
MiWi(TM)	Development
Environment	Help Contents	|	Index Next

Introduction
MiWi™	Development	Environment	with	MiMAC	and	MiApp

Interfaces

	

	

MiWi™	Development	Environment	(MiWi™	DE)	is	developed	by
Microchip	to	support	a	wide	range	of	wireless	applications.	The
backbone	of	MiWi™	DE	is	MiMAC	and	MiApp	interfaces,	which
link	the	support	of	multiple	RF	transceivers	as	well	as	wireless
communication	protocols	together	as	a	well-defined	simple	but
robust	Microchip	proprietary	wireless	development	environment.	

	

Within	MiWi™	DE,	application	developers	are	able	to	switch
between	RF	transceivers	and	wireless	protocols	with	little	or	no
modification	in	the	application	layer.	By	providing	such	easy
migration	capability	in	MiWi™	DE,	as	well	as	simple	but	robust
interfaces,	the	firmware	development	risk	has	been	reduced	to	a
level	that	has	never	been	observed	in	the	industry	before.	

	

MiWi™	DE	is	defined	in	three	layers:	application	layer,	protocol
layer	and	RF	transceiver	layer.	The	three	layers	are	linked
together	by	MiMAC	and	MiApp	interfaces.	Application	layer	uses
MiApp	interfaces	to	talk	to	the	protocol	layer.	In	protocol	layer,
there	are	implementations	of	MiWi™	P2P,	MiWi	and	MiWi	PRO

wireless	communication	protocols	available.	The	drivers	for
Microchip	RF	transceivers	(MRF24J40,	MRF49XA	and
MRF89XA	for	this	release)	are	called	by	protocol	layers	via
MiMAC	interfaces.	Configuration	files	are	also	presented	in	each
layer.	Following	diagram	shows	the	architecture	of	Microchip
MiWi™	DE.	

	

	

	

MiWi™	DE	version	4.x	is	built	on	top	of	earlier	version	3.1.4.	The
details	of	the	major	modifications	can	be	found	in	the	Release
Notes.

Introduction

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

SW	License	Agreement
MICROCHIP	IS	WILLING	TO	LICENSE	THE	ACCOMPANYING
SOFTWARE	AND	DOCUMENTATION	TO	YOU	ONLY	ON	THE
CONDITION	THAT	YOU	ACCEPT	ALL	OF	THE	FOLLOWING
TERMS.	TO	ACCEPT	THE	TERMS	OF	THIS	LICENSE,	CLICK
"I	ACCEPT"	AND	PROCEED	WITH	THE	DOWNLOAD	OR

INSTALL.	IF	YOU	DO	NOT	ACCEPT	THESE	LICENSE	TERMS,
CLICK	"I	DO	NOT	ACCEPT,"	AND	DO	NOT	DOWNLOAD	OR

INSTALL	THIS	SOFTWARE.	

	

NON-EXCLUSIVE	SOFTWARE	LICENSE	AGREEMENT	

	

This	Nonexclusive	Software	License	Agreement	("Agreement")	is
a	contract	between	you,	your	heirs,	successors	and	assigns
("Licensee")	and	Microchip	Technology	Incorporated,	a	Delaware
corporation,	with	a	principal	place	of	business	at	2355	W.
Chandler	Blvd.,	Chandler,	AZ	85224-6199,	and	its	subsidiary,
Microchip	Technology	(Barbados)	II	Incorporated	(collectively,
"Microchip")	for	the	accompanying	Microchip	software	including,
but	not	limited	to,	Graphics	Library	Software,	IrDA	Stack
Software,	MCHPFSUSB	Stack	Software,	Memory	Disk	Drive	File
System	Software,	mTouch(TM)	Capacitive	Library	Software,
Smart	Card	Library	Software,	TCP/IP	Stack	Software,	MiWi(TM)
DE	Software,	Security	Package	Software,	and/or	any	PC
programs	and	any	updates	thereto	(collectively,	the	"Software"),
and	accompanying	documentation,	including	images	and	any
other	graphic	resources	provided	by	Microchip
("Documentation").	

	

1.	Definitions.	As	used	in	this	Agreement,	the	following
capitalized	terms	will	have	the	meanings	defined	below:	

a.	"Microchip	Products"	means	Microchip	microcontrollers	and
Microchip	digital	signal	controllers.	

b.	"Licensee	Products"	means	Licensee	products	that	use	or
incorporate	Microchip	Products.	

c.	"Object	Code"	means	the	Software	computer	programming
code	that	is	in	binary	form	(including	related	documentation,	if
any),	and	error	corrections,	improvements,	modifications,	and
updates.	

d.	"Source	Code"	means	the	Software	computer	programming
code	that	may	be	printed	out	or	displayed	in	human	readable
form	(including	related	programmer	comments	and
documentation,	if	any),	and	error	corrections,	improvements,
modifications,	and	updates.	

e.	"Third	Party"	means	Licensee’s	agents,	representatives,
consultants,	clients,	customers,	or	contract	manufacturers.	

f.	"Third	Party	Products"	means	Third	Party	products	that	use	or
incorporate	Microchip	Products.	

2.	Software	License	Grant.	Microchip	grants	strictly	to	Licensee	a
non-exclusive,	non-transferable,	worldwide	license	to:	

a.	use	the	Software	in	connection	with	Licensee	Products	and/or
Third	Party	Products;	

b.	if	Source	Code	is	provided,	modify	the	Software;	provided	that
Licensee	clearly	notifies	Third	Parties	regarding	the	source	of
such	modifications;	

c.	distribute	the	Software	to	Third	Parties	for	use	in	Third	Party
Products,	so	long	as	such	Third	Party	agrees	to	be	bound	by	this

Agreement	(in	writing	or	by	"click	to	accept")	and	this	Agreement
accompanies	such	distribution;	

d.	sublicense	to	a	Third	Party	to	use	the	Software,	so	long	as
such	Third	Party	agrees	to	be	bound	by	this	Agreement	(in
writing	or	by	"click	to	accept");	

e.	with	respect	to	the	TCP/IP	Stack	Software,	Licensee	may	port
the	ENC28J60.c,	ENC28J60.h,	ENCX24J600.c,	and
ENCX24J600.h	driver	source	files	to	a	non-Microchip	Product
used	in	conjunction	with	a	Microchip	ethernet	controller;	

f.	with	respect	to	the	MiWi	(TM)	DE	Software,	Licensee	may	only
exercise	its	rights	when	the	Software	is	embedded	on	a
Microchip	Product	and	used	with	a	Microchip	radio	frequency
transceiver	or	UBEC	UZ2400	radio	frequency	transceiver	which
are	integrated	into	Licensee	Products	or	Third	Party	Products.	

For	purposes	of	clarity,	Licensee	may	NOT	embed	the	Software
on	a	non-Microchip	Product,	except	as	described	in	this	Section.	

3.	Documentation	License	Grant.	Microchip	grants	strictly	to
Licensee	a	non-exclusive,	non-transferable,	worldwide	license	to
use	the	Documentation	in	support	of	Licensee's	authorized	use
of	the	Software	

4.	Third	Party	Requirements.	Licensee	acknowledges	that	it	is
Licensee’s	responsibility	to	comply	with	any	third	party	license
terms	or	requirements	applicable	to	the	use	of	such	third	party
software,	specifications,	systems,	or	tools.	This	includes,	by	way
of	example	but	not	as	a	limitation,	any	standards	setting
organizations	requirements	and,	particularly	with	respect	to	the
Security	Package	Software,	local	encryption	laws	and
requirements.	Microchip	is	not	responsible	and	will	not	be	held
responsible	in	any	manner	for	Licensee’s	failure	to	comply	with
such	applicable	terms	or	requirements.	

5.	Open	Source	Components.	Notwithstanding	the	license	grant
in	Section	1	above,	Licensee	further	acknowledges	that	certain
components	of	the	Software	may	be	covered	by	so-called	"open
source"	software	licenses	("Open	Source	Components").	Open
Source	Components	means	any	software	licenses	approved	as
open	source	licenses	by	the	Open	Source	Initiative	or	any
substantially	similar	licenses,	including	without	limitation	any
license	that,	as	a	condition	of	distribution	of	the	software	licensed
under	such	license,	requires	that	the	distributor	make	the
software	available	in	source	code	format.	To	the	extent	required
by	the	licenses	covering	Open	Source	Components,	the	terms	of
such	license	will	apply	in	lieu	of	the	terms	of	this	Agreement.	To
the	extent	the	terms	of	the	licenses	applicable	to	Open	Source
Components	prohibit	any	of	the	restrictions	in	this	Agreement
with	respect	to	such	Open	Source	Components,	such	restrictions
will	not	apply	to	such	Open	Source	Component.	

6.	Licensee	Obligations.	Licensee	will	not:	(a)	engage	in
unauthorized	use,	modification,	disclosure	or	distribution	of
Software	or	Documentation,	or	its	derivatives;	(b)	use	all	or	any
portion	of	the	Software,	Documentation,	or	its	derivatives	except
in	conjunction	with	Microchip	Products,	Licensee	Products	or
Third	Party	Products;	or	(c)	reverse	engineer	(by	disassembly,
decompilation	or	otherwise)	Software	or	any	portion	thereof.
Licensee	may	not	remove	or	alter	any	Microchip	copyright	or
other	proprietary	rights	notice	posted	in	any	portion	of	the
Software	or	Documentation.	Licensee	will	defend,	indemnify	and
hold	Microchip	and	its	subsidiaries	harmless	from	and	against
any	and	all	claims,	costs,	damages,	expenses	(including
reasonable	attorney's	fees),	liabilities,	and	losses,	including
without	limitation:	(x)	any	claims	directly	or	indirectly	arising	from
or	related	to	the	use,	modification,	disclosure	or	distribution	of
the	Software,	Documentation,	or	any	intellectual	property	rights
related	thereto;	(y)	the	use,	sale	and	distribution	of	Licensee
Products	or	Third	Party	Products;	and	(z)	breach	of	this

Agreement.	

7.	Confidentiality.	Licensee	agrees	that	the	Software	(including
but	not	limited	to	the	Source	Code,	Object	Code	and	library	files)
and	its	derivatives,	Documentation	and	underlying	inventions,
algorithms,	know-how	and	ideas	relating	to	the	Software	and	the
Documentation	are	proprietary	information	belonging	to
Microchip	and	its	licensors	("Proprietary	Information").	Except	as
expressly	and	unambiguously	allowed	herein,	Licensee	will	hold
in	confidence	and	not	use	or	disclose	any	Proprietary	Information
and	will	similarly	bind	its	employees	and	Third	Party(ies)	in
writing.	Proprietary	Information	will	not	include	information	that:
(i)	is	in	or	enters	the	public	domain	without	breach	of	this
Agreement	and	through	no	fault	of	the	receiving	party;	(ii)	the
receiving	party	was	legally	in	possession	of	prior	to	receiving	it;
(iii)	the	receiving	party	can	demonstrate	was	developed	by	the
receiving	party	independently	and	without	use	of	or	reference	to
the	disclosing	party's	Proprietary	Information;	or	(iv)	the	receiving
party	receives	from	a	third	party	without	restriction	on	disclosure.
If	Licensee	is	required	to	disclose	Proprietary	Information	by	law,
court	order,	or	government	agency,	License	will	give	Microchip
prompt	notice	of	such	requirement	in	order	to	allow	Microchip	to
object	or	limit	such	disclosure.	Licensee	agrees	that	the
provisions	of	this	Agreement	regarding	unauthorized	use	and
nondisclosure	of	the	Software,	Documentation	and	related
Proprietary	Rights	are	necessary	to	protect	the	legitimate
business	interests	of	Microchip	and	its	licensors	and	that
monetary	damage	alone	cannot	adequately	compensate
Microchip	or	its	licensors	if	such	provisions	are	violated.
Licensee,	therefore,	agrees	that	if	Microchip	alleges	that
Licensee	or	Third	Party	has	breached	or	violated	such	provision
then	Microchip	will	have	the	right	to	injunctive	relief,	without	the
requirement	for	the	posting	of	a	bond,	in	addition	to	all	other
remedies	at	law	or	in	equity.	

8.	Ownership	of	Proprietary	Rights.	Microchip	and	its	licensors
retain	all	right,	title	and	interest	in	and	to	the	Software	and
Documentation	including,	but	not	limited	to	all	patent,	copyright,
trade	secret	and	other	intellectual	property	rights	in	the	Software,
Documentation,	and	underlying	technology	and	all	copies	and
derivative	works	thereof	(by	whomever	produced).	Licensee	and
Third	Party	use	of	such	modifications	and	derivatives	is	limited	to
the	license	rights	described	in	this	Agreement.	

9.	Termination	of	Agreement.	Without	prejudice	to	any	other
rights,	this	Agreement	terminates	immediately,	without	notice	by
Microchip,	upon	a	failure	by	Licensee	or	Third	Party	to	comply
with	any	provision	of	this	Agreement.	Upon	termination,	Licensee
and	Third	Party	will	immediately	stop	using	the	Software,
Documentation,	and	derivatives	thereof,	and	immediately	destroy
all	such	copies.	

10.	Warranty	Disclaimers.	THE	SOFTWARE	AND
DOCUMENTATION	ARE	PROVIDED	"AS	IS"	WITHOUT
WARRANTY	OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,
INCLUDING	WITHOUT	LIMITATION,	ANY	WARRANTY	OF
MERCHANTABILITY,	TITLE,	NON-INFRINGEMENT	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE.	MICROCHIP	AND
ITS	LICENSORS	ASSUME	NO	RESPONSIBILITY	FOR	THE
ACCURACY,	RELIABILITY	OR	APPLICATION	OF	THE
SOFTWARE	OR	DOCUMENTATION.	MICROCHIP	AND	ITS
LICENSORS	DO	NOT	WARRANT	THAT	THE	SOFTWARE	WILL
MEET	REQUIREMENTS	OF	LICENSEE	OR	THIRD	PARTY,	BE
UNINTERRUPTED	OR	ERROR-FREE.	MICROCHIP	AND	ITS
LICENSORS	HAVE	NO	OBLIGATION	TO	CORRECT	ANY
DEFECTS	IN	THE	SOFTWARE.	

11.	Limited	Liability.	IN	NO	EVENT	WILL	MICROCHIP	OR	ITS
LICENSORS	BE	LIABLE	OR	OBLIGATED	UNDER	ANY	LEGAL
OR	EQUITABLE	THEORY	FOR	ANY	DIRECT	OR	INDIRECT

DAMAGES	OR	EXPENSES	INCLUDING	BUT	NOT	LIMITED	TO
INCIDENTAL,	SPECIAL,	INDIRECT,	PUNITIVE	OR
CONSEQUENTIAL	DAMAGES,	LOST	PROFITS	OR	LOST
DATA,	COST	OF	PROCUREMENT	OF	SUBSTITUTE	GOODS,
TECHNOLOGY,	SERVICES,	OR	ANY	CLAIMS	BY	THIRD
PARTIES	(INCLUDING	BUT	NOT	LIMITED	TO	ANY	DEFENSE
THEREOF),	OR	OTHER	SIMILAR	COSTS.	The	aggregate	and
cumulative	liability	of	Microchip	and	its	licensors	for	damages
hereunder	will	in	no	event	exceed	$1000	or	the	amount	Licensee
paid	Microchip	for	the	Software	and	Documentation,	whichever	is
greater.	Licensee	acknowledges	that	the	foregoing	limitations	are
reasonable	and	an	essential	part	of	this	Agreement.	

12.	General.	THIS	AGREEMENT	WILL	BE	GOVERNED	BY	AND
CONSTRUED	UNDER	THE	LAWS	OF	THE	STATE	OF
ARIZONA	AND	THE	UNITED	STATES	WITHOUT	REGARD	TO
CONFLICTS	OF	LAWS	PROVISIONS.	Licensee	agrees	that	any
disputes	arising	out	of	or	related	to	this	Agreement,	Software	or
Documentation	will	be	brought	exclusively	in	either	the	U.S.
District	Court	for	the	District	of	Arizona,	Phoenix	Division,	or	the
Superior	Court	of	Arizona	located	in	Maricopa	County,	Arizona.
This	Agreement	will	constitute	the	entire	agreement	between	the
parties	with	respect	to	the	subject	matter	hereof.	It	will	not	be
modified	except	by	a	written	agreement	signed	by	an	authorized
representative	of	Microchip.	If	any	provision	of	this	Agreement
will	be	held	by	a	court	of	competent	jurisdiction	to	be	illegal,
invalid	or	unenforceable,	that	provision	will	be	limited	or
eliminated	to	the	minimum	extent	necessary	so	that	this
Agreement	will	otherwise	remain	in	full	force	and	effect	and
enforceable.	No	waiver	of	any	breach	of	any	provision	of	this
Agreement	will	constitute	a	waiver	of	any	prior,	concurrent	or
subsequent	breach	of	the	same	or	any	other	provisions	hereof,
and	no	waiver	will	be	effective	unless	made	in	writing	and	signed
by	an	authorized	representative	of	the	waiving	party.	Licensee
agrees	to	comply	with	all	import	and	export	laws	and	restrictions

and	regulations	of	the	Department	of	Commerce	or	other	United
States	or	foreign	agency	or	authority.	The	indemnities,
obligations	of	confidentiality,	and	limitations	on	liability	described
herein,	and	any	right	of	action	for	breach	of	this	Agreement	prior
to	termination,	will	survive	any	termination	of	this	Agreement.
Any	prohibited	assignment	will	be	null	and	void.	Use,	duplication
or	disclosure	by	the	United	States	Government	is	subject	to
restrictions	set	forth	in	subparagraphs	(a)	through	(d)	of	the
Commercial	Computer-Restricted	Rights	clause	of	FAR	52.227-
19	when	applicable,	or	in	subparagraph	(c)(1)(ii)	of	the	Rights	in
Technical	Data	and	Computer	Software	clause	at	DFARS
252.227-7013,	and	in	similar	clauses	in	the	NASA	FAR
Supplement.	Contractor/manufacturer	is	Microchip	Technology
Inc.,	2355	W.	Chandler	Blvd.,	Chandler,	AZ	85224-6199.	

	

If	Licensee	has	any	questions	about	this	Agreement,	please	write
to	Microchip	Technology	Inc.,	2355	W.	Chandler	Blvd.,	Chandler,
AZ	85224-6199	USA.	ATTN:	Marketing.	

	

Copyright	(c)	2012	Microchip	Technology	Inc.	All	rights	reserved.	

	

License	Rev.	No.	05-012412

SW	License	Agreement

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Release	Notes
Microchip	MiWi(TM)	Development	Environment	Software
Stack
	

Version	4.x,	June	8	2011	

	

Microchip	MiWi™	Development	Environment	(MiWi™	DE)
protocol	stack	provides	simple	wireless	connectivity	for	short-
range,	low	data	rate	and	low	power	applications.	Microchip
MiWi™	DE	protocol	is	royalty	free	as	long	as	implemented	on
Microchip	PIC	microcontroller	and	radio	frequency	transceiver.
Please	refer	to	the	attached	MiWi™	DE	license	agreement	for
details.	

	

The	MiWi™	DE	source	code	is	released	with	applications	to
demonstrate	communications	between	two	RF	devices.	The
source	code	for	each	device	is	located	in	individual	directories
under	"MiWi	DE	Demo".	In	addition,	the	directory	"Microchip"	is
for	MiWi™	DE	stack	source	code.	

	

Micorchip	MiWi™	DE	version	4.x	is	updated	from	version	3.1.4
released	earlier.	The	main	updates	from	earlier	versions	are:	

	

Support	MiWi™	PRO	networking	protocol
Support	Microchip	MPLAB	X
Provide	demo	source	code	for	Microchip	Wireless	Development	Kit

Provide	testing	interface	for	MiWi	PRO	protocol
Bug	fixes

	

For	all	new	features,	please	refer	to	the	section	New	Features.	

	

Peripherals

Type/Use	 Specific/Configurable	 Limitations	

UART	for
hyper
terminal
output	

Select	via	console
configuration	in
ConfigApp.h	

None	

Timer	for
protocol
timing	

16bit	Timer	 Timer	is	preferred	to	be
configured	to	represent
16us	for	one	tick	

SPI	for	RF
transceiver	

Select	via	pin
configurations	in
ConfigApp.h	

Both	hardware	SPI	or
software	bit-bang	can	be
used.	

Digital	I/O
pins	to	RF
transceiver	

Select	via	pin
configurations	in
ConfigApp.h	

Must	be	able	to	be
configured	as	external
interrupt	pin	or	interrupt-
on-change	pin;	must	have
a	pull-up	

	

Limitations
1.	 Microchip	C18	compiler	version	3.30	or	earlier	has	a	mismatch	in

the	memory	mapping	of	linker	script	for	PIC18F87J11	family.	It	is
highly	recommended	to	use	the	linker	script	in	the	project	file	when
compile	the	stack	for	PIC18	Explorer	demo	board.

2.	 Due	to	C30	(version	3.11)	compiler	limitation,	using	optimization

level	2	or	above	in	compilation	may	reset	the	MCU	when	decrypt	a
message,	when	MRF49XA	is	chosen	as	the	RF	transceiver.	Please
use	no	optimization	or	optimization	level	1	to	compiler	the	MiWi™
P2P	code	as	MRF49XA	is	used.

3.	 High	data	rate	for	MRF49XA	may	require	MCU	running	at	faster
speed.	This	is	due	to	the	nature	of	16-bit	RX	buffer	used	in
MRF49XA.

4.	 When	PIC32	MCU	family	is	used,	the	demo	needs	to	be	compiled
with	optimization	on	to	track	the	delay	timing	for	LCD.	The	MiWi™
P2P	stack	itself	does	not	have	such	requirement.

5.	 In	the	feature	demo,	only	button	1	can	wake	up	the	end	device	to
transmit	message	on	PIC18	Explorer	demo	board,	due	to	the	demo
board	hardware	design.

Release	Notes

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

New	Features
New	Features
	

This	release	of	MiWi™	DE	has	included	a	few	new	features,
such	as	Network	Freezer,	Enhanced	Data	Request	and	Time
Synchronization.	Those	features	are	so	new	that	we	don't	have	a
chance	to	modify	the	application	note	to	document	them.	In	this
section,	we	describe	those	new	features	in	details	to	help	our
user	understanding	and	using	them.	All	new	features	can	be
enabled	in	the	feature	demo,	which	is	included	in	the	release
package.

Topics

Name	 Description	

Network	Freezer	 	

Enhanced	Data
Request	

	

Time	Synchronization	 	

New	Features

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Network	Freezer
Motivation
Occasionally,	a	wireless	network	may	lose	power.	After	power	is
restored,	in	most	of	the	cases,	the	wireless	nodes	might	form	a
different	network	through	different	joining	procedures.	This	is
particularly	obvious	for	MiWi/MiWi	PRO	protocols,	which	use	16-
bit	network	address	in	communication.	After	the	power	cycle,	a
wireless	node	in	MiWi/MiWi	PRO	network	may	be	assigned	with
a	different	network	address.	As	the	result,	the	application	layer
may	have	to	dedicate	more	efforts	to	handle	the	power	cycle
scenario.	It	is	important	to	develop	a	feature	which	can	release
the	application	layer	from	handling	power	cycle.	

	

Solution
Network	Freezer	feature	is	developed	to	solve	this	problem.	It
saves	critical	network	information	into	the	Non-Volatile	Memory
(NVM)	and	restore	them	after	power	cycle.	In	this	way,	the
application	does	not	need	to	worry	about	the	power	cycle
scenario	and	the	network	can	be	restored	to	the	state	before	the
power	cycle	without	any	message	exchange	after	the	power
cycle.	

	

Interface
Network	Freezer	feature	can	be	enabled	by	defining
ENABLE_NETWORK_FREEZER	in	configuration	file	of
application	layer:	ConfigApp.h.	In	the	demo,	this	feature	has
been	enabled.	

Network	Freezer	feature	is	invoked	by	calling	the	MiApp	function

MiApp_ProtocolInit.	The	only	input	boolean	parameter
bNetworkFreezer	indicates	if	Network	Freezer	feature	should	be
invoked.	When	this	parameter	is	TRUE,	the	network	information
will	be	restored	from	NVM;	otherwise,	the	network	information	in
NVM	will	be	erased	and	the	wireless	node	start	from	scratch.	

	

Additional	Notes
Network	Freezer	feature	requires	NVM	to	store	the	critical
network	information.	NVM	can	be	data	EPROM	in	MCU,	external
EEPORM	connected	to	MCU	via	SPI,	or	programming	space,	if
enhanced	flash	is	used	in	MCU.	Choosing	the	correct	form	of
NVM	can	be	configured	in	hardware	configuration	file
HardwareProfile.h.	The	possible	options	are:

USE_DATA_EEPROM
USE_EXTERNAL_EEPROM
USE_PROGRAMMING_SPACE

For	each	selection,	there	are	a	few	minor	configurations	which
can	be	found	in	NVM	configuration	file	NVM.h.

New	Features	>	Network	Freezer

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Enhanced	Data	Request
Motivation
In	a	lot	of	practical	network,	most	of	the	devices	are	sleeping
devices,	which	are	connected	to	a	few	Full	Function	Devices
(FFDs).	Usually,	the	sleeping	devices	wake	up	periodically,
asking	data	from	the	FFDs	and	report	information	back	to	the
network.	

For	most	of	the	applications,	it	is	critical	to	provide	long	battery
life	for	the	sleeping	devices.	A	majority	portion	of	power	is
consumed	when	the	sleeping	device	is	active,	asking	for	data
and	sending	data	in	the	duty	cycle.	Since	the	power	consumption
in	active	mode	is	around	ten	thousand	times	higher	than	in	sleep
mode,	lower	the	total	active	time	plays	an	important	role	to
prolong	the	battery	life.	

	

Solution
According	to	IEEE	802.15.4	specification,	there	are	typically
three	message	exchanges	after	a	sleeping	device	wakes	up:

1.	 Data	Request	command	from	the	sleeping	device	to	FFD,	asking
for	indirect	message	from	FFD.

2.	 Indirect	message	from	FFD	to	sleeping	device
3.	 Message	from	sleeping	device	to	FFD.

In	order	to	save	battery	power,	we	can	combine	message	1	and
3	together,	attach	message	3	as	payload	of	message	1.	In	this
way,	there	are	only	two	messages	transmitted,	saving	the	time	in
CSMA-CA	detection/protocol	header	transmission	and	put	the
device	into	sleep	earlier.	Our	tests	show	that	the	total	active	time
could	be	lowered	up	to	20-30%	in	certain	usage	case.	

	

Interface
To	enable	Enhanced	Data	Request	feature,
ENABLE_ENHANCED_DATA_REQUEST	must	be	defined	in
configuration	files	for	protocols:	ConfigP2P.h	or	ConfigMiWi.h.
The	reason	of	enabling	this	feature	in	protocol	layer	instead	of
application	layer	is	that	both	sleeping	devices	and	FFDs	must
enable	this	feature	at	the	same	time.	While	configuration	files	in
application	layer	is	for	each	individual	devices	and	configuration
file	in	protocol	layer	is	for	every	devices,	it	makes	sense	to
enable/disable	this	feature	in	the	protocol	layer	to	avoid	any
mismatch	in	feature	enabling.	

There	is	no	special	function	call	for	the	Enhanced	Data	Request
feature.	However,	the	application	function	call	procedure	is
different	with	or	without	Enhanced	Data	Request	feature.	

For	applications	without	Enhanced	Data	Request	feature,	the
procedure	after	MCU	waking	up	is	following:

1.	 Wake	up	the	transceiver	by	calling	MiApp_TransceiverPowerState
with	parameter	POWER_STATE_WAKEUP_DR.	It	will	wake	up	the
transceiver	as	well	as	asking	FFD	for	indirect	message	by	sending
out	Data	Request	command.

2.	 Send	data	from	sleeping	device	to	FFD.

For	application	with	Enhanced	Data	Request	feature,	the
procedure	after	MCU	waking	up	is	revised,	as	shown	below:

1.	 Send	data	from	sleeping	device	to	FFD.	However,	the	data	is	just
queue	up	in	the	memory.	Actual	data	is	not	sent	yet.

2.	 Wake	up	the	transceiver	by	calling	MiApp_TransceiverPowerState
with	parameter	POWER_STATE_WAKEUP_DR.	It	will	wake	up	the
transceiver	and	send	Data	Request	command	for	indirect
message.	The	data	that	is	sent	in	step	1	will	be	the	payload	of	Data
Request	command.	At	FFD	side,	it	will	handle	such	message	by

spliting	it	into	Data	Request	command	as	well	as	the	individual
message.

The	implementation	of	Enhanced	Data	Request	feature	can	be
found	in	feature	demo	in	the	release	package.	

	

Additional	Notes
Enhanced	Data	Request	feature	can	be	used	to	transmit	unicast
message	from	the	sleeping	device	to	the	FFD,	but	broadcast
message	still	depends	on	normal	message	delivery	method,
because	broadcast	message	and	Data	Request	command	have
different	destination	address.	

Because	Enhanced	Data	Request	is	a	brand	new	feature,	ZENA
sniffer	program	has	not	been	updated	to	decode	it.	However,	this
limitation	would	not	affect	the	operation	of	the	stack.

New	Features	>	Enhanced	Data	Request

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Time	Synchronization
Motivation
In	a	practical	wireless	network,	large	number	of	sleeping	node
may	be	connected	to	a	single	Full	Function	Device	(FFD).	All
sleeping	devices	can	sleep	for	a	while	and	wake	up	and	request
indirect	messages	in	a	duty	cycle.	If	multiple	sleeping	devices
wake	up	around	the	same	time	and	send	Data	Request	to	the
FFD,	some	of	those	packets	may	collide	and	get	lost,	or	have	to
try	multiple	times	before	a	positive	acknowledgement	can	be
received.	This	scenario	also	put	burden	on	the	FFD	to	handle
multiple	requests	almost	at	the	same	time.	

	

Solution
To	solve	this	kind	of	problem,	each	sleeping	device	is	required	to
report	in	a	predefined	interval.	This	approach	is	somewhat
similar	to	beacon	network	which	is	defined	in	IEEE	802.15.4.
However,	beacon	network	in	IEEE	802.15.4	only	support	star
topology	and	require	extensive	hardware	assistant.	Our	solution
is	simpler	and	requires	far	more	less	system	resources.	It	is	also
suitable	to	be	implemented	in	transceivers	that	is	not	IEEE
802.15.4	compliant.	

Our	solution	have	the	FFD	to	control	the	timing	of	the	sleeping
device	when	to	wake	up	and	check	in	next	time.	As	the	result,
the	timing	information	will	be	attached	to	the	indirect	message
response	time.	The	indirect	message	has	been	changed	to	the
following	format:

Name	 MAC
Command	

Rough
Timing
Info	

Precise
Timing
Info	

Indirect
Message	

Length
(BYTE)	

1	 2	 2	 various	

Description	 Time	Sync
Data	Packet
Command

(0x8A)	for	data
indirect
message.
Time	Sync
Command
Packet

Command
(0x8B)	for
command
indirect

message.	

Timeout
times	on
timers.
Timers
timeout
roughly
once	per

16
seconds.	

Timer	ticks
for	precise
timing
control.
One	timer
tick	is

configured
to	be

around	244
us.	

The
indirect
message
itself.	

	

Interfaces
To	enable	Time	Synchronization	feature,	ENABLE_TIME_SYNC
must	be	defined	in	configuration	files	for	protocols:	ConfigP2P.h,
ConfigMiWi.h	or	ConfigMiWiPRO.h.	The	reason	of	enabling	this
feature	in	protocol	layer	instead	of	application	layer	is	that	both
sleeping	devices	and	FFDs	must	enable	this	feature	at	the	same
time.	While	configuration	files	in	application	layer	is	for	each
individual	devices	and	configuration	file	in	protocol	layer	is	for
every	devices,	it	makes	sense	to	enable/disable	this	feature	in
the	protocol	layer	to	avoid	any	mismatch	in	feature	enabling.	

Additional	configuration	for	Time	Synchronization	is	the	total
number	of	slots,	TIME_SYNC_SLOTS,	supported	in	the	wake	up
interval	of	sleeping	devices.	As	the	rule,	the
TIME_SYNC_SLOTS	must	be	higher	or	equal	to	number	of
sleeping	devices	that	connects	to	the	FFD,	so	that	every

sleeping	device	can	have	at	least	one	time	slot.	Same	as
ENABLE_TIME_SYNC,	TIME_SYNC_SLOTS	is	defined	in
protocol	configuration	files	ConfigP2P.h,	ConfigMiWi.h	or
ConfigMiWiPRO.h	for	the	same	reason	above.	Another
configuration	is	the	frequency	for	the	external	crystal	that
connects	to	the	16-bit	asynchronized	counter.	

Apart	from	the	configurations	in	protocol	layer,	there	is	no	special
requirement	for	function	calls	on	application	layer.	There	are
additional	hardware	requirement	for	this	feature.	The	details	of
additional	hardware	requirement	can	be	found	in	the	next
section.	

	

Additional	Notes
Time	Synchronization	feature	requires	hardware	support.	The
MCU	needs	a	16-bit	timer	working	as	asynchronized	counter
mode	on	a	32KHz	external	crystal.	The	timer	will	be	able	to	run
when	the	MCU	is	in	sleep	mode	and	wake	up	the	MCU	once	it
reaches	the	preset	interval.	

When	Time	Synchronization	feature	is	enabled,	the	minimum
time	slot	depends	on	the	primary	oscillator	accuracy,	32	KHz
external	crystal	accuracy	as	well	as	random	time	delay	caused
by	CSMA-CA	on	the	environment	noise.	On	standard	Microchip
demo	board,	the	time	slot	can	be	lowered	to	100	millisecond.

New	Features	>	Time	Synchronization

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Demos

Topics

Name	 Description	

Required	Hardware	 To	run	this	project,	you	will	need	two
wireless	nodes.	Each	of	the	nodes	can	be
any	of	setups	of	listed	hardware.	

Configuring	the
Hardware	

This	section	describes	how	to	set	up	the
various	configurations	of	hardware	to	run
this	demo:

Configuration	1:	PICDEM	Z	Demo	Kit
Configuration	2:	PIC18	Explorer	demo
board
Configuration	3:	Explorer	16	demo	board,
RF	Card	and	PIC24FJ128GA010	or
PIC32MX360F512L	PIM
Configuration	4:	8-bit	Wireless	Development
Kit	

Firmware	 	

Running	Demos	 	

Demos

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Required	Hardware
To	run	this	project,	you	will	need	two	wireless	nodes.	Each	of	the
nodes	can	be	any	of	setups	of	listed	hardware.

Topics

Name	 Description	

Hardware	Sets	 	

Demos	>	Required	Hardware

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Hardware	Sets
Hardware	Setups
	

Hardware	Set	1:

Demo	Board:
PICDEM	Z	2.4	Demo	Kit	(DM163027-4	OR	 DM163027-5)
OR
PICDEM	Z	Mother	Board	(AC163027-1)

RF	Board:
MRF24J40

PICDEM	Z	MRF24J40	2.4GHz	Daughter	Card
(AC163027-4)	OR
MRF24J40MA	PICDEM™	Z	2.4GHz	RF	Card

(AC163028)

	

Hardware	Set	2:

Demo	Board:
PIC18	Explorer	with	PIC19F87J11	PIM	(DM183032)

RF	Board:
MRF24J40

MRF24J40MA	PICtail	(AC164134-1)
MRF49XA

MRF49XA	PICtail	434MHz	(AC164137-1)	OR
MRF49XA	PICtail	868/915MHz	(AC164137-2)

MRF89XA
MRF89XA	PICtail	868MHz	OR
MRF89XA	PICtail	915MHz

	

Hardware	Set	3:

Demo	Board:
Explorer	16	(DM240001)
PIC24FJ128GA010	Plug-In-Module	(PIM)	(MA240011)

RF	Borad
MRF24J40

PICDEM	Z	MRF24J40	2.4GHz	Daughter	Card
(AC163027-4)	OR
MRF24J40MA	PICtail™	Plus	2.4GHz	RF	Card

(AC164134)	OR
MRF24J40MA	PICtail	(AC164134-1)

MRF49XA
MRF49XA	PICtail	434MHz	(AC164137-1)	OR
MRF49XA	PICtail	868/915MHz	(AC164137-2)

MRF89XA
MRF89XA	PICtail	868MHz	OR
MRF89XA	PICtail	915MHz

	

Hardware	Set	4:

Demo	Board:
Explorer	16	(DM240001)
PIC32MX360F512L	Plug-In-Module	(PIM)	(MA320001)

RF	Board:
MRF24J40

PICDEM	Z	MRF24J40	2.4GHz	Daughter	Card
(AC163027-4)	OR
MRF24J40MA	PICtail™	Plus	2.4GHz	RF	Card

(AC164134)	OR
MRF24J40MA	PICtail	(AC164134-1)

MRF49XA
MRF49XA	PICtail	434MHz	(AC164137-1)	OR
MRF49XA	PICtail	868/915MHz	(AC164137-2)

MRF89XA
MRF89XA	PICtail	868MHz	OR
MRF89XA	PICtail	915MHz

	

Hardware	Set	5:

Demo	Board:
8-bit	Wireless	Development	Board

RF	Board:
MRF24J40

MRF24J40MA	PICtail	(AC164134-1)
MRF49XA

MRF49XA	PICtail	434MHz	(AC164137-1)	OR
MRF49XA	PICtail	868/915MHz	(AC164137-2)

MRF89XA
MRF89XA	PICtail	868MHz	OR
MRF89XA	PICtail	915MHz

Demos	>	Required	Hardware	>	Hardware	Sets

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Configuring	the	Hardware
This	section	describes	how	to	set	up	the	various	configurations
of	hardware	to	run	this	demo:	

	

Configuration	1:	PICDEM	Z	Demo	Kit	

Configuration	2:	PIC18	Explorer	demo	board	

Configuration	3:	Explorer	16	demo	board,	RF	Card	and
PIC24FJ128GA010	or	PIC32MX360F512L	PIM	

Configuration	4:	8-bit	Wireless	Development	Kit

Topics

Name	 Description	

PICDEM	Z	 	

PIC18	Explorer	 	

Explorer	16	 	

8-bit	Wireless
Development	Kit	

	

Demos	>	Configuring	the	Hardware

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PICDEM	Z
Configuration	1:	PICDEM	Z
	

Connect	the	MRF24J40	2.4GHz	RF	Card	tot	he	PICDEM	Z
demo	board	as	shown	in	the	picture	

	

	

Before	running	the	demos,	it	is	highly	recommended	to	connect	a
serial	cable	to	both	demo	boards	and	connect	the	ZENA	sniffer
hardware	to	monitor	the	operating	of	the	network.	Once	the	serial
cable	is	connected	between	the	demo	board	and	PC,	launch	a

hyper	terminal	to	display	the	information	from	the	demo	board.
The	hyper	terminal	configuration	is	baud	rate	19200,	Data	bit	8,
Parity	None,	Stop	bits	1	and	Flow	control	None,	as	shown
below.	

	

	

PICDEM	Z	demo	board	only	support	Microchip	MRF24J40
transceiver,	which	is	compliant	with	IEEE	802.15.4	specification.
ZENA™	network	analyzer	can	be	used	to	monitor	the	network
traffic	of	IEEE	802.15.4	network.	To	run	ZENA™	sniffer,	connect
the	ZENA	board	with	PC	through	the	USB	interface,	then	launch
ZENA	software.	The	ZENA	window	will	show	up.	Choose
“MiWi™	P2P	Tools”	Menu	or	"MiWi(TM)	Tools"	Menu,	depending
on	the	protocol	is	used,	and	then	click	the	menu	item	“Network
Traffic	Monitor”	to	launch	Network	Monitor	window.	

	

	

From	the	Network	Monitor	window,	check	“Real	Time	Display”
box	and	choose	proper	channel.	By	default,	this	demo	use
channel	25.	Choose	“Operation”	menu	and	click	“Start
Sniffing/Playback”	menu	item	to	launch	the	“ZENA™	Packet
Sniffer”	window	to	monitor	the	wireless	traffic.	

	

Demos	>	Configuring	the	Hardware	>	PICDEM	Z

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC18	Explorer
Configuration	2:	PIC18	Explorer
	

1)	Set	the	S4	switch	on	PIC18	Explorer	at	the	position	of	ICE.	

	

	

2)	Before	connecting	the	PIM	to	the	PIC18	Explorer	board,
remove	all	attached	cables.	Connect	the	PIM	to	the	PIC18
Explorer	board.	Be	careful	when	connecting	the	boards	to	insure
that	no	pins	are	bent	or	damaged	during	the	process.	Also
ensure	that	the	PIM	is	not	shifted	in	any	direction	and	that	all	of
the	headers	are	properly	aligned.	

3)	Connect	the	either	the	MRF24J40,	MRF49XA	or	MRF89XA
RF	board	to	the	PICTail	connector.	Be	aware	that	the	transceiver
chip	should	face	the	PIM	and	the	first	pin	should	be	plugged	into

the	hole	labeled	"RE2".	

The	configured	hardware	setup	for	PIC18	Explorer	board	should
look	like	following	picture.	

	

PIC18	Explorer	support	both	RS232	serial	port	and	USB	to
connect	to	the	PC	for	monitoring.	PIC18	Explorer	by	default	is
configured	to	use	the	RS232	serial	port	to	communicate	with	PC.
Following	steps	setup	the	PIC18	Explorer	to	use	USB	port.	

	

1.	Hardware	Setup	

Configure	the	Explorer	PIC18	demo	board	to	use	USB
connection	by	setting	jumper	J13	according	to	the	following
diagram	

	

Make	sure	toggle	switch	is	in	the	DOWN	–	ICE	position.	This
switch	activates	the	PIC18	on	the	PIM.	DO	NOT	remove	the	PIM
or	the	board	Vdd	will	be	5V,	which	may	damage	the	RF	module.	

	

2.	USB	Driver	Install

Connect	the	PIC18	Explorer	demo	board	to	the	PC	using	a	USB
cable.
Power	up	PIC18	Explorer	demo	board,	following	pop	up	window
will	appear

Select	"Install	from	a	list	or	specific	location"	option	and	click

"Next".	Following	pop	up	window	appear

Select	the	check	box	"Include	this	location	in	the	search",	in	the
text	box,	browse	to	"<Install	Directory>\PC	Software"	folder.	This	is
the	location	of	the	"mchpcdc.inf"	driver.
Click	"Next".	There	may	be	warning	from	Windows	operating
system	about	installing	a	driver	without	digital	signature.	Please
ignore	that	warning	and	continue.	After	the	driver	is	installed
properly,	the	following	screen	will	appear

Click	"Finish".	USB	port	is	ready	to	be	used.

	

3.	Open	Hyper	Terminal	

Once	the	RS232	serial	or	USB	cable	is	connected	between	the
demo	board	and	PC,	launch	a	hyper	terminal	to	display	the
information	from	the	demo	board.	The	hyper	terminal
configuration	is	baud	rate	19200,	Data	bit	8,	Parity	None,	Stop
bits	1	and	Flow	control	None,	as	shown	below.	

	

	

In	the	case	that	Microchip	MRF24J40	transceiver	is	used	in	the
demo,	ZENA™	network	analyzer	can	be	used	to	monitor	the
network	traffic	of	IEEE	802.15.4	network.	To	run	ZENA™	sniffer,
connect	the	ZENA	board	with	PC	through	the	USB	interface,
then	launch	ZENA	software.	The	ZENA	window	will	show	up.
Choose	“MiWi™	P2P	Tools”	Menu	or	"MiWi(TM)	Tools"	Menu,
depending	on	the	protocol	is	used,	and	then	click	the	menu	item
“Network	Traffic	Monitor”	to	launch	Network	Monitor	window.	

	

	

From	the	Network	Monitor	window,	check	“Real	Time	Display”
box	and	choose	proper	channel.	By	default,	this	demo	use
channel	25.	Choose	“Operation”	menu	and	click	“Start
Sniffing/Playback”	menu	item	to	launch	the	“ZENA™	Packet
Sniffer”	window	to	monitor	the	wireless	traffic.	

	

	

In	the	case	Microchip	MRF49XA	or	MRF89XA	transceiver	is
used	in	the	demo,	setting	the	RF	utility	driver	in	the	receiving
mode	can	be	used	as	the	basic	sniffer,	though	packet	decoding
is	not	supported.

Demos	>	Configuring	the	Hardware	>	PIC18	Explorer

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Explorer	16
Configuration	3:	Explorer	16
	

1)	1)	Before	attaching	the	PIM	to	the	Explorer	16	board,	ensure
that	the	processor	selector	switch	(S2)	is	in	the	“PIM”	position	as
seen	in	the	image	below:	

	

	

2)	Short	the	J7	jumper	to	the	"PIC24"	setting	

	

	

3)	Before	connecting	the	PIM	to	the	Explorer	16	board,	remove
all	attached	cables.	Connect	the	PIM	to	the	Explorer	16	board.
Be	careful	when	connecting	the	boards	to	insure	that	no	pins	are
bent	or	damaged	during	the	process.	Also	ensure	that	the	PIM	is
not	shifted	in	any	direction	and	that	all	of	the	headers	are
properly	aligned.	

	

4)	Connect	the	RF	board	for	MRF24J40	or	MRF49XA	to	the	first
slot	of	edge	card	connector,	as	shown	in	the	following	picture.	

	

	

5)	Before	running	the	demos,	it	is	highly	recommended	to
connect	a	serial	cable	to	both	demo	boards	and	connect	the
ZENA	sniffer	hardware	to	monitor	the	operating	of	the	network.
Once	the	serial	cable	is	connected	between	the	demo	board	and
PC,	launch	a	hyper	terminal	to	display	the	information	from	the
demo	board.	The	hyper	terminal	configuration	is	baud	rate
19200,	Data	bit	8,	Parity	None,	Stop	bits	1	and	Flow	control
None,	as	shown	below.	

	

	

In	the	case	that	Microchip	MRF24J40	transceiver	is	used	in	the
demo,	ZENA™	network	analyzer	can	be	used	to	monitor	the
network	traffic	of	IEEE	802.15.4	network.	To	run	ZENA™	sniffer,
connect	the	ZENA	board	with	PC	through	the	USB	interface,
then	launch	ZENA	software.	The	ZENA	window	will	show	up.
Choose	“MiWi™	P2P	Tools”	Menu	or	"MiWi(TM)	Tools"	Menu,
depending	on	the	protocol	is	used,	and	then	click	the	menu	item
“Network	Traffic	Monitor”	to	launch	Network	Monitor	window.	

	

	

From	the	Network	Monitor	window,	check	“Real	Time	Display”
box	and	choose	proper	channel.	By	default,	this	demo	use
channel	25.	Choose	“Operation”	menu	and	click	“Start
Sniffing/Playback”	menu	item	to	launch	the	“ZENA™	Packet
Sniffer”	window	to	monitor	the	wireless	traffic.	

	

	

In	the	case	Microchip	MRF49XA	or	MRF89XA	transceiver	is
used	in	the	demo,	setting	the	RF	utility	driver	in	the	receiving
mode	can	be	used	as	the	basic	sniffer,	though	packet	decoding
is	not	supported.

Demos	>	Configuring	the	Hardware	>	Explorer	16

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

8-bit	Wireless	Development	Kit
Configuration	4:	8-bit	Wireless	Demo	Board
	

Connect	the	8-bit	Wireless	Demo	Board	in	the	following	way	that
is	shown	in	the	picture.	Be	aware	that	the	jumper	"JP1"	on	the
LCD	daughter	board	should	be	removed	to	work	with	RS232
daughter	board.	

	

	

	

Demos	>	Configuring	the	Hardware	>	8-bit	Wireless	Development	Kit

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Firmware
Firmware
To	run	this	project,	you	will	need	to	load	the	corresponding
firmware	into	the	devices.	There	are	two	methods	available	for
loading	the	demos:	Precompiled	demos	and	source	code
projects.

Topics

Name	 Description	

Precompiled
HEX	Files	

	

Demo
Source
Code
Project	for
MPLAB	8.x	

	

Demo
Source
Code
Project	for
MPLAB	X	

From	this	release,	MiWi	DE	starts	to	support	Microchip
IDE	MPLAB	X.	Users	have	the	option	to	convert	a
MPLAB	8.x	project	to	MPLAB	X,	or	use	the	MPLAB	X
project	directly.

To	load	project	from	MPLAB	X,	first	select	File	->	Open
Project.	The	pop	up	window	will	show	up	and	you	can
browse	to	the	demo	directory.	Choose	MPLAB.X
directory	and	open	the	MPLAB	X	project	directly,	as
shown	below.

The	single	MPLAB	X	project	supports	multiple
Microchip	demo	hardware.	From	the	customization	list,
user	can	choose	one	of	the	hardware	platforms	that
have	been	configured	within	MPLAB...	more	

Demos	>	Firmware

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Precompiled	HEX	Files
Precompiled	HEX	Files
	

Precompiled	Demos	are	available	in	the	following	directories:

<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Simple
Example\Node	1\Precompiled	HEX
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Simple
Example\Node	2\Precompiled	HEX
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Feature
Demo\Node	1\Precompiled	HEX
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Feature
Demo\Node	2\Precompiled	HEX

	

A	hex	file	is	provided	for	each	hardware	configuration	and	each
available	RF	transceiver	under	the	above	directories.	Import	the
corresponding	hex	file	and	then	program	the	hex	to	the	demo
board.

Demos	>	Firmware	>	Precompiled	HEX	Files

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Demo	Source	Code	Project	for	MPLAB	8.x
Demo	Source	Code	Modification
	

The	source	code	for	this	demo	is	available	in	the	following
directories:

<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Simple
Example\Node	1
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Simple
Example\Node	2
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Feature
Demo\Node	1
<Install	Directory>\MiWi	DE	Demo\Basic	Demos\Feature
Demo\Node	2
<Install	Directory>\MiWi	DE	Demo\MiWi	PRO	Test	Interface

	

In	above	directories,	you	will	find	all	of	the	application	level
source	and	header	files	as	well	as	project	files	for	each	of	the
hardware	platforms.	To	open	the	project,	select	“Project”	from	the
main	menu	of	MPLAB	IDE	and	then	“Open…”	option.	A	window
will	pop	out	and	request	the	project	file.	The	snap-shot	of	the
opening	project	process	can	be	found	below:

	

	

	

To	run	the	demo,	both	nodes	must	be	configured	to	use	the
same	RF	transceiver	with	the	same	settings	and	the	same
wireless	protocol.	However,	both	nodes	do	not	have	to	be	the
same	demo	board.	

	

To	compile	the	demo,	following	working	environment	must	be
established:	

•	PICDEM	Z,	PIC18	Explorer	and	8-bit	Wireless	Development	Kit
Configuration:	C18	v3.20	or	higher	

•	Explorer	16	Configuration:	C30	v3.10	or	higher	for	PIC24	and
dsPIC33;	C32	v1.02	or	higher	for	PIC32.	

Compile	and	program	the	demo	code	into	the	hardware	platform.
For	more	help	on	how	to	compile	and	program	projects,	please
refer	to	the	MPLAB®	IDE	help	available	through	the	help	menu
of	MPLAB	IDE	(Help->Topics…->MPLAB	IDE).	

	

By	default,	there	are	three	projects	provided	for	each	demo.
They	are	for	PIC18,	PIC24	and	PIC32	MCUs	respectively.	Each
demo	is	initially	configured	to	use	MRF24J40	RF	transceiver	to
run	MiWi™	P2P	stack.	With	minor	configuration	modification,
user	can	compile	and	run	the	demo	on	any	Microchip	RF
transceivers,	any	Microchip	proprietary	wireless	protocols	on	any
supported	standard	demo	boards.	This	section	demonstrates
how	to	migrate	the	demo	among	all	supported	options.

Topics

Name	 Description	

MiWi	P2P	 	

MiWi	Mesh	 	

MiWi	PRO	 test	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	P2P

Topics

Name	 Description	

PICDEM	Z	Demo
Board	for	MiWi	P2P	

	

PIC18	Explorer	Demo
Board	for	MiWi	P2P	

	

8-bit	Wireless
Development	Kit	for
MiWi	P2P	

	

Explorer	16	Demo
Board	for	MiWi	P2P	

	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PICDEM	Z	Demo	Board	for	MiWi	P2P
PICDEM	Z	Demo	Board	for	MiWi™	P2P
PICDEM	Z	Demo	board	use	PIC18F4620	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F4620"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Only
MRF24J40	is	supported	for	this	demo	board.	Uncomment
"#define	MRF24J40"	and	comment	out	all	other	transceiver
definition.	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"

under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PICDEM	Z	board	by
uncomment	"#define	PICDEMZ"	and	comment	out	all	other
demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi

P2P	>	PICDEM	Z	Demo	Board	for	MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC18	Explorer	Demo	Board	for	MiWi	P2P
PIC18	Explorer	Demo	Board	for	MiWi™	P2P
By	default,	PIC18	Explorer	Demo	board	use	PIC18F87J11	MCU
as	the	host	controller.	Select	"Configure"	from	the	MPLAB	menu
and	then	choose	"Select	Device...".	From	the	pop	up	menu,
choose	"PIC18F87J11"	as	the	device	and	then	click	"OK".	If	you
use	a	different	PIM	other	than	the	default	PIC18F87J11,	please
select	the	corresponding	MCU	accordingly.	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions.	The	other
two	definition	of	RF	transceiver	must	be	commented	out:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PIC18	Explorer	board
by	uncomment	"#define	PIC18_EXPLORER"	and	comment	out
all	other	demo	boards	definitions.	

	

Due	to	a	bug	in	the	earlier	version	of	C	compiler,	the	memory
map	of	PIC18F87J11	may	be	incorrect.	The	latest	version	of	C18
compiler	has	fixed	this	problem.	In	the	case	that	you	are	not	sure
if	you	have	the	latest	C18	compiler,	it	is	highly	recommended	to
add	the	linker	script	"18f87j11_e.lkr"	within	the	project	if	PIC18
Explorer	demo	board	and	default	PIC18F87J11	PIM	are	used	in
this	demo.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU

through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P	>	PIC18	Explorer	Demo	Board	for	MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

8-bit	Wireless	Development	Kit	for	MiWi	P2P
8-bit	Wireless	Development	Kit	for	MiWi™	P2P
8-bit	Wireless	Demo	board	use	PIC18F46J50	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F46J50"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	defintions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	8-bit	wireless	demo
board	by	uncomment	"#define
EIGHT_BIT_WIRELESS_BOARD"	and	comment	out	all	other
demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P	>	8-bit	Wireless	Development	Kit	for	MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Explorer	16	Demo	Board	for	MiWi	P2P
Explorer	16	Demo	Board	for	MiWi™	P2P
	

Explorer	16	demo	board	support	development	for	PIC24,
dsPIC33	and	PIC32.

Topics

Name	 Description	

PIC24	or	dsPIC33	for
MiWi	P2P	

PIC24	or	dsPIC33	on	Explorer	16	Demo
Board	for	MiWi™	P2PExplorer	16	Demo
board	use	PIC24FJ128GA010	MCU	as	the
host	controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC24	and	dsPIC33.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
P2P	protocol,	make	sure	to	uncomment
"#define	PROTOCOL_P2P"	and	comment

out...	more	

PIC32	for	MiWi	P2P	 PIC32	on	Explorer	16	Demo	Board	for
MiWi™	P2P
Explorer	16	Demo	board	use
PIC32MX360F512L	MCU	as	the	host
controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC32.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
P2P	protocol,	make	sure	to	uncomment
"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and...
more	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P	>	Explorer	16	Demo	Board	for	MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC24	or	dsPIC33	for	MiWi	P2P
PIC24	or	dsPIC33	on	Explorer	16	Demo	Board	for	MiWi™
P2P	

Explorer	16	Demo	board	use	PIC24FJ128GA010	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC24	and	dsPIC33.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	defintions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P	>	Explorer	16	Demo	Board	for	MiWi	P2P	>	PIC24	or	dsPIC33	for
MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC32	for	MiWi	P2P
PIC32	on	Explorer	16	Demo	Board	for	MiWi™	P2P	

Explorer	16	Demo	board	use	PIC32MX360F512L	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC32.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_P2P"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	defintions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
P2P	>	Explorer	16	Demo	Board	for	MiWi	P2P	>	PIC32	for	MiWi	P2P

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	Mesh

Topics

Name	 Description	

PICDEM	Z	Demo
Board	for	MiWi	

	

PIC18	Explorer	Demo
Board	for	MiWi	

PIC18	Explorer	Demo	Board	for
MiWi™By	default,	PIC18	Explorer	Demo
board	use	PIC18F87J11	MCU	as	the	host
controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC18F87J11"	as	the	device	and	then	click
"OK".	If	you	use	a	different	PIM	other	than
the	default	PIC18F87J11,	please	select	the
corresponding	MCU	accordingly.

Open	either	the	simple	example	or	feature
demo	project	for	PIC18.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use
MiWi...	more	

8-bit	Wireless 8-bit	Wireless	Development	Kit	for

Development	Kit	for
MiWi	

MiWi™
8-bit	wireless	demo	board	use
PIC18F46J50	MCU	as	the	host	controller.
Select	"Configure"	from	the	MPLAB	menu
and	then	choose	"Select	Device...".	From
the	pop	up	menu,	choose	"PIC18F46J50"
as	the	device	and	then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC18.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
protocol,	make	sure	to	uncomment	"#define
PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".
Second...	more	

Explorer	16	Demo
Board	for	MiWi	

Explorer	16	Demo	Board	for	MiWi™

Explorer	16	demo	board	support
development	for	PIC24,	dsPIC33	and
PIC32.	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PICDEM	Z	Demo	Board	for	MiWi
PICDEM	Z	Demo	Board	for	MiWi™
PICDEM	Z	Demo	board	use	PIC18F4620	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F4620"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	protocol,	make	sure
to	uncomment	"#define	PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Only
MRF24J40	is	supported	for	this	demo	board.	Uncomment
"#define	MRF24J40"	and	comment	out	all	other	transceiver
definition.	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"

under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PICDEM	Z	board	by
uncomment	"#define	PICDEMZ"	and	comment	out	all	other
demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi

Mesh	>	PICDEM	Z	Demo	Board	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC18	Explorer	Demo	Board	for	MiWi
PIC18	Explorer	Demo	Board	for	MiWi™	

By	default,	PIC18	Explorer	Demo	board	use	PIC18F87J11	MCU
as	the	host	controller.	Select	"Configure"	from	the	MPLAB	menu
and	then	choose	"Select	Device...".	From	the	pop	up	menu,
choose	"PIC18F87J11"	as	the	device	and	then	click	"OK".	If	you
use	a	different	PIM	other	than	the	default	PIC18F87J11,	please
select	the	corresponding	MCU	accordingly.	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	protocol,	make	sure
to	uncomment	"#define	PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions.	The	other
two	definition	of	RF	transceiver	must	be	commented	out:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PIC18	Explorer	board
by	uncomment	"#define	PIC18_EXPLORER"	and	comment	out
all	other	demo	boards	definitions.	

	

Due	to	a	bug	in	the	earlier	version	of	C	compiler,	the	memory
map	of	PIC18F87J11	may	be	incorrect.	The	latest	version	of	C18
compiler	has	fixed	this	problem.	In	the	case	that	you	are	not	sure
if	you	have	the	latest	C18	compiler,	it	is	highly	recommended	to
add	the	linker	script	"18f87j11_e.lkr"	within	the	project	if	PIC18
Explorer	demo	board	and	default	PIC18F87J11	PIM	are	used	in
this	demo.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU

through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh	>	PIC18	Explorer	Demo	Board	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

8-bit	Wireless	Development	Kit	for	MiWi
8-bit	Wireless	Development	Kit	for	MiWi™	

8-bit	wireless	demo	board	use	PIC18F46J50	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F46J50"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	protocol,	make	sure
to	uncomment	"#define	PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	8-bit	wireless	board	by
uncomment	"#define	EIGHT_BIT_WIRELESS_BOARD"	and
comment	out	all	other	demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh	>	8-bit	Wireless	Development	Kit	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Explorer	16	Demo	Board	for	MiWi
Explorer	16	Demo	Board	for	MiWi™	

	

Explorer	16	demo	board	support	development	for	PIC24,
dsPIC33	and	PIC32.

Topics

Name	 Description	

PIC24	or	dsPIC33	for
MiWi	

PIC24	or	dsPIC33	on	Explorer	16	Demo
Board	for	MiWi™Explorer	16	Demo	board
use	PIC24FJ128GA010	MCU	as	the	host
controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC24	and	dsPIC33.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
protocol,	make	sure	to	uncomment	"#define
PROTOCOL_MIWI"	and	comment	out

"#define	PROTOCOL_P2P...	more	

PIC32	for	MiWi	 PIC32	on	Explorer	16	Demo	Board	for
MiWi™
Explorer	16	Demo	board	use
PIC32MX360F512L	MCU	as	the	host
controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC32.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
protocol,	make	sure	to	uncomment	"#define
PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO...	more	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh	>	Explorer	16	Demo	Board	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC24	or	dsPIC33	for	MiWi
PIC24	or	dsPIC33	on	Explorer	16	Demo	Board	for	MiWi™	

Explorer	16	Demo	board	use	PIC24FJ128GA010	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC24	and	dsPIC33.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	protocol,	make	sure
to	uncomment	"#define	PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh	>	Explorer	16	Demo	Board	for	MiWi	>	PIC24	or	dsPIC33	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC32	for	MiWi
PIC32	on	Explorer	16	Demo	Board	for	MiWi™	

Explorer	16	Demo	board	use	PIC32MX360F512L	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC32.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	protocol,	make	sure
to	uncomment	"#define	PROTOCOL_MIWI"	and	comment	out
"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI_PRO".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	defintions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
Mesh	>	Explorer	16	Demo	Board	for	MiWi	>	PIC32	for	MiWi

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	PRO
test

Topics

Name	 Description	

PICDEM	Z	Demo
Board	for	MiWi	PRO	

	

PIC18	Explorer	Demo
Board	for	MiWi	PRO	

	

8-bit	Wireless
Development	Kit	for
MiWi	PRO	

8-bit	Wireless	Development	Kit	for
MiWi™	PRO8-bit	wireless	demo	board	use
PIC18F46J50	MCU	as	the	host	controller.
Select	"Configure"	from	the	MPLAB	menu
and	then	choose	"Select	Device...".	From
the	pop	up	menu,	choose	"PIC18F46J50"
as	the	device	and	then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC18.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
PRO	protocol,	make	sure	to	uncomment
"#define	PROTOCOL_MIWI_PRO"	and

comment	out	"#define	PROTOCOL_P2P"
and	"#define	PROTOCOL_MIWI...	more	

Explorer	16	Demo
Board	for	MiWi	PRO	

Explorer	16	Demo	Board	for	MiWi™

Explorer	16	demo	board	support
development	for	PIC24,	dsPIC33	and
PIC32.	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PICDEM	Z	Demo	Board	for	MiWi	PRO
PICDEM	Z	Demo	Board	for	MiWi™	PRO
PICDEM	Z	Demo	board	use	PIC18F4620	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F4620"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	P2P	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_PRO"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_P2P".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Only
MRF24J40	is	supported	for	this	demo	board.	Uncomment
"#define	MRF24J40"	and	comment	out	all	other	transceiver
definition.	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"

under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PICDEM	Z	board	by
uncomment	"#define	PICDEMZ"	and	comment	out	all	other
demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi

PRO	>	PICDEM	Z	Demo	Board	for	MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC18	Explorer	Demo	Board	for	MiWi	PRO
PIC18	Explorer	Demo	Board	for	MiWi™	PRO
By	default,	PIC18	Explorer	Demo	board	use	PIC18F87J11	MCU
as	the	host	controller.	Select	"Configure"	from	the	MPLAB	menu
and	then	choose	"Select	Device...".	From	the	pop	up	menu,
choose	"PIC18F87J11"	as	the	device	and	then	click	"OK".	If	you
use	a	different	PIM	other	than	the	default	PIC18F87J11,	please
select	the	corresponding	MCU	accordingly.	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	PRO	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_PRO"	and	comment
out	"#define	PROTOCOL_MIWI"	and	"#define
PROTOCOL_P2P".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions.	The	other
two	definition	of	RF	transceiver	must	be	commented	out:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	PIC18	Explorer	board
by	uncomment	"#define	PIC18_EXPLORER"	and	comment	out
all	other	demo	boards	definitions.	

	

Due	to	a	bug	in	the	earlier	version	of	C	compiler,	the	memory
map	of	PIC18F87J11	may	be	incorrect.	The	latest	version	of	C18
compiler	has	fixed	this	problem.	In	the	case	that	you	are	not	sure
if	you	have	the	latest	C18	compiler,	it	is	highly	recommended	to
add	the	linker	script	"18f87j11_e.lkr"	within	the	project	if	PIC18
Explorer	demo	board	and	default	PIC18F87J11	PIM	are	used	in
this	demo.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU

through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO	>	PIC18	Explorer	Demo	Board	for	MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

8-bit	Wireless	Development	Kit	for	MiWi	PRO
8-bit	Wireless	Development	Kit	for	MiWi™	PRO	

8-bit	wireless	demo	board	use	PIC18F46J50	MCU	as	the	host
controller.	Select	"Configure"	from	the	MPLAB	menu	and	then
choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC18F46J50"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC18.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	PRO	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_MIWI_PRO"	and
comment	out	"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	8-bit	wireless	board	by
uncomment	"#define	EIGHT_BIT_WIRELESS_BOARD"	and
comment	out	all	other	demo	boards	definitions.	

	

Remove	any	linker	script	in	the	project,	as	shown	below.	

	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO	>	8-bit	Wireless	Development	Kit	for	MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Explorer	16	Demo	Board	for	MiWi	PRO
Explorer	16	Demo	Board	for	MiWi™	

	

Explorer	16	demo	board	support	development	for	PIC24,
dsPIC33	and	PIC32.

Topics

Name	 Description	

PIC24	or	dsPIC33	for
MiWi	PRO	

PIC24	or	dsPIC33	on	Explorer	16	Demo
Board	for	MiWi™	PROExplorer	16	Demo
board	use	PIC24FJ128GA010	MCU	as	the
host	controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC24	and	dsPIC33.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
PRO	protocol,	make	sure	to	uncomment
"#define	PROTOCOL_MIWI_PRO"	and

comment	out...	more	

PIC32	for	MiWi	PRO	 PIC32	on	Explorer	16	Demo	Board	for
MiWi™	PRO
Explorer	16	Demo	board	use
PIC32MX360F512L	MCU	as	the	host
controller.	Select	"Configure"	from	the
MPLAB	menu	and	then	choose	"Select
Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and
then	click	"OK".

Open	either	the	simple	example	or	feature
demo	project	for	PIC32.
From	the	project	window,	choose	to	edit	file
"ConfigApp.h"	under	the	directory	"Header
Files	->	Application",	as	shown	below.

In	file	"ConfigApp.h",	first	elect	to	use	MiWi
PRO	protocol,	make	sure	to	uncomment
"#define	PROTOCOL_MIWI_PRO"	and
comment	out	"#define	PROTOCOL_P2P"
and...	more	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO	>	Explorer	16	Demo	Board	for	MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC24	or	dsPIC33	for	MiWi	PRO
PIC24	or	dsPIC33	on	Explorer	16	Demo	Board	for	MiWi™
PRO	

Explorer	16	Demo	board	use	PIC24FJ128GA010	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC24FJ128GA010"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC24	and	dsPIC33.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	PRO	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_MIWI_PRO"	and
comment	out	"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	definitions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO	>	Explorer	16	Demo	Board	for	MiWi	PRO	>	PIC24	or	dsPIC33	for
MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PIC32	for	MiWi	PRO
PIC32	on	Explorer	16	Demo	Board	for	MiWi™	PRO	

Explorer	16	Demo	board	use	PIC32MX360F512L	MCU	as	the
host	controller.	Select	"Configure"	from	the	MPLAB	menu	and
then	choose	"Select	Device...".	From	the	pop	up	menu,	choose
"PIC32MX360F512L"	as	the	device	and	then	click	"OK".	

	

Open	either	the	simple	example	or	feature	demo	project	for
PIC32.	

From	the	project	window,	choose	to	edit	file	"ConfigApp.h"	under
the	directory	"Header	Files	->	Application",	as	shown	below.	

	

In	file	"ConfigApp.h",	first	elect	to	use	MiWi	PRO	protocol,	make
sure	to	uncomment	"#define	PROTOCOL_MIWI_PRO"	and
comment	out	"#define	PROTOCOL_P2P"	and	"#define
PROTOCOL_MIWI".	

Second	step,	choose	the	RF	transceiver	to	be	used.	Three	RF
transceivers:	MRF24J40,	MRF49XA	and	MRF89XA	are
supported	in	this	release.	Support	of	RF	transceiver	is	enabled
by	uncomment	one	and	only	one	following	defintions:	

#define	MRF24J40	

#define	MRF49XA	

#define	MRF89XA	

	

From	the	project	window,	choose	to	edit	file	"HardwareProfile.h"
under	the	directory	"Header	Files	->	Application",	as	shown
below	

	

In	the	file	"HardwareProfile.h",	choose	the	Explorer	16	board	by
uncomment	"#define	EXPLORER16"	and	comment	out	all	other
demo	boards	definitions.	

	

Compile	the	project	and	then	load	the	hex	file	to	the	MCU
through	a	programmer	or	debugger.

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	8.x	>	MiWi
PRO	>	Explorer	16	Demo	Board	for	MiWi	PRO	>	PIC32	for	MiWi	PRO

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Demo	Source	Code	Project	for	MPLAB	X
From	this	release,	MiWi	DE	starts	to	support	Microchip	IDE
MPLAB	X.	Users	have	the	option	to	convert	a	MPLAB	8.x	project
to	MPLAB	X,	or	use	the	MPLAB	X	project	directly.	

	

To	load	project	from	MPLAB	X,	first	select	File	->	Open	Project.
The	pop	up	window	will	show	up	and	you	can	browse	to	the
demo	directory.	Choose	MPLAB.X	directory	and	open	the
MPLAB	X	project	directly,	as	shown	below.	

	

	

	

The	single	MPLAB	X	project	supports	multiple	Microchip	demo
hardware.	From	the	customization	list,	user	can	choose	one	of
the	hardware	platforms	that	have	been	configured	within	MPLAB
X	project,	as	shown	below	

	

	

In	the	source	code,	user	still	needs	to	open	application
configuration	and	choose	the	right	transceiver	as	well	as	wireless
protocol	to	fit	their	needs.	User	alsol	needs	to	open	hardware
configuration	file	HardwareProfile.h	to	choose	the	correct	demo
board	before	a	successful	compilation	can	be	done,	as	shown	in
following	snapshot	

	

Demos	>	Firmware	>	Demo	Source	Code	Project	for	MPLAB	X

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Running	Demos
Running	Demos
	

Two	demos	are	provided	to	demonstrate	the	simplicity	and
functionalities	of	MiWi™	Development	Environment.

Topics

Name	 Description	

Basic	Demos	 	

MiWi	PRO	Test
Interface	

MiWi	PRO	Test	Interface

A	new	project,	"MiWi	PRO	Test	Interface"
has	been	added	to	this	release	of	MiWi	DE.
This	new	project,	driven	by	testing	menus
on	hyper	terminal,	is	the	main	interface	for
Microchip	developer	to	verify	the
functionalities	of	MiWi	PRO	protocol	stack.
Users,	on	the	other	hand,	may	benefit	in
evaluating	the	capability	of	MiWi	PRO
protocol	stack	with	this	existing	interface.

Majority	of	the	testing	is	done	on
Coordinators,	which	have	routing	capability.
Project	"MiWi	PRO	Test	Interface"	is
configured	to	use	only	MiWi	PRO	protocol
with	Coordinator	capability.	For	testing,	user
needs	to	change...	more	

8	bit	Wireless
Development	Kit

A	set	of	demos	has	been	developed	for	8-bit
Wireless	Development	Kit	(8WDK).	Please

Demos	 refer	to	"8-bit	Wireless	Development	Kit
User	Guide"	(DS70654A)	for	details.	

Demos	>	Running	Demos

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Basic	Demos

Topics

Name	 Description	

Simple	Example	 	

Feature	Demo	 	

Demos	>	Running	Demos	>	Basic	Demos

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Simple	Example
Simple	Example
	

The	simple	example	application	code	focuses	on	the	simplicity	of
the	MiWi™	DE	protocol	stack	application	programming
interfaces.	It	provides	a	clean	and	straightforward	wireless
communication	between	two	devices	with	less	than	30	lines	of
effective	C	code	to	run	the	stack	in	application	layer	for	both
devices.	In	this	application,	following	features	of	MiWi™	DE
protocol	stack	have	been	demonstrated:	

•	Establish	connection	automatically	between	two	devices	

•	Broadcast	a	packet	

•	Unicast	a	packet	

•	Apply	security	to	the	transmitted	packet	

	

Following	two	diagrams	show	the	MiApp	flow	chart	of	two	nodes
respectively.	

	

Simple	Node	1	Flow	Chart	

	

	

Simple	Node	2	Flow	Chart	

	

	

	

To	run	the	simple	example	application,	following	is	the
instruction:

1.	 Program	node	1	and	node	2	with	proper	firmware.	We	assume	that
the	users	are	familiar	with	Microchip	tool	chain	and	have	no
problem	compile	and	program	the	firmware	to	the	demo	boards.

2.	 Power	on	node	1	and	node	2	respectively
3.	 Wait	a	few	seconds,	until	the	first	LED	(RA0	on	PICDEM	Z,	D8	on

PIC18	Explorer	or	D10	on	Explorer	16)	on	both	nodes	light	up.
These	are	the	steps	to	establish	connections	between	two	devices.

This	means	a	connection	has	been	established	automatically.
For	the	details	of	connection	establishment,	please	refer	to
section	“VARIATIONS	FOR	HANDSHAKING”	in	application
note	AN1204	“Microchip	MiWi™	P2P	Wireless	Protocol"	if
MiWi™	P2P	protocol	is	used,	or	section	"MAC	Function
Description"	in	IEEE	802.15.4	specification	if	MiWi™	protocol
is	used.
If	the	demo	is	running	on	PIC18	Explorer,	8-bit	wireless	demo
board	or	Explorer	16	demo	boards,	critical	information	will	be
shown	on	the	LCD	of	the	demo	board.	It	first	shows	the	demo
name,	RF	transceiver	and	node	number,	then	connecting
information	and	channel	information	will	be	shown	before	the
LCD	shows	the	demo	instruction:	button	1	for	broadcast	and
button	2	for	unicast.

	

	

	

	

	

	

If	MRF24J40	transceiver	is	demonstrated	and	ZENA	network
analyzer	is	used,	the	default	channel	is	25.	You	should	be	able	to
see	the	hand-shaking	procedure	with	exchanged	packets	between
two	nodes.

If	a	hyper	terminal	has	been	opened	to	monitor	firmware	output,
you	should	be	able	to	see	the	information	about	the	peer	device
printed	out	from	both	nodes.

4.	 Press	button	1	(RB5	on	PICDEM	Z,	RB0	on	PIC18	Explorer	or
RD6	on	Explorer	16)	on	one	node	will	toggle	the	second	LED	(RA1
on	PICDEM	Z,	D7	on	PIC18	Explorer	or	D9	on	Explorer	16)	on	the
other	node

This	shows	how	a	broadcast	packet	has	been	transmitted.
If	the	demo	is	running	on	PIC18	Explorer	or	Explorer	16	demo
board,	the	total	number	of	transmitted	and	received	messages
will	be	shown	on	the	LCD.

	

	

If	ZENA	network	analyzer	is	used,	you	should	be	able	to	see	that	a
broadcast	packet	with	various	bytes	has	been	sent	out.

If	hyper	terminal	has	been	used,	on	the	receiving	end	(the	device
that	has	LED2	toggled),	you	should	be	able	to	see	the	print	out	of
broadcast	packet	source	address,	signal	strength	and	the	packet
payload.	The	packet	payload	is	the	one	line	of	bit	map	of	“HELLO”.
Press	the	button	1	continuously	on	one	end	will	display	the
complete	bit	map	of	"HELLO".

5.	 Press	button	2	(RB4	on	PICDEM	Z,	RA5	on	PIC18	Explorer	or
RD7	on	Explorer	16)	on	one	node	will	toggle	the	second	LED	(RA1
on	PICDEM	Z,	D7	on	PIC18	Explorer	or	D9	on	Explorer	16)	on	the
other	node.

This	shows	how	an	encrypted	unicast	packet	has	been

transmitted	and	decrypted	by	the	radio	after	it	is	received.	For
the	details	of	how	MiWi™	P2P	handles	encryption,	please
refer	to	section	“Security	Features”	in	application	note	AN1204
“Microchip	MiWi™	P2P	Wireless	Protocol”.
If	the	demo	is	running	on	PIC18	Explorer	or	Explorer	16	demo
board,	the	total	number	of	transmitted	and	received	messages
will	be	shown	on	the	LCD.

	

	

If	ZENA	network	analyzer	is	used,	you	should	be	able	to	see	that	a
unicast	packet	with	various	bytes	has	been	transmitted	from	one
device	and	the	acknowledgement	packet	with	5	bytes	transmitted
from	the	other	device.	You	will	also	notice	that	the	unicast	packet	is
encrypted.

By	pressing	the	button	with	a	key	icon	on	the	MiWi™	Network
Monitor	window,	the	encrypted	packet	can	be	decrypted	with
correct	security	setting.	For	the	security	setting,	the	key	is

0x0F0E0D0C0B0A09080706050403020100	and	the	security	level
is	AES-CCM-32.	Press	the	button	of	“Accept	Security	Parameters”
will	apply	the	security	setting	to	decrypt	the	packets.	If	your	ZENA
software	disables	the	security	feature,	you	need	to	order	a	full
version	ZENA	through	Microchip	agent	to	be	compliant	with	US
export	control	regulation.

If	hyper	terminal	has	been	used,	on	the	receiving	end	(the	device
that	has	LED2	toggled),	you	should	be	able	to	see	the	print	out	of
secured	unicast	packet	source	address,	signal	strength	and	the
packet	payload.	The	packet	payload	should	have	been	decrypted
by	the	receiving	device.	The	packet	payload	is	the	one	line	of	bit
map	of	“P2P”.	Press	the	button	2	continuously	on	one	end	will
display	the	complete	bit	map	of	"P2P".

Demos	>	Running	Demos	>	Basic	Demos	>	Simple	Example

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Feature	Demo
Feature	Demo
	

The	feature	demo	application	code	demonstrates	the	rich
features	of	MiWi™	DE	protocol	stack.	It	shows	how	the	stack
manages	to	operate	on	optimal	condition	as	well	as	robustness
of	the	stack	that	can	recover	from	operating	environment
change.	In	this	application,	in	addition	to	features	shown	in
simple	example	application,	following	features	of	MiWi™	DE
protocol	stack	have	been	demonstrated:	

	

Network	Freezer	feature	that	restores	network	after	power	cycle.
Active	Scan	to	locate	existing	PAN	in	the	neighborhood
Energy	Scan	to	find	channel	with	least	noise
Sleeping	device	to	conserve	energy	to	be	able	to	be	powered	by
battery
Indirect	message	to	be	able	to	deliver	message	to	sleeping	device
Frequency	agility	capability	that	is	able	to	change	operating
channel	in	case	operating	environment	changes
Resynchronization	capability	that	is	able	to	resynchronize	with	the
original	PAN	in	case	operating	channel	was	changed

	

Following	two	diagrams	show	the	MiApp	flow	chart	of	two	nodes
respectively.	

	

Feature	Demo	Node	1	Flow	Chart	

	

	

Feature	Demo	Node	2	Flow	Chart	

	

	

To	run	the	feature	demo	application,	following	is	the	instruction:	

	

1.	 Program	the	proper	firmware	to	node	1	and	node	2	respectively.
We	assume	that	the	users	are	familiar	with	Microchip	tool	chain
and	have	no	problem	to	compile	and	program	the	firmware	to	the
demo	boards.

2.	 Power	on	Node	1

If	this	device	has	been	part	of	network	before	and	you	would	like
to	restore	the	previous	network	configuration,	follow	steps	below
to	restore	network	configuration	in	node	1.

Press	and	hold	button	1	on	node	1	before	powering	on
Power	on	node	1	for	5	seconds.
Release	button	1	on	node	1.	At	this	time,	the	network	has
been	recovered	and	you	could	get	to	step	4	to	power	on	node
2;	otherwise,	continue	on	step	3	to	start	the	network.

3.	 Wait	a	while	until	the	LED1	lights	up	on	node	1.
In	this	step,	an	active	scan	and	a	possible	energy	scan	has
been	done	by	node	1.	The	PAN	has	been	established	on	the
channel	with	least	noise.	For	details	of	active	scan	and	energy
scan,	please	refer	to	sections	“Active	Scan”	and	“Energy
Scan”	in	Microchip	application	note	AN1204	“Microchip
MiWi™	P2P	Wireless	Protocol”	if	MiWi™	P2P	is	used	as	the
protocol,	or	section	"MAC	Function	Description"	in	IEEE
802.15.4	specification	if	MiWi™	protocol	is	used.
If	PIC18	Explorer,	8-bit	Wireless	demo	board	or	Explorer	16
demo	boards	are	used	in	the	demo,	the	demo	name,	RF
transceiver	and	node	number	will	be	displayed	on	the	LCD
first.	Then	the	message	of	active	scan	and	energy	scan	will	be
displayed	respectively.	Finally,	the	demo	instruction	will	be
displayed	on	the	LCD:	button	1	for	frequency	hopping	and

button	2	for	indirect	unicast	to	sleeping	device.

	

	

	

	

	

	

	

	

	

	

If	MRF24J40	is	demonstarted	and	ZENA	network	analyzer	is	used,
no	matter	what	channel	you	are	monitoring,	you	should	be	able	to
see	a	broadcast	command.	That	is	the	active	scan	from	node	1.
After	the	LED1	lights	up,	if	hyper	terminal	is	used	to	monitor
firmware	output,	please	change	the	ZENA	monitor	channel	to
where	the	PAN	has	established,	based	on	the	print	out	on	the
hyper	terminal.

If	hyper	terminal	has	been	connected	between	PC	and	demo
board,	you	should	see	from	the	hyper	terminal	that	node	1	does	an
active	scan	first.	If	there	is	any	MiWi™	P2P	or	MiWi™	PAN
established	in	the	neighborhood,	you	should	be	able	to	see	the

printout	of	the	list	of	available	PANs.	If	one	of	the	PANs	has	the
same	PAN	identifier	as	the	desired	one,	node	1	will	try	to	establish
a	connection	with	that	PAN.	Otherwise,	node	1	will	do	an	energy
scan.	You	should	be	able	to	see	the	energy	reading	on	each
channel	printed	out	on	the	hyper	terminal.	At	the	end,	you	will	see
that	node	1	establishes	the	PAN	on	the	channel	with	least	noise,	or
energy	reading.

4.	 Power	on	node	2

If	this	device	has	been	part	of	network	before	and	you	would	like
to	restore	the	previous	network	configuration,	follow	steps	below
to	restore	network	configuration	in	node	2.

Press	and	hold	button	1	on	node	2	before	powering	on
Power	on	node	2	for	5	seconds.
Release	button	1	on	node	2.	At	this	time,	the	network	has
been	recovered	and	you	could	get	to	step	6	to	perform
transmission	and	receiving;	otherwise,	continue	on	step	5	to
join	the	network.

5.	 Wait	a	few	seconds	until	the	LED1	lights	up	on	node	2.
In	this	step,	an	active	scan	has	been	done	by	node	2;	node	1
has	responded	to	node	2’s	active	scan	and	node	2	established
a	P2P	connection	with	node	1.	For	details	of	active	scan,
please	refer	to	section	“Active	Scan”	in	Microchip	application
note	AN1204	“Microchip	MiWi™	P2P	Wireless	Protocol”	if
MiWi™	P2P	protocol	is	used,	or	section	"MAC	Function
Description"	in	IEEE	802.15.4	specification	if	MiWi™	protocol
is	used.
If	PIC18	Explorer,	8-bit	Wireless	demo	board	or	Explorer	16
demo	board	is	used	in	the	demo,	critical	information	will	be
displayed	on	the	LCD	of	the	demo	board.	The	demo	name,	RF
transceiver	and	node	number	will	be	displayed	first,	followed
by	the	information	of	active	scan	during	the	process.	Once	the
active	scan	is	finished	and	the	device	has	been	connected	to
the	peer,	the	connected	information	and	the	channel	number
will	be	displayed	for	a	short	time	before	the	demo	instruction
being	displayed:	button	1	for	broadcast.	For	Explorer	16	demo
board,	button	2	can	also	be	used	to	wake	up	the	device	and
send	encrypted	unicast	message.

	

	

	

	

	

	

If	MRF24J40	transceiver	is	demonstrated	and	ZENA	network
analyzer	is	used	and	the	monitor	channel	is	the	operating	channel
of	the	PAN,	you	should	be	able	to	see	a	broadcast	packet.	That	is
an	active	scan	from	node	2.	Then	node	1	responds	to	the	active
scan	by	unicast	a	packet	to	node	2.	You	will	then	see	the	5-byte
acknowledgement	from	node	1	to	node	2.	A	few	seconds	later,	a
broadcast	packet	from	node	2	initiates	the	hand-shaking	process
with	node	1.	You	will	see	that	node	1	responds	with	a	unicast
message	to	node	2	and	node	2	acknowledge	the	unicast	packet
from	node	1.	After	the	hand-shaking	procedure	is	done,	a
connection	has	been	established.	You	will	then	see	that	node	2
sends	out	a	Data	Request	command	to	node	1	about	every	8

seconds	to	retrieve	possible	message	from	node	1	to	node	2.	Node
1	will	acknowledge	the	Data	Request	command	and	later	unicast
an	empty	packet,	if	there	is	no	message	to	node	2.

If	RS232	serial	port	or	USB	cable	has	been	connected,	you	should
see	from	the	hyper	terminal	that	node	2	does	an	active	scan	first
and	then	prints	out	all	operating	MiWi™	P2P	or	MiWi™	PAN	on	the
screen.	Later,	node	2	will	choose	the	PAN	that	matches	its	own
PAN	identifier	and	starts	the	hand-shaking	procedure.	After	the
hand-shaking	procedure	has	been	completed,	the	LED1	lights	up
and	the	information	about	its	peer	device,	node	1,	will	be	printed
out	on	the	hyper	terminal.

6.	 Press	button	1	or	button	2	on	node	2	will	wake	up	node	2
immediately	from	sleeping	mode	and	send	a	broadcast	or
encrypted	unicast	message,	just	as	the	way	that	has	been
demonstrated	in	the	simple	example	application.	Because	of	demo
board	hardware	design,	for	PIC18	Explorer	demo	board,	only
button	1	is	able	to	wake	up	the	the	node	2	device	and	send	out
data.	Pressing	button	2	on	PIC18	Explorer	demo	board	will	not	be
able	to	wake	up	the	node	2	and	sending	out	data.

If	PIC18	Explorer,	8-bit	Wireless	demo	board	or	Explorer	16	demo
boards	are	used,	the	total	number	of	transmitted	and	received
messages	will	be	displayed	on	the	LCD	of	the	demo	board.

	

	

7.	 Press	button	2	on	node	1	will	send	a	secured	unicast	message	to
node	2.

Since	node	2	is	a	RFD	device	that	sleeps	during	idle,	the	message
will	not	be	delivered	immediately.	This	kind	of	message	is	defined
as	indirect	message.	When	node	2	wakes	up	next	time	within
about	8	seconds,	the	indirect	message	will	be	delivered	after	the
node	2	sends	out	Data	Request	command.	After	node	2	receives
the	indirect	message,	it	will	toggle	its	LED2.	For	details	of	indirect
message,	please	refer	to	sections	“Idle	Devices	Turning	Off
Radios”	in	Microchip	application	note	AN1204	“Microchip	MiWi™
P2P	Wireless	Protocol”	if	MiWi™	P2P	protocol	is	used,	or	section
"MAC	Function	Description"	in	IEEE	802.15.4	specification	if
MiWi™	protocol	is	used.
If	PIC18	Explorer,	8-bit	Wireless	demo	board	or	Explorer	16	demo
board	is	used	in	the	demo,	the	delivery	of	indirect	message	to	the
sleeping	device	will	be	displayed	on	the	LCD	on	both	demo
boards.	Be	aware	that	due	to	the	delay	in	delivery	indirect
message,	there	is	also	a	delay	between	the	sender	update	number
of	the	transmitted	messages	and	receiver	update	the	number	of
received	messages.

	

	

If	MRF24J40	transceiver	is	demonstrated	and	ZENA	network
analyzer	is	used,	you	should	be	able	to	see	that	the	message	is
delivered	to	node	2	followed	by	a	Data	Request	command.

If	RS232	serial	port	or	USB	cable	has	been	connected	on	node	2,
you	should	able	to	see	the	printout	of	the	received	packet,	as	we
have	discussed	in	simple	example	application.

8.	 Press	button	1	(RB5	on	PICDEM	Z,	RB0	on	PIC18	Explorer	or
RD6	on	Explorer	16)	on	node	1	will	initiate	the	frequency	agility
feature	of	MiWi™	P2P	or	MiWi™	stack.	For	details	of	frequency
agility,	please	refer	to	sections	“Frequency	Agility”	in	Microchip
application	note	AN1204	“Microchip	MiWi™	P2P	Wireless
Protocol”	if	MiWi™	P2P	protocol	is	used.

In	this	step,	node	1	will	start	the	frequency	agility	procedure.	In
this	demo,	node	1	is	the	frequency	agility	starter	and	node	2	is
the	frequency	agility	follower.	Node	1	will	first	do	an	energy
scan	on	all	channels	other	than	the	current	operating	one	to
ensure	a	channel	hopping.	Then	node	1	will	choose	the
channel	with	least	noise	as	the	next	operating	channel	for	the
PAN	and	broadcast	the	channel	hopping	command	with	the
next	operating	channel	to	all	devices	that	can	hear.	For	those
devices	that	do	not	hear	the	channel	hopping	command,	such
as	a	RFD	like	node	2	with	its	radio	off	during	idle,	a
resynchronization	procedure	will	start	to	re-establish	the
connection	after	transmission	failures	occur	predefined	times,.
If	PIC18	Explorer,	8-bit	Wireless	demo	board	or	Explorer	16

demo	board	is	used	in	the	demo,	node	1	will	display	the
frequency	hopping	process	and	the	new	channel	that	node	1
has	hopped	to.	Node	2,	on	the	other	hand,	will	display	the
increasing	number	of	losing	connection	with	peer	until	it	starts
to	re-synchronize	the	connection	and	its	hop	to	the	new
channel	of	the	peer.

Frequency	Hopping	Initiator	 Frequency	Hopping
Follower	

	

	

	

	

	

	

	
	

	

	

	

If	MRF24J40	transceiver	is	demonstrated	and	ZENA	network
analyzer	is	used,	you	should	be	able	to	see	that	the	Data	Request
command	from	node	2	fails	after	button	1	of	node	1	is	pressed.

Later,	you	will	later	see	a	broadcast	channel	hopping	command
from	node	1.

On	the	new	operating	channel,	a	resynchronization	command	will
be	sent	from	node	2.	Node	1	will	respond	to	the	resynchronization
command.	After	that,	you	can	see	normal	Data	Request	procedure
going	on	at	the	new	operating	channel.

If	RS232	serial	port	or	USB	has	been	connected	on	node	1,	you
should	able	to	see	the	energy	reading	on	each	channel.	Finally,
node	1	will	change	to	the	channel	with	lowest	energy	reading.

If	RS232	serial	port	or	USB	has	been	connected	on	node	2,	you
should	be	able	to	see	the	printout	of	Data	Request	failure	for	three
times.	After	the	failure	for	the	fourth	time,	the	resynchronization
procedure	will	start	and	finally	the	node	2	will	be	resynchronized	to
the	channel	that	node	1	chose	before.

Demos	>	Running	Demos	>	Basic	Demos	>	Feature	Demo

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	PRO	Test	Interface
MiWi	PRO	Test	Interface	

	

A	new	project,	"MiWi	PRO	Test	Interface"	has	been	added	to	this
release	of	MiWi	DE.	This	new	project,	driven	by	testing	menus
on	hyper	terminal,	is	the	main	interface	for	Microchip	developer
to	verify	the	functionalities	of	MiWi	PRO	protocol	stack.	Users,	on
the	other	hand,	may	benefit	in	evaluating	the	capability	of	MiWi
PRO	protocol	stack	with	this	existing	interface.	

	

Majority	of	the	testing	is	done	on	Coordinators,	which	have
routing	capability.	Project	"MiWi	PRO	Test	Interface"	is
configured	to	use	only	MiWi	PRO	protocol	with	Coordinator
capability.	For	testing,	user	needs	to	change	the	EUI	address
defined	file	"ConfigApp.h"	for	each	nodes.	When	powering	up,
the	node	will	first	try	to	find	a	possible	Coordinator	to	join.	If	no
Coordinator	is	found,	it	will	start	a	new	network	and	act	as	a	PAN
Cooridnator;	otherwise,	it	will	join	the	network.	As	described	in
MiWi	PRO	application	note,	it	is	highly	recommended	to
introduce	an	interval	longer	than	30	seconds	between	each
Coordinator	joining	the	network.	

	

By	pressing	"Enter"	key	on	the	PC	keyboard,	a	menu	system	can
be	brought	up	on	the	hyper	terminal	that	is	connected	to	the
RS232	port	on	the	standard	demo	boards.	The	hyper	terminal
settings	are	the	same	as	other	MiWi	DE	demos:	19200	baud
rate,	8	bit	data,	none	parity,	1	bit	stop	and	no	flow	control.	The
root	menu	looks	like	following:	

	

--	

|	

|	1:	Enable/Disable	Join	

|	2:	Show	Family	Tree	

|	3:	Show	Routing	Table	

|	4:	Send	Message	

|	5:	Set	Family	Tree	

|	6:	Set	Routing	Table	

|	7:	Set	Neighbor	Routing	Table	

|	8:	Start	Frequency	Agility	

|	9:	Socket	

|	z:	Dump	Connection	

|	

--	

	

With	option	1,	user	can	enable/disable	a	node	to	accept	new
connections.	When	multiple	Coordinators	allow	join,	they	all	will
respond	to	an	active	scan.	The	joining	device,	usually	tries	to	join
the	first	one	to	respond.	As	the	result,	the	new	device	may	join
the	network	at	random	points	and	user	has	no	control	over
network	topology.	By	enable/disable	join,	user	can	effectively
configure	only	one	Coordinator	to	enable	join,	thus	control	where
the	next	Coordinator	to	join	the	network,	ultimately	control	the

network	topology.	

	

Option	2	and	3	allow	the	tester	to	see	the	family	tree	information
as	well	as	the	routing	table,	including	neighbor	routing	table
information.	Those	information	are	essential	for	routing.	User	can
check	those	two	options	and	verify	if	the	routing	is	as	planned	by
the	routing	mechanism	according	to	available	routing
information.	

	

Option	4	may	be	used	by	the	user	to	send	a	message	by
different	ways.	This	option	triggers	data	transmission	to	verify
routing	capabilities.	

	

Option	5,	6	and	7	may	be	used	by	the	tester	to	modify	the	family
tree	and	routing	table.	By	manually	setting	the	family	tree	as	well
as	routing	information,	user	can	stage	the	node	in	a	particular
network	condition	and	verify	its	routing	capabilities	under	such
condition.	These	interfaces	are	heavily	used	by	the	developers.
Tester	needs	to	be	very	sure	of	the	meaning	of	the	his/her
modifications,	otherwise,	the	node	may	not	be	able	to	send	any
message	due	to	invalid	routing	information.	

	

Option	8	may	be	used	by	the	tester	to	initiate	frequency	agility
functionalities.	Only	the	PAN	Coordinator	can	use	this	option.	All
other	Coordinators	will	discard	this	option.	

	

Option	9	may	be	used	to	establish	a	socket	connection	(or
indirect	connection	in	MiApp's	term).	When	two	nodes	on	the

network	choose	option	9	at	the	same	time	(within	3	seconds	by
default	setting),	a	socket	should	be	established	and	node
information	should	be	exchanged	and	inserted	into	connection
table	respectively.	The	peer	information	can	be	verified	by	option
Z.	

	

Option	Z	may	be	used	to	dump	connection	table	contents.

Demos	>	Running	Demos	>	MiWi	PRO	Test	Interface

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

8	bit	Wireless	Development	Kit	Demos
A	set	of	demos	has	been	developed	for	8-bit	Wireless
Development	Kit	(8WDK).	Please	refer	to	"8-bit	Wireless
Development	Kit	User	Guide"	(DS70654A)	for	details.

Demos	>	Running	Demos	>	8	bit	Wireless	Development	Kit	Demos

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Configuring	the	Library
MiWi(TM)	Development	Environment	uses	configuration	files	to
regulate	the	behavior	of	the	stack.	There	are	three	layers	of
configurations	in	application,	protocol	stack	and	RF	transceivers
respectively.

Topics

Name	 Description	

Application	 Configuration	in	application	layer	defines	the
basic	functionality	of	the	wireless	node.
Usually,	those	configurations	may	differ
among	different	wireless	nodes	in	the	same
application,	depending	on	the	wireless
node's	role	in	the	network	and	application.
Configurations	in	application	layer	include
following	categories:
*	Choice	of	wireless	protocol
*	Choice	of	RF	transceiver
*	System	Resources	Definitions
*	Enable/Disable	functionalities	according	to
application	needs
*	Application	specific	information	

Wireless	Protocol	 Configurations	in	wireless	protocol	layer	can
be	used	to	fine	tune	the	behavior	of	wireless
protocol.	The	possible	configurations	differ
between	different	protocols.	

RF	Transceivers	 Configurations	for	RF	transceivers	specifies
how	RF	transceiver	work	in	MiMAC	layer.
The	configurations	in	this	layer	may	define
frequency	band,	data	rate	and	other	RF

related	parameters.	Those	configurations
differ	between	different	RF	transceivers.	

Configuring	the	Library

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Application
Configuration	in	application	layer	defines	the	basic	functionality
of	the	wireless	node.	Usually,	those	configurations	may	differ
among	different	wireless	nodes	in	the	same	application,
depending	on	the	wireless	node's	role	in	the	network	and
application.	

Configurations	in	application	layer	include	following	categories:	

*	Choice	of	wireless	protocol	

*	Choice	of	RF	transceiver	

*	System	Resources	Definitions	

*	Enable/Disable	functionalities	according	to	application	needs	

*	Application	specific	information

Macros

	 Name	 Description	

	 ADDITIONAL_NODE_ID_SIZE	 ADDITIONAL_NODE_ID_SIZE
defines	the	size	of	additional
payload	will	be	attached	to	the
P2P	Connection	Request.
Additional	payload	is	the
information	that	the	devices	what
to	share	with	their	peers	on	the
P2P	connection.	The	additional
payload	will	be	defined	by	the
application	and	defined	in	main.c	

	 CONNECTION_SIZE	 P2P_CONNECTION_SIZE
defines	the	maximum	P2P

connections	that	this	device
allowes	at	the	same	time.	

	 ENABLE_ACTIVE_SCAN	 ENABLE_ACTIVE_SCAN	will
enable	the	device	to	do	an	active
scan	to	to	detect	current	existing
connection.	

	 ENABLE_BROADCAST	 ENABLE_BROADCAST	will
enable	the	device	to	broadcast
messages	for	the	sleeping
devices	until	they	wake	up	and
ask	for	the	messages	

	 ENABLE_ED_SCAN	 ENABLE_ED_SCAN	will	enable
the	device	to	do	an	energy
detection	scan	to	find	out	the
channel	with	least	noise	and
operate	on	that	channel	

	 ENABLE_FREQUENCY_AGILITY	 ENABLE_FREQUENCY_AGILITY
will	enable	the	device	to	change
operating	channel	to	bypass	the
sudden	change	of	noise	

	 ENABLE_HAND_SHAKE	 ENABLE_HAND_SHAKE	enables
the	protocol	stack	to	hand-shake
before	communicating	with	each
other.	Without	a	handshake
process,	RF	transceivers	can	only
broadcast,	or	hardcoded	the
destination	address	to	perform
unicast.	

	 ENABLE_PA_LNA	 ENABLE_PA_LNA	enable	the
external	power	amplifier	and	low
noise	amplifier	on	the	RF	board	to
achieve	longer	radio

communication	range.	To	enable
PA/LNA	on	RF	board	without
power	amplifier	and	low	noise
amplifier	may	be	harmful	to	the
transceiver.	

	 ENABLE_INDIRECT_MESSAGE	 ENABLE_INDIRECT_MESSAGE
will	enable	the	device	to	store	the
packets	for	the	sleeping	devices
temporily	until	they	wake	up	and
ask	for	the	messages	

	 ENABLE_NETWORK_FREEZER	 ENABLE_NETWORK_FREEZER
enables	the	network	freezer
feature,	which	stores	critical
network	information	into	non-
volatile	memory,	so	that	the
protocol	stack	can	recover	from
power	loss	gracefully.	Network
freezer	feature	needs	definition	of
NVM	kind	to	be	used,	which	is
specified	in	HardwareProfile.h	

	 ENABLE_SECURITY	 ENABLE_SECURITY	will	enable
the	device	to	encrypt	and	decrypt
information	transferred	

	 ENABLE_SLEEP	 ENABLE_SLEEP	will	enable	the
device	to	go	to	sleep	and	wake	up
from	the	sleep	

	 EUI_0	 EUI_0	to	EUI_7	defines	the
Extended	Universal	Identifier,	or
permanent	address,	for	the
wireless	node.	The	length	of	the
EUI	is	defined	as
MY_ADDRESS_LENGTH.	

	 HARDWARE_SPI	 HARDWARE_SPI	enables	the
hardware	SPI	implementation	on
MCU	silicon.	If	HARDWARE_SPI
is	not	defined,	digital	I/O	pins	will
be	used	to	bit-bang	the	RF
transceiver	

	 MRF24J40	 Definition	of	MRF24J40	enables
the	application	to	use	Microchip
MRF24J40	2.4GHz	IEEE
802.15.4	compliant	RF
transceiver.	Only	one	RF
transceiver	can	be	defined.	

	 MRF49XA	 Definition	of	MRF49XA	enables
the	application	to	use	Microchip
MRF49XA	subGHz	proprietary	RF
transceiver.	Only	one	RF
transceiver	can	be	defined.	

	 MRF89XA	 Definition	of	MRF89XA	enables
the	application	to	use	Microchip
MRF89XA	subGHz	proprietary	RF
transceiver	

	 MY_ADDRESS_LENGTH	 MY_ADDRESS_LENGTH	defines
the	size	of	wireless	node
permanent	address	in	byte.	This
definition	is	not	valid	for	IEEE
802.15.4	compliant	RF
transceivers.	

	 MY_PAN_ID	 MY_PAN_ID	defines	the	PAN
identifier.	Use	0xFFFF	if	prefer	a
random	PAN	ID.	

	 NWK_ROLE_COORDINATOR	 NWK_ROLE_COORDINATOR	is
not	valid	if	PROTOCOL_P2P	is

defined.	It	specified	that	the	node
has	the	capability	to	be
coordinator	or	PAN	coordinator.
This	definition	cannot	be	defined
with
NWK_ROLE_END_DEVICE.	

	 NWK_ROLE_END_DEVICE	 NWK_ROLE_END_DEVICE	is
not	valid	if	PROTOCOL_P2P	is
defined.	It	specified	that	the	node
has	the	capability	to	be	an	end
device.	This	definition	cannot	be
defined	with
NWK_ROLE_COORDINATOR

	 PROTOCOL_MIWI	 PROTOCOL_MIWI	enables	the
application	to	use	MiWi	mesh
networking	stack.	This	definition
cannot	be	defined	with
PROTOCOL_P2P.	

	 PROTOCOL_MIWI_PRO	 PROTOCOL_MIWI_PRO	enables
the	application	to	use	MiWi	PRO
stack.	This	definition	cannot	be
defined	with	PROTOCOL_P2P
PROTOCOL_MIWI.	

	 PROTOCOL_P2P	 Definition	of	Protocol	Stack.
ONLY	ONE	PROTOCOL	STACK
CAN	BE	CHOSEN	

	 RFD_WAKEUP_INTERVAL	 RFD_WAKEUP_INTERVAL
defines	the	wake	up	interval	for
RFDs	in	second.	This	definition	is
for	the	FFD	devices	to	calculated
various	timeout.	RFD	depends	on
the	setting	of	the	watchdog	timer
to	wake	up,	thus	this	definition	is

not	used.	

	 RX_BUFFER_SIZE	 RX_BUFFER_SIZE	defines	the
maximum	size	of	application
payload	which	is	to	be	received	

	 TARGET_SMALL	 TARGET_SMALL	will	remove	the
support	of	inter	PAN
communication	and	other	minor
features	to	save	programming
space	

	 TX_BUFFER_SIZE	 TX_BUFFER_SIZE	defines	the
maximum	size	of	application
payload	which	is	to	be
transmitted	

Configuring	the	Library	>	Application

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ADDITIONAL_NODE_ID_SIZE	Macro
C
#define	ADDITIONAL_NODE_ID_SIZE	1

Description

ADDITIONAL_NODE_ID_SIZE	defines	the	size	of	additional
payload	will	be	attached	to	the	P2P	Connection	Request.
Additional	payload	is	the	information	that	the	devices	what	to
share	with	their	peers	on	the	P2P	connection.	The	additional
payload	will	be	defined	by	the	application	and	defined	in	main.c

Configuring	the	Library	>	Application	>	ADDITIONAL_NODE_ID_SIZE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONNECTION_SIZE	Macro
C
#define	CONNECTION_SIZE	16

Description

P2P_CONNECTION_SIZE	defines	the	maximum	P2P
connections	that	this	device	allowes	at	the	same	time.

Configuring	the	Library	>	Application	>	CONNECTION_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ACTIVE_SCAN	Macro
C
#define	ENABLE_ACTIVE_SCAN	

Description

ENABLE_ACTIVE_SCAN	will	enable	the	device	to	do	an	active
scan	to	to	detect	current	existing	connection.

Configuring	the	Library	>	Application	>	ENABLE_ACTIVE_SCAN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_BROADCAST	Macro
C
#define	ENABLE_BROADCAST	

Description

ENABLE_BROADCAST	will	enable	the	device	to	broadcast
messages	for	the	sleeping	devices	until	they	wake	up	and	ask	for
the	messages

Configuring	the	Library	>	Application	>	ENABLE_BROADCAST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ED_SCAN	Macro
C
#define	ENABLE_ED_SCAN	

Description

ENABLE_ED_SCAN	will	enable	the	device	to	do	an	energy
detection	scan	to	find	out	the	channel	with	least	noise	and
operate	on	that	channel

Configuring	the	Library	>	Application	>	ENABLE_ED_SCAN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_FREQUENCY_AGILITY	Macro
C
#define	ENABLE_FREQUENCY_AGILITY	

Description

ENABLE_FREQUENCY_AGILITY	will	enable	the	device	to
change	operating	channel	to	bypass	the	sudden	change	of	noise

Configuring	the	Library	>	Application	>	ENABLE_FREQUENCY_AGILITY
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_HAND_SHAKE	Macro
C
#define	ENABLE_HAND_SHAKE	

Description

ENABLE_HAND_SHAKE	enables	the	protocol	stack	to	hand-
shake	before	communicating	with	each	other.	Without	a
handshake	process,	RF	transceivers	can	only	broadcast,	or
hardcoded	the	destination	address	to	perform	unicast.

Configuring	the	Library	>	Application	>	ENABLE_HAND_SHAKE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_PA_LNA	Macro
C
#define	ENABLE_PA_LNA	

Description

ENABLE_PA_LNA	enable	the	external	power	amplifier	and	low
noise	amplifier	on	the	RF	board	to	achieve	longer	radio
communication	range.	To	enable	PA/LNA	on	RF	board	without
power	amplifier	and	low	noise	amplifier	may	be	harmful	to	the
transceiver.

Configuring	the	Library	>	Application	>	ENABLE_PA_LNA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_INDIRECT_MESSAGE	Macro
C
#define	ENABLE_INDIRECT_MESSAGE	

Description

ENABLE_INDIRECT_MESSAGE	will	enable	the	device	to	store
the	packets	for	the	sleeping	devices	temporily	until	they	wake	up
and	ask	for	the	messages

Configuring	the	Library	>	Application	>	ENABLE_INDIRECT_MESSAGE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_NETWORK_FREEZER	Macro
C
#define	ENABLE_NETWORK_FREEZER	

Description

ENABLE_NETWORK_FREEZER	enables	the	network	freezer
feature,	which	stores	critical	network	information	into	non-volatile
memory,	so	that	the	protocol	stack	can	recover	from	power	loss
gracefully.	Network	freezer	feature	needs	definition	of	NVM	kind
to	be	used,	which	is	specified	in	HardwareProfile.h

Configuring	the	Library	>	Application	>	ENABLE_NETWORK_FREEZER
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_SECURITY	Macro
C
#define	ENABLE_SECURITY	

Description

ENABLE_SECURITY	will	enable	the	device	to	encrypt	and
decrypt	information	transferred

Configuring	the	Library	>	Application	>	ENABLE_SECURITY	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_SLEEP	Macro
C
#define	ENABLE_SLEEP	

Description

ENABLE_SLEEP	will	enable	the	device	to	go	to	sleep	and	wake
up	from	the	sleep

Configuring	the	Library	>	Application	>	ENABLE_SLEEP	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_0	Macro
C
#define	EUI_0	0x01

Description

EUI_0	to	EUI_7	defines	the	Extended	Universal	Identifier,	or
permanent	address,	for	the	wireless	node.	The	length	of	the	EUI
is	defined	as	MY_ADDRESS_LENGTH.

Configuring	the	Library	>	Application	>	EUI_0	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

HARDWARE_SPI	Macro
C
#define	HARDWARE_SPI	

Description

HARDWARE_SPI	enables	the	hardware	SPI	implementation	on
MCU	silicon.	If	HARDWARE_SPI	is	not	defined,	digital	I/O	pins
will	be	used	to	bit-bang	the	RF	transceiver

Configuring	the	Library	>	Application	>	HARDWARE_SPI	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF24J40	Macro
C
#define	MRF24J40	

Description

Definition	of	MRF24J40	enables	the	application	to	use	Microchip
MRF24J40	2.4GHz	IEEE	802.15.4	compliant	RF	transceiver.
Only	one	RF	transceiver	can	be	defined.

Configuring	the	Library	>	Application	>	MRF24J40	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF49XA	Macro
C
#define	MRF49XA	

Description

Definition	of	MRF49XA	enables	the	application	to	use	Microchip
MRF49XA	subGHz	proprietary	RF	transceiver.	Only	one	RF
transceiver	can	be	defined.

Configuring	the	Library	>	Application	>	MRF49XA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF89XA	Macro
C
#define	MRF89XA	

Description

Definition	of	MRF89XA	enables	the	application	to	use	Microchip
MRF89XA	subGHz	proprietary	RF	transceiver

Configuring	the	Library	>	Application	>	MRF89XA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MY_ADDRESS_LENGTH	Macro
C
#define	MY_ADDRESS_LENGTH	8

Description

MY_ADDRESS_LENGTH	defines	the	size	of	wireless	node
permanent	address	in	byte.	This	definition	is	not	valid	for	IEEE
802.15.4	compliant	RF	transceivers.

Configuring	the	Library	>	Application	>	MY_ADDRESS_LENGTH	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MY_PAN_ID	Macro
C
#define	MY_PAN_ID	0x1234

Description

MY_PAN_ID	defines	the	PAN	identifier.	Use	0xFFFF	if	prefer	a
random	PAN	ID.

Configuring	the	Library	>	Application	>	MY_PAN_ID	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NWK_ROLE_COORDINATOR	Macro
C
#define	NWK_ROLE_COORDINATOR	

Description

NWK_ROLE_COORDINATOR	is	not	valid	if	PROTOCOL_P2P	is
defined.	It	specified	that	the	node	has	the	capability	to	be
coordinator	or	PAN	coordinator.	This	definition	cannot	be	defined
with	NWK_ROLE_END_DEVICE.

Configuring	the	Library	>	Application	>	NWK_ROLE_COORDINATOR
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NWK_ROLE_END_DEVICE	Macro
C
#define	NWK_ROLE_END_DEVICE	

Description

NWK_ROLE_END_DEVICE	is	not	valid	if	PROTOCOL_P2P	is
defined.	It	specified	that	the	node	has	the	capability	to	be	an	end
device.	This	definition	cannot	be	defined	with
NWK_ROLE_COORDINATOR.

Configuring	the	Library	>	Application	>	NWK_ROLE_END_DEVICE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PROTOCOL_MIWI	Macro
C
#define	PROTOCOL_MIWI	

Description

PROTOCOL_MIWI	enables	the	application	to	use	MiWi	mesh
networking	stack.	This	definition	cannot	be	defined	with
PROTOCOL_P2P.

Configuring	the	Library	>	Application	>	PROTOCOL_MIWI	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PROTOCOL_MIWI_PRO	Macro
C
#define	PROTOCOL_MIWI_PRO	

Description

PROTOCOL_MIWI_PRO	enables	the	application	to	use	MiWi
PRO	stack.	This	definition	cannot	be	defined	with
PROTOCOL_P2P	or	PROTOCOL_MIWI.

Configuring	the	Library	>	Application	>	PROTOCOL_MIWI_PRO	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PROTOCOL_P2P	Macro
C
#define	PROTOCOL_P2P	

Description

Definition	of	Protocol	Stack.	ONLY	ONE	PROTOCOL	STACK
CAN	BE	CHOSEN

--

PROTOCOL_P2P	enables	the	application	to	use	MiWi	P2P
stack.	This	definition	cannot	be	defined	with	PROTOCOL_MIWI.

Configuring	the	Library	>	Application	>	PROTOCOL_P2P	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RFD_WAKEUP_INTERVAL	Macro
C
#define	RFD_WAKEUP_INTERVAL	8

Description

RFD_WAKEUP_INTERVAL	defines	the	wake	up	interval	for
RFDs	in	second.	This	definition	is	for	the	FFD	devices	to
calculated	various	timeout.	RFD	depends	on	the	setting	of	the
watchdog	timer	to	wake	up,	thus	this	definition	is	not	used.

Configuring	the	Library	>	Application	>	RFD_WAKEUP_INTERVAL
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RX_BUFFER_SIZE	Macro
C
#define	RX_BUFFER_SIZE	40

Description

RX_BUFFER_SIZE	defines	the	maximum	size	of	application
payload	which	is	to	be	received

Configuring	the	Library	>	Application	>	RX_BUFFER_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TARGET_SMALL	Macro
C
#define	TARGET_SMALL	

Description

TARGET_SMALL	will	remove	the	support	of	inter	PAN
communication	and	other	minor	features	to	save	programming
space

Configuring	the	Library	>	Application	>	TARGET_SMALL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_BUFFER_SIZE	Macro
C
#define	TX_BUFFER_SIZE	40

Description

TX_BUFFER_SIZE	defines	the	maximum	size	of	application
payload	which	is	to	be	transmitted

Configuring	the	Library	>	Application	>	TX_BUFFER_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Wireless	Protocol
Configurations	in	wireless	protocol	layer	can	be	used	to	fine	tune
the	behavior	of	wireless	protocol.	The	possible	configurations
differ	between	different	protocols.

Macros

	 Name	 Description	

	 ACTIVE_SCAN_RESULT_SIZE	 ACTIVE_SCAN_RESULT_SIZE	defines
the	maximum	active	scan	result	that	the
stack	can	hold.	If	active	scan	responses
received	exceed	the	definition	of
ACTIVE_SCAN_RESULT_SIZE,	those
later	active	scan	responses	will	be
discarded	

	 CONNECTION_RETRY_TIMES	 CONNECTION_RETRY_TIMES	is	the
maximum	time	that	the	wireless	node	can
try	to	establish	a	connection.	Once	the
retry	times	are	exhausted	control	will	be
return	to	application	layer	to	decide	what
to	do	next	

	 COUNTER_CRYSTAL_FREQ	 COUNTER_CRYSTAL_FREQ	defines	the
frequency	of	the	crystal	that	is	connected
to	the	MCU	counter	to	perform	timing
functionality	when	MCU	is	in	sleep.	

	 ENABLE_DUMP	 ENABLE_DUMP	will	enable	the	stack	to
be	able	to	print	out	the	content	of	the	P2P
connection	entry.	It	is	useful	in	the
debugging	process	

	 ENABLE_ENHANCED_DATA_REQUEST	 ENABLE_ENHANCED_DATA_REQUEST

enables	the	Enhanced	Data	Request
feature	of	P2P	stack.	It	combines	the
message	that	is	send	from	the	sleeping
device	with	Data	Request	command	upon
wakeup,	to	save	20%	-	30%	active	time
for	sleeping	device,	thus	prolong	the
battery	life.	

	 ENABLE_TIME_SYNC	 ENABLE_TIME_SYNC	enables	the	Time
Synchronizaiton	feature	of	P2P	stack.	It
allows	the	FFD	to	coordinate	the	check-in
interval	of	sleeping	device,	thus	allow	one
FFD	to	connect	to	many	sleeping	device.
Once	Time	Synchronization	feature	is
enabled,	following	parameters	are	also
required	to	be	defined:
TIME_SYNC_SLOTS
COUNTER_CRYSTAL_FREQ

	 FA_BROADCAST_TIME	 FA_BROADCAST_TIME	defines	the	total
number	of	times	to	broadcast	the	channel
hopping	message	to	the	rest	of	PAN,
before	the	Frequency	Agility	initiator	jump
to	the	new	channel	

	 INDIRECT_MESSAGE_SIZE	 INDIRECT_MESSAGE_SIZE	defines	the
maximum	number	of	packets	that	the
device	can	store	for	the	sleeping
device(s)	

	 INDIRECT_MESSAGE_TIMEOUT	 INDIRECT_MESSAGE_TIMEOUT
defines	the	timeout	interval	in	seconds	for
the	stored	packets	for	sleeping	devices	

	 RESYNC_TIMES	 RESYNC_TIMES	defines	the	maximum
number	of	times	to	try	resynchronization
in	all	available	channels	before	hand	over
the	control	to	the	application	layer	

	 RFD_DATA_WAIT	 RFD_DATA_WAIT	is	the	timeout	defined
for	sleeping	device	to	receive	a	message
from	the	associate	device	after	Data
Request.	After	this	timeout,	the	RFD
device	can	continue	to	operate	and	then
go	to	sleep	to	conserve	battery	power.	

	 TIME_SYNC_SLOTS	 TIME_SYNC_SLOTS	defines	the	total
number	of	time	slot	available	within	one
duty	cycle.	As	a	rule,	the	number	of	time
slot	must	be	equal	or	higher	than	the	total
number	of	sleeping	devices	that	are
connected	to	the	FFD,	so	that	each
sleeping	device	can	be	assigned	to	a	time
slot.	The	time	slot	period	is	calcualted	by
following	formula:	Time	Slot	Period	=
RFD_WAKEUP_INTERVAL
TIME_SYNC_SLOTS	The	length	of	time
slot	period	depends	on	the	primary
oscillator	accuracy	on	the	FFD	as	well	as
the	32KHz	crystal	accuracy	on	sleeping
devices.	The	definition	of
TIME_SYNC_SLOTS	is	only	valid	if...
more	

Topics

Name	 Description	

MiWi(TM)	P2P
Communication
Protocol	

Following	configurations	can	be	used	to	fine
tune	the	behavior	of	MiWi(TM)	P2P	wireless
protocol.	

MiWi	and	MiWi	PRO
Networking	Protocols	

Following	configurations	can	be	used	to	fine
tune	the	behavior	of	MiWi(TM)	mesh
networking	protocol.	

Configuring	the	Library	>	Wireless	Protocol

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ACTIVE_SCAN_RESULT_SIZE	Macro
C
#define	ACTIVE_SCAN_RESULT_SIZE	4

Description

ACTIVE_SCAN_RESULT_SIZE	defines	the	maximum	active
scan	result	that	the	stack	can	hold.	If	active	scan	responses
received	exceed	the	definition	of
ACTIVE_SCAN_RESULT_SIZE,	those	later	active	scan
responses	will	be	discarded

Configuring	the	Library	>	Wireless	Protocol	>
ACTIVE_SCAN_RESULT_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONNECTION_RETRY_TIMES	Macro
C
#define	CONNECTION_RETRY_TIMES	3

Description

CONNECTION_RETRY_TIMES	is	the	maximum	time	that	the
wireless	node	can	try	to	establish	a	connection.	Once	the	retry
times	are	exhausted	control	will	be	return	to	application	layer	to
decide	what	to	do	next

Configuring	the	Library	>	Wireless	Protocol	>
CONNECTION_RETRY_TIMES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

COUNTER_CRYSTAL_FREQ	Macro
C
#define	COUNTER_CRYSTAL_FREQ	32768

Description

COUNTER_CRYSTAL_FREQ	defines	the	frequency	of	the
crystal	that	is	connected	to	the	MCU	counter	to	perform	timing
functionality	when	MCU	is	in	sleep.

Configuring	the	Library	>	Wireless	Protocol	>
COUNTER_CRYSTAL_FREQ	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_DUMP	Macro
C
#define	ENABLE_DUMP	

Description

ENABLE_DUMP	will	enable	the	stack	to	be	able	to	print	out	the
content	of	the	P2P	connection	entry.	It	is	useful	in	the	debugging
process

Configuring	the	Library	>	Wireless	Protocol	>	ENABLE_DUMP	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ENHANCED_DATA_REQUEST	Macro
C
#define	ENABLE_ENHANCED_DATA_REQUEST	

Description

ENABLE_ENHANCED_DATA_REQUEST	enables	the	Enhanced
Data	Request	feature	of	P2P	stack.	It	combines	the	message
that	is	send	from	the	sleeping	device	with	Data	Request
command	upon	wakeup,	to	save	20%	-	30%	active	time	for
sleeping	device,	thus	prolong	the	battery	life.

Configuring	the	Library	>	Wireless	Protocol	>
ENABLE_ENHANCED_DATA_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_TIME_SYNC	Macro
C
#define	ENABLE_TIME_SYNC	

Description

ENABLE_TIME_SYNC	enables	the	Time	Synchronizaiton
feature	of	P2P	stack.	It	allows	the	FFD	to	coordinate	the	check-in
interval	of	sleeping	device,	thus	allow	one	FFD	to	connect	to
many	sleeping	device.	Once	Time	Synchronization	feature	is
enabled,	following	parameters	are	also	required	to	be	defined:
TIME_SYNC_SLOTS	COUNTER_CRYSTAL_FREQ

Configuring	the	Library	>	Wireless	Protocol	>	ENABLE_TIME_SYNC
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FA_BROADCAST_TIME	Macro
C
#define	FA_BROADCAST_TIME	0x03

Description

FA_BROADCAST_TIME	defines	the	total	number	of	times	to
broadcast	the	channel	hopping	message	to	the	rest	of	PAN,
before	the	Frequency	Agility	initiator	jump	to	the	new	channel

Configuring	the	Library	>	Wireless	Protocol	>	FA_BROADCAST_TIME
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INDIRECT_MESSAGE_SIZE	Macro
C
#define	INDIRECT_MESSAGE_SIZE	2

Description

INDIRECT_MESSAGE_SIZE	defines	the	maximum	number	of
packets	that	the	device	can	store	for	the	sleeping	device(s)

Configuring	the	Library	>	Wireless	Protocol	>
INDIRECT_MESSAGE_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INDIRECT_MESSAGE_TIMEOUT	Macro
C
#define	INDIRECT_MESSAGE_TIMEOUT	(ONE_SECOND	*	RFD_WAKEUP_INTERVAL

Description

INDIRECT_MESSAGE_TIMEOUT	defines	the	timeout	interval	in
seconds	for	the	stored	packets	for	sleeping	devices

Configuring	the	Library	>	Wireless	Protocol	>
INDIRECT_MESSAGE_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RESYNC_TIMES	Macro
C
#define	RESYNC_TIMES	0x03

Description

RESYNC_TIMES	defines	the	maximum	number	of	times	to	try
resynchronization	in	all	available	channels	before	hand	over	the
control	to	the	application	layer

Configuring	the	Library	>	Wireless	Protocol	>	RESYNC_TIMES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RFD_DATA_WAIT	Macro
C
#define	RFD_DATA_WAIT	0x00003FFF

Description

RFD_DATA_WAIT	is	the	timeout	defined	for	sleeping	device	to
receive	a	message	from	the	associate	device	after	Data
Request.	After	this	timeout,	the	RFD	device	can	continue	to
operate	and	then	go	to	sleep	to	conserve	battery	power.

Configuring	the	Library	>	Wireless	Protocol	>	RFD_DATA_WAIT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TIME_SYNC_SLOTS	Macro
C
#define	TIME_SYNC_SLOTS	10

Description

TIME_SYNC_SLOTS	defines	the	total	number	of	time	slot
available	within	one	duty	cycle.	As	a	rule,	the	number	of	time	slot
must	be	equal	or	higher	than	the	total	number	of	sleeping
devices	that	are	connected	to	the	FFD,	so	that	each	sleeping
device	can	be	assigned	to	a	time	slot.	The	time	slot	period	is
calcualted	by	following	formula:	Time	Slot	Period	=
RFD_WAKEUP_INTERVAL	/	TIME_SYNC_SLOTS	The	length	of
time	slot	period	depends	on	the	primary	oscillator	accuracy	on
the	FFD	as	well	as	the	32KHz	crystal	accuracy	on	sleeping
devices.	The	definition	of	TIME_SYNC_SLOTS	is	only	valid	if
ENABLE_TIME_SYNC	is	defined

Configuring	the	Library	>	Wireless	Protocol	>	TIME_SYNC_SLOTS
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi(TM)	P2P	Communication	Protocol
Following	configurations	can	be	used	to	fine	tune	the	behavior	of
MiWi(TM)	P2P	wireless	protocol.

Macros

	 Name	 Description	

	 CONNECTION_INTERVAL	 CONNECTION_INTERVAL
defines	the	interval	in	second
between	two	connection	request.	

Configuring	the	Library	>	Wireless	Protocol	>	MiWi(TM)	P2P
Communication	Protocol

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONNECTION_INTERVAL	Macro
C
#define	CONNECTION_INTERVAL	2

Description

CONNECTION_INTERVAL	defines	the	interval	in	second
between	two	connection	request.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi(TM)	P2P
Communication	Protocol	>	CONNECTION_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	and	MiWi	PRO	Networking	Protocols
Following	configurations	can	be	used	to	fine	tune	the	behavior	of
MiWi(TM)	mesh	networking	protocol.

Macros

	 Name	 Description	

	 INDIRECT_MESSAGE_TIMEOUT_CYCLE	 When	broadcasting	to	a	sleeping	device	is
enabled,	it	is	hard	for	a	parent	node	to
track	which	end	device	has	received	the
broadcast	message.	However,	if	no
tracking	is	provided,	the	end	device	may
receive	the	same	broadcast	multiple	times.
MiWi	PRO	solves	this	problem	by	tracking
the	broadcast	message	on	sleeping	device
side.
INDIRECT_MESSAGE_TIMEOUT_CYCLE
defines	the	total	number	of	messages
receives	before	the	broadcast	record	times
out.	It	is	hard	for	a	sleeping	node	to	track
timing,	so	tracking	the	number	of	message
received	is	a	simpler	way.	

	 MAX_ROUTING_FAILURE	 MAX_ROUTING_FAILURE	is	the	number
of	failures	of	routing	between	coordinators
before	such	route	is	disabled	in	the
decision	of	message	route.	Proper
definition	of	this	parameter	helps	to	update
the	available	routes	dynamically.	This
definition	is	only	valid	for	a	coordinator.	

	 OPEN_SOCKET_POLL_INTERVAL	 For	a	sleeping	device,	when	establishing
an	indirect	connection	(socket),	it	may	not

be	desirable	to	poll	the	data	at	the	normal
interval,	which	can	be	longer	than
OPEN_SOCKET_TIMEOUT
is	to	poll	the	data	at	a	fast	rate,	lower	than
OPEN_SOCKET_TIMEOUT
OPEN_SOCKET_POLL_INTERVAL	is	the
polling	interval	in	symbols	for	a	sleeping
device	to	acquire	data	from	its	parent	in	the
process	of	establishing	indirect	(socket)
connection.	This	parameter	is	only	valid	for
sleeping	device.	

	 OPEN_SOCKET_TIMEOUT	 OPEN_SOCKET_TIMEOUT	is	the	timeout
period	in	symbols	for	a	node	to	abandon
attempt	to	establish	a	socket	connection,
or	in	MiApp	term,	an	indrect	connection	

Topics

Name	 Description	

MiWi	Mesh	Networking
Protocol	

	

MiWi	PRO	Networking
Protocol	

	

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INDIRECT_MESSAGE_TIMEOUT_CYCLE	Macro
C
#define	INDIRECT_MESSAGE_TIMEOUT_CYCLE	2

Description

When	broadcasting	to	a	sleeping	device	is	enabled,	it	is	hard	for
a	parent	node	to	track	which	end	device	has	received	the
broadcast	message.	However,	if	no	tracking	is	provided,	the	end
device	may	receive	the	same	broadcast	multiple	times.	MiWi
PRO	solves	this	problem	by	tracking	the	broadcast	message	on
sleeping	device	side.	INDIRECT_MESSAGE_TIMEOUT_CYCLE
defines	the	total	number	of	messages	receives	before	the
broadcast	record	times	out.	It	is	hard	for	a	sleeping	node	to	track
timing,	so	tracking	the	number	of	message	received	is	a	simpler
way.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	INDIRECT_MESSAGE_TIMEOUT_CYCLE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAX_ROUTING_FAILURE	Macro
C
#define	MAX_ROUTING_FAILURE	3

Description

MAX_ROUTING_FAILURE	is	the	number	of	failures	of	routing
between	coordinators	before	such	route	is	disabled	in	the
decision	of	message	route.	Proper	definition	of	this	parameter
helps	to	update	the	available	routes	dynamically.	This	definition
is	only	valid	for	a	coordinator.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MAX_ROUTING_FAILURE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OPEN_SOCKET_POLL_INTERVAL	Macro
C
#define	OPEN_SOCKET_POLL_INTERVAL	(ONE_SECOND)

Description

For	a	sleeping	device,	when	establishing	an	indirect	connection
(socket),	it	may	not	be	desirable	to	poll	the	data	at	the	normal
interval,	which	can	be	longer	than	OPEN_SOCKET_TIMEOUT,
the	solution	is	to	poll	the	data	at	a	fast	rate,	lower	than
OPEN_SOCKET_TIMEOUT.
OPEN_SOCKET_POLL_INTERVAL	is	the	polling	interval	in
symbols	for	a	sleeping	device	to	acquire	data	from	its	parent	in
the	process	of	establishing	indirect	(socket)	connection.	This
parameter	is	only	valid	for	sleeping	device.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	OPEN_SOCKET_POLL_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OPEN_SOCKET_TIMEOUT	Macro
C
#define	OPEN_SOCKET_TIMEOUT	(ONE_SECOND	*	3)

Description

OPEN_SOCKET_TIMEOUT	is	the	timeout	period	in	symbols	for
a	node	to	abandon	attempt	to	establish	a	socket	connection,	or
in	MiApp	term,	an	indrect	connection

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	OPEN_SOCKET_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	Mesh	Networking	Protocol

Macros

	 Name	 Description	

	 BROADCAST_RECORD_SIZE	 BROADCAST_RECORD_SIZE	is
the	parameter	that	specifies	the
maximum	number	of	broadcast
record	available.	Broadcast	record
is	used	to	track	the	broadcast
messages	so	that	the	wireless	node
knows	if	the	same	broadcast	has
been	received	before.	

	 BROADCAST_RECORD_TIMEOUT	 BROADCAST_RECORD_TIMEOUT
defines	the	timeout	in	symbols	for	a
node	to	expire	its	broadcast	record.
The	broadcast	record	is	used	to
track	the	received	broadcast
message	and	to	prevent	receiving
duplicate	broadcast	message.	This
definition	is	only	valid	for	a	non-
sleeping	device.	

	 MIWI_ACK_TIMEOUT	 MIWI_ACK_TIMEOUT	is	the
timeout	period	in	symbols	for	a	node
to	receive	a	MiWi	network	layer
acknowledgement.	This	parameter
is	for	MiWi	network	layer,	not	for
MAC	layer.	MAC	layer
acknowledgement	timeout	is
handled	in	MiMAC	layer.	

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO

Networking	Protocols	>	MiWi	Mesh	Networking	Protocol

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BROADCAST_RECORD_SIZE	Macro
C
#define	BROADCAST_RECORD_SIZE	4

Description

BROADCAST_RECORD_SIZE	is	the	parameter	that	specifies
the	maximum	number	of	broadcast	record	available.	Broadcast
record	is	used	to	track	the	broadcast	messages	so	that	the
wireless	node	knows	if	the	same	broadcast	has	been	received
before.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	Mesh	Networking	Protocol	>
BROADCAST_RECORD_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BROADCAST_RECORD_TIMEOUT	Macro
C
#define	BROADCAST_RECORD_TIMEOUT	(ONE_SECOND)

Description

BROADCAST_RECORD_TIMEOUT	defines	the	timeout	in
symbols	for	a	node	to	expire	its	broadcast	record.	The	broadcast
record	is	used	to	track	the	received	broadcast	message	and	to
prevent	receiving	duplicate	broadcast	message.	This	definition	is
only	valid	for	a	non-sleeping	device.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	Mesh	Networking	Protocol	>
BROADCAST_RECORD_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MIWI_ACK_TIMEOUT	Macro
C
#define	MIWI_ACK_TIMEOUT	(ONE_SECOND)

Description

MIWI_ACK_TIMEOUT	is	the	timeout	period	in	symbols	for	a
node	to	receive	a	MiWi	network	layer	acknowledgement.	This
parameter	is	for	MiWi	network	layer,	not	for	MAC	layer.	MAC
layer	acknowledgement	timeout	is	handled	in	MiMAC	layer.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	Mesh	Networking	Protocol	>
MIWI_ACK_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiWi	PRO	Networking	Protocol

Macros

	 Name	 Description	

	 COMM_INTERVAL	 COMM_INTERVAL	defines	communication
interval	in	symbols	of	protocol	services
communications.	An	incomplete	list	of	protocol
services	that	use	COMM_INTERVAL	are
FAMILY_TREE_REPORT,
ROUTING_TABLE_REPORT	and
CHANNLE_HOPPING_REQUEST.	

	 COMM_RSSI_THRESHOLD	 COMM_RSSI_THRESHOLD	defines	the
minimum	signal	strength	that	is	acceptable	for
a	Coordinator	to	route	messages	through.	A
neighbor	Coordinator	that	has	signal	strength
that	is	higher	than	this	threshold	can	be	list	as
neighbor	to	be	able	to	route	message.	This
setting	usually	is	related	to	the	signal	strength
interpretation	for	the	specific	RF	transceiver.
This	value	is	represented	by	
data	width,	thus	should	be	less	than	256.	

	 ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	 ENABLE_MIWI_PRO_ACKNOWLEDGEMENT
enables	the	MiWi	PRO	stack	to	send	back	an
acknowledgement	packet	when	a	MiWi	PRO
data	packet	for	application	is	received.	This
process	will	be	handled	automatically	in	the
stack	without	application	layer	involvement.
MiWi	PRO	acknowledgement	is	ack	in	network
layer.	It	may	be	sent	across	multiple	hops	and
should	be	differiented	with	MAC	ack.	When
message	is	sent	to	a	sleeping	device,	the	MiWi

PRO	acknowledgemnt	will	be	received	later
and	notified	by	call	back	function
MiApp_CB_RFDAcknowledgement
Otherwise,	whether	receive	MiWi	PRO
acknowledgement	will	be	used	to	notify
application	layer	if	transmission	is	successful.	

	 ENABLE_ROUTING_UPDATE	 ENABLE_ROUTING_UPDATE	enables	the
Coordinator	capble	device	to	periodically	send
out	Routing	Table	Report	to	update	the	routing
table.	The	interval	of	sending	out	routing	table
is	defined	as	ROUTING_UPDATE_INTERVAL

	 ENABLE_BROADCAST_TO_SLEEP_DEVICE	 ENABLE_BROADCAST_TO_SLEEP_DEVICE
enables	messages	broadcast	to	a	sleeping
device.	

	 FA_COMM_INTERVAL	 FA_COMM_INTERVAL	defines	the	time
interval	between	broadcasting	the	frequency
agility	related	message	for
FA_BROADCAST_TIME
granularity	for	the	protocol	runs	smoothly,	it	is
recommended	to	set	this	timeout	higher	than	a
half	second.	

	 FA_MAX_NOISE_THRESHOLD	 FA_MAX_NOISE_THRESHOLD	defines	the
maximum	noise	level	that	a	Coordinator
accepts	for	a	channel	to	avoid	sending	out
Frequency	Agility	Against	Channel	protocol
service	when	a	new	channel	is	proposed	by
PAN	Coordinator	to	hop	to	during	frequency
agility	operation.	This	setting	usually	is	related
to	the	signal	strength	interpretation	for	the
specific	RF	transceiver.	This	value	is
represented	by	BYTE
thus	should	be	less	than	256.	

	 FA_WAIT_TIMEOUT	 FA_WAIT_TIMEOUT	defines	the	timeouts	in

symbols	during	the	frequency	agility	process.
Those	timeouts	include	timeout	for	all
Coordinators	to	start	energy	scan;	timeout	for
the	PAN	Coordinator	to	receive	Frequency
Agility	Against	Channel	protocol	service	after	a
channel	is	suggested	and	timeout	for	all
devices	to	jump	to	the	new	channel	after
receiving	Frequency	Agility	Change	Channel
protocol	service.	To	leave	granularity	for	the
protocol	runs	smoothly,	it	is	recommended	to
set	this	timeout	higher	than	1	second.	

	 FAMILY_TREE_BROADCAST	 FAMILY_TREE_BROADCAST	defines	the
number	of	broadcasts	for	Family	Tree	Report
protocol	service	after	a	Coordinator	joins	the
network.	To	ensure	delivery	of	the	Family	Tree
table,	it	is	recommended	to	set	this	value
higher	than	1.	

	 MIWI_PRO_ACK_TIMEOUT	 MIWI_PRO_ACK_TIMEOUT	is	the	timeout
period	in	symbols	for	a	node	to	receive	a	MiWi
PRO	network	layer	acknowledgement.	This
parameter	is	for	MiWi	PRO	network	layer,	not
for	MAC	layer.	MAC	layer	acknowledgement
timeout	is	handled	in	MiMAC	layer.	

	 NUM_COORDINATOR	 NUM_COORDINATOR	defines	the	maximum
number	of	Coordinators	that	the	network	can
support.	The	possible	numbers	are	8,	16,	32
and	64.	NUM_COORDINAOTR	definition	is
closedly	associated	with	RAM	and	NVM
resources	

	 PACKET_RECORD_SIZE	 PACKET_RECORD_SIZE	is	the	parameter
that	specifies	the	maximum	number	of	packet
record	available.	Packet	record	is	used	to	track
the	broadcast	messages	so	that	the	wireless
node	knows	if	the	same	packet	has	been

received	before.	

	 PACKET_RECORD_TIMEOUT	 PACKET_RECORD_TIMEOUT	defines	the
timeout	in	symbols	for	a	node	to	expire	its
packet	record.	The	packet	record	is	used	to
track	the	received	broadcast	message	and	to
prevent	receiving	duplicate	broadcast
message.	This	definition	is	only	valid	for	a	non-
sleeping	device.	

	 RANDOM_DELAY_RANGE	 RANDOM_DELAY_RANGE	defines	random
delay	range	in	milliseconds.	When	rebroadcast
a	message,	it	is	recommended	that	a
Coordinator	should	introduce	a	random	delay
to	avoid	multiple	Coordinators	rebroadcast	and
collide	the	messages	at	the	same	time.	The
actual	random	delay	will	be	randomly	selected
between	0	and	RANDOM_DELAY_RANGE.
This	setting	is	recommended	to	be	set	higher
than	20.	The	value	is	represented	by	
with	8-bit	data	width,	thus	should	be	less	than
256.	

	 ROUTING_UPDATE_INTERVAL	 ROUTING_UPDATE_INTERVAL	defines	the
interval	in	symbols	that	the	Coordinator
capable	device	to	send	out	Routing	Table
Report.	This	definition	is	only	effective	if
ENABLE_ROUTING_UPDATE

	 ROUTING_UPDATE_EXPIRATION	 ROUTING_UPDATE_EXPIRATION	defines	the
valid	link	expired	after	times	of
ROUTING_UPDATE_INTERVAL
receiving	Routing	Table	Report.	If	this
parameter	is	defined	as	3,	a	link	will	becomes
invalid	after	(3	*
ROUTING_UPDATE_INTERVAL
no	Routing	Table	Report	is	received	from	the
other	side	of	the	link.	

	 ROUTING_TABLE_BROADCAST	 ROUTING_TABLE_BROADCAST	defines	the
number	of	broadcasts	for	Routing	Table
Report.	To	ensure	routing	table	accuracy	on	all
coordinators,	it	is	recommended	to	set	this
value	higher	than	1.	

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

COMM_INTERVAL	Macro
C
#define	COMM_INTERVAL	ONE_SECOND

Description

COMM_INTERVAL	defines	communication	interval	in	symbols	of
protocol	services	communications.	An	incomplete	list	of	protocol
services	that	use	COMM_INTERVAL	are
FAMILY_TREE_REPORT,	ROUTING_TABLE_REPORT	and
CHANNLE_HOPPING_REQUEST.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
COMM_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

COMM_RSSI_THRESHOLD	Macro
C
#define	COMM_RSSI_THRESHOLD	0x01

Description

COMM_RSSI_THRESHOLD	defines	the	minimum	signal
strength	that	is	acceptable	for	a	Coordinator	to	route	messages
through.	A	neighbor	Coordinator	that	has	signal	strength	that	is
higher	than	this	threshold	can	be	list	as	neighbor	to	be	able	to
route	message.	This	setting	usually	is	related	to	the	signal
strength	interpretation	for	the	specific	RF	transceiver.	This	value
is	represented	by	BYTE	with	8-bit	data	width,	thus	should	be	less
than	256.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
COMM_RSSI_THRESHOLD	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_MIWI_PRO_ACKNOWLEDGEMENT
Macro
C
#define	ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	

Description

ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	enables	the	MiWi
PRO	stack	to	send	back	an	acknowledgement	packet	when	a
MiWi	PRO	data	packet	for	application	is	received.	This	process
will	be	handled	automatically	in	the	stack	without	application
layer	involvement.	MiWi	PRO	acknowledgement	is	ack	in
network	layer.	It	may	be	sent	across	multiple	hops	and	should	be
differiented	with	MAC	ack.	When	message	is	sent	to	a	sleeping
device,	the	MiWi	PRO	acknowledgemnt	will	be	received	later	and
notified	by	call	back	function	MiApp_CB_RFDAcknowledgement.
Otherwise,	whether	receive	MiWi	PRO	acknowledgement	will	be
used	to	notify	application	layer	if	transmission	is	successful.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ROUTING_UPDATE	Macro
C
#define	ENABLE_ROUTING_UPDATE	

Description

ENABLE_ROUTING_UPDATE	enables	the	Coordinator	capble
device	to	periodically	send	out	Routing	Table	Report	to	update
the	routing	table.	The	interval	of	sending	out	routing	table	is
defined	as	ROUTING_UPDATE_INTERVAL

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ENABLE_ROUTING_UPDATE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_BROADCAST_TO_SLEEP_DEVICE
Macro
C
#define	ENABLE_BROADCAST_TO_SLEEP_DEVICE	

Description

ENABLE_BROADCAST_TO_SLEEP_DEVICE	enables
messages	broadcast	to	a	sleeping	device.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ENABLE_BROADCAST_TO_SLEEP_DEVICE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FA_COMM_INTERVAL	Macro
C
#define	FA_COMM_INTERVAL	(ONE_SECOND)

Description

FA_COMM_INTERVAL	defines	the	time	interval	between
broadcasting	the	frequency	agility	related	message	for
FA_BROADCAST_TIME	times.	To	leave	granularity	for	the
protocol	runs	smoothly,	it	is	recommended	to	set	this	timeout
higher	than	a	half	second.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
FA_COMM_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FA_MAX_NOISE_THRESHOLD	Macro
C
#define	FA_MAX_NOISE_THRESHOLD	0x80

Description

FA_MAX_NOISE_THRESHOLD	defines	the	maximum	noise
level	that	a	Coordinator	accepts	for	a	channel	to	avoid	sending
out	Frequency	Agility	Against	Channel	protocol	service	when	a
new	channel	is	proposed	by	PAN	Coordinator	to	hop	to	during
frequency	agility	operation.	This	setting	usually	is	related	to	the
signal	strength	interpretation	for	the	specific	RF	transceiver.	This
value	is	represented	by	BYTE	with	8-bit	data	width,	thus	should
be	less	than	256.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
FA_MAX_NOISE_THRESHOLD	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FA_WAIT_TIMEOUT	Macro
C
#define	FA_WAIT_TIMEOUT	((ONE_SECOND)	*	2)

Description

FA_WAIT_TIMEOUT	defines	the	timeouts	in	symbols	during	the
frequency	agility	process.	Those	timeouts	include	timeout	for	all
Coordinators	to	start	energy	scan;	timeout	for	the	PAN
Coordinator	to	receive	Frequency	Agility	Against	Channel
protocol	service	after	a	channel	is	suggested	and	timeout	for	all
devices	to	jump	to	the	new	channel	after	receiving	Frequency
Agility	Change	Channel	protocol	service.	To	leave	granularity	for
the	protocol	runs	smoothly,	it	is	recommended	to	set	this	timeout
higher	than	1	second.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
FA_WAIT_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FAMILY_TREE_BROADCAST	Macro
C
#define	FAMILY_TREE_BROADCAST	3

Description

FAMILY_TREE_BROADCAST	defines	the	number	of	broadcasts
for	Family	Tree	Report	protocol	service	after	a	Coordinator	joins
the	network.	To	ensure	delivery	of	the	Family	Tree	table,	it	is
recommended	to	set	this	value	higher	than	1.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
FAMILY_TREE_BROADCAST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MIWI_PRO_ACK_TIMEOUT	Macro
C
#define	MIWI_PRO_ACK_TIMEOUT	(ONE_SECOND)

Description

MIWI_PRO_ACK_TIMEOUT	is	the	timeout	period	in	symbols	for
a	node	to	receive	a	MiWi	PRO	network	layer	acknowledgement.
This	parameter	is	for	MiWi	PRO	network	layer,	not	for	MAC	layer.
MAC	layer	acknowledgement	timeout	is	handled	in	MiMAC	layer.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
MIWI_PRO_ACK_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NUM_COORDINATOR	Macro
C
#define	NUM_COORDINATOR	16

Description

NUM_COORDINATOR	defines	the	maximum	number	of
Coordinators	that	the	network	can	support.	The	possible
numbers	are	8,	16,	32	and	64.	NUM_COORDINAOTR	definition
is	closedly	associated	with	RAM	and	NVM	resources

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
NUM_COORDINATOR	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_RECORD_SIZE	Macro
C
#define	PACKET_RECORD_SIZE	5

Description

PACKET_RECORD_SIZE	is	the	parameter	that	specifies	the
maximum	number	of	packet	record	available.	Packet	record	is
used	to	track	the	broadcast	messages	so	that	the	wireless	node
knows	if	the	same	packet	has	been	received	before.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
PACKET_RECORD_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_RECORD_TIMEOUT	Macro
C
#define	PACKET_RECORD_TIMEOUT	(ONE_SECOND/2)

Description

PACKET_RECORD_TIMEOUT	defines	the	timeout	in	symbols
for	a	node	to	expire	its	packet	record.	The	packet	record	is	used
to	track	the	received	broadcast	message	and	to	prevent
receiving	duplicate	broadcast	message.	This	definition	is	only
valid	for	a	non-sleeping	device.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
PACKET_RECORD_TIMEOUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RANDOM_DELAY_RANGE	Macro
C
#define	RANDOM_DELAY_RANGE	200

Description

RANDOM_DELAY_RANGE	defines	random	delay	range	in
milliseconds.	When	rebroadcast	a	message,	it	is	recommended
that	a	Coordinator	should	introduce	a	random	delay	to	avoid
multiple	Coordinators	rebroadcast	and	collide	the	messages	at
the	same	time.	The	actual	random	delay	will	be	randomly
selected	between	0	and	RANDOM_DELAY_RANGE.	This	setting
is	recommended	to	be	set	higher	than	20.	The	value	is
represented	by	BYTE	with	8-bit	data	width,	thus	should	be	less
than	256.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
RANDOM_DELAY_RANGE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROUTING_UPDATE_INTERVAL	Macro
C
#define	ROUTING_UPDATE_INTERVAL	(ONE_HOUR)

Description

ROUTING_UPDATE_INTERVAL	defines	the	interval	in	symbols
that	the	Coordinator	capable	device	to	send	out	Routing	Table
Report.	This	definition	is	only	effective	if
ENABLE_ROUTING_UPDATE	is	defined.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ROUTING_UPDATE_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROUTING_UPDATE_EXPIRATION	Macro
C
#define	ROUTING_UPDATE_EXPIRATION	3

Description

ROUTING_UPDATE_EXPIRATION	defines	the	valid	link	expired
after	times	of	ROUTING_UPDATE_INTERVAL	without	receiving
Routing	Table	Report.	If	this	parameter	is	defined	as	3,	a	link	will
becomes	invalid	after	(3	*	ROUTING_UPDATE_INTERVAL)
symbols	if	no	Routing	Table	Report	is	received	from	the	other
side	of	the	link.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ROUTING_UPDATE_EXPIRATION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROUTING_TABLE_BROADCAST	Macro
C
#define	ROUTING_TABLE_BROADCAST	3

Description

ROUTING_TABLE_BROADCAST	defines	the	number	of
broadcasts	for	Routing	Table	Report.	To	ensure	routing	table
accuracy	on	all	coordinators,	it	is	recommended	to	set	this	value
higher	than	1.

Configuring	the	Library	>	Wireless	Protocol	>	MiWi	and	MiWi	PRO
Networking	Protocols	>	MiWi	PRO	Networking	Protocol	>
ROUTING_TABLE_BROADCAST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RF	Transceivers
Configurations	for	RF	transceivers	specifies	how	RF	transceiver
work	in	MiMAC	layer.	The	configurations	in	this	layer	may	define
frequency	band,	data	rate	and	other	RF	related	parameters.
Those	configurations	differ	between	different	RF	transceivers.

Macros

	 Name	 Description	

	 BANK_SIZE	 BANK_SIZE	defines	the	number
of	packet	can	be	received	and
stored	to	wait	for	handling	in
MiMAC	layer.	

	 KEY_SEQUENCE_NUMBER	 KEY_SEQUENCE_NUMBER
defines	the	sequence	number
that	is	used	to	identify	the	key.
Different	key	should	have
different	sequence	number,	if
multiple	security	keys	are	used
in	the	application.	

	 SECURITY_LEVEL	 SECURITY_LEVEL	defines	the
security	mode	used	in	the
application.	

	 SECURITY_KEY_00	 SECURITY_KEY_xx	defines
xxth	byte	of	security	key	used	in
the	block	cipher.	The	length	of
the	key	depends	on	the	key	size
of	the	block	cipher.	

Topics

Name	 Description	

MRF24J40	IEEE
802.15.4	Compliant
2.4GHz	Transceiver	

Following	configurations	can	be	used	to
regulate	Microchip	MRF24J40	IEEE
802.15.4	compliant	2.4GHz	transceiver.	

SubGHz	Transceivers	 Microchip	SubGHz	transceivers	share	some
common	configurations.	

Configuring	the	Library	>	RF	Transceivers

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BANK_SIZE	Macro
C
#define	BANK_SIZE	2

Description

BANK_SIZE	defines	the	number	of	packet	can	be	received	and
stored	to	wait	for	handling	in	MiMAC	layer.

Configuring	the	Library	>	RF	Transceivers	>	BANK_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

KEY_SEQUENCE_NUMBER	Macro
C
#define	KEY_SEQUENCE_NUMBER	0x00

Description

KEY_SEQUENCE_NUMBER	defines	the	sequence	number	that
is	used	to	identify	the	key.	Different	key	should	have	different
sequence	number,	if	multiple	security	keys	are	used	in	the
application.

Configuring	the	Library	>	RF	Transceivers	>
KEY_SEQUENCE_NUMBER	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SECURITY_LEVEL	Macro
C
#define	SECURITY_LEVEL	SEC_LEVEL_CCM_16

Description

SECURITY_LEVEL	defines	the	security	mode	used	in	the
application.

Configuring	the	Library	>	RF	Transceivers	>	SECURITY_LEVEL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SECURITY_KEY_00	Macro
C
#define	SECURITY_KEY_00	0x00

Description

SECURITY_KEY_xx	defines	xxth	byte	of	security	key	used	in	the
block	cipher.	The	length	of	the	key	depends	on	the	key	size	of
the	block	cipher.

Configuring	the	Library	>	RF	Transceivers	>	SECURITY_KEY_00	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF24J40	IEEE	802.15.4	Compliant	2.4GHz
Transceiver
Following	configurations	can	be	used	to	regulate	Microchip
MRF24J40	IEEE	802.15.4	compliant	2.4GHz	transceiver.

Macros

	 Name	 Description	

	 TURBO_MODE	 TURBO_MODE	enables	MRF24J40
transceiver	to	perform	the
communication	in	proprietary
modulation,	which	is	not	compliant	to
IEEE	802.15.4	specification.	The	data
rate	at	turbo	mode	is	up	to	625Kbps.	

	 VERIFY_TRANSMIT	 VERIFY_TRANSMIT	configures	the
MRF24J40	transceiver	to	transmit	data
in	a	block	procedure,	which	ensures
finish	transmission	before	continue
other	task.	This	block	procedure
ensures	the	delivery	state	of
transmitting	known	to	the	upper
protocol	layer,	thus	may	be	necessary
to	detect	transmission	failure.	However,
this	block	procedure	slightly	lower	the
throughput	

Configuring	the	Library	>	RF	Transceivers	>	MRF24J40	IEEE	802.15.4
Compliant	2.4GHz	Transceiver

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TURBO_MODE	Macro
C
#define	TURBO_MODE	

Description

TURBO_MODE	enables	MRF24J40	transceiver	to	perform	the
communication	in	proprietary	modulation,	which	is	not	compliant
to	IEEE	802.15.4	specification.	The	data	rate	at	turbo	mode	is	up
to	625Kbps.

Configuring	the	Library	>	RF	Transceivers	>	MRF24J40	IEEE	802.15.4
Compliant	2.4GHz	Transceiver	>	TURBO_MODE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

VERIFY_TRANSMIT	Macro
C
#define	VERIFY_TRANSMIT	

Description

VERIFY_TRANSMIT	configures	the	MRF24J40	transceiver	to
transmit	data	in	a	block	procedure,	which	ensures	finish
transmission	before	continue	other	task.	This	block	procedure
ensures	the	delivery	state	of	transmitting	known	to	the	upper
protocol	layer,	thus	may	be	necessary	to	detect	transmission
failure.	However,	this	block	procedure	slightly	lower	the
throughput

Configuring	the	Library	>	RF	Transceivers	>	MRF24J40	IEEE	802.15.4
Compliant	2.4GHz	Transceiver	>	VERIFY_TRANSMIT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SubGHz	Transceivers
Microchip	SubGHz	transceivers	share	some	common
configurations.

Macros

	 Name	 Description	

	 ACK_INFO_SIZE	 ACK_INFO_SIZE	defines	the
number	of	acknowledgement
information	structure	can	be
stored	to	avoid	duplicate	packet
to	the	protocol	layer.	

	 CCA_RETRIES	 CCA_RETRIES	defines	the
maximum	retries	can	be
performed	in	the	case	of	Clear
Channel	Assessment	failure	in
the	CCA	procedure.	CCA
procedure	perform	CCA	for
CCA_TIMES	and	check	if	the
times	of	CCA	failure	beyond	the
number	defined	in
CCA_THRESHOLD.	In	the
case	that	CCA	failure	times	is
beyond	CCA_THRESHOLD
the	whole	procedure	must	be
repeated	up	to	CCA_RETRIES
times	before	transmission
failure	can	be	flagged.	

	 CCA_THRESHOLD	 -65dB	limit	for	CCA	threshold
values	(as	sampling	at
data/preamble)	can	use	higher

values	for	preamble	(refer
802.11	standard)	

	 CCA_TIMES	 CCA_TIMES	defines	the	total
number	of	Clear	Channel
Assessment	in	the	CCA
procedure.	CCA	procedure
perform	CCA	for	CCA_TIMES
and	check	if	the	times	of	CCA
failure	beyond	the	number
defined	in	CCA_THRESHOLD
In	the	case	that	CCA	failure
times	is	beyond
CCA_THRESHOLD,	the	whole
procedure	must	be	repeated	up
to	CCA_RETRIES	times	before
transmission	failure	can	be
flagged.	

	 ENABLE_ACK	 ENABLE_ACK	enables
MRF89XA	to	automatically
send	back	an
acknowledgement	packet	in
MiMAC	layer	after	receiving	a
packet,	when	such
acknowledgement	is	requested
by	the	packet	sender.	

	 ENABLE_CCA	 ENABLE_CCA	enables
MRF89XA	to	perform	Clear
Channel	Assessement	before
transmitting	data	in	MiMAC
layer.	

	 ENABLE_RETRANSMISSION	 ENABLE_RETRANSMISSION
enables	MRF89XA	to
retransmit	the	packet	up	to
RETRANSMISSION_TIMES

ENABLE_ACK	is	defined,	and	a
proper	acknowledgement
packet	is	not	received	by	the
sender	in	predefined	time
period.	

	 FRAME_COUNTER_UPDATE_INTERVAL	 The	interval	to	update	the	frame
counter	in	the	NVM	

	 LNA_GAIN	 LNA_GAIN	defines	the	internal
IF	gain	for	MRF89XA
transceiver.	

	 RETRANSMISSION_TIMES	 RETRANSMISSION_TIMES
defines	the	maximum	retries
that	can	be	performed	if	a
proper	acknowledgement
packet	is	not	received	in
predefined	time	period,	if
ENABLE_RETRANSMISSION
is	defined.	

	 SOURCE_ADDRESS_ABSENT	 SOURCE_ADDRESS_ABSENT
disable	the	stack	to	transmit	the
source	address	in	the	MAC
layer,	if	the	destination	does	not
care	where	the	message	comes
from.	This	feature	is	highly
application	dependent.	This
feature	is	only	available	for
transceivers	that	support
MiMAC	frame	format.	

	 TX_POWER	 TX_POWER	defines	the	output
power	for	MRF89XA	

Topics

Name	 Description	

MRF49XA	SubGHz
Transceiver	

Following	configurations	can	be	used	to
regulate	Microchip	MRF49XA	subGHz
transceiver.	

MRF89XA	SubGHz
Transceiver	

Following	configurations	can	be	used	to
regulate	Microchip	MRF89XA	subGHz
transceiver.	

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF49XA	SubGHz	Transceiver
Following	configurations	can	be	used	to	regulate	Microchip
MRF49XA	subGHz	transceiver.

Macros

	 Name	 Description	

	 BAND_915	 BAND_915,	BAND_868	or
BAND_434	are	three	supported
frequency	band	for	Microchip
MRF49XA.	One	and	only	one	of
the	frequency	band	must	be
defined	

	 CRYSTAL_PPM	 CRYSTAL_PPM	defines	the
accuracy	of	the	external	crystal
in	PPM	

	 DATA_RATE_9600	 define	DATA_RATE_1200
define	DATA_RATE_19200
define	DATA_RATE_38400
define	DATA_RATE_57600
define	DATA_RATE_115200	

	 INFER_DEST_ADDRESS	 INFER_DEST_ADDRESS
enables	inferred	destination
address	mode,	which	does	not
transmit	the	destination
address,	but	depends	on	the
software	CRC	to	infer	the
destination	address.	Infer
destination	address	applies	to
only	transceivers	that	support
MiMAC	frame	format	and	the

CRC	engine	that	supports	this
feature.	

	 MAX_ALLOWED_TX_FAILURE	 MAX_ALLOWED_TX_FAILURE
defines	the	maximum	number
of	tries	to	transmit	a	packet
before	a	transmission	failure
can	be	issued	to	the	upper
protocol	layer.	Transmission
failure	under	this	condition
usually	due	to	timeout	from
MRF89XA	pin	switch.	

	 RSSI_THRESHOLD	 RSSI_THRESHOLD	defines
the	threshold	for	the	RSSI
digital	output	

	 XTAL_LD_CAP	 XTAL_LD_CAP	defines	the
capacitor	load	on	the	external
crystal	as	the	clock	to
MRF49XA	transceiver	

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BAND_915	Macro
C
#define	BAND_915	

Description

BAND_915,	BAND_868	or	BAND_434	are	three	supported
frequency	band	for	Microchip	MRF49XA.	One	and	only	one	of
the	frequency	band	must	be	defined

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	BAND_915	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CRYSTAL_PPM	Macro
C
#define	CRYSTAL_PPM	10

Description

CRYSTAL_PPM	defines	the	accuracy	of	the	external	crystal	in
PPM

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	CRYSTAL_PPM	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_RATE_9600	Macro
C
#define	DATA_RATE_9600	

Description

define	DATA_RATE_1200	define	DATA_RATE_19200	define
DATA_RATE_38400	define	DATA_RATE_57600	define
DATA_RATE_115200

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	DATA_RATE_9600	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

INFER_DEST_ADDRESS	Macro
C
#define	INFER_DEST_ADDRESS	

Description

INFER_DEST_ADDRESS	enables	inferred	destination	address
mode,	which	does	not	transmit	the	destination	address,	but
depends	on	the	software	CRC	to	infer	the	destination	address.
Infer	destination	address	applies	to	only	transceivers	that	support
MiMAC	frame	format	and	the	CRC	engine	that	supports	this
feature.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	INFER_DEST_ADDRESS	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAX_ALLOWED_TX_FAILURE	Macro
C
#define	MAX_ALLOWED_TX_FAILURE	20

Description

MAX_ALLOWED_TX_FAILURE	defines	the	maximum	number	of
tries	to	transmit	a	packet	before	a	transmission	failure	can	be
issued	to	the	upper	protocol	layer.	Transmission	failure	under	this
condition	usually	due	to	timeout	from	MRF89XA	pin	switch.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	MAX_ALLOWED_TX_FAILURE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD	Macro
C
#define	RSSI_THRESHOLD	RSSI_THRESHOLD_79

Description

RSSI_THRESHOLD	defines	the	threshold	for	the	RSSI	digital
output

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	RSSI_THRESHOLD	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP	Macro
C
#define	XTAL_LD_CAP	XTAL_LD_CAP_10

Description

XTAL_LD_CAP	defines	the	capacitor	load	on	the	external	crystal
as	the	clock	to	MRF49XA	transceiver

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF49XA	SubGHz	Transceiver	>	XTAL_LD_CAP	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MRF89XA	SubGHz	Transceiver
Following	configurations	can	be	used	to	regulate	Microchip
MRF89XA	subGHz	transceiver.

Macros

	 Name	 Description	

	 BAND_902	 BAND_902,	BAND_915	or	BAND_863	(or
BAND_950	-	circuit	dependent)	are	three
supported	frequency	band	for	Microchip
MRF89XA.	One	and	only	one	of	the
frequency	band	must	be	defined	

	 DATA_RATE_20	 DATA_RATE_5,	DATA_RATE_10,
DATA_RATE_20,	DATA_RATE_25,
DATA_RATE_40,	DATA_RATE_50,
DATA_RATE_66,	DATA_RATE_100	and
DATA_RATE_200	are	10	data	rates
supported	by	Microchip	MRF89XA
transceivers	in	MiMAC	interface.	One	and
only	one	of	the	data	rate	must	be	defined	

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF89XA	SubGHz	Transceiver

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BAND_902	Macro
C
#define	BAND_902	

Description

BAND_902,	BAND_915	or	BAND_863	(or	BAND_950	-	circuit
dependent)	are	three	supported	frequency	band	for	Microchip
MRF89XA.	One	and	only	one	of	the	frequency	band	must	be
defined

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF89XA	SubGHz	Transceiver	>	BAND_902	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_RATE_20	Macro
C
#define	DATA_RATE_20	

Description

DATA_RATE_5,	DATA_RATE_10,	DATA_RATE_20,
DATA_RATE_25,	DATA_RATE_40,	DATA_RATE_50,
DATA_RATE_66,	DATA_RATE_100	and	DATA_RATE_200	are
10	data	rates	supported	by	Microchip	MRF89XA	transceivers	in
MiMAC	interface.	One	and	only	one	of	the	data	rate	must	be
defined

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
MRF89XA	SubGHz	Transceiver	>	DATA_RATE_20	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ACK_INFO_SIZE	Macro
C
#define	ACK_INFO_SIZE	5

Description

ACK_INFO_SIZE	defines	the	number	of	acknowledgement
information	structure	can	be	stored	to	avoid	duplicate	packet	to
the	protocol	layer.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
ACK_INFO_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CCA_RETRIES	Macro
C
#define	CCA_RETRIES	4

Description

CCA_RETRIES	defines	the	maximum	retries	can	be	performed
in	the	case	of	Clear	Channel	Assessment	failure	in	the	CCA
procedure.	CCA	procedure	perform	CCA	for	CCA_TIMES	and
check	if	the	times	of	CCA	failure	beyond	the	number	defined	in
CCA_THRESHOLD.	In	the	case	that	CCA	failure	times	is	beyond
CCA_THRESHOLD,	the	whole	procedure	must	be	repeated	up
to	CCA_RETRIES	times	before	transmission	failure	can	be
flagged.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
CCA_RETRIES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CCA_THRESHOLD	Macro
C
#define	CCA_THRESHOLD	65				//-65dB	limit	for	CCA	threshold	values	(as	sampling	at	data/preamble)

Description

-65dB	limit	for	CCA	threshold	values	(as	sampling	at
data/preamble)	can	use	higher	values	for	preamble	(refer	802.11
standard)

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
CCA_THRESHOLD	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CCA_TIMES	Macro
C
#define	CCA_TIMES	5

Description

CCA_TIMES	defines	the	total	number	of	Clear	Channel
Assessment	in	the	CCA	procedure.	CCA	procedure	perform	CCA
for	CCA_TIMES	and	check	if	the	times	of	CCA	failure	beyond	the
number	defined	in	CCA_THRESHOLD.	In	the	case	that	CCA
failure	times	is	beyond	CCA_THRESHOLD,	the	whole	procedure
must	be	repeated	up	to	CCA_RETRIES	times	before
transmission	failure	can	be	flagged.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
CCA_TIMES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ACK	Macro
C
#define	ENABLE_ACK	

Description

ENABLE_ACK	enables	MRF89XA	to	automatically	send	back	an
acknowledgement	packet	in	MiMAC	layer	after	receiving	a
packet,	when	such	acknowledgement	is	requested	by	the	packet
sender.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
ENABLE_ACK	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_CCA	Macro
C
#define	ENABLE_CCA	

Description

ENABLE_CCA	enables	MRF89XA	to	perform	Clear	Channel
Assessement	before	transmitting	data	in	MiMAC	layer.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
ENABLE_CCA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_RETRANSMISSION	Macro
C
#define	ENABLE_RETRANSMISSION	

Description

ENABLE_RETRANSMISSION	enables	MRF89XA	to	retransmit
the	packet	up	to	RETRANSMISSION_TIMES,	if	ENABLE_ACK
is	defined,	and	a	proper	acknowledgement	packet	is	not	received
by	the	sender	in	predefined	time	period.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
ENABLE_RETRANSMISSION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FRAME_COUNTER_UPDATE_INTERVAL	Macro
C
#define	FRAME_COUNTER_UPDATE_INTERVAL	1024

Description

The	interval	to	update	the	frame	counter	in	the	NVM

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
FRAME_COUNTER_UPDATE_INTERVAL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LNA_GAIN	Macro
C
#define	LNA_GAIN	LNA_GAIN_0_DB

Description

LNA_GAIN	defines	the	internal	IF	gain	for	MRF89XA	transceiver.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
LNA_GAIN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RETRANSMISSION_TIMES	Macro
C
#define	RETRANSMISSION_TIMES	3

Description

RETRANSMISSION_TIMES	defines	the	maximum	retries	that
can	be	performed	if	a	proper	acknowledgement	packet	is	not
received	in	predefined	time	period,	if
ENABLE_RETRANSMISSION	is	defined.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
RETRANSMISSION_TIMES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SOURCE_ADDRESS_ABSENT	Macro
C
#define	SOURCE_ADDRESS_ABSENT	

Description

SOURCE_ADDRESS_ABSENT	disable	the	stack	to	transmit	the
source	address	in	the	MAC	layer,	if	the	destination	does	not	care
where	the	message	comes	from.	This	feature	is	highly
application	dependent.	This	feature	is	only	available	for
transceivers	that	support	MiMAC	frame	format.

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
SOURCE_ADDRESS_ABSENT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER	Macro
C
#define	TX_POWER	TX_POWER_1_DB

Description

TX_POWER	defines	the	output	power	for	MRF89XA

Configuring	the	Library	>	RF	Transceivers	>	SubGHz	Transceivers	>
TX_POWER	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Library	API
In	this	section,	MiMAC	and	MiApp	interfaces	are	defined	in
detail.

Topics

Name	 Description	

MiApp	Interfaces	 	

MiMAC	Interfaces	 	

Library	API

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp	Interfaces

Functions

	 Name	 Description	

	 MiApp_BroadcastPacket	 This	function	broadcast	a
message	in	the	TxBuffer.	

	 MiApp_ConnectionMode	 This	function	set	the	current
connection	mode.	

	 MiApp_DiscardMessage	 This	function	discard	the
current	message	for	the
application	and	notify	the
protocol	layer	that	it	is	ready
to	receive	the	next	message.	

	 MiApp_EstablishConnection	 This	function	establish	a
connection	with	one	or	more
nodes	in	an	existing	PAN.	

	 MiApp_InitChannelHopping	 This	function	tries	to	start	a
channel	hopping	(frequency
agility)	procedure	

	 MiApp_MessageAvailable	 This	function	return	a	boolean
if	a	message	is	available	for
the	application	

	 MiApp_NoiseDetection	 This	function	perform	a	noise
scan	and	returns	the	channel
with	least	noise	

	 MiApp_RemoveConnection	 This	function	remove
connection(s)	in	connection

table	

	 MiApp_ResyncConnection	 This	function	tries	to
resynchronize	the	lost
connection	with	peers,
probably	due	to	channel
hopping	

	 MiApp_SearchConnection	 This	function	perform	an
active	scan	to	locate	operating
PANs	in	the	neighborhood.	

	 MiApp_SetChannel	 This	function	set	the	operating
channel	for	the	RF
transceiver	

	 MiApp_StartConnection	 This	function	start	a	PAN
without	connected	to	any
other	devices	

	 MiApp_TransceiverPowerState	 This	function	put	the	RF
transceiver	into	different
power	state.	i.e.	Put	the	RF
transceiver	into	sleep	or	wake
it	up.
This	function	put	the	RF
transceiver	into	different
power	state.	i.e.	Put	the	RF
transceiver	into	sleep	or	wake
it	up.	

	 MiApp_UnicastAddress	 This	function	unicast	a
message	in	the	TxBuffer	to
the	device	with
DestinationAddress	

	 MiApp_UnicastConnection	 This	function	unicast	a
message	in	the	TxBuffer	to

the	device	with	the	input
ConnectionIndex	in	the
connection	table.	

Macros

	 Name	 Description	

	 MiApp_FlushTx	 This	macro	reset	the	pointer	of	the	TX
buffer.	This	function	is	usually	called
before	filling	application	payload.	

	 MiApp_WriteData	 This	macro	writes	one	byte	of	application
payload	to	the	TX	buffer.	

Topics

Name	 Description	

Call	Back	Functions	 	

Library	API	>	MiApp	Interfaces

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_BroadcastPacket	Function
C
BOOL	MiApp_BroadcastPacket(

				BOOL	SecEn

);

Description

This	is	the	primary	user	interface	function	for	the	application
layer	to	broadcast	a	message.	The	application	payload	is	filled	in
the	global	char	array	TxBuffer.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BOOL	SecEn	 The	boolean	indicates	if	the	application
payload	needs	to	be	secured	before
transmission.	

Returns

A	boolean	to	indicates	if	the	broadcast	procedure	is	succcessful.

Remarks

None

Example

Copy	Code
//	Secure	and	then	broadcast	the	message	stored	in	TxBuffer

MiApp_BroadcastPacket(TRUE);

Library	API	>	MiApp	Interfaces	>	MiApp_BroadcastPacket	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_ConnectionMode	Function
C
void	MiApp_ConnectionMode(

				BYTE	Mode

);

Description

This	is	the	primary	user	interface	function	for	the	application
layer	to	configure	the	way	that	the	host	device	accept	connection
request.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	Mode	 The	mode	to	accept	connection	request.
The	privilege	for	those	modes	decreases
gradually	as	defined.	The	higher	privilege
mode	has	all	the	rights	of	the	lower	privilege
modes.	The	possible	modes	are

ENABLE_ALL_CONN	Enable	response
to	all	connection	request
ENABLE_PREV_CONN	Enable
response	to	connection	request	from
device	already	in	the	connection	table.
ENABLE_ACTIVE_SCAN_RSP	Enable
response	to	active	scan	only
DISABLE_ALL_CONN	Disable

response	to	connection	request,
including	an	acitve	scan	request.

	

Returns

None

Remarks

None

Example

Copy	Code
//	Enable	all	connection	request

MiApp_ConnectionMode(ENABLE_ALL_CONN);

Library	API	>	MiApp	Interfaces	>	MiApp_ConnectionMode	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_DiscardMessage	Function
C
void	MiApp_DiscardMessage();

Description

This	is	the	primary	user	interface	functions	for	the	application
layer	to	discard	the	current	active	message,	release	the	system
resources	used	and	ready	to	receive	the	next	message.	It	is
must	be	called	after	finish	handling	the	message,	otherwise,	no
further	message	can	be	received.

Preconditions

Protocol	initialization	has	been	done.	A	message	has	been
received	by	the	application	layer.

Returns

None

Remarks

None

Example

Copy	Code
if(TRUE	==	MiApp_MessageAvailable())

{

				//	handle	the	received	message	in	global	variable	RxMessage

				//	discard	the	received	message	after	processing

				MiApp_DiscardMessage();

}

Library	API	>	MiApp	Interfaces	>	MiApp_DiscardMessage	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_EstablishConnection	Function
C
BYTE	MiApp_EstablishConnection(

				BYTE	ActiveScanIndex,	

				BYTE	Mode

);

Description

This	is	the	primary	user	interface	function	for	the	application
layer	to	start	communication	with	an	existing	PAN.	For	P2P
protocol,	this	function	call	can	establish	one	or	more
connections.	For	network	protocol,	this	function	can	be	used	to
join	the	network,	or	establish	a	virtual	socket	connection	with	a
node	out	of	the	radio	range.	There	are	multiple	ways	to	establish
connection(s),	all	depends	on	the	input	parameters.

Preconditions

Protocol	initialization	has	been	done.	If	only	to	establish
connection	with	a	predefined	device,	an	active	scan	must	be
performed	before	and	valid	active	scan	result	has	been	saved.

Parameters

Parameters	 Description	

BYTE
ActiveScanIndex	

The	index	of	the	target	device	in	the
ActiveScanResults	array,	if	a	predefined
device	is	targeted.	If	the	value	of
ActiveScanIndex	is	0xFF,	the	protocol	stack
will	try	to	establish	a	connection	with	any
device.	

BYTE	Mode	 The	mode	to	establish	a	connection.	This
parameter	is	generally	valid	in	

a	network	protocol.
The	possible	modes
are	

CONN_MODE_DIRECT	Establish	a
connection	within	radio	range.
CONN_MODE_INDIRECT	Establish	a
virtual	connection	with	a	device	that
may	be	in	or	out	of	the	radio	range.
This	mode	sometimes	is	called	cluster
socket,	which	is	only	valid	for	network
protocol.	The	PAN	Coordinator	will	be
involved	to	establish	a	virtual	indirect
socket	connection.

	

Returns

The	index	of	the	peer	device	on	the	connection	table.

Remarks

If	more	than	one	connections	have	been	established	through	this
function	call,	the	return	value	points	to	the	index	of	one	of	the
peer	devices.

Example

Copy	Code
//	Establish	one	or	more	connections	with	any	device

PeerIndex	=	MiApp_EstablishConnection(0xFF,	CONN_MODE_DIRECT

Library	API	>	MiApp	Interfaces	>	MiApp_EstablishConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_FlushTx	Macro
C
#define	MiApp_FlushTx	{TxData	=	PAYLOAD_START;}

Description

This	macro	reset	the	pointer	of	the	TX	buffer.	This	function	is
usually	called	before	filling	application	payload.

Preconditions

Protocol	initialization	has	been	done.

Returns

None

Remarks

None

Example

Copy	Code
MiApp_FlushTx();

MiApp_WriteData(AppPayload[0]);

MiApp_WriteData(AppPayload[1]);

Library	API	>	MiApp	Interfaces	>	MiApp_FlushTx	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_InitChannelHopping	Function
C
BOOL	MiApp_InitChannelHopping(

				DWORD	ChannelMap

);

Description

This	is	the	primary	user	interface	function	for	the	application	to
do	energy	scan	to	locate	the	channel	with	least	noise.	If	the
channel	is	not	current	operating	channel,	process	of	channel
hopping	will	be	started.

Preconditions

Transceiver	has	been	initialized

Parameters

Parameters	 Description	

DWORD	ChannelMap	 The	bit	map	of	the	candicate	channels
which	can	be	hopped	to	

Returns

a	boolean	to	indicate	if	channel	hopping	is	initiated

Example

Copy	Code
//	if	condition	meets,	scan	all	possible	channels	and	hop	

//	to	the	one	with	least	noise

MiApp_InitChannelHopping(0xFFFFFFFF);

	

Remark:	The	operating	channel	will	change	to	the	optimal
channel	with	least	noise

Library	API	>	MiApp	Interfaces	>	MiApp_InitChannelHopping	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_MessageAvailable	Function
C
BOOL	MiApp_MessageAvailable();

Description

This	is	the	primary	user	interface	functions	for	the	application
layer	to	call	the	Microchip	proprietary	protocol	stack	to	check	if	a
message	is	available	for	the	application.	The	function	will	call	the
protocol	stack	state	machine	to	keep	the	stack	running.	It	is
expected	that	this	function	should	be	called	periodically	in	the
application.	In	case	a	message	is	available,	all	information
related	to	the	recevied	message	will	be	stored	in	the	global
variable	RxMessage	in	the	format	of	RECEIVED_MESSAGE.

Preconditions

Protocol	initialization	has	been	done.

Returns

A	boolean	to	indicates	if	a	message	is	available	for	application.

Remarks

None

Example

Copy	Code
if(TRUE	==	MiApp_MessageAvailable())

{

				//	handle	the	received	message	in	global	variable	RxMessage

				//	discard	the	received	message	after	processing

				MiApp_DiscardMessage();

}

Library	API	>	MiApp	Interfaces	>	MiApp_MessageAvailable	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_NoiseDetection	Function
C
BYTE	MiApp_NoiseDetection(

				DWORD	ChannelMap,	

				BYTE	ScanDuration,	

				BYTE	DetectionMode,	

				OUTPUT	BYTE	*	NoiseLevel

);

Description

This	is	the	primary	user	interface	functions	for	the	application
layer	to	perform	noise	detection	on	multiple	channels.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

DWORD	ChannelMap	 The	bit	map	of	channels	to	perform	noise
scan.	The	32-bit	double	word	parameter	use
one	bit	to	represent	corresponding	channels
from	0	to	31.	For	instance,	0x00000003
represent	to	scan	channel	0	and	channel	1.	

BYTE	ScanDuration	 The	maximum	time	to	perform	scan	on
single	channel.	The	value	is	from	5	to	14.
The	real	time	to	perform	scan	can	be
calculated	in	following	formula	from	IEEE
802.15.4	specification	960	*
(2^ScanDuration	+	1)	*	10^(-6)	second	

BYTE	DetectionMode	 The	noise	detection	mode	to	perform	the
scan.	The	two	possible	scan	modes	are

NOISE_DETECT_ENERGY	Energy
detection	scan	mode
NOISE_DETECT_CS	Carrier	sense
detection	scan	mode

	

BYTE	*NoiseLevel	 The	noise	level	at	the	channel	with	least
noise	level	

Returns

The	channel	that	has	the	lowest	noise	level

Remarks

None

Example

Copy	Code
BYTE	NoiseLevel;

OptimalChannel	=	MiApp_NoiseDetection(0xFFFFFFFF,	10,	

Library	API	>	MiApp	Interfaces	>	MiApp_NoiseDetection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_RemoveConnection	Function
C
void	MiApp_RemoveConnection(

				BYTE	ConnectionIndex

);

Description

This	is	the	primary	user	interface	function	to	disconnect
connection(s).	For	a	P2P	protocol,	it	simply	remove	the
connection.	For	a	network	protocol,	if	the	device	referred	by	the
input	parameter	is	the	parent	of	the	device	calling	this	function,
the	calling	device	will	get	out	of	network	along	with	its	children.	If
the	device	referred	by	the	input	parameter	is	children	of	the
device	calling	this	function,	the	target	device	will	get	out	of
network.

Preconditions

Transceiver	has	been	initialized.	Node	has	establish	one	or	more
connections

Parameters

Parameters	 Description	

BYTE
ConnectionIndex	

The	index	of	the	connection	in	the
connection	table	to	be	removed	

Returns

None

Remarks

None

Example

Copy	Code
MiApp_RemoveConnection(0x00);

Library	API	>	MiApp	Interfaces	>	MiApp_RemoveConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_ResyncConnection	Function
C
BOOL	MiApp_ResyncConnection(

				BYTE	ConnectionIndex,	

				DWORD	ChannelMap

);

Description

This	is	the	primary	user	interface	function	for	the	application	to
resynchronize	a	lost	connection.	For	a	RFD	device	that	goes	to
sleep	periodically,	it	may	not	receive	the	channel	hopping
command	that	is	sent	when	it	is	sleep.	The	sleeping	RFD	device
depends	on	this	function	to	hop	to	the	channel	that	the	rest	of	the
PAN	has	jumped	to.	This	function	call	is	usually	triggered	by
continously	communication	failure	with	the	peers.

Preconditions

Transceiver	has	been	initialized

Parameters

Parameters	 Description	

DWORD	ChannelMap	 The	bit	map	of	channels	to	perform	noise
scan.	The	32-bit	double	word	parameter	use
one	bit	to	represent	corresponding	channels
from	0	to	31.	For	instance,	0x00000003
represent	to	scan	channel	0	and	channel	1.	

Returns

a	boolean	to	indicate	if	resynchronization	of	connection	is
successful

Example

Copy	Code
//	Sleeping	RFD	device	resync	with	its	associated	device,	usually	the	first	peer

//	in	the	connection	table

MiApp_ResyncConnection(0,	0xFFFFFFFF);

	

Remark:	If	operation	is	successful,	the	wireless	node	will	be
hopped	to	the	channel	that	the	rest	of	the	PAN	is	operating	on.

Library	API	>	MiApp	Interfaces	>	MiApp_ResyncConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_SearchConnection	Function
C
BYTE	MiApp_SearchConnection(

				BYTE	ScanDuration,	

				DWORD	ChannelMap

);

Description

This	is	the	primary	user	interface	function	for	the	application
layer	to	perform	an	active	scan.	After	this	function	call,	all	active
scan	response	will	be	stored	in	the	global	variable
ActiveScanResults	in	the	format	of	structure
ACTIVE_SCAN_RESULT.	The	return	value	indicates	the	total
number	of	valid	active	scan	response	in	the	active	scan	result
array.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	ScanDuration	 The	maximum	time	to	perform	scan	on
single	channel.	The	value	is	from	5	to	14.
The	real	time	to	perform	scan	can	be
calculated	in	following	formula	from	IEEE
802.15.4	specification	960	*
(2^ScanDuration	+	1)	*	10^(-6)	second	

DWORD	ChannelMap	 The	bit	map	of	channels	to	perform	noise

scan.	The	32-bit	double	word	parameter	use
one	bit	to	represent	corresponding	channels
from	0	to	31.	For	instance,	0x00000003
represent	to	scan	channel	0	and	channel	1.	

Returns

The	number	of	valid	active	scan	response	stored	in	the	global
variable	ActiveScanResults.

Remarks

None

Example

Copy	Code
//	Perform	an	active	scan	on	all	possible	channels

NumOfActiveScanResponse	=	MiApp_SearchConnection(10,	0xFFFFFFFF);

Library	API	>	MiApp	Interfaces	>	MiApp_SearchConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_SetChannel	Function
C
BOOL	MiApp_SetChannel(

				BYTE	channel

);

Description

This	is	the	primary	user	interface	function	to	set	the	operating
channel	for	the	RF	transceiver.	Valid	channels	are	from	0	to	31.
Depends	on	the	RF	transceiver,	its	frequency	band,	data	rate
and	other	settings,	not	all	channels	are	available.	If	input	channel
is	not	available	under	the	current	condition,	the	current	operating
channel	will	not	be	change,	and	the	return	value	will	be	FALSE.
Otherwise,	the	return	value	will	be	TRUE.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	Channel	 The	channel	to	as	the	future	operating
channel.	Channels	higher	than	31	are
invalid.	Valid	channels	between	0-31
depends	on	a	lot	of	factors	

Returns

a	boolean	to	indicate	if	channel	change	has	been	performed
successfully

Remarks

None

Example

Copy	Code
if(TRUE	==	MiApp_SetChannel(15))

{

				//	channel	changes	successfully

}

Library	API	>	MiApp	Interfaces	>	MiApp_SetChannel	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_StartConnection	Function
C
BOOL	MiApp_StartConnection(

				BYTE	Mode,	

				BYTE	ScanDuration,	

				DWORD	ChannelMap

);

Description

This	is	the	primary	user	interface	function	for	the	application
layer	to	a	PAN.	Usually,	this	fucntion	is	called	by	the	PAN
Coordinator	who	is	the	first	in	the	PAN.	The	PAN	Coordinator
may	start	the	PAN	after	a	noise	scan	if	specified	in	the	input
mode.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	Mode	 Whether	to	start	a	PAN	after	a	noise	scan.
Possible	modes	are

START_CONN_DIRECT	Start	PAN
directly	without	noise	scan
START_CONN_ENERGY_SCN
Perform	an	energy	scan	first,	then	start
the	PAN	on	the	channel	with	least
noise.
START_CONN_CS_SCN	Perform	a

carrier-sense	scan	first,	then	start	the
PAN	on	the	channel	with	least	noise.

	

BYTE	ScanDuration	 The	maximum	time	to	perform	scan	on
single	channel.	The	value	is	from	5	to	14.
The	real	time	to	perform	scan	can	be
calculated	in	following	formula	from	IEEE
802.15.4	

specification	 960	*	(2^ScanDuration	+	1)	*	10^(-6)	second
ScanDuration	is	discarded	if	the	connection
mode	is	START_CONN_DIRECT.	

DWORD	ChannelMap	 The	bit	map	of	channels	to	perform	noise
scan.	The	32-bit	double	word	parameter	use
one	bit	to	represent	corresponding	channels
from	0	to	31.	For	instance,	0x00000003
represent	to	scan	channel	0	and	channel	1.
ChannelMap	is	discarded	if	the	connection
mode	is	START_CONN_DIRECT.	

Returns

a	boolean	to	indicate	if	PAN	has	been	started	successfully.

Remarks

None

Example

Copy	Code
//	start	the	PAN	on	the	least	noisy	channel	after	scanning	all	possible	channels.

MiApp_StartConnection(START_CONN_ENERGY_SCN,	10,	0xFFFFFFFF);

Library	API	>	MiApp	Interfaces	>	MiApp_StartConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_TransceiverPowerState	Function
C
BYTE	MiApp_TransceiverPowerState(

				BYTE	Mode

);

Description

This	is	the	primary	user	interface	functions	for	the	application
layer	to	put	RF	transceiver	into	sleep	or	wake	it	up.	This	function
is	only	available	to	those	wireless	nodes	that	may	have	to
disable	the	transceiver	to	save	battery	power.	

This	is	the	primary	user	interface	functions	for	the	application
layer	to	put	RF	transceiver	into	sleep	or	wake	it	up.	This	function
is	only	available	to	those	wireless	nodes	that	may	have	to
disable	the	transceiver	to	save	battery	power.

Preconditions

Protocol	initialization	has	been	done.	

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	Mode	 The	mode	of	power	state	for	the	RF
transceiver	to	be	set.	The	possible	power
states	are	following

POWER_STATE_SLEEP	The	deep
sleep	mode	for	RF	transceiver

POWER_STATE_WAKEUP	Wake	up
state,	or	operating	state	for	RF
transceiver
POWER_STATE_WAKEUP_DR	Put
device	into	wakeup	mode	and	then
transmit	a	data	request	to	the	device's
associated	device

The	mode	of	power	state	for	the	RF
transceiver	to	be	set.	The	possible	power
states	are	following

POWER_STATE_SLEEP	The	deep
sleep	mode	for	RF	transceiver
POWER_STATE_WAKEUP	Wake	up
state,	or	operating	state	for	RF
transceiver
POWER_STATE_WAKEUP_DR	Put
device	into	wakeup	mode	and	then
transmit	a	data	request	to	the	device's
associated	device

	

Returns

The	status	of	the	operation.	The	following	are	the	possible	status

SUCCESS	Operation	successful
ERR_TRX_FAIL	Transceiver	fails	to	go	to	sleep	or	wake	up
ERR_TX_FAIL	Transmission	of	Data	Request	command	failed.
Only	available	if	the	input	mode	is	POWER_STATE_WAKEUP_DR.
ERR_RX_FAIL	Failed	to	receive	any	response	to	Data	Request
command.	Only	available	if	input	mode	is
POWER_STATE_WAKEUP_DR.
ERR_INVLAID_INPUT	Invalid	input	mode.

	

The	status	of	the	operation.	The	following	are	the	possible	status

SUCCESS	Operation	successful
ERR_TRX_FAIL	Transceiver	fails	to	go	to	sleep	or	wake	up
ERR_TX_FAIL	Transmission	of	Data	Request	command	failed.
Only	available	if	the	input	mode	is	POWER_STATE_WAKEUP_DR.
ERR_RX_FAIL	Failed	to	receive	any	response	to	Data	Request
command.	Only	available	if	input	mode	is
POWER_STATE_WAKEUP_DR.
ERR_INVLAID_INPUT	Invalid	input	mode.

Remarks

None	

None

Example	1

Copy	Code
//	put	RF	transceiver	into	sleep

MiApp_TransceiverPowerState(POWER_STATE_SLEEP;

//	Put	the	MCU	into	sleep

Sleep();				

//	wakes	up	the	MCU	by	WDT,	external	interrupt	or	any	other	means

//	make	sure	that	RF	transceiver	to	wake	up	and	send	out	Data	Request

MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR);

Example	2

Copy	Code
//	put	RF	transceiver	into	sleep

MiApp_TransceiverPowerState(POWER_STATE_SLEEP;

//	Put	the	MCU	into	sleep

Sleep();				

//	wakes	up	the	MCU	by	WDT,	external	interrupt	or	any	other	means

//	make	sure	that	RF	transceiver	to	wake	up	and	send	out	Data	Request

MiApp_TransceiverPowerState(POWER_STATE_WAKEUP_DR);

Library	API	>	MiApp	Interfaces	>	MiApp_TransceiverPowerState
Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_UnicastAddress	Function
C
BOOL	MiApp_UnicastAddress(

				BYTE	*	DestAddress,	

				BOOL	PermanentAddr,	

				BOOL	SecEn

);

Description

This	is	one	of	the	primary	user	interface	functions	for	the
application	layer	to	unicast	a	message.	The	destination	device	is
specified	by	the	input	parameter	DestinationAddress.	The
application	payload	is	filled	in	the	global	char	array	TxBuffer.

Preconditions

Protocol	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	*
DestinationAddress	

The	destination	address	of	the	unicast	

BOOL	PermanentAddr	 The	boolean	to	indicate	if	the	destination
address	above	is	a	permanent	address	or
alternative	network	address.	This	parameter
is	only	used	in	a	network	protocol.	

BOOL	SecEn	 The	boolean	indicates	if	the	application
payload	needs	to	be	secured	before
transmission.	

Returns

A	boolean	to	indicates	if	the	unicast	procedure	is	succcessful.

Remarks

None

Example

Copy	Code
//	Secure	and	then	broadcast	the	message	stored	in	TxBuffer	to	the	permanent	address

//	specified	in	the	input	parameter.

MiApp_UnicastAddress(DestAddress,	TRUE,	TRUE);

Library	API	>	MiApp	Interfaces	>	MiApp_UnicastAddress	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_UnicastConnection	Function
C
BOOL	MiApp_UnicastConnection(

				BYTE	ConnectionIndex,	

				BOOL	SecEn

);

Description

This	is	one	of	the	primary	user	interface	functions	for	the
application	layer	to	unicast	a	message.	The	destination	device	is
in	the	connection	table	specified	by	the	input	parameter
ConnectionIndex.	The	application	payload	is	filled	in	the	global
char	array	TxBuffer.

Preconditions

Protocol	initialization	has	been	done.	The	input	parameter
ConnectionIndex	points	to	a	valid	peer	device	in	the	connection
table.

Parameters

Parameters	 Description	

BYTE
ConnectionIndex	

The	index	of	the	destination	device	in	the
connection	table.	

BOOL	SecEn	 The	boolean	indicates	if	the	application
payload	needs	to	be	secured	before
transmission.	

Returns

A	boolean	to	indicates	if	the	unicast	procedure	is	succcessful.

Remarks

None

Example

Copy	Code
//	Secure	and	then	unicast	the	message	stored	in	TxBuffer	to	the	first	device	in	

//	the	connection	table

MiApp_UnicastConnection(0,	TRUE);

Library	API	>	MiApp	Interfaces	>	MiApp_UnicastConnection	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_WriteData	Macro
C
#define	MiApp_WriteData(a)	TxBuffer[TxData++]	=	a

Description

This	macro	writes	one	byte	of	application	payload	to	the	TX
buffer.

Preconditions

Protocol	initialization	has	been	done.	MiApp_FlushTx()	has	been
called	before	calling	the	first	MiApp_WriteData	for	the	first	time.

Parameters

Parameters	 Description	

BYTE	a	 One	byte	of	application	payload	to	be
written	to	the	TX	buffer	

Returns

None

Remarks

None

Example

Copy	Code
MiApp_FlushTx();

MiApp_WriteData(AppPayload[0]);

MiApp_WriteData(AppPayload[1]);

Library	API	>	MiApp	Interfaces	>	MiApp_WriteData	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

Call	Back	Functions
Callback	Functions
	

MiApp	callback	functions	are	called	from	the	protocol	stack	to
application	layer.	In	most	of	the	cases,	the	callback	functions	are
defined	as	macros.	If	developer	choose	to	implement	the
function,	the	macro	can	be	commented	out	and	replaced	by	a
function	call	in	the	application	layer.

Macros

	 Name	 Description	

	 MiApp_CB_AllowConnection	 MiApp_CB_AllowConnection	is
called	by	the	stack	to	the
application	layer	to	notify	the
application	that	a	node	is	trying	to
join	the	network.	Application	may
return	a	boolean	to	indicate	if
joining	is	allowed	or	denied.	

	 MiApp_CB_RFDAcknowledgement	 MiApp_CB_RFDAcknowledgement
is	called	by	the	MiWi	or	MiWi	PRO
stack	to	notify	the	application	that
a	network	layer	acknowledgement
is	received	from	a	sleeping	device.
MiApp	function
MiApp_UnicastAddress	or
MiApp_UnicastConnection	cannot
wait	for	the	acknowledgement	from
a	sleep	device,	so	call	back
function	has	to	be	used	to	notify
the	application	layer	that

acknowledgement	has	been
received.	

Library	API	>	MiApp	Interfaces	>	Call	Back	Functions

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_CB_AllowConnection	Macro
C
#define	MiApp_CB_AllowConnection(handleInConnectionTable)	TRUE

Description

MiApp_CB_AllowConnection	is	called	by	the	stack	to	the
application	layer	to	notify	the	application	that	a	node	is	trying	to
join	the	network.	Application	may	return	a	boolean	to	indicate	if
joining	is	allowed	or	denied.

Library	API	>	MiApp	Interfaces	>	Call	Back	Functions	>
MiApp_CB_AllowConnection	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiApp_CB_RFDAcknowledgement	Macro
C
#define	MiApp_CB_RFDAcknowledgement(SourceShortAddress,	AcknowledgementSeqNum)	

Description

MiApp_CB_RFDAcknowledgement	is	called	by	the	MiWi	or	MiWi
PRO	stack	to	notify	the	application	that	a	network	layer
acknowledgement	is	received	from	a	sleeping	device.	MiApp
function	MiApp_UnicastAddress	or	MiApp_UnicastConnection
cannot	wait	for	the	acknowledgement	from	a	sleep	device,	so	call
back	function	has	to	be	used	to	notify	the	application	layer	that
acknowledgement	has	been	received.

Library	API	>	MiApp	Interfaces	>	Call	Back	Functions	>
MiApp_CB_RFDAcknowledgement	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC	Interfaces

Functions

	 Name	 Description	

	 MiMAC_ChannelAssessment	 This	function	perform	the	noise
detection	on	current	operating
channel
This	function	perform	the	noise
detection	on	current	operating
channel	

	 MiMAC_DiscardPacket	 This	function	discard	the
current	packet	received	from
the	RF	transceiver
This	function	discard	the
current	packet	received	from
the	RF	transceiver	

	 MiMAC_Init	 This	function	initialize	MiMAC
layer	

	 MiMAC_PowerState	 This	function	puts	the	RF
transceiver	into	sleep	or	wake	it
up	

	 MiMAC_ReceivedPacket	 This	function	check	if	a	new
packet	has	been	received	by
the	RF	transceiver
This	function	check	if	a	new
packet	has	been	received	by
the	RF	transceiver	

	 MiMAC_SendPacket	 This	function	transmit	a	packet	

	 MiMAC_SetAltAddress	 This	function	set	the	alternative
network	address	and	PAN
identifier	if	applicable	

	 MiMAC_SetChannel	 This	function	set	the	operating
channel	for	the	RF	transceiver	

	 MiMAC_SetPower	 This	function	set	the	output
power	for	the	RF	transceiver	

Library	API	>	MiMAC	Interfaces

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_ChannelAssessment	Function
C
BYTE	MiMAC_ChannelAssessment(

				BYTE	AssessmentMode

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
perform	the	noise	detection	scan.	Not	all	assessment	modes	are
supported	for	all	RF	transceivers.	

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
perform	the	noise	detection	scan.	Not	all	assessment	modes	are
supported	for	all	RF	transceivers.

Preconditions

MiMAC	initialization	has	been	done.	

MiMAC	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE
AssessmentMode	

The	mode	to	perform	noise	assessment.	The
possible	assessment	modes	are

CHANNEL_ASSESSMENT_CARRIER_SENSE
Carrier	sense	detection	mode
CHANNEL_ASSESSMENT_ENERGY_DETECT
Energy	detection	mode

The	mode	to	perform	noise	assessment.	The

possible	assessment	modes	are

CHANNEL_ASSESSMENT_CARRIER_SENSE
Carrier	sense	detection	mode
CHANNEL_ASSESSMENT_ENERGY_DETECT
Energy	detection	mode

	

Returns

A	byte	to	indicate	the	noise	level	at	current	channel.	

A	byte	to	indicate	the	noise	level	at	current	channel.

Remarks

None	

None

Example	1

Copy	Code
NoiseLevel	=	MiMAC_ChannelAssessment(CHANNEL_ASSESSMENT_CARRIER_SENSE

Example	2

Copy	Code
NoiseLevel	=	MiMAC_ChannelAssessment(CHANNEL_ASSESSMENT_CARRIER_SENSE

Library	API	>	MiMAC	Interfaces	>	MiMAC_ChannelAssessment	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_DiscardPacket	Function
C
void	MiMAC_DiscardPacket();

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
discard	the	current	packet	received	from	the	RF	transceiver.	

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
discard	the	current	packet	received	from	the	RF	transceiver.

Preconditions

MiMAC	initialization	has	been	done.	

MiMAC	initialization	has	been	done.

Returns

None	

None

Remarks

None	

None

Example	1

Copy	Code
if(TRUE	==	MiMAC_ReceivedPacket())

{

				//	handle	the	raw	data	from	RF	transceiver

				//	discard	the	current	packet

				MiMAC_DiscardPacket();

}

Example	2

Copy	Code
if(TRUE	==	MiMAC_ReceivedPacket())

{

				//	handle	the	raw	data	from	RF	transceiver

				//	discard	the	current	packet

				MiMAC_DiscardPacket();

}

Library	API	>	MiMAC	Interfaces	>	MiMAC_DiscardPacket	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_Init	Function
C
BOOL	MiMAC_Init(

				MACINIT_PARAM	initValue

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
initialize	the	MiMAC	layer.	The	initialization	parameter	is
assigned	in	the	format	of	structure	MACINIT_PARAM.

Preconditions

MCU	initialization	has	been	done.

Parameters

Parameters	 Description	

MACINIT_PARAM
initValue	

Initialization	value	for	MiMAC	layer	

Returns

A	boolean	to	indicates	if	initialization	is	successful.

Remarks

None

Example

Copy	Code
MiMAC_Init(initParameter);

Library	API	>	MiMAC	Interfaces	>	MiMAC_Init	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_PowerState	Function
C
BOOL	MiMAC_PowerState(

				BYTE	PowerState

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to	set
different	power	state	for	the	RF	transceiver.	There	are	minimal
power	states	defined	as	deep	sleep	and	operating	mode.
Additional	power	states	can	be	defined	for	individual	RF
transceiver	depends	on	hardware	design.

Preconditions

MiMAC	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	PowerState	 The	power	state	of	the	RF	transceiver	to	be
set	to.	The	minimum	definitions	for	all	RF
transceivers	are

POWER_STATE_DEEP_SLEEP	RF
transceiver	deep	sleep	mode.
POWER_STATE_OPERATE	RF
transceiver	operating	mode.

	

Returns

A	boolean	to	indicate	if	chaning	power	state	of	RF	transceiver	is
successful.

Remarks

None

Example

Copy	Code
//	Put	RF	transceiver	into	sleep

MiMAC_PowerState(POWER_STATE_DEEP_SLEEP);

//	Put	MCU	to	sleep

Sleep();

//	Wake	up	the	MCU	by	WDT,	external	interrupt	or	any	other	means

//	Wake	up	the	RF	transceiver

MiMAC_PowerState(POWER_STATE_OPERATE);	

Library	API	>	MiMAC	Interfaces	>	MiMAC_PowerState	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_ReceivedPacket	Function
C
BOOL	MiMAC_ReceivedPacket();

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
check	if	a	packet	has	been	received	by	the	RF	transceiver.	When
a	packet	has	been	received,	all	information	will	be	stored	in	the
global	variable	MACRxPacket	in	the	format	of
MAC_RECEIVED_PACKET;	

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to
check	if	a	packet	has	been	received	by	the	RF	transceiver.	When
a	packet	has	been	received,	all	information	will	be	stored	in	the
global	variable	MACRxPacket	in	the	format	of
MAC_RECEIVED_PACKET;

Preconditions

MiMAC	initialization	has	been	done.	

MiMAC	initialization	has	been	done.

Returns

A	boolean	to	indicate	if	a	packet	has	been	received	by	the	RF
transceiver.	

A	boolean	to	indicate	if	a	packet	has	been	received	by	the	RF
transceiver.

Remarks

None	

None

Example	1

Copy	Code
if(TRUE	==	MiMAC_ReceivedPacket())

{

				//	handle	the	raw	data	from	RF	transceiver

				//	discard	the	current	packet

				MiMAC_DiscardPacket();

}

Example	2

Copy	Code
if(TRUE	==	MiMAC_ReceivedPacket())

{

				//	handle	the	raw	data	from	RF	transceiver

				//	discard	the	current	packet

				MiMAC_DiscardPacket();

}

Library	API	>	MiMAC	Interfaces	>	MiMAC_ReceivedPacket	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_SendPacket	Function
C
BOOL	MiMAC_SendPacket(

				MAC_TRANS_PARAM	transParam,	

				BYTE	*	MACPayload,	

				BYTE	MACPayloadLen

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to	send
a	packet.	Input	parameter	transParam	configure	the	way	to
transmit	the	packet.

Preconditions

MiMAC	initialization	has	been	done.

Parameters

Parameters	 Description	

MAC_TRANS_PARAM
transParam	

The	struture	to	configure	the	transmission
way	

BYTE	*	MACPaylaod	 Pointer	to	the	buffer	of	MAC	payload	

BYTE
MACPayloadLen	

The	size	of	the	MAC	payload	

Returns

A	boolean	to	indicate	if	a	packet	has	been	received	by	the	RF

transceiver.

Remarks

None

Example

Copy	Code
MiMAC_SendPacket(transParam,	MACPayload,	MACPayloadLen);

Library	API	>	MiMAC	Interfaces	>	MiMAC_SendPacket	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_SetAltAddress	Function
C
BOOL	MiMAC_SetAltAddress(

				BYTE	*	Address,	

				BYTE	*	PANID

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to	set
alternative	network	address	and/or	PAN	identifier.	This	function
call	applies	to	only	IEEE	802.15.4	compliant	RF	transceivers.	In
case	alternative	network	address	is	not	supported,	this	function
will	return	FALSE.

Preconditions

MiMAC	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	*	Address	 The	alternative	network	address	of	the	host
device.	

BYTE	*	PANID	 The	PAN	identifier	of	the	host	device	

Returns

A	boolean	to	indicates	if	setting	alternative	network	address	is
successful.

Remarks

None

Example

Copy	Code
WORD	NetworkAddress	=	0x0000;

WORD	PANID	=	0x1234;

MiMAC_SetAltAddress(&NetworkAddress,	&PANID);

Library	API	>	MiMAC	Interfaces	>	MiMAC_SetAltAddress	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_SetChannel	Function
C
BOOL	MiMAC_SetChannel(

				BYTE	channel,	

				BYTE	offsetFreq

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to	set
the	operating	frequency	of	the	RF	transceiver.	Valid	channel
number	are	from	0	to	31.	For	different	frequency	band,	data	rate
and	other	RF	settings,	some	channels	from	0	to	31	might	be
unavailable.	Paramater	offsetFreq	is	used	to	fine	tune	the	center
frequency	across	the	frequency	band.	For	transceivers	that
follow	strict	definition	of	channels,	this	parameter	may	be
discarded.	The	center	frequency	is	calculated	as
(LowestFrequency	+	Channel	*	ChannelGap	+	offsetFreq)

Preconditions

Hardware	initialization	on	MCU	has	been	done.

Parameters

Parameters	 Description	

BYTE	channel	 Channel	number.	Range	from	0	to	31.	Not
all	channels	are	available	under	all
conditions.	

BYTE	offsetFreq	 Offset	frequency	used	to	fine	tune	the	center
frequency.	May	not	apply	to	all	RF

transceivers	

Returns

A	boolean	to	indicates	if	channel	setting	is	successful.

Remarks

None

Example

Copy	Code
//	Set	center	frequency	to	be	exactly	channel	12

MiMAC_SetChannel(12,	0);

Library	API	>	MiMAC	Interfaces	>	MiMAC_SetChannel	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MiMAC_SetPower	Function
C
BOOL	MiMAC_SetPower(

				BYTE	outputPower

);

Description

This	is	the	primary	MiMAC	interface	for	the	protocol	layer	to	set
the	output	power	for	the	RF	transceiver.	Whether	the	RF
transceiver	can	adjust	output	power	depends	on	the	hardware
implementation.

Preconditions

MiMAC	initialization	has	been	done.

Parameters

Parameters	 Description	

BYTE	outputPower	 RF	transceiver	output	power.	

Returns

A	boolean	to	indicates	if	setting	output	power	is	successful.

Remarks

None

Example

Copy	Code
//	Set	output	power	to	be	0dBm

MiMAC_SetPower(TX_POWER_0_DB);

Library	API	>	MiMAC	Interfaces	>	MiMAC_SetPower	Function

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Types

Structures

	 Name	 Description	

	 CONNECTION_ENTRY	 Peer	Device	Information	in
Connection	Table
This	structure	contains	device
information	about	the	peer	device
of	current	node.	It	is	the	element
structure	for	connection	table.
Due	to	the	bank	limitation	in
PIC18	MCU	architecture,	the	size
of	CONNECTION_ENTRY	must
be	dividable	by	256	in	case	the
array	is	across	the	bank.	In	this
case,	the	user	need	to	make	sure
that	there	is	no	problem	

	 RECEIVED_MESSAGE	 Received	Message	information
This	structure	contains
information	about	the	received
application	message.	

	 MAC_RECEIVED_PACKET	 Content	of	the	Received
Message
This	structure	contains	all
information	of	the	received
message	

	 MAC_TRANS_PARAM	 Parameters	to	Transmit	a	Packet
This	structure	contains
configurations	to	transmit	a
packet	

Types

	 Name	 Description	

	 BOOL	 Undefined	size	

	 CHAR	 8-bit	signed	

	 SHORT	 16-bit	signed	

	 BYTE	 8-bit	unsigned	

	 LONG	 32-bit	signed	MPLAB	C	Compiler	for	PIC18
does	not	support	64-bit	integers	

	 WORD	 16-bit	unsigned	

	 DWORD	 32-bit	unsigned	MPLAB	C	Compiler	for
PIC18	does	not	support	64-bit	integers	

Unions

	 Name	 Description	

	 WORD_VAL	 This	is	type	WORD_VAL.	

	 DWORD_VAL	 This	is	type	DWORD_VAL.	

Symbol	Reference	>	Types

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BOOL	Type
C
typedef	enum	_BOOL	BOOL;

Description

Undefined	size

Symbol	Reference	>	Types	>	BOOL	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CHAR	Type
C
typedef	signed	char	CHAR;

Description

8-bit	signed

Symbol	Reference	>	Types	>	CHAR	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SHORT	Type
C
typedef	signed	short	int	SHORT;

Description

16-bit	signed

Symbol	Reference	>	Types	>	SHORT	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BYTE	Type
C
typedef	unsigned	char	BYTE;

Description

8-bit	unsigned

Symbol	Reference	>	Types	>	BYTE	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LONG	Type
C
typedef	signed	long	LONG;

Description

32-bit	signed	MPLAB	C	Compiler	for	PIC18	does	not	support	64-
bit	integers

Symbol	Reference	>	Types	>	LONG	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WORD	Type
C
typedef	unsigned	short	int	WORD;

Description

16-bit	unsigned

Symbol	Reference	>	Types	>	WORD	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WORD_VAL	Union
C
typedef	union	{

		WORD	Val;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

		}	byte;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

		}	bits;

}	WORD_VAL,	WORD_BITS;

Description

This	is	type	WORD_VAL.

Symbol	Reference	>	Types	>	WORD_VAL	Union

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DWORD	Type
C
typedef	unsigned	long	DWORD;

Description

32-bit	unsigned	MPLAB	C	Compiler	for	PIC18	does	not	support
64-bit	integers

Symbol	Reference	>	Types	>	DWORD	Type

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DWORD_VAL	Union
C
typedef	union	{

		DWORD	Val;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

				__EXTENSION	BYTE	b16	:	1;

				__EXTENSION	BYTE	b17	:	1;

				__EXTENSION	BYTE	b18	:	1;

				__EXTENSION	BYTE	b19	:	1;

				__EXTENSION	BYTE	b20	:	1;

				__EXTENSION	BYTE	b21	:	1;

				__EXTENSION	BYTE	b22	:	1;

				__EXTENSION	BYTE	b23	:	1;

				__EXTENSION	BYTE	b24	:	1;

				__EXTENSION	BYTE	b25	:	1;

				__EXTENSION	BYTE	b26	:	1;

				__EXTENSION	BYTE	b27	:	1;

				__EXTENSION	BYTE	b28	:	1;

				__EXTENSION	BYTE	b29	:	1;

				__EXTENSION	BYTE	b30	:	1;

				__EXTENSION	BYTE	b31	:	1;

		}	word;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

				__EXTENSION	BYTE	b16	:	1;

				__EXTENSION	BYTE	b17	:	1;

				__EXTENSION	BYTE	b18	:	1;

				__EXTENSION	BYTE	b19	:	1;

				__EXTENSION	BYTE	b20	:	1;

				__EXTENSION	BYTE	b21	:	1;

				__EXTENSION	BYTE	b22	:	1;

				__EXTENSION	BYTE	b23	:	1;

				__EXTENSION	BYTE	b24	:	1;

				__EXTENSION	BYTE	b25	:	1;

				__EXTENSION	BYTE	b26	:	1;

				__EXTENSION	BYTE	b27	:	1;

				__EXTENSION	BYTE	b28	:	1;

				__EXTENSION	BYTE	b29	:	1;

				__EXTENSION	BYTE	b30	:	1;

				__EXTENSION	BYTE	b31	:	1;

		}	byte;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

				__EXTENSION	BYTE	b16	:	1;

				__EXTENSION	BYTE	b17	:	1;

				__EXTENSION	BYTE	b18	:	1;

				__EXTENSION	BYTE	b19	:	1;

				__EXTENSION	BYTE	b20	:	1;

				__EXTENSION	BYTE	b21	:	1;

				__EXTENSION	BYTE	b22	:	1;

				__EXTENSION	BYTE	b23	:	1;

				__EXTENSION	BYTE	b24	:	1;

				__EXTENSION	BYTE	b25	:	1;

				__EXTENSION	BYTE	b26	:	1;

				__EXTENSION	BYTE	b27	:	1;

				__EXTENSION	BYTE	b28	:	1;

				__EXTENSION	BYTE	b29	:	1;

				__EXTENSION	BYTE	b30	:	1;

				__EXTENSION	BYTE	b31	:	1;

		}	wordUnion;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

				__EXTENSION	BYTE	b16	:	1;

				__EXTENSION	BYTE	b17	:	1;

				__EXTENSION	BYTE	b18	:	1;

				__EXTENSION	BYTE	b19	:	1;

				__EXTENSION	BYTE	b20	:	1;

				__EXTENSION	BYTE	b21	:	1;

				__EXTENSION	BYTE	b22	:	1;

				__EXTENSION	BYTE	b23	:	1;

				__EXTENSION	BYTE	b24	:	1;

				__EXTENSION	BYTE	b25	:	1;

				__EXTENSION	BYTE	b26	:	1;

				__EXTENSION	BYTE	b27	:	1;

				__EXTENSION	BYTE	b28	:	1;

				__EXTENSION	BYTE	b29	:	1;

				__EXTENSION	BYTE	b30	:	1;

				__EXTENSION	BYTE	b31	:	1;

		}	bits;

}	DWORD_VAL;

Description

This	is	type	DWORD_VAL.

Symbol	Reference	>	Types	>	DWORD_VAL	Union

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONNECTION_ENTRY	Structure
C
typedef	struct	__CONNECTION_ENTRY	{

		WORD_VAL	PANID;

		WORD_VAL	AltAddress;

		BYTE	Address[MY_ADDRESS_LENGTH];

		CONNECTION_STATUS	status;

		BYTE	PeerInfo[ADDITIONAL_NODE_ID_SIZE];

}	CONNECTION_ENTRY;

Description

Peer	Device	Information	in	Connection	Table	

This	structure	contains	device	information	about	the	peer	device
of	current	node.	It	is	the	element	structure	for	connection	table.
Due	to	the	bank	limitation	in	PIC18	MCU	architecture,	the	size	of
CONNECTION_ENTRY	must	be	dividable	by	256	in	case	the
array	is	across	the	bank.	In	this	case,	the	user	need	to	make
sure	that	there	is	no	problem

Members

Members	 Description	

WORD_VAL	PANID;	 PAN	Identifier	of	the	peer
device.	May	not
necessary	in	P2P
protocol	

WORD_VAL	AltAddress;	 Alternative	address	of	the
peer	device.	Not
necessary	in	P2P
protocol	

BYTE
Address[MY_ADDRESS_LENGTH];	

Permanent	address	of
peer	device	

BYTE
PeerInfo[ADDITIONAL_NODE_ID_SIZE];	

Additional	Node	ID
information,	if	defined	in
application	layer	

Symbol	Reference	>	Types	>	CONNECTION_ENTRY	Structure

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RECEIVED_MESSAGE	Structure
C
typedef	struct	{

		union	{

				BYTE	Val;

				struct	{

						BYTE	broadcast	:	2;

						BYTE	ackReq	:	1;

						BYTE	secEn	:	1;

						BYTE	repeat	:	1;

						BYTE	command	:	1;

						BYTE	srcPrsnt	:	1;

						BYTE	altSrcAddr	:	1;

				}	bits;

		}	flags;

		WORD_VAL	SourcePANID;

		BYTE	*	SourceAddress;

		BYTE	*	Payload;

		BYTE	PayloadSize;

		BYTE	PacketRSSI;

		BYTE	PacketLQI;

}	RECEIVED_MESSAGE;

Description

Received	Message	information	

This	structure	contains	information	about	the	received	application
message.

Members

Members	 Description	

BYTE	broadcast	:	2;	 1:	broadcast	message	

BYTE	ackReq	:	1;	 1:	sender	request	acknowledgement	in
MAC.	

BYTE	secEn	:	1;	 1:	application	payload	has	been	secured	

BYTE	repeat	:	1;	 1:	message	received	through	a	repeater	

BYTE	command	:	1;	 1:	message	is	a	command	frame	

BYTE	srcPrsnt	:	1;	 1:	source	address	present	in	the	packet	

BYTE	altSrcAddr	:	1;	 1:	source	address	is	alternative	network
address	

WORD_VAL
SourcePANID;	

PAN	Identifier	of	the	sender	

BYTE	*
SourceAddress;	

pointer	to	the	source	address	

BYTE	*	Payload;	 pointer	to	the	application	payload	

BYTE	PayloadSize;	 application	payload	length	

BYTE	PacketRSSI;	 RSSI	value	of	the	receive	message	

BYTE	PacketLQI;	 LQI	value	of	the	received	message	

Symbol	Reference	>	Types	>	RECEIVED_MESSAGE	Structure

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_RECEIVED_PACKET	Structure
C
typedef	struct	{

		union	{

				BYTE	Val;

				struct	{

						BYTE	packetType	:	2;

						BYTE	broadcast	:	1;

						BYTE	secEn	:	1;

						BYTE	repeat	:	1;

						BYTE	ackReq	:	1;

						BYTE	destPrsnt	:	1;

						BYTE	sourcePrsnt	:	1;

				}	bits;

		}	flags;

		BYTE	*	SourceAddress;

		BYTE	*	Payload;

		BYTE	PayloadLen;

		BYTE	RSSIValue;

		BYTE	LQIValue;

		BOOL	altSourceAddress;

		WORD_VAL	SourcePANID;

}	MAC_RECEIVED_PACKET;

Description

Content	of	the	Received	Message	

This	structure	contains	all	information	of	the	received	message

Members

Members	 Description	

BYTE	packetType	:	2;	 type	of	packet.	Possible	types	are

PACKET_TYPE_DATA	-	Data	type
PACKET_TYPE_COMMAND	-
Command	type
PACKET_TYPE_ACK	-
Acknowledgement	type
PACKET_TYPE_RESERVE	-	Reserved
type

	

BYTE	broadcast	:	1;	 1:	broadcast,	0:	unicast	

BYTE	secEn	:	1;	 1:	secure	the	MAC	payload,	0:	send	plain
text	

BYTE	repeat	:	1;	 1:	allow	repeaters	to	forward	the	message,
0:	send	message	directly	

BYTE	ackReq	:	1;	 1:	acknowledgement	required,	0:	no
acknowldgement	

BYTE	destPrsnt	:	1;	 1:	destination	address	in	the	packet,	0:
destination	address	not	in	the	packet	

BYTE	sourcePrsnt	:	1;	 1:	source	address	in	the	packet,	0:	source
address	not	in	the	packet	

BYTE	*
SourceAddress;	

Address	of	the	Sender	

BYTE	*	Payload;	 Pointer	to	the	payload	

BYTE	PayloadLen;	 Payload	size	

BYTE	RSSIValue;	 RSSI	value	for	the	received	packet	

BYTE	LQIValue;	 LQI	value	for	the	received	packet	

BOOL
altSourceAddress;	

Source	address	is	the	alternative	network
address	

WORD_VAL
SourcePANID;	

PAN	ID	of	the	sender	

Symbol	Reference	>	Types	>	MAC_RECEIVED_PACKET	Structure

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_TRANS_PARAM	Structure
C
typedef	struct	{

		union	{

				BYTE	Val;

				struct	{

						BYTE	packetType	:	2;

						BYTE	broadcast	:	1;

						BYTE	secEn	:	1;

						BYTE	repeat	:	1;

						BYTE	ackReq	:	1;

						BYTE	destPrsnt	:	1;

						BYTE	sourcePrsnt	:	1;

				}	bits;

		}	flags;

		BYTE	*	DestAddress;

		BOOL	altDestAddr;

		BOOL	altSrcAddr;

		WORD_VAL	DestPANID;

}	MAC_TRANS_PARAM;

Description

Parameters	to	Transmit	a	Packet	

This	structure	contains	configurations	to	transmit	a	packet

Members

Members	 Description	

BYTE	packetType	:	2;	 type	of	packet.	Possible	types	are

PACKET_TYPE_DATA	-	Data	type
PACKET_TYPE_COMMAND	-

Command	type
PACKET_TYPE_ACK	-
Acknowledgement	type
PACKET_TYPE_RESERVE	-	Reserved
type

	

BYTE	broadcast	:	1;	 1:	broadcast,	0:	unicast	

BYTE	secEn	:	1;	 1:	secure	the	MAC	payload,	0:	send	plain
text	

BYTE	repeat	:	1;	 1:	allow	repeaters	to	forward	the	message,
0:	send	message	directly	

BYTE	ackReq	:	1;	 1:	acknowledgement	required,	0:	no
acknowldgement	

BYTE	destPrsnt	:	1;	 1:	destination	address	in	the	packet,	0:
destination	address	not	in	the	packet	

BYTE	sourcePrsnt	:	1;	 1:	source	address	in	the	packet,	0:	source
address	not	in	the	packet	

BYTE	*	DestAddress;	 destination	address	

BOOL	altDestAddr;	 use	the	alternative	network	address	as
destination	in	the	packet	

BOOL	altSrcAddr;	 use	the	alternative	network	address	as
source	in	the	packet	

WORD_VAL
DestPANID;	

PAN	identifier	of	the	destination	

Symbol	Reference	>	Types	>	MAC_TRANS_PARAM	Structure

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]

Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Structs,	Records,	Enums

Structures

	 Name	 Description	

	 ACTIVE_SCAN_RESULT	 Active	Scan	result
This	structure	contains	information
from	active	scan.	Application	layer
will	depend	on	this	information	to
decide	the	way	to	establish
connections.	

	 __CONNECTION_ENTRY	 Peer	Device	Information	in
Connection	Table
This	structure	contains	device
information	about	the	peer	device
of	current	node.	It	is	the	element
structure	for	connection	table.	Due
to	the	bank	limitation	in	PIC18
MCU	architecture,	the	size	of
CONNECTION_ENTRY	must	be
dividable	by	256	in	case	the	array
is	across	the	bank.	In	this	case,
the	user	need	to	make	sure	that
there	is	no	problem	

Unions

	 Name	 Description	

	 __CONNECTION_STATUS	 Status	information	of	the
connected	peer	information
This	structure	contains	the

information	regarding	the	status
of	the	connected	peer	device.	

	 CONNECTION_STATUS	 Status	information	of	the
connected	peer	information
This	structure	contains	the
information	regarding	the	status
of	the	connected	peer	device.	

	 BYTE_BITS	 This	is	type	BYTE_BITS.	

	 WORD_BITS	 This	is	type	WORD_BITS.	

Symbol	Reference	>	Structs,	Records,	Enums

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ACTIVE_SCAN_RESULT	Structure
C
typedef	struct	{

		BYTE	Channel;

		BYTE	Address[MY_ADDRESS_LENGTH];

		WORD_VAL	PANID;

		BYTE	RSSIValue;

		BYTE	LQIValue;

		union	{

				BYTE	Val;

				struct	{

						BYTE	Role	:	2;

						BYTE	Sleep	:	1;

						BYTE	SecurityEn	:	1;

						BYTE	RepeatEn	:	1;

						BYTE	AllowJoin	:	1;

						BYTE	Direct	:	1;

						BYTE	altSrcAddr	:	1;

				}	bits;

		}	Capability;

		BYTE	PeerInfo[ADDITIONAL_NODE_ID_SIZE];

}	ACTIVE_SCAN_RESULT;

Description

Active	Scan	result	

This	structure	contains	information	from	active	scan.	Application
layer	will	depend	on	this	information	to	decide	the	way	to
establish	connections.

Members

Members	 Description	

BYTE	Channel;	 Operating	Channel	of	the
PAN	

BYTE
Address[MY_ADDRESS_LENGTH];	

Responding	device
address	

WORD_VAL	PANID;	 PAN	Identifier	

BYTE	RSSIValue;	 RSSI	value	for	the
response	

BYTE	LQIValue;	 LQI	value	for	the
response	

BYTE	Role	:	2;	 Role	of	the	responding
device	in	the	PAN	

BYTE	Sleep	:	1;	 Whether	the	responding
device	goes	to	sleep
when	idle	

BYTE	SecurityEn	:	1;	 Whether	the	responding
device	is	capable	of
securing	the	data	

BYTE	RepeatEn	:	1;	 Whether	the	responding
device	allow	repeat	

BYTE	AllowJoin	:	1;	 Whether	the	responding
device	allows	other
device	to	join	

BYTE	Direct	:	1;	 Whether	the	responding
device	in	radio	range	or
through	a	repeater	

BYTE	altSrcAddr	:	1;	 Whether	the	Address	is
alternative	network

address	or	permanent
address	

BYTE
PeerInfo[ADDITIONAL_NODE_ID_SIZE];	

Additional	Node	ID
information,	if	defined	in
application	layer	

Symbol	Reference	>	Structs,	Records,	Enums	>
ACTIVE_SCAN_RESULT	Structure

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONNECTION_STATUS	Union
C
typedef	union	__CONNECTION_STATUS	{

		BYTE	Val;

		struct	_CONNECTION_STAUTS_bits	{

				BYTE	RXOnWhenIdle	:	1;

				BYTE	directConnection	:	1;

				BYTE	longAddressValid	:	1;

				BYTE	shortAddressValid	:	1;

				BYTE	FinishJoin	:	1;

				BYTE	isFamily	:	1;

				BYTE	filler	:	1;

				BYTE	isValid	:	1;

		}	bits;

}	CONNECTION_STATUS;

Description

Status	information	of	the	connected	peer	information	

This	structure	contains	the	information	regarding	the	status	of	the
connected	peer	device.

Members

Members	 Description	

BYTE	RXOnWhenIdle
:	1;	

1	=	transceiver	always	on,	0	=	transceiver
sleeps	when	idle	

BYTE
directConnection	:	1;	

1	=	can	talk	to	this	device	directly,	0	=	must
route	to	this	device	

BYTE 1	=	long	address	valid,	0	=	long	address

longAddressValid	:	1;	 unknown	

BYTE
shortAddressValid	:	1;	

1	=	short	address	valid,	0	=	short	address
unknown	

BYTE	FinishJoin	:	1;	 1	=	already	finish	joining	procedure,	0	=	in
the	process	of	join	

BYTE	isFamily	:	1;	 1	=	family	member	(parent/child),	0	=	not
family	

BYTE	isValid	:	1;	 1	=	this	entry	is	valid,	0	=	this	entry	is	not
valid	

Symbol	Reference	>	Structs,	Records,	Enums	>
CONNECTION_STATUS	Union

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

BYTE_BITS	Union
C
typedef	union	{

		BYTE	Val;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

		}	bits;

}	BYTE_BITS;

Description

This	is	type	BYTE_BITS.

Symbol	Reference	>	Structs,	Records,	Enums	>	BYTE_BITS	Union

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

WORD_BITS	Union
C
typedef	union	{

		WORD	Val;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

		}	byte;

		struct	__PACKED	{

				__EXTENSION	BYTE	b0	:	1;

				__EXTENSION	BYTE	b1	:	1;

				__EXTENSION	BYTE	b2	:	1;

				__EXTENSION	BYTE	b3	:	1;

				__EXTENSION	BYTE	b4	:	1;

				__EXTENSION	BYTE	b5	:	1;

				__EXTENSION	BYTE	b6	:	1;

				__EXTENSION	BYTE	b7	:	1;

				__EXTENSION	BYTE	b8	:	1;

				__EXTENSION	BYTE	b9	:	1;

				__EXTENSION	BYTE	b10	:	1;

				__EXTENSION	BYTE	b11	:	1;

				__EXTENSION	BYTE	b12	:	1;

				__EXTENSION	BYTE	b13	:	1;

				__EXTENSION	BYTE	b14	:	1;

				__EXTENSION	BYTE	b15	:	1;

		}	bits;

}	WORD_VAL,	WORD_BITS;

Description

This	is	type	WORD_BITS.

Symbol	Reference	>	Structs,	Records,	Enums	>	WORD_BITS	Union

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Variables

Variables

	 Name	 Description	

	 ActiveScanResults	 The	results	for	active	scan,	including	the
PAN	identifier,	signal	strength	and
operating	channel	

	 AdditionalNodeID	 AdditionalConnectionPayload	variable
array	defines	the	additional	information	to
identify	a	device	on	a	P2P	connection.
This	array	will	be	transmitted	with	the
P2P_CONNECTION_REQUEST
command	to	initiate	the	connection
between	the	two	devices.	Along	with	the
long	address	of	this	device,	this	variable
array	will	be	stored	in	the	P2P	Connection
Entry	structure	of	the	partner	device.	The
size	of	this	array	is
ADDITIONAL_CONNECTION_PAYLOAD,
defined	in	P2PDefs.h.	In	this	demo,	this
variable	array	is	set	to	be	empty.	

	 ConnectionTable	 The	peer	device	records	for	P2P
connections	

	 rxMessage	 structure	to	store	information	for	the
received	packet	

	 TxBuffer	 EXTERNAL	VARIABLES	

	 myLongAddress	 	

	 mySecurityKey	 security	module.	

Symbol	Reference	>	Variables

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ActiveScanResults	Variable
C
ACTIVE_SCAN_RESULT	ActiveScanResults[ACTIVE_SCAN_RESULT_SIZE

Description

The	results	for	active	scan,	including	the	PAN	identifier,	signal
strength	and	operating	channel

Symbol	Reference	>	Variables	>	ActiveScanResults	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

AdditionalNodeID	Variable
C
BYTE	AdditionalNodeID[ADDITIONAL_NODE_ID_SIZE]	=	{0x12};

Description

AdditionalConnectionPayload	variable	array	defines	the
additional	information	to	identify	a	device	on	a	P2P	connection.
This	array	will	be	transmitted	with	the
P2P_CONNECTION_REQUEST	command	to	initiate	the
connection	between	the	two	devices.	Along	with	the	long
address	of	this	device,	this	variable	array	will	be	stored	in	the
P2P	Connection	Entry	structure	of	the	partner	device.	The	size	of
this	array	is	ADDITIONAL_CONNECTION_PAYLOAD,	defined	in
P2PDefs.h.	In	this	demo,	this	variable	array	is	set	to	be	empty.

Symbol	Reference	>	Variables	>	AdditionalNodeID	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ConnectionTable	Variable
C
CONNECTION_ENTRY	ConnectionTable[CONNECTION_SIZE];

Description

The	peer	device	records	for	P2P	connections

Symbol	Reference	>	Variables	>	ConnectionTable	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

rxMessage	Variable
C
RECEIVED_MESSAGE	rxMessage;

Description

structure	to	store	information	for	the	received	packet

Symbol	Reference	>	Variables	>	rxMessage	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TxBuffer	Variable
C
BYTE	TxBuffer[TX_BUFFER_SIZE];

Description

EXTERNAL	VARIABLES

Symbol	Reference	>	Variables	>	TxBuffer	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

myLongAddress	Variable
C
BYTE	myLongAddress[MY_ADDRESS_LENGTH]	=	{EUI_0,EUI_1};

Description

**********************	VARIABLES	******************************
permanent	address	definition

Symbol	Reference	>	Variables	>	myLongAddress	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

mySecurityKey	Variable
C
ROM	const	unsigned	char	mySecurityKey[8]	=	{SECURITY_KEY_00

Description

security	module.

Symbol	Reference	>	Variables	>	mySecurityKey	Variable

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Next

Definitions

Macros

	 Name	 Description	

	 ASSOCIATION_ACCESS_DENIED	 This	is	macro	ASSOCIATION_ACCESS_DENIED.	

	 ASSOCIATION_PAN_FULL	 This	is	macro	ASSOCIATION_PAN_FULL.	

	 ASSOCIATION_SUCCESSFUL	 This	is	macro	ASSOCIATION_SUCCESSFUL.	

	 CHANNEL_ASSESSMENT_CARRIER_SENSE	 This	is	macro
CHANNEL_ASSESSMENT_CARRIER_SENSE.	

	 CHANNEL_ASSESSMENT_ENERGY_DETECT	 This	is	macro
CHANNEL_ASSESSMENT_ENERGY_DETECT.	

	 CMD_CHANNEL_HOPPING	 This	is	macro	CMD_CHANNEL_HOPPING.	

	 CMD_DATA_REQUEST	 This	is	macro	CMD_DATA_REQUEST.	

	 CMD_MAC_DATA_REQUEST	 This	is	macro	CMD_MAC_DATA_REQUEST.	

	 CMD_P2P_CONNECTION_REMOVAL_REQUEST	 This	is	macro
CMD_P2P_CONNECTION_REMOVAL_REQUEST.	

	 CMD_P2P_CONNECTION_REMOVAL_RESPONSE	 This	is	macro
CMD_P2P_CONNECTION_REMOVAL_RESPONSE.	

	 CMD_P2P_CONNECTION_REQUEST	 This	is	macro	CMD_P2P_CONNECTION_REQUEST.	

	 CMD_P2P_CONNECTION_RESPONSE	 This	is	macro	CMD_P2P_CONNECTION_RESPONSE.	

	 CONN_MODE_DIRECT	 This	is	macro	CONN_MODE_DIRECT.	

	 CONN_MODE_INDIRECT	 This	is	macro	CONN_MODE_INDIRECT.	

	 DISABLE_ALL_CONN	 This	is	macro	DISABLE_ALL_CONN.	

	 ENABLE_ALL_CONN	 This	is	macro	ENABLE_ALL_CONN.	

	 ENABLE_CONSOLE	 ENABLE_CONSOLE	will	enable	the	print	out	on	the	hyper
terminal	this	definition	is	very	helpful	in	the	debugging
process	

	 ENABLE_PREV_CONN	 This	is	macro	ENABLE_PREV_CONN.	

	 ERR_INVALID_INPUT	 This	is	macro	ERR_INVALID_INPUT.	

	 ERR_RX_FAIL	 This	is	macro	ERR_RX_FAIL.	

	 ERR_TRX_FAIL	 This	is	macro	ERR_TRX_FAIL.	

	 ERR_TX_FAIL	 This	is	macro	ERR_TX_FAIL.	

	 IEEE_802_15_4	 This	is	macro	IEEE_802_15_4.	

	 KEY_SIZE	 This	is	macro	KEY_SIZE.	

	 LNA_GAIN_0_DB	 00	[1:0]	0dB	;default	(This	is	IF	Filter	gain)	

	 LNA_GAIN_N_14_DB	 This	is	macro	LNA_GAIN_N_14_DB.	

	 LNA_GAIN_N_20_DB	 This	is	macro	LNA_GAIN_N_20_DB.	

	 LNA_GAIN_N_6_DB	 This	is	macro	LNA_GAIN_N_6_DB.	

	 NOISE_DETECT_CS	 This	is	macro	NOISE_DETECT_CS.	

	 NOISE_DETECT_ENERGY	 This	is	macro	NOISE_DETECT_ENERGY.	

	 PACKET_TYPE_ACK	 This	is	macro	PACKET_TYPE_ACK.	

	 PACKET_TYPE_COMMAND	 This	is	macro	PACKET_TYPE_COMMAND.	

	 PACKET_TYPE_DATA	 This	is	macro	PACKET_TYPE_DATA.	

	 PACKET_TYPE_MASK	 This	is	macro	PACKET_TYPE_MASK.	

	 PACKET_TYPE_RESERVE	 This	is	macro	PACKET_TYPE_RESERVE.	

	 POWER_STATE_DEEP_SLEEP	 This	is	macro	POWER_STATE_DEEP_SLEEP.	

	 POWER_STATE_OPERATE	 This	is	macro	POWER_STATE_OPERATE.	

	 POWER_STATE_SLEEP	 This	is	macro	POWER_STATE_SLEEP.	

	 POWER_STATE_WAKEUP	 This	is	macro	POWER_STATE_WAKEUP.	

	 POWER_STATE_WAKEUP_DR	 This	is	macro	POWER_STATE_WAKEUP_DR.	

	 RSSI_THRESHOLD_103	 This	is	macro	RSSI_THRESHOLD_103.	

	 RSSI_THRESHOLD_73	 This	is	macro	RSSI_THRESHOLD_73.	

	 RSSI_THRESHOLD_79	 This	is	macro	RSSI_THRESHOLD_79.	

	 RSSI_THRESHOLD_85	 This	is	macro	RSSI_THRESHOLD_85.	

	 RSSI_THRESHOLD_91	 This	is	macro	RSSI_THRESHOLD_91.	

	 RSSI_THRESHOLD_97	 This	is	macro	RSSI_THRESHOLD_97.	

	 SECURITY_MASK	 This	is	macro	SECURITY_MASK.	

	 SOFTWARE_CRC	 This	is	macro	SOFTWARE_CRC.	

	 START_CONN_CS_SCN	 This	is	macro	START_CONN_CS_SCN.	

	 START_CONN_DIRECT	 This	is	macro	START_CONN_DIRECT.	

	 START_CONN_ENERGY_SCN	 This	is	macro	START_CONN_ENERGY_SCN.	

	 SUCCESS	 This	is	macro	SUCCESS.	

	 TX_POWER_0_DB	 This	is	macro	TX_POWER_0_DB.	

	 TX_POWER_N_10_DB	 This	is	macro	TX_POWER_N_10_DB.	

	 TX_POWER_N_12_5_DB	 This	is	macro	TX_POWER_N_12_5_DB.	

	 TX_POWER_N_15_DB	 This	is	macro	TX_POWER_N_15_DB.	

	 TX_POWER_N_17_5_DB	 This	is	macro	TX_POWER_N_17_5_DB.	

	 TX_POWER_N_2_5_DB	 This	is	macro	TX_POWER_N_2_5_DB.	

	 TX_POWER_N_5_DB	 This	is	macro	TX_POWER_N_5_DB.	

	 TX_POWER_N_7_5_DB	 This	is	macro	TX_POWER_N_7_5_DB.	

	 XTAL_LD_CAP_10	 This	is	macro	XTAL_LD_CAP_10.	

	 XTAL_LD_CAP_105	 This	is	macro	XTAL_LD_CAP_105.	

	 XTAL_LD_CAP_11	 This	is	macro	XTAL_LD_CAP_11.	

	 XTAL_LD_CAP_115	 This	is	macro	XTAL_LD_CAP_115.	

	 XTAL_LD_CAP_12	 This	is	macro	XTAL_LD_CAP_12.	

	 XTAL_LD_CAP_125	 This	is	macro	XTAL_LD_CAP_125.	

	 XTAL_LD_CAP_13	 This	is	macro	XTAL_LD_CAP_13.	

	 XTAL_LD_CAP_135	 This	is	macro	XTAL_LD_CAP_135.	

	 XTAL_LD_CAP_14	 This	is	macro	XTAL_LD_CAP_14.	

	 XTAL_LD_CAP_145	 This	is	macro	XTAL_LD_CAP_145.	

	 XTAL_LD_CAP_15	 This	is	macro	XTAL_LD_CAP_15.	

	 XTAL_LD_CAP_155	 This	is	macro	XTAL_LD_CAP_155.	

	 XTAL_LD_CAP_16	 This	is	macro	XTAL_LD_CAP_16.	

	 XTAL_LD_CAP_85	 following	should	be	in	the	def	file	

	 XTAL_LD_CAP_9	 This	is	macro	XTAL_LD_CAP_9.	

	 XTAL_LD_CAP_95	 This	is	macro	XTAL_LD_CAP_95.	

	 XTEA_ROUND	 This	is	macro	XTEA_ROUND.	

	 CMD_TIME_SYNCHRONIZATION_NOTIFICATION	 This	is	macro
CMD_TIME_SYNCHRONIZATION_NOTIFICATION.	

	 CMD_TIME_SYNCHRONIZATION_REQUEST	 This	is	macro
CMD_TIME_SYNCHRONIZATION_REQUEST.	

	 DATA_REQUEST_ASSOCIATION_RESPONSE	 This	is	macro
DATA_REQUEST_ASSOCIATION_RESPONSE.	

	 DATA_REQUEST_SHORT_ADDRESSES	 This	is	macro	DATA_REQUEST_SHORT_ADDRESSES.	

	 EUI_1	 This	is	macro	EUI_1.	

	 EUI_2	 This	is	macro	EUI_2.	

	 EUI_3	 This	is	macro	EUI_3.	

	 EUI_4	 This	is	macro	EUI_4.	

	 EUI_5	 This	is	macro	EUI_5.	

	 EUI_6	 This	is	macro	EUI_6.	

	 EUI_7	 EUI_x	defines	the	xth	byte	of	permanent	address	for	the
wireless	node	

	 FRAME_TYPE_ACK	 This	is	macro	FRAME_TYPE_ACK.	

	 FRAME_TYPE_BEACON	 DEFINITIONS	

	 FRAME_TYPE_COMMAND	 This	is	macro	FRAME_TYPE_COMMAND.	

	 FRAME_TYPE_DATA	 This	is	macro	FRAME_TYPE_DATA.	

	 FREQ_BAND	 915MHz	

	 MAC_COMMAND_ASSOCIATION_REQUEST	 This	is	macro
MAC_COMMAND_ASSOCIATION_REQUEST.	

	 MAC_COMMAND_ASSOCIATION_RESPONSE	 This	is	macro
MAC_COMMAND_ASSOCIATION_RESPONSE.	

	 MAC_COMMAND_BEACON_REQUEST	 This	is	macro	MAC_COMMAND_BEACON_REQUEST.	

	 MAC_COMMAND_COORDINATOR_REALIGNMENT	 This	is	macro
MAC_COMMAND_COORDINATOR_REALIGNMENT.	

	 MAC_COMMAND_DATA_REQUEST	 This	is	macro	MAC_COMMAND_DATA_REQUEST.	

	 MAC_COMMAND_DISASSOCIATION_NOTIFICATION	 This	is	macro
MAC_COMMAND_DISASSOCIATION_NOTIFICATION.	

	 MAC_COMMAND_ORPHAN_NOTIFICATION	 This	is	macro
MAC_COMMAND_ORPHAN_NOTIFICATION.	

	 MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION	 This	is	macro
MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION.	

	 STATUS_ACTIVE_SCAN	 This	is	macro	STATUS_ACTIVE_SCAN.	

	 STATUS_ENTRY_NOT_EXIST	 This	is	macro	STATUS_ENTRY_NOT_EXIST.	

	 STATUS_EXISTS	 This	is	macro	STATUS_EXISTS.	

	 STATUS_NOT_ENOUGH_SPACE	 This	is	macro	STATUS_NOT_ENOUGH_SPACE.	

	 STATUS_NOT_SAME_PAN	 This	is	macro	STATUS_NOT_SAME_PAN.	

	 STATUS_SUCCESS	 This	is	macro	STATUS_SUCCESS.	

	 ACK_REPORT_TYPE	 This	is	macro	ACK_REPORT_TYPE.	

	 ROLE_COORDINATOR	 This	is	macro	ROLE_COORDINATOR.	

	 ROLE_FFD_END_DEVICE	 This	is	macro	ROLE_FFD_END_DEVICE.	

	 ROLE_PAN_COORDINATOR	 This	is	macro	ROLE_PAN_COORDINATOR.	

	 OPEN_SOCKET_REQUEST	 This	is	macro	OPEN_SOCKET_REQUEST.	

	 OPEN_SOCKET_RESPONSE	 This	is	macro	OPEN_SOCKET_RESPONSE.	

	 CHANNEL_HOPPING_REQUEST	 This	is	macro	CHANNEL_HOPPING_REQUEST.	

	 EUI_ADDRESS_SEARCH_REQUEST	 This	is	macro	EUI_ADDRESS_SEARCH_REQUEST.	

	 EUI_ADDRESS_SEARCH_RESPONSE	 This	is	macro	EUI_ADDRESS_SEARCH_RESPONSE.	

	 MIWI_ACK_REQ	 This	is	macro	MIWI_ACK_REQ.	

	 RESYNCHRONIZATION_REQUEST	 This	is	macro	RESYNCHRONIZATION_REQUEST.	

	 RESYNCHRONIZATION_RESPONSE	 This	is	macro	RESYNCHRONIZATION_RESPONSE.	

Symbol	Reference	>	Definitions

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ASSOCIATION_ACCESS_DENIED	Macro
C
#define	ASSOCIATION_ACCESS_DENIED	0x02

Description

This	is	macro	ASSOCIATION_ACCESS_DENIED.

Symbol	Reference	>	Definitions	>	ASSOCIATION_ACCESS_DENIED
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ASSOCIATION_PAN_FULL	Macro
C
#define	ASSOCIATION_PAN_FULL	0x01

Description

This	is	macro	ASSOCIATION_PAN_FULL.

Symbol	Reference	>	Definitions	>	ASSOCIATION_PAN_FULL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ASSOCIATION_SUCCESSFUL	Macro
C
#define	ASSOCIATION_SUCCESSFUL	0x00

Description

This	is	macro	ASSOCIATION_SUCCESSFUL.

Symbol	Reference	>	Definitions	>	ASSOCIATION_SUCCESSFUL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CHANNEL_ASSESSMENT_CARRIER_SENSE
Macro
C
#define	CHANNEL_ASSESSMENT_CARRIER_SENSE	0x00

Description

This	is	macro	CHANNEL_ASSESSMENT_CARRIER_SENSE.

Symbol	Reference	>	Definitions	>
CHANNEL_ASSESSMENT_CARRIER_SENSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CHANNEL_ASSESSMENT_ENERGY_DETECT
Macro
C
#define	CHANNEL_ASSESSMENT_ENERGY_DETECT	0x01

Description

This	is	macro	CHANNEL_ASSESSMENT_ENERGY_DETECT.

Symbol	Reference	>	Definitions	>
CHANNEL_ASSESSMENT_ENERGY_DETECT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_CHANNEL_HOPPING	Macro
C
#define	CMD_CHANNEL_HOPPING	0x84

Description

This	is	macro	CMD_CHANNEL_HOPPING.

Symbol	Reference	>	Definitions	>	CMD_CHANNEL_HOPPING	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_DATA_REQUEST	Macro
C
#define	CMD_DATA_REQUEST	0x83

Description

This	is	macro	CMD_DATA_REQUEST.

Symbol	Reference	>	Definitions	>	CMD_DATA_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_MAC_DATA_REQUEST	Macro
C
#define	CMD_MAC_DATA_REQUEST	0x04

Description

This	is	macro	CMD_MAC_DATA_REQUEST.

Symbol	Reference	>	Definitions	>	CMD_MAC_DATA_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_P2P_CONNECTION_REMOVAL_REQUEST
Macro
C
#define	CMD_P2P_CONNECTION_REMOVAL_REQUEST	0x82

Description

This	is	macro
CMD_P2P_CONNECTION_REMOVAL_REQUEST.

Symbol	Reference	>	Definitions	>
CMD_P2P_CONNECTION_REMOVAL_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_P2P_CONNECTION_REMOVAL_RESPONSE
Macro
C
#define	CMD_P2P_CONNECTION_REMOVAL_RESPONSE	0x92

Description

This	is	macro
CMD_P2P_CONNECTION_REMOVAL_RESPONSE.

Symbol	Reference	>	Definitions	>
CMD_P2P_CONNECTION_REMOVAL_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_P2P_CONNECTION_REQUEST	Macro
C
#define	CMD_P2P_CONNECTION_REQUEST	0x81

Description

This	is	macro	CMD_P2P_CONNECTION_REQUEST.

Symbol	Reference	>	Definitions	>
CMD_P2P_CONNECTION_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_P2P_CONNECTION_RESPONSE	Macro
C
#define	CMD_P2P_CONNECTION_RESPONSE	0x91

Description

This	is	macro	CMD_P2P_CONNECTION_RESPONSE.

Symbol	Reference	>	Definitions	>
CMD_P2P_CONNECTION_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONN_MODE_DIRECT	Macro
C
#define	CONN_MODE_DIRECT	0x00

Description

This	is	macro	CONN_MODE_DIRECT.

Symbol	Reference	>	Definitions	>	CONN_MODE_DIRECT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CONN_MODE_INDIRECT	Macro
C
#define	CONN_MODE_INDIRECT	0x01

Description

This	is	macro	CONN_MODE_INDIRECT.

Symbol	Reference	>	Definitions	>	CONN_MODE_INDIRECT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DISABLE_ALL_CONN	Macro
C
#define	DISABLE_ALL_CONN	0x03

Description

This	is	macro	DISABLE_ALL_CONN.

Symbol	Reference	>	Definitions	>	DISABLE_ALL_CONN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_ALL_CONN	Macro
C
#define	ENABLE_ALL_CONN	0x00

Description

This	is	macro	ENABLE_ALL_CONN.

Symbol	Reference	>	Definitions	>	ENABLE_ALL_CONN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_CONSOLE	Macro
C
#define	ENABLE_CONSOLE	

Description

ENABLE_CONSOLE	will	enable	the	print	out	on	the	hyper
terminal	this	definition	is	very	helpful	in	the	debugging	process

Symbol	Reference	>	Definitions	>	ENABLE_CONSOLE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ENABLE_PREV_CONN	Macro
C
#define	ENABLE_PREV_CONN	0x01

Description

This	is	macro	ENABLE_PREV_CONN.

Symbol	Reference	>	Definitions	>	ENABLE_PREV_CONN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ERR_INVALID_INPUT	Macro
C
#define	ERR_INVALID_INPUT	0xFF

Description

This	is	macro	ERR_INVALID_INPUT.

Symbol	Reference	>	Definitions	>	ERR_INVALID_INPUT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ERR_RX_FAIL	Macro
C
#define	ERR_RX_FAIL	0x03

Description

This	is	macro	ERR_RX_FAIL.

Symbol	Reference	>	Definitions	>	ERR_RX_FAIL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ERR_TRX_FAIL	Macro
C
#define	ERR_TRX_FAIL	0x01

Description

This	is	macro	ERR_TRX_FAIL.

Symbol	Reference	>	Definitions	>	ERR_TRX_FAIL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ERR_TX_FAIL	Macro
C
#define	ERR_TX_FAIL	0x02

Description

This	is	macro	ERR_TX_FAIL.

Symbol	Reference	>	Definitions	>	ERR_TX_FAIL	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

IEEE_802_15_4	Macro
C
#define	IEEE_802_15_4	

Description

This	is	macro	IEEE_802_15_4.

Symbol	Reference	>	Definitions	>	IEEE_802_15_4	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

KEY_SIZE	Macro
C
#define	KEY_SIZE	8

Description

This	is	macro	KEY_SIZE.

Symbol	Reference	>	Definitions	>	KEY_SIZE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LNA_GAIN_0_DB	Macro
C
#define	LNA_GAIN_0_DB	0x00				//00	[1:0]	0dB	;default	(This	is	IF	Filter	gain)

Description

00	[1:0]	0dB	;default	(This	is	IF	Filter	gain)

Symbol	Reference	>	Definitions	>	LNA_GAIN_0_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LNA_GAIN_N_14_DB	Macro
C
#define	LNA_GAIN_N_14_DB	0x0010

Description

This	is	macro	LNA_GAIN_N_14_DB.

Symbol	Reference	>	Definitions	>	LNA_GAIN_N_14_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LNA_GAIN_N_20_DB	Macro
C
#define	LNA_GAIN_N_20_DB	0x0018

Description

This	is	macro	LNA_GAIN_N_20_DB.

Symbol	Reference	>	Definitions	>	LNA_GAIN_N_20_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

LNA_GAIN_N_6_DB	Macro
C
#define	LNA_GAIN_N_6_DB	0x0008

Description

This	is	macro	LNA_GAIN_N_6_DB.

Symbol	Reference	>	Definitions	>	LNA_GAIN_N_6_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NOISE_DETECT_CS	Macro
C
#define	NOISE_DETECT_CS	0x01

Description

This	is	macro	NOISE_DETECT_CS.

Symbol	Reference	>	Definitions	>	NOISE_DETECT_CS	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

NOISE_DETECT_ENERGY	Macro
C
#define	NOISE_DETECT_ENERGY	0x00

Description

This	is	macro	NOISE_DETECT_ENERGY.

Symbol	Reference	>	Definitions	>	NOISE_DETECT_ENERGY	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_TYPE_ACK	Macro
C
#define	PACKET_TYPE_ACK	0x02

Description

This	is	macro	PACKET_TYPE_ACK.

Symbol	Reference	>	Definitions	>	PACKET_TYPE_ACK	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_TYPE_COMMAND	Macro
C
#define	PACKET_TYPE_COMMAND	0x01

Description

This	is	macro	PACKET_TYPE_COMMAND.

Symbol	Reference	>	Definitions	>	PACKET_TYPE_COMMAND	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_TYPE_DATA	Macro
C
#define	PACKET_TYPE_DATA	0x00

Description

This	is	macro	PACKET_TYPE_DATA.

Symbol	Reference	>	Definitions	>	PACKET_TYPE_DATA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_TYPE_MASK	Macro
C
#define	PACKET_TYPE_MASK	0x03

Description

This	is	macro	PACKET_TYPE_MASK.

Symbol	Reference	>	Definitions	>	PACKET_TYPE_MASK	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

PACKET_TYPE_RESERVE	Macro
C
#define	PACKET_TYPE_RESERVE	0x03

Description

This	is	macro	PACKET_TYPE_RESERVE.

Symbol	Reference	>	Definitions	>	PACKET_TYPE_RESERVE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWER_STATE_DEEP_SLEEP	Macro
C
#define	POWER_STATE_DEEP_SLEEP	0x00

Description

This	is	macro	POWER_STATE_DEEP_SLEEP.

Symbol	Reference	>	Definitions	>	POWER_STATE_DEEP_SLEEP
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWER_STATE_OPERATE	Macro
C
#define	POWER_STATE_OPERATE	0xFF

Description

This	is	macro	POWER_STATE_OPERATE.

Symbol	Reference	>	Definitions	>	POWER_STATE_OPERATE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWER_STATE_SLEEP	Macro
C
#define	POWER_STATE_SLEEP	0x00

Description

This	is	macro	POWER_STATE_SLEEP.

Symbol	Reference	>	Definitions	>	POWER_STATE_SLEEP	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWER_STATE_WAKEUP	Macro
C
#define	POWER_STATE_WAKEUP	0x01

Description

This	is	macro	POWER_STATE_WAKEUP.

Symbol	Reference	>	Definitions	>	POWER_STATE_WAKEUP	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

POWER_STATE_WAKEUP_DR	Macro
C
#define	POWER_STATE_WAKEUP_DR	0x02

Description

This	is	macro	POWER_STATE_WAKEUP_DR.

Symbol	Reference	>	Definitions	>	POWER_STATE_WAKEUP_DR	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_103	Macro
C
#define	RSSI_THRESHOLD_103	0x0000

Description

This	is	macro	RSSI_THRESHOLD_103.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_103	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_73	Macro
C
#define	RSSI_THRESHOLD_73	0x0005

Description

This	is	macro	RSSI_THRESHOLD_73.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_73	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_79	Macro
C
#define	RSSI_THRESHOLD_79	0x0004

Description

This	is	macro	RSSI_THRESHOLD_79.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_79	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_85	Macro
C
#define	RSSI_THRESHOLD_85	0x0003

Description

This	is	macro	RSSI_THRESHOLD_85.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_85	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_91	Macro
C
#define	RSSI_THRESHOLD_91	0x0002

Description

This	is	macro	RSSI_THRESHOLD_91.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_91	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RSSI_THRESHOLD_97	Macro
C
#define	RSSI_THRESHOLD_97	0x0001

Description

This	is	macro	RSSI_THRESHOLD_97.

Symbol	Reference	>	Definitions	>	RSSI_THRESHOLD_97	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SECURITY_MASK	Macro
C
#define	SECURITY_MASK	0x08

Description

This	is	macro	SECURITY_MASK.

Symbol	Reference	>	Definitions	>	SECURITY_MASK	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SOFTWARE_CRC	Macro
C
#define	SOFTWARE_CRC	

Description

This	is	macro	SOFTWARE_CRC.

Symbol	Reference	>	Definitions	>	SOFTWARE_CRC	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

START_CONN_CS_SCN	Macro
C
#define	START_CONN_CS_SCN	0x02

Description

This	is	macro	START_CONN_CS_SCN.

Symbol	Reference	>	Definitions	>	START_CONN_CS_SCN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

START_CONN_DIRECT	Macro
C
#define	START_CONN_DIRECT	0x00

Description

This	is	macro	START_CONN_DIRECT.

Symbol	Reference	>	Definitions	>	START_CONN_DIRECT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

START_CONN_ENERGY_SCN	Macro
C
#define	START_CONN_ENERGY_SCN	0x01

Description

This	is	macro	START_CONN_ENERGY_SCN.

Symbol	Reference	>	Definitions	>	START_CONN_ENERGY_SCN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

SUCCESS	Macro
C
#define	SUCCESS	0x00

Description

This	is	macro	SUCCESS.

Symbol	Reference	>	Definitions	>	SUCCESS	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_0_DB	Macro
C
#define	TX_POWER_0_DB	0x0000

Description

This	is	macro	TX_POWER_0_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_0_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_10_DB	Macro
C
#define	TX_POWER_N_10_DB	0x0004

Description

This	is	macro	TX_POWER_N_10_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_10_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_12_5_DB	Macro
C
#define	TX_POWER_N_12_5_DB	0x0005

Description

This	is	macro	TX_POWER_N_12_5_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_12_5_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_15_DB	Macro
C
#define	TX_POWER_N_15_DB	0x0006

Description

This	is	macro	TX_POWER_N_15_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_15_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_17_5_DB	Macro
C
#define	TX_POWER_N_17_5_DB	0x0007

Description

This	is	macro	TX_POWER_N_17_5_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_17_5_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_2_5_DB	Macro
C
#define	TX_POWER_N_2_5_DB	0x0001

Description

This	is	macro	TX_POWER_N_2_5_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_2_5_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_5_DB	Macro
C
#define	TX_POWER_N_5_DB	0x0002

Description

This	is	macro	TX_POWER_N_5_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_5_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

TX_POWER_N_7_5_DB	Macro
C
#define	TX_POWER_N_7_5_DB	0x0003

Description

This	is	macro	TX_POWER_N_7_5_DB.

Symbol	Reference	>	Definitions	>	TX_POWER_N_7_5_DB	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_10	Macro
C
#define	XTAL_LD_CAP_10	0x0003

Description

This	is	macro	XTAL_LD_CAP_10.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_10	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_105	Macro
C
#define	XTAL_LD_CAP_105	0x0004

Description

This	is	macro	XTAL_LD_CAP_105.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_105	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_11	Macro
C
#define	XTAL_LD_CAP_11	0x0005

Description

This	is	macro	XTAL_LD_CAP_11.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_11	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_115	Macro
C
#define	XTAL_LD_CAP_115	0x0006

Description

This	is	macro	XTAL_LD_CAP_115.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_115	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_12	Macro
C
#define	XTAL_LD_CAP_12	0x0007

Description

This	is	macro	XTAL_LD_CAP_12.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_12	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_125	Macro
C
#define	XTAL_LD_CAP_125	0x0008

Description

This	is	macro	XTAL_LD_CAP_125.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_125	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_13	Macro
C
#define	XTAL_LD_CAP_13	0x0009

Description

This	is	macro	XTAL_LD_CAP_13.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_13	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_135	Macro
C
#define	XTAL_LD_CAP_135	0x000A

Description

This	is	macro	XTAL_LD_CAP_135.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_135	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_14	Macro
C
#define	XTAL_LD_CAP_14	0x000B

Description

This	is	macro	XTAL_LD_CAP_14.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_14	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_145	Macro
C
#define	XTAL_LD_CAP_145	0x000C

Description

This	is	macro	XTAL_LD_CAP_145.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_145	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_15	Macro
C
#define	XTAL_LD_CAP_15	0x000D

Description

This	is	macro	XTAL_LD_CAP_15.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_15	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_155	Macro
C
#define	XTAL_LD_CAP_155	0x000E

Description

This	is	macro	XTAL_LD_CAP_155.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_155	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_16	Macro
C
#define	XTAL_LD_CAP_16	0x000F

Description

This	is	macro	XTAL_LD_CAP_16.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_16	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_85	Macro
C
#define	XTAL_LD_CAP_85	0x0000

Description

following	should	be	in	the	def	file

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_85	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_9	Macro
C
#define	XTAL_LD_CAP_9	0x0001

Description

This	is	macro	XTAL_LD_CAP_9.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_9	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTAL_LD_CAP_95	Macro
C
#define	XTAL_LD_CAP_95	0x0002

Description

This	is	macro	XTAL_LD_CAP_95.

Symbol	Reference	>	Definitions	>	XTAL_LD_CAP_95	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

XTEA_ROUND	Macro
C
#define	XTEA_ROUND	32

Description

This	is	macro	XTEA_ROUND.

Symbol	Reference	>	Definitions	>	XTEA_ROUND	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_TIME_SYNCHRONIZATION_NOTIFICATION
Macro
C
#define	CMD_TIME_SYNCHRONIZATION_NOTIFICATION	0x86

Description

This	is	macro
CMD_TIME_SYNCHRONIZATION_NOTIFICATION.

Symbol	Reference	>	Definitions	>
CMD_TIME_SYNCHRONIZATION_NOTIFICATION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CMD_TIME_SYNCHRONIZATION_REQUEST
Macro
C
#define	CMD_TIME_SYNCHRONIZATION_REQUEST	0x85

Description

This	is	macro	CMD_TIME_SYNCHRONIZATION_REQUEST.

Symbol	Reference	>	Definitions	>
CMD_TIME_SYNCHRONIZATION_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_REQUEST_ASSOCIATION_RESPONSE
Macro
C
#define	DATA_REQUEST_ASSOCIATION_RESPONSE	0x00

Description

This	is	macro	DATA_REQUEST_ASSOCIATION_RESPONSE.

Symbol	Reference	>	Definitions	>
DATA_REQUEST_ASSOCIATION_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

DATA_REQUEST_SHORT_ADDRESSES	Macro
C
#define	DATA_REQUEST_SHORT_ADDRESSES	0x01

Description

This	is	macro	DATA_REQUEST_SHORT_ADDRESSES.

Symbol	Reference	>	Definitions	>
DATA_REQUEST_SHORT_ADDRESSES	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_1	Macro
C
#define	EUI_1	0x77

Description

This	is	macro	EUI_1.

Symbol	Reference	>	Definitions	>	EUI_1	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_2	Macro
C
#define	EUI_2	0x66

Description

This	is	macro	EUI_2.

Symbol	Reference	>	Definitions	>	EUI_2	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_3	Macro
C
#define	EUI_3	0x55

Description

This	is	macro	EUI_3.

Symbol	Reference	>	Definitions	>	EUI_3	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_4	Macro
C
#define	EUI_4	0x44

Description

This	is	macro	EUI_4.

Symbol	Reference	>	Definitions	>	EUI_4	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_5	Macro
C
#define	EUI_5	0x33

Description

This	is	macro	EUI_5.

Symbol	Reference	>	Definitions	>	EUI_5	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_6	Macro
C
#define	EUI_6	0x22

Description

This	is	macro	EUI_6.

Symbol	Reference	>	Definitions	>	EUI_6	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_7	Macro
C
#define	EUI_7	0x11

Description

EUI_x	defines	the	xth	byte	of	permanent	address	for	the	wireless
node

Symbol	Reference	>	Definitions	>	EUI_7	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FRAME_TYPE_ACK	Macro
C
#define	FRAME_TYPE_ACK	0x02

Description

This	is	macro	FRAME_TYPE_ACK.

Symbol	Reference	>	Definitions	>	FRAME_TYPE_ACK	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FRAME_TYPE_BEACON	Macro
C
#define	FRAME_TYPE_BEACON	0x00

Description

DEFINITIONS

Symbol	Reference	>	Definitions	>	FRAME_TYPE_BEACON	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FRAME_TYPE_COMMAND	Macro
C
#define	FRAME_TYPE_COMMAND	0x03

Description

This	is	macro	FRAME_TYPE_COMMAND.

Symbol	Reference	>	Definitions	>	FRAME_TYPE_COMMAND	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FRAME_TYPE_DATA	Macro
C
#define	FRAME_TYPE_DATA	0x01

Description

This	is	macro	FRAME_TYPE_DATA.

Symbol	Reference	>	Definitions	>	FRAME_TYPE_DATA	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

FREQ_BAND	Macro
C
#define	FREQ_BAND	FREQBAND_915							//	915MHz

Description

915MHz

Symbol	Reference	>	Definitions	>	FREQ_BAND	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_ASSOCIATION_REQUEST
Macro
C
#define	MAC_COMMAND_ASSOCIATION_REQUEST	0x01

Description

This	is	macro	MAC_COMMAND_ASSOCIATION_REQUEST.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_ASSOCIATION_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_ASSOCIATION_RESPONSE
Macro
C
#define	MAC_COMMAND_ASSOCIATION_RESPONSE	0x02

Description

This	is	macro	MAC_COMMAND_ASSOCIATION_RESPONSE.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_ASSOCIATION_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_BEACON_REQUEST	Macro
C
#define	MAC_COMMAND_BEACON_REQUEST	0x07

Description

This	is	macro	MAC_COMMAND_BEACON_REQUEST.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_BEACON_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_COORDINATOR_REALIGNMENT
Macro
C
#define	MAC_COMMAND_COORDINATOR_REALIGNMENT	0x08

Description

This	is	macro
MAC_COMMAND_COORDINATOR_REALIGNMENT.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_COORDINATOR_REALIGNMENT	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_DATA_REQUEST	Macro
C
#define	MAC_COMMAND_DATA_REQUEST	0x04

Description

This	is	macro	MAC_COMMAND_DATA_REQUEST.

Symbol	Reference	>	Definitions	>	MAC_COMMAND_DATA_REQUEST
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_DISASSOCIATION_NOTIFICATION
Macro
C
#define	MAC_COMMAND_DISASSOCIATION_NOTIFICATION	0x03

Description

This	is	macro
MAC_COMMAND_DISASSOCIATION_NOTIFICATION.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_DISASSOCIATION_NOTIFICATION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_ORPHAN_NOTIFICATION
Macro
C
#define	MAC_COMMAND_ORPHAN_NOTIFICATION	0x06

Description

This	is	macro	MAC_COMMAND_ORPHAN_NOTIFICATION.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_ORPHAN_NOTIFICATION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION
Macro
C
#define	MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION	0x05

Description

This	is	macro
MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION.

Symbol	Reference	>	Definitions	>
MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_ACTIVE_SCAN	Macro
C
#define	STATUS_ACTIVE_SCAN	0x02

Description

This	is	macro	STATUS_ACTIVE_SCAN.

Symbol	Reference	>	Definitions	>	STATUS_ACTIVE_SCAN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_ENTRY_NOT_EXIST	Macro
C
#define	STATUS_ENTRY_NOT_EXIST	0xF0

Description

This	is	macro	STATUS_ENTRY_NOT_EXIST.

Symbol	Reference	>	Definitions	>	STATUS_ENTRY_NOT_EXIST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_EXISTS	Macro
C
#define	STATUS_EXISTS	0x01

Description

This	is	macro	STATUS_EXISTS.

Symbol	Reference	>	Definitions	>	STATUS_EXISTS	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_NOT_ENOUGH_SPACE	Macro
C
#define	STATUS_NOT_ENOUGH_SPACE	0xF1

Description

This	is	macro	STATUS_NOT_ENOUGH_SPACE.

Symbol	Reference	>	Definitions	>	STATUS_NOT_ENOUGH_SPACE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_NOT_SAME_PAN	Macro
C
#define	STATUS_NOT_SAME_PAN	0xF2

Description

This	is	macro	STATUS_NOT_SAME_PAN.

Symbol	Reference	>	Definitions	>	STATUS_NOT_SAME_PAN	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

STATUS_SUCCESS	Macro
C
#define	STATUS_SUCCESS	0x00

Description

This	is	macro	STATUS_SUCCESS.

Symbol	Reference	>	Definitions	>	STATUS_SUCCESS	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ACK_REPORT_TYPE	Macro
C
#define	ACK_REPORT_TYPE	0x30

Description

This	is	macro	ACK_REPORT_TYPE.

Symbol	Reference	>	Definitions	>	ACK_REPORT_TYPE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROLE_COORDINATOR	Macro
C
#define	ROLE_COORDINATOR	0x01

Description

This	is	macro	ROLE_COORDINATOR.

Symbol	Reference	>	Definitions	>	ROLE_COORDINATOR	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROLE_FFD_END_DEVICE	Macro
C
#define	ROLE_FFD_END_DEVICE	0x00

Description

This	is	macro	ROLE_FFD_END_DEVICE.

Symbol	Reference	>	Definitions	>	ROLE_FFD_END_DEVICE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

ROLE_PAN_COORDINATOR	Macro
C
#define	ROLE_PAN_COORDINATOR	0x02

Description

This	is	macro	ROLE_PAN_COORDINATOR.

Symbol	Reference	>	Definitions	>	ROLE_PAN_COORDINATOR	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OPEN_SOCKET_REQUEST	Macro
C
#define	OPEN_SOCKET_REQUEST	0x10

Description

This	is	macro	OPEN_SOCKET_REQUEST.

Symbol	Reference	>	Definitions	>	OPEN_SOCKET_REQUEST	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

OPEN_SOCKET_RESPONSE	Macro
C
#define	OPEN_SOCKET_RESPONSE	0x11

Description

This	is	macro	OPEN_SOCKET_RESPONSE.

Symbol	Reference	>	Definitions	>	OPEN_SOCKET_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

CHANNEL_HOPPING_REQUEST	Macro
C
#define	CHANNEL_HOPPING_REQUEST	0x40

Description

This	is	macro	CHANNEL_HOPPING_REQUEST.

Symbol	Reference	>	Definitions	>	CHANNEL_HOPPING_REQUEST
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_ADDRESS_SEARCH_REQUEST	Macro
C
#define	EUI_ADDRESS_SEARCH_REQUEST	0x20

Description

This	is	macro	EUI_ADDRESS_SEARCH_REQUEST.

Symbol	Reference	>	Definitions	>	EUI_ADDRESS_SEARCH_REQUEST
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

EUI_ADDRESS_SEARCH_RESPONSE	Macro
C
#define	EUI_ADDRESS_SEARCH_RESPONSE	0x21

Description

This	is	macro	EUI_ADDRESS_SEARCH_RESPONSE.

Symbol	Reference	>	Definitions	>
EUI_ADDRESS_SEARCH_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

MIWI_ACK_REQ	Macro
C
#define	MIWI_ACK_REQ	0x04

Description

This	is	macro	MIWI_ACK_REQ.

Symbol	Reference	>	Definitions	>	MIWI_ACK_REQ	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up	|	Next

RESYNCHRONIZATION_REQUEST	Macro
C
#define	RESYNCHRONIZATION_REQUEST	0x41

Description

This	is	macro	RESYNCHRONIZATION_REQUEST.

Symbol	Reference	>	Definitions	>	RESYNCHRONIZATION_REQUEST
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home Previous	|	Up

RESYNCHRONIZATION_RESPONSE	Macro
C
#define	RESYNCHRONIZATION_RESPONSE	0x42

Description

This	is	macro	RESYNCHRONIZATION_RESPONSE.

Symbol	Reference	>	Definitions	>	RESYNCHRONIZATION_RESPONSE
Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home

Contents

Introduction
SW	License	Agreement
Release	Notes
New	Features
Network	Freezer
Enhanced	Data	Request
Time	Synchronization

Demos
Required	Hardware
Hardware	Sets

Configuring	the	Hardware
PICDEM	Z
PIC18	Explorer
Explorer	16
8-bit	Wireless	Development	Kit

Firmware
Precompiled	HEX	Files
Demo	Source	Code	Project	for	MPLAB	8.x
MiWi	P2P
PICDEM	Z	Demo	Board	for	MiWi	P2P
PIC18	Explorer	Demo	Board	for	MiWi	P2P
8-bit	Wireless	Development	Kit	for	MiWi	P2P
Explorer	16	Demo	Board	for	MiWi	P2P
PIC24	or	dsPIC33	for	MiWi	P2P
PIC32	for	MiWi	P2P

MiWi	Mesh
PICDEM	Z	Demo	Board	for	MiWi
PIC18	Explorer	Demo	Board	for	MiWi
8-bit	Wireless	Development	Kit	for	MiWi

Explorer	16	Demo	Board	for	MiWi
PIC24	or	dsPIC33	for	MiWi
PIC32	for	MiWi

MiWi	PRO
PICDEM	Z	Demo	Board	for	MiWi	PRO
PIC18	Explorer	Demo	Board	for	MiWi	PRO
8-bit	Wireless	Development	Kit	for	MiWi	PRO
Explorer	16	Demo	Board	for	MiWi	PRO
PIC24	or	dsPIC33	for	MiWi	PRO
PIC32	for	MiWi	PRO

Demo	Source	Code	Project	for	MPLAB	X
Running	Demos
Basic	Demos
Simple	Example
Feature	Demo

MiWi	PRO	Test	Interface
8	bit	Wireless	Development	Kit	Demos

Configuring	the	Library
Application
ADDITIONAL_NODE_ID_SIZE	Macro
CONNECTION_SIZE	Macro
ENABLE_ACTIVE_SCAN	Macro
ENABLE_BROADCAST	Macro
ENABLE_ED_SCAN	Macro
ENABLE_FREQUENCY_AGILITY	Macro
ENABLE_HAND_SHAKE	Macro
ENABLE_PA_LNA	Macro
ENABLE_INDIRECT_MESSAGE	Macro
ENABLE_NETWORK_FREEZER	Macro
ENABLE_SECURITY	Macro
ENABLE_SLEEP	Macro
EUI_0	Macro

HARDWARE_SPI	Macro
MRF24J40	Macro
MRF49XA	Macro
MRF89XA	Macro
MY_ADDRESS_LENGTH	Macro
MY_PAN_ID	Macro
NWK_ROLE_COORDINATOR	Macro
NWK_ROLE_END_DEVICE	Macro
PROTOCOL_MIWI	Macro
PROTOCOL_MIWI_PRO	Macro
PROTOCOL_P2P	Macro
RFD_WAKEUP_INTERVAL	Macro
RX_BUFFER_SIZE	Macro
TARGET_SMALL	Macro
TX_BUFFER_SIZE	Macro

Wireless	Protocol
ACTIVE_SCAN_RESULT_SIZE	Macro
CONNECTION_RETRY_TIMES	Macro
COUNTER_CRYSTAL_FREQ	Macro
ENABLE_DUMP	Macro
ENABLE_ENHANCED_DATA_REQUEST	Macro
ENABLE_TIME_SYNC	Macro
FA_BROADCAST_TIME	Macro
INDIRECT_MESSAGE_SIZE	Macro
INDIRECT_MESSAGE_TIMEOUT	Macro
RESYNC_TIMES	Macro
RFD_DATA_WAIT	Macro
TIME_SYNC_SLOTS	Macro
MiWi(TM)	P2P	Communication	Protocol
CONNECTION_INTERVAL	Macro

MiWi	and	MiWi	PRO	Networking	Protocols
INDIRECT_MESSAGE_TIMEOUT_CYCLE	Macro
MAX_ROUTING_FAILURE	Macro

OPEN_SOCKET_POLL_INTERVAL	Macro
OPEN_SOCKET_TIMEOUT	Macro
MiWi	Mesh	Networking	Protocol
BROADCAST_RECORD_SIZE	Macro
BROADCAST_RECORD_TIMEOUT	Macro
MIWI_ACK_TIMEOUT	Macro

MiWi	PRO	Networking	Protocol
COMM_INTERVAL	Macro
COMM_RSSI_THRESHOLD	Macro
ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	Macro
ENABLE_ROUTING_UPDATE	Macro
ENABLE_BROADCAST_TO_SLEEP_DEVICE	Macro
FA_COMM_INTERVAL	Macro
FA_MAX_NOISE_THRESHOLD	Macro
FA_WAIT_TIMEOUT	Macro
FAMILY_TREE_BROADCAST	Macro
MIWI_PRO_ACK_TIMEOUT	Macro
NUM_COORDINATOR	Macro
PACKET_RECORD_SIZE	Macro
PACKET_RECORD_TIMEOUT	Macro
RANDOM_DELAY_RANGE	Macro
ROUTING_UPDATE_INTERVAL	Macro
ROUTING_UPDATE_EXPIRATION	Macro
ROUTING_TABLE_BROADCAST	Macro

RF	Transceivers
BANK_SIZE	Macro
KEY_SEQUENCE_NUMBER	Macro
SECURITY_LEVEL	Macro
SECURITY_KEY_00	Macro
MRF24J40	IEEE	802.15.4	Compliant	2.4GHz	Transceiver
TURBO_MODE	Macro
VERIFY_TRANSMIT	Macro

SubGHz	Transceivers

MRF49XA	SubGHz	Transceiver
BAND_915	Macro
CRYSTAL_PPM	Macro
DATA_RATE_9600	Macro
INFER_DEST_ADDRESS	Macro
MAX_ALLOWED_TX_FAILURE	Macro
RSSI_THRESHOLD	Macro
XTAL_LD_CAP	Macro

MRF89XA	SubGHz	Transceiver
BAND_902	Macro
DATA_RATE_20	Macro

ACK_INFO_SIZE	Macro
CCA_RETRIES	Macro
CCA_THRESHOLD	Macro
CCA_TIMES	Macro
ENABLE_ACK	Macro
ENABLE_CCA	Macro
ENABLE_RETRANSMISSION	Macro
FRAME_COUNTER_UPDATE_INTERVAL	Macro
LNA_GAIN	Macro
RETRANSMISSION_TIMES	Macro
SOURCE_ADDRESS_ABSENT	Macro
TX_POWER	Macro

Library	API
MiApp	Interfaces
MiApp_BroadcastPacket	Function
MiApp_ConnectionMode	Function
MiApp_DiscardMessage	Function
MiApp_EstablishConnection	Function
MiApp_FlushTx	Macro
MiApp_InitChannelHopping	Function
MiApp_MessageAvailable	Function
MiApp_NoiseDetection	Function

MiApp_RemoveConnection	Function
MiApp_ResyncConnection	Function
MiApp_SearchConnection	Function
MiApp_SetChannel	Function
MiApp_StartConnection	Function
MiApp_TransceiverPowerState	Function
MiApp_UnicastAddress	Function
MiApp_UnicastConnection	Function
MiApp_WriteData	Macro
Call	Back	Functions
MiApp_CB_AllowConnection	Macro
MiApp_CB_RFDAcknowledgement	Macro

MiMAC	Interfaces
MiMAC_ChannelAssessment	Function
MiMAC_DiscardPacket	Function
MiMAC_Init	Function
MiMAC_PowerState	Function
MiMAC_ReceivedPacket	Function
MiMAC_SendPacket	Function
MiMAC_SetAltAddress	Function
MiMAC_SetChannel	Function
MiMAC_SetPower	Function

Symbol	Reference
Types
BOOL	Type
CHAR	Type
SHORT	Type
BYTE	Type
LONG	Type
WORD	Type
WORD_VAL	Union
DWORD	Type
DWORD_VAL	Union

CONNECTION_ENTRY	Structure
RECEIVED_MESSAGE	Structure
MAC_RECEIVED_PACKET	Structure
MAC_TRANS_PARAM	Structure

Structs,	Records,	Enums
ACTIVE_SCAN_RESULT	Structure
CONNECTION_STATUS	Union
BYTE_BITS	Union
WORD_BITS	Union

Variables
ActiveScanResults	Variable
AdditionalNodeID	Variable
ConnectionTable	Variable
rxMessage	Variable
TxBuffer	Variable
myLongAddress	Variable
mySecurityKey	Variable

Definitions
ASSOCIATION_ACCESS_DENIED	Macro
ASSOCIATION_PAN_FULL	Macro
ASSOCIATION_SUCCESSFUL	Macro
CHANNEL_ASSESSMENT_CARRIER_SENSE	Macro
CHANNEL_ASSESSMENT_ENERGY_DETECT	Macro
CMD_CHANNEL_HOPPING	Macro
CMD_DATA_REQUEST	Macro
CMD_MAC_DATA_REQUEST	Macro
CMD_P2P_CONNECTION_REMOVAL_REQUEST	Macro
CMD_P2P_CONNECTION_REMOVAL_RESPONSE	Macro
CMD_P2P_CONNECTION_REQUEST	Macro
CMD_P2P_CONNECTION_RESPONSE	Macro
CONN_MODE_DIRECT	Macro
CONN_MODE_INDIRECT	Macro
DISABLE_ALL_CONN	Macro

ENABLE_ALL_CONN	Macro
ENABLE_CONSOLE	Macro
ENABLE_PREV_CONN	Macro
ERR_INVALID_INPUT	Macro
ERR_RX_FAIL	Macro
ERR_TRX_FAIL	Macro
ERR_TX_FAIL	Macro
IEEE_802_15_4	Macro
KEY_SIZE	Macro
LNA_GAIN_0_DB	Macro
LNA_GAIN_N_14_DB	Macro
LNA_GAIN_N_20_DB	Macro
LNA_GAIN_N_6_DB	Macro
NOISE_DETECT_CS	Macro
NOISE_DETECT_ENERGY	Macro
PACKET_TYPE_ACK	Macro
PACKET_TYPE_COMMAND	Macro
PACKET_TYPE_DATA	Macro
PACKET_TYPE_MASK	Macro
PACKET_TYPE_RESERVE	Macro
POWER_STATE_DEEP_SLEEP	Macro
POWER_STATE_OPERATE	Macro
POWER_STATE_SLEEP	Macro
POWER_STATE_WAKEUP	Macro
POWER_STATE_WAKEUP_DR	Macro
RSSI_THRESHOLD_103	Macro
RSSI_THRESHOLD_73	Macro
RSSI_THRESHOLD_79	Macro
RSSI_THRESHOLD_85	Macro
RSSI_THRESHOLD_91	Macro
RSSI_THRESHOLD_97	Macro
SECURITY_MASK	Macro
SOFTWARE_CRC	Macro

START_CONN_CS_SCN	Macro
START_CONN_DIRECT	Macro
START_CONN_ENERGY_SCN	Macro
SUCCESS	Macro
TX_POWER_0_DB	Macro
TX_POWER_N_10_DB	Macro
TX_POWER_N_12_5_DB	Macro
TX_POWER_N_15_DB	Macro
TX_POWER_N_17_5_DB	Macro
TX_POWER_N_2_5_DB	Macro
TX_POWER_N_5_DB	Macro
TX_POWER_N_7_5_DB	Macro
XTAL_LD_CAP_10	Macro
XTAL_LD_CAP_105	Macro
XTAL_LD_CAP_11	Macro
XTAL_LD_CAP_115	Macro
XTAL_LD_CAP_12	Macro
XTAL_LD_CAP_125	Macro
XTAL_LD_CAP_13	Macro
XTAL_LD_CAP_135	Macro
XTAL_LD_CAP_14	Macro
XTAL_LD_CAP_145	Macro
XTAL_LD_CAP_15	Macro
XTAL_LD_CAP_155	Macro
XTAL_LD_CAP_16	Macro
XTAL_LD_CAP_85	Macro
XTAL_LD_CAP_9	Macro
XTAL_LD_CAP_95	Macro
XTEA_ROUND	Macro
CMD_TIME_SYNCHRONIZATION_NOTIFICATION	Macro
CMD_TIME_SYNCHRONIZATION_REQUEST	Macro
DATA_REQUEST_ASSOCIATION_RESPONSE	Macro
DATA_REQUEST_SHORT_ADDRESSES	Macro

EUI_1	Macro
EUI_2	Macro
EUI_3	Macro
EUI_4	Macro
EUI_5	Macro
EUI_6	Macro
EUI_7	Macro
FRAME_TYPE_ACK	Macro
FRAME_TYPE_BEACON	Macro
FRAME_TYPE_COMMAND	Macro
FRAME_TYPE_DATA	Macro
FREQ_BAND	Macro
MAC_COMMAND_ASSOCIATION_REQUEST	Macro
MAC_COMMAND_ASSOCIATION_RESPONSE	Macro
MAC_COMMAND_BEACON_REQUEST	Macro
MAC_COMMAND_COORDINATOR_REALIGNMENT	Macro
MAC_COMMAND_DATA_REQUEST	Macro
MAC_COMMAND_DISASSOCIATION_NOTIFICATION	Macro
MAC_COMMAND_ORPHAN_NOTIFICATION	Macro
MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION	Macro
STATUS_ACTIVE_SCAN	Macro
STATUS_ENTRY_NOT_EXIST	Macro
STATUS_EXISTS	Macro
STATUS_NOT_ENOUGH_SPACE	Macro
STATUS_NOT_SAME_PAN	Macro
STATUS_SUCCESS	Macro
ACK_REPORT_TYPE	Macro
ROLE_COORDINATOR	Macro
ROLE_FFD_END_DEVICE	Macro
ROLE_PAN_COORDINATOR	Macro
OPEN_SOCKET_REQUEST	Macro
OPEN_SOCKET_RESPONSE	Macro
CHANNEL_HOPPING_REQUEST	Macro

EUI_ADDRESS_SEARCH_REQUEST	Macro
EUI_ADDRESS_SEARCH_RESPONSE	Macro
MIWI_ACK_REQ	Macro
RESYNCHRONIZATION_REQUEST	Macro
RESYNCHRONIZATION_RESPONSE	Macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

MiWi(TM)	Development
Environment	Help Contents	|	Index	|	Home

Index
_	|	8	|	A	|	B	|	C	|	D	|	E	|	F	|	H	|	I	|	K	|	L	|	M	|	N	|	O	|	P	|	R	|	S	|	T	|	V	|	W	|
X

_
__CONNECTION_ENTRY	structure
__CONNECTION_STATUS	union

8
8	bit	Wireless	Development	Kit	Demos
8-bit	Wireless	Development	Kit
8-bit	Wireless	Development	Kit	for	MiWi
8-bit	Wireless	Development	Kit	for	MiWi	P2P
8-bit	Wireless	Development	Kit	for	MiWi	PRO

A
ACK_INFO_SIZE	macro
ACK_REPORT_TYPE	macro
ACTIVE_SCAN_RESULT	structure
ACTIVE_SCAN_RESULT_SIZE	macro
ActiveScanResults	variable
ADDITIONAL_NODE_ID_SIZE	macro
AdditionalNodeID	variable
Application
ASSOCIATION_ACCESS_DENIED	macro
ASSOCIATION_PAN_FULL	macro
ASSOCIATION_SUCCESSFUL	macro

B
BAND_902	macro
BAND_915	macro

MiApp_SetChannel	function
MiApp_StartConnection	function
MiApp_TransceiverPowerState
function
MiApp_UnicastAddress	function
MiApp_UnicastConnection	function
MiApp_WriteData	macro
MiMAC	Interfaces
MiMAC_ChannelAssessment	function
MiMAC_DiscardPacket	function
MiMAC_Init	function
MiMAC_PowerState	function
MiMAC_ReceivedPacket	function
MiMAC_SendPacket	function
MiMAC_SetAltAddress	function
MiMAC_SetChannel	function
MiMAC_SetPower	function
MiWi	and	MiWi	PRO	Networking
Protocols
MiWi	Mesh
MiWi	Mesh	Networking	Protocol
MiWi	P2P
MiWi	PRO
MiWi	PRO	Networking	Protocol
MiWi	PRO	Test	Interface
MiWi(TM)	P2P	Communication
Protocol
MIWI_ACK_REQ	macro

BANK_SIZE	macro
Basic	Demos
BOOL	type
BROADCAST_RECORD_SIZE	macro
BROADCAST_RECORD_TIMEOUT	macro
BYTE	type
BYTE_BITS	union

C
Call	Back	Functions
CCA_RETRIES	macro
CCA_THRESHOLD	macro
CCA_TIMES	macro
CHANNEL_ASSESSMENT_CARRIER_SENSE	macro
CHANNEL_ASSESSMENT_ENERGY_DETECT	macro
CHANNEL_HOPPING_REQUEST	macro
CHAR	type
CMD_CHANNEL_HOPPING	macro
CMD_DATA_REQUEST	macro
CMD_MAC_DATA_REQUEST	macro
CMD_P2P_CONNECTION_REMOVAL_REQUEST
macro
CMD_P2P_CONNECTION_REMOVAL_RESPONSE
macro
CMD_P2P_CONNECTION_REQUEST	macro
CMD_P2P_CONNECTION_RESPONSE	macro
CMD_TIME_SYNCHRONIZATION_NOTIFICATION
macro
CMD_TIME_SYNCHRONIZATION_REQUEST	macro
COMM_INTERVAL	macro
COMM_RSSI_THRESHOLD	macro
Configuring	the	Hardware
Configuring	the	Library

MIWI_ACK_TIMEOUT	macro
MIWI_PRO_ACK_TIMEOUT	macro
MRF24J40	IEEE	802.15.4	Compliant
2.4GHz	Transceiver
MRF24J40	macro
MRF49XA	macro
MRF49XA	SubGHz	Transceiver
MRF89XA	macro
MRF89XA	SubGHz	Transceiver
MY_ADDRESS_LENGTH	macro
MY_PAN_ID	macro
myLongAddress	variable
mySecurityKey	variable

N
Network	Freezer
New	Features
NOISE_DETECT_CS	macro
NOISE_DETECT_ENERGY	macro
NUM_COORDINATOR	macro
NWK_ROLE_COORDINATOR	macro
NWK_ROLE_END_DEVICE	macro

O
OPEN_SOCKET_POLL_INTERVAL
macro
OPEN_SOCKET_REQUEST	macro
OPEN_SOCKET_RESPONSE	macro
OPEN_SOCKET_TIMEOUT	macro

P
PACKET_RECORD_SIZE	macro
PACKET_RECORD_TIMEOUT	macro
PACKET_TYPE_ACK	macro

CONN_MODE_DIRECT	macro
CONN_MODE_INDIRECT	macro
CONNECTION_ENTRY	structure
CONNECTION_INTERVAL	macro
CONNECTION_RETRY_TIMES	macro
CONNECTION_SIZE	macro
CONNECTION_STATUS	union
ConnectionTable	variable
COUNTER_CRYSTAL_FREQ	macro
CRYSTAL_PPM	macro

D
DATA_RATE_20	macro
DATA_RATE_9600	macro
DATA_REQUEST_ASSOCIATION_RESPONSE	macro
DATA_REQUEST_SHORT_ADDRESSES	macro
Definitions
Demo	Source	Code	Project	for	MPLAB	8.x
Demo	Source	Code	Project	for	MPLAB	X
Demos
DISABLE_ALL_CONN	macro
DWORD	type
DWORD_VAL	union

E
ENABLE_ACK	macro
ENABLE_ACTIVE_SCAN	macro
ENABLE_ALL_CONN	macro
ENABLE_BROADCAST	macro
ENABLE_BROADCAST_TO_SLEEP_DEVICE	macro
ENABLE_CCA	macro
ENABLE_CONSOLE	macro
ENABLE_DUMP	macro

PACKET_TYPE_COMMAND	macro
PACKET_TYPE_DATA	macro
PACKET_TYPE_MASK	macro
PACKET_TYPE_RESERVE	macro
PIC18	Explorer
PIC18	Explorer	Demo	Board	for	MiWi
PIC18	Explorer	Demo	Board	for	MiWi
P2P
PIC18	Explorer	Demo	Board	for	MiWi
PRO
PIC24	or	dsPIC33	for	MiWi
PIC24	or	dsPIC33	for	MiWi	P2P
PIC24	or	dsPIC33	for	MiWi	PRO
PIC32	for	MiWi
PIC32	for	MiWi	P2P
PIC32	for	MiWi	PRO
PICDEM	Z
PICDEM	Z	Demo	Board	for	MiWi
PICDEM	Z	Demo	Board	for	MiWi	P2P
PICDEM	Z	Demo	Board	for	MiWi	PRO
POWER_STATE_DEEP_SLEEP
macro
POWER_STATE_OPERATE	macro
POWER_STATE_SLEEP	macro
POWER_STATE_WAKEUP	macro
POWER_STATE_WAKEUP_DR
macro
Precompiled	HEX	Files
PROTOCOL_MIWI	macro
PROTOCOL_MIWI_PRO	macro
PROTOCOL_P2P	macro

R
RANDOM_DELAY_RANGE	macro

ENABLE_ED_SCAN	macro
ENABLE_ENHANCED_DATA_REQUEST	macro
ENABLE_FREQUENCY_AGILITY	macro
ENABLE_HAND_SHAKE	macro
ENABLE_INDIRECT_MESSAGE	macro
ENABLE_MIWI_PRO_ACKNOWLEDGEMENT	macro
ENABLE_NETWORK_FREEZER	macro
ENABLE_PA_LNA	macro
ENABLE_PREV_CONN	macro
ENABLE_RETRANSMISSION	macro
ENABLE_ROUTING_UPDATE	macro
ENABLE_SECURITY	macro
ENABLE_SLEEP	macro
ENABLE_TIME_SYNC	macro
Enhanced	Data	Request
ERR_INVALID_INPUT	macro
ERR_RX_FAIL	macro
ERR_TRX_FAIL	macro
ERR_TX_FAIL	macro
EUI_0	macro
EUI_1	macro
EUI_2	macro
EUI_3	macro
EUI_4	macro
EUI_5	macro
EUI_6	macro
EUI_7	macro
EUI_ADDRESS_SEARCH_REQUEST	macro
EUI_ADDRESS_SEARCH_RESPONSE	macro
Explorer	16
Explorer	16	Demo	Board	for	MiWi
Explorer	16	Demo	Board	for	MiWi	P2P
Explorer	16	Demo	Board	for	MiWi	PRO

RECEIVED_MESSAGE	structure
Release	Notes
Required	Hardware
RESYNC_TIMES	macro
RESYNCHRONIZATION_REQUEST
macro
RESYNCHRONIZATION_RESPONSE
macro
RETRANSMISSION_TIMES	macro
RF	Transceivers
RFD_DATA_WAIT	macro
RFD_WAKEUP_INTERVAL	macro
ROLE_COORDINATOR	macro
ROLE_FFD_END_DEVICE	macro
ROLE_PAN_COORDINATOR	macro
ROUTING_TABLE_BROADCAST
macro
ROUTING_UPDATE_EXPIRATION
macro
ROUTING_UPDATE_INTERVAL
macro
RSSI_THRESHOLD	macro
RSSI_THRESHOLD_103	macro
RSSI_THRESHOLD_73	macro
RSSI_THRESHOLD_79	macro
RSSI_THRESHOLD_85	macro
RSSI_THRESHOLD_91	macro
RSSI_THRESHOLD_97	macro
Running	Demos
RX_BUFFER_SIZE	macro
rxMessage	variable

S
SECURITY_KEY_00	macro

F
FA_BROADCAST_TIME	macro
FA_COMM_INTERVAL	macro
FA_MAX_NOISE_THRESHOLD	macro
FA_WAIT_TIMEOUT	macro
FAMILY_TREE_BROADCAST	macro
Feature	Demo
Firmware
FRAME_COUNTER_UPDATE_INTERVAL	macro
FRAME_TYPE_ACK	macro
FRAME_TYPE_BEACON	macro
FRAME_TYPE_COMMAND	macro
FRAME_TYPE_DATA	macro
FREQ_BAND	macro

H
Hardware	Sets
HARDWARE_SPI	macro

I
IEEE_802_15_4	macro
INDIRECT_MESSAGE_SIZE	macro
INDIRECT_MESSAGE_TIMEOUT	macro
INDIRECT_MESSAGE_TIMEOUT_CYCLE	macro
INFER_DEST_ADDRESS	macro
Introduction

K
KEY_SEQUENCE_NUMBER	macro
KEY_SIZE	macro

L
Library	API

SECURITY_LEVEL	macro
SECURITY_MASK	macro
SHORT	type
Simple	Example
SOFTWARE_CRC	macro
SOURCE_ADDRESS_ABSENT
macro
START_CONN_CS_SCN	macro
START_CONN_DIRECT	macro
START_CONN_ENERGY_SCN
macro
STATUS_ACTIVE_SCAN	macro
STATUS_ENTRY_NOT_EXIST	macro
STATUS_EXISTS	macro
STATUS_NOT_ENOUGH_SPACE
macro
STATUS_NOT_SAME_PAN	macro
STATUS_SUCCESS	macro
Structs,	Records,	Enums
SubGHz	Transceivers
SUCCESS	macro
SW	License	Agreement

T
TARGET_SMALL	macro
Time	Synchronization
TIME_SYNC_SLOTS	macro
TURBO_MODE	macro
TX_BUFFER_SIZE	macro
TX_POWER	macro
TX_POWER_0_DB	macro
TX_POWER_N_10_DB	macro
TX_POWER_N_12_5_DB	macro

LNA_GAIN	macro
LNA_GAIN_0_DB	macro
LNA_GAIN_N_14_DB	macro
LNA_GAIN_N_20_DB	macro
LNA_GAIN_N_6_DB	macro
LONG	type

M
MAC_COMMAND_ASSOCIATION_REQUEST	macro
MAC_COMMAND_ASSOCIATION_RESPONSE	macro
MAC_COMMAND_BEACON_REQUEST	macro
MAC_COMMAND_COORDINATOR_REALIGNMENT
macro
MAC_COMMAND_DATA_REQUEST	macro
MAC_COMMAND_DISASSOCIATION_NOTIFICATION
macro
MAC_COMMAND_ORPHAN_NOTIFICATION	macro
MAC_COMMAND_PAN_ID_CONFLICT_NOTIFICATION
macro
MAC_RECEIVED_PACKET	structure
MAC_TRANS_PARAM	structure
MAX_ALLOWED_TX_FAILURE	macro
MAX_ROUTING_FAILURE	macro
MiApp	Interfaces
MiApp_BroadcastPacket	function
MiApp_CB_AllowConnection	macro
MiApp_CB_RFDAcknowledgement	macro
MiApp_ConnectionMode	function
MiApp_DiscardMessage	function
MiApp_EstablishConnection	function
MiApp_FlushTx	macro
MiApp_InitChannelHopping	function
MiApp_MessageAvailable	function

TX_POWER_N_15_DB	macro
TX_POWER_N_17_5_DB	macro
TX_POWER_N_2_5_DB	macro
TX_POWER_N_5_DB	macro
TX_POWER_N_7_5_DB	macro
TxBuffer	variable
Types

V
Variables
VERIFY_TRANSMIT	macro

W
Wireless	Protocol
WORD	type
WORD_BITS	union
WORD_VAL	union

X
XTAL_LD_CAP	macro
XTAL_LD_CAP_10	macro
XTAL_LD_CAP_105	macro
XTAL_LD_CAP_11	macro
XTAL_LD_CAP_115	macro
XTAL_LD_CAP_12	macro
XTAL_LD_CAP_125	macro
XTAL_LD_CAP_13	macro
XTAL_LD_CAP_135	macro
XTAL_LD_CAP_14	macro
XTAL_LD_CAP_145	macro
XTAL_LD_CAP_15	macro
XTAL_LD_CAP_155	macro
XTAL_LD_CAP_16	macro

MiApp_NoiseDetection	function
MiApp_RemoveConnection	function
MiApp_ResyncConnection	function
MiApp_SearchConnection	function

XTAL_LD_CAP_85	macro
XTAL_LD_CAP_9	macro
XTAL_LD_CAP_95	macro
XTEA_ROUND	macro

Microchip	My	Application	xx.yy	-	[Jan	1,	2009]
Copyright	©	2009	Microchip	Technology,	Inc.		All	rights	reserved.

Contents	|	Index	|	Home

	Introduction
	SW License Agreement
	Release Notes
	New Features
	Network Freezer
	Enhanced Data Request
	Time Synchronization

	Demos
	Required Hardware
	Hardware Sets

	Configuring the Hardware
	PICDEM Z
	PIC18 Explorer
	Explorer 16
	8-bit Wireless Development Kit

	Firmware
	Precompiled HEX Files
	Demo Source Code Project for MPLAB 8.x
	MiWi P2P
	PICDEM Z Demo Board for MiWi P2P
	PIC18 Explorer Demo Board for MiWi P2P
	8-bit Wireless Development Kit for MiWi P2P
	Explorer 16 Demo Board for MiWi P2P
	PIC24 or dsPIC33 for MiWi P2P
	PIC32 for MiWi P2P

	MiWi Mesh
	PICDEM Z Demo Board for MiWi
	PIC18 Explorer Demo Board for MiWi
	8-bit Wireless Development Kit for MiWi
	Explorer 16 Demo Board for MiWi
	PIC24 or dsPIC33 for MiWi
	PIC32 for MiWi

	MiWi PRO
	PICDEM Z Demo Board for MiWi PRO
	PIC18 Explorer Demo Board for MiWi PRO
	8-bit Wireless Development Kit for MiWi PRO
	Explorer 16 Demo Board for MiWi PRO
	PIC24 or dsPIC33 for MiWi PRO
	PIC32 for MiWi PRO

	Demo Source Code Project for MPLAB X

	Running Demos
	Basic Demos
	Simple Example
	Feature Demo

	MiWi PRO Test Interface
	8 bit Wireless Development Kit Demos

	Configuring the Library
	Application
	ADDITIONAL_NODE_ID_SIZE Macro
	CONNECTION_SIZE Macro
	ENABLE_ACTIVE_SCAN Macro
	ENABLE_BROADCAST Macro
	ENABLE_ED_SCAN Macro
	ENABLE_FREQUENCY_AGILITY Macro
	ENABLE_HAND_SHAKE Macro
	ENABLE_PA_LNA Macro
	ENABLE_INDIRECT_MESSAGE Macro
	ENABLE_NETWORK_FREEZER Macro
	ENABLE_SECURITY Macro
	ENABLE_SLEEP Macro
	EUI_0 Macro
	HARDWARE_SPI Macro
	MRF24J40 Macro
	MRF49XA Macro
	MRF89XA Macro
	MY_ADDRESS_LENGTH Macro
	MY_PAN_ID Macro
	NWK_ROLE_COORDINATOR Macro
	NWK_ROLE_END_DEVICE Macro
	PROTOCOL_MIWI Macro
	PROTOCOL_MIWI_PRO Macro
	PROTOCOL_P2P Macro
	RFD_WAKEUP_INTERVAL Macro
	RX_BUFFER_SIZE Macro
	TARGET_SMALL Macro
	TX_BUFFER_SIZE Macro

	Wireless Protocol
	ACTIVE_SCAN_RESULT_SIZE Macro
	CONNECTION_RETRY_TIMES Macro
	COUNTER_CRYSTAL_FREQ Macro
	ENABLE_DUMP Macro
	ENABLE_ENHANCED_DATA_REQUEST Macro
	ENABLE_TIME_SYNC Macro
	FA_BROADCAST_TIME Macro
	INDIRECT_MESSAGE_SIZE Macro
	INDIRECT_MESSAGE_TIMEOUT Macro
	RESYNC_TIMES Macro
	RFD_DATA_WAIT Macro
	TIME_SYNC_SLOTS Macro
	MiWi(TM) P2P Communication Protocol
	CONNECTION_INTERVAL Macro

	MiWi and MiWi PRO Networking Protocols
	INDIRECT_MESSAGE_TIMEOUT_CYCLE Macro
	MAX_ROUTING_FAILURE Macro
	OPEN_SOCKET_POLL_INTERVAL Macro
	OPEN_SOCKET_TIMEOUT Macro
	MiWi Mesh Networking Protocol
	BROADCAST_RECORD_SIZE Macro
	BROADCAST_RECORD_TIMEOUT Macro
	MIWI_ACK_TIMEOUT Macro

	MiWi PRO Networking Protocol
	COMM_INTERVAL Macro
	COMM_RSSI_THRESHOLD Macro
	ENABLE_MIWI_PRO_ACKNOWLEDGEMENT Macro
	ENABLE_ROUTING_UPDATE Macro
	ENABLE_BROADCAST_TO_SLEEP_DEVICE Macro
	FA_COMM_INTERVAL Macro
	FA_MAX_NOISE_THRESHOLD Macro
	FA_WAIT_TIMEOUT Macro
	FAMILY_TREE_BROADCAST Macro
	MIWI_PRO_ACK_TIMEOUT Macro
	NUM_COORDINATOR Macro
	PACKET_RECORD_SIZE Macro
	PACKET_RECORD_TIMEOUT Macro
	RANDOM_DELAY_RANGE Macro
	ROUTING_UPDATE_INTERVAL Macro
	ROUTING_UPDATE_EXPIRATION Macro
	ROUTING_TABLE_BROADCAST Macro

	RF Transceivers
	BANK_SIZE Macro
	KEY_SEQUENCE_NUMBER Macro
	SECURITY_LEVEL Macro
	SECURITY_KEY_00 Macro
	MRF24J40 IEEE 802.15.4 Compliant 2.4GHz Transceiver
	TURBO_MODE Macro
	VERIFY_TRANSMIT Macro

	SubGHz Transceivers
	MRF49XA SubGHz Transceiver
	BAND_915 Macro
	CRYSTAL_PPM Macro
	DATA_RATE_9600 Macro
	INFER_DEST_ADDRESS Macro
	MAX_ALLOWED_TX_FAILURE Macro
	RSSI_THRESHOLD Macro
	XTAL_LD_CAP Macro

	MRF89XA SubGHz Transceiver
	BAND_902 Macro
	DATA_RATE_20 Macro

	ACK_INFO_SIZE Macro
	CCA_RETRIES Macro
	CCA_THRESHOLD Macro
	CCA_TIMES Macro
	ENABLE_ACK Macro
	ENABLE_CCA Macro
	ENABLE_RETRANSMISSION Macro
	FRAME_COUNTER_UPDATE_INTERVAL Macro
	LNA_GAIN Macro
	RETRANSMISSION_TIMES Macro
	SOURCE_ADDRESS_ABSENT Macro
	TX_POWER Macro

	Library API
	MiApp Interfaces
	MiApp_BroadcastPacket Function
	MiApp_ConnectionMode Function
	MiApp_DiscardMessage Function
	MiApp_EstablishConnection Function
	MiApp_FlushTx Macro
	MiApp_InitChannelHopping Function
	MiApp_MessageAvailable Function
	MiApp_NoiseDetection Function
	MiApp_RemoveConnection Function
	MiApp_ResyncConnection Function
	MiApp_SearchConnection Function
	MiApp_SetChannel Function
	MiApp_StartConnection Function
	MiApp_TransceiverPowerState Function
	MiApp_UnicastAddress Function
	MiApp_UnicastConnection Function
	MiApp_WriteData Macro
	Call Back Functions
	MiApp_CB_AllowConnection Macro
	MiApp_CB_RFDAcknowledgement Macro

	MiMAC Interfaces
	MiMAC_ChannelAssessment Function
	MiMAC_DiscardPacket Function
	MiMAC_Init Function
	MiMAC_PowerState Function
	MiMAC_ReceivedPacket Function
	MiMAC_SendPacket Function
	MiMAC_SetAltAddress Function
	MiMAC_SetChannel Function
	MiMAC_SetPower Function

