
Microsoft	Visio	Developer	Reference

Welcome	to	the	Microsoft	Visio	Developer	Reference	documentation.	This
documentation	includes	the	following:

What's	new	in	Microsoft	Visio	2002	for	developers

Automation	Reference

The	topics	in	this	section	provide	an	overview	of	the	Automation	Reference,
including	information	about	the	Visio	object	model,	the	Visio	type	library,
extending	the	functionality	of	Visio	with	macros,	add-ons,	and	COM
(Component	Object	Model)	add-ins,	and	a	sample	Microsoft	Visual	Basic	for
Applications	(VBA)	macro.

Look	here	for	details	on	Visio	objects,	properties,	methods,	and	events.	This
reference	also	includes	information	about	common	Automation	tasks,	such	as
starting	the	Visual	Basic	Editor;	viewing	Visio	object,	property,	method,	and
event	descriptions	in	the	Object	Browser;	and	running	macros	and	add-ons.

Go	to	the	Automation	Reference

ShapeSheet	Reference

The	topics	in	this	section	provide	an	overview	of	the	ShapeSheet	Reference,
including	information	about	working	with	formulas,	strings,	date	and	time
values,	units	of	measure,	and	information	about	common	ShapeSheet	tasks,
such	as	adding	and	deleting	ShapeSheet	sections,	and	referencing	cells	from
formulas.

Look	here	for	details	on	each	section,	row,	and	cell	in	a	ShapeSheet
spreadsheet	and	details	on	functions	you	can	use	in	formulas.

Go	to	the	ShapeSheet	Reference

See	also

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1822.htm

What's	new	in	Microsoft	Visio	2002
for	developers

Microsoft	Visio	2002	provides	a	powerful	single	platform	for	your	custom
drawing	solutions.	New	ShapeSheet	cells	and	Automation	objects,	properties,
methods,	and	events	give	you	more	options	for	defining	the	behavior	of	the
elements	in	your	solutions.

New	features	in	Visio	2002

The	following	topics	provide	lists	of	ShapeSheet	and	Automation	elements	that
are	new	in	Visio	2002.

New	cells	(alphabetic	list)

New	cells	(by	section)

New	objects

New	properties	(alphabetic	list)

New	properties	(by	object)

New	methods	(alphabetic	list)

New	methods	(by	object)

New	events

See	also

About	Automation

You	can	write	programs	to	control	Microsoft	Visio	in	Microsoft	Visual	Basic	for
Applications	(VBA),	Microsoft	Visual	Basic,	C++,	or	any	programming
language	that	supports	Automation.

A	program	can	use	Automation	to	incorporate	Visio	drawing	and	diagramming
capabilities	or	to	automate	simple	repetitive	tasks	in	Visio.	For	example,	a
program	might	generate	an	organization	chart	from	a	list	of	names	and	positions
or	print	all	of	the	masters	on	a	stencil.

How	a	program	using	Automation	controls	Visio

The	VBA	programming	environment	in	Visio

About	extending	the	functionality	of
Microsoft	Visio

You	can	extend	the	functionality	of	Microsoft	Visio	in	the	following	ways:

Create	Visio-specific	macros	and	add-ons.

Create	COM	(Component	Object	Model)	add-ins.

Macros	and	add-ons

COM	add-ins

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1332.htm
http://msdn.microsoft.com

About	XML	in	Microsoft	Visio

Beginning	in	Microsoft	Visio	2002,	the	Extensible	Markup	Language	(XML)	is
supported	as	a	native	file	format,	making	it	possible	to	share	your	Visio	drawings
across	multiple	platforms.

Additionally,	the	Visio	2002	object	model	provides	new	properties	and	methods
that	make	it	possible	for	solution	developers	to	store	well-formed,	solution-
specific	XML	data	within	a	Visio	document.

For	details	about	working	with	XML	in	Visio	2002,	see	the	Microsoft	Developer
Network	(MSDN)	Web	site.

http://msdn.microsoft.com

About	the	Visio	type	library

Microsoft	Visio	products	include	a	type	library	that	defines	the	objects,
properties,	methods,	events,	and	constants	that	Visio	exposes	to	Automation
clients.	To	use	the	Visio	type	library,	a	development	environment	must	reference
it.	The	Microsoft	Visual	Basic	for	Applications	(VBA)	project	of	a	Visio
document	automatically	references	the	Visio	type	library.	In	other	development
environments	you	must	take	appropriate	steps	to	reference	the	library.

The	names	of	the	libraries	your	VBA	project	references	are	displayed	in	the
Project/Library	list	in	the	Object	Browser	in	the	Visual	Basic	Editor.

Benefits	of	using	a	type	library

Resolving	object	name	ambiguities

Sample	Microsoft	VBA	macro

For	each	drawing	file	that	is	open	in	the	Microsoft	Visio	instance,	the	sample
Microsoft	Visual	Basic	for	Applications	(VBA)	macro	shown	below	does	the
following:

Logs	the	name	and	path	of	the	drawing	file	in	the	Immediate	window

Logs	the	name	of	each	page	in	the	Immediate	window

Here	is	a	look	at	the	code	in	the	program	and	what	it	does.

Public	Sub	ShowNames	()
				'Declare	object	variables	as	Visio	object	types
				Dim	pagObj	As	Visio.Page	
				Dim	docObj	As	Visio.Document
				Dim	docsObj	As	Visio.Documents
				Dim	pagsObj	As	Visio.Pages
				'Iterate	through	all	open	documents
				Set	docsObj	=	Application.Documents
				For	Each	docObj	In	docsObj
								'Print	the	drawing	name	in	the	Visual	Basic	Editor
								'Immediate	Window
								Debug.Print	docObj.FullName

								'Iterate	through	all	pages	in	a	drawing
								Set	pagsObj	=	docObj.Pages
								For	Each	pagObj	In	pagsObj
												'Prints	the	page	name	in	the	Visual	Basic	Editor
												'Immediate	Window
												Debug.Print	Tab(5);	pagObj.Name
								Next
				Next
End	Sub
Here	is	an	example	of	the	program's	output,	assuming	Office.vsd	and
Recycle.vsd	are	open	and	have	been	saved	in	the	specified	locations.

Sample	output Description

c:\visio\solutions\Office.vsd The	name	of	the	first	drawing

						Background-1 The	name	of	page	1

						Background-2 The	name	of	page	2

c:\visio\solutions\Recycle.vsdThe	name	of	the	second
drawing

						Page-1 The	name	of	page	1

						Page-2 The	name	of	page	2

						Page-3 The	name	of	page	3

You	can	find	more	information	about	writing	a	program	using	the	VBA
environment	and	about	the	Visual	Basic	Editor	in	the	Microsoft	Visual	Basic
Help	(in	the	Visual	Basic	Editor	window,	click	Microsoft	Visual	Basic	Help	on
the	Help	menu).

You	can	find	details	about	using	a	specific	Visio	object,	property,	method,	or
event	in	the	Automation	Reference	included	in	this	Developer	Reference	(on	the
Visio	Help	menu,	click	Developer	Reference).

Note	If	you	did	not	install	the	Developer	Reference	at	the	time	you	installed
Visio,	clicking	the	Developer	Reference	command	on	the	Help	menu	will
automatically	start	its	installation.

Add	a	macro	or	add-on	to	a	shape's
shortcut	menu

Select	the	shape.

On	the	Window	menu,	click	Show	ShapeSheet.

Click	in	an	Action	cell	in	an	Actions	section.

If	you	don't	see	an	Actions	section,	insert	one	by	clicking	Section	on	the
Insert	menu,	and	then	selecting	the	Actions	check	box	in	the	Insert	Section
dialog	box.

On	the	Edit	menu,	click	Action.

In	the	Action	dialog	box,	under	Properties,	enter	the	menu	and	prompt
properties.

Click	Run	macro,	and	then	select	the	program	you	want	to	run	from	the	Run
macro	list.	Click	OK.

On	the	drawing	page,	right-click	the	shape,	and	then	click	the	custom	menu
command	on	the	shortcut	menu	to	run	the	program.

Note	You	also	can	associate	a	macro	or	add-on	with	a	shape	by	entering	a
formula	that	uses	the	RUNADDON	function	in	any	ShapeSheet	cell.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1332.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(Q-Z)_1492.htm

Associate	a	macro	or	add-on	with	the
double-click	behavior	of	a	shape

Select	the	shape	with	which	you	want	to	associate	the	macro	or	add-on.

On	the	Format	menu,	click	Behavior.

In	the	Behavior	dialog	box,	click	the	Double-Click	tab,	and	then	click	Run
macro.

From	the	Run	macro	list,	select	the	macro	or	add-on	you	want	to	run.

Click	OK.

Double-click	the	shape	to	run	the	macro	or	add-on.

Change	the	developer	settings	for
Microsoft	Visio

On	the	Tools	menu,	click	Options.

In	the	Options	dialog	box,	click	the	Advanced	tab.

Under	Developer	settings,	select	the	check	boxes	for	the	settings	you	want,	and
then	click	OK.

Run	a	macro	or	add-on	from	the
Macros	dialog	box

In	the	Microsoft	Visio	window,	click	Macros	on	the	Tools	menu,	and	then	click
Macros.

Choose	the	macro	or	add-on	you	want	to	run,	and	then	click	Run.

Note	If	you	have	more	than	one	Microsoft	Visio	drawing	open	and	the	macro
you	want	to	run	does	not	appear	in	the	Macros	dialog	box,	make	sure	you	have
chosen	the	Visio	document	in	which	the	macro	is	stored	from	the	Macros	in	list.

Start	the	Visual	Basic	Editor

On	the	Tools	menu,	click	Macros,	and	then	click	Visual	Basic	Editor.	Or	press
ALT+F11.

Tip	For	quicker	access	to	the	Visual	Basic	Editor	and	other	developer
commands,	you	can	show	the	Developer	toolbar	in	Microsoft	Visio.	To	do	this,
right-click	anywhere	in	the	Visio	toolbar,	and	then	click	Developer	on	the
shortcut	menu.

View	Visio	object,	property,	method,
event,	and	constant	descriptions

In	the	Visual	Basic	Editor,	click	Object	Browser	on	the	View	menu.

The	Object	Browser	initially	displays	items	declared	by	all	libraries
referenced	by	your	project.

In	the	Project/Library	list,	select	Visio.

Note	You	also	can	view	additional	information	about	an	item	by	selecting	the
item	and	pressing	F1	for	Help.

Event	codes

When	you	are	working	with	the	Add	or	AddAdvise	method,	use	the	following
table	to	find	the	event	code	for	the	event	you	want	to	create.	This	table	lists	each
Microsoft	Visio	event	and	its	corresponding	event	code	and	numeric	code.

Note	If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications
(VBA),	you	don't	need	to	create	your	own	events.	See	the	event	topic	in	this
reference	that	corresponds	to	the	event	you	want	to	use.

Table	of	events	and	corresponding	event	and	numeric	codes

See	also

AfterModal	event

				 				

Occurs	after	the	Microsoft	Visio	instance	leaves	a	modal	state.

Version	added

4.1

Syntax

Private	Sub	object_AfterModal(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

Visio	becomes	modal	when	it	displays	a	dialog	box.	A	modal	instance	of	Visio
does	not	handle	Automation	calls.	The	BeforeModal	event	indicates	that	the
instance	is	about	to	become	modal,	and	the	AfterModal	event	indicates	that	the
instance	is	no	longer	modal.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

AfterResume	event

				 				

Occurs	when	the	operating	system	resumes	normal	operation	after	having	been
suspended.

Version	added

2000	SR-1

Syntax

Private	Sub	object_AfterResume(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

You	can	use	the	AfterResume	event	to	reopen	any	network	files	that	you	may
have	closed	in	response	to	the	BeforeSuspend	event.

If	your	solution	runs	outside	of	the	Visio	process	you	cannot	be	assured	of
receiving	this	event.	For	this	reason,	you	should	monitor	window	messages	in
your	program.

Example

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

AppActivated	event

				 				

Occurs	after	a	Microsoft	Visio	instance	becomes	active.

Version	added

4.1

Syntax

Private	Sub	object_AppActivated	(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	AppActivated	event	indicates	that	an	instance	of	Visio	has	become	the
active	application	on	the	Microsoft	Windows	desktop.	The	AppActivated	event
is	different	from	the	AppObjectActivated	event,	which	occurs	after	an	instance
of	Visio	becomes	active—the	instance	of	Visio	that	is	retrieved	by	the
GetObject	function	in	a	Microsoft	Visual	Basic	program.

If	you're	using	Visual	Basic	or	Visual	Basic	for	Applications,	the	syntax	in	this

Example

topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

AppDeactivated	event

				 				

Occurs	after	a	Microsoft	Visio	instance	becomes	inactive.

Version	added

4.1

Syntax

Private	Sub	object_AppDeactivated(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	AppDeactivated	event	indicates	that	an	instance	of	Visio	is	no	longer	the
active	application	on	the	Microsoft	Windows	desktop.	The	AppDeactivated
event	is	different	from	the	AppObjectDeactivated	event,	which	occurs	after	an
instance	of	Visio	ceases	to	be	the	active	instance—the	instance	of	Visio	that	is
retrieved	by	the	GetObject	function	in	a	Microsoft	Visual	Basic	program.

If	you're	using	Visual	Basic	or	Visual	Basic	for	Applications,	the	syntax	in	this

Example

topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

AppObjActivated	event

				 				

Occurs	after	a	Microsoft	Visio	instance	becomes	active.

Version	added

4.1

Syntax

Private	Sub	object_AppObjActivated(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	AppObjActivated	event	indicates	that	an	instance	of	Visio	has	become
active—the	instance	of	Visio	that	is	retrieved	by	the	GetObject	function	in	a
Microsoft	Visual	Basic	program.	The	AppObjActivated	event	is	different	from
the	AppActivated	event,	which	occurs	after	an	instance	of	Visio	becomes	the
active	application	on	the	Microsoft	Windows	desktop.

If	you're	using	Visual	Basic	or	Visual	Basic	for	Applications,	the	syntax	in	this

Example

topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

AppObjDeactivated	event

				 				

Occurs	after	a	Microsoft	Visio	instance	becomes	inactive.

Version	added

4.1

Syntax

Private	Sub	object_AppObjDeactivated(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	AppObjDeactivated	event	indicates	that	the	instance	of	Visio	is	no	longer
the	active	instance—the	instance	of	Visio	that	is	retrieved	by	the	GetObject
function	in	a	Microsoft	Visual	Basic	program.	The	AppObjDeactivated	event	is
different	from	the	AppDeactivated	event,	which	occurs	after	an	instance	of
Visio	becomes	inactive.

If	you're	using	Visual	Basic	or	Visual	Basic	for	Applications,	the	syntax	in	this

Example

topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

BeforeDocumentClose	event

				 				

Occurs	before	a	document	is	closed.

Version	added

4.1

Syntax

Private	Sub	object_BeforeDocumentClose(ByVal	doc	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeDocumentSave	event

				 				

Occurs	just	before	a	document	is	saved.

Version	added

5.0

Syntax

Private	Sub	object_BeforeDocumentSave(ByVal	doc	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeDocumentSaveAs	event

				 				

Occurs	just	before	a	document	is	saved	using	the	Save	As	command.

Version	added

5.0

Syntax

Private	Sub	object_BeforeDocumentSaveAs(ByVal	doc	
object The	WithEvents	object	that	receives	the	event.

Remarks

The	BeforeDocumentSaveAs	event	fires	when	saving	to	either	a	native	format
(for	example,	VSD	or	VDX)	or	a	non-native	format	(for	example,	HTM	or
BMP).	It	does	not	fire	when	saving	to	DWG,	DXF,	and	DGN	formats.

The	BeforeDocumentSaveAs	event	is	one	of	a	group	of	events	for	which	the
EventInfo	property	of	the	Application	object	contains	extra	information.

Example

If	the	BeforeDocumentSaveAs	event	is	fired	because	a	save	was	initiated	by	a
user	or	a	program,	the	EventInfo	property	returns	the	following	string:

"/saveasfile=<filename>"

If	it	fires	because	Visio	is	saving	a	copy	of	an	open	file	(for	autorecovery	or	to
include	as	a	mail	attachment),	the	EventInfo	property	will	return	one	of	the
following	strings:

If	the	event	is	fired	for	autorecovery	purposes,	the	name	of	a	recovery	file	in	this
format:	"/autosavefile=C:\TEMP\~$2VSO2FD.vsd"

If	the	event	is	fired	because	a	document	copy	is	being	made	to	send	as	a	mail
attachment,	the	name	of	an	attachment	file	in	this	format:
"/mailfile=C:\TEMP\~$2VSO2FD.vsd"

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification	over	a
connection	using	the	AddAdvise	method,	the	vMoreInfo	argument	to
VisEventProc	designates	the	document	index:	"/doc=1".

BeforeMasterDelete	event

				 				

Occurs	before	a	master	is	deleted	from	a	document.

Version	added

4.1

Syntax

Private	Sub	object_BeforeMasterDelete(ByVal	Master	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeModal	event

				 				

Occurs	before	a	Microsoft	Visio	instance	enters	a	modal	state.

Version	added

4.1

Syntax

Private	Sub	object_BeforeModal(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

Visio	becomes	modal	when	it	displays	a	dialog	box.	A	modal	instance	of	Visio
does	not	handle	Automation	calls.	The	BeforeModal	event	indicates	that	an
instance	is	about	to	become	modal,	and	the	AfterModal	event	indicates	that	the
instance	is	no	longer	modal.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

BeforePageDelete	event

				 				

Occurs	before	a	page	is	deleted.

Version	added

4.1

Syntax

Private	Sub	object_BeforePageDelete(ByVal	Page	As	IVPage)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeQuit	event

				 				

Occurs	before	a	Microsoft	Visio	instance	terminates.

Version	added

4.1

Syntax

Private	Sub	object_BeforeQuit(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

When	programming	with	Microsoft	Visual	Basic	for	Applications	(VBA),	use
the	BeforeDocumentClose	event	instead	of	the	BeforeQuit	event.	The	code	in	a
VBA	project	of	a	Visio	document	never	has	the	chance	to	respond	to	the
BeforeQuit	event	because	the	project	is	a	property	of	a	document,	and	all
documents	are	closed	before	the	BeforeQuit	event	notification	is	sent.

If	you're	using	Microsoft	Visual	Basic	or	VBA,	the	syntax	in	this	topic	describes

Example

a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

BeforeSelectionDelete	event

				 				

Occurs	before	selected	objects	are	deleted.

Version	added

4.1

Syntax

Private	Sub	object_BeforeSelectionDelete(ByVal	Selection	
object The	WithEvents	object	that	receives	the	event.

Remarks

A	Shape	object	can	serve	as	the	source	object	for	the	BeforeSelectionDelete
event	if	the	shape's	Type	property	is	visTypeGroup(2)	or	visTypePage(1).

The	BeforeSelectionDelete	event	indicates	that	selected	shapes	are	about	to	be
deleted.	This	notification	is	sent	whether	or	not	any	of	the	shapes	are	locked;
however,	locked	shapes	aren't	deleted.	To	find	out	if	a	shape	is	locked	against
deletion,	check	the	value	of	its	LockDelete	cell.

Example

The	BeforeSelectionDelete	and	BeforeShapeDelete	events	are	similar	in	that
they	both	fire	before	shape(s)	are	deleted.	They	differ	in	how	they	behave	when
a	single	operation	deletes	several	shapes.	Suppose	a	Cut	operation	deletes	three
shapes.	The	BeforeShapeDelete	event	fires	three	times	and	acts	on	each	of	the
three	objects.	The	BeforeSelectionDelete	event	fires	once	and	it	acts	on	a
Selection	object	in	which	the	three	shapes	that	you	want	to	delete	are	selected.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

BeforeShapeDelete	event

				 				

Occurs	before	a	shape	is	deleted.

Version	added

4.5

Syntax

Private	Sub	object_BeforeShapeDelete(ByVal	Shape	As	

object The	WithEvents	object	that	receives	the	event.

Remarks

A	Shape	object	can	serve	as	the	source	object	for	the	BeforeShapeDelete	event
if	the	shape's	Type	property	is	visTypeGroup(2)	or	visTypePage(1).

The	BeforeSelectionDelete	and	BeforeShapeDelete	events	are	similar	in	that
they	both	fire	before	shape(s)	are	deleted.	They	differ	in	how	they	behave	when

Example

a	single	operation	deletes	several	shapes.	Suppose	a	Cut	operation	deletes	three
shapes.	The	BeforeShapeDelete	event	fires	three	times	and	acts	on	each	of	the
three	objects.	The	BeforeSelectionDelete	event	fires	once	and	it	acts	on	a
Selection	object	in	which	the	three	shapes	that	you	want	to	delete	are	selected.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

Note	The	BeforeShapeDelete	event	is	included	in	the	event	set	of	all	the	objects
in	the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents
variables	to	sink	the	BeforeShapeDelete	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	BeforeShapeDelete	event.	To	sink	the	BeforeShapeDelete	event
from	a	Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you
must	use	the	AddAdvise	method.

BeforeShapeTextEdit	event

				 				

Occurs	before	a	shape	is	opened	for	text	editing	in	the	user	interface.

Version	added

2000

Syntax

Private	Sub	object_BeforeShapeTextEdit(ByVal	Shape	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeStyleDelete	event

				 				

Occurs	before	a	style	is	deleted.

Version	added

4.1

Syntax

Private	Sub	object_BeforeStyleDelete(ByVal	Style	As	IVStyle)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeSuspend	event

				 				

Occurs	before	the	operating	system	enters	a	suspended	state.

Version	added

2000	SR-1

Syntax

Private	Sub	object_BeforeSuspend(ByVal	app	As	IVapplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

Client	programs	should	close	any	open	network	files	when	this	event	is	fired.

If	your	solution	runs	outside	of	the	Visio	process	you	cannot	be	assured	of
receiving	this	event.	For	this	reason,	you	should	monitor	window	messages	in
your	program.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the

Example

syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

BeforeWindowClosed	event

				 				

Occurs	before	a	window	is	closed.

Version	added

4.1

Syntax

Private	Sub	object_BeforeWindowClosed(ByVal	Window	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeWindowPageTurn	event

				 				

Occurs	before	a	window	is	about	to	show	a	different	page.

Version	added

4.5

Syntax

Private	Sub	object_BeforeWindowPageTurn(ByVal	Window	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

BeforeWindowSelDelete	event

				 				

Occurs	before	the	shapes	in	the	selection	of	a	window	are	deleted.

Version	added

4.1

Syntax

Private	Sub	object_BeforeWindowSelDelete(ByVal	Window	
object The	WithEvents	object	that	receives	the	event.

Remarks

The	BeforeWindowSelDelete	event	fires	if	user	interactions	cause	shapes	in	a
window	to	be	deleted.	It	doesn't	fire	if	a	program	deletes	shapes	in	a	window
using	the	Cut	method,	for	example.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

CellChanged	event

					 					

Occurs	after	the	value	changes	in	a	cell	in	a	document.

Version	added

4.1

Syntax

Private	Sub	object_CellChanged(ByVal	Cell	As	IVCell)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method.	To
create	an	Event	object	that	receives	notification,	use	the	AddAdvise	method.	To
find	an	event	code	for	the	event	you	want	to	create,	see	Event	codes.

Note	The	CellChanged	event	is	included	in	the	event	set	of	all	the	objects	in	the
Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents	variables
to	sink	the	CellChanged	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	CellChanged	event.	To	sink	the	CellChanged	event	from	a
Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you	must
use	the	AddAdvise	method.

Example

This	class	module	demonstrates	defining	a	sink	class	called	ShapeSink	that
declares	the	object	variable	m_shpObj	using	the	WithEvents	keyword.	It
contains	a	procedure,	InitWith,	that	assigns	a	particular	Shape	object,	aShape,
to	m_shpObj.	The	class	module	also	contains	an	event	handler	for	the
CellChanged	event,	which	can	be	fired	by	a	Shape	object—in	this	case,	the
Shape	object	represented	by	aShape.

Dim	WithEvents	m_shpObj	As	Visio.Shape

Public	Sub	InitWith(ByVal	aShape	As	Visio.Shape)	
				Set	m_shpObj	=	aShape
End	Sub

Private	Sub	m_shpObj_CellChanged(ByVal	Cell	As	Visio.IVCell)	
				Debug.Print	Cell.Shape.Name	&	"	"	&	Cell.Name	&	"	changed	to	="	&	Cell.Formula
End	Sub

ConnectionsAdded	event

				 				

Occurs	after	connections	have	been	established	between	shapes.

Version	added

5.0

Syntax

Private	Sub	object_ConnectionsAdded(ByVal	Connects	

object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it

Example

applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

Note	The	ConnectionsAdded	event	is	included	in	the	event	set	of	all	the	objects
in	the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents
variables	to	sink	the	ConnectionsAdded	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	ConnectionsAdded	event.	To	sink	the	ConnectionsAdded	event
from	a	Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you
must	use	the	AddAdvise	method.

ConnectionsDeleted	event

				 				

Occurs	after	connections	between	shapes	have	been	removed.

Version	added

5.0

Syntax

Private	Sub	object_ConnectionsDeleted(ByVal	Connects	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

Note	The	ConnectionsDeleted	event	is	included	in	the	event	set	of	all	the
objects	in	the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim
WithEvents	variables	to	sink	the	ConnectionsDeleted	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	ConnectionsDeleted	event.	To	sink	the	ConnectionsDeleted	event
from	a	Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you
must	use	the	AddAdvise	method.

ConvertToGroupCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelConvertToGroup	event.

Version	added

2000

Syntax

Private	Sub	object_ConvertToGroupCanceled(ByVal	Selection	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

DesignModeEntered	event

				 				

Occurs	before	a	document	enters	design	mode.

Version	added

5.0

Syntax

Private	Sub	object_DesignModeEntered(ByVal	doc	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

DocumentAdded	event

				 				

Occurs	after	a	document	is	opened	or	created.

Version	added

4.1

Syntax

You	can	only	handle	the	DocumentAdded	event	by	creating	an	Event	object
using	the	Add	or	AddAdvise	method.	See	those	method	topics	for	details	about
the	correct	syntax.

Remarks

You	can	add	DocumentAdded	events	to	the	EventList	property	of	Application,
Documents,	or	Document	objects.	The	first	two	are	straightforward—if	a
document	is	opened	or	created	in	the	scope	of	the	Application	object	or	its
Documents	collection,	the	DocumentAdded	event	occurs.

However,	adding	a	DocumentAdded	event	to	the	EventList	property	of	a
Document	object	makes	sense	only	if	the	event's	action	is

Example

visActCodeRunAddon.	In	this	case,	the	event	is	persistable—it	can	be	stored
with	the	document.	If	the	document	that	contains	the	persistent	event	is	opened,
its	action	is	triggered.	If	a	new	document	is	based	on	or	copied	from	the
document	that	contains	the	persistent	event,	the	DocumentAdded	event	is
copied	to	the	new	document	and	its	action	is	triggered.	However,	if	the	event's
action	is	visActCodeAdvise,	that	event	is	not	persistable	and	therefore	is	not
stored	with	the	document;	hence,	it	is	never	triggered.

You	can	prevent	code	from	running	in	response	to	the	DocumentCreated,
DocumentOpened,	or	DocumentAdded	event	and	all	events	from	firing	by
setting	the	value	of	the	EventsEnabled	property	of	an	Application	object	to
False,	or	by	adding	the	entry,	EventsEnabled=0,	to	the	Visio	Application	section
in	the	registry.

DocumentChanged	event

				 				

Occurs	after	certain	properties	of	a	document	are	changed.

Version	added

4.1

Syntax

Private	Sub	object_DocumentChanged(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	DocumentChanged	event	indicates	that	one	of	a	document's	properties,
such	as	Author	or	Description,	has	changed.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise

Example

method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

DocumentCloseCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelDocumentClose	event.

Version	added

2000

Syntax

Private	Sub	object_DocumentCloseCanceled(ByVal	doc	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

DocumentCreated	event

					 					

Occurs	after	a	document	is	created.

Version	added

4.1

Syntax

Private	Sub	object_DocumentCreated(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	DocumentCreated	event	is	often	added	to	the	EventList	collection	of	a
Visio	template	file	(.vst).	The	event's	action	is	triggered	whenever	a	new
document	is	created	based	on	that	template.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

You	can	add	DocumentCreated	events	to	the	EventList	collection	of	an
Application	object,	Documents	collection,	or	Document	object.	The	first	two
are	straightforward—if	a	document	is	opened	or	created	in	the	scope	of	the
Application	object	or	its	Documents	collection,	the	DocumentCreated	event
occurs.

However,	adding	a	DocumentCreated	event	to	the	EventList	collection	of	a
Document	object	makes	sense	only	if	the	event's	action	is
visActCodeRunAddon.	In	this	case,	the	event	is	persistable—it	can	be	stored
with	the	document.	If	the	document	that	contains	the	persistent	event	is	opened,
its	action	is	triggered.	If	a	new	document	is	based	on	or	copied	from	the
document	that	contains	the	persistent	event,	the	DocumentCreated	event	is
copied	to	the	new	document	and	its	action	is	triggered.	However,	if	the	event's
action	is	visActCodeAdvise,	that	event	is	not	persistable	and	therefore	is	not
stored	with	the	document;	hence	it	is	never	triggered.

You	can	prevent	code	from	running	in	response	to	the	DocumentCreated,
DocumentOpened,	or	DocumentAdded	event	and	all	events	from	firing	by
setting	the	value	of	the	EventsEnabled	property	of	an	Application	object	to
False,	or	by	adding	the	entry,	EventsEnabled=0	to	the	Visio	Application	section
in	the	registry.

DocumentOpened	event

				 				

Occurs	after	a	document	is	opened.

Version	added

4.1

Syntax

Private	Sub	object_DocumentOpened(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	DocumentOpened	event	is	often	added	to	the	EventList	collection	of	a
Visio	template	file	(.vst).	The	event's	action	is	triggered	whenever	an	existing
document	is	opened.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

You	can	add	DocumentOpened	events	to	the	EventList	collection	of	an
Application	object,	Documents	collection,	or	Document	object.	The	first	two
are	straightforward—if	a	document	is	opened	or	created	in	the	scope	of	the
Application	object	or	its	Documents	collection,	the	DocumentOpened	event
occurs.

However,	adding	a	DocumentOpened	event	to	the	EventList	collection	of	a
Document	object	makes	sense	only	if	the	event's	action	is
visActCodeRunAddon.	In	this	case,	the	event	is	persistable—it	can	be	stored
with	the	document.	If	the	document	that	contains	the	persistent	event	is	opened,
its	action	is	triggered.	If	a	new	document	is	based	on	or	copied	from	the
document	that	contains	the	persistent	event,	the	DocumentOpened	event	is
copied	to	the	new	document	and	its	action	is	triggered.	However,	if	the	event's
action	is	visActCodeAdvise,	that	event	is	not	persistable	and	therefore	is	not
stored	with	the	document;	hence	it	is	never	triggered.

You	can	prevent	code	from	running	in	response	to	the	DocumentCreated,
DocumentOpened	or	DocumentAdded	event	and	all	events	from	firing	by
setting	the	value	of	the	EventsEnabled	property	of	an	Application	object	to
False,	or	by	adding	the	entry,	EventsEnabled=0,	to	the	Visio	Application	section
in	the	registry.

DocumentSaved	event

					 					

Occurs	after	a	document	is	saved.

Version	added

4.1

Syntax

Private	Sub	object_DocumentSaved(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

want	to	create,	see	Event	codes.

DocumentSavedAs	event

				 				

Occurs	after	a	document	is	saved	using	the	Save	As	command.

Version	added

4.1

Syntax

Private	Sub	object_DocumentSavedAs(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	DocumentSavedAs	event	is	one	of	a	group	of	events	for	which	the
EventInfo	property	of	the	Application	object	contains	extra	information.

If	the	DocumentSavedAs	event	is	fired	because	a	save	was	initiated	by	a	user	or
a	program,	the	EventInfo	property	returns	the	following	string:

"/saveasfile=<filename>"

Example

If	it	fires	because	Visio	is	saving	a	copy	of	an	open	file	(for	autorecovery	or	to
include	as	a	mail	attachment),	the	EventInfo	property	returns	one	of	the
following	strings:

If	the	event	is	fired	for	autorecovery	purposes,	the	name	of	a	recovery	file	in	this
format:	"/autosavefile=C:\TEMP\~$2VSO2FD.vsd"

If	the	event	is	fired	because	a	document	copy	is	being	made	to	send	as	a	mail
attachment,	the	name	of	an	attachment	file	in	this	format:
"/mailfile=C:\TEMP\~$2VSO2FD.vsd"

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification	over	a
connection	created	with	the	AddAdvise	method,	the	vMoreInfo	argument	to
VisEventProc	designates	the	document	index:	"/doc=1".

EnterScope	event

					 					

Queued	when	an	internal	command	begins,	or	when	an	Automation	client	opens
a	scope	using	the	BeginUndoScope	method.

Version	added

2000

Syntax

Private	Sub	Application_EnterScope	(ByVal	Application	
nScopeID A	language	independent	number	that	describes	the	operation	that	just	ended,	or	the	scope	ID	returned	by	the	
bstrDescription A	textual	description	of	the	operation	that	changes	in	different	language	versions.	Contains	the	user	interface	description	of	a	Visio	operation,	or	the

description	passed	to	the	BeginUndoScope

Remarks

The	nScopeID	value	returned	in	the	case	of	a	Visio	operation	is	the	equivalent	of
the	command	related	constants	that	begin	with	visCmd*.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the

syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification	over	a
connection	created	with	the	AddAdvise	method,	the	EnterScope	event	is	one	of
a	group	of	selected	events	that	record	extra	information	in	the	EventInfo
property	of	the	Application	object.

The	EventInfo	property	returns	bstrDescription,	as	described	above.	In	addition,
the	vMoreInfo	argument	to	VisEventProc	will	contain	a	string	formatted	as
follows:	[<nScopeID>;<bErrOrCancelled>;<bstrDescription>]

For	EnterScope,	bErrOrCancelled	will	always	equal	zero.

ExitScope	event

					 					

Queued	when	an	internal	command	ends,	or	when	an	Automation	client	exits	a
scope	using	the	EndUndoScope	method.

Version	added

2000

Syntax

Private	Sub	Application_ExitScope	(ByVal	Application	
nScopeID A	language	independent	number	that	describes	the	operation	that	just	ended,	or	the	scope	ID	returned	by	the	
bstrDescription A	textual	description	of	the	operation	that	changes	in	different	language	versions.	Contains	the	UI	description	of	a	Visio	operation,	or	the	description	passed	to	the	
bErrOrCancelled True	if	there	was	an	error	during	the	scope	or	if	the	scope	was	canceled;	

Remarks

The	nScopeID	value	returned	in	the	case	of	a	Visio	operation	is	the	equivalent	of
the	command	related	constants	that	begin	with	visCmd*.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the

syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification	over	a
connection	created	using	the	AddAdvise	method,	the	ExitScope	event	is	one	of
a	group	of	selected	events	that	record	extra	information	in	the	EventInfo
property	of	the	Application	object.

The	EventInfo	property	returns	bstrDescription,	as	described	above.	In	addition,
the	vMoreInfo	argument	to	VisEventProc	will	contain	a	string	formatted	as
follows:	[<nScopeID>;<bErrOrCancelled>;<bstrDescription>]

For	ExitScope,	bErrOrCancelled	will	be	non-zero	if	the	operation	failed	or	was
canceled.

FormulaChanged	event

				 				

Occurs	after	a	formula	changes	in	a	cell	in	a	document.

Version	added

5.0

Syntax

Private	Sub	object_FormulaChanged(ByVal	Cell	As	IVCell)

object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it

Example

applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

Note	The	FormulaChanged	event	is	included	in	the	event	set	of	all	the	objects
in	the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents
variables	to	sink	the	FormulaChanged	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	FormulaChanged	event.	To	sink	the	FormulaChanged	event	from
a	Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you	must
use	the	AddAdvise	method.

MarkerEvent	event

					 					

Caused	by	invoking	the	QueueMarkerEvent	method.

Version	added

5.0

Syntax

Private	Sub	object_MarkerEvent(ByVal	app	As	IVApplication,	
object The	WithEvents	object	that	receives	the	event.
SequenceNum The	ordinal	position	of	this	event	with	respect	to	past	events.
ContextString Context	string	passed	by	the	QueueMarkerEvent	method.

Remarks

Unlike	other	events	that	Visio	fires,	a	client	program	causes	the	MarkerEvent
event	to	fire.	A	client	program	receives	the	MarkerEvent	event	only	if	the	client
program	invoked	the	QueueMarkerEvent	method.

By	using	the	MarkerEvent	event	in	conjunction	with	the	QueueMarkerEvent

method,	a	client	program	can	queue	an	event	to	itself.	The	client	program
receives	the	MarkerEvent	event	after	Visio	fires	all	the	events	present	in	its
event	queue	at	the	time	of	the	QueueMarkerEvent	call.

The	MarkerEvent	event	passes	both	the	context	string	that	was	passed	by	the
QueueMarkerEvent	method	and	the	sequence	number	of	the	MarkerEvent
event	to	the	MarkerEvent	event	handler.	Either	of	these	values	can	be	used	to
correlate	QueueMarkerEvent	calls	with	MarkerEvent	events.	In	this	way,	a
client	program	can	distinguish	events	it	caused	from	those	it	did	not	cause.

For	example,	a	client	program	that	changes	the	values	of	Visio	cells	may	only
want	to	respond	to	the	CellChanged	events	that	it	did	not	cause.	The	client
program	can	first	call	the	QueueMarkerEvent	method	and	pass	a	context	string
for	later	use	to	bracket	the	scope	of	its	processing:

visObj.QueueMarkerEvent	"ScopeStart"
				<My	program	changes	cells	here>
visObj.QueueMarkerEvent	"ScopeEnd"

Then,	in	the	MarkerEvent	event	handler,	the	client	program	could	use	the
context	string	passed	to	the	QueueMarkerEvent	method	to	identify	the
CellChanged	events	that	it	caused:

Dim	ICausedCellChanges	as	Boolean

Private	Sub	visObj_MarkerEvent	(ByVal	App	As	Visio.IVApplication,	_
				ByVal	SequenceNum	As	Long,	ByVal	ContextString	As
				If	ContextString	=	"ScopeStart"	Then
								ICausedCellChanges	=	True
				ElseIf	ContextString	=	"ScopeEnd"	Then
								ICausedCellChanges	=	"False"
				End	If
End	Sub

Private	Sub	visObj_CellChanged	(ByVal	Cell	As	Visio.IVCell)
				'Respond	only	if	this	client	didn't	cause	cell	change
				If	ICausedCellChanges	=	False	Then
								<respond	to	the	cell	changes>
				End	If
End	Sub	

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification,	the
MarkerEvent	event	is	one	of	one	of	a	group	of	events	that	record	extra
information	in	the	EventInfo	property	of	the	Application	object.

The	EventInfo	property	returns	contextstring	as	described	above.	The
vMoreInfo	argument	to	VisEventProc	will	be	empty.

MasterAdded	event

				 				

Occurs	after	a	new	master	is	added	to	a	document.

Version	added

4.1

Syntax

Private	Sub	object_MasterAdded(ByVal	Master	As	IVMaster)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

MasterChanged	event

				 				

Occurs	after	properties	of	a	master	are	changed	and	propagated	to	its	instances.

Version	added

4.1

Syntax

Private	Sub	object_MasterChanged(ByVal	Master	As	IVMaster)

object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it

Example

applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

MasterDeleteCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelMasterDelete	event.

Version	added

2000

Syntax

Private	Sub	object_MasterDeleteCanceled(ByVal	Master	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Microsoft	Visual	Basic	for
Applications,	the	syntax	in	this	topic	describes	a	common,	efficient	way	to
handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it

Example

applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

MustFlushScopeBeginning	event

				 				

Occurs	before	the	Microsoft	Visio	instance	is	forced	to	flush	its	event	queue.

Version	added

5.0

Syntax

Private	Sub	object_MustFlushScopeBeginning(ByVal	app	

object The	WithEvents	object	that	receives	the	event.

Remarks

This	event,	along	with	the	MustFlushScopeEnded	event,	can	be	used	to
identify	whether	or	not	an	event	is	being	fired	because	Visio	is	forced	to	flush	its
event	queue.

Visio	maintains	a	queue	of	pending	events	that	it	attempts	to	fire	at	discrete

Example

moments	when	it	is	able	to	process	arbitrary	requests	(callbacks)	from	event
handlers.

Occasionally,	Visio	is	forced	to	flush	its	event	queue	when	it	is	not	prepared	to
handle	arbitrary	requests.	When	this	occurs,	Visio	first	fires	a
MustFlushScopeBeginning	event,	then	it	fires	the	events	that	are	presently	in
its	event	queue.	After	firing	all	pending	events,	Visio	fires	the
MustFlushScopeEnded	event.

After	Visio	has	fired	the	MustFlushScopeBeginning	event,	client	programs
should	not	invoke	Visio	methods	that	have	side	effects	until	the
MustFlushScopeEnded	event	is	received.	A	client	can	perform	arbitrary	queries
of	Visio	objects	when	Visio	is	between	the	MustFlushScopeBeginning	event
and	MustFlushScopeEnded	event,	but	operations	that	cause	side	effects	may
fail.

Visio	performs	a	forced	flush	of	its	event	queue	immediately	prior	to	firing	a
before	event	such	as	BeforeDocumentClose	or	BeforeShapeDelete	because
queued	events	may	apply	to	objects	that	are	about	to	close	or	be	deleted.	Using
the	BeforeDocumentClose	event	as	an	example,	there	can	be	queued	events	that
apply	to	a	shape	object	in	the	document	that	is	being	closed.	So,	before	the
document	closes,	Visio	fires	all	the	events	in	its	event	queue.

Events	are	fired	in	the	following	sequence	when	a	shape	is	deleted:

MustFlushScopeBeginning	event
Client	should	not	invoke	methods	with	side	effects.

There	are	zero	(0)	or	more	events	in	the	event	queue.

BeforeShapeDelete	event	
Shape	viable,	but	Visio	is	going	to	delete	it.

MustFlushScopeEnded	event
Client	can	resume	invoking	methods	with	side	effects.

ShapesDeleted	event
Shape	has	been	deleted.

NoEventsPending	event

No	events	remain	to	be	fired.

An	event	is	fired	both	before	(BeforeShapeDeleted	event)	and	after
(ShapesDeleted	event)	the	shape	is	deleted.	If	a	program	monitoring	these
events	requires	that	additional	shapes	be	deleted	in	response	to	the	initial	shape
delete,	it	should	do	so	in	the	ShapesDeleted	event	handler,	not	the
BeforeShapeDeleted	event	handler.	The	BeforeShapeDeleted	event	is	inside
the	scope	of	the	MustFlushScopeBeginning	event	and	the
MustFlushScopeEnded	event,	while	the	ShapesDeleted	event	is	not.

Note	The	sequence	number	of	a	MustFlushScopeBeginning	event	may	be
higher	than	the	sequence	number	of	events	the	client	sees	after	it	has	received
the	MustFlushScopeBeginning	event	because	Visio	assigns	sequence	numbers
to	events	as	they	occur.	Any	events	that	were	queued	when	the	forced	flush
began	have	a	lower	sequence	number	than	the	MustFlushScopeBeginning
event,	even	though	the	MustFlushScopeBeginning	event	fires	first.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

MustFlushScopeEnded	event

				 				

Occurs	after	the	Microsoft	Visio	instance	forces	a	flush	of	its	event	queue.

Version	added

5.0

Syntax

Private	Sub	object_MustFlushScopeEnded(ByVal	app	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

This	event,	along	with	the	MustFlushScopeBeginning	event,	can	be	used	to
identify	whether	or	not	an	event	is	being	fired	because	Visio	is	forced	to	flush	its
event	queue.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

NoEventsPending	event

				 				

Occurs	after	the	Microsoft	Visio	instance	flushes	its	event	queue.

Version	added

5.0

Syntax

Private	Sub	object_NoEventsPending(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

Visio	maintains	a	queue	of	events	and	fires	them	at	discrete	moments.
Immediately	after	Visio	fires	the	last	event	in	its	event	queue,	it	fires	a
NoEventsPending	event.

A	client	program	can	use	the	NoEventsPending	event	as	a	signal	that	Visio	has
completed	a	burst	of	activity.	For	example,	a	client	program	may	want	to	react	to
changes	in	a	shape's	geometry.	A	single	user	action	performed	on	the	shape	can

Example

generate	several	CellChanged	events.	The	client	program	could	record	selected
information	for	each	CellChanged	event	and	perform	its	processing	after	it
receives	the	NoEventsPending	event.

Visio	fires	the	NoEventsPending	event	only	if	at	least	one	of	the	events	in	the
queue	is	being	listened	to.	If	no	program	is	listening	for	any	of	the	queued
events,	the	NoEventsPending	event	does	not	fire.	If	your	program	is	only
listening	to	the	NoEventsPending	event,	it	does	not	fire	unless	another	program
is	listening	for	some	of	the	queued	events.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

OnKeystrokeMessageForAddon
event

				 				

Occurs	when	Microsoft	Visio	receives	a	keystroke	message	from	Microsoft
Windows	that	is	targeted	at	an	add-on	window	or	child	of	an	add-on	window.

Version	added

2002

Syntax

Private	Sub	object_OnKeystrokeMessageForAddon(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value True	to	indicate	that	the	message	was	handled	by	the	add-on.	otherwise,	

Remarks

The	OnKeystrokeMessageForAddon	event	enables	add-ons	to	intercept	and
process	accelerator	and	keystroke	messages	directed	at	their	own	add-on
windows	and	child	windows	of	their	add-on	windows.	Only	add-on	windows

Example

created	using	the	Add	method	will	source	this	event.

For	this	event	to	fire,	the	add-on	window	or	one	of	its	child	windows	must	have
keystroke	focus	and	the	Visio	message	loop	must	receive	the	keystroke	message.
It	does	not	fire	if	the	message	loop	associated	with	an	add-on	is	handling
messages	instead	of	Visio.

Visio	fires	the	OnKeystrokeMessageForAddon	event	when	it	receives
messages	in	the	following	range:

WM_KEYDOWN 0x0100
WM_KEYUP 0x0101
WM_CHAR 0x0102
WM_DEADCHAR 0x0103
WM_SYSKEYDOWN 0x0104
WM_SYSKEYUP 0x0105
WM_SYSCHAR 0x0106
WM_SYSDEADCHAR 0x0107

The	MSGWrap	object,	passed	to	the	event	handler	when	the
OnKeystrokeMessageForAddon	event	fires,	wraps	the	Windows	MSG
structure,	which	contains	message	data.	See	the	MSGWrap	object	for	more
information,	or	refer	to	your	Windows	documentation.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

PageAdded	event

					 					

Occurs	after	a	new	page	is	added	to	a	document.

Version	added

4.1

Syntax

Private	Sub	object_PageAdded(ByVal	Page	As	IVPage)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

want	to	create,	see	Event	codes.

PageChanged	event

				 				

Occurs	after	the	name	of	a	page,	the	background	page	associated	with	a	page,	or
the	page	type	(foreground	or	background)	changes.

Version	added

4.1

Syntax

Private	Sub	object_PageChanged(ByVal	Page	As	IVPage)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

PageDeleteCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelPageDelete	event.

Version	added

2000

Syntax

Private	Sub	object_PageDeleteCanceled(ByVal	Page	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Microsoft	Visual	Basic	for
Applications,	the	syntax	in	this	topic	describes	a	common,	efficient	way	to
handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it

Example

applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelConvertToGroup	event

				 				

Occurs	before	the	application	converts	a	selection	of	shapes	to	a	group	in
response	to	a	user	action	in	the	interface.	If	any	event	handler	returns	True,	the
operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelConvertToGroup
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelConvertToGroup	after	the	user	has	directed
the	instance	to	convert	one	or	more	shapes	into	groups.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire

Example

ConvertToGroupCanceled	and	not	convert	the	shapes.

If	all	handlers	return	False	(don't	cancel),	the	conversion	will	be	performed.

In	some	cases,	such	as	when	a	shape	with	a	ForeignType	property	of
visTypeMetafile	is	converted	to	a	group,	the	initial	shape	will	be	deleted	and
replaced	with	new	shapes.	In	such	cases	the	Visio	instance	will	subsequently	fire
BeforeSelectionDelete	and	BeforeShapeDelete	events	before	converting	the
shapes.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelDocumentClose	event

				 				

Occurs	before	the	application	closes	a	document	in	response	to	a	user	action	in
the	interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelDocumentClose(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelDocumentClose	after	the	user	has	directed
the	instance	to	close	a	document.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
DocumentCloseCanceled	and	not	close	the	document.

Example

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
BeforeDocumentClose	and	then	close	the	document.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelMasterDelete	event

				 				

Occurs	before	the	application	deletes	a	master	in	response	to	a	user	action	in	the
interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelMasterDelete(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelMasterDelete	after	the	user	has	directed	the
instance	to	delete	a	master.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
MasterDeleteCanceled	and	not	delete	the	master.

Example

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
BeforeMasterDelete	and	then	delete	the	master.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelPageDelete	event

				 				

Occurs	before	the	application	deletes	a	page	in	response	to	a	user	action	in	the
interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelPageDelete(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelPageDelete	after	the	user	has	directed	the
instance	to	delete	a	page.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
PageDeleteCanceled	and	not	delete	the	page.

Example

If	all	handlers	return	False	(don't	cancel)	the	instance	will	fire
BeforePageDelete,	and	then	delete	the	page.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelQuit	event

				 				

Occurs	before	the	application	terminates	in	response	to	a	user	action	in	the
interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelQuit(ByVal	app	As
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelQuit	after	the	user	has	directed	the	instance
to	terminate.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire	QuitCanceled
and	not	terminate.

Example

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire	BeforeQuit	and
then	terminate.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelSelectionDelete	event

				 				

Occurs	before	the	application	deletes	a	selection	of	shapes	in	response	to	a	user
action	in	the	interface.	If	any	event	handler	returns	True,	the	operation	is
canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelSelectionDelete(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelSelectionDelete	after	the	user	has	directed
the	instance	to	delete	one	or	more	shapes.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire

Example

SelectionDeleteCanceled	and	not	delete	the	shapes.

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
BeforeSelectionDelete	and	BeforeShapeDelete,	and	then	delete	the	shapes.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelStyleDelete	event

				 				

Occurs	before	the	application	deletes	a	style	in	response	to	a	user	action	in	the
interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelStyleDelete(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelStyleDelete	after	the	user	has	directed	the
instance	to	delete	a	style.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
StyleDeleteCanceled	and	not	delete	the	style.

Example

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
BeforeStyleDelete	and	then	delete	the	style.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelSuspend	event

					 					

Occurs	before	the	operating	system	enters	a	suspended	state.	If	any	event
handler	returns	True,	the	Microsoft	Visio	instance	will	deny	the	operating
system's	request.

Version	added

2000	SR-1

Syntax

Private	Function	object_QueryCancelSuspend(ByVal	app	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

You	will	typically	respond	False	and	allow	the	operating	system	to	enter	a
suspended	state.	If	you	have	open	network	files	you	can	close	them	when	you
receive	the	BeforeSuspend	event.	If	you	have	open	network	files	that	you
cannot	close	you	can	return	True	and	Visio	will	deny	the	operating	system's

request.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
SuspendCanceled	and	not	enter	a	suspended	state.

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire	BeforeSuspend
and	then	enter	a	suspended	state.

If	your	solution	runs	outside	of	the	Visio	process	you	cannot	be	assured	of
receiving	this	event.	For	this	reason,	you	should	monitor	window	messages	in
your	program.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelUngroup	event

				 				

Occurs	before	the	application	ungroups	a	selection	of	shapes	in	response	to	a
user	action	in	the	interface.	If	any	event	handler	returns	True,	the	operation	is
canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelUngroup(ByVal	Selection	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelUngroup	after	the	user	has	directed	the
instance	to	ungroup	one	or	more	shapes.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire

Example

UngroupCanceled	and	not	ungroup	the	shapes.

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
ShapeParentChanged,	BeforeSelectionDelete,	and	BeforeShapeDelete,	and
then	ungroup	the	shapes.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	will	refuse	to	perform	operations.	Client	code	can
show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QueryCancelWindowClose	event

				 				

Occurs	before	the	application	closes	a	window	in	response	to	a	user	action	in	the
interface.	If	any	event	handler	returns	True,	the	operation	is	canceled.

Version	added

2000

Syntax

Private	Function	object_QueryCancelWindowClose(ByVal	
object The	WithEvents	object	that	receives	the	event.
return	value False	to	allow	the	operation;	True	to	cancel	the	operation.

Remarks

A	Visio	instance	fires	QueryCancelWindowClose	after	the	user	has	directed	the
instance	to	close	a	window.

If	any	event	handler	returns	True	(cancel),	the	instance	will	fire
WindowCloseCanceled	and	not	close	the	window.

Example

If	all	handlers	return	False	(don't	cancel),	the	instance	will	fire
BeforeWindowClosed	then	close	the	window.

While	a	Visio	instance	is	firing	a	query	or	cancel	event	it	will	respond	to
inquiries	from	client	code	but	it	will	refuse	to	perform	operations.	Client	code
can	show	forms	or	message	boxes	while	responding	to	a	query	or	cancel	event.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

QuitCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a	QueryCancelQuit
event.

Version	added

2000

Syntax

Private	Sub	object_QuitCanceled(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

RunModeEntered	event

				 				

Occurs	after	a	document	enters	run	mode.

Version	added

5.0

Syntax

Private	Sub	object_RunModeEntered(ByVal	doc	As	IVDocument)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

SelectionAdded	event

				 				

Occurs	after	one	or	more	shapes	are	added	to	a	document.

Version	added

4.5

Syntax

Private	Sub	object_SelectionAdded(ByVal	Selection	As
object The	WithEvents	object	that	receives	the	event.

Remarks

A	Shape	object	can	serve	as	the	source	object	for	the	SelectionAdded	event	if
the	shape's	Type	property	is	visTypeGroup(2)	or	visTypePage(1).

The	SelectionAdded	and	ShapeAdded	events	are	similar	in	that	they	both	fire
after	shape(s)	are	created.	They	differ	in	how	they	behave	when	a	single
operation	adds	several	shapes.	Suppose	a	Paste	operation	creates	three	new
shapes.	The	ShapeAdded	event	fires	three	times	and	acts	on	each	of	the	three

Example

objects.	The	SelectionAdded	event	fires	once	and	it	acts	on	a	Selection	object	in
which	the	three	new	shapes	are	selected.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

Note	The	SelectionAdded	event	is	included	in	the	event	set	of	all	the	objects	in
the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents
variables	to	sink	the	SelectionAdded	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	SelectionAdded	event.	To	sink	the	SelectionAdded	event	from	a
Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you	must
use	the	AddAdvise	method.

SelectionChanged	event

				 				

Occurs	after	a	set	of	shapes	selected	in	a	window	changes.

Version	added

4.5

Syntax

Private	Sub	object_SelectionChanged(ByVal	Window	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

SelectionDeleteCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelSelectionDelete	event.

Version	added

2000

Syntax

Private	Sub	object_SelectionDeleteCanceled(ByVal	Selection	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

ShapeAdded	event

					 					

Occurs	after	one	or	more	shapes	are	added	to	a	document.

Version	added

4.1

Syntax

Private	Sub	object_ShapeAdded(ByVal	Shape	As	IVShape)
object The	WithEvents	object	that	receives	the	event.

Remarks

A	Shape	object	can	serve	as	the	source	object	for	the	ShapeAdded	event	if	the
shape's	Type	property	is	visTypeGroup(2)	or	visTypePage(1).

The	SelectionAdded	and	ShapeAdded	events	are	similar	in	that	they	both	fire
after	shape(s)	are	created.	They	differ	in	how	they	behave	when	a	single
operation	adds	several	shapes.	Suppose	a	Paste	operation	creates	three	new
shapes.	The	ShapeAdded	event	fires	three	times	and	acts	on	each	of	the	three

objects.	The	SelectionAdded	event	fires	once	and	it	acts	on	a	Selection	object	in
which	the	three	new	shapes	are	selected.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

ShapeChanged	event

				 				

Occurs	after	a	property	of	a	shape	that	is	not	stored	in	a	cell	is	changed	in	a
document.

Version	added

4.5

Syntax

Private	Sub	object_ShapeChanged(ByVal	Shape	As	IVShape)
object The	WithEvents	object	that	receives	the	event.

Remarks

To	determine	which	properties	have	changed	when	ShapeChanged	fires,	use	the
EventInfo	property.	The	string	returned	by	the	EventInfo	property	contains	a
list	of	substrings	that	identify	the	properties	that	changed.

Changes	to	the	following	shape	properties	cause	the	ShapeChanged	event	to
fire:

Example

Shape	name	(the	EventInfo	property	contains	"/name")

Data1	(the	EventInfo	property	contains	"/data1")

Data2	(the	EventInfo	property	contains	"/data2")

Data3	(the	EventInfo	property	contains	"/data3")

UniqueID	(the	EventInfo	property	contains	"/uniqueid")

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

If	you	are	handling	this	event	from	a	program	that	receives	a	notification	over	a
connection	that	was	created	using	AddAdvise,	the	vMoreInfo	argument	to
VisEventProc	contains	the	string:	"/doc=1	/page=1	/shape=Sheet.3"

Note	The	ShapeChanged	event	is	included	in	the	event	set	of	all	the	objects	in
the	Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents
variables	to	sink	the	ShapeChanged	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	ShapeChanged	event.	To	sink	the	ShapeChanged	event	from	a
Document	(and	the	ThisDocument	object	in	a	VBA	project),	you	must	use	the
AddAdvise	method.

ShapeExitedTextEdit	event

				 				

Occurs	after	a	shape	is	no	longer	open	for	interactive	text	editing.

Version	added

2000

Syntax

Private	Sub	object_ShapeExitedTextEdit(ByVal	Shape	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

ShapeParentChanged	event

				 				

Occurs	after	shapes	are	grouped	or	a	group	is	ungrouped.

Version	added

2000

Syntax

Private	Sub	object_ShapeParentChanged(ByVal	Shape	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

ShapesDeleted	event

					
			

Occurs	after	one	or	more	shapes	are	deleted	from	a	document.

Version	added

4.1

Syntax

You	can	only	handle	the	ShapesDeleted	event	by	creating	an	Event	object	using
the	Add	or	AddAdvise	method.	See	those	topics	for	details	about	the	correct
syntax.

Remarks

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	ShapesDeleted	event.	To	sink	the	ShapesDeleted	event	from	a
Document	(and	the	ThisDocument	object	in	a	VBA	project),	you	must	use	the
AddAdvise	method.

Because	the	ShapesDeleted	event	is	an	after	event,	the	deleted	shapes	are	gone
when	the	notification	is	received.	To	receive	notification	just	before	shapes	are
deleted,	use	the	BeforeShapeDelete,	BeforeSelectionDelete,	or
BeforeWindowSelDelete	event	instead.

How	you	determine	which	page	or	master	contained	the	deleted	shapes	depends
on	the	Action	property	of	the	Event	object	whose	target	has	been	triggered.

Applies	to

If	the	event's	Action	property	value	is	visActCodeRunAddon,	then	the	index	of
the	document	and	page,	or	document	and	master	containing	the	shapes	is
passed	in	the	command	string.

If	the	Action	property	value	is	visActCodeAdvise,	then	the	pSubjectObj
argument	passed	to	visEventProc	is	a	Selection	object	whose
ContainingShape	property	is	the	parent	shape	of	the	shapes	that	got	deleted,
and	the	vMoreInfo	argument	to	VisEventProc	designates	the	page	or	master
that	contained	the	deleted	shapes.

The	EventInfo	property	of	the	Application	object	returns	a	string	that	contains
additional	information	about	the	names	of	the	deleted	shapes:

If	one	shape	is	deleted,	the	string	has	the	following	form:
				/shapes=shapename
where	shapename	is	the	shape's	unique	ID	if	it	has	one;	otherwise	it	is	the
shape's	name	ID	(sheet.n).

If	more	than	one	shape	is	deleted,	the	string	is	in	the	following	form,	unless	the
total	number	of	characters	in	the	string	exceeds	8,096	characters:

				/shapes=shapename1;shapename2;shapename3;...
If	a	group	is	deleted,	only	the	group	is	included	in	the	string.	The	group's
members	are	not	included.

If	the	total	number	of	characters	in	the	string	exceeds	8,096	characters,	it	has	the
following	form:

				/shapes=many

StyleAdded	event

				 				

Occurs	after	a	new	style	is	added	to	a	document.

Version	added

4.1

Syntax

Private	Sub	object_StyleAdded(ByVal	Style	As	IVStyle)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

StyleChanged	event

				 				

Occurs	after	the	name	of	a	style	is	changed	or	a	change	to	the	style	propagates	to
objects	to	which	the	style	is	applied.

Version	added

4.1

Syntax

Private	Sub	object_StyleChanged(ByVal	Style	As	IVStyle)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

StyleDeleteCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelStyleDelete	event.

Version	added

2000

Syntax

Private	Sub	object_StyleDeleteCanceled(ByVal	Style	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

SuspendCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelSuspend	event.

Version	added

2000	SR-1

Syntax

Private	Sub	object_SuspendCanceled(ByVal	app	As	IVapplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

If	your	solution	runs	outside	of	the	Visio	process	you	cannot	be	assured	of
receiving	this	event.	For	this	reason,	you	should	monitor	window	messages	in
your	program.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

Example

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

TextChanged	event

				 				

Occurs	after	the	text	of	a	shape	is	changed	in	a	document.

Version	added

4.1

Syntax

Private	Sub	object_TextChanged(ByVal	Shape	As	IVShape)
object The	WithEvents	object	that	receives	the	event.

Remarks

The	TextChanged	event	is	fired	when	the	raw	text	of	a	shape	changes,	such	as
when	the	characters	Visio	stores	for	the	shape	change.	If	a	shape's	characters
change	because	a	user	is	typing,	the	TextChanged	event	does	not	fire	until	the
text	editing	session	terminates.

When	a	field	is	added	to	or	removed	from	a	shape's	text,	its	raw	text	changes;
hence,	a	TextChanged	event	fires.	However,	no	TextChanged	event	fires	when

Example

the	text	in	a	field	changes.	For	example,	a	shape	has	a	text	field	showing	its
width.	A	TextChanged	event	does	not	fire	when	the	shape's	width	changes
because	the	raw	text	stored	for	the	shape	hasn't	changed,	even	though	the
apparent	(expanded)	text	of	the	shape	does	change.	Use	the	CellChanged	event
for	one	of	the	cells	in	the	Text	Fields	section	to	detect	when	the	text	in	a	text
field	changes.

To	access	a	shape's	raw	text,	use	the	Text	property.	To	access	the	text	of	a	shape
in	which	text	fields	have	been	expanded,	use	the	Characters.Text	property.	You
can	determine	the	location	and	properties	of	text	fields	in	a	shape's	text	using	the
Shape.Characters	object.

In	Visio	5.0	and	earlier	versions,	the	raw	characters	reported	by	the	Text
property	for	a	field	included	four	characters,	the	first	being	the	Escape	character.
Starting	with	Visio	2000,	only	a	single	Escape	character	is	present	in	the	raw	text
stream.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications	(VBA),
the	syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

Note	The	TextChanged	event	is	included	in	the	event	set	of	all	the	objects	in	the
Applies	to	list.	For	those	objects	you	can	use	VBA	Dim	WithEvents	variables
to	sink	the	TextChanged	event.

For	performance	considerations,	the	Document	object's	event	set	does	not
include	the	TextChanged	event.	To	sink	the	TextChanged	event	from	a
Document	object	(and	the	ThisDocument	object	in	a	VBA	project),	you	must
use	the	AddAdvise	method.

UngroupCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelUngroup	event.

Version	added

2000

Syntax

Private	Sub	object_UngroupCanceled(ByVal	Selection	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

ViewChanged	event

				 				

Occurs	when	the	zoom	level	or	scroll	position	of	a	drawing	window	changes.

Version	added

2000

Syntax

Private	Sub	object_ViewChanged(ByVal	Window	As	IVWindow)
object The	WithEvents	object	that	receives	the	event.

Remarks

This	event	fires	whenever	the	zoom	level	or	scroll	position	of	a	Window	object
of	the	type	visDrawing	changes.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise

Example

method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

VisioIsIdle	event

				 				

Occurs	after	the	application	empties	its	message	queue.

Version	added

5.0

Syntax

Private	Sub	object_VisioIsIdle(ByVal	app	As	IVApplication)
object The	WithEvents	object	that	receives	the	event.

Remarks

Visio	continually	processes	messages	in	its	message	queue.	When	its	message
queue	is	empty:

Visio	performs	its	own	idle	time	processing.

Visio	tells	Microsoft	Visual	Basic	for	Applications	to	perform	its	idle	time
processing.

Example

If	the	message	queue	is	still	empty,	Visio	fires	the	VisioIsIdle	event.

If	the	message	queue	is	still	empty,	Visio	calls	WaitMessage,	which	is	a	call	to
Microsoft	Windows	that	doesn't	return	until	a	new	message	gets	added	to	the
Visio	message	queue.

A	client	program	can	use	the	VisioIsIdle	event	as	a	signal	to	perform	its	own
background	processing.

The	VisioIsIdle	event	is	not	the	equivalent	of	a	standard	timer	event.	Client
programs	that	need	to	be	called	on	a	periodic	basis	should	use	standard	timer
techniques	because	the	duration	in	which	Visio	is	idle	(calls	WaitMessage)	is
unpredictable.	For	client	programs	that	are	only	monitoring	Visio	activity,
however,	the	VisioIsIdle	event	can	be	sufficient	because	until	WaitMessage
returns	to	Visio,	there	cannot	have	been	any	Visio	activity	since	the	VisioIsIdle
event	was	last	fired.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

WindowActivated	event

				 				

Occurs	after	the	active	window	changes	in	a	Microsoft	Visio	instance.

Version	added

4.1

Syntax

Private	Sub	object_WindowActivated(ByVal	Window	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

The	WindowActivated	event	indicates	that	the	active	window	has	changed	in	a
Visio	instance.	This	event	implies	that	the	ActiveDocument	and	ActivePage
properties	of	the	Application	object	may	also	have	changed;	in	contrast,	any
time	the	ActiveDocument	or	ActivePage	property	changes,	a
WindowActivated	event	is	always	generated.

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the

Example

syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

WindowChanged	event

				 				

Occurs	when	the	size	or	position	of	a	window	changes.

Version	added

2000

Syntax

Private	Sub	object_WindowChanged(ByVal	Window	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

WindowCloseCanceled	event

				 				

Occurs	after	an	event	handler	has	returned	True	(cancel)	to	a
QueryCancelWindowClose	event.

Version	added

2000

Syntax

Private	Sub	object_WindowCloseCanceled(ByVal	Window	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives

Example

notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you
want	to	create,	see	Event	codes.

WindowOpened	event

				 				

Occurs	after	a	window	is	opened.

Version	added

4.1

Syntax

Private	Sub	object_WindowOpened(ByVal	Window	As	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

WindowTurnedToPage	event

				 				

Occurs	after	a	window	shows	a	different	page.

Version	added

4.5

Syntax

Private	Sub	object_WindowTurnedToPage(ByVal	Window	
object The	WithEvents	object	that	receives	the	event.

Remarks

If	you're	using	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	the
syntax	in	this	topic	describes	a	common,	efficient	way	to	handle	events.

If	you	want	to	create	your	own	Event	objects,	use	the	Add	or	AddAdvise
method.	To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	as	it
applies	to	the	EventList	collection.	To	create	an	Event	object	that	receives
notification,	use	the	AddAdvise	method.	To	find	an	event	code	for	the	event	you

Example

want	to	create,	see	Event	codes.

Activate	method

					 					

Activates	a	window.

Version	added

2.0

Syntax

object.Activate
object Required.	An	expression	that	returns	a	Window	object.

Remarks

Visio	can	have	more	than	one	window	open	at	a	time;	however,	only	one
window	is	active.	Activating	a	window	can	change	the	objects	returned	by	the
ActiveWindow,	ActivePage,	and	ActiveDocument	properties.

Add	method

					 					

Adds	a	new	object	to	a	collection.

Version	added

2.0

Syntax

objRet	=	object.Add
objRet The	new	object	added	to	the	collection.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

All	properties	of	the	new	object	are	initialized	to	zero,	so	you	need	to	set	only
the	properties	that	you	want	to	change.

Add	method	(Addons	collection)

				 					

Adds	a	new	Addon	object	to	an	Addons	collection.

Version	added

2.0

Syntax

addonObj	=	object.Add	(fileName)
addonObj The	new	Addon	object	added	to	the	Addons	collection.
object Required.	An	expression	that	returns	an	Addons	collection.
fileName Required	String.	The	name	of	the	add-on.

Remarks

The	Add	method	adds	an	EXE	or	VSL	file	to	the	collection	and	returns	an
Addon	object	if	the	string	expression	specifies	an	EXE	file,	or	Nothing	if	the
string	expression	specifies	a	VSL	file.

See	also

Add	method	(Documents	collection)

					 					

Adds	a	new	Document	object	to	the	Documents	collection.

Version	added

2.0

Syntax

docObj	=	object.Add	(fileName)
docObj The	new	Document	object	added	to	the	Documents	collection.
object Required.	An	expression	that	returns	a	Documents	collection.
fileName Required	String.	The	type	or	file	name	of	object	to	add;	if	you

don't	include	a	path,	Visio	searches	folders	designated	in	the
Application	object's	TemplatePaths	property.

Remarks

To	create	a	new	drawing	based	on	no	template,	pass	a	zero-length	string	("")	to
the	Add	method.

To	create	a	new	drawing	based	on	a	template,	pass	"templatename.vst"	to	the
Add	method.	Visio	opens	stencils	that	are	part	of	the	template's	workspace	and
copies	styles	and	other	settings	associated	with	the	template	to	the	new
document.	If	the	template	file	name	is	invalid,	no	document	is	returned	and	an
error	is	generated.

To	create	a	new	stencil	based	on	no	stencil,	pass	("vss").

To	open	a	copy	of	a	stencil,	pass	("stencilname.vss").

To	open	a	copy	of	a	drawing,	pass	("drawingname.vsd").

Note	Opening	a	copy	of	a	stencil	or	drawing	is	equivalent	to	selecting	Copy	in
the	Open	list	box	of	the	Open	dialog	box	or	using	the	OpenEx	method	with	the
visOpenCopy	flag.

Add	method	(EventList	collection)

				 				

Adds	an	Event	object	that	runs	an	add-on	when	an	event	occurs.	The	Event
object	is	added	to	the	EventList	collection	of	the	source	object	whose	events
you	want	to	receive.

Version	added

4.1

Syntax

eventObj	=	object.Add	(eventCode,	visActCodeRunAddon
eventObj The	new	Event	object	added	to	the	EventList	collection.
object Required.	An	expression	that	returns	an	EventList	collection.
eventCode Required	Integer.	The	event(s)	to	capture.
target Required	String.	The	name	of	your	add-on.
targetArgs Required	String.	The	string	that	is	passed	to	your	add-on.

Remarks

Example

The	source	object	whose	EventList	collection	contains	the	Event	object
establishes	the	scope	in	which	the	events	are	reported.	Events	are	reported	for
the	source	object	and	objects	lower	in	the	object	model	hierarchy.	For	example,
to	run	an	add-on	when	a	particular	document	is	opened,	add	an	Event	object	for
the	DocumentOpened	event	to	the	EventList	collection	of	that	document.	To
run	an	add-on	when	any	document	is	opened	in	an	instance	of	the	application,
add	the	Event	object	to	the	EventList	collection	of	the	Application	object.

Creating	Event	objects	is	a	common	way	to	handle	events	from	C++	or	other
non–Microsoft	Visual	Basic	solutions.	Unlike	events	handled	using	the	Visual
Basic	WithEvents	keyword	(all	the	events	in	a	source	object's	event	set	fire),
your	program	will	only	be	notified	of	the	events	you	select.	Depending	on	your
solution,	this	may	result	in	improved	performance.

Event	objects	that	run	add-ons	can	be	persistent,	that	is,	they	can	be	stored	with
a	Visio	document.	To	be	persistent,	an	Event	object's	Persistent	and	Persistable
properties	must	both	be	True.

The	arguments	passed	to	the	Add	method	set	the	initial	values	of	the	Event
object's	Event,	Action	(visCodeRunAddon),	Target,	and	TargetArgs
properties.

Event	codes	are	declared	by	the	Visio	type	library	and	have	the	prefix	visEvt.
Event	codes	are	often	a	combination	of	constants.	For	example,
visEvtAdd+visEvtDoc	is	the	event	code	for	the	DocumentAdded	event.	To
find	an	event	code	for	the	event	you	want	to	create,	see	Event	codes.

To	create	an	Event	object	that	advises	the	caller's	sink	object	about	an	event,	see
the	AddAdvise	method.

Add	method	(Layer	object)

					 					

Assigns	a	shape	to	a	layer.

Version	added

2.0

Syntax

object.Add(shapeObj,	fPreserveMembers)
object Required.	An	expression	that	returns	a	Layer	object.
shapeObj Required.	The	new	Shape	object	added	to	the	Layer	object.
fPreserveMembers Required	Integer.	Zero	to	remove	subshapes	from	any

previous	layer	assignments;	non-zero	to	preserve	layer
assignments.

Remarks

If	the	shape	is	a	group	and	fPreserveMembers	is	non-zero,	the	component	shapes
of	the	group	retain	their	current	layer	assignments	and	are	also	added	to	this
layer.	If	fPreserveMembers	is	zero,	the	component	shapes	are	reassigned	to	this

layer	and	lose	their	current	layer	assignments.

Add	method	(Layers	collection)

				 					

Adds	a	new	Layer	object	to	a	Layers	collection.

Version	added

2.0

Syntax

layerObj	=	object.Add	(layerName)
layerObj The	new	Layer	object	added	to	the	Layers	collection.
object Required.	An	expression	that	returns	a	Layers	collection.
layerName Required	String.	The	name	of	the	new	layer.

See	also

Add	method	(Styles	collection)

					 					

Adds	a	new	Style	object	to	a	Styles	collection.

Version	added

2.0

Syntax

styleObj	=	object.Add(newStyleName,	basedOnName,	fIncludesText
styleObj The	new	Style	object	added	to	the	Styles	collection.
object Required.	An	expression	that	returns	a	Styles	collection.
newStyleName Required	String.	The	new	style	name.
basedOnName Required	String.	The	name	of	the	style	on	which	to	base	the	new	style.
fIncludesText Required	Integer.	Zero	to	disable	text	attributes,	or	non-zero	to	enable	them.
fIncludesLine Required	Integer.	Zero	to	disable	line	attributes,	or	non-zero	to	enable	them.
fIncludesFill Required	Integer.	Zero	to	disable	fill	attributes,	or	non-zero	to	enable	them.

Remarks

Pass	a	zero-length	string	("")	for	the	basedOnName	argument	to	base	the	new
style	on	no	style.

Add	method	(Windows	collection)

				 				

Adds	a	new	Window	object	to	the	Windows	collection.

Version	added

2000

Syntax

objRet	=	object.Add	([varCaption][,	varFlags]
[,	varType][,	varLeft][,	varTop][,	varWidth]
[,	varHeight][,	bstrMergeID][,	bstrMergeClass]
[,	nMergePostition])
objRet The	new	Window	object	added	to	the	collection.
object Required.	An	expression	that	returns	a	Windows	collection.
varCaption Optional	Variant.	The	title	of	window;	default	is	"Untitled".
varFlags Optional	Variant.	Initial	window	state.	Can	contain	any

combination	of	visWindowStates	constants	declared	in	the
Visio	type	library;	default	varies	based	on	the	varType.

Example

varType Optional	Variant.	Type	of	new	window.	Defaults	to
visStencilAddon	for	Application.Windows;	defaults	to
visAnchorBarAddon	for	Window.Windows.

varLeft Optional	Variant.	Position	of	the	left	side	of	the	window.
varTop Optional	Variant.	Position	of	the	top	of	the	window.
varWidth Optional	Variant.	Width	of	the	client	area	of	the	window.
varHeight Optional	Variant.	Height	of	the	client	area	of	the	window.
bstrMergeID Optional	Variant.	Merge	ID	of	the	window.
bstrMergeClass Optional	Variant.	Merge	class	of	the	window.
nMergePostition Optional	Variant.	Merge	position	of	the	window.

Remarks

Use	this	method	to	get	an	empty	parent	frame	window	within	the	Visio	window
space	that	you	can	populate	with	child	windows.	You	must	be	in	the	Visio
process	space	(for	example,	in	a	DLL/VSL	based	add-on)	to	use	the	Window
object	returned	by	this	method	as	a	parent	to	your	windows.

Use	the	value	returned	by	the	WindowHandle32	property	as	an	HWND	for	use
as	a	parent	to	your	own	windows.

AddAdvise	method

					 					

Adds	an	Event	object	to	the	EventList	collection	of	the	source	object	whose
events	you	want	to	receive.	When	selected	events	occur,	the	source	object	will
notify	your	sink	object.

Version	added

4.1

Syntax

evtObj	=	object.AddAdvise	(eventCode,	eventSink,	IIDSink
evtObj The	new	Event	object.
object Required.	An	expression	that	returns	an	EventList	collection.
eventCode Required	Integer.	The	event(s)	that	generate	notifications.
eventSink Required	Object.	A	reference	to	an	OLE	interface	on	the	object	that	is	to

receive	event	notifications.
IIDSink Required	String.	Reserved	for	future	use.	Must	be	"".
targetArgs Required	String.	The	string	that	is	passed	to	your	sink	object.

Remarks

Event	objects	created	with	the	AddAdvise	method	have	an	Action	property	of
visActCodeAdvise.	They	are	not	persistent,	that	is,	they	cannot	be	stored	with	a
Visio	document	and	must	be	re-created	at	run	time.

The	source	object	whose	EventList	collection	contains	the	Event	object
establishes	the	scope	in	which	the	events	are	reported.	Events	are	reported	for
the	source	object	and	objects	lower	in	the	object	model	hierarchy.	For	example,
to	receive	notification	when	a	particular	document	is	saved,	add	an	Event	object
for	the	DocumentSaved	event	to	the	EventList	collection	of	that	document.	To
receive	notification	when	any	document	is	opened	in	an	instance	of	the
application,	add	the	Event	object	to	the	EventList	collection	of	the	Application
object.

Creating	Event	objects	is	a	common	way	to	handle	events	from	C++	or	other
non–Microsoft	Visual	Basic	solutions.	Unlike	events	handled	using	the	Visual
Basic	WithEvents	keyword	(all	the	events	in	a	source	object's	event	set	fire),
your	program	will	only	be	notified	of	the	events	you	select.	Depending	on	your
solution,	this	may	result	in	improved	performance.

The	eventCode	argument	is	often	a	combination	of	constants.	For	example,
visEvtMod+visEvtCell	is	the	event	code	for	the	CellChanged	event.	Event
constants	are	declared	by	the	Visio	type	library	and	are	prefixed	with	visEvt.	To
find	an	event	code	for	the	event	you	want	to	create,	see	Event	codes.

The	arguments	passed	to	the	AddAdvise	method	set	the	initial	values	of	the
Event	object's	Event,	Action	(visCodeRunAddAdvise),	and	TargetArgs
properties.

Beginning	with	Microsoft	Visio	2002,	you	can	use	event	filters	to	refine	the
events	that	you	receive	in	your	program.	You	can	filter	events	by	object,	cell,
ranges	of	cells,	or	command	ID.	For	details	about	using	event	filters,	see	the
method	topics	prefixed	with	SetFilter	and	GetFilter.

Enabling	your	program	to	handle	event	notifications	from	Microsoft	Visual
Basic	or	Visual	Basic	for	Applications

AddAt	method

					 					

Creates	a	new	object	at	a	specified	index	in	a	collection.

Version	added

4.0

Syntax

objRet	=	object.AddAt(index)
objRet The	new	object	added	to	the	collection.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.
index Required	Long.	The	index	at	which	to	add	the	object.

Remarks

If	the	index	is	zero	(0),	the	object	is	added	at	the	beginning	of	the	collection.

The	beginning	of	a	Menus	collection	is	the	leftmost	menu	when	the	menus	are
arranged	horizontally.	For	example,	the	File	menu	is	the	first	menu	in	the	Menus

collection	for	the	drawing	window	context.

The	beginning	of	a	MenuItems	collection	is	the	topmost	menu	item.	For
example,	the	New	Window	menu	item	is	the	first	menu	item	in	the	MenuItems
collection	for	the	Window	Menu	object.

The	beginning	of	a	ToolbarItems	collection	is	the	leftmost	item	in	a	toolbar	that
is	arranged	horizontally.

AddAtID	method

				 				

Creates	a	new	object	with	a	specified	ID	in	a	collection.

Version	added

4.0

Syntax

objRet	=	object.AddAtID(id)
objRet The	new	object	added	to	the	collection.
object Required.	An	expression	that	returns	an	AccelTables,

MenuSets,	or	ToolbarSets	collection.
id Required	Long.	The	window	context	for	the	new	object.

Remarks

The	ID	corresponds	to	a	window	or	context	menu.	If	the	collection	already
contains	an	object	at	the	specified	ID,	the	AddAtID	method	returns	an	error.

Valid	IDs	are	declared	by	the	Visio	type	library	and	begin	with	visUIObjSet.

Example

Not	all	collections	include	an	object	for	every	possible	ID.	For	a	list	of	valid
contexts	for	a	particular	collection,	see	the	SetID	property.

AddCustomField[U]	method

				 				

Replaces	the	text	represented	by	a	Characters	object	with	a	custom	formula
field.

Version	added

3.0

Syntax

object.AddCustomField	strFormula,	intFormat
object Required.	An	expression	that	returns	a	Characters	object.
strFormula Required	String.	The	formula	of	the	new	field.
intFormat Required	Integer.	The	format	of	the	new	field.

Remarks

Using	the	AddCustomField	method	is	similar	to	clicking	Field	on	the	Insert
menu	and	inserting	a	custom	formula	field	in	text.	To	add	any	other	type	of	field
(not	custom),	use	the	AddField	method.

Example

For	a	list	of	valid	field	format	constants,	see	the	FieldFormat	property.	Valid
field	format	constants	are	also	defined	in	the	Visio	type	library	in
VisFieldFormats.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	AddCustomField	method	to	set	a	custom	field	using	local
syntax.	Use	the	AddCustomFieldU	method	to	set	a	custom	field	using	universal
syntax.

AddField	method

				 				

Replaces	the	text	represented	by	a	Characters	object	with	a	new	field	of	the
category,	code,	and	format	you	specify.

Version	added

3.0

Syntax

object.AddField	intCategory,	intCode,	intFormat
object Required.	An	expression	that	returns	a	Characters	object.
intCategory Required	Integer.	The	category	for	the	new	field.
intCode Required	Integer.	The	code	for	the	new	field.
intFormat Required	Integer.	The	format	for	the	new	field.

Remarks

Using	the	AddField	method	is	similar	to	clicking	Field	on	the	Insert	menu,	and
inserting	any	of	the	following	categories	of	fields	in	the	text:

Example

Date/Time

Document	Info

Geometry

Object	Info

Page	Info

To	add	a	custom	formula	field,	use	the	AddCustomField	method.

For	intCategory,	intCode,	and	intFormat	constant	values,	see	the
FieldCategory,	FieldCode,	and	FieldFormat	property	topics.	These	constants
are	also	declared	by	the	Visio	type	library	in	VisFieldCategories,
VisFieldCodes,	and	VisFieldFormats.

AddGuide	method

					 					

Adds	a	guide	to	a	drawing	page.

Version	added

2.0

Syntax

objRet	=	object.AddGuide	(guideType,	x,	y)
objRet A	Shape	object	that	represents	the	new	guide.
object Required.	An	expression	that	returns	a	Page	object.
guideType Required	Integer.	The	type	of	guide	to	add.
x Required	Double.	The	x-coordinate	of	a	point	on	the	guide.
y Required	Double.	The	y-coordinate	of	a	point	on	the	guide.

Remarks

The	following	constants	declared	by	the	Visio	type	library	are	valid	values	for
guides.

Constant Value Description
visPoint 1 Guide	point
visHorz 2 Horizontal	guide
visVert 3 Vertical	guide

AddHyperlink	method

					 					

Adds	a	Hyperlink	object	to	a	Microsoft	Visio	shape.

Version	added

5.0

Syntax

objRet	=	object.AddHyperlink
objRet The	Hyperlink	object	that	is	returned.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

Using	the	AddHyperlink	method	is	equivalent	to	adding	a	hyperlink	to	a	shape
by	clicking	Hyperlinks	on	the	Insert	menu.

If	a	Hyperlink	object	already	exists	for	the	shape,	then	a	reference	to	the
existing	Hyperlink	object	is	returned.

AddNamedRow	method

				 				

Adds	a	row	with	the	specified	name	to	the	specified	ShapeSheet	section.

Version	added

4.0

Syntax

retVal	=	object.AddNamedRow	(section,	rowName,	rowTag
retVal Integer.	The	row	number	of	the	new	row.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	section	in	which	the	row	is	to	be	added.
rowName Required	String.	The	name	of	the	new	row.
rowTag Required	Integer.	The	type	of	row	to	be	added.

Remarks

You	can	add	named	rows	to	the	Custom	Properties	(visSectionProp),	User-
defined	Cells	(visSectionUser),	and	Connection	Points

Example

(visSectionConnectionPts)	ShapeSheet	sections.	You	can	access	cells	in	the
new	rows	by	passing	the	row	number	returned	by	the	AddNamedRow	method
to	the	CellsSRC	property.	Alternatively,	you	can	access	cells	in	the	new	rows
using	the	row's	name	with	the	Cells	property.	For	details	about	cell	references
and	cells	in	named	rows,	see	the	User.Row,	Prop.Name,	or	Connections.Row
row	topics.

An	empty	row	name	string	("")	creates	a	row	with	a	default	name.

A	value	of	zero	(0)	in	the	rowTag	argument	generates	the	default	row	type	for	the
section.	Explicit	tags	are	useful	when	adding	rows	to	the	Connection	Points
section.	See	the	RowType	property	for	descriptions	of	valid	row	types	for	each
section.	Passing	an	invalid	row	type	generates	an	error.

Adding	a	named	row	to	a	Connection	Points	section	automatically	converts	any
existing	unnamed	rows	in	the	section	into	named	rows,	using	their	default	names
(Row_1,	Row_2,	and	so	on).

mk:@MSITStore:Vis_DSS.chm::/DSS_Rows_(A-Z)_1380.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Rows_(A-Z)_1344.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Rows_(A-Z)_1279.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1278.htm

AddRow	method

					 					

Adds	a	row	to	a	ShapeSheet	section	at	a	specified	position.

Version	added

2.0

Syntax

retVal	=	object.AddRow	(section,	row,	tag)
retVal Integer.	The	row	number	of	the	row	that	was	added.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	section	in	which	to	add	the	row.
row Required	Integer.	The	position	at	which	to	add	the	row.
tag Required	Integer.	The	type	of	row	to	add.

Remarks

If	the	ShapeSheet	section	does	not	already	exist,	it	is	created	with	a	blank	row.
New	cells	in	new	rows	are	initialized	with	default	formulas,	if	applicable.

Otherwise,	a	program	must	include	statements	to	set	the	formulas	for	the	new
cells.	An	error	is	generated	if	the	new	row	cannot	be	added.

The	row	constants	declared	by	the	Visio	type	library	serve	as	base	positions	at
which	a	section's	rows	begin.	Add	offsets	to	these	constants	to	specify	the	first
row	and	beyond,	for	example,	visRowFirst+0,	visRowFirst+1,	and	so	on.	To
add	rows	at	the	end	of	a	section,	pass	the	constant	visRowLast	for	the	row
argument.	The	value	returned	is	the	actual	row	index.

The	tag	argument	specifies	the	type	of	row	to	add.	Pass	zero	(0)	as	the	tag
argument	to	generate	a	section's	default	row	type.	Explicit	tags	are	useful	when
adding	rows	to	Geometry,	Connection	Points,	and	Controls	sections.	See	the
RowType	property	for	descriptions	of	valid	row	types	for	these	sections.	Passing
an	invalid	row	type	generates	an	error.

If	you	try	to	add	a	row	to	a	Character,	Tabs,	or	Paragraph	section,	an	error
occurs.

The	AddRow	method	cannot	add	named	rows;	an	error	occurs	if	the	section
contains	named	rows	or	can	hold	only	named	rows.	To	add	named	rows,	use	the
AddNamedRow	method.

The	Visio	type	library	declares	row	constants	prefixed	with	visRow	in
VisRowIndices.	These	are	also	listed	in	the	AddRows	method	topic.

Constants	for	rows	in	the	Geometry,	Connection	Points	and	Controls	sections	are
prefixed	with	visTag	and	declared	by	the	type	library	in	VisRowTags.	To	see	a
list	of	these	constants,	see	the	RowType	property.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1278.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1280.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1246.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(S-Z)_1724.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(J-R)_1253.htm

AddRows	method

				 				

Adds	the	specified	number	of	rows	to	a	ShapeSheet	section	at	a	specified
position.

Version	added

4.0

Syntax

retVal	=	object.AddRows	(section,	row,	tag,	count)
retVal Integer.	The	row	number	of	the	last	row	that	was	added.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	section	in	which	to	add	the	rows.
row Required	Integer.	The	position	at	which	to	add	the	rows.
tag Required	Integer.	The	type	of	rows	to	add.
count Required	Integer.	The	number	of	rows	to	add.

Remarks

Example

If	the	ShapeSheet	section	does	not	exist,	the	AddRows	method	creates	a	section
with	blank	rows.	New	cells	in	new	rows	are	initialized	with	default	formulas,	if
applicable.	Otherwise,	a	program	must	include	statements	to	set	the	formulas	for
the	new	cells.	An	error	occurs	if	the	row	cannot	be	added.

The	row	constants	declared	by	the	Visio	type	library	serve	as	base	positions	at
which	a	section's	rows	begin.	Add	offsets	to	these	constants	to	specify	the	first
row	and	beyond,	for	example,	visRowFirst+0,	visRowFirst+1,	and	so	on.	To
add	rows	at	the	end	of	a	section,	pass	the	constant	visRowLast	for	the	row
argument.	The	value	returned	is	the	actual	row	index.

The	tag	argument	specifies	the	type	of	rows	to	add.	Pass	zero	(0)	as	the	tag
argument	to	generate	a	section's	default	row	type.	Explicit	tags	are	useful	when
adding	rows	to	Geometry,	Connection	Points,	and	Controls	sections.	See	the
RowType	property	for	descriptions	of	valid	row	types	for	these	sections.	Passing
an	invalid	row	type	generates	an	error.

If	you	try	to	add	rows	to	a	Character,	Tabs,	or	Paragraph	section,	an	error	occurs.

The	AddRows	method	cannot	add	named	rows;	an	error	occurs	if	the	section
contains	named	rows	or	can	hold	only	named	rows.	To	add	named	rows,	use	the
AddNamedRow	method.

The	Visio	type	library	declares	the	constants	for	tag	in	VisRowIndices.

Valid	constants	for	tag

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1278.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1280.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1246.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(S-Z)_1724.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(J-R)_1253.htm

AddSection	method

					 					

Adds	a	new	section	to	a	ShapeSheet	spreadsheet.

Version	added

2.0

Syntax

intRet	=	object.AddSection	(section)
intRet Integer.	The	index	of	the	section	that	was	added.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	type	of	section	to	add.

Remarks

The	AddSection	method	is	frequently	used	to	add	one	or	more	Geometry
sections	to	a	shape.	You	can	also	use	AddSection	to	add	other	sections	to	a
shape	such	as	Scratch,	Controls,	Connection	Points,	Actions,	User-Defined	Cells
and	Custom	Properties.	The	AddSection	method	returns	the	logical	index	of	the
added	section.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(S-Z)_1277.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1280.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1278.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1332.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(S-Z)_1377.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1338.htm

The	sections	that	you	can	add	to	a	shape	correspond	to	the	choices	shown	by	the
Insert	Section	dialog	box	when	the	shape	is	displayed	in	a	ShapeSheet	window.

If	you	try	to	add	a	non-Geometry	section	to	a	shape	that	already	has	that	section,
the	AddSection	method	raises	an	exception.	Use	the	SectionExists	property	to
determine	if	a	shape	already	has	a	section	with	a	given	logical	index.

A	new	section	has	no	rows.	Use	the	AddRow	method	to	add	rows	to	the	new
section.

The	GeometryCount	property	returns	the	number	of	Geometry	sections
included	in	a	shape.	Use	the	following	code	to	add	a	Geometry	section	to	a
shape:

Shape.AddSection(visSectionFirstComponent+i)

where	0	<=	i	<	visSectionLastComponent	-	visSectionFirstComponent.	The
new	section	precedes	the	present	i'th	Geometry	section	for	0	<=	i	<
Shape.GeometryCount.	It	is	the	last	section	for	Shape.GeometryCount	<=	i	<
visSectionLastComponent	-	visSectionFirstComponent.

The	Visio	type	library	declares	the	constants	for	sections	in	VisSectionIndices.

Valid	section	constants

AddToFavorites	method

					 					

Adds	a	shortcut	for	a	hyperlink	address	in	the	presently	registered	Favorites
folder.

Version	added

5.0

Syntax

object.AddToFavorites	[favoritesTitle]
object Required.	An	expression	that	returns	a	Hyperlink	object.
favoritesTitle Optional	String.	The	title	to	assign	to	the	new	shortcut.

Remarks

If	a	string	is	not	supplied,	the	AddToFavorites	method	uses	the	hyperlink's
Description	property	as	the	new	favorite's	title.	If	the	Description	property	is
empty,	the	shortcut	is	given	a	generic	title,	such	as	Favorite1.

The	optional	favoritesTitle	argument	can	specify	the	full	path	for	the	favorites

file,	for	example,	"C:\TEMP\My	Favorite.URL",	or	a	path	relative	to	the
favorites	folder.

From	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	a	call	to	the
AddToFavorites	method	can	take	either	of	these	two	forms:

object.AddToFavorites	"SomeString"	
object.AddToFavorites

From	C/C++,	if	a	string	is	supplied,	pass	a	Variant	of	type	VT_BSTR.	The
application	assigns	the	string	as	the	title	of	the	shortcut.	If	a	string	is	not
supplied,	pass	a	Variant	of	type	VT_EMPTY,	or	of	type	VT_ERROR	and
HRESULT	DISP_E_PARAMNOTFOUND.

AddToGroup	method

					 					

Adds	the	selected	shapes	to	the	selected	group.

Version	added

2.0

Syntax

object.AddToGroup
object Required.	An	expression	that	returns	a	Selection	object.

Remarks

The	current	selection	must	contain	both	the	shapes	to	add	and	the	group	to	which
you	want	to	add	them.	The	group	must	be	the	primary	selection	or	the	only
group	in	the	selection.

AddUndoUnit	method

					 					

Adds	an	object	that	supports	the	IOleUndoUnit	or	IVBUndoUnit	interface	to
the	Microsoft	Visio	undo	queue.

Version	added

2000

Syntax

object.AddUndoUnit	(object)
object Required.	An	expression	that	returns	an	Application	object.
object Required.	An	object	that	supports	the	IOleUndoUnit	or

IVBUndoUnit	interface.

Remarks

For	information	about	implementing	the	IOleUndoUnit	interface	on	your	object,
see	the	Microsoft	Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)
Web	site.	For	information	about	implementing	the	IVBUndoUnit	interface,	see
Developing	Visio	Solutions	on	the	MSDN	Web	site.

http://msdn.microsoft.com

Arrange	method

					 					

Arranges	the	windows	in	a	Windows	collection.

Version	added

2.0

Syntax

object.Arrange(nArrangeFlags)
object Required.	An	expression	that	returns	a	Windows	collection.
nArrangeFlags Optional	Variant.	A	flag	that	specifies	how	to	arrange	the

windows;	by	default,	the	windows	are	arranged	vertically.

Remarks

Using	the	Arrange	method	is	equivalent	to	clicking	Tile	on	the	Window	menu.
The	active	window	remains	active.

Visio	considers	windows	top	to	bottom,	then	left	to	right.	You	can	influence
which	windows	will	end	up	topmost	when	tiling	horizontally	(or	leftmost	when

tiling	vertically)	by	prearranging	windows.

The	following	constants	declared	by	the	Visio	type	library	are	valid	values	for
nArrangeFlags.	These	constants	are	also	declared	by	the	Visio	type	library	in
VisWindowArrange.

Constant Value
VisArrangeTileVertical 1
VisArrangeTileHorizontal 2
VisArrangeCascade 3

Example

The	following	macro	uses	the	SetWindowRect	method	to	prearrange	windows.
This	creates	the	desired	results	when	the	Arrange	method	is	called	to	tile	the
windows.	In	this	example,	window(i)	ends	up	above	window(i+1).

Public	Sub	p()
					For	i	=	1	To	Windows.Count
										Windows(i).SetWindowRect	i	+	100,	i	+	100,	100,	100
					Next	i
					Windows.Arrange	visArrangeTileHorizontal
End	Sub

BeginUndoScope	method

					 					

Starts	a	transaction	with	a	unique	scope	ID	for	an	instance	of	Microsoft	Visio.

Version	added

2000

Syntax

nScopeID	=	object.BeginUndoScope	(stringDescription)
nScopeID Long.	The	ID	of	the	new	scope	within	the	Visio	instance.
object Required.	An	expression	that	returns	an	Application	object.
stringDescription Required	String.	The	name	of	the	scope;	could	appear	in	the

Visio	user	interface.

Remarks

If	you	need	to	know	whether	events	you	receive	are	the	result	of	a	particular
operation	that	you	initiated,	use	the	BeginUndoScope	and	EndUndoScope
methods	to	wrap	your	operation.	In	your	event	handlers,	use	the	IsInScope
property	to	test	whether	the	scope	ID	returned	by	the	BeginUndoScope	method

is	part	of	the	current	context.	Make	sure	you	clear	the	scope	ID	you	stored	from
the	BeginUndoScope	property	when	you	receive	the	ExitScope	event	with	that
ID.

You	must	balance	calls	to	the	BeginUndoScope	method	with	calls	to	the
EndUndoScope	method.	If	you	call	the	BeginUndoScope	method,	you	should
call	the	EndUndoScope	method	as	soon	as	you	are	finished	with	the	actions	that
constitute	your	scope.	Also,	while	actions	to	multiple	documents	should	be
robust	within	a	single	scope,	closing	a	document	may	have	the	side	effect	of
purging	the	undo	information	for	the	currently	open	scope	as	well	as	purging	the
undo	and	redo	stacks.	If	that	happens,	passing	bCommit	=	False	to
EndUndoScope	does	not	restore	the	undo	information.

You	can	also	use	the	BeginUndoScope	and	EndUndoScope	methods	to	add	an
action	defined	by	an	add-on	to	the	Visio	undo	stream.	This	is	useful	when	you
are	operating	from	modeless	scenarios	where	the	initiating	agent	is	part	of	an
add-on's	user	interface	or	a	modeless	programmatic	action.

Note	Most	Visio	actions	are	already	wrapped	in	internal	undo	scopes,	so	add-ons
running	within	the	application	do	not	need	to	call	this	method.

BoundingBox	method

					 					

Returns	a	rectangle	that	tightly	encloses	a	shape,	or	the	shapes	of	a	page,	master,
or	selection.

Version	added

4.5

Syntax

object.BoundingBox	flags,	left,	bottom,	right,	top
object Required.	An	expression	that	returns	the	Page,	Master,	Shape

or	Selection	object	whose	bounding	box	is	to	be	retrieved.
flags Required	Integer.	Flags	that	influence	the	bounding	box

calculated	for	each	shape	that	contributes	to	the	resulting
bounding	box.

left Required	Double.	Returns	x-coordinate	of	left	edge	of
bounding	box.

bottom Required	Double.	Returns	y-coordinate	of	bottom	edge	of
bounding	box.

right Required	Double.	Returns	x-coordinate	of	right	edge	of
bounding	box.

top Required	Double.	Returns	y-coordinate	of	top	edge	of
bounding	box.

Remarks

For	a	Shape	object,	the	BoundingBox	method	returns	a	rectangle	that	tightly
encloses	the	shape	and	its	sub-shapes.

For	a	Page,	Master,	or	Selection	object,	the	BoundingBox	method	returns	a
rectangle	that	tightly	encloses	the	page's,	master's,	or	selection's	shapes	and	their
sub-shapes.

If	the	BoundingBox	method	returns	an	error,	or	if	it	is	asked	to	return	the
rectangle	enclosing	zero	shapes,	the	rectangle	returned	is	{	left:	0,	bottom:	0,
right:	-1,	top:	-1	};	otherwise,	the	rectangle	returned	has	left	less	than	or	equal	to
(<=)	right	and	bottom	less	than	or	equal	to	(<=)	top.	The	numbers	returned	are	in
internal	units	(inches).

The	bounding	rectangle	returned	for	an	individual	shape	depends	on	its	Type
property.

Constant Description
visTypePage Equivalent	to	Page.BoundingBox	or

Master.BoundingBox.
visTypeGroup Rectangle	that	tightly	encloses	the

group	and	its	sub-shapes.
visTypeShape Determined	rectangle	depends	on	flags.

See	below.
visTypeForeignObject Determined	rectangle	depends	on	flags.

See	below.
visTypeGuide Determined	rectangle	depends	on	flags.

See	below.

The	method	will	raise	an	exception	for	object	type	visTypeDoc.

The	flags	argument	has	several	bits	that	control	the	bounding	box	retrieved	for

each	shape.	If	more	than	one	of	the	bits	described	below	is	set,	the	rectangle
determined	for	the	shape	covers	all	rectangles	implied	by	the	bits.

Flag Value Description
visBBoxUprightWH &H1 Return	a	rectangle	that	is	the	smallest

rectangle	parallel	to	the	local	coordinate
system	of	the	shape's	parent	that
encloses	the	shape's	width-height	box.
If	the	shape	is	not	rotated,	its	upright
width-height	box	and	its	width-height
box	are	the	same.	Paths	in	the	shape's
geometry	needn't	and	often	don't	lie
entirely	within	the	shape's	width-height
box.

visBBoxUprightText &H2 Return	a	rectangle	that	is	the	smallest
rectangle	parallel	to	the	local	coordinate
system	of	the	shape's	parent	that
encloses	the	shape's	text.

visBBoxExtents &H4 Return	a	rectangle	that	is	the	smallest
rectangle	parallel	to	the	local	coordinate
system	of	the	shape's	parent	that
encloses	the	paths	stroked	by	the	shape's
geometry.
This	may	be	larger	or	smaller	than	the
shape's	upright	width-height	box.	The
extents	box	determined	for	a	shape	of
type	visTypeForeignObject	equals	that
shape's	upright	width-height	box.

visBBoxIncludeHidden &H10 Include	hidden	geometry.
visBBoxIgnoreVisible &H20 Ignore	visible	geometry.
VisBBoxIncludeGuides &H1000 Include	extents	for	shapes	of	type

visTypeguide.	By	default,	the	extents	of
shapes	of	type	visTypeGuide	are
ignored.
If	you	request	guide	extents,	then	only
the	x	positions	of	vertical	guides	and	the
y	positions	of	horizontal	guides
contribute	to	the	rectangle	that	is

returned.	If	any	vertical	guides	are
reported	on,	an	infinite	y	extent	is
returned.	If	any	horizontal	guides	are
reported	on,	an	infinite	x	extent	is
returned.	If	any	rotated	guides	are
reported	on,	infinite	x	and	y	extents	are
returned.

visBBoxDrawingCoords &H2000 Return	numbers	in	the	drawing
coordinate	system	of	the	page	or	master
whose	shapes	are	being	considered.	By
default,	the	returned	numbers	are
drawing	units	in	the	local	coordinate
system	of	the	parent	of	the	considered
shapes.

visBBoxNoNonPrint &H4000 Ignore	the	extents	of	shapes	that	are
non-printing.	A	shape	is	non-printing	if
the	value	of	its	NonPrinting	cell	is	non-
zero	or	it	belongs	only	to	non-printing
layers.

The	extents	rectangle	is	determined	using	the	center	of	the	shape's	strokes;	it
does	not	take	into	account	the	width	of	the	strokes.	Nor	does	the	rectangle
include	any	area	covered	by	shadows	or	line	end	markers.	Visio	doesn't	expose	a
means	to	determine	a	shape's	"black	bits"	box,	that	is,	the	extents	box	adjusted	to
account	for	stroke	widths,	shadows,	and	line	ends.

A	shape	may	have	control	points	or	connection	points	that	lie	outside	any	of	the
bounding	rectangles	reported	by	the	shape.	You	can	determine	the	position	of
control	points	and	connection	points	by	querying	results	of	the	shape's	cells.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1321.htm

BringForward	method

					 					

Brings	the	shape	or	selected	shapes	forward	one	position	in	the	z-order.

Version	added

2.0

Syntax

object.BringForward
object Required.	An	expression	that	returns	the	Shape	or	Selection

object	to	bring	forward.

BringToFront	method

					 					

Brings	the	shape	or	selected	shapes	to	the	front	of	the	z-order.

Version	added

2.0

Syntax

object.BringToFront
object Required.	An	expression	that	returns	the	Shape	or	Selection

object	to	bring	to	the	front.

CenterDrawing	method

			 				

Centers	a	page's,	master's,	or	group's	shapes	with	respect	to	the	extent	of	the
page,	master,	or	group.

Version	added

4.0

Syntax

object.CenterDrawing
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	that	contains	the	shapes	to	center.

Remarks

Centering	shapes	does	not	change	their	position	relative	to	each	other.

See	also Example

ClearCustomMenus	method

				 					

Restores	the	built-in	Microsoft	Visio	menus.

Version	added

4.0

Syntax

object.ClearCustomMenus
object Required.	An	expression	that	returns	an	Application	or

Document	object	that	is	using	the	custom	menus.

Remarks

Calling	the	ClearCustomMenus	method	on	an	object	without	custom	menus
has	no	effect.

See	also

ClearCustomToolbars	method

				 					

Restores	the	built-in	Microsoft	Visio	toolbars.

Version	added

4.0

Syntax

object.ClearCustomToolbars
object Required.	An	expression	that	returns	an	Application	or

Document	object	that	is	using	the	custom	toolbars.

Remarks

Calling	the	ClearCustomToolbars	method	on	an	object	without	custom	toolbars
has	no	effect.

See	also

ClearGestureFormatSheet	method

				 				

Clears	local	formatting	in	a	document's	Gesture	Format	sheet.

Version	added

2000

Syntax

object.ClearGestureFormatSheet
object Required.	An	expression	that	returns	a	Document	object.

Remarks

Any	shapes	drawn	after	the	Gesture	Format	sheet	is	cleared	inherit	their	line,	fill,
and	text	formatting	from	the	document's	default	styles.

A	document's	Gesture	Format	sheet	also	gets	cleared	automatically	when	the
document	is	opened.

For	details	about	the	Gesture	Format	sheet,	see	the	GestureFormatSheet

Example

property.

Close	method

					 					

Closes	a	window,	document,	or	master.

Version	added

2.0

Syntax

object.Close
object Required.	An	expression	that	returns	the	Window,	Document,

or	Master	object	to	close.

Remarks

If	the	indicated	window	is	the	only	window	open	for	a	document	and	the
document	contains	unsaved	changes,	an	alert	appears	asking	if	you	want	to	save
the	document.	You	can	use	the	AlertResponse	property	to	prevent	the	alert	from
appearing.

If	you	close	a	docked	stencil	window,	only	that	window	is	closed.	However,	if

you	close	a	drawing	window	that	contains	docked	stencils,	the	docked	stencil
window	is	also	closed.

Use	the	Close	method	for	a	Master	object	after	opening	a	master	for	editing
using	the	Open	method.	The	Close	method	pushes	any	changes	made	to	the
master	while	it	was	open	to	instances	of	the	master.

Combine	method

				 				

Creates	a	new	shape	by	combining	selected	shapes.

Version	added

2.0

Syntax

object.Combine
object Required.	An	expression	that	returns	the	Selection	object	that

contains	the	shapes	to	combine.

Remarks

The	Combine	method	is	equivalent	to	clicking	the	Combine	command	on	the
Operations	submenu	on	the	Shape	menu	in	Visio.	The	produced	shape	will	be
the	topmost	shape	in	its	containing	shape	and	will	inherit	the	text	and	formatting
of	the	first	selected	shape.	The	original	shapes	are	deleted	and	no	shapes	are
selected	when	the	operation	is	complete.

Example

The	Combine	method	is	similar	to	the	Join	method	but	differs	in	the	following
ways:

The	Combine	method	produces	a	shape	with	one	Geometry	section	for	each
original	shape.	The	resulting	shape	will	have	holes	in	regions	where	the
original	shapes	overlapped.

The	Join	method	differs	from	Combine	in	that	it	will	coalesce	abutting	line	and
curve	segments	in	the	original	shapes	into	a	single	Geometry	section	in	the
resulting	shape.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

ConvertResult	method

					 					

Converts	a	string	or	number	into	an	equivalent	number	in	different	measurement
units.

Version	added

4.5

Syntax

retVal	=	object.ConvertResult(StringOrNumber,	unitsIn,	
retVal Double.	The	result	of	the	conversion.
object Required.	An	expression	that	returns	an	Application	object.
StringOrNumber Required	Variant.	String	or	number	to	be	converted;	can	be	a	string,

floating	point	number,	or	integer.
unitsIn Required	Variant.	Measurement	units	to	attribute	to	StringOrNumber
unitsOut Required	Variant.	Measurement	units	to	express	the	result	in.

Remarks

If	passed	as	a	string,	StringOrNumber	might	be	the	formula	or	prospective
formula	of	a	cell	or	the	result	or	prospective	result	of	a	cell	expressed	as	a	string.
The	ConvertResult	method	evaluates	the	string	and	converts	the	result	into	the
units	designated	by	unitsOut.	The	ConvertResult	method	returns	an	error	if	the
string	contains	any	cell	references.

Possible	values	for	StringOrNumber	include:

1.7

3

"2.5"

"4.1	cm"

"12	ft	-	17	in	+	(12	cm	/	SQRT(7))"

The	unitsIn	and	unitsOut	arguments	can	be	strings	such	as	"inches",	"inch",
"in.",	or	"i".	Strings	may	be	used	for	all	supported	Visio	units	such	as
centimeters,	meters,	miles,	and	so	on.	You	can	also	use	any	of	the	units	constants
declared	by	the	Visio	type	library	in	VisUnitCodes.	A	list	of	valid	units	is	also
listed	in	About	units	of	measure.

If	StringOrNumber	is	a	floating	point	number	or	integer,	unitsIn	declares	what
unit	of	measure	the	ConvertResult	method	should	construe	the	number	to	be.
Pass	""	to	indicate	internal	Visio	units.

If	StringOrNumber	is	a	string,	unitsIn	specifies	how	to	interpret	the	evaluated
result	and	is	only	used	if	the	result	is	a	scalar.	For	example,	the	expression	"4	*	5
cm"	evaluates	to	20	cm,	which	is	not	a	scalar	so	unitsIn	is	ignored.	The
expression	"4	*	5"	evaluates	to	20	which	is	a	scalar	and	is	interpreted	using	the
specified	unitsIn.

The	unitsOut	argument	specifies	in	what	units	the	returned	number	should	be
expressed.	If	you	want	the	results	expressed	in	the	same	units	as	the	evaluated
expression,	pass	"NOCAST"	or	visNoCast.

Examples	where	string	is	specified:

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

Debug.Print	application.ConvertResult("0.5	*	2",	"ft",	"ft")				>>>	1.0
Debug.Print	application.ConvertResult("0.5	*	2",	"ft",	"in")				>>>	12.0
Debug.Print	application.ConvertResult("1	cm",	"ft",	"in")				>>>	0.39
Debug.Print	application.ConvertResult("1	cm",	"ft",	"NOCAST")				>>>	1.0
Debug.Print	application.ConvertResult("1	cm",	"ft",	"")				>>>	0.39
Debug.Print	application.ConvertResult("1	cm",	"ft",	"bozo")				>>>	exception:	Bad	measurement	unit.

Examples	where	number	is	specified:

Debug.Print	application.ConvertResult(1,	"ft",	"ft")				>>>	1
Debug.Print	application.ConvertResult(1,	"ft",	"in")				>>>	12
Debug.Print	application.ConvertResult(1.0,	"in",	"ft")				>>>	8.33333333333333E-02	
Debug.Print	application.ConvertResult(1.0,	visFeet,	"")				>>>	12
Debug.Print	application.ConvertResult(1,	"bozo",	"in")				>>>	exception:	Bad	measurement	unit.	

ConvertToGroup	method

				 				

Converts	a	selection	or	an	object	from	another	application	(a	linked	or	embedded
object)	to	a	group.

Version	added

2.0

Syntax

object.ConvertToGroup
object Required.	An	expression	that	returns	the	Shape	or	Selection

object	to	convert.

Remarks

If	the	object	to	convert	is	a	metafile	it	will	be	converted	into	basic	shapes.

Example

Copy	method

					 					

Copies	a	text	range	or	hyperlink	to	the	Clipboard.

Version	added

2.0

Syntax

object.Copy
object Required.	An	expression	that	returns	a	Characters	or

Hyperlink	object.

Remarks

To	make	a	copy	without	using	the	Clipboard,	use	the	Duplicate	method.

Copy	method	(Selection	object)

				 				

Copies	a	selection	to	the	Clipboard.

Version	added

2002

Syntax

object.Copy	[flags]
object Required.	An	expression	that	returns	a	Selection	object.
flags Optional	Variant.	Determines	how	shapes	are	translated	during

the	copy	operation.

Remarks

Possible	values	for	flags	are	declared	by	the	Visio	type	library	in
VisCutCopyPasteCodes,	and	are	described	in	the	following	table.

Flag Value Description
visCopyPasteNormal &H0 Default.	Shapes	are	copied	to	the

Example

center	of	the	document.
visCopyPasteNoTranslate &H1 Shapes	are	copied	to	their	original

coordinate	locations.

Setting	flag	to	visCopyPasteNormal	is	the	equivalent	of	the	behavior	in	the	user
interface.	You	should	use	the	visCopyPasteNormal	and
visCopyPasteNoTranslate	flags	consistently.	For	example,	if	you	copy	using
visCopyPasteNoTranslate,	you	should	also	paste	using	that	value	as	it	is	the
only	way	to	ensure	that	shapes	are	pasted	to	their	original	coordinate	location.

To	make	a	copy	without	using	the	Clipboard,	use	the	Duplicate	method.

Copy	method	(Shape	object)

				 				

Copies	a	shape	to	the	Clipboard.

Version	added

2002

Syntax

object.Copy	[flags]
object Required.	An	expression	that	returns	a	Shape	object.
flags Optional	Variant.	Determines	how	shapes	are	translated	during

the	copy	operation.

Remarks

Possible	values	for	flags	are	declared	by	the	Visio	type	library	in
VisCutCopyPasteCodes,	and	are	described	in	the	following	table.

Flag Value Description
visCopyPasteNormal &H0 Default.	Shapes	are	copied	to	the

Example

center	of	the	document.
visCopyPasteNoTranslate &H1 Shapes	are	copied	to	their	original

coordinate	locations.

Setting	flag	to	visCopyPasteNormal	is	the	equivalent	of	the	behavior	in	the	user
interface.	You	should	use	the	visCopyPasteNormal	and
visCopyPasteNoTranslate	flags	consistently.	For	example,	if	you	copy	using
visCopyPasteNoTranslate,	you	should	also	paste	using	that	value	as	it	is	the
only	way	to	ensure	that	shapes	are	pasted	to	their	original	coordinate	location.

To	make	a	copy	without	using	the	Clipboard,	use	the	Duplicate	method.

CopyPreviewPicture	method

				 				

Copies	the	preview	picture	from	another	document	into	the	current	document.

Version	added

2002

Syntax

object.CopyPreviewPicture	pSourceDoc
object Required.	An	expression	that	returns	a	Document	object.
pSourceDoc Required.	The	Document	object	whose	preview	picture	you

want	to	copy	into	this	document.

Example

CreateShortcut	method

				 				

Creates	a	shortcut	for	a	master.

Version	added

2000

Syntax

objRet	=	object.Create
objRet The	new	MasterShortcut	object.
object Required.	An	expression	that	returns	a	Master	object.

Remarks

The	new	master	shortcut	is	created	in	the	same	document	as	the	target	master
and	is	added	to	the	document's	MasterShortcuts	collection.	The	document	must
therefore	be	editable	for	this	method	to	succeed.

The	new	shortcut's	name	is	"Shortcut	to	X",	where	"X"	is	the	name	of	the	target
master.	The	shortcut's	TargetDocumentName	and	TargetMasterName

Example

properties	identify	the	target	master.	So	once	a	shortcut	has	been	created,	it	can
be	moved	or	copied	into	other	documents.

You	cannot	create	a	shortcut	to	a	master	in	an	unsaved	stencil.	If	you	try	to	do
so,	the	CreateShortcut	method	returns	an	error.

CreateURL	method

					 					

Returns	a	fully	qualified	and	optionally	canonicalized	representation	of	the
hyperlink's	absolute	address.

Version	added

5.0

Syntax

strRet	=	object.CreateURL(intExpression)
strRet String.	A	fully	qualified	URL	representation	of	a	hyperlink.
object Required.	An	expression	that	returns	a	Hyperlink	object.
intExpression Required	Integer.	True	(non-zero)	if	canonical	form;

otherwise,	False	(0).

Remarks

The	CreateURL	method	of	the	Hyperlink	object	can	be	used	to	resolve	relative
URLs	against	a	hyperlink's	base	address.

When	you	use	the	canonical	form,	the	CreateURL	method	applies	URL
canonicalization	rules	to	the	hyperlink.	Only	spaces	are	URL	encoded	during
canonicalization.	Port	80	is	assumed	for	HTTP	URLs	and	is	removed	during
canonicalization.	The	URL	"http://www.microsoft.com:80/"	is	returned	as
"http://www.microsoft.com/",	whereas	http://www.microsoft.com:1000/"	is
unchanged.

Example

Here	are	some	examples	of	results	of	the	CreateURL	method:

Address	=	"http://www.microsoft.com/"
CreateURL(False)	returns	"http://www.microsoft.com/"
				
Address	=	"C:\My	Documents\Spreadsheet.XLS"
CreateURL(False)	returns	"file://C:\My	Documents\Spreadsheet.XLS"
CreateURL(True)	returns	"file://C:\My%20Documents\Spreadsheet.XLS"

				

Relative	path	example:

Assume	:	Document.HyperlinkBase	=	"http://www.microsoft.com/bar/"
Address	=	"../file.htm"
CreateURL(False)	returns	"http://www.microsoft.com/file.htm"	
				

Cut	method

					 					

Deletes	an	object	or	selection	and	places	it	on	the	Clipboard.

Version	added

2002

Syntax

object.Cut	[flags]
object Required.	An	expression	that	returns	a	Selection	or	Shape

object.
flags Optional	Variant.	Determines	how	shapes	are	translated	during

the	cut	operation.

Remarks

Possible	values	for	flags	are	declared	by	the	Visio	type	library	in
VisCutCopyPasteCodes,	and	are	described	in	the	following	table.

Flag Value Description

visCopyPasteNormal &H0 Default.	Shapes	are	copied	to	the
center	of	the	document.

visCopyPasteNoTranslate &H1 Shapes	are	copied	to	their	original
coordinate	locations.

Setting	flags	to	visCopyPasteNormal	is	the	equivalent	of	the	behavior	in	the
user	interface.	You	should	use	the	visCopyPasteNormal	and
visCopyPasteNoTranslate	flags	consistently.	For	example,	if	you	copy	using
visCopyPasteNoTranslate,	you	should	also	paste	using	that	value	as	it	is	the
only	way	to	ensure	that	shapes	are	pasted	to	their	original	coordinate	location.

Cut	method	(Characters	object)

				 				

Deletes	a	text	range	and	places	it	on	the	Clipboard.

Version	added

2.0

Syntax

object.Cut
object Required.	An	expression	that	returns	a	Characters	object.

Remarks

When	used	with	a	Characters	object,	the	Cut	method	places	the	text	range
represented	by	that	object	onto	the	Clipboard.

Example

Delete	method

					 					

Deletes	an	object	or	selection.

Version	added

2.0

Syntax

object.Delete
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Delete	method	(Layer	object)

			 				

Deletes	a	Layer	object.	Can	also	delete	shapes	assigned	to	the	deleted	layer.

Version	added

2.0

Syntax

object.Delete	fDeleteShapes
object Required.	An	expression	that	returns	the	Layer	object	to	delete.
fDeleteShapes Required	Integer.	1	(True)	to	delete	shapes	assigned	to	the

layer;	otherwise,	0	(False).

Remarks

When	fDeleteShapes	is	non-zero,	shapes	assigned	only	to	the	deleted	layer	are
deleted.	Otherwise,	the	shapes	are	simply	no	longer	assigned	to	that	layer.

See	also Example

Delete	method	(Page	object)

			 				

Deletes	a	Page	object.	Can	also	renumber	remaining	pages.

Version	added

2.0

Syntax

object.Delete	fRenumberPages
object Required.	An	expression	that	returns	the	Page	object	to	delete.
fRenumberPages Required	Integer.	1	(True)	to	renumber	remaining	pages;

otherwise,	0	(False).

Remarks

When	fRenumberPages	is	non-zero,	the	remaining	pages'	default	page	names	are
renumbered	after	the	page	is	deleted,	otherwise,	the	pages	retain	their	names.

See	also Example

DeleteRow	method

					 					

Deletes	a	row	from	a	section	in	a	ShapeSheet	spreadsheet.

Version	added

2.0

Syntax

object.DeleteRow	section,	row
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	index	of	the	section	that	contains	the

row.
row Required	Integer.	The	index	of	the	row	to	delete.

Remarks

To	remove	one	row	at	a	time	from	a	ShapeSheet	section,	use	the	DeleteRow
method.	If	the	section	has	indexed	rows,	the	rows	following	the	deleted	row	shift
position.	If	the	row	does	not	exist,	nothing	is	deleted.

You	should	not	delete	rows	that	define	fundamental	characteristics	of	a	shape,
such	as	the	1-D	Endpoints	row	(visRowXForm1D)	or	the	component	row
(visRowComponent)	or	the	MoveTo	row	(visRowVertex	+	0)	in	a	Geometry
section.	You	cannot	delete	rows	from	sections	represented	by
visSectionCharacter,	visSectionParagraph,	and	visSectionTab.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

DeleteSection	method

					 					

Deletes	a	ShapeSheet	section.

Version	added

2.0

Syntax

object.DeleteSection	section
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	index	of	the	section	to	delete.

Remarks

When	you	delete	a	ShapeSheet	section,	all	rows	in	the	section	are	automatically
deleted.	If	the	specified	section	does	not	exist,	nothing	is	deleted	and	no	error	is
generated.

If	a	Geometry	section	is	deleted,	any	subsequent	Geometry	sections	shift	up
because	they	are	indexed	and	no	gaps	can	exist	in	an	indexed	range.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

You	can	delete	any	section	except	the	section	represented	by	visSectionObject
(although	you	can	delete	rows	within	that	section).

For	a	list	of	section	index	values,	see	the	AddSection	method	or	view	the	Visio
type	library	for	the	members	of	visSectionIndices.

DeleteSolutionXMLElement	method

				 				

Deletes	the	named	SolutionXML	element.

Version	added

2002

Syntax

object.DeleteSolutionXMLElement	elementName
object Required.	An	expression	that	returns	a	Document	object.
elementName Required	String.	Name	of	the	SolutionXML	element	to	delete.

Remarks

The	elementName	argument	is	case-sensitive	and	should	match	the	name	passed
as	an	argument	to	the	SolutionXMLElement	property.

If	Microsoft	Visio	2002	files	are	saved	in	Visio	5.0	format,	SolutionXML
elements	are	deleted.	If	version	2002	files	are	saved	in	Visio	2000	format,
SolutionXML	elements	are	saved	but	the	data	is	inaccessible.

Example

DeselectAll	method

				 				

Deselects	all	shapes	in	a	window	or	selection.

Version	added

2.0

Syntax

object.DeselectAll
object Required.	An	expression	that	returns	a	Window	or	Selection

object.

Example

DockedStencils	method

					 					

Returns	the	names	of	all	stencils	docked	in	a	Microsoft	Visio	drawing	window.

Version	added

4.5

Syntax

object.DockedStencils	nameArray
object Required.	An	expression	that	returns	a	Window	object.
nameArray Required	String.	Array	that	receives	the	names	of	stencils

docked	in	a	window.

Remarks

The	DockedStencils	method	returns	an	array	of	strings—the	names	of	the
stencils	shown	in	the	docked	stencil	panes	of	a	window.	When	the	window	is	a
drawing	window,	the	number	of	docked	stencil	panes	(n)	is	equal	to	or	greater
than	zero,	and	n	is	zero	when	the	window	isn't	a	drawing	window.

If	the	DockedStencils	method	succeeds,	nameArray	returns	a	one-dimensional
array	of	n	strings	indexed	from	zero	(0)	to	n	-	1.	The	nameArray	argument	is	an
out	argument	that	is	allocated	by	the	DockedStencils	method,	ownership	of
which	is	passed	back	to	the	caller.	The	caller	should	eventually	perform	the
SafeArrayDestroy	procedure	on	the	returned	array.	Note	that	the
SafeArrayDestroy	procedure	has	the	side	effect	of	freeing	the	strings	referenced
by	the	array's	entries.	The	DockedStencils	method	fails	if	nameArray	is	null.
(Microsoft	Visual	Basic	and	Visual	Basic	for	Applications	take	care	of
destroying	the	array	for	you.)

If	si	is	the	string	returned	by	nameArray(i),	then	Documents.Item(si)	succeeds
and	returns	a	Document	object	representing	the	stencil.

DoCmd	method

				 					

Performs	the	command	with	the	indicated	command	ID.

Version	added

4.0

Syntax

object.DoCmd	(intExpression)
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	The	command	to	perform.

Remarks

Constants	for	Visio	command	IDs	are	declared	by	the	Visio	type	library	in
VisUICmds	and	are	prefixed	with	visCmd.

The	DoCmd	method	works	best	with	commands	that	display	dialog	boxes.

See	also

DrawBezier	method

					 					

Creates	a	new	shape	whose	path	is	defined	by	the	supplied	sequence	of	Bezier
control	points.

Version	added

4.1

Syntax

objRet	=	object.DrawBezier(xyArray,	degree,	flags)
objRet The	new	Shape	object.
object Required.	The	page,	master,	or	group	in	which	to	draw	the

shape.
xyArray Required	Double.	An	array	of	alternating	x	and	y	values	that

define	the	Bezier	control	points	for	the	new	shape.
degree Required	Integer.	The	degree	of	the	Bezier	curve.
flags Required	Integer.	Flags	that	influence	how	the	shape	is	drawn.

Remarks

The	xyArray	and	degree	parameters	must	meet	the	following	conditions:

1	<=	degree	<=	9

The	number	of	points	must	be	k	*	degree	+	1,	where	k	is	a	positive	integer.	If	the
first	point	is	called	p0,	then	for	any	integer	m	between	1	and	k,	p(m	*	degree)	is
assumed	to	be	the	last	control	point	of	a	Bezier	segment,	as	well	as	the	first
control	point	of	the	next.

The	result	is	a	composite	curve	that	consists	of	k	Bezier	segments.	The	input
points	from	xyArray	define	the	curve's	control	points.	If	you	want	a	smooth
curve,	make	sure	the	points	p(n	-	1),	pn	and	p(n	+	1)	are	co-linear	whenever	n	=
m	*	degree	with	an	integer	m.	The	composite	Bezier	curve	is	represented	in	the
application	as	a	B-spline	with	integer	knots	of	multiplicity	=	degree.

The	control	points	should	be	in	internal	drawing	units	(inches)	with	respect	to
the	coordinate	space	of	the	page,	master,	or	group	where	the	shape	is	being
dropped.	The	passed	array	should	be	a	type	SAFEARRAY	of	8-byte	floating
point	values	passed	by	reference	(VT_R8|VT_ARRAY|VT_BYREF).	This	is
how	Microsoft	Visual	Basic	passes	arrays	to	Automation	objects.

The	flags	argument	is	a	bit	mask	that	specifies	options	for	drawing	the	new
shape.	Its	value	should	be	zero	(0)	or	visSpline1D	(8).

If	flags	is	visSpline1D	and	the	first	and	last	points	in	xyArray	don't	coincide,	the
DrawBezier	method	produces	a	shape	with	one-dimensional	(1-D)	behavior;
otherwise,	it	produces	a	shape	with	two-dimensional	(2-D)	behavior.

If	the	first	and	last	points	in	xyArray	do	coincide,	the	DrawBezier	method
produces	a	filled	shape.

DrawLine	method

					 					

Adds	a	line	to	the	Shapes	collection	of	a	page,	master,	or	group.

Version	added

2.0

Syntax

objRet	=	object.DrawLine	(x1,	y1,	x2,	y2)
objRet A	Shape	object	that	represents	the	new	line.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	on	which	to	draw	the	line.
x1 Required	Double.	The	x-coordinate	of	the	line's	begin	point.
y1 Required	Double.	The	y-coordinate	of	the	line's	begin	point.
x2 Required	Double.	The	x-coordinate	of	the	line's	end	point.
y2 Required	Double.	The	y-coordinate	of	the	line's	end	point.

Remarks

Using	the	DrawLine	method	is	equivalent	to	using	the	Line	tool	in	Visio.	The
arguments	are	in	internal	drawing	units	with	respect	to	the	coordinate	space	of
the	page,	master,	or	group	where	the	line	is	being	placed.

DrawNURBS	Method

				 				

Creates	a	new	shape	whose	path	consists	of	a	single	NURBS	(nonuniform
rational	B-spline)	segment.

Version	added

2000

Syntax

objRet	=	object.DrawNURBS(degree,	xyArray,	knots,	flags
objRet An	object	that	represents	the	new	NURBS	curve.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

which	to	draw	the	shape.
degree Required	Integer.	The	spline's	degree;	an	integer	between	1	and	25.
xyArray Required	Double.	An	array	of	alternating	x	and	y	values	that	define	the

control	points	coordinates;	use	internal	drawing	units	(inches).
knots Required	Double.	An	array	of	knots.
flags Required	Integer.	Flags	that	influence	how	the	shape	is	drawn.
weights Optional	Variant.	An	array	of	weights.

Example

Remarks

The	DrawNURBS	method	creates	a	new	shape	whose	path	consists	of	a	single
NURBS	segment	as	specified	by	the	arguments.

The	control	points	should	be	in	internal	drawing	units	(inches)	with	respect	to
the	coordinate	space	of	the	page,	master,	or	group	where	the	shape	is	being
dropped.	The	xyArray,	knots,	and	weights	arrays	should	be	of	type
SAFEARRAY	of	8-byte	floating	point	values	passed	by	reference
(VT_R8|VT_ARRAY|VT_BYREF).	This	is	how	Microsoft	Visual	Basic	passes
arrays	to	Automation	objects.

The	knots	argument	is	unit-less.	The	sequence	of	knots	should	be	non-
decreasing.	In	other	words,	knots(i	+	1)	<	knots(i)	is	not	acceptable.	knots(i	+	1)
=	knots(i)	is	permitted,	and	then	the	value	is	repeated,	but	the	following
restrictions	apply:

The	first	knot	may	not	be	repeated	more	than	degree	+	1	times.

The	last	knot	may	not	be	repeated.

Any	knot	between	the	first	and	last	may	not	be	repeated	more	than	degree	times.

If	the	first	knot	is	repeated	less	than	degree+1	times,	the	spline	is	periodic.

The	list	of	weights	is	optional.	Its	absence	signals	that	the	spline	is	non-rational.
Weights	are	unit-less.

The	following	rules	apply	to	the	sizes	of	the	lists.	For	a	spline	with	n	control
points:

If	the	spline	is	periodic,	then	n	>	2.	Otherwise,	n	>	degree.

The	size	of	xyArray	is	2n.

The	size	of	the	weights	array	is	n	(if	present).

The	size	of	the	knots	array	is	n	+	1.

The	conventional	non-periodic	spline	requires	n	+	degree	+	1	knots,	but	the
application	implies	the	repeated	knots	at	the	end.	For	example,	the	degree	2	knot
list	(0,0,0,2,5,8)	is	interpreted	in	the	application	as	the	conventional	knot

sequence	(0,0,0,2,5,8,8,8).

The	flags	parameter	is	a	bit	mask	that	specifies	options	for	drawing	the	new
shape.	Its	value	should	be	either	zero	(0)	or	visSpline1D	(8).	If	flags	is
visSpline1D	and	if	the	first	and	last	points	in	xyArray	don't	coincide,	the
DrawNURBS	method	produces	a	shape	with	one-dimensional	(1-D)	behavior;
otherwise,	it	produces	a	shape	with	two-dimensional	(2-D)	behavior.

If	the	first	and	last	points	in	xyArray	do	coincide,	the	DrawNURBS	method
produces	a	filled	shape.

DrawOval	method

					 					

Adds	an	ellipse	to	the	Shapes	collection	of	a	page,	master,	or	group.

Version	added

2.0

Syntax

retVal	=	object.DrawOval	(x1,	y1,	x2,	y2)
retVal A	Shape	object	that	represents	the	new	ellipse.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	on	which	to	draw	the	ellipse.
x1 Required	Double.	The	left	side	of	the	ellipse's	width-height

box.
y1 Required	Double.	The	top	of	the	ellipse's	width-height	box.
x2 Required	Double.	The	right	side	of	the	ellipse's	width-height

box.
y2 Required	Double.	The	bottom	of	the	ellipse's	width-height	box.

Remarks

Using	the	DrawOval	method	is	equivalent	to	using	the	Ellipse	tool	in	the
application.	The	arguments	are	in	internal	drawing	units	with	respect	to	the
coordinate	space	of	the	page,	master,	or	group	where	the	ellipse	is	being	placed.

DrawPolyline	method

					 					

Creates	a	new	shape	whose	path	is	a	polyline	along	a	given	set	of	points.

Version	added

2000

Syntax

objRet	=	object.DrawPolyline(xyArray,	flags)
objRet A	Shape	object	that	represents	the	new	polyline.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	in	which	to	draw	the	shape.
xyArray Required	Double.	An	array	of	alternating	x	and	y	values	that

defines	points	in	the	new	shape's	path.
flags Required	Integer.	Flags	that	influence	how	the	shape	is	drawn.

Remarks

The	DrawPolyline	method	creates	a	new	shape	whose	path	consists	of	a

sequence	of	line	segments	and	whose	end	points	match	the	points	specified	in
xyArray.	Calling	the	DrawPolyline	method	is	equivalent	to	calling	the
DrawSpline	method	with	a	tolerance	of	zero	(0)	and	a	flag	of	visSplineAbrupt.

The	control	points	should	be	in	internal	drawing	units	(inches)	with	respect	to
the	coordinate	space	of	the	page,	master,	or	group	where	the	shape	is	being
dropped.	The	passed	array	should	be	a	type	SAFEARRAY	of	8-byte	floating
point	values	passed	by	reference	(VT_R8|VT_ARRAY|VT_BYREF).	This	is
how	Microsoft	Visual	Basic	passes	arrays	to	Automation	objects.

The	flags	argument	is	a	bit	mask	that	specifies	options	for	drawing	the	new
shape.	Its	value	can	include	visPolyline1D	(8)	or	visPolyarcs	(256).	If	flags
includes

visPolyline1D	and	if	the	first	and	last	points	in	xyArray	don't	coincide,	the
DrawPolyline	method	produces	a	shape	with	one-dimensional	(1-D)	behavior;
otherwise,	it	produces	a	shape	with	two-dimensional	(2-D)	behavior.

visPolyarcs,	then	Visio	will	produce	a	sequence	of	arcs	rather	than	a	sequence	of
line	segments;	xyArray	should	specify	the	initial	x,y	point	of	the	sequence
followed	by	x,y	bow	triples.	Visio	will	produce	a	shape	with	EllipticalArcTo
rows	where	the	bow	of	the	arc	matches	the	specified	value.

If	the	first	and	last	points	in	xyArray	coincide,	the	DrawPolyline	method
produces	a	filled	shape.

DrawRectangle	method

					 					

Adds	a	rectangle	to	the	Shapes	collection	of	a	page,	master,	or	group.

Version	added

2.0

Syntax

objRet	=	object.DrawRectangle	(x1,	y1,	x2,	y2)
objRet A	Shape	object	that	represents	the	new	rectangle.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	on	which	to	draw	the	rectangle.
x1 Required	Double.	The	left	side	of	the	rectangle's	width-height

box.
y1 Required	Double.	The	top	of	the	rectangle's	width-height	box.
x2 Required	Double.	The	right	side	of	the	rectangle's	width-height

box.
y2 Required	Double.	The	bottom	of	the	rectangle's	width-height

box.

Remarks

Using	the	DrawRectangle	method	is	equivalent	to	using	the	Rectangle	tool	in
the	application.	The	arguments	are	in	internal	drawing	units	with	respect	to	the
coordinate	space	of	the	page,	master,	or	group	where	the	rectangle	is	being
placed.

DrawRegion	method

			 				

Draws	a	new	shape	that	represents	the	region	containing	a	given	point.

Version	added

2000

Syntax

objRet	=	object.DrawRegion(tolerance,	flags,	[x],	[y],	[ResultsMaster
objRet A	Shape	object.
object Required.	An	expression	that	returns	a	Selection	object.
tolerance Required	Double.	Error	tolerance	when	determining	the	coincidence	of	points.

A	distance	expressed	in	internal	units	in	the	coordinate	space	of	the	
object's	containing	shape;	the	maximum	gap	between	paths	that	is	tolerated
when	constructing	the	boundaries	of	a	region.

flags Required	Integer.	A	constant	or	integer	that	specifies	how	to	draw	the	region.
x Optional	Variant.	X-coordinate	in	internal	units	in	the	coordinate	space	of	the

Selection	object.
y Optional	Variant.	Y-coordinate	in	internal	units	in	the	coordinate	space	of	the

Selection	object.
ResultsMaster Optional	Variant.	The	Master	object	which	the	new	Shape	object	should	be	an

instance	of.

Remarks

See	also Example

The	DrawRegion	method	creates	a	new	Shape	object	from	pieces	of	the	paths
in	the	Selection	object.

If	both	x	and	y	are	specified,	the	resulting	shape	is	the	smallest	region	that
contains	the	point	(x,y).

In	the	absence	of	either	x	or	y,	or	if	the	point	(x,y)	is	not	contained	in	any	region
enclosed	by	the	paths	of	the	selected	shapes,	the	result	is	the	union	of	all	the
shapes	that	would	have	been	created	using	the	Fragment	operation.

If	no	closed	region	is	defined	by	the	selected	shapes,	then	the	DrawRegion
method	returns	Nothing	and	raises	no	exception.

The	flags	argument	can	be	one	or	a	combination	of	the	following	constants
declared	by	the	Visio	type	library	in	VisDrawRegionFlags.

Name Value Description
visDrawRegionDeleteInput &H4 Delete	items	in	selection.
visDrawRegionIncludeHidden &H10 Include	hidden	geometry.
visDrawRegionIgnoreVisible &H20 Exclude	visible	geometry.

If	the	DrawRegion	method	is	passed	a	ResultsMaster	of	type	VT_EMPTY	or
VT_ERROR	(which	is	how	VBA	passes	an	unspecified	optional	argument),	the
new	shape	is	not	an	instance	of	a	master	and	the	fill,	line,	and	text	styles	of	the
new	region	are	set	to	the	document's	default	styles.

If	the	DrawRegion	method	is	passed	a	reference	to	a	Master	object	in
ResultsMaster	(type	VT_UNKNOWN	or	VT_DISPATCH)	,	then	the
DrawRegion	method	instances	that	Master	object	and	adds	geometry	computed
given	the	Selection	object.

The	new	Shape	object	has	no	text	other	than	text	already	in	ResultsMaster.

DrawSpline	method

					 					

Creates	a	new	shape	whose	path	follows	a	given	sequence	of	points.

Version	added

4.1

Syntax

objRet	=	object.DrawSpline(xyArray,	tolerance,	flags)
objRet A	Shape	object	that	represents	the	new	spline.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	in	which	to	draw	the	new	shape.
xyArray Required	Double.	An	array	of	alternating	x	and	y	values	that

define	points	in	the	new	shape's	path.
tolerance Required	Double.	How	closely	the	path	of	the	new	shape	must

approximate	the	given	points.
flags Required	Integer.	Flags	that	influence	how	the	shape	is	drawn.

Remarks

The	DrawSpline	method	creates	a	new	shape	whose	path	falls	within	the	given
tolerance	of	the	given	array	of	points.	To	fit	the	given	points	exactly,	specify	a
tolerance	of	zero	(0).	Typically,	the	DrawSpline	method	fits	spline	segments
through	the	points,	but	it	sometimes	produces	line	or	circular	arc	segments	in	the
new	shape.

The	control	points	and	tolerance	are	in	internal	drawing	units	(inches)	with
respect	to	the	coordinate	space	of	the	page,	master,	or	group	where	the	shape	is
being	dropped.	The	passed	array	should	be	a	type	SAFEARRAY	of	8-byte
floating	point	values	passed	by	reference	(VT_R8|VT_ARRAY|VT_BYREF).
This	is	how	Microsoft	Visual	Basic	passes	arrays	to	Automation	objects.

The	error	from	the	points	to	the	path	of	the	resulting	shape	is	roughly	within
tolerance.	When	the	number	of	points	is	large,	the	actual	error	may	sometimes
exceed	the	prescribed	tolerance.

The	flags	argument	is	a	bit	mask	that	specifies	options	for	drawing	the	new
shape.	Its	value	should	be	a	combination	of	zero	or	more	of	the	following	values.

Constant Value
visSplinePeriodic 1(&H1)
visSplineDoCircles 2(&H2)
visSplineAbrupt 4(&H4)
visSpline1D 8(&H8)

If	flags	includes	visSplinePeriodic	and	the	following	conditions	are	met,	the
application	attempts	to	draw	a	periodic	spline.	Otherwise,	Visio	draws	a	non-
periodic	spline:

The	last	point	must	be	a	repetition	of	the	first	one.

If	the	flag	visSplineAbrupt	is	included	as	well,	the	entire	closed	path	outlined
by	the	points	must	be	free	of	abrupt	changes	of	direction	and	curvature.

If	flags	includes	visSplineDoCircles,	Visio	recognizes	circular	segments	in	the
given	array	of	points	and	generates	circular	arcs	instead	of	spline	rows	for	those
segments.

If	flags	includes	visSplineAbrupt,	Visio	breaks	the	spline	whenever	it	detects	an

abrupt	change	of	direction	or	curvature	in	the	point's	trail.	An	abrupt	change	of
direction	is	defined	by	three	consecutive	points	A,	B,	C	in	the	list,	for	which	the
distance	between	B	and	the	line	segment	AC	is	more	than	twice	the	tolerance.
The	application	also	considers	point	B	to	be	an	abrupt	change	if	one	of	the
segments	AB	or	BC	is	more	than	twice	as	long	as	the	other.	At	a	point	where	an
abrupt	change	is	detected,	the	application	ends	the	current	piece	(line,	arc,	or
spline)	and	starts	a	fresh	one.

If	flags	includes	visSpline1D	and	the	first	and	last	points	in	xyArray	don't
coincide,	the	DrawSpline	method	produces	a	shape	with	one-dimensional	(1-D)
behavior,	otherwise,	it	produces	a	shape	with	two-dimensional	(2-D)	behavior.

If	the	first	and	last	points	in	xyArray	do	coincide,	the	DrawSpline	method
produces	a	filled	shape.

Drop	method

					 					

Creates	a	new	Shape	or	Master	object	by	dropping	an	object	onto	a	receiving
object	such	as	a	stencil,	drawing	page,	or	group.

Version	added

2.0

Syntax

objRet	=	object.Drop(dropObject,	x,	y)
objRet The	Master	or	Shape	object	created	by	dropping	dropObject.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.	The	object	to	receive	dropObject.
dropObject Required.	The	object	to	drop.	While	this	is	typically	a	Visio

object	such	as	a	Master,	Shape,	or	Selection	object;	it	can	be
any	OLE	object	that	provides	an	IDataObject	interface.

x Required	Integer.	The	x-coordinate	at	which	to	place	the	center
of	the	shape's	width	or	PinX.

y Required	Integer.	The	y-coordinate	at	which	to	place	the	center

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm

of	the	shape's	height	or	PinY.

Remarks

Using	the	Drop	method	is	similar	to	dragging	and	dropping	a	shape	with	the
mouse.	The	object	dropped	(dropObject)	can	be	a	master	or	a	shape	on	the
drawing	page.

To	add	a	shape	to	a	group	or	on	a	drawing	page,	apply	the	Drop	method	to	a
Shape	or	Page	object,	respectively.	The	center	of	the	shape's	width-height	box	is
positioned	at	the	specified	coordinates,	and	a	Shape	object	that	represents	the
shape	that	is	created	is	returned.	When	applying	this	method	to	a	Shape	object,
make	sure	that	the	Shape	object	represents	a	group.

If	dropObject	is	a	Master,	the	pin	of	the	master	is	dropped	at	the	specified
coordinates.	A	master's	pin	is	often,	but	not	necessarily,	at	its	center	of	rotation.

To	create	a	new	master	in	a	stencil,	apply	the	Drop	method	to	a	Document
object	that	represents	a	stencil	(the	stencil	must	be	opened	as	an	original	or	a
copy	rather	than	read-only).	In	this	case,	the	x	and	y	arguments	are	ignored,	and
the	new	master	that	is	created	is	returned.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm

DropMany[U]	method

					 					

Creates	one	or	more	new	Shape	objects	on	a	page,	in	a	master,	or	in	a	group.	It
returns	an	array	of	the	IDs	of	the	Shape	objects	it	produces.

Version	added

4.5

Syntax

intRet	=	object.DropMany(ObjectsToInstance,	xyArray,	IDArray
intRet Integer.	Number	of	entries	in	xyArray	that	processed	successfully.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

which	to	create	new	shapes.
ObjectsToInstance Required	Variant.	Identifies	masters	or	other	objects	from	which	to	make

shapes.
xyArray Required	Double.	An	array	of	alternating	x	and	y	values	specifying	the

positions	for	the	new	shapes.
IDArray Required	Integer.	An	array	that	returns	the	IDs	of	the	created	shapes.

Remarks

Using	the	DropMany	method	is	like	using	the	Page,	Master,	or	Shape	object's
Drop	method,	except	you	can	use	the	DropMany	method	to	create	many	new
Shape	objects	at	once,	rather	than	one	per	method	call.	The	DropMany	method
creates	new	Shape	objects	on	the	page,	in	the	master,	or	in	the	group	shape	to
which	it	is	applied	(this	shape	is	called	the	"target	object"	in	the	following
discussion).

ObjectsToInstance	should	be	a	one-dimensional	array	of	n	>=	1	variants.	Its
entries	identify	objects	from	which	you	want	to	make	new	Shape	objects.	An
entry	often	refers	to	a	Visio	application	Master	object.	It	might	also	refer	to	a
Visio	application	Shape	object,	Selection	object,	or	even	an	object	from	another
application.	The	application	doesn't	care	what	the	lower	and	upper	array	bounds
of	the	ObjectsToInstance	entries	are.	Call	these	vlb	and	vub,	respectively.

If	ObjectsToInstance(i)	is	an	unknown	or	dispatch	(in	Microsoft	Visual	Basic	for
Applications,	a	reference	to	a	selection,	shape,	master,	guide,	or	OLE	object),
then	the	object	it	is	referencing	is	instanced.	This	is	essentially	equivalent	to
calling	Drop(ObjectsToInstance(i),x,y).

If	ObjectsToInstance(i)	is	the	integer	j,	then	an	instance	of	the	Master	object	in
the	document	stencil	of	the	target	object's	document	whose	1-based	index	is	j	is
made.	The	EventDrop	cell	in	the	Events	section	of	the	new	shape	is	not
triggered.	Use	the	Drop	method	instead	if	you	want	the	EventDrop	cell	to
trigger.

If	ObjectsToInstance(i)	is	the	string	s	(or	a	reference	to	the	string	s),	then	an
instance	of	the	Master	object	with	name	s	in	the	document	stencil	of	the	target
object's	document	is	made;	s	can	equal	either	the	Master	object's	UniqueID	or
Name	property.	The	EventDrop	cell	in	the	Events	section	of	the	new	shape	is
not	triggered.	Use	the	Drop	method	instead	if	you	want	the	EventDrop	cell	to
trigger.

For	vlb	<	i	<=	vub,	if	ObjectsToInstance(i)	is	empty	(Nothing	or	uninitialized	in
Microsoft	Visual	Basic),	then	entry	i	will	cause	ObjectsToInstance(j)	to	be
instanced	again,	where	j	is	the	largest	value	<	i	such	that	ObjectsToInstance(j)
isn't	empty.	If	you	want	to	make	n	instances	of	the	same	thing,	only
ObjectsToInstance(vlb)	needs	to	be	provided.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1314.htm

The	xyArray	argument	should	be	a	one-dimensional	array	of	2m	doubles	with
lowerbound	xylb	and	upper	bound	xyub,	where	m	>=	n.	The	values	in	the	array
tell	the	DropMany	method	where	to	position	the	Shape	objects	it	produces.
ObjectsToInstance(vlb	+	(i	-	1))	is	dropped	at	(xy[(i	-	1)2	+	xylb],xy[(i	-	1)2	+
xylb	+	1])	for	1	<=	i	<=n.

Note	that	m	>	n	is	allowed.	For	n	<	i	<=	m,	the	i'th	thing	instanced	is	the	same
thing	as	the	n'th	thing	instanced.	Thus	to	make	m	>=	1	instances	of	the	same
thing,	you	can	pass	an	ObjectsToInstance	array	with	one	entry	and	an	m	entry
xyArray	array.

If	the	entity	being	instanced	is	a	master,	the	pin	of	the	new	Shape	object	is
positioned	at	the	given	xy.	Otherwise,	the	center	of	the	Shape	objects	is
positioned	at	the	given	xy.

The	value	intRet	returned	by	the	DropMany	method	is	the	number	of	xy	entries
in	xyArray	that	the	DropMany	method	successfully	processed.	If	all	entries
processed	successfully,	then	m	is	returned.	If	some	entries	are	successfully
processed	prior	to	an	error	occurring,	then	the	produced	Shape	objects	are	not
deleted	and	this	raises	an	exception	yet	still	returns	a	positive	intRet.

Presuming	all	m	xy	entries	process	correctly,	the	number	of	new	Shape	objects
produced	by	the	DropMany	method	is	usually	equal	to	m.	In	rare	cases	(for
example,	if	a	Selection	object	gets	instanced),	more	than	m	Shape	objects	may
be	produced.	The	caller	can	determine	the	number	of	produced	Shape	objects	by
comparing	the	number	of	shapes	in	the	target	object	before	and	after	the
DropMany	method	executes.	The	caller	can	assert	the	new	Shape	objects	are
those	with	the	highest	indices	in	the	target	object's	Shapes	collection.

If	the	DropMany	method	returns	zero	(0),	IDArray	returns	Null	(Nothing).
Otherwise,	it	returns	a	one-dimensional	array	of	m	integers	indexed	from	0	to	m
-	1.	IDArray	is	an	out	argument	that	is	allocated	by	the	DropMany	method	and
ownership	is	passed	to	the	program	that	called	the	DropMany	method.	The
caller	should	eventually	perform	the	SafeArrayDestroy	procedure	on	the
returned	array.	(Visual	Basic	and	Visual	Basic	for	Applications	take	care	of	this
for	you.)

If	IDArray	returns	non-Null	(not	Nothing),	then	IDArray(i	-	1),	1	<=	i	<=	intRet,
returns	the	ID	of	the	Shape	object	produced	by	the	i'th	xyArray	entry,	provided

the	i'th	xyArray	entry	produced	exactly	one	Shape	object.	If	the	i'th	xyArray
entry	produced	multiple	Shape	objects,	then	-1	is	returned	in	the	entry.	All
entries	i,	intRet	<=	i	<	m,	return	-1.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	DropMany	method	to	drop	more	than	one	shape	when	using
local	names	to	identify	the	shapes.	Use	the	DropManyU	method	to	drop	more
than	one	shape	when	using	universal	names	to	identify	the	shapes.

Duplicate	method

					 					

Duplicates	an	object	or	selection.

Version	added

2.0

Syntax

object.Duplicate
object Required.	An	expression	that	returns	a	Selection	or	Shape

object.

Remarks

The	Duplicate	method	duplicates	the	specified	object	or	selection	and	adds	a
copy	to	the	same	page	as	the	original.	Using	the	Duplicate	method	is	equivalent
to	clicking	Duplicate	on	the	Edit	menu.

When	used	with	a	Shape	object,	the	Duplicate	method	duplicates	the	shape.

When	used	with	a	Selection	object,	the	Duplicate	method	duplicates	the
selection.

EndUndoScope	method

					 					

Ends	or	cancels	a	transaction	with	a	unique	scope.

Version	added

2000

Syntax

object.EndUndoScope	(nScopeID,	bCommit)
object Required.	An	expression	that	returns	an	Application	object.
nScopeID Required	Long.	The	ID	of	the	scope	to	close.
bCommit Required	Boolean.	A	flag	indicating	that	the	changes	made

during	the	scope	should	be	accepted	(True)	or	canceled	(False).

Remarks

If	you	need	to	know	whether	events	you	receive	are	the	result	of	a	particular
operation	that	you	initiated,	use	the	BeginUndoScope	and	EndUndoScope
methods	to	wrap	your	operation.	In	your	event	handlers,	use	the	IsInScope
property	to	test	whether	the	scope	ID	returned	by	the	BeginUndoScope	method

is	part	of	the	current	context.	Make	sure	you	clear	the	scope	ID	you	stored	from
the	BeginUndoScope	property	when	you	receive	the	ExitScope	event	with	that
ID.

You	must	balance	calls	to	the	BeginUndoScope	method	with	calls	to	the
EndUndoScope	method.	If	you	call	the	BeginUndoScope	method,	you	should
call	the	EndUndoScope	method	as	soon	as	you	are	done	with	the	actions	that
constitute	your	scope.	Also,	while	actions	to	multiple	documents	should	be
robust	within	a	single	scope,	closing	a	document	may	have	the	side	effect	of
purging	the	undo	information	for	the	currently	open	scope	as	well	as	purging	the
undo	and	redo	stacks.	If	that	happens,	passing	bCommit	=	False	to
EndUndoScope	does	not	restore	the	undo	information.

You	can	also	use	the	BeginUndoScope	and	EndUndoScope	methods	to	add	an
action	defined	by	an	add-on	to	the	Visio	undo	stream.	This	is	useful	when	you
are	operating	from	modeless	scenarios	where	the	initiating	agent	is	part	of	an
add-on's	user	interface	or	a	modeless	programmatic	action.

Note	Most	Visio	actions	are	already	wrapped	in	internal	undo	scopes,	so	add-ons
running	within	the	application	do	not	need	to	call	this	method.

EnumDirectories	method

					 					

Returns	an	array	naming	the	folders	Microsoft	Visio	would	search	given	a	list	of
paths.

Version	added

4.5

Syntax

object.EnumDirectories	pathList,nameArray
object Required.	An	expression	that	returns	an	Application	object.
pathList Required	String.	A	string	of	full	or	partial	paths	separated	by

semicolons.
nameArray String.	Array	that	receives	the	enumerated	folder	names.

Remarks

Several	Visio	properties	such	as	AddonPaths	and	TemplatePaths	accept	and
receive	a	string	interpreted	to	be	a	list	of	path	(folder)	names	separated	by
semicolons.	Non-fully	qualified	names	in	the	list	are	appended	to	the	folder	that

contains	the	Visio	program	files	(appObj.Path).	When	the	application	looks	for
items	in	the	named	paths,	it	looks	in	the	folders	and	all	their	subfolders.

Suppose	d:\Add-ons	is	a	path	that	exists	and	e:\Add-ons	is	a	path	that	doesn't
exist.	If	the	Visio	executable	file	is	installed	in	c:\Visio,	and	AddonPaths	is
"Add-ons;d:\Add-ons",	the	application	looks	for	add-ons	in	c:\Visio\Add-ons,
d:\Add-ons,	and	any	of	their	subfolders.

The	purpose	of	the	EnumDirectories	method	is	to	accept	a	string	such	as	one
that	the	AddonPaths	property	might	produce	and	return	a	list	of	the	folders	that
the	application	enumerates	when	processing	such	a	string.

If	the	EnumDirectories	property	succeeds,	nameArray	returns	a	one-
dimensional	array	of	n	strings	indexed	from	0	to	n	-	1.	Each	string	is	the	fully
qualified	name	of	a	folder	that	exists.	The	list	names	those	folders	designated	in
the	path	list	that	exist	and	all	their	subfolders.

The	nameArray	argument	is	an	out	argument	that	is	allocated	by	the
EnumDirectories	method	and	ownership	is	passed	back	to	the	caller.	The	caller
should	eventually	perform	the	SafeArrayDestroy	procedure	on	the	returned
array.	(Visual	Basic	and	Visual	Basic	for	Applications	automatically	free	the
strings	referenced	by	the	array's	entries.)

ExecuteLine	method

				 				

Executes	a	line	of	Microsoft	Visual	Basic	code.

Version	added

4.5

Syntax

object.ExecuteLine	stringExpression
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	A	string	that	will	be	interpreted	as	Microsoft

Visual	Basic	for	Applications	(VBA)	code.

Remarks

The	VBA	project	of	the	Document	object	is	told	to	execute	the	supplied	string.
VBA	treats	the	string	as	it	would	treat	the	same	string	typed	into	its	Immediate
window.

The	ExecuteLine	method	creates	a	VBA	project	in	the	document	if	one	does	not

Example

exist.

Here	are	some	possibilities:

ThisDocument.ExecuteLine("SomeMacro")
				'Executes	the	macro	(argumentless	procedure)	named	SomeMacro
				'that	is	in	some	module	of	the	VBA	project	of	ThisDocument.
				
ThisDocument.ExecuteLine("SomeProc	1,	2,	3")
				'Executes	the	procedure	named	SomeProc	and	passes	it	3	arguments.
				
ThisDocument.ExecuteLine("Module1.SomeProc	1,	2,	3")
				'Same	as	previous	example,	but	procedure	name	qualified
				'with	module	name.	
				
ThisDocument.ExecuteLine("UserForm1.Show")
				'Shows	the	form	UserForm1.	
				
ThisDocument.ExecuteLine("Debug.Print	""some	string""")
				'Prints	"some	string"	to	VBA's	Immediate	window.	
				
ThisDocument.ExecuteLine("Debug.Print	Documents.Count")
				'Prints	number	of	open	documents	to	Immediate	window.
				
ThisDocument.ExecuteLine("ThisDocument.Save")
				'Tells	ThisDocument	to	save	itself.	

Export	method

				 				

Exports	an	object	from	Microsoft	Visio	to	a	file	format	such	as	.pcx,	.eps,	or
.htm.

Version	added

3.0

Syntax

object.Export	fileName
object Required.	An	expression	that	returns	a	Page,	Master,

Selection,	or	Shape	object	to	export.
fileName Required	String.	The	fully	qualified	path	and	name	of	the	file

to	receive	the	exported	object.

Remarks

The	file	extension	indicates	which	export	filter	to	use.	If	the	filter	is	not	installed,
the	Export	method	returns	an	error.	The	Export	method	uses	the	default
preference	settings	for	the	specified	filter	and	does	not	prompt	the	user	for	non-

Example

default	arguments.

The	Export	method	of	a	Page	object	supports	saving	to	HTML	file	format	using
the	extension	.htm	or	.html.	Pages	are	exported	using	the	settings	that	were	last
selected	in	the	Save	As	dialog	box.

If	the	specified	file	already	exists,	it	is	replaced	without	prompting	the	user.

ExportIcon	method

				 				

Exports	the	icon	for	a	Master	object	to	a	named	file	or	the	Clipboard.

Version	added

4.5

Syntax

object.ExportIcon	fileName,	flags,	[TransparentRGB]
object Required.	An	expression	that	returns	a	Master	object.
fileName Required	String.	The	file	to	which	to	export	the	icon.
flags Required	Integer.	The	format	in	which	to	write	the	exported

file.
TransparentRGBOptional	Variant.	The	color	to	substitute	for	any	transparent

areas	of	the	exported	icon	image.

Remarks

If	fileName	is	empty,	the	master's	icon	is	copied	to	the	Clipboard.

Example

If	the	value	of	flags	is	visIconFormatVisio	(0),	the	icon	is	exported	in	the
application	internal	icon	format.	The	ImportIcon	method	accepts	files	written	in
this	format.

If	the	value	of	flags	is	visIconFormatBMP	(2),	the	icon	is	exported	in	bitmap
(.bmp)	file	format.

Starting	with	Visio	2000,	you	can	use	the	TransparentRGB	argument	with	the
ExportIcon	method.	If	TransparentRGB	is	omitted,	the	color	defaults	to	black,
which	simulates	Visio	5.0	behavior.

FitCurve	method

				 				

Reduces	the	number	of	geometry	segments	in	a	shape	or	shapes	by	replacing
them	with	similar	spline,	arc,	and	line	segments	that	approximate	the	paths	of	the
initial	segments.	Typically,	this	reduces	the	number	of	segments	in	the	shape.

Version	added

4.1

Syntax

object.FitCurve	tolerance,	flags
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	whose	path	is	to	be	replaced.
tolerance Required	Double.	How	closely	the	resulting	paths	must	match

the	shape's	original	paths.
flags Required	Integer.	Flags	that	influence	how	the	shape	is	drawn.

Remarks

The	FitCurve	method	of	a	Selection	object	optimizes	each	of	the	shapes	in	the

Example

selection.	It	does	not	combine	the	selected	shapes	into	a	single	shape.

The	paths	resulting	from	the	FitCurve	method	fall	within	the	given	tolerance	of
the	initial	paths.	Tolerance	should	be	in	internal	drawing	units	(inches).	To	match
the	initial	paths	exactly,	specify	a	tolerance	of	zero	(0).

The	flags	argument	is	a	bit	mask	that	specifies	options	for	optimizing	the	paths.
Its	value	should	be	a	combination	of	zero	or	more	of	the	following	values.

Constant Value Description
visSplinePeriodic &H1 Produce	periodic	splines	if	appropriate.
visSplineDoCircles &H2 Recognize	circular	segments	in	the

shape(s)	and	generate	circular	arcs
instead	of	spline	rows	for	those
segments.

visSplineAbrupt &H4 Break	the	resulting	splines	whenever	an
abrupt	change	of	direction	or	curvature
in	a	path	is	detected.

FlipHorizontal	method

				 				

Flips	an	object	horizontally.

Version	added

2.0

Syntax

object.FlipHorizontal
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	to	flip.

Example

FlipVertical	method

				 				

Flips	an	object	vertically.

Version	added

2.0

Syntax

object.FlipVertical
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	to	flip.

Example

Follow	method

					 					

Causes	Microsoft	Visio	to	navigate	to	a	hyperlink.

Version	added

5.0

Syntax

object.Follow
object Required.	An	expression	that	returns	a	Hyperlink	object.

FollowHyperlink	method

				 				

Navigates	to	an	arbitrary	document-based	hyperlink.

Version	added

5.0

Syntax

object.FollowHyperlink	(Address,	SubAddress,	[ExtraInfo
object Required.	An	expression	that	returns	a	Document	object.
Address Required	String.	The	address	to	which	you	want	to	navigate.
SubAddress Required	String.	The	subaddress	to	which	you	want	to	navigate;	if	you	don't	need	this	information,	pass	an	empty

string.
ExtraInfo Optional	Variant.	Extra	URL	request	information	to	use	in	resolving	the	URL.
Frame Optional	Variant.	The	HTML	frame	to	which	to	navigate.
NewWindow Optional	Variant.	Specifies	if	a	new	window	is	to	be	opened.
res1 Optional.	Unused.
res2 Optional.	Unused.

Example

res3 Optional.	Unused.

Remarks

From	Microsoft	Visual	Basic	or	Visual	Basic	for	Applications,	do	not	pass	a
value	for	optional	arguments.	From	C/C++,	pass	an	empty	variant	for	optional
arguments.

Visio	4.5	provided	an	undocumented	Hyperlink	method	for	a	Document	object
with	the	following	signature:

HRESULT	FollowHyperlink[in]	BSTR	Target,	[in]	BSTR	Location);

Visio	5.0	and	later	still	support	this	method	but	it	has	been	renamed	to
FollowHyperlink45:

HRESULT	FollowHyperlink45[in]	BSTR	Target,	[in]	BSTR	Location);	

FormatResult	method

					 					

Formats	a	string	or	number	into	a	string	according	to	a	format	picture,	using
specified	units	for	scaling	and	formatting.

Version	added

4.5

Syntax

stringRet	=	object.FormatResult(stringOrNumber,	unitsIn
stringRet String.	The	evaluated	result	formatted	according	to	format	and	
object Required.	An	expression	that	returns	an	Application	object.
stringOrNumber Required	Variant.	String	or	number	to	be	formatted;	can	be	passed	as	a	string,

floating	point	number,	or	integer.
unitsIn Required	Variant.	Measurement	units	to	attribute	to	stringOrNumber.
unitsOut Required	Variant.	Measurement	units	to	express	the	result	in.
format Required	String.	Picture	of	what	the	result	string	should	look	like.

Remarks

If	passed	as	a	string,	stringOrNumber	might	be	the	formula	or	prospective
formula	of	a	cell,	or	the	result	or	prospective	result	of	a	cell	expressed	as	a
string.	The	FormatResult	method	evaluates	the	string	and	formats	the	result.
Because	the	string	is	being	evaluated	outside	the	context	of	being	the	formula	of
a	particular	cell,	the	FormatResult	method	returns	an	error	if	the	string	contains
any	cell	references.

Possible	values	for	stringOrNumber	include:

1.7

3

"2.5"

"4.1	cm"

"12	ft	-	17	in	+	(12	cm	/	SQRT(7))"

The	unitsIn	and	unitsOut	arguments	can	be	strings	such	as	"inches",	"inch",
"in.",	or	"i".	Strings	may	be	used	for	all	supported	Visio	units	such	as
centimeters,	meters,	miles,	and	so	on.	You	can	also	use	any	of	the	unit	constants
declared	by	the	Visio	type	library	in	VisUnitCodes.	A	list	of	valid	units	is	also
included	in	About	units	of	measure.

If	stringOrNumber	is	a	string,	unitsIn	specifies	how	to	interpret	the	evaluated
result	and	is	only	used	if	the	result	is	a	scalar.	For	example,	the	expression	"4	*	5
cm"	evaluates	to	20	cm,	which	is	not	a	scalar	so	unitsIn	is	ignored.	The
expression	"4	*	5"	evaluates	to	20	which	is	a	scalar	and	is	interpreted	using	the
specified	unitsIn.

The	unitsOut	argument	specifies	the	units	in	which	the	returned	string	should	be
expressed.	If	you	want	the	results	expressed	in	the	same	units	as	the	evaluated
expression,	pass	"NOCAST"	or	visNoCast.

format	is	a	string	that	specifies	a	template	or	picture	of	the	string	produced	by
the	FormatResult	method.	For	details,	see	the	FORMAT	function.	A	few	of	the
possibilities	are:

#	:	Ouput	a	single	digit,	but	not	if	it's	a	leading	or	trailing	0.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1424.htm

0	:	Output	a	single	digit,	even	if	it	is	a	leading	or	trailing	0.

.	:	Decimal	placeholder.

,	:	Thousands	separator.

"text"	or	'text'	:	Output	enclosed	text	as	is.

\c	:	Output	the	character	c.

Examples

Where	a	string	is	specified

Where	a	number	is	specified

Fragment	method

				 				

Breaks	selected	shapes	into	smaller	shapes.

Version	added

2.0

Syntax

object.Fragment
object Required.	An	expression	that	returns	a	Selection	object	that

contains	the	shapes	to	fragment.

Remarks

Using	the	Fragment	method	is	equivalent	to	clicking	Fragment	on	the
Operations	submenu	of	the	Shape	menu.	The	produced	shapes	are	the	topmost
shapes	in	the	containing	shape	of	the	selected	shapes.	They	inherit	the	formatting
of	the	first	selected	shape	and	have	no	text.

The	original	shapes	are	deleted	and	there	aren't	any	shapes	selected	when	the

Example

operation	is	complete.

GetFilterCommands	method

				 				

Returns	an	array	of	command	ranges	and	a	True	or	False	value	indicating	how
to	filter	events	for	that	command	range.

Version	added

2002

Syntax

retVal	=	object.GetFilterCommands()
object Required.	An	expression	that	returns	an	Event	object.
retVal Long.	An	array	of	command	ranges	and	a	True	or	False	value

specifying	how	to	filter	events	for	that	command	range.

Remarks

The	event	filters	described	in	the	array	returned	by	the	GetFilterCommands
method	provide	developers	a	way	of	ignoring	specified	events	based	on
command	ID.	The	array	returned	is	that	passed	to	the	SetFilterCommands
method	for	this	Event	object.

Example

The	array	that	is	returned	by	the	GetFilterCommands	method	can	be
interpreted	in	the	following	manner:

The	number	of	elements	in	the	array	is	a	multiple	of	3,	as	follows:

The	first	element	contains	the	beginning	command	ID	of	the	range	(any	member
of	VisUICmds).

The	second	element	contains	the	end	command	ID	of	the	range	(any	member	of
VisUICmds).

The	third	element	contains	a	True	or	False	value,	which	indicates	whether	you
are	listening	to	events	for	that	command	range	(True	to	listen	to	events;	False
to	exclude	events).

For	an	event	to	successfully	pass	through	a	command	filter,	it	must	satisfy	the
following	criteria:

It	must	have	a	valid	command	ID.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	defined	in	the	array,	events	are	considered	True.

For	details	about	defining	event	filters	using	command	IDs,	see	the
SetFilterCommands	method.

GetFilterObjects	method

				 				

Returns	an	array	of	object	types	and	a	True	or	False	value	indicating	how	to
filter	events	for	that	object.

Version	added

2002

Syntax

retVal	=	object.GetFilterObjects()
object Required.	An	expression	that	returns	an	Event	object.
retVal Long.	An	array	of	objects	types	and	a	True	or	False	value

specifying	how	to	filter	events	for	that	object.

Remarks

The	event	filters	described	in	the	array	returned	by	the	GetFilterObjects	method
provide	developers	a	way	of	ignoring	specified	events	based	on	object	type.	The
array	returned	is	that	passed	to	the	SetFilterObjects	method	for	this	Event
object.

Example

The	array	that	is	returned	by	the	GetFilterObjects	method	can	be	interpreted	in
the	following	manner.

The	number	of	elements	in	the	array	is	a	multiple	of	2:

The	first	element	contains	an	object	type	(one	of	visTypePage,	visTypeGroup,
visTypeShape,	visTypeForeignObject,	visTypeGuide,	or	visTypeDoc).

The	second	element	contains	a	True	or	False	value	indicating	whether	you	are
listening	to	events	for	that	object	(True	to	listen	to	an	object's	events;	False	to
exclude	an	object's	events).

For	an	event	to	successfully	pass	through	an	object	event	filter,	it	must	satisfy
the	following	criteria:

It	must	be	a	valid	object	type.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	defined	in	the	array,	events	are	considered	True.

For	details	about	defining	event	filters	using	command	IDs,	see	the
SetFilterObjects	method.

GetFilterSRC	method

				 				

Returns	an	array	of	cell	ranges	and	a	True	or	False	value	indicating	whether	you
are	filtering	events	for	that	range.

Version	added

2002

Syntax

retVal	=	object.GetFilterSRC()
object Required.	An	expression	that	returns	an	Event	object.
retVal Integer.	An	array	of	cell	ranges	and	a	True	or	False	value

specifying	how	to	filter	events	for	that	range.

Remarks

The	event	filters	described	in	the	array	returned	by	the	GetFilterSRC	method
provide	developers	a	way	of	ignoring	specified	events	based	on	object	type.	The
array	returned	is	that	passed	to	the	SetFilterSRC	method	for	this	Event	object.

Example

The	array	that	is	returned	by	the	GetFilterSRC	method	can	be	interpreted	in	the
following	manner.

The	number	of	elements	in	the	array	is	a	multiple	of	7.	These	seven	elements
contain	the	following	values:

The	first	three	elements	describe	the	section,	row,	and	cell	of	the	beginning	cell
of	the	range.

The	next	three	elements	describe	the	section,	row,	and	cell	of	the	end	cell	of	the
range.

The	last	element	contains	a	True	or	False	value	indicating	whether	you	want	to
receive	events	for	the	specified	range	of	cells	(True	to	listen	to	events	for	a
range	of	cells;	False	to	exclude	events	for	the	range	of	cells).

For	an	event	to	successfully	pass	through	a	cell	range	filter,	it	must	satisfy	the
following	criteria:

It	must	be	a	valid	section,	row,	cell	reference.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	defined	in	the	array,	events	are	considered	True.

For	details	about	defining	event	filters	using	command	IDs,	see	the
SetFilterSRC	method.

GetFormulas[U]	method

					 					

Returns	the	formulas	of	many	cells.

Version	added

4.5

Syntax

object.GetFormulas	SID_SRCStream,	formulas
object Required.	An	expression	that	returns	a	Page,	Master,	Shape,

or	Style	object.
SID_SRCStream Required	Integer.	Stream	identifying	cells	to	be	queried.
formulas Required	Variant.	Array	that	receives	formulas	of	queried

cells.

Remarks

The	GetFormulas	method	is	like	the	Formula	method	of	a	Cell	object,	except
you	can	use	it	to	obtain	the	formulas	of	many	cells	at	once,	rather	than	one	cell	at
a	time.	The	GetFormulas	method	is	a	specialization	of	the	GetResults	method,

which	can	be	used	to	obtain	cell	formulas	or	results.	Setting	up	a	call	to	the
GetFormulas	method	involves	slightly	less	work	than	setting	up	the	GetResults
method.

For	Shape	or	Style	objects	you	can	use	the	GetFormulas	method	to	get
formulas	of	any	set	of	cells.

For	a	Page	or	Master	object	you	can	use	the	GetFormulas	method	to	get
formulas	of	any	set	of	cells	in	any	set	of	shapes	of	the	page	or	master.

SID_SRCStream	is	an	array	of	2-byte	integers:

For	Shape	or	Style	objects,	SID_SRCStream	should	be	a	one-dimensional	array
of	3n	2-byte	integers	for	some	n	>=	1.	GetFormulas	interprets	the	stream	as:

{	sectionIdx,	rowIdx,	cellIdx	}n

where	sectionIdx	is	the	section	index	of	the	desired	cell,	rowIdx	is	its	row
index	and	cellIdx	is	its	cell	index.

For	Page	or	Master	objects,	SID_SRCStream	should	be	a	one-dimensional	array
of	4n	2-byte	integers	for	n	>=	1.	The	GetFormulas	method	interprets
SID_SRCStream	as:

{	sheetID,	sectionIdx,	rowIdx,	cellIdx	}n

where	sheetID	is	the	ID	property	of	the	Shape	object	on	the	page	or	master
whose	cell	formula	is	desired.

Note	If	the	sheetID	in	an	entry	is	visInvalShapeID	(-1)	or	if	the	bottom	byte
of	sectionIdx	is	visSectionInval	(255),	then	the	entry	will	be	ignored	and	an
empty	variant	will	be	returned	in	the	corresponding	results	array	entry.	The
motivation	for	this	is	that	the	same	SID_SRCStream	array	can	be	used	on
several	calls	to	GetFormulas,	SetFormulas,	and	similar	methods	with	the
caller	only	needing	to	make	minor	changes	to	the	stream	between	calls.

If	the	GetFormulas	method	succeeds,	formulas	returns	a	one-dimensional	array
of	n	variants	indexed	from	0	to	n	-	1.	Each	variant	returns	a	formula	as	a	string.
Formulas	is	an	out	argument	that	is	allocated	by	the	GetFormulas	method,
which	passes	ownership	back	to	the	caller.	The	caller	should	eventually	perform

the	SafeArrayDestroy	procedure	on	the	returned	array.	Note	that	the
SafeArrayDestroy	procedure	has	the	side	effect	of	clearing	the	variants
referenced	by	the	array's	entries,	hence	deallocating	any	strings	the
GetFormulas	method	returns.	(Microsoft	Visual	Basic	and	Visual	Basic	for
Applications	take	care	of	this	for	you.)	The	GetFormulas	method	fails	if
formulas	is	Null.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	GetFormulas	method	to	get	more	than	one	formula	using
local	syntax.	Use	the	GetFormulasU	method	to	get	more	than	one	formula
using	universal	syntax.

GetNames[U]	method

				 					

Returns	the	names	of	all	items	in	a	Documents,	Pages,	Masters,	Styles,	or
Addons	collection.

Version	added

4.5

Syntax

object.GetNames	nameArray
object Required.	An	expression	that	returns	a	collection	from	the

Applies	to	list.
nameArray Required	String.	Array	that	receives	names	of	members	of	the

indicated	object.

Remarks

If	the	GetNames	method	succeeds,	nameArray	returns	a	one-dimensional	array
of	n	strings	indexed	from	0	to	n	-	1,	where	n	equals	the	Count	property	of	the
object.	nameArray	is	an	out	argument	that	is	allocated	by	the	GetNames

See	also

method,	which	passes	ownership	back	to	the	caller.	The	caller	should	eventually
perform	the	SafeArrayDestroy	procedure	on	the	returned	array.	Note	that	the
SafeArrayDestroy	procedure	has	the	side	effect	of	freeing	the	strings	referenced
by	the	array's	entries.	The	GetNames	method	fails	if	called	with	!nameArray	or
nameArray.	(Microsoft	Visual	Basic	and	Visual	Basic	for	Applications	take	care
of	this	for	you.)

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	GetNames	method	to	get	more	than	one	object's	local	name.
Use	the	GetNamesU	method	to	get	more	than	one	object's	universal	name.

GetPolylineData	method

				 				

Returns	the	points	recorded	in	a	polyline	row.

Version	added

2000

Syntax

object.GetPolylineData	flags,	xyArray
object Required.	An	expression	that	returns	a	Row	object.
flags Required	Integer.	Flags	that	influence	the	points	returned.
xyArray Required	Double.	Returns	an	array	of	alternating	x	and	y	values

specifying	the	points	recorded	in	the	row.

Remarks

If	the	row's	type	is	not	visTagPolylineTo,	an	exception	is	raised.

If	the	GetPolylineData	method	succeeds,	xyArray	returns	a	one-dimensional
array	of	n	doubles	(VT_R8)	indexed	from	0	to	n	-	1.	The	argument	xyArray	is	an

Example

out	argument	that	is	allocated	by	the	GetPolylineData	method,	which	passes
ownership	back	to	the	caller.	The	caller	should	eventually	perform
SafeArrayDestroy	on	the	returned	array.	(Microsoft	Visual	Basic	and	Visual
Basic	for	Applications	manage	this	for	you.)

The	flags	argument	is	a	bit	mask	that	specifies	options	for	returning	points.	Its
value	should	be	a	combination	of	zero	or	more	of	the	following	values.

Constant Value Description
visGeomExcludeLastPoint &H1 The	last	point	of	the	polyline	(the	X	and

Y	cells	in	the	row)	will	not	be	included
in	xyArray.

visGeomWHPct &H10 The	values	returned	in	xyArray	will	be
percentages	of	width/height.

visGeomXYLocal &H20 The	values	returned	in	xyArray	will	be
local,	internal	units	in	the	drawing.

GetResults	method

					 					

Gets	the	results	or	formulas	of	many	cells.

Version	added

4.5

Syntax

object.GetResults	SID_SRCStream,	flags,	units,	results
object Required.	An	expression	that	returns	a	Page,	Master,	Shape,

or	Style	object.
SID_SRCStream Required	Integer.	Array	identifying	cells	to	be	queried.
flags Required	Integer.	Flags	that	influence	the	type	of	entries

returned	in	results.
units Required	Variant.	Array	of	measurement	units	that	results	are

to	be	returned	in.
results Required	Variant.	Array	that	receives	results	or	formulas	of

queried	cells.

Remarks

The	GetResults	method	is	like	the	Result	method	for	the	Cell	object,	except	that
it	can	be	used	to	get	the	results	(values)	of	many	cells	at	once,	rather	than	one
cell	at	a	time.

For	Shape	or	Style	objects,	you	can	use	the	GetResults	method	to	get	results	of
any	set	of	cells.

For	a	Page	or	Master	object,	you	can	use	the	GetResults	method	to	get	results
of	any	set	of	cells	in	any	set	of	shapes	of	the	page	or	master.

SID_SRCStream	is	an	array	of	2-byte	integers:

For	Shape	or	Style	objects,	SID_SRCStream	should	be	a	one-dimensional	array
of	3n	2-byte	integers	for	n	>=	1.	The	GetResults	method	interprets
SID_SRCStream	as:

{	sectionIdx,	rowIdx,	cellIdx	}n

where	sectionIdx	is	the	section	index	of	the	desired	cell,	rowIdx	is	its	row
index	and	cellIdx	is	its	cell	index.

For	Page	or	Master	objects,	SID_SRCStream	should	be	a	one-dimensional	array
of	4n	2-byte	integers	for	n	>=	1.	The	GetResults	method	interprets
SID_SRCStream	as:

{	sheetID,	sectionIdx,	rowIdx,	cellIdx	}n

where	sheetID	is	the	ID	property	of	the	Shape	object	on	the	page	or	master
whose	cell	result	is	desired.

Note	If	the	sheetID	in	an	entry	is	visInvalShapeID	(-1)	or	if	the	bottom	byte
of	sectionIdx	is	visSectionInval	(255),	then	the	entry	will	be	ignored	and	an
empty	variant	will	be	returned	in	the	corresponding	results	array	entry.	The
motivation	for	this	is	that	the	same	SID_SRCStream	array	can	be	used	on
several	calls	to	GetResults,	SetResults,	and	similar	methods	with	the	caller
only	needing	to	make	minor	changes	to	the	stream	between	calls.

The	flags	argument	indicates	what	data	type	the	returned	results	should	be

expressed	in.	Its	value	should	be	one	of	the	following.

Constant Value Description
visGetFloats 0 Results	returned	as	doubles

(VT_R8).
visGetTruncatedInts 1 Results	returned	as

truncated	long	integers
(VT_I4).

visGetRoundedInts 2 Results	returned	as	rounded
long	integers	(VT_I4).

visGetStrings 3 Results	returned	as	strings
(VT_BSTR).

visGetFormulas 4 Formulas	returned	as	strings
(VT_BSTR).

visGetFormulasU 5 Formulas	returned	in
universal	syntax
(VT_BSTR).

The	units	argument	is	an	array	that	controls	what	measurement	units	individual
results	are	returned	in.	Each	entry	in	the	array	can	be	a	string	such	as	"inches",
"inch",	"in.",	or	"i".	Strings	may	be	used	for	all	supported	Visio	units	such	as
centimeters,	meters,	miles,	and	so	on.	You	can	also	indicate	desired	units	with
integer	constants	(visCentimeters,	visInches,	etc.)	declared	by	the	Visio	type
library.	Note	that	the	values	specified	in	the	units	array	have	no	effect	if	flags	is
visGetFormulas.

If	not	null,	the	application	expects	units	to	be	a	one-dimensional	array	of	1	<=	u
Variants.	Each	entry	can	be	a	string	or	integer	code,	or	empty	(nothing).	If	the
i'th	entry	is	empty,	then	the	i'th	returned	result	is	returned	in	the	units	designated
by	units(j),	where	j	is	the	index	of	the	most	recent	prior	non-empty	entry.	Thus	if
you	want	all	returned	values	to	be	in	the	same	units,	you	need	only	pass	a	units
array	with	one	entry.	If	there	is	no	prior	non-empty	entry,	or	if	no	units	array	is
supplied,	then	visNumber	(0x20)	is	used.	This	causes	internal	units	(like	the
ResultIU	property	of	a	Cell	object)	to	be	returned.

If	the	GetResults	method	succeeds,	results	returns	a	one-dimensional	array	of	n
variants	indexed	from	zero	(0)	to	n	-	1.	The	type	of	the	returned	variants	is	a
function	of	flags.	Results	is	an	out	argument	that	is	allocated	by	the	GetResults

method,	which	passes	ownership	back	to	the	caller.	The	caller	should	eventually
perform	SafeArrayDestroy	on	the	returned	array.	Note	that	SafeArrayDestroy
has	the	side	effect	of	clearing	the	variants	referenced	by	the	array's	entries,	hence
deallocating	any	strings	the	GetResults	method	returns.	(Microsoft	Visual	Basic
and	Visual	Basic	for	Applications	take	care	of	this	for	you.)

GetViewRect	method

				 				

Returns	the	page	coordinates	of	a	window's	borders.

Version	added

2000

Syntax

object.GetViewRect	(doubleLeft,	doubleTop,	doubleWidth
object Required.	An	expression	that	returns	a	Window	object.
doubleLeft Required	Double.	The	coordinate	in	page	units	of	the	left	side	of	the	window.
doubleTop Required	Double.	The	coordinate	in	page	units	of	the	top	of	the	window.
doubleWidth Required	Double.	The	distance	in	page	units	from	the	left	side	to	the	right	side	of

the	window.
doubleHeight Required	Double.	The	distance	in	page	units	from	the	top	to	the	bottom	of	the

window.

Remarks

Example

If	the	Window	object	is	not	a	visDrawing	type,	then	the	GetViewRect	method
raises	an	exception.

GetWindowRect	method

				 				

Gets	the	size	and	position	of	the	client	area	of	a	window.

Version	added

2000

Syntax

object.GetWindowRect	pnLeft,	pnTop,	pnWidth,	pnHeight
object Required.	An	expression	that	returns	a	Window	object.
pnLeft Required	Long.	The	coordinate	of	the	left	side	of	the	window.
pnTop Required	Long.	The	coordinate	of	the	top	of	the	window.
pnWidth Required	Long.	The	distance	in	pixels	from	the	left	side	to	the

right	side	of	the	window.
pnHeight Required	Long.	The	distance	in	pixels	from	the	top	to	the	bottom

of	the	window.

Remarks

Example

The	GetWindowRect	method	gets	the	size	and	position	of	the	client	area	of	the
window	with	respect	to	the	window	that	owns	the	Windows	collection	to	which
it	belongs.	For	the	Windows	collection	of	an	Application	object,	the	"with
respect	to"	window	is	the	MDICLIENT	window	of	the	Visio	main	window.	For
the	Windows	collection	of	a	Window	object,	the	"with	respect	to"	window	is	the
client	area	of	the	drawing	window.

GlueTo	method

					 					

Glues	one	shape	to	another,	from	a	cell	in	the	first	shape	to	a	cell	in	the	second
shape.

Version	added

2.0

Syntax

object.GlueTo	gluetocell
object Required.	An	expression	that	returns	a	Cell	object.
gluetocell Required.	An	expression	that	returns	a	Cell	object	that

represents	the	part	of	the	shape	to	glue	to.

Remarks

Following	is	a	list	of	possible	connections.

From	the	begin	or	end	cell	of	a	1-D	shape	to…

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1290.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1292.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1196.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1291.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1293.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1326.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1328.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1290.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1292.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm

From	the	edge	(a	cell	in	the	Alignment	section)	of	a	2-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	1-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	2-D	shape	to…

From	a	control	point	cell	to…

For	details	about	connection	point	type	and	direction,	see	the	Connection	Points
section.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1278.htm

GlueToPos	method

					 					

Glues	one	shape	to	another	from	a	cell	in	the	first	shape	to	an	x,y	position	in	the
second	shape.

Version	added

2.0

Syntax

object.GlueToPos	shpObject,	x,	y
object Required.	An	expression	that	returns	a	Cell	object.
shpObject Required	object.	An	expression	that	returns	the	Shape	object	to

be	glued	to.
x Required	Double.	The	x-coordinate	of	the	position	to	glue	to.
y Required	Double.	The	y-coordinate	of	the	position	to	glue	to.

Remarks

The	GlueToPos	method	creates	a	new	connection	point	at	the	location

determined	by	x	and	y,	which	represent	decimal	fractions	of	the	specified	shape's
width	and	height,	respectively,	rather	than	coordinates.	For	example,	the
following	creates	a	connection	point	at	the	center	of	shpObject	and	glues	the	part
of	the	shape	that	celObj	represents	to	that	point:

celObj.GlueToPos	shpObject,	0.5,	0.5

Gluing	the	X	cell	of	a	Controls	section	row	or	a	BeginX	or	EndX	cell
automatically	glues	the	Y	cell	of	the	Controls	section	row	or	the	BeginY	or
EndY	cell,	respectively.	(The	reverse	is	also	true.)

Group	method

					 					

Groups	the	objects	that	are	selected	in	a	selection,	or	it	converts	a	shape	into	a
group.

Version	added

2.0

Syntax

shpObj	=	object.Group
shpObj Object.	The	resulting	Shape	object.
object Required.	An	expression	that	returns	a	Shape	or	Selection

object.

IconFileName	method

					 					

Sets	a	custom	icon	file	for	a	menu	or	toolbar	item.

Version	added

4.0

Syntax

object.IconFileName("fileString	[,N]")
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	that	loads	the	icon	file.
fileString Required	String.	The	path	and	name	of	the	ICO,	EXE,	DLL,	or

VSL	file	to	load.
N Optional	Integer.	The	icon	resource	location.	If	you	are	using

an	EXE,	DLL,	or	VSL	file,	N	specifies	the	location	of	the	icon
in	the	file,	beginning	with	zero	(0).

Remarks

The	IconFileName	method	loads	the	file	that	contains	the	icon,	saves	the	bits,

and	discards	the	file	name.

If	the	icon	contains	multiple	images,	Visio	always	uses	the	16x16	(16-color)
image.

Unless	fileString	is	a	fully	qualified	path,	the	application	searches	for	the	ICO,
EXE,	DLL,	or	VSL	file	in	the	folders	indicated	by	the	Application	object's
AddonPaths	property	(assuming	that	the	UIObject	object	is	in	the	Visio
process).

Import	method

				 				

Imports	a	file	into	the	application.

Version	added

3.0

Syntax

objRet	=	object.Import(fileName)
objRet A	Shape	object	that	represents	the	new	shape	imported	from

the	file.
object Required.	An	expression	that	returns	the	Page,	Master,	or

Shape	object	to	receive	the	new	shape.
fileName Required	String.	The	name	of	the	file	to	import;	must	be	a	fully

qualified	path.

Remarks

The	Import	method	imports	the	file	specified	by	fileName	onto	a	page,	or	into	a
master	or	group.

Example

The	file	extension	indicates	which	import	filter	to	use.	If	the	filter	is	not
installed,	the	Import	method	returns	an	error.	The	Import	method	uses	the
default	preference	settings	for	the	specified	filter	and	does	not	prompt	the	user
for	non-default	arguments.

ImportIcon	method

				 				

Imports	the	icon	for	a	Master	object	from	a	named	file.

Version	added

4.5

Syntax

object.ImportIcon	fileName
object Required.	An	expression	that	returns	the	Master	or

MasterShortcut	object	to	receive	the	new	icon.
fileName Required	String.	The	name	of	the	file	to	import.

Remarks

The	ImportIcon	method	can	only	import	files	that	were	produced	by	exporting	a
master	icon	in	the	application's	internal	icon	format	(visIconFormatVisio)—it
does	not	accept	icons	in	other	file	formats.

Example

InsertFromFile	method

				 				

Adds	a	linked	or	embedded	object	to	a	page,	master,	or	group.

Version	added

4.1

Syntax

objRet	=	object.InsertFromFile(filename,	flags)
objRet A	Shape	object	representing	the	newly	linked	or	embedded

object.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	in	which	to	embed	or	link	the	object.
filename Required	String.	The	name	of	the	file	that	contains	the	object

to	link	or	embed.
flags Required	Integer.	Flags	that	influence	how	the	object	is

inserted.

Remarks

Example

The	InsertFromFile	method	creates	a	new	shape	that	represents	a	linked	or
embedded	OLE	object.

The	flags	argument	is	a	bit	mask	that	should	be	a	combination	of	the	following
values.

Constant Value Description
visInsertLink &H8 If	set,	the	new	shape	represents	an	OLE

link	to	the	named	file.	Otherwise,	the
InsertFromFile	method	produces	an	OLE
object	from	the	contents	of	the	named	file
and	embeds	it	in	the	document	that
contains	the	page,	master,	or	group.

visInsertIcon &H10 Display	the	new	shape	as	an	icon.

InsertObject	method

				 				

Adds	a	new	embedded	object	or	ActiveX	control	to	a	page,	master,	or	group.

Version	added

4.1

Syntax

objRet	=	object.InsertObject(ClassOrProgID,	flags)
objRet A	Shape	object	that	represents	the	newly	created	object	or

control.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	in	which	to	create	the	object	or	control.
ClassOrProgIDRequired	String.	Identifies	the	type	of	object	or	control	to

create.
flags Required	Integer.	Flags	that	influence	the	operation.

Remarks

Example

ClassOrProgID	is	a	string	that	identifies	the	kind	of	object	or	control	to	create.	It
can	be	either	the	object	or	control's	class	ID	(GUID)	in	string	form	or	the	object
or	control's	program	ID	of	the	handler	for	the	class.

If	ClassOrProgID	is	a	string	representing	a	class	ID,	it	looks	like	"{D3E34B21-
9D75-101A-8C3D-00AA001A1652}."

If	ClassOrProgID	is	a	string	representing	a	program	ID,	it	looks	like
"paint.picture"	or	"forms.combobox.1".

See	vendor-specific	documentation	or	browse	the	registry	to	determine	which
class	IDs	and	program	IDs	are	associated	with	objects	and	controls	provided	by
other	applications.

The	flags	argument	is	a	bit	mask	that	can	include	one	of	the	following	values.

Constant Value Description
visInsertIcon &H10 Display	the	new	shape	as	an	icon.
visInsertDontShow &H1000 Don't	execute	the	new	object's	show	verb.

If	both	visInsertIcon	and	visInsertDontShow	are	specified,	the	InsertObject
method	fails.	If	you	want	to	insert	an	object	that	is	displayed	as	an	icon,	you
must	allow	the	application	to	execute	the	object's	show	verb.

The	flags	argument	can	also	include	one	of	the	following	values.

Constant Value
visInsertAsControl &H2000
visInsertAsEmbed &H4000

Values	in	visInsertAsControl	and	visInsertAsEmbed	only	have	an	effect	if	the
class	identified	by	ClassOrProgID	is	identified	in	the	registry	as	a	control	that
can	be	inserted.	If	neither	visInsertAsControl	nor	visInsertAsEmbed	is
specified	and	the	object	can	be	either	a	control	or	an	embedded	object,	the
application	inserts	it	as	a	control.

In	rare	cases,	Visio	5.0	or	later	versions	may	insert	a	control	whereas	earlier
versions	of	Visio	would	have	responded	to	the	same	call	by	inserting	an
embedded	object.	If	a	control	is	inserted,	this	method	places	the	document	in

design	mode,	causing	any	code	executing	in	the	document	to	halt	until	the
document	is	returned	to	run	mode.

Intersect	method

				 				

Creates	one	closed	shape	from	the	area	in	which	selected	shapes	overlap	or
intersect.

Version	added

4.0

Syntax

object.Intersect
object Required.	An	expression	that	returns	a	Selection	object	that

contains	the	shapes	to	intersect.

Remarks

The	Intersect	method	is	equivalent	to	clicking	Intersect	on	the	Operations
submenu	on	the	Shape	menu	in	Visio.	The	produced	shape	will	be	the	topmost
shape	in	its	containing	shape	and	will	inherit	the	text	and	formatting	of	the	first
selected	shape.

Example

The	original	shapes	are	deleted	and	no	shapes	are	selected	when	the	operation	is
complete.

InvokeHelp	method

			 				

Performs	Help	operations	using	the	Microsoft	Visio	Help	system.

Version	added

2002

Syntax

object.InvokeHelp	bstrHelpFileName,	command,	data
object Required.	An	expression	that	returns	an	Application	object.
bstrHelpFileName Required	String.	Specifies	an	HTML	file,	a	URL,	a

compiled	HTML	file,	or	an	optional	window	definition
(preceded	with	a	">"	character).	If	the	command	being	used
does	not	require	a	file	or	URL,	this	value	may	be	"".

command Required	Long.	The	action	to	perform.
data Required	Long.	Any	data	that	is	required	based	on	the	value

of	the	command	argument.

Remarks

Using	the	InvokeHelp	method,	you	can	create	a	custom	Help	system	that	is
integrated	with	the	Visio	Help	system.	To	enable	your	custom	Help	to	appear	in
the	same	tiled	MSO	Help	window	as	Visio	Help,	do	not	specify	a	window
definition	in	the	bstrHelpFileName	argument.

The	arguments	passed	to	the	InvokeHelp	method	correspond	to	those	described

See	also Example

in	the	HTML	Help	API.	For	a	list	of	command	values,	see	the	HTML	Help	API
Reference	on	the	Microsoft	Developer	Network	(MSDN)	Web	site.	Microsoft
Visual	Basic	programmers	can	use	the	numeric	equivalent	of	the	C++	constants
defined	in	the	HTML	Help	API	header	files.

For	example,	use	the	following	code	to	show	the	default	Visio	Help	window:

Application.InvokeHelp	"Visio.chm",	15,	0
Or	use	the	following	code	to	hide	the	Visio	Help	window:

Application.InvokeHelp	"",	18,	0
For	more	information	about	the	HTML	Help	API,	search	for	"HTML	Help	API
overview"	on	the	MSDN	Web	site.

http://msdn.microsoft.com

Join	method

				 				

Creates	a	new	shape	by	joining	selected	shapes.

Version	added

4.1

Syntax

object.Join
object Required.	An	expression	that	returns	a	Selection	object

containing	the	shapes	to	join.

Remarks

The	Join	method	is	equivalent	to	clicking	Join	on	the	Operation	submenu	on
the	Shape	menu	in	Visio.	The	new	shape	inherits	the	text	and	formatting	of	the
first	selected	shape	and	is	the	topmost	shape	in	its	container—the	nth	shape	in
the	Shapes	collection	of	its	containing	shape,	where	n	=	Count.

The	original	shapes	are	deleted	and	no	shapes	are	selected	when	the	operation	is

Example

complete.

The	Join	method	and	the	Combine	method	are	similar	but	differ	in	the
following	ways:

Join	coalesces	abutting	line	and	curve	segments	in	the	original	shapes	into	a
single	Geometry	section	in	the	resulting	shape.

Combine	produces	a	shape	that	has	one	Geometry	section	for	each	original
shape.	The	resulting	shape	has	holes	in	regions	where	the	original	shapes
overlapped.

You	might	want	to	join	shapes	after	importing	a	non-Visio	drawing	in	which
apparent	polylines	are	represented	by	many	independent	shapes,	each	possessing
a	single	line	or	curve	segment.	By	joining	the	shapes	that	constitute	a	polyline	in
such	a	drawing,	you	can	replace	many	single-segment	shapes	with	one	multiple-
segment	shape.

Layout	method

			 				

Lays	out	the	shapes	and/or	reroutes	the	connectors	for	the	page,	master,	group,	or
selection.

Version	added

4.5

Syntax

object.Layout
object Required.	An	expression	that	returns	a	Page,	Master,	Shape	or

Selection	object	whose	shapes	are	to	be	repositioned.

Remarks

Using	the	Layout	method	is	equivalent	to	clicking	Lay	Out	Shapes	on	the
Shape	menu.

Behavior	of	the	Layout	method	can	be	influenced	by	setting	the	formulas	or
results	of	cells	in	the	Page	Layout	and	Shape	Layout	sections	of	the	page,
master,	or	group	to	be	laid	out.	You	can	infer	how	these	cells	influence	the
behavior	of	the	Layout	method	by	examining	the	effect	of	various	Lay	Out
Shapes	dialog	box	options	on	the	values	of	these	cells.

To	lay	out	a	subset	of	the	shapes	of	a	page,	master,	or	group,	establish	a
Selection	object	in	which	the	shapes	to	be	laid	out	are	selected,	then	invoke	the
Layout	method.	If	the	Layout	method	is	performed	on	a	Selection	object	and

See	also Example

the	object	has	no	shapes	selected,	all	shapes	in	the	page,	master,	or	group	of	the
selection	are	laid	out.

LoadFromFile	method

					 					

Loads	a	Microsoft	Visio	application	UIObject	object	from	a	file.

Version	added

4.0

Syntax

object.LoadFromFile	fileName
object Required.	An	expression	that	returns	a	UIObject	object	to

receive	data	from	the	file.
fileName Required	String.	The	name	of	the	file	to	load.

Remarks

You	must	use	the	SaveToFile	method	to	save	a	UIObject	object	in	a	file	that	can
be	loaded	with	the	LoadToFile	method.

Open	method	(Documents	collection)

					 					

Opens	an	existing	file	so	it	can	be	edited.

Version	added

2.0

Syntax

docObjRet	=	docsObj.Open	(fileName)
docObjRet A	Document	object	that	represents	the	file	that	was	opened.
docsObj Required.	An	expression	that	returns	the	Documents	collection

to	receive	the	opened	file.
fileName Required	String.	The	name	of	a	file	to	open.

Remarks

When	you	use	the	Open	method	to	open	a	Document	object,	it	opens	a	Visio
file	as	an	original.	Depending	on	the	file	extension,	the	Open	method	opens	a
drawing	(.vsd),	a	stencil	(.vss),	a	template	(.vst),	a	workspace	(.vsw),	an	XML
drawing	(.vdx),	an	XML	stencil	(.vsx),	or	an	XML	template	(.vtx).	You	can	also

open	and	convert	non–Visio	files	to	Visio	files	using	this	method.	If	the	file	does
not	exist	or	the	file	name	is	invalid,	no	Document	object	is	returned	and	an	error
is	generated.

If	a	valid	stencil	(.vss)	file	name	is	passed,	the	original	stencil	file	is	opened,
which	means	you	can	edit	its	masters.	Unless	you	want	to	create	or	edit	the
masters,	open	a	stencil	as	read-only	through	an	associated	template	or	by	using
the	OpenEx	method.

Open	method	(Master	object)

				 				

Opens	an	existing	master	so	it	can	be	edited.

Version	added

4.1

Syntax

masterObjCopy	=	masterObj.Open
masterObjCopy A	temporary	copy	of	masterObj.
masterObj Required.	An	expression	that	returns	a	Master	object	to	be

edited.

Remarks

You	can	use	the	Open	method	for	a	Master	object	in	conjunction	with	the	Close
method	to	reliably	edit	the	shapes	and	cells	of	a	master.	In	previous	versions	of
Visio,	you	could	edit	a	Master	object's	shapes	and	cells,	but	the	changes	weren't
pushed	to	instances	of	the	master,	and	alignment	box	information	displayed
when	instancing	the	edited	master	wasn't	correct.

Example

To	edit	the	shapes	and	cells	of	a	Master	object	from	a	program,	follow	these
steps:

Open	the	Master	object	for	editing	using	masterObjCopy	=	masterObj.Open.
This	code	fails	if	there	is	a	drawing	window	open	into	masterObj	or	if	other
programs	already	have	masterObj	open.	If	the	Open	method	succeeds,
masterObjCopy	is	a	copy	of	masterObj.

Change	any	shapes	and	cells	in	masterObjCopy,	not	masterObj.

Close	the	Master	object	using	masterObjCopy.Close.	The	Close	method	fails	if
masterObjCopy	isn't	a	Master	object	that	resulted	from	a	prior	masterObj.Open
call.	Otherwise,	the	Close	method	merges	the	changes	made	in	step	2	from
masterObjCopy	back	into	masterObj.	It	also	updates	all	instances	of	masterObj
to	reflect	the	changes	and	update	information	cached	in	masterObj.	If
masterObj.IconUpdate	isn't	visManual	(0),	the	Close	method	updates	the	icon
shown	in	the	stencil	window	for	masterObj	to	depict	an	image	of
masterObjCopy.

If	you	change	the	shapes	and	cells	of	a	master	directly,	as	opposed	to	opening
and	closing	the	master	as	described	in	the	procedure	above,	the	effects	listed	in
step	3	don't	occur.

A	program	that	creates	a	copy	of	a	masterObj	for	editing	should	both	close	and
release	the	copy.	Microsoft	Visual	Basic	typically	releases	it	automatically.
However,	with	C/C++,	you	must	explicitly	release	the	copy,	just	as	you	would
for	any	other	object.

OpenDrawWindow	method

				 				

Opens	a	new	drawing	window	that	displays	a	page,	master,	or	group.

Version	added

4.1

Syntax

objRet	=	object.OpenDrawWindow
objRet A	Window	object	that	represents	the	opened	window.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	to	display	in	the	drawing	window.

Remarks

The	OpenDrawWindow	method	opens	a	new	drawing	window,	even	if	the
page,	master,	or	group	is	already	displayed	in	a	drawing	window.

Example

OpenEx	method

					 					

Opens	an	existing	Microsoft	Visio	file	using	extra	information	passed	in	an
argument.

Version	added

4.0

Syntax

objRet	=	object.OpenEx	(fileName,	openFlags)
objRet A	Document	object	that	represents	the	file	that	was	opened.
object Required.	An	expression	that	returns	a	Documents	collection.
fileName Required	String.	The	name	of	the	file.
openFlags Required	Integer.	Flags	that	indicate	how	to	open	the	file.

Remarks

The	OpenEx	method	is	identical	to	the	Open	method,	except	that	it	provides	an
extra	argument	in	which	the	caller	can	specify	how	the	document	opens.

The	openFlags	argument	should	be	a	combination	of	zero	or	more	of	the
following	values.

Constant Value
visOpenCopy &H1
visOpenRO &H2
visOpenDocked &H4
visOpenDontList &H8
visOpenMinimized &H10
visOpenRW &H20
visOpenMacrosDisabled &H80

If	visOpenDocked	is	specified,	the	file	appears	in	a	docked	rather	than	an	MDI
window,	provided	that	the	file	is	a	stencil	file	and	there	is	an	active	drawing
window	in	which	to	put	the	docked	stencil	window.

If	visOpenDontList	is	specified,	the	name	of	the	opened	file	doesn't	appear	in
the	list	of	recently	opened	documents	on	the	File	menu.

If	visOpenMinimized	is	specified,	the	file	opens	minimized—it	is	not	active.
This	flag	is	not	supported	in	versions	of	Visio	earlier	than	5.0b.

If	visOpenMacrosDisabled	is	specified,	the	file	opens	with	VBA	macros
disabled.	This	flag	is	not	supported	in	versions	earlier	than	Microsoft	Visio	2002.

OpenIconWindow	method

					 					

Opens	an	icon	window	that	shows	a	master's	icon.

Version	added

4.1

Syntax

objRet	=	object.OpenIconWindow
objRet A	Window	object	that	represents	the	opened	window.
object Required.	An	expression	that	returns	a	Master	object.

Remarks

If	the	master's	icon	is	already	displayed	in	an	icon	window,	the
OpenIconWindow	method	activates	that	window	rather	than	opening	another
window.

OpenSheetWindow	method

					 					

Opens	a	ShapeSheet	window	for	a	Shape	object.

Version	added

4.1

Syntax

objRet	=	object.OpenSheetWindow
objRet A	Window	object	that	represents	the	opened	window.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

The	OpenSheetWindow	method	opens	a	new	ShapeSheet	window	for	the	shape
even	if	the	information	is	already	displayed	in	another	window.

OpenStencilWindow	method

					 					

Opens	a	stencil	window	that	shows	the	masters	in	the	document.

Version	added

4.1

Syntax

objRet	=	object.OpenStencilWindow
objRet A	Window	object	that	represents	the	opened	window.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

If	the	document's	stencil	is	already	displayed	in	a	stencil	window,	the
OpenStencilWindow	method	activates	that	window	rather	than	opening	another
window.

ParseLine	method

				 				

Parses	a	line	of	Microsoft	Visual	Basic	code.

Version	added

4.5

Syntax

object.ParseLine	line
object Required.	An	expression	that	returns	a	Document	object.
line Required	String.	A	string	interpreted	as	Visual	Basic	for

Applications	(VBA)	code.

Remarks

The	ParseLine	method	tells	the	VBA	project	of	the	Document	object	to	parse
the	string.	VBA	treats	the	string	like	it	would	treat	the	same	string	typed	into	its
Immediate	window.

The	ParseLine	method	creates	a	Visual	Basic	project	in	the	document	if	one

Example

does	not	exist.	The	ParseLine	method	raises	an	exception	if	the	string	fails	to
parse.	You	can	determine	whether	the	string	has	successfully	parsed	using	the
following	technique.

Public	Sub	parse(str	As	String)
				On	Error	Resume	Next
				ThisDocument.ParseLine	str
				If	Err	=	0	Then
								MsgBox	"String	parsed	successfully"
				Else
								MsgBox	"Parse	not	successful"	
				End	If
End	Sub	

Paste	method

					 					

Pastes	the	contents	of	the	Clipboard	into	an	object.

Version	added

2002

Syntax

object.Paste	[flags]
object Required.	An	expression	that	returns	the	Page,	Shape,	or

Master	object	to	paste.
flags Optional	Variant.	Determines	how	shapes	are	translated	during

the	paste	operation.

Remarks

The	Paste	method	works	only	with	Shape	objects	that	are	group	shapes.	Use	the
Type	property	of	a	shape	to	determine	whether	it	is	a	group.

Possible	values	for	flags	are	declared	by	the	Visio	type	library	in

VisCutCopyPasteCodes,	and	are	described	in	the	following	table.

Flag Value Description
visCopyPasteNormal &H0 Default.	Shapes	are	pasted	to	the

center	of	the	active	window.
visCopyPasteNoTranslate &H1 Shapes	are	pasted	to	their	original

coordinate	locations.

Setting	flag	to	visCopyPasteNormal	is	the	equivalent	of	the	behavior	in	the	user
interface.	You	should	use	the	visCopyPasteNormal	and
visCopyPasteNoTranslate	flags	consistently.	For	example,	if	you	copy	using
visCopyPasteNoTranslate,	you	should	also	paste	using	that	value	as	it	is	the
only	way	to	ensure	that	shapes	are	pasted	to	their	original	coordinate	location.

If	you	need	to	control	the	format	of	the	pasted	information	and	(optionally)
establish	a	link	to	a	source	file	(for	example,	a	Microsoft	Word	document),	use
the	PasteSpecial	method.

Paste	method	(Characters	object)

			 				

Pastes	the	text	range	on	the	Clipboard	into	an	object.

Version	added

2.0

Syntax

object.Paste
object Required.	An	expression	that	returns	the	Characters	object	to

paste.

See	also Example

PasteSpecial	method

			 				

Inserts	the	contents	of	the	Clipboard,	allowing	you	to	control	the	format	of	the
pasted	information	and	(optionally)	establish	a	link	to	the	source	file	(for
example,	a	Microsoft	Word	document).

Version	added

2002

Syntax

object.PasteSpecial	(format	[,link][,displayAsIcon])
object Required.	An	expression	that	returns	a	Master,	Page,	or	Shape

object.
format Required	Long.	The	internal	Clipboard	format.
link Optional	Variant.	True	to	establish	a	link	to	the	source	of	the

pasted	data;	otherwise,	False	(the	default).	Ignored	if	the	source
data	is	not	suitable	for,	or	doesn't	support,	linking.

displayAsIcon Optional	Variant.	True	to	display	the	pasted	data	as	an	icon;
otherwise,	False	(the	default).

Remarks

To	simply	paste	the	contents	of	the	Clipboard	into	an	object,	use	the	Paste
method.

The	PasteSpecial	method	of	a	Shape	object	works	only	with	Shape	objects	that

See	also Example

are	group	shapes.	Use	the	Type	property	of	a	shape	to	determine	whether	it	is	a
group.

The	value	of	the	format	argument	can	be	any	of	the	following:

A	value	from	VisPasteSpecialFormat	(see	the	following	table).

Any	of	the	standard	Clipboard	formats,	for	example,	CF_TEXT.	For	details,	see
the	Microsoft	Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)
Web	site.

Any	value	returned	from	a	call	to	the	RegisterClipboardFormat	function.	For
details,	see	the	Microsoft	Platform	SDK	on	the	MSDN	Web	site.

Possible	values	for	format	declared	by	the	Visio	type	library	in
VisPasteSpecialFormat	are	described	in	the	following	table.

Flag Value
visPasteText 1
visPasteBitmap 2
visPasteMetafilePicture 3
visPasteOEMText 7
visPasteDeviceIndependentBitmap 8
visPasteEnhancedMetafile 14
visPasteOleObject 65536
visPasteRTF 65537
visPasteHyperlink 65538
visPasteURL 65539

http://msdn.microsoft.com

Point	method

					 					

Returns	a	point	at	a	position	along	a	curve.

Version	added

5.0

Syntax

object.Point(t,	x,	y)
object Required.	An	expression	that	returns	a	Curve	object.
t Required	Double.	The	value	in	the	curve's	parameter	domain	to

evaluate.
x Required	Double.	Returns	x	value	of	curve	at	t.
y Required	Double.	Returns	y	value	of	curve	at	t.

Remarks

A	Curve	object	describes	itself	in	terms	of	its	parameter	domain,	which	is	the
range	[Start(),End()].	The	Point	method	of	a	Curve	object	returns	the	x,y

coordinates	at	position	t,	which	is	any	position	along	the	curve's	path.	The	Point
method	can	be	used	to	extrapolate	the	curve's	path	outside	of	[Start(),End()].

PointAndDerivatives	method

					 					

Returns	a	point	and	derivatives	at	a	position	along	a	curve's	path.

Version	added

5.0

Syntax

object.PointAndDerivatives(t,	n,	x,	y,	dx,	dy,	ddx,	ddy)
object Required.	An	expression	that	returns	a	Curve	object.
t Required	Double.	The	value	in	the	curve's	parameter	domain	to

evaluate.
n Required	Integer.	0:	get	point;	1:	point	and	1st	derivative;	2:

point	plus	first	and	second	derivative.
x Required	Double.	Returns	x	value	of	curve	at	t.
y Required	Double.	Returns	y	value	of	curve	at	t.
dx Required	Double.	Returns	first	derivative	(dx/dt)	at	t	if	n	>	0.
dy Required	Double.	Returns	first	derivative	(dx/dt)	at	t	if	n	>	0.
ddx Required	Double.	Returns	second	derivative	(ddx/dt)	at	t	if	n	>

1.
ddy Required	Double.	Returns	second	derivative	(ddy/dt)	at	t	if	n	>

1.

Remarks

Use	the	PointAndDerivatives	method	of	the	Curve	object	to	obtain	the
coordinates	of	a	point	within	the	curve's	parameter	domain	and	its	first	and
second	derivatives.

A	Curve	object	describes	itself	in	terms	of	its	parameter	domain	which	is	the
range	[Start(),End()].	The	PointAndDerivatives	method	can	be	used	to
extrapolate	the	curve's	path	outside	[Start(),End()].

Print	method

			 				

Prints	the	contents	of	an	object	to	the	default	printer.

Version	added

2.0

Syntax

object.Print
object Required.	An	expression	that	returns	a	Page	or	Document

object	to	print.

Remarks

For	a	Document	object,	this	method	prints	all	of	the	document's	pages.
Background	pages	are	printed	on	the	same	sheet	of	paper	as	the	foreground
pages	to	which	they	are	assigned.

For	a	Page	object,	this	method	prints	the	page	and	its	background	page	(if	any)
on	the	same	sheet	of	paper.

If	you're	using	Microsoft	Visual	Basic	for	Applications	or	Visual	Basic,	you
must	assign	the	method	result	to	a	dummy	variable	and	you	must	apply	the
method	to	a	variable	of	type	Object,	not	type	Visio.Document	or	Visio.Page.
For	example,	to	print	a	document:

See	also Example

Dim	docObj	As	Visio.Document
Dim	docObjTemp	as	Object
Dim	dummy	As	String
Set	docObj	=	ThisDocument
Set	docObjTemp	=	docObj
dummy	=	docObjTemp.Print

PrintTile	method

				 				

Prints	a	single	tile	of	a	drawing	page.

Version	added

2002

Syntax

object.PrintTile	nTile
object Required.	An	expression	that	returns	a	Page	object	to	print.
nTile Required	Long.	The	number	of	tiles.

Remarks

Use	the	PrintTile	method	to	print	a	single	tile	of	a	drawing	that	spans	multiple
physical	printer	pages.

This	method	is	the	equivalent	of	clicking	the	Print	toolbar	button	when	you	are
previewing	a	single	tile	in	Print	Preview	mode.

Example

PurgeUndo	method

					 					

Empties	the	Microsoft	Visio	queue	of	undo	actions.

Version	added

5.0

Syntax

object.PurgeUndo
object Required.	An	expression	that	returns	an	Application	object.

Remarks

After	calling	the	PurgeUndo	method,	no	operation	performed	before	the	call	can
be	reversed.

QueueMarkerEvent	method

					 					

Queues	a	marker	event	that	fires	after	all	other	queued	events.

Version	added

5.0

Syntax

intRet	=	object.QueueMarkerEvent(contextString)
intRet Long.	The	sequence	number	of	the	event	that	fires	after	all

other	queued	events.
object Required.	An	expression	that	returns	an	Application	object.
contextString Required	String.	An	arbitrary	string	that	is	passed	with	the

event	that	fires.

Remarks

The	QueueMarkerEvent	method	works	in	conjunction	with	the	MarkerEvent
event	to	allow	an	Automation	client	to	queue	an	event	to	itself.	The
QueueMarkerEvent	method	causes	the	application	to	fire	a	MarkerEvent

event	after	it	has	fired	all	of	the	events	in	its	event	queue.

The	QueueMarkerEvent	method	returns	the	sequence	number	of	the
MarkerEvent	event	to	fire,	and	the	string	passed	to	the	QueueMarkerEvent
method	(legally	empty)	is	passed	to	the	MarkerEvent	event	handler.

A	client	program	can	use	either	the	sequence	number	or	the	string	to	correlate
QueueMarkerEvent	calls	with	MarkerEvent	events.	In	this	way,	the	client	is
able	to	distinguish	events	it	caused	and	events	it	did	not	cause.

Quit	method

				 				

Closes	the	indicated	instance	of	Microsoft	Visio.

Version	added

2.0

Syntax

object.Quit
object Required.	An	expression	that	returns	an	Application	object.

Remarks

If	the	Quit	method	is	invoked	when	a	document	with	unsaved	changes	is	open,	a
dialog	box	appears	asking	if	you	want	to	save	the	document.	To	quit	the
application	without	saving	and	seeing	the	dialog	box,	set	the	Saved	property	of
the	Document	object	representing	the	document	to	True	immediately	before
quitting.	Set	the	Saved	property	to	True	only	if	you	are	sure	you	want	to	close
the	document	without	saving	changes.

Example

Redo	method

					 					

Reverses	the	most	recent	undo	unit.

Version	added

2.0

Syntax

object.Redo
object Required.	An	expression	that	returns	an	Application	object.

Remarks

To	reverse	the	effect	of	the	Undo	method,	use	the	Redo	method.	For	example,	if
you	clear	an	item	and	restore	it	with	the	Undo	method,	use	the	Redo	method	to
clear	the	item	again.

You	cannot	invoke	the	Redo	method	from	code	that	is	executing	inside	the	scope
of	an	open	undo	unit.	Code	is	in	the	scope	of	an	open	undo	unit	if	it	is	one	of	the
following:

A	macro	or	add-on	invoked	by	the	Visio	user	interface.

In	an	event	handler	responding	to	a	Visio	event	other	than	the	VisioIsIdle	event.

In	a	user-created	undo	scope.	If	you	call	the	Redo	method	from	code	inside	the
scope	of	an	open	undo	unit,	it	will	raise	an	exception.

The	Redo	method	also	raises	an	exception	if	the	Visio	instance	is	presently
performing	an	undo	or	redo.	To	determine	whether	the	Visio	instance	is	undoing
or	redoing	use	the	IsUndoingOrRedoing	property.

You	can	call	the	Redo	method	from	the	VisioIsIdle	event	handler	because	the
VisioIsIdle	event	can	only	fire	when	the	IsUndoingOrRedoing	property	is
False.	You	can	also	call	the	Redo	method	from	code	not	invoked	by	the	Visio
instance,	for	example,	code	invoked	from	the	Visual	Basic	Editor	or	from	an
external	program.

Remove	method

			 				

Removes	a	shape	from	a	layer.

Version	added

4.0

Syntax

object.Remove	shapeObj,	fPreserveMembers
object Required.	An	expression	that	returns	a	Layer	object.
shapeObj Required.	An	expression	that	returns	the	Shape	object	to

remove.
fPreserveMembers Required	Integer.	Flag	that	indicates	whether	to	remove

members	of	a	group.

Remarks

If	the	shape	is	a	group	and	fPreserveMembers	is	non-zero,	member	shapes	of	the
group	are	unaffected.	If	fPreserveMembers	is	zero	(0),	the	group's	member
shapes	are	also	removed	from	the	layer.

Removing	a	shape	from	a	layer	does	not	delete	the	shape.

See	also Example

RemoveFromGroup	method

				 				

Removes	selected	shapes	from	a	group.

Version	added

2.0

Syntax

object.RemoveFromGroup
object Required.	An	expression	that	returns	a	Selection	object.

Example

RenameCurrentScope	method

				 				

Renames	the	top-level	open	undo	scope.

Version	added

2002

Syntax

object.RenameCurrentScope	bstrScopeName
object Required.	An	expression	that	returns	an	Application	object	that

contains	the	undo	scope.
bstrScopeName Required	String.	The	new	name	of	the	undo	scope.

Remarks

The	new	name	assigned	to	the	undo	scope	appears	on	the	Undo	menu	as	the
item	name.	If	there	is	no	open	undo	scope,	the	RenameCurrentScope	method
raises	an	exception.

Example

ResizeToFitContents	method

			 				

Resizes	the	page,	or	the	master's	page,	to	fit	tightly	around	the	shapes	or	master
that	are	on	it.

Version	added

2002

Syntax

object.ResizeToFitContents
object Required.	An	expression	that	returns	a	Master	or	Page	object.

Remarks

After	the	page	is	resized,	the	page	height	and	width,	and	the	PinX	and	PinY
values	of	the	shapes	or	master	are	typically	changed.

The	ResizeToFitContents	method	is	the	equivalent	of	clicking	Size	to	fit
drawing	contents	on	the	Page	Size	tab	in	the	Page	Setup	dialog	box	(on	the
File	menu,	click	Page	Setup).

See	also Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm

ReverseEnds	method

				 				

Reverses	an	object	by	flipping	it	both	horizontally	and	vertically.

Version	added

2.0

Syntax

object.ReverseEnds
object Required.	An	expression	that	returns	the	Shape	or	Selection

object	to	reverse.

Example

Rotate90	method

				 				

Rotates	an	object	90	degrees	counterclockwise.

Version	added

2.0

Syntax

object.Rotate90
object Required.	An	expression	that	returns	the	Shape	or	Selection

object	to	rotate.

Example

Run	method

			 				

Runs	the	add-on	represented	by	an	Addon	object.

Version	added

4.0

Syntax

object.Run	argString
object Required.	An	expression	that	returns	an	Addon	object.
argString Required	String.	The	argument	string	to	pass	to	the	add-on.

Remarks

If	the	add-on	is	implemented	by	an	EXE	file,	the	arguments	are	passed	in	the
command	line	string.	If	the	add-on	is	implemented	by	a	VSL	file,	the	arguments
are	passed	in	a	field	of	the	argument	structure	that	accompanies	the	run	message
sent	to	the	VSL's	VisioLibMain	procedure.

See	also Example

Save	method

				 				

Saves	a	document.

Version	added

2.0

Syntax

object.Save
object Required.	An	expression	that	returns	a	Document	object.

Remarks

Use	the	SaveAs	method	to	save	and	name	a	new	document.	Until	a	document
has	been	saved,	the	Save	method	generates	an	error.

Example

SaveAs	method

					 					

Saves	a	document	with	a	file	name.

Version	added

2.0

Syntax

object.SaveAs	fileName
object Required.	An	expression	that	returns	a	Document	object.
fileName Required	String.	The	file	name	for	the	document.

Remarks

The	SaveAs	method	can	accept	drive	names	using	the	universal	naming
convention	(UNC),	for	example,	\\corporation\marketing.

Beginning	with	Visio	2002,	you	can	save	your	drawing	as	an	XML	drawing
(.vdx),	an	XML	stencil	(.vsx),	or	an	XML	template	(.vtx).

SaveAsEx	method

					 					

Saves	a	document	with	a	file	name	using	extra	information	passed	in	an
argument.

Version	added

4.0

Syntax

object.SaveAsEx	fileName,	saveFlags
object Required.	An	expression	that	returns	a	Document	object.
fileName Required	String.	The	file	name	for	the	document.
saveFlags Required	Integer.	How	to	save	the	file.

Remarks

The	SaveAsEx	method	is	identical	to	the	SaveAs	method,	except	that	it	provides
an	extra	argument	in	which	the	caller	can	specify	how	the	document	is	to	be
saved.

The	saveFlags	argument	should	be	a	combination	of	the	following	values.

Constant Value Description
visSaveAsRO &H1 The	document	is	saved	as	read-only.
visSaveAsWS &H2 The	current	workspace	is	saved	with

the	file.
visSaveAsListInMRU &H4 The	document	is	included	in	the

Most	Recently	Used	(MRU)	list.	By
default,	Save	and	SaveAs	do	not
place	the	document	into	the	MRU
list.

SaveToFile	method

					 					

Saves	the	user	interface	represented	by	a	UIObject	object	in	a	file.

Version	added

4.0

Syntax

object.SaveToFile	fileName
object Required.	An	expression	that	returns	the	UIObject	object	to

save	to	the	file.
fileName Required	String.	The	name	of	the	file	in	which	to	save	the

UIObject	object.

Remarks

The	file	can	be	loaded	into	the	application	by	using	the	LoadFromFile	method
of	a	UIObject	object.

Note	Beginning	with	Visio	2000,	you	can	customize	the	user	interface	by	right-

clicking	the	toolbar,	and	then	clicking	Customize	on	the	shortcut	menu.	Changes
you	make	to	the	interface	persist	when	you	close	the	application—they	are
stored	with	the	Application	object	and	in	a	file	named	Custom.vsu,	which	is
stored	as	Application	Data	in	the	current	user's	User	Profile.

SaveWorkspaceAs	method
			 			

Beginning	with	Microsoft	Visio	2002,	this	method	is	obsolete.

Remarks

In	versions	earlier	than	2002,	SaveWorkSpaceAs	saved	the	workspace	into	a
VSW	file.

See	also Example Applies	to

Scroll	method

				 				

Scrolls	the	contents	of	a	window	vertically,	horizontally,	or	both.

Version	added

2000

Syntax

object.Scroll	(longFlagsX,	longFlagsY)
object Required.	An	expression	that	returns	a	Window	object.
longFlagsX Required	Long.	Indicates	how	to	scroll	horizontally.
longFlagsY Required	Long.	Indicates	how	to	scroll	vertically.

Remarks

Constants	representing	ways	to	scroll	are	declared	by	the	Visio	type	library	in
VisWindowScrollX	and	VisWindowScrollY.

Values	of	longFlagsX

Example

Values	of	longFlagsY

If	the	Window	object	is	not	a	built-in	MDI	or	built-in	docked	stencil	type,	then
the	Scroll	method	raises	an	exception.

ScrollViewTo	method

				 				

Scrolls	a	window	to	a	particular	page	coordinate.

Version	added

2000

Syntax

object.ScrollViewTo	(doubleX,	doubleY)
object Required.	An	expression	that	returns	a	Window	object.
doubleX Required	Double.	The	x-coordinate	to	which	to	scroll.
doubleY Required	Double.	The	y-coordinate	to	which	to	scroll.

Remarks

The	ScrollViewTo	method	scrolls	to	the	doubleX	and	doubleY	coordinates.

If	the	value	of	the	Window	object's	Type	property	is	not	visDrawing,	then	the
method	raises	an	exception.

Example

Select	method

					 					

Selects	or	deselects	an	object.

Version	added

2.0

Syntax

object.Select	addObj,	selectType
object Required.	An	expression	that	returns	a	Window	or	Selection

object	that	contains	the	shapes.
addObj Required.	An	expression	that	returns	a	Shape	object	to	select	or

deselect.
selectType Required	Integer.	The	type	of	selection	to	make.

Remarks

When	used	with	the	Window	object,	the	Select	method	will	affect	the	selection
in	the	Visio	window.	The	Selection	object,	however,	is	independent	of	the
selection	in	the	window.	Therefore,	using	the	Select	method	with	a	Selection

object	only	affects	the	state	of	the	object	in	memory—the	Visio	window	is
unaffected.

The	following	constants	declared	by	the	Visio	type	library	show	valid	values	for
selection	types.

Constant Value
visDeselect 1
visSelect 2
visSubSelect 3
visSelectAll 4
visDeselectAll 256

You	can	combine	visDeselectAll	with	visSelect	and	visSubSelect	to	deselect	all
shapes	prior	to	selecting	or	subselecting	other	shapes.

If	the	object	being	operated	on	is	a	Selection	object,	and	the	Select	method
selects	a	Shape	object	whose	ContainingShape	property	is	different	than	the
ContainingShape	property	of	the	Selection	object,	then	the	Select	method
deselects	everything,	even	if	the	selection	type	value	doesn't	specify	deselection.

SelectAll	method

					 					

Selects	all	possible	shapes	in	a	window	or	selection.

Version	added

2.0

Syntax

object.SelectAll
object Required.	An	expression	that	returns	a	Window	or	Selection

object	that	contains	the	shapes.

Remarks

All	shapes	that	can	be	selected	are	immediate	children	of	the	selection's
containing	shape.

SendBackward	method

					 					

Moves	a	shape	or	selected	shapes	back	one	position	in	the	z-order.

Version	added

2.0

Syntax

object.SendBackward
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	to	send	backward.

SendToBack	method

					 					

Moves	the	shape	or	selected	shapes	to	the	back	of	the	z-order.

Version	added

2.0

Syntax

object.SendToBack
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	to	send	to	the	back.

SetBegin	method

				 				

Moves	the	begin	point	of	a	one-dimensional	(1-D)	shape	to	the	coordinates
represented	by	x	and	y.

Version	added

2.0

Syntax

object.SetBegin	x,	y
object Required.	An	expression	that	returns	a	Shape	object.
x Required	Double.	The	new	x-coordinate	of	the	begin	point.
y Required	Double.	The	new	y-coordinate	of	the	begin	point.

Remarks

The	SetBegin	method	only	applies	to	1-D	shapes.	If	the	indicated	shape	is	a	2-D
shape,	an	error	is	generated.

The	coordinates	represented	by	the	x	and	y	arguments	are	parent	coordinates,

Example

measured	from	the	origin	of	the	shape's	parent	(the	page	or	group	that	contains
the	shape).

SetCenter	method

				 				

Moves	a	shape	so	that	its	pin	is	positioned	at	the	coordinates	represented	by	x
and	y.

Version	added

2.0

Syntax

object.SetCenter	x,	y
object Required.	An	expression	that	returns	a	Shape	object.
x Required	Double.	The	new	x-coordinate	of	the	center	of

rotation	(PinX).
y Required	Double.	The	new	y-coordinate	of	the	center	of

rotation	(PinY).

Remarks

The	coordinates	represented	by	the	x	and	y	arguments	are	parent	coordinates,
measured	from	the	origin	of	the	shape's	parent	(the	page	or	group	that	contains

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm

the	shape).

The	SetCenter	method	only	moves	the	point,	in	parent	coordinates,	about	which
the	shape	rotates.	It	does	not	change	the	point,	in	local	coordinates,	about	which
the	shape	rotates.

SetCustomMenus	method

					 					

Replaces	the	current	built-in	or	custom	menus	of	an	application	or	document.

Version	added

4.0

Syntax

object.SetCustomMenus	UIObject
object Required.	An	expression	that	returns	an	Application	or

Document	object	to	receive	the	custom	menus.
UIObject Required.	An	expression	that	returns	a	UIObject	object	that

represents	the	new	custom	menus.

Remarks

If	the	UIObject	object	was	created	in	a	separate	process	by	using	the
CreateObject	procedure	instead	of	getting	the	appropriate	property	of	an
Application	or	Document	object,	the	SetCustomMenus	method	returns	an
error.

SetCustomToolbars	method

					 					

Replaces	the	current	built-in	or	custom	toolbars	of	an	application	or	document.

Version	added

4.0

Syntax

object.SetCustomToolbars	UIObject
object Required.	An	expression	that	returns	an	Application	or

Document	object	to	receive	the	custom	toolbars.
UIObject Required.	An	expression	that	returns	a	UIObject	object	that

represents	the	new	custom	toolbars.

Remarks

If	the	UIObject	object	was	created	in	a	separate	process	by	using	the
CreateObject	procedure	instead	of	getting	the	appropriate	property	of	an
Application	or	Document	object,	the	SetCustomToolbars	method	returns	an
error.

SetEnd	method

				 				

Moves	the	end	point	of	a	one-dimensional	(1-D)	shape	to	the	coordinates
represented	by	x	and	y.

Version	added

2.0

Syntax

object.SetEnd	x,	y
object Required.	An	expression	that	returns	a	Shape	object.
x Required	Double.	The	new	x-coordinate	of	the	end	point.
y Required	Double.	The	new	y-coordinate	of	the	end	point.

Remarks

The	SetEnd	method	applies	only	to	1-D	shapes.	If	the	indicated	shape	is	a	2-D
shape,	an	error	is	returned.

The	coordinates	represented	by	the	x	and	y	arguments	are	parent	coordinates,

Example

measured	from	the	origin	of	the	shape's	parent	(the	page	or	group	that	contains
the	shape).

SetFilterCommands	method

				 				

Specifies	an	array	of	command	ranges	and	a	True	or	False	value	indicating	how
to	filter	events	for	each	command	range.

Version	added

2002

Syntax

object.SetFilterCommands	commands
object Required.	An	expression	that	returns	an	Event	object.
commands Required	Long.	An	array	of	command	ranges	and	a	True	or

False	value	specifying	how	to	filter	events	for	each	command
range.

Remarks

When	an	Event	object	created	with	the	AddAdvise	method	is	added	to	the
EventList	collection	of	a	source	object,	the	default	behavior	is	that	all
occurrences	of	that	event	are	passed	to	the	event	sink.	The	SetFilterCommands

Example

method	provides	a	way	of	ignoring	selected	events	based	on	command	ID.

The	commands	argument	passed	to	SetFilterCommands	is	an	array	defined	in
the	following	way.

The	number	of	elements	in	commands	is	a	multiple	of	3:

The	first	element	contains	the	beginning	command	ID	of	the	range	(any	member
of	VisUICmds).

The	second	element	contains	the	end	command	ID	of	the	range	(any	member	of
VisUICmds).

The	third	element	contains	a	True	or	False	value,	which	indicates	whether	you
are	listening	to	events	for	that	command	range	(True	to	listen	to	events;	False
to	exclude	events).

For	an	event	to	successfully	pass	through	a	command	filter,	it	must	satisfy	the
following	criteria:

It	must	have	a	valid	command	ID.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	in	the	array,	events	are	considered	True.

For	example,	to	set	up	an	array	that	blocks	out	a	single	command,	use	the
following:

Dim	cmdArray	(1	*	3)	As	Long
'Ignore	the	layout	command
cmdArray(1)	=	visCmdLayoutDynamic
cmdArray(2)	=	visCmdLayoutDynamic
cmdArray(3)	=	False

Or,	to	set	up	an	array	that	listens	only	to	the	Send	to	Back	command:

Dim	cmdArray	(3	*	3)	As	Long
'	Pay	attention	to	the	Send	To	Back	command
cmdArray(1)	=	visCmdObjectSendToBack
cmdArray(2)	=	visCmdObjectSendToBack
cmdArray(3)	=	True
'Ignore	any	command	IDs	before	the	Send	To	Back	command
commands(4)	=	visCmdCMDFIRST
commands(5)	=	visCmdObjectSendToBack	-	1
cmdArray(6)	=	False
'Ignore	any	command	IDs	after	the	Send	To	Back	command
commands(4)	=	visCmdObjectSendToBack	+	1
commands(5)	=	visCmdCMDLAST
commands(6)	=	False	

SetFilterObjects	method

				 				

Specifies	an	array	of	object	types	and	a	True	or	False	value	indicating	how	to
filter	events	for	each	object.

Version	added

2002

Syntax

object.SetFilterObjects	objects
object Required.	An	expression	that	returns	an	Event	object.
objects Required	Long.	An	array	of	objects	types	and	a	True	or	False

value	specifying	how	to	filter	events	for	each	object	type.

Remarks

When	an	Event	object	created	with	the	AddAdvise	method	is	added	to	the
EventList	collection	of	a	source	object,	the	default	behavior	is	that	all
occurrences	of	that	event	are	passed	to	the	event	sink.	The	SetFilterObjects
method	provides	a	way	to	ignore	selected	events	based	on	object	type.

Example

The	objects	argument	passed	to	SetFilterObjects	is	an	array	defined	in	the
following	manner.

The	number	of	elements	in	the	array	is	a	multiple	of	2:

The	first	element	contains	an	object	type	(one	of	visTypePage,	visTypeGroup,
visTypeShape,	visTypeForeignObject,	visTypeGuide,	or	visTypeDoc).

The	second	element	contains	a	True	or	False	value	indicating	whether	you	are
listening	to	events	for	that	object	(True	to	listen	to	an	object's	events;	False	to
exclude	an	object's	events).

For	an	event	to	successfully	pass	through	an	object	event	filter,	it	must	satisfy
the	following	criteria:

It	must	be	a	valid	object	type.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	defined	in	the	array,	events	are	considered	True.

For	example,	if	you	want	to	listen	only	to	events	sourced	by	a	shape	or	guide,
you	can	pass	an	array	like	the	following:

Dim	objArray	(2	*	2)	As	Long
objArray(1)	=	visTypeShape
objArray(2)	=	True
objArray(3)	=	visTypeGuide
objArray(4)	=	True

SetFilterSRC	method

				 				

Specifies	an	array	of	cell	ranges	and	a	True	or	False	value	indicating	how	to
filter	events	for	each	cell	range.

Version	added

2002

Syntax

object.SetFilterSRC	SRCStream
object Required.	An	expression	that	returns	an	Event	object.
SRCStream Required	Integer.	An	array	of	cell	ranges	and	a	True	or	False

value	specifying	how	to	filter	events	for	each	range.

Remarks

When	an	Event	object	created	with	the	AddAdvise	method	is	added	to	the
EventList	collection	of	a	source	object,	the	default	behavior	is	that	all
occurrences	of	that	event	are	passed	to	the	event	sink.	The	SetFilterSRC
method	provides	a	way	to	ignore	selected	events	based	on	a	range	of	cells.

Example

The	SRCStream	argument	passed	to	SetFilterCommands	is	an	array	defined	in
the	following	manner:

The	number	of	elements	in	the	array	is	a	multiple	of	7:

The	first	three	elements	describe	the	section,	row,	and	cell	of	the	beginning	cell
of	the	range.

The	next	three	elements	describe	the	section,	row,	and	cell	of	the	end	cell	of	the
range.

The	last	element	contains	a	True	or	False	value	indicating	how	to	filter	events
for	the	cell	range	(True	to	listen	to	events	for	a	range	of	cells;	False	to	exclude
events	for	a	range	of	cells).

For	an	event	to	successfully	pass	through	a	cell	range	filter,	it	must	satisfy	the
following	criteria:

It	must	be	a	valid	section,	row,	cell	reference.

If	all	filters	are	True,	the	event	must	match	at	least	one	filter.

If	all	filters	are	False,	the	event	must	not	match	any	filter.

If	the	filters	are	a	mixture	of	True	and	False,	the	event	must	match	at	least	one
True	filter	and	not	match	any	False	filters.

If	there	are	no	True	ranges	defined	in	the	array,	events	are	considered	True.

For	example,	if	you	want	to	listen	for	any	changes	in	the	Value	cell	of	the	second
row	in	the	Custom	Property	section,	use	the	following:

Dim	srcArray	(1	*	7)	As	Long
srcArray(1)	=	visSectionProp
srcArray(2)	=	visRowProp	+	1
srcArray(3)	=	visCustPropsValue
srcArray(4)	=	visSectionProp
srcArray(5)	=	visRowProp	+	1

srcArray(6)	=	visCustPropsValue
srcArray(7)	=	True

SetFormulas	method

					 					

Sets	the	formulas	of	one	or	more	cells.

Version	added

4.5

Syntax

intRet	object.SetFormulas	SID_SRCStream,	formulas,	flags
intRet Integer.	Number	of	SID_SRCStream	entries	which	processed

successfully.
object Required.	An	expression	that	returns	a	Page,	Master,	Shape,	or

Style	object	whose	cells	are	to	be	modified.
SID_SRCStream Required	Integer.	Stream	identifying	cells	to	be	modified.
formulas Required	Variant.	Formulas	to	be	assigned	to	identified	cells.
flags Required	Integer.	Flags	that	influence	the	behavior	of

SetFormulas.

Remarks

The	SetFormulas	method	behaves	like	the	Formula	property,	except	you	can
use	it	to	set	the	formulas	of	many	cells	at	once,	rather	than	one	cell	at	a	time.

For	Shape	or	Style	objects,	you	can	use	the	SetFormulas	method	to	set	results
of	any	set	of	cells.

For	Page	or	Master	objects,	you	can	use	the	SetFormulas	method	to	set	results
of	any	set	of	cells	in	any	set	of	shapes	of	the	page	or	master.

In	both	of	these	cases,	you	tell	the	SetFormulas	method	which	cells	you	want	to
set	by	passing	an	array	of	integers	in	SID_SRCStream.	SID_SRCStream	is	a	one-
dimensional	array	of	2-byte	integers.

For	Shape	and	Style	objects,	SID_SRCStream	should	be	a	one-dimensional
array	of	3n	2-byte	integers	for	n	>=	1.	The	SetFormulas	method	interprets	the
stream	as:

{	sectionIdx,	rowIdx,	cellIdx	}n

where	sectionIdx	is	the	section	index	of	the	desired	cell,	rowIdx	is	its	row
index,	and	cellIdx	is	its	cell	index.

For	Page	and	Master	objects	SID_SRCStream	should	be	a	one-dimensional
array	of	4n	2-byte	integers	for	n	>=	1.	The	SetFormulas	method	interprets	the
stream	as:

{	sheetID,	sectionIdx,	rowIdx,	cellIdx	}n

where	sheetID	is	the	ID	property	of	the	Shape	object	on	the	page	or	master
whose	cell	result	is	to	be	modified.

If	the	sheetID	in	an	entry	is	visInvalShapeID	(-1)	or	if	the	bottom	byte	of
sectionIdx	is	visSectionInval	(255),	then	the	entry	is	ignored	by	the
SetResults	method.	The	motivation	for	this	is	that	the	same	SID_SRCStream
array	can	be	used	on	several	calls	to	SetFormulas,	GetFormulas,	and	similar
methods	with	the	caller	only	needing	to	make	minor	changes	to	the	stream
between	calls.

The	formulas	argument	should	be	a	one-dimensional	array	of	1	<=	m	variants.
Each	Variant	should	be	a	String,	a	reference	to	a	String,	or	Empty.	If

formulas(i)	is	empty,	then	the	i'th	cell	will	be	set	to	the	formula	in	formulas(j),
where	j	is	the	index	of	the	most	recent	prior	entry	which	is	not	empty.	If	there	is
no	prior	entry	that	is	not	empty,	the	corresponding	cell	is	not	altered.	If	fewer
formulas	than	cells	are	specified	(m	<	n),	then	the	i'th	cell,	i	>	m,	will	be	set	to
the	same	formula	as	was	chosen	to	set	the	m'th	cell	to.	Thus	to	set	many	cells	to
the	same	formula,	you	need	only	pass	one	copy	of	the	formula.

The	flags	argument	should	be	a	bit	mask	of	the	following	values.

Constant Value Description
visSetBlastGuards &H2 Override	present	cell	values

even	if	they're	guarded.
visSetTestCircular &H4 Test	for	establishment	of

circular	cell	references.
visSetUniversalSyntax &H8 Formulas	are	in	universal

syntax.

The	value	returned	by	the	SetFormulas	method	is	the	number	of	entries	in
SID_SRCStream	that	were	successfully	processed.	If	i	<	n	entries	process
correctly,	but	an	error	occurs	on	the	i	+	1st	entry,	then	the	SetFormulas	method
raises	an	exception	and	returns	i.	Otherwise,	n	is	returned.

SetResults	method

					 					

Sets	the	results	or	formulas	of	one	or	more	cells.

Version	added

4.5

Syntax

intRet	object.SetResults	SID_SRCStream,	units,	results,	flags
intRet Integer.	Number	of	SID_SRCStream	entries	which	processed

successfully.
object Required.	An	expression	that	returns	a	Page,	Master,	Shape,	or

Style	whose	cells	are	to	be	modified.
SID_SRCStream Required	Integer.	An	array	identifying	cells	to	be	modified.
units Required	Variant.	Measurement	units	to	be	attributed	to	entries	in

results	array.
results Required	Variant.	Results	or	formulas	to	be	assigned	to	identified

cells.
flags Required	Integer.	Flags	that	influence	the	behavior	of	SetResults

Remarks

The	SetResults	method	is	like	the	Result	method	of	a	Cell	object,	except	that	it
can	be	used	to	set	the	results	(values)	of	many	cells	at	once,	rather	than	one	cell
at	a	time.

For	Shape	or	Style	objects,	you	can	use	the	SetResults	method	to	set	results	of
any	set	of	cells.

For	Page	or	Master	objects,	you	can	use	the	SetResults	method	to	set	results	of
any	set	of	cells	in	any	set	of	shapes	of	the	page	or	master.

In	both	of	these	cases,	you	tell	the	SetResults	method	which	cells	you	want	to
set	by	passing	an	array	of	integers	in	SID_SRCStream.	SID_SRCStream	is	a	one-
dimensional	array	of	2-byte	integers.

For	Shape	and	Style	objects	SID_SRCStream	should	be	a	one-dimensional	array
of	3n	2-byte	integers	for	n	>=	1.	The	SetResults	method	interprets	the	stream
as:

{	sectionIdx,	rowIdx,	cellIdx	}n

where	sectionIdx	is	the	section	index	of	the	desired	cell,	rowIdx	is	its	row
index,	and	cellIdx	is	its	cell	index.

For	Page	and	Master	objects	SID_SRCStream	should	be	a	one-dimensional
array	of	4n	2-byte	integers	for	n	>=	1.	The	SetResults	method	interprets	the
stream	as:

{	sheetID,	sectionIdx,	rowIdx,	cellIdx	}n

where	sheetID	is	the	ID	property	of	the	Shape	object	on	the	page	or	master
whose	cell	result	is	to	be	modified.

If	the	sheetID	in	an	entry	is	visInvalShapeID	(-1)	or	if	the	bottom	byte	of
sectionIdx	is	visSectionInval	(255),	then	the	entry	is	ignored	by	the
SetResults	method.	The	motivation	for	this	is	that	the	same	SID_SRCStream
array	can	be	used	on	several	calls	to	SetResults,	GetResults,	and	similar
methods	with	the	caller	only	needing	to	make	minor	changes	to	the	stream
between	calls.

The	units	array	controls	what	measurement	units	individual	entries	in	results	are
in.	Each	entry	in	the	array	can	be	a	string	such	as	"inches",	"inch",	"in.",	or	"i".
Strings	may	be	used	for	all	supported	Visio	units	such	as	centimeters,	meters,
miles,	and	so	on.	You	can	also	indicate	desired	units	with	integer	constants
(visCentimeters,	visInches,	etc.)	declared	by	the	Visio	type	library	in
VisUnitCodes.	For	a	list	of	constants	used	for	units	of	measure,	see	About	units
of	measure.	Note	that	the	values	specified	in	the	units	array	have	no	effect	if
visSetFormulas	is	set	in	flags.

If	not	empty,	we	expect	units	to	be	a	one-dimensional	array	of	1	<=	u	variants.
Each	entry	can	be	a	string	or	integer	code,	or	empty	(nothing).	If	the	i'th	entry	is
empty,	then	the	i'th	entry	in	results	is	in	the	units	designated	by	units(j),	where	j
is	the	most	recent	prior	entry	that	is	not	empty.	Thus	if	you	want	all	entries	in
results	to	be	interpreted	in	the	same	units,	then	you	need	only	pass	a	units	array
with	one	entry.	If	there	is	no	prior	entry	that	is	not	empty,	or	if	no	units	array	is
supplied,	then	visNumber	(0x20)	will	be	used.	This	causes	the	application	to
default	to	internal	units	(like	the	ResultIU	property	of	a	Cell	object).

The	results	argument	should	be	a	one-dimensional	array	of	1	<=	m	variants.	A
result	can	be	passed	as	Double,	Integer,	String,	or	a	reference	to	a	String.
Strings	are	accepted	only	if	visSetFormulas	is	set	in	flags,	in	which	case	strings
are	interpreted	as	formulas.	If	results(i)	is	empty,	then	the	i'th	cell	will	be	set	to
the	value	in	results(j),	where	j	is	the	index	of	the	most	recent	prior	entry	which	is
not	empty.	If	there	is	no	prior	entry	that	is	not	empty,	the	corresponding	cell	is
not	altered.	If	fewer	results	than	cells	are	specified	(m	<	n),	then	the	i'th	cell,	i	<
m,	will	be	set	to	the	same	value	as	was	chosen	to	set	the	m'th	cell	to.	Thus	to	set
many	cells	to	the	same	value,	you	need	only	pass	one	copy	of	the	value.

The	flags	argument	should	be	a	bit	mask	of	the	following	values.

Constant Value Description
visSetFormulas &H1 Treat	strings	in	results	as

formulas.
visSetBlastGuards &H2 Override	present	cell	values

even	if	they're	guarded.
visSetTestCircular &H4 Test	for	establishment	of

circular	cell	references.
visSetUniversalSyntax &H8 Formulas	are	in	universal

syntax

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

The	value	returned	by	the	SetResults	method	is	the	number	of	entries	in
SID_SRCStream	that	were	successfully	processed.	If	i	<	n	entries	process
correctly,	but	an	error	occurs	on	the	i	+	1st	entry,	then	the	SetResults	method
raises	an	exception	and	returns	i.	Otherwise,	n	is	returned.

SetViewRect	method

				 				

Sets	the	page	coordinates	of	a	window's	borders	by	adjusting	the	zoom	level	and
center	scroll	position.

Version	added

2000

Syntax

object.SetViewRect	dLeft,	dTop,	dWidth,	dHeight
object Required.	An	expression	that	returns	a	Window	object.
dLeft Required	Double.	The	page	coordinate	of	the	left	side	of	the

window.
dTop Required	Double.	The	page	coordinate	of	the	top	of	the

window.
dWidth Required	Double.	The	distance	in	page	units	from	the	left	side

to	the	right	side	of	the	window.
dHeight Required	Double.	The	distance	in	page	units	from	the	top	to	the

bottom	of	the	window.

Example

Remarks

If	the	Window	object	is	not	a	visDrawing	type,	then	the	SetViewRect	method
raises	an	exception.

SetWindowRect	method

				 				

Sets	the	size	and	position	of	the	client	area	of	a	window.

Version	added

2000

Syntax

object.SetWindowRect	nLeft,	nTop,	nWidth,	nHeight
object Required.	An	expression	that	returns	a	Window	object.
nLeft Required	Long.	The	coordinate	of	the	left	side	of	the	window.
nTop Required	Long.	The	coordinate	of	the	top	of	the	window.
nWidth Required	Long.	The	distance	in	pixels	from	the	left	side	to	the

right	side	of	the	window.
nHeight Required	Long.	The	distance	in	pixels	from	the	top	to	the

bottom	of	the	window.

Remarks

Example

The	SetWindowRect	method	sets	the	size	and	position	of	the	client	area	of	the
window	with	respect	to	the	window	that	owns	the	Windows	collection	to	which
it	belongs.	For	the	Windows	collection	of	an	Application	object,	the	"with
respect	to"	window	is	the	MDICLIENT	window	of	the	Visio	main	window.	For
the	Windows	collection	of	a	Window	object,	the	"with	respect	to"	window	is	the
client	area	of	the	drawing	window.

Subtract	method

				 				

Subtracts	the	areas	that	overlap	the	selected	shape.

Version	added

4.0

Syntax

object.Subtract
object Required.	An	expression	that	returns	a	Selection	object	that

contains	the	shapes	to	subtract.

Remarks

The	Subtract	method	is	equivalent	to	clicking	Subtract	on	the	Operations
submenu	on	the	Shape	menu	in	Visio.	The	first	selected	shape	is	the	one	that
will	have	the	other	selected	shapes	subtracted	from	it.	The	other	shapes	will	be
deleted	and	no	shapes	are	selected	when	the	operation	is	complete.

Example

SwapEnds	method

			 				

Swaps	the	begin	and	end	points	of	a	one-dimensional	(1-D)	shape.

Version	added

2002

Syntax

object.SwapEnds
object Required.	An	expression	that	returns	a	Selection	or	Shape

object.

Remarks

The	type	of	glue	associated	with	the	endpoints	is	also	swapped.	For	example,	if
the	begin	point	of	a	1-D	shape	is	glued	to	object	A	and	the	end	point	of	the	1-D
shape	is	not	glued,	then,	after	invoking	the	SwapEnds	method,	the	end	point
will	be	glued	to	object	A	and	the	begin	point	will	not	be	glued.

See	also Example

TransformXYFrom	method

				 				

Transforms	a	point	expressed	in	the	local	coordinate	system	of	one	Shape	object
from	an	equivalent	point	expressed	in	the	local	coordinate	system	of	another
Shape	object.

Version	added

2000

Syntax

object.TransformXYFrom	OtherShape,	x,	y,	xprime,	yprime
object Required.	An	expression	that	returns	a	Shape	object	whose	local

coordinate	system	you	are	transforming	the	point	to.
OtherShape Required.	An	expression	that	returns	a	Shape	object	whose	local

coordinate	system	you	are	transforming	the	point	from.
x Required	Double;	x-coordinate	corresponding	to	x	in	the

OtherShape	coordinate	system.
y Required	Double;	y-coordinate	corresponding	to	y	in	the

OtherShape	coordinate	system.

Example

xprime Required	Double;	x-coordinate	in	coordinate	system	of	object.
yprime Required	Double;	y-coordinate	in	coordinate	system	of	object.

Remarks

The	points	x,	y,	xprime,	and	yprime	are	all	treated	as	internal	drawing	units.

An	exception	is	raised	if	object	is	not	a	Shape	object	of	a	Page	or	Master
object,	or	if	OtherShape	is	not	in	the	same	Page	or	Master	object	as	object.

TransformXYTo	method

				 				

Transforms	a	point	expressed	in	the	local	coordinate	system	of	one	Shape	object
to	an	equivalent	point	expressed	in	the	local	coordinate	system	of	another	Shape
object.

Version	added

2000

Syntax

object.TransformXYTo	OtherShape,	x,	y,	xprime,	yprime
object Required.	An	expression	that	returns	a	Shape	object	whose	local

coordinate	system	you	are	transforming	the	point	from.
OtherShape Required.	An	expression	that	returns	a	Shape	object	whose	local

coordinate	system	you	are	transforming	the	point	to.
x Required	Double;	x-coordinate	in	coordinate	system	of	object.
y Required	Double;	y-coordinate	in	coordinate	system	of	object.
xprime Required	Double;	x-coordinate	corresponding	to	x	in	the

OtherShape	coordinate	system.

Example

yprime Required	Double;	y-coordinate	corresponding	to	y	in	the
OtherShape	coordinate	system.

Remarks

The	points	x,	y,	xprime	and	yprime	are	all	treated	as	internal	drawing	units.

An	exception	is	raised	if	object	is	not	a	Shape	object	of	a	Page	or	Master
object,	or	if	OtherShape	is	not	in	the	same	Page	or	Master	object	as	object.

Trigger	method	(Cell	object)

				 				

Evaluates	the	formula	of	a	cell.

Version	added

4.0

Syntax

object.Trigger
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

Triggering	a	cell	simply	evaluates	the	formula	of	that	cell.	If	the	formula
contains	other	actions	such	as	running	an	add-on,	those	actions	occur.

Example

Trigger	method	(Event	object)

			 				

Causes	an	event's	action	to	be	performed.

Version	added

4.0

Syntax

object.Trigger	contextString
object Required.	An	expression	that	returns	an	Event	object.
contextString The	string	to	send	to	the	target	of	the	event.

Remarks

Triggering	an	event	causes	the	action	associated	with	the	event	to	be	performed.
The	specified	context	string	is	passed	to	the	target	of	the	action:

If	the	action	is	to	run	an	add-on	(visEvtCodeRunAddon),	the	string	is	passed	in
the	command	line	string	sent	to	the	add-on.

If	the	action	is	to	send	a	notification	to	the	calling	program	(visEvtCodeAdvise),
the	string	is	passed	in	the	moreInfo	parameter	of	the	notification.

See	also Example

Trim	method

				 				

Trims	selected	shapes	into	smaller	shapes.

Version	added

4.1

Syntax

object.Trim
object Required.	An	expression	that	returns	a	Selection	object	that

contains	the	shapes	to	trim.

Remarks

The	Trim	method	is	equivalent	to	clicking	Trim	on	the	Operations	submenu	on
the	Shape	menu	in	Visio.

The	new	shapes	inherit	the	formatting	of	the	first	selected	shape,	have	no	text,
and	are	the	topmost	shapes	in	their	container—the	nth	shape,	nth	–	1	shape,	nth	–
2	shape,	and	so	forth	in	the	Shapes	collection	of	their	containing	shape,	where	n

Example

=	count.	The	original	shapes	are	deleted	and	no	shapes	are	selected	when	the
operation	is	complete.

The	Trim	method	is	similar	to	the	Fragment	method	but	differs	in	the	following
ways:

Shapes	produced	by	the	Trim	method	coincide	with	the	distinct	paths	of	the
selected	shapes,	also	taking	overlap	into	account.

Shapes	produced	by	the	Fragment	method	coincide	with	the	distinct	regions	of
the	selected	shapes,	taking	overlap	into	account.

Undo	method

					 					

Reverses	the	most	recent	undo	unit,	if	the	undo	unit	can	be	reversed.

Version	added

2.0

Syntax

object.Undo
object Required.	An	expression	that	returns	an	Application	object.

Remarks

Use	the	Undo	method	to	reverse	actions	one	undo	unit	at	a	time.

The	number	of	times	that	code	can	call	the	Undo	method	depends	on	whether	or
not	the	code	is	executing	in	the	scope	of	an	open	undo	unit.	Code	runs	in	the
scope	of	an	open	undo	unit	if	it	is:

A	macro	or	add-on	invoked	by	the	Visio	user	interface.

In	an	event	handler	responding	to	a	Visio	event	other	than	the	VisioIsIdle	event.

In	a	user-created	undo	scope.

If	code	is	not	executing	in	the	scope	of	an	open	undo	unit,	it	can	call	the	Undo
method	for	each	undo	unit	presently	on	the	Visio	undo	stack.	The	maximum
number	of	units	on	the	undo	stack	is	set	in	the	Options	dialog	box	on	the
General	tab	(20	is	the	default).	If	the	number	of	calls	to	the	Undo	method
exceeds	the	number	of	undo	units	on	the	stack,	no	action	is	taken	and	the	Undo
method	raises	no	exception.

If	code	is	executing	in	the	scope	of	an	open	undo	unit,	it	can	call	the	Undo
method	once	for	each	operation	in	the	open	undo	unit.	If	there	are	additional
calls	to	the	Undo	method,	it	will	raise	an	exception	and	take	no	action.	For
example,	if	code	in	a	macro	performs	two	operations,	it	can	call	the	Undo
method	twice.	If	the	macro	calls	the	Undo	method	a	third	time,	the	Undo
method	will	raise	an	exception.

Code	that	calls	the	Undo	method	from	within	the	scope	of	an	undo	unit	cannot
call	the	Redo	method	to	reverse	the	action.	The	Redo	method	can	only	be	called
when	there	are	no	open	undo	units.

The	Undo	method	also	raises	an	exception	if	the	Visio	instance	is	presently
performing	an	undo	or	redo.	To	determine	whether	the	Visio	instance	is	undoing
or	redoing,	use	the	IsUndoingOrRedoing	property.

You	can	call	the	Undo	method	from	the	VisioIsIdle	event	handler	because	the
VisioIsIdle	event	can	only	fire	when	the	IsUndoingOrRedoing	property	is
False.	You	can	also	call	the	Undo	method	from	code	not	invoked	by	the	Visio
instance,	for	example,	code	invoked	from	the	Visual	Basic	Editor	or	from	an
external	program.

You	can	undo	most	actions,	but	not	all.	Use	the	Redo	method	to	reverse	the
effect	of	the	Undo	method.

Ungroup	method

					 					

Ungroups	a	group.

Version	added

2.0

Syntax

object.Ungroup
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	to	ungroup.

Union	method

				 				

Creates	a	new	shape	from	the	perimeter	of	selected	shapes.

Version	added

2.0

Syntax

object.Union
object Required.	An	expression	that	returns	a	Selection	object	that

contains	the	shapes	to	unite.

Remarks

The	Union	method	is	equivalent	to	clicking	Union	on	the	Operations	submenu
on	the	Shape	menu	in	Visio.	The	produced	shape	will	be	the	topmost	shape	in	its
containing	shape	and	will	inherit	the	text	and	formatting	of	the	first	selected
shape.

The	original	shapes	are	deleted	and	no	shapes	are	selected	when	the	operation	is

Example

complete.

UpdateAlignmentBox	method

			 				

Updates	the	alignment	box	for	a	shape.

Version	added

2000

Syntax

objRet	=	object.UpdateAlignmentBox
objRet Required.	An	expression	that	returns	a	Shape	object	with	a	new

width	and	height.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

The	UpdateAlignmentBox	method	alters	the	width	and	height	of	a	shape,	often
a	group.	For	example,	after	moving	a	shape	in	a	group	the	shape	may	be	outside
the	group's	alignment	box.	The	UpdateAlignmentBox	method	updates	the
alignment	box	so	it	encloses	all	the	shapes	in	the	group.

Note	Many	shapes	are	designed	so	that	their	alignment	boxes	don't	coincide	with
their	geometric	extents.	Using	the	UpdateAlignmentBox	method	on	such
shapes	defeats	the	intentions	of	the	shape	designer.

See	also Example

UpdateUI	method

				 				

Causes	Microsoft	Visio	to	display	changes	to	the	user	interface	represented	by	a
UIObject	object.

Version	added

4.0

Syntax

object.UpdateUI
object Required.	An	expression	that	returns	a	UIObject	object	that

represents	the	user	interface	that	was	changed.

Remarks

The	UpdateUI	method	updates	the	Visio	user	interface	with	changes	made	to	a
UIObject	object	during	a	session.	Use	the	CustomMenus	or	CustomToolbars
property	of	an	Application	object	or	Document	object	to	obtain	the	UIObject
object.

Example

XYFromPage	method

				 				

Transforms	a	point	expressed	in	the	local	coordinate	system	of	its	Page	or
Master	object	to	an	equivalent	point	expressed	in	the	local	coordinate	system	of
the	Shape	object.

Version	added

2000

Syntax

object.XYFromPage	x,	y,	xprime,	yprime
object Required.	An	expression	that	returns	a	Shape	object	whose

local	coordinate	system	you	are	transforming	the	point	to.
x Required	Double;	x-coordinate	corresponding	to	x	in	the	Page

or	Master	object's	coordinate	system.
y Required	Double;	y-coordinate	corresponding	to	y	in	the	Page

or	Master	object's	coordinate	system.
xprime Required	Double;	x-coordinate	in	coordinate	system	of	object.
yprime Required	Double;	y-coordinate	in	coordinate	system	of	object.

Example

Remarks

The	points	x,	y,	xprime,	and	yprime	are	all	treated	as	internal	drawing	units.

An	exception	is	raised	if	object	is	not	a	Shape	object	of	a	Page	or	Master
object.

XYToPage	method

				 				

Transforms	a	point	expressed	in	the	local	coordinate	system	of	a	Shape	object	to
an	equivalent	point	expressed	in	the	local	coordinate	system	of	its	Page	or
Master	object.

Version	added

2000

Syntax

object.XYToPage	x,	y,	xprime,	yprime
object Required.	An	expression	that	returns	a	Shape	object	whose

local	coordinate	system	you	are	transforming	the	point	from.
x Required	Double;	x-coordinate	in	coordinate	system	of	shpObj.
y Required	Double;	y-coordinate	in	coordinate	system	of	shpObj.
xprime Required	Double;	x-coordinate	corresponding	to	x	in	the	Page

or	Master	object's	coordinate	system.
yprime Required	Double;	y-coordinate	corresponding	to	y	in	the	Page

or	Master	object's	coordinate	system.

Example

Remarks

The	points	x,	y,	xprime,	and	yprime	are	all	treated	as	internal	drawing	units.

An	exception	is	raised	if	object	is	not	a	Shape	object	of	a	Page	or	Master
object.

<Global>	object

				 				 			

	
">

The	Visio	global	object	is	automatically	available	to	Microsoft	Visual	Basic	for
Applications	(VBA)	code	that	is	part	of	the	VBA	project	of	a	Visio	document.
The	Visio	global	object	is	not	available	to	code	in	other	contexts.

Version	added

4.5

Remarks

Members	of	the	global	object	can	be	accessed	without	qualification.	For
example,	to	access	the	ActivePage	member	of	the	global	object:

Set	pageObj	=	ActivePage

The	preceding	syntax	is	different	from	the	syntax	you	would	use	for	accessing
members	of	non-global	objects.	For	example:

See	also Methods Events

Set	pageObj	=	AppObj.ActivePage

Note	The	VBA	project	of	every	Visio	document	also	has	a	class	module	called
ThisDocument.	When	referenced	from	code	in	the	VBA	project,	the
ThisDocument	module	returns	a	reference	to	the	project's	Document	object.

ThisDocument	object

				 					

					

	

The	Microsoft	Visual	Basic	for	Applications	(VBA)	project	of	every	Microsoft
Visio	document	has	a	class	module	called	ThisDocument.	When	referenced
from	code	in	the	project,	the	ThisDocument	object	returns	a	reference	to	the
project's	Document	object.

Version	added

4.5

Remarks

You	can	display	the	name	of	the	VBA	project's	document	in	a	message	box	with
this	statement,	for	example:

See	also

MsgBox	ThisDocument.Name

You	can	get	the	first	page	of	the	VBA	project's	document	by	using	this	code,	for
example:

Dim	pagObj	As	Visio.Page
Set	pagObj	=	ThisDocument.Pages.Item(1)

If	you	want	to	manipulate	the	document	associated	with	your	VBA	project,	use
the	ThisDocument	object.	If	you	want	to	manipulate	a	document,	but	not
necessarily	the	document	associated	with	your	VBA	project,	get	a	Document
object	from	the	Documents	collection.

The	ActiveDocument	property	often,	but	not	necessarily,	returns	a	reference	to
the	same	document	as	the	ThisDocument	object.	The	ActiveDocument	and
ThisDocument	objects	are	the	same	if	the	document	shown	in	the	Visio	active
window	is	the	document	containing	the	ThisDocument	object's	project.	Whether
your	code	uses	the	ActiveDocument	or	ThisDocument	object	depends	on	the
purpose	of	your	program.

You	can	extend	the	set	of	properties	and	methods	of	a	project's	Document	object
by	adding	public	properties	and	methods	to	that	project's	ThisDocument	class
module.	The	new	methods	and	properties	are	exposed	just	like	the	built-in
methods	and	properties	implemented	by	Visio.	The	new	methods	and	properties
aren't	available	when	you	reference	other	Document	objects.

Note	The	ThisDocument	object	is	not	available	to	code	that	isn't	part	of	the
VBA	project	of	a	Visio	document.

AccelItem	object

					 					

				

Represents	a	single	accelerator	used	by	Microsoft	Visio.

Version	added

4.0

Remarks

An	AccelItem	object	consists	of	a	key,	modifiers	to	the	key,	and	the	Visio
command	or	add-on	that	the	accelerator	executes	when	the	user	presses	the
accelerator.	A	key	is	any	ASCII	key	code,	and	is	not	case-sensitive.	The
modifiers	are	ALT,	CTRL,	and	SHIFT.	Command	identifiers	are	declared	by	the
Visio	type	library	and	prefixed	with	visCmd.

Events

AccelItems	collection

					 					

				

Includes	an	AccelItem	object	for	each	accelerator	in	a	Microsoft	Visio	window
context.

To	retrieve	an	AccelItems	collection,	use	the	AccelItems	property	of	an
AccelTable	object.

Version	added

4.0

Remarks

The	default	property	for	an	AccelItems	collection	is	Item.

Unlike	other	Visio	collections,	the	AccelItems	collection	is	indexed	starting	with
zero	(0)	rather	than	1.

Events

AccelTable	object

					 					

				

Represents	a	Microsoft	Windows	accelerator	table.

Version	added

4.0

Remarks

You	can	create	one	AccelTable	object	for	each	Visio	window	context	(drawing
window,	stencil	window,	ShapeSheet	window,	and	so	forth).

Events

AccelTables	collection

					 					

				

Includes	an	AccelTable	object	for	each	Microsoft	Visio	window	context	that	has
accelerators.

To	retrieve	an	AccelTables	collection,	use	the	AccelTables	property	of	a
UIObject	object.

Version	added

4.0

Remarks

The	default	property	of	AccelTables	is	Item.

Unlike	other	Visio	collections,	the	AccelTables	collection	is	indexed	starting

Events

with	zero	(0)	rather	than	1.

An	AccelTable	object	is	identified	in	the	AccelTables	collection	by	its	SetID
property,	which	corresponds	to	a	Visio	window	context.	For	a	list	of	SetID
values	that	identify	AccelTable	objects,	see	the	SetID	property.

Addon	object

					 					

				

object;DAR_Objects_(A-M)_1015.htm">	

Represents	an	installed	Microsoft	Visio	add-on.

To	retrieve	an	Addon	object,	use	the	Addons	collection	of	an	Application
object.

Version	added

4.0

Remarks

The	default	property	of	an	Addon	object	is	Name.

Events

Addons	collection

					 					

				

object;DAR_Objects_(A-M)_1015.htm">	

Represents	the	set	of	installed	add-ons	known	to	an	Application	object.

To	retrieve	an	Addons	collection,	use	the	Addons	property	of	an	Application
object.

Version	added

4.0

Remarks

The	default	property	of	an	Addons	collection	is	Item.

Installed	add-ons	are	those	Visio	finds	in	its	Addons	or	StartUp	paths,	or	those
that	other	add-ons	have	dynamically	installed	using	the	Add	method	of	the
Addons	collection.

Events

Application	(InvisibleApp)	object

				 					

					

	

Represents	an	instance	of	Microsoft	Visio.	An	external	program	typically	creates
or	retrieves	an	Application	object	before	it	can	retrieve	other	Visio	objects	from
that	instance.	Use	the	Microsoft	Visual	Basic	CreateObject	function	or	the	New
keyword	to	run	a	new	instance,	or	use	the	GetObject	function	to	retrieve	an
instance	that	is	already	running.	You	can	also	use	the	CreateObject	function
with	the	InvisibleApp	object	to	run	a	new	instance	that	is	invisible.	Set	the	value
of	the	InvisibleApp	object's	Visible	property	to	True	to	show	it.

Version	added

4.1

Remarks

See	also

Use	the	Documents,	Windows,	and	Addons	properties	of	an	Application	object
to	retrieve	the	Document,	Window,	and	Addon	collections	of	the	instance.

Use	the	ActiveDocument,	ActivePage,	or	ActiveWindow	property	to	retrieve
the	currently	active	Document,	Page,	or	Window	object.	The	Application
object's	menus	and	toolbars	can	be	accessed	using	the	BuiltInMenus,
BuiltInToolbars,	CustomMenus,	CustomToolbars,	or	CommandBars
properties.

ActiveDocument	is	the	default	property	of	an	Application	object.

Note	Code	in	the	Microsoft	Visual	Basic	for	Applications	project	of	a	Visio
document	can	use	the	Visio	global	object	instead	of	a	Visio	Application	object
to	retrieve	other	objects.

Cell	object

				 					

					

	

Holds	a	formula	that	evaluates	to	some	value.

Version	added

2.0

Remarks

The	default	property	of	a	Cell	object	is	ResultIU.

You	can	get	or	set	a	cell's	formula	or	value.	A	cell	belongs	to	a	Shape,	Style,	or
Row	object	and	represents	a	property	of	the	shape,	style,	or	row.	For	example,
the	height	of	a	shape	equals	the	value	of	the	shape's	Height	cell.

See	also

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1195.htm

A	program	can	control	a	shape's	appearance	and	behavior	by	working	with	the
formulas	in	the	shape's	cells.	You	can	visually	inspect	most	of	a	shape's	cells	by
opening	the	shape's	ShapeSheet	window.	Use	the	Cells	or	CellsSRC	property	of
a	Shape	object	to	retrieve	a	Cell	object.	To	retrieve	a	cell	in	a	style,	use	the	Cells
property	of	a	Style	object.

Characters	object

					 					

					

Represents	a	shape's	text	with	the	text	fields	expanded	to	the	number	of
characters	they	display	in	a	drawing	window.

To	retrieve	a	Characters	object,	use	the	Characters	property	of	a	Shape	object.

Version	added

3.0

Remarks

The	default	property	of	a	Characters	object	is	Text.

The	Begin	and	End	properties	of	a	Characters	object	determine	the	range	of	the
shape's	text	that	is	represented	by	the	Characters	object.	Initially,	the	range
contains	all	of	the	shape's	text;	you	can	set	the	Begin	and	End	properties	to
specify	a	subrange	of	the	text.

After	you	retrieve	a	Characters	object,	you	can	use	its	Text	property	to	retrieve
or	set	the	shape's	text.	Use	the	Copy,	Cut,	or	Paste	method	to	copy,	cut,	or	paste
the	Character	object's	text	to	or	from	the	Clipboard.	Use	the	CharProps	or
ParaProps	property	to	change	the	Character	object's	formatting.

Color	object

					
			 			

Represents	a	color	in	the	color	palette	for	a	Microsoft	Visio	document.

Version	added

4.0

Remarks

The	default	property	of	a	Color	object	is	PaletteEntry.

Methods Events

Colors	collection

					
			 			

Includes	a	Color	object	for	each	color	in	the	palette	for	a	Microsoft	Visio
document.

To	retrieve	a	Colors	collection,	use	the	Colors	property	of	a	Document	object.

Version	added

4.0

Remarks

The	default	property	of	Colors	is	Item.

Methods Events

Connect	object

					
			 			

	

Represents	a	connection	between	two	shapes	in	a	drawing,	such	as	a	line	and	a
box	in	an	organization	chart.

Retrieve	a	Connect	object	from	the	Connects	collection	returned	by	the
Connects	and	FromConnects	properties	of	a	Shape	object,	or	the	Connects
collection	of	a	Page	or	Master	object.

Version	added

2.0

Remarks

The	default	property	of	a	Connect	object	is	FromSheet.

Use	the	GlueTo	or	GlueToPos	method	of	a	Cell	object	to	connect	one	shape	to
another	in	a	drawing.

Methods Events

Connects	collection

					
			 			

	

Includes	a	Connect	object	for	each	connection	between	two	shapes	in	a	drawing,
such	as	a	line	and	a	box	in	an	organization	chart.

Version	added

2.0

Remarks

The	default	property	of	a	Connects	collection	is	Item.

Use	the	Connects	property	of	a	Shape	object	to	retrieve	a	Connects	collection
with	a	Connect	object	for	every	Shape	object	to	which	the	indicated	Shape
object	is	connected	(glued).

Use	the	FromConnects	property	of	a	Shape	object	to	retrieve	a	Connects
collection	with	a	Connect	object	for	every	Shape	object	that	is	connected
(glued)	to	the	indicated	Shape	object.

Methods Events

Use	the	Connects	property	of	a	Page	object	to	retrieve	a	Connects	collection
with	an	entry	for	every	connection	on	the	Page	object.

Use	the	Connects	property	of	a	Master	object	to	retrieve	a	Connects	collection
with	an	entry	for	every	connection	in	the	Master	object.

Curve	object

					 					

				

An	item	in	a	Path	object	that	represents	a	consecutive	sequence	of	rows	in	the
Geometry	section	of	its	Path	object.

Version	added

5.0

Remarks

The	default	property	of	Curve	object	is	Point.

If	a	Curve	object	is	in	a	collection	returned	by	the	Paths	property	of	a	Shape
object,	its	coordinates	are	expressed	in	the	shape's	parent	coordinate	system.	If
the	Curve	object	is	in	a	collection	returned	by	the	PathsLocal	property	of	a
Shape	object,	its	coordinates	are	expressed	in	the	shape's	local	coordinate
system.	In	both	cases,	the	coordinates	are	expressed	in	internal	drawing	units

Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

(inches).

A	Curve	object	describes	itself	in	terms	of	its	parameter	domain,	which	is	the
range	[Start(),End()].	Use	the	Start	property	of	a	Curve	object	to	obtain	the
curve's	starting	point	and	the	End	property	of	a	Curve	object	to	obtain	the
curve's	ending	point.

Use	the	Point	method	of	a	curve	object	to	extrapolate	a	point	along	the	curve's
path.	Use	the	PointAndDerivatives	method	of	a	Curve	object	to	determine	a
point	along	the	curve's	path	and,	optionally,	its	first	and	second	derivatives.

Use	the	Points	property	of	a	Curve	object	to	obtain	a	stream	of	points	that
approximate	the	curve's	path.

Document	object

					 					

					

object;DAR_Objects_(A-M)_1015.htm">	 	

Represents	a	drawing	file	(.vsd	or.vdx),	stencil	file	(.vss	or	.vsx),	or	template	file
(.vst	or	.vtx)	that	is	open	in	an	instance	of	Visio.	A	Document	object	is	a
member	of	the	Documents	collection	of	an	Application	object.

Version	added

2.0

Remarks

The	default	property	of	a	Document	object	is	Name.

Use	the	Open	method	of	a	Documents	collection	to	open	an	existing	document.

Use	the	Add	method	of	a	Documents	collection	to	create	a	new	document.

Use	the	ActiveDocument	property	of	an	Application	object	to	retrieve	the
active	document	in	an	instance.

Use	the	Pages,	Masters,	and	Styles	properties	of	a	Document	object	to	retrieve
Page,	Master,	and	Style	objects,	respectively.

Use	the	CustomMenus	or	CustomToolbars	properties	of	a	Document	object	to
access	the	custom	menus	or	toolbars.

Note	The	Microsoft	Visual	Basic	for	Applications	(VBA)	project	of	every	Visio
document	also	has	a	class	module	called	ThisDocument.	When	you	reference
the	ThisDocument	module	from	code	in	a	VBA	project,	it	returns	a	reference	to
the	project's	Document	object.	For	example,	the	code	in	a	document's	project
can	display	the	name	of	the	project's	document	in	a	message	box	with	this
statement:

MsgBox	ThisDocument.Name

Documents	collection

					 					

					

object;DAR_Objects_(A-M)_1015.htm">	 	

Includes	a	Document	object	for	each	open	document	in	a	Microsoft	Visio
instance.

To	retrieve	a	Documents	collection,	use	the	Documents	property	of	an
Application	object.

Version	added

2.0

Remarks

The	default	property	of	a	Documents	collection	is	Item.

Event	object

					 					

				

	

A	member	of	the	EventList	collection	of	a	source	object	such	as	a	Document.
An	event	encapsulates	an	event	code.

An	Event	object	can	trigger	two	kinds	of	actions:	it	can	run	an	add-on,	or	it	can
send	a	notification	of	the	event	to	the	calling	program.	To	create	an	Event
object,	use	the	Add	or	AddAdvise	method	of	an	EventList	object.

Version	added

4.0

Remarks

Events

The	default	property	of	an	Event	object	is	Event.

The	Event	property	of	the	Event	object	establishes	the	event	that	triggers	the
action,	and	its	Action	property	indicates	the	action	to	be	performed.

Use	the	Persistable	property	to	find	out	if	the	event	can	be	stored	with	a	Visio
document,	or	the	Persistent	property	to	find	out	if	the	event	is	stored.	Use	the
Trigger	method	to	trigger	an	Event	object's	action	without	waiting	for	the	event
to	occur.	Use	the	Enabled	property	to	temporarily	disable	an	event.

EventList	collection

					 					

				

	

Includes	an	Event	object	for	each	event	to	which	an	object	should	respond.	The
object	that	possesses	the	EventList	is	sometimes	called	the	source	object.

To	retrieve	an	EventList	collection,	use	the	EventList	property	of	the	source
object.

Version	added

4.0

Remarks

The	default	property	of	EventList	is	Item.

Events

In	general,	the	level	of	the	source	object	in	the	Visio	object	hierarchy	determines
the	scope	of	its	response.	For	example,	if	an	Event	object	for	the
DocumentOpened	event	is	in	the	EventList	of	a	Document	object,	that	event's
action	is	triggered	only	when	that	document	is	opened.	If	the	same	Event	object
is	in	the	EventList	of	an	Application	object,	the	event's	action	is	triggered
whenever	any	document	is	opened	in	that	instance	of	Visio.

To	create	an	Event	object	that	runs	an	add-on,	use	the	Add	method	of	an
EventList	collection.

To	create	an	Event	object	that	sends	a	notification,	use	the	AddAdvise	method.

Font	object

					
			 			

Represents	a	typeface	that	is	either	applied	to	text	in	a	document	or	available	for
use	on	the	system.

Version	added

4.0

Remarks

The	default	property	of	a	Font	object	is	Name.

A	Font	object	maps	its	name	(for	example,	"Arial")	to	the	font	ID	(for	example,
3)	that	Visio	stores	in	a	Font	cell	in	a	Character	section	of	a	shape	whose	text	is
formatted	with	that	font.	Font	IDs	can	change	when	a	document	is	opened	on
different	systems	or	when	fonts	are	installed	or	removed.

Methods Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1247.htm

Fonts	collection

					
			 			

Includes	a	Font	object	for	each	font	applied	to	text	in	a	document	or	available	on
the	system.

To	retrieve	a	Fonts	collection,	use	the	Fonts	property	of	a	Document	object.

Version	added

4.0

Remarks

The	default	property	of	a	Fonts	collection	is	Item.

To	retrieve	a	Font	object	by	its	font	ID	(the	value	shown	in	the	Font	cell	in	a
shape's	Character	section),	use	the	ItemFromID	property.

Methods Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1247.htm

Hyperlink	object

					 					

				

Completely	encapsulates	the	properties	and	behavior	of	a	hyperlink.	A	shape	can
have	one	or	more	hyperlinks	that	navigate	to	any	named	location,	such	as
another	page,	a	local	document,	or	a	URL.	A	Hyperlink	object	enables	you	to
access	and	manipulate	the	shape's	Hyperlink.Row	row.

Version	added

5.0

Remarks

The	default	property	of	a	Hyperlink	object	is	Description.

To	add	a	Hyperlink	object	to	a	shape,	use	the	AddHyperlink	method.

To	navigate	to	a	named	hyperlink	location,	use	the	Follow	method.

Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Rows_(A-Z)_3111.htm

Hyperlinks	collection

					 					

				

Includes	Hyperlink	objects.	A	Hyperlinks	collection	enables	you	to	access	and
manipulate	a	shape's	Hyperlinks	section.

To	retrieve	a	Hyperlinks	collection,	use	the	Hyperlinks	property	of	a	Shape
object.

Version	added

2000

Remarks

The	default	property	of	a	Hyperlinks	collection	is	Item.

Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1381.htm

Layer	object

					 					

				

	

Represents	a	layer	of	a	page	or	master.	You	can	assign	shapes	to	or	remove	them
from	the	layer.

Version	added

4.0

Remarks

The	default	property	of	a	Layer	object	is	Name.

To	access	cells	whose	values	define	layer	attributes,	such	as	whether	the	layer	is
visible	or	printable,	use	the	CellsC	property.

Events

A	layer's	Index	and	Row	properties	typically	have	different	values.	The	Index
property	indicates	the	layer's	ordinal	position	in	its	Layers	collection.	The
layer's	Row	property	indicates	the	index	of	the	row	in	the	Layers	section	where
the	layer's	attributes	are	defined.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(J-R)_1349.htm

Layers	collection

					 					

				

	

Includes	a	Layer	object	for	each	layer	defined	for	a	page	or	master.

To	retrieve	a	Layers	collection,	use	the	Layers	property	of	a	Page	object	or	a
Master	object.

Version	added

4.0

Remarks

The	default	property	of	Layers	is	Item.

Events

Master	object

					 					

					

	

Represents	a	master	in	a	stencil.

You	retrieve	a	particular	Master	object	from	the	Masters	collection	of	a
Document	object	whose	stencil	contains	that	master.

Version	added

2.0

Remarks

The	default	property	of	a	Master	object	is	Name.

To	create	an	instance	of	a	master	in	a	drawing,	use	the	Drop	method	of	a	Page
object	that	represents	a	drawing	page.

Masters	collection

					 					

					

	

Includes	a	Master	object	for	each	master	in	a	document's	stencil.

To	retrieve	a	Masters	collection,	use	the	Masters	property	of	a	Document
object.

Version	added

2.0

Remarks

The	default	property	of	a	Masters	collection	is	Item.

MasterShortcut	object

					 					

				

Represents	a	master	shortcut	in	a	stencil.	A	master	shortcut	references	a	master
in	a	stencil.

Version	added

2000

Remarks

The	default	property	of	a	MasterShortcut	object	is	Name.

Events

MasterShortcuts	collection

					 					

				

Includes	MasterShortcut	objects.

To	retrieve	a	MasterShortcuts	collection,	use	the	MasterShortcuts	property	of
a	Document	object.

Version	added

2000

Remarks

The	default	property	of	a	MasterShortcuts	collection	is	Item.

Events

Menu	object

					 					

				

Represents	a	single	menu	on	a	Microsoft	Visio	menu	bar,	such	as	the	File	menu
or	Edit	menu.

Version	added

4.0

Remarks

The	index	of	a	Menu	object	within	the	Menus	collection	corresponds	to	the
menu's	position	from	left	to	right	on	the	menu	bar,	starting	with	zero	(0)	for	the
menu	farthest	to	the	left	if	the	menus	are	arranged	horizontally.

Events

MenuItem	object

					 					

				

Represents	a	single	menu	item	on	a	Microsoft	Visio	menu,	such	as	the	Copy
menu	item	on	the	Edit	menu.

Version	added

4.0

Remarks

The	default	property	of	MenuItem	is	Caption.

A	MenuItem	object	contains	all	the	information	it	needs	to	display	the	menu
item	and	launch	the	appropriate	Visio	command	or	add-on.	It	also	contains	text
for	the	Undo,	Redo,	and	Repeat	menu	items	and	error	messages.

Events

The	index	of	a	MenuItem	object	within	the	MenuItems	collection	corresponds
to	the	menu	item's	position	from	top	to	bottom	on	the	menu	or	submenu,	starting
with	zero	(0).

If	the	menu	item	displays	a	submenu,	the	MenuItem	object	has	a	MenuItems
collection	that	represents	items	on	the	submenu.	The	MenuItem	object's
Caption	property	contains	the	submenu	title	and	its	CmdNum	property	is	set	to
zero	(0).	Most	of	the	other	properties	of	the	MenuItem	are	ignored,	because	this
object	serves	much	the	same	role	as	a	Menu	object.

MenuItems	collection

					 					

				

Contains	a	MenuItem	object	for	each	command	on	a	Microsoft	Visio	menu.

To	retrieve	a	MenuItems	collection,	use	the	MenuItems	property	of	a	Menu
object	or	a	MenuItem	object.

Version	added

4.0

Remarks

The	default	property	of	MenuItems	is	Item.

Unlike	other	Visio	collections,	the	MenuItems	collection	is	indexed	starting
with	zero	(0)	rather	than	1.

Events

Menus	collection

					 					

				

Includes	a	Menu	object	for	each	menu	in	a	Microsoft	Visio	menu	set.

To	retrieve	a	Menus	collection,	use	the	Menus	property	of	a	MenuSet	object.

Version	added

4.0

Remarks

The	default	property	of	Menus	is	Item.

Unlike	other	Visio	collections,	the	Menus	collection	is	indexed	starting	with
zero	(0)	rather	than	1.

Events

MenuSet	object

					 					

				

Represents	an	entire	menu	set	used	by	a	Microsoft	Visio	window	context.

Version	added

4.0

Remarks

A	shortcut	menu	(which	appears	when	you	press	the	right	mouse	button)	is
represented	by	a	MenuSet	object	that	has	a	single	untitled	Menu	object	in	its
Menus	collection,	which	contains	the	contents	of	the	shortcut	menu	in	its
MenuItems	collection.

Events

MenuSets	collection

					 					

				

Includes	a	MenuSet	object	for	each	Microsoft	Visio	window	context	that	has
menus.

To	retrieve	a	MenuSets	collection,	use	the	MenuSets	property	of	a	UIObject
object.

Version	added

4.0

Remarks

The	default	property	of	MenuSets	is	Item.

Unlike	other	Visio	collections,	the	MenuSets	collection	is	indexed	starting	with

Events

zero	(0)	rather	than	1.

A	MenuSet	object	is	identified	in	the	MenuSets	collection	by	its	SetID
property,	which	corresponds	to	a	Visio	window	context.	For	a	list	of	SetID
values	for	MenuSet	objects,	see	the	SetID	property.

MSGWrap	object

					
			 			

Passed	as	an	argument	with	the	OnKeystrokeMessageForAddon	event.	The
MSGWrap	object	wraps	the	data	contained	in	a	message	passed	from	Microsoft
Windows	to	Microsoft	Visio.

Version	added

2002

Remarks

The	properties	of	the	MSGWrap	object	correspond	to	the	fields	in	the	MSG
structure	defined	as	part	of	the	Windows	operating	system.

For	details,	search	for	"MSG	structure"	in	your	Windows	documentation	or	on
the	Microsoft	Developer	Network	(MSDN)	Web	site.

Methods Events

http://msdn.microsoft.com

OLEObject	object

					
			 			

	

Represents	an	OLE	2.0	linked	or	embedded	object	or	an	ActiveX	control	in	a
Microsoft	Visio	document,	page,	or	master.

Version	added

5.0

Remarks

The	default	property	of	OLEObject	is	Object.

To	obtain	the	IDispatch	interface	on	an	ActiveX	control	or	embedded	or	linked
OLE	2.0	object	represented	by	a	shape,	use	the	Object	property	of	an
OLEObject	object.

Methods Events

OLEObjects	collection

					
			 			

	

Includes	an	OLEObject	object	for	each	OLE	2.0	linked	or	embedded	object	or
ActiveX	control	contained	in	a	document,	page,	or	master.

Each	member	of	an	OLEObjects	collection	is	an	OLEObject	object,	which
represents	an	OLE	2.0	linked	or	embedded	object	or	an	ActiveX	control	in	a
Microsoft	Visio	document.

To	retrieve	an	OLEObjects	collection,	use	the	OLEObjects	property	of	a
Document,	Page,	or	Master	object.

Version	added

5.0

Remarks

The	default	property	of	OLEObjects	is	Item.

Methods Events

Page	object

					 					

					

	

Represents	a	drawing	page,	which	can	be	either	a	foreground	page	or
background	page.

Version	added

2.0

Remarks

The	default	property	of	a	Page	object	is	Name.

To	retrieve	the	active	page	in	an	instance,	use	the	ActivePage	property	of	an
Application	object.

The	members	of	a	Document	object's	Pages	collection	represent	the	pages	in
that	document.	To	retrieve	a	page's	shapes,	use	the	Shapes	property	of	a	Page
object.

Pages	collection

					 					

					

	

Includes	a	Page	object	for	each	drawing	page	in	a	document.

To	retrieve	a	Pages	collection,	use	the	Pages	property	of	a	Document	object.

Version	added

2.0

Remarks

The	default	property	of	a	Pages	collection	is	Item.

The	order	of	items	in	a	Pages	collection	is	significant:	If	there	are	n	foreground

pages	in	a	document,	then	the	first	n	pages	in	its	Pages	collection	are	foreground
pages	and	are	in	order.	The	remaining	pages	in	the	collection	are	the	background
pages	of	the	document;	these	are	in	no	particular	order.

Path	object

					
			 			

Represents	a	sequence	of	one	or	more	segments	whose	ends	abut.	A	path
describes	where	a	pen	would	move	in	order	to	draw	one	shape	component.	Each
Path	object	corresponds	to	a	Geometry	section	of	a	shape.

Version	added

5.0

Remarks

The	default	property	of	a	Path	object	is	Item.

A	Curve	object	is	an	item	in	a	Path	object	that	is	any	linear	or	curved	segment
representing	a	consecutive	sequence	of	rows	in	the	Geometry	section	that	the
Path	object	represents.	The	number	of	Curve	objects	in	a	Path	object	is	not
necessarily	the	same	as	the	number	of	rows	in	its	Geometry	section.

The	Path	object	is	conceptually	of	zero	width.	Line	weights,	patterns,	and	ends
are	ignored,	however,	corner	rounding	is	included.	A	Path	object	may	or	may
not	be	closed,	and	it	may	intersect	itself.	For	example,	a	Path	may	describe	a

Methods Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

figure	eight.

If	you	retrieve	a	Path	object	from	a	collection	obtained	by	the	Paths	property	of
a	shape,	its	coordinates	are	expressed	in	the	shape's	parent	coordinate	system.	If
you	retrieve	a	Path	object	from	a	collection	obtained	by	the	PathsLocal
property	of	a	shape,	its	coordinates	are	expressed	in	the	shape's	local	coordinate
system.	In	both	cases,	coordinates	are	expressed	in	internal	drawing	units
(inches).

Paths	collection

					
			 			

Includes	a	Path	object	for	each	Geometry	section	for	a	group	or	shape.

To	retrieve	a	Paths	collection	expressed	in	the	shape's	parent	coordinate	system,
use	the	Paths	property	of	the	shape.	The	coordinates	are	expressed	in	internal
drawing	units	(inches).

Version	added

5.0

Remarks

The	default	property	of	a	Paths	collection	is	Item.

To	retrieve	a	Paths	collection	expressed	in	the	shape's	local	coordinate	system,
use	the	PathsLocal	property	of	the	shape.	The	coordinates	are	expressed	in
internal	drawing	units	(inches).

If	a	Shape	object	is	a	page,	foreign	object,	or	guide,	then	its	Paths	and
PathsLocal	properties	don't	contain	any	items.

Methods Events

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm

If	a	Shape	object	is	a	group,	then	its	Paths	and	PathsLocal	properties	are	the
union	of	the	paths	of	its	component	shapes.

If	a	Shape	object	is	a	shape,	then	its	Paths	and	PathsLocal	properties	include
one	item	for	each	Geometry	section	that	defines	a	stroke	of	positive	length.

Row	object

				 					

					

Enables	you	to	access	and	manipulate	a	row	in	a	section.

Version	added

2000

Remarks

The	default	property	of	a	Row	object	is	Cell.

See	also

Section	object

				 				 				

	

Enables	you	to	access	and	manipulate	a	section	of	a	shape.	A	section	of	a	shape
corresponds	to	a	section	shown	in	the	ShapeSheet	window.	A	section	contains
rows	and	cells.

Version	added

2000

Remarks

The	default	property	of	a	Section	object	is	Row.

See	also Methods

Selection	object

				 					

				

Represents	a	subset	of	Shape	objects	for	a	page	or	master	to	which	an	operation
can	be	applied.

To	retrieve	a	Selection	object	that	corresponds	to	the	set	of	shapes	selected	in	a
window,	use	the	Selection	property	of	a	Window	object.

Version	added

2.0

Remarks

The	default	property	of	a	Selection	object	is	Item.

After	you	retrieve	a	Selection	object,	you	can	add	or	remove	shapes	by	using	the
Select	method.

See	also

Events

By	default,	the	items	reported	by	a	Selection	object	do	not	include	subselected
or	superselected	Shape	objects.	Use	the	IterationMode	property	to	control
whether	subselected	and	superselected	Shape	objects	are	reported.	You	can
determine	whether	an	individual	item	is	subselected	or	superselected	using	the
ItemStatus	property.

Shape	object

					 					

					

	 	

Represents	anything	you	can	select	in	a	drawing	window:	a	basic	shape,	a	group,
a	guide,	or	an	object	from	another	application	embedded	or	linked	in	Microsoft
Visio.

Version	added

2.0

Remarks

The	default	property	of	a	Shape	object	is	Name.

You	can	retrieve	a	particular	Shape	object	from	the	Shapes	collection	of	the
following	objects:

Page	object

Master	object

Shape	object	that	represents	a	group

To	retrieve	Cell	objects	and	Connect	objects,	use	the	Cells	and	Connects
properties	of	a	Shape	object,	respectively.

Note	The	PageSheet	property	of	a	Page	object	and	Master	object	returns	a
Shape	object	whose	Type	property	returns	visTypePage.	It	has	cells	that	specify
properties	such	as	drawing	size	and	drawing	scale.	The	DocumentSheet
property	of	a	Document	object	also	returns	a	Shape	object	whose	Type	property
returns	visTypeDoc.	It	has	cells	that	specify	properties	of	the	document.

Shapes	collection

					 					

				

	 	

Includes	a	Shape	object	for	each	basic	shape,	group,	guide,	or	object	from
another	application	(linked	or	embedded	in	Microsoft	Visio)	on	a	drawing	page,
master,	or	group.

Version	added

2.0

Events

Remarks

To	retrieve	a	Shapes	collection,	use	the	Shapes	property	of	a	Page,	Master,	or
Shape	object.

The	default	property	of	a	Shapes	collection	is	Item.

The	order	of	items	in	a	Shapes	collection	corresponds	to	the	stacking	(drawing)
order	of	the	shapes.

StatusBar	object
			 			 			

Beginning	with	Microsoft	Visio	2002,	this	object	is	obsolete.

Remarks

In	earlier	versions,	this	represented	a	status	bar	shown	at	the	bottom	of	a	Visio
window.

See	also Properties Methods Events

StatusBarItem	object
			 			 			

Beginning	with	Microsoft	Visio	2002,	this	object	is	obsolete.

Remarks

In	earlier	versions,	this	represented	a	single	item	(button,	message,	and	so	forth)
on	a	status	bar.

See	also Properties Methods Events

StatusBarItems	collection
			 			 			

Beginning	with	Microsoft	Visio	2002,	this	collection	is	obsolete.

Remarks

In	earlier	versions,	this	collection	included	a	StatusBarItem	object	for	each
Visio	window	context.

See	also Properties Methods Events

StatusBars	collection
			 			 			

Beginning	with	Microsoft	Visio	2002,	this	collection	is	obsolete.

Remarks

In	earlier	versions,	this	included	a	StatusBar	object	for	each	Visio	window
context	that	could	display	a	status	bar.

See	also Properties Methods Events

Style	object

					 					

					

Represents	a	style	defined	in	a	document.

You	retrieve	a	particular	style	from	the	Styles	collection	of	a	Document	object.

Version	added

2.0

Remarks

The	default	property	of	a	Style	object	is	Name.

Any	Shape	object	to	which	a	style	is	applied	inherits	the	attributes	defined	by
the	style.	Use	the	LineStyle,	FillStyle,	TextStyle,	or	Style	property	of	a	Shape
object	to	apply	a	style	to	a	shape	or	to	determine	what	style	is	applied	to	a	shape.

Like	a	Shape	object,	a	Style	object	has	cells	whose	formulas	define	the	values	of
the	style's	attributes.	To	retrieve	one	of	these	cells,	use	the	Cells	or	CellsSRC
property	of	the	Style	object.

Styles	collection

					 					

					

Includes	a	Style	object	for	each	style	defined	in	a	document.

Version	added

2.0

Remarks

To	retrieve	a	Styles	collection,	use	the	Styles	property	of	a	Document	object.

The	default	property	of	a	Styles	collection	is	Item.

Toolbar	object

					 					

				

Represents	a	group	of	toolbar	items	in	a	Microsoft	Visio	window.

Version	added

4.0

Remarks

The	default	property	of	Toolbar	is	Caption.

The	index	of	the	Toolbar	object	within	the	Toolbars	collection	corresponds	to
its	order	in	the	Visio	window,	starting	with	zero	(0)	for	the	toolbar	closest	to	the
top.	Up	to	10	toolbars	can	be	displayed	in	a	Visio	window	at	one	time.

Events

ToolbarItem	object

					 					

				

Represents	one	item	in	a	Toolbar	object.	A	ToolbarItem	object	can	represent	a
button,	combo	box,	or	any	other	item	on	the	Microsoft	Visio	toolbars.

Version	added

4.0

Remarks

The	index	of	the	ToolbarItem	object	within	the	ToolbarItems	collection
corresponds	to	its	position	on	the	toolbar,	starting	with	zero	(0)	for	the	item
farthest	to	the	left	if	the	toolbars	are	arranged	horizontally.

Beginning	with	Microsoft	Visio	2002,	use	the	BeginGroup	property	to	create
spaces	on	a	toolbar.

Events

ToolbarItems	collection

					 					

				

Includes	a	ToolbarItem	object	for	each	item	on	a	toolbar.

Version	added

4.0

Remarks

To	retrieve	a	ToolbarItems	collection,	use	the	ToolbarItems	property	of	a
Toolbar	object.

The	default	property	of	ToolbarItems	is	Item.

Unlike	other	Visio	collections,	the	ToolbarItems	collection	is	indexed	starting
with	zero	(0)	rather	than	1.

Events

Toolbars	collection

					 					

				

Includes	a	Toolbar	object	for	each	toolbar	in	a	window	context.

Version	added

4.0

Remarks

To	retrieve	a	Toolbars	collection,	use	the	Toolbars	property	of	a	ToolbarSet
object.

The	default	property	of	Toolbars	is	Item.

Unlike	other	Visio	collections,	the	Toolbars	collection	is	indexed	starting	with
zero	(0)	rather	than	1.

Events

ToolbarSet	object

					 					

				

Represents	the	set	of	toolbars	for	a	Microsoft	Visio	window	context.

Version	added

4.0

Events

ToolbarSets	collection

					 					

				

Includes	a	ToolbarSet	object	for	each	window	context	that	can	display	toolbars.

Version	added

4.0

Remarks

To	retrieve	a	ToolbarSets	collection,	use	the	ToolbarSets	property	of	a
UIObject	object.

The	default	property	of	ToolbarSets	is	Item.

Unlike	other	Visio	collections,	the	ToolbarSets	collection	is	indexed	starting
with	zero	(0)	rather	than	1.

Events

A	ToolbarSet	object	is	identified	in	the	ToolbarSets	collection	by	its	SetID
property,	which	corresponds	to	a	Visio	window	context.	For	a	list	if	SetID	values
for	ToolbarSet	objects,	see	the	SetID	property.

UIObject	object

					 					

				

	

Represents	a	set	of	Microsoft	Visio	menus,	toolbars,	and	accelerators,	from
either	the	built-in	Visio	user	interface	or	a	customized	version	of	it.

Version	added

4.0

Remarks

To	retrieve	a	UIObject	object	that	contains

Visio	menus	and	accelerators,	use	the	BuiltInMenus	property	of	an	Application
object	and	then	the	Menusets	or	AccelTables	collections	of	the	UIObject

Events

object	returned	from	the	BuiltInMenus	property.

Visio	toolbars,	use	the	BuiltInToolbars	property	of	an	Application	object	and
then	the	ToolbarSets	collection	of	the	UIObject	object	returned	from	the
BuiltInToolbars	property.

If	an	Application	object	or	Document	object	has	a	customized	user	interface,
use	the	CustomMenus	or	CustomToolbars	properties	to	retrieve	UIObject
objects	that	represent	these.

A	UIObject	object	can	be	stored	in	a	file	and	loaded	into	Visio.	Use	the
SaveToFile	method	to	save	the	object	and	the	LoadFromFile	method	to	load	it,
or	set	the	CustomMenusFile	or	CustomToolbarsFile	property	of	an
Application	object	or	Document	object	to	the	name	of	the	stored	user	interface
file.

Beginning	with	Microsoft	Visio	2002,	a	program	can	manipulate	menus	and
toolbars	in	the	Visio	user	interface	by	manipulating	the	CommandBars
collection	returned	by	the	CommandBars	property.	The	CommandBars
collection	has	an	interface	identical	to	the	CommandBars	collection	exposed	by
the	suite	of	Microsoft	Office	applications	such	as	Microsoft	Word	and	Microsoft
Excel.	Consequently,	programs	can	manipulate	the	Visio	menus	and	toolbars
using	either	the	CommandBars	collection	or	UIObject	objects.

Window	object

					 					

					

object;DAR_Objects_(A-M)_1015.htm">	 	

Represents	an	open	window	in	a	Microsoft	Visio	instance.

Version	added

2.0

Remarks

The	default	property	of	a	Window	object	is	Application.

To	retrieve

the	active	window	in	an	instance	of	Visio,	use	the	ActiveWindow	property	of	an
Application	object.

a	Page	object	that	represents	the	page	shown	in	the	window,	use	the	Page
property	of	a	Window	object.

a	Document	object	that	represents	the	document	displayed	in	that	window,	use
the	Document	property.

a	Selection	object	that	represents	the	shapes	selected	in	that	window,	use	the
Selection	property.

Note	Beginning	with	Microsoft	Visio	2002,	the	following	methods	of	the
Window	object	are	obsolete:	AddToGroup,	Cut,	Combine,	Copy,	Delete,
Duplicate,	Fragment,	Group,	Intersect,	Join	RemoveFromGroup,	Subtract,
Trim,	and	Union.	Existing	solutions	that	invoke	these	methods	will	continue	to
work	properly;	however,	new	or	rebuilt	solutions	should	use	these	methods	with
the	Selection	object.

In	addition,	the	Window	object's	Paste	method	is	now	obsolete.	Use	the	Paste
or	PasteSpecial	method	of	the	Page,	Master,	or	Shape	object.	(Use	the	Shape
object	in	the	case	of	group	shapes.)

Windows	collection

					 					

					

object;DAR_Objects_(A-M)_1015.htm">	 	

Includes	a	Window	object	for	a	window	that	is	open	in	the	application.

Version	added

2.0

Remarks

To	retrieve	a	Windows	collection,	use	the	Windows	property	of	an	Application
object.

The	default	property	of	a	Windows	collection	is	Item.

If	a	docked	stencil	window	contains	more	than	one	stencil,	only	one	window	is
counted.

AccelItems	property

				 					

Returns	the	AccelItems	collection	of	an	AccelTable	object.

Version	added

4.0

Syntax

objRet	=	object.AccelItems
objRet An	AccelItems	collection.
object Required.	An	expression	that	returns	an	AccelTable	object.

See	also

AccelTables	property

					 					

Returns	the	AccelTables	collection	of	a	UIObject	object.

Version	added

4.0

Syntax

objRet	=	object.AccelTables
objRet An	AccelTables	collection.
object Required.	An	expression	that	returns	the	UIObject	object	that

owns	the	collection.

Remarks

If	a	UIObject	object	represents	menu	items	and	accelerators	(for	example,	if	you
retrieved	the	object	using	the	BuiltInMenus	property	of	an	Application	object),
then	its	AccelTables	collection	represents	tables	of	accelerator	keys	for	that
UIObject	object.

To	retrieve	accelerators	for	a	particular	window	context,	for	example,	the
drawing	window,	use	the	ItemAtID	property	of	an	AccelTables	collection.	If	a
window	context	does	not	include	accelerators,	it	has	no	AccelTables	collection.
For	a	list	of	valid	window	context	IDs,	see	the	SetID	property.

Action	property

				 				

Gets	or	sets	the	action	code	of	an	Event	object.

Version	added

4.0

Syntax

intRet	=	object.Action
object.Action	=	actionCode
intRet Integer.	The	Event	object's	action	code.
object Required.	An	expression	that	returns	an	Event	object.
actionCode Required	Integer.	The	new	action	code	to	assign.

Remarks

An	Event	object	consists	of	an	event-action	pair—an	event	triggers	an	action.
An	action	code	is	the	numeric	constant	for	the	action	that	the	event	triggers.

Example

Visio	supports	the	following	action	codes.

Constant Value
visActCodeRunAddon 1
visActCodeAdvise 2

ActionText	property

					 					

Gets	or	sets	the	action	text	for	a	menu,	menu	item,	or	toolbar	item.

Version	added

4.0

Syntax

object.ActionText	=	actionStr
actionStr	=	object.ActionText
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object	that	owns	the	action	text.
actionStr Required	String.	A	string	that	describes	the	action.

Remarks

Action	text	is	a	string	that	describes	the	action	on	the	Undo,	Redo,	and	Repeat
menu	items	on	the	Edit	menu.

If	the	ActionText	property	is	empty	and	the	object's	CmdNum	property	is	set	to
one	of	the	Visio	built-in	command	IDs,	the	item	uses	the	default	action	text	from
the	built-in	Visio	user	interface.

Active	property

				 					

Indicates	whether	the	instance	of	Microsoft	Visio	represented	by	the
Application	object	is	the	active	application	on	the	Microsoft	Windows	desktop
—the	application	with	the	highlighted	title	bar.

Version	added

4.1

Syntax

intRet	=	object.Active
intRet Integer.	False	(0)	if	the	application	is	not	active;	True	(-1)	if	it

is	active.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	active	application	on	the	Windows	desktop	is	distinct	from	the	active	Visio
instance,	which	is	returned	by	a	call	to	the	OLE	GetActiveObject	function
(GetObject	function	in	Microsoft	Visual	Basic).	The	GetObject	function

See	also

retrieves	the	instance	of	Visio	that	was	most	recently	activated,	which	may	or
may	not	be	the	active	application	on	the	desktop	at	that	moment.	Of	all	instances
of	Visio	that	are	currently	running,	only	one	is	the	active	Visio	instance.

For	example,	suppose	you	start	one	instance	of	Visio	and	one	of	another
application,	such	as	Microsoft	Excel.

If	the	instance	of	Visio	is	the	active	application	on	your	desktop,	GetObject(,
"visio.application")	retrieves	that	instance	and	its	Active	property	is	True.

If	you	activate	the	instance	of	Microsoft	Excel,	GetObject(,	"visio.application")
retrieves	the	same	instance	of	Visio,	but	its	Active	property	is	False.

If	an	Application	object's	Active	property	is	True,	you	can	assume	that	the
corresponding	instance	of	Visio	is	the	active	instance	of	Visio	unless	the	InPlace
property	is	also	True.	If	an	instance	of	Visio	is	activated	for	in-place	editing	in	a
container	application,	that	instance	may	not	necessarily	report	itself	as	the	active
instance	of	Visio.

ActiveDocument	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	active	Document	object,	the	document	shown	in	the	active	window.

Version	added

2.0

Syntax

objRet	=	object.ActiveDocument
objRet A	Document	object	that	represents	the	active	document.
object Required.	An	expression	that	returns	the	Application	object

that	owns	the	document.

Remarks

When	no	documents	are	open,	there	is	no	active	document	and	the
ActiveDocument	property	returns	the	value	Nothing	and	does	not	raise	an
exception.

If	your	code	is	in	the	Microsoft	Visual	Basic	for	Applications	(VBA)	project	of	a
Visio	document,	the	ActiveDocument	property	often,	but	not	necessarily,
returns	a	reference	to	the	ThisDocument	object,	a	class	module	in	the	VBA
project	of	every	Visio	document.	If	the	ThisDocument	object	is	shown	in	the
active	window,	then	the	ActiveDocument	object	and	the	ThisDocument	object
refer	to	the	same	document.	When	the	ThisDocument	object	is	referenced	from

code	in	a	project,	it	returns	a	reference	to	the	project's	Document	object.

Whether	you	use	the	ActiveDocument	object	or	the	ThisDocument	object
depends	on	the	purpose	of	your	code.

You	can	compare	the	result	returned	by	the	ActiveDocument	property	with	the
value	Nothing	to	determine	if	a	document	is	active.	If	the	value	of	the
Application.Documents.Count	property	is	greater	than	zero,	then	at	least	one
document	is	open	and	active.

ActivePage	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	active	Page	object.

Version	added

2.0

Syntax

objRet	=	object.ActivePage
objRet A	Page	object	that	represents	the	active	page.
object Required.	An	expression	that	returns	the	Application	object

that	owns	the	page.

Remarks

The	ActivePage	property	returns	a	Page	object	only	when	the	active	window
displays	a	drawing	page;	otherwise,	it	returns	Nothing.	To	verify	that	a	page	is
active,	use	the	Is	operator	to	compare	the	ActivePage	property	with	Nothing.

ActivePrinter	property

				 				

Specifies	the	printer	that	all	Microsoft	Visio	documents	print	to.

Version	added

2002

Syntax

strRet	=	object.ActivePrinter

object.ActivePrinter	=	strExpression	
strRet String.	The	current	active	printer.
object Required.	An	expression	that	returns	an	Application	object.
strExpression Required	String.	The	new	active	printer.

Remarks

The	ActivePrinter	property	is	initially	set	to	the	default	printer.

Example

ActiveWindow	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	active	Window	object.

Version	added

2.0

Syntax

objRet	=	object.ActiveWindow
objRet A	Window	object	that	represents	the	active	window.
object Required.	An	expression	that	returns	the	Application	object

that	owns	the	window.

Remarks

The	active	window	can	be	one	of	the	following	window	types:	Drawing,	Stencil,
ShapeSheet,	Edit	Icon,	or	a	Drawing	or	Stencil	window	created	by	an	add-on.
The	application's	active	window	can	only	be	an	MDI	frame	window—it	cannot
be	one	of	the	floating,	docked,	or	anchored	windows.	For	a	complete	list	of
window	types,	see	the	Type	property.

If	a	window	in	an	instance	of	Visio	is	not	active,	the	ActiveWindow	property
returns	Nothing.

Addins	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions	of	Visio,	this	property	returned	a	collection	of	registered
COM	add-ins.	Use	the	COMAddins	property	to	get	a	reference	to	the
COMAddins	collection.

See	also Example Applies	to

AddonArgs	property

					 					

Gets	or	sets	the	argument	string	that	you	send	to	the	add-on	associated	with	a
particular	menu	or	toolbar.

Version	added

4.0

Syntax

object.AddonArgs	=	argsStr
argsStr	=	object.AddonArgs
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list	that	starts	the	add-on.
argsStr Required	String.	The	argument	string	to	be	passed	to	the	add-

on.

Remarks

An	argument's	string	can	be	anything	appropriate	for	the	add-on.	However,	the

arguments	are	packaged	together	with	other	information	into	a	command	string,
which	cannot	exceed	127	characters.	For	best	results,	limit	arguments	to	50
characters.

An	object's	AddonName	property	indicates	the	name	of	the	add-on	to	which	the
arguments	are	sent.

AddonName	property

					 					

Gets	or	sets	the	name	of	an	add-on	associated	with	a	menu	or	toolbar.

Version	added

4.0

Syntax

object.AddonName	=	addonStr
addonStr	=	object.AddonName
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.
addonStr Required	String.	The	name	of	the	add-on	to	be	run	or

Microsoft	Visual	Basic	for	Applications	(VBA)	code	to	be
executed.

Remarks

When	an	item	whose	AddonName	property	is	set	is	selected,	Visio	asks	the

VBA	project	of	the	active	document	to	parse	the	AddonName	property	string.	If
VBA	successfully	parses	the	string,	Visio	tells	VBA	to	execute	the	string.	Using
this	technique,	you	can	cause	a	menu	or	toolbar	item	to	run	a	VBA	macro	or
procedure,	show	a	VBA	form,	log	information	to	the	Immediate	window,	and	so
on.	See	the	ExecuteLine	method	for	examples.

If	VBA	cannot	parse	the	string,	then	Visio	runs	the	add-on	named	by	the
AddonName	property.	If	there	is	no	such	add-on,	Visio	does	nothing.

If	the	AddonName	property	is	set,	Visio	ignores	the	object's	CmdNum
property.

Use	the	AddonArgs	property	to	specify	arguments	to	send	to	the	add-on	when	it
is	run.

AddonPaths	property

				 				

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	add-ons.

Version	added

4.0

Syntax

strRet	=	object.AddonPaths
object.AddonPaths	=	strPaths
strRet String.	A	list	of	folders.
object Required.	An	expression	that	returns	an	Application	object.
strPaths Required	String.	A	text	string	containing	a	list	of	folders.	Use

semicolons	to	separate	individual	folders	in	the	string.

Remarks

To	indicate	more	than	one	folder	in	the	path	where	Visio	looks	for	add-ons,
separate	individual	items	in	the	path	string	with	semicolons.

Example

The	string	passed	to	and	received	from	the	AddonPaths	property	is	the	same
string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu).	This	string	is	stored	in
HKEY_CURRENT_USER\Software\Microsoft\Visio\application\AddonsPath

When	Visio	looks	for	add-ons,	it	looks	in	all	paths	named	in	the	AddonPaths
property	and	all	the	subfolders	of	those	paths.	If	you	pass	the	AddonPaths
property	to	the	EnumDirectories	method,	it	returns	a	complete	list	of	fully
qualified	paths	in	which	Visio	looks.

If	a	path	is	not	fully	qualified,	Visio	looks	for	the	folder	in	the	folder	that
contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the	Visio
executable	file	is	installed	in	c:\Visio,	and	the	AddonPaths	property	is	"Add-
ons;d:\Add-ons",	Visio	looks	for	add-ons	in	both	c:\Visio\Add-ons	and	d:\Add-
ons.

Addons	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	Addons	collection	of	an	Application	object.

Version	added

4.0

Syntax

objRet	=	object.Addons
objRet The	Addons	collection	of	the	Application	object.
object Required.	An	expression	that	returns	the	Application	object

that	owns	the	collection.

Remarks

The	Addons	collection	includes	an	Addon	object	for	each	add-on	in	the	folders
specified	by	the	AddonPaths	property	and	for	each	add-on	that	is	added
dynamically	to	the	collection	by	other	add-ons.

Address	property

					 					

Gets	or	sets	the	address	for	a	shape's	Hyperlink	object—the	address	to	which
the	hyperlink	navigates.

Version	added

5.0

Syntax

strRet	=	object.Address
object.Address	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Hyperlink	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	Address	property	for	a	Hyperlink	object	is	equivalent	to	entering
information	in	the	Address	box	in	the	Hyperlinks	dialog	box	(click	Hyperlinks

on	the	Insert	menu),	or	setting	the	result	of	the	Address	cell	in	the	shape's
Hyperlink.Row	row	through	the	ShapeSheet	window.

The	Address	property	value	can	be	a	DOS,	UNC,	or	URL	path,	for	example,
c:\Drawings\MyDrawing.vsd,	\\Server\Shared\MyDrawing.vsd,	or
http://www.microsoft.com,	respectively.

If	the	Address	property	is	relative,	for	example,	"..\Drawing.vsd",	then	it	is
composed	against	the	HyperlinkBase	property,	if	supplied,	or	the	hyperlink's
document	path.	If	the	document	is	not	saved,	the	hyperlink	is	undefined.

If	the	Address	property	is	empty,	then	you	can	assume	the	address	points	to	a
page	in	the	document	that	contains	the	page.	In	this	case,	the	SubAddress
property	contains	the	name	of	the	drawing	page	to	which	the	hyperlink
navigates.

AlertResponse	property

				 				

Determines	whether	Microsoft	Visio	shows	alerts	and	modal	dialog	boxes	to	the
user.

Version	added

4.1

Syntax

intRet	=	object.AlertResponse
object.AlertResponse	=	intExpression
intRet Integer.	Zero	(0)	to	display	alerts	to	the	user	and	allow	the	user

to	respond,	or	the	value	of	the	default	response	(see	Remarks).
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	Zero	(0)	to	display	alerts	to	the	user	and

allow	the	user	to	respond,	or	the	value	of	the	default	response	to
supply	(see	Remarks).

Remarks

Example

Certain	operations,	such	as	closing	a	document	with	unsaved	modifications,
cause	Visio	to	display	an	alert	or	modal	dialog	box	requesting	the	user	to	supply
a	response	such	as	OK,	Yes,	No,	or	Cancel.	To	prevent	Visio	from	displaying
alerts	or	modal	dialog	boxes	when	a	program	performs	such	actions,	set	the
AlertResponse	property	to	a	default	value	for	the	response.	In	this	case,	Visio
does	not	display	the	alert	or	modal	dialog	box;	instead,	Visio	behaves	as	if	the
user	responded	to	the	alert	or	modal	dialog	box	with	the	value	of	the
AlertResponse	property.

If	the	AlertResponse	property	is	0	(its	default	value),	alerts	and	modal	dialog
boxes	are	displayed.

The	values	you	supply	for	the	AlertResponse	property	correspond	to	the
standard	Windows	constants	IDOK,	IDCANCEL,	and	so	forth.

Constant Value
IDOK 1
IDCANCEL 2
IDABORT 3
IDRETRY 4
IDIGNORE 5
IDYES 6
IDNO 7

AlignName	property

			 				

Gets	or	sets	the	position	of	a	master	name	in	a	stencil	window.

Version	added

2.0

Syntax

intRet	=	object.AlignName
object.AlignName	=	intNewAlignment
intRet Integer.	Returns	the	current	alignment	of	the	master's	name.
object Required.	An	expression	that	returns	a	Master	object.
intNewAlignment Required	Integer.	The	new	alignment	for	the	master's	name.

Remarks

The	following	constants	declared	by	the	Visio	type	library	show	the	possible
alignment	values.

Constant Value
visLeft 1
visCenter 2
visRight 3

See	also Example

AllowEditing	property

			 				

Determines	whether	the	Edit	command	is	enabled	or	disabled	in	a	stencil
window.

Version	added

2002

Syntax

boolRet	=	object.AllowEditing
object.	AllowEditing	=	boolValue
boolRet Boolean.	True	if	the	Edit	command	is	enabled	in	a	stencil

window;	False	if	it	is	disabled.
object Required.	An	expression	that	returns	a	Window	object.
boolValue Required	Boolean.	True	to	enable	the	Edit	command;	False	to

disable	it.

Remarks

Use	the	AllowEditing	property	to	prevent	unintentional	editing	in	the	stencil.

See	also Example

Alt	property

				 				

Determines	whether	the	ALT	key	is	a	modifier	for	an	accelerator.

Version	added

4.0

Syntax

intRet	=	object.Alt
object.Alt	=	intExpression
intRet Integer.	True	(-1)	if	the	ALT	key	modifies	an	accelerator	key

in	an	AccelItem	object;	otherwise,	False	(0).
object Required.	An	expression	that	returns	an	AccelItem	object.
intExpression Required	Integer.	True	(non-zero)	if	the	ALT	key	modifies	an

accelerator	key	in	an	AccelItem	object;	otherwise,	False	(0).

Example

AlternateNames	property

				 					

Gets	or	sets	the	alternate	names	for	a	document.

Version	added

2000

Syntax

strRet	=	object.AlternateNames
object.AlternateNames	=	strExpression
strRet String.	One	or	more	file	names	delimited	by	semicolons.
object Required.	An	expression	that	returns	a	Document	object.
strExpression Required	String.	One	or	more	file	names	delimited	by

semicolons.	For	example,	"My	Shapes	99.vss";	"My	Shapes
98.vss".

Remarks

The	application	stores	document	names	in	the	following	situations:

See	also

Templates	store	stencil	names.	For	example,	the	Basic	Flowchart	template
stores	the	names	of	the	Basic	Flowchart	Shapes.vss	and	Backgrounds.vss
stencils.	These	stencils	are	opened	with	the	Basic	Flowchart	template.

Master	shortcuts	store	stencil	names.	For	example,	a	shortcut	for	the	Data	shape
stores	the	name	of	the	stencil	on	which	the	Data	shape	is	stored—Basic
Flowchart	Shapes.vss.

When	the	application	opens	a	document	or	accesses	the	Document	object's
collection,	it	uses	the	document	name.	If	Visio	can't	find	the	document	name,	it
looks	for	alternate	names	for	those	stencils	that	are	in	the	correct	path	(on	the
Tools	menu,	click	Options,	and	then	click	the	File	Paths	tab	to	add	a	path).	For
example,	suppose	you	created	the	stencil	named	"My	Shapes	98.vss."	The
following	year	you	revised	the	stencil	and	renamed	it	"My	Shapes	99.vss."	Any
templates	that	opened	My	Shapes	98.vss	should	now	open	My	Shapes	99.vss.
To	do	this,	set	the	AlternateNames	property	of	My	Shapes	99.vss	to	"My
Shapes	98.vss."	The	following	VBA	code	shows	one	way	to	do	this:

Visio.Documents("My	Shapes	99.vss").AlternateNames	=	"My	Shapes	98.vss"

The	AlternateNames	property	is	empty	until	you	set	it	through	Automation.
Each	of	the	alternate	names	in	the	string	should	contain	the	file	name,	with	no
folder	information.	You	can	also	include	comments	in	angle	brackets	(<>)	as	the
application	ignores	anything	in	angle	brackets.	For	example,	you	could	set	the
AlternateNames	property	like	this:

Visio.Documents("HRShapes.vss").AlternateNames	=	"Human	Resources	Shapes.vss";<old	name>;"HRDept	Shapes.vss"

Application	property

				 					object;DAR_Objects_(A-
M)_1015.htm">

Returns	the	instance	of	Microsoft	Visio	that	is	associated	with	an	object.

Version	added

2.0

Syntax

objRet	=	object.Application
objRet The	Application	object	that	is	associated	with	an	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

See	also

AreaIU	property

				 				

Returns	the	area	of	an	object	in	internal	units	(square	inches).

Version	added

4.0

Syntax

retVal	=	object.AreaIU
retVal Double.	The	area	of	the	object	in	internal	units.
object Required.	An	expression	that	returns	a	Shape	object.

Example

Attributes	property

			 				

Returns	the	attributes	of	the	font.

Version	added

3.0

Syntax

intRet	=	object.Attributes

intRet Integer.	The	attributes	of	a	Font	object.

object Required.	An	expression	that	returns	a	Font	object.

Remarks

When	using	the	Attributes	property	with	a	Font	object,	one	of	the	following
values	is	returned.

Constant Value
visFontRaster 16
visFontDevice 32
visFontScalable 64
visFont0Alias 128

A	font	marked	as	the	font	0	alias	is	used	instead	of	font	0	(the	default	font).	The

See	also Example

font	0	alias	is	used	in	some	localized	versions	of	Visio	and	is	controlled	through
entries	in	the	registry.

AutoLayout	property

				 				

Allows	you	to	temporarily	disable	the	action	of	the	automatic	layout
functionality,	and	then	reenable	it	after	you	are	finished	with	an	action.

Version	added

2000

Syntax

boolRet	=	object.AutoLayout
object.AutoLayout	=	boolValue
boolRet Boolean.	True	if	automatic	layout	is	enabled,	False	if	it	is

disabled.
object Required.	An	expression	that	returns	an	Application	object.
boolValue Required	Boolean.	True	to	enable	automatic	layout;	False	to

disable	automatic	layout.

Remarks

Example

Using	the	AutoLayout	property	helps	to	improve	the	performance	of	add-ons
that	execute	many	operations	in	connected	drawings	that	use	Visio	automatic
layout	functionality.

AutoRecover	property

					 					

Determines	whether	an	open	document	with	unsaved	changes	is	copied	when
automatic	recovery	is	enabled.

Version	added

2000	SR-1

Syntax

boolRet	=	object.AutoRecover
object.AutoRecover	=	boolValue
boolRet Boolean.	True	if	automatic	recovery	is	enabled,	False	if	it	is

disabled.
object Required.	An	expression	that	returns	a	Document	object.
boolValue Required	Boolean.	True	to	enable	automatic	recovery;	False	to

disable	automatic	recovery.

Remarks

If	automatic	recovery	is	enabled	(the	AutoRecoverInterval	property	is	greater
than	0),	all	documents	that	are	open	and	have	unsaved	changes	are	copied	into
temporary	files.	If	you	do	not	want	a	document	to	be	recovered,	set	its
AutoRecover	property	to	False.	The	AutoRecover	property	is	not	saved	with	a
document	and	must	be	set	each	time	the	document	opens.

When	Visio	launches	after	an	abnormal	termination	and	determines	that
automatic	recovery	was	enabled,	it	attempts	to	open	all	files	that	were	open	at
termination.

If	there	is	a	recovery	file	that	is	more	recent	than	the	last	saved	copy	of	the	file,
it	opens	the	recovered	file	and	displays	the	name	"<file	name>	(Recovered)"	in
the	document	title	bar.

If	there	is	no	recovery	file,	Visio	opens	the	last	saved	copy	of	the	document.

You	must	still	save	changes	to	recovered	documents	before	Visio	closes.	If
recovered	documents	are	not	saved,	changes	will	be	deleted	as	in	any	unsaved
document.

AutoRecoverInterval	property

					 					

Represents	the	time	interval	(in	minutes)	for	how	often	you	want	to	create	copies
of	open	documents	with	unsaved	changes	in	case	of	a	power	failure	or	an
application	error.

Version	added

2000	SR-1

Syntax

intRet	=	object.AutoRecoverInterval
object.AutoRecoverInterval	=	intExpression
intRet Integer.	An	integer	value	from	zero	(0)	to	120	representing	the

interval	in	minutes.	The	default	is	0.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	An	integer	value	from	0	to	120	representing

the	interval	in	minutes.	The	default	is	0.

Remarks

If	the	value	of	the	AutoRecoverInterval	property	is	less	than	or	equal	to	0,	no
automatic	recovery	copies	are	created.

If	the	value	of	the	AutoRecoverInterval	property	is	greater	than	0,	automatic
recovery	is	enabled	for	all	documents	in	the	Visio	instance.	To	disable	automatic
recovery	for	a	particular	document,	set	its	AutoRecover	property	to	False.

AvailablePrinters	property

				 				

Returns	a	list	of	installed	printers.

Version	added

2002

Syntax

strRet	=	object.AvailablePrinters
strRet String.	An	array	of	printers	installed	on	the	computer.
object Required.	An	expression	that	returns	an	Application	object.

Example

Background	property

					 					

Determines	whether	a	page	is	a	background	page.

Version	added

2.0

Syntax

retVal	=	object.Background
object.Background	=	intExpression
retVal Integer.	True	if	the	page	is	a	background	page;	otherwise,

False.
object Required.	An	expression	that	returns	a	Page	object.
intExpression Required	Integer.	False	(0)	to	declare	the	page	as	a	foreground

page;	True	(non-zero)	to	declare	it	as	a	background	page.

BackPage	property

				 				

Gets	or	sets	the	background	page	of	a	page.

Version	added

2.0

Syntax

objVariantRet	=	object.BackPage
object.BackPage	=	stringVariant
objVariantRet Variant.	A	Page	object	that	represents	the	background	page.
object Required.	An	expression	that	returns	a	Page	object.
stringVariant Required	Variant.	A	string	that	names	the	new	background

page.

Remarks

If	a	page	has	no	background,	its	BackPage	property	returns	an	empty	Variant.
Otherwise	the	returned	Variant	refers	to	a	Page	object—the	background	page	of

Example

the	indicated	page.

To	assign	a	background	page	to	a	page,	set	the	page's	BackPage	property	to	the
name	of	the	background	page	you	want	to	assign.	To	cause	a	page	to	have	no
background	page,	pass	an	empty	string	to	the	BackPage	property.

Note	In	earlier	versions	of	Visio	(through	version	4.1),	the	BackPage	property
returned	an	object	(as	opposed	to	a	Variant	of	type	object)	and	it	accepted	a
string	(as	opposed	to	a	Variant	of	type	string).	The	property	has	been	modified
so	that	it	accepts	and	returns	variants	due	to	changes	in	Automation	support
tools.	For	backward	compatibility,	the	BackPageAsObj	and
BackPageFromName	properties	have	been	added.	These	properties	have	the
same	signatures	and	occupy	the	same	vtable	slots	as	the	earlier	version	of	the
BackPage	property.

BackPageAsObj	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	the	background	page	of	a	page.

See	also Example Applies	to

BackPageFromName	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	set	the	background	page	of	a	page.

See	also Example Applies	to

BasedOn	property

				 				

Gets	or	sets	the	style	on	which	a	Style	object	is	based.

Version	added

4.0

Syntax

strVal	=	object.BasedOn
object.BasedOn	=	styleName
strVal String.	The	name	of	the	current	style.
object Required.	An	expression	that	returns	a	Style	object.
styleName Required	String.	The	name	of	the	new	style.

Remarks

To	base	a	style	on	no	style,	set	the	BasedOn	property	to	a	zero-length	string	("").

Example

BaseID	property

				 				

Returns	a	base	ID	for	a	master.

Version	added

2000

Syntax

strRet	=	object.BaseID
strRet String.	A	Master	object's	base	ID.
object Required.	An	expression	that	returns	a	Master	object.

Remarks

A	base	ID	is	assigned	to	a	master	when	it	is	created.	When	a	master	is	copied,
the	copies	all	have	the	same	base	ID	as	the	original	master.

A	Master	object	also	has	a	UniqueID	property	that	remains	the	same	as	the
original	master	when	copied.	If	the	copy	of	the	master	gets	changed,	the	unique
ID	changes	but	the	base	ID	remains	the	same.

Example

The	only	way	to	change	a	master's	base	ID	is	to	use	the	NewBaseID	property.

Begin	property

				 				

Gets	or	sets	the	beginning	index	of	a	Characters	object,	which	represents	a
range	of	text	in	a	shape.

Version	added

3.0

Syntax

intRet	=	object.Begin
object.Begin	=	intExpression
intRet Integer.	The	current	beginning	index	of	the	Characters	object.
object Required.	An	expression	that	returns	a	Characters	object.
intExpression Required	Integer.	The	new	beginning	index	of	the	Characters

object.

Remarks

The	Begin	property	determines	the	beginning	of	the	text	range	represented	by	a

Example

Characters	object.	The	value	of	the	Begin	property	is	an	index	that	represents
the	boundary	between	two	characters,	similar	to	an	insertion	point	in	text.	Like
selected	text	in	a	drawing	window,	a	Characters	object	represents	the	sequence
of	characters	that	are	affected	by	subsequent	actions,	such	as	the	Cut	or	Copy
method.	When	you	retrieve	a	Characters	object,	its	current	text	range	includes
all	the	shape's	text.	You	can	change	the	text	range	by	setting	the	Characters
object's	Begin	and	End	properties.	Changing	the	text	range	of	a	Characters
object	has	no	effect	on	the	text	of	the	corresponding	shape.

The	Begin	property	can	have	a	value	from	zero	(0)	to	the	value	of	the
CharCount	property	for	the	corresponding	shape.	An	index	of	0	is	before	the
first	character	in	the	shape's	text.	An	index	that	is	the	same	as	the	CharCount
property	is	after	the	last	character	in	the	shape's	text.	If	you	specify	a	value	less
than	0,	Visio	uses	0.	If	you	specify	a	value	that	is	inside	the	expanded	characters
of	a	field,	Visio	sets	the	value	of	the	Begin	property	to	the	start	of	the	field.

The	value	of	the	Begin	property	must	always	be	less	than	or	equal	to	the	value	of
the	End	property.	If	you	attempt	to	set	the	value	of	the	Begin	property	to	a	value
greater	than	the	End	property,	Visio	sets	both	the	Begin	and	End	properties	to
the	value	specified	for	the	Begin	property.

BeginGroup	property

			 				

Determines	whether	the	menu	item	or	toolbar	item	appears	at	the	beginning	of	a
group	of	items	on	the	menu	or	toolbar.

Version	added

2002

Syntax

boolRet	=	object.BeginGroup

object.BeginGroup	=	boolVal
boolRet Boolean.	True	if	the	menu	item	or	toolbar	item	is	at	the

beginning	of	a	group;	otherwise,	False.
object Required.	An	expression	that	returns	a	MenuItem	or

ToolbarItem	object.
boolVal Required	Boolean.	True	to	indicate	that	the	menu	item	or

toolbar	item	is	the	beginning	of	a	group	of	items;	otherwise,
False.

Remarks

If	you	set	the	BeginGroup	property	of	a	MenuItem	or	ToolbarItem	object	to
True,	a	separator	is	inserted	into	the	menu	or	a	spacer	is	inserted	into	the	toolbar
preceding	this	item.

See	also Example

Note	In	Visio	2000,	the	only	way	to	create	a	separator	in	a	menu	or	a	spacer	in	a
toolbar	was	to	add	a	dummy	item	with	a	CmdNum	property	of	zero,	a	Caption
property	that	contained	"",	and	an	empty	MenuItems	or	ToolbarItems
collection.	This	technique	continues	to	work	in	Microsoft	Visio	2002.

Blue	property

				 				

Gets	or	sets	the	intensity	of	the	blue	component	of	a	Color	object.

Version	added

4.0

Syntax

intRet	=	object.Blue
object.Blue	=	intVal
intRet Integer.	The	current	value	of	the	color's	blue	component.
object Required.	An	expression	that	returns	a	Color	object.
intVal Required	Integer.	The	new	value	of	the	color's	blue

component.

Remarks

The	Blue	property	can	be	a	value	from	0	to	255.

Example

A	color	is	represented	by	red,	green,	and	blue	components.	It	also	has	a	flag	that
indicates	how	the	color	is	to	be	used.	These	correspond	to	members	of	the
Microsoft	Windows	PALETTEENTRY	data	structure.	For	details,	search	for
"PALETTEENTRY"	in	the	Microsoft	Platform	SDK	on	the	Microsoft
Developer	Network	(MSDN)	Web	site.

http://msdn.microsoft.com

BottomMargin	property

				 				

Specifies	the	bottom	margin	when	printing	the	pages	in	a	document.

Version	added

4.0

Syntax

retVal	=	object.BottomMargin([unitsNameorCode])
object.BottomMargin([unitsNameorCode])	=	newValue
retVal Double.	The	margin	value	expressed	in	the	given	units.
object Required.	An	expression	that	returns	a	Document	object.
unitsNameorCode Optional	Variant.	The	units	to	use	when	retrieving	or	setting

the	margin	value.	Defaults	to	internal	drawing	units.
newValue Required	Double.	The	new	margin	value.

Remarks

The	value	of	this	property	corresponds	to	the	value	entered	in	the	Bottom	box	in

Example

the	Print	Setup	dialog	box	(on	the	File	menu,	click	Page	Setup,	and	then	click
Setup	on	the	Print	Setup	tab).

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

Cell.BottomMargin(visInches)	=	newValue

Cell.BottomMargin	(65)	=	newValue

Cell.BottomMargin	("in")	=	newValue	where	"in"	can	also	be	any	of	the
alternate	strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

Build	property

				 				

Returns	the	build	number	of	the	running	instance.

Version	added

2002

Syntax

retVal	=	object.Build
retVal Long.	The	build	number.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number

The	build	number	of	the	running	instance	is	written	to	the

Example

BuildNumberCreated	property	when	a	new	document	is	created,	and	to	the
BuildNumberEdited	property	when	a	document	is	edited.

BuildNumberCreated	property

				 				

Returns	the	build	number	of	the	instance	used	to	create	the	document.

Version	added

2002

Syntax

retVal	=	object.BuildNumberCreated
retVal Long.	The	build	number	when	the	document	was	created.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number

Example

BuildNumberEdited	property

				 				

Returns	the	build	number	of	the	instance	last	used	to	edit	the	document.

Version	added

2002

Syntax

retVal	=	object.BuildNumberEdited
retVal Long.	The	build	number	when	the	document	was	last	edited.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number

Example

BuiltIn	property

			 				

Determines	whether	an	object	is	a	default	Microsoft	Visio	user	interface	object
or	a	custom	object.

Version	added

2000

Syntax

boolVal	=	object.Builtin
boolVal Boolean.	True	if	the	object	is	built-in;	False	if	it	isn't.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

See	also Example

BuiltInMenus	property

					 					

Returns	a	UIObject	object	that	represents	a	copy	of	the	built-in	Microsoft	Visio
menus	and	accelerators.

Version	added

4.0

Syntax

objRet	=	object.BuiltInMenus
objRet A	UIObject	object	that	represents	the	built-in	Visio	menus	and

accelerators.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

You	can	use	the	BuiltInMenus	property	to	obtain	a	UIObject	object	and	modify
its	menus	and	accelerators.	You	can	then	use	the	SetCustomMenus	method	of
an	Application	or	Document	object	to	substitute	your	customized	menus	and
accelerators	for	the	built-in	Visio	menus	and	accelerators.

You	can	also	use	the	SaveToFile	method	of	the	UIObject	object	to	store	its
menus	in	a	file	and	reload	them	as	custom	menus	by	setting	the
CustomMenusFile	property	of	an	Application	or	Document	object.

BuiltInToolbars	property

					 					

Returns	a	UIObject	object	that	represents	a	copy	of	the	built-in	Microsoft	Visio
toolbars.

Version	added

4.0

Syntax

objRet	=	object.BuiltInToolbars
objRet A	UIObject	object	that	represents	the	built-in	Visio	toolbars.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

You	can	use	the	BuiltInToolbars	property	to	obtain	a	UIObject	object	and
modify	its	toolbars.	You	can	then	use	the	SetCustomToolbars	method	of	an
Application	or	Document	object	to	substitute	your	customized	toolbars	for	the
built-in	Visio	toolbars.

You	can	also	use	the	SaveToFile	method	of	the	UIObject	object	to	store	its
toolbars	in	a	file	and	reload	them	as	custom	toolbars	by	setting	the
CustomToolbarsFile	property	of	an	Application	or	Document	object.

Prior	to	Visio	5.0,	the	argument	for	this	property	(fWhichToolbars)	designated
which	type	of	toolbar	to	get	(MSOffice	or	LotusSS).	Beginning	with	Visio	5.0,
the	application	no	longer	supports	different	types	of	toolbars	and	this	argument
is	ignored.

Caption	property

					 					

Gets	or	sets	the	caption	for	an	object.

Version	added

4.0

Syntax

object.Caption	=	stringVal
stringVal	=	object.Caption
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list	that	has	or	gets	the	caption.
stringVal Required	String.	The	caption	of	the	object.

Use	&	in	the	string	to	cause	the	next	character	in	the	string	to
become	the	shortcut	key	for	that	menu	or	menu	item,	For
example,	the	string	"F&ormat"	causes	o	to	become	the
shortcut	key	for	that	menu	item	in	that	one	menu.

Use	""	in	the	string	to	display	a	double	quotation	mark	on	the

menu.

Use	&&	in	the	string	to	display	an	ampersand	on	the	menu.

Remarks

Visio	does	not	use	the	Caption	property	of	a	MenuSet	or	ToolbarSet	object.

Category	property

				 				

Gets	or	sets	the	value	of	a	document's	category—one	of	the	document	properties.

Version	added

5.0

Syntax

strRet	=	object.Category
object.Category	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	Category	property	is	equivalent	to	entering	information	in	the
Category	box	in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

Example

Cell[U]	property

			 				

Returns	a	cell	using	the	name	or	index	of	the	cell.

Version	added

2000

Syntax

objRet	=	object.Cell(reference)
objRet A	Cell	object.
object Required.	An	expression	that	returns	a	Row	object.
reference Required	Variant.	The	name	or	index	of	the	cell.

Remarks

The	first	cell	in	a	row	has	an	index	of	zero	(0).

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	Cell	property	to	get	a	Cell	object	using	its	local	name.	Use	the
CellU	property	to	get	a	Cell	object	using	its	universal	name.

See	also Example

CellExists[U]	property

				 				

Determines	whether	a	particular	ShapeSheet	cell	exists	in	the	scope	of	the
search.

Version	added

4.0

Syntax

intRet	=	object.CellExists(stringExpression,	fExistsLocally
intRet Integer.	False	(0)	if	cell	doesn't	exist;	True	(-1)	if	it	does.
stringExpression Required	String.	The	name	of	the	ShapeSheet	cell	for	which	you

want	to	search.
fExistsLocally Required	Integer.	The	scope	of	the	search.

Remarks

The	stringExpression	argument	must	specify	a	cell	name.	To	search	for	a	cell	by
section,	row,	and	column	index,	use	the	CellsSRCExists	property.

Example

The	fExistsLocally	argument	specifies	the	scope	of	the	search.

If	fExistsLocally	is	non-zero	(True),	the	CellExists	property	value	is	True	only
if	the	object	contains	the	cell	locally;	if	the	cell	is	inherited,	the	CellExists
property	value	is	False.

If	fExistsLocally	is	zero	(False),	the	CellExists	property	value	is	True	if	the
object	either	contains	or	inherits	the	cell.

For	a	list	of	cell	index	values,	view	the	Visio	type	library	for	the	members	of
class	VisCellIndices.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	CellExists	property	to	determine	if	a	cell	exists	using	the	cell's
local	name.	Use	the	CellExistsU	property	to	determine	if	a	cell	exists	using	the
cell's	universal	name.

Cells[U]	property

					 					

Returns	a	Cell	object	that	represents	a	ShapeSheet	cell.

Version	added

2.0

Syntax

objRet	=	object.Cells	(stringExpression)
objRet A	Cell	object	that	represents	the	requested	cell.
object Required.	An	expression	that	returns	a	Shape	or	Style	object

that	owns	the	cell.
stringExpression Required	String.	The	name	of	a	ShapeSheet	cell.

Remarks

Cells("somestring")	does	not	raise	an	exception	if	"somestring"	does	not	name
an	actual	cell.	Subsequent	methods	invoked	on	the	returned	object	will	fail.	You
can	determine	if	a	cell	with	the	name	"somestring"	exists	using	the	CellExists
property.

The	cells	in	a	shape's	User-Defined	Cells	and	Custom	Properties	sections	belong
to	rows	whose	names	have	been	assigned	by	the	user	or	a	program.	You	can
access	cells	in	named	rows	using	the	Cells	property.

For	example,	if	"MyRowsName"	is	the	name	of	a	row	in	a	shape's	User-Defined
Cells	section,	you	can	access	the	zero'th	(value)	cell	in	this	row	using	this
statement:

cellobj	=	shpobj.cells("User.MyRowsName")

You	can	access	the	prompt	cell	in	MyRowsName	using	this	statement:

cellobj	=	shpobj.cells("User.MyRowsName.Prompt")

Next,	assume	that	MyRowsName	is	in	the	Custom	Properties	section	instead	of
the	User-	Defined	Cells	section.	You	can	access	the	zero'th	(value)	cell	using	this
statement:

cellobj	=	shpobj.cells("Prop.MyRowsName")

You	can	access	other	cells	in	the	row	using	this	statement:

cellobj	=	shpobj.cells("Prop.MyRowsName.xxx")

where	xxx	is	one	of	these	properties:	Label,	Prompt,	SortKey,	Type,	Format,
Invisible,	or	Ask.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	Cells	property	to	get	a	Cell	object	using	the	cell's	local	name.
Use	the	CellsU	property	to	get	a	Cell	object	using	the	cell's	universal	name.

CellsC	property

			 				

Returns	a	Cell	object	that	represents	a	ShapeSheet	cell	in	a	layer.

Version	added

4.0

Syntax

objRet	=	object.CellsC(column)
objRet A	Cell	object	that	represents	the	requested	cell.
object Required.	An	expression	that	returns	a	Layer	object.
column Required	Integer.	The	cell	index	of	the	cell	to	get.

Remarks

The	following	constants	for	the	cell	index	are	declared	by	the	Visio	type	library.

Constant Value
visLayerName 0
visLayerColor 2
visLayerStatus 3
visLayerVisible 4
visLayerPrint 5
visLayerActive 6
visLayerLock 7

See	also Example

visLayerSnap 8
visLayerGlue 9
visLayerNameUniv 10

CellsRowIndex[U]	property

			 				

Returns	the	index	of	a	row	to	which	a	cell	belongs.

Version	added

2000

Syntax

intRet	=	object.CellsRowIndex(stringExpression)
intRet Optional	Integer.	The	index	of	the	row	containing	the	cell

named	in	stringEspression.
object Required.	An	expression	that	returns	a	Shape	object	that

contains	the	cell.
stringExpression Required	String.	The	name	of	a	ShapeSheet	cell.

Remarks

Beginning	with	Visio	2000	products,	you	can	refer	to	Visio	shapes,	masters,
styles,	pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user
names	a	shape,	for	example,	the	user	is	specifying	a	local	name.	Universal
names	are	not	visible	through	the	user	interface.	As	a	developer,	you	can	use
universal	names	in	a	program	when	you	don't	want	to	change	a	name	each	time	a
solution	is	localized.	Use	the	CellsRowIndex	property	to	get	a	cell's	row	index
using	the	cell's	local	name.	Use	the	CellsRowIndexU	property	to	get	a	cell's	row
index	using	the	cell's	universal	name.

See	also Example

CellsSRC	property

					 					

Returns	a	Cell	object	that	represents	a	ShapeSheet	cell	identified	by	section,	row,
and	column	indices.

Version	added

2.0

Syntax

objRet	=	object.CellsSRC	(section,	row,	column)
objRet A	Cell	object	that	represents	the	requested	cell.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	cell's	section	index.
row Required	Integer.	The	cell's	row	index.
column Required	Integer.	The	cell's	column	index.

Remarks

To	access	any	shape	formula	by	its	section,	row,	and	column	indices,	use	the

CellsSRC	property.	Constants	for	section,	row,	and	column	indices	are	declared
by	the	Visio	type	library	as	members	of	VisSectionIndices,	VisRowIndices,	and
VisCellIndices,	respectively.

The	CellsSRC	property	does	not	raise	an	exception	if	index	values	for	section,
row,	and	column	do	not	identify	an	actual	cell.	Subsequent	methods	invoked	on
the	returned	object	fail.	You	can	determine	if	a	cell	with	particular	index	values
exists	using	the	CellsSRCExists	property.

The	CellsSRC	property	is	typically	used	to	iterate	through	the	cells	in	a	section
or	row.	To	retrieve	a	single	cell,	use	the	Cells	property	and	specify	a	cell	name.
For	example:

Set	celObj	=	Cells("PinX")

CellsSRCExists	property

				 				

Determines	whether	a	ShapeSheet	cell	exists	in	the	scope	of	a	search.

Version	added

4.0

Syntax

intRet	=	object.CellsSRCExists(section,	row,	column,	fExistsLocally
intRet Integer.	False	(0)	if	a	cell	doesn't	exist;	True	(-1)	if	it	does.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	cell's	section	index.
row Required	Integer.	The	cell's	row	index.
column Required	Integer.	The	cell's	column	index.
fExistsLocally Required	Integer.	The	scope	of	the	search.

Remarks

Constants	for	section,	row,	and	column	indices	are	declared	by	the	Visio	type

Example

library	as	members	of	VisSectionIndices,	VisRowIndices,	and	VisCellIndices,
respectively.

The	fExistsLocally	argument	specifies	to	the	scope	of	the	search:

If	fExistsLocally	is	non-zero	(True),	the	CellsSRCExists	property	returns	True
only	if	the	object	contains	the	cell	locally;	if	the	cell	is	inherited,	the
CellsSRCExists	property	returns	False.

If	fExistsLocally	is	zero	(False),	the	CellsSRCExists	property	returns	True	if
the	object	either	contains	or	inherits	the	cell.

To	search	for	a	cell	by	name,	use	the	CellExists	property.

Characters	property

					 					

Returns	a	Characters	object	that	represents	the	text	of	a	shape.

Version	added

3.0

Syntax

objRet	=	object.Characters
objRet A	Characters	object	that	represents	the	shape's	text.
object Required.	An	expression	that	returns	a	Shape	object.

CharCount	property

				 				

Returns	the	number	of	characters	in	an	object.

Version	added

3.0

Syntax

intRet	=	object.CharCount
intRet Integer.	The	number	of	characters	in	the	object's	text.
object Required.	An	expression	that	returns	the	Characters	or	Shape

object	that	contains	the	text.

Remarks

For	a	Shape	object,	the	CharCount	property	returns	the	number	of	characters	in
the	shape's	text.	For	a	Characters	object,	the	CharCount	property	returns	the
number	of	characters	in	the	text	range	represented	by	that	object.

The	value	returned	by	the	CharCount	property	includes	the	expanded	number

Example

of	characters	for	any	fields	in	the	object's	text.	For	example,	if	the	text	contains	a
field	that	displays	the	file	name	of	a	drawing,	the	CharCount	property	includes
the	number	of	characters	in	the	file	name,	rather	than	the	one-character	escape
sequence	used	to	represent	a	field	in	the	Text	property	of	a	Shape	object.

CharProps	property

				 				

Sets	a	character	property	of	a	Characters	object	to	a	new	value.

Version	added

3.0

Syntax

object.CharProps(intWhichProp)	=	intExpression
object Required.	An	expression	that	returns	a	Characters	object.
intWhichProp Required	Integer.	The	property	to	set.
intExpression Required	Integer.	The	new	value	for	the	property.

Remarks

Depending	on	the	extent	of	the	text	range	and	the	format,	setting	the	CharProps
property	may	cause	rows	to	be	added	or	removed	from	a	shape's	Character
section.

The	CharProps	property	is	a	write-only	property.	To	retrieve	formatting

Example

properties	of	a	Characters	object,	use	the	CharPropsRow	property.

The	values	of	the	intWhichProp	argument	correspond	to	cells	viewed	in	the
Character	section	of	the	ShapeSheet	window,	and	the	values	of	intExpression
correspond	to	the	values	that	can	be	entered	in	those	cells	in	the	ShapeSheet
window.

Constants	for	intWhichProp	and	intExpression	are	declared	by	the	Visio	type
library.

intWhichProp Value intExpression Value
visCharacterFont 0 An	integer	that	represents	an

index	into	the	fonts	collection
installed	on	a	system.	Zero
represents	the	default	font.

N/A

visCharacterColor 1 An	integer	from	0	to	23	that
corresponds	to	a	color	in	the
current	color	palette.

N/A

visCharacterStyle 2 visBold	visItalic
visUnderLine
visSmallCaps

&H1
&H2
&H4
&H8

visCharacterCase 3 visCaseNormal
visCaseAllCaps
visCaseInitialCaps

0
1
2

visCharacterPos 4 visPosNormal
visPosSuper
visPosSub

0
1
2

visCharacterSize 7 An	integer	representing	point
size.

N/A

CharPropsRow	property

				 				

Returns	the	index	of	the	row	in	the	Character	section	of	a	ShapeSheet	window
that	contains	character	formatting	information	for	a	Characters	object.

Version	added

3.0

Syntax

intRet	=	object.CharPropsRow(bias)
intRet Integer.	The	index	of	the	row	that	defines	the	Characters

object's	format.
object Required.	An	expression	that	returns	a	Characters	object.
bias Required	Integer.	The	direction	of	the	search.

Remarks

If	the	formatting	of	the	Characters	object	is	represented	by	more	than	one	row
in	the	Character	section	of	the	ShapeSheet	window,	the	CharPropsRow
property	returns	-1.	If	the	Characters	object	represents	an	insertion	point	rather

Example

than	a	sequence	of	characters	(that	is,	if	its	Begin	and	End	properties	return	the
same	value),	use	the	bias	argument	to	determine	which	row	index	to	return.

Constant Value
visBiasLeft 1
visBiasRight 2
visBiasLetVisioChoose 0

Specify	visBiasLeft	for	the	row	that	covers	character	formatting	for	the
character	to	the	left	of	the	insertion	point,	or	visBiasRight	for	the	row	that
covers	character	formatting	for	the	character	to	the	right	of	the	insertion	point.

CharSet	property

				 				

Returns	the	Microsoft	Windows	character	set	for	a	Font	object.

Version	added

4.0

Syntax

intRet	=	object.CharSet
intRet Integer.	The	character	set	code	for	the	object.
object Required.	An	expression	that	returns	a	Font	object.

Remarks

The	Windows	character	set	specifies	character	mapping	for	a	font.	The	possible
values	of	the	CharSet	property	correspond	to	those	of	the	lfCharSet	member	of
the	Windows	LOGFONT	data	structure.	For	details,	search	for	"LOGFONT"	in
the	Microsoft	Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)	Web
site.

Example

http://msdn.microsoft.com

ClassID	property

					 					

Returns	the	class	ID	string	of	a	shape	representing	an	ActiveX	control	or	an
embedded	or	linked	OLE	object.

Version	added

4.5

Syntax

strRet	=	object.ClassID
strRet String.	The	class	ID	of	the	OLE	object	represented	by	the

shape.
object Required.	An	expression	that	returns	the	Shape	object	to

examine.

Remarks

The	ClassID	property	raises	an	exception	if	the	shape	doesn't	represent	an
ActiveX	control	or	OLE	2.0	embedded	or	linked	object.	A	shape	represents	an
ActiveX	control	or	an	OLE	2.0	embedded	or	linked	object	if	the

visTypeIsOLE2	bit	(&H8000)	is	set	in	the	value	returned	by
shpObj.ForeignType.

ClassID	returns	a	string	of	the	form:

{2287DC42-B167-11CE-88E9-002AFDDD917}

This	identifies	the	application	that	services	the	object.	It	might,	for	example,
identify	an	embedded	object	on	a	Visio	page	as	a	Microsoft	Excel	object.

After	using	a	shape's	Object	property	to	obtain	an	Automation	interface	on	the
object	the	shape	represents,	you	might	want	to	obtain	the	shape's	ClassID	or
ProgID	property	to	determine	the	methods	and	properties	provided	by	the
interface.

Clone	property

				 					

Returns	a	copy	of	the	UIObject	object.

Version	added

2000

Syntax

objRet	=	object.Clone
objRet A	copy	of	the	UIObject	object.
object Required.	An	expression	that	returns	a	UIObject	object.

See	also

Closed	property

			 				

Determines	if	the	object	is	closed	(its	begin	point	coincides	with	its	end	point).

Version	added

5.0

Syntax

intRet	=	object.Closed
intRet Integer.	True	(-1)	if	the	Path	or	Curve	object	is	closed;

otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Path	or	Curve	object	to

examine.

Remarks

Use	the	Closed	property	of	a	Path	or	Curve	object	to	test	for	equality	(Visio
uses	10E-6	as	its	"fuzz"	factor)	of	the	object's	begin	and	end	points.	A	closed
Curve	object	can	be	in	a	Path	object	that	is	open,	and	a	Curve	object	that	is
open	can	be	in	a	closed	Path	object.

The	Closed	property	of	a	Path	object	is	unrelated	to	a	Path	object's	fill.	A	Path
object	is	filled	if	its	Geometryn.NoFill	cell	is	zero	(0).	If	Visio	is	told	to	fill	an
open	Path	object,	it	pretends	there	is	a	LineTo	cell	from	the	Path	object's	end
point	to	its	begin	point.	When	filling	a	Path	object,	Visio	considers	a	point	to	be
inside	the	Path	object	if	a	ray	drawn	from	the	point	in	any	direction	crosses	the

See	also Example

Path	object	or	any	of	the	shape's	other	Path	objects	cross	an	odd	number	of
times.

CmdNum	property

					 					

Gets	or	sets	the	command	ID	associated	with	an	accelerator,	menu,	menu	item,
or	toolbar	item.

Version	added

4.0

Syntax

object.CmdNum	=	intVal
intVal	=	object.CmdNum
object Required.	An	expression	that	returns	an	AccelItem,	Menu,

MenuItem,	or	ToolbarItem	object.
intVal Required	Integer.	The	command	ID	of	the	object.

Remarks

When	the	AddOnName	property	of	a	MenuItem	or	ToolbarItem	object
indicates	an	add-on	to	run,	Visio	automatically	assigns	a	CmdNum	property.

The	CmdNum	property	for	a	MenuItem	object	that	represents	a	submenu
should	be	zero	(0).	The	CmdNum	property	should	never	be	zero	for	an
AccelItem	object.

To	insert	a	separator	in	a	menu	preceding	a	MenuItem	object	or	a	spacer	in	a
toolbar	preceding	a	ToolbarItem	object,	use	the	BeginGroup	property.

Valid	command	IDs	are	declared	by	the	Visio	type	library	in	VisUICmds.	They
have	the	prefix	visCmd.

CntrlID	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions	of	Visio,	this	property	contained	the	control	ID	for	a	menu,
menu	item,	or	toolbar	item.

See	also Example Applies	to

CntrlType	property

					 					

Gets	or	sets	the	control	type	of	a	menu,	menu	item,	or	toolbar	item.

Version	added

4.0

Syntax

object.CntrlType	=	intVal
intVal	=	object.CntrlType
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object.
intVal Required	Integer.	The	control	type	of	the	object.

Remarks

If	you	are	adding	a	custom	toolbar	button,	set	the	CntrlType	property	to
visCtrlTypeBUTTON.	The	following	table	describes	the	control	types	declared
by	the	Visio	type	library	in	VisUICtrlTypes.

Constant Value
visCtrlTypeBUTTON 2	(&H2)
visCtrlTypeSPLITBUTTON 16	(&H10)
visCtrlTypeSPLITBUTTON_MRU_COLOR 17	(&H11)
visCtrlTypeSPLITBUTTON_MRU_COMMAND 18	(&H12)
visCtrlTypeBUTTON_OWNERDRAW 33	(&H21)
visCtrlTypeEDITBOX 64	(&H40)
visCtrlTypeCOMBOBOX 128	(&H80)
visCtrlTypeCOMBOBOX_SORTED 129	(&H81)
visCtrlTypeDROPDOWN_OWNERDRAW 256	(&H100)
visCtrlTypeDROPDOWN_SORTED_OWNERDRAW 257	(&H101)
visCtrlTypeDROPDOWN 272	(&H110)
visCtrlTypeDROPDOWN_SORTED 273	(&H111)
visCtrlTypeLABEL 2048	(&H800)
visCtrlTypeSWATCH 32768	(&H8000)
visCtrlTypeSWATCH_COLORS 32769	(&H8001)

Colors	property

				 				

Returns	the	Colors	collection	of	a	Document	object.

Version	added

4.0

Syntax

objRet	=	object.Colors
objRet The	Colors	collection	of	the	Document	object.
object Required.	An	expression	that	returns	a	Document	object.

Example

Column	property

				 				

Returns	the	column	index	of	a	cell.

Version	added

4.0

Syntax

intRet	=	object.Column
intRet Integer.	The	column	index	of	the	Cell	object.
object Required.	An	expression	that	returns	a	Cell	object.

Example

COMAddIns	property

				 					

Returns	a	reference	to	the	COMAddIns	collection	that	represents	all	the
Component	Object	Model	(COM)	add-ins	currently	registered	in	Microsoft
Visio.

Version	added

2002

Syntax

objsRet	=	object.COMAddIns
objsRet A	collection	of	COMAddIn	objects	that	provide	information

about	a	COM	add-in	registered	in	the	registry.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	COM	add-ins	that	are	currently	registered	are	listed	in	the	COM	Add-Ins
dialog	box	(on	the	Tools	menu,	point	to	Macros,	and	then	click	COM	Add-ins).

See	also

To	get	information	about	the	object	returned	by	the	COMAddIns	property:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	Office.

If	you	do	not	see	the	Office	type	library	in	the	Project/Library	list,	on	the
Tools	menu,	click	References,	select	the	Microsoft	Office	10.0	Object
Library	check	box,	and	then	click	OK.

Under	Classes,	examine	the	class	named	COMAddIns.

Example

'This	macro	demonstrates	using	the	COMAddIns	property
'to	list	the	COM	add-ins	registered	with	Visio.
Public	Sub	IterateCOMAddIns()

				Dim	myCOMAddIns	As	COMAddIns
				Dim	myCOMAddIn	As	COMAddIn

				'Get	the	set	of	COM	add-ins
				Set	myCOMAddIns	=	Application.COMAddIns

				'List	each	COM	add-in	in	the
				'Immediate	window
				For	Each	myCOMAddIn	In	myCOMAddIns
								Debug.Print	myCOMAddIn.Description
				Next

End	Sub

CommandBars	property

					 					

Returns	a	reference	to	the	CommandBars	collection	that	represents	the
command	bars	in	the	container	application.

Version	added

2002

Syntax

objsRet	=	object.CommandBars
objsRet The	collection	of	CommandBar	objects	that	represent

command	bars	in	the	container	application.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

Beginning	with	Microsoft	Visio	2002,	a	program	can	manipulate	menus	and
toolbars	in	the	Visio	user	interface	by	manipulating	the	CommandBars
collection	returned	by	the	CommandBars	property.	The	CommandBars
collection	has	an	interface	identical	to	the	CommandBars	collection	exposed	by

the	suite	of	Microsoft	Office	applications	such	as	Microsoft	Word	and	Microsoft
Excel.

Alternatively,	since	Visio	version	4.0,	Visio	has	exposed	application	and
document	properties	that	return	a	UIObject	object	that	provides	similar
functionality	to	CommandBars.	Consequently,	programs	can	manipulate	the
Visio	menus	and	toolbars	using	either	the	CommandBars	collection	or
UIObject	objects.

To	get	information	about	the	object	returned	by	the	CommandBars	property:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	Office.

If	you	do	not	see	the	Office	type	library	in	the	Project/Library	list,	on	the
Tools	menu,	click	References,	select	the	Microsoft	Office	10.0	Object
Library	check	box,	and	then	click	OK.

Under	Classes,	examine	the	class	named	CommandBars.

Note	Each	CommandBarControl	object	in	a	CommandBars	collection	has	an
OnAction	and	Context	property	whose	values	are	determined	by	the	container
application.	In	Visio:

The	OnAction	property	is	a	String	value	that	is	interpreted	either	as	a	COM
add-in,	a	Visual	Basic	for	Applications	(VBA)	macro,	VBA	code	or	as	a	Visio
add-on	name.

The	Context	property	determines	in	which	menu	context	a	command	bar
appears.	The	menu	context	number	is	a	String	value	(for	example
visUIObjSetDrawing	or	"2"),	which	is	followed	by	an	asterisk	if	the	command
bar	is	visible	by	default	(for	example,	visUIObjSetShapeSheet	&	"*"	or	"4*").
Valid	menu	contexts	are	visUIObjSetDrawing	(2),	visUIObjSetStencil	(3),
visUIObjSetShapeSheet	(4),	visUIObjSetIcon(5),	or
visUIObjSetPrintPreview	(7).	Attempting	to	set	the	Context	property	to	any
other	value	will	fail.

For	more	information	about	using	the	OnAction	and	Context	properties	in
Visio,	see	Developing	Visio	Solutions	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

Example

'This	macro	demonstrates	using	the	CommandBars	property
'to	list	the	command	bars.

Public	Sub	IterateCommandBars()

				Dim	myCommandBars	As	CommandBars
				Dim	myCommandBar	As	CommandBar

				'Get	the	set	of	CommandBars
				'for	the	application
				Set	myCommandBars	=	Application.CommandBars

				'List	each	CommandBar	in
				'the	Immediate	window
				For	Each	myCommandBar	In	myCommandBars
								Debug.Print	myCommandBar.Name
				Next

End	Sub

http://msdn.microsoft.com

CommandLine	property

			 				

Determines	how	Microsoft	Visio	was	started.

Version	added

2000

Syntax

strRet	=	object.CommandLine
strRet String.	The	command	line	with	which	the	application	was

started.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

When	you	double-click	a	drawing,	template,	or	stencil	icon	to	start	the
application,	the	name	of	the	file	appears	in	the	string	returned	by	the
CommandLine	property.	When	you	start	the	application	using	a	CreateObject
call,	"/Automation"	appears	in	the	string.	When	you	double-click	a	Visio
embedded	object	in	an	OLE	container	application,	"/Embedding"	appears	in	the
string.

The	following	table	includes	other	command	line	switches	you	can	use	to	start
the	application.

Command	line
switch

Description

See	also Example

/nonew				 Choose	Drawing	Type	dialog	box	is	not	shown	on
startup.

/nologo Splash	screen	is	not	shown	on	startup.
/p	filename Print	dialog	box	is	shown	so	you	can	quickly	print	a	file.
filename Opens	a	Visio	file.	The	file	has	to	be	in	the	Drawings	file

path	on	the	File	Paths	tab	in	the	Options	dialog	box	(on
the	Tools	menu,	click	Options),	or	an	absolute	path	must
be	named.

/1,	/2,	/3,…/9 Opens	one	of	the	last-opened	files.
/noreg Prevents	Visio	from	registering	itself.
/u Unregisters	Visio.
/r Registers	Visio.
/s Silently	registers	Visio.
/pt	filename,
[printername,
drivername,
portname]

Directs	file	to	print	on	a	particular	printer.	(Added	in
Visio	version	5.0c.)

::ODMA Visio	opens	a	file	using	ODMA.

Company	property

				 				

Returns	or	sets	the	value	of	the	Company	field	in	a	document's	properties.

Version	added

5.0

Syntax

strRet	=	object.Company
object.Company	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	Company	property	is	equivalent	to	entering	information	in	the
Company	box	in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

Example

Connects	property

				 				

Returns	a	Connects	collection	for	a	shape,	page,	or	master.

Version	added

2.0

Syntax

objRet	=	object.Connects
objRet The	Connects	collection	of	the	Shape,	Page,	or	Master	object.
object Required.	An	expression	that	returns	a	Shape,	Page,	or	Master

object	that	owns	the	collection.

Remarks

The	Connects	collection	of	a	shape	contains	every	Connect	object	for	which	the
shape	is	returned	by	the	FromSheet	property.	This	tells	you	all	the	shapes	to
which	the	shape	is	connected.

To	obtain	a	Connects	collection	that	contains	every	Connect	object	for	which

Example

the	shape	is	the	ToSheet	property,	use	the	shape's	FromConnects	property.	This
tells	you	all	the	shapes	that	are	connected	to	this	shape.

The	Connects	collection	of	a	page	contains	a	Connect	object	for	every
connection	on	the	page.

The	Connects	collection	of	a	master	contains	a	Connect	object	for	every
connection	in	the	master.

Container	property

			 				

Returns	an	IDispatch	interface	on	the	ActiveX	container	in	which	the	document
is	contained	or	Nothing	if	the	document	is	not	in	a	container.

Version	added

2000

Syntax

objRet	=	object.Container
objRet An	IDispatch	on	the	container.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	interface	returned	is	the	result	of	querying	the	IOleContainer	interface
provided	by	the	containing	object	for	IDispatch.

See	also Example

ContainingMaster	property

				 				

Returns	the	Master	object	that	contains	an	object.

Version	added

4.0

Syntax

objRet	=	object.ContainingMaster
objRet The	Master	object	that	contains	the	object	or	collection.
object Required.	An	expression	that	returns	a	Selection	or	Shape

object,	or	Shapes	collection	to	examine.

Remarks

If	the	object	isn't	in	a	Master	object,	the	ContainingMaster	property	returns
Nothing.	For	example,	if	a	Shape	object	belongs	to	the	Shapes	collection	of	a
Page	object,	the	ContainingMaster	property	returns	Nothing.

Example

ContainingPage	property

				 				

Returns	the	page	that	contains	an	object.

Version	added

4.0

Syntax

objRet	=	object.ContainingPage
objRet The	Page	object	that	contains	the	object	or	collection.
object Required.	An	expression	that	returns	a	Selection	or	Shape

object	or	a	Shapes	collection	to	examine.

Remarks

If	the	object	isn't	in	a	Page	object,	the	ContainingPage	property	returns
Nothing.	For	example,	if	a	Shape	object	belongs	to	a	Masters	collection,	the
ContainingPage	property	returns	Nothing.

Example

ContainingRow	property

			 				

Returns	the	row	that	contains	a	cell.

Version	added

2000

Syntax

objRet	=	object.ContainingRow
objRet The	Row	object	that	contains	the	Cell	object.
object Required.	An	expression	that	returns	a	Cell	object.

See	also Example

ContainingSection	property

			 				

Returns	the	section	in	which	a	row	is	contained.

Version	added

2000

Syntax

objRet	=	object.ContainingSection
objRet The	Section	object	that	contains	the	row.
object Required.	An	expression	that	returns	a	Row	object.

See	also Example

ContainingShape	property

				 				

Returns	the	Shape	object	that	contains	an	object	or	collection.

Version	added

4.0

Syntax

objRet	=	object.ContainingShape
objRet The	Shape	object	that	contains	the	object	or	collection.
object Required.	An	expression	that	returns	a	Selection	or	Shape

object	or	a	Shapes	collection	to	examine.

Remarks

If	the	Shape	object	is	the	member	of	a	group,	the	ContainingShape	property
returns	that	group.

If	the	Shape	object	is	a	top-level	shape	in	its	Page	or	Master	object	(it	is	not	a
member	of	a	group),	the	ContainingShape	property	returns	the	page	sheet	of	its

Example

page	or	master.

If	the	Shape	object	is	the	page	sheet	of	a	page	or	master,	the	ContainingShape
property	returns	Nothing.

ContainsWorkspace	property

				 				

Determines	whether	the	document	was	saved	as	a	workspace.

Version	added

2002

Syntax

boolRet	=	object.ContainsWorkspace
boolRet Boolean.	True	if	the	document	was	saved	as	a	workspace;

otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

This	property	is	read	only,	but	you	can	cause	a	document	to	be	saved	as	a
workspace	by	passing	the	visSaveAsWS	flag	to	the	SaveAsEx	method.

This	is	equivalent	to	clicking	Workspace	under	the	Save	button	in	the	Save	As
dialog	box	(on	the	File	menu,	click	Save	As,	and	then	click	the	arrow	next	to

Example

Save).

Control	property

				 				

Determines	whether	the	CTRL	key	modifies	the	accelerator	key	in	an	AccelItem
object.

Version	added

3.0

Syntax

intRet	=	object.Control
object.Control	=	intExpression
intRet Integer.	True	(-1)	if	the	CTRL	key	modifies	the	key	in	an

AccelItem	object;	otherwise,	False	(0).
object Required.	An	expression	that	returns	an	AccelItem	object.
intExpression Required	Integer.	True	(non-zero)	if	the	CTRL	key	modifies

the	key	in	an	AccelItem	object;	otherwise,	False	(0).

Remarks

Example

Set	the	Control	property	to	True	to	use	the	CTRL	key	as	a	modifier	for	an
accelerator,	for	example,	CTRL+BACKSPACE.

Count	property

				 					

Returns	the	number	of	objects	in	a	collection.

Version	added

2.0

Syntax

intRet	=	object.Count
intRet Integer.	The	number	of	objects	in	the	collection.
object Required.	An	expression	that	returns	an	object	from	the

Applies	to	list.

See	also

Creator	property

					 					

Gets	or	sets	the	value	of	a	document's	author.

Version	added

2.0

Syntax

strRet	=	object.Creator
object.Creator	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	Creator	property	is	equivalent	to	entering	information	in	the	Author
box	in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

CurrentScope	property

					 					

Determines	the	ID	of	the	scope	that	causes	an	event	to	fire.

Version	added

2000

Syntax

longRet	=	object.CurrentScope
longRet Long.	The	scope	ID	of	the	most	recently	fired	EnterScope

event;	visScopeIDInvalid	(-1)	if	a	scope	isn't	open.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	scope	ID	could	be	an	internal	Visio	scope	ID	that	corresponds	to	a	Visio
command	or	an	external	scope	ID	passed	to	an	Automation	client	through	the
BeginUndoScope	method.

The	recipients	of	an	event	consider	a	scope	open	if	the	EnterScope	event	has

fired,	but	the	ExitScope	event	has	not	fired.

To	determine	if	the	event	queue	firing	is	related	to	a	particular	scope	internal	to
the	application	or	one	opened	and	closed	by	an	Automation	client,	use	the
IsInScope	property.

CustomMenus	property

					 					

Gets	a	UIObject	object	that	represents	the	current	custom	menus	and
accelerators	of	an	Application	object	or	a	Document	object.

Version	added

4.0

Syntax

objRet	=	object.CustomMenus
objRet A	UIObject	object	that	represents	the	object's	current	custom

menus.
object Required.	An	expression	that	returns	the	Application	or

Document	object	to	examine.

Remarks

Beginning	with	Visio	2000,	if	you	haven't	customized	the	user	interface,	the
object	returned	by	CustomMenus	property	contains	the	same	collections	as	the
object	returned	by	the	BuiltInMenus	property.

In	Visio	5.0	or	earlier,	if	the	object	is	not	using	custom	toolbars,	the
CustomMenus	property	returns	Nothing.

CustomMenusFile	property

					 					

Gets	or	sets	the	name	of	the	file	that	defines	custom	menus	and	accelerators	for
an	Application	object	or	a	Document	object.

Version	added

4.0

Syntax

strRet	=	object.CustomMenusFile
object.CustomMenusFile	=	fileStr
strRet String.	The	name	of	the	file	that	defines	the	current	custom

menus	for	the	object.
object Required.	An	expression	that	returns	the	Application	or

Document	object.
fileStr Required	String.	The	name	of	the	file	that	defines	new	custom

menus	for	the	object.

Remarks

If	the	object	is	not	using	custom	menus,	the	CustomMenusFile	property	returns
Nothing.

CustomToolbars	property

				 				

Gets	a	UIObject	object	that	represents	the	current	custom	toolbars	and	status
bars	of	an	Application	object	or	a	Document	object.

Version	added

4.0

Syntax

objRet	=	object.CustomToolbars
objRet A	UIObject	object	that	represents	the	object's	current	custom

toolbars.
object Required.	An	expression	that	returns	an	Application	or

Document	object.

Remarks

Beginning	with	Visio	2000,	if	you	haven't	customized	the	user	interface,	the
object	returned	by	CustomToolbars	property	contains	the	same	collections	as
the	object	returned	by	the	BuiltInToolbars	property.

Example

In	Visio	5.0	or	earlier,	if	the	object	is	not	using	custom	toolbars,	the
CustomToolbars	property	returns	Nothing.

CustomToolbarsFile	property

				 				

Returns	or	sets	the	name	of	the	file	that	defines	custom	toolbars	and	status	bars
for	an	Application	object	or	a	Document	object.

Version	added

4.0

Syntax

strRet	=	object.CustomToolbarsFile
object.CustomToolbarsFile	=	fileStr
strRet String.	The	name	of	the	file	that	defines	the	current	custom

toolbars	for	the	object.
object Required.	An	object	that	returns	an	Application	or	Document

object.
fileStr Required	String.	The	name	of	the	file	that	defines	new	custom

toolbars	for	the	object.

Remarks

Example

If	the	object	is	not	using	custom	toolbars,	the	CustomToolbarsFile	property
returns	Nothing.

Data1	property

					 					

Gets	or	sets	the	value	of	the	Data1	field	for	a	Shape	object.

Version	added

2.0

Syntax

strRet	=	object.Data1
object.Data1	=	strExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Shape	object.
strExpression Required	String.	The	new	value	for	the	field.

Remarks

Use	the	Data1	property	to	supply	additional	information	about	a	shape.	The
property	can	contain	up	to	64	KB	of	characters.	Text	controls	should	be	used
with	care	with	a	string	that	is	greater	than	3,000	characters.

Setting	the	Data1	property	is	equivalent	to	entering	information	in	the	Data	1
box	in	the	Special	dialog	box	(click	Special	on	the	Format	menu).

Data2	property

					 					

Gets	or	sets	the	value	of	the	Data2	field	for	a	Shape	object.

Version	added

2.0

Syntax

strRet	=	object.Data2
object.Data2	=	strExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Shape	object.
strExpression Required	String.	The	new	value	for	the	field.

Remarks

Use	the	Data2	property	to	supply	additional	information	about	a	shape.	The
property	can	contain	up	to	64	KB	of	characters.	Text	controls	should	be	used
with	care	with	a	string	that	is	greater	than	3,000	characters.

Setting	the	Data2	property	is	equivalent	to	entering	information	in	the	Data	2
box	in	the	Special	dialog	box	(click	Special	on	the	Format	menu).

Data3	property

					 					

Gets	or	sets	the	value	of	the	Data3	field	for	a	Shape	object.

Version	added

2.0

Syntax

strRet	=	object.Data3
object.Data3	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Shape	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Use	the	Data3	property	to	supply	additional	information	about	a	shape.	The
property	can	contain	up	to	64	KB	of	characters.	Text	controls	should	be	used
with	care	with	a	string	that	is	greater	than	3,000	characters.

Setting	the	Data3	property	is	equivalent	to	entering	information	in	the	Data	3
box	in	the	Special	dialog	box	(click	Special	on	the	Format	menu).

DefaultAngleUnits	property

				 				

Determines	the	default	unit	of	measure	for	quantities	that	represent	angles.

Version	added

2002

Syntax

unitsCode	=	object.DefaultAngleUnits
object.DefaultAngleUnits	=	unitsNameOrCode
unitsCode Variant.	The	default	angle	unit.
object Required.	An	expression	that	returns	an	Application	object.
unitsNameOrCodeOptional	Variant.	The	new	default	angle	unit.

Remarks

The	DefaultAngleUnits	property	corresponds	to	the	value	shown	in	the	Angle
box	on	the	Regional	tab	in	the	Options	dialog	box	(on	the	Tools	menu,	click
Options).

Example

The	return	value	unitsCode	contains	one	of	the	values	of	VisUnitCodes,	which
are	declared	in	the	Visio	type	library.

You	can	specify	unitsNameOrCode	as	an	integer	(a	member	of	VisUnitCodes)
or	a	string	value	such	as	"degrees".	If	the	string	is	invalid	or	the	unit	code	is
inappropriate	(non-angular),	an	error	is	generated.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Cell	formulas	that	contain	a	specific	unit	of	measure	are	displayed	in	those	units
regardless	of	the	default	angle	units	setting.	Many	cell	formulas,	however,	use
implicit	unit	syntax	and	are	displayed	in	default	units.

A	program	can	create	a	cell	whose	formula	is	displayed	in	default	units	by
setting	the	cell's	Formula	property	to	a	string	in	implicit	unit	syntax.	For
example,	if	the	formula	for	the	angle	of	a	shape	is	"=90[deg,A]"	,	the	result	is
displayed	as	"90	deg."	if	the	DefaultAngleUnits	property	is	visDegrees,	and
"1.5708	rad."	if	the	DefaultAngleUnits	property	is	visRadians.

Alternatively,	a	program	can	set	the	cell's	result	to	default	angle	units	using	the
following	statement:

cellObj.Result(visAngleUnits)	=	90
In	this	case,	the	result	is	90	degrees	if	the	DefaultAngleUnits	property	is
visDegrees,	and	90	radians	if	the	DefaultAngleUnits	property	is	visRadians.

For	details	about	implicit	units	of	measure,	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

DefaultDurationUnits	property

				 				

Determines	the	default	unit	of	measure	for	quantities	that	represent	durations.

Version	added

2002

Syntax

unitsCode	=	object.DefaultDurationUnits
object.DefaultDurationUnits	=	unitsNameOrCode
unitsCode Variant.	The	default	duration	unit	of	measure.
object Required.	An	expression	that	returns	an	Application	object.
unitsNameOrCodeOptional	Variant.	The	new	default	duration	unit	of	measure.

Remarks

The	DefaultDurationUnits	property	corresponds	to	the	value	shown	in	the
Duration	box	on	the	Regional	tab	in	the	Options	dialog	box	(on	the	Tools
menu,	click	Options).

Example

The	return	value	unitsCode	contains	one	of	the	values	of	VisUnitCodes,	which
are	declared	in	the	Visio	type	library.

You	can	specify	unitsNameOrCode	as	an	integer	(a	member	of	VisUnitCodes)
or	a	string	value	such	as	"minutes".	If	the	string	is	invalid	or	the	unit	code	is
inappropriate	(non-duration),	an	error	is	generated.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Cell	formulas	that	contain	a	specific	unit	of	measure	are	displayed	in	those	units
regardless	of	the	default	duration	units	setting.	Many	cell	formulas,	however,	use
implicit	unit	syntax	and	are	displayed	in	default	units.

A	program	can	create	a	cell	whose	formula	displays	in	default	units	by	setting
the	cell's	Formula	property	to	a	string	in	implicit	unit	syntax.	For	example,	if	a
formula	specifying	duration	is	"=10[em,E]"	,	the	result	displays	as	"0.0069	ed"	if
the	DefaultDurationUnits	property	is	visElapsedDay,	and	"600.0000	es"	if	the
DefaultDurationUnits	property	is	visElapsedSec.

Alternatively,	a	program	can	set	the	cell's	result	to	default	duration	units	using
the	following	statement:

cellObj.Result(visDurationUnits)	=	60	
In	this	case,	the	result	is	60	minutes	if	the	DefaultDurationUnits	property	is
visElapsedMin	and	60	seconds	if	the	DefaultDurationUnits	property	is
visElapsedSec.

For	details	about	implicit	units	of	measure,	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

DefaultFillStyle	property

				 				

Gets	or	sets	the	default	fill	style	of	a	document.

Version	added

4.0

Syntax

strRet	=	object.DefaultFillStyle
object.DefaultFillStyle	=	stringExpression
strRet String.	The	default	fill	style	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	name	of	the	default	fill	style	to	assign	to

the	document.

Remarks

The	DefaultFillStyle	property	corresponds	to	the	value	shown	in	the	Fill	Style
box	on	the	Format	Shape	toolbar	when	nothing	is	selected	on	the	drawing	page.

Example

The	document's	default	fill	style	is	applied	to	new	shapes	created	with	the	Visio
drawing	tools	or	with	the	Draw	methods	via	Automation.

DefaultGuideStyle	property

			 				

Gets	or	sets	the	default	guide	style	of	a	document.

Version	added

2002

Syntax

strRet	=	object.DefaultGuideStyle
object.DefaultGuideStyle	=	stringExpression
strRet String.	The	default	guide	style	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	name	of	the	default	guide	style.

Remarks

The	DefaultGuideStyle	property	specifies	what	style	is	applied	to	new	guides
created	in	the	document.

See	also Example

DefaultLineStyle	property

				 				

Gets	or	sets	the	default	line	style	of	a	document.

Version	added

4.0

Syntax

strRet	=	object.DefaultLineStyle
object.DefaultLineStyle	=	stringExpression
strRet String.	The	default	line	style	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	name	of	the	default	line	style	to	assign

to	the	document.

Remarks

The	DefaultLineStyle	property	corresponds	to	the	value	shown	in	the	Line
Style	box	on	the	Format	Shape	toolbar	when	nothing	is	selected	on	the	drawing

Example

page.	The	document's	default	line	style	is	applied	to	new	shapes	created	with	the
Visio	drawing	tools	or	with	the	Draw	methods	via	Automation.

DefaultPageUnits	property

				 				

Determines	the	default	unit	of	measure	for	quantities	that	represent	position	or
distance.

Version	added

2002

Syntax

unitsCode	=	object.DefaultPageUnits
object.DefaultPageUnits	=	unitsNameOrCode
unitsCode Variant.	The	default	page	units.
object Required.	An	expression	that	returns	an	Application	object.
unitsNameOrCodeOptional	Variant.	New	default	page	units.

Remarks

The	DefaultPageUnits	property	corresponds	to	the	value	shown	in	the	Page	box
on	the	Regional	tab	in	the	Options	dialog	box	(on	the	Tools	menu,	click

Example

Options).

The	return	value	unitsCode	contains	one	of	the	values	of	VisUnitCodes,	which
are	declared	in	the	Visio	type	library.

You	can	specify	unitsNameOrCode	as	an	integer	(a	member	of	VisUnitCodes)
or	a	string	value	such	as	"inches".	If	the	string	is	invalid	or	the	unit	code	is
inappropriate	(non-distance),	an	error	is	generated.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Cell	formulas	that	contain	a	specific	unit	of	measure	are	displayed	in	those	units
regardless	of	the	default	page	units	setting.	Many	cell	formulas,	however,	use
implicit	unit	syntax	and	are	displayed	in	default	units.

A	program	can	create	a	cell	whose	formula	is	displayed	in	default	units	by
setting	the	cell's	Formula	property	to	a	string	in	implicit	unit	syntax.	For
example,	the	formula	"=5[in,P]"	displays	as	"5	in."	if	the	DefaultPageUnits
property	is	visInches,	and	"12.7	cm"	if	the	DefaultPageUnits	property	is
visCentimeters.

Alternatively,	a	program	can	set	the	cell's	result	to	default	page	units	using	the
following	statement:

cellObj.Result(visPageUnits)	=	5	
In	this	case,	the	result	is	5	inches	if	the	DefaultPageUnits	property	is	visInches
and	5	centimeters	if	the	DefaultPageUnits	property	is	visCentimeters.

For	details	about	implicit	units	of	measure,	see	About	units	of	measure.

The	value	of	the	DefaultPageUnits	property	determines	how	blank	drawings	are
created.	If	the	value	is	a	metric	unit	of	measure,	then	the	blank	drawing	is
created	using	metric	units.	If	the	value	is	an	imperial	unit	of	measure,	the	blank
drawing	is	created	using	imperial	units.	Default	page	units	do	not	apply	to	new
drawings	created	from	a	template.

Other	operations	can	change	the	value	of	the	DefaultPageUnits	property.	If	you
change	the	scale	or	measurement	units	for	a	particular	page	using	the	Page

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

Setup	dialog	box,	Visio	changes	the	default	page	units	for	all	drawings	in	the
application.

Note	Visio	maintains	internal	default	unit	settings	for	position	and	distance	in
the	drawing	(visDrawingUnits)	as	opposed	to	those	on	the	page.	Default
drawing	units	cannot	be	set	explicitly,	or	queried	directly.	However,	they	can	be
inferred	from	the	ratio	of	cellObj.Result(visDrawingUnits)	to
cellObj.Result(specificUnit)	where	specificUnit	identifies	a	known	unit	of	length
such	as	visInches.

You	can	also	use	implicit	syntax	to	create	formulas	that	display	in	default
drawing	units,	for	example,	"=5[i,D]".

If	you	set	the	value	of	DefaultPageUnits	when	the	current	settings	for	default
page	units	and	default	drawing	units	are	the	same,	both	settings	are	changed.

DefaultStyle	property

				 				

Gets	the	default	fill	style	of	a	document	or	sets	the	default	fill,	line,	and	text
styles	of	a	document.

Version	added

4.0

Syntax

strRet	=	object.DefaultStyle
object.DefaultStyle	=	stringExpression
strRet String.	The	default	fill	style	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	name	of	the	default	style	to	assign	to	the

document.

Remarks

A	document's	DefaultStyle	property	returns	the	same	value	as	its

Example

DefaultFillStyle	property.	Setting	the	DefaultStyle	property	is	equivalent	to
setting	the	DefaultFillStyle,	DefaultLineStyle,	and	DefaultTextStyle	properties
individually	to	the	same	multiple-attribute	style.	The	fill,	line,	and	text	attributes
of	the	document's	default	style	are	applied	to	new	shapes	created	with	the	Visio
drawing	tools	or	with	the	Draw	methods	via	Automation.

DefaultTextStyle	property

				 				

Gets	or	sets	the	default	text	style	of	a	document.

Version	added

4.0

Syntax

strRet	=	object.DefaultTextStyle
object.DefaultTextStyle	=	stringExpression
strRet String.	The	default	text	style	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	name	of	the	default	text	style	to	assign

to	the	document.

Remarks

The	DefaultTextStyle	property	corresponds	to	the	value	shown	in	the	Text	Style
box	on	the	Format	Text	toolbar	when	nothing	is	selected	on	the	drawing	page.

Example

The	document's	default	text	style	is	applied	to	new	shapes	created	with	the	Visio
drawing	tools	or	with	the	Draw	methods	via	Automation.

DefaultTextUnits	property

				 				

Determines	the	default	unit	of	measure	for	quantities	that	represent	text	metrics.

Version	added

2002

Syntax

unitsCode	=	object.DefaultTextUnits
object.DefaultTextUnits	=	unitsNameOrCode
unitsCode Variant.	The	default	text	units.
object Required.	An	expression	that	returns	an	Application	object.
unitsNameOrCode Required	Variant.	New	default	text	units.

Remarks

The	DefaultTextUnits	property	corresponds	to	the	value	shown	in	the	Text	box
on	the	Regional	tab	in	the	Options	dialog	box	(on	the	Tools	menu,	click
Options).

Example

The	return	value	unitsCode	contains	one	of	the	values	of	VisUnitCodes,	which
are	declared	in	the	Visio	type	library.

You	can	specify	unitsNameOrCode	as	an	integer	(a	member	of	VisUnitCodes)
or	a	string	value	such	as	"pt".	If	the	string	is	invalid	or	the	unit	code	is
inappropriate	(non-textual),	an	error	is	generated.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Cell	formulas	that	contain	a	specific	unit	of	measure	are	displayed	in	those	units
regardless	of	the	default	text	units	setting.	Many	cell	formulas,	however,	use
implicit	unit	syntax	and	are	displayed	in	default	units.

A	program	can	create	a	cell	whose	formula	is	displayed	in	default	units	by
setting	the	cell's	Formula	property	to	a	string	in	implicit	unit	syntax.	For
example,	the	formula	"=8[pt,T]"	displays	as	"8	pt"	if	the	DefaultTextUnits
property	is	visPoints,	and	"0.6272"	if	the	DefaultTextUnits	property	is
visCiceros.

Alternatively,	a	program	can	set	the	cell's	result	to	default	text	units	using	the
following	statement:

cellObj.Result(visTextUnits)	=	12	
In	this	case,	the	text	is	12	points	if	the	DefaultTextUnits	property	is	visPoints,
and	12	ciceros	if	the	DefaultTextUnits	property	is	visCiceros.

For	details	about	implicit	units	of	measure,	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

DeferRecalc	property

				 				

Determines	whether	the	application	recalculates	cell	formulas	during	a	series	of
actions.

Version	added

4.1

Syntax

intRet	=	object.DeferRecalc
object.DeferRecalc	=	intExpression
intRet Integer.	False	(0)	if	formulas	are	recalculated	as	needed;	True

(-1)	if	recalculation	is	deferred.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	False	(0)	to	recalculate	formulas	as	needed;

True	(non-zero)	to	defer	recalculation.

Remarks

Example

Use	the	DeferRecalc	property	to	improve	performance	during	a	series	of
actions.	For	example,	you	can	defer	formula	recalculation	while	changing	the
formulas	or	values	of	several	cells.

If	a	program	neglects	to	turn	recalculation	on	again	after	turning	it	off,	Visio
turns	it	on	when	the	user	performs	an	operation.

If	you	release	objects	or	send	a	large	number	of	commands	to	Visio	while
recalculation	is	deferred,	Visio	may	at	times	need	to	process	its	queue	of	pending
recalculations.	Because	of	this,	use	care	in	setting	formulas	inside	a	scope	where
you	want	recalculation	deferred.	Ideally,	you	should	only	set	formulas	when
recalculation	is	turned	off.

For	example,	consider	the	following	Microsoft	Visual	Basic	sequence:

visObj.DeferRecalc	=	True
shpObj.Cells("height").ResultIU	=	12
shpObj.Cells("width").ResultIU	=	14
visObj.DeferRecalc	=	False

Because	Visual	Basic	makes	and	releases	a	temporary	Cell	object	in	the
preceding	code,	Visio	will	process	its	queue	at	that	point.

In	the	following	sequence,	Visio	will	not	process	the	recalculation	queue	until
the	program	turns	recalculation	on	again	(or	the	user	performs	some	operation).

visObj.DeferRecalc	=	True
Set	cellObj1	=	shpObj.Cells("Height")
Set	cellObj2	=	shpObj.Cells("Width")
cellObj1.ResultIU	=	12
cellObj1.ResultIU	=	14
visObj.DeferRecalc	=	False	

Description	property

					 					

Gets	or	sets	the	value	of	the	Description	box	in	a	Document	object's	properties
or	a	shape's	Hyperlink	object.

Version	added

2.0

Syntax

strRet	=	object.Description
object.Description	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	or

Hyperlink	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	a	document's	Description	property	is	equivalent	to	entering	information

in	the	Description	box	in	the	Properties	dialog	box	(click	Properties	on	the
File	menu).

Setting	a	hyperlink's	Description	property	is	equivalent	to	entering	information
in	the	optional	Description	box	in	the	Hyperlinks	dialog	box	(click	Hyperlinks
on	the	Insert	menu).	It	is	also	equivalent	to	setting	the	result	of	the	Description
cell	of	the	shape's	Hyperlink.Row	row.

mk:@MSITStore:Vis_DSS.chm::/DSS_Rows_(A-Z)_3111.htm

DisplayKeysInTooltips	property

				 				

Determines	whether	ToolTip	text	includes	keyboard	shortcuts.

Version	added

2000

Syntax

boolVal	=	object.DisplayKeysInTooltips
object.DisplayKeysInTooltips	=	boolVal
boolVal Required	Boolean.	True	if	ToolTip	text	shows	keyboard

shortcuts;	False	if	it	does	not.
object Required.	An	expression	that	returns	a	UIObject	object.

Remarks

To	show	ToolTips,	you	must	set	the	DisplayTooltips	property	to	True.

It	doesn't	matter	which	UIObject	object	you	use	when	getting	or	setting	this

Example

property.	The	property	affects	the	entire	application,	and	always	affects	the
appearance	of	ToolTips	in	the	current	visible	set	of	toolbars.

Beginning	with	Microsoft	Visio	2002,	this	setting	corresponds	to	the	Show
shortcut	keys	in	ScreenTips	setting	on	the	Options	tab	in	the	Customize
dialog	box	(on	the	Tools	menu,	click	Customize),	and	is	shared	between	Visio
2002	and	all	Microsoft	Office	XP	applications.

DisplayTooltips	property

				 				

Determines	whether	ToolTips	are	shown	in	toolbars.

Version	added

2000

Syntax

boolVal	=	object.DisplayTooltips
object.DisplayTooltips	=	boolVal
boolVal Required	Boolean;	True	if	ToolTips	are	shown;	False	if	they

are	not.
object Required.	An	expression	that	returns	a	UIObject	object.

Remarks

It	doesn't	matter	which	UIObject	object	you	use	when	getting	or	setting	this
property.	The	property	affects	the	entire	application,	and	always	affects	the
appearance	of	ToolTips	in	the	current	visible	set	of	toolbars.

Example

Beginning	with	Microsoft	Visio	2002,	this	setting	corresponds	to	the	Show
ScreenTips	on	toolbars	setting	on	the	Options	tab	in	the	Customize	dialog	box
(on	the	Tools	menu,	click	Customize),	and	is	shared	between	Visio	2002	and	all
Microsoft	Office	XP	applications.

DistanceFrom	property

				 				

Returns	the	distance	from	one	shape	to	another.	Both	shapes	must	be	on	the
same	page	or	in	the	same	master.

Version	added

2000

Syntax

doubleRet	=	object.DistanceFrom(otherShape,	flags)
doubleRet Double.	A	distance	in	internal	drawing	units	with	respect	to	the

coordinate	space	defined	by	the	parent	shape.
object Required.	An	expression	that	returns	a	Shape	object.
otherShape Required.	The	other	Shape	object	involved	in	the	comparison.
flags Required	Integer.	Flags	that	influence	the	type	of	entries

returned	in	results.

Remarks

Example

The	DistanceFrom	property	returns:

Zero	and	raises	an	exception	if	the	shapes	being	compared	are	in	different
masters	or	on	different	pages.

Zero	if	the	shapes	being	compared	are	overlapping.

Zero	if	one	shape	contains	the	other	shape,	or	one	shape	is	contained	within	the
other	shape.

The	flags	argument	can	be	any	combination	of	the	values	of	the	constants
defined	in	the	following	table.	These	constants	are	also	defined	in
VisSpatialRelationFlags	in	the	Visio	type	library.

Constant Value Description
visSpatialIncludeHidden &H10 Consider	hidden	Geometry

sections.	By	default,	hidden
Geometry	sections	do	not
influence	the	result.

visSpatialIgnoreVisible &H20 Do	not	consider	visible	Geometry
sections.	By	default,	visible
Geometry	sections	influence	the
result.

Use	the	NoShow	cell	to	determine	whether	a	Geometry	section	is	hidden	or
visible.	Hidden	Geometry	sections	have	a	value	of	TRUE	and	visible	Geometry
sections	have	a	value	of	FALSE	in	the	NoShow	cell.

If	object	or	otherShape	has	no	geometry,	or	if	flags	excludes	consideration	of	all
geometry	of	either	shape,	then	the	DistanceFrom	property	returns	a	large
number	(1E+30)	which	should	be	construed	as	infinite.

The	DistanceFrom	property	does	not	consider	the	width	of	a	shape's	line,
shadows,	line	ends,	control	points,	or	connection	points	when	comparing	two
shapes.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1210.htm

DistanceFromPoint	property

				 				

Returns	the	distance	from	a	shape	to	a	point.

Version	added

2000

Syntax

doubleRet	=	object.DistanceFromPoint(x,	y,	flags,	[pPathIndex
doubleRet Double.	A	distance	in	internal	drawing	units	with	respect	to	the	coordinate	space	defined	by	the

point	(x,y).
object Required.	An	expression	that	returns	a	Shape	object.
x Required	Double.	An	x-coordinate.
y Required	Double.	A	y-coordinate.
flags Required	Integer.	Flags	that	influence	the	type	of	entries	returned	in	results.
pPathIndex Optional	Variant.	Identifies	the	point	on	the	shape	in	conjunction	with	
pCurveIndex Optional	Variant.	Identifies	the	point	on	the	shape	in	conjunction	with	
pt Optional	Variant.	Identifies	the	point	on	the	shape	in	conjunction	with	

pCurveIndex.

Example

Remarks

The	(x,y)	point	is	expressed	in	internal	drawing	units	(inches	in	the	drawing)
with	respect	to	the	coordinate	space	defined	by	the	sheet	immediately	containing
ThisShape.

The	pPathIndex,	pCurveIndex,	and	pt	arguments	optionally	return	values	that
identify	the	point	the	returned	distance	is	measured	from.	Call	that	point
(xOnThis,yOnThis).	It	lies	along	the	c'th	curve	of	ThisShape's	p'th	path	and	can
be	determined	by:

ThisShape.Paths(*pPathIndex).Item(*pCurveIndex).Point(*pt,&xOnThis,&yOnthis)

You	can	use	the	PointAndDerivatives	method	instead	of	the	Point	method	if
you	want	to	find	the	first	and	second	derivatives	at	position	t	along	the	curve.

If	pPathIndex	or	pCurveIndex	is	not	Null,	an	Integer	(type	VT_I4)	is	returned.
If	p	isn't	Null,	it	returns	a	Double	(type	VT_R8).

The	DistanceFromPoint	property	considers	guides	to	have	extent	and	considers
a	shape's	filled	areas	and	paths.

The	flags	argument	can	be	any	combination	of	the	values	of	the	constants
defined	in	the	following	table.	These	constants	are	also	defined	in
VisSpatialRelationFlags	in	the	Visio	type	library.

Constant Value Description
visSpatialIncludeHidden &H10 Consider	hidden	Geometry

sections.	By	default,	hidden
Geometry	sections	do	not
influence	the	result.

visSpatialIgnoreVisible &H20 Do	not	consider	visible	Geometry
sections.	By	default,	visible
Geometry	sections	influence	the
result.

Use	the	NoShow	cell	to	determine	whether	a	Geometry	section	is	hidden	or
visible.	Hidden	Geometry	sections	have	a	value	of	TRUE	and	visible	Geometry
sections	have	a	value	of	FALSE	in	the	NoShow	cell.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1210.htm

If	object	has	no	geometry,	or	if	flags	excludes	consideration	of	all	geometry,	then
the	DistanceFromPoint	property	returns	a	large	number	(1E+30)	which	should
be	interpreted	as	infinite.

The	DistanceFromPoint	property	does	not	consider	the	width	of	a	shape's	line,
shadows,	line	ends,	control	points,	or	connection	points	when	computing	its
result.

Document	property

				 					

Gets	the	Document	object	that	is	associated	with	an	object.

Version	added

2.0

Syntax

objRet	=	object.Document
objRet The	Document	object	that	contains	the	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

The	Document	property	of	a	docked	stencil	window	returns	a	Document	object
for	the	stencil	that	is	currently	at	the	top	of	the	window.	If	another	stencil
replaces	the	first	in	the	top	position,	the	first	stencil's	document	is	closed	so	the
reference	to	it	becomes	invalid.	For	best	results,	assume	that	document
references	to	docked	stencils	are	not	persistent.

See	also

If	a	Window	object	shows	no	documents	are	open,	then	no	document	is	returned
and	no	exception	is	raised.	Your	solution	should	check	for	Nothing	returned
after	retrieving	the	Document	property	of	a	Window	object.

Documents	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	Documents	collection	for	a	Microsoft	Visio	instance.

Version	added

2.0

Syntax

objsRet	=	object.Documents
objsRet The	Documents	collection	of	the	Application	object.
object Required.	An	expression	that	returns	the	Application	object

that	owns	the	collection.

Remarks

You	can	iterate	through	a	Documents	collection	by	using	the	Count	property	to
retrieve	the	number	of	documents	in	the	collection.	You	can	use	the	Item
property	to	retrieve	individual	elements	from	a	collection.

DocumentSheet	property

			 				

Returns	a	Shape	object	whose	cells	represent	properties	of	the	document.

Version	added

2000

Syntax

objRet	=	object.DocumentSheet
objRet A	Shape	object.
object Required.	An	expression	that	returns	a	Document	object.

See	also Example

DrawingPaths	property

				 				

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	drawings.

Version	added

4.0

Syntax

strRet	=	object.DrawingPaths
object.DrawingPaths	=	pathsStr
object Required.	An	expression	that	returns	an	Application	object.
strRet,	pathsStr String.	A	text	string	containing	a	list	of	folders.

Remarks

To	indicate	more	than	one	folder,	separate	individual	items	in	the	path	string
with	semicolons.

The	string	passed	to	and	received	from	the	DrawingPaths	property	is	the	same

Example

string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu).	This	string	is	stored	in
HKEY_CURRENT_USER\Software\Microsoft\Visio\application\DrawingsPath

Visio	looks	for	drawings	in	all	paths	named	in	the	DrawingPaths	property	and
all	the	subfolders	of	those	paths.	If	you	pass	the	DrawingPaths	property	to	the
EnumDirectories	method,	it	returns	a	complete	list	of	fully	qualified	paths	in
which	Visio	looks.

If	a	path	is	not	fully	qualified,	Visio	looks	for	the	folder	in	the	folder	that
contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the	Visio
executable	file	is	installed	in	c:\Visio,	and	the	DrawingPaths	property	is
"Drawings;d:\Drawings",	Visio	looks	for	add-ons	in	both	c:\Visio\Drawings	and
d:\Drawings.

DropActions	property

			 				

Defines	special	actions	to	be	performed	on	shapes	created	using	a	master
shortcut.

Version	added

2000

Syntax

strRet	=	object.DropActions

object.DropActions	=	strExpression

strRet
String.	One	or	more	actions	separated	by	semicolons.	See
example	in	Remarks.

object Required.	An	expression	that	returns	a	MasterShortcut	object.

strExpression
Required	String.	One	or	more	actions	separated	by	semicolons.
See	example	in	Remarks.

Remarks

When	you	drop	a	master	shortcut	onto	a	drawing	page,	Microsoft	Visio	applies
any	drop	actions	in	the	shortcut	to	the	newly	created	shape.	Each	drop	action
defines	a	particular	value	or	formula	to	be	assigned	to	a	particular	cell	in	the	new
shape.

See	also Example

Because	drop	actions	are	defined	by	the	shortcut,	not	the	target	master,	it	is
possible	to	create	several	shortcuts	that	refer	to	the	same	target	master,	but	which
produce	very	different	effects	when	dropped	onto	the	drawing	page.

The	DropActions	property	can	be	blank,	or	can	define	a	series	of	one	or	more
individual	drop	actions.	Actions	are	separated	by	semicolons	(;).	Each	action
consists	of	the	name	of	the	cell	to	change,	followed	by	the	formula	to	apply	to
that	cell,	separated	by	an	equals	sign	(=).	For	example:

User.SubType=3;	FillForegnd=7;	Sheet2!Width=(ThePage!PageWidth	/	2	-	4cm)

The	application	does	not	validate	drop	actions	until	they	are	applied	to	a	new
shape.	If	the	DropActions	property	contains	syntax	errors	or	invalid	cell	names,
the	offending	actions	are	ignored.	However,	if	the	application	is	running	in
developer	mode,	an	error	message	is	displayed,	identifying	the	invalid	action	and
the	cause	of	the	error.	When	using	shortcut	drop	actions	in	your	code,	always	test
your	shortcuts	in	developer	mode	to	make	sure	the	drop	actions	do	not	contain
errors.	To	run	in	developer	mode,	on	the	Tools	menu,	click	Options,	click	the
Advanced	tab,	and	then	select	the	Run	in	developer	mode	check	box.

DynamicGridEnabled	property

				 				

Determines	whether	the	dynamic	grid	is	enabled	or	not.

Version	added

2002

Syntax

boolRet	=	object.DynamicGridEnabled
object.DynamicGridEnabled	=	boolExpression
boolRet Boolean.	True	if	dynamic	grid	is	enabled;	False	if	it	is	not

enabled.
object Required.	An	expression	that	returns	a	Document	object.
boolExpression Required	Boolean.	True	to	enable	dynamic	grid;	False	to

disable	it.

Example

EditCopy	property

			 				

Returns	a	master	that	is	open	for	editing	and	originally	copied	from	this	master.

Version	added

2002

Syntax

objRet	=	object.EditCopy

objRet
The	Master	object	that	is	open	for	editing	and	that	was
originally	copied	from	object.

object
Required.	An	expression	that	returns	a	Master	object.

Remarks

If	there	is	no	master	associated	with	object	that	is	open	for	editing,	the	EditCopy
property	returns	Nothing.

See	also Example

EmailRoutingData	property

			 				

Returns	e-mail	routing	data	for	a	document.

Version	added

2002

Syntax

varRet	=	object.EmailRoutingData
varRet Variant.	An	array	containing	the	e-mail	routing	data	for	a

document.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	data	contained	in	varRet	is	the	equivalent	of	the	data	contained	in	the
Routing	Slip	dialog	box	(on	the	File	menu,	point	to	Send	To,	and	then	click
Routing	Recipient).

See	also Example

Enabled	property

				 					

Determines	whether	or	not	an	object	is	currently	enabled.

Version	added

4.0

Syntax

intVal	=	object.Enabled
object.Enabled	=	intExpression
intVal Integer.	False	(0)	if	the	object	is	disabled;	True	(-1)	if	it	is

enabled.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.
intExpression Required	Integer.	False	(0)	to	disable	the	object;	True	(non-

zero)	to	enable	the	object.

Remarks

See	also

You	can	get	and	set	the	Enabled	property	of	an	Event	object.	An	Event	object
that	is	disabled	doesn't	perform	its	action	when	its	event	occurs.

An	add-on	implemented	by	an	executable	(EXE)	file	always	reports	itself	as
enabled.	An	add-on	implemented	by	a	Visio	Solutions	Library	(VSL)	file	reports
itself	as	enabled	or	disabled	according	to	the	enabling	policy	that	the	VSL	file
has	registered	for	that	add-on.

You	can't	tell	an	add-on	to	enable	or	disable	itself.	Visio	will	not	send	a	run
message	to	a	disabled	add-on.	The	name	of	a	disabled	add-on	on	a	Visio	menu
appears	dimmed	or	gray.

End	property	(Characters	object)

				 				

Returns	or	sets	the	ending	index	of	the	indicated	Characters	object	representing
a	range	of	text	in	a	shape.

Version	added

3.0

Syntax

intRet	=	object.End
object.End	=	intExpression
intRet Integer.	The	current	ending	index	of	the	Characters	object.
object Required.	An	expression	that	returns	a	Characters	object.
intExpression Required	Integer.	The	new	ending	index	of	the	Characters

object.

Remarks

The	End	property	determines	the	end	of	the	text	range	represented	by	a

Example

Characters	object.	The	value	of	the	End	property	is	an	index	that	represents	the
boundary	between	two	characters,	similar	to	an	insertion	point	in	text.	Like
selected	text	in	a	drawing	window,	a	Characters	object	represents	the	sequence
of	characters	that	are	affected	by	subsequent	actions,	such	as	the	Cut	or	Copy
method.	When	you	retrieve	a	Characters	object,	its	current	text	range	includes
all	the	shape's	text.	You	can	change	the	text	range	by	setting	the	Characters
object's	Begin	and	End	properties.	Changing	the	text	range	of	a	Characters
object	has	no	effect	on	the	text	of	the	corresponding	shape.

The	End	property	can	have	a	value	from	zero	(0)	to	the	value	of	the	CharCount
property	for	the	corresponding	shape.	An	index	of	0	is	positioned	before	the	first
character	in	the	shape's	text.	An	index	that	is	the	same	as	the	CharCount
property	is	positioned	after	the	last	character	in	the	shape's	text.	If	you	specify	a
value	less	than	0,	Visio	uses	0.	If	you	specify	a	value	that	is	inside	the	expanded
characters	of	a	field,	Visio	sets	the	value	of	the	End	property	to	the	end	of	the
field.

The	value	of	the	End	property	must	always	be	greater	than	or	equal	to	the	value
of	the	Begin	property.	If	you	attempt	to	set	the	value	of	the	End	property	to	a
value	lower	than	the	Begin	property,	Visio	sets	both	the	End	and	Begin
properties	to	the	value	specified	for	the	End	property.

End	property	(Curve	object)

					 					

Returns	the	end	point	of	a	Curve	object.

Version	added

5.0

Syntax

retVal	=	object.End
retVal Double.	Ending	value	of	a	Curve	object's	parameter	domain.
object Required.	An	expression	that	returns	a	Curve	object.

Remarks

The	End	property	of	a	Curve	object	returns	the	end	point	of	a	curve.	A	Curve
object	describes	itself	in	terms	of	its	parameter	domain,	which	is	the	range
[Start(),End()]	where	End()	produces	the	curve's	end	point.

Error	property

			 				

Gets	the	error	code	generated	by	the	last	evaluation	of	a	cell's	formula.

Version	added

2.0

Syntax

intRet	=	object.Error
intRet Integer.	The	error	code	from	the	last	evaluation	of	the	cell's

formula.
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

When	you	evaluate	a	cell's	formula,	an	error	code	is	generated	along	with	the
result.	The	Error	property	allows	you	to	access	this	error	code.	Constants	for
valid	error	codes	are	declared	by	the	Visio	type	library	and	begin	with	visError.

See	also Example

Event	property

				 				

Gets	or	sets	the	event	code	of	an	Event	object—an	event-action	pair.	When	the
event	occurs,	the	action	is	performed.

Version	added

4.0

Syntax

intRet	=	object.Event
object.Event	=	eventCode
intRet Integer.	The	current	event	code.
object Required.	An	expression	that	returns	an	Event	object.
eventCode Required	Integer.	The	new	event	code.

Remarks

If	the	action	code	of	the	Event	object	is	visActCodeRunAddon,	the	event	also
specifies	the	target	of	the	action	and	the	arguments	to	send	to	the	target.	This

Example

information	is	stored	in	the	Target	and	TargetArgs	properties,	respectively.

If	the	action	code	of	the	Event	object	is	visActCodeAdvise,	the	event	also
specifies	the	object	to	receive	event	notifications	(sometimes	called	the	sink
object)	and	arguments	to	send	to	the	sink	object	along	with	the	notification.

Event	codes	are	declared	by	the	Visio	type	library.	They	are	prefixed	with
"visEvt"	and	are	listed	in	event	topics	in	this	Automation	Reference.	For	a	list	of
event	codes,	see	Event	codes.

A	program	can	use	the	Trigger	method	to	cause	an	Event	object's	action	to	be
performed	without	waiting	for	the	event	to	occur.

EventInfo	property

				 				

Gets	additional	information	associated	with	an	event,	if	any	exists.

Version	added

4.0

Syntax

strRet	=	object.EventInfo(eventSeqNum)
strRet String.	Additional	information	about	the	event.
object Required.	An	expression	that	returns	an	Application	object.
eventSeqNum Required	Long;	visEvtIDMostRecent	(0)	for	information

about	the	most	recently	fired	event,	or	the	sequence	number	of
the	event	to	examine.

Remarks

When	Visio	fires	an	event,	there	are	a	small	number	of	events	for	which
additional	information	is	available.	These	events	are	BeforeDocumentSaveAs,
DocumentSavedAs,	EnterScope,	ExitScope,	MarkerEvent,	ShapesDeleted,

Example

and	ShapeChanged.	Use	the	application's	EventInfo	property	to	obtain	this
information,	when	available.

The	EventInfo	property	returns	the	following:

A	string	whose	contents	are	specific	to	the	event	in	question,	if	the	event	does
record	extra	information.

An	empty	string	if	an	event	does	not	record	extra	information.

An	error	if	Visio	no	longer	has	information	for	the	specified	event.

For	details	about	the	contents	of	the	EventInfo	property	for	an	event,	see	the
specific	event	topic.

If	an	event	target	queries	the	EventInfo	property	immediately	after	being
triggered,	the	most	recent	event	and	the	event	whose	sequence	number	was
passed	to	the	target	are	the	same.	However,	if	the	target	is	an	add-on
implemented	by	an	executable	(EXE)	file,	this	may	not	be	the	case	because	the
executable	file	and	Visio	are	separate	tasks	that	aren't	modal	with	respect	to	each
other.

Note	Event	handlers	that	use	the	Microsoft	Visual	Basic	for	Applications
WithEvents	variable	only	have	access	to	the	most	recent	event	and	must	use
visEvtIDMostRecent.

To	ensure	that	the	information	returned	by	the	EventInfo	property	is	associated
with	the	same	event	that	triggered	the	add-on,	the	executable	file	can	pass
<sequence	number>	as	an	argument	to	the	EventInfo	property.	You	can	obtain
the	sequence	number	of	an	event	in	the	following	ways:

If	the	Action	property	of	the	Event	object	returns	visActCodeRunAddon,	then
the	command	line	string	passed	to	the	add-on	contains	a	substring	of	the	form
"/eventid=<sequence	number>".

Note	Even	though	the	substring	is	labeled	with	"/eventid,"	don't	confuse	the
<sequence	number>	passed	in	the	command	line	string	with	the	ID	property
of	the	firing	Event	object,	which	identifies	the	Event	object	in	its	EventList
collection.	The	number	being	passed	is	actually	the	firing	sequence	number.

If	the	Action	property	of	the	Event	object	returns	visActCodeAdvise,	the

sequence	number	is	passed	as	an	argument	to	the	VisEventProc	procedure
implemented	by	the	target	object.

EventList	property

					 					

Returns	the	EventList	collection	of	an	object	or	the	EventList	collection	that
contains	an	Event	object.

Version	added

4.0

Syntax

objRet	=	object.EventList
objRet The	EventList	collection.
object Required.	An	expression	that	returns	an	object	from	the

Applies	to	list	that	owns	the	collection.

EventsEnabled	property

					 					

Determines	whether	a	Microsoft	Visio	instance	fires	events.

Version	added

4.5

Syntax

intRet	=	object.EventsEnabled
object.EventsEnabled	=	intExpression
intRet Integer.	False	(0)	if	event	firing	is	disabled;	True	(-1)	if	event

firing	is	enabled.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	False	(0)	to	disable	event	firing;	True	(non-

zero)	to	enable	event	firing.

Remarks

If	the	EventsEnabled	property	is	False,	Visio	does	not	fire	events,	run	add-ons,

or	execute	Microsoft	Visual	Basic	for	Applications	code	when	evaluating
RUNADDON	operands	in	cell	formulas.

By	default,	the	EventsEnabled	property	is	True	when	an	instance	of	Visio
starts.

You	may	want	to	disable	event	firing	if	you	have	code	behind	events	such	as
DocumentOpened	or	DocumentCreated	that	does	not	work	properly,	or	to
prevent	the	incorporation	of	a	virus	into	a	document.	Events	will	not	fire	until
the	EventsEnabled	property	is	set	to	True.

To	set	the	EventsEnabled	property	to	False	in	another	way:

On	the	Tools	menu,	click	Options.

In	the	Options	dialog	box,	click	the	Advanced	tab.

Clear	the	Enable	Automation	events	check	box.

ExtraInfo	property

				 				

Returns	or	sets	extra	URL	request	information	used	to	resolve	the	hyperlink's
URL.

Version	added

5.0

Syntax

strRet	=	object.ExtraInfo
object.ExtraInfo	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Hyperlink	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	ExtraInfo	property	of	a	shape's	Hyperlink	object	is	optional,	and	is
equivalent	to	setting	the	value	of	the	ExtraInfo	cell	in	the	shape's	Hyperlink.Row

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1383.htm

row.

You	might,	for	example,	set	the	Hyperlink	object's	ExtraInfo	property	to	the
coordinates	of	an	image	map,	the	contents	of	a	form,	or	a	file	name.

If	the	ExtraInfo	property	you	provide	contains	reserved	characters	other	than
spaces,	you	must	input	the	escape	character	"%"	and	the	character's	hex
equivalent.	For	example:

For	"NAME=John	Smith",	set	the	ExtraInfo	property	to	"NAME=John	Smith"
because	the	extra	information	contains	spaces,	but	no	reserved	characters.

For	"PATH=C:\TEMP",	set	ExtraInfo	property	to	"PATH=C%3A%5CTEMP"
because	of	the	reserved	characters.

FaceID	property

					 					

Gets	or	sets	the	icon	for	an	item.

Version	added

2000

Syntax

intLong	=	object.FaceID
object.FaceID	=	intLong
intLong Required	Integer.	Zero	or	more	when	the	button	uses	one	of

the	Visio	standard	built-in	images.	Negative	one	(-1)	when	the
button	has	no	icon,	or	has	a	custom	image.

object Required.	An	expression	that	returns	an	object	in	the	Applies	to
list.

Remarks

You	can	use	any	of	the	constants	prefixed	with	visIconIX	that	are	declared	by

the	Visio	type	library	in	VisUIIconIDs.

The	FaceID	property	determines	a	button's	icon,	but	not	its	function.	Use	the
CmdNum	property	of	a	ToolbarItem	or	MenuItem	object	to	set	a	button's
function.

The	FaceID	property	is	the	same	as	the	TypeSpecific1	property	when	the
CtrlType	property	is	type	visCtrlTypeBUTTON,	which	is	declared	in	the	Visio
type	library	in	VisUICtrlTypes.

FieldCategory	property

				 				

Returns	the	field	category	for	a	field	represented	by	an	object.

Version	added

3.0

Syntax

intRet	=	object.FieldCategory
intRet Integer.	The	field	category.
object Required.	An	expression	that	returns	a	Characters	object.

Remarks

If	the	Characters	object	does	not	contain	a	field	or	contains	non-field
characters,	the	FieldCategory	property	returns	an	exception.	Check	the	IsField
property	of	the	Characters	object	before	getting	its	FieldCategory	property.

Field	categories	correspond	to	those	in	the	Category	list	in	the	Field	dialog	box
(click	Field	on	the	Insert	menu).

Example

To	add	a	custom	field,	use	the	AddCustomField	method.

The	following	constants	for	field	categories	are	declared	by	the	Visio	type
library	in	VisFieldCategories.

Constant Value
visFCatCustom 0
visFCatDateTime 1
visFCatDocument 2
visFCatGeometry 3
visFCatObject 4
visFCatPage 5

FieldCode	property

				 				

Returns	the	field	code	for	a	field	represented	by	an	object.

Version	added

3.0

Syntax

intRet	=	object.FieldCode
intRet Integer.	The	field	code.
object Required.	An	expression	that	returns	a	Characters	object.

Remarks

If	the	Characters	object	does	not	contain	a	field	or	contains	non-field
characters,	the	FieldCode	property	returns	an	exception.	Check	the	IsField
property	of	the	Characters	object	before	getting	its	FieldCode	property.

Field	codes	correspond	to	the	fields	in	the	Field	list	in	the	Field	dialog	box
(click	Field	on	the	Insert	menu).

Example

The	following	constants	for	field	codes	are	declared	by	the	Visio	type	library	in
VisFieldCodes.

Constants	for	field	codes

FieldFormat	property

				 				

Returns	the	field	format	for	a	field	represented	by	an	object.

Version	added

3.0

Syntax

intRet	=	object.FieldFormat
intRet Integer.	The	field	format.
object Required.	An	expression	that	returns	a	Characters	object.

Remarks

If	the	Characters	object	does	not	contain	a	field	or	contains	non-field
characters,	the	FieldFormat	property	returns	an	exception.	Check	the	IsField
property	of	the	Characters	object	before	getting	its	FieldFormat	property.

Field	formats	correspond	to	the	formats	in	the	Format	list	in	the	Field	dialog
box	(click	Field	on	the	Insert	menu).

Example

The	following	constants	for	field	formats	are	declared	by	the	Visio	type	library
in	VisFieldFormats.

Constants	for	field	formats

FieldFormula[U]	property

				 				

Returns	the	formula	of	the	custom	field	represented	by	an	object.

Version	added

3.0

Syntax

strRet	=	object.FieldFormula
strRet String.	The	formula	of	the	custom	field.
object Required.	An	expression	that	returns	a	Characters	object.

Remarks

If	the	Characters	object	does	not	contain	a	field	or	contains	non-field
characters,	or	if	the	field	is	not	a	custom	field,	the	FieldFormula	property
returns	an	exception.	Check	the	IsField	and	FieldCategory	properties	of	the
Characters	object	before	getting	its	FieldFormula	property.

The	formula	returned	by	the	FieldFormula	property	corresponds	to	the	formula

Example

that	appears	in	the	Custom	formula	box	in	the	Field	dialog	box	(click	Field	on
the	Insert	menu).

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	FieldFormula	property	to	get	a	formula	using	local	syntax.
Use	the	FieldFormulaU	property	to	get	a	formula	using	universal	syntax.

FillBasedOn	property

				 				

Gets	or	sets	the	fill	style	on	which	the	Style	object	is	based.

Version	added

4.0

Syntax

strVal	=	object.FillBasedOn
object.FillBasedOn	=	styleName
strVal String.	The	name	of	the	current	fill	style.
object Required.	An	expression	that	returns	a	Style	object.
styleName Required	String.	The	name	of	the	new	fill	style.

Remarks

To	base	a	style	on	no	style,	set	the	FillBasedOn	property	to	a	zero-length	string
("").

Example

FillStyle	property

					 					

Returns	or	sets	the	fill	style	for	an	object.

Version	added

2.0

Syntax

strRet	=	object.FillStyle
object.FillStyle	=	stringExpression
strRet String.	The	current	fill	style.
object Required.	An	expression	that	returns	a	Selection	or	Shape

object	that	has	or	gets	the	fill	style.
stringExpression Required	String.	The	name	of	the	fill	style	to	apply.

Remarks

Setting	the	FillStyle	property	is	equivalent	to	selecting	a	style	from	the	Fill	Style
list	on	the	Format	Shape	toolbar.

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	type	of	style
to	another	type	(for	example,	setting	the	FillStyle	property	to	a	line	style)	does
nothing.	Setting	one	type	of	style	to	another	type	that	has	more	than	one	set	of
attributes	changes	only	the	appropriate	attributes.	For	example,	setting	the
FillStyle	property	to	a	style	with	line,	text,	and	fill	attributes	changes	only	the
fill	attributes.

To	preserve	a	shape's	local	formatting,	use	the	FillStyleKeepFmt	property.

Beginning	with	Microsoft	Visio	2002,	a	zero-length	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	a	zero-length	string	("")	is
equivalent	to	selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill
style	list	in	the	Style	dialog	box	(on	the	Format	menu,	click	Style).

FillStyleKeepFmt	property

				 				

Applies	a	fill	style	to	an	object	while	preserving	local	formatting.

Version	added

2.0

Syntax

object.FillStyleKeepFmt	=	stringExpression
object Required.	An	expression	that	returns	a	Selection	or	Shape

object	to	which	the	fill	style	is	applied.
stringExpression Required	String.	The	name	of	the	fill	style	to	apply.

Remarks

Setting	the	FillStyleKeepFmt	property	is	equivalent	to	selecting	the	Preserve
local	formatting	check	box	in	the	Style	dialog	box	(click	Style	on	the	Format
menu).

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	type	of	style

Example

to	another	type	(for	example,	setting	the	FillStyleKeepFmt	property	to	a	line
style)	does	nothing.	Setting	one	type	of	style	to	another	type	that	has	more	than
one	set	of	attributes	changes	only	the	appropriate	attributes	(for	example,	setting
the	FillStyleKeepFmt	property	to	a	style	with	line,	text,	and	fill	attributes
changes	only	the	fill	attributes).

Beginning	with	Microsoft	Visio	2002,	an	empty	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	an	empty	string	is	equivalent	to
selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill	style	lists	in
the	Style	dialog	box	(on	the	Format	menu,	click	Style).

FilterPaths	property

					 					

Gets	or	sets	the	path	where	Microsoft	Visio	looks	for	import	and	export	filters.

Version	added

4.0

Syntax

strRet	=	object.FilterPaths
object.FilterPaths	=	pathsStr
strRet String.	A	text	string	containing	the	name	of	a	folder.
object Required.	An	expression	that	returns	an	Application	object.
pathsStr Required	String.	A	text	string	containing	the	new	folder	name.

Remarks

The	string	passed	to	and	received	from	the	FilterPaths	property	is	the	same
string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu).	This	string	is	stored	in

HKEY_CURRENT_USER\Software\Microsoft\Visio\application\FiltersPath32

Unlike	similar	properties	such	as	AddonPaths	and	TemplatePaths,	you	can
name	only	one	path	in	the	FilterPaths	property	and	Visio	will	not	look	for	filters
in	the	subfolders	of	the	path	you	specify.

If	a	path	is	not	fully	qualified,	Visio	looks	for	the	folder	in	the	folder	that
contains	the	Visio	program	files	(appObj.Path).

Flags	property

				 				

Gets	or	sets	the	flags	that	specify	how	you	use	a	Color	object.

Version	added

4.0

Syntax

intRet	=	object.Flags
object.Flags	=	intVal
intRet Integer.	The	current	value	of	the	color's	flags	component.
object Required.	An	expression	that	returns	a	Color	object.
intVal Required	Integer.	The	new	value	of	the	color's	flags

component.

Remarks

The	Flags	property	of	a	Color	object	corresponds	to	the	peFlags	member	of	a
Microsoft	Windows	PALETTEENTRY	data	structure.	For	details,	search	for

Example

"PALETTEENTRY"	in	the	Microsoft	Platform	SDK	on	the	Microsoft
Developer	Network	(MSDN)	Web	site.

http://msdn.microsoft.com

Flavor	property
			 			

Microsoft	Visio	no	longer	supports	this	property	and	ignores	it	in	code.	The
Visio	user	interface	uses	only	the	Microsoft	Office	toolbar	set.

See	also Example Applies	to

Fonts	property

				 				

Returns	the	Fonts	collection	of	a	Document	object.

Version	added

4.0

Syntax

objRet	=	object.Fonts
objRet Required.	An	expression	that	returns	a	document's	Fonts

collection.
object Required.	An	expression	that	returns	a	Document	object.

Example

FooterCenter	property

				 				

Contains	the	text	string	that	appears	in	the	center	portion	of	a	document's	footer.

Version	added

2002

Syntax

strRet	=	object.FooterCenter
object.FooterCenter	=	stringExpression
strRet String.	The	text	in	the	center	portion	of	the	footer.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	center	portion	of	the	footer.

Remarks

You	can	also	set	this	value	in	the	Center	box	under	Footer	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.	For	a	list	of	valid
escape	codes	you	can	use	with	the	FooterCenter	property,	see	the	FooterLeft
property.

Example

The	following	macro	is	used	to	place	a	string	containing	the	current	page
number	and	total	number	of	pages	into	the	center	portion	of	a	document's	footer.

Sub	SetFooterCenter()
				Dim	szFooter	as	String
				'Build	footer	string
				szFooter	=	"Page	&p	of	&P"
				'Set	footer	of	current	document
				ThisDocument.FooterCenter	=	szFooter
End	Sub

If	this	is	a	one-page	document,	the	center	portion	of	the	footer	contains	"Page	1
of	1"	after	running	this	macro.

FooterLeft	property

				 				

Contains	the	text	string	that	appears	in	the	left	portion	of	a	document's	footer.

Version	added

2002

Syntax

strRet	=	object.FooterLeft
object.FooterLeft	=	stringExpression
strRet String.	The	text	in	the	left	portion	of	the	footer.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	left	portion	of	the	footer.

Remarks

You	can	also	set	this	value	in	the	Left	box	under	Footer	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.

Following	is	a	list	of	valid	escape	codes	for	document	footers	and	headers.

Escape	code Description
&p Page	number
&t	or	&T Current	time
&d	(short	version)	or	&D	(long
version)

Current	date

&& Ampersand
&e File	name	extension
&f File	name
&f&e File	name	and	extension
&n Page	name
&P Total	printed	pages

Example

The	following	macro	is	used	to	place	a	string	containing	the	current	date	into	the
left	portion	of	a	document's	footer.

Sub	SetFooterLeft()
				Dim	szFooter	as	String
				'Build	footer	string
				szFooter	=	"The	Date	is	"	&	"&D"
				'Set	footer	of	current	document
				ThisDocument.FooterLeft	=	szFooter
End	Sub

If	the	date	was	May	4,	2002,	the	left	portion	of	the	footer	contains	"The	Date	is
Thursday,	May	4,	2002"	after	running	this	macro.

FooterMargin	property

				 				

Gets	or	sets	the	margin	of	a	document's	footer.

Version	added

2002

Syntax

retVal	=	object.FooterMargin	([unitsNameOrCode])
object.FooterMargin	([unitsNameOrCode])	=	newVal
retVal Double.	The	margin	size.
object Required.	An	expression	that	returns	a	Document	object.
unitsNameOrCodeOptional	Variant.	The	units	to	use	when	retrieving	or	setting

the	cell's	value.	Defaults	to	internal	drawing	units	(inches).
newVal Required	Double.	The	new	margin	size.

Remarks

If	unitsNameorCode	is	not	provided,	the	FooterMargin	property	will	default	to

Example

internal	drawing	units.

You	can	also	set	this	value	in	the	Margin	box	under	Footer	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

FooterRight	property

				 				

Contains	the	text	string	that	appears	in	the	right	portion	of	a	document's	footer.

Version	added

2002

Syntax

strRet	=	object.FooterRight
object.FooterRight	=	stringExpression
strRet String.	The	text	in	the	right	portion	of	the	footer.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	right	portion	of	the	footer.

Remarks

You	can	also	set	this	value	in	the	Right	box	under	Footer	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.	For	a	list	of	valid
escape	codes	you	can	use	with	the	FooterRight	property,	see	the	FooterLeft
property.

ForeignData	property

				 				

Returns	metafile,	bitmap,	or	OLE	data	for	a	shape	that	represents	a	foreign
object.

Version	added

2002

Syntax

retVal	=	object.ForeignType
retVal Byte.	An	array	containing	metafile,	bitmap,	or	OLE	data	for	the

shape.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

To	determine	whether	a	shape	represents	a	foreign	object,	use	the	ForeignType
property.

Example

ForeignType	property

				 				

Returns	the	subtype	of	a	Shape	object	that	represents	a	foreign	object.

Version	added

4.1

Syntax

retVal	=	object.ForeignType
Remarks

If	the	Type	property	of	a	Shape	object	returns	any	value	other	than
visTypeForeignObject,	the	ForeignType	property	returns	the	same	value	as	the
Shape	object's	Type	property.	If	the	Type	property	of	a	Shape	object	returns
visTypeForeignObject,	the	ForeignType	property	returns	a	combination	of	the
following	values.

Constant Value
visTypeMetafile &H0010

Example

visTypeBitmap &H0020
visTypeIsLinked &H0100
visTypeIsEmbedded &H0200
visTypeIsControl &H0400
visTypeIsOLE2 &H8000

If	the	shape	represents	an	OLE	2.0	embedded	object,	for	example,	its
ForeignType	property	is	&H8200.

Formula[U]	property

					 					

Returns	or	sets	the	formula	for	a	Cell	object.

Version	added

2.0

Syntax

strRet	=	object.Formula
object.Formula	=	stringExpression
strRet String.	The	cell's	formula.
object Required.	An	expression	that	returns	a	Cell	object.
stringExpression Required	String.	The	new	formula	for	the	cell.

Remarks

If	a	cell's	formula	is	protected	with	the	GUARD	function,	you	must	use	the
FormulaForce	property	to	change	the	cell's	formula.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	Formula	property	to	get	a	cell's	formula	string	in	local	syntax
or	to	set	it	using	a	mix	of	local	and	universal	syntax.	Use	the	FormulaU
property	to	get	or	parse	the	formula	using	universal	syntax.	When	using
FormulaU,	the	decimal	point	is	always	"."	and	the	delimiter	is	always	","	and
universal	unit	strings	must	be	used	(for	details	on	universal	strings,	see	About
units	of	measure).

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

FormulaForce[U]	property

				 				

Sets	the	formula	in	a	Cell	object,	even	if	the	formula	is	protected	with	a	GUARD
function.

Version	added

2.0

Syntax

object.FormulaForce	=	stringExpression
object Required.	An	expression	that	returns	a	Cell	object.
stringExpression Required	String.	The	new	formula	for	the	cell.

Remarks

Many	of	the	SmartShapes	symbols	provided	with	Visio	have	guarded	cells	to
maintain	their	smart	behavior.	When	you	change	the	formula	in	a	guarded	cell,
the	shape's	behavior	might	change	in	unexpected	ways.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,

Example

pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	FormulaForce	property	to	get	or	parse	the	formula	using
local	syntax.	Use	the	FormulaForceU	property	to	get	or	parse	the	formula	using
universal	syntax.

Frame	property

				 				

Returns	or	sets	the	name	of	an	HTML	frame	in	the	shape's	Hyperlink	object.

Version	added

5.0

Syntax

strRet	=	object.Frame
object.Frame	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Hyperlink	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	Frame	property	of	a	shape's	Hyperlink	object	is	optional	and	only
applies	when	a	Visio	instance	is	open	in	a	browser,	for	example,	Microsoft
Internet	Explorer	3.0	or	later.

Example

Setting	the	Frame	property	is	equivalent	to	setting	the	result	of	the	Frame	cell	in
the	shape's	Hyperlink.Row	row.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1384.htm

FromCell	property

					 					

Returns	the	cell	from	which	a	connection	originates.

Version	added

2.0

Syntax

objRet	=	object.FromCell
objRet The	Cell	object	from	which	the	connection	originates.
object Required.	An	expression	that	returns	a	Connect	object.

Remarks

A	connection	is	defined	by	a	reference	in	a	cell	in	the	shape	from	which	the
connection	originates	to	a	cell	in	the	shape	to	which	the	connection	is	made.	The
FromCell	property	returns	the	Cell	object	for	the	cell	from	which	the	connection
originates.

Following	is	a	list	of	possible	connections	and	the	values	of	their	related

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_1746.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1196.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_1747.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1290.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1292.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1291.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1293.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm

FromCell	properties.

From	the	begin	or	end	cell	of	a	1-D	shape	to…

From	the	edge	(a	cell	in	the	Alignment	section)	of	a	2-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	1-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	2-D	shape	to…

From	a	control	point	cell	to…

FromConnects	property

				 				

Returns	a	Connects	collection	of	the	shapes	connected	to	a	shape.

Version	added

4.5

Syntax

objRet	=	object.FromConnects
objRet The	Connects	collection	of	shapes	connected	to	this	shape.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

The	FromConnects	property	of	a	shape	returns	a	Connects	collection	that
contains	every	Connect	object	for	which	the	shape	is	the	ToSheet	property.	This
tells	you	all	the	shapes	connected	to	a	shape.

To	obtain	a	Connects	collection	that	contains	every	Connect	object	for	which
the	shape	is	the	FromSheet	property,	use	the	shape's	Connects	property.	This

Example

tells	you	all	the	shapes	to	which	the	shape	is	connected.

FromPart	property

					 					

Returns	the	part	of	a	shape	from	which	a	connection	originates.

Version	added

2.0

Syntax

retVal	=	object.FromPart
retVal Integer.	The	part	of	the	shape	where	the	connection	originates.
object Required.	An	expression	that	returns	a	Connect	object.

Remarks

The	following	constants	declared	by	the	Visio	type	library	show	return	values	for
the	FromPart	property.

Constant Value
visConnectFromError -1
visFromNone 0

visLeftEdge 1
visCenterEdge 2
visRightEdge 3
visBottomEdge 4
visMiddleEdge 5
visTopEdge 6
visBeginX 7
visBeginY 8
visBegin 9
visEndX 10
visEndY 11
visEnd 12
visFromPin 13
visFromAngle 14
visControlPoint 100	+	zero-based	row	index	(for	example,

visControlPoint	=	100	if	the	control	point	is
in	row	0;	visControlPoint	=	101	if	the
control	point	is	in	row	1)

FromSheet	property

					 					

Returns	the	shape	from	which	a	connection	or	connections	originate.

Version	added

2.0

Syntax

objRet	=	object.FromSheet
objRet The	Shape	object	from	which	the	connections	originate.
object Required.	An	expression	that	returns	the	Connect	object	or

Connects	collection	to	examine.

Remarks

The	FromSheet	property	for	a	Connect	object	is	straightforward.	It	always
returns	the	shape	from	which	the	Connect	object	originates.

A	Connects	collection	represents	several	connections.	If	every	connection
represented	by	the	collection	originates	from	the	same	shape,	the	FromSheet

property	for	the	collection	returns	that	shape.	Otherwise,	the	FromSheet
property	returns	Nothing	and	does	not	raise	an	exception.

FullBuild	property

				 				

Returns	the	full	build	number	of	the	running	instance.

Version	added

2002

Syntax

retVal	=	object.FullBuild
retVal Long.	The	build	number.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number
16	-	20 Internal	revision	number

Example

21	-	25 Minor	version	number
26	-	30 Major	version	number	(Visio	2002	=	10)
31 Reserved

The	build	number	of	the	running	instance	is	written	to	the
FullBuildNumberCreated	property	when	a	new	document	is	created,	and	to	the
FullBuildNumberEdited	property	when	a	document	is	edited.

FullBuildNumberCreated	property

				 				

Returns	the	full	build	number	of	the	instance	used	to	create	the	document.

Version	added

2002

Syntax

retVal	=	object.FullBuildNumberCreated
retVal Long.	The	build	number	when	the	document	was	created.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number
16	-	20 Internal	revision	number

Example

21	-	25 Minor	version	number
26	-	30 Major	version	number	(Visio	2002	=	10)
31 Reserved

FullBuildNumberEdited	property

				 				

Returns	the	full	build	number	of	the	instance	last	used	to	edit	the	document.

Version	added

2002

Syntax

retVal	=	object.FullBuildNumberEdited
retVal Long.	The	build	number	when	the	document	was	last	edited.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	format	of	the	build	number	is	described	in	the	following	table.

Bits Description
0	-	15 Internal	build	number
16	-	20 Internal	revision	number

Example

21	-	25 Minor	version	number
26	-	30 Major	version	number	(Visio	2002	=	10)
31 Reserved

FullName	property

				 				

Returns	the	name	of	a	document,	including	the	drive	and	path.

Version	added

2.0

Syntax

strRet	=	object.FullName
strRet String.	The	file	name	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

Use	the	FullName	property	to	obtain	a	document's	drive,	folder	path,	and	file
name	as	one	string.	The	returned	value	can	include	UNC	drive	names	(for
example,	\\bob\leo).

Example

GeometryCount	property

					 					

Returns	the	number	of	Geometry	sections	for	a	shape.

Version	added

2.0

Syntax

intRet	=	object.GeometryCount
intRet Integer.	The	number	of	Geometry	sections	for	the	shape.
object Required.	An	expression	that	returns	a	Shape	object.

GestureFormatSheet	property

				 				

Returns	a	reference	to	a	document's	Gesture	Format	sheet,	which	contains	the
line,	fill,	and	text	formatting	that	is	applied	to	shapes	drawn	on	the	page.

Version	added

2000

Syntax

objRet	=	object.GestureFormatSheet
objRet A	Shape	object	that	contains	line,	fill,	and	text	formatting	to	be

applied	to	shapes	drawn	on	the	page.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

By	default,	a	new	shape	inherits	all	its	formatting	from	the	document's	default
styles.	However,	if	the	Gesture	Format	sheet	contains	local	formatting,	that
formatting	is	applied	to	the	new	shape.	Use	the	FillStyle,	LineStyle,	and
TextStyle	properties	to	apply	local	formatting	to	the	Gesture	Format	Shape

Example

object.

Gesture	Format	sheet	formatting	does	not	apply	to	instances	of	masters,
connectors,	pasted	objects,	or	embedded	objects.

A	document's	Gesture	Format	sheet	is	cleared	automatically	when	a	document	is
opened.

If	a	user	makes	changes	to	any	shape	using	shape	formatting	commands	on	the
menus	and	toolbars,	but	no	shapes	are	currently	selected,	this	formatting	is
stored	in	the	gesture	format	sheet	and	applied	to	new	shapes	the	user	draws.

GlueEnabled	property

			 				

Determines	whether	glue	is	enabled	in	the	document.

Version	added

2002

Syntax

retVal	=	object.GlueEnabled
object.GlueEnabled	=	newVal
retVal Boolean.	True	if	glue	is	enabled;	otherwise	False.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	Boolean.	True	to	enable	glue	behavior;	False	to

disable	glue	behavior.

Remarks

The	value	of	the	GlueEnabled	property	corresponds	to	the	setting	of	the	Glue
check	box	on	the	General	tab	in	the	Snap	&	Glue	dialog	box	(on	the	Tools
menu,	click	Snap	&	Glue).

See	also Example

GlueSettings	property

			 				

Determines	the	objects	that	shapes	glue	to	when	glue	is	enabled	in	the	document.

Version	added

2002

Syntax

retVal	=	object.GlueSettings
object.GlueSettings	=	newVal
retVal VisGlueSettings.	The	objects	in	a	document	that	shapes	glue

to.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisGluesettings.	The	objects	in	a	document	that

shapes	glue	to.

Remarks

The	value	of	the	GlueSettings	property	is	equivalent	to	selecting	options	under
Glue	to	on	the	General	tab	in	the	Snap	&	Glue	dialog	box	(on	the	Tools	menu,
click	Snap	&	Glue).

The	GlueSettings	property	can	be	any	combination	of	the	following
VisGlueSettings	constants,	which	are	declared	in	the	Visio	type	library.

Constant Value Description

See	also Example

visGlueToNone &H0 Glue	is	enabled	but	no	other
glue	settings	are	on.

visGlueToGuides &H1 Glue	to	guides.
visGlueToHandles &H2 Glue	to	shape	handles.
visGlueToVertices &H4 Glue	to	shape	vertices.
visGlueToConnectionPoints &H8 Glue	to	connection	points.
visGlueToGeometry &H20 Glue	to	shape	geometry.
visGlueToDisabled &H8000 Disable	glue.

Green	property

				 				

Gets	or	sets	the	intensity	of	the	green	component	of	a	Color	object.

Version	added

4.0

Syntax

intRet	=	object.Green
object.Green	=	intVal
intRet Integer.	The	current	value	of	the	color's	green	component.
object Required.	An	expression	that	returns	a	Color	object.
intVal Required	Integer.	The	new	value	of	the	color's	green

component.

Remarks

The	Green	property	can	be	a	value	from	0	to	255.

Example

A	color	is	represented	by	red,	green,	and	blue	components.	It	also	has	flags	that
indicate	how	the	color	is	to	be	used.	These	correspond	to	members	of	the
Microsoft	Windows	PALETTEENTRY	data	structure.	For	details,	search	for
"PALETTEENTRY"	in	the	Microsoft	Platform	SDK	on	the	Microsoft	Developer
Network	(MSDN)	Web	site.

http://msdn.microsoft.com

HeaderCenter	property

				 				

Contains	the	text	string	that	appears	in	the	center	portion	of	a	document's	header.

Version	added

2002

Syntax

strRet	=	object.HeaderCenter
object.HeaderCenter	=	stringExpression
strRet String.	The	text	in	the	center	portion	of	the	header.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	center	portion	of	the	header.

Remarks

You	can	also	set	this	value	in	the	Center	box	under	Header	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.	For	a	list	of	valid
escape	codes	you	can	use	with	the	HeaderCenter	property,	see	the	FooterLeft
property.

Example

The	following	macro	is	used	to	place	the	string	containing	"Document	Title"	into
the	center	portion	of	the	document's	header.

Sub	SetHeaderCenter()
				'Set	header	of	current	document
				ThisDocument.HeaderCenter	=	"Document	Title"
End	Sub

After	running	this	macro,	"Document	Title"	is	displayed	in	the	center	of	the
document	header.

HeaderFooterColor	property

				 				

Specifies	the	color	of	the	header	and	footer	text.

Version	added

2002

Syntax

colorRet	=	object.HeaderFooterColor
object.HeaderFooterColor	=	colorVal
colorRet OLE_COLOR.	The	color	of	the	header	and	footer	text.
object Required.	An	expression	that	returns	a	Document	object.
colorVal Required	OLE_COLOR.	The	new	color	for	the	header	and

footer	text.

Remarks

Valid	values	for	an	OLE_COLOR	property	within	Visio	can	be	one	of	the
following:

Example

&H00bbggrr,	where	bb	is	the	blue	value	between	0	and	0xFF	(255),	gg	the	green
value,	and	rr	the	red	value.

&H800000x,	where	xx	is	a	valid	GetSysColor	index.

For	details	about	the	GetSysColor	function,	search	for	"GetSysColor"	in	the
Microsoft	Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)	Web
site.

The	OLE_COLOR	data	type	is	used	for	properties	that	return	colors.	When	a
property	is	declared	as	OLE_COLOR,	the	Properties	window	will	display	a
color-picker	dialog	box	that	allows	the	user	to	select	the	color	for	the	property
visually,	rather	than	having	to	remember	the	numeric	equivalent.

You	can	also	set	this	value	in	the	Color	box	in	the	Choose	Font	dialog	box	(on
the	View	menu,	click	Header	and	Footer,	and	then	click	Choose	Font).

Example

The	following	macro	is	used	to	assign	the	color	blue	to	text	in	the	header	and
footer.

Sub	SetHeaderFooterColor()
				'Set	color	of	the	header	of	this
				'document	to	blue
				ThisDocument.HeaderFooterColor	=	&H00FF0000
End	Sub

After	running	this	macro,	the	header	text	will	display	blue	text.

http://msdn.microsoft.com

HeaderFooterFont	property

				 				

Specifies	the	font	used	for	the	header	and	footer	text.

Version	added

2002

Syntax

fontRet	=	object.HeaderFooterFont
object.HeaderFooterFont	=	fontVal
fontRet An	IFontDisp	object	that	represents	the	font	of	the	header	and

footer	text.
object Required.	An	expression	that	returns	a	Document	object.
fontVal Required	IFontDisp.	An	IFontDisp	object	representing	the

new	font	for	the	header	and	footer	text.

Remarks

COM	provides	a	standard	implementation	of	a	font	object	with	the	IFontDisp

Example

interface	on	top	of	the	underlying	system	font	support.	The	IFontDisp	interface
exposes	a	font	object's	properties	and	is	implemented	in	the	stdole	type	library	as
a	StdFont	object	that	can	be	created	in	Microsoft	Visual	Basic.	The	stdole	type
library	is	automatically	referenced	from	all	Visual	Basic	for	Applications	(VBA)
projects	in	Visio.

To	get	information	about	the	StdFont	object	that	supports	the	IFontDisp
interface:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	stdole.

Under	Classes,	examine	the	class	named	StdFont.

For	details	about	the	IFontDisp	interface,	see	the	Microsoft	Platform	SDK	on
the	Microsoft	Developer	Network	(MSDN)	Web	site.

This	is	the	equivalent	of	setting	values	in	the	Font	box	in	the	Choose	Font
dialog	box	(on	the	View	menu,	click	Header	and	Footer,	and	then	click
Choose	Font).

Example

The	following	sample	code	illustrates	getting	a	reference	to	the	current	Font
object	and	changing	two	of	its	attributes,	its	name	and	boldness.

Public	Sub	SetHeaderFooterFontNonBoldArial()
				Dim	oStdFont	As	StdFont
				Set	oStdFont	=	ThisDocument.HeaderFooterFont
				oStdFont.Name	=	"Arial"
				oStdFont.Bold	=	False
				Set	ThisDocument.HeaderFooterFont	=	oStdFont
End	Sub

http://msdn.microsoft.com

After	running	this	macro,	the	header	and	footer	text	are	displayed	in	no-bold,
Arial.

HeaderLeft	property

				 				

Contains	the	text	string	that	appears	in	the	left	portion	of	a	document's	header.

Version	added

2002

Syntax

strRet	=	object.HeaderLeft
object.HeaderLeft	=	stringExpression
strRet String.	The	text	in	the	left	portion	of	the	header.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	left	portion	of	the	header.

Remarks

You	can	also	set	this	value	in	the	Left	box	under	Header	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.	For	a	list	of	valid
escape	codes	you	can	use	with	the	HeaderLeft	property,	see	the	FooterLeft
property

Example

The	following	macro	is	used	to	place	a	string	containing	the	current	date	into	the
left	portion	of	a	document's	header.

Sub	SetHeaderLeft()
				Dim	szHeader	as	String
				'Build	header	string	
				szHeader	=	"The	Date	is	"	&	"&D"
				'Set	header	of	current	document
				ThisDocument.HeaderLeft	=	szHeader
End	Sub

If	the	date	was	May	4,	2002,	the	left	portion	of	the	header	contains	"The	Date	is
Thursday,	May	4,	2002"	after	running	this	macro.

HeaderMargin	property

				 				

Gets	or	sets	the	margin	of	a	document's	header.

Version	added

2002

Syntax

retVal	=	object.HeaderMargin	([unitsNameOrCode])
object.HeaderMargin	([unitsNameOrCode])	=	newVal
retVal Double.	The	margin	size.
object Required.	An	expression	that	returns	a	Document	object.
unitsNameOrCodeOptional	Variant.	The	units	to	use	when	retrieving	or	setting

the	cell's	value.	Defaults	to	internal	drawing	units	(inches).
newVal Required	Double.	The	new	margin	size.

Remarks

You	can	also	set	this	value	in	the	Margin	box	under	Header	in	the	Header	and

Example

Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

HeaderRight	property

				 				

Contains	the	text	string	that	appears	in	the	right	portion	of	a	document's	header.

Version	added

2002

Syntax

strRet	=	object.HeaderRight
object.HeaderRight	=	stringExpression
strRet String.	The	text	in	the	right	portion	of	the	header.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	New	text	for	the	right	portion	of	the	header.

Remarks

You	can	also	set	this	value	in	the	Right	box	under	Header	in	the	Header	and
Footer	dialog	box	(on	the	View	menu,	click	Header	and	Footer).

Example

Both	strRet	and	strExpression	can	contain	escape	codes	that	represent	data.
These	escape	codes	can	be	concatenated	with	other	text.	For	a	list	of	valid
escape	codes	you	can	use	with	the	HeaderRight	property,	see	the	FooterLeft
property.

Height	property

				 				

Gets	the	height	of	a	menu	set	or	toolbar.

Version	added

2000

Syntax

intRet	=	object.Height
intRet Integer.	The	height.
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object	for	which	you	want	to	get	the	height.

Remarks

If	the	object	is	docked	or	protected	from	resizing,	the	application	returns	an
error.

Example

Help	property

			 				

Gets	or	sets	the	help	string	for	a	shape.

Version	added

3.0

Syntax

strRet	=	object.Help
object.Help	=	strExpression
strRet String.	The	current	help	string.
object Required.	An	expression	that	returns	a	Shape	object.
strExpression Required	String.	The	new	help	string.

Remarks

Using	the	Help	property	is	equivalent	to	entering	a	value	in	the	Help	box	for	a
shape	in	the	Special	dialog	box	(click	Special	on	the	Format	menu).	The	limit
for	a	help	string	is	127	characters.

See	also Example

HelpContextID	property

				 				

Gets	or	sets	the	help	context	ID	to	be	used	by	a	menu	or	toolbar	item.

Version	added

4.0

Syntax

object.HelpContextID	=	intVal
intVal	=	object.HelpContextID
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object	that	has	or	gets	the	context	ID.
intVal Integer.	The	context	ID	of	a	topic	in	a	help	file.

Remarks

For	Visio	commands,	the	HelpContextID	property	is	usually	the	same	value	as
the	CmdNum	property,	which	contains	the	command	ID.	Command	IDs	are
declared	by	the	Visio	type	library	and	have	the	prefix	visCmd.

Example

By	default,	the	value	of	the	HelpContextID	property	is	zero	(0),	which	displays
the	Contents	topic	of	the	help	file	indicated	by	the	HelpFile	property.

If	the	value	of	the	HelpContextID	property	is	zero	and	the	object's	CmdNum
property	is	set	to	one	of	the	Visio	command	IDs,	it	uses	the	default	help	context
ID	from	the	built-in	Visio	user	interface.

HelpFile	property

				 				

Gets	or	sets	the	help	file	to	be	used	by	a	menu	or	toolbar	item.

Version	added

4.0

Syntax

object.HelpFile	=	fileStr
fileStr	=	object.HelpFile
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object	that	has	or	gets	the	help	file.
fileStr Required	String.	The	name	of	the	help	file.

Remarks

If	you	provide	a	fully	qualified	path	along	with	the	name	of	the	help	file,	the
application	searches	the	folders	specified	in	the	HelpPaths	property	of	the
Application	object.

Example

If	HelpFile	is	null	and	the	object's	CmdNum	property	is	set	to	one	of	the	Visio
command	IDs,	your	program	uses	the	default	help	file	from	the	built-in	Visio
user	interface.

Note	Set	the	HelpContextID	property	of	the	object	to	display	a	particular	topic
within	a	help	file.

HelpPaths	property

					 					

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	help	files.

Version	added

4.0

Syntax

strRet	=	object.HelpPaths
object.HelpPaths	=	pathsStr
strRet String.	A	text	string	containing	a	list	of	folders	where	Visio

looks	for	help	files.	Individual	items	are	separated	by
semicolons.

object Required.	An	expression	that	returns	an	Application	object.
pathsStr Required	String.	A	text	string	containing	a	list	of	folders;	to

indicate	more	than	one	folder,	separate	individual	items	in	the
path	string	with	semicolons.

Remarks

The	string	passed	to	and	received	from	the	HelpPaths	property	is	the	same
string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu).	This	string	is	stored	in
HKEY_CURRENT_USER\Software\Microsoft\Visio\application\HelpPath.

When	the	application	looks	for	help	files,	it	looks	in	all	paths	named	in	the
HelpPaths	property	and	all	the	subfolders	of	those	paths.	If	you	pass	the
HelpPaths	property	to	the	EnumDirectories	method,	it	returns	a	complete	list
of	fully	qualified	paths	in	which	Visio	looks.

If	a	path	is	not	fully	qualified,	the	application	looks	for	the	folder	in	the	folder
that	contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the	Visio
executable	file	is	installed	in	c:\Visio,	and	the	HelpPaths	property	is
"Help;d:\Help",	the	Visio	application	looks	for	help	files	in	both	c:\Visio\Help
and	d:\Help.

Hidden	property

			 				

Hides	a	master	on	a	stencil	or	a	style	in	the	user	interface.

Version	added

2000

Syntax

intRet	=	object.Hidden
object.Hidden	=	intExpression
intRet Integer.	True	(-1)	if	the	object	is	hidden;	otherwise	False	(0).
object Required.	An	expression	that	returns	a	Master	or	Style	object

that	is	hidden.
intExpression Required	Integer.	True	(-1)	to	hide	the	object;	otherwise	False

(0).

Remarks

A	master	that	is	hidden	still	appears	in	the	Drawing	Explorer.

See	also Example

HitTest	property

				 				

Determines	if	a	given	x,y	position	hits	outside,	inside,	or	on	the	boundary	of	a
shape.

Version	added

4.5

Syntax

intRet	=	object.HitTest(x,	y,	tolerance)
intRet Integer.	Any	combination	of	the	values	of	the	constants

prefixed	by	visHit.	See	Remarks.
object Required.	An	expression	that	returns	a	Shape	object.
x Required	Double.	The	x-coordinate	to	be	tested	for	a	hit.
y Required	Double.	The	y-coordinate	to	be	tested	for	a	hit.
tolerance Required	Double.	How	close	x,y	must	be	to	a	shape	for	a	hit	to

occur.

Remarks

Example

The	HitTest	property	considers	only	visible	geometry,	and	ignores	hidden
geometry.

Use	internal	drawing	units	(inches	in	the	drawing)	for	the	x,	y,	and	tolerance
values.	These	values	should	also	be	in,	and	with	respect	to,	the	coordinate	space
of	the	page,	master,	or	group	shape	that	contains	the	shape	being	hit	tested.

The	following	are	possible	values	of	intRet,	and	are	declared	by	the	Visio	type
library	in	VisHitTestResults.

Constant Value
visHitOutside 0
visHitOnBoundary 1
visHitInside 2

hwnd	property

				 				

Gets	or	sets	the	HWND	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

retVal	=	object.hwnd

object.hwnd	=	newVal
retVal Long.	A	handle	to	the	window	that	fired	the

OnKeystrokeMessageForAddon	event.
object Required.	An	expression	that	returns	a	MSGWrap	object.
newVal Required	Long.	The	new	window	handle.

Remarks

The	properties	of	the	MSGWrap	object	correspond	to	the	fields	in	the	MSG

Example

structure	defined	as	part	of	the	Microsoft	Windows	operating	system.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

http://msdn.microsoft.com

Hyperlink	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	a	Hyperlink	object	that	represented	a
shape's	hyperlink.

See	also Example Applies	to

HyperlinkBase	property

				 				

Gets	or	sets	the	value	of	the	Hyperlink	base	field	in	a	Document	object's
properties.

Version	added

5.0

Syntax

strRet	=	object.HyperlinkBase
object.HyperlinkBase	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	HyperlinkBase	property	is	equivalent	to	entering	information	in	the
Hyperlink	base	box	in	the	Properties	dialog	box	(click	Properties	on	the	File

Example

menu).

Hyperlinks	property

			 				

Returns	the	Hyperlinks	collection	for	a	Shape	object.

Version	added

2000

Syntax

objsRet	=	object.Hyperlinks
objsRet The	Hyperlinks	collection	for	a	Shape	object.
object Required.	An	expression	that	returns	a	Shape	object.

See	also Example

Icon	property

				 				

Returns	the	icon	contained	in	a	master,	master	shortcut,	or	window.

Version	Added

2002

Syntax

objRet	=	object.Icon

object.Icon	=	objVal
objRet An	IPictureDisp	object	that	represents	an	icon.
object Required.	An	expression	that	returns	a	Master,

MasterShortcut,	or	Window	object.
objVal An	IPictureDisp	object	that	represents	a	new	icon.

Remarks

The	Icon	property	returns	and	accepts	only	HICON	files.	Visio	raises	an

Example

exception	if	objExpression	contains	a	non-HICON	file.

COM	provides	a	standard	implementation	of	a	picture	object	with	the
IPictureDisp	interface	on	top	of	the	underlying	system	picture	support.	The
IPictureDisp	interface	exposes	a	picture	object's	properties	and	is	implemented
in	the	stdole	type	library	as	a	StdPicture	object	creatable	within	Microsoft
Visual	Basic.	The	stdole	type	library	is	automatically	referenced	from	all	Visual
Basic	for	Application	projects	in	Visio.

To	get	information	about	the	StdPicture	object	that	supports	the	IPictureDisp
interface:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	stdole.

Under	Classes,	examine	the	class	named	StdPicture.

For	details	about	the	IPictureDisp	interface,	see	the	Microsoft	Platform	SDK	on
the	Microsoft	Developer	Network	(MSDN)	Web	site.

Currently,	only	in-proc	solutions	can	use	the	Icon	property	because	the
IPictureDisp	interface	cannot	be	marshaled.

http://msdn.microsoft.com

IconSize	property

				 				

Gets	or	sets	the	size	of	a	master	icon.

Version	added

2.0

Syntax

intRet	=	object.IconSize

object.IconSize	=	newSize
intRet The	current	size	of	the	master	icon.
object Required.	An	expression	that	returns	a	Master	or

MasterShortcut	object.
newSize The	new	size	for	the	master	icon.

Remarks

The	following	constants	declared	by	the	Visio	type	library	show	the	possible

Example

values	for	the	IconSize	property.

Constant Value
visNormal 1
visTall 2
visWide 3
visDouble 4

IconUpdate	property

				 				

Determines	whether	a	master	icon	is	updated	manually	or	automatically.

Version	added

2.0

Syntax

intRet	=	object.IconUpdate

object.IconUpdate	=	updateMode
intRet The	current	update	mode	for	the	master	icon.
object Required.	An	expression	that	returns	a	Master	object.
updateMode The	new	update	mode	for	the	master	icon.

Remarks

The	following	constants	declared	by	the	Visio	type	library	show	the	possible
values	for	the	IconUpdate	property.

Example

Constant Value
visManual 0
visAutomatic 1

ID	property

				 				

Gets	the	ID	of	an	object.

Version	added

4.0

Syntax

intVal	=	object.ID
intVal Long.	The	ID	of	the	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

The	ID	of	a	shape	is	unique	only	within	the	scope	of	the	page	or	master.	The	ID
of	a	page,	master,	or	style	is	unique	within	the	scope	of	the	document.

If	a	shape,	page,	master,	or	style	is	deleted,	future	objects	in	the	same	scope	may
be	assigned	the	same	ID.	Therefore	persisting	shape	or	style	IDs	in	separate	data

Example

stores	is	generally	not	as	sound	as	persisting	unique	IDs	using	the	UniqueID
property.

For	Shape	objects,	you	can	use	the	ID	property	with	methods	such	as
GetResults	and	PutResults	to	get	or	set	many	cell	values	at	once,	possibly	cells
in	many	different	shapes.	To	do	this,	you	need	to	pass	shape	IDs	to	the	methods.
If	you	create	shapes	using	the	DropMany	method,	the	method	returns	the	IDs	of
the	shapes	it	creates	to	your	program.

For	Font	objects,	the	ID	property	corresponds	to	the	number	stored	in	the	Font
cell	of	the	row	in	a	shape's	Character	Properties	section.	For	example,	to	apply
the	font	named	"Arial"	to	a	shape's	text,	create	a	Font	object	representing
"Arial"	and	get	the	ID	of	that	font,	then	set	the	CharProps	property	of	the
Shape	object	to	that	ID.

The	ID	associated	with	a	particular	font	varies	from	system	to	system	or	as	fonts
are	installed	and	removed	on	a	given	system.

For	Window	objects,	the	ID	property	can	be	used	with	the	ItemFromID
property	of	a	Windows	collection	to	retrieve	a	Window	object	from	a	Windows
collection	without	iterating	through	the	collection.	A	Window	object	with	a
Type	property	of	visAnchorBarBuiltIn	returns	an	ID	of	visWinIDCustProp,
visWinIDDrawingExplorer,	visWinIDPanZoom,	or	visWinIDSizePos.	A
Window	object	with	a	Type	property	of	visAnchorBarAddon	returns	an	ID	that
is	unique	within	its	Windows	collection	for	the	lifetime	of	that	collection.	If	a
Window	object	has	an	ID	of	visInvalWinID,	you	cannot	retrieve	the	Window
object	from	its	collection	using	the	ItemFromID	property.

For	Event	objects,	the	ID	property	uniquely	identifies	an	Event	object	in	its
EventList	collection.	As	long	as	a	reference	is	held	on	an	EventList	collection,
or	on	the	source	object	of	an	EventList	collection,	you	can	cache	the	ID
property	of	any	Event	object	in	the	list.	Even	if	other	events	are	added	to	or
removed	from	the	list,	the	cached	ID	can	be	used	later	to	identify	the	original
event.	If	an	event	is	persistent,	its	ID	can	be	cached	indefinitely.	While	the	event
with	that	ID	might	be	removed,	no	new	Event	object	in	the	same	EventList
collection	is	given	the	same	ID.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1247.htm

IncludesFill	property

				 				

Indicates	whether	the	style	includes	fill	attributes.

Version	added

4.0

Syntax

intRet	=	object.IncludesFill
object.IncludesFill	=	intExpression
intRet Integer.	False	(0)	if	the	object	doesn't	define	fill	attributes;

True	(-1)	if	it	does.
object Required.	An	expression	that	returns	a	Style	object.
intExpression Required	Integer.	False	(0)	to	disable	fill	attributes;	True	(non-

zero)	to	enable	them.

Remarks

The	IncludesFill	property	corresponds	to	the	Fill	check	box	under	Includes	in

Example

the	Define	Styles	dialog	box	(click	Define	Styles	on	the	Format	menu).

IncludesLine	property

				 				

Indicates	whether	the	style	includes	line	attributes.

Version	added

4.0

Syntax

intRet	=	object.IncludesLine
object.IncludesLine	=	intExpression
intRet Integer.	False	(0)	if	the	object	doesn't	define	line	attributes;

True	(-1)	if	it	does.
object Required.	An	expression	that	returns	a	Style	object.
intExpression Required	Integer.	False	(0)	to	disable	line	attributes;	True

(non-zero)	to	enable	them.

Remarks

The	IncludesLine	property	corresponds	to	the	Line	check	box	under	Includes

Example

in	the	Define	Styles	dialog	box	(click	Define	Styles	on	the	Format	menu).

IncludesText	property

				 				

Indicates	whether	the	style	includes	text	attributes.

Version	added

4.0

Syntax

intRet	=	object.IncludesText
object.IncludesText	=	intExpression
intRet Integer.	False	(0)	if	the	object	doesn't	define	text	attributes;

True	(-1)	if	it	does.
object Required.	An	expression	that	returns	a	Style	object.
intExpression Required	Integer.	False	(0)	to	disable	text	attributes;	True

(non-zero)	to	enable	them.

Remarks

The	IncludesText	property	corresponds	to	the	Text	check	box	under	Includes	in

Example

the	Define	Styles	dialog	box	(click	Define	Styles	on	the	Format	menu).

Index	property

				 				

Gets	the	ordinal	position	of	an	object	in	a	collection.

Version	added

2.0

Syntax

intRet	=	object.Index
intRet Integer	or	Long.	The	index	of	the	object	within	its	collection.

See	Remarks	for	return	data	type	information.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

Object Return	data	type
Addon,	Document,	Event,	Font,
Layer,	Master,	MasterShortcut,	Row,
Section,	Window

Integer

Example

Color,	Connect,	Menu,	MenuItem,
Shape,	Style,	Toolbar,	ToolbarItem

Long

Most	collections	are	indexed	starting	with	1	rather	than	zero	(0),	so	the	index	of
the	first	element	is	1,	the	index	of	the	second	element	is	2,	and	so	forth.	The
index	of	the	last	element	in	a	collection	is	the	same	as	the	value	of	that
collection's	Count	property.	You	can	iterate	through	a	collection	by	using	these
index	values.	Adding	objects	to	or	deleting	objects	from	a	collection	can	change
the	index	values	of	other	objects	in	the	collection.

There	are	some	exceptions.	The	Color	collection	is	indexed	starting	with	0.	This
is	consistent	with	the	numbering	displayed	next	to	the	colors	that	appear	in	the
Color	Palette	dialog	box	(click	Color	Palette	on	the	Tools	menu).

These	collections	are	also	indexed	starting	with	0:	AccelItems,	AccelTables,
MenuSets,	MenuItems,	Menus,	ToolbarItems,	Toolbars,	and	ToolbarSets.

Index	property	(Page	object)

				 				

Gets	or	sets	the	ordinal	position	of	a	page	in	a	Pages	collection.

Version	added

2002

Syntax

intRet	=	object.Index
object.Index	=	intExpression
intRet Integer.	The	index	of	the	page	within	its	collection.
object Required.	An	expression	that	returns	a	Page	object.
intExpression Required	Integer.	The	new	index	of	a	page	within	its

collection.

Remarks

The	Pages	collection	is	indexed	starting	with	1	rather	than	zero	(0),	so	the	index
of	the	first	element	is	1,	the	index	of	the	second	element	is	2,	and	so	on.	The

Example

index	of	the	last	element	in	a	collection	is	the	same	as	the	value	of	that
collection's	Count	property.	You	can	iterate	through	a	collection	by	using	these
index	values.	Adding	objects	to	or	deleting	objects	from	a	collection	can	change
the	index	values	of	other	objects	in	the	collection.

You	may	only	assign	a	new	index	to	a	foreground	page.	Background	pages	are
unordered.	Use	the	Background	property	to	determine	if	a	given	page	is	a
background	page.

Use	the	BackPage	property	to	assign	a	background	page	to	a	foreground	page	or
to	another	background	page.

IndexInStencil	property

			 				

Contains	the	index	of	a	master	or	master	shortcut	object	within	its	stencil.

Version	added

2000

Syntax

intRet	=	object.IndexInStencil
object.IndexInStencil	=	intExpression
intRet Integer.	The	index	of	the	object	within	its	stencil.
object Required.	An	expression	that	returns	a	Master	or

MasterShortcut	object.
intExpression Required	Integer.	The	new	index	of	the	object	within	its

stencil.

Remarks

Beginning	with	Visio	2000,	the	document	stencil	window	shows	all	Master	and
MasterShortcut	objects	in	a	Visio	document.	The	Visio	object	model	exposes
the	Master	and	MasterShortcut	objects	in	a	Document	object	as	two	distinct
collections.	The	index	returned	by	a	Master	object	is	its	index	with	respect	to
other	Master	objects	in	its	Document	object	and	is	unrelated	to	the	presence	or
absence	of	MasterShortcut	objects	in	the	document.	The	index	returned	by	a
MasterShortcut	object	is	its	index	with	respect	to	other	MasterShortcut
objects	in	its	Document	object	and	is	unrelated	to	the	presence	or	absence	of

See	also Example

Master	objects	in	the	document.

Use	the	IndexInStencil	property	to	maintain	the	relative	order	of	Master	and
MasterShortcut	objects	when	considered	as	a	single	collection.

InheritedFormulaSource	property

				 				

Returns	the	cell	from	which	this	cell	inherited	its	formula.

Version	added

2002

Syntax

objRet	=	object.InheritedFormulaSource
objRet The	Cell	object	that	contains	the	formula	that	object	inherited.
object The	Cell	object	that	contains	the	formula.

Remarks

If	the	formula	in	thisCell	is	a	local	formula,	then	the	InheritedFormulaSource
property	returns	itself.

Example

InheritedValueSource	property

				 				

Returns	the	cell	from	which	this	cell	inherited	its	value.

Version	added

2002

Syntax

objRet	=	object.InheritedValueSource
objRet The	Cell	object	that	contains	the	value	which	object	inherited.
object The	Cell	object	that	contains	the	value.

Remarks

If	the	value	in	object	is	a	local	value,	then	the	InheritedValueSource	property
returns	itself.

Example

InhibitSelectChange	property

			 				

Determines	whether	shapes	are	selected	in	the	drawing	window.

Version	added

2002

Syntax

boolRet	=	object.InhibitSelectChange
object.InhibitSelectChange	=	boolExpression
boolRet Boolean.	True	if	shapes	are	not	selected;	otherwise,	False.
object Required.	An	expression	that	returns	an	Application	object.
boolExpression Required	Boolean.	True	to	not	select	shapes;	otherwise,	False.

Remarks

Use	the	InhibitSelectChange	property	to	control	shape	selection	and	increase
performance	when	dropping	a	series	of	shapes	in	the	drawing	window.	When	the
InhibitSelectChange	property	is	True,	Visio	does	not	select	any	shapes	after
they	are	dropped.	Your	solution,	however,	can	select	shapes.

Additionally,	Visio	attempts	to	preserve	currently	selected	shapes	whenever
possible,	unless	shapes	are	deselected	by	the	solution.

If	a	program	neglects	to	turn	the	InhibitSelectChange	property	off	(False)	after
turning	it	on,	the	Visio	instance	will	turn	it	back	off	when	the	user	performs	an

See	also Example

operation.

InPlace	property

			 				

Specifies	whether	a	window	is	open	in-place,	or	whether	a	document	is	being
viewed	through	a	window	that	is	open	in-place.

Version	added

2002

Syntax

intRet	=	object.InPlace
intRet Integer.	True	(-1)	if	a	window	or	document	in	a	window	is

open	in-place;	otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Document	or	Window

object.

Remarks

When	the	value	of	the	InPlace	property	is	True	for	a	Window	object,	it	means
that	the	window	is	an	in-place	active	window.	It	contains	a	document	that	is
being	edited	in	an	OLE	container	application.

When	the	value	of	the	InPlace	property	is	True	for	a	Document	object,	it	means
that	the	document	is	open	in	an	in-place	editing	window	in	an	OLE	container
application.

See	also Example

InstanceHandle32	property

				 				

Gets	the	instance	handle	of	the	Application	object	for	a	32-bit	version	of
Microsoft	Visio.

Version	added

4.0

Syntax

longRet	=	object.InstanceHandle32
longRet Long.	The	instance	handle	of	the	object	(a	4-byte	value).
object Required.	An	expression	that	returns	an	Application	object.

Remarks

Calls	to	the	InstanceHandle	property	are	directed	to	the	InstanceHandle32
property.

Example

IsChanged	property

			 				

Determines	whether	a	master	has	changed	since	it	was	opened.

Version	added

2002

Syntax

boolRet	=	object.IsChanged
boolRet Boolean.	True	if	the	master	has	changed	since	it	was	opened;

otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Master	object.

See	also Example

IsConstant	property

				 				

Determines	whether	a	formula	of	the	cell	is	a	constant	expression.

Version	added

4.0

Syntax

intRet	=	object.IsConstant
intRet Integer.	True	(-1)	if	the	object's	formula	is	a	constant;

otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Cell	object.

Example

IsDefaultLink	property

			 				

Determines	the	default	Hyperlink	object	for	a	shape.

Version	added

2000

Syntax

boolVal	=	object.IsDefaultLink
object.IsDefaultLink	=	boolExpression

boolVal Boolean.	True	if	the	Hyperlink	object	is	the	default;	False	if	it
isn't	the	default.

object Required.	An	expression	that	returns	a	Hyperlink	object.

boolExpression Required	Boolean.	True	to	set	the	Hyperlink	object	as	the
default;	otherwise,	False.

Remarks

When	you	set	the	value	of	the	IsDefaultLink	property	to	True	for	a	Hyperlink
object,	the	value	for	all	other	Hyperlink	objects	is	automatically	set	to	False.
When	you	set	the	value	of	this	property	to	False	for	a	Hyperlink	object,	the
other	Hyperlink	objects	aren't	affected.

See	also Example

IsEditingOLE	property

			 				

Determines	whether	a	drawing	window	contains	an	ActiveX	control	that	has
focus,	or	an	embedded	or	linked	object	that	is	being	edited.

Version	added

2000

Syntax

boolRet	=	object.IsEditingOLE
boolRet Required	Boolean.	True	if	an	ActiveX	control	has	focus	or	an

OLE	object	is	being	edited;	False	if	not,	or	if	the	window	being
examined	is	not	a	drawing	window.

object Required.	An	expression	that	returns	a	Window	object.

See	also Example

IsEditingText	property

				 				

Determines	whether	a	text	editing	session	is	active	in	the	drawing	window.

Version	added

2000

Syntax

boolRet	=	object.IsEditingText
boolRet Required	Boolean.	True	if	a	text	editing	session	is	active;

False	if	a	text	editing	session	is	not	active	or	the	window	being
examined	is	not	a	drawing	window.

object Required.	An	expression	that	returns	a	Window	object.

Example

IsField	property

				 				

Determines	whether	a	Characters	object	represents	the	expanded	text	of	a
single	field	with	no	additional	non-field	characters.

Version	added

3.0

Syntax

intRet	=	object.IsField
intRet Integer.	True	(-1)	if	the	Characters	object	represents	only	the

expanded	text	of	a	field;	otherwise,	False	(0)	if	the	Characters
object	contains	characters	in	addition	to	the	expanded	text	of	a
field.

object Required.	An	expression	that	returns	a	Characters	object.

Remarks

To	change	the	range	of	text	represented	by	a	Character	object,	set	its	Begin	and
End	properties.

Example

IsHierarchical	property

					 					

Indicates	whether	a	menu,	menu	item,	or	toolbar	item	is	hierarchical,	that	is,	it
contains	a	drop-down	menu	containing	more	items,	which	can	be	accessed
through	its	own	MenuItems	or	ToolbarItems	collection	menu.

Version	added

4.0

Syntax

intRet	=	object.IsHierarchical
intRet Integer.	True	(-1)	if	the	object	represents	a	hierarchical	menu,

menu	item,	or	toolbar	item;	otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object.

Remarks

The	value	of	the	CmdNum	property	of	a	MenuItem	object	that	represents	a
hierarchical	menu	should	be	zero	(0).

IsInherited	property

				 				

Determines	whether	a	formula	of	the	cell	is	inherited	from	a	master	or	a	style.

Version	added

4.0

Syntax

intRet	=	object.IsInherited
intRet Integer.	True	(-1)	if	the	object's	formula	is	inherited;

otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

In	the	ShapeSheet	window,	the	values	and	formulas	of	cells	with	local	values
appear	in	blue.	Values	and	formulas	of	cells	that	inherit	from	a	master	or	style
appear	in	black.

Example

IsInScope	property

					 					

Determines	whether	a	call	to	an	event	handler	is	between	an	EnterScope	event
and	an	ExitScope	event	for	a	scope.

Version	added

2000

Syntax

boolVal	=	object.IsInScope	(nScopeID)
boolVal Boolean.	True	if	an	EnterScope	event	has	fired	for	the	scope

ID,	but	an	ExitScope	event	hasn't	fired	yet;	False	if	an
EnterScope	event	hasn't	fired	or	EnterScope	and	ExitScope
events	have	both	fired.

object Required.	An	expression	that	returns	an	Application	object.
nScopeID Required	Long.	The	scope	ID.

Remarks

Constants	representing	scope	IDs	are	prefixed	with	visCmd	and	are	declared	by

the	Visio	type	library.	You	can	also	use	an	ID	returned	by	the	BeginUndoScope
method.

You	could	use	this	property	in	a	CellChanged	event	handler	to	determine
whether	a	cell	change	was	the	result	of	a	particular	operation.

IsOpenForTextEdit	property

				 				

Indicates	whether	a	shape	is	currently	open	for	interactive	text	editing.

Version	added

2000

Syntax

boolRet	=	object.IsOpenForTextEdit
boolRet Required	Boolean.	True	if	the	shape	is	open	for	text	editing	in

at	least	one	window;	False	if	the	shape	is	not	open	for	text
editing.

object Required.	An	expression	that	returns	a	Shape	object.

Example

IsSeparator	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	the	IsSeparator	property	represented	a	separator	on	a	menu.

See	also Example Applies	to

IsUndoingOrRedoing	property

					 					

Determines	whether	the	current	event	handler	is	being	called	as	a	result	of	an
Undo	or	Redo	action	in	the	application.

Version	added

2000

Syntax

boolRet	=	object.IsUndoingOrRedoing
boolRet Required	Boolean.	True	(-1)	if	the	application	is	firing	events

related	to	an	Undo	or	Redo	action;	otherwise,	False	(0).
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	IsUndoingOrRedoing	property	returns	True	when	the	application	is	firing
events	related	to	an	Undo	or	Redo	action	that	the	user	has	initiated	through	the
user	interface,	or	which	an	Automation	client	has	initiated	by	calling	the	Undo
or	Redo	method	of	an	Application	object.

When	the	application	calls	an	event	handler,	the	event	has	a	"cause."	If	that
cause	is	a	user	action	or	another	event	handler,	then	it	is	legitimate	to	perform
undoable	actions	during	the	course	of	handling	that	event.	However,	if	the	cause
of	the	event	firing	is	an	Undo	or	Redo	action,	then	the	event	handler	should	not
perform	undoable	actions.	Doing	so	eliminates	the	ability	to	redo	an	action.

You	will	typically	only	perform	undoable	actions	inside	an	event	handler	when
this	property	is	False.	You	can	perform	undoable	actions	when	the	flag	is	True,
but	the	redo	queue	is	destroyed.

Item[U]	property

					 					

Returns	an	object	from	a	collection.	The	Item	property	is	the	default	property	for
all	collections.

Version	added

2.0

Syntax

objRet	=	object.Item(nameUIDOrIndex)
objRet The	object	retrieved	from	the	collection.
object Required.	An	expression	that	returns	a	collection	in	the

Applies	to	list.
nameUIDOrIndex Required	Long,	String,	or	Variant	(see	Remarks	for	details).

Contains	the	name,	unique	ID,	or	index	of	the	object	to
retrieve.

Remarks

The	data	type	for	nameUIDOrIndex	depends	on	the	value	of	object.

Data	type	for
nameUIDOrIndex

Values	of	object

Long AccelItems,	Acceltables,	Colors,	Connects,
MenuItems,	Menu,	Menusets,	Path,	Paths,
Selection,	ToolbarItems,	Toolbars,	and
ToolbarSets

String Eventlist,	Windows
Variant Addons,	Documents,	Fonts,	Hyperlinks,	Layers,

Masters,	MasterShortcuts,	OLEObjects,	Pages,
Shapes,	and	Styles

When	retrieving	objects	from	a	collection,	you	can	omit	Item	from	the
expression	because	it	is	the	default	property	for	all	collections.	The	following
statements	are	equivalent	to	the	syntax	example	given	above:

objRet	=	object(index)
objRet	=	object(stringExpression)

You	can	retrieve	an	object	in	a	Pages,	Documents,	Fonts,	Layers,	Masters,
MasterShortcuts,	Styles,	Shapes,	Addons,	or	OLEObjects	collection	by
passing	the	object's	name	as	a	string	expression	in	a	Variant.

If	you	retrieve	a	Shape	object	by	name,	the	Item	property	searches	all	shapes	in
the	Shapes	collection's	containing	page	or	containing	master,	in	addition	to	the
collection's	containing	shape.	Therefore,	the	Shape	object	returned	by	the	Item
property	can	be	a	shape	that	is	not	in	the	Shapes	collection.

You	can	also	pass	the	unique	ID	string	of	a	Master	or	Shape	object	to	the	Item
property.	For	example:

objRet	=	shpsObj.Item("{2287DC42-B167-11CE-88E9-0020AFDDD917}")

If	such	a	string	is	passed	to	the	Item	property	of	a	Shapes	collection,	all	the
shapes	contained	in	the	collection	are	searched.	Shapes	within	the	group	shapes
in	the	containing	shape	are	not	searched.

To	search	all	shapes	in	the	collection,	plus	the	shapes	inside	groups	and	the
containing	shape	of	the	collection,	prefix	the	unique	ID	string	with	"*".	For

example:

objRet	=	shpsObj.Item("*{2287DC42-B167-11CE-88E9-0020AFDDD917}")	

Note	In	Visio	2000	only,	shpsObj.Item("{guid}")	examined	the	Shapes
collection's	containing	shape	and	all	descendants,	and	shpsObj.Item("*{guid}")
examined	all	shapes	in	the	Shapes	collection's	containing	page	or	containing
master.

Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,	pages,
rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a	shape,
for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not	visible
through	the	user	interface.	As	a	developer,	you	can	use	universal	names	in	a
program	when	you	don't	want	to	change	a	name	each	time	a	solution	is	localized.
Use	the	Item	property	to	access	an	object	in	the	Masters,	Pages,	Shapes,
Styles,	Layers,	or	MasterShortcuts	collection	using	its	local	name.	Use	the
ItemU	property	to	access	an	object	from	one	of	these	collections	using	the
object's	universal	name.

ItemAtID	property

					 					

Returns	the	AccelTable,	MenuSet,	or	ToolbarSet	object	for	an	ID	within	a
collection.

Version	added

4.0

Syntax

objRet	=	object.ItemAtID(id)
objRet The	object	retrieved	from	the	collection.
object Required.	An	expression	that	returns	an	AccelTables,

MenuSets,	or	ToolbarSets	collection.
id Required	Long.	The	Visio	context	ID	of	the	object	to	retrieve.

Remarks

The	ID	corresponds	to	a	window	or	context	menu.	Constants	for	IDs	are	prefixed
with	visUIObjSet	and	are	declared	by	the	Visio	type	library.	For	a	list	of	valid
IDs	by	collection,	see	the	SetID	property.

ItemFromID	property

				 				

Returns	an	item	of	a	collection	using	the	ID	of	the	item.

Version	added

4.0

Syntax

objRet	=	object.ItemFromID(id)
objRet The	object	retrieved	from	the	collection.
object Required.	An	expression	that	returns	a	collection	from	the

Applies	to	list.
id Required	Long.	The	ID	of	the	object	to	retrieve.

Remarks

The	ID	of	a	Shape	object	uniquely	identifies	the	shape	within	its	page	or	master.

The	ID	of	a	Style	object	uniquely	identifies	the	style	within	its	document.

Example

The	ID	of	a	Font	object	corresponds	to	the	number	stored	in	the	Font	cell	of	a
row	in	a	shape's	Character	Properties	section.	The	ID	associated	with	a	particular
font	varies	between	systems	or	as	fonts	are	installed	on	and	removed	from	a
given	system.

The	ID	of	an	Event	object	uniquely	identifies	an	event	in	its	EventList
collection	for	the	life	of	the	collection.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1247.htm

ItemStatus	property

				 				

Indicates	if	an	item	in	a	Selection	object	is	subselected,	if	the	group	to	which	it
belongs	is	selected,	or	if	it	is	the	primary	item.

Version	added

2000

Syntax

intRet	=	object.ItemStatus(index)
intRet Integer.	Status	of	the	item.
object Required.	An	expression	that	returns	a	Selection	object.
index Required	Long.	Index	of	the	item	for	which	you	want	to

retrieve	the	status.

Remarks

The	ItemStatus	property	reports	a	combination	of	the	following	values.

Constant Value Description

Example

visSelIsPrimaryItem &H1 The	item	is	the	primary	item.
visSelIsSubItem &H2 The	item	is	a	subselected	item.
visSelIsSuperItem &H4 The	item	is	a	superselected	item.

IterationMode	property

				 				

Controls	whether	a	Selection	object	reports	subselected	shapes	and	groups	in
which	a	shape	is	selected.

Version	added

2000

Syntax

intRet	=	object.IterationMode
object.IterationMode	=	intExpression
intRet Long.	Mode	of	the	selection.
object Required.	An	expression	that	returns	a	Selection	object.
intExpression Required	Long.	Bit	mask	indicating	whether	sub-	and	super-

selected	items	should	be	reported.

Remarks

The	items	in	a	Selection	object	are	a	subset	of	the	descendants	of	the	Selection

Example

object's	containing	shape.

A	top-level	shape	in	a	Selection	object	is	an	immediate	child	of	the	selection's
containing	shape.

A	subselected	shape	in	a	Selection	object	is	not	an	immediate	child	of	the
selection's	containing	shape.

A	superselected	shape	in	a	Selection	object	has	at	least	one	immediate	child	that
is	subselected.

If	a	shape	is	subselected,	then	each	of	its	ancestors—except	the	containing	shape
itself—is	superselected.

The	value	of	the	IterationMode	property	is	a	combination	of	the	following
values.

Constant Value Description
visSelModeSkipSuper &H0100 Selection	does	not	report

superselected	shapes.
visSelModeOnlySuper &H0200 Selection	only	reports

superselected	shapes.
visSelModeSkipSub &H0400 Selection	does	not	report

subselected	shapes.
visSelModeOnlySub &H0800 Selection	only	reports

subselected	shapes.

When	a	Selection	object	is	created,	its	initial	iteration	mode	is
visSelModeSkipSub	+	visSelModeSkipSuper.	It	reports	neither	subselected
nor	superselected	shapes	and	behaves	identically	to	Selection	objects	in	versions
of	Visio	prior	to	Visio	2000.

You	can	determine	whether	an	individual	item	in	a	Selection	object	is	a
subselected	or	superselected	item	using	the	ItemStatus	property.

Key	property

				 				

Gets	or	sets	the	ASCII	key	code	value	for	an	accelerator.

Version	added

4.0

Syntax

keyVal	=	object.Key
object.Key	=	keyVal
keyVal Required	Integer.	The	ASCII	value	of	the	key	used	by	the

accelerator.
object Required.	An	expression	that	returns	an	AccelItem	object.

Remarks

For	a	list	of	ASCII	key	code	values,	search	for	"Virtual-Key	Codes"	in	the
Microsoft	Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)	Web
site.

Example

http://msdn.microsoft.com

Keywords	property

					 					

Returns	or	sets	the	value	of	the	Keywords	box	in	a	document's	properties.

Version	added

2.0

Syntax

strRet	=	object.Keywords
object.Keywords	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	Keywords	property	is	equivalent	to	entering	information	in	the
Keywords	box	in	the	Properties	dialog	box	(click	Properties	on	the	File
menu).

Language	property

			 				

Represents	the	language	ID	of	the	version	of	the	Microsoft	Visio	instance
represented	by	the	Application	object.

Version	added

3.0

Syntax

longRet	=	object.Language
longRet Long.	The	language	ID.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	Language	property	returns	the	language	ID	recorded	in	the	object's
VERSIONINFO	resource.	The	IDs	returned	are	the	standard	IDs	used	by
Microsoft	Windows	to	encode	different	language	versions.	For	example,	the
Language	property	returns	&H0409	for	the	U.S.	English	version	of	Visio.	For
details,	search	for	"VERSIONINFO"	in	the	Microsoft	Platform	SDK	on	the
Microsoft	Developer	Network	(MSDN)	Web	site.

See	also Example

http://msdn.microsoft.com

LargeButtons	property

			 				

Determines	whether	large	toolbar	buttons	are	shown.

Version	added

2000

Syntax

boolVal	=	object.LargeButtons
object.LargeButtons	=	boolExpression
boolVal Boolean.	True	(non-zero)	if	large	buttons	are	shown;	False	(0)

if	large	buttons	are	not	shown.
object Required.	An	expression	that	returns	a	UIObject	object.
boolExpression Required	Boolean.	True	(non-zero)	to	show	large	buttons;

False	to	show	small	buttons.

Remarks

You	can	use	any	UIObject	object	to	get	or	set	this	property.	The	property	affects
the	entire	application,	and	affects	the	appearance	of	buttons	in	the	current	visible
set	of	toolbars.

Beginning	with	Microsoft	Visio	2002,	this	setting	corresponds	to	the	Large
icons	check	box	on	the	Options	tab	in	the	Customize	dialog	box	(on	the	Tools
menu,	click	Customize)	and	is	shared	between	Visio	2002	and	all	Microsoft
Office	XP	applications.

See	also Example

Layer	property

					 					

Returns	the	layer	to	which	a	shape	is	assigned.

Version	added

4.0

Syntax

objRet	=	object.Layer(index)
objRet A	Layer	object	that	represents	the	requested	layer.
object Required.	An	expression	that	returns	a	Shape	object.
index Integer.	The	ordinal	of	the	layer	to	get.

Remarks

If	a	shape	is	assigned	to	three	layers,	then	the	valid	indexes	that	can	be	passed	to
its	Layer	property	are	1	through	3.

To	get	the	number	of	layers	to	which	a	shape	is	assigned,	use	the	LayerCount
property.

LayerCount	property

					 					

Returns	the	number	of	layers	to	which	a	shape	is	assigned.

Version	added

4.0

Syntax

intRet	=	object.LayerCount
intRet Integer.	The	number	of	layers	to	which	the	shape	is	assigned.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

A	shape	is	assigned	to	zero	or	more	layers.

Layers	property

				 				

Returns	the	Layers	collection	of	an	object.

Version	added

4.0

Syntax

objRet	=	object.Layers
objRet The	Layers	collection	of	the	Master	or	Page	object.
object Required.	An	expression	that	returns	a	Master	or	Page	object.

Example

Left	property

					 					

Gets	the	distance	between	the	left	edge	of	the	object	and	the	left	side	of	the
docking	area.	Sets	the	distance	between	the	left	edge	of	a	Menu	or	Toolbar
object	and	the	left	edge	of	the	screen.

Version	added

2000

Syntax

intLong	=	object.Left
object.Left	=	intLong
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object.
intLong Required	Integer.	Distance	in	pixels.

Remarks

The	value	of	intLong	must	be	greater	than	or	equal	to	zero.

LeftMargin	property

				 				

Specifies	the	left	margin,	which	is	used	when	printing.

Version	added

4.0

Syntax

retVal	=object.LeftMargin([unitsNameOrCode])
object.LeftMargin([unitsNameOrCode])	=	newValue
retVal Double.	The	margin	value	expressed	in	the	given	units.
object Required.	An	expression	that	returns	a	Document	object.
unitsNameOrCodeOptional	Variant.	The	units	to	use	when	retrieving	or	setting

the	margin	value.	Defaults	to	internal	drawing	units.
newValue Required	Double.	The	new	margin	value.

Remarks

The	LeftMargin	property	corresponds	to	the	Left	setting	in	the	Print	Setup

Example

dialog	box	(on	the	File	menu,	click	Page	Setup,	click	the	Print	Setup	tab,	and
then	click	Setup).

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

Cell.LeftMargin(visInches)	=	newValue

Cell.LeftMargin	(65)	=	newValue

Cell.LeftMargin	("in")	=	newValue	where	"in"	can	also	be	any	of	the	alternate
strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

LengthIU	property

				 				

Returns	the	length	(perimeter)	of	the	object	in	internal	units.

Version	added

4.0

Syntax

retVal	=	object.LengthIU
retVal Double.	The	length	(perimeter)	of	the	object	in	internal	units

(inches).
object Required.	An	expression	that	returns	a	Shape	object.

Example

LineBasedOn	property

				 				

Gets	or	sets	the	line	style	on	which	a	Style	object	is	based.

Version	added

4.0

Syntax

strVal	=	object.LineBasedOn
object.LineBasedOn	=	styleName
strVal String.	The	name	of	the	current	based-on	line	style.
object Required.	An	expression	that	returns	a	Style	object.
styleName Required	String.	The	name	of	the	new	based-on	line	style.

Remarks

To	base	a	style	on	no	style,	set	the	LineBasedOn	property	to	a	zero-length	string
("").

Example

LineStyle	property

					 					

Specifies	the	line	style	for	an	object.

Version	added

2.0

Syntax

strRet	=	object.LineStyle
object.LineStyle	=	stringExpression
strRet String.	The	name	of	the	current	line	style.
object Required.	An	expression	that	returns	a	Shape	or	Selection

object.
stringExpression Required	String.	The	name	of	the	line	style	to	apply.

Remarks

Setting	the	LineStyle	property	is	equivalent	to	selecting	a	line	style	from	the
Line	Style	list	on	the	Format	Shape	toolbar	in	Visio.

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	kind	of	style
to	an	existing	style	of	another	kind	(for	example,	setting	the	LineStyle	property
to	a	fill	style)	does	nothing.	Setting	one	kind	of	style	to	an	existing	style	that	has
more	than	one	set	of	attributes	changes	only	the	attributes	for	that	component.
For	example,	setting	the	LineStyle	property	to	a	style	with	line,	text,	and	fill
attributes	changes	only	the	line	attributes.

To	preserve	a	shape's	local	formatting,	use	the	LineStyleKeepFmt	property.

Beginning	with	Microsoft	Visio	2002,	a	zero-length	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	a	zero-length	string	is	the
equivalent	of	selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill
style	list	in	the	Style	dialog	box	(on	the	Format	menu,	click	Style).

LineStyleKeepFmt	property

				 				

Applies	a	line	style	to	an	object	while	preserving	local	formatting.

Version	added

2.0

Syntax

object.LineStyleKeepFmt	=	stringExpression
object Required.	An	expression	that	returns	a	Shape	or	Selection

object.
stringExpression Required	String.	The	name	of	the	style	to	apply.

Remarks

Setting	the	LineStyleKeepFmt	property	is	equivalent	to	selecting	the	Preserve
local	formatting	check	box	in	the	Style	dialog	box	(click	Style	on	the	Format
menu).

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	kind	of	style

Example

to	an	existing	style	of	another	kind	(for	example,	setting	the	LineStyleKeepFmt
property	to	a	fill	style)	does	nothing.	Setting	one	kind	of	style	to	an	existing	style
that	has	more	than	one	set	of	attributes	changes	only	the	attributes	for	that
component	(for	example,	setting	the	LineStyleKeepFmt	property	to	a	style	with
line,	text,	and	fill	attributes	changes	only	the	line	attributes).

Beginning	with	Microsoft	Visio	2002,	a	zero-length	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	a	zero-length	string	is	the
equivalent	of	selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill
style	list	in	the	Style	dialog	box	(on	the	Format	menu,	click	Style).

LiveDynamics	property

				 				

Controls	whether	Microsoft	Visio	recalculates	shape	properties	during	drag
operations	on	every	mouse	move	or	only	after	the	mouse	button	is	released.

Version	added

2000

Syntax

bLiveDynamics	=	object.LiveDynamics
object.LiveDynamics	=	bLiveDynamics
bLiveDynamics Required	Boolean.	True	if	live	dynamics	is	enabled;	False	if

live	dynamics	is	not	enabled.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	LiveDynamics	property	tracks	actions,	such	as	resizing	and	rotating	shapes,
and	is	effective	when	shapes	are	glued	or	related	to	each	other.	When	the	value

Example

of	the	LiveDynamics	property	is	True,	more	events	such	as	CellChanged	occur.
Solutions	that	respond	to	such	events	may	operate	more	quickly	if	the
LiveDynamics	property	is	set	to	False.

LocalName	property

				 				

Returns	the	local	name	of	a	cell.

Version	added

4.0

Syntax

strRet	=	object.LocalName
strRet String.	The	local	name	of	the	cell.
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

A	cell	has	both	a	local	name	and	a	universal	name.	The	local	name	differs
according	to	the	locale	for	which	Microsoft	Windows	is	installed	on	the	user's
system.	The	universal	name	is	the	same	regardless	of	locale.

To	get	the	universal	name	of	a	cell,	use	the	Name	property.

Example

lParam	property

			 				

Gets	or	sets	the	lParam	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

intRet	=	object.lParam
object.lParam=	intValue
intRet Long.	Additional	information	about	the	message	that	is

dependent	on	the	message	number.
object Required.	An	expression	that	returns	a	MSGWrap	object.
intValue Required	Long.	The	new	value	of	the	lParam	field.

Remarks

The	lParam	property	corresponds	to	the	lParam	field	in	the	MSG	structure
defined	as	part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler
is	handling	the	OnKeystrokeMessageForAddon	event,	Visio	passes	a
MSGWrap	object	as	an	argument	when	this	event	fires.	A	MSGWrap	object	is
a	wrapper	around	the	Windows	MSG	structure.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

See	also Example

http://msdn.microsoft.com

Manager	property

				 				

Returns	or	sets	the	value	of	the	Manager	box	in	a	document's	properties.

Version	added

5.0

Syntax

strRet	=	object.Manager
object.Manager	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	of	the	field.

Remarks

Setting	the	Manager	property	is	equivalent	to	entering	information	in	the
Manager	box	in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

Example

Master	property

				 				

Gets	the	master	that	is	displayed	in	a	window,	returns	the	master	from	which	the
Shape	object	was	created,	or	returns	the	master	that	contains	the	Layer	object	or
Layers	collection.

Version	added

2.0

Syntax

objRet	=	object.Master
objRet A	Master	object	that	represents	the	object's	master.
object Required.	An	expression	that	returns	a	Layer	object,	Layers

collection,	Shape	object,	or	Window	object.

Remarks

You	can	use	the	Type	property	of	the	Window	object	to	determine	whether	the
Window	object	shows	a	master.	If	the	Window	object	does	not	show	a	master,
the	Master	property	raises	an	exception.

Example

If	the	Window	object	shows	a	master	that	is	open	for	editing,	the	master
returned	is	the	actual	master	being	edited,	not	the	temporary	master	that	exists
while	the	actual	master	is	being	edited.

If	the	Shape	object	is	not	an	instance	of	a	master,	its	Master	property	returns
Nothing.

If	the	Shape	object	is	in	a	group,	its	Master	property	is	the	same	as	the	group's
Master	property.

If	the	Layer	object	or	Layers	collection	is	from	a	page	rather	than	a	master,	its
Master	property	returns	Nothing.

Masters	property

					 					

Returns	the	Masters	collection	for	a	document's	stencil.

Version	added

2.0

Syntax

objsRet	=	object.Masters
objsRet The	Masters	collection	for	a	document.
object Required.	An	expression	that	returns	a	Document	object.

MasterShape	property

			 				

Returns	the	shape	in	the	master	that	this	shape	inherits	from	if	this	shape	is	part
of	a	master	instance.

Version	added

2002

Syntax

objRet	=	object.MasterShape
objRet The	Shape	object	in	the	master	that	this	object	inherits	from.
object Required.	An	expression	that	returns	a	Shape	object	that	is	part

of	a	master	instance.

Remarks

Each	shape	in	an	instance	of	a	master	(the	group	and	all	of	its	subshapes)	point
to	their	corresponding	shape	in	the	master.	The	MasterShape	property	returns
the	Shape	object	in	the	master	from	which	object	inherits.

If	object	is	not	part	of	a	master	instance,	the	MasterShape	property	returns
Nothing.

See	also Example

MasterShortcut	property

			 				

Gets	the	master	shortcut	that	is	displayed	in	a	window.

Version	added

2000

Syntax

objRet	=	object.MasterShortcut
objRet A	MasterShortcut	object	that	is	displayed	in	a	window.
object Required.	An	expression	that	returns	a	Window	object.

See	also Example

MasterShortcuts	property

				 					

Returns	the	MasterShortcuts	collection	for	a	document	stencil.

Version	added

2000

Syntax

objsRet	=	object.MasterShortcuts
objsRet The	MasterShortcuts	collection	for	a	document.
object Required.	An	expression	that	returns	a	Document	object.

See	also

MatchByName	property

			 				

Determines	how	the	application	decides	if	a	document	master	is	already	present
when	an	instance	of	a	master	is	dropped	on	the	drawing	page.	It	allows	changes
made	to	a	document	master	to	apply	to	new	instances	of	the	master,	even	if	the
instances	are	dragged	from	a	stand-alone	stencil	file.

Version	added

5.0

Syntax

intRet	=	object.MatchByName
object.MatchByName	=	intExpression
intRet Integer.	Non-zero	if	match	by	name	is	enabled;	otherwise,	zero

(0).
object Required.	An	expression	that	returns	a	Master	object.
intExpression Required	Integer.	Non-zero	if	match	by	name	is	enabled;

otherwise,	0.

Remarks

Setting	the	MatchByName	property	is	equivalent	to	selecting	or	clearing	the
Match	master	name	on	drop	check	box	in	the	Master	Properties	dialog	box
(right-click	the	master,	and	then	click	Master	Properties	on	the	shortcut	menu).

Suppose	you	create	an	instance	of	a	master	from	a	stencil	in	a	document

See	also Example

(producing	a	local	copy	of	the	master	in	that	document),	and	then	make
modifications	to	the	document	master	(such	as	changing	its	fill	color).	If	the
MatchByName	property	of	the	document	master	is	False,	then	dragging	the
original	master	from	the	stand-alone	stencil	into	the	drawing	creates	an	instance
with	the	stand-alone	master's	attributes	and	produces	a	second	document	master.
If	the	MatchByName	property	of	the	document	master	is	True,	then	dragging
the	original	master	from	the	stand-alone	stencil	into	the	drawing	creates	an
instance	with	the	document	master's	attributes	and	doesn't	produce	a	second
document	master.

MDIWindowMenu	property

			 				

Determines	whether	this	menu	can	be	used	by	the	MDI	window	manager	to	list
the	currently	open	MDI	windows.

Version	added

4.0

Syntax

intVal	=	object.MDIWindowMenu
object.MDIWindowMenu	=	intVal
intVal Required	Integer.	Non-zero	if	the	Menu	object	should	be	the

MDI	window	menu;	otherwise,	zero	(0).
object Required.	An	expression	that	returns	a	Menu	object.

Remarks

The	MDIWindowMenu	property	usually	refers	to	the	Window	menu.

See	also Example

MenuAnimationStyle	property

			 				

Gets	or	sets	the	way	in	which	a	menu	is	displayed.

Version	added

2000

Syntax

int	=	object.MenuAnimationStyle
object.MenuAnimationStyle	=	int
object Required.	An	expression	that	returns	a	UIObject	object	for

which	you	want	to	set	the	menu	animation	style.
int Required	Integer.	A	constant	that	represents	an	animation	style.

Remarks

You	can	use	any	UIObject	object	to	get	or	set	this	property.	The	property	affects
the	entire	application,	and	affects	the	appearance	of	buttons	in	the	current	visible
set	of	toolbars.

Beginning	with	Microsoft	Visio	2002,	this	setting	corresponds	to	the	Menu
animations	box	on	the	Options	tab	in	the	Customize	dialog	box	(on	the	Tools
menu,	click	Customize)	and	is	shared	between	Visio	2002	and	all	Microsoft
Office	XP	applications.

Constants	representing	animation	styles	are	prefixed	with	visMenuAnimation

See	also Example

and	are	declared	by	the	Visio	type	library	in	member	VisUIMenuAnimation.

Constant Value
visMenuAnimationNone 0
visMenuAnimationRandom 1
visMenuAnimationUnfold 2
visMenuAnimationSlide 3

MenuItems	property

					 					

Returns	the	MenuItems	collection	of	a	Menu	or	MenuItem	object.

Version	added

4.0

Syntax

objRet	=	object.MenuItems
objRet The	MenuItems	collection	of	the	object.
object Required.	An	expression	that	returns	a	Menu	or	MenuItem

object	that	owns	the	collection.

Remarks

If	a	Menu	object	represents	a	hierarchical	menu,	its	MenuItems	collection
contains	submenu	items.	Otherwise,	its	MenuItems	collection	is	empty.

Menus	property

					 					

Returns	the	Menus	collection	of	a	MenuSet	object.

Version	added

4.0

Syntax

objRet	=	object.Menus
objRet The	Menus	collection	of	the	MenuSet	object.
object Required.	An	expression	that	returns	a	MenuSet	object.

Remarks

A	Menu	object's	index	within	the	Menus	collection	determines	its	left-to-right
position	on	the	menu	bar.

MenuSets	property

					 					

Returns	the	MenuSets	collection	of	a	UIObject	object.

Version	added

4.0

Syntax

objRet	=	object.MenuSets
objRet The	MenuSets	collection	of	a	UIObject	object.
object Required.	An	expression	that	returns	the	UIObject	object	that

owns	the	collection.

Remarks

If	a	UIObject	object	represents	menus	and	accelerators	(for	example,	if	the
object	was	retrieved	using	the	BuiltInMenus	property	of	an	Application	or
Document	object),	its	MenuSets	collection	represents	all	of	the	menus	for	that
UIObject	object.

Use	the	ItemAtID	property	of	a	MenuSets	object	to	retrieve	menus	for	a
particular	window	context	such	as	the	drawing	window.	If	a	context	does	not
include	menus,	it	has	no	MenuSets	collection.

MergeCaption	property

				 				

Returns	the	abbreviated	caption	that	appears	on	the	page	tab	when	the	window	is
merged	with	other	windows.

Version	Added

2002

Syntax

strRet	=	object.MergeCaption

object.MergeCaption	=	strVal
strRet String.	The	text	that	appears	in	the	page	tab	when	this	window

is	merged	with	other	windows.
object Required.	An	expression	that	returns	a	Window	object.
strVal Required	String.	The	text	to	appear	in	the	page	tab	when	this

window	is	merged	with	other	windows.

Remarks

Example

The	MergeCaption	property	applies	only	to	anchored	windows.	If	the	Window
object	is	an	MDI	frame	window,	Visio	raises	an	exception.

Use	the	Type	property	to	determine	window	type.

MergeClass	property

				 				

Specifies	a	list	of	window	classes	that	this	anchored	window	can	merge	with.

Version	Added

2002

Syntax

strRet	=	object.MergeClass

object.MergeClass	=	strVal
strRet String.	A	list	of	window	classes	that	this	window	can	presently

merge	with.
object Required.	An	expression	that	returns	a	Window	object.
strVal Required	String.	A	new	list	of	window	classes	that	this	window

can	merge	with.

Remarks

Example

Use	semicolons	to	separate	individual	items	in	the	list.	If	the	MergeClass
property	returns	a	string	containing	"123;789",	it	can	merge	with	any	windows
that	also	contain	"123"	or	"789"	in	its	merge	class	list.	Windows	with	a	merge
class	list	that	contains	a	zero-length	string	("")	can	merge	with	other	windows
that	contain	a	zero-length	string	("")	in	their	merge	class	list.

The	MergeClass	property	applies	only	to	anchored	windows.	If	the	Window
object	is	an	MDI	frame	window,	Visio	raises	an	exception.

At	present,	windows	of	type	visDocked	can	be	merged	only	with	other	windows
of	type	visDocked,	and	windows	of	type	visAnchorBar	can	be	merged	only
with	other	windows	of	type	visAnchorBar.

Use	the	Type	property	to	determine	window	type.

MergeID	property

				 				

Specifies	the	string	version	of	a	merged	window's	globally	unique	identifier
(GUID).

Version	Added

2002

Syntax

strRet	=	object.MergeID
object.MergeID	=	strVal
strRet String.	The	string	version	of	a	GUID.
object Required.	An	expression	that	returns	a	Window	object.
strVal Required	String.	The	new	GUID.

Remarks

If	this	Window	object	is	not	merged,	the	GUID	will	contain	all	zeros
(GUID_NULL).

Example

The	MergeID	property	applies	only	to	anchored	windows.	If	the	Window	object
is	an	MDI	frame	window,	Visio	raises	an	exception.

Use	the	Type	property	to	determine	window	type.

MergePosition	property

				 				

Specifies	the	left-to-right	tab	position	of	a	merged	anchored	window.

Version	Added

2002

Syntax

intRet	=	object.MergePosition

object.MergePosition	=	intVal
intRet Long.	The	tab	position	of	the	merged	window.
object Required.	An	expression	that	returns	a	Window	object.
intVal Required	Long.	The	new	tab	position	of	the	merged	window.

Remarks

If	there	are	n	tabs,	the	leftmost	position	is	1	and	the	rightmost	position	is	n.	If	the
windows	are	merged	in	a	docked	stencil	fashion,	1	is	the	topmost	and	n	is	the

Example

bottommost.	A	value	of	–1	means	that	the	window	is	not	merged.

The	MergePosition	property	applies	only	to	anchored	windows.	If	the	Window
object	is	an	MDI	frame	window,	Visio	raises	an	exception.

Use	the	Type	property	to	determine	window	type.

message	property

			 				

Gets	or	sets	the	message	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

retVal	=	object.message
object.message	=	newVal
retVal Long.	The	message	identifier.
object Required.	An	expression	that	returns	a	MSGWrap	object.
newVal Required	Long.	The	new	message	identifier.

Remarks

The	message	property	corresponds	to	the	message	field	in	the	MSG	structure
defined	as	part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler
is	handling	the	OnKeystrokeMessageForAddon	event,	Visio	passes	a
MSGWrap	object	as	an	argument	when	this	event	fires.	A	MSGWrap	object	is
a	wrapper	around	the	Windows	MSG	structure.

The	OnKeystrokeMessageForAddon	event	fires	for	messages	in	the	following
range:

WM_KEYDOWN 0x0100

See	also Example

WM_KEYUP 0x0101
WM_CHAR 0x0102
WM_DEADCHAR 0x0103
WM_SYSKEYDOWN 0x0104
WM_SYSKEYUP 0x0105
WM_SYSCHAR 0x0106
WM_SYSDEADCHAR 0x0107

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

http://msdn.microsoft.com

Mode	property

				 				

Determines	whether	a	document	is	in	run	mode	or	design	mode.

Version	added

5.0

Syntax

retVal	=	object.Mode
object.Mode	=	newVal
retVal VisDocModeArgs.	Current	mode	of	the	document.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisDocModeArgs.	The	new	mode	of	the	document;

visDocModeRun	(0)	to	set	run	mode,	or	visDocModeDesign
(1)	to	set	design	mode.

Remarks

A	Visio	document	is	either	in	run	mode	or	in	design	mode,	just	as	a	Microsoft

Example

Visual	Basic	form	is	either	running	or	being	designed.

The	following	are	the	fundamental	distinctions	between	run	mode	and	design
mode:

ActiveX	controls	hosted	in	a	document	are	told	not	to	fire	events	when	the
document	is	in	design	mode,	and	to	fire	events	when	in	run	mode.

Visio	doesn't	source	events	from	any	object	whose	document	is	in	design	mode.

The	run/design	mode	of	a	Visio	document	is	reported	in	the	Visio	user	interface
by	the	Design	Mode	button	on	the	Developer	toolbar.	The	appearance	of	this
button	is	the	same	as	the	Design	Mode	button	in	the	Visual	Basic	Editor
window.	If	pressed,	the	document	(project)	is	in	design	mode.	If	not	pressed,	the
document	(project)	is	in	run	mode.

The	run/design	mode	of	a	Visio	document	is	synchronized	with	the	run/design
state	of	the	document's	Visual	Basic	for	Applications	(VBA)	project,	provided
the	document	has	a	project.	If	the	document	transitions	to/from	run	mode,	then
the	project's	mode	switches,	and	vice	versa.	This	means	that	if	code	in	a
document's	project	sets	the	document's	mode	to	design	mode
(ThisDocument.Mode	=	visDocModeDesign),	the	project	in	which	the	code
executes	transitions	to	design	mode	and	any	statements	following	the	mode
assignment	statement	don't	execute.	However,	code	in	a	document	can	put
another	document	(project)	into	design	mode	and	keep	running.

A	document's	mode	is	not	a	persistent	property.	A	document's	initial	mode	is
determined	by	the	setting	on	the	Security	Level	tab	in	the	Security	dialog	box
(on	the	Tools	menu,	point	to	Macros,	and	then	click	Security).	The	security
levels	are	described	as	follows:

Low	(not	recommended),	the	document	opens	in	run	mode.

Medium,	the	document	opens	in	run	mode	if	it	does	not	contain	a	project	or
contains	a	project	from	a	trusted	source.	If	the	document	contains	a	project	that
is	unsigned	or	from	an	untrusted	source,	an	alert	appears	with	buttons	to
Disable	Macros	or	Enable	Macros.	If	Enable	Macros	is	selected,	the
document	opens	in	run	mode;	if	Disable	Macros	is	selected,	it	opens	and
remains	in	design	mode.

High,	the	document	opens	in	run	mode	if	it	does	not	contain	a	project	or

contains	a	signed	project	from	a	trusted	source.	If	the	document	contains	an
unsigned	project,	it	opens	and	remains	in	design	mode.	If	the	document
contains	a	signed	project	from	an	untrusted	source,	an	alert	appears	with	a
Disable	button	and	a	dimmed	Enable	button	(unless	the	Always	trust	macros
from	this	source	check	box	is	selected).	If	Disable	is	selected	the	document
opens	and	remains	in	design	mode;	otherwise,	if	Enable	is	selected,	it	opens	in
run	mode.

Name[U]	property

					 					

Specifies	the	name	of	an	object.

Version	added

2.0

Syntax

strRet	=	object.Name
object.Name	=	stringExpression
strRet String.	The	current	name	of	the	object.
object Required.	An	expression	that	returns	a	object	from	the	Applies

to	list.
stringExpression Required	String.	The	new	name	of	the	object.

Remarks

You	can	get,	but	not	set,	the	Name	property	of	a	Document	object.	If	a
document	is	not	yet	named,	this	property	returns	the	document's	temporary

name,	such	as	Drawing1	or	Stencil1.

You	can	get,	but	not	set,	the	Name	property	of	an	Addon	object	or	a	Font
object.

You	can	set	the	Name	property	of	a	Style	object	that	represents	a	style	that	is	not
a	default	Visio	style.	If	you	attempt	to	set	the	Name	property	of	a	default	Visio
style,	an	error	is	generated.

You	can	get,	but	not	set,	the	name	of	a	cell.	Some	cells	are	in	named	rows;	you
can	get	and	set	the	name	of	a	named	row	using	the	RowName	property.

A	cell	has	both	a	local	name	and	a	universal	name.	The	local	name	differs
depending	on	the	locale	for	which	the	running	version	of	Microsoft	Windows	is
installed.	The	universal	name	is	the	same	regardless	of	what	locale	is	installed.
To	get	the	universal	name	of	a	cell,	use	the	Name	property.	To	get	the	local
name,	use	the	LocalName	property.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	Name	property	to	get	or	set	a	Cell,	Master,	Page,	Shape,
Style,	Layer,	Row,	or	MasterShortcut	object's	local	name.	Use	the	NameU
property	to	get	or	set	its	universal	name.

NameID	property

				 				

Returns	a	unique	name	for	a	shape.

Version	added

2.0

Syntax

strRet	=	object.NameID
strRet String.	The	unique	name	of	the	shape.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

The	NameID	property	returns	a	unique	identifier	for	each	shape	on	a	page	or
master.	The	identifier	has	the	following	form:	sheet.N,	where	N	is	the	shape's	ID
property.

The	value	of	the	NameID	property	is	unique	within	a	page	or	master,	but	not
across	pages	or	masters.	At	any	moment,	no	other	shape	on	the	same	page	or

Example

master	has	the	same	NameID	property.	However,	shapes	on	other	pages	or
masters	may	have	the	same	NameID	property.	The	value	of	a	shape's	UniqueID
property	is	unique	across	pages	and	masters.

Also,	NameID	properties	are	reused.	If	a	shape	whose	NameID	property	is
sheet.N	is	deleted,	then	a	shape	subsequently	added	to	the	same	context	may	be
assigned	sheet.N	as	its	NameID	property.	Therefore,	persisting	NameID
properties	in	separate	data	stores	is	generally	not	as	sound	as	persisting
UniqueID	properties.

NewBaseID	property

				 				

Generates	a	new	base	ID	for	a	master.

Version	added

2000

Syntax

strRet	=	object.NewBaseID
strRet String.	The	new	base	ID	for	the	master.
object Required.	An	expression	that	returns	a	Master	object.

Example

NewWindow	property

					 					

Determines	whether	Microsoft	Visio	opens	a	new	window	when	it	navigates	to	a
URL.

Version	added

5.0

Syntax

intRet	=	object.NewWindow
object.NewWindow	=	intExpression
intRet Integer.	Non-zero	to	open	a	new	window;	otherwise,	zero	(0).
object Required.	An	expression	that	returns	a	Hyperlink	object.
intExpression Required	Integer.	Non-zero	to	open	a	new	window;	otherwise,

zero	(0).

Remarks

Setting	the	NewWindow	property	of	a	Hyperlink	object	is	equivalent	to	setting

the	NewWindow	cell	in	the	shape's	Hyperlink.Row	row.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1386.htm

Object	property

				 				

Returns	an	IDispatch	interface	on	the	ActiveX	control	or	embedded	or	linked
OLE	2.0	object	represented	by	a	Shape	object	or	an	OLEObject	object.

Version	added

4.1

Syntax

dispRet	=	object.Object
dispRet IDispatch	interface	on	the	ActiveX	control	or	OLE	object

represented	by	the	shape.
object Required.	An	expression	that	returns	a	Shape	or	OLEObject

object.

Remarks

The	Object	property	raises	an	exception	if	the	object	doesn't	represent	an
ActiveX	control	or	an	OLE	2.0	embedded	or	linked	object.	A	shape	represents
an	ActiveX	control	or	an	OLE	2.0	embedded	or	linked	object	if	the

Example

visTypeIsOLE2	bit	(&H8000)	is	set	in	the	value	returned	by	the	ForeignType
property.

If	the	Object	property	succeeds,	it	returns	an	IDispatch	interface	on	the	control
or	object.	You	owe	an	eventual	release	on	the	returned	value	(set	it	to	Nothing	or
let	it	go	out	of	scope	if	you're	using	Microsoft	Visual	Basic).	You	can	determine
the	kind	of	object	you've	obtained	an	interface	on	by	using	the	ClassID	or
ProgID	property.

Beginning	with	Visio	5.0,	if	the	object	returned	by	the	Object	property	is
embedded	and	the	shape	inherits	the	object	from	its	master,	then	the	Object
property	severs	the	instance—that	is,	it	copies	the	inherited	data	into	the
instance.	Otherwise	if	the	client	receiving	the	IDispatch	interface	from	the
Object	property	makes	changes	to	the	object,	all	instances	of	the	master,	not	just
the	instance	being	queried,	change.	If	the	object	returned	by	the	Object	property
is	linked,	the	Object	property	does	not	sever	the	instance	because,	by	definition,
there	may	be	other	entities	referencing	the	link.	The	ObjectIsInherited	property
was	added	to	Visio	5.0	so	that	client	programs	can	know	if	a	shape	inherits	its
object	and	access	the	master's	object(s).

ObjectIsInherited	property

				 				

Indicates	if	a	shape	represents	an	ActiveX	or	OLE	object	that	is	inherited	from
the	shape's	master.

Version	added

5.0

Syntax

intRet	=	object.ObjectIsInherited
intRet Integer.	True	(-1)	if	object	is	inherited;	otherwise,	False	(0).
object Required.	An	expression	that	returns	a	Shape	object.

Example

ObjectType	property

				 					

Returns	an	object's	type.

Version	added

4.1

Syntax

intRet	=	object.ObjectType
intRet Integer.	The	type	of	the	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

Constants	representing	object	types	are	prefixed	with	visObjType	and	are
declared	by	the	Visio	type	library	in	VisObjectTypes.

Constants	representing	object	types

See	also

OLEObjects	property

					 					

Returns	the	OLEObjects	collection	of	a	document,	master,	or	page.

Version	added

5.0

Syntax

objRet	=	object.OLEObjects
objRet An	OLEObjects	collection.
object Required.	An	expression	that	returns	a	Document,	Master,	or

Page	object.

Remarks

The	OLEObjects	property	returns	an	OLEObjects	collection	that	includes	any
OLE	2.0	linked	or	embedded	objects,	or	ActiveX	controls	contained	in	a
document,	master,	or	page.

OnDataChangeDelay	property

			 				

Controls	how	long	the	Microsoft	Visio	instance	waits	before	advising	a	container
application	that	a	Visio	document	being	shown	by	the	container	has	changed	and
should	be	redisplayed.

Version	added

3.0

Syntax

intRet	=	object.OnDataChangeDelay
object.OnDataChangeDelay	=	intExpression
intRet Long.	The	current	setting	of	the	object.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Long.	The	new	setting	of	the	object.

Remarks

The	OnDataChangeDelay	property	only	affects	instances	of	Visio	that	are	run
from	within	an	OLE	container	document.

Setting	the	value	of	the	OnDataChangeDelay	property	to	zero	(0)	causes	Visio
to	send	immediate	advises	to	the	container	as	data	changes	in	open	Visio
documents.

Setting	the	value	of	the	OnDataChangeDelay	property	to	-1	causes	Visio	to	use

See	also Example

the	interval	specified	in	the	OLEUpdateDelay	entry	in	the	registry.	If	the
registry	doesn't	contain	this	setting,	Visio	defaults	to	using	a	value	of	10000
(milliseconds).

Setting	the	OnDataChangeDelay	property	to	any	value	other	than	-1	or	0
overrides	the	registry	setting	and	sets	the	delay	between	advises	to	the	value	of
OnDataChangeDelay.	If	the	OnDataChangeDelay	property	is	not	set	or	set
to	1	and	the	OLEUpdateDelay	setting	is	0,	Visio	never	sends	advises	to	the
container.

OneD	property

			 				

Determines	whether	an	object	behaves	as	a	one-dimensional	(1-D)	object.

Version	added

2.0

Syntax

retVal	=	object.OneD
object.OneD	=	intExpression
retVal Integer.	True	if	the	shape	is	1-D;	False	if	the	shape	is	2-D.
object Required.	An	expression	that	returns	a	Master	or	Shape	object.
intExpression Required	Integer.	Zero	to	declare	object	as	2-D;	non-zero	to

declare	it	as	1-D.

Remarks

Setting	the	OneD	property	is	equivalent	to	changing	a	shape's	interaction	style	in
the	Behavior	dialog	box	(click	Behavior	on	the	Format	menu).	Setting	the
OneD	property	for	a	1-D	shape	to	False	deletes	its	1-D	Endpoints	section,	even
if	the	cells	in	that	section	were	protected	with	the	GUARD	function.

You	can	get,	but	not	set,	the	OneD	property	of	a	Master	object.

A	guide	does	not	have	a	OneD	property.

See	also Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

The	OneD	property	of	an	object	from	another	application	is	always	False.

Original	property

			 				

Returns	the	original	master	that	produced	this	open	master.

Version	added

2002

Syntax

mastObj	=	object.Original
mastObj The	original	Master	object	that	produced	this	open	master.
object Required.	An	expression	that	returns	a	Master	object.

Remarks

If	this	Master	object	is	not	an	open	copy	of	another	Master	object,	then	the
Original	property	returns	Nothing.

See	also Example

Page	property	(Layer	object,	Layers
collection)

					 					

Gets	the	page	that	contains	the	layer.

Version	added

2.0

Syntax

objRet	=	LayerOrLayersObj.Page
objRet The	Page	object	that	contains	the	layer	or	layers.
LayerOrLayersObj Required.	An	expression	that	returns	a	Layer	object	or

Layers	collection.

Remarks

If	the	Layer	object	or	Layers	collection	is	in	a	master	rather	than	in	a	page,	the
Page	property	returns	Nothing.	You	cannot	set	the	Page	property	of	a	Layer
object	or	Layers	collection.

Page	property	(Window	object)

			 				

Gets	or	sets	the	page	that	is	displayed	in	a	window.

Version	added

2.0

Syntax

objVariantRet	=	windowObj.Page
windowObj.Page	=	stringVariant
objVariantRet Variant.	A	Page	object	that	represents	the	page	being	shown

returned	in	a	Variant.
windowObj Required.	An	expression	that	returns	a	Window	object.
stringVariant Required	Variant.	Contains	a	string	that	names	the	page	to	be

shown.

Remarks

If	a	window	is	not	showing	a	page	(maybe	it	is	showing	a	master),	the	Page
property	returns	Nothing.	You	can	use	the	Type	property	of	the	Window	object
to	determine	whether	the	Window	object	is	showing	a	page.	Otherwise,	the
returned	Variant	refers	to	the	Page	object	that	the	window	is	showing.

Beginning	with	Visio	5.0b,	the	Page	property	no	longer	returns	an	exception	if	a
window	is	not	showing	a	page—it	returns	Nothing.	You	can	use	the	following
code	to	handle	both	return	values.

See	also Example

'Close	Window(i)	if	it	is	showing	a	page.	
Set	w	=	Windows(i)	
On	Error	Resume	Next
Set	wp	=	w.Page
On	Error	GoTo	0
If	Not	wp	Is	Nothing	Then
				w.Close
End	If

Note	In	versions	of	Visio	through	version	4.1,	the	Page	property	of	a	Window
object	returned	an	Object	(as	opposed	to	a	Variant	of	type	Object)	and	the
Page	property	of	a	Window	object	accepted	a	String	(as	opposed	to	a	Variant
of	type	String).	Due	to	changes	in	Automation	support	tools,	the	property	was
changed	to	accept	and	return	a	Variant.	For	backward	compatibility,	the
PageAsObj	and	PageFromName	properties	were	added.	The	PageAsObj	and
PageFromName	properties	have	the	same	signatures	and	occupy	the	same
vtable	slots	as	did	the	prior	version	of	the	Page	property.

PageAsObj	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	got	the	page	that	was	displayed	in	a	window.

See	also Example Applies	to

PageFromName	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

See	also Example Applies	to

Pages	property

					 					

Returns	the	Pages	collection	for	a	document.

Version	added

2.0

Syntax

objsRet	=	object.Pages
objsRet The	Pages	collection	for	a	document.
object Required.	An	expression	that	returns	a	Document	object.

PageSheet	property

				 				

Returns	the	page	sheet	of	a	page	or	master.

Version	added

4.0

Syntax

objRet	=	object.PageSheet
objRet A	Shape	object	that	represents	a	page	sheet.
object Required.	An	expression	that	returns	a	Master	or	Page	object.

Remarks

Every	page	and	master	contains	a	tree	of	Shape	objects.	Constants	representing
shape	types	are	prefixed	with	visType	and	are	declared	by	the	Visio	type	library.

In	the	tree	of	shapes	of	a	master	or	page,	there	is	exactly	one	shape	of	type
visTypePage.	This	shape	is	always	the	root	shape	in	the	tree,	and	the	PageSheet
property	returns	this	shape.

Example

The	page	sheet	contains	important	settings	for	the	page	or	master	such	as	its	size
and	scale.	It	also	contains	the	Layers	section	that	defines	the	layers	for	that	page
or	master.

An	alternative	way	to	obtain	a	page's	or	master's	page	shape	is	to	use	the
following	code:

shpObj	=	pageOrMasterObj.Shapes("ThePage")	

PageTabWidth	property

			 				

Gets	or	sets	the	width	of	the	page	tab	control	in	a	drawing	window.

Version	added

2002

Syntax

dblRet	=	object.PageTabWidth
object.PageTabWidth	=	dblVal
dblRet Double.	The	current	width	of	the	page	tab	control	in	the

drawing	window.
object Required.	An	expression	that	returns	a	Window	object.
dblVal Required	Double.	The	new	width	of	the	page	tab	control	in	the

drawing	window.

Remarks

The	value	in	the	PageTabWidth	property	is	a	percentage	of	the	drawing	window
width,	from	0	to	100.	To	use	the	default	page	tab	control	width,	set	the
PageTabWidth	property	to	–1.

See	also Example

PaletteEntry	property

				 				

Gets	or	sets	the	red,	green,	blue,	and	flags	components	of	a	color.

Version	added

4.0

Syntax

intRet	=	object.PaletteEntry
object.PaletteEntry	=	intVal
intRet Long.	The	current	value	of	the	color's	components.
object Required.	An	expression	that	returns	a	Color	object.
intVal Required	Long.	The	new	value	of	the	color's	components.

Remarks

A	color	is	represented	by	1-byte	red,	green,	and	blue	components.	It	also	has	a	1-
byte	flags	field	indicating	how	you	use	the	color.	These	correspond	to	members
of	the	Windows	PALETTEENTRY	data	structure.	For	details,	search	for

Example

"PALETTEENTRY"	in	the	Microsoft	Platform	SDK	on	the	Microsoft
Developer	Network	(MSDN)	Web	site.

The	value	passed	is	four	tightly	packed	BYTE	fields.	The	correspondence
between	the	PaletteEntry	property	and	red,	green,	blue,	and	flags	values	is:

palentry	==	r+256(b+256(g+256f))	

http://msdn.microsoft.com

PaletteWidth	property

				 					

Gets	or	sets	the	width	of	a	palette	in	pixels.

Version	added

2000

Syntax

intRet	=	object.PaletteWidth
object.PaletteWidth	=	intValue
intRet Integer.	Contains	the	width	in	pixels.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.
intValue Required	Integer.	Contains	the	width	in	pixels.

Remarks

A	palette,	like	a	toolbar,	is	organized	horizontally	and	items	wrap	to	a	new	row	if
there	is	not	enough	horizontal	space	available.	By	default,	only	the	icons	of	the

See	also

items	are	shown.

PaperHeight	property

				 				

Returns	the	height	of	a	document's	printed	page.

Version	added

4.5

Syntax

retVal	=	object.PaperHeight(units)
retVal Double.	The	document's	paper	height	expressed	in	the	given

units.
object Required.	An	expression	that	returns	a	Document	object.
units Required	Variant.	The	units	to	use	when	retrieving	the	paper

height.

Remarks

Units	can	be	a	string	such	as	"inches",	"inch",	"in.",	or	"i".	Strings	may	be	used
for	all	supported	Visio	units	such	as	centimeters,	meters,	miles,	and	so	on.	You
can	also	use	any	of	the	units	constants	declared	by	the	Visio	type	library	in

Example

member	VisUnitCodes.

PaperSize	property

				 				

Gets	or	sets	the	paper	size	of	a	document.

Version	added

4.5

Syntax

retVal	=	object.PaperSize
object.PaperSize	=	newVal
retVal VisPaperSizes.	The	present	page	size.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisPaperSizes.	The	new	page	size.

Remarks

This	is	the	equivalent	of	choosing	a	page	size	on	the	Page	Size	tab	in	the	Page
Setup	dialog	box	(on	the	File	menu,	click	Page	Setup).The	value	of	retVal	and
newVal	can	be	one	of	the	following	VisPaperSizes	constants.

Example

Constant Value Description
visPaperSizeUnknown 0 Not	known
visPaperSizeLetter 1 Letter	8	1/2	x	11	in
visPaperSizeLegal 5 Legal	8	1/2	x	14	in
visPaperSizeA3 8 A3	297	x	420	mm
visPaperSizeA4 9 A4	210	x	297	mm
visPaperSizeA5 11 A5	148	x	210	mm
visPaperSizeB4 12 B4	(JIS)	250	x	354	mm
visPaperSizeB5 13 B5	(JIS)	182	x	257	mm
visPaperSizeFolio 14 Folio	8	1/2	x	13	in
visPaperSizeNote 18 Note	8	1/2	x	11	in
visPaperSizeSizeC 24 C	size	sheet	17	x	22	in.
visPaperSizeSizeD 25 D	size	sheet	22	x	34	in.
visPaperSizeSizeE 26 E	size	sheet	34	x	44	in.

PaperWidth	property

				 				

Returns	the	width	of	a	document's	printed	page.

Version	added

4.5

Syntax

retVal	=	object.PaperWidth(units)
retVal Double.	The	document's	paper	width	expressed	in	the	given

units.
object Required.	An	expression	that	returns	a	Document	object.
units Required	Variant.	The	units	to	use	when	retrieving	the	paper

width.

Remarks

Units	can	be	a	string	such	as	"inches",	"inch",	"in.",	or	"i".	Strings	may	be	used
for	all	supported	Visio	units	such	as	centimeters,	meters,	miles,	and	so	on.	You
can	also	use	any	of	the	units	constants	declared	by	the	Visio	type	library.

Example

ParaProps	property

				 				

Sets	the	paragraph	property	of	a	Characters	object	to	a	new	value.

Version	added

3.0

Syntax

object.ParaProps(intWhichProp)	=	intExpression
object Required.	An	expression	that	returns	a	Characters	object.
intWhichProp Required	Integer.	The	property	to	set.
intExpression Required	Integer.	The	new	value	of	the	property.

Remarks

The	values	of	the	intWhichProp	argument	correspond	to	named	cells	in	the
Paragraph	section	of	the	ShapeSheet	window.	Constants	for	intWhichProp	are
declared	by	the	Visio	type	library	in	VisCellIndices.

Constant Value

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(J-R)_1253.htm

visIndentFirst 0
visIndentLeft 1
visIndentRight 2
visSpaceLine 3
visSpaceBefore 4
visSpaceAfter 5
visHorzAlign 6
visBulletIndex 7
visBulletString 8

Depending	on	the	extent	of	the	text	range	and	the	format,	setting	the	ParaProps
property	may	cause	rows	to	be	added	or	removed	from	the	Paragraph	section	of
the	ShapeSheet	window.

To	retrieve	information	about	an	existing	format,	use	the	ParaPropsRow
property.

ParaPropsRow	property

				 				

Returns	the	index	of	the	row	in	the	Paragraph	section	of	a	ShapeSheet	window
that	contains	paragraph	formatting	information	for	a	Characters	object.

Version	added

3.0

Syntax

intRet	=	object.ParaPropsRow(bias)
intRet Integer.	The	index	of	the	row	that	defines	the	Character

object's	paragraph	format.
object Required.	An	expression	that	returns	a	Characters	object.
bias Required	Integer.	The	direction	of	the	search.

Remarks

If	the	formatting	for	the	Characters	object	is	represented	by	more	than	one	row
in	the	Paragraph	section	in	the	ShapeSheet	window,	the	ParaPropsRow
property	returns	-1.	If	the	Characters	object	represents	an	insertion	point	rather

Example

than	a	sequence	of	characters	(its	Begin	and	End	properties	return	the	same
value),	use	the	bias	argument	to	determine	which	row	index	to	return.

Constant Value
visBiasLetVisioChoose 0
visBiasLeft 1
visBiasRight 2

Specify	visBiasLeft	for	the	row	that	covers	paragraph	formatting	for	the
character	to	the	left	of	the	insertion	point,	or	visBiasRight	for	the	row	that
covers	paragraph	formatting	for	the	character	to	the	right	of	the	insertion	point.

Parent	property

				 				

Determines	the	parent	of	an	object.

Version	added

3.0

Syntax

objRet	=	object.Parent
objRet The	parent	of	the	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

In	general,	an	object's	parent	is	the	object	that	contains	it.	For	example,	the
parent	of	a	Menu	object	is	the	Menus	collection	that	contains	the	Menu	object,
or	the	parent	of	a	Window	object	is	the	Windows	collection	that	contains	the
Window	object.

Example

Parent	property	(Shape	object)

				 				

Determines	the	parent	of	a	Shape	object.

Version	added

2002

Syntax

objRet	=	object.Parent
object.Parent	=	objExpression
objRet The	parent	of	the	object.
object Required.	An	expression	that	returns	a	Shape	object.
objExpression Required.	The	new	parent	of	the	object.

Remarks

In	general,	an	object's	parent	is	the	object	that	contains	it.	If	a	Shape	object	is	a
member	of	a	group,	the	parent	is	that	group.	Otherwise,	its	parent	is	a	Page	or	a
Master	object.

Example

When	assigning	a	new	parent	shape,	you	must	assign	a	Shape	object.	If	you
want	to	assign	a	page	or	master	to	be	the	parent	of	a	shape,	you	must	assign	the
Shape	object	returned	by	the	Page	or	Master	object's	PageSheet	property.

A	shape	and	its	parent	shape	must	be	in	the	same	containing	page	or	containing
master.	If	the	new	parent	is	not	a	Shape	object,	or	if	the	ContainingPage	or
ContainingMaster	property	of	the	parent	shape	is	different	from	that	of	the
shape,	Visio	raises	an	exception.

ParentItem	property

			 				

Returns	the	parent	object	of	a	hierarchical	menu	or	toolbar.

Version	added

2000

Syntax

objRet	=	object.ParentItem
objRet The	parent	object.
object Required.	An	expression	that	returns	a	MenuItems	or

ToolbarItems	collection.

See	also Example

ParentWindow	property

				 				

Returns	the	Window	object	that	is	the	parent	of	another	Window	object.

Version	added

2000

Syntax

objRet	=	object.ParentWindow
objRet The	parent	Window	object.
object Required.	An	expression	that	returns	a	Window	object.

Remarks

ParentWindow	returns	nothing	and	raises	no	exception	if	the	window	is	a	top
level	window.	A	top	level	window	is	a	member	of	the	Windows	collection	of	an
Application	object.

Use	the	Parent	property	of	a	Window	object	to	get	the	Windows	collection	to
which	a	Window	object	belongs.

Example

Password	property

				 				

Resets	the	document's	password.

Version	added

2002

Syntax

object.Password	([bStrExistingPassword])=	strVal
object Required.	An	expression	that	returns	a	Document	object.
bStrExistingPasswordOptional	Variant.	The	existing	password.
strVal String.	The	new	password.

Remarks

You	can	also	set	a	document's	password	in	the	Protect	Document	dialog	box	(in
the	Drawing	Explorer,	right-click	the	drawing	name,	and	then	click	Protect
Document).	If	there	is	an	existing	password,	you	must	first	remove	it	by
entering	it	in	the	Unprotect	Document	dialog	box	(in	the	Drawing	Explorer,
right-click	the	drawing	name,	and	then	click	Unprotect	Document).

Example

Path	property

				 				

Returns	the	drive	and	folder	path	of	the	Microsoft	Visio	application	or	a
document.

Version	added

2.0

Syntax

strRet	=	object.Path
strRet String.	The	path	of	Visio	or	the	indicated	document.
object Required.	An	expression	that	returns	an	Application	or

Document	object.

Remarks

If	the	document	has	not	been	saved,	the	Path	property	of	the	Document	object
returns	a	zero-length	string	("").

Example

Paths	property

					 					

Returns	a	Paths	collection	that	reports	the	coordinates	of	a	shape's	paths	in	the
coordinate	system	of	the	shape's	parent.

Version	added

5.0

Syntax

objRet	=	object.Paths
objRet A	Paths	object	that	represents	the	shape's	strokes.
object Required.	An	expression	that	returns	a	Shape	object.

PathsLocal	property

				 				

Returns	a	Paths	collection	that	reports	the	coordinates	of	a	shape's	paths	in	the
shape's	local	coordinate	system.

Version	added

5.0

Syntax

objRet	=	object.PathsLocal
objRet A	Paths	object	that	represents	the	shape's	strokes.
object Required.	An	expression	that	returns	a	Shape	object.

Example

PatternFlags	property

			 				

Determines	whether	a	master	behaves	as	a	custom	pattern.

Version	added

5.0

Syntax

intRet	=	object.PatternFlags
object.PatternFlags	=	intExpression
intRet Integer.	The	current	value.
object Required.	An	expression	that	returns	a	Master	object.
intExpression Required	Integer.	The	new	value.

Remarks

Visio	allows	a	master	to	be	used	as	a	custom	line	pattern,	line	end,	or	fill	pattern.

The	PatternFlags	property	determines	whether	you	can	use	a	master	as	a	pattern
(non-zero);	whether	it	is	a	line,	fill,	or	line	end	pattern;	and	which	pattern	mode
to	use	when	applying	it	to	shapes.

If	you	can	use	the	PatternFlags	property	as	a	pattern	(non-zero),	the	property
can	include	a	combination	of	the	following	bits.

Constant Value Description

See	also Example

visMasIsLinePat &H1 Line	pattern
visMasIsLineEnd &H2 Line	end	pattern
visMasIsFillPat &H4 Fill	pattern

If	visMasIsLinePat	is	selected,	the	pattern	mode	should	be	one	of	the	following
values.

Constant Value
visMasLPTileDeform &H0
visMasLPTile &H10
visMasLPStretch &H20
visMasLPAnnotate &H30

In	addition,	visMasLPScale	(&H40)	can	optionally	be	included	in	the
PatternFlag	property	value.

If	visMasIsLineEnd	is	selected,	the	pattern	mode	should	be	one	of	the
following	values.

Constant Value
visMasLEDefault &H0
visMasLEUpright &H100

In	addition,	visMasLEScale	(&H400)	can	optionally	be	included	in	the
PatternFlag	property	value.

If	visMasIsFillPat	is	selected,	the	pattern	mode	should	be	one	of	the	following
values.

Constant Value
visMasFPTile &H0
visMasFPCenter &H1000
visMasFPStretch &H2000

In	addition,	visMasFPScale	(&H4000)	can	optionally	be	included	in	the
PatternFlag	property	value.

Persistable	property

				 				

Determines	whether	an	event	can	potentially	persist	within	its	document.

Version	added

4.1

Syntax

intRet	=	object.Persistable
intRet Integer.	False	(0)	if	the	event	cannot	be	made	persistent;	True

(-1)	if	it	can.
object Required.	An	expression	that	returns	an	Event	object.

Remarks

The	Persistable	property	of	an	Event	object	indicates	whether	the	event	can
persist,	that	is,	whether	the	Event	object	can	be	stored	with	a	Visio	document
between	executions	of	a	program.	An	Event	object	can	persist	if	the	following
conditions	are	true:

Example

The	action	code	of	the	Event	object	must	be	visActCodeRunAddon.	If	the
action	code	is	visActCodeAdvise,	the	event	won't	persist	and	must	be	re-created
by	a	program	at	run	time.

The	source	object	must	be	capable	of	containing	persistent	events	in	its
EventList	collection.	The	source	object's	PersistsEvents	property	indicates
whether	it	can	contain	persistent	events.	The	only	source	objects	currently
capable	of	containing	persistent	events	are	Document,	Master,	and	Page
objects.

If	these	conditions	are	met,	an	Event	object	with	any	of	the	following	event
codes	is	persistable:

DocumentCreated

DocumentOpened

MasterAdded

MasterDeleted

PageAdded

PageDeleted

ShapesDeleted

Although	an	Event	object's	Persistable	property	indicates	whether	an	event	can
persist,	its	Persistent	property	indicates	whether	that	event	actually	persists.
When	an	Event	object	is	first	created,	its	Persistent	property	is	set	to	the	same
value	as	its	Persistable	property.	That	is,	a	persistable	event's	Persistent
property	is	set	to	True,	and	a	nonpersistable	event's	Persistent	property	is	set	to
False.

A	nonpersistent	event	exists	as	long	as	a	reference	is	held	on	the	Event	object,
the	EventList	object	that	contains	the	Event	object,	or	the	source	object	that	has
the	EventList	object.	When	the	last	reference	to	any	of	these	objects	is	released,
the	nonpersistent	event	ceases	to	exist.

You	can	change	the	initial	setting	for	a	persistable	event	by	setting	its	Persistent
property	to	False.	In	this	case,	the	event	doesn't	persist	with	its	document,	even
though	it	could.	However,	you	cannot	change	the	Persistent	property	of	a

nonpersistent	event;	attempting	to	do	so	will	cause	an	exception.

Note	Events	handled	in	a	Microsoft	Visual	Basic	for	Applications	project	are
persistent.

Persistent	property

				 				

Determines	whether	or	not	an	event	persists	with	its	document.

Version	added

4.1

Syntax

intRet	=	object.Persistent
object.Persistent	=	intExpression
intRet Integer.	False	(0)	if	the	event	won't	be	saved	with	the

document;	True	(-1)	if	it	will.
object Required.	An	expression	that	returns	an	Event	object.
intExpression Required	Integer.	False	(0)	to	make	the	event	nonpersistent;

True	(non-zero)	to	make	it	persistent.

Remarks

An	event	is	persistable	if	its	action	code	is	visActCodeRunAddon	and	the

Example

event's	source	object	is	capable	of	containing	persistent	events.

When	an	event	is	first	created,	its	Persistent	property	is	set	to	the	same	value	as
its	Persistable	property;	if	an	event	can	persist,	Visio	assumes	it	should	persist.
You	can	change	the	initial	setting	for	a	persistable	event	by	setting	its	Persistent
property	to	False.	However,	you	cannot	change	the	Persistent	property	of	a
nonpersistable	event—attempting	to	do	so	causes	an	exception.

A	nonpersistent	event	exists	as	long	as	a	reference	is	held	on	the	Event	object,
the	EventList	object	that	contains	the	Event	object,	or	the	source	object	that	has
the	EventList	object.	When	the	last	reference	to	any	of	these	objects	is	released,
the	nonpersistent	event	ceases	to	exist.

A	persistent	event	exists	until	its	Event	object	is	deleted	from	the	source	object's
EventList	collection.

Note	Events	handled	in	a	Microsoft	Visual	Basic	for	Applications	project	are
persistent.

PersistsEvents	property

					 					

Indicates	whether	an	object	is	capable	of	containing	persistent	events	in	its
EventList	collection.

Version	added

4.1

Syntax

intRet	=	object.PersistsEvents
intRet Integer.	False	(0)	if	this	object	cannot	contain	persistent

events;	True	(1)	if	it	can.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

Every	object	that	has	an	EventList	property	also	has	a	PersistsEvents	property.
To	be	persistable,	an	event's	action	code	must	be	visActCodeRunAddon,	but	it
must	also	be	in	the	EventList	collection	of	an	object	whose	PersistsEvents

property	is	True.	The	only	objects	that	currently	persist	events	are	Document,
Master,	and	Page	objects.

Whether	a	persistable	event	actually	does	persist	depends	on	the	value	of	its
Persistent	property.

Picture	property

				 				

Returns	a	picture	that	represents	an	enhanced	metafile	(EMF)	contained	in	a
master,	shape,	selection	or	page.

Version	Added

2002

Syntax

objRet	=	object.Picture
objRet An	IPictureDisp	object	that	represents	the	enhanced	metafile.
object Required.	An	expression	that	returns	a	Master,	Shape,

Selection,	or	Page	object	that	contains	the	picture.

Remarks

The	Picture	property	returns	only	EMF	files	(enhanced	metafiles).

COM	provides	a	standard	implementation	of	a	picture	object	with	the
IPictureDisp	interface	on	top	of	the	underlying	system	picture	support.	The

Example

IPictureDisp	interface	exposes	a	picture	object's	properties	and	is	implemented
in	the	stdole	type	library	as	a	StdPicture	object	creatable	within	Microsoft
Visual	Basic.	The	stdole	type	library	is	automatically	referenced	from	all	Visual
Basic	for	Applications	projects	in	Visio.

To	get	information	about	the	StdPicture	object	that	supports	the	IPictureDisp
interface:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	stdole.

Under	Classes,	examine	the	class	named	StdPicture.

For	details	about	the	IPictureDisp	interface,	see	the	Microsoft	Platform	SDK	on
the	Microsoft	Developer	Network	(MSDN)	Web	site.

Currently,	only	in-proc	solutions	can	use	the	Picture	property	because	the
IPictureDisp	interface	cannot	be	marshaled.

http://msdn.microsoft.com

PitchAndFamily	property

				 				

Returns	the	pitch	and	family	code	for	a	Font	object.

Version	added

4.0

Syntax

intRet	=	object.PitchAndFamily
intRet Integer.	The	pitch	and	family	code	of	the	Font	object.
object Required.	An	expression	that	returns	a	Font	object.

Remarks

Use	the	PitchAndFamily	property	to	specify	a	font's	pitch	and	assign	it	to	a	font
family.	You	can	specify	pitch,	family,	or	both.	To	specify	both,	use	an	or
expression.	Font	families	are	used	to	specify	a	font	when	an	exact	typeface	is
unavailable.

The	possible	values	of	the	PitchAndFamily	property	correspond	to	those	of	the

Example

lfPitchAndFamily	member	of	the	Windows	LOGFONT	data	structure.	For
details,	search	for	"LOGFONT"	in	the	Microsoft	Platform	SDK	on	the	Microsoft
Developer	Network	(MSDN)	Web	site.

http://msdn.microsoft.com

Points	property

					 					

Returns	an	array	of	points	that	defines	a	polyline	that	approximates	a	Path	or
Curve	object	within	a	given	tolerance.

Version	added

5.0

Syntax

object.Points	Tolerance,	xyArray
object Required.	An	expression	that	returns	a	Path	or	Curve	object.
Tolerance Required	Double.	Specifies	how	close	the	returned	array	of

points	must	approximate	the	true	path.
xyArray Required	Double.	Returns	an	array	of	alternating	x	and	y	values

specifying	points	along	a	path's	or	curve's	stroke.

Remarks

Use	the	Points	property	of	the	Path	or	Curve	object	to	obtain	an	array	of	x,y
coordinates	specifying	points	along	the	path	or	curve	within	a	given	tolerance.

The	tolerance	and	returned	x,y	values	are	expressed	in	internal	drawing	units
(inches).

If	you	used	the	Paths	property	of	a	Shapes	object	to	obtain	the	Path	or	Curve
object	being	queried,	the	coordinates	are	expressed	in	the	parent's	coordinate
system.	If	you	used	the	PathsLocal	property	of	a	Shape	object	to	obtain	the
Path	or	Curve	object,	the	coordinates	are	expressed	in	the	local	coordinate
system.

If	Visio	is	unable	to	achieve	the	requested	tolerance,	Visio	approximates	the
points	as	close	to	the	requested	tolerance	as	possible.	Generally	speaking,	the
lower	the	tolerance,	the	more	points	Visio	returns.	Visio	doesn't	accept	a
tolerance	of	zero	(0).

The	array	returned	includes	both	the	starting	and	ending	points	of	the	path	or
curve	even	if	it	is	closed.

Position	property

					 					

Gets	or	sets	the	position	of	an	object.

Version	added

2000

Syntax

intRet	=	object.Position
object.Position	=	intExpression
intRet Integer.	The	object's	position.
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object.
intExpression Required	Integer.	The	object's	new	position.

Remarks

Constants	representing	possible	Position	property	values	are	listed	below.	They
are	also	declared	by	the	Visio	type	library	in	VisUIBarPosition.

Constant Value
visBarLeft 0
visBarTop 1
visBarRight 2
visBarBottom 3
visBarFloating 4
visBarPopup 5
visBarMenu 6

posttime	property

				 				

Gets	or	sets	the	time	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

intRet	=	object.posttime
object.posttime	=	intExpression
intRet Long.	The	current	value	of	the	time	field.
object Required.	An	expression	that	returns	a	MSGWrap	object.
intExpression Required	Long.	The	new	value	of	the	time	field.

Remarks

The	posttime	property	corresponds	to	the	time	field	in	the	MSG	structure
defined	as	part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler
is	handling	the	OnKeystrokeMessageForAddon	event,	Visio	passes	a

Example

MSGWrap	object	as	an	argument	when	this	event	fires.	A	MSGWrap	object	is
a	wrapper	around	the	Windows	MSG	structure.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

http://msdn.microsoft.com

PreviewPicture	property

			 				

Gets	or	sets	the	preview	picture	shown	in	the	Open	or	Choose	Drawing	Type
dialog	box.

Version	added

2002

Syntax

objRet	=	object.PreviewPicture
object.PreviewPicture	=	objExpression
objRet An	IPictureDisp	object	that	represents	current	preview	picture.
object Required.	An	expression	that	returns	a	Document	object.
objExpression Required.	An	IPictureDisp	object	that	represents	the	new

preview	picture.

Remarks

The	PreviewPicture	property	returns	and	accepts	only	EMF	files	(enhanced
metafiles).	Visio	will	raise	an	exception	if	objExpression	contains	a	non-EMF
file.

To	delete	an	existing	preview	set	the	PreviewPicture	property	to	Nothing.

You	can	use	the	PreviewPicture	property	to	include	a	preview	pictures	in	a
template	that	does	not	have	any	diagrams	stored	in	it.

See	also Example

COM	provides	a	standard	implementation	of	a	picture	object	with	the
IPictureDisp	interface	on	top	of	the	underlying	system	picture	support.	The
IPictureDisp	interface	exposes	a	picture	object's	properties	and	is	implemented
in	the	stdole	type	library	as	a	StdPicture	object	creatable	within	Microsoft
Visual	Basic.	The	stdole	type	library	is	automatically	referenced	from	all	Visual
Basic	for	Applications	projects	in	Visio.

To	get	information	about	the	StdPicture	object	that	supports	the	IPictureDisp
interface:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	click	stdole.

Under	Classes,	examine	the	class	named	StdPicture.

For	details	about	the	IPictureDisp	interface,	see	the	Microsoft	Platform	SDK	on
the	Microsoft	Developer	Network	(MSDN)	Web	site.

Currently,	only	in-proc	solutions	can	use	the	PreviewPicture	property	because
the	IPictureDisp	interface	cannot	be	marshaled.

http://msdn.microsoft.com

PrimaryItem	property

				 				

Returns	the	Shape	object	that	is	a	Selection	object's	primary	item.

Version	added

2000

Syntax

objRet	=	object.PrimaryItem
objRet The	Shape	object	that	is	the	primary	item.
object Required.	An	expression	that	returns	a	Selection	object.

Remarks

In	a	drawing	window,	the	primary	selected	item	is	shown	with	green	selection
handles	and	non-primary	selected	items	are	shown	with	blue	selection	handles.
The	outcome	of	some	operations	is	affected	by	which	selected	item	is	the
primary	item.	For	example,	the	Align	Shapes	command	aligns	non-primary
selected	items	with	the	primary	selected	item.

Example

If	a	Selection	object	contains	no	Shape	objects,	or	the	primary	Shape	object	is
one	that	isn't	enumerated	given	the	Selection	object's	IterationMode	property,
the	PrimaryItem	property	returns	Nothing	and	raises	no	exception.

PrintCenteredH	property

				 				

Indicates	whether	drawings	are	centered	between	the	left	and	right	edges	of	the
paper	when	printed.

Version	added

4.0

Syntax

boolRet	=	object.PrintCenteredH
object.PrintCenteredH	=	boolValue
boolRet Boolean.	True	if	the	document	will	center	drawings

horizontally	when	printing;	otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
boolValue Required	Boolean.	True	to	center	drawings	horizontally	when

printing;	otherwise,	False.

Remarks

Example

The	PrintCenteredH	property	corresponds	to	the	Center	horizontally	check
box	in	the	Print	Setup	dialog	box	(click	Page	Setup	on	the	File	menu,	and	then
click	Setup	on	the	Print	Setup	tab).

PrintCenteredV	property

				 				

Indicates	whether	drawings	are	centered	between	the	top	and	bottom	edges	of
the	paper	when	printed.

Version	added

4.0

Syntax

boolRet	=	object.PrintCenteredV
object.PrintCenteredV	=	boolValue
boolRet Boolean.	True	if	the	document	will	center	drawings	vertically

when	printing;	otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
boolValue Required	Boolean.	True	to	center	drawings	vertically;

otherwise,	False.

Remarks

Example

The	PrintCenteredV	property	corresponds	to	the	Center	vertically	check	box
in	the	Print	Setup	dialog	box	(click	Page	Setup	on	the	File	menu,	and	then
click	Setup	on	the	Print	Setup	tab).

Printer	property

				 				

Specifies	the	name	of	the	printer	to	use	when	printing	the	document.

Version	added

2002

Syntax

strRet	=	object.Printer
object.Printer	=	strExpression
strRet String.	The	current	printer.
object Required.	An	expression	that	returns	a	Document	object.
strExpression Required	String.	The	new	printer.

Remarks

The	Printer	property	corresponds	to	the	Name	box	in	the	Print	dialog	box
(click	Print	on	the	File	menu).

Example

PrintFitOnPages	property

				 				

Indicates	whether	drawings	in	a	document	are	printed	on	a	specified	number	of
sheets	across	and	down.

Version	added

4.0

Syntax

boolRet	=	object.PrintFitOnPages
object.PrintFitOnPages	=	boolValue
boolRet Boolean.	True	if	the	document	will	fit	drawings	on	a	specified

number	of	sheets;	otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
boolValue Required	Boolean.	True	to	fit	drawings	on	a	specified	number

of	sheets;	otherwise,	False.

Remarks

Example

The	PrintFitOnPages	property	corresponds	to	the	Fit	to	settings	in	the	Page
Setup	dialog	box	(click	Page	Setup	on	the	File	menu).	If	this	property	is	True,
Visio	prints	the	document's	drawings	on	the	number	of	sheets	specified	by	the
PrintPagesAcross	and	PrintPagesDown	properties.

PrintLandscape	property

			 				

Indicates	whether	a	document's	drawings	print	in	landscape	or	portrait
orientation.

Version	added

4.0

Syntax

boolRet	=	object.PrintLandscape
object.PrintLandscape	=	boolValue
boolRet Boolean.	True	if	the	document	will	print	drawings	in	landscape

orientation;	otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
boolValue Required	Boolean.	True	to	print	drawings	in	landscape

orientation;	otherwise,	False.

Remarks

The	PrintLandscape	property	corresponds	to	the	Portrait	and	Landscape
settings	in	the	Print	Setup	dialog	box	(click	Page	Setup	on	the	File	menu,	and
then	click	Setup).

See	also Example

PrintPagesAcross	property

				 				

Indicates	the	number	of	sheets	of	paper	on	which	a	drawing	is	printed
horizontally.

Version	added

4.0

Syntax

intRet	=	object.PrintPagesAcross
object.PrintPagesAcross	=	newValue
intRet Integer.	The	current	number	of	pages	across	on	which

drawings	are	printed.
object Required.	An	expression	that	returns	a	Document	object.
newValue Required	Integer.	The	new	number	of	pages	across	on	which	to

print	drawings.

Remarks

Example

You	must	set	the	value	of	the	PrintFitOnPages	property	to	True	in	order	to	use
the	PrintPagesAcross	property.	If	the	value	of	the	PrintFitOnPages	property	is
False,	Visio	ignores	the	PrintPagesAcross	property.

The	PrintPagesAcross	property	corresponds	to	the	Fit	to	sheet(s)	across	setting
in	the	Page	Setup	dialog	box	(click	Page	Setup	on	the	File	menu).

PrintPagesDown	property

				 				

Indicates	the	number	of	sheets	of	paper	on	which	a	drawing	is	printed	vertically.

Version	added

4.0

Syntax

intRet	=	object.PrintPagesDown
object.PrintPagesDown	=	newValue
intRet Integer.	The	number	of	sheets	on	which	drawings	are	printed

vertically.
object Required.	An	expression	that	returns	a	Document	object.
newValue Required	Integer.	The	number	of	sheets	on	which	to	print

drawings	vertically.

Remarks

You	must	set	the	value	of	the	PrintFitOnPages	property	to	True	to	use	the

Example

PrintPagesDown	property.	If	the	value	of	the	PrintFitOnPages	property	is
False,	Visio	ignores	the	PrintPagesDown	property.

The	PrintPagesDown	property	corresponds	to	the	Fit	to	by	sheets	down	setting
in	the	Page	Setup	dialog	box	(click	Page	Setup	on	the	File	menu).

PrintScale	property

				 				

Indicates	how	much	drawings	are	reduced	or	enlarged	when	printed.

Version	added

4.0

Syntax

retVal	=	object.PrintScale
object.PrintScale	=	newValue
retVal Double.	The	scale	at	which	drawings	are	printed;	1.0	equals

100%.
object Required.	An	expression	that	returns	a	Document	object.
newValue Required	Double.	The	new	scale	value.

Remarks

The	PrintScale	property	corresponds	to	the	Adjust	to	setting	on	the	Print	Setup
tab	in	the	Page	Setup	dialog	box	(click	Page	Setup	on	the	File	menu).	To	print	a

Example

drawing	at	half	its	size,	specify	0.5.	To	print	a	drawing	at	twice	its	size,	specify
2.0.

PrintTileCount	property

				 				

Returns	the	number	of	print	tiles	for	a	drawing	page.

Version	added

2002

Syntax

intRet	=	object.PrintTileCount
intRet Long.	The	number	of	print	tiles	on	the	drawing	page.
object Required.	An	expression	that	returns	a	Page	object.

Remarks

When	drawings	span	multiple	physical	printer	pages,	you	can	use	the
PrintTileCount	property	to	determine	the	number	of	print	tiles	there	are	for	a
Visio	drawing	page.	You	can	use	the	PrintTileCount	property	with	the
PrintTile	method	to	identify	and	print	selected	tiles	of	an	active	drawing	page.

Example

Priority	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	determined	whether	a	toolbar	or	status	bar	item
was	dropped	from	view	when	the	Visio	window	was	too	narrow	to	show	all
items.

See	also Example Applies	to

ProcessID	property

				 					

Returns	a	unique	process	ID	for	a	Microsoft	Visio	instance.

Version	added

2.0

Syntax

retVal	=	object.ProcessID
retVal Long.	The	process	ID	for	the	Visio	instance.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	ProcessID	property	returns	a	value	unique	to	the	indicated	instance.	The
application	doesn't	reuse	the	value	until	4294967296	(2^32)	more	processes	have
been	created	on	the	current	workstation.

See	also

ProductName	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	the	name	of	the	product,	Visio,	using
its	key	in	the	registry.

See	also Example Applies	to

ProfileName	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	method	is	obsolete.

Remarks

In	Visio	versions	earlier	than	2002,	the	ProfileName	property	returned	the	path
to	the	Microsoft	Visio	information	stored	in	the	registry.

See	also Example Applies	to

ProgID	property

					 					

Returns	the	programmatic	identifier	of	a	shape	representing	an	ActiveX	control,
an	embedded	object,	or	linked	object.

Version	added

5.0

Syntax

strRet	=	object.ProgID
strRet String.	The	program	identifier	of	the	OLE	object	represented

by	the	shape.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

The	ProgID	property	raises	an	exception	if	the	shape	doesn't	represent	an
ActiveX	control	or	OLE	2.0	embedded	or	linked	object.	A	shape	represents	an
ActiveX	control,	an	embedded	object,	or	linked	object	if	the	ForeignType
property	returns	visTypeIsOLE2	in	the	value.

Use	the	ProgID	property	of	a	Shape	object	or	OLEObject	to	obtain	the
programmatic	identifier	of	the	object.	Every	OLE	object	class	stores	a
programmatic	identifier	for	itself	in	the	registry.	Typically	this	occurs	when	the
program	that	services	the	object	installs	itself.	Client	programs	use	this	identifier
to	identify	the	object.	You	are	using	the	Visio	identifier	when	you	execute	a
statement	such	as	GetObject(,"Visio.Application")	from	a	Microsoft	Visual
Basic	program.

These	are	strings	that	the	ProgID	property	might	return:

Visio.Drawing.5
MSGraph.Chart.5
Forms.CommandButton.1

After	using	a	shape's	Object	property	to	obtain	an	IDispatch	interface	on	the
object	the	shape	represents,	you	can	obtain	the	shape's	ClassID	or	ProgID
property	to	determine	the	methods	and	properties	provided	by	that	interface.

Prompt	property

			 				

Gets	or	sets	the	prompt	string	for	a	master	or	master	shortcut.

Version	added

2.0

Syntax

strRet	=	object.Prompt

object.Prompt	=	strVal
strRet String.	The	current	prompt	string.
object Required.	An	expression	that	returns	a	Master	or

MasterShortcut	object.
strVal String.	The	new	prompt	string.

See	also Example

PromptForSummary	property

					 					

Determines	whether	Microsoft	Visio	prompts	for	document	properties	when	it
saves	a	document.

Version	added

4.0

Syntax

intRet	=	object.PromptForSummary
object.PromptForSummary	=	intExpression
intRet Integer.	Zero	(0)	if	prompting	is	off;	-1	if	it	is	on.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	Zero	(0)	to	turn	prompting	off;	non-zero	to

turn	it	on.

Remarks

This	property	corresponds	to	the	Prompt	for	document	properties	check	box

on	the	Save	tab	in	the	Options	dialog	box	(click	Options	on	the	Tools	menu).

Protection	property

				 					

Determines	how	an	object	is	protected	from	user	customization.

Version	added

2000

Syntax

intRet	=	object.Protection
object.Protection	=	intExpression
intRet Integer.	The	existing	protections	for	a	MenuSet	or	Toolbar

object.
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object.
intExpression Required	Integer.	The	new	protections	for	a	MenuSet	or

Toolbar	object.

Remarks

See	also

The	value	of	intExpression	can	be	one	or	a	combination	of	the	following
constants	declared	by	the	Visio	type	library	in	VisUIBarProtection.

Constant Value Description
visBarNoProtection 0 No	protection.
visBarNoCustomize 1 Can't	be	customized.
visBarNoResize 2 Can't	be	resized.
visBarNoMove 4 Can't	be	moved.
visBarNoChangeDock 16 Can't	be	docked	or	floating.
visBarNoVerticalDock 32 Can't	be	docked	vertically.
visBarNoHorizontalDock 64 Can't	be	docked	horizontally.

Protection	property	(Document
object)

				 				

Determines	how	a	document	is	protected	from	user	customization.

Version	added

2002

Syntax

retVal	=	object.Protection	([bstrPassword])
object.Protection	([bstrPassword])	=	newValue
retVal VisProtection.	The	current	protection	settings.
object Required.	An	expression	that	returns	a	Document	object.
bstrPassword Optional	Variant.	The	existing	password.
newValue Required	VisProtection.	The	new	protection	settings.

Remarks

Example

If	the	document	is	password	protected,	you	must	provide	the	existing	password
to	set	the	Protection	property.	If	you	provide	an	incorrect	password,	the
Protection	property	will	raise	an	exception.

The	Protection	property	ignores	bstrPassword	when	you	are	getting	the	value	of
the	property.

This	property	is	the	equivalent	of	checking	the	Styles,	Shape,	Preview,
Backgrounds,	and	Master	shapes	boxes	on	the	Protect	Document	dialog	box
(in	the	Drawing	Explorer,	right-click	the	drawing	name,	and	then	click	Protect
Document).	If	there	is	an	existing	password,	you	must	first	remove	it	by
entering	it	in	the	Unprotect	Document	dialog	box	(in	the	Drawing	Explorer,
right-click	the	drawing	name,	and	click	Unprotect	Document).

The	value	of	retVal	and	newVal	can	be	a	combination	of	the	following
VisProtection	constants.

Constant Value
visProtectNone &H0
visProtectStyles &H1
visProtectShapes &H2
visProtectMasters &H4
visProtectBackgrounds &H8
visProtectPreviews &H10

ptx	property

			 				

Gets	or	sets	the	pt.x	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

intRet	=	object.ptx
object.ptx	=	intExpression
intRet Long.	The	x-coordinate	of	the	cursor	position	when	this

message	was	posted.
object Required.	An	expression	that	returns	a	MSGWrap	object.
intExpression Required	Long.	The	new	value	of	the	pt.x	field.

Remarks

The	ptx	property	corresponds	to	the	pt.x	field	in	the	MSG	structure	defined	as
part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler	is	handling
the	OnKeystrokeMessageForAddon	event,	Visio	passes	a	MSGWrap	object
as	an	argument	when	this	event	fires.	A	MSGWrap	object	is	a	wrapper	around
the	Windows	MSG	structure.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

See	also Example

http://msdn.microsoft.com

pty	property

			 				

Gets	or	sets	the	pt.y	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

intRet	=	object.pty
object.pty	=	intExpression
intRet Long.	The	y-coordinate	of	the	cursor	position	when	this

message	was	posted.
object Required.	An	expression	that	returns	a	MSGWrap	object.
intExpression Required	Long.	The	new	value	of	the	pt.y	field.

Remarks

The	pty	property	corresponds	to	the	pt.y	field	in	the	MSG	structure	defined	as
part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler	is	handling
the	OnKeystrokeMessageForAddon	event,	Visio	passes	a	MSGWrap	object
as	an	argument	when	this	event	fires.	A	MSGWrap	object	is	a	wrapper	around
the	Windows	MSG	structure.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

See	also Example

http://msdn.microsoft.com

ReadOnly	property

			 				

Indicates	whether	a	file	is	open	as	read-only.

Version	added

2.0

Syntax

intRet	=	object.ReadOnly
intRet Integer.	Non-zero	(True)	if	the	document	is	open	as	read-only;

otherwise,	0	(False).
object Required.	An	expression	that	returns	a	Document	object.

See	also Example

Red	property

				 				

Gets	or	sets	the	intensity	of	the	red	component	of	a	Color	object.

Version	added

4.0

Syntax

intRet	=	object.Red
object.Red	=	intVal
intRet Integer.	The	current	value	of	the	color's	red	component.
object Required.	An	expression	that	returns	a	Color	object.
intVal Required	Integer.	The	new	value	of	the	color's	red	component.

Remarks

The	Red	property	can	be	a	value	from	zero	(0)	to	255.

A	color	is	represented	by	red,	green,	and	blue	components.	It	also	has	flags	that

Example

indicate	how	the	color	is	to	be	used.	These	correspond	to	members	of	the
Microsoft	Windows	PALETTEENTRY	data	structure.	For	details,	search	for
"PALETTEENTRY"	in	the	Microsoft	Platform	SDK	on	the	Microsoft	Developer
Network	(MSDN)	Web	site.

http://msdn.microsoft.com

Result	property

					 					

Gets	or	sets	a	cell's	value.

Version	added

2.0

Syntax

retVal	=	object.Result	(unitsNameOrCode)
object.Result	(unitsNameOrCode)	=	newValue
retVal Double.	The	value	in	the	cell.
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	retrieving	or

setting	the	cell's	value.
newValue Required	Double.	The	new	value	for	the	cell.

Remarks

Use	the	Result	property	to	set	the	value	of	an	unguarded	cell.	If	the	cell's

formula	is	protected	with	the	GUARD	function,	the	formula	is	not	changed	and
an	error	is	generated.	If	the	cell	contains	only	a	text	string,	then	zero	(0)	is
returned.	If	the	string	is	invalid,	an	error	is	generated.

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	For	example,
the	following	statements	all	set	unitsNameOrCode	to	inches.

retVal	=	Cell.Result(visInches)

retVal	=	Cell.Result(65)

retVal	=	Cell.Result("in")	where	"in"	can	also	be	any	of	the	alternate	strings
representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

To	specify	internal	units,	pass	a	zero-length	string	("").	Internal	units	are	inches
for	distance	and	radians	for	angles.	To	specify	implicit	units,	you	must	use	the
Formula	property.

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

ResultForce	property

				 				

Sets	a	cell's	value,	even	if	the	cell's	formula	is	protected	with	the	GUARD
function.

Version	added

2.0

Syntax

object.ResultForce	(unitsNameOrCode)	=	newValue
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	setting	the	cell's

value.
newValue Required	Double.	The	new	value	for	the	cell.

Remarks

Use	the	ResultForce	method	to	set	a	cell's	value	even	if	the	cell's	formula	is
protected	with	a	guard	function.	If	the	string	is	invalid,	an	error	is	generated.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	For	example,
the	following	statements	all	set	unitsNameOrCode	to	inches.

Cell.ResultForce(visInches)	=	newValue

Cell.ResultForce(65)	=	newValue

Cell.ResultForce("in")	=	newValue	where	"in"	can	also	be	any	of	the	alternate
strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

To	specify	internal	units,	pass	a	zero-length	string	("").	Internal	units	are	inches
for	distance	and	radians	for	angles.	To	specify	implicit	units,	you	must	use	the
Formula	property.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

ResultFromInt	property

				 				

Sets	the	value	of	a	cell	to	an	integer	value.

Version	added

4.5

Syntax

object.ResultFromInt(unitsNameOrCode)	=	newValue
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	setting	the	cell's

value.
newValue Required	Long.	The	new	value	for	the	cell.

Remarks

Setting	the	ResultFromInt	property	is	similar	to	setting	a	cell's	Result	property.
The	difference	is	that	the	ResultFromInt	property	accepts	an	integer	for	the
value	of	the	cell,	whereas	the	Result	property	accepts	a	floating	point	number.

Example

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

Cell.ResultFromInt(visInches)	=	newValue

Cell.ResultFromInt(65)	=	newValue

Cell.ResultFromInt("in")	=	newValue	where	"in"	can	also	be	any	of	the
alternate	strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

If	the	cell's	formula	is	protected	with	a	GUARD	function,	use	the
ResultFromIntForce	property.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

ResultFromIntForce	property

				 				

Sets	the	value	of	a	cell	to	an	integer	value,	even	if	the	cell's	formula	is	protected
with	the	GUARD	function.

Version	added

4.0

Syntax

object.ResultFromIntForce(unitsNameOrCode)	=	newValue
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	setting	the	cell's	value.
newValue Required	Long.	The	new	value	for	the	cell.

Remarks

Use	the	ResultFromIntForce	property	to	set	a	cell's	value	even	if	the	cell's
formula	is	protected	with	a	GUARD	function.	Otherwise,	it	is	identical	in
behavior	to	the	ResultFromInt	property.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

ResultInt	property

				 				

Gets	the	value	of	a	cell	expressed	as	an	integer.

Version	added

4.0

Syntax

intRet	=	object.ResultInt(unitsNameOrCode,roundFlag)
intRet Long.	The	cell's	value	returned	as	an	integer.
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	retrieving	the	cell's

value.
roundFlag Required	Integer.	Zero	(0)	to	truncate	the	value;	non-zero	to

round	it.

Remarks

Setting	the	ResultInt	property	is	similar	to	a	setting	a	cell's	Result	property.	The

Example

difference	is	that	the	ResultInt	property	returns	an	integer	for	the	value	of	the
cell,	whereas	the	Result	property	returns	a	floating	point	number.

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

intRet	=	Cell.ResultInt(visInches,	roundFlag)

intRet	=	Cell.ResultInt(65,	roundFlag)

intRet	=	Cell.ResultInt("in",	roundFlag)	where	"in"	can	also	be	any	of	the
alternate	strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

The	following	constants	for	roundFlag	are	declared	in	the	Visio	type	library	in
member	VisRoundFlags.

Constant Value Description
visTruncate 0 Truncate	the	result
visRound 1 Round	the	result

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

ResultIU	property

				 				

Gets	or	sets	a	cell's	value	in	internal	units.

Version	added

2.0

Syntax

retVal	=	object.ResultIU
object.ResultIU	=	newValue
retVal Double.	The	cell's	value	in	internal	units.
object Required.	An	expression	that	returns	a	Cell	object.
newValue Required	Double.	The	new	value	for	the	cell.

Remarks

Use	the	ResultIU	property	to	set	the	value	of	an	unguarded	cell.	If	a	cell's
formula	is	protected	with	a	GUARD	function,	the	formula	is	not	changed	and	an
error	is	generated.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

The	units	default	to	the	Visio	internal	units,	which	are	inches	for	distance	and
radians	for	angles.

ResultIUForce	property

				 				

Sets	a	cell's	value	in	internal	units,	even	if	the	cell's	formula	is	protected	with	the
GUARD	function.

Version	added

2.0

Syntax

object.ResultIUForce	=	newValue
object Required.	An	expression	that	returns	a	Cell	object.
newValue Required	Double.	The	new	value	for	the	cell.

Remarks

The	cell's	units	default	to	the	Visio	internal	units,	which	are	inches	for	distance
and	radians	for	angles.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(D-G)_1435.htm

ResultStr	property

					 					

Gets	the	value	of	a	cell	expressed	as	a	string.

Version	added

4.0

Syntax

stringRet	=	object.ResultStr(unitsNameOrCode)
stringRet String.	The	cell's	value	returned	as	a	string.
object Required.	An	expression	that	returns	a	Cell	object.
unitsNameOrCode Required	Variant.	The	units	to	use	when	retrieving	the

value.

Remarks

Setting	the	ResultStr	property	is	similar	to	setting	a	cell's	Result	property.	The
difference	is	that	ResultStr	property	returns	a	string	for	the	value	of	the	cell,
whereas	the	Result	property	returns	a	floating	point	number.

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

stringRet	=	Cell.ResultStr(visInches)

stringRet	=	Cell.ResultStr(65)

stringRet	=	Cell.ResultStr("in")	where	"in"	can	also	be	any	of	the	alternate
strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

Passing	a	zero	(0)	is	sufficient	for	getting	the	value	of	text	string	cells.

You	can	use	the	ResultStr	property	to	convert	between	units.	For	example,	you
can	get	the	value	in	inches,	then	get	an	equivalent	value	in	centimeters.

The	ResultStr	property	is	useful	for	filling	controls	such	as	edit	boxes	with	the
value	of	a	cell.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

RightMargin	property

				 				

Specifies	the	right	margin,	which	is	used	when	printing.

Version	added

4.0

Syntax

retVal	=	object.RightMargin([unitsNameOrCode])
object.RightMargin([unitsNameOrCode])	=	newValue
retVal Double.	The	margin	value	expressed	in	the	given	units.
object Required.	An	expression	that	returns	a	Document	object.
unitsNameOrCodeOptional	Variant.	The	units	to	use	when	retrieving	or	setting

the	margin	value.
newValue Required	Double.	The	new	margin	value.

Remarks

If	unitsNameOrCode	is	not	provided,	the	RightMargin	property	will	default	to

Example

internal	drawing	units	(inches).

The	RightMargin	property	corresponds	to	the	Right	setting	in	the	Print	Setup
dialog	box	(click	Page	Setup	on	the	File	menu,	and	then	click	Setup).

You	can	specify	unitsNameOrCode	as	an	integer	or	a	string	value.	If	the	string	is
invalid,	an	error	is	generated.	For	example,	the	following	statements	all	set
unitsNameOrCode	to	inches.

Cell.RightMargin(visInches)	=	newValue

Cell.RightMargin	(65)	=	newValue

Cell.RightMargin	("in")	=	newValue	where	"in"	can	also	be	any	of	the	alternate
strings	representing	inches,	such	as	"inch",	"in.",	or	"i".

For	a	complete	list	of	valid	unit	strings	along	with	corresponding	Automation
constants	(integer	values),	see	About	units	of	measure.

Automation	constants	for	representing	units	are	declared	by	the	Visio	type
library	in	member	VisUnitCodes.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

RootShape	property

			 				

Returns	the	top-level	shape	of	an	instance	if	this	shape	is	part	of	a	master
instance.

Version	added

2002

Syntax

objRet	=	object.RootShape
objRet The	Shape	object	that	is	the	top	level	shape	of	this	instance.
object Required.	An	expression	that	returns	a	Shape	object.

Remarks

If	this	shape	is	not	part	of	a	master	instance	the	RootShape	property	returns
Nothing.

See	also Example

Row	property

				 				

Returns	the	row	index	of	a	cell	or	layer.

Version	added

4.0

Syntax

intRet	=	object.Row
intRet Integer.	The	index	of	the	row	that	defines	the	cell	or	layer.
object Required.	An	expression	that	returns	a	Cell,	Hyperlink,	Layer,

or	Section	object.

Example

RowCount	property

					 					

Returns	the	number	of	rows	in	a	ShapeSheet	section.

Version	added

2.0

Syntax

retVal	=	object.RowCount	(section)
retVal Integer.	The	number	of	rows	in	the	section.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	section	to	count.

Remarks

The	section	argument	must	be	a	section	constant.	For	a	list	of	section	constants,
see	the	AddSection	method.

Use	the	RowCount	property	primarily	with	sections	that	contain	a	variable
number	of	rows,	such	as	Geometry	and	Connection	Points	sections.	The	value

returned	by	the	RowCount	property	for	sections	that	have	a	fixed	number	of
rows	is	the	number	of	rows	in	the	section	that	possess	at	least	one	cell	whose
value	is	local	to	the	shape.	This	is	opposed	to	rows	whose	cells	are	all	inherited
from	a	master	or	style,	which	is	typically	better	because	Visio	doesn't	need	to
store	as	much	information.	In	the	ShapeSheet	window,	cells	with	local	values
appear	in	blue,	and	cells	with	inherited	values	appear	in	black.	Using
Automation,	you	can	determine	if	a	cell	is	inherited	using	the	IsInherited
property.

RowExists	property

				 				

Determines	whether	a	ShapeSheet	row	exists.

Version	added

4.0

Syntax

intRet	=	object.RowExists(section,	row,	fExistsLocally)
intRet Integer.	False	(0)	if	row	doesn't	exist;	otherwise,	True	(-1).
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	row's	section	index.
row Required	Integer.	The	row's	row	index.
fExistsLocally Required	Integer.	The	scope	of	the	search.

Remarks

If	fExistsLocally	is	False	(0),	the	RowExists	property	returns	True	if	the	object
either	contains	or	inherits	the	specified	row.

Example

If	fExistsLocally	is	True	(non-zero),	the	RowExists	property	returns	True	only
if	the	object	contains	the	specified	row	locally;	if	the	row	is	inherited,	the
RowExists	property	returns	False.

For	a	list	of	row	index	values,	see	the	AddRow	method	or	view	the	Visio	type
library	for	the	members	of	class	visRowIndices.	For	a	list	of	section	index
values,	see	the	AddSection	method	or	view	the	Visio	type	library	for	the
members	of	class	visSectionIndices.

RowIndex	property

				 				

Gets	or	sets	the	docking	order	of	a	MenuSet	or	Toolbar	object	in	relation	to
other	items	in	the	same	docking	area.

Version	added

2000

Syntax

intLong	=	object.RowIndex
object.	RowIndex	=	intLong
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object.
intLong Required	Integer.

Remarks

Objects	with	lower	numbers	are	docked	first.	Several	items	can	share	the	same
row	index.	If	two	or	more	items	share	the	same	row	index,	the	item	most

Example

recently	assigned	is	displayed	first	in	its	group.

Constants	representing	the	first	and	last	positions	(see	the	following	table)	are
declared	by	the	Visio	type	library	in	member	visUIBarRow.

Constant Value
visBarRowFirst 0
visBarRowLast -1

RowName[U]	property

				 				

Gets	or	sets	the	name	of	the	row	that	contains	the	Cell	object.

Version	added

4.0

Syntax

strRet	=	object.RowName
object.RowName	=	stringExpression
strRet String.	The	current	name	of	the	row.
object Required.	An	expression	that	returns	a	Cell	object.
stringExpression Required	String.	The	new	name	to	assign	to	the	row.

Remarks

If	the	cell	is	in	a	row	in	a	shape's	User-defined	Cells,	Custom	Properties,	or
Connection	Points	section,	the	RowName	property	can	get	or	set	the	name	of	the
row.	If	the	cell	is	not	in	one	of	these	sections,	attempting	to	get	or	set	the	name

Example

generates	an	error.

The	Connection	Points	section	can	contain	either	named	or	unnamed	rows,	but
not	a	combination	of	the	two.	Getting	the	name	of	an	unnamed	Connection
Points	row	returns	a	zero-length	string	("")	and	does	not	generate	an	error.
Setting	the	name	of	an	unnamed	row	in	a	Connection	Points	row	assigns	the
name	to	the	target	row	and	converts	all	remaining	rows	in	the	section	to	named
rows,	using	their	default	names	(Row_1,	Row_2,	and	so	on).	Assigning	a	zero-
length	string	("")	to	a	named	row	in	a	Connection	Points	section	resets	the
named	row	to	its	default	name,	but	has	no	effect	on	an	unnamed	Connection
Points	row.

When	you	change	a	row	name,	any	cell	objects	referring	to	cells	in	that	row
become	invalid	and	you	must	reassign	them.	Also,	if	other	Connection	Points
rows	become	named	as	a	result	of	a	row	name	change,	you	must	also	reassign
references	to	cells	in	those	rows.

Note	Beginning	with	Visio	2000,	you	can	refer	to	Visio	shapes,	masters,	styles,
pages,	rows,	and	layers	using	local	and	universal	names.	When	a	user	names	a
shape,	for	example,	the	user	is	specifying	a	local	name.	Universal	names	are	not
visible	through	the	user	interface.	As	a	developer,	you	can	use	universal	names
in	a	program	when	you	don't	want	to	change	a	name	each	time	a	solution	is
localized.	Use	the	RowName	property	to	get	or	set	an	object's	local	row	name.
Use	the	RowNameU	property	to	get	or	set	an	object's	universal	row	name.

RowsCellCount	property

				 				

Returns	the	number	of	cells	in	a	row	of	a	ShapeSheet	section.

Version	added

2.0

Syntax

intRet	=	object.RowsCellCount	(section,	row)
intRet Integer.	The	number	of	cells	in	the	row.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	index	of	the	section	that	contains	the

row.
row Required	Integer.	The	index	of	the	row	to	count.

Remarks

Use	section	and	row	index	constants	declared	by	the	Visio	type	library	in
members	VisSectionIndices	and	VisRowIndices.	They	are	also	listed	in	the

Example

AddRow	and	AddSection	method	topics.

RowType	property

					 					

Gets	or	sets	the	type	of	a	row	in	a	Geometry,	Connection	Points,	Controls,	or
Tabs	ShapeSheet	section.

Version	added

2.0

Syntax

retVal	=	object.RowType	(section,	row)
object.RowType	(section,	row)	=	rowTag
retVal Integer.	The	current	type	of	the	row.
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	index	of	the	section	that	contains	the

row.
row Required	Integer.	The	index	of	the	row.
rowTag Required	Integer.	The	new	type	for	the	row.

Remarks

After	you	change	a	row's	type,	the	new	row	type	may	or	may	not	have	the	same
cells.	Your	program	must	provide	the	appropriate	formulas	for	the	new	or
changed	cells.

The	rowType	argument	specifies	the	type	of	row	you	want.	You	can	use	any	of
the	following	constants	declared	by	the	Visio	type	library	in	member
VisRowTags.

Constant Value
visTagComponent 137
visTagMoveTo 138
visTagLineTo 139
visTagArcTo 140
visTagInfiniteLine 141
visTagEllipse 143
visTagEllipticalArcTo 144
visTagSplineBeg 165
visTagSplineSpan 166
visTagPolylineTo 193
visTagNURBSTo 195
visTagTab0 136
visTagTab2 150
visTagTab10 151
visTagTab60 181
visTagCnnctPt 153
visTagCnnctNamed 185
visTagCtlPt 162
visTagCtlPtTip 170

If	an	inappropriate	row	tag	is	passed	or	the	row	does	not	exist,	no	changes	occur
and	an	error	is	returned.

Use	the	RowName	property	to	transition	from	unnamed	to	named	Connection
Points	rows.

See	the	AddRow	method	for	a	list	of	valid	row	constants	and	row	tag	constants.

See	the	AddSection	method	for	a	list	of	valid	section	constants.

RunBegin	property

				 				

Returns	the	beginning	index	of	a	type	of	run—a	sequence	of	characters	that
share	a	particular	attribute,	such	as	character,	paragraph,	or	tab	formatting;	or	a
word,	paragraph,	or	field.

Version	added

3.0

Syntax

intRet	=	object.RunBegin(runType)
intRet Long.	The	beginning	index	of	the	run.
object Required.	An	expression	that	returns	a	Characters	object.
runType Required	Integer.	The	type	of	run	to	get.

Remarks

In	a	ShapeSheet	window,	each	row	in	the	Character	and	Paragraph	sections
represents	a	run	of	the	corresponding	format	in	a	shape's	text.	Certain	words	may
be	bold	or	italic,	or	one	paragraph	may	be	centered	and	another	left-aligned.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(A-C)_1246.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(J-R)_1253.htm

Each	change	of	format	represents	a	run	of	that	format.	Similarly,	delimiters	such
as	spaces	and	paragraph	marks	represent	the	beginning	and	end	of	words,
paragraphs,	and	fields.

In	addition,	you	can	retrieve	rows	that	represent	runs	of	character,	paragraph,
and	tab	formats	by	specifying	a	row	index	as	an	argument	to	the	CellsSRC
property	of	a	shape.

Use	the	RunBegin	property	to	determine	the	beginning	of	a	sequence	of
identically	formatted	characters	or	the	beginning	of	a	word,	paragraph,	or	field.
You	can	check	the	IsField	property	to	determine	whether	a	run	is	a	field.

The	index	that	the	RunBegin	property	returns	is	less	than	or	equal	to	the
beginning	index	of	a	Characters	object.	If	the	Begin	property	of	the
Characters	object	is	already	at	the	start	of	a	run,	the	value	of	the	RunBegin
property	is	equal	to	the	value	of	Begin.

Use	the	runType	argument	to	specify	the	type	of	run	you	want.	You	can	also	use
any	of	the	following	constants	declared	by	the	Visio	type	library	in	member
VisRunTypes.

Constant Value Description
visCharPropRow 1 Reports	runs	of	characters	with

common	character	properties.
Corresponds	to	set	of	characters
covered	by	one	row	in	shape's
Character	section.

visParaPropRow 2 Reports	runs	of	characters	with
common	paragraph	properties.
Corresponds	to	set	of	characters
covered	by	one	row	in	shape's
Paragraph	section.

visTabPropRow 3 Reports	runs	of	characters	with
common	tab	properties.
Corresponds	to	set	of	characters
covered	by	one	row	in	shape's	Tabs
section.

visWordRun 10 Reports	runs	whose	boundaries	are
between	successive	words	in

shape's	text.	Mimics	double-
clicking	to	select	text.

visParaRun 11 Reports	runs	whose	boundaries	are
between	successive	paragraphs	in
shape's	text.	Mimics	triple-clicking
to	select	text.

visFieldRun 20 Reports	runs	whose	boundaries	are
between	characters	that	are	and
aren't	the	result	of	the	expansion	of
a	text	field,	or	between	characters
that	are	the	result	of	the	expansion
of	distinct	text	fields.

RunEnd	property

				 				

Returns	the	ending	index	of	a	type	of	run—a	sequence	of	characters	that	share	a
particular	attribute,	such	as	character,	paragraph,	or	tab	formatting;	or	a	word,
paragraph,	or	field.

Version	added

3.0

Syntax

intRet	=	object.RunEnd(runType)
intRet Long.	The	ending	index	of	the	run.
object Required.	An	expression	that	returns	a	Characters	object.
runType Required	Integer.	The	type	of	run	to	get.

Remarks

In	a	ShapeSheet	window,	each	row	in	the	Character	and	Paragraph	sections
represents	a	run	of	the	corresponding	format	in	a	shape's	text.	Certain	words	may
be	bold	or	italic,	or	one	paragraph	may	be	centered	and	another	left-aligned.

Example

Each	change	of	format	represents	a	run	of	that	format.	Similarly,	delimiters	such
as	spaces	and	paragraph	marks	represent	the	beginning	and	end	of	words,
paragraphs,	and	fields.

In	addition,	you	can	retrieve	rows	that	represent	runs	of	character,	paragraph,
and	tab	formats	by	specifying	a	row	index	as	an	argument	to	the	CellsSRC
property	of	a	shape.

Use	the	RunEnd	property	to	determine	the	end	of	a	sequence	of	identically
formatted	characters	or	the	end	of	a	word,	paragraph,	or	field.	You	can	check	the
IsField	property	to	determine	whether	a	run	is	a	field.

The	index	that	the	RunEnd	property	returns	is	greater	than	or	equal	to	the
ending	index	of	a	Characters	object.	If	the	End	property	of	the	Characters
object	is	already	at	the	end	of	a	run,	the	value	of	the	RunEnd	property	is	equal
to	the	value	of	the	End	property.

Use	the	runType	argument	to	specify	the	type	of	run	you	want.	You	can	also	use
any	of	the	constants	declared	by	the	Visio	type	library	in	VisRunTypes.	To	find
a	list	of	runType	values,	see	the	RunBegin	property.

Saved	property

				 					

Determines	whether	a	document	has	any	unsaved	changes.

Version	added

2.0

Syntax

boolRet	=	object.Saved
object.Saved	=	boolExpression
boolRet Boolean.	True	if	the	document	has	no	unsaved	changes;

otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
boolExpression Required	Boolean.	True	to	indicate	the	document	is	saved;

False	to	indicate	unsaved	changes.

Remarks

Setting	the	Saved	property	for	a	document	to	True	should	be	done	with	caution.

See	also

If	you	set	the	Saved	property	to	True	and	a	user,	or	another	program,	makes
changes	to	the	document	before	it	is	closed	those	changes	will	be	lost—Visio
does	not	provide	a	prompt	to	save	the	document.

A	document	that	contains	embedded	or	linked	OLE	objects	may	report	itself	as
unsaved	even	if	the	document's	Saved	property	is	set	to	True.

SavePreviewMode	property

			 				

Determines	how	a	preview	picture	is	saved	in	a	file.

Version	added

4.0

Syntax

retVal	=	object.SavePreviewMode
object.SavePreviewMode	=	newVal
retVal VisSavePreviewMode.	The	type	of	preview	picture	that	Visio

saves.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisSavePreviewMode.	The	type	of	preview	picture

that	Visio	saves.

Remarks

The	value	of	the	SavePreviewMode	property	is	equivalent	to	the	Preview
setting	on	the	Summary	tab	in	the	Properties	dialog	box	(click	Properties	on
the	File	menu).	A	preview	of	the	first	page	appears	in	the	Open	dialog	box.	The
value	of	retVal	and	newVal	can	be	one	of	the	following	VisSavePreviewMode
constants.

Constant Value Description

See	also Example

visSavePreviewNone 0 No	preview	picture.
visSavePreviewDraft1st 1 The	first	page	with	only	Visio

shapes.	Does	not	include
embedded	objects,	text,	or
gradient	fills.

visSavePreviewDetailed1st 2 The	first	page	with	all	objects.
visSavePreviewDraftAll 4 All	file	pages	with	only	Visio

shapes.	Does	not	include
embedded	objects,	text,	or
gradient	fills.

visSavePreviewDetailedAll 8 All	file	pages	with	all	objects.

ScreenUpdating	property

					 					

Determines	whether	the	screen	is	updated	(redrawn)	during	a	series	of	actions.

Version	added

3.0

Syntax

intRet	=	object.ScreenUpdating
object.ScreenUpdating	=	intExpression
intRet Integer.	Zero	(0)	if	screen	updating	is	off;	-1	if	screen	updating

is	on.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	Zero	(0)	to	turn	screen	updating	off;	non-

zero	to	turn	screen	updating	on.

Remarks

Use	the	ScreenUpdating	property	to	increase	performance	during	a	series	of

actions.	For	example,	you	can	turn	off	screen	updating	while	a	series	of	shapes
are	created	so	the	screen	is	not	redrawn	after	each	shape	appears,	and	then	turn
screen	updating	on	to	update	the	screen.

If	you	send	a	large	number	of	commands	to	a	Visio	instance	while	screen
updating	is	turned	off,	the	Visio	instance	may	redisplay	the	screen	occasionally
in	order	to	flush	its	buffers.

If	a	program	neglects	to	turn	screen	updating	on	after	turning	it	off,	the	Visio
instance	turns	screen	updating	back	on	when	a	user	performs	an	operation.

Note	Beginning	with	Visio	2000,	the	ShowChanges	property	is	included.	The
ShowChanges	and	ScreenUpdating	properties	are	similar	in	that	they	are	both
designed	to	increase	performance	during	a	series	of	actions,	but	they	work
differently.	Setting	the	ShowChanges	property	also	sets	the	ScreenUpdating
property,	but	setting	the	ScreenUpdating	property	does	not	set	the
ShowChanges	property.	For	information	comparing	these	two	properties,	see	the
ShowChanges	property.

Section	property

				 				

Returns	the	requested	Section	object	belonging	to	a	shape	or	style.

Version	added

4.0

Syntax

objRet	=	object.Section(index)
objRet The	Section	object	that	corresponds	to	the	index.
object Required.	An	expression	that	returns	a	Shape	or	Style	object.
index Required	Integer.	A	section	index.

Remarks

Constants	representing	sections	are	prefixed	with	visSection	and	are	declared	by
the	Visio	type	library	in	VisSectionIndices.	You	can	also	view	a	list	of	constants
in	the	AddSection	method.

Example

Section	property	(Cell	object)

				 				

Returns	the	index	of	the	cell's	section.

Version	added

4.0

Syntax

intRet	=	object.Section
intRet Integer.	The	index	of	the	cell's	section.
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

Constants	representing	sections	are	prefixed	with	visSection	and	are	declared	by
the	Visio	type	library	in	VisSectionIndices.	You	can	also	view	a	list	of	constants
in	the	AddSection	method.

Example

SectionExists	property

				 				

Determines	whether	a	ShapeSheet	section	exists	for	a	particular	shape.

Version	added

4.0

Syntax

intRet	=	object.SectionExists(section,	fExistsLocally)
intRet Integer.	False	(0)	if	section	doesn't	exist;	otherwise,	True	(1).
object Required.	An	expression	that	returns	a	Shape	object.
section Required	Integer.	The	section	index.
fExistsLocally Required	Integer.	The	scope	of	the	search.

Remarks

If	fExistsLocally	is	False	(0),	the	SectionExists	property	returns	True	if	the
object	either	contains	or	inherits	the	section.	If	fExistsLocally	is	True	(non-zero),
the	SectionExists	property	returns	True	only	if	the	object	contains	the	section

Example

locally;	if	the	section	is	inherited,	the	SectionExists	property	returns	False.

Constants	representing	sections	are	prefixed	with	visSection	and	are	declared	by
the	Visio	type	library	in	VisSectionIndices.	You	can	also	view	a	list	of	constants
in	the	AddSection	method.

Selection	property

					 					

Returns	a	Selection	object	that	represents	what	is	presently	selected	in	the
window.

Version	added

2.0

Syntax

objRet	=	object.Selection
objRet A	Selection	object.
object Required.	An	expression	that	returns	a	Window	object.

Remarks

The	Selection	object	is	independent	of	the	selection	in	the	window,	which	can
subsequently	change	as	a	result	of	user	actions.

A	Selection	object	is	a	set	of	shapes	in	a	common	context	on	which	you	can
perform	actions.	A	Selection	object	is	analogous	to	more	than	selected	shapes	in

a	drawing	window.	Once	you	retrieve	a	Selection	object,	you	can	change	the	set
of	shapes	the	object	represents	using	the	Select	method.

SetID	property

				 				

Returns	the	set	ID	of	an	AccelTable,	Menuset,	or	Toolbar	object	in	its
collection.

Version	added

4.0

Syntax

intRet	=	object.SetID
intRet Long.	The	set	ID	of	the	object.
object Required.	An	expression	that	returns	an	AccelTable,	MenuSet,

or	ToolbarSet	object.

Remarks

Each	AccelTable,	MenuSet,	and	ToolbarSet	object	has	a	set	ID	that
corresponds	to	a	Visio	window	context.	For	MenuSet	objects,	IDs	also
correspond	to	shortcut	menu	sets.	And	for	ToolbarSet	objects,	they	also
correspond	to	drop-down	menus	under	toolbar	buttons	(such	as	Fill	Color	or

Example

Line	Weight).

You	can	use	the	set	ID	to	retrieve	an	object	from	its	collection	with	the
ItemAtID	property.	You	can	also	set	the	set	ID	of	an	object	using	the	AddAtID
method.

Valid	set	ID	values	are	declared	by	the	Visio	type	library	in	VisUIObjSets.

ID	constants	for	AccelTable	objects

ID	constants	for	MenuSet	objects

ID	constants	for	ToolbarSet	objects

Shape	property

					 					

Returns	the	Shape	object	that	owns	a	Cell	or	Characters	object	or	that	is
associated	with	an	OLEObject	or	Hyperlink	object.

Version	added

3.0

Syntax

objRet	=	object.Shape
objRet The	Shape	object	that	contains	or	is	associated	with	the	object.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

ShapeHelp	property

			 				

Gets	or	sets	the	help	string	used	when	the	user	clicks	Help	on	the	shortcut	menu
of	a	master	shortcut.

Version	added

2000

Syntax

strRet	=	object.ShapeHelp

object.ShapeHelp	=	strExpression
strRet String.	The	current	help	string.
object Required.	An	expression	that	returns	a	MasterShortcut	object.
strExpression Required	String.	The	new	help	string.

Remarks

If	the	help	string	is	blank,	the	Help	command	uses	the	help	string	defined	by	the
shortcut's	target	master,	determined	by	the	Help	property	of	that	master's	top-
level	shape.

See	also Example

Shapes	property

					 					

Returns	the	Shapes	collection	for	a	page,	master,	or	group.

Version	added

2.0

Syntax

objsRet	=	object.Shapes
objsRet The	Shapes	collection	of	the	object.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object	that	owns	the	collection.

Shift	property

				 				

Determines	whether	the	SHIFT	key	is	a	modifier	for	an	AccelItem	object.

Version	added

4.0

Syntax

intRet	=	object.Shift
object.Shift	=	intExpression
intRet Integer.	True	(-1)	if	modified	by	SHIFT	key;	otherwise,	False

(0).
object Required.	An	expression	that	returns	an	AccelItem	object.
intExpression Required	Integer.	True	(non-zero)	if	modified	by	SHIFT	key;

otherwise,	False	(0).

Example

ShowChanges	property

				 				

Determines	whether	the	screen	is	updated	(redrawn)	during	a	series	of	actions.

Version	added

2000

Syntax

boolRet	=	object.ShowChanges
object.ShowChanges	=	boolExpression
boolRet Boolean.	True	if	the	screen	is	updated	for	each	document

change;	False	if	it	is	not.
object Required.	An	expression	that	returns	an	Application	object.
boolExpression Required	Boolean.	True	to	update	the	screen	for	each

document	change;	False	to	leave	the	screen	unchanged.

Remarks

Use	the	ShowChanges	property	to	increase	performance	during	a	series	of

Example

actions.	For	example,	you	can	set	the	ShowChanges	property	to	False	while	a
series	of	shapes	are	created	so	the	screen	is	not	redrawn	after	each	shape
appears,	and	then	set	it	to	True	to	update	the	screen.

If	a	program	neglects	to	turn	the	ShowChanges	property	on	after	turning	it	off,
the	Visio	instance	will	turn	it	back	on	when	the	user	performs	an	operation.

The	ShowChanges	property	is	similar	to	the	ScreenUpdating	property,	which
was	implemented	in	Visio	3.0.	In	most	cases	using	the	ShowChanges	property	is
preferable	to	using	the	ScreenUpdating	property.	Setting	the	ShowChanges
property	automatically	sets	the	ScreenUpdating	property;	however,	setting	the
ScreenUpdating	property	does	not	set	the	ShowChanges	property.

When	ShowChanges	is	False,	the	Visio	instance	will	not	refresh	the	screen	as
documents	change.	All	shapes	in	drawing	and	stencil	windows	are	deselected
and	the	Visio	instance	won't	allow	programs	to	change	the	selections	of
windows.

When	only	ScreenUpdating	is	False,	the	Visio	instance	will	occasionally
refresh	the	screen	as	documents	change.	ScreenUpdating	does	not	cause
deselects	to	occur	or	restrict	selection	changes.

The	Visio	instance	will	usually	run	faster	when	both	the	ShowChanges	and
ScreenUpdating	properties	are	False	than	when	only	the	ScreenUpdating
property	is	False.	When	both	the	ShowChanges	and	ScreenUpdating	properties
are	False,	the	Visio	views	will	not	react	to	document	changes	until	the
ShowChanges	property	becomes	True.	This	can	cause	noticeable	delays	after	a
program	has	completed	a	sequence	of	many	operations.	To	cause	some	changes
to	occur	as	they	happen,	set	ScreenUpdating	to	True	immediately	after	setting
ShowChanges	to	False.	This	can	shorten	the	delay	that	occurs	after
ShowChanges	becomes	True,	but	will	probably	lengthen	the	time	to	complete
the	overall	sequence	of	actions.

ShowConnectPoints	property

				 				

Determines	whether	connection	points	are	shown	in	a	window.

Version	added

4.5

Syntax

intRet	=	object.ShowConnectPoints
object.ShowConnectPoints	=	intExpression

intRet Integer.	True	(-1)	if	connection	points	are	shown;	otherwise,
False	(0).

object Required.	An	expression	that	returns	a	Window	object.

intExpression Required	Integer.	True	(-1)	to	show	connection	points;	False
(0)	to	hide	connection	points.

Example

Remarks

Using	the	ShowConnectPoints	property	is	equivalent	to	clicking	Connection
Points	on	the	View	menu.

ShowGrid	property

					 					

Determines	whether	a	grid	is	shown	in	a	window.

Version	added

4.5

Syntax

intRet	=	object.ShowGrid
object.ShowGrid	=	intExpression
intRet Integer.	True	(-1)	if	grids	are	showing;	False	(0)	if	grids	are

hidden.
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Integer.	True	(non-zero)	to	show	a	grid;	False	(0)	to

hide	a	grid.

Remarks

Setting	the	ShowGrid	property	is	equivalent	to	clicking	Grid	on	the	View

menu.

ShowGuides	property

				 				

Determines	whether	guides	are	shown	in	a	window.

Version	added

4.5

Syntax

intRet	=	object.ShowGuides
object.ShowGuides	=	intExpression
intRet Integer.	True	(-1)	if	guides	are	showing;	False	(0)	if	guides	are

hidden.
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Integer.	True	(non-zero)	to	show	guides;	False	(0)	to

hide	guides.

Remarks

Setting	the	ShowGuides	property	is	equivalent	to	clicking	Guides	on	the	View

Example

menu.

ShowMenus	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	determined	whether	menus	were	shown	(see	the
ShowToolbar	property).

See	also Example Applies	to

ShowPageBreaks	property

				 				

Determines	whether	page	breaks	are	shown	in	a	window.

Version	added

4.5

Syntax

intRet	=	object.ShowPageBreaks
object.ShowPageBreaks	=	intExpression
intRet Integer.	True	(-1)	if	page	breaks	are	showing;	False	(0)	if	page

breaks	are	hidden.
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Integer.	True	(non-zero)	to	show	page	breaks;	False

(0)	to	hide	page	breaks.

Remarks

Setting	the	ShowPageBreaks	property	is	equivalent	to	clicking	Page	Breaks	on

Example

the	View	menu.

ShowPageTabs	property

			 				

Determines	whether	page	tab	controls	are	shown	in	the	drawing	window.

Version	added

2002

Syntax

boolRet	=	object.ShowPageTabs
object.ShowPageTabs	=	boolExpression
boolRet Boolean.	True	if	page	tabs	are	showing;	otherwise,	False.
object Required.	An	expression	that	returns	a	Window	object.
boolExpression Required	Boolean.	True	to	show	page	tabs;	otherwise,	False.

See	also Example

ShowProgress	property

					 					

Determines	whether	a	progress	indicator	is	shown	while	performing	certain
operations.

Version	added

4.1

Syntax

intRet	=	object.ShowProgress
object.ShowProgress	=	intExpression
intRet Integer.	True	(-1)	if	a	progress	indicator	is	showing;	otherwise,

False	(0).
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	True	(non-zero)	to	show	a	progress

indicator;	otherwise,	False	(0).

Remarks

If	you	want	to	perform	an	operation,	such	as	printing,	that	typically	displays	a
progress	indicator	but	you	don't	want	the	progress	indicator	to	appear,	set	the
ShowProgress	property	to	False	(0).	By	default,	the	ShowProgress	property	is
True	(non-zero).

In	most	cases	you	should	restore	the	setting	to	its	prior	value	when	you've
completed	the	operation.

ShowRulers	property

					 					

Determines	whether	rulers	are	shown	in	the	drawing	window.

Version	added

4.5

Syntax

intRet	=	object.ShowRulers
object.ShowRulers	=	intExpression
intRet Integer.	True	(-1)	if	rulers	are	showing;	False	(0)	if	rulers	are

hidden.
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Integer.	True	(non-zero)	to	show	rulers;	False	(0)	to

hide	rulers.

Remarks

Setting	the	ShowRulers	property	is	the	same	as	clicking	Rulers	on	the	View

menu.

ShowScrollBars	property

				 				

Determines	whether	scroll	bars	are	shown	in	the	drawing	window.

Version	added

2002

Syntax

intRet	=	object.ShowScrollBars
object.ShowScrollBars	=	intExpression
intRet Integer.	Non-zero	if	one	or	more	scroll	bars	are	showing;

otherwise,	zero	(0).
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Integer.	See	Remarks	for	possible	values.

Remarks

The	intExpression	argument	can	be	any	combination	of	the	following
VisScrollbarStates	constants,	which	are	declared	in	the	Visio	type	library.

Example

Constant Value
visScrollBarNeither &H0
visScrollBarHoriz &H1
visScrollBarVert &H4
visScrollBarBoth &H5

ShowStatusBar	property

					 					

Determines	whether	a	status	bar	is	shown.

Version	added

4.5

Syntax

intRet	=	object.ShowStatusBar
object.ShowStatusBar	=	intExpression
intRet Integer.	True	(-1)	if	the	status	bar	is	showing;	otherwise,	False

(0).
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	True	(-1)	to	show	a	status	bar;	False	(0)	to

hide	a	status	bar.

Remarks

The	ShowStatusBar	property	persists	each	time	you	run	the	application.	The

ShowMenus	and	ShowToolbar	properties	are	valid	for	a	Visio	instance	only.

ShowToolbar	property

				 				

Determines	whether	toolbars	and	menu	bars	are	visible.

Version	added

5.0

Syntax

intRet	=	object.ShowToolbar
object.ShowToolbar	=	intExpression
intRet Integer.	True	(-1)	if	toolbars	and	menu	bars	are	showing;

False	(0)	if	toolbars	and	menu	bars	are	hidden.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Integer.	True	(non-zero)	to	show	toolbars	and	menu

bars;	False	(0)	to	hide	toolbars	and	menu	bars.

Remarks

The	ShowToolbar	property	is	valid	for	a	Visio	instance	only.	The

Example

ShowStatusBar	property	persists	each	time	you	run	the	application.

SnapAngles	property

				 				

Determines	the	degree	of	the	angle	that	is	drawn	when	isometric	angle	lines	is
chosen	as	a	shape	extension	option.

Version	added

2002

Syntax

retVal	=	object.SnapAngles
object.SnapAngles	=	newVal
retVal Double.	An	array	of	up	to	10	entries	containing	the	current

degree(s)	of	the	isometric	angle	shape	extensions.	Separate
multiple	values	with	commas.

object Required.	An	expression	that	returns	a	Document	object.
newVal Required	Double.	An	array	of	up	to	10	entries	containing	new

degree	values(s)	of	the	isometric	angle	shape	extensions.
Separate	multiple	values	with	commas.

Example

Remarks

The	value	of	the	SnapAngles	property	is	equivalent	to	the	value	of	the
Isometric	angles	(degs)	field	on	the	Advanced	tab	in	the	Snap	&	Glue	dialog
box	(on	the	Tools	menu,	click	Snap	&	Glue).

SnapEnabled	property

			 				

Determines	whether	snap	is	active	in	the	document.

Version	added

2002

Syntax

retVal	=	object.SnapEnabled
object.SnapEnabled	=	newVal
retVal Boolean.	True	if	snap	is	active;	otherwise,	False.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	Boolean.	True	to	enable	snap	behavior;	False	to

disable	snap	behavior.

Remarks

The	value	of	the	SnapEnabled	property	is	equivalent	to	selecting	the	Snap
check	box	on	the	General	tab	in	the	Snap	&	Glue	dialog	box	(on	the	Tools
menu,	click	Snap	&	Glue).

See	also Example

SnapExtensions	property

			 				

Determines	the	shape	extensions	that	are	active	in	a	document.

Version	added

2002

Syntax

retVal	=	object.SnapExtensions
object.SnapExtensions	=	newVal
retVal VisSnapExtensions.	The	shape	extension	options	currently

active	in	a	document.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisSnapExtensions.	The	shape	extension	options	to

activate	in	a	document.

Remarks

You	can	also	set	this	value	by	checking	options	in	the	Shape	extension	options
box	on	the	Advanced	tab	in	the	Snap	&	Glue	dialog	box	(on	the	Tools	menu
click	Snap	&	Glue).

The	SnapExtensions	property	can	be	any	combination	of	the	following
VisSnapExtensions	constants,	which	are	declared	in	the	Visio	type	library.

Constant Value

See	also Example

visSnapExtNone &H0
visSnapExtAlignmentBoxExtension &H1
visSnapExtCenterAxes &H2
visSnapExtCurveTangent &H4
visSnapExtEndpoint &H8
visSnapExtMidpoint &H10
visSnapExtLinearExtension &H20
visSnapExtCurveExtension &H40
visSnapExtEndpointPerpendicular &H80
visSnapExtMidpointPerpendicular &H100
visSnapExtEndpointHorizontal &H200
visSnapExtEndpointVertical &H400
visSnapExtEllipseCenter &H800
visSnapExtIsometricAngles &H1000

SnapSettings	property

			 				

Determines	the	objects	that	shapes	snap	to	when	snap	is	active	in	the	document.

Version	added

2002

Syntax

retVal	=	object.SnapSettings
object.SnapSettings	=	newVal
retVal VisSnapSettings.	The	objects	in	a	document	that	shapes	snap

to.
object Required.	An	expression	that	returns	a	Document	object.
newVal Required	VisSnapsettings.	The	objects	in	a	document	that

shapes	snap	to.

Remarks

The	value	of	the	SnapSettings	property	is	equivalent	to	selecting	check	boxes
under	Snap	to	on	the	General	tab	in	the	Snap	&	Glue	dialog	box	(on	the	Tools
menu	click	Snap	&	Glue).

The	SnapSettings	property	can	be	any	combination	of	the	following
VisSnapSettings	constants,	which	are	declared	in	the	Visio	type	library.

Constant Value Description

See	also Example

visSnapToNone &H0 Snap	to	nothing.
visSnapToRulerSubdivisions &H1 Snap	to	tick	marks	on	the

ruler.
visSnapToGrid &H2 Snap	to	the	grid.
visSnapToGuides &H4 Snap	to	guides.
visSnapToHandles &H8 Snap	to	selection	handles.
visSnapToVertices &H10 Snap	to	vertices.
visSnapToConnectionPoints &H20 Snap	to	connection	points.
visSnapToGeometry &H100 Snap	to	the	visible	edges	of

shapes.
visSnapToAlignmentBox &H200 Snap	to	the	alignment	box.
visSnapToExtensions &H400 Snap	to	shape	extensions

options.
visSnapToDisabled &H8000 Disable	snap.
visSnapToIntersections &H10000 Snap	to	intersections.

SolutionXMLElement	property

				 				

Contains	solution-specific,	well-formed	XML	data	stored	with	a	document.

Version	added

2002

Syntax

xmlData	=	object.SolutionXMLElement	(elementName)
object.SolutionXMLElement	(elementName)	=	xmlValue
xmlData String.	The	current	XML	data	stored	in	elementName.
object Required.	An	expression	that	returns	a	Document	object.
elementName Required	String.	The	case-sensitive	name	of	the

SolutionXML	data	element.
xmlValue Required	String.	The	new	valid,	well-formed	XML	data	to

store	in	elementName.

Remarks

Example

The	value	of	elementName	must	match	the	value	of	the	SolutionXML	element's
Name	attribute.	For	example,	if	a	solution's	XML	data	began	with	the	statement
<SolutionXML	Name='somename'>,	use	the	elementName	"somename"	to
retrieve	that	data.

If	elementName	already	exists,	the	SolutionXMLElement	property	overwrites
existing	XML	data.	Use	the	SolutionXMLElementExists	property	before
writing	XML	data	to	avoid	losing	data	unintentionally.

If	elementName	does	not	exist,	the	SolutionXMLElement	property	creates	an
element	by	that	name.

Because	your	XML	data	is	validated	when	you	write	it,	you	will	typically
perform	this	operation	during	a	document	save	event	for	performance	reasons.

SolutionXMLElementCount	property

				 				

Returns	the	number	of	SolutionXML	elements	in	a	document.

Version	added

2002

Syntax

intRet	=	object.SolutionXMLElementCount
intRet Long.	The	number	of	SolutionXML	elements	in	the	document.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	first	element	in	the	document	has	an	index	of	1.

Example

SolutionXMLElementExists	property

				 				

Indicates	whether	a	named	SolutionXML	element	exists	in	the	document.

Version	added

2002

Syntax

boolRet	=	object.SolutionXMLElementExists	(elementName
boolRet Boolean.	True	(-1)	if	a	SolutionXML	element	named	elementName

exists;	False	(0)	if	it	does	not.
object Required.	An	expression	that	returns	a	Document	object.
elementName Required	String.	The	case-sensitive	name	of	the	SolutionXML

element.

Remarks

Because	the	SolutionXMLElement	property	can	overwrite	existing	XML	data,
always	use	the	SolutionXMLElementExists	property	to	verify	whether
elementName	already	exists	in	the	document.

Example

SolutionXMLElementName	property

				 				

Returns	the	name	of	the	SolutionXML	element.

Version	added

2002

Syntax

strRet	=	object.SolutionXMLElementName(index)
strRet String.	The	case-sensitive	name	of	the	SolutionXML

element.
object Required.	An	expression	that	returns	a	Document	object.
index Required	Long.	The	index	of	the	SolutionXML	element	in

the	document.

Remarks

The	only	way	to	retrieve	SolutionXML	data	is	by	name.	You	can	use	the
SolutionXMLElementName	property	to	get	the	element	name	to	pass	to	the
SolutionXMLElement	property.

Example

Spacing	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	determined	the	spacing	between	menus,	menu
items,	and	toolbar	items.

See	also Example Applies	to

SpatialNeighbors	property

					 					

Returns	a	Selection	object	that	represents	the	shapes	that	meet	certain	criteria	in
relation	to	a	specified	shape.

Version	added

2000

Syntax

objRet	=	object.SpatialNeighbors(relation,	tolerance,	flags
objRet A	Selection	object.
object Required.	An	expression	that	returns	a	Shape	object.
relation Required	Integer.	An	integer	describing	the	type	of	relationship	to	be	used.
tolerance Required	Double.	A	distance	in	internal	drawing	units	with	respect	to	the

coordinate	space	defined	by	the	parent	shape.
flags Required	Integer.	Flags	that	influence	the	type	of	entries	returned	in	results.
resultRoot Optional	Variant.	A	Shape	object	that	represents	a	page	or	group.

Remarks

For	values	of	the	relation	argument,	see	the	SpatialRelation	property.

The	flags	argument	can	be	any	combination	of	the	values	of	the	constants
defined	in	the	following	table.	These	constants	are	also	defined	in
VisSpatialRelationFlags	in	the	Visio	type	library.

Constant Value Description
visSpatialIncludeGuides &H2 Consider	a	guide's	Geometry

section.	By	default,	guides	do
not	influence	the	result.

visSpatialFrontToBack &H4 Order	items	front	to	back.
visSpatialBackToFront &H8 Order	items	back	to	front.
visSpatialIncludeHidden &H10 Consider	hidden	Geometry

sections.	By	default,	hidden
Geometry	sections	do	not
influence	the	result.

visSpatialIgnoreVisible &H20 Do	not	consider	visible
Geometry	sections.	By	default,
visible	Geometry	sections
influence	the	result.

Use	the	NoShow	cell	to	determine	whether	a	Geometry	section	is	hidden	or
visible.	Hidden	Geometry	sections	have	a	value	of	TRUE	and	visible	Geometry
sections	have	a	value	of	FALSE	in	the	NoShow	cell.

Beginning	with	Visio	2002,	if	flags	contains	VisSpatialFrontToBack,	items	in
the	Selection	object	returned	by	the	SpatialNeighbors	property	are	ordered
front	to	back.	If	visSpatialBackToFront	is	set,	the	items	returned	are	ordered
back	to	front.	If	this	flag	is	not	set,	or	if	you	are	running	an	earlier	version	of
Visio,	the	order	is	unpredictable.	You	can	determine	the	order	using	the	Index
property	of	the	shapes	identified	in	the	Selection	object.

If	you	don't	specify	resultRoot,	this	property	returns	a	Selection	object	that
represents	the	shapes	that	meet	certain	criteria	in	relation	to	the	specified	shape.
If	you	specify	resultRoot,	this	property	returns	a	Selection	object	that	represents
all	the	shapes	in	the	Shape	object	specified	by	resultRoot	that	meet	certain
criteria	in	relation	to	the	specified	shape.	For	example,	specify	resultRoot	to	find
all	shapes	within	a	group	that	are	near	a	specified	shape.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1210.htm

If	resultRoot	is	specified	but	isn't	on	the	same	page	or	in	the	same	master	as	the
Shape	object	to	which	you	are	comparing	it,	the	SpatialNeighbors	property
raises	an	exception	and	returns	Nothing.

If	relation	is	not	specified,	the	SpatialNeighbors	property	uses	all	the	possible
relationships	as	criteria.

The	SpatialNeighbors	property	does	not	consider	the	width	of	a	shape's	line,
shadows,	line	ends,	control	points,	or	connection	points	when	comparing	two
shapes.

SpatialRelation	property

					 					

Returns	an	integer	that	represents	the	spatial	relationship	of	one	shape	to	another
shape.	Both	shapes	must	be	on	the	same	page	or	in	the	same	master.

Version	added

2000

Syntax

relation	=	object.SpatialRelation(otherShape,	tolerance,	
relation Integer.	The	relationship	between	two	shapes.	See	Remarks	for	the

values	of	this	argument.
object Required.	An	expression	that	returns	a	Shape	object.
otherShape Required.	The	other	Shape	object	involved	in	the	comparison.
tolerance Required	Double.	A	distance	in	internal	drawing	units	with	respect	to

the	coordinate	space	defined	by	the	Shape	object's	parent.
flags Required	Integer.	Flags	that	influence	the	result.	See	Remarks	for	the

values	of	this	argument.

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1210.htm

Remarks

Values	for	relation

Values	for	flags

Note	The	SpatialRelation	property	does	not	consider	the	width	of	a	shape's	line,
shadows,	line	ends,	control	points,	or	connection	points	when	comparing	two
shapes.

SpatialSearch	property

				 				

Returns	a	Selection	object	whose	shapes	meet	certain	criteria	in	relation	to	a
point	that	is	expressed	in	the	coordinate	space	of	a	page,	master,	or	group.

Version	added

2000

Syntax

objRet	=	object.SpatialSearch(x,	y,	relation,	tolerance,	flags
objRet A	Selection	object.
object Required.	An	expression	that	returns	a	Page,	Master,	or	Shape

object.
x Required	Double;	x-coordinate.
y Required	Double,	y-coordinate.
relation Required	Integer.	Any	combination	of	the	values	of	the	constants

visSpatialContainedIn	and	visSpatialTouching.
tolerance Required	Double.	A	distance	in	internal	drawing	units	with	respect

to	the	coordinate	space.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Sections_(D-I)_1204.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1210.htm

flags Required	Integer.	Flags	that	influence	the	result.

Remarks

For	values	of	the	relation	argument,	see	the	SpatialRelation	property.

If	relation	is	not	specified,	the	SpatialSearch	property	uses	both	relationships	as
criteria.

Values	of	flags

The	SpatialSearch	property	does	not	consider	the	width	of	a	shape's	line,
shadows,	line	ends,	control	points,	or	connection	points	when	comparing	two
shapes.

Start	property

					 					

Returns	the	start	of	a	Curve	object's	parameter	domain.

Version	added

5.0

Syntax

retVal	=	object.Start
retVal Double.	Starting	value	of	a	Curve	object's	parameter	domain.
object Required.	An	expression	that	returns	a	Curve	object.

Remarks

The	Start	property	of	curve	returns	the	coordinates	of	the	curve's	starting	point.
A	Curve	object	describes	itself	in	terms	of	its	parameter	domain,	which	is	the
range	[Start(),End()]	where	Start()	produces	the	curve's	starting	point.

StartupPaths	property

					 					

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	add-ons	to	run	when	the
application	is	started.

Version	added

Visio	4.0

Syntax

strRet	=	object.StartupPaths
object.StartupPaths	=	pathsStr
strRet String.	A	text	string	containing	a	list	of	folders.	Folders	are

separated	by	semicolons.
object Required.	An	expression	that	returns	an	Application	object.
pathsStr Required	String.	A	text	string	containing	a	list	of	folders;	to

indicate	more	than	one	folder,	separate	individual	items	in	the
path	string	with	semicolons.

Remarks

The	string	passed	to	and	received	from	the	StartupPaths	property	is	the	same
string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu,	and	then	click	File	Paths).	This	string	is	stored	in
HKEY_CURRENT_USER\Software\Microsoft\Visio\application\StartUpPath

When	the	application	looks	for	startup	files,	it	looks	in	all	paths	named	in	the
StartupPaths	property	and	all	the	subfolders	of	those	paths.	If	you	pass	the
StartupPaths	property	to	the	EnumDirectories	method,	it	returns	a	complete
list	of	fully	qualified	paths	in	which	the	application	looks.

If	a	path	is	not	fully	qualified,	the	application	looks	for	the	folder	in	the	folder
that	contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the	Visio
executable	file	is	installed	in	c:\Visio,	and	the	StartupPaths	property	is
"Startup;d:\Startup",	the	application	looks	for	startup	files	in	both
c:\Visio\Startup	and	d:\Startup.

Stat	property

					 					

Returns	status	information	for	an	object.

Version	added

3.0

Syntax

intRet	=	object.Stat
intRet Integer.	A	bit	mask	of	status	bits.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Remarks

If	an	object	is	a	reference	to	an	entity	in	a	document,	and	if	that	document	closes,
the	Stat	property	returns	a	value	in	which	the	visStatClosed	bit	is	set.

If	an	object	is	a	reference	to	an	entity	that	has	been	deleted,	the	Stat	property
returns	a	value	in	which	the	visStatDeleted	bit	is	set.

A	Component	Object	Model	(COM)	object,	such	as	a	Visio	document	object,
lives	as	long	as	it	is	held	(pointed	to)	by	a	client,	even	if	the	object	is	logically	in
a	deleted	or	closed	state.

State	property

				 					

Determines	a	button's	state—pressed	or	not	pressed.

Version	added

2000

Syntax

intRet	=	object.State
object.State	=	intExpression
intRet Integer.	The	state	of	the	button.
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object.
intExpression Required	Integer.	The	new	state	of	the	button.

Remarks

The	State	property	can	be	one	of	the	following	constants	declared	by	the	Visio
type	library	in	VisUIButtonState.

See	also

Constant Value Description
visButtonUp 0 Button	is	not	pressed
visButtonDown -1 Button	is	pressed

StencilPaths	property

					 					

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	stencils.

Version	added

4.0

Syntax

strRet	=	object.StencilPaths
object.StencilPaths	=	pathsStr
strRet String.	A	text	string	containing	a	list	of	folders.
object Required.	An	expression	that	returns	an	Application	object.
pathsStr Required	String.	A	text	string	containing	a	list	of	folders.	Use

semicolons	to	separate	individual	folders	in	the	path	string.

Remarks

The	string	passed	to	and	received	from	the	StencilPaths	property	is	the	same
string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on

the	Tools	menu,	and	then	click	File	Paths).

When	the	Visio	application	looks	for	stencils,	it	looks	in	all	paths	named	in	the
StencilPaths	property	and	all	the	subfolders	of	those	paths.	If	you	pass	the
StencilPaths	property	to	the	EnumDirectories	method,	it	returns	a	complete	list
of	fully	qualified	paths	in	which	the	Visio	application	looks.

If	a	path	is	not	fully	qualified,	the	Visio	application	looks	for	the	folder	in	the
folder	that	contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the
Visio	executable	file	is	installed	in	c:\Visio,	and	the	StencilPaths	property	is
"Stencils;d:\Stencils",	Visio	looks	for	stencils	in	both	c:\Visio\Stencils	and
d:\Stencils.

StatusBarItems	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	the	StatusBarItems	collection	of	a
StatusBar	or	StatusBarItem	object.

See	also Example Applies	to

StatusBars	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	the	StatusBars	collection	of	a
UIObject	object.

See	also Example Applies	to

Style	property

				 					

Determines	whether	a	toolbar	button	or	menu	item	shows	an	icon,	a	caption,	or
some	combination.

Version	added

2000

Syntax

intRet	=	object.Style

object.Style	=	intExpression
intRet Integer.	The	current	style	of	a	toolbar	button	or	menu	item.
object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or

ToolbarItem	object.
intExpression Required	Integer.	The	new	style	for	a	toolbar	button	or	menu

item.

Remarks

See	also

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.	If	you	set	the	Style	property	to	a	nonexistent	style,	your	program
generates	an	error.

Possible	intval	and	intExpression	values	are	listed	in	the	following	table.	These
constants	are	declared	by	the	Visio	type	library	in	VisUIButtonStyle.

Constant Value
visButtonAutomatic 0
visButtonCaption 1
visButtonIcon 2
visCaptionAndIcon 3

Style	property	(Cell	object)

				 				

Gets	the	style	that	contains	a	Cell	object.

Version	added

2.0

Syntax

objRet	=	object.Style
objRet A	Style	object	that	represents	the	style	containing	the	cell.
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.

If	a	Cell	object	is	in	a	style,	its	Style	property	returns	the	style	that	contains	the
cell,	and	its	Shape	property	returns	Nothing.

Example

If	a	Cell	object	is	in	a	shape,	its	Shape	property	returns	the	shape	that	contains
the	cell,	and	its	Style	property	returns	Nothing.

Style	property	(Section	object)

				 				

Gets	the	style	that	contains	a	Section	object.

Version	added

2.0

Syntax

objRet	=	object.Style
objRet A	Style	object	that	represents	the	style	containing	the	section.
object Required.	An	expression	that	returns	a	Section	object.

Remarks

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.

If	a	Section	object	is	in	a	style,	its	Style	property	returns	the	style	that	contains
the	cell,	and	its	Shape	property	returns	Nothing.

Example

If	a	Section	object	is	in	a	shape,	its	Shape	property	returns	the	shape	that
contains	the	cell,	and	its	Style	property	returns	Nothing.

Style	property	(Shape	object)

				 				

Gets	or	sets	the	style	for	a	Shape	object.

Version	added

2.0

Syntax

strRet	=	object.Style
object.Style	=	stringExpression
strRet String.	The	fill	style	component	of	the	style.
object Required.	An	expression	that	returns	a	Shape	object	that	has

or	gets	the	style.
stringExpression Required	String.	The	name	of	the	style	to	apply.

Remarks

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.	If	you	set	the	Style	property	to	a	nonexistent	style,	your	program

Example

generates	an	error.

To	preserve	local	formatting,	use	the	StyleKeepFmt	property.

Beginning	with	Visio	2002,	an	empty	string	("")	will	cause	the	master's	style	to
be	reapplied	to	the	shape.	(Earlier	versions	generate	a	"no	such	style"	exception.)
If	the	shape	has	no	master,	its	style	remains	unchanged.	Setting	stringExpression
to	an	empty	string	is	the	equivalent	of	selecting	Use	master's	format	in	the	Text
style,	Line	style,	or	Fill	style	list	in	the	Style	dialog	box	(on	the	Format	menu,
click	Style).

Style	property	(Selection	object)

				 				

Gets	or	sets	the	style	for	a	Selection	object.

Version	added

2.0

Syntax

strRet	=	object.Style
object.Style	=	stringExpression
strRet String.	The	fill	style	component	of	the	style.
object Required.	An	expression	that	returns	a	Selection	object	that

has	or	gets	the	style.
stringExpression Required	String.	The	name	of	the	style	to	apply.

Remarks

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.	If	you	set	the	Style	property	to	a	nonexistent	style,	your	program

Example

generates	an	error.

To	preserve	local	formatting,	use	the	StyleKeepFmt	property.

Beginning	with	Visio	2002,	an	empty	string	("")	will	cause	the	master's	style	to
be	reapplied	to	the	selection.	(Earlier	versions	generate	a	"no	such	style"
exception.)	If	the	selection	has	no	master,	its	style	remains	unchanged.	Setting
stringExpression	to	an	empty	string	is	the	equivalent	of	selecting	Use	master's
format	in	the	Text	style,	Line	style,	or	Fill	style	list	in	the	Style	dialog	box	(on
the	Format	menu,	click	Style).

Style	property	(Row	object)

				 				

Gets	the	style	that	contains	a	Row	object.

Version	added

2.0

Syntax

objRet	=	object.Style
objRet A	Style	object	that	represents	the	style	containing	the	row.
object Required.	An	expression	that	returns	a	Row	object.

Remarks

If	a	style	consists	of	different	text,	line,	and	fill	styles,	the	Style	property	returns
the	fill	style.

If	a	Row	object	is	in	a	style,	its	Style	property	returns	the	style	that	contains	the
cell,	and	its	Shape	property	returns	Nothing.

Example

If	a	Row	object	is	in	a	shape,	its	Shape	property	returns	the	shape	that	contains
the	cell,	and	its	Style	property	returns	Nothing.

StyleKeepFmt	property

			 				

Applies	a	style	to	an	object	while	preserving	local	formatting.

Version	added

2.0

Syntax

object.StyleKeepFmt	=	stringExpression
object Required.	An	expression	that	returns	a	Shape	or	Selection

object	that	gets	the	style.
stringExpression Required	String.	The	name	of	the	style	to	apply.

Remarks

Setting	the	StyleKeepFmt	property	is	equivalent	to	selecting	the	Preserve	local
formatting	check	box	in	the	Style	dialog	box	(click	Style	on	the	Format	menu).
Setting	a	style	to	a	nonexistent	style	generates	an	error.

Beginning	with	Visio	2002,	an	empty	string	("")	will	cause	the	master's	style	to
be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate	a	"no	such
style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style	remains
unchanged.	Setting	stringExpression	to	an	empty	string	is	the	equivalent	of
selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill	style	list	on
the	Style	dialog	box	(on	the	Format	menu,	click	Style).

See	also Example

Styles	property

					 					

Returns	the	Styles	collection	for	a	document.

Version	added

2.0

Syntax

objRet	=	object.Styles
objRet The	Styles	collection	of	the	Document	object.
object Required.	An	expression	that	returns	a	Document	object.

SubAddress	property

					 					

Gets	or	sets	the	subaddress	in	a	shape's	Hyperlink	object.

Version	added

5.0

Syntax

strRet	=	object.SubAddress
object.SubAddress	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Hyperlink	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	SubAddress	property	of	a	shape's	Hyperlink	object	is	optional
unless	the	Address	property	is	blank.	In	this	case	the	SubAddress	must	contain
the	name	of	the	drawing	page.

Setting	a	hyperlink's	Subaddress	property	is	equivalent	to	entering	information
in	Sub-address	box	in	the	Hyperlinks	dialog	box	(click	Hyperlinks	on	the
Insert	menu).	This	is	also	equivalent	to	setting	the	result	of	the	Subaddress	cell
in	the	shape's	Hyperlink.Row	row	in	the	ShapeSheet	window.

The	SubAddress	property	for	a	Hyperlink	object	specifies	a	sublocation	within
the	hyperlink's	address.	For	Visio	files,	this	can	be	a	page	name.	For	Microsoft
Excel,	this	can	be	a	worksheet	or	a	range	within	a	worksheet.	For	HTML	pages,
this	can	be	a	sub-anchor.

The	hyperlink	address	for	which	a	subaddress	is	being	supplied	must	support
subaddress	linking.

Subject	property

					 					

Gets	or	sets	the	value	of	the	Subject	field	in	a	document's	properties.

Version	added

2.0

Syntax

strRet	=	object.Subject
object.Subject	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	Subject	property	is	equivalent	to	entering	information	in	the	Subject
box	in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

SubType	property

				 				

Returns	the	subtype	of	a	Window	object	that	represents	a	drawing	window.

Version	added

4.0

Syntax

intRet	=	object.SubType
intRet Integer.	The	subtype	of	the	Window	object.
object Required.	An	expression	that	returns	a	Window	object.

Remarks

If	the	Type	property	of	a	Window	object	returns	any	value	other	than
visDrawing,	the	SubType	property	returns	the	same	value	as	the	Type	property.
If	the	Type	property	of	a	Window	object	returns	visDrawing,	the	SubType
property	returns	one	of	the	following	values.

Constant Value Description

Example

visPageWin 128 A	drawing	window	showing	a
page.

visPageGroupWin 160 A	group	editing	window	of	a	group
on	a	page.

visMasterWin 64 A	master	drawing	page	window.
visMasterGroupWin 96 A	group	editing	window	of	a	group

in	a	master.

TableName	property

			 				

Gets	or	sets	the	name	of	an	AccelTable	object.

Version	added

4.0

Syntax

strRet	=	object.TableName
object.TableName	=	nameStr
strRet String.	The	current	name	of	the	object.
object Required.	An	expression	that	returns	an	AccelTable	object.
nameStr Required	String.	The	new	name	for	the	object.

Remarks

This	property	is	not	currently	used.

See	also Example

TabPropsRow	property

				 				

Returns	the	index	of	the	Tab	Properties	row	that	contains	tab	formatting
information	for	a	Characters	object.

Version	added

3.0

Syntax

intRet	=	object.TabPropsRow(bias)
intRet Integer.	The	index	of	the	row	that	defines	the	Character

object's	formatting.
object Required.	An	expression	that	returns	a	Characters	object.
bias Required	Integer.	The	direction	of	the	search.

Remarks

You	can	retrieve	rows	that	represent	runs	of	tab	formatting	by	specifying	a	row
index	as	an	argument	to	the	CellsSRC	property	of	a	shape.	You	can	also	view	or
change	tab	formats	on	the	Tabs	tab	(click	Text	on	the	Format	menu,	and	then

Example

click	Tabs).

If	the	tab	format	for	the	Characters	object	is	represented	by	more	than	one	Tab
Properties	row,	the	TabPropsRow	property	returns	-1.	If	the	Characters	object
represents	an	insertion	point	rather	than	a	sequence	of	characters	(that	is,	if	its
Begin	and	End	properties	return	the	same	value),	use	the	bias	argument	to
determine	which	row	index	to	return.

Constant Value
visBiasLetVisioChoose 0
visBiasLeft 1
visBiasRight 2

Specify	visBiasLeft	for	the	row	that	covers	tab	formatting	for	the	character	to
the	left	of	the	insertion	point.	Use	visBiasRight	for	the	row	that	covers	tab
formatting	for	the	character	to	the	right	of	the	insertion	point.

Target	property

				 				

Gets	or	sets	the	target	of	an	event.

Version	added

4.0

Syntax

strRet	=	object.Target
object.Target	=	stringExpression
strRet String.	The	current	target.
object Required.	An	expression	that	returns	an	Event	object.
stringExpression Required	String.	The	target	to	set.

Remarks

An	event	consists	of	an	event-action	pair.	When	the	event	occurs,	the	action	is
performed.	An	event	also	specifies	the	target	of	the	action	and	arguments	to	send
to	the	target.

Example

If	the	action	code	of	the	event	is	visActCodeRunAddon,	the	Target	property
contains	the	name	of	the	add-on	to	run.

If	the	action	code	of	the	event	is	visActCodeAdvise,	the	Target	property	is	not
available.	Attempting	to	get	or	set	the	Target	property	for	such	an	event	causes
an	exception.

TargetArgs	property

				 				

Gets	or	sets	the	arguments	to	be	sent	to	the	target	of	an	event.

Version	added

4.0

Syntax

strRet	=	object.TargetArgs
object.TargetArgs	=	stringExpression
strRet String.	The	current	arguments.
object Required.	An	expression	that	returns	an	Event	object.
stringExpression Required	String.	The	new	arguments	to	set.

Remarks

An	event	consists	of	an	event-action	pair.	When	the	event	occurs,	the	action	is
performed.	An	event	also	specifies	the	target	of	the	action	and	arguments	to	send
to	the	target.

Example

When	you	use	visActCodeRunAddon,	the	TargetArgs	property	contains	the
arguments	to	send	to	the	add-on	when	it	is	run.

When	you	use	visActCodeAdvise,	the	TargetArgs	property	contains	the	string
specified	with	the	AddAdvise	method	when	the	Event	object	was	created.	When
the	program	receives	notification	of	the	event,	it	can	get	the	Event	object	and	its
TargetArgs	property	to	obtain	the	string.

TargetDocumentName	property

				 				

Gets	and	sets	the	path	and	file	name	of	a	Microsoft	Visio	document	(usually	a
stencil)	that	contains	the	master	to	which	a	master	shortcut	refers.

Version	added

2000

Syntax

strRet	=	object.TargetDocumentName

object.TargetDocumentName	=	strExpression
strRet String.	Path	and	file	name	of	the	document.
object Required.	An	expression	that	returns	a	MasterShortcut	object.
strExpression Required	String.	The	new	path	and	file	name	of	the	document.

Remarks

If	the	target	document	is	moved,	deleted,	or	renamed,	or	the	property	is	set	to	the

Example

path	of	a	nonexistent	file,	the	application	will	not	be	able	to	access	the	shortcut's
target	master.	As	a	result,	the	end	user	will	not	be	able	to	use	the	shortcut	to	drop
shapes	onto	their	drawing.

If	the	TargetDocumentName	property	contains	a	file	name	but	no	path,	the
application	looks	for	the	target	document	in	the	file	path	set	on	the	File	Path	tab
in	the	Options	dialog	box	(click	Options	on	the	Tools	menu,	and	then	click	File
Paths).	The	name	may	refer	either	to	the	document's	file	name	or	to	one	of	its
alternate	file	names.	To	set	an	alternate	name	for	a	document,	use	the
AlternateNames	property.

The	TargetDocumentName	property	does	not	support	file	names	with	relative
paths.

TargetMasterName	property

				 				

Gets	or	sets	the	name	of	the	master	to	which	the	master	shortcut	refers.

Version	added

2000

Syntax

strRet	=	object.TargetMasterName

object.TargetMasterName	=	strExpression
strRet String.	The	name	of	the	master.
object Required.	An	expression	that	returns	a	MasterShortcut	object.
strExpression Required	String.	The	new	name	of	the	master.

Remarks

The	name	specified	by	this	property	must	be	the	target	master's	universal	name,
not	its	localized	name.

Example

When	the	user	drops	a	master	shortcut	onto	a	drawing	page,	the	application	first
locates	the	document	identified	by	the	shortcut's	TargetDocumentName
property,	then	it	searches	that	document	for	a	master	whose	universal	name
matches	the	shortcut's	TargetMasterName	property.	Once	located,	the	target
master	(not	the	shortcut)	is	used	to	create	the	new	shape	instance	on	the	drawing
page.

Template	property

				 					

Returns	the	name	of	the	template	from	which	the	document	was	created.

Version	added

4.0

Syntax

strRet	=	object.Template
strRet String.	The	name	of	the	template	from	which	the	Document

object	was	created.
object Required.	An	expression	that	returns	a	Document	object.

See	also

TemplatePaths	property

					 					

Gets	or	sets	the	paths	where	Microsoft	Visio	looks	for	templates.	To	indicate
more	than	one	folder,	separate	individual	items	in	the	path	string	with
semicolons.

Version	added

4.0

Syntax

strRet	=	object.TemplatePaths
object.TemplatePaths	=	pathsStr
strRet String.	A	text	string	containing	a	list	of	folders.
object Required.	An	expression	that	returns	an	Application	object.
pathsStr Required	String.	A	text	string	containing	a	list	of	folders.

Remarks

The	string	passed	to	and	received	from	the	TemplatePaths	property	is	the	same

string	shown	on	the	File	Paths	tab	in	the	Options	dialog	box	(click	Options	on
the	Tools	menu,	and	then	click	File	Paths).

When	the	application	looks	for	templates,	it	looks	in	all	paths	named	in	the
TemplatePaths	property	and	all	the	subfolders	of	those	paths.	If	you	pass	the
TemplatePaths	property	to	the	EnumDirectories	method,	it	returns	a	complete
list	of	fully	qualified	paths	in	which	the	application	looks.

If	a	path	is	not	fully	qualified,	the	application	looks	for	the	folder	in	the	folder
that	contains	the	Visio	program	files	(appObj.Path).	For	example,	if	the	Visio
executable	file	is	installed	in	c:\Visio,	and	the	TemplatePaths	property	is
"Templates;d:\Templates",	the	Visio	application	looks	for	templates	in	both
c:\Visio\Templates	and	d:\Templates.

Text	property	(Characters	object)

					 					

Returns	the	range	of	text	represented	by	a	Characters	object,	which	may	be	a
subset	of	the	shape's	text	depending	on	the	values	of	the	Characters	object's
Begin	and	End	properties.

Version	added

2.0

Syntax

strRet	=	object.Text
object.Text	=	stringExpression
strRet Variant.	The	text	of	the	Characters	object	returned	in	a

Variant	of	type	String.
object Required.	An	expression	that	returns	the	Characters	object

that	owns	the	text.
stringExpression Required	Variant.	The	text	of	the	Characters	object	in	a

Variant	of	type	String.

Remarks

The	text	for	a	Characters	object	is	returned	in	a	Variant	of	type	String,	as
opposed	to	in	a	String.	This	is	typically	transparent	if	you're	using	Microsoft
Visual	Basic	or	Visual	Basic	for	Applications.	If	you	are	using	C/C++	and	want
a	String	rather	than	a	Variant,	use	the	TextAsString	property.

In	the	text	returned	by	a	Characters	object,	fields	are	expanded	to	the	number	of
characters	that	are	visible	in	the	drawing	window.	For	example,	if	a	shape's	text
contains	a	field	that	displays	the	file	name	of	a	drawing,	the	Text	property	of	a
Characters	object	returns	the	expanded	file	name	(provided	the	Begin	and	End
properties	were	not	altered).

If	a	Characters	object	represents	the	text	of	a	shape	that	is	a	group,	it	will
always	return	the	text	of	the	group.

Objects	from	other	applications	and	guides	don't	have	a	Text	property.

Text	property	(Shape	object)

				 				

Returns	all	of	the	shape's	text.

Version	added

2.0

Syntax

strRet	=	object.Text
object.Text	=	stringExpression
strRet String.	The	text	of	the	Shape	object	returned	as	a	string.
object Required.	An	expression	that	returns	a	Shape	object.
stringExpression Required	String.	New	text	for	the	Shape	object.

Remarks

In	the	text	returned	by	the	Text	property	of	a	Shape	object,	fields	are	represented
by	an	escape	character	(30	(&H1E))	For	example,	if	a	Shape	object's	text
contains	a	field	that	displays	the	file	name	of	a	drawing,	the	Shape	object's	Text

Example

property	returns	an	escape	character	where	that	field	is	inserted	into	the	text.	If
you	want	the	text	to	contain	the	expanded	field,	get	the	shape's	Characters
property,	then	get	the	Text	property	of	the	resulting	Characters	object.

If	the	shape	is	a	group,	the	text	returned	is	dependent	on	the	value	of	the
IsTextEditTarget	cell.

If	IsTextEditTarget	is	TRUE,	then	the	Text	property	of	the	Shape	object	returns
the	text	of	the	group.

If	IsTextEditTarget	is	FALSE,	then	the	Text	property	of	the	Shape	object	returns
the	text	of	the	shape	in	the	group	at	the	top	of	the	stacking	order.

Objects	from	other	applications	and	guides	don't	have	a	Text	property.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_1627.htm

TextAsString	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	returned	the	range	of	text	represented	by	a
Characters	object.

See	also Example Applies	to

TextBasedOn	property

				 				

Gets	or	sets	the	text	style	on	which	a	Style	object	is	based.

Version	added

4.0

Syntax

strVal	=	object.TextBasedOn
object.TextBasedOn	=	styleName
strVal String.	The	name	of	the	current	based-on	text	style.
object Required.	An	expression	that	returns	a	Style	object.
styleName Required	String.	The	name	of	the	new	based-on	style.

Remarks

To	base	a	style	on	no	style,	set	the	TextBasedOn	property	to	a	zero-length	string
("").

Example

TextStyle	property

				 				

Gets	or	sets	the	text	style	for	an	object.

Version	added

2.0

Syntax

strRet	=	object.TextStyle
object.TextStyle	=	stringExpression
strRet String.	The	current	text	style.
object Required.	An	expression	that	returns	a	Shape	or	Selection

object.
stringExpression Required	String.	The	name	of	the	text	style	to	apply.

Remarks

Setting	this	property	is	equivalent	to	selecting	a	style	from	the	Text	Style	list	in
Visio.

Example

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	kind	of	style
to	an	existing	style	of	another	kind	(for	example,	setting	the	TextStyle	property
to	a	fill	style)	does	nothing.	Setting	one	kind	of	style	to	an	existing	style	that	has
more	than	one	set	of	attributes	changes	only	the	attributes	for	that	component
(for	example,	setting	the	TextStyle	property	to	a	style	with	line,	text,	and	fill
attributes	changes	only	the	text	attributes).

To	preserve	a	shape's	local	formatting,	use	the	TextStyleKeepFmt	property.

Beginning	with	Microsoft	Visio	2002,	an	empty	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	an	empty	string	is	the	equivalent
of	selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill	style	list
in	the	Style	dialog	box	(on	the	Format	menu,	click	Style).

TextStyleKeepFmt	property

				 				

Applies	a	text	style	to	an	object	while	preserving	local	formatting.

Version	added

2.0

Syntax

object.TextStyleKeepFmt	=	stringExpression
object Required.	An	expression	that	returns	a	Shape	or	Selection

object.
stringExpression Required	String.	The	name	of	the	style	to	apply.

Remarks

Setting	the	TextStyleKeepFmt	property	is	equivalent	to	selecting	the	Preserve
local	formatting	check	box	in	the	Style	dialog	box	(click	Style	on	the	Format
menu).

Setting	a	style	to	a	nonexistent	style	generates	an	error.	Setting	one	kind	of	style

Example

to	an	existing	style	of	another	kind	(for	example,	setting	the	TextStyleKeepFmt
property	to	a	fill	style)	does	nothing.	Setting	one	kind	of	style	to	an	existing	style
that	has	more	than	one	set	of	attributes	changes	only	the	attributes	for	that
component	(for	example,	setting	the	TextStyleKeepFmt	property	to	a	style	with
line,	text,	and	fill	attributes	changes	only	the	text	attributes).

Beginning	with	Microsoft	Visio	2002,	an	empty	string	("")	will	cause	the
master's	style	to	be	reapplied	to	the	selection	or	shape.	(Earlier	versions	generate
a	"no	such	style"	exception.)	If	the	selection	or	shape	has	no	master,	its	style
remains	unchanged.	Setting	stringExpression	to	an	empty	string	is	the	equivalent
of	selecting	Use	master's	format	in	the	Text	style,	Line	style,	or	Fill	style	list
in	the	Style	dialog	box	(on	the	Format	menu,	click	Style).

Time	property

				 				

Returns	the	most	recently	recorded	date	and	time.

Version	added

2002

Syntax

dateRet	=	object.Time
dateRet Date.	The	current	date	and	time.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	Time	property	is	updated	whenever	any	values	are	updated	in	the	following:
the	TimeEdited	property,	the	TimePrinted	property,	the	TimeCreated	property,
the	TimeSaved	property,	or	the	NOW	function.

The	value	to	the	left	of	the	decimal	point	represents	the	date,	and	the	value	to	the
right	of	the	decimal	point	represents	the	time.

Example

mk:@MSITStore:Vis_DSS.chm::/DSS_Functions_(M-P)_1470.htm

TimeCreated	property

				 				

Returns	the	date	and	time	the	document	was	created.

Version	added

2002

Syntax

dateRet	=	object.TimeCreated
dateRet Date.	The	date	and	time	the	document	was	created.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	value	to	the	left	of	the	decimal	point	represents	the	date,	and	the	value	to	the
right	of	the	decimal	point	represents	the	time.

Example

TimeEdited	property

				 				

Returns	the	date	and	time	the	document	was	last	edited.

Version	added

2002

Syntax

dateRet	=	object.TimeEdited
dateRet Date.	The	date	and	time	the	document	was	last	edited.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	value	to	the	left	of	the	decimal	point	represents	the	date,	and	the	value	to	the
right	of	the	decimal	point	represents	the	time.

Example

TimePrinted	property

				 				

Returns	the	date	and	time	the	document	was	last	printed.

Version	added

2002

Syntax

dateRet	=	object.TimePrinted
dateRet Date.	The	date	and	time	the	document	was	last	printed.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	value	to	the	left	of	the	decimal	point	represents	the	date,	and	the	value	to	the
right	of	the	decimal	point	represents	the	time.

Example

TimeSaved	property

				 				

Returns	the	date	and	time	the	document	was	last	saved.

Version	added

2002

Syntax

dateRet	=	object.TimeSaved
dateRet Date.	The	date	and	time	the	document	was	last	saved.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

The	value	to	the	left	of	the	decimal	point	represents	the	date,	and	the	value	to	the
right	of	the	decimal	point	represents	the	time.

Example

Title	property

					 					

Gets	or	sets	the	value	of	the	Title	field	in	a	document's	properties.

Version	added

2.0

Syntax

strRet	=	object.Title
object.Title	=	stringExpression
strRet String.	The	current	value	of	the	field.
object Required.	An	expression	that	returns	a	Document	object.
stringExpression Required	String.	The	new	value	for	the	field.

Remarks

Setting	the	Title	property	is	equivalent	to	entering	information	in	the	Title	box
in	the	Properties	dialog	box	(click	Properties	on	the	File	menu).

ToCell	property

					 					

Gets	the	cell	to	which	a	connection	is	made.

Version	added

2.0

Syntax

objRet	=	object.ToCell
objRet The	Cell	object	to	which	the	connection	is	made.
object Required.	An	expression	that	returns	a	Connect	object.

Remarks

A	connection	is	defined	by	a	reference	in	a	cell	in	the	shape	from	which	the
connection	originates	to	a	cell	in	the	shape	to	which	the	connection	is	made.	The
ToCell	property	returns	the	Cell	object	to	which	the	connection	is	made.

Following	is	a	list	of	possible	connections	and	their	related	ToCell	property
values.

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_1746.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1196.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_1747.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1199.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_1200.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_1290.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(D-E)_1292.htm

From	the	begin	or	end	cell	of	a	1-D	shape	to…

From	the	edge	(a	cell	in	the	Alignment	section)	of	a	2-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	1-D	shape	to…

From	an	outward	or	inward/outward	connection	point	cell	of	a	2-D	shape	that
is	not	a	guide	or	guide	point	to…

From	a	control	handle	to…

ToolbarItems	property

					 					

Returns	the	ToolbarItems	collection	of	a	Toolbar	object.

Version	added

4.0

Syntax

objRet	=	object.ToolbarItems
objRet The	ToolbarItems	collection	of	the	Toolbar	object.
object Required.	An	expression	that	returns	a	Toolbar	object.

Toolbars	property

					 					

Returns	the	Toolbars	collection	of	a	ToolbarSet	object.

Version	added

4.0

Syntax

objRet	=	object.Toolbars
objRet The	Toolbars	collection	of	the	ToolbarSet	object.
object Required.	An	expression	that	returns	a	ToolbarSet	object.

ToolbarSets	property

					 					

Returns	the	ToolbarSets	collection	of	a	UIObject	object.

Version	added

4.0

Syntax

objRet	=	object.ToolbarSets
objRet The	ToolbarSets	collection	of	the	UIObject	object.
object Required.	An	expression	that	returns	a	UIObject	object.

Remarks

If	a	UIObject	object	represents	toolbars	and	status	bars	(for	example,	if	the
object	was	retrieved	using	the	BuiltInToolbars	property	of	an	Application
object),	its	ToolbarSets	collection	represents	all	of	the	toolbars	for	that
UIObject	object.

Use	the	ItemAtID	property	of	a	ToolbarSets	object	to	retrieve	toolbars	for	a

particular	window	context,	for	example,	the	drawing	window.	If	a	context	does
not	include	toolbars,	it	has	no	ToolbarSets	collection.

ToolbarStyle	property
			 			

Beginning	with	Microsoft	Visio	2002,	this	property	is	obsolete.

Remarks

In	earlier	versions,	this	property	determined	whether	Microsoft	Visio	showed	or
hid	a	toolbar.

See	also Example Applies	to

Top	property

					 					

Gets	the	distance	between	the	top	of	an	object	and	the	top	of	the	docking	area	or
the	top	of	the	screen	if	the	object	isn't	docked;	it	sets	the	distance	between	the
top	of	a	Menu	or	Toolbar	object	and	the	top	of	the	screen.

Version	added

2000

Syntax

intRet	=	object.Top
object.Top	=	intExpression
intRet Integer.	The	distance	in	pixels.
object Required.	An	expression	that	returns	a	MenuSet	or	Toolbar

object.
intExpression Required	Integer.	The	new	distance	in	pixels.

ToPart	property

					 					

Returns	the	part	of	a	shape	to	which	a	connection	is	made.

Version	added

2.0

Syntax

intRet	=	object.ToPart
intRet Integer.	The	part	of	the	shape	to	which	a	connection	is	made.
object Required.	An	expression	that	returns	a	Connect	object.

Remarks

The	ToPart	property	identifies	the	part	of	a	shape	to	which	another	shape	is
glued,	such	as	its	begin	point	or	end	point,	one	of	its	edges,	or	a	connection
point.	The	following	constants	declared	by	the	Visio	type	library	in	member
VisToParts	show	possible	return	values	for	the	ToPart	property.

Constant Value

visConnectToError -1
visToNone 0
visGuideX 1
visGuideY 2
visWholeShape 3
visGuideIntersect 4
visToAngle 7
visConnectionPoint 100	+	row	index	of	connection	point

TopMargin	property

				 				

Specifies	the	top	margin	when	printing	a	document.

Version	added

4.0

Syntax

retVal	=	object.TopMargin([units])
object.TopMargin([units])	=	newValue
retVal Double.	The	margin	value	expressed	in	the	given	units.
object Required.	An	expression	that	returns	a	Document	object.
units Optional	Variant.	The	units	to	use	when	retrieving	or	setting

the	margin	value.
newValue Required	Double.	The	new	margin	value.

Remarks

If	units	is	not	provided,	the	TopMargin	property	will	default	to	internal	drawing

Example

units	(inches).

The	TopMargin	property	corresponds	to	the	Top	setting	in	the	Print	Setup
dialog	box	(on	the	File	menu,	click	Page	Setup,	and	then	click	Setup	on	the
Print	Setup	tab).

Units	can	be	an	integer	or	string	value	such	as	"inches",	"inch",	"in.",	or	"i".
Strings	may	be	used	for	all	supported	Visio	units	such	as	centimeters,	meters,
miles,	and	so	on.	You	can	also	use	any	of	the	units	constants	declared	by	the
Visio	type	library	in	member	VisUnitCodes.

For	a	list	of	valid	integer	and	string	values	see	About	units	of	measure.

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

ToSheet	property

					 					

Returns	the	shape	to	which	one	or	more	connections	are	made.

Version	added

2.0

Syntax

objRet	=	object.ToSheet
objRet The	Shape	object	to	which	the	connection	is	made.
object Required.	An	expression	that	returns	a	Connect	object	or

Connects	collection.

Remarks

The	ToSheet	property	for	a	Connect	object	always	returns	the	shape	to	which
the	connection	is	made.

The	Connects	collection	represents	several	connections.	If	every	connection
represented	by	the	collection	is	made	to	the	same	shape,	the	ToSheet	property

returns	that	shape.	Otherwise,	it	returns	Nothing	and	does	not	raise	an	exception.

TraceFlags	property

				 					

Gets	or	sets	events	logged	during	a	Microsoft	Visio	instance.

Version	added

5.0

Syntax

intRet	=	object.TraceFlags
object.TraceFlags	=	intExpression
intRet Long.	Current	trace	flags.
object Required.	An	expression	that	returns	an	Application	object.
intExpression Required	Long.	New	trace	flags.

Remarks

The	value	of	the	TraceFlags	property	can	be	a	combination	of	the	following
values.

See	also

Constant Value Description
visTraceEvents &H1 Event	occurrences
visTraceAdvises &H2 Outgoing	advise	calls
visTraceAddonInvokes &H4 Add-on	invocations
visTraceCallsToVBA &H8 VBA	invocations

The	visTraceEvents	flag	causes	the	Immediate	window	to	log	most	Visio	events
as	they	happen.	In	most	cases	this	occurs	even	if	no	external	agent	is	listening	or
responding	to	the	event.	In	a	few	cases,	Visio	knows	there	is	no	listener	for	an
event	and	does	not	log	those	events.	Visio	also	does	not	log	idle	events	or
advises.	In	addition,	some	events	are	specializations	of	other	events	and	aren't
recorded.	For	example,	the	SelectionAdded	event	is	manufactured	from	distinct
ShapeAdded	events,	so	the	Immediate	window	records	the	ShapeAdded	events
but	not	the	SelectionAdded	events.

Here	is	a	string	Visio	might	log	when	visTraceEvents	is	selected:

-event:	0x8040	/doc=1	/page=1	/shape=Sheet.1

The	number	after	-event:	is	the	code	of	the	event	that	occurred.	In	this	case
0x8040	is	the	code	for	the	ShapeAdded	event.	The	text	following	the	event	code
differs	from	event	to	event.

The	visTraceAdvises	flag	writes	a	line	to	the	Immediate	window	just	before
Visio	calls	an	event	handler	procedure,	and	another	line	just	after	the	event
handler	returns.	This	includes	event	procedures	in	VBA	projects,	for	example,
procedures	in	ThisDocument.	Here	is	an	example	of	what	you	might	see:

>advise	seq=4	event=0x8040	sink=0x40097598
>advise	seq=4

These	strings	indicate	the	call	to	and	return	from	an	event	handler.	The	sequence
number	also	indicates	this	event	was	the	fourth	one	fired	by	Visio.	The	code	of
the	event	is	0x8040	and	the	address	of	the	interface	Visio	called	is	0x40097598.

The	visTraceAddonInvokes	flag	records	when	Visio	invokes	an	EXE	or	VSL
add-on,	and	when	Visio	regains	control.	Here	is	an	example:

>invokeAO:	SHOWARGS.EXE
<invokeAO:	completed

The	visTraceAddonInvokes	flag	also	traces	attempts	to	invoke	add-ons	that	are
not	present.	For	example,	if	a	cell's	formula	is	=RunAddon("xxx")	and	there	is
no	add-on	named	"xxx",	then	the	message	"InvokeAO:	Failed	to	map	'xxx'	to
known	Add-on"	is	logged.

The	visTraceCallToVBA	flag	writes	a	line	to	the	Immediate	window	just	before
it	makes	a	call	to	VBA	other	than	a	call	to	an	event	procedure	(use
visTraceAdvises	to	log	calls	to	VBA	event	procedures),	and	another	line	just
after	VBA	returns	control	to	Visio.	This	flag	traces	macro	invocations,	calls	to
VBA	procedures	resulting	from	evaluation	of	cells	that	make	use	of	RunAddon
or	CallThis	operands,	and	calls	resulting	from	selection	of	custom	menu	or
toolbar	items.	Here	is	an	example:

>invokeVBA:	Module1.MyMacro
<invokeVBA:	completed

A	message	doesn't	appear	in	the	Immediate	window	unless	a	document	with	a
VBA	project	is	open.	Visio	queues	a	small	number	of	messages	to	log	when	such
a	document	opens.	However,	messages	are	lost	if	no	document	with	a	project	is
available	for	lengthy	periods.	Messages	are	also	lost	if	VBA	resets	or	if	there	are
undismissed	breakpoints.

Code	in	VBA	projects	can	intersperse	their	messages	with	those	logged	by	Visio
using	standard	Debug.Print	statements.	Code	in	non-VBA	projects	can	log
messages	to	the	VBA	Immediate	window	using
Document.VBProject.ExecuteLine("Debug.Print	""somestring""").

The	TraceFlags	property	is	recorded	in	the	TraceFlags	entry	of	the	Application
section	of	the	registry.

Type	property

					 					

Returns	the	type	of	the	object.

Version	added

2.0

Syntax

retVal	=	object.Type
retVal Integer.	The	type	of	the	Shape	or	Window	object.
object Required.	An	expression	that	returns	a	Shape	or	Window

object.

Remarks

Type	values	for	Shape	objects

Type	values	for	Window	objects

TypelibMajorVersion	property

				 				

Returns	the	major	version	number	of	the	Microsoft	Visio	type	library.

Version	added

2000

Syntax

intRet	=	object.TypelibMajorVersion
intRet Integer.	The	major	version	number	of	the	Visio	type	library.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	major	and/or	minor	version	number	of	the	Visio	type	library	will	increase
whenever	the	Visio	type	library	is	extended.	A	program	can	use	the
TypelibMajorVersion	and	TypelibMinorVersion	properties	to	guarantee	that
the	Visio	version	it	is	working	with	provides	support	for	the	features	it	is	using.

Small	changes	to	the	Visio	type	library	do	not	affect	the	Application	object's

Example

Version	property.

TypelibMinorVersion	property

				 				

Returns	the	minor	version	number	of	the	Microsoft	Visio	type	library.

Version	added

2000

Syntax

intRet	=	object.TypelibMinorVersion

intRet Integer.	The	minor	version	number	of	the	Visio	type	library.

object Required.	An	expression	that	returns	an	Application	object.

Remarks

The	major	and/or	minor	version	number	of	the	Visio	type	library	will	increase
whenever	the	Visio	type	library	is	extended.	A	program	can	use	the
TypelibMajorVersion	and	TypelibMinorVersion	properties	to	guarantee	that
the	Visio	version	it	is	working	with	provides	support	for	the	features	it	is	using.

Example

Small	changes	to	the	Visio	type	library	do	not	affect	the	Application	object's
Version	property.

TypeSpecific1	property

				 				

Gets	or	sets	the	type	of	a	menu	or	toolbar	item.

Version	added

4.0

Syntax

intVal	=	object.TypeSpecific1
object.TypeSpecific1	=	intExpression

object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or
ToolbarItem	object.

intVal,
intExpression

Required	Integer.	The	type	of	the	menu,	menu	item,	or	toolbar
item.

Remarks

Example

The	value	of	an	object's	TypeSpecific1	property	depends	on	the	value	of	its
CntrlType	property.

CntrlType	value TypeSpecific1	value
visCtrlTypeBUTTON Any	constant	prefixed	with

visIconIX	that	is	declared
by	the	Visio	type	library

visCtrlTypeEDITBOX
visCtrlTypeCOMBOBOX

Zero	(0)

visCtrlTypeLABEL Any	constant	prefixed	with
visStrID	that	is	declared	by
the	Visio	type	library

TypeSpecific2	property

				 				

Gets	or	sets	the	type	of	a	menu,	menu	item,	or	toolbar	item.

Version	added

4.0

Syntax

intVal	=	object.TypeSpecific2
object.TypeSpecific2	=	intExpression

intVal Integer.	The	type	of	menu,	menu	item,	or	toolbar.

object Required.	An	expression	that	returns	a	Menu,	MenuItem,	or
ToolbarItem	object.

intExpression Required	Integer.	The	new	type	of	menu,	menu	item,	or
toolbar	item.

Example

Remarks

The	value	of	an	object's	TypeSpecific2	property	depends	on	the	value	of	its
CntrlType	property.

CntrlType	value TypeSpecific1	value
visCtrlTypeBUTTON The	TypeSpecific2

property	is	not	used.
visCtrlTypeEDITBOX
visCtrlTypeCOMBOBOX

The	current	width	of	the
control	expressed	in	pixels.

visCtrlTypeLABEL The	TypeSpecific2
property	is	not	used.

UndoEnabled	property

					 					

Determines	whether	undo	information	is	maintained	in	memory.

Version	added

2000

Syntax

boolVal	=	object.UndoEnabled
object.UndoEnabled	=	boolExpression
boolVal Boolean.	True	if	the	property	is	enabled;	False	if	it	is	not.
object Required.	An	expression	that	returns	an	Application	object.
boolExpression Required	Boolean.	True	to	enable	undo;	otherwise,	False.

Remarks

When	Visio	starts,	the	value	of	the	UndoEnabled	property	is	True.	Setting	the
value	of	the	UndoEnabled	property	to	False	discontinues	the	collection	of	undo
information	in	memory	and	purges	the	existing	undo	information.

An	attempt	should	be	made	to	maintain	the	property	at	its	current	value	across
the	complete	operation	that	you	perform.	In	other	words,	use	code	structured	like
this:

bPrev	=	Application.UndoEnabled
Application.UndoEnabled	=	False
'large	operation	here
Application.UndoEnabled	=	bPrev

UniqueID	property	(Master	object)

				 				

Returns	the	unique	ID	of	a	master.

Version	added

4.0

Syntax

strRet	=	object.UniqueID
strRet String.	The	unique	ID	of	the	Master	object.
object Required.	An	expression	that	returns	a	Master	object.

Remarks

A	Master	object	always	has	a	unique	ID.	If	you	copy	a	master,	the	new	master
has	the	same	unique	ID	as	the	original	master	(as	well	as	the	same	base	ID).
However,	if	you	change	the	new	master,	a	new	unique	ID	is	assigned	but	the
base	ID	remains	the	same.

For	details	about	the	base	ID,	see	the	BaseID	property.

Example

You	can	determine	a	Master	object's	unique	ID	using	the	following:

idStr	=	mastObj.UniqueID

The	value	it	returns	is	a	string	in	the	following	form:

{2287DC42-B167-11CE-88E9-0020AFDDD917}

You	can	access	a	master	by	its	unique	ID	using	Masters.Item(uniqueIDString).

UniqueID	property	(Shape	object)

				 				

Returns	or	clears	the	unique	ID	of	a	shape.

Version	added

4.0

Syntax

strRet	=	object.UniqueID(flag)
strRet String.	The	unique	ID	of	the	Shape	object.
object Required.	An	expression	that	returns	a	Shape	object.
flag Required	Integer.	Gets,	assigns,	or	clears	the	unique	ID	of	a

Shape	object.

Remarks

By	default,	a	shape	does	not	have	a	unique	ID.	A	shape	acquires	a	unique	ID
only	if	you	set	its	UniqueID	property.

If	a	Shape	object	has	a	unique	ID,	no	other	shape	in	any	other	document	will

Example

have	the	same	ID.

The	flag	argument	controls	the	behavior	of	the	UniqueID	property.	It	should
have	one	of	the	following	values.

Constant Value
visGetGUID 0
visGetOrMakeGUID 1
visDeleteGUID 2

The	constant	visGetGUID	returns	the	unique	ID	string	only	if	the	shape	already
has	a	unique	ID.	Otherwise	it	returns	a	zero-length	string	("").

The	constant	visGetOrMakeGUID	returns	the	unique	ID	string	of	the	shape.	If
the	shape	does	not	yet	have	a	unique	ID,	it	assigns	one	to	the	shape	and	returns
the	new	ID.

The	constant	visDeleteGUID	clears	the	unique	ID	of	a	shape	and	returns	a	zero-
length	string	("").

You	can	access	a	shape	with	its	unique	ID	using	Shapes.Item(uniqueIDString).

Units	property

			 				

Indicates	the	unit	of	measure	associated	with	a	Cell	object.

Version	added

3.0

Syntax

intRet	=	object.Units
intRet Integer.	The	units	associated	with	a	cell's	current	value.
object Required.	An	expression	that	returns	a	Cell	object.

Remarks

The	Units	property	can	be	used	to	determine	the	unit	of	measure	currently
associated	with	a	cell's	value.	The	various	unit	codes	are	declared	by	the	Visio
type	library	in	member	VisUnitCodes.	For	example,	a	cell's	width	might	be
expressed	in	inches	(visInches)	or	in	centimeters	(visCentimeters).	In	some
cases	a	program	might	behave	differently	depending	on	whether	a	cell's	value	is
in	metric	or	in	imperial	units.

For	a	list	of	valid	unit	codes,	see	About	units	of	measure.

See	also Example

mk:@MSITStore:Vis_DSS.chm::/DSS_CTSShapeSheetBasics_1828.htm

UserName	property

			 				

Gets	or	sets	the	user	name	of	an	Application	object.

Version	added

4.0

Syntax

strRet	=	object.UserName
object.UserName	=	strExpression
strRet String.	The	user	name.
object Required.	An	expression	that	returns	an	Application	object.
strExpression Required	String.	The	user	name.

Remarks

Setting	the	UserName	property	is	equivalent	to	entering	a	name	in	the	User
name	box	on	the	General	tab	in	the	Options	dialog	box	(click	Options	on	the
Tools	menu,	and	then	click	General).

See	also Example

VBE	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Gets	the	root	object	of	the	object	model	exposed	by	Microsoft	Visual	Basic	for
Applications	(VBA).	Use	this	property	to	access	and	manipulate	the	VBA
projects	associated	with	currently	open	Microsoft	Visio	documents.

Version	added

4.5

Syntax

objRet	=	object.VBE
objRet Programmable	object	that	exposes	VBA	methods	and

properties.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

To	get	information	about	the	object	returned	by	the	VBE	property:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

In	the	Visual	Basic	Editor,	on	the	Tools	menu,	click	References.

In	the	References	dialog	box,	click	Microsoft	Visual	Basic	for	Applications
Extensibility,	and	then	click	OK.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	select	the	VBIDE	type	library.

In	the	Classes	list,	examine	the	class	named	VBE.

Beginning	with	Microsoft	Visio	2002,	the	VBE	property	raises	an	exception	if
you	are	running	in	a	secure	environment	and	your	system	administrator	has
blocked	access	to	the	VBA	object	model.	There	is	no	user	interface	or
programmatic	way	to	turn	this	on—the	system	administrator	must	turn	on	(or
off)	access	via	a	Group	Policy.	This	is	a	protection	mechanism	against	viruses
that	spread	by	accessing	the	Visual	Basic	projects	in	commonly	used	templates
and	injecting	the	virus	code	into	them.

VBProject	property

					 					

Returns	a	programmable	object	through	which	the	Microsoft	Visual	Basic	for
Applications	(VBA)	project	of	the	document	can	be	controlled.

Version	added

4.5

Syntax

objRet	=	object.VBProject
objRet Programmable	object	that	exposes	methods	and	properties	of

the	document's	VBA	project.
object Required.	An	expression	that	returns	a	Document	object.

Remarks

To	get	information	about	the	object	returned	by	the	VBProject	property:

On	the	Tools	menu,	point	to	Macros,	and	then	click	Visual	Basic	Editor.

In	the	Visual	Basic	Editor,	on	the	Tools	menu,	click	References.

In	the	References	dialog	box,	click	Microsoft	Visual	Basic	for	Applications
Extensibility,	and	then	click	OK.

On	the	View	menu,	click	Object	Browser.

In	the	Project/Library	list,	select	the	VBIDE	type	library.

In	the	Classes	list,	examine	the	class	named	VBProject.

Beginning	with	Microsoft	Visio	2002,	the	VBProject	property	raises	an
exception	if	you	are	running	in	a	secure	environment	and	your	system
administrator	has	blocked	access	to	the	Visual	Basic	object	model.	There	is	no
user	interface	or	programmatic	way	to	turn	this	on—the	system	administrator
must	turn	on	(or	off)	access	via	a	Group	Policy.	This	is	a	protection	mechanism
against	viruses	that	spread	by	accessing	the	Visual	Basic	projects	in	commonly
used	templates	and	injecting	the	virus	code	into	them.

VBProjectData	property

				 					

Returns	the	Microsoft	Visual	Basic	project	data	stored	with	a	document.

Version	added

2002

Syntax

valRet	=	object.VBProjectData
valRet Byte.	An	array	of	data	stored	with	a	document's	Visual	Basic

project.
object Required.	An	expression	that	returns	a	Document	object.

Example

You	can	use	the	VBProjectData	property	to	determine	whether	a	document	has
a	project.	The	following	macro	demonstrates	getting	a	reference	to	a	document
in	Visio	to	determine	whether	the	document	has	a	project.	The	code	runs	from	a
program	outside	of	the	Visio	document.

See	also

Private	Sub	Form_Load()
				'Declare	document	variable
				'and	Array	variable	to	hold	project	data
				Dim	docObj	As	Object
				Dim	projdata()	As	Byte
				'Get	the	first	object	in	the	Documents	collection
				'of	this	instance	of	Visio
				Set	docObj	=	GetObject(,	"Visio.Application").Documents(1)	
				'Populate	the	array	with	project	data
				projdata	=	docObj.VBProjectData
				Debug.Print	LBound(projdata);	UBound(projdata)	
End	Sub

If	the	document	had	no	project	associated	with	it,	"0	–1"	would	be	reported	in
the	Immediate	window.	If	the	document	had	a	project,	the	upper	bound	would	be
some	number	greater	than	zero	(0).	For	example,	"0	1535"	would	indicate	that	a
project	had	1,536	bytes	of	data.

Version	property	(Application	object)

					 					

Returns	the	version	of	a	running	Microsoft	Visio	instance.

Version	added

2.0

Syntax

strRet	=	object.Version
strRet String.	The	Visio	major	and	minor	version	numbers.
object Required.	An	expression	that	returns	an	Application	object.

Remarks

Use	the	Version	property	of	the	Application	object	to	verify	the	version	of	a
particular	Visio	instance.	This	information	is	helpful	if	your	program	requires	a
particular	version.	Both	the	major	and	minor	version	numbers	are	returned.	The
string	returned	by	Microsoft	Visio	2002	is	"10.0".

Version	property	(Document	object)

			 				

Determines	the	version	of	a	saved	document.

Version	added

2.0

Syntax

intRet	=	object.Version
object.Version	=	intExpression
intRet VisDocVersions.	The	file	format	version	the	document	is	saved

in.
object Required.	An	expression	that	returns	a	Document	object.
intExpression Required	VisDocVersions.	The	file	format	version	in	which	to

save	the	document.

Remarks

Setting	the	Version	property	of	a	document	tells	Visio	which	file	format	version
to	save	the	document	in	the	next	time	the	document	is	saved.	The	Visio	type
library	declares	constants	for	file	format	versions	in	VisDocVersions.

Visio	2002	can	save	the	following	versions.

Constant Value Description
visVersion50 &H50000 Visio	5.0	document

See	also Example

visVersion60 &H60000 Visio	version	2000	or	2002
document

When	Visio	opens	a	document	that	was	saved	in	an	earlier	version	format,	it
converts	the	document's	in-memory	representation	to	the	current	version.
However,	when	closing	the	document,	Visio	recognizes	that	the	document	was
saved	in	an	earlier	version	format	and	allows	the	user	to	choose	the	version	in
which	to	save	the	document.

ViewFit	property

				 				

Determines	which	auto-fit	mode	a	window	is	in,	if	any.

Version	added

2000

Syntax

longRet	=	object.ViewFit
object.ViewFit	=	longVal
longRet Long.	A	constant	that	identifies	the	window	mode.
object Required.	An	expression	that	returns	a	Window	object.
longVal Long.	A	constant	that	identifies	the	new	window	mode.

Remarks

The	ViewFit	property	applies	to	drawing	windows	only,	and	can	have	the
following	values.

Example

Constant Value
visFitNone 0
visFitPage 1
visFitWidth 2

If	the	value	of	the	window's	Type	property	is	not	visDrawing,	then	the	ViewFit
property	returns	visFitNone.	Attempting	to	set	the	ViewFit	property	of	this	type
of	window	raises	an	exception.

Visible	property

					 					

Determines	whether	an	object	is	visible.

Version	added

2000

Syntax

boolVal	=	object.Visible
object.Visible	=	boolExpression
boolVal Boolean.	True	if	the	object	is	visible;	False	if	the	object	is	not

visible.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.
boolExpression Required	Boolean.	True	if	the	object	is	visible;	False	if	the

window	is	not	visible.

Width	property

				 				

Gets	the	width	of	an	object.

Version	added

2000

Syntax

intLong	=	object.Width
intLong Long.	The	width	in	pixels.
object Required.	An	expression	that	returns	an	object	in	the	Applies	to

list.

Example

WindowHandle32	property

					 					

Returns	the	32-bit	handle	of	a	Microsoft	Visio	window.

Version	added

4.0

Syntax

retVal	=	object.WindowHandle32
retVal Long.	The	HWND	of	the	object's	window.
object Required.	An	expression	that	returns	an	Application	or

Window	object.

Remarks

The	WindowHandle32	property	of	an	Application	object	returns	one	of	the
following:

The	HWND	for	the	main	Visio	(frame)	window	(most	common).

The	HWND	for	the	container	application's	main	frame	window	if	Visio	is
running	in-place	and	active.

The	HWND	for	the	window	returned	by	the	GetActiveWindow()	function	if
either	frame	window	is	disabled	(for	example,	if	a	modal	dialog	box	is
running),	For	details	about	the	GetActiveWindow	function,	see	the	Microsoft
Platform	SDK	on	the	Microsoft	Developer	Network	(MSDN)	Web	site.

Use	the	WindowHandle32	property	of	the	Window	object	to	obtain	the	HWND
for	a	window	in	the	Windows	collection	of	a	Visio	instance.

You	can	use	the	obtained	HWND	in	Windows	API	calls.

Note	Calls	to	the	WindowHandle	property	(now	hidden)	are	directed	to	the
WindowHandle32	property.

http://msdn.microsoft.com

Windows	property

					 				
object;DAR_Objects_(A-M)_1015.htm">

Returns	the	Windows	collection	for	a	Microsoft	Visio	instance	or	window.

Version	added

2.0

Syntax

objRet	=	object.Windows
objRet The	Windows	collection	of	the	Application	object.
object Required.	An	expression	that	returns	an	Application	or

Window	object	that	owns	the	collection.

WindowState	property

					 					

Gets	or	sets	the	state	of	a	window.

Version	added

2000

Syntax

intRet	=	object.WindowState
object.WindowState	=	intExpression
intRet Long.	A	constant	that	identifies	the	state	of	the	window.
object Required.	An	expression	that	returns	a	Window	object.
intExpression Required	Long.	The	new	state	of	the	window.

Remarks

The	values	of	intRet	and	intExpression	can	be	a	combination	of	the	following
constants,	which	are	declared	in	the	Visio	type	library	in	VisWindowStates.

Note	The	varFlags	parameter	to	the	Add	method	for	the	Windows	collection
can	be	composed	of	the	various	bits	of	VisWindowStates.

VisWindowStates	constants

wParam	property

				 				

Gets	or	sets	the	wParam	field	of	the	MSG	structure	being	wrapped.

Version	added

2002

Syntax

intRet	=	object.wParam
object.wParam	=	intExpression
intRet Long.	Additional	information	about	the	message	that	is

dependent	on	the	message	number.
object Required.	An	expression	that	returns	a	MSGWrap	object.
intExpression Required	Long.	The	new	value	of	the	wParam	field.

Remarks

The	wParam	property	corresponds	to	the	wParam	field	in	the	MSG	structure
defined	as	part	of	the	Microsoft	Windows	operating	system.	If	an	event	handler

Example

is	handling	the	OnKeystrokeMessageForAddon	event,	Visio	passes	a
MSGWrap	object	as	an	argument	when	this	event	fires.	A	MSGWrap	object	is
a	wrapper	around	the	Windows	MSG	structure.

For	details,	search	for	"MSG	structure"	on	the	Microsoft	Developer	Network
(MSDN)	Web	site.

http://msdn.microsoft.com

Zoom	property

			 				

Gets	or	sets	the	current	display	size	(magnification	factor)	for	a	page	in	a
window.

Version	added

2.0

Syntax

retVal	=	object.Zoom
object.Zoom	=	newZoom
retVal Double.	The	current	display	size	for	the	window.
object Required.	An	expression	that	returns	a	Window	object.
newZoom Required	Double.	The	new	display	size	for	the	window.

Remarks

Valid	values	range	from	0.05	to	9.99	(5%	to	999%).	The	value	-1	fits	the	page
into	the	window.

See	also Example

New	cells	(alphabetic	list)

Cells	that	have	been	added	to	the	Microsoft	Visio	2002	ShapeSheet	are	listed	in
the	following	table	(sorted	alphabetically).

New	cell Section
ConLineRouteExt Shape	Layout
FillBkgndTrans Fill	Format
FillForegndTrans Fill	Format
LineColorTrans Line	Format
LineRouteExt Page	Layout
PlaceFlip Page	Layout
ShapePlaceFlip Shape	Layout
ShdwBkgndTrans Fill	Format
ShdwForegndTrans Fill	Format
TextBkgndTrans Text	Block	Format
Transparency Characters
Transparency Layers

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_3233.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_3230.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_3231.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(J-L)_3235.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(J-L)_3234.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_3251.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3247.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3252.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3253.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3240.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3241.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3242.htm

New	cells	(by	section)

Cells	that	have	been	added	to	the	Microsoft	Visio	2002	ShapeSheet	are	listed	in
the	following	table	(sorted	by	section).

Section New	cell
Characters Transparency
	 	
Fill	Format FillBkgndTrans,	FillForegndTrans,

ShdwBkgndTrans,	ShdwForegndTrans
	 	
Layers Transparency
	 	
Line	Format LineColorTrans
	 	
Page	Layout LineRouteExt,	PlaceFlip
	 	
Shape	Layout ConLineRouteExt,	ShapePlaceFlip
	 	
Text	Block	Format TextBkgndTrans

mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3241.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_3230.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(F-I)_3231.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3252.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3253.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3242.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(J-L)_3235.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(J-L)_3234.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(M-P)_3251.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(A-C)_3233.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(Q-S)_3247.htm
mk:@MSITStore:Vis_DSS.chm::/DSS_Cells_(T-Z)_3240.htm

New	objects

The	following	new	object	has	been	added	to	Microsoft	Visio	2002.

New	object Description
MSGWrap Used	with	the	OnKeystrokeMessageForAddon

event	to	provide	access	to	Windows	keystroke
messages.

New	properties	(alphabetic	list)

Properties	that	have	been	added	to	Microsoft	Visio	2002	are	listed	in	the
following	table	(sorted	alphabetically).

New	property Object
ActivePrinter Application
AllowEditing Window
AvailablePrinters Application
BeginGroup MenuItem,	ToolbarItem
Build Application
BuildNumberCreated Document
BuildNumberEdited Document
COMAddins Application
CommandBars Application
ContainsWorkspace Document
DefaultAngleUnits Application
DefaultDurationUnits Application
DefaultGuideStyle Document
DefaultPageUnits Application
DefaultTextUnits Application
DynamicGridEnabled Document
EditCopy Master
EmailRoutingData Document
FooterCenter Document
FooterLeft Document

FooterMargin Document
FooterRight Document
ForeignData Shape
FullBuild Application
FullBuildNumberCreated Document
FullBuildNumberEdited Document
GlueEnabled Document
GlueSettings Document
HeaderCenter Document
HeaderFooterColor Document
HeaderFooterFont Document
HeaderLeft Document
HeaderMargin Document
HeaderRight Document
hwnd MSGWrap
Icon Master,	MasterShortcut,	Window
InheritedFormulaSource Cell
InheritedValueSource Cell
InhibitSelectChange Application
InPlace Document,	Window
IsChanged Master
lParam MSGWrap
MasterShape Shape
MergeCaption Window
MergeClass Window
MergeID Window
MergePosition Window
message MSGWrap
Original Master
PageTabWidth Window
Password Document
Picture Master,	Page,	Selection,	Shape
posttime MSGWrap
PreviewPicture Document

PrintCopies Document
Printer Document
PrintTileCount Page
ptx MSGWrap
pty MSGWrap
RootShape Shape
ShowPageTabs Window
ShowScrollBars Window
SnapAngles Document
SnapEnabled Document
SnapExtensions Document
SnapSettings Document
SolutionXMLElement Document
SolutionXMLElementCount Document
SolutionXMLElementExists Document
SolutionXMLElementName Document
Time Document
TimeCreated Document
TimeEdited Document
TimePrinted Document
TimeSaved Document
VBProjectData Document
wParam MSGWrap

New	properties	(by	object)

Properties	that	have	been	added	to	Microsoft	Visio	2002	are	listed	in	the
following	table	(sorted	by	object).

Object New	property
Application ActivePrinter,	Build,	COMAddins,

CommandBars,	DefaultAngleUnits,
DefaultDurationUnits,	DefaultGuideStyle,
DefaultPageUnits,	DefaultTextUnits,
DynamicGridEnabled,	FullBuild,
InhibitSelectChange

	 	
Cell InheritedFormulaSource,

InheritedValueSource
	 	
Document AvailablePrinters,	BuildNumberCreated,

BuildNumberEdited,	ContainsWorkspace,
FooterCenter,	FooterLeft,	FooterMargin,
FooterRight,	FullBuildNumberCreated,
FullBuildNumberEdited,	GlueEnabled,
GlueSettings,	HeaderCenter,
HeaderFooterColor,	HeaderFooterFont,
HeaderLeft,	HeaderMargin,	HeaderRight,
InPlace,	Password,	PreviewPicture,
PrintCopies,	Printer,	SnapAngles,
SnapEnabled,	SnapExtensions,	SnapSettings,
SolutionXMLElement,

SolutionXMLElementCount,
SolutionXMLElementExists,
SolutionXMLElementName,	Time,
TimeCreated,	TimeEdited,	TimePrinted,
TimeSaved,	VBProjectData

	 	
Master EditCopy,	Icon,	IsChanged,	Original,	Picture
	 	
MasterShortcut Icon
	 	
MenuItem BeginGroup
	 	
MSGWrap hwnd,	lParam,	message,	posttime,	ptx,	pty,

wParam
	 	
Page Picture,	PrintTileCount
	 	
Selection Picture
	 	
Shape ForeignData,	MasterShape,	Picture,

RootShape
	 	
ToolbarItem BeginGroup
	 	
Window AllowEditing,	AvailablePrinters,	Icon,

InPlace,	MergeCaption,	MergeClass,
MergeID,	MergePosition,	PageTabWidth,
ShowPageTabs,	ShowScrollBars

New	methods	(alphabetic	list)

Methods	that	have	been	added	to	Microsoft	Visio	2002	are	listed	in	the
following	table	(sorted	alphabetically).

New	method Object
CopyPreviewPicture Document
DeleteSolutionXMLElement Document
GetFilterCommands Event
GetFilterObjects Event
GetFilterSRC Event
PasteSpecial Master,	Page,	Shape
PrintTile Page
RenameCurrentScope Application
ResizeToFitContents Master,	Page
SetFilterCommands Event
SetFilterObjects Event
SetFilterSRC Event
SwapEnds Selection,	Shape

New	methods	(by	object)

Methods	that	have	been	added	to	Microsoft	Visio	2002	are	listed	in	the
following	table	(sorted	by	object).

Object New	method
Application RenameCurrentScope
	 	
Document CopyPreviewPicture,

DeleteSolutionXMLElement
	 	
Event GetFilterCommands,	GetFilterObjects,

GetFilterSRC,	SetFilterCommands,
SetFilterObjects,	SetFilterSRC

	 	
Master PasteSpecial,	ResizeToFitContents
	 	
Page PasteSpecial,	PrintTile,	ResizeToFitContents
	 	
Selection SwapEnds
	 	
Shape PasteSpecial,	SwapEnds

New	events

The	following	new	event	has	been	added	to	Microsoft	Visio	2002.

New	event Object
OnKeystrokeMessageForAddon Application,	Window

PrintCopies	property

				 				

Specifies	the	number	of	copies	to	print.

Version	added

2002

Syntax

intRet	=	object.PrintCopies
object.PrintCopies	=	intValue
intRet Long.	The	current	number	of	copies.
object Required.	An	expression	that	returns	a	Document	object.
intValue Required	Long.	The	new	number	of	copies.

Remarks

The	PrintCopies	property	corresponds	to	the	Number	of	copies	box	in	the
Print	dialog	box	(click	Print	on	the	File	menu).

Example

