released.	

SCAN_TAB_PRESSED	 Tab	key	pressed.	

SCAN_TAB_RELEASED	 Tab	key	released.	

SCAN_UP_PRESSED	 Up	key	pressed.	

SCAN_UP_RELEASED	 Up	key	released.	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Messages	>	Scan	Key
Codes

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Style	Scheme	Functions
Style	Scheme

Functions

	 Name	 Description	

	 GOLCreateScheme	 This	function	creates	a	new	style
scheme	object	and	initializes	the
parameters	to	default	values.	Default
values	are	based	on	the
GOLSchemeDefault	defined	in
GOLSchemeDefault.c	file.	Application
code	can	override	this	initialization,	See
GOLSchemeDefault.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Style	Scheme	Macros
Style	Scheme

Macros

Name	 Description	

GOLSetScheme	 This	macro	sets	the	GOL	scheme	to	be
used	for	the	object.	

GOLGetScheme	 This	macro	gets	the	GOL	scheme	used	by
the	given	object.	

GOLGetSchemeDefault	 This	macro	returns	the	default	GOL
scheme	pointer.	

GOL_EMBOSS_SIZE	 This	option	defines	the	3-D	effect	emboss
size	for	objects.	The	default	value	of	this	is
3	set	in	GOL.h.	If	it	is	not	defined	in
GraphicsConfig.h	file	then	the	default	value
is	used.	

RGBConvert	 This	macro	converts	the	color	data	to	the
selected	COLOR_DEPTH.	This	macro	is
only	valid	when	COLOR_DEPTH	is	8,	16,
or	24.
	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Style	Scheme	Structures
Style	Scheme

Structures

Name	 Description	

GOL_SCHEME	 GOL	scheme	defines	the	style	scheme	to	be
used	by	an	object.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Style	Scheme

Topics

Name	 Description	

Default	Style	Scheme
Settings	

Lists	the	default	settings	for	the	style
scheme.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Style	Scheme	Variables
Style	Scheme

Variables

Name	 Description	

GOLFontDefault	 This	is	variable	GOLFontDefault.	

GOLSchemeDefault	 This	defines	a	default	GOL	scheme	that
gets	populated	when	an	application	calls	the
GOLCreateScheme().	The	application	can
override	this	definition	by	defining	the	macro
GFX_SCHEMEDEFAULT	in	the
GraphicsConfig.h	header	file	and	defining
GOLSchemeDefault	structure	in	the
application	code.	It	is	important	to	use	the
same	structure	name	since	the	library
assumes	that	this	object	exists	and	assigns
the	default	style	scheme	pointer	to	this
object.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Style	Scheme

Legend

	
Method	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Default	Style	Scheme	Settings	Variables
Default	Style	Scheme	Settings

Variables

Name	 Description	

FONTDEFAULT	 Default	GOL	font.	

Library	API	>	Graphics	Object	Layer	API	>	Style	Scheme	>	Default	Style
Scheme	Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

GOL	Global	Variables	Variables
GOL	Global	Variables

Variables

Name	 Description	

_pDefaultGolScheme	 Pointer	to	the	GOL	default	scheme
(GOL_SCHEME).	This	scheme	is	created	in
GOLInit()	function.	GOL	scheme	defines	the
style	scheme	to	be	used	by	an	object.	Use
GOLGetSchemeDefault()	to	get	this	pointer.	

_pGolObjects	 Pointer	to	the	current	linked	list	of	objects
displayed	and	receiving	messages.
GOLDraw()	and	GOLMsg()	process	objects
referenced	by	this	pointer.	

_pObjectFocused	 Pointer	to	the	object	receiving	keyboad
input.	This	pointer	is	used	or	modified	by	the
following	APIs:

GOLSetFocus()
GOLGetFocus()
GOLGetFocusNext()
GOLGetFocusPrev()
GOLCanBeFocused()

	

Library	API	>	Graphics	Object	Layer	API	>	GOL	Global	Variables

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Graphics	Primitive	Layer	API	Enumerations
Graphics	Primitive	Layer	API

Enumerations

Name	 Description	

GFX_RESOURCE	 Memory	type	enumeration	to	determine	the
source	of	data.	Used	in	interpreting	bitmap
and	font	from	different	memory	sources.	

Library	API	>	Graphics	Primitive	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Graphics	Primitive	Layer	API	Structures
Graphics	Primitive	Layer	API

Structures

Name	 Description	

GFX_IMAGE_HEADER	 Structure	for	images	stored	in	various
system	memory	(Flash,	External	Memory
(SPI,	Parallel	Flash,	or	memory	in	EPMP).	

IMAGE_FLASH	 Structure	for	images	stored	in	FLASH
memory.	

IMAGE_RAM	 Structure	for	images	stored	in	RAM
memory.	

GFX_EXTDATA	 This	structure	is	used	to	describe	external
memory.	

Library	API	>	Graphics	Primitive	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Graphics	Primitive	Layer	API

Topics

Name	 Description	

Text	Functions	 This	lists	the	Primitive	level	text	functions.	

Gradient	 Gradients	can	be	drawn	dynamically	with
the	Microchip	Graphics	Library.	

Line	Functions	 This	lists	the	Primitive	line	text	functions.	

Rectangle	Functions	 This	lists	the	Primitive	level	rectangle
functions.	

Circle	Functions	 This	lists	the	Primitive	level	circle	functions.	

Graphic	Cursor	 This	lists	the	functions	to	control	the
graphics	cursor.	

Alpha	Blending
Functions	

This	lists	the	functions	to	control	Alpha
Blending.	This	feature	is	enabled	only	in
selected	drivers.	

Bitmap	Functions	 This	lists	the	functions	to	display	bitmaps.	

External	Memory	 This	lists	the	external	memory	access
functions	and	descriptions.	

Set	Up	Functions	 This	lists	the	Primitive	set	up	and
initialization	functions.	

Library	API	>	Graphics	Primitive	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012

Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Functions	Functions
Text	Functions

Functions

	 Name	 Description	

	 SetFont	 This	function	sets	the	current	font	used	in
OutTextXY(),	OutText()	and	OutChar()
functions.	

	 OutChar	 This	function	outputs	a	character	from	the
current	graphic	cursor	position.	OutChar()
uses	the	current	active	font	set	with
SetFont().	

	 OutText	 This	function	outputs	a	string	of	characters
starting	at	the	current	graphic	cursor
position.	The	string	must	be	terminated	by	a
line	feed	or	zero.	For	Non-Blocking
configuration,	OutText()	may	return	control
to	the	program	due	to	display	device	busy
status.	When	this	happens	zero	is	returned
and	OutText()	must	be	called	again	to
continue	the	outputting	of	the	string.	For
Blocking	configuration,	this	function	always
returns	a	1.	OutText()	uses	the	current
active	font	set	with	SetFont().	

	 OutTextXY	 This	function	outputs	a	string	of	characters
starting	at	the	given	x,	y	position.	The	string
must	be	terminated	by	a	line	feed	or	zero.
For	Non-Blocking	configuration,
OutTextXY()	may	return	control	to	the
program	due	to	display	device	busy	status.
When	this	happens	zero	is	returned	and

OutTextXY()	must	be	called	again	to
continue	the	outputting	of	the	string.	For
Blocking	configuration,	this	function	always
returns	a	1.	OutTextXY()	uses	the	current
active	font	set	with	SetFont().	

	 GetTextHeight	 This	macro	returns	the	height	of	the
specified	font.	All	characters	in	a	given	font
table	have	a	constant	height.	

	 GetTextWidth	 This	function	returns	the	width	of	the
specified	string	for	the	specified	font.	The
string	must	be	terminated	by	a	line	feed	or
zero.	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Functions	Macros
Text	Functions

Macros

Name	 Description	

GetFontOrientation	 Returns	font	orientation.	

SetFontOrientation	 Sets	font	orientation	vertical	or
horizontal.	

GFX_Font_GetAntiAliasType	 Returns	the	font	anti-alias	type.	

GFX_Font_SetAntiAliasType	 Sets	font	anti-alias	type	to	either
Translucent	or	opaque.	

XCHAR	 This	macro	sets	the	data	type	for	the
strings	and	characters.	There	are
three	types	used	for	XCHAR	and	the
type	is	selected	by	adding	one	of	the
macros	in	GraphicsConfig.h.		

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Functions	Structures
Text	Functions

Structures

Name	 Description	

FONT_HEADER	 Structure	describing	the	font	header.	

FONT_FLASH	 Structure	for	font	stored	in	FLASH	memory.	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Text	Functions

Topics

Name	 Description	

Anti-Alias	Type	 Anti-alias	type	definitions.	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Text	Functions	Types
Text	Functions

Types

Name	 Description	

FONT_EXTERNAL	 Structure	for	font	stored	in	EXTERNAL
memory	space.	(example:	External	SPI	or
parallel	Flash,	EDS_EPMP)	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Text	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Anti-Alias	Type	Macros
Anti-Alias	Type

Macros

Name	 Description	

ANTIALIAS_OPAQUE	 Mid	colors	are	calculated	only	once
while	rendering	each	character.	This
is	ideal	for	rendering	text	over	a
constant	background.	

ANTIALIAS_TRANSLUCENT	 Mid	values	are	calculated	for	every
necessary	pixel.	This	feature	is	useful
when	rendering	text	over	an	image	or
when	the	background	is	not	one	flat
color.	

Library	API	>	Graphics	Primitive	Layer	API	>	Text	Functions	>	Anti-Alias
Type

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Gradient	Enumerations
Gradient

Enumerations

Name	 Description	

GFX_GRADIENT_TYPE	 Enumeration	for	gradient	type	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Gradient	Functions
Gradient

Functions

	 Name	 Description	

	 BarGradient	 This	renders	a	bar	onto	the	screen,	but
instead	of	one	color,	a	gradient	is	drawn
depending	on	the	direction
(GFX_GRADIENT_TYPE),	length,	and
colors	chosen.	This	function	is	a	blocking
call.	

	 BevelGradient	 This	renders	a	filled	bevel	with	gradient
color	on	the	fill.	It	works	the	same	as	the
fillbevel	function,	except	a	gradient	out	of
color1	and	color2	is	drawn	depending	on
the	direction	(GFX_GRADIENT_TYPE).
This	function	is	a	blocking	call.	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Gradient	Structures
Gradient

Structures

Name	 Description	

GFX_GRADIENT_STYLE	 This	structure	is	used	to	describe	the
gradient	style.	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Gradient

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Gradient

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Line	Functions	Functions
Line	Functions

Functions

	 Name	 Description	

	 Line	 This	function	draws	a	line	with	the	current
line	type	from	the	start	point	to	the	end
point.	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Line	Functions	Macros
Line	Functions

Macros

Name	 Description	

LineRel	 This	macro	draws	a	line	with	the	current	line
type	from	the	current	graphic	cursor	position
to	the	position	defined	by	displacement.	

LineTo	 This	macro	draws	a	line	with	the	current	line
type	from	the	current	graphic	cursor	position
to	the	given	x,	y	position.	

SetLineThickness	 This	macro	sets	sets	line	thickness	to	1
pixel	or	3	pixels.	

SetLineType	 This	macro	sets	the	line	type	to	draw.	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Line	Functions

Topics

Name	 Description	

Line	Types	 Line	type	definitions.	

Line	Size	 Line	sizes	definition.	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Line	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Line	Types	Macros
Line	Types

Macros

Name	 Description	

SOLID_LINE	 Solid	Line	Style	

DASHED_LINE	 Dashed	Line	Style	

DOTTED_LINE	 Dotted	Line	Style	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Types

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Line	Size	Macros
Line	Size

Macros

Name	 Description	

NORMAL_LINE	 Normal	Line	(thickness	is	1	pixel)	

THICK_LINE	 Thick	Line	(thickness	is	3	pixels)	

Library	API	>	Graphics	Primitive	Layer	API	>	Line	Functions	>	Line	Size

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Rectangle	Functions	Functions
Rectangle	Functions

Functions

	 Name	 Description	

	 Bar	 This	function	draws	a	bar	given	the	left,	top
and	right,	bottom	corners	with	the	current
set	color	(SetColor()).	When	alpha	blending
is	enabled	the	bar	is	alpha	blended	with	the
existing	pixels	specified	by	the	parameters.
The	alpha	percentage	used	is	the	last	value
set	by	SetAlpha().	

	 DrawPoly	 This	function	draws	a	polygon	with	the
current	line	type	using	the	given	number	of
points.	The	polygon	points	(polyPoints)	are
stored	in	an	array	arranged	in	the	following
order:		

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Rectangle	Functions	Macros
Rectangle	Functions

Macros

Name	 Description	

Rectangle	 This	macro	draws	a	rectangle	with	the	given
left,	top	and	right,	bottom	corners.	Current
line	type	is	used.	

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Rectangle	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Rectangle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Circle	Functions	Functions
Circle	Functions

Functions

	 Name	 Description	

	 Arc	 Draws	the	octant	arc	of	the	beveled	figure
with	the	given	centers,	radii	and	octant
mask.	When	octant	=	0xFF	and	the
following	are	true:

1.	 xL	=	xR,	yT	=	yB	,	r1	=	0	and	r2	=	z,	a
filled	circle	is	drawn	with	a	radius	of	z.

2.	 radii	have	values	(where	r1	<	r2),	a	full
ring	with	thickness	of	(r2-r1)	is	drawn.

3.	 xL	!=	xR,	yT	!=	yB	,	r1	=	0	and	r2	=	0
(where	xR	>	xL	and	yB	>	yT)	a
rectangle	is	drawn.	xL,	yT	specifies	the
left	top	corner	and	xR,...	more	

	 DrawArc	 This	renders	an	arc	with	from	startAngle	to
endAngle	with	the	thickness	of	r2-r1.	The
function	returns	1	when	the	arc	is	rendered
successfuly	and	returns	a	0	when	it	is	not
yet	finished.	The	next	call	to	the	function	will
continue	the	rendering.	

	 Bevel	 Draws	a	beveled	figure	on	the	screen.
When	x1	=	x2	and	y1	=	y2,	a	circular	object
is	drawn.	When	x1	<	x2	and	y1	<	y2	and	rad
(radius)	=	0,	a	rectangular	object	is	drawn.	

	 FillBevel	 Draws	a	filled	beveled	figure	on	the	screen.
For	a	filled	circular	object	x1	=	x2	and	y1	=
y2.	For	a	filled	rectangular	object	radius	=

0.	

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Circle	Functions	Macros
Circle	Functions

Macros

Name	 Description	

Circle	 This	macro	draws	a	circle	with	the	given
center	and	radius.	

FillCircle	 This	macro	draws	a	filled	circle.	Uses	the
FillBevel()	function.	

SetBevelDrawType	 This	macro	sets	the	fill	bevel	type	to	be
drawn.	

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Circle	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Circle	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Graphic	Cursor	Macros
Graphic	Cursor

Macros

Name	 Description	

GetX	 This	macro	returns	the	current	graphic
cursor	x-coordinate.	

GetY	 This	macro	returns	the	current	graphic
cursor	y-coordinate.	

MoveRel	 This	macro	moves	the	graphic	cursor
relative	to	the	current	location.	The	given	dX
and	dY	displacement	can	be	positive	or
negative	numbers.	

MoveTo	 This	macro	moves	the	graphic	cursor	to	new
x,y	position.	

Library	API	>	Graphics	Primitive	Layer	API	>	Graphic	Cursor

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Alpha	Blending	Functions	Functions
Alpha	Blending	Functions

Functions

	 Name	 Description	

	 AlphaBlendWindow	 This	Alpha-Blends	a	foreground	and	a
background	stored	in	frames	to	a
destination	window.	A	frame	is	a
memory	area	that	contain	array	of	pixels
information.	An	example	would	be	a
display	buffer.	This	operation	can	be
performed	on	a	single	frame	(where
foregroundArea,	backgroundArea	and
destinationArea	all	points	to	the	same
frame),	2	frames	(where	two	of	the	three
areas	are	pointing	to	the	same	frame
and	one	is	another	frame),	or	3	frames
(where	each	area	is	a	separate	frame).
The	Alpha-Blending	is	performed	on	the
windows	inside	the	specified	frames.
These	windows	are	defined	by	the
offsets...	more	

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Alpha	Blending	Functions	Macros
Alpha	Blending	Functions

Macros

Name	 Description	

SetAlpha	 This	macro	sets	the	alpha	value.	Enabling
this	feature	requires	the	macros
USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.	See
USE_ALPHABLEND_LITE	for	information
on	supported	primitive	rendering	functions.	

GetAlpha	 This	macro	returns	the	current	alpha	value.
Enabling	this	feature	requires	the	macros
USE_ALPHABLEND_LITE	defined	in	the
GraphicsConfig.h.	

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Alpha	Blending	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Alpha	Blending	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Bitmap	Functions	Functions
Bitmap	Functions

Functions

	 Name	 Description	

	 PutImagePartial	 This	function	outputs	a	full	or	a	partial
image	starting	from	left,top	coordinates.
The	partial	image	starts	at	xoffset	and
yoffset.	Size	is	specified	by	the	given	width
and	height	parameters.	

	 GetImageHeight	 This	function	returns	the	image	height.	

	 GetImageWidth	 This	function	returns	the	image	width.	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Bitmap	Functions	Macros
Bitmap	Functions

Macros

Name	 Description	

PutImage	 This	renders	the	image	pointed	to	by
"image"	starting	from	left,	top	coordinates.	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Bitmap	Functions	Structures
Bitmap	Functions

Structures

Name	 Description	

BITMAP_HEADER	 Structure	describing	the	bitmap	header.	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Bitmap	Functions

Topics

Name	 Description	

Bitmap	Settings	 Bitmap	rendering	settings.	

Bitmap	Source	 Bitmap	data	structure	is	dependent	on	the
location.	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Bitmap	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Bitmap	Settings	Macros
Bitmap	Settings

Macros

Name	 Description	

IMAGE_NORMAL	 Normal	image	stretch	code	

IMAGE_X2	 Stretched	image	stretch	code	

Library	API	>	Graphics	Primitive	Layer	API	>	Bitmap	Functions	>	Bitmap
Settings

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

External	Memory	Functions
External	Memory

Functions

	 Name	 Description	

	 ExternalMemoryCallback	 This	function	must	be	implemented
in	the	application.	The	library	will
call	this	function	each	time	when
the	external	memory	data	will	be
required.	The	application	must	copy
requested	bytes	quantity	into	the
buffer	provided.	Data	start	address
in	external	memory	is	a	sum	of	the
address	in	GFX_EXTDATA
structure	and	offset.	

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

External	Memory	Macros
External	Memory

Macros

Name	 Description	

EXTERNAL_FONT_BUFFER_SIZE	 This	defines	the	size	of	the
buffer	used	by	font	functions	to
retrieve	font	data	from	the
external	memory.	The	buffer
size	can	be	increased	to
accommodate	large	font	sizes.
The	user	must	be	aware	of	the
expected	glyph	sizes	of	the
characters	stored	in	the	font
table.	To	modify	the	size	used,
declare	this	macro	in	the
GraphicsConfig.h	file	with	the
desired	size.	

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
External	Memory

Topics

Name	 Description	

Memory	Type	 Memory	type	enumeration	to	determine	the
source	of	data.	Used	in	interpreting	bitmap
and	font	from	different	memory	sources.	

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
External	Memory

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	External	Memory

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Set	Up	Functions	Functions
Set	Up	Functions

Functions

	 Name	 Description	

	 ClearDevice	 This	function	clears	the	screen	with	the
current	color	and	sets	the	graphic	cursor
position	to	(0,	0).	Clipping	is	NOT	supported
by	ClearDevice().	

	 InitGraph	 This	function	initializes	the	display
controller,	sets	the	line	type	to	SOLID_LINE,
sets	the	screen	to	all	BLACK,	sets	the
current	drawing	color	to	WHITE,	sets	the
graphic	cursor	position	to	upper	left	corner
of	the	screen,	sets	active	and	visual	pages
to	page	#0,	clears	the	active	page	and
disables	clipping.	This	function	should	be
called	before	using	the	Graphics	Primitive
Layer.	

Library	API	>	Graphics	Primitive	Layer	API	>	Set	Up	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Set	Up	Functions

Legend

	
Method	

Library	API	>	Graphics	Primitive	Layer	API	>	Set	Up	Functions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Modules
Display	Device	Driver	Layer	API

Modules

Name	 Description	

Advanced	Display
Driver	Features	

This	section	lists	advanced	Display	Device
Driver	Features	implemented	in	select
Display	Device	Driver.	

Library	API	>	Display	Device	Driver	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Display	Device	Driver	Layer	API

Topics

Name	 Description	

Display	Device	Driver
Level	Primitives	

This	lists	the	Device	Level	Primitive
rendering	functions	and	macros.	

Display	Device	Driver
Control	

This	lists	the	device	control	functions	and
macros.	

Library	API	>	Display	Device	Driver	Layer	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Device	Driver	Level	Primitives	Functions
Display	Device	Driver	Level	Primitives

Functions

	 Name	 Description	

	 GetPixel	 Returns	pixel	color	at	the	given	x,y
coordinate	position.	

	 PutPixel	 Puts	pixel	with	the	given	x,y
coordinate	position.	

	 SetClip	 Enables/disables	clipping.	

	 SetClipRgn	 Sets	clipping	region.	

	 TransparentColorEnable	 Sets	current	transparent	color.
PutImage()	will	not	render	pixels	that
matches	the	set	transparent	color.	To
enable	Transparent	Color	feature,
define	the	macro
USE_TRANSPARENT_COLOR	in
the	GraphicsConfig.h	file.	

	 DisplayBrightness	 Sets	the	brightness	of	the	display.	

	 CopyBlock	 Copies	a	block	of	data	from	source
specified	by	srcAddr	and	srcOffset	to
the	destination	specified	by	dstAddr
and	dstOffset.	This	is	similar	to	the
CopyWindow()	and	but	instead	of
using	left,	top	position	of	the	source
and	destination,	it	uses	offsets
instead.	This	is	a	blocking	function.	

	 CopyPageWindow	 This	is	a	blocking	call.	A	windows	is
a	rectangular	area	with	the	given
width	and	height	of	a	page.	The
source	and	destination	window	can
be	located	in	different	pages	and
each	page	is	assumed	to	have	the
same	dimensions	(equal	width	and
height).	

	 CopyWindow	 A	windows	is	a	rectangular	area	with
the	given	width	and	height	located	in
the	given	base	source	address.	The
source	and	destination	window	can
be	located	in	the	same	base
address.	If	this	is	the	case,	then
srcAddr	=	dstAddr.	The	operation	is
similar	to	CopyPageWindow()	but
instead	of	using	page	numbers,
addresses	are	used	for	versatility.
This	is	a	blocking	function.	

	 SetActivePage	 Sets	active	graphic	page.	

	 SetVisualPage	 Sets	graphic	page	to	display.	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Device	Driver	Level	Primitives	Macros
Display	Device	Driver	Level	Primitives

Macros

Name	 Description	

GetColor	 Returns	current	drawing
color.	

SetColor	 Sets	current	drawing	color.	

GetMaxX	 Returns	maximum	horizontal
coordinate.	

GetMaxY	 Returns	maximum	vertical
coordinate.	

GetClipBottom	 Returns	bottom	clipping
border.	

GetClipLeft	 Returns	left	clipping	border.	

GetClipRight	 Returns	right	clipping	border.	

GetClipTop	 Returns	top	clipping	border.	

CLIP_DISABLE	 Disables	clipping.	

CLIP_ENABLE	 Enables	clipping.	

TransparentColorDisable	 Disables	the	transparent	color
function.	

GetTransparentColorStatus	 Returns	the	current
transparent	color	function
enable	status.	

GetTransparentColor	 Returns	the	current
transparent	color	value.	

TRANSPARENT_COLOR_DISABLE	 Check	of	transparent	color	is
not	performed	

TRANSPARENT_COLOR_ENABLE	 Check	pixel	if	color	is	equal	to
transparent	color,	if	equal	do
not	render	pixel	

GetPageAddress	 Returns	the	address	of	the
given	page.	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Display	Device	Driver	Level	Primitives

Topics

Name	 Description	

Color	Definition	 The	device	driver	must	also	implement	the
definition	of	standard	color	set	based	on	the
color	format	used.	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Display	Device	Driver	Level	Primitives

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Color	Definition	Macros
Color	Definition

Macros

Name	 Description	

BLACK	 not	USE_PALETTE	

BLUE	 This	is	macro	BLUE.	

BRIGHTBLUE	 This	is	macro	BRIGHTBLUE.	

BRIGHTCYAN	 This	is	macro	BRIGHTCYAN.	

BRIGHTGREEN	 This	is	macro	BRIGHTGREEN.	

BRIGHTMAGENTA	 This	is	macro	BRIGHTMAGENTA.	

BRIGHTRED	 This	is	macro	BRIGHTRED.	

BRIGHTYELLOW	 This	is	macro	BRIGHTYELLOW.	

BROWN	 This	is	macro	BROWN.	

CYAN	 This	is	macro	CYAN.	

DARKGRAY	 This	is	macro	DARKGRAY.	

GRAY0	 This	is	macro	GRAY0.	

GRAY1	 This	is	macro	GRAY1.	

GRAY2	 This	is	macro	GRAY2.	

GRAY3	 This	is	macro	GRAY3.	

GRAY4	 This	is	macro	GRAY4.	

GRAY5	 This	is	macro	GRAY5.	

GRAY6	 This	is	macro	GRAY6.	

GREEN	 This	is	macro	GREEN.	

LIGHTBLUE	 This	is	macro	LIGHTBLUE.	

LIGHTCYAN	 This	is	macro	LIGHTCYAN.	

LIGHTGRAY	 This	is	macro	LIGHTGRAY.	

LIGHTGREEN	 This	is	macro	LIGHTGREEN.	

LIGHTMAGENTA	 This	is	macro	LIGHTMAGENTA.	

LIGHTRED	 This	is	macro	LIGHTRED.	

MAGENTA	 This	is	macro	MAGENTA.	

RED	 This	is	macro	RED.	

WHITE	 This	is	macro	WHITE.	

YELLOW	 This	is	macro	YELLOW.	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Level	Primitives	>	Color	Definition

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Display	Device	Driver	Control	Functions
Display	Device	Driver	Control

Functions

	 Name	 Description	

	 IsDeviceBusy	 Returns	non-zero	if	LCD	controller	is	busy
(previous	drawing	operation	is	not
completed).	

	 ResetDevice	 Initializes	LCD	module.	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Display	Device	Driver	Control

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Display	Device	Driver
Control

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Advanced	Display	Driver	Features

Topics

Name	 Description	

Alpha	Blending	 The	following	APIs	are	used	to	implement
alpha	blending	features	in	the	Epson
S1D13517	Controller.	

Transitions	 This	section	describes	screen	transition
effect	when	changing	screens.	

Double	Buffering	 In	the	Microchip	Graphics	Library,	if	double-
buffering	is	enabled,	the	frame	buffer	and
draw	buffer	are	exchanged	after	the
changes	of	all	the	widgets	on	a	screen	are
done	(i.e.,	the	new	screen	appears	after	the
whole	screen	is	updated	and	not	after
updating	an	individual	widget).	This	feature
is	enabled	only	on	the	following	drivers:

Microchip	Graphics	Display	Driver	-
customizable	driver	for	RGB	Glass.
Currently	used	in	PIC24FJ256DA210
device	family.
Microchip	Low-Cost	Controllerless
(LCC)	Graphics	Display	Driver	-
customizable	driver	for	RGB	Glass.
Currently	used	for	selected	PIC32MX
device	families.

	

Microchip	Graphics
Controller	

This	is	the	generic	display	driver	is	intended
for	the	Microchip	Graphics	Controller

Module	implemented	in	PIC24F	device
family.	This	driver	will	drive	TFT,	CSTN	and
STN	displays.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Alpha	Blending	Functions
Alpha	Blending

Functions

	 Name	 Description	

	 GFXGetPageOriginAddress	 This	function	calculates	the
address	of	a	certain	0,0	location
of	a	page	in	memory	

	 GFXGetPageXYAddress	 This	function	calculates	the
address	of	a	certain	x,y	location
in	memory	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Alpha	Blending

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Alpha	Blending

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Alpha	Blending

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Transitions	Enumerations
Transitions

Enumerations

Name	 Description	

GFX_TRANSITION_DIRECTION	 Direction	enumeration	to
determine	the	direction	of	the
selected
GFX_TRANSITION_TYPE.	

GFX_TRANSITION_TYPE	 Transition	type	enumeration	to
determine	the	type	of	the
transition.	Each	type	will	require
specific	parameters	when	setting
up	the	transition	operation
(GFXSetupTransition()	or
GFXTransition()).
	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Transitions	Functions
Transitions

Functions

	 Name	 Description	

	 GFXTransition	 This	immediately	executes	the
transition	effect	using	the
GFX_TRANSITION_TYPE	and
the	given	parameters.	

	 GFXSetupTransition	 This	sets	up	the	transition	effect
using	the
GFX_TRANSITION_TYPE	and
the	given	parameters.	The
actual	transition	execution	will
occur	when
GFXExecutePendingTransition()
is	called.	When
DOUBLE_BUFFERING	is
enabled,
GFXExecutePendingTransition()
is	executed	after	the	current
screen	is	fully	rendered.	

	 GFXExecutePendingTransition	 This	function	executes	the
transition	that	was	set	up	by
GFXSetupTransition().	Status	of
the	transition	is	returned	to
indicate	if	the	transition	was
executed	or	not.	This	function	is
used	by	the	double	buffering
feature
(USE_DOUBLE_BUFFERING)
to	perform	transition	operation

after	the	current	screen	is	fully
rendered.	This	function
assumes	that	the	source	page
and	destination	page	are
already	set	up.	

	 GFXIsTransitionPending	 This	function	returns	the	status
of	a	pending	transition,	set	up
by	GFXSetupTransition(),
waiting	to	be	executed.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Transitions

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Transitions

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Double	Buffering	Functions
Double	Buffering

Functions

	 Name	 Description	

	 SwitchOffDoubleBuffering	 Switches	off	the	double	buffering.	All
rendering	will	be	performed	on	the
frame	buffer.	Calls	to
UpdateDisplayNow()	or
RequestDisplayUpdate()	will	have
no	effect.	

	 SwitchOnDoubleBuffering	 Switches	on	the	double	buffering.
Double	buffering	utilizes	two	buffers.
The	frame	buffer	and	the	draw
buffer.	The	frame	buffer	is	the	buffer
that	is	being	displayed	while	the
draw	buffer	is	used	for	all	rendering.
When	this	function	is	called,	it
copies	the	contents	of	the	frame
buffer	to	the	draw	buffer	once	and
all	succeeding	rendering	will	be
performed	on	the	draw	buffer.	To
update	the	frame	buffer	with	newly
drawn	items	on	the	draw	buffer	call
UpdateDisplayNow()	or
RequestDisplayUpdate().	

	 InvalidateRectangle	 Invalidates	the	specified	rectangular
area.	This	increments	the	number	of
invalidated	areas	and	if	the	number
of	invalidated	areas	exceed	the
GFX_MAX_INVALIDATE_AREAS,
the	whole	frame	buffer	is

invalidated.	

	 RequestDisplayUpdate	 Synchronizes	the	draw	and	frame
buffers	at	next	VBlank	

	 UpdateDisplayNow	 Synchronizes	the	draw	and	frame
buffers	immediately.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Double	Buffering

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Double	Buffering

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Microchip	Graphics	Controller

Topics

Name	 Description	

Rectangle	Copy
Operations	

The	following	APIs	are	used	move	blocks	of
data	from	one	memory	location	to	another.	

Decompressing
DEFLATEd	data	

The	Microchip	Graphics	Controller	features
a	decompression	module	for	data
compressed	using	the	DEFLATE	algorithm.
Compressed	data	are	limited	to	fixed
huffman	codes.	Compressed	data	with
dynamic	huffman	codes	are	not	supported.	

Palette	Mode	 The	Microchip	Graphics	Controller	features
a	palette	mode	for	a	smaller	frame	buffer
requirement.	This	option	uses	the	built-in
256	entry	Color	Look-up	Table	(CLUT)	to
represent	pixels	from	the	display	buffer	in
memory.	If	the	CLUT	is	enabled,	each	pixel
in	the	display	buffer	is	assumed	to	contain
the	color	index.	This	color	index	is	used	as
the	address	of	the	CLUT	entry	that	contains
the	color	value	that	will	be	used	for	the
given	pixel.	

Set	Up	Display
Interface	

	

External	or	Internal
Memory	and	Palettes	

This	section	shows	examples	on	how	to	set
up	applications	using	external	memory,
internal	memory	or	use	palettes	for
Microchip	Graphics	Module.		

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Rectangle	Copy	Operations	Functions
Rectangle	Copy	Operations

Functions

	 Name	 Description	

	 ROPBlock	 Performs	a	Raster	Operation	(ROP)	on
source	and	destination.	The	type	of	ROP	is
decided	by	the	rop	and	the	copyOp
parameter.	

	 Scroll	 Scrolls	the	rectangular	area	defined	by	left,
top,	right,	bottom	by	delta	pixels.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Rectangle	Copy	Operations	Macros
Rectangle	Copy	Operations

Macros

Name	 Description	

RCC_SRC_ADDR_CONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_SRC_ADDR_DISCONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the

display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_DEST_ADDR_CONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the
operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_DEST_ADDR_DISCONTINUOUS	 Source	(S)	and	Destination	(D)	data	type.
When	performing	executing	commands	on
the	Rectangle	Copy	Processing	Unit
(RCCGPU).	The	source	and	destination
data	can	be	treated	as	a	continuous	block
of	data	in	memory	or	a	discontinuous	data
in	memory.	This	gives	flexibility	to	the

operation	where	an	copy	operation	can	be
performed	to	data	already	present	in	the
display	buffer	or	anywhere	else	in	data
memory.	Both	source	and	destination	data
can	be	set	to	continuous	or	discontinuous
data.	These	macros	are	only	used	in
RCCGPU	operations.

RCC_SRC_ADDR_CONTINUOUS	-
source	data	is	continuous
RCC_SRC_ADDR_DISCONTINUOUS
-	source	data	is	discontinuous...	

RCC_ROP_0	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_1	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is

performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_2	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_3	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_4	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D

RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_5	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_6	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))

RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_7	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_8	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK

RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_9	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_A	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is

performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_B	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_C	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_D	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D

RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_E	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))
RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_ROP_F	 Raster	Operation	(ROP)	option.	Select	one
of	the	following	16	raster	operation	options
whenever	Rectangle	Copy	Processing	Unit
(RCCGPU)	is	used.	The	raster	operation	is
performed	on	the	source	(S)	and
destination	(D)	data.	and	the	result	written
to	the	destination	(D).

RCC_ROP_0	-	0	(BLACK
RCC_ROP_1	-	not	(S	or	D)
RCC_ROP_2	-	(not	S)	and	D
RCC_ROP_3	-	not	(S)
RCC_ROP_4	-	S	and	not	(D))

RCC_ROP_5	-	not	(D)
RCC_ROP_6	-	S	xor	D
RCC_ROP_7	-	not	(S	and	D)
RCC_ROP_8	-	S	and	D
RCC_ROP_9	-	not	(S	xor	D)
RCC_ROP_A	-	D
RCC_ROP_B...	more	

RCC_COPY	 Type	of	Rectangle	Copy	Operations.	Select
one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

RCC_SOLID_FILL	 Type	of	Rectangle	Copy	Operations.	Select
one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.

RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

RCC_TRANSPARENT_COPY	 Type	of	Rectangle	Copy	Operations.	Select
one	of	the	following	rectangle	copy
operations	and	together	with	the	ROP;	the
source,	destination,	current	color	set	and
transparency	are	evaluated	on	each	pixel
and	the	result	written	to	the	destination.

RCC_COPY	-	Copies	the	source	data
to	the	destination	address	with	the
selected	ROP.
RCC_SOLID_FILL	-	Fills	the	specified
rectangle	with	the	current	color	set.
RCC_TRANSPARENT_COPY
Operation	is	the	same	as	the	COPY
operation	except	that	the	source	data
is	compared	against	the	current	color
set.	If	the	values	match,	the	source
data	is	not	written	to	the	destination.
The	source...	more	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Rectangle	Copy	Operations

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Rectangle	Copy	Operations

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Decompressing	DEFLATEd	data	Functions
Decompressing	DEFLATEd	data

Functions

	 Name	 Description	

	 Decompress	 Decompresses	the	nbytes	number	of	data
at	SrcAddress	and	places	starting	from
DestAddress.	(Blocking)	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Decompressing	DEFLATEd
data

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Decompressing	DEFLATEd	data

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Decompressing	DEFLATEd
data

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette	Mode	Files
Palette	Mode

Files

Name	 Description	

Palette.h	 This	is	file	Palette.h.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette	Mode	Functions
Palette	Mode

Functions

	 Name	 Description	

	 ClearPaletteChangeError	 Clears	the	Palette	change	error
status	

	 DisablePalette	 Disables	the	Palette	mode.	

	 EnablePalette	 Enables	the	Palette	mode.	

	 GetPaletteChangeError	 Returns	the	Palette	change	error
status	

	 IsPaletteEnabled	 Returns	if	the	Palette	mode	is
enabled	or	not.	

	 PaletteInit	 Initializes	the	color	look	up	table
(CLUT).	

	 RequestPaletteChange	 Loads	the	palettes	from	the	flash
during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

	 SetPalette	 Programs	a	block	of	palette	entries
starting	from	startEntry	and	until
startEntry	+	length	from	the	flash
immediately.	

	 SetPaletteBpp	 Sets	the	color	look	up	table	(CLUT)
number	of	valid	entries.	

	 SetPaletteFlash	 Loads	the	palettes	from	the	flash

immediately.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette	Mode	Macros
Palette	Mode

Macros

Name	 Description	

RequestEntirePaletteChange	 Loads	all	the	palette	entries	from	the
flash	during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

SetEntirePalette	 Programs	the	whole	256	entry	palette
with	new	color	values	from	flash.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette	Mode	Structures
Palette	Mode

Structures

Name	 Description	

PALETTE_FLASH	 Structure	for	the	palette	stored	in	FLASH
memory.	

PALETTE_HEADER	 Structure	for	the	palette	header.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette	Mode	Types
Palette	Mode

Types

Name	 Description	

PALETTE_EXTERNAL	 Structure	for	palette	stored	in	EXTERNAL
memory	space.	(example:	External	SPI	or
parallel	Flash,	EDS_EPMP)	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Palette	Mode

Legend

	
Method	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette.h	Functions
Palette.h

Functions

	 Name	 Description	

	 ClearPaletteChangeError	 Clears	the	Palette	change	error
status	

	 DisablePalette	 Disables	the	Palette	mode.	

	 EnablePalette	 Enables	the	Palette	mode.	

	 GetPaletteChangeError	 Returns	the	Palette	change	error
status	

	 IsPaletteEnabled	 Returns	if	the	Palette	mode	is
enabled	or	not.	

	 PaletteInit	 Initializes	the	color	look	up	table
(CLUT).	

	 RequestPaletteChange	 Loads	the	palettes	from	the	flash
during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

	 SetPalette	 Programs	a	block	of	palette	entries
starting	from	startEntry	and	until
startEntry	+	length	from	the	flash
immediately.	

	 SetPaletteBpp	 Sets	the	color	look	up	table	(CLUT)
number	of	valid	entries.	

	 SetPaletteFlash	 Loads	the	palettes	from	the	flash

immediately.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	Palette.h

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette.h	Macros
Palette.h

Macros

Name	 Description	

RequestEntirePaletteChange	 Loads	all	the	palette	entries	from	the
flash	during	vertical	blanking	period	if
possible,	otherwise	loads
immediately.	

SetEntirePalette	 Programs	the	whole	256	entry	palette
with	new	color	values	from	flash.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	Palette.h

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette.h	Structures
Palette.h

Structures

Name	 Description	

PALETTE_FLASH	 Structure	for	the	palette	stored	in	FLASH
memory.	

PALETTE_HEADER	 Structure	for	the	palette	header.	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	Palette.h

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Palette.h	Types
Palette.h

Types

Name	 Description	

PALETTE_EXTERNAL	 Structure	for	palette	stored	in	EXTERNAL
memory	space.	(example:	External	SPI	or
parallel	Flash,	EDS_EPMP)	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Palette	Mode	>	Palette.h

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Set	Up	Display	Interface	Macros
Set	Up	Display	Interface

Macros

Name	 Description	

GFX_GCLK_DIVIDER	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS1_BASE_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider

for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS1_MEMORY_SIZE	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS2_BASE_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)

(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_EPMP_CS2_MEMORY_SIZE	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_DISPLAY_BUFFER_LENGTH	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External
memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

GFX_DISPLAY_BUFFER_START_ADDRESS	 The	following	are	additional	Hardware	Profile	macros
used	when	using	the	driver	for	the	Microchip	Graphics
Module	that	comes	with	the	PIC	Microcontroller
(PIC24FJ256DA210	Device	Family)
(PIC24FJ256DA210_DEV_BOARD

When	using	internal	or	external	memory

GFX_GCLK_DIVIDER	-	Set	the	clock	divider
for	the	pixel	clock.
GFX_DISPLAY_BUFFER_START_ADDRESS
-	Set	the	Display	Buffer	location.
GFX_DISPLAY_BUFFER_LENGTH
Display	Buffer	length	(size)	in	bytes.	This	is
calculated	by	the	display's	width*height*(color
depth/2).

When	using	external	memory	only.	External

memory	may	be	placed	in	chip	select	1	(CS1)
and/or	chip	select	2	(CS2)	regions.	Refer	to	EPMP
Family	Reference	Manual	for	details	on...	

Library	API	>	Display	Device	Driver	Layer	API	>	Advanced	Display	Driver
Features	>	Microchip	Graphics	Controller	>	Set	Up	Display	Interface

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home Previous	|	Up	|	Next

Image	Decoder	Demo
Image	Decoders

Please	refer	to	the	getting	started	htm	document	located	at
<Install	Directory>/Microchip/Graphics/Documents/Getting
Started/Getting	Started	-	Running	the	Image	Decoders
Demo.htm,	where	<Install	Directory>	is	the	root	directory	of	the
Microchip	Applications	Library.

Module

Image	Decoders

Links

Image	Decoders

Image	Decoders	>	Demo	Project	>	Image	Decoder	Demo

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Demo	Project
Image	Decoders

Demo	Project

Name	 Description	

Image	Decoder	Demo	 This	demo	demonstrates	the	decoding	of
images	with	JPEG	and	BMP	file	formats.	

Image	Decoders

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Decoders	API	Functions
Image	Decoders	API

Functions

	 Name	 Description	

	 ImageDecode	 This	function	decodes	and
displays	the	image	on	the
screen	

	 ImageDecoderInit	 This	function	initializes	the
global	variables	to	0	and	then
initializes	the	driver.	This	must
be	called	once	before	any	other
function	of	the	library	is	called	

	 ImageLoopCallbackRegister	 This	function	registers	the	loop
callback	function	so	that	the
decoder	calls	this	function	in
every	decoding	loop.	This	can
be	used	by	the	application
program	to	do	maintainance
activities	such	as	fetching	data,
updating	the	display,	etc...	

	 ImageDecodeTask	 This	function	completes	one
small	part	of	the	image	decode
function	

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Decoders	API	Macros
Image	Decoders	API

Macros

Name	 Description	

ImageFullScreenDecode	 This	function	decodes	and	displays	the
image	on	the	screen	in	fullscreen	mode
with	center	aligned	and	downscaled	if
required	

ImageAbort	 This	function	sets	the	Image	Decoder's
Abort	flag	so	that	decoding	aborts	in	the
next	decoding	loop.	

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Decoders	API	Structures
Image	Decoders	API

Structures

	 Name	 Description	

	 _BMPDECODER	 DATA	STRUCTURES	

	 _GIFDECODER	 DATA	STRUCTURES	

	 _JPEGDECODER	 DATA	STRUCTURES	

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Image	Decoders	API

Topics

Name	 Description	

Image	Decoder
Configuration	

The	Image	Decoder	Library	can	be
customized	by	adding	or	specifying	the
compile	time	options	located	in	the
application	file	named
ImageDecoderConfig.h.	

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Legend
Image	Decoders	API

Legend

	
Method	

	
Structure	

Image	Decoders	API

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Image	Decoder	Configuration	Macros
Image	Decoder	Configuration

Macros

Name	 Description	

IMG_SUPPORT_BMP	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for
bitmap	image	format
decoding.	

IMG_SUPPORT_GIF	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for	gif
image	format	decoding.	

IMG_SUPPORT_JPEG	 Add	this	macro	in
ImageDecoderConfig.h
to	enable	support	for
jpeg	image	format
decoding.	

IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK	 The	decoder	may	takes
up	significant	amount	of
time	decoding	an	image
and	user	may	want	to
update	some
information	on	the
display	or	to
send/receive	data
through	some
communication
channels.	It	is	possible
to	release	processing

power	in	the	middle	of
decoding	process	by
calling	a	callback
function	provided	by	the
user.	The	user	should
do	all	the	housekeeping
activities	inside	the
function.	This	option	can
be	enabled	by	adding
this	macro	in
ImageDecoderConfig.h.	

IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT	 Add	this	macro	in
ImageDecoderConfig.h
to	optimize	code	for
graphics	driver	that
supports	16-bit	5-6-5
color	format	and
rendering	is	done
directly	to	the	display
buffer.	If	either	double
buffering	has	to	be	done
or	if	user	specific
rendering	has	to	be
done,	comment	out	the
above	mentioned	line
and	provide	a	callback
function	to	render	the
pixel	values.	The
callback	function	will	be
explained	in	the	API
section.	If	commented
out,	then	the	width	and
height	of	the	display
screen	has	to	be
provided	using	the
following	defines	

IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT	 Add	this	macro	in
ImageDecoderConfig.h
to	optimize	code	to	use
Memory	Disk	Drive	File
System(MDDFS)	of
Microchip	MDD	File
System	Interface	Library
.	

Image	Decoders	API	>	Image	Decoder	Configuration

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

Microchip	Graphics	Library Contents	|	Index	|	Home

Topics
Miscellaneous	Topics

Topics

Name	 Description	

Starting	a	New	Project	 This	outlines	the	procedure	to	create	a	new
project	that	uses	the	Microchip	Graphics
Library	from	scratch.	

Changing	the	default
Font	

The	library	comes	with	the	default	font
(Gentium	18).	This	font	can	be	changed	in
two	ways.	

Advanced	Font
Features	

Fonts	used	in	the	library	can	be	configured
to	use	anti-aliasing	and	extended	glyph
support.	

Using	Primitive
Rendering	Functions	in
Blocking	and	Non-
Blocking	Modes	

Basic	rendering	functions	such	as	Line(),
Rectangle(),	Circle()	etc	are	referred	to	as
functions	in	the	Graphics	Primitive	Layer.
These	functions	can	also	be	implemented	in
the	device	driver	layer	if	the	display	device
supports	hardware	acceleration	of	the
function.	Applications	that	directly	calls
these	functions	can	take	advantage	of	the
hardware	accelerated	primitives.	How	these
functions	are	used	will	depend	on	the
"Configuration	Setting".	

Using	Microchip
Graphics	Module	Color
Look	Up	Table	in
Applications	

Utilizing	the	Color	Look	Up	Table	(CLUT)	of
the	Microchip	Graphics	Module	saves
memory	for	both	storage	and	display	buffer.
This	short	instructional	manual	outlines	the
procedure	to	create	source	code	files	to	use

the	CLUT	of	the	Microchip	Graphics	Module
and	enable	the	Microchip	Graphics	Library
to	use	the	hardware	feature.	

Converting	Images	to
Use	a	Common	Palette
in	GIMP	

This	manual	describes	how	to	convert	an
image	or	a	set	of	images	to	use	a	common
palette	in	GIMP.	

How	to	Define	Colors
in	your	Applications	

In	most	cases,	the	application	will	define	its
own	set	of	colors	and	not	use	the	default
colors	that	comes	with	the	Graphics	Library.
This	section	shows	an	example	on	how	to
do	it.	

Connecting	RGB	data
bus	

Display	glasses	will	require	24	bit	or	18	bit
RGB	color	data.	How	do	you	do	the
connection	when	your	display	controller	only
puts	out	16	bit	RGB	data	bus?	

Adding	New	Device
Driver	

This	is	a	summary	of	the	requirements	to
add	a	new	device	driver.	

Miscellaneous	Topics

Microchip	Graphics	Library	Version	3.06.02	-	October	15,	2012
Copyright	©	2012	Microchip	Technology,	Inc.		All	rights	reserved

Contents	|	Index	|	Home

	Introduction
	Release Notes
	Getting Started
	Demo Projects
	Demo Summary
	Microchip Application Library Abbreviations
	Demo Compatibility Matrix

	Library Architecture
	Graphics Object Layer
	Object Rendering

	Graphics Primitive Layer
	Display Device Driver Layer

	Library API
	Graphics Library Configuration
	Graphics Object Layer Configuration
	Input Device Selection
	USE_KEYBOARD Macro
	USE_TOUCHSCREEN Macro

	Focus Support Selection
	USE_FOCUS Macro

	Graphics Object Selection
	USE_ANALOGCLOCK Macro
	USE_BUTTON Macro
	USE_BUTTON_MULTI_LINE Macro
	USE_CHECKBOX Macro
	USE_DIGITALMETER Macro
	USE_EDITBOX Macro
	USE_GROUPBOX Macro
	USE_LISTBOX Macro
	USE_METER Macro
	USE_PICTURE Macro
	USE_PROGRESSBAR Macro
	USE_RADIOBUTTON Macro
	USE_ROUNDDIAL Macro
	USE_SLIDER Macro
	USE_STATICTEXT Macro
	USE_WINDOW Macro
	USE_CUSTOM Macro
	USE_GOL Macro
	USE_TEXTENTRY Macro

	Graphics Primitive Layer Configuration
	Image Compression Option
	USE_COMP_IPU Macro
	USE_COMP_RLE Macro

	Font Type Selection
	USE_MULTIBYTECHAR Macro
	USE_UNSIGNED_XCHAR Macro

	Advanced Font Features Selection
	USE_ANTIALIASED_FONTS Macro

	Gradient Bar Rendering
	USE_GRADIENT Macro

	Transparent Color Feature in PutImage()
	USE_TRANSPARENT_COLOR Macro

	Alpha Blend Option
	USE_ALPHABLEND_LITE Macro

	External Memory Buffer

	Display Device Driver Layer Configuration
	USE_ALPHABLEND Macro
	USE_DOUBLE_BUFFERING Macro
	GFX_LCD_TYPE Macro
	GFX_LCD_CSTN Macro
	GFX_LCD_MSTN Macro
	GFX_LCD_OFF Macro
	GFX_LCD_TFT Macro

	STN_DISPLAY_WIDTH Macro
	STN_DISPLAY_WIDTH_16 Macro
	STN_DISPLAY_WIDTH_4 Macro
	STN_DISPLAY_WIDTH_8 Macro

	Application Configuration
	Configuration Setting
	USE_NONBLOCKING_CONFIG Macro

	Font Source Selection
	USE_FONT_FLASH Macro
	USE_FONT_EXTERNAL Macro
	USE_GFX_FONT_IN_PROGRAM_SECTION Macro

	Image Source Selection
	USE_BITMAP_FLASH Macro
	USE_BITMAP_EXTERNAL Macro

	Miscellaneous
	USE_BITMAP_NO_PADDING_LINE Macro
	USE_PALETTE_EXTERNAL Macro
	USE_PALETTE Macro
	COLOR_DEPTH Macro
	GFX_free Macro
	GFX_malloc Macro

	GraphicsConfig.h Example

	Hardware Profile
	PMP Interface
	USE_8BIT_PMP Macro
	USE_16BIT_PMP Macro

	Development Platform Used
	EXPLORER_16 Macro
	PIC24FJ256DA210_DEV_BOARD Macro
	MEB_BOARD Macro
	PIC_SK Macro

	Graphics PICtail Used
	GFX_PICTAIL_LCC Macro
	GFX_PICTAIL_V3 Macro
	GFX_PICTAIL_V3E Macro

	Display Controller Used
	GFX_USE_DISPLAY_CONTROLLER_DMA Macro
	GFX_USE_DISPLAY_CONTROLLER_MCHP_DA210 Macro
	GFX_USE_DISPLAY_CONTROLLER_S1D13517 Macro
	GFX_USE_DISPLAY_CONTROLLER_SSD1926 Macro

	Display Panel Used
	GFX_USE_DISPLAY_PANEL_PH480272T_005_I11Q Macro
	GFX_USE_DISPLAY_PANEL_TFT_640480_8_E Macro
	GFX_USE_DISPLAY_PANEL_TFT_800480_33_E Macro
	GFX_USE_DISPLAY_PANEL_TFT_G240320LTSW_118W_E Macro

	Device Driver Options
	DISP_DATA_WIDTH Macro
	DISP_ORIENTATION Macro
	DISP_HOR_RESOLUTION Macro
	DISP_VER_RESOLUTION Macro
	DISP_HOR_FRONT_PORCH Macro
	DISP_HOR_BACK_PORCH Macro
	DISP_VER_FRONT_PORCH Macro
	DISP_VER_BACK_PORCH Macro
	DISP_HOR_PULSE_WIDTH Macro
	DISP_VER_PULSE_WIDTH Macro
	DISP_INV_LSHIFT Macro

	HardwareProfile.h Example

	Graphics Object Layer API
	GOL Objects
	GOL_OBJ_TYPE Enumeration
	OBJ_HEADER Structure
	DRAW_FUNC Type
	FREE_FUNC Type
	MSG_DEFAULT_FUNC Type
	MSG_FUNC Type
	Analog Clock
	Analog Clock States
	AC_DRAW Macro
	AC_DISABLED Macro
	AC_HIDE Macro
	AC_PRESSED Macro
	AC_TICK Macro
	UPDATE_HOUR Macro
	UPDATE_MINUTE Macro
	UPDATE_SECOND Macro

	AcCreate Function
	AcDraw Function
	AcSetHour Function
	AcSetMinute Function
	AcSetSecond Function
	ANALOGCLOCK Structure

	Button
	Button States
	BTN_DISABLED Macro
	BTN_DRAW Macro
	BTN_DRAW_FOCUS Macro
	BTN_FOCUSED Macro
	BTN_HIDE Macro
	BTN_PRESSED Macro
	BTN_TEXTBOTTOM Macro
	BTN_TEXTLEFT Macro
	BTN_TEXTRIGHT Macro
	BTN_TEXTTOP Macro
	BTN_TOGGLE Macro
	BTN_TWOTONE Macro
	BTN_NOPANEL Macro

	BtnCreate Function
	BtnDraw Function
	BtnGetText Macro
	BtnSetText Function
	BtnGetBitmap Macro
	BtnSetBitmap Macro
	BtnMsgDefault Function
	BtnTranslateMsg Function
	BUTTON Structure

	Chart
	Chart States
	CH_DISABLED Macro
	CH_DRAW Macro
	CH_DRAW_DATA Macro
	CH_3D_ENABLE Macro
	CH_BAR Macro
	CH_BAR_HOR Macro
	CH_DONUT Macro
	CH_LEGEND Macro
	CH_NUMERIC Macro
	CH_PERCENT Macro
	CH_PIE Macro
	CH_VALUE Macro
	CH_HIDE Macro

	Data Series Status Settings
	HIDE_DATA Macro
	SHOW_DATA Macro

	Chart Examples
	ChCreate Function
	ChDraw Function
	ChAddDataSeries Function
	ChRemoveDataSeries Function
	ChShowSeries Macro
	ChHideSeries Macro
	ChGetShowSeriesCount Macro
	ChGetShowSeriesStatus Macro
	ChSetValueLabel Macro
	ChGetValueLabel Macro
	ChGetValueMax Macro
	ChGetValueMin Macro
	ChSetValueRange Function
	ChGetValueRange Macro
	ChSetSampleLabel Macro
	ChGetSampleLabel Macro
	ChGetSampleStart Macro
	ChGetSampleEnd Macro
	ChSetPercentRange Function
	ChGetPercentRange Macro
	ChSetSampleRange Function
	ChGetSampleRange Macro
	ChGetPercentMax Macro
	ChGetPercentMin Macro
	ChSetColorTable Macro
	ChGetColorTable Macro
	ChSetTitle Macro
	ChGetTitle Macro
	ChSetTitleFont Macro
	ChGetTitleFont Macro
	ChGetAxisLabelFont Macro
	ChSetAxisLabelFont Macro
	ChGetGridLabelFont Macro
	ChSetGridLabelFont Macro
	ChFreeDataSeries Function
	ChTranslateMsg Function
	CHART Structure
	DATASERIES Structure
	CHARTPARAM Structure
	Color Table
	CH_CLR0 Macro
	CH_CLR1 Macro
	CH_CLR2 Macro
	CH_CLR3 Macro
	CH_CLR4 Macro
	CH_CLR5 Macro
	CH_CLR6 Macro
	CH_CLR7 Macro
	CH_CLR8 Macro
	CH_CLR9 Macro
	CH_CLR10 Macro
	CH_CLR11 Macro
	CH_CLR12 Macro
	CH_CLR13 Macro
	CH_CLR14 Macro
	CH_CLR15 Macro

	Checkbox
	Check Box States
	CB_CHECKED Macro
	CB_DISABLED Macro
	CB_DRAW Macro
	CB_DRAW_CHECK Macro
	CB_DRAW_FOCUS Macro
	CB_FOCUSED Macro
	CB_HIDE Macro

	CbCreate Function
	CbDraw Function
	CbGetText Macro
	CbSetText Function
	CbMsgDefault Function
	CbTranslateMsg Function
	CHECKBOX Structure

	Round Dial
	Dial States
	RDIA_DISABLED Macro
	RDIA_DRAW Macro
	RDIA_HIDE Macro
	RDIA_ROT_CCW Macro
	RDIA_ROT_CW Macro

	RdiaCreate Function
	RdiaDraw Function
	RdiaIncVal Macro
	RdiaDecVal Macro
	RdiaGetVal Macro
	RdiaSetVal Macro
	RdiaMsgDefault Function
	RdiaTranslateMsg Function
	ROUNDDIAL Structure

	Digital Meter
	Digital Meter States
	DM_DISABLED Macro
	DM_DRAW Macro
	DM_HIDE Macro
	DM_CENTER_ALIGN Macro
	DM_RIGHT_ALIGN Macro
	DM_FRAME Macro
	DM_UPDATE Macro

	DmCreate Function
	DmDraw Function
	DmGetValue Macro
	DmSetValue Function
	DmDecVal Macro
	DmIncVal Macro
	DmTranslateMsg Function
	DIGITALMETER Structure

	Edit Box
	Edit Box States
	EB_CENTER_ALIGN Macro
	EB_DISABLED Macro
	EB_DRAW Macro
	EB_HIDE Macro
	EB_FOCUSED Macro
	EB_RIGHT_ALIGN Macro
	EB_DRAW_CARET Macro
	EB_CARET Macro

	EbCreate Function
	EbDraw Function
	EbGetText Macro
	EbSetText Function
	EbAddChar Function
	EbDeleteChar Function
	EbMsgDefault Function
	EbTranslateMsg Function
	EDITBOX Structure

	Grid
	Grid States
	GRID_FOCUSED Macro
	GRID_DISABLED Macro
	GRID_SHOW_LINES Macro
	GRID_SHOW_FOCUS Macro
	GRID_SHOW_BORDER_ONLY Macro
	GRID_SHOW_SEPARATORS_ONLY Macro
	GRID_DRAW_ITEMS Macro
	GRID_DRAW_ALL Macro
	GRID_HIDE Macro

	Grid Item States
	GRIDITEM_SELECTED Macro
	GRIDITEM_IS_TEXT Macro
	GRIDITEM_IS_BITMAP Macro
	GRIDITEM_TEXTBOTTOM Macro
	GRIDITEM_TEXTLEFT Macro
	GRIDITEM_TEXTRIGHT Macro
	GRIDITEM_TEXTTOP Macro
	GRIDITEM_DRAW Macro

	GridCreate Function
	GridDraw Function
	GridClearCellState Function
	GridGetFocusX Macro
	GridGetFocusY Macro
	GRID_OUT_OF_BOUNDS Macro
	GRID_SUCCESS Macro
	GridFreeItems Function
	GridGetCell Function
	GridSetCell Function
	GridSetCellState Function
	GridSetFocus Function
	GridMsgDefault Function
	GridTranslateMsg Function
	GRID Structure
	GRIDITEM Structure

	Group Box
	Group Box States
	GB_CENTER_ALIGN Macro
	GB_DISABLED Macro
	GB_DRAW Macro
	GB_HIDE Macro
	GB_RIGHT_ALIGN Macro

	GbCreate Function
	GbDraw Function
	GbGetText Macro
	GbSetText Function
	GbTranslateMsg Function
	GROUPBOX Structure

	List Box
	List Box States
	LB_RIGHT_ALIGN Macro
	LB_SINGLE_SEL Macro
	LB_CENTER_ALIGN Macro
	LB_DISABLED Macro
	LB_DRAW Macro
	LB_DRAW_FOCUS Macro
	LB_DRAW_ITEMS Macro
	LB_FOCUSED Macro
	LB_HIDE Macro

	List Item Status
	LB_STS_SELECTED Macro
	LB_STS_REDRAW Macro

	LbCreate Function
	LbDraw Function
	LbGetItemList Macro
	LbAddItem Function
	LbDelItem Function
	LbChangeSel Function
	LbSetSel Macro
	LbGetSel Function
	LbGetFocusedItem Function
	LbSetFocusedItem Function
	LbGetCount Macro
	LbGetVisibleCount Macro
	LbSetBitmap Macro
	LbGetBitmap Macro
	LbDelItemsList Function
	LbMsgDefault Function
	LbTranslateMsg Function
	LISTBOX Structure
	LISTITEM Structure

	Meter
	Meter States
	MTR_DISABLED Macro
	MTR_DRAW Macro
	MTR_HIDE Macro
	MTR_RING Macro
	MTR_DRAW_UPDATE Macro

	MtrCreate Function
	MtrDraw Function
	MtrSetVal Function
	MtrGetVal Macro
	MtrDecVal Macro
	MtrIncVal Macro
	MtrSetScaleColors Macro
	MtrSetTitleFont Macro
	MtrSetValueFont Macro
	METER_TYPE Macro
	MTR_ACCURACY Macro
	MtrMsgDefault Function
	MtrTranslateMsg Function
	METER Structure

	Picture Control
	Picture States
	PICT_DISABLED Macro
	PICT_DRAW Macro
	PICT_FRAME Macro
	PICT_HIDE Macro

	PictCreate Function
	PictDraw Function
	PictSetBitmap Macro
	PictGetBitmap Macro
	PictGetScale Macro
	PictSetScale Macro
	PictTranslateMsg Function
	PICTURE Structure

	Progress Bar
	Progress Bar States
	PB_DISABLED Macro
	PB_DRAW Macro
	PB_DRAW_BAR Macro
	PB_HIDE Macro
	PB_VERTICAL Macro

	PbCreate Function
	PbDraw Function
	PbSetRange Function
	PbGetRange Macro
	PbSetPos Function
	PbGetPos Macro
	PbTranslateMsg Function
	PROGRESSBAR Structure

	Radio Button
	Radio Button States
	RB_CHECKED Macro
	RB_DISABLED Macro
	RB_DRAW Macro
	RB_DRAW_CHECK Macro
	RB_DRAW_FOCUS Macro
	RB_FOCUSED Macro
	RB_GROUP Macro
	RB_HIDE Macro

	RbCreate Function
	RbDraw Function
	RbGetCheck Function
	RbSetCheck Function
	RbGetText Macro
	RbSetText Function
	RbMsgDefault Function
	RbTranslateMsg Function
	RADIOBUTTON Structure

	Slider/Scroll Bar
	Slider States
	SLD_DISABLED Macro
	SLD_DRAW Macro
	SLD_DRAW_FOCUS Macro
	SLD_DRAW_THUMB Macro
	SLD_FOCUSED Macro
	SLD_HIDE Macro
	SLD_SCROLLBAR Macro
	SLD_VERTICAL Macro

	SldCreate Function
	SldDraw Function
	SldSetPage Function
	SldGetPage Macro
	SldSetPos Function
	SldGetPos Macro
	SldSetRange Function
	SldGetRange Macro
	SldIncPos Macro
	SldDecPos Macro
	SldMsgDefault Function
	SldTranslateMsg Function
	SLIDER Structure

	Static Text
	Static Text States
	ST_CENTER_ALIGN Macro
	ST_DISABLED Macro
	ST_DRAW Macro
	ST_FRAME Macro
	ST_HIDE Macro
	ST_RIGHT_ALIGN Macro
	ST_UPDATE Macro

	StCreate Function
	StDraw Function
	StGetText Macro
	StSetText Function
	StTranslateMsg Function
	STATICTEXT Structure

	Text Entry
	TextEntry States
	TE_KEY_PRESSED Macro
	TE_DISABLED Macro
	TE_ECHO_HIDE Macro
	TE_DRAW Macro
	TE_HIDE Macro
	TE_UPDATE_KEY Macro
	TE_UPDATE_TEXT Macro

	Key Command Types
	TE_DELETE_COM Macro
	TE_ENTER_COM Macro
	TE_SPACE_COM Macro

	TeCreate Function
	TeDraw Function
	TeGetBuffer Macro
	TeSetBuffer Function
	TeClearBuffer Function
	TeGetKeyCommand Function
	TeSetKeyCommand Function
	TeCreateKeyMembers Function
	TeAddChar Function
	TeIsKeyPressed Function
	TeSpaceChar Function
	TeDelKeyMembers Function
	TeSetKeyText Function
	TeMsgDefault Function
	TeTranslateMsg Function
	TEXTENTRY Structure
	KEYMEMBER Structure

	Window
	Window States
	WND_DISABLED Macro
	WND_DRAW Macro
	WND_DRAW_CLIENT Macro
	WND_DRAW_TITLE Macro
	WND_FOCUSED Macro
	WND_HIDE Macro
	WND_TITLECENTER Macro

	WndCreate Function
	WndDraw Function
	WndGetText Macro
	WndSetText Function
	WndTranslateMsg Function
	WINDOW Structure

	Object States
	Common Object States
	FOCUSED Macro
	DISABLED Macro
	HIDE Macro
	DRAW Macro
	DRAW_FOCUS Macro
	DRAW_UPDATE Macro

	GetState Macro
	ClrState Macro
	SetState Macro

	Object Management
	GOLAddObject Function
	GOLFindObject Function
	GOLRedraw Macro
	GOLRedrawRec Function
	GOLDraw Function
	GOLDrawComplete Macro
	GOLDrawCallback Function
	GOLFree Function
	GetObjType Macro
	GetObjID Macro
	GetObjNext Macro
	GOLDeleteObject Function
	GOLDeleteObjectByID Function
	GOLNewList Macro
	GOLGetList Macro
	GOLSetList Macro
	GOLSetFocus Function
	IsObjUpdated Macro
	GOLInit Function
	GOLGetFocus Macro
	GOLCanBeFocused Function
	GOLGetFocusNext Function
	GOLGetFocusPrev Function
	GOLPanelDraw Macro
	GOLPanelDrawTsk Function
	GOLTwoTonePanelDrawTsk Function

	GOL Messages
	GOLMsg Function
	GOLMsgCallback Function
	GOL_MSG Structure
	TRANS_MSG Enumeration
	INPUT_DEVICE_EVENT Enumeration
	INPUT_DEVICE_TYPE Enumeration
	Scan Key Codes
	SCAN_BS_PRESSED Macro
	SCAN_BS_RELEASED Macro
	SCAN_CR_PRESSED Macro
	SCAN_CR_RELEASED Macro
	SCAN_DEL_PRESSED Macro
	SCAN_DEL_RELEASED Macro
	SCAN_DOWN_PRESSED Macro
	SCAN_DOWN_RELEASED Macro
	SCAN_END_PRESSED Macro
	SCAN_END_RELEASED Macro
	SCAN_HOME_PRESSED Macro
	SCAN_HOME_RELEASED Macro
	SCAN_LEFT_PRESSED Macro
	SCAN_LEFT_RELEASED Macro
	SCAN_PGDOWN_PRESSED Macro
	SCAN_PGDOWN_RELEASED Macro
	SCAN_PGUP_PRESSED Macro
	SCAN_PGUP_RELEASED Macro
	SCAN_RIGHT_PRESSED Macro
	SCAN_RIGHT_RELEASED Macro
	SCAN_SPACE_PRESSED Macro
	SCAN_SPACE_RELEASED Macro
	SCAN_TAB_PRESSED Macro
	SCAN_TAB_RELEASED Macro
	SCAN_UP_PRESSED Macro
	SCAN_UP_RELEASED Macro

	Style Scheme
	GOLCreateScheme Function
	GOLSetScheme Macro
	GOLGetScheme Macro
	GOLGetSchemeDefault Macro
	GOL_SCHEME Structure
	Default Style Scheme Settings
	FONTDEFAULT Variable

	GOLFontDefault Variable
	GOL_EMBOSS_SIZE Macro
	GOLSchemeDefault Variable
	RGBConvert Macro

	GOL Global Variables
	_pDefaultGolScheme Variable
	_pGolObjects Variable
	_pObjectFocused Variable

	Graphics Primitive Layer API
	Text Functions
	FONT_HEADER Structure
	FONT_FLASH Structure
	FONT_EXTERNAL Type
	SetFont Function
	GetFontOrientation Macro
	SetFontOrientation Macro
	GFX_Font_GetAntiAliasType Macro
	GFX_Font_SetAntiAliasType Macro
	OutChar Function
	OutText Function
	OutTextXY Function
	GetTextHeight Function
	GetTextWidth Function
	XCHAR Macro
	Anti-Alias Type
	ANTIALIAS_OPAQUE Macro
	ANTIALIAS_TRANSLUCENT Macro

	Gradient
	BarGradient Function
	BevelGradient Function
	GFX_GRADIENT_TYPE Enumeration
	GFX_GRADIENT_STYLE Structure

	Line Functions
	Line Function
	LineRel Macro
	LineTo Macro
	SetLineThickness Macro
	SetLineType Macro
	Line Types
	SOLID_LINE Macro
	DASHED_LINE Macro
	DOTTED_LINE Macro

	Line Size
	NORMAL_LINE Macro
	THICK_LINE Macro

	Rectangle Functions
	Bar Function
	Rectangle Macro
	DrawPoly Function

	Circle Functions
	Circle Macro
	FillCircle Macro
	Arc Function
	DrawArc Function
	Bevel Function
	FillBevel Function
	SetBevelDrawType Macro

	Graphic Cursor
	GetX Macro
	GetY Macro
	MoveRel Macro
	MoveTo Macro

	Alpha Blending Functions
	SetAlpha Macro
	GetAlpha Macro
	AlphaBlendWindow Function

	Bitmap Functions
	PutImage Macro
	PutImagePartial Function
	GetImageHeight Function
	GetImageWidth Function
	BITMAP_HEADER Structure
	Bitmap Settings
	IMAGE_NORMAL Macro
	IMAGE_X2 Macro

	Bitmap Source

	External Memory
	ExternalMemoryCallback Function
	EXTERNAL_FONT_BUFFER_SIZE Macro
	Memory Type

	Set Up Functions
	ClearDevice Function
	InitGraph Function

	GFX_RESOURCE Enumeration
	GFX_IMAGE_HEADER Structure
	IMAGE_FLASH Structure
	IMAGE_RAM Structure
	GFX_EXTDATA Structure

	Display Device Driver Layer API
	Display Device Driver Level Primitives
	GetPixel Function
	PutPixel Function
	GetColor Macro
	SetColor Macro
	GetMaxX Macro
	GetMaxY Macro
	SetClip Function
	SetClipRgn Function
	GetClipBottom Macro
	GetClipLeft Macro
	GetClipRight Macro
	GetClipTop Macro
	CLIP_DISABLE Macro
	CLIP_ENABLE Macro
	TransparentColorEnable Function
	TransparentColorDisable Macro
	GetTransparentColorStatus Macro
	GetTransparentColor Macro
	TRANSPARENT_COLOR_DISABLE Macro
	TRANSPARENT_COLOR_ENABLE Macro
	DisplayBrightness Function
	GetPageAddress Macro
	CopyBlock Function
	CopyPageWindow Function
	CopyWindow Function
	SetActivePage Function
	SetVisualPage Function
	Color Definition
	BLACK Macro
	BLUE Macro
	BRIGHTBLUE Macro
	BRIGHTCYAN Macro
	BRIGHTGREEN Macro
	BRIGHTMAGENTA Macro
	BRIGHTRED Macro
	BRIGHTYELLOW Macro
	BROWN Macro
	CYAN Macro
	DARKGRAY Macro
	GRAY0 Macro
	GRAY1 Macro
	GRAY2 Macro
	GRAY3 Macro
	GRAY4 Macro
	GRAY5 Macro
	GRAY6 Macro
	GREEN Macro
	LIGHTBLUE Macro
	LIGHTCYAN Macro
	LIGHTGRAY Macro
	LIGHTGREEN Macro
	LIGHTMAGENTA Macro
	LIGHTRED Macro
	MAGENTA Macro
	RED Macro
	WHITE Macro
	YELLOW Macro

	Display Device Driver Control
	IsDeviceBusy Function
	ResetDevice Function

	Advanced Display Driver Features
	Alpha Blending
	GFXGetPageOriginAddress Function
	GFXGetPageXYAddress Function

	Transitions
	GFXTransition Function
	GFXSetupTransition Function
	GFXExecutePendingTransition Function
	GFXIsTransitionPending Function
	GFX_TRANSITION_DIRECTION Enumeration
	GFX_TRANSITION_TYPE Enumeration

	Double Buffering
	SwitchOffDoubleBuffering Function
	SwitchOnDoubleBuffering Function
	InvalidateRectangle Function
	RequestDisplayUpdate Function
	UpdateDisplayNow Function

	Microchip Graphics Controller
	Rectangle Copy Operations
	ROPBlock Function
	Scroll Function
	RCC_SRC_ADDR_CONTINUOUS Macro
	RCC_ROP_0 Macro
	RCC_COPY Macro

	Decompressing DEFLATEd data
	Decompress Function

	Palette Mode
	ClearPaletteChangeError Function
	DisablePalette Function
	EnablePalette Function
	GetPaletteChangeError Function
	IsPaletteEnabled Function
	PaletteInit Function
	RequestPaletteChange Function
	SetPalette Function
	SetPaletteBpp Function
	SetPaletteFlash Function
	PALETTE_FLASH Structure
	PALETTE_HEADER Structure
	PALETTE_EXTERNAL Type
	RequestEntirePaletteChange Macro
	SetEntirePalette Macro
	Palette.h

	Set Up Display Interface
	GFX_GCLK_DIVIDER Macro
	GFX_EPMP_CS1_BASE_ADDRESS Macro
	GFX_EPMP_CS1_MEMORY_SIZE Macro
	GFX_EPMP_CS2_BASE_ADDRESS Macro
	GFX_EPMP_CS2_MEMORY_SIZE Macro
	GFX_DISPLAY_BUFFER_LENGTH Macro
	GFX_DISPLAY_BUFFER_START_ADDRESS Macro

	External or Internal Memory and Palettes

	Image Decoders
	Image Decoders API
	Image Decoder Configuration
	IMG_SUPPORT_BMP Macro
	IMG_SUPPORT_GIF Macro
	IMG_SUPPORT_JPEG Macro
	IMG_SUPPORT_IMAGE_DECODER_LOOP_CALLBACK Macro
	IMG_USE_ONLY_565_GRAPHICS_DRIVER_FOR_OUTPUT Macro
	IMG_USE_ONLY_MDD_FILE_SYSTEM_FOR_INPUT Macro

	ImageDecode Function
	ImageDecoderInit Function
	ImageLoopCallbackRegister Function
	ImageDecodeTask Function
	ImageFullScreenDecode Macro
	ImageAbort Macro
	_BMPDECODER Structure
	_GIFDECODER Structure
	_JPEGDECODER Structure

	Miscellaneous Topics
	Starting a New Project
	Changing the default Font
	Advanced Font Features
	Using Primitive Rendering Functions in Blocking and Non-Blocking Modes
	Using Microchip Graphics Module Color Look Up Table in Applications
	Converting Images to Use a Common Palette in GIMP
	How to Define Colors in your Applications
	Connecting RGB data bus
	Adding New Device Driver

	References

