
	 	

	 	

	 	

Check	or	Add	an	Object	Library	Reference

				

If	you	use	the	objects	in	other	applications	as	part	of	your	Visual	Basic
application,	you	may	want	to	establish	a	reference	to	the	object	libraries	of	those

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


applications.	Before	you	can	do	that,	you	must	first	be	sure	that	the	application
provides	an	object	library.

To	see	if	an	application	provides	an	object	library

From	the	Tools	menu,	choose	References	to	display	the	References	dialog
box.

The	References	dialog	box	shows	all	object	libraries	registered	with	the
operating	system.	Scroll	through	the	list	for	the	application	whose	object
library	you	want	to	reference.	If	the	application	isn't	listed,	you	can	use	the
Browse	button	to	search	for	object	libraries	(*.olb	and	*.tlb)	or	executable
files	(*.exe	and	*.dll	on	Windows).	References	whose	check	boxes	are
checked	are	used	by	your	project;	those	that	aren't	checked	are	not	used,	but
can	be	added.

To	add	a	object	library	reference	to	your	project

Select	the	object	library	reference	in	the	Available	References	box	in	the
References	dialog	box	and	click	OK.
Your	Visual	Basic	project	now	has	a	reference	to	the	application's	object	library.	If	you	open	the	Object	Browser	(press	F2)	and	select
the	application's	library,	it	displays	the	objects	provided	by	the	selected	object	library,	as	well	as	each	object's	methods	and	properties.
In	the	Object	Browser,	you	can	select	a	class	in	the	Classes	box	and	select	a	method	or	property	in	the	Members	box.	Use	copy	and
paste	to	add	the	syntax	to	your	code.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()


	 	

	 	

Continue	Code	Execution

				

When	you	run	your	code,	execution	may	stop	if:

An	untrapped	run-time	error	occurs.

A	trapped	run-time	error	occurs,	and	Break	on	All	Errors	is	selected	on	the
General	tab	of	the	Options	dialog	box	(Tools	menu).

JavaScript:hhobj_3.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


A	previously	set	breakpoint	is	encountered.

A	Stop	statement	in	your	code	is	encountered,	switching	the	mode	to	break
mode.

An	End	statement	in	your	code	is	encountered,	switching	the	mode	to	design
time.

You	halt	execution	manually	at	a	given	point.

A	watch	expression,	which	you	set	to	break	when	the	value	has	changed	or
break	when	the	value	is	true,	is	encountered.

To	halt	execution	manually

To	switch	to	break	mode,	choose	Break	(CTRL+BREAK)	from	the	Run
menu,	or	use	the	toolbar	shortcut:	 .

To	switch	to	design	time,	choose	Reset	<projectname>	from	the	Run	menu,
or	use	the	toolbar	shortcut:	 .

To	continue	execution	when	your	application	has	halted

On	the	Run	menu,	click	Continue	(F5),	or	use	the	toolbar	shortcut:	 .
–	Or	–

On	the	Debug	menu,	click	Step	Into	(F8),	Step	Over	(SHIFT+F8),	Step
Out	(CTRL+SHIFT+F8),	or	Run	To	Cursor	(CTRL+F8)(.

To	continue	execution	when	your	application	has	halted	because	of	a
handled	error

Press	ALT+F8	to	step	through	the	error-handler.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_7.Click()


–	Or	–

Press	ALT+F5	to	resume	execution	by	running	through	the	error-handler.



Copy	Example	Code	from	Help

				

Sometimes	you	may	want	to	copy	a	useful	example	from	Visual	Basic	Help.
While	many	of	the	examples	require	more	code	to	work	correctly,	some
examples	are	useful	to	see	how	a	particular	procedure	or	control	flow	technique
behaves.

To	copy	example	code	from	Help	to	your	application

Use	Help	to	display	the	topic	for	the	language	element	whose	example	you
want	to	use.

Click	the	Example	link	in	the	non-scrolling	region	near	the	top	of	the	page.
The	code	example	is	displayed.

Right-click	and	select	the	part	of	the	code	you	want	to	copy	to	your
application.	On	the	Macintosh,	choose	Copy	from	the	Edit	menu;	a	window
appears	in	which	you	can	select	the	code	to	copy.

Choose	Copy	from	the	shortcut	menu.	On	the	Macintosh,	press	the	Copy
button..

JavaScript:hhobj_3.Click()


Move	the	focus	back	to	the	Code	window	and	position	the	mouse	pointer
where	you	want	the	code	example	to	be	inserted.

Right-click	again	and	choose	Paste	to	insert	the	code	example	into	the	Code
window.
Tip			You	can	also	press	CTRL+C	to	copy	a	selected	example	in	a	Help	window.	Press	CTRL+V	to	paste	the	example	into	the	Code
window.



	 	

Create	a	Procedure

				

Code	within	a	module	is	organized	into	procedures.	A	procedure	tells	the
application	how	to	perform	a	specific	task.	Use	procedures	to	divide	complex
code	tasks	into	more	manageable	units.

To	create	a	procedure	by	writing	code

Open	the	module	for	which	you	want	to	write	the	procedure.

You	can	create	a	Sub,	Function,	or	Property	procedure.

Type	Sub,	Function,	or	Property.
Press	F1	to	get	Help	with	syntax,	if	necessary.

Type	code	for	the	procedure.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Visual	Basic	concludes	the	procedure	with	the	appropriate	End	Sub,	End	Function,	or	End	Property	statement.

To	create	a	procedure	using	the	Insert	Procedure	dialog	box

Open	the	module	for	which	you	want	to	write	the	procedure.

On	the	Insert	menu,	click	Procedure.

Type	the	name	for	the	procedure	in	the	Name	box	of	the	Insert	Procedure
dialog	box.

Select	the	type	of	procedure	you	want	to	create:	Sub,	Function,	or	Property.

Set	the	procedure's	scope	to	either	Public	or	Private.

You	can	select	the	All	Local	Variables	as	Statics	to	add	the	Static	keyword
to	the	procedure	definition.

Click	OK.

JavaScript:hhobj_5.Click()


	 	

	 	

	 	

	 	

	 	



	 	

Enter	a	Declaration	in	Code

				

Declarations	are	nonexecutable	code	statements	that	name	external	procedures,
constants,	or	variables	and	define	their	attributes	(such	as	data	type).	You	write
declarations	for	form,	standard,	or	class	modules.	To	enter	module-level
declarations,	go	to	the	Declarations	section	of	a	module.	To	enter	global
declarations,	go	to	the	Declarations	section	of	a	module	and	use	the	Public
statement	for	constants	and	variables.	You	can	also	use	the	Dim,	Static,	and
Private	keywords	to	make	declarations.

You	can	also	enter	procedure-level	declarations.	For	whatever	code	level	and
technique	you	use	to	declare	a	variable	or	constant,	specific	scoping	rules	may
apply.

To	open	the	Declarations	section	of	a	module

In	the	Project	window,	select	the	form,	standard,	or	class	module	you	want

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()


to	open	and	click	the	View	Code	button.
–	Or	–

Right-click	and	choose	View	Code	from	the	context	menu.

In	the	Object	box,	select	(General).
The	Procedure	box	automatically	displays	(Declarations).

Enter	one	or	more	declarations.

JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()


	 	

	
Execute	a	Specific	Statement

				

While	execution	of	your	code	is	halted,	you	can	control	the	execution	sequence
of	statements	within	a	procedure.	You	can	resume	execution	at	a	statement	you
choose	without	executing	any	intervening	code.

To	set	the	next	statement	to	be	executed

In	the	Code	window,	position	the	insertion	point	anywhere	within	the
statement.

On	the	Debug	menu,	click	Set	Next	Statement	(CTRL+F9).
–	or	on	Windows	–

Position	the	mouse	pointer	in	the	margin	indicator	next	to	the	current	execution	point.

Drag	the	yellow	arrow	in	the	margin	indicator	to	the	statement	you	want	to

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


execute	next.
Note			You	can	only	skip	to	statements	within	the	same	procedure.

Used	in	combination	with	Step	Into,	executing	specific	statements	with	the	Set	Next	Statement	command	enables	you	to	step	through
procedures	one	statement	at	a	time,	and	to	closely	examine	your	code.	It's	also	helpful	for	correcting	or	avoiding	run-time	error
conditions.

JavaScript:hhobj_6.Click()


	 	

Find	a	Procedure

				

To	find	a	procedure	in	the	Code	window

To	view	an	existing	general	procedure,	select	(General)	in	the	Object	box	in
the	Code	window,	and	then	select	the	procedure	in	the	Procedure	box.

To	view	an	event	procedure,	select	the	appropriate	object	in	the	Object	box
in	the	Code	window,	and	then	select	the	event	in	the	Procedure	box.
Note			To	visually	separate	procedures	in	the	Code	window,	you	can	select	the	Procedure	Separator	check	box	on	the	Editor	tab	of
the	Options	dialog	box	(Tools	menu).	You	can	switch	between	Procedure	view	and	Full	Module	view	using	the	buttons	in	the	lower-
left	corner	of	the	Code	window.

To	find	a	procedure	in	another	module

On	the	View	menu,	click	Object	Browser,	or	press	F2.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


Select	the	project	in	the	Project/Library	box.

Select	the	module	in	the	Classes	list.

Double-click	the	procedure	name	in	the	Members	of	list.
The	selected	procedure	is	displayed	in	the	Code	window.

You	can	use	the	following	keyboard	shortcuts:

Press To
CTRL+DOWN
ARROW

Display	the	next	procedure.

CTRL+UP	ARROW Display	the	previous	procedure.
PAGE	DOWN Page	down	through	the	procedures	in	your	code.
PAGE	UP Page	up	through	the	procedures	in	your	code.
F2 Display	the	Object	Browser.



Find	a	Variable	Definition

				

To	view	the	definition	of	a	variable

In	the	Code	window,	select	the	variable	whose	definition	you	want	to	see.

From	the	View	menu,	choose	Definition	(SHIFT+F2).

To	return	the	mouse	pointer	to	its	previous	position

On	the	View	menu,	click	Last	Position	(CTRL+SHIFT+F2).

JavaScript:hhobj_3.Click()


Replace	Text	in	Code

				

To	replace	text	in	a	module

On	the	Edit	menu,	click	Replace.
The	Replace	dialog	box	appears.

In	the	Find	What	box,	type	the	text	you	want	to	search	for.

In	the	Replace	With	box,	type	the	replacement	text.

Select	a	Search	option	to	specify	where	to	look	for	the	text.

Select	a	direction	from	the	Direction	list	to	specify	the	direction	of	the
search.

To	set	limits	on	the	search,	select:
Find	Whole	Word	Only	to	search	for	the	complete	word	by	itself,	and	not	as	part	of	another	word.

Match	Case	for	an	exact	match.

Use	Pattern	Matching	to	use	wildcard	characters.

Choose	Find	Next	if	you	want	to	confirm	the	change	before	replacing	the
text;	choose	Replace	to	replace	the	highlighted	occurrence	of	the	found	text
and	automatically	perform	a	Find	Next;	or	choose	Replace	All	to	change	all
occurrences	of	the	search	text	automatically.



	 	

Restart	Execution

				

You	can	restart	execution	from	break	mode.	Restarting	returns	the	code	to	a
newly	initialized	state,	resetting	all	variables	and	removing	any	suspended
procedures	from	memory.

To	restart	execution

On	the	Run	menu,	click	Reset	<projectname>,	or	use	the	toolbar	shortcut:	 .

On	the	Run	menu,	click	Run	Sub/UserForm	(F5),	or	use	the	toolbar
shortcut:	 .

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


Search	for	Text	in	Code

				

To	search	for	specific	text	in	a	module

On	the	Edit	menu,	click	Find.
The	Find	dialog	box	appears.

In	the	Find	What	box,	type	the	text	you	want	to	search	for	(if	you	didn't
select	the	text	before	displaying	the	dialog	box).

Select	a	Search	option	to	specify	where	to	look	for	the	text.

Select	a	direction	from	Direction	list	to	specify	the	direction	of	the	search.

To	set	limits	on	the	search,	select:
Find	Whole	Word	Only	to	search	for	the	complete	word	by	itself	and	not	as	part	of	another	word.

Match	Case	to	find	an	exact	match.

Use	Pattern	Matching	to	use	wildcards	or	ranges.

Choose	Find	Next.



	 	

	 	

	
Set	a	Reference	to	a	Type	Library

				

Automation	(formerly	OLE	Automation)	enables	you	to	use	objects	from	other
applications	in	Visual	Basic	code.	An	application	that	provides	its	objects	for	use
by	other	applications	also	provides	information	about	those	objects	in	a	type
library.	To	achieve	the	best	possible	performance	when	using	another
application's	objects,	you	should	set	a	reference	to	that	application's	type	library.

To	set	a	reference	to	an	application's	type	library

JavaScript:hhobj_3.Click()


Click	References	on	the	Tools	menu.

Select	the	check	boxes	for	the	applications	with	type	libraries	you	want	to
reference.

If	you	are	writing	code	that	manipulates	objects	in	another	application,	you
should	set	a	reference	to	that	application's	type	library	for	best	possible	access	to
those	objects.	You	don't	have	to	set	a	reference	to	use	another	application's
objects,	but	doing	so	provides	several	advantages	for	your	application.

Your	code	will	run	faster	if	you	set	a	reference	to	another	application's	type
library	before	you	work	with	its	objects.	If	you	set	a	reference,	you	can	declare
an	object	variable	representing	an	object	in	the	other	application	as	its	most
specific	type.	For	example,	if	you	are	writing	code	to	work	with	Microsoft	Excel
objects,	you	can	declare	an	object	variable	of	type	Excel.Application	if	you
created	a	reference	to	the	Microsoft	Excel	type	library.	The	following	code	is	the
fastest	way	to	create	a	variable	to	represent	the	Microsoft	Excel	Application
object.

Dim	appXL	As	Excel.Application

If	you	haven't	set	a	reference	to	the	Microsoft	Excel	type	library,	you	must
declare	the	variable	as	a	generic	variable	of	type	Object.	The	following	code
runs	more	slowly.

Dim	appXL	As	Object

If	you	set	a	reference	to	an	application's	type	library,	all	of	its	objects	and	their
methods	and	properties	are	listed	in	the	Object	Browser.	This	makes	it	easy	to
determine	what	properties	and	methods	are	available	to	each	object.

For	Microsoft	applications	that	can	also	serve	as	Automation	servers,	you	can	set
references	to	their	type	libraries	from	another	application,	and	control	their
objects	from	that	application.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()


	 	

Set	and	Clear	a	Breakpoint

				

You	set	a	breakpoint	to	suspend	execution	at	a	specific	statement	in	a	procedure;
for	example,	where	you	suspect	problems	may	exist.	You	clear	breakpoints	when
you	no	longer	need	them	to	stop	execution.

To	set	a	breakpoint

Position	the	insertion	point	anywhere	in	a	line	of	the	procedure	where	you
want	execution	to	halt.

On	the	Debug	menu,	click	Toggle	Breakpoint	(F9),	click	next	to	the
statement	in	the	Margin	Indicator	Bar	(if	visible),	or	use	the	toolbar
shortcut:	 .
The	breakpoint	is	added	and	the	line	is	set	to	the	breakpoint	color	defined	on	the	Editor	Format	tab	in	the	Options	dialog	box.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


If	you	set	a	breakpoint	on	a	line	that	contains	several	statements	separated	by
colons	(:),	the	break	always	occurs	at	the	first	statement	on	the	line.

To	clear	a	breakpoint

Position	the	insertion	point	anywhere	on	a	line	of	the	procedure	containing
the	breakpoint.

From	the	Debug	menu,	choose	Toggle	Breakpoint	(F9),	or	click	next	to	the
statement	in	the	Margin	Indicator	Bar	(if	visible.)

The	breakpoint	is	cleared	and	highlighting	is	removed.

To	clear	all	breakpoints	in	the	application

From	the	Debug	menu,	choose	Clear	All	Breakpoints	(CTRL+SHIFT+F9).
Note			Breakpoints	set	in	code	are	not	saved	when	you	save	your	code.



	
Set	Project	Properties

				

To	set	Project	Properties

From	the	Tools	menu,	choose	<projectname>	Properties

Use	the	General	tab	in	the	<projectname>	Properties	dialog	box	to	specify
the	following:

Name	of	your	project.

Description	of	your	project.

Name	of	the	Help	file	associated	with	your	project

Context	ID	for	the	specific	Help	topic	to	be	called	when	the	user	clicks	the	Help	button	while	the	application’s	object	library	is
selected	in	the	Object	Browser.

Use	the	Protection	tab	in	the	<projectname>	Properties	dialog	box	to	lock
the	project	from	viewing	by	others	and	specify	a	password	for	access	to
project	properties.	After	you	set	protection,	you	must	save	and	close	your
project	for	the	protection	to	take	effect.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Import	a	Text	File	into	Code

				

You	can	import	a	text	file	containing	code	into	the	current	module	and	use	it	in
your	code.

To	import	a	text	file	into	a	module

Open	the	module	into	which	you	want	to	insert	text	and	position	the	entry
point	at	the	place	where	you	want	the	text	inserted.

On	the	Insert	menu,	click	File.

The	Insert	File	dialog	box	appears.

Use	the	Insert	File	dialog	box	to	select	the	file	to	import.

Click	OK.

JavaScript:hhobj_3.Click()


	 	

	 	

	 	

Set	Visual	Basic	Environment	Options

				

You	can	set	the	behavior	and	look	of	the	Visual	Basic	development	environment
through	the	Options	dialog	box.	Use	the:



Editor	tab	to	specify	Code	window	and	Project	window	settings.

Editor	Format	tab	to	specify	the	appearance	of	your	code.	

General	tab	to	specify	form,	error	handling,	and	compile	settings	for	your
project.	

Docking	tab	to	specify	whether	a	window	is	attached	or	"anchored"	to	one
edge	of	other	dockable	or	application	windows.

To	set	Environment	options

On	the	Tools	menu	of	the	Visual	Basic	editor,	click	Options.	Each	option	is
described	in	the	following	tables.

Editor

Option Description
Auto	Syntax	Check Visual	Basic	automatically	verifies	correct

syntax	after	you	enter	a	line	of	code.
Require	Variable	Declaration Explicit	variable	declarations	are	required	in

modules.
Auto	Indent After	tabbing	the	first	line	of	code,	all

subsequent	lines	start	at	that	tab	location.
Tab	Width The	tab	width,	which	can	range	from	1	–	32

spaces.	(Default	is	4	spaces.)
Default	to	Full	Module	View Procedures	for	new	modules	are	displayed	in

the	Code	window	as	a	single,	scrollable	list	or
one	procedure	at	a	time.

Procedure	Separator Display	separator	bars	at	the	end	of	each
procedure	in	the	Code	window.

Auto	List	Members At	the	insertion	point,	Visual	Basic	displays
information	that	logically	completes	a

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


statement.
Auto	Quick	Info Information	about	functions	and	their

arguments	is	displayed	as	you	type.
Auto	Data	Tips Automatically	display	the	value	of	any

variable	on	which	you	place	the	mouse
pointer.	Available	only	in	break	mode.

Drag-Drop	in	Text	Editing Code	elements	can	be	dragged	from	the	Code
window	into	the	Immediate	or	Watch
windows.

Editor	Format

Option Description
Foreground,	Background,	and
Indicator

The	color	of	different	categories	of	text	listed
in	the	Code	Colors	list.

Font The	font	used	for	displaying	code.
Size The	size	of	the	font	used	for	code.
Margin	Indicator	Bar Display	the	Margin	Indicator	Bar.

General

Option Description
Show	Grid Display	a	grid	on	a	form.
Grid	Units Lists	the	unit	of	measurement	for	units	in	the

grid.
Width The	width	of	the	grid	cells	on	a	form.
Height The	height	of	the	grid	cells	on	a	form.
Align	Controls	to	Grid Automatically	position	the	outer	edge	of

controls	on	the	closest	grid	lines.
Show	ToolTips Display	ToolTips	for	toolbar	buttons.
Collapse	Proj.	Hides	Windows Automatically	close	the	project,	UserForm,

object,	or	module	windows	when	a	project	is

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()


collapsed	in	the	Project	Explorer.
Notify	Before	State	Loss Display	a	message	that	a	requested	action	will

cause	all	module-level	variables	to	be	reset
for	a	running	project.

Break	on	All	Errors Any	error	causes	the	project	to	enter	break
mode,	whether	or	not	an	error	handler	is
active,	and	whether	or	not	the	code	is	in	a
class	module.

Break	in	Class	Module Any	unhandled	error	produced	in	a	class
module	causes	the	project	to	enter	break
mode	at	the	line	of	code	which	produced	the
error.

Break	on	Unhandled	Errors Any	other	unhandled	error	causes	the	project
to	enter	break	mode.

Compile	On	Demand A	project	is	fully	compiled	before	it	starts,	or
code	is	compiled	as	needed.

Background	Compile Use	idle	time	during	run	time	to	finish
compiling	the	project	in	the	background.
(Available	only	if	Compile	On	Demand	is
set.)

Docking

Option Description
The	check	box	for	the
appropriate	window

A	window	can	be	anchored	to	an	adjacent
dockable	window	or	the	Visual	Basic	Editor
window.

JavaScript:hhobj_9.Click()


	 	

Split	the	Code	Window

				

You	can	split	the	Code	window	horizontally	into	two	panes	to	view	different
code	segments	of	a	module	at	the	same	time.	Each	pane	scrolls	separately,	both
horizontally	and	vertically.	The	Procedure	and	Object	box	options	refer	to	the
pane	that	has	the	focus.	Code	changes	are	immediately	reflected	in	both	panes.

To	split	the	Code	window	into	panes

Drag	the	split	bar	at	the	top	of	the	vertical	scroll	bar	down	from	the	upper-
right	corner	of	the	Code	window.

To	remove	a	split	from	the	Code	window

Double-click	the	split	bar	or	drag	it	to	the	top	or	bottom	of	the	Code	window.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


	 	

Start	Code	Execution

				

One	way	to	test	your	code	is	to	run	it	and	work	with	it	as	a	user	would.

To	start	code	execution

Choose	Run	Sub/UserForm	(F5)	from	the	Run	menu.

If	your	application	doesn't	run,	it	may	be	because:

A	syntax	error	or	some	other	error	exists	in	your	code.

A	logic	error	exists	in	your	code,	which	may	result	in	a	run-time	error.

To	get	Help,	click	the	Help	button	or	press	F1	while	the	error	message	is
displayed.	Consider	the	suggestions	provided	to	correct	the	error	before	you	run
your	code	again.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


	 	

	 	

Stop	Code	Execution

				

As	you	run	your	code,	it	may	stop	executing	for	one	of	the	following	reasons:

An	untrapped	run-time	error	occurs.

A	trapped	run-time	error	occurs,	and	Break	on	All	Errors	is	selected	on	the
General	tab	in	the	Options	dialog	box.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


A	breakpoint	is	encountered.

A	Stop	statement	is	encountered	in	your	code,	switching	the	mode	to	break
mode.

An	End	statement	is	encountered	in	your	code,	switching	the	mode	to	design
time.

You	halt	execution	manually	at	a	given	point.

A	watch	expression	that	you	set	to	break	if	its	value	changes	or	becomes	true
is	encountered.

To	halt	execution	manually

To	switch	to	break	mode,	from	the	Run	menu,	choose	Break
(CTRL+BREAK),	or	use	the	toolbar	shortcut:	 .

To	switch	to	design	time,	from	the	Run	menu,	choose	Reset
<projectname>,	or	use	the	toolbar	shortcut:	 .

To	continue	execution	when	your	application	has	halted

From	the	Debug	menu,	choose	Step	Into	(F8),	Step	Over	(SHIFT+F8),	Step
Out	(CTRL+SHIFT+F8),	or	Run	To	Cursor	(CTRL+F8.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_7.Click()


	
Trace	Code	Execution

				

You	trace	code	execution	because	it	may	not	always	be	obvious	which	statement
is	executed	first.	Use	these	techniques	to	trace	the	execution	of	code:

Step	Into:	Traces	through	each	line	of	code	and	steps	into	procedures.	This
allows	you	to	view	the	effect	of	each	statement	on	variables.

Step	Over:	Executes	each	procedure	as	if	it	were	a	single	statement.	Use	this
instead	of	Step	Into	to	step	across	procedure	calls	rather	than	into	the	called
procedure.

Step	Out:	Executes	all	remaining	code	in	a	procedure	as	if	it	were	a	single
statement,	and	exits	to	the	next	statement	in	the	procedure	that	caused	the
procedure	to	be	called	initially.

Run	To	Cursor:	Allows	you	to	select	a	statement	in	your	code	where	you
want	execution	to	stop.	This	allows	you	to	"step	over"	sections	of	code,	for
example,	large	loops.

To	trace	execution	from	the	current	statement

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


From	the	Debug	menu,	choose	Step	Into	(F8),	Step	Over	(SHIFT+F8),	Step
Out	(CTRL+SHIFT+F8),	or	Run	To	Cursor	(CTRL+F8).

To	trace	execution	from	the	beginning	of	the	program

From	the	Debug	menu,	choose	Step	Into	(F8),	Step	Over	(SHIFT+F8),	Step
Out	(CTRL+SHIFT+F8),	or	Run	To	Cursor	(CTRL+F8).

JavaScript:hhobj_4.Click()


	
Turn	Syntax	Checking	On	or	Off

				

Visual	Basic	includes	a	syntax-checking	feature	that:

Checks	each	statement	as	you	enter	it	for	syntax	errors,	such	as	a	misspelled
keyword	or	missing	separator,	and	alerts	you	if	there	are	errors.

Translates	the	code	to	an	internal	form	if	the	syntax	is	correct,	which	speeds
the	transition	to	run	time.

This	feature	is	turned	on	when	you	first	start,	but	you	can	turn	it	off	if	you	prefer
to	write	code	without	being	alerted	to	errors	as	they	occur.

To	enable	syntax	checking

On	the	Tools	menu,	click	Options.

Select	the	Editor	tab.

Select	the	Auto	Syntax	Check	check	box.

JavaScript:hhobj_3.Click()


Click	OK.

To	disable	syntax	checking

Click	Options	on	the	Tools	menu.

Select	the	Editor	tab.

Clear	the	Auto	Syntax	Check	check	box.

Click	OK.



	 	

	 	

	
Use	the	Immediate	Window

				

The	Immediate	window	displays	information	resulting	from	debugging
statements	in	your	code	or	from	commands	typed	directly	into	the	window.

To	display	the	Immediate	window

From	the	View	menu,	choose	Immediate	window	(CTRL+G)

To	execute	code	in	the	Immediate	window



Type	a	line	of	code	in	the	Immediate	window.

Press	ENTER	to	execute	the	statement.

Use	the	Immediate	window	to:

Test	problematic	or	newly	written	code.

Query	or	change	the	value	of	a	variable	while	running	an	application.	While
execution	is	halted,	assign	the	variable	a	new	value	as	you	would	in	code.

Query	or	change	a	property	value	while	running	an	application.

Call	procedures	as	you	would	in	code.

View	debugging	output	while	the	program	is	running.
Note			Immediate	window	statements	are	executed	in	a	context	—	that	is,	as	if	they	are	entered	in	a	specific	module.

If	you	need	help	on	syntax	for	functions,	statements,	properties,	or	methods
while	working	in	the	Immediate	window,	select	the	keyword,	the	property
name,	or	the	method	name,	and	press	F1.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()


	 	

	 	

	 	

	
Use	the	Object	Browser

				

The	Object	Browser	allows	you	to	browse	through	all	available	objects	in	your
project	and	see	their	properties,	methods	and	events.	In	addition,	you	can	see	the

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


procedures	and	constants	that	are	available	from	object	libraries	in	your	project.
You	can	easily	display	online	Help	as	you	browse.	You	can	use	the	Object
Browser	to	find	and	use	objects	you	create,	as	well	as	objects	from	other
applications.

You	can	get	help	for	the	Object	Browser	by	searching	for	Object	Browser	in
Help.

To	navigate	the	Object	Browser

Activate	a	module.

From	the	View	menu,	choose	Object	Browser	(F2),	or	use	the	toolbar
shortcut:	 .

Select	the	name	of	the	project	or	library	you	want	to	view	in	the
Project/Library	list.

Use	the	Class	list	to	select	the	class;	use	the	Member	list	to	select	specific
members	of	your	class	or	project.

View	information	about	the	class	or	member	you	selected	in	the	Details
section	at	the	bottom	of	the	window.

Use	the	Help	button	to	display	the	Help	topic	for	the	class	or	member	you
selected.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()


Use	the	Project	Explorer

				

The	Project	Explorer	displays	a	hierarchical	list	of	the	projects	and	all	of	the
items	contained	and	referenced	by	each	project.

To	navigate	the	Project	Explorer

From	the	View	menu,	choose	Project	Explorer	(CTRL+R),	or	use	the
toolbar	shortcut:	 .

Select	an	item	from	the	collapsible	tree	that	includes	all	projects	and	their
components.

Click	the	View	Code	button	to	open	the	Code	window	to	begin	entering
code.
–	or	–

Click	the	View	Object	button	to	open	a	window	containing	the	specified	object.

–	or	–

Click	the	Toggle	Folders	button	to	toggle	between	folder	view	and	folder	contents	view.

JavaScript:hhobj_3.Click()


	
Use	the	Properties	Window

				

The	Properties	window	lists	the	design-time	properties	for	selected	objects	and
their	current	settings.	You	can	change	these	properties	at	design	time.	When	you
select	multiple	controls,	the	Properties	window	contains	a	list	of	the	properties
common	to	all	the	selected	controls.

To	navigate	the	Properties	window

From	the	View	menu	of	the	Visual	Basic	Editor,	choose	Properties	window
(F4).

Select	the	object	whose	properties	you	want	to	display.	You	can	either	use	the
mouse	to	select	the	object	or	use	the	Project	Explorer	to	choose	from	a	list.

Click	the	Alphabetic	tab	to	display	properties	in	alphabetic	order,	or	click
the	Categorized	tab	to	display	object	properties	by	category.

To	change	a	property's	value

Select	the	property	in	the	left	column.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Change	the	property's	value	in	the	right	column.
Note			You	can	enter	a	property's	value	in	the	right	column.	For	those	properties	that	have	a	predefined	set	of	values,	click	the	value	and
then	select	one	from	the	values	displayed	in	the	list	box.


	Check or Add an Object Library Reference
	Continue Code Execution
	Copy Example Code from Help
	Create a Procedure
	Enter a Declaration in Code
	Execute a Specific Statement
	Find a Procedure
	Find a Variable Definition
	Replace Text in Code
	Restart Execution
	Search for Text in Code
	Set a Reference to a Type Library
	Set and Clear a Breakpoint
	Set Project Properties
	Import a Text File into Code
	Set Visual Basic Environment Options
	Split the Code Window
	Start Code Execution
	Stop Code Execution
	Trace Code Execution
	Turn Syntax Checking On or Off
	Use the Immediate Window
	Use the Object Browser
	Use the Project Explorer
	Use the Properties Window

