
Microsoft	Jet	and	Replication	Objects
Overview

Microsoft®	Jet	and	Replication	objects	(JRO)	allow	you	to	add	features	to	your
application	that	are	specific	to	the	Microsoft	Jet	Database	Engine.	The	Jet	and
Replication	objects	are	based	fundamentally	on	Microsoft®	ActiveX®	Data
Objects	(ADO),	because	they	are	connected	to	an	ADO	Connection	object.
However,	the	Jet	and	Replication	objects	function	only	with	Microsoft	Jet
databases.	For	more	information	about	ADO	and	the	Connection	object,	refer	to
the	ADO	Programmer's	Reference	or	the	ADO	Web	site	at
http:\\www.microsoft.com\data.

With	the	Jet	and	Replication	objects	you	can:

Create	and	synchronize	database	replica	sets.

Compact	a	database,	and	specify	options	for	the	compacted	database,	such
as	passwords	and	encryption.

Refresh	the	memory	cache	by	writing	pending	data	changes	to	the	database,
and	reading	the	most	recent	data	from	the	database	to	memory.

The	Jet	Engine

The	Jet	database	engine	is	represented	by	JetEngine	objects.	With	JetEngine
objects,	you	can	make	a	compacted	copy	of	a	Jet	database	and	include	options
for	encrypting	data,	changing	database	engine	versions,	passing	user	ids	and
passwords,	specifying	the	system	database	or	registry	information,	setting	or



overriding	locale-specific	collating	orders,	removing	relationships,	and	repairing
damaged	replicas.	You	can	also	force	any	pending	changes	to	the	data	to	be
processed	by	completely	flushing	the	cache	of	database	operations.

Replicas

Replicated	databases	are	represented	by	Replica	objects.	With	Replica	objects,
you	create	new	replicated	databases,	define	the	options	for	a	specific	replica
(full,	partial,	design	master),	synchronize	the	changes	between	two	replicas,	and
determine	conflicts	that	occur	during	synchronization.

Filters

Partial	replicas	are	created	using	Filter	objects,	which	are	collected	in	the	Filters
collection	of	a	Replica	object.	Filter	objects	define	criteria	that	limit	the	records
that	become	replicated.	Filters	can	be	applied	to	tables	or	relationships	in	a
partial	replica.

For	more	information,	search	for	a	specific	object,	property,	or	method,	or	see
the	following	topics:

Jet	and	Replication	Objects

Jet	and	Replication	Collections

Jet	and	Replication	Methods

Jet	and	Replication	Properties

Jet	and	Replication	Examples



Jet	and	Replication	Object	Model

The	following	diagram	shows	how	the	Jet	and	Replication	objects	are
represented	and	related.

	



Jet	and	Replication	Objects

JRO	Object	Summary

Object Description

Filter Specifies	criteria	that	limit	the	recordset	of	a	replicated
database.

JetEngine Provides	control	over	Jet	Engine-specific	features	such	as
compacting	databases	and	refreshing	data	from	the	cache.

Replica Represents	a	copy	of	a	replicated	database.

The	Jet	and	Replication	objects	consist	of	three	objects:	the	Filter,	the	Replica,
and	the	JetEngine.	Filter	objects	can	be	contained	in	the	Filters	collection	of	a
Replica.

Filter	Objects

You	can	create	partial	replicas	by	specifying	criteria	for	a	Filter	object.	With
filter	criteria,	you	can	select	specific	data	to	be	replicated.	For	example,	you	can
choose	to	replicate	only	those	records	from	a	Customer	table	from	a	specific
region.

JetEngine	Objects

Use	JetEngine	objects	to	compact	databases	and	refresh	data	with	pending
changes	from	the	cache.	Compact	databases	to	save	space	and	to	specify	options
for	the	new	database	copy	such	as	encrypting	the	data,	changing	the	database
engine	version,	or	setting	the	collating	order	by	locale.	Refresh	data	from	the
cache	to	force	all	pending	database	operations	to	be	processed.	This	keeps	data



in	a	recordset	current	even	in	an	environment	with	many	users	and	a	high	level
of	data	processing.

Replica	Objects

Use	Replica	objects	to	create	and	maintain	replicated	databases.	With	replicas,
you	identify	a	design	master,	create	new	replicas,	obtain	information	about	the
replicability	of	the	objects	in	a	database,	and	synchronize	the	changes	between
two	replicas.

For	more	information	about	the	properties	and	methods	of	a	specific	Jet	and
Replication	object,	see	the	specific	reference	topic	for	that	object.



Filter	Object

			 			

			 			

Specifies	criteria	that	limit	the	recordset	of	a	replicated	database.

Remarks

Use	a	Filter	object	to	replicate	a	subset	of	the	records	in	a	database.	With	filters,
you	can	create	partial	replicas	that	contain	specific	data	according	to	the	criteria.
A	Filter	object	can	be	contained	in	the	Filters	collection	of	a	replica.

With	the	properties	of	a	Filter	object,	you	can:

Specify	the	name	of	the	table	to	which	the	filter	is	applied	with	the
TableName	property.



Use	the	FilterType	property	to	determine	whether	the	filter	is	based	on	a
table	or	a	relationship.

Specify	the	criteria	that	a	record	must	satisfy	in	order	to	be	replicated	from
the	full	replica	with	the	FilterCriteria	property.



JetEngine	Object

			 			

			 			

Provides	control	over	Jet	Engine-specific	features	such	as	compacting	databases
and	refreshing	data	from	the	cache.

	

Remarks

Use	a	JetEngine	object	to	access	features	of	the	Jet	database	engine.	A
JetEngine	object	functions	only	when	connected	to	a	Jet	datasource.

With	the	methods	of	a	JetEngine	object,	you	can:

Compact	a	database	and	modify	other	database	properties	with	the



CompactDatabase	method.

Force	pending	data	changes	in	the	cache	to	be	processed,	ensuring	that	a
recordset	or	the	database	is	kept	current,	with	the	RefreshCache	method.



Replica	Object

			 			

			 			

Represents	a	copy	of	a	replicated	database.

	

Remarks

With	the	collections,	methods,	and	properties	of	a	Replica	object,	you	can	do	the
following:

Access	the	filters	for	a	replica	with	the	Filters	collection.

Create	a	new	replica	with	the	CreateReplica	method.

Determine	whether	an	object	is	local	or	replicated	with	the



GetObjectReplicability	and	SetObjectReplicability	methods.

Make	a	database	replicable	with	the	MakeReplicable	method.

Populate	a	partial	replica	with	the	PopulatePartial	method.

Synchronize	two	replicas	with	the	Synchronize	method.

Specify	the	ADO	Connection	object	or	the	valid	connection	string	to	which
the	replica	is	connected	with	the	ActiveConnection	property.

Specify	custom	conflict	resolution	code	with	the	ConflictFunction	property.

Return	a	Recordset	containing	table	conflicts	that	occurred	during
synchronization	with	the	ConflictTables	property.

Specify	the	unique	identifier	of	the	design	master	in	a	replica	set	with	the
DesignMasterId	property.

Determine	the	relative	priority	of	the	replica	for	use	during	conflict
resolution	with	the	Priority	property.

Specify	how	long	to	keep	replication	histories	with	the	RetentionPeriod
property.

Return	the	unique	identifier	of	the	replica	with	the	ReplicaId	property.

Determine	if	the	replica	is	a	full,	partial,	or	design	master	with	the
ReplicaType	property.

Determine	if	the	replica	is	a	global,	local,	or	anonymous	replica	with	the
Visibility	property.



Jet	and	Replication	Collections

The	Jet	and	Replication	objects	contain	one	collection:	Filters.	A	Replica	object
can	contain	a	Filters	collection.	The	Filters	collection	contains	Filter	objects,
which	define	criteria	that	limit	the	recordset	of	the	replicated	database.

The	Filters	collection	is	a	standard	ADO	collection	that	uses	the	following
properties	and	methods	to	access	its	members:	Count,	Append,	Delete,	Item,	and
Refresh.



Filters	Collection

			 			

			

Contains	all	of	the	Filter	objects	for	the	replica.

Remarks

Replica	objects	can	contain	a	Filters	collection.

With	the	properties	and	methods	of	a	Filters	collection,	you	can:

Return	the	number	of	filters	contained	in	the	collection	with	the	Count
property.

Access	a	column	in	the	collection	with	the	Item	method.

Add	a	new	filter	to	the	collection	with	the	Append	method.

Remove	a	filter	from	the	collection	with	the	Delete	method.

Update	the	objects	in	the	collection	to	reflect	the	current	database's	schema



with	the	Refresh	method.



Jet	and	Replication	Methods

JRO	Method	Summary

Method Description

Append Adds	a	new	Filter	object	to	the	Filters	collection	of
a	partial	Replica.

CompactDatabase
Copies	and	compacts	a	closed	database,	and	gives
you	the	option	of	changing	its	version,	collating
order,	encryption,	and	other	options.

CreateReplica Creates	a	new	replica	of	the	current	replicable
database.

Delete Removes	the	Filter	object	from	the	Filters
collection	of	a	Replica.

GetObjectReplicability Indicates	whether	an	object	is	local	or	replicated.

Item Returns	a	specific	member	of	a	collection	by	name
or	ordinal	number.

MakeReplicable Makes	a	database	replicable.
PopulatePartial Populates	a	partial	replica.

Refresh Updates	the	objects	in	a	collection	to	reflect	objects
available	from	and	specific	to	the	provider.

RefreshCache
Forces	any	pending	writes	to	.mdb	files,	and
refreshes	memory	with	the	most	current	data	from
the	.mdb	file.

SetObjectReplicability Sets	whether	an	object	is	local	or	replicated.
Synchronize Synchronizes	two	replicas.



Append	Method

			 			

Adds	a	new	Filter	object	to	the	Filters	collection	of	a	partial	Replica.

Syntax

Filters.Append(TableName	[,	FilterType],	FilterCriteria)

Parameters

TableName			A	String	value	specifying	the	name	of	the	table	to	which	the	filter
is	applied	with	the	TableName	property.

FilterType			An	Enum	value	indicating	the	FilterType	property	to	determine
whether	the	filter	is	based	on	a	table	or	a	relationship.

FilterCriteria			A	String	value	specifying	the	criteria	that	a	record	must	satisfy
in	order	to	be	replicated	from	the	full	replica	with	the	FilterCriteria	property.

Remarks

An	error	will	occur	if	the	replica	is	not	a	partial	replica,	as	defined	by	the
ReplicaType	property.	An	error	will	occur	if	a	filter	with	the	same	name	and	type



already	exists.

An	error	will	occur	if	you	attempt	to	add	a	second	FilterType	jrFltrTypeTable
with	the	same	TableName.



CompactDatabase	Method

			 			

Copies	and	compacts	a	closed	database,	and	gives	you	the	option	of	changing	its
version,	collating	order,	encryption,	and	other	options.

Syntax

JetEngine.CompactDatabase(SourceConnection,	DestConnection)

Parameters

SourceConnection			A	String	value	specifying	a	connection	to	the	source
database	to	be	compacted.	An	error	will	occur	if	the	database	specified	by
SourceConnection	is	already	open.

DestConnection			A	String	value	specifying	a	connection	to	the	destination
database	to	be	created	by	the	compaction.	An	error	will	occur	if	the	database
specified	by	DestConnection	already	exists	or	another	file	with	that	name
already	exists.

Remarks

Connection	properties	are	used	to	specify	information	for	compacting	the



database.	At	a	minimum,	the	Data	Source	property	must	be	specified	for	both
SourceConnection	and	DestConnection.	The	table	below	lists	the	connection
properties	that	you	can	use	with	this	method.	All	other	connection	properties	will
be	ignored.

Property Source Destination Description

Provider

Indicates	the	name	of	the
provider	to	use	to	connect	to
the	data	source.	If	this	property
is	not	specified,	the
Microsoft.Jet.OLEDB.4.0
provider	is	assumed.

An	error	occurs	if	the	name	of
the	provider	in	the	source
string	is	different	from	the
name	of	the	provider	in	the
destination	string.

Data	Source

Indicates	the	name	of	the
database.	This	property	is
required	for	both	the	source
and	destination	connection
information.

User	Id
Indicates	the	name	of	the	user
if	the	source	database	is
secured.

Password
Indicates	the	password	for	the
user	if	the	source	database	is
secured.

Locale	Identifier

Indicates	the	locale	id	for	the
new	database.	If	this	is	omitted,
the	destination	database	will
have	the	same	locale	id	as	the
source	database.

Locale	specifies	the	collating
order	for	string	comparisons	in



the	database.	For	destination
database	values,	see	the
Remarks	section.

Jet
OLEDB:Database
Password

Indicates	the	password	if	the
database	is	secured	by	a
password.

Jet	OLEDB:Engine
Type

Indicates	the	version	of	the
source	database	to	open	or	the
version	of	the	new	database	to
be	created.	The	OLE	DB
engine	types	that	you	can	use
are:

1	for	JET	Version	1.0

2	for	JET	Version	1.1

3	for	JET	Version	2.x

4	for	JET	Version	3.x

5	for	JET	Version	4.x

If	this	is	omitted	for	the
destination	database,	it	will	be
the	same	version	as	for	the
source	database.	The	value	for
the	destination	database	cannot
be	a	version	prior	to	that	of	the
source	database.

Jet
OLEDB:Registry
Path

Sets	information	about	the
Windows	Registry	key	that
contains	values	for	the
Microsoft	Jet	Database	Engine.

Jet	OLEDB:System
Database

Indicates	the	location	of	the
system	database.



Jet
OLEDB:Encrypt
Database

Indicates	whether	to	encrypt
the	new	database.	If	this
parameter	is	omitted,	the	new
database	will	have	the	same
encryption	as	the	source
database.

Jet	OLEDB:Don't
Copy	Locale	on
Compact

Indicates	that	the	database	sort
order	should	be	used,
overriding	any	per-column
locale	settings.	(Boolean.)

Jet
OLEDB:Compact
Without
Relationships

Indicates	whether	to	copy
relationships	to	the	new
database.	(Boolean.)

Jet
OLEDB:Compact
Without	Replica
Repair

Indicates	whether	to	try	and
find	other	replicas	to	repair
damaged	replicated	databases.
(Boolean.)

It	is	not	possible	to	do	an	"in	place"	compact,	that	is,	one	in	which	the	source
database	and	destination	database	are	the	same,	using	this	method.	An	error	will
occur	if	the	provider	does	not	support	compacting	Jet	databases.

Remarks

The	following	table	lists	the	destination	database	and	Locale	Identifier	(LCID)
values:

Description LCID
Chinese	Punctuation 0x00000804
Chinese	Stroke	Count 0x00020804
Chinese	Stroke	Count	(Taiwan) 0x00000404
Chinese	Bopomofo	(Taiwan) 0x00030404
Croatian 0x0000041a
Czech 0x00000405
Estonian 0x00000425
French 0x0000040c



General 0x00000409
Georgian	Modern 0x00010437
German	Phone	Book 0x00010407
Hungarian 0x0000040e
Hungarian	Technical 0x0001040e
Icelandic 0x0000040f
Japanese 0x00000411
Japanese	Unicode 0x00010411
Korean 0x00000412
Korean	Unicode 0x00010412
Latvian 0x00000426
Lithuanian 0x00000427
Macedonian 0x0000042f
Norwegian/Danish 0x00000414
Polish 0x00000415
Romanian 0x00000418
Slovak 0x0000041b
Slovenian 0x00000424
Spanish	Traditional 0x0000040a
Spanish	Modern 0x00000c0a
Swedish/Finnish 0x0000041d
Thai 0x0000041e
Turkish 0x0000041f
Ukrainian 0x00000422
Vietnamese 0x0000042a

Note			The	General	sort	order	contains	the	following	languages:	Africaans,
Albanian,	Arabic,	Basque,	Bulgarian,	Byelorussian,	Catalan,	Dutch,	English	,
Faeroese,	Farsi,	German	-	Standard,	Greek,	Hebrew,	Hindi,	Indonesian,	Italian,
Malay,	Portuguese,	Russian,	Serbian,	Swahili,	Urdu.



CreateReplica	Method

			 			

Creates	a	new	replica	of	the	current	replicable	database.

Syntax

Replica.CreateReplica(ReplicaName,	Description	[,	ReplicaType]	[,	Visibility]	
			[,	Priority]	[,	Updatability])

Parameters

ReplicaName			A	String	value	specifying	the	name	and	path	of	the	full	or	partial
replica	to	be	created.	An	error	will	occur	when	specifying	a	name	longer	than
255	characters.

Description			A	String	value	describing	the	replica	to	be	created.

ReplicaType			Optional.	An	Enum	value	indicating	the	type	of	replica	to	be
created.	The	default	value	is	jrRepTypeFull.	See	the	ReplicaType	property	for
more	information.	The	following	constants	are	valid	values	for	ReplicaType:

Constant Description
jrRepTypeFull The	replica	is	a	full	replica.



jrRepTypePartial The	replica	is	a	partial	replica.

Visibility			Optional.	An	Enum	value	indicating	the	replica's	visibility.	The
default	value	is	jrRepVisibilityGlobal.	See	the	Visibility	property	for	more
information.	The	following	constants	are	valid	values	for	Visibility:

Constant Description
jrRepVisibilityGlobal The	replica	is	global.
jrRepVisibilityLocal The	replica	is	local.
jrRepVisibilityAnon The	replica	is	anonymous.

Priority			Optional.	A	Long	value	indicating	the	priority	of	the	replica	for	use
during	conflict	resolution.	The	default	value	is	-1,	which	indicates	that	the
database	should	determine	the	default	value.	For	global	replicas,	the	default
priority	is	90	percent	of	the	parent	replica's	priority.	Also,	the	valid	values	for	a
global	replica	may	be	further	restricted.	If	the	user	is	the	database	administrator,
the	entire	range	is	valid.	Otherwise,	the	maximum	value	for	priority	is	90	percent
of	the	parent	replica's	priority.	For	local	and	anonymous	replicas,	the	value	will
always	be	0	and	cannot	be	changed.	This	value	is	forced	with	the	creation	of	the
replica	and	any	other	value	is	ignored.	See	the	Priority	property	for	more
information.

Updatability			Optional.	An	Enum	value	indicating	the	type	of	updates	allowed.
The	default	value	is	jrRepUpdFull.	The	constant	jrRepUpdReadOnly	prevents
users	from	modifying	schema	and	records	of	replicable	objects	of	the	new
replica;	however,	when	you	synchronize	the	new	replica	with	another	member	of
the	replica	set,	design	and	data	changes	will	be	propagated	to	the	new	replica.
The	following	constants	are	valid	values	for	Updatability:

Constant Description
jrRepUpdFull The	replica	can	be	updated.
jrRepUpdReadOnly The	replica	is	read-only.

Remarks



An	error	will	occur	if	the	replica	was	not	successfully	opened	and	the
ActiveConnection	property	is	not	set.

This	method	can	only	be	used	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	use	this
method.

A	replica	either	inherits	the	exact	same	characteristics	or	is	more	restrictive	than
the	replica	that	created	it.	For	example,	a	read-only	global	replica	can	only	create
either	a	local	or	anonymous	read-only	replica,	while	a	local	replica	can	only
create	another	local	replica	with	the	same	characteristics.



Delete	Method

			 			

Removes	the	Filter	object	from	the	Filters	collection	of	a	Replica.

Syntax

Filters.Delete(Index)

Parameters

Index			A	Variant	value	specifying	the	name	or	ordinal	of	the	Filter	object	you
want	to	delete.

Remarks

If	two	filters	have	the	same	name,	the	first	filter	will	be	removed.	Use	the	ordinal
value	to	explicitly	delete	a	filter	when	more	than	one	filter	has	the	same	name.

An	error	will	occur	if	a	filter	with	the	name	or	ordinal	specified	does	not	exist	in
the	collection.



GetObjectReplicability	Method

			 			

Indicates	whether	an	object	is	local	or	replicated.

Syntax

Set	ReturnValue	=	Replica.GetObjectReplicability(ObjectName,	ObjectType)

Return	Value

A	Boolean	value	indicating	whether	the	object	is	replicated.	In	databases	that
have	not	been	made	replicable,	this	method	returns	True	for	all	objects	by
default.	True	indicates	that	the	object	will	be	made	replicable	if	the	database	is
made	replicable.	In	replicable	databases,	this	method	returns	False	for	all	new
objects	by	default.	False	indicates	that	the	object	is	not	replicated.

Parameters

ObjectName			A	String	value	specifying	the	name	of	the	object	for	which	to
retrieve	the	replication	state.

ObjectType			A	String	value	specifying	the	type	of	object	specified	by
ObjectName.



Remarks

The	GetObjectReplicability	method	indicates	whether	the	object	is	or	will	be
replicated.

The	ObjectName	and	ObjectType	parameters	are	strings	that	indicate	the	name	of
the	object	(for	example,	Customers)	and	the	object's	container	(for	example,
Tables).	An	error	will	occur	if	an	object	of	that	name	and	type	does	not	exist	in
the	database.	An	error	will	also	occur	if	either	of	these	strings	is	longer	than	64
characters

See	the	SetObjectReplicability	method	for	information	on	how	to	change	an
object's	replicability.

An	error	will	occur	if	the	object	specified	by	the	ObjectName	and	ObjectType
parameters	does	not	exist.



Item	Method

			 			

Returns	a	specific	member	of	a	collection	by	name	or	ordinal	number.

Syntax

Set	object	=	collection.Item	(	Index	)

Return	Value

Returns	an	object	reference.

Parameters

Index			A	Variant	that	evaluates	either	to	the	name	or	to	the	ordinal	number	of
an	object	in	a	collection.

Remarks

Use	the	Item	method	to	return	a	specific	object	in	a	collection.	If	the	method
cannot	find	an	object	in	the	collection	corresponding	to	the	Index	argument,	an
error	occurs.	Also,	some	collections	don't	support	named	objects;	for	these
collections,	you	must	use	ordinal	number	references.



The	Item	method	is	the	default	method	for	all	collections;	therefore,	the
following	syntax	forms	are	interchangeable:

collection.Item	(Index)

collection	(Index)



MakeReplicable	Method

			 			

Makes	a	database	replicable.

Syntax

Replica.MakeReplicable([ConnectString]	[,	ColumnTracking])

Parameters

ConnectString			Optional.	A	String	value	specifying	the	name	and	path	of	the
database	to	make	replicable.	The	ConnectString	overrides	the	ActiveConnection
property.

ColumnTracking			Optional.	A	Boolean	value	that	indicates	whether	to	track
changes	by	column	or	by	row.	The	default	value	is	True.	Column-level	conflict
resolution	lets	you	merge	two	records	and	only	report	a	conflict	if	simultaneous
changes	have	been	to	the	same	field.	If	you	frequently	have	overlapping	updates
in	the	same	row,	setting	this	option	could	increase	performance.

Remarks

An	error	will	occur	if	the	ConnectString	parameter	is	omitted	and	the



ActiveConnection	property	has	not	already	been	exclusively	set.	The
ActiveConnection	property	will	be	set	if	this	method	is	successful.



PopulatePartial	Method

			 			

Populates	a	partial	replica.

Syntax

Replica.PopulatePartial(FullReplica)

Parameters

FullReplica			A	String	value	representing	the	path	and	file	name	of	the	replica	to
populate	with	data.

Remarks

When	you	synchronize	a	partial	replica	with	a	full	replica,	it	is	possible	to	create
"orphaned"	records	in	the	partial	replica.	For	example,	suppose	you	have	a	Filter
for	the	Customers	table	with	a	FilterCriteria	of	"Region	=	'CA'".	If	a	user
changes	a	customer's	region	from	CA	to	NY	in	the	partial	replica,	and	then	a
synchronization	occurs	with	the	Synchronize	method,	the	change	is	propagated
to	the	full	replica.	But	the	record	containing	NY	in	the	partial	replica	is	orphaned
because	it	now	doesn't	meet	the	replica	filter	criteria.



To	solve	the	problem	of	orphaned	records,	you	can	use	the	PopulatePartial
method.	The	PopulatePartial	method	is	similar	to	the	Synchronize	method,	but
it	synchronizes	any	changes	in	the	partial	replica	with	the	full	replica,	removes
all	records	in	the	partial	replica,	and	then	repopulates	the	partial	replica	based	on
the	current	replica	filters.	Even	if	your	replica	filters	have	not	changed,
PopulatePartial	will	always	clear	all	records	in	the	partial	replica	and
repopulate	it	based	on	the	current	filters.

Generally,	you	should	use	the	PopulatePartial	method	when	you	create	a	partial
replica	and	whenever	you	change	your	replica	filters.	If	your	application	changes
replica	filters,	you	should	follow	these	steps:

1.	 Synchronize	the	full	replica	with	the	partial	replica	in	which	the	filters	are
being	changed.

2.	 Use	the	Filter	object	to	make	the	desired	changes	to	the	replica	filter.

3.	 Call	the	PopulatePartial	method	to	remove	all	records	from	the	partial
replica	and	transfer	all	records	from	the	full	replica	that	meet	the	new
replica	filter	criteria.

If	a	replica	filter	has	changed,	and	the	Synchronize	method	is	called	without
first	calling	PopulatePartial,	a	trappable	error	occurs.

The	PopulatePartial	method	can	only	be	invoked	on	a	partial	replica	that	has
been	opened	for	exclusive	access.	Furthermore,	you	can	not	call	the
PopulatePartial	method	from	code	running	within	the	partial	replica	itself.
Instead,	open	the	partial	replica	exclusively	from	the	full	replica	or	another
database,	then	call	PopulatePartial.

Note			Although	PopulatePartial	performs	a	one-way	synchronization	before
clearing	and	repopulating	the	partial	replica,	it	is	still	a	good	idea	to	call
Synchronize	before	calling	PopulatePartial.	When	using	the	direct	or	Internet
synchronization	modes,	if	the	call	to	Synchronize	fails,	a	trappable	error	occurs.
You	can	use	this	error	to	decide	whether	or	not	to	proceed	with	the
PopulatePartial	method	(which	removes	all	records	in	the	partial	replica).	For
indirect	synchronization,	a	trappable	error	does	not	occur;	see	the	Synchronize
method	for	more	information.	If	PopulatePartial	is	called	by	itself	and	an	error
occurs	while	records	are	being	synchronized,	records	in	the	partial	replica	will



still	be	cleared,	which	may	not	be	the	desired	result.

This	method	can	only	be	used	if	the	database	is	replicable	and	it	uses	a
PartialReplica.	An	error	will	occur	if	the	ReplicaType	is
jrRepTypeNotReplicable	and	the	user	attempts	to	use	this	method.



Refresh	Method

			 			

Updates	the	objects	in	a	collection	to	reflect	objects	available	from	and	specific
to	the	provider.

Syntax

collection.Refresh



RefreshCache	Method

			 			

Forces	any	pending	writes	to	.mdb	files,	and	refreshes	memory	with	the	most
current	data	from	the	.mdb	file.

Syntax

JetEngine.RefreshCache(Connection)

Parameters

Connection			The	ADO	Connection	object	for	which	to	refresh	the	cache.	An
error	will	occur	if	the	connection	is	not	a	valid,	open	ADO	Connection.	An	error
will	occur	if	the	provider	used	to	create	the	connection	does	not	support	the
RefreshCache	method.

Remarks

You	don't	need	to	use	this	method	in	single-user	environments	unless	multiple
connections	are	made	to	the	database.	The	RefreshCache	method	may	increase
performance	in	a	multiuser	environment	because	it	forces	the	database	engine	to
write	data	to	disk,	releasing	locks	on	memory.



SetObjectReplicability	Method

			 			

Sets	whether	an	object	is	local	or	replicated.

Syntax

Replica.SetObjectReplicability(ObjectName,	ObjectType,	Replicability)

Parameters

ObjectName			A	String	value	specifying	the	name	of	the	object	for	which	to
retrieve	the	replication	state.

ObjectType			A	String	value	specifying	the	type	of	object	specified	by
ObjectName.

Replicability			A	Boolean	value	specifying	whether	the	object	is	or	will	be
replicated.

Remarks

The	SetObjectReplicability	method	makes	an	object	local	or	replicated.	If	the
database	has	not	been	made	replicable,	setting	the	Replicability	parameter	to



False	will	indicate	that	the	object	should	be	kept	local	when	the	database	is
made	replicable.	Objects	in	non-replicable	databases	are	replicable	by	default.
However,	new	objects	created	in	a	replicable	database	are	not	replicable	by
default.	To	make	a	new	object	in	a	replicable	database	replicable,	set	the
Replicability	parameter	to	True.

The	ObjectName	and	ObjectType	parameters	are	strings	that	indicate	the	name	of
the	object	(for	example,	Customers)	and	the	object's	container	(for	example,
Tables).	An	error	will	occur	if	an	object	of	that	name	and	type	does	not	exist	in
the	database.	An	error	will	also	occur	if	either	of	these	strings	is	longer	than	64
characters.

SetObjectReplicability	is	ignored	on	objects	in	the	following	Microsoft	Access
collections:	Forms,	Reports,	DataAccessPages,	Macros,	and	Modules.	An
Access	system	table,	MSysAccessObjects,	controls	the	replicability	of	these
objects	and	can	only	be	set	prior	to	making	the	database	replicable.	The	default
is	True.

See	the	GetObjectReplicability	method	for	information	about	how	to	determine
an	object's	replicability.



Synchronize	Method

			 			

Synchronizes	two	replicas.

Syntax

Replica.Synchronize(Target	[,	SyncType]	[,	SyncMode])

Parameters

Target			A	String	value	specifying	the	path	and	file	name	of	the	replica	with
which	to	synchronize,	the	name	of	the	Synchronizer	that	manages	the	target
replica,	or	the	name	of	the	Internet	server	that	contains	the	target	replica.

SyncType			Optional.	An	Enum	value	specifying	the	type	of	synchronization	to
perform.	The	default	value	for	the	SyncType	parameter	is	jrSyncTypeImpExp.
The	following	values	are	valid	for	SyncType:

Constant Description

jrSyncTypeExport Sends	changes	from	the	current	replica
to	the	target	replica.
Sends	changes	from	the	target	replica



jrSyncTypeImport to	the	current	replica.

jrSyncTypeImpExp
Default.	Sends	changes	from	the
current	replica	to	the	target	replica	and
vice-versa.

SyncMode			Optional.	An	Enum	value	specifying	the	method	of
synchronization.	jrSyncModeIndirect	is	the	default	value	for	the	SyncMode
parameter.	The	following	values	are	valid	for	SyncMode:

Constant Description
jrSyncModeIndirect Default.	Indirect	synchronization.
jrSyncModeDirect Direct	synchronization.

jrSyncModeInternet Indirect	synchronization	over	the
Internet.

Remarks

The	replica	identified	in	Target	parameter	must	be	part	of	the	same	replica	set.	If
both	replicas	have	the	same	ReplicaId	property	setting	or	are	design	masters	for
two	different	replica	sets,	the	synchronization	fails.	This	is	enforced	by	the
provider.

When	the	SyncMode	is	indirect,	the	value	of	the	Target	parameter	must	be	a
Synchronizer	name.	Jet	Replication	leaves	the	changes	in	a	"dropbox."	The
Synchronizer	that	manages	that	target	replica	picks	up	the	changes	and	applies
them.	For	indirect	synchronization	to	work	correctly,	a	Synchronizer	must	be
running	on	both	the	local	computer	and	the	target	computer.

When	the	SyncMode	is	Internet,	the	value	of	the	Target	parameter	must	be	a
Universal	Resource	Locator	(URL)	address	instead	of	a	local	area	network	path.
An	error	will	occur	if	a	URL	is	specified	in	the	Target	parameter	and	the
SyncMode	parameter	is	not	jrSyncModeInternet.

When	the	SyncMode	is	direct,	both	replicas	are	opened	simultaneously	and
synchronized.	Over	a	WAN	or	remote	dialup	network,	reliability	and
performance	are	improved	by	using	indirect	synchronization.	You	can	also
synchronize	with	an	SQL	Server	replica	in	a	replica	set	containing	both	SQL



Server	and	Jet	databases	by	setting	the	Target	parameter	to
ServerName.Database.Publication	and	performing	a	direct
(jrSyncModeDirect)	synchronization.	An	error	will	occur	if	the	Target
parameter	is	ServerName.Database.Publication	and	SyncMode	is	other	than
direct.

This	method	can	only	be	used	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	use	this
method.

Replication	Manager	is	required	for	installation	and	configuration	of	the
Synchronizer	and	Replman	should	be	used	to	monitor	the	status	for	indirect	and
Internet	synchronizations.	It	is	only	available	in	the	Microsoft	Office	2000,
Developer	Edition.	For	more	information	about	Replication	Manager,	see
Replication	Manager	in	Microsoft	Access	help.



Jet	and	Replication	Properties

JRO	Property	Summary

Property Description

ActiveConnection Indicates	the	Connection	object	to
which	the	Replica	belongs.

ConflictFunction

Indicates	the	name	of	the	custom
conflict	resolution	function	to	use	in
resolving	conflicts	during
synchronization.

ConflictTables Specifies	a	Recordset	containing	a	list
of	tables	and	associated	conflict	tables.

Count Indicates	the	number	of	objects	in	a
collection.

DesignMasterId Uniquely	identifies	the	design	master	in
a	replica	set.

FilterCriteria
Specifies	the	criteria	that	a	record	must
satisfy	in	order	to	be	replicated	from
the	full	replica.

FilterType Indicates	the	type	of	filter.

Priority
Specifies	the	relative	priority	of	the
replica	for	use	during	conflict
resolution.

ReplicaId Uniquely	identifies	a	database	replica.
ReplicaType Indicates	the	type	of	replica.
RetentionPeriod Indicates	how	many	days	to	keep



replication	histories.

TableName Indicates	the	name	of	the	table	to	which
the	filter	is	applied.

Visibility Indicates	the	visibility	of	the	replica:
Global,	Local,	or	Anonymous.



ActiveConnection	Property

			 			

Indicates	the	Connection	object	to	which	the	Replica	belongs.

Settings	and	Return	Values

Sets	or	returns	either	a	String	containing	the	definition	for	a	connection	or	an
opened	Connection	object.

Remarks

The	default	value	is	Null.

If	the	ActiveConnection	property	is	set	to	nothing,	then	any	related	objects	will
be	disconnected	from	the	data	source.



ConflictFunction	Property

			 			

Indicates	the	name	of	the	custom	conflict	resolution	function	to	use	in	resolving
conflicts	during	synchronization.

Settings	and	Return	Values

Sets	or	returns	a	String	value	that	is	the	name	of	a	custom	function.	The	String
must	be	less	than	256	characters	long.	The	default	value	is	an	empty	string	("").

Remarks

The	ConflictFunction	property	enables	you	to	use	custom	conflict	resolution
code	for	resolving	data	conflicts	that	occur	between	replicas	upon
synchronization,	or	it	can	designate	one	replica	in	the	set	to	view	the	built-in
Conflict	Resolver.	Set	the	ConflictFunction	property	to	a	text	string	that	is	the
name	of	the	function	you	wish	to	call.	Note	that	the	setting	must	be	the	name	of
a	Function	procedure;	it	can't	be	the	name	of	a	Sub	procedure.	If	this	property
has	not	been	set,	Microsoft	Access	calls	the	built-in	Conflict	Resolver.

A	conflict	occurs	if	the	same	record	in	a	replicated	database	has	been	changed	in
one	or	more	replicas	(or	the	same	column	in	the	same	record	if	column	level
tracking	is	enabled	for	the	database).	Normally,	Microsoft	Access	calls	the	built-



in	Conflict	Resolver	to	resolve	these	conflicts.	The	Conflict	Resolver	wizard
presents	each	conflict	to	the	user,	who	must	manually	determine	which	changed
record	contains	the	correct	data.	You	can	designate	one	replica	in	the	replication
set	to	view	conflicts	with	the	built-in	Conflict	Resolver	by	setting	the
ConflictFunction	property	to	be	equal	to	the	ReplicaId	(GUID)	of	that	replica.

If	you	prefer	to	automate	conflict	resolution	for	your	application,	you	can	write
custom	procedures	to	resolve	conflicts,	and	then	override	the	built-in
functionality	by	setting	the	ConflictFunction	property.	You	should	create	a
single	function	that	acts	as	a	point	of	entry	into	your	conflict	resolution	code,
then	set	the	ConflictFunction	property	to	the	name	of	this	function.

This	property	can	only	be	read	or	set	if	the	database	is	replicable.	An	error	will
occur	if	the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to
read	or	set	this	property.	An	error	will	also	occur	if	the	ReplicaType	is
jrRepTypeDesignMaster.



ConflictTables	Property

			 			

Specifies	a	Recordset	containing	a	list	of	tables	and	associated	conflict	tables.

Return	Values

Returns	a	recordset	containing	two	columns:	TableName	and
ConflictTableName	for	each	table	that	had	conflicts	during	the	synchronization
of	two	replicas.	ConflictTables	is	read-only.

Remarks

This	property	can	only	be	read	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	read	or	set
this	property.



Count	Property

			 			

Indicates	the	number	of	objects	in	a	collection.

Return	Value

Returns	a	Long	value.

Remarks

Use	the	Count	property	to	determine	how	many	objects	are	in	a	given	collection.

Because	numbering	for	members	of	a	collection	begins	with	zero,	you	should
always	code	loops	starting	with	the	zero	member	and	ending	with	the	value	of
the	Count	property	minus	1.	If	you	are	using	Microsoft®	Visual	Basic®	and
want	to	loop	through	the	members	of	a	collection	without	checking	the	Count
property,	use	the	For	Each...Next	command.

If	the	Count	property	is	zero,	there	are	no	objects	in	the	collection.



DesignMasterId	Property

			 			

Uniquely	identifies	the	design	master	in	a	replica	set.

Settings	and	Return	Values

Sets	or	returns	a	Variant	value	that	uniquely	identifies	the	design	master	in	a
replica	set	(a	GUID).	This	property	is	automatically	set	when	the	design	master
is	created.	The	default	value	is	an	empty	string	("").

Remarks

A	design	master	can	set	one	of	its	replicas	to	be	the	new	design	master.	A	replica
can	make	itself	the	new	design	master,	but	it	cannot	make	a	different	replica	the
design	master.

Under	extreme	circumstances	—	for	example,	if	the	design	master	is	erased	or
corrupted	—	you	can	set	this	property	at	the	current	replica.	However,	setting
this	property	at	a	replica	when	there	is	already	another	design	master	in	the	set
might	partition	your	replica	set	into	two	irreconcilable	sets,	and	prevent	any
further	synchronization	of	data.

This	property	can	only	be	read	if	the	database	is	replicable.	An	error	will	occur	if



the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	read	or	set
this	property.



FilterCriteria	Property

			 			

Specifies	the	criteria	that	a	record	must	satisfy	in	order	to	be	replicated	from	the
full	replica.

Settings	and	Return	Values

Sets	or	returns	a	String	value.	For	filters	based	on	a	table,	the	string	should
represent	a	SQL	WHERE	clause	without	the	keyword	WHERE.	For	filters	based
on	relationships,	the	string	contains	the	name	of	the	relationship.	FilterCriteria
is	read-only	once	it	has	been	set,	and	can	only	be	set	using	the	Append	method.

Remarks

The	default	value	is	an	empty	string	("").



FilterType	Property

			 			

Indicates	the	type	of	filter.

Settings	and	Return	Values

Sets	or	returns	an	Enum	value.	The	following	constants	are	valid	values	for
FilterType.	FilterType	is	read-only	once	it	has	been	set,	and	can	only	be	set
using	the	Append	method.

Constant Description
JrFltrTypeTable Default.	The	filter	is	based	on	a	table.
JrFltrTypeRelationship The	filter	is	based	on	a	relationship.



Priority	Property

			 			

Specifies	the	relative	priority	of	the	replica	for	use	during	conflict	resolution.

Return	Values

Returns	a	Long	value	from	0	to	100	that	indicates	the	priority.	Priority	is	read-
only.

Remarks

The	algorithm	for	resolving	conflicts	is	as	follows:

The	replica	with	the	highest	priority	wins.

If	priorities	are	equal,	the	replica	with	the	lowest	ReplicaId	wins.

In	previous	versions,	the	conflict	resolution	algorithm	was	based	on	the	replica
with	the	most	changes	in	the	row	and	the	second	rule	listed	above.	To	ensure
compatibility	when	older	databases	are	converted,	the	priority	for	all	replicas	are
equal	to	90.

For	global	replicas,	the	default	priority	is	90	percent	of	the	parent	replica's



priority.	Also,	the	valid	values	for	a	global	replica	may	be	further	restricted.	If
the	user	is	the	database	administrator,	the	entire	range	is	valid.	Otherwise,	the
maximum	value	for	priority	is	90	percent	of	the	parent	replica's	priority.	For
local	and	anonymous	replicas,	the	value	will	always	be	0	and	cannot	be	changed.
This	value	is	forced	with	the	creation	of	the	replica	and	any	other	value	is
ignored.

This	property	can	only	be	read	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	read	this
property.



ReplicaId	Property

			 			

Uniquely	identifies	a	database	replica.

Return	Values

Returns	a	Variant	value	that	uniquely	identifies	a	database	replica	(a	GUID).
This	property	is	automatically	generated	when	the	replica	is	created.	ReplicaId
is	read-only.

This	property	can	only	be	read	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	is	jrRepTypeNotReplicable	and	the	user	attempts	to	read	or	set
this	property.



ReplicaType	Property

			 			

Indicates	the	type	of	replica.

Return	Values

Returns	an	Enum	value	that	can	be	one	of	the	following	constants:

Constant Description
jrRepTypeNotReplicable Default.	The	database	is	not	replicable.
jrRepTypeDesignMaster The	replica	is	a	design	master.
jrRepTypeFull The	replica	is	a	full	replica.
jrRepTypePartial The	replica	is	a	partial	replica.

ReplicaType	is	read-only.

Remarks

The	ReplicaType	property	is	used	to	determine	whether	a	database	is	replicable
and	if	so,	what	type	of	replica	it	is.	If	ReplicaType	is	jrRepTypeNotReplicable
then	the	database	has	not	yet	been	made	replicable.	Use	the	ReplicaType
parameter	of	the	CreateReplica	method	to	create	a	new	full	or	partial	replica.



RetentionPeriod	Property

			 			

Indicates	how	many	days	to	keep	replication	histories.

Settings	and	Return	Values

Sets	or	returns	an	Integer	value	ranging	from	5	to	32,000,	which	represents	a
number	of	days.

Remarks

The	RetentionPeriod	property	specifies	the	amount	of	time,	measured	in	days,
that	a	replica	set	retains	details	of	deleted	records,	schema	changes,	and	other
system-specific	information.	If	the	database	was	made	replicable	with	ADO,
RDO,	or	the	Replication	Manger,	the	default	value	is	60.

If	the	database	was	made	replicable	with	Access,	the	default	value	is	1000.

This	property	can	only	be	set	on	a	design	master.	An	error	will	occur	if	the
ReplicaType	is	not	jrTypeDesignMaster.



TableName	Property

			 			

Indicates	the	name	of	the	table	to	which	the	filter	is	applied.

Settings	and	Return	Values

Sets	or	returns	a	String	value	specifying	a	table	name.	For	filters	based	on	a
relationship,	this	is	the	table	on	the	many	side	of	the	relationship.	TableName	is
read-only	once	it	has	been	set,	and	can	only	be	set	using	the	Append	method.

Remarks

The	default	value	is	an	empty	string	("").



Visibility	Property

			 			

Indicates	the	visibility	of	the	replica:	Global,	Local,	or	Anonymous.

Return	Values

Returns	an	Enum	value	that	indicates	the	visibility	of	the	replica	within	the
replica	set.	It	can	be	one	of	the	following	constants:

Constant Description
jrRepVisibilityGlobal Default.	The	replica	is	global.
jrRepVisibilityLocal The	replica	is	local.
jrRepVisibilityAnon The	replica	is	anonymous.

Visibility	is	read-only.

Remarks

A	global	replica	is	the	typical	replica	from	which	you	can	create	all	other	types
of	replicas.	Changes	by	a	global	replica	are	fully	tracked	and	can	be	exchanged
with	any	other	global	replica	in	the	set.	The	global	replica	can	also	exchange
changes	with	any	local	or	anonymous	replicas	for	which	it	becomes	the	hub.



Note			The	Design	Master	is	a	global	replica.

Local	and	anonymous	replicas	synchronize	only	with	their	hub,	a	global	replica.
They	are	not	permitted	to	synchronize	with	other	replicas	in	the	replica	set.	All
local	and	anonymous	replicas	always	have	a	priority	of	0,	therefore,	if	any	of
their	changes	conflict	with	the	global	hub	replica,	the	changes	will	automatically
lose	in	any	conflict	resolution	process.	If	they	convey	a	non-conflicting	change
to	the	hub,	the	hub	assumes	authorship	of	the	change.

Only	the	hub	replica	is	aware	of	local	replicas,	and	only	it	can	schedule	an
exchange	to	a	local	replica.

No	replicas	(including	the	hub	replica)	are	aware	of	anonymous	replicas.	The
hub	replica	cannot	schedule	an	exchange	to	an	anonymous	replica.	However,
anonymous	replicas	are	recommended	for	use	on	the	Internet	for	mass
distribution	because	system-tracking	information	is	not	maintained,	and	replica
size	is	reduced.

Visibility	cannot	be	changed	once	the	replica	is	created	using	the	CreateReplica
method.

This	property	can	only	be	read	if	the	database	is	replicable.	An	error	will	occur	if
the	ReplicaType	property	is	not	jrRepTypeNotReplicable	and	the	user	attempts
to	read	this	property.



Jet	and	Replication	Examples

Use	these	topics	to	learn	how	to	use	the	following	JRO	methods.

Note			Paste	the	entire	code	example,	from	Sub	to	End	Sub,	into	your	code
editor.	The	example	may	not	run	correctly	if	you	use	partial	examples	or	if
paragraph	formatting	is	lost.

The	Append	method	example	demonstrates	how	to	append	a	new	filter	to	a	table.

The	CompactDatabase	method	example	demonstrates	how	to	compact	and
encrypt	a	database	with	the	CompactDatabase	method.

The	CreateReplica	method	example	demonstrates	how	to	create	a	full	replica
with	the	CreateReplica	method.

The	MakeReplicable	method	example	demonstrates	how	to	create	a	Design
Master	with	the	MakeReplicable	method.

The	PopulatePartial	method	example	demonstrates	how	to	update	a	replica	using
the	PopulatePartial	method.

The	RefreshCache	method	example	demonstrates	the	RefreshCache	method.

The	Synchronize	method	examples	demonstrate	how	to	update	changes	between
a	Design	Master	and	a	replica	with	the	Synchronize	method;	use	the
Synchronize	method	for	Internet	synchronization;	and	use	the	Synchronize
method	with	direct	synchronization.



Append	Method	Example
This	example	demonstrates	how	to	append	a	new	filter	to	a	table.

Public	Sub	AppendFilter()

				Dim	flt	As	JRO.Filter

				Dim	rep	As	New	JRO.Replica

				'	Connect	to	an	existing	partial	replica.

				rep.ActiveConnection	=	"C:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Partial	of	Northwind.mdb"

				'	Append	a	partial	filter	to	a	table.

				rep.Filters.Append	"Customers",	jrFilterTypeTable,	"Region='CA'"

				Set	flt	=	rep.Filters.Item(1)

				'	Print	the	information.

				Debug.Print	flt.FilterCriteria

				Debug.Print	flt.FilterType

				Debug.Print	flt.TableName

End	Sub



PopulatePartial	Method	Example
This	example	demonstrates	how	to	update	a	replica	using	the	PopulatePartial
method.

Public	Sub	PartialRep()

'	This	code	demonstrates	how	to	create	a	partial	replica	with	a

'	relationship	filter	and	a	table	filter.

'	NOTE:	PopulatePartial	requires	an	exclusive	connection.

				Dim	repMaster	As	New	JRO.Replica

				Dim	repPartial	As	New	JRO.Replica

				Dim	flt	As	JRO.Filter

				repMaster.ActiveConnection	=	_

								"C:\Program	Files\Microsoft	Office\Office\Samples\Northwind.mdb"

				If	(Dir("C:\Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\"	&	_

								"Partial	of	Northwind.mdb")	<>	"")	Then	Kill	_

								("C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Partial	of	Northwind.mdb")

				'	Northwind.mdb	is	already	replicable	so	you	can

				'	create	replicas	from	it.

				repMaster.CreateReplica	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Partial	of	Northwind.mdb",	_

								"Partial	Replica	of	Northwind",	jrRepTypePartial

				

				Set	repMaster	=	Nothing

				'	PopulatePartial	requires	an	exclusive	connection	to	the	database.

				repPartial.ActiveConnection	=	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Partial	of	Northwind.mdb;"	&	_

								"Mode=Share	Exclusive"

				repPartial.Filters.Append	"Orders",	jrFilterTypeRelationship,	_

								"CustomersOrders"

				repPartial.Filters.Append	"Customers",	jrFilterTypeTable,	_

								"CustomerID"

				repPartial.PopulatePartial	"C:\Program	Files\"	&	_



								"Microsoft	Office\Office\Samples\Northwind.mdb"

End	Sub



MakeReplicable	Method	Example
This	example	demonstrates	how	to	create	a	Design	Master	with	the
MakeReplicable	method.

Public	Sub	MakeRep()

'	This	code	example	demonstrates	how	to	use

'	MakeReplicable	by	specifying	the	ConnectionString	parameter.

'	NOTE:	This	connection	string	does	not	need	to	explictly	specify

'	exclusive	connection	mode,	JRO	does	this	automatically.

				Dim	repDM	As	New	JRO.Replica

				'	Make	northwind.mdb	replicable	with	record	level	tracking

				repDM.MakeReplicable	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb",	False

End	Sub



CreateReplica	Method	Example
This	example	demonstrates	how	to	create	a	full	replica	with	the	CreateReplica
method.

Public	Sub	CreateRep()

				Dim	repMaster	As	New	JRO.Replica

				'	Connect	to	the	Northwind	database.

				repMaster.ActiveConnection	=	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb"

				'	Delete	myTestRep	if	it	exists.

				If	(Dir("C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\myTestRep.mdb")	<>	"")	Then	Kill	_

								("C:\Program	Files\Microsoft	Office\Office\Samples\"	&	_

								"Replica	of	Northwind.mdb")

				'	Create	a	full	replica.

				repMaster.CreateReplica	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Replica	of	Northwind.mdb",	"My	Full	Replica1",	_

								jrRepTypeFull,	jrRepVisibilityGlobal

End	Sub



CompactDatabase	Method	Example
This	example	demonstrates	how	to	compact	and	encrypt	a	database	with	the
CompactDatabase	method.

Public	Sub	CompactAndEncrypt()

				Dim	je	As	New	JRO.JetEngine

				'	Make	sure	that	a	file	doesn't	exist	with	the	name	of

				'	the	compacted	database.

				If	Dir("C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind2.mdb")	<>	""	Then	Kill	_

								"C:\Program	Files\Microsoft	Office\Office\Samples\Northwind2.mdb"

				'	Compacts	and	encrypts	version	Northwind	database.

				je.CompactDatabase	_

				"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb",	_

				"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	Source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind2.mdb;"	&	_

				"Jet	OLEDB:Encrypt	Database=True"

End	Sub



RefreshCache	Method	Example
This	example	demonstrates	the	RefreshCache	method.

Public	Sub	RefCache()

				Dim	lateje	As	JRO.JetEngine

				Dim	conn	As	New	ADODB.Connection

				Dim	conn2	As	New	ADODB.Connection

				Dim	rs	As	ADODB.Recordset

				Dim	fld	As	ADODB.Field

				'	Open	both	connections	to	the	database.

				conn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				conn2.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				Set	lateje	=	CreateObject("JRO.JetEngine")

On	Error	Resume	Next

				conn.Execute	"drop	table	tab1"

On	Error	GoTo	0

				'	Create	table	and	input	new	values	for	columns.

				conn.Execute	"create	table	tab1	(	col1	int)"

				conn.Execute	"insert	into	tab1	values	(1)"

				conn.Execute	"insert	into	tab1	values	(2)"

				'	Flush	the	data	so	that	conn2	can	see	the	changes	from	conn1.

				lateje.RefreshCache	conn2

				Set	rs	=	conn2.Execute("select	*	from	tab1")

				Set	fld	=	rs.Fields(0)

				Debug.Print	"Record	1:	"	&	fld.Name	&	"	=	"	&	Str(fld.Value)

				conn.Close

				conn2.Close

				Set	lateje	=	Nothing

End	Sub



Synchronize	Method	Example
The	following	three	examples	demonstrate	the	Synchronize	method.	This
example	demonstrates	how	to	update	changes	between	a	Design	Master	and	a
replica	with	the	Synchronize	method.

Public	Sub	DirectSync()

				Dim	repMaster	As	New	JRO.Replica

				Dim	RepNorthwind	As	New	JRO.Replica

				Dim	conn	As	New	ADODB.Connection

				'	Open	the	database.

				conn.Open	"Provider=Microsoft.Jet.OLEDB.4.0;"	&	_

								"Data	source=C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb;"

				'	If	a	replica	of	the	database	exists,	it	is	deleted.

				repMaster.ActiveConnection	=	conn

				'	"C:\Program	Files\Microsoft	Office\Office\Samples\Northwind.mdb"

				If	(Dir("C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Replica	of	Northwind.mdb")	<>	"")	Then	Kill	_

								("C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Replica	of	Northwind.mdb")

				'	Create	a	new	replica	of	the	database.

				repMaster.CreateReplica	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Replica	of	Northwind.mdb",	_

								"Replica1	for	Northwind.mdb",	_

								jrRepTypeFull,	jrRepVisibilityGlobal

				'	New	values	are	put	into	tab1.

On	Error	Resume	Next

				conn.Execute	"drop	table	tab1"

On	Error	GoTo	0

				conn.Execute	"create	table	tab1	(	col1	int)"

				conn.Execute	"insert	into	tab1	values	(1)"

				conn.Execute	"insert	into	tab1	values	(2)"

				'	Synchronize	the	values.

				repMaster.Synchronize	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Replica	of	Northwind.mdb",	jrSyncTypeImpExp,	_

								jrSyncModeDirect



End	Sub

This	example	demonstrates	how	to	use	the	Synchronize	method	for	Internet
synchronization.	Note	that	prior	to	synchronization,	the	Internet	replication	setup
must	be	completed.

Public	Sub	InternetSync()

				Dim	rep	As	New	JRO.Replica

'	This	is	the	replica	on	your	local	machine.

				rep.ActiveConnection	=	"C:\Program	Files\Microsoft	Office\"	&	_

								"Office\Samples\Northwind.mdb"

'	The	name	of	the	Internet	server	is	"my_server"

'	and	is	configured	for	Internet	replication.

				rep.Synchronize	"http://MY_SERVER",	jrSyncTypeImpExp,	_

								jrSyncModeInternet

				Set	rep	=	Nothing

End	Sub

This	example	demonstrates	how	to	use	the	Synchronize	method	with	indirect
synchronization.

Public	Sub	IndirectSync()

				Dim	repMaster	As	New	JRO.Replica

				repMaster.ActiveConnection	=	"C:Program	Files\"	&	_

								"Microsoft	Office\Office\Samples\Northwind.mdb"

				'	The	Synchronizer	that	manages	the	replica	is	called

				'	SynchronizerName,	the	one	with	which

				'	you	want	to	exchange	data.

				repMaster.Synchronize	"SynchronizeName",	jrSyncTypeImpExp,	_

								jrSyncModeIndirect

End	Sub


	Microsoft Jet and Replication Objects Overview
	Jet and Replication Object Model
	Jet and Replication Objects
	Filter Object (JRO)
	JetEngine Object (JRO)
	Replica Object (JRO)

	Jet and Replication Collections
	Filters Collection (JRO)

	Jet and Replication Methods
	Append Method (JRO)
	CompactDatabase Method (JRO)
	CreateReplica Method (JRO)
	Delete Method (JRO)
	GetObjectReplicability Method (JRO)
	Item Method (JRO)
	MakeReplicable Method (JRO)
	PopulatePartial Method (JRO)
	Refresh Method (JRO)
	RefreshCache Method (JRO)
	SetObjectReplicability Method (JRO)
	Synchronize Method (JRO)

	Jet and Replication Properties
	ActiveConnection Property (JRO)
	ConflictFunction Property (JRO)
	ConflictTables Property (JRO)
	Count Property (JRO)
	DesignMasterId Property (JRO)
	FilterCriteria Property (JRO)
	FilterType Property (JRO)
	Priority Property (JRO)
	ReplicaId Property (JRO)
	ReplicaType Property (JRO)
	RetentionPeriod Property (JRO)
	TableName Property (JRO)
	Visibility Property (JRO)

	Jet and Replication Examples
	Append Method Example (JRO)
	PopulatePartial Method Example (JRO)
	MakeReplicable Method Example (JRO)
	CreateReplica Method Example (JRO)
	CompactDatabase Method Example (JRO)
	RefreshCache Method Example (JRO)
	Synchronize Method Example (JRO)



