
	 	

	 	

	 	

	 	

Avoiding	Naming	Conflicts

				

A	naming	conflict	occurs	when	you	try	to	create	or	use	an	identifier	that	was
previously	defined.	In	some	cases,	naming	conflicts	generate	errors	such	as
"Ambiguous	name	detected"	or	"Duplicate	declaration	in	current	scope".
Naming	conflicts	that	go	undetected	can	result	in	bugs	in	your	code	that	produce
erroneous	results,	especially	if	you	do	not	explicitly	declare	all	variables	before
first	use.

You	can	avoid	most	naming	conflicts	by	understanding	the	scoping
characteristics	of	identifiers	for	data,	objects,	and	procedures.	Visual	Basic	has
three	scoping	levels:	procedure-level,	private	module-level,	and	public	module-
level.

A	naming	conflict	can	occur	when	an	identifier:

Is	visible	at	more	than	one	scoping	level.

Has	two	different	meanings	at	the	same	level.

For	example,	procedures	in	separate	modules	can	have	the	same	name.
Therefore,	you	can	define	a	procedure	named	MySub	in	modules	named	Mod1	and
Mod2.	No	conflicts	occur	if	each	procedure	is	called	only	from	other	procedures
in	its	own	module.	However,	an	error	can	occur	if	MySub	is	called	from	a	third
module,	and	no	qualification	is	provided	to	distinguish	between	the	two	MySub
procedures.

Most	naming	conflicts	can	be	resolved	by	preceding	each	identifier	with	a
qualifier	that	consists	of	the	module	name	and,	if	necessary,	a	project	name.	For
example:

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

YourProject.YourModule.YourSub	MyProject.MyModule.MyVar

The	preceding	code	calls	the	Sub	procedure	YourSub	and	passes	MyVar	as	an
argument.	You	can	use	any	combination	of	qualifiers	to	differentiate	identical
identifiers.

Visual	Basic	matches	each	reference	to	an	identifier	with	the	"closest"
declaration	of	a	matching	identifier.	For	example,	if	MyID	is	declared	Public	in
two	modules	in	a	project	(Mod1	and	Mod2),	you	can	specify	the	MyID	declared	in
Mod2	without	qualification	from	within	Mod2,	but	you	must	qualify	it	as	Mod2.MyID
to	specify	it	in	Mod1.	This	is	also	true	if	Mod2	is	in	a	different	but	directly
referenced	project.	However,	if	Mod2	is	in	an	indirectly	referenced	project,	that	is,
a	project	referenced	by	the	project	you	directly	reference,	references	to	the	Mod2
variable	named	MyID	must	always	be	qualified	with	the	project	name.	If	you
reference	MyID	from	a	third,	directly	referenced	module,	the	match	is	made	with
the	first	declaration	encountered	by	searching:

Directly	referenced	projects,	in	the	order	that	they	appear	in	the	References
dialog	box	of	the	Tools	menu.

The	modules	of	each	project.	Note	that	there	is	no	inherent	order	to	the
modules	in	the	project.

You	can't	reuse	names	of	host-application	objects,	for	example,	R1C1	in
Microsoft	Excel,	at	different	scoping	levels.

Tip			Typical	errors	caused	by	naming	conflicts	include	ambiguous	names,
duplicate	declarations,	undeclared	identifiers,	and	procedures	that	are	not	found.
By	beginning	each	module	with	an	Option	Explicit	statement	to	force	explicit
declarations	of	variables	before	they	are	used,	you	can	avoid	some	potential
naming	conflicts	and	identifier-related	bugs.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	 	

	
Calling	Procedures	with	the	Same	Name

				

You	can	call	a	procedure	located	in	any	module	in	the	same	project	as	the	active
module	just	as	you	would	call	a	procedure	in	the	active	module.	However,	if	two
or	more	modules	contain	a	procedure	with	the	same	name,	you	must	specify	a
module	name	in	the	calling	statement,	as	shown	in	the	following	example:

Sub	Main()

				Module1.MyProcedure

End	Sub

If	you	give	the	same	name	to	two	different	procedures	in	two	different	projects,
you	must	specify	a	project	name	when	you	call	that	procedure.	For	example,	the
following	procedure	calls	the	Main	procedure	in	the	MyModule	module	in	the
MyProject.vbp	project.

Sub	Main()

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

				[MyProject.vbp].[MyModule].Main

End	Sub

Note			Different	applications	have	different	names	for	a	project.	For	example,	in
Microsoft	Access,	a	project	is	called	a	database	(.mdb);	in	Microsoft	Excel,	it's
called	a	workbook	(.xls)

Tips	for	Calling	Procedures

If	you	rename	a	module	or	project,	be	sure	to	change	the	module	or	project	name
wherever	it	appears	in	calling	statements;	otherwise,	Visual	Basic	will	not	be
able	to	find	the	called	procedure.	You	can	use	the	Replace	command	on	the	Edit
menu	to	find	and	replace	text	in	a	module.

To	avoid	naming	conflicts	among	referenced	projects,	give	your	procedures
unique	names	so	you	can	call	a	procedure	without	specifying	a	project	or
module.

JavaScript:hhobj_6.Click()

	 	

Calling	Property	Procedures

				

The	following	table	lists	the	syntax	for	calling	property	procedures:

Property	Procedure Syntax
Property	Let [object.]propname(arguments)]	=	argument
Property	Get varname	=	[object.]propname(arguments)]
Property	Set Set	[object.]propname[.(arguments)]	=

varname

When	you	call	a	Property	Let	or	Property	Set	procedure,	one	argument	always
appears	on	the	right	side	of	the	equal	sign	(=).

When	you	declare	a	Property	Let	or	Property	Set	procedure	with	multiple
arguments,	Visual	Basic	passes	the	argument	on	the	right	side	of	the	call	to	the
last	argument	in	the	Property	Let	or	Property	Set	declaration.	For	example,	the
following	diagram	shows	how	arguments	in	the	Property	procedure	call	relate

JavaScript:hhobj_3.Click()

to	arguments	in	the	Property	Let	declaration:

In	practice,	the	only	use	for	property	procedures	with	multiple	arguments	is	to
create	arrays	of	properties.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

	
Calling	Sub	and	Function	Procedures

				

To	call	a	Sub	procedure	from	another	procedure,	type	the	name	of	the	procedure
and	include	values	for	any	required	arguments.	The	Call	statement	is	not
required,	but	if	you	use	it,	you	must	enclose	any	arguments	in	parentheses.

You	can	use	a	Sub	procedure	to	organize	other	procedures	so	they	are	easier	to
understand	and	debug.	In	the	following	example,	the	Sub	procedure	Main	calls
the	Sub	procedure	MultiBeep,	passing	the	value	56	for	its	argument.	After
MultiBeep	runs,	control	returns	to	Main,	and	Main	calls	the	Sub	procedure
Message.	Message	displays	a	message	box;	when	the	user	clicks	OK,	control
returns	to	Main,	and	Main	finishes.

Sub	Main()

				MultiBeep	56

				Message

End	Sub

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Sub	MultiBeep(numbeeps)

				For	counter	=	1	To	numbeeps

								Beep

				Next	counter

End	Sub

Sub	Message()

				MsgBox	"Time	to	take	a	break!"

End	Sub

Calling	Sub	Procedures	with	More	than	One
Argument

The	following	example	shows	two	ways	to	call	a	Sub	procedure	with	more	than
one	argument.	The	second	time	HouseCalc	is	called,	parentheses	are	required
around	the	arguments	because	the	Call	statement	is	used.

Sub	Main()

				HouseCalc	99800,	43100

				Call	HouseCalc(380950,	49500)

End	Sub

Sub	HouseCalc(price	As	Single,	wage	As	Single)

				If	2.5	*	wage	<=	0.8	*	price	Then

								MsgBox	"You	cannot	afford	this	house."

				Else

								MsgBox	"This	house	is	affordable."

				End	If

End	Sub

Using	Parentheses	when	Calling	Function	Procedures

To	use	the	return	value	of	a	function,	assign	the	function	to	a	variable	and
enclose	the	arguments	in	parentheses,	as	shown	in	the	following	example.

Answer3	=	MsgBox("Are	you	happy	with	your	salary?",	4,	"Question	3")

If	you're	not	interested	in	the	return	value	of	a	function,	you	can	call	a	function
the	same	way	you	call	a	Sub	procedure.	Omit	the	parentheses,	list	the
arguments,	and	do	not	assign	the	function	to	a	variable,	as	shown	in	the
following	example.

MsgBox	"Task	Completed!",	0,	"Task	Box"

Caution			If	you	include	parentheses	in	the	preceding	example,	the	statement
causes	a	syntax	error.

Passing	Named	Arguments

A	statement	in	a	Sub	or	Function	procedure	can	pass	values	to	called
procedures	using	named	arguments.	You	can	list	named	arguments	in	any	order.
A	named	argument	consists	of	the	name	of	the	argument	followed	by	a	colon	and
an	equal	sign	(:=),	and	the	value	assigned	to	the	argument.

The	following	example	calls	the	MsgBox	function	using	named	arguments	with
no	return	value.

MsgBox	Title:="Task	Box",	Prompt:="Task	Completed!"

The	following	example	calls	the	MsgBox	function	using	named	arguments.	The
return	value	is	assigned	to	the	variable	answer3.

answer3	=	MsgBox(Title:="Question	3",	_

Prompt:="Are	you	happy	with	your	salary?",	Buttons:=4)

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

	 	

	 	

Creating	Object	Variables

				

You	can	treat	an	object	variable	exactly	the	same	as	the	object	to	which	it	refers.
You	can	set	or	return	the	properties	of	the	object	or	use	any	of	its	methods.

To	create	an	object	variable:

Declare	the	object	variable.

Assign	the	object	variable	to	an	object.

Declaring	an	Object	Variable

Use	the	Dim	statement	or	one	of	the	other	declaration	statements	(Public,
Private,	or	Static)	to	declare	an	object	variable.	A	variable	that	refers	to	an
object	must	be	a	Variant,	an	Object,	or	a	specific	type	of	object.	For	example,
the	following	declarations	are	valid:

'	Declare	MyObject	as	Variant	data	type.

Dim	MyObject

'	Declare	MyObject	as	Object	data	type.

Dim	MyObject	As	Object				

'	Declare	MyObject	as	Font	type.

Dim	MyObject	As	Font				

Note			If	you	use	an	object	variable	without	declaring	it	first,	the	data	type	of	the
object	variable	is	Variant	by	default.

You	can	declare	an	object	variable	with	the	Object	data	type	when	the	specific

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

object	type	is	not	known	until	the	procedure	runs.	Use	the	Object	data	type	to
create	a	generic	reference	to	any	object.

If	you	know	the	specific	object	type,	you	should	declare	the	object	variable	as
that	object	type.	For	example,	if	the	application	contains	a	Sample	object	type,
you	can	declare	an	object	variable	for	that	object	using	either	of	these
statements:

Dim	MyObject	As	Object				'	Declared	as	generic	object.

Dim	MyObject	As	Sample				'	Declared	only	as	Sample	object.

Declaring	specific	object	types	provides	automatic	type	checking,	faster	code,
and	improved	readability.

Assigning	an	Object	Variable	to	an	Object

Use	the	Set	statement	to	assign	an	object	to	an	object	variable.	You	can	assign	an
object	expression	or	Nothing.	For	example,	the	following	object	variable
assignments	are	valid:

Set	MyObject	=	YourObject				'	Assign	object	reference.

Set	MyObject	=	Nothing				'	Discontinue	association.

You	can	combine	declaring	an	object	variable	with	assigning	an	object	to	it	by
using	the	New	keyword	with	the	Set	statement.	For	example:

Set	MyObject	=	New	Object				'	Create	and	Assign

Setting	an	object	variable	equal	to	Nothing	discontinues	the	association	of	the
object	variable	with	any	specific	object.	This	prevents	you	from	accidentally
changing	the	object	by	changing	the	variable.	An	object	variable	is	always	set	to
Nothing	after	closing	the	associated	object	so	you	can	test	whether	or	not	the
object	variable	points	to	a	valid	object.	For	example:

If	Not	MyObject	Is	Nothing	Then

				'	Variable	refers	to	valid	object.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

				.	.	.

End	If

Of	course,	this	test	can	never	determine	with	absolute	certainty	whether	or	not	a
user	has	closed	the	application	containing	the	object	to	which	the	object	variable
refers.

Referring	to	the	Current	Instance	of	an	Object

Use	the	Me	keyword	to	refer	to	the	current	instance	of	the	object	where	the	code
is	running.	All	procedures	associated	with	the	current	object	have	access	to	the
object	referred	to	as	Me.	Using	Me	is	particularly	useful	for	passing	information
about	the	current	instance	of	an	object	to	a	procedure	in	another	module.	For
example,	suppose	you	have	the	following	procedure	in	a	module:

Sub	ChangeObjectColor(MyObjectName	As	Object)

				MyObjectName.BackColor	=	RGB(Rnd	*	256,	Rnd	*	256,	Rnd	*	256)

End	Sub

You	can	call	the	procedure	and	pass	the	current	instance	of	the	object	as	an
argument	using	the	following	statement:

ChangeObjectColor	Me

	 	

Creating	Recursive	Procedures

				

Procedures	have	a	limited	amount	of	space	for	variables.	Each	time	a	procedure
calls	itself,	more	of	that	space	is	used.	A	procedure	that	calls	itself	is	a	recursive
procedure.	A	recursive	procedure	that	continuously	calls	itself	eventually	causes
an	error.	For	example:

Function	RunOut(Maximum)

				RunOut	=	RunOut(Maximum)

End	Function

This	error	may	be	less	obvious	when	two	procedures	call	each	other	indefinitely,
or	when	some	condition	that	limits	the	recursion	is	never	met.	Recursion	does
have	its	uses.	For	example,	the	following	procedure	uses	a	recursive	function	to
calculate	factorials:

Function	Factorial	(N)

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

				If	N	<=	1	Then				'	Reached	end	of	recursive	calls.

								Factorial	=	1				'	(N	=	0)	so	climb	back	out	of	calls.

				Else				'	Call	Factorial	again	if	N	>	0.

								Factorial	=	Factorial(N	-	1)	*	N

				End	If

End	Function

You	should	test	your	recursive	procedure	to	make	sure	it	does	not	call	itself	so
many	times	that	you	run	out	of	memory.	If	you	get	an	error,	make	sure	your
procedure	is	not	calling	itself	indefinitely.	After	that,	try	to	conserve	memory	by:

Eliminating	unnecessary	variables.

Using	data	types	other	than	Variant.

Re-evaluating	the	logic	of	the	procedure.	You	can	often	substitute	nested
loops	for	recursion.

JavaScript:hhobj_5.Click()

	 	

	 	

Declaring	Arrays

				

Arrays	are	declared	the	same	way	as	other	variables,	using	the	Dim,	Static,
Private,	or	Public	statements.	The	difference	between	scalar	variables	(those
that	aren't	arrays)	and	array	variables	is	that	you	generally	must	specify	the	size
of	the	array.	An	array	whose	size	is	specified	is	a	fixed-size	array.	An	array
whose	size	can	be	changed	while	a	program	is	running	is	a	dynamic	array.

Whether	an	array	is	indexed	from	0	or	1	depends	on	the	setting	of	the	Option
Base	statement.	If	Option	Base	1	is	not	specified,	all	array	indexes	begin	at
zero.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Declaring	a	Fixed	Array

In	the	following	line	of	code,	a	fixed-size	array	is	declared	as	an	Integer	array
having	11	rows	and	11	columns:

Dim	MyArray(10,	10)	As	Integer

The	first	argument	represents	the	rows;	the	second	argument	represents	the
columns.

As	with	any	other	variable	declaration,	unless	you	specify	a	data	type	for	the
array,	the	data	type	of	the	elements	in	a	declared	array	is	Variant.	Each	numeric
Variant	element	of	the	array	uses	16	bytes.	Each	string	Variant	element	uses	22
bytes.	To	write	code	that	is	as	compact	as	possible,	explicitly	declare	your	arrays
to	be	of	a	data	type	other	than	Variant.	The	following	lines	of	code	compare	the
size	of	several	arrays:

'	Integer	array	uses	22	bytes	(11	elements	*	2	bytes).

ReDim	MyIntegerArray(10)	As	Integer

'	Double-precision	array	uses	88	bytes	(11	elements	*	8	bytes).

ReDim	MyDoubleArray(10)	As	Double

'	Variant	array	uses	at	least	176	bytes	(11	elements	*	16	bytes).

ReDim	MyVariantArray(10)

'	Integer	array	uses	100	*	100	*	2	bytes	(20,000	bytes).

ReDim	MyIntegerArray	(99,	99)	As	Integer	

'	Double-precision	array	uses	100	*	100	*	8	bytes	(80,000	bytes).

ReDim	MyDoubleArray	(99,	99)	As	Double	

'	Variant	array	uses	at	least	160,000	bytes	(100	*	100	*	16	bytes).

ReDim	MyVariantArray(99,	99)

JavaScript:hhobj_5.Click()

The	maximum	size	of	an	array	varies,	based	on	your	operating	system	and	how
much	memory	is	available.	Using	an	array	that	exceeds	the	amount	of	RAM
available	on	your	system	is	slower	because	the	data	must	be	read	from	and
written	to	disk.

Declaring	a	Dynamic	Array

By	declaring	a	dynamic	array,	you	can	size	the	array	while	the	code	is	running.
Use	a	Static,	Dim,	Private,	or	Public	statement	to	declare	an	array,	leaving	the
parentheses	empty,	as	shown	in	the	following	example.

Dim	sngArray()	As	Single

Note			You	can	use	the	ReDim	statement	to	declare	an	array	implicitly	within	a
procedure.	Be	careful	not	to	misspell	the	name	of	the	array	when	you	use	the
ReDim	statement.	Even	if	the	Option	Explicit	statement	is	included	in	the
module,	a	second	array	will	be	created.

In	a	procedure	within	the	array's	scope,	use	the	ReDim	statement	to	change	the
number	of	dimensions,	to	define	the	number	of	elements,	and	to	define	the	upper
and	lower	bounds	for	each	dimension.	You	can	use	the	ReDim	statement	to
change	the	dynamic	array	as	often	as	necessary.	However,	each	time	you	do	this,
the	existing	values	in	the	array	are	lost.	Use	ReDim	Preserve	to	expand	an	array
while	preserving	existing	values	in	the	array.	For	example,	the	following
statement	enlarges	the	array	varArray	by	10	elements	without	losing	the	current
values	of	the	original	elements.

ReDim	Preserve	varArray(UBound(varArray)	+	10)

Note			When	you	use	the	Preserve	keyword	with	a	dynamic	array,	you	can
change	only	the	upper	bound	of	the	last	dimension,	but	you	can't	change	the
number	of	dimensions.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

Declaring	Constants

				

By	declaring	a	constant,	you	can	assign	a	meaningful	name	to	a	value.	You	use
the	Const	statement	to	declare	a	constant	and	set	its	value.	After	a	constant	is
declared,	it	cannot	be	modified	or	assigned	a	new	value.

You	can	declare	a	constant	within	a	procedure	or	at	the	top	of	a	module,	in	the
Declarations	section.	Module-level	constants	are	private	by	default.	To	declare	a
public	module-level	constant,	precede	the	Const	statement	with	the	Public
keyword.	You	can	explicitly	declare	a	private	constant	by	preceding	the	Const
statement	with	the	Private	keyword	to	make	it	easier	to	read	and	interpret	your

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

code.	For	more	information,	see	"Understanding	Scope	and	Visibility"	in	Visual
Basic	Help.

The	following	example	declares	the	Public	constant	conAge	as	an	Integer	and
assigns	it	the	value	34.

Public	Const	conAge	As	Integer	=	34

Constants	can	be	declared	as	one	of	the	following	data	types:	Boolean,	Byte,
Integer,	Long,	Currency,	Single,	Double,	Date,	String,	or	Variant.	Because
you	already	know	the	value	of	a	constant,	you	can	specify	the	data	type	in	a
Const	statement.	For	more	information	on	data	types,	see	"Data	Type	Summary"
in	Visual	Basic	Help.

You	can	declare	several	constants	in	one	statement.	To	specify	a	data	type,	you
must	include	the	data	type	for	each	constant.	In	the	following	statement,	the
constants	conAge	and	conWage	are	declared	as	Integer.

Const	conAge	As	Integer	=	34,	conWage	As	Currency	=	35000

	 	

	 	

	 	

	 	

	 	

	
Declaring	Variables

				

When	declaring	variables,	you	usually	use	a	Dim	statement.	A	declaration
statement	can	be	placed	within	a	procedure	to	create	a	procedure-level	variable.
Or	it	may	be	placed	at	the	top	of	a	module,	in	the	Declarations	section,	to	create
a	module-level	variable.

The	following	example	creates	the	variable	strName	and	specifies	the	String	data
type.

Dim	strName	As	String

If	this	statement	appears	within	a	procedure,	the	variable	strName	can	be	used
only	in	that	procedure.	If	the	statement	appears	in	the	Declarations	section	of	the
module,	the	variable	strName	is	available	to	all	procedures	within	the	module,
but	not	to	procedures	in	other	modules	in	the	project.	To	make	this	variable
available	to	all	procedures	in	the	project,	precede	it	with	the	Public	statement,	as
in	the	following	example:

Public	strName	As	String

For	information	about	naming	your	variables,	see	"Visual	Basic	Naming	Rules"
in	Visual	Basic	Help.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Variables	can	be	declared	as	one	of	the	following	data	types:	Boolean,	Byte,
Integer,	Long,	Currency,	Single,	Double,	Date,	String	(for	variable-length
strings),	String	*	length	(for	fixed-length	strings),	Object,	or	Variant.	If	you	do
not	specify	a	data	type,	the	Variant	data	type	is	assigned	by	default.	You	can
also	create	a	user-defined	type	using	the	Type	statement.	For	more	information
on	data	types,	see	"Data	Type	Summary"	in	Visual	Basic	Help.

You	can	declare	several	variables	in	one	statement.	To	specify	a	data	type,	you
must	include	the	data	type	for	each	variable.	In	the	following	statement,	the
variables	intX,	intY,	and	intZ	are	declared	as	type	Integer.

Dim	intX	As	Integer,	intY	As	Integer,	intZ	As	Integer

In	the	following	statement,	intX	and	intY	are	declared	as	type	Variant;	only
intZ	is	declared	as	type	Integer.

Dim	intX,	intY,	intZ	As	Integer

You	don't	have	to	supply	the	variable's	data	type	in	the	declaration	statement.	If
you	omit	the	data	type,	the	variable	will	be	of	type	Variant.

Using	the	Public	Statement

You	can	use	the	Public	statement	to	declare	public	module-level	variables.

Public	strName	As	String

Public	variables	can	be	used	in	any	procedures	in	the	project.	If	a	public	variable
is	declared	in	a	standard	module	or	a	class	module,	it	can	also	be	used	in	any
projects	that	reference	the	project	where	the	public	variable	is	declared.

Using	the	Private	Statement

You	can	use	the	Private	statement	to	declare	private	module-level	variables.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Private	MyName	As	String

Private	variables	can	be	used	only	by	procedures	in	the	same	module.

Note			When	used	at	the	module	level,	the	Dim	statement	is	equivalent	to	the
Private	statement.	You	might	want	to	use	the	Private	statement	to	make	your
code	easier	to	read	and	interpret.

Using	the	Static	Statement

When	you	use	the	Static	statement	instead	of	a	Dim	statement,	the	declared
variable	will	retain	its	value	between	calls.

Using	the	Option	Explicit	Statement

You	can	implicitly	declare	a	variable	in	Visual	Basic	simply	by	using	it	in	an
assignment	statement.	All	variables	that	are	implicitly	declared	are	of	type
Variant.	Variables	of	type	Variant	require	more	memory	resources	than	most
other	variables.	Your	application	will	be	more	efficient	if	you	declare	variables
explicitly	and	with	a	specific	data	type.	Explicitly	declaring	all	variables	reduces
the	incidence	of	naming-conflict	errors	and	spelling	mistakes.

If	you	don't	want	Visual	Basic	to	make	implicit	declarations,	you	can	place	the
Option	Explicit	statement	in	a	module	before	any	procedures.	This	statement
requires	you	to	explicitly	declare	all	variables	within	the	module.	If	a	module
includes	the	Option	Explicit	statement,	a	compile-time	error	will	occur	when
Visual	Basic	encounters	a	variable	name	that	has	not	been	previously	declared,
or	that	has	been	spelled	incorrectly.

You	can	set	an	option	in	your	Visual	Basic	programming	environment	to
automatically	include	the	Option	Explicit	statement	in	all	new	modules.	See
your	application's	documentation	for	help	on	how	to	change	Visual	Basic
environment	options.	Note	that	this	option	does	not	change	existing	code	you
have	written.

JavaScript:hhobj_12.Click()

Note			You	must	explicitly	declare	fixed	arrays	and	dynamic	arrays.

Declaring	an	Object	Variable	for	Automation

When	you	use	one	application	to	control	another	application's	objects,	you
should	set	a	reference	to	the	other	application's	type	library.	Once	you	set	a
reference,	you	can	declare	object	variables	according	to	their	most	specific	type.
For	example,	if	you	are	in	Microsoft	Word	when	you	set	a	reference	to	the
Microsoft	Excel	type	library,	you	can	declare	a	variable	of	type	Worksheet	from
within	Microsoft	Word	to	represent	a	Microsoft	Excel	Worksheet	object.

If	you	are	using	another	application	to	control	Microsoft	Access	objects,	in	most
cases,	you	can	declare	object	variables	according	to	their	most	specific	type.	You
can	also	use	the	New	keyword	to	create	a	new	instance	of	an	object
automatically.	However,	you	may	have	to	indicate	that	it	is	a	Microsoft	Access
object.	For	example,	when	you	declare	an	object	variable	to	represent	a
Microsoft	Access	form	from	within	Microsoft	Visual	Basic,	you	must
distinguish	the	Microsoft	Access	Form	object	from	a	Visual	Basic	Form	object.
Include	the	name	of	the	type	library	in	the	variable	declaration,	as	in	the
following	example:

Dim	frmOrders	As	New	Access.Form

Some	applications	don't	recognize	individual	Microsoft	Access	object	types.
Even	if	you	set	a	reference	to	the	Microsoft	Access	type	library	from	these
applications,	you	must	declare	all	Microsoft	Access	object	variables	as	type
Object.	Nor	can	you	use	the	New	keyword	to	create	a	new	instance	of	the
object.	The	following	example	shows	how	to	declare	a	variable	to	represent	an
instance	of	the	Microsoft	Access	Application	object	from	an	application	that
doesn't	recognize	Microsoft	Access	object	types.	The	application	then	creates	an
instance	of	the	Application	object.

Dim	appAccess	As	Object

Set	appAccess	=	CreateObject("Access.Application")

To	determine	which	syntax	an	application	supports,	see	the	application's

JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

documentation.

	 	

	 	

Executing	Code	when	Setting	Properties

				

You	can	create	Property	Let,	Property	Set,	and	Property	Get	procedures	that
share	the	same	name.	By	doing	this,	you	can	create	a	group	of	related	procedures
that	work	together.	Once	a	name	is	used	for	a	Property	procedure,	that	name
can’t	be	used	to	name	a	Sub	or	Function	procedure,	a	variable,	or	a	user-defined
type.

The	Property	Let	statement	allows	you	to	create	a	procedure	that	sets	the	value
of	the	property.	One	example	might	be	a	Property	procedure	that	creates	an
inverted	property	for	a	bitmap	on	a	form.	This	is	the	syntax	used	to	call	the

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Property	Let	procedure:

Form1.Inverted	=	True

The	actual	work	of	inverting	a	bitmap	on	the	form	is	done	within	the	Property
Let	procedure:

Private	IsInverted	As	Boolean

Property	Let	Inverted(X	As	Boolean)

				IsInverted	=	X

				If	IsInverted	Then

								…

								(statements)

				Else

								(statements)

				End	If

End	Property

The	form-level	variable	IsInverted	stores	the	setting	of	your	property.	By
declaring	it	Private,	the	user	can	only	change	it	only	using	your	Property	Let
procedure.	Use	a	name	that	makes	it	easy	to	recognize	that	the	variable	is	used
for	the	property.

This	Property	Get	procedure	is	used	to	return	the	current	state	of	the	Inverted
property:

Property	Get	Inverted()	As	Boolean

				Inverted	=	IsInverted

End	Property

Property	procedures	make	it	easy	to	execute	code	at	the	same	time	the	value	of	a
property	is	set.	You	can	use	property	procedures	to	do	the	following	processing:

Before	a	property	value	is	set	to	determine	the	value	of	the	property.

JavaScript:hhobj_7.Click()

After	a	property	value	is	set,	based	on	the	new	value.

	 	

	 	

	 	

Looping	Through	Code

				

Using	conditional	statements	and	looping	statements	(also	called	control
structures),	you	can	write	Visual	Basic	code	that	makes	decisions	and	repeats

actions.	Another	useful	control	structure,	the	With	statement,	lets	you	to	run	a
series	of	statements	without	having	to	requalify	an	object.

Using	Conditional	Statements	to	Make	Decisions

Conditional	statements	evaluate	whether	a	condition	is	True	or	False,	and	then
specify	one	or	more	statements	to	run,	depending	on	the	result.	Usually,	a
condition	is	an	expression	that	uses	a	comparison	operator	to	compare	one	value
or	variable	with	another.

Choosing	a	Conditional	Statement	to	Use

If...Then...Else:	Branching	when	a	condition	is	True	or	False

Select	Case:	Selecting	a	branch	from	a	set	of	conditions

Using	Loops	to	Repeat	Code

Looping	allows	you	to	run	a	group	of	statements	repeatedly.	Some	loops	repeat
statements	until	a	condition	is	False;	others	repeat	statements	until	a	condition	is
True.	There	are	also	loops	that	repeat	statements	a	specific	number	of	times	or
for	each	object	in	a	collection.

Choosing	a	Loop	to	Use

Do...Loop:	Looping	while	or	until	a	condition	is	True

For...Next:	Using	a	counter	to	run	statements	a	specified	number	of	times

For	Each...Next:	Repeating	a	group	of	statements	for	each	object	in	a	collection

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Running	Several	Statements	on	the	Same	Object

In	Visual	Basic,	usually	you	must	specify	an	object	before	you	can	run	one	of	its
methods	or	change	one	of	its	properties.	You	can	use	the	With	statement	to
specify	an	object	once	for	an	entire	series	of	statements.

With:	Running	a	series	of	statements	on	the	same	object

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

Making	Faster	For...Next	Loops

				

Integers	use	less	memory	than	the	Variant	data	type	and	are	slightly	faster	to
update.	However,	this	difference	is	only	noticeable	if	you	perform	many
thousands	of	operations.	For	example:

Dim	CountFaster	As	Integer				'	First	case,	use	Integer.

For	CountFaster	=	0	to	32766				

Next	CountFaster

Dim	CountSlower	As	Variant				'	Second	case,	use	Variant.

For	CountSlower	=	0	to	32766

Next	CountSlower

The	first	case	above	takes	slightly	less	time	to	run	than	the	second	case.
However,	if	CountFaster	exceeds	32,767,	an	error	occurs.	To	fix	this,	you	can
change	CountFaster	to	the	Long	data	type,	which	accepts	a	wider	range	of

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

integers.	In	general,	the	smaller	the	data	type,	the	less	time	it	takes	to	update.
Variants	are	slightly	slower	than	their	equivalent	data	type.

JavaScript:hhobj_5.Click()

	 	

	 	

	
Passing	Arguments	Efficiently

				

All	arguments	are	passed	to	procedures	by	reference,	unless	you	specify
otherwise.	This	is	efficient	because	all	arguments	passed	by	reference	take	the
same	amount	of	time	to	pass	and	the	same	amount	of	space	(4	bytes)	within	a
procedure	regardless	of	the	argument's	data	type.

You	can	pass	an	argument	by	value	if	you	include	the	ByVal	keyword	in	the
procedure's	declaration.	Arguments	passed	by	value	consume	from	2	–	16	bytes
within	the	procedure,	depending	on	the	argument's	data	type.	Larger	data	types
take	slightly	longer	to	pass	by	value	than	smaller	ones.	Because	of	this,	String

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

and	Variant	data	types	generally	should	not	be	passed	by	value.

Passing	an	argument	by	value	copies	the	original	variable.	Changes	to	the
argument	within	the	procedure	aren't	reflected	back	to	the	original	variable.	For
example:

Function	Factorial	(ByVal	MyVar	As	Integer)				'	Function	declaration.

				MyVar	=	MyVar	-	1

				If	MyVar	=	0	Then	

								Factorial	=	1

								Exit	Function

				End	If

				Factorial	=	Factorial(MyVar)	*	(MyVar	+	1)

End	Function

'	Call	Factorial	with	a	variable	S.

S	=	5

Print	Factorial(S)				'	Displays	120	(the	factorial	of	5)

Print	S				'	Displays	5.

Without	including	ByVal	in	the	function	declaration,	the	preceding	Print
statements	would	display	1	and	0.	This	is	because	MyVar	would	then	refer	to
variable	S,	which	is	reduced	by	1	until	it	equals	0.

Because	ByVal	makes	a	copy	of	the	argument,	it	allows	you	to	pass	a	variant	to
the	Factorial	function	above.	You	can't	pass	a	variant	by	reference	if	the
procedure	that	declares	the	argument	is	another	data	type.

JavaScript:hhobj_8.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Returning	Strings	from	Functions

				

Some	functions	have	two	versions:	one	that	returns	a	Variant	data	type	and	one
that	returns	a	String	data	type.	The	Variant	versions	are	more	convenient
because	variants	handle	conversions	between	different	types	of	data
automatically.	They	also	allow	Null	to	be	propagated	through	an	expression.	The
String	versions	are	more	efficient	because	they	use	less	memory.

Consider	using	the	String	version	when:

Your	program	is	very	large	and	uses	many	variables.

You	write	data	directly	to	random-access	files.

The	following	functions	return	values	in	a	String	variable	when	you	append	a
dollar	sign	($)	to	the	function	name.	These	functions	have	the	same	usage	and
syntax	as	their	Variant	equivalents	without	the	dollar	sign.

Chr$ ChrB$ *Command$
CurDir$ Date$ Dir$
Error$ Format$ Hex$
Input$ InputB$ LCase$

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()

Left$ LeftB$ LTrim$
Mid$ MidB$ Oct$
Right$ RightB$ RTrim$
Space$ Str$ String$
Time$ Trim$ UCase$

*	May	not	be	available	in	all	applications.

JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()
JavaScript:hhobj_33.Click()
JavaScript:hhobj_34.Click()

	 	

	

Understanding	Automation

				

Automation	(formerly	OLE	Automation)	is	a	feature	of	the	Component	Object
Model	(COM),	an	industry-standard	technology	that	applications	use	to	expose
their	objects	to	development	tools,	macro	languages,	and	other	applications	that
support	Automation.	For	example,	a	spreadsheet	application	may	expose	a
worksheet,	chart,	cell,	or	range	of	cells	—	each	as	a	different	type	of	object.	A
word	processor	might	expose	objects	such	as	an	application,	a	document,	a
paragraph,	a	sentence,	a	bookmark,	or	a	selection.

When	an	application	supports	Automation,	the	objects	the	application	exposes
can	be	accessed	by	Visual	Basic.	Use	Visual	Basic	to	manipulate	these	objects
by	invoking	methods	on	the	object	or	by	getting	and	setting	the	object's
properties.	For	example,	you	can	create	an	Automation	object	named	MyObj	and
write	the	following	code	to	access	the	object:

MyObj.Insert	"Hello,	world."				'	Place	text.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

MyObj.Bold	=	True				'	Format	text.

If	Mac	=	True				'	Check	your	platform	constant

				MyObj.SaveAs		"HD:\WORDPROC\DOCS\TESTOBJ.DOC"				'	Save	the	object	(Macintosh).

Else

				MyObj.SaveAs		"C:\WORDPROC\DOCS\TESTOBJ.DOC"				'	Save	the	object	(Windows).

Use	the	following	functions	to	access	an	Automation	object:

Function Description
CreateObject Creates	a	new	object	of	a	specified	type.
GetObject Retrieves	an	object	from	a	file.

For	details	on	the	properties	and	methods	supported	by	an	application,	see	the
application	documentation.	The	objects,	functions,	properties,	and	methods
supported	by	an	application	are	usually	defined	in	the	application's	object
library.

JavaScript:hhobj_6.Click()

	
Understanding	Conditional	Compilation

				

You	can	use	conditional	compilation	to	run	blocks	of	code	selectively,	for
example,	debugging	statements	comparing	the	speed	of	different	approaches	to
the	same	programming	task,	or	localizing	an	application	for	different	languages.

You	declare	a	conditional	compiler	constant	in	code	with	the	#Const	directive,
and	you	denote	blocks	of	code	to	be	conditionally	compiled	with	the
#If...Then...#Else	directive.	The	following	example	runs	debug	code	or
production	code,	based	on	the	value	of	the	conDebug	variable.

'	Declare	public	compilation	constant	in	Declarations	section.

#Const	conDebug	=	1

Sub	SelectiveExecution()

				#If	conDebug	=	1	Then

								.																'	Run	code	with	debugging	statements.

								.

								.

				#Else

								.																'	Run	normal	code.

								.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

								.

				#End	If

End	Sub

	 	

	
Understanding	Named	and	Optional	Arguments

				

When	you	call	a	Sub	or	Function	procedure,	you	can	supply	arguments
positionally,	in	the	order	they	appear	in	the	procedure's	definition,	or	you	can
supply	the	arguments	by	name	without	regard	to	position.

For	example,	the	following	Sub	procedure	takes	three	arguments:

Sub	PassArgs(strName	As	String,	intAge	As	Integer,	dteBirth	As	Date)

				Debug.Print	strName,	intAge,	dteBirth

End	Sub

You	can	call	this	procedure	by	supplying	its	arguments	in	the	correct	position,
each	delimited	by	a	comma,	as	shown	in	the	following	example:

PassArgs	"Mary",	29,	#2-21-69#

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

You	can	also	call	this	procedure	by	supplying	named	arguments,	delimiting	each
with	a	comma.

PassArgs	intAge:=29,	dteBirth:=#2/21/69#,	strName:="Mary"

A	named	argument	consists	of	an	argument	name	followed	by	a	colon	and	an
equal	sign	(:=),	followed	by	the	argument	value.

Named	arguments	are	especially	useful	when	you	are	calling	a	procedure	that
has	optional	arguments.	If	you	use	named	arguments,	you	don't	have	to	include
commas	to	denote	missing	positional	arguments.	Using	named	arguments	makes
it	easier	to	keep	track	of	which	arguments	you	passed	and	which	you	omitted.

Optional	arguments	are	preceded	by	the	Optional	keyword	in	the	procedure
definition.	You	can	also	specify	a	default	value	for	the	optional	argument	in	the
procedure	definition.	For	example:

Sub	OptionalArgs(strState	As	String,	Optional	strCountry	As	String	=	"USA")

.	.	.	

End	Sub

When	you	call	a	procedure	with	an	optional	argument,	you	can	choose	whether
or	not	to	specify	the	optional	argument.	If	you	don't	specify	the	optional
argument,	the	default	value,	if	any,	is	used.	If	no	default	value	is	specified,	the
argument	is	it	would	be	for	any	variable	of	the	specified	type.

The	following	procedure	includes	two	optional	arguments,	the	varRegion	and
varCountry	variables.	The	IsMissing	function	determines	whether	an	optional
Variant	argument	has	been	passed	to	the	procedure.

Sub	OptionalArgs(strState	As	String,	Optional	varRegion	As	Variant,	_

Optional	varCountry	As	Variant	=	"USA")

				If	IsMissing(varRegion)	And	IsMissing(varCountry)	Then

								Debug.Print	strState

				ElseIf	IsMissing(varCountry)	Then

								Debug.Print	strState,	varRegion

				ElseIf	IsMissing(varRegion)	Then

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

								Debug.Print	strState,	varCountry

				Else

								Debug.Print	strState,	varRegion,	varCountry

				End	If

End	Sub

You	can	call	this	procedure	using	named	arguments	as	shown	in	the	following
examples.

OptionalArgs	varCountry:="USA",	strState:="MD"

OptionalArgs	strState:=	"MD",	varRegion:=5

	 	

	
Understanding	Objects,	Properties,	Methods,	and	Events

				

An	object	represents	an	element	of	an	application,	such	as	a	worksheet,	a	cell,	a
chart,	a	form,	or	a	report.	In	Visual	Basic	code,	you	must	identify	an	object
before	you	can	apply	one	of	the	object’s	methods	or	change	the	value	of	one	of
its	properties.

A	collection	is	an	object	that	contains	several	other	objects,	usually,	but	not
always,	of	the	same	type.	In	Microsoft	Excel,	for	example,	the	Workbooks
object	contains	all	the	open	Workbook	objects.	In	Visual	Basic,	the	Forms
collection	contains	all	the	Form	objects	in	an	application.

Items	in	a	collection	can	be	identified	by	number	or	by	name.	For	example,	in
the	following	procedure,	Workbooks(1)	identifies	the	first	open	Workbook
object.

Sub	CloseFirst()

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

				Workbooks(1).Close

End	Sub

The	following	procedure	uses	a	name	specified	as	a	string	to	identify	a	Form
object.

Sub	CloseForm()

				Forms("MyForm.frm").Close

End	Sub

You	can	also	manipulate	an	entire	collection	of	objects	if	the	objects	share
common	methods.	For	example,	the	following	procedure	closes	all	open	forms.

Sub	CloseAll()

				Forms.Close

End	Sub

A	method	is	an	action	that	an	object	can	perform.	For	example,	Add	is	a	method
of	the	ComboBox	object,	because	it	adds	a	new	entry	to	a	combo	box.

The	following	procedure	uses	the	Add	method	to	add	a	new	item	to	a
ComboBox.

Sub	AddEntry(newEntry	as	String)

				Combo1.Add	newEntry

End	Sub

A	property	is	an	attribute	of	an	object	that	defines	one	of	the	object's
characteristics,	such	as	size,	color,	or	screen	location,	or	an	aspect	of	its
behavior,	such	as	whether	it	is	enabled	or	visible.	To	change	the	characteristics
of	an	object,	you	change	the	values	of	its	properties.

To	set	the	value	of	a	property,	follow	the	reference	to	an	object	with	a	period,	the
property	name,	an	equal	sign	(=),	and	the	new	property	value.	For	example,	the
following	procedure	changes	the	caption	of	a	Visual	Basic	form	by	setting	the
Caption	property.

JavaScript:hhobj_6.Click()

Sub	ChangeName(newTitle)

				myForm.Caption	=	newTitle

End	Sub

You	can't	set	some	properties.	The	Help	topic	for	each	property	indicates
whether	you	can	set	that	property	(read-write),	only	read	the	property	(read-
only),	or	only	write	the	property	(write-only).

You	can	retrieve	information	about	an	object	by	returning	the	value	of	one	of	its
properties.	The	following	procedure	uses	a	message	box	to	display	the	title	that
appears	at	the	top	of	the	currently	active	form.

Sub	GetFormName()

				formName	=	Screen.ActiveForm.Caption

				MsgBox	formName

End	Sub

An	event	is	an	action	recognized	by	an	object,	such	as	clicking	the	mouse	or
pressing	a	key,	and	for	which	you	can	write	code	to	respond.	Events	can	occur	as
a	result	of	a	user	action	or	program	code,	or	they	can	be	triggered	by	the	system.

Returning	Objects

Every	application	has	a	way	to	return	the	objects	it	contains.	However,	they	are
not	all	the	same,	so	you	must	refer	to	the	Help	topic	for	the	object	or	collection
you're	using	in	the	application	to	see	how	to	return	the	object.

	 	

	
Understanding	Parameter	Arrays

				

A	parameter	array	can	be	used	to	pass	an	array	of	arguments	to	a	procedure.	You
don't	have	to	know	the	number	of	elements	in	the	array	when	you	define	the
procedure.

You	use	the	ParamArray	keyword	to	denote	a	parameter	array.	The	array	must
be	declared	as	an	array	of	type	Variant,	and	it	must	be	the	last	argument	in	the
procedure	definition.

The	following	example	shows	how	you	might	define	a	procedure	with	a
parameter	array.

Sub	AnyNumberArgs(strName	As	String,	ParamArray	intScores()	As	Variant)

				Dim	intI	As	Integer

				Debug.Print	strName;	"				Scores"

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

				'	Use	UBound	function	to	determine	upper	limit	of	array.

				For	intI	=	0	To	UBound(intScores())

								Debug.Print	"										";	intScores(intI)

				Next	intI

End	Sub

The	following	examples	show	how	you	can	call	this	procedure.

AnyNumberArgs	"Jamie",	10,	26,	32,	15,	22,	24,	16

AnyNumberArgs	"Kelly",	"High",	"Low",	"Average",	"High"

	 	

	 	

	 	

	 	

	 	

Understanding	Scope	and	Visibility

				

Scope	refers	to	the	availability	of	a	variable,	constant,	or	procedure	for	use	by
another	procedure.	There	are	three	scoping	levels:	procedure-level,	private
module-level,	and	public	module-level.

You	determine	the	scope	of	a	variable	when	you	declare	it.	It's	a	good	idea	to
declare	all	variables	explicitly	to	avoid	naming-conflict	errors	between	variables
with	different	scopes.

Defining	Procedure-Level	Scope

A	variable	or	constant	defined	within	a	procedure	is	not	visible	outside	that
procedure.	Only	the	procedure	that	contains	the	variable	declaration	can	use	it.
In	the	following	example,	the	first	procedure	displays	a	message	box	that
contains	a	string.	The	second	procedure	displays	a	blank	message	box	because
the	variable	strMsg	is	local	to	the	first	procedure.

Sub	LocalVariable()

				Dim	strMsg	As	String

				strMsg	=	"This	variable	can't	be	used	outside	this	procedure."

				MsgBox	strMsg

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

End	Sub

Sub	OutsideScope()

				MsgBox	strMsg

End	Sub

Defining	Private	Module-Level	Scope

You	can	define	module-level	variables	and	constants	in	the	Declarations	section
of	a	module.	Module-level	variables	can	be	either	public	or	private.	Public
variables	are	available	to	all	procedures	in	all	modules	in	a	project;	private
variables	are	available	only	to	procedures	in	that	module.	By	default,	variables
declared	with	the	Dim	statement	in	the	Declarations	section	are	scoped	as
private.	However,	by	preceding	the	variable	with	the	Private	keyword,	the	scope
is	obvious	in	your	code.

In	the	following	example,	the	string	variable	strMsg	is	available	to	any
procedures	defined	in	the	module.	When	the	second	procedure	is	called,	it
displays	the	contents	of	the	string	variable	strMsg	in	a	dialog	box.

'	Add	following	to	Declarations	section	of	module.

Private	strMsg	sAs	String

Sub	InitializePrivateVariable()

				strMsg	=	"This	variable	can't	be	used	outside	this	module."

End	Sub

Sub	UsePrivateVariable()

				MsgBox	strMsg

End	Sub

Note			Public	procedures	in	a	standard	module	or	class	module	are	available	to
any	referencing	project.	To	limit	the	scope	of	all	procedures	in	a	module	to	the
current	project,	add	an	Option	Private	Module	statement	to	the	Declarations

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

section	of	the	module.	Public	variables	and	procedures	will	still	be	available	to
other	procedures	in	the	current	project,	but	not	to	referencing	projects.

Defining	Public	Module-Level	Scope

If	you	declare	a	module-level	variable	as	public,	it's	available	to	all	procedures	in
the	project.	In	the	following	example,	the	string	variable	strMsg	can	be	used	by
any	procedure	in	any	module	in	the	project.

'	Include	in	Declarations	section	of	module.

Public	strMsg	As	String

All	procedures	are	public	by	default,	except	for	event	procedures.	When	Visual
Basic	creates	an	event	procedure,	the	Private	keyword	is	automatically	inserted
before	the	procedure	declaration.	For	all	other	procedures,	you	must	explicitly
declare	the	procedure	with	the	Private	keyword	if	you	do	not	want	it	to	be
public.

You	can	use	public	procedures,	variables,	and	constants	defined	in	standard
modules	or	class	modules	from	referencing	projects.	However,	you	must	first	set
a	reference	to	the	project	in	which	they	are	defined.

Public	procedures,	variables,	and	constants	defined	in	other	than	standard	or
class	modules,	such	as	form	modules	or	report	modules,	are	not	available	to
referencing	projects,	because	these	modules	are	private	to	the	project	in	which
they	reside.

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

	 	

	 	

	 	

	 	

	 	

	
Understanding	the	Lifetime	of	Variables

				

The	time	during	which	a	variable	retains	its	value	is	known	as	its	lifetime.	The
value	of	a	variable	may	change	over	its	lifetime,	but	it	retains	some	value.	When
a	variable	loses	scope,	it	no	longer	has	a	value.

When	a	procedure	begins	running,	all	variables	are	initialized.	A	numeric
variable	is	initialized	to	zero,	a	variable-length	string	is	initialized	to	a	zero-
length	string	(""),	and	a	fixed-length	string	is	filled	with	the	character
represented	by	the	ASCII	character	code	0,	or	Chr(0).	Variant	variables	are
initialized	to	Empty.	Each	element	of	a	user-defined	type	variable	is	initialized
as	if	it	were	a	separate	variable.

When	you	declare	an	object	variable,	space	is	reserved	in	memory,	but	its	value
is	set	to	Nothing	until	you	assign	an	object	reference	to	it	using	the	Set
statement.

If	the	value	of	a	variable	isn't	changed	during	the	running	of	your	code,	it	retains
its	initialized	value	until	it	loses	scope.

A	procedure-level	variable	declared	with	the	Dim	statement	retains	a	value	until
the	procedure	is	finished	running.	If	the	procedure	calls	other	procedures,	the
variable	retains	its	value	while	those	procedures	are	running	as	well.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

If	a	procedure-level	variable	is	declared	with	the	Static	keyword,	the	variable
retains	its	value	as	long	as	code	is	running	in	any	module.	When	all	code	has
finished	running,	the	variable	loses	its	scope	and	its	value.	Its	lifetime	is	the
same	as	a	module-level	variable.

A	module-level	variable	differs	from	a	static	variable.	In	a	standard	module	or	a
class	module,	it	retains	its	value	until	you	stop	running	your	code.	In	a	class
module,	it	retains	its	value	as	long	as	an	instance	of	the	class	exists.	Module-
level	variables	consume	memory	resources	until	you	reset	their	values,	so	use
them	only	when	necessary.

If	you	include	the	Static	keyword	before	a	Sub	or	Function	statement,	the
values	of	all	the	procedure-level	variables	in	the	procedure	are	preserved
between	calls.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

	 	

	 	

	
Understanding	Variants

				

The	Variant	data	type	is	automatically	specified	if	you	don't	specify	a	data	type
when	you	declare	a	constant,	variable,	or	argument.	Variables	declared	as	the
Variant	data	type	can	contain	string,	date,	time,	Boolean,	or	numeric	values,	and
can	convert	the	values	they	contain	automatically.	Numeric	Variant	values
require	16	bytes	of	memory	(which	is	significant	only	in	large	procedures	or
complex	modules)	and	they	are	slower	to	access	than	explicitly	typed	variables
of	any	other	type.	You	rarely	use	the	Variant	data	type	for	a	constant.	String
Variant	values	require	22	bytes	of	memory.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

The	following	statements	create	Variant	variables:

Dim	myVar

Dim	yourVar	As	Variant

theVar	=	"This	is	some	text."

The	last	statement	does	not	explicitly	declare	the	variable	theVar,	but	rather
declares	the	variable	implicitly,	or	automatically.	Variables	that	are	declared
implicitly	are	specified	as	the	Variant	data	type.

Tip			If	you	specify	a	data	type	for	a	variable	or	argument,	and	then	use	the
wrong	data	type,	a	data	type	error	will	occur.	To	avoid	data	type	errors,	either
use	only	implicit	variables	(the	Variant	data	type)	or	explicitly	declare	all	your
variables	and	specify	a	data	type.	The	latter	method	is	preferred.

	 	

	 	

	 	

	 	

	 	

	
Understanding	Visual	Basic	Syntax

				

The	syntax	in	a	Visual	Basic	Help	topic	for	a	method,	statement,	or	function
shows	all	the	elements	necessary	to	use	the	method,	statement,	or	function
correctly.	The	examples	in	this	topic	explain	how	to	interpret	the	most	common
syntax	elements.

Activate	Method	Syntax

object.Activate

In	the	Activate	method	syntax,	the	italic	word	"object"	is	a	placeholder	for
information	you	supply	—	in	this	case,	code	that	returns	an	object.	Words	that
are	bold	should	be	typed	exactly	as	they	appear.	For	example,	the	following
procedure	activates	the	second	window	in	the	active	document.

Sub	MakeActive()

				Windows(2).Activate

End	Sub

MsgBox	Function	Syntax

MsgBox(prompt[,	buttons]	[,	title]	[,	helpfile,	context])

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

In	the	MsgBox	function	syntax,	the	bold	italic	words	are	named	arguments	of
the	function.	Arguments	enclosed	in	brackets	are	optional.	(Do	not	type	the
brackets	in	your	Visual	Basic	code.)	For	the	MsgBox	function,	the	only
argument	you	must	provide	is	the	text	for	the	prompt.

Arguments	for	functions	and	methods	can	be	specified	in	code	either	by	position
or	by	name.	To	specify	arguments	by	position,	follow	the	order	presented	in	the
syntax,	separating	each	argument	with	a	comma,	for	example:

MsgBox	"Your	answer	is	correct!",0,"Answer	Box"

To	specify	an	argument	by	name,	use	the	argument	name	followed	by	a	colon
and	an	equal	sign	(:=),	and	the	argument's	value.	You	can	specify	named
arguments	in	any	order,	for	example:

MsgBox	Title:="Answer	Box",	Prompt:="Your	answer	is	correct!"

The	syntax	for	functions	and	some	methods	shows	the	arguments	enclosed	in
parentheses.	These	functions	and	methods	return	values,	so	you	must	enclose	the
arguments	in	parentheses	to	assign	the	value	to	a	variable.	If	you	ignore	the
return	value	or	if	you	don't	pass	arguments	at	all,	don't	include	the	parentheses.
Methods	that	don't	return	values	do	not	need	their	arguments	enclosed	in
parentheses.	These	guidelines	apply	whether	you're	using	positional	arguments
or	named	arguments.

In	the	following	example,	the	return	value	from	the	MsgBox	function	is	a
number	indicating	the	selected	button	that	is	stored	in	the	variable	myVar.
Because	the	return	value	is	used,	parentheses	are	required.	Another	message	box
then	displays	the	value	of	the	variable.

Sub	Question()

				myVar	=	MsgBox(Prompt:="I	enjoy	my	job.",	_

								Title:="Answer	Box",	Buttons:="4")

				MsgBox	myVar

End	Sub

Option	Statement	Syntax

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Option	Compare	{Binary	|	Text	|	Database}

In	the	Option	Compare	statement	syntax,	the	braces	and	vertical	bar	indicate	a
mandatory	choice	between	three	items.	(Do	not	type	the	braces	in	the	Visual
Basic	statement).	For	example,	the	following	statement	specifies	that	within	the
module,	strings	will	be	compared	in	a	sort	orderthat	is	not	case-sensitive.

Option	Compare	Text

Dim	Statement	Syntax

Dim	varname[([subscripts])]	[As	type]	[,	varname[([subscripts])]	[As	type]]	.	.	.

In	the	Dim	statement	syntax,	the	word	Dim	is	a	required	keyword.	The	only
required	element	is	varname	(the	variable	name).	For	example,	the	following
statement	creates	three	variables:	myVar,	nextVar,	and	thirdVar.	These	are
automatically	declared	as	Variant	variables.

Dim	myVar,	nextVar,	thirdVar

The	following	example	declares	a	variable	as	a	String.	Including	a	data	type
saves	memory	and	can	help	you	find	errors	in	your	code.

Dim	myAnswer	As	String

To	declare	several	variables	in	one	statement,	include	the	data	type	for	each
variable.	Variables	declared	without	a	data	type	are	automatically	declared	as
Variant.

Dim	x	As	Integer,	y	As	Integer,	z	As	Integer

In	the	following	statement,	x	and	y	are	assigned	the	Variant	data	type.	Only	z	is
assigned	the	Integer	data	type.

Dim	x,	y,	z	As	Integer

If	you	are	declaring	an	array	variable,	you	must	include	parentheses.	The
subscripts	are	optional.	The	following	statement	dimensions	a	dynamic	array,
myArray.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

Dim	myArray()

	 	

	 	

Using	Arrays

				

You	can	declare	an	array	to	work	with	a	set	of	values	of	the	same	data	type.	An
array	is	a	single	variable	with	many	compartments	to	store	values,	while	a
typical	variable	has	only	one	storage	compartment	in	which	it	can	store	only	one
value.	Refer	to	the	array	as	a	whole	when	you	want	to	refer	to	all	the	values	it
holds,	or	you	can	refer	to	its	individual	elements.

For	example,	to	store	daily	expenses	for	each	day	of	the	year,	you	can	declare
one	array	variable	with	365	elements,	rather	than	declaring	365	variables.	Each
element	in	an	array	contains	one	value.	The	following	statement	declares	the

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

array	variable	curExpense	with	365	elements.	By	default,	an	array	is	indexed
beginning	with	zero,	so	the	upper	bound	of	the	array	is	364	rather	than	365.

Dim	curExpense(364)	As	Currency

To	set	the	value	of	an	individual	element,	you	specify	the	element's	index.	The
following	example	assigns	an	initial	value	of	20	to	each	element	in	the	array.

Sub	FillArray()

				Dim	curExpense(364)	As	Currency

				Dim	intI	As	Integer

				For	intI	=	0	to	364

								curExpense(intI)	=	20

				Next

End	Sub

Changing	the	Lower	Bound

You	can	use	the	Option	Base	statement	at	the	top	of	a	module	to	change	the
default	index	of	the	first	element	from	0	to	1.	In	the	following	example,	the
Option	Base	statement	changes	the	index	for	the	first	element,	and	the	Dim
statement	declares	the	array	variable	curExpense	with	365	elements.

Option	Base	1

Dim	curExpense(365)	As	Currency

You	can	also	explicitly	set	the	lower	bound	of	an	array	by	using	a	To	clause,	as
shown	in	the	following	example.

Dim	curExpense(1	To	365)	As	Currency

Dim	strWeekday(7	To	13)	As	String

Storing	Variant	Values	in	Arrays

JavaScript:hhobj_6.Click()

There	are	two	ways	to	create	arrays	of	Variant	values.	One	way	is	to	declare	an
array	of	Variant	data	type,	as	shown	in	the	following	example:

Dim	varData(3)	As	Variant

varData(0)	=	"Claudia	Bendel"

varData(1)	=	"4242	Maple	Blvd"

varData(2)	=	38

varData(3)	=	Format("06-09-1952",	"General	Date")

The	other	way	is	to	assign	the	array	returned	by	the	Array	function	to	a	Variant
variable,	as	shown	in	the	following	example.

Dim	varData	As	Variant

varData	=	Array("Ron	Bendel",	"4242	Maple	Blvd",	38,	_

Format("06-09-1952",	"General	Date"))

You	identify	the	elements	in	an	array	of	Variant	values	by	index,	no	matter
which	technique	you	use	to	create	the	array.	For	example,	the	following
statement	can	be	added	to	either	of	the	preceding	examples.

MsgBox	"Data	for	"	&	varData(0)	&	"	has	been	recorded."

Using	Multidimensional	Arrays

In	Visual	Basic,	you	can	declare	arrays	with	up	to	60	dimensions.	For	example,
the	following	statement	declares	a	2-dimensional,	5-by-10	array.

Dim	sngMulti(1	To	5,	1	To	10)	As	Single

If	you	think	of	the	array	as	a	matrix,	the	first	argument	represents	the	rows	and
the	second	argument	represents	the	columns.

Use	nested	For...Next	statements	to	process	multidimensional	arrays.	The
following	procedure	fills	a	two-dimensional	array	with	Single	values.

Sub	FillArrayMulti()

JavaScript:hhobj_7.Click()

				Dim	intI	As	Integer,	intJ	As	Integer

				Dim	sngMulti(1	To	5,	1	To	10)	As	Single

				

				'	Fill	array	with	values.

				For	intI	=	1	To	5

								For	intJ	=	1	To	10

												sngMulti(intI,	intJ)	=	intI	*	intJ

												Debug.Print	sngMulti(intI,	intJ)

								Next	intJ

				Next	intI

End	Sub

	 	

	 	

	 	

	

Using	Constants

				

Your	code	might	contain	frequently	occurring	constant	values,	or	might	depend
on	certain	numbers	that	are	difficult	to	remember	and	have	no	obvious	meaning.

JavaScript:hhobj_8.Click()

You	can	make	your	code	easier	to	read	and	maintain	using	constants.	A	constant
is	a	meaningful	name	that	takes	the	place	of	a	number	or	string	that	does	not
change.	You	can't	modify	a	constant	or	assign	a	new	value	to	it	as	you	can	a
variable.

There	are	three	types	of	constants:

Intrinsic	constants	or	system-defined	constants	are	provided	by	applications	and
controls.	Other	applications	that	provide	object	libraries,	such	as	Microsoft
Access,	Microsoft	Excel,	Microsoft	Project	,	and	Microsoft	Word	also	provide	a
list	of	constants	you	can	use	with	their	objects,	methods,	and	properties.	You	can
get	a	list	of	the	constants	provided	for	individual	object	libraries	in	the	Object
Browser.

Visual	Basic	constants	are	listed	in	the	Visual	Basic	for	Applications	type	library,
and	Data	Access	Object	(DAO)	library.

Note			Visual	Basic	continues	to	recognize	constants	in	applications	created	in
earlier	versions	of	Visual	Basic	or	Visual	Basic	for	Applications.	You	can
upgrade	your	constants	to	those	listed	in	the	Object	Browser.	Constants	listed	in
the	Object	Browser	don't	have	to	be	declared	in	your	application.

Symbolic	or	user-defined	constants	are	declared	using	the	Const	statement.

Conditional	compiler	constants	are	declared	using	the	#Const	statement.

In	earlier	versions	of	Visual	Basic,	constant	names	were	usually	capitalized	with
underscores.	For	example:

TILE_HORIZONTAL

Intrinsic	constants	are	now	qualified	to	avoid	the	confusion	when	constants	with
the	same	name	exist	in	more	than	one	object	library,	which	may	have	different
values	assigned	to	them.	There	are	two	ways	to	qualify	constant	names:

By	prefix

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

By	library	reference

Qualifying	Constants	by	Prefix

The	intrinsic	constants	supplied	by	all	objects	appear	in	a	mixed-case	format,
with	a	2-character	prefix	indicating	the	object	library	that	defines	the	constant.
Constants	from	the	Visual	Basic	for	Applications	object	library	are	prefaced	with
"vb"	and	constants	from	the	Microsoft	Excel	object	library	are	prefaced	with
"xl".	The	following	examples	illustrate	how	prefixes	for	custom	controls	vary,
depending	on	the	type	library.

vbTileHorizontal

xlDialogBorder

Qualifying	Constants	by	Library	Reference

You	can	also	qualify	the	reference	to	a	constant	by	using	the	following	syntax:

[libname.]	[modulename.]constname

The	syntax	for	qualifying	constants	has	these	parts:

Part Description
libname Optional.	The	name	of	the	type	library	that	defines	the

constant.	For	most	custom	controls	(not	available	on	the
Macintosh),	this	is	also	the	class	name	of	the	control.	If	you
don't	remember	the	class	name	of	the	control,	position	the
mouse	pointer	over	the	control	in	the	toolbox.	The	class	name
is	displayed	in	the	ToolTip.

modulename Optional.	The	name	of	the	module	within	the	type	library	that
defines	the	constant.	You	can	find	the	name	of	the	module	by
using	the	Object	Browser.

constname The	name	defined	for	the	constant	in	the	type	library.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

For	example:

Threed.LeftJustify	

	
Using	Data	Types	Efficiently

				

Unless	otherwise	specified,	undeclared	variables	are	assigned	the	Variant	data
type.	This	data	type	makes	it	easy	to	write	programs,	but	it	is	not	always	the
most	efficient	data	type	to	use.

You	should	consider	using	other	data	types	if:

Your	program	is	very	large	and	uses	many	variables.

Your	program	must	run	as	quickly	as	possible.

You	write	data	directly	to	random-access	files.

In	addition	to	Variant,	supported	data	types	include	Byte,	Boolean,	Integer,
Long,	Single,	Double,	Currency,	Decimal,	Date,	Object,	and	String.	Use	the
Dim	statement	to	declare	a	variable	of	a	specific	type,	for	example:

Dim	X	As	Integer

This	statement	declares	that	a	variable	X	is	an	integer	—	a	whole	number
between	–32,768	and	32,767.	If	you	try	to	set	X	to	a	number	outside	that	range,

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

an	error	occurs.	If	you	try	to	set	X	to	a	fraction,	the	number	is	rounded.	For
example:

X	=	32768								'	Causes	error.

X	=	5.9								'	Sets	x	to	6.

	
Using	Do...Loop	Statements

				

You	can	use	Do...Loop	statements	to	run	a	block	of	statements	an	indefinite
number	of	times.	The	statements	are	repeated	either	while	a	condition	is	True	or
until	a	condition	becomes	True.

Repeating	Statements	While	a	Condition	is	True

There	are	two	ways	to	use	the	While	keyword	to	check	a	condition	in	a
Do...Loop	statement.	You	can	check	the	condition	before	you	enter	the	loop	,	or
you	can	check	it	after	the	loop	has	run	at	least	once.

In	the	following	ChkFirstWhile	procedure,	you	check	the	condition	before	you
enter	the	loop.	If	myNum	is	set	to	9	instead	of	20,	the	statements	inside	the	loop
will	never	run.	In	the	ChkLastWhile	procedure,	the	statements	inside	the	loop	run
only	once	before	the	condition	becomes	False.

Sub	ChkFirstWhile()

				counter	=	0

				myNum	=	20

				Do	While	myNum	>	10

								myNum	=	myNum	-	1

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

								counter	=	counter	+	1

				Loop

				MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."

End	Sub

Sub	ChkLastWhile()

				counter	=	0

				myNum	=	9

				Do

								myNum	=	myNum	-	1

								counter	=	counter	+	1

				Loop	While	myNum	>	10

				MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."

End	Sub

Repeating	Statements	Until	a	Condition	Becomes
True

There	are	two	ways	to	use	the	Until	keyword	to	check	a	condition	in	a
Do...Loop	statement.	You	can	check	the	condition	before	you	enter	the	loop	(as
shown	in	the	ChkFirstUntil	procedure),	or	you	can	check	it	after	the	loop	has
run	at	least	once	(as	shown	in	the	ChkLastUntil	procedure).	Looping	continues
while	the	condition	remains	False.

Sub	ChkFirstUntil()

				counter	=	0

				myNum	=	20

				Do	Until	myNum	=	10

								myNum	=	myNum	-	1

								counter	=	counter	+	1

				Loop

				MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."

End	Sub

Sub	ChkLastUntil()

				counter	=	0

				myNum	=	1

				Do

								myNum	=	myNum	+	1

								counter	=	counter	+	1

				Loop	Until	myNum	=	10

				MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."

End	Sub

Exiting	a	Do...Loop	Statement	from	Inside	the	Loop

You	can	exit	a	Do...Loop	using	the	Exit	Do	statement.	For	example,	to	exit	an
endless	loop,	use	the	Exit	Do	statement	in	the	True	statement	block	of	either	an
If...Then...Else	statement	or	a	Select	Case	statement.	If	the	condition	is	False,
the	loop	will	run	as	usual.

In	the	following	example,	myNum	is	assigned	a	value	that	creates	an	endless	loop.
The	If...Then...Else	statement	checks	for	this	condition,	and	then	exits,
preventing	endless	looping.

Sub	ExitExample()

				counter	=	0

				myNum	=	9

				Do	Until	myNum	=	10

								myNum	=	myNum	-	1

								counter	=	counter	+	1

								If	myNum	<	10	Then	Exit	Do

				Loop

				MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."

End	Sub

Note			To	stop	an	endless	loop,	press	ESC	or	CTRL+BREAK.

	 	

	 	

	
Using	For	Each...Next	Statements

				

For	Each...Next	statements	repeat	a	block	of	statements	for	each	object	in	a
collection	or	each	element	in	an	array.	Visual	Basic	automatically	sets	a	variable
each	time	the	loop	runs.	For	example,	the	following	procedure	closes	all	forms
except	the	form	containing	the	procedure	that’s	running.

Sub	CloseForms()

				For	Each	frm	In	Application.Forms

								If	frm.Caption	<>	Screen.	ActiveForm.Caption	Then	frm.Close

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

				Next

End	Sub

The	following	code	loops	through	each	element	in	an	array	and	sets	the	value	of
each	to	the	value	of	the	index	variable	I.

Dim	TestArray(10)	As	Integer,	I	As	Variant

For	Each	I	In	TestArray

				TestArray(I)	=	I

Next	I

Looping	Through	a	Range	of	Cells

Use	a	For	Each...Next	loop	to	loop	through	the	cells	in	a	range.	The	following
procedure	loops	through	the	range	A1:D10	on	Sheet1	and	sets	any	number
whose	absolute	value	is	less	than	0.01	to	0	(zero).

Sub	RoundToZero()

				For	Each	myObject	in	myCollection

								If	Abs(myObject.Value)	<	0.01	Then	myObject.Value	=	0

				Next

End	Sub

Exiting	a	For	Each...Next	Loop	Before	it	is	Finished

You	can	exit	a	For	Each...Next	loop	using	the	Exit	For	statement.	For	example,
when	an	error	occurs,	use	the	Exit	For	statement	in	the	True	statement	block	of
either	an	If...Then...Else	statement	or	a	Select	Case	statement	that	specifically
checks	for	the	error.	If	the	error	does	not	occur,	then	the	If…Then…Else
statement	is	False	and	the	loop	continues	to	run	as	expected.

The	following	example	tests	for	the	first	cell	in	the	range	A1:B5	that	does	not
contain	a	number.	If	such	a	cell	is	found,	a	message	is	displayed	and	Exit	For
exits	the	loop.

Sub	TestForNumbers()

				For	Each	myObject	In	MyCollection

								If	IsNumeric(myObject.Value)	=	False	Then

												MsgBox	"Object	contains	a	non-numeric	value."

												Exit	For

								End	If

				Next	c

End	Sub

	 	

	
Using	For...Next	Statements

				

You	can	use	For...Next	statements	to	repeat	a	block	of	statements	a	specific
number	of	times.	For	loops	use	a	counter	variable	whose	value	is	increased	or
decreased	with	each	repetition	of	the	loop.

The	following	procedure	makes	the	computer	beep	50	times.	The	For	statement
specifies	the	counter	variable	x	and	its	start	and	end	values.	The	Next	statement
increments	the	counter	variable	by	1.

Sub	Beeps()

				For	x	=	1	To	50

								Beep

				Next	x

End	Sub

Using	the	Step	keyword,	you	can	increase	or	decrease	the	counter	variable	by

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

the	value	you	specify.	In	the	following	example,	the	counter	variable	j	is
incremented	by	2	each	time	the	loop	repeats.	When	the	loop	is	finished,	total	is
the	sum	of	2,	4,	6,	8,	and	10.

Sub	TwosTotal()

				For	j	=	2	To	10	Step	2

								total	=	total	+	j

				Next	j

				MsgBox	"The	total	is	"	&	total

End	Sub

To	decrease	the	counter	variable,	use	a	negative	Step	value.	To	decrease	the
counter	variable,	you	must	specify	an	end	value	that	is	less	than	the	start	value.
In	the	following	example,	the	counter	variable	myNum	is	decreased	by	2	each	time
the	loop	repeats.	When	the	loop	is	finished,	total	is	the	sum	of	16,	14,	12,	10,	8,
6,	4,	and	2.

Sub	NewTotal()

				For	myNum	=	16	To	2	Step	-2

								total	=	total	+	myNum

				Next	myNum

				MsgBox	"The	total	is	"	&	total

End	Sub

Note			It's	not	necessary	to	include	the	counter	variable	name	after	the	Next
statement.	In	the	preceding	examples,	the	counter	variable	name	was	included
for	readability.

You	can	exit	a	For...Next	statement	before	the	counter	reaches	its	end	value	by
using	the	Exit	For	statement.	For	example,	when	an	error	occurs,	use	the	Exit
For	statement	in	the	True	statement	block	of	either	an	If...Then...Else	statement
or	a	Select	Case	statement	that	specifically	checks	for	the	error.	If	the	error
doesn't	occur,	then	the	If…Then…Else	statement	is	False,	and	the	loop	will
continue	to	run	as	expected.

	
Using	If...Then...Else	Statements

				

You	can	use	the	If...Then...Else	statement	to	run	a	specific	statement	or	a	block
of	statements,	depending	on	the	value	of	a	condition.	If...Then...Else	statements
can	be	nested	to	as	many	levels	as	you	need.	However,	for	readability,	you	may
want	to	use	a	Select	Case	statement	rather	than	multiple	levels	of	nested
If...Then...Else	statements.

Running	Statements	if	a	Condition	is	True

To	run	only	one	statement	when	a	condition	is	True,	use	the	single-line	syntax	of
the	If...Then...Else	statement.	The	following	example	shows	the	single-line
syntax,	omitting	the	Else	keyword:

Sub	FixDate()

				myDate	=	#2/13/95#

				If	myDate	<	Now	Then	myDate	=	Now

End	Sub

To	run	more	than	one	line	of	code,	you	must	use	the	multiple-line	syntax.	This
syntax	includes	the	End	If	statement,	as	shown	in	the	following	example:

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Sub	AlertUser(value	as	Long)

				If	value	=	0	Then

								AlertLabel.ForeColor	=	"Red"

								AlertLabel.Font.Bold	=	True

								AlertLabel.Font.Italic	=	True

				End	If

End	Sub

Running	Certain	Statements	if	a	Condition	is	True
and	Running	Others	if	It's	False

Use	an	If...Then...Else	statement	to	define	two	blocks	of	executable	statements:
one	block	runs	if	the	condition	is	True,	the	other	block	runs	if	the	condition	is
False.

Sub	AlertUser(value	as	Long)

				If	value	=	0	Then

								AlertLabel.ForeColor	=	vbRed

								AlertLabel.Font.Bold	=	True

								AlertLabel.Font.Italic	=	True

				Else

								AlertLabel.Forecolor	=	vbBlack

								AlertLabel.Font.Bold	=	False

								AlertLabel.Font.Italic	=	False

				End	If

End	Sub

Testing	a	Second	Condition	if	the	First	Condition	is
False

You	can	add	ElseIf	statements	to	an	If...Then...Else	statement	to	test	a	second

condition	if	the	first	condition	is	False.	For	example,	the	following	function
procedure	computes	a	bonus	based	on	job	classification.	The	statement
following	the	Else	statement	runs	if	the	conditions	in	all	of	the	If	and	ElseIf
statements	are	False.

Function	Bonus(performance,	salary)

				If	performance	=	1	Then

								Bonus	=	salary	*	0.1

				ElseIf	performance	=	2	Then

								Bonus	=	salary	*	0.09

				ElseIf	performance	=	3	Then

								Bonus	=	salary	*	0.07

				Else

								Bonus	=	0

				End	If

End	Function

	 	

	
Using	Parentheses	in	Code

				

Sub	procedures,	built-in	statements,	and	some	methods	don't	return	a	value,	so
the	arguments	aren't	enclosed	in	parentheses.	For	example:

MySub	"stringArgument",	integerArgument

Function	procedures,	built-in	functions,	and	some	methods	do	return	a	value,
but	you	can	ignore	it.	If	you	ignore	the	return	value,	don’t	include	parentheses.
Call	the	function	just	as	you	would	call	a	Sub	procedure.	Omit	the	parentheses,
list	any	arguments	,	and	don't	assign	the	function	to	a	variable.	For	example:

MsgBox	"Task	Completed!",	0,	"Task	Box"

To	use	the	return	value	of	a	function,	enclose	the	arguments	in	parentheses,	as
shown	in	the	following	example.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Answer3	=	MsgBox("Are	you	happy	with	your	salary?",	4,	"Question	3")

A	statement	in	a	Sub	or	Function	procedure	can	pass	values	to	a	called
procedure	using	named	arguments.	The	guidelines	for	using	parentheses	apply,
whether	or	not	you	use	named	arguments.	When	you	use	named	arguments,	you
can	list	them	in	any	order,	and	you	can	omit	optional	arguments.	Named
arguments	are	always	followed	by	a	colon	and	an	equal	sign	(:=),	and	then	the
argument	value.

The	following	example	calls	the	MsgBox	function	using	named	arguments,	but
it	ignores	the	return	value:

MsgBox	Title:="Task	Box",	Prompt:="Task	Completed!"

The	following	example	calls	the	MsgBox	function	using	named	arguments	and
assigns	the	return	value	to	the	variable	answer3:

answer3	=	MsgBox(Title:="Question	3",	_

				Prompt:="Are	you	happy	with	your	salary?",	Buttons:=4)

JavaScript:hhobj_6.Click()

	
Using	Select	Case	Statements

				

Use	the	Select	Case	statement	as	an	alternative	to	using	ElseIf	in
If...Then...Else	statements	when	comparing	one	expression	to	several	different
values.	While	If...Then...Else	statements	can	evaluate	a	different	expression	for
each	ElseIf	statement,	the	Select	Case	statement	evaluates	an	expression	only
once,	at	the	top	of	the	control	structure.

In	the	following	example,	the	Select	Case	statement	evaluates	the	performance
argument	that	is	passed	to	the	procedure.	Note	that	each	Case	statement	can
contain	more	than	one	value,	a	range	of	values,	or	a	combination	of	values	and
comparison	operators.	The	optional	Case	Else	statement	runs	if	the	Select	Case
statement	doesn't	match	a	value	in	any	of	the	Case	statements.

Function	Bonus(performance,	salary)

				Select	Case	performance

								Case	1

												Bonus	=	salary	*	0.1

								Case	2,	3

												Bonus	=	salary	*	0.09

								Case	4	To	6

												Bonus	=	salary	*	0.07

								Case	Is	>	8

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

												Bonus	=	100

								Case	Else

												Bonus	=	0

				End	Select

End	Function

	 	

Using	With	Statements

				

The	With	statement	lets	you	specify	an	object	or	user-defined	type	once	for	an
entire	series	of	statements.	With	statements	make	your	procedures	run	faster	and
help	you	avoid	repetitive	typing.

The	following	example	fills	a	range	of	cells	with	the	number	30,	applies	bold
formatting,	and	sets	the	interior	color	of	the	cells	to	yellow.

Sub	FormatRange()

				With	Worksheets("Sheet1").Range("A1:C10")

								.Value	=	30

								.Font.Bold	=	True

								.Interior.Color	=	RGB(255,	255,	0)

				End	With

End	Sub

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

You	can	nest	With	statements	for	greater	efficiency.	The	following	example
inserts	a	formula	into	cell	A1,	and	then	formats	the	font.

Sub	MyInput()

				With	Workbooks("Book1").Worksheets("Sheet1").Cells(1,	1)

								.Formula	=	"=SQRT(50)"

								With	.Font

												.Name	=	"Arial"

												.Bold	=	True

												.Size	=	8

								End	With

				End	With

End	Sub

	 	

	 	

	 	

	 	

	 	

JavaScript:hhobj_9.Click()
JavaScript:hhobj_11.Click()

	
Visual	Basic	Naming	Rules

				

Use	the	following	rules	when	you	name	procedures,	constants,	variables,	and
arguments	in	a	Visual	Basic	module:

You	must	use	a	letter	as	the	first	character.

You	can't	use	a	space,	period	(.),	exclamation	mark	(!),	or	the	characters	@,
&,	$,	#	in	the	name.

Name	can't	exceed	255	characters	in	length.

Generally,	you	shouldn't	use	any	names	that	are	the	same	as	the	functions,
statements,	and	methods	in	Visual	Basic.	You	end	up	shadowing	the	same
keywords	in	the	language.	To	use	an	intrinsic	language	function,	statement,
or	method	that	conflicts	with	an	assigned	name,	you	must	explicitly	identify
it.	Precede	the	intrinsic	function,	statement,	or	method	name	with	the	name
of	the	associated	type	library.	For	example,	if	you	have	a	variable	called
Left,	you	can	only	invoke	the	Left	function	using	VBA.Left.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_12.Click()

You	can't	repeat	names	within	the	same	level	of	scope.	For	example,	you
can't	declare	two	variables	named	age	within	the	same	procedure.	However,
you	can	declare	a	private	variable	named	age	and	a	procedure-level	variable
named	age	within	the	same	module.
Note			Visual	Basic	isn't	case-sensitive,	but	it	preserves	the	capitalization	in	the	statement	where	the	name	is	declared.

JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

	 	

	
Working	Across	Applications

				

Visual	Basic	can	create	new	objects	and	retrieve	existing	objects	from	many
Microsoft	applications.	Other	applications	may	also	provide	objects	that	you	can
create	using	Visual	Basic.	See	the	application's	documentation	for	more
information.

To	create	an	new	object	or	get	an	existing	object	from	another	application,	use
the	CreateObject	function	or	GetObject	function:

'	Start	Microsoft	Excel	and	create	a	new	Worksheet	object.

Set	ExcelWorksheet	=	CreateObject("Excel.Sheet")

'	Start	Microsoft	Excel	and	open	an	existing	Worksheet	object.

Set	ExcelWorksheet	=	GetObject("SHEET1.XLS")

JavaScript:hhobj_3.Click()

'	Start	Microsoft	Word.

Set	WordBasic	=	CreateObject("Word.Basic")

Most	applications	provide	an	Exit	or	Quit	method	that	closes	the	application
whether	or	not	it	is	visible.	For	more	information	on	the	objects,	methods,	and
properties	an	application	provides,	see	the	application's	documentation.

Some	applications	allow	you	to	use	the	New	keyword	to	create	an	object	of	any
class	that	exists	in	its	type	library.	For	example:

Dim	X	As	New	Field

In	this	case,	Field	is	an	example	of	a	class	in	the	data	access	type	library.	A	new
instance	of	a	Field	object	is	created	using	this	syntax.	Refer	to	the	application's
documentation	for	information	about	which	object	classes	can	be	created	in	this
way.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

Writing	a	Function	Procedure

				

A	Function	procedure	is	a	series	of	Visual	Basic	statements	enclosed	by	the
Function	and	End	Function	statements.	A	Function	procedure	is	similar	to	a
Sub	procedure,	but	a	function	can	also	return	a	value.	A	Function	procedure	can
take	arguments,	such	as	constants,	variables,	or	expressions	that	are	passed	to	it
by	a	calling	procedure.	If	a	Function	procedure	has	no	arguments,	its	Function
statement	must	include	an	empty	set	of	parentheses.	A	function	returns	a	value
by	assigning	a	value	to	its	name	in	one	or	more	statements	of	the	procedure.

In	the	following	example,	the	Celsius	function	calculates	degrees	Celsius	from

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

degrees	Fahrenheit.	When	the	function	is	called	from	the	Main	procedure,	a
variable	containing	the	argument	value	is	passed	to	the	function.	The	result	of
the	calculation	is	returned	to	the	calling	procedure	and	displayed	in	a	message
box.

Sub	Main()

				temp	=	Application.InputBox(Prompt:=	_

								"Please	enter	the	temperature	in	degrees	F.",	Type:=1)

				MsgBox	"The	temperature	is	"	&	Celsius(temp)	&	"	degrees	C."

End	Sub

Function	Celsius(fDegrees)

				Celsius	=	(fDegrees	-	32)	*	5	/	9

End	Function

	 	

	 	

	 	

Writing	a	Property	Procedure

				

A	Property	procedure	is	a	series	of	Visual	Basic	statements	that	allow	a
programmer	to	create	and	manipulate	custom	properties.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_5.Click()

Property	procedures	can	be	used	to	create	read-only	properties	for	forms,
standard	modules,	and	class	modules.

Property	procedures	should	be	used	instead	of	Public	variables	in	code	that
must	be	executed	when	the	property	value	is	set.

Unlike	Public	variables,	Property	procedures	can	have	Help	strings	assigned
to	them	in	the	Object	Browser.

When	you	create	a	Property	procedure,	it	becomes	a	property	of	the	module
containing	the	procedure.	Visual	Basic	provides	the	following	three	types	of
Property	procedures:

Procedure Description
Property	Let A	procedure	that	sets	the	value	of	a	property.
Property	Get A	procedure	that	returns	the	value	a	property.
Property	Set A	procedure	that	sets	a	reference	to	an	object.

The	syntax	for	declaring	a	Property	procedure	is:

[Public	|	Private]	[Static]	Property	{Get	|	Let	|	Set}	propertyname_
[(arguments)]	[As	type]

statements

End	Property

Property	procedures	are	usually	used	in	pairs:	Property	Let	with	Property	Get
and	Property	Set	with	Property	Get.	Declaring	a	Property	Get	procedure
alone	is	like	declaring	a	read-only	property.	Using	all	three	Property	procedure
types	together	is	only	useful	for	Variant	variables,	since	only	a	Variant	can
contain	either	an	object	or	other	data	type	information.	Property	Set	is	intended
for	use	with	objects;	Property	Let	isn't.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

The	required	arguments	in	Property	procedure	declarations	are	shown	in	the
following	table:

Procedure Declaration	Syntax
Property	GetProperty	Get	propname(1,	…,	n)	As	type
Property	LetProperty	Let	propname(1,	…,,,,	n,	n+1)
Property	SetProperty	Set	propname(1,	…,	n,	n+1)

The	first	argument	through	the	next	to	last	argument	(1,	…,	n)	must	share	the
same	names	and	data	types	in	all	Property	procedures	with	the	same	name.

A	Property	Get	procedure	declaration	takes	one	less	argument	than	the	related
Property	Let	and	Property	Set	declarations.	The	data	type	of	the	Property	Get
procedure	must	be	the	same	as	the	data	type	as	the	data	type	of	the	last	argument
(n+1)	in	the	related	Property	Let	and	Property	Set	declarations.	For	example,
if	you	declare	the	following	Property	Let	procedure,	the	Property	Get
declaration	must	use	arguments	with	the	same	name	and	data	type	as	the
arguments	in	the	Property	Let	procedure.

Property	Let	Names(intX	As	Integer,	intY	As	Integer,	varZ	As	Variant)

				‘	Statement	here.

End	Property

Property	Get	Names(intX	As	Integer,	intY	As	Integer)	As	Variant

				‘	Statement	here.

End	Property

The	data	type	of	the	final	argument	in	a	Property	Set	declaration	must	be	either
an	object	type	or	a	Variant.

JavaScript:hhobj_9.Click()

	 	

	
Writing	a	Sub	Procedure

				

A	Sub	procedure	is	a	series	of	Visual	Basic	statements	enclosed	by	the	Sub	and
End	Sub	statements	that	performs	actions	but	doesn't	return	a	value.	A	Sub
procedure	can	take	arguments,	such	as	constants,	variables,	or	expressions	that
are	passed	by	a	calling	procedure.	If	a	Sub	procedure	has	no	arguments,	the	Sub
statement	must	include	an	empty	set	of	parentheses.

The	following	Sub	procedure	has	comments	explaining	each	line.

'	Declares	a	procedure	named	GetInfo	

'	This	Sub	procedure	takes	no	arguments

Sub	GetInfo()

'	Declares	a	string	variable	named	answer

Dim	answer	As	String

'	Assigns	the	return	value	of	the	InputBox	function	to	answer

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

answer	=	InputBox(Prompt:="What	is	your	name?")

				'	Conditional	If...Then...Else	statement

				If	answer	=	Empty	Then

								'	Calls	the	MsgBox	function

								MsgBox	Prompt:="You	did	not	enter	a	name."

				Else

								'	MsgBox	function	concatenated	with	the	variable	answer

								MsgBox	Prompt:="Your	name	is	"	&	answer

				'	Ends	the	If...Then...Else	statement

				End	If

'	Ends	the	Sub	procedure

End	Sub

	 	

	
Writing	Assignment	Statements

				

Assignment	statements	assign	a	value	or	expression	to	a	variable	or	constant.
Assignment	statements	always	include	an	equal	sign	(=).	The	following	example
assigns	the	return	value	of	the	InputBox	function	to	the	variable	yourName.

Sub	Question()

				Dim	yourName	As	String

				yourName	=	InputBox("What	is	your	name?")

				MsgBox	"Your	name	is	"	&	yourName

End	Sub

The	Let	statement	is	optional	and	is	usually	omitted.	For	example,	the	preceding
assignment	statement	can	be	written:

Let	yourName	=	InputBox("What	is	your	name?").

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	Set	statement	is	used	to	assign	an	object	to	a	variable	that	has	been	declared
as	an	object.	The	Set	keyword	is	required.	In	the	following	example,	the	Set
statement	assigns	a	range	on	Sheet1	to	the	object	variable	myCell:

Sub	ApplyFormat()

Dim	myCell	As	Range

Set	myCell	=	Worksheets("Sheet1").Range("A1")

				With	myCell.Font

								.Bold	=	True

								.Italic	=	True

				End	With

End	Sub

Statements	that	set	property	values	are	also	assignment	statements.	The
following	example	sets	the	Bold	property	of	the	Font	object	for	the	active	cell:

ActiveCell.Font.Bold	=	True

JavaScript:hhobj_6.Click()

Writing	Data	to	Files

				

When	working	with	large	amounts	of	data,	it	is	often	convenient	to	write	data	to
or	read	data	from	a	file.	The	Open	statement	lets	you	create	and	access	files
directly.	Open	provides	three	types	of	file	access:

Sequential	access	(Input,	Output,	and	Append	modes)	is	used	for	writing
text	files,	such	as	error	logs	and	reports.

Random	access	(Random	mode)	is	used	to	read	and	write	data	to	a	file
without	closing	it.	Random	access	files	keep	data	in	records,	which	makes	it
easy	to	locate	information	quickly.

Binary	access	(Binary	mode)	is	used	to	read	or	write	to	any	byte	position	in
a	file,	such	as	storing	or	displaying	a	bitmap	image.
Note			The	Open	statement	should	not	be	used	to	open	an	application's	own	file	types.	For	example,	don't	use	Open	to	open	a	Word
document,	a	Microsoft	Excel	spreadsheet,	or	a	Microsoft	Access	database.	Doing	so	will	cause	loss	of	file	integrity	and	file	corruption.

The	following	table	shows	the	statements	typically	used	when	writing	data	to
and	reading	data	from	files.

Access	Type Writing	Data Reading	Data
Sequential Print	#,	Write	# Input	#
Random Put Get
Binary Put Get

	 	

	 	

	
Writing	Declaration	Statements

				

You	use	declaration	statements	to	name	and	define	procedures,	variables,	arrays,
and	constants.	When	you	declare	a	procedure,	variable,	or	constant,	you	also
define	its	scope,	depending	on	where	you	place	the	declaration	and	what
keywords	you	use	to	declare	it.

The	following	example	contains	three	declarations.

Sub	ApplyFormat()

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

				Const	limit	As	Integer	=	33

				Dim	myCell	As	Range

				'	More	statements

End	Sub

The	Sub	statement	(with	matching	End	Sub	statement)	declares	a	procedure
named	ApplyFormat.	All	the	statements	enclosed	by	the	Sub	and	End	Sub
statements	are	executed	whenever	the	ApplyFormat	procedure	is	called	or	run.

Writing	a	Sub	Procedure

The	Const	statement	declares	the	constant	limit,	specifying	the	Integer	data
type	and	a	value	of	33.

Declaring	Constants

The	Dim	statement	declares	the	variable	myCell.	The	data	type	is	an	object,	in
this	case,	a	Microsoft	Excel	Range	object.	You	can	declare	a	variable	to	be	any
object	that	is	exposed	in	the	application	you	are	using.	Dim	statements	are	one
type	of	statement	used	to	declare	variables.	Other	keywords	used	in	declarations
are	ReDim,	Static,	Public,	Private,	and	Const.

Declaring	Variables

	
Writing	Executable	Statements

				

An	executable	statement	initiates	action.	It	can	execute	a	method	or	function,
and	it	can	loop	or	branch	through	blocks	of	code.	Executable	statements	often
contain	mathematical	or	conditional	operators.

The	following	example	uses	a	For	Each...Next	statement	to	iterate	through	each
cell	in	a	range	named	MyRange	on	Sheet1	of	an	active	Microsoft	Excel	workbook.
The	variable	c	is	a	cell	in	the	collection	of	cells	contained	in	MyRange.

Sub	ApplyFormat()

Const	limit	As	Integer	=	33

For	Each	c	In	Worksheets("Sheet1").Range("MyRange").Cells

				If	c.Value	>	limit	Then

								With	c.Font

												.Bold	=	True

												.Italic	=	True

								End	With

				End	If

Next	c

MsgBox	"All	done!"

End	Sub

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

The	If...Then...Else	statement	in	the	example	checks	the	value	of	the	cell.	If	the
value	is	greater	than	33,	the	With	statement	sets	the	Bold	and	Italic	properties	of
the	Font	object	for	that	cell.	If...Then...Else	statements	end	with	End	If.

The	With	statement	can	save	typing	because	the	statements	it	contains	are
automatically	executed	on	the	object	following	the	With	keyword.

The	Next	statement	calls	the	next	cell	in	the	collection	of	cells	contained	in
MyRange.

The	MsgBox	function	(which	displays	a	built-in	Visual	Basic	dialog	box)
displays	a	message	indicating	that	the	Sub	procedure	has	finished	running.

	 	

	 	

	
Writing	Visual	Basic	Statements

				

A	statement	in	Visual	Basic	is	a	complete	instruction.	It	can	contain	keywords,
operators,	variables,	constants,	and	expressions.	Each	statement	belongs	to	one
of	the	following	three	categories:

Declaration	statements,	which	name	a	variable,	constant,	or	procedure	and
can	also	specify	a	data	type.
Writing	Declaration	Statements

Assignment	statements,	which	assign	a	value	or	expression	to	a	variable	or

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

constant.
Writing	Assignment	Statements

Executable	statements,	which	initiate	actions.	These	statements	can	execute	a
method	or	function,	and	they	can	loop	or	branch	through	blocks	of	code.
Executable	statements	often	contain	mathematical	or	conditional	operators.
Writing	Executable	Statements

Continuing	a	Statement	over	Multiple	Lines

A	statement	usually	fits	on	one	line,	but	you	can	continue	a	statement	onto	the
next	line	using	a	line-continuation	character.	In	the	following	example,	the
MsgBox	executable	statement	is	continued	over	three	lines:

Sub	DemoBox()		'This	procedure	declares	a	string	variable,

								'	assigns	it	the	value	Claudia,	and	then	displays	

								'	a	concatenated	message.

				Dim	myVar	As	String

				myVar	=	"John"

				MsgBox	Prompt:="Hello	"	&	myVar,	_

								Title:="Greeting	Box",	_

								Buttons:=vbExclamation

End	Sub

Adding	Comments

Comments	can	explain	a	procedure	or	a	particular	instruction	to	anyone	reading
your	code.	Visual	Basic	ignores	comments	when	it	runs	your	procedures.
Comment	lines	begin	with	an	apostrophe	(')	or	with	Rem	followed	by	a	space,
and	can	be	added	anywhere	in	a	procedure.	To	add	a	comment	to	the	same	line
as	a	statement,	insert	an	apostrophe	after	the	statement,	followed	by	the
comment.	By	default,	comments	are	displayed	as	green	text.

JavaScript:hhobj_8.Click()

Checking	Syntax	Errors

If	you	press	ENTER	after	typing	a	line	of	code	and	the	line	is	displayed	in	red
(an	error	message	may	display	as	well),	you	must	find	out	what's	wrong	with
your	statement,	and	then	correct	it.

	Avoiding Naming Conflicts
	Calling Procedures with the Same Name
	Calling Property Procedures
	Calling Sub and Function Procedures
	Creating Object Variables
	Creating Recursive Procedures
	Declaring Arrays
	Declaring Constants
	Declaring Variables
	Executing Code when Setting Properties
	Looping Through Code
	Making Faster For...Next Loops
	Passing Arguments Efficiently
	Returning Strings from Functions
	Understanding Automation
	Understanding Conditional Compilation
	Understanding Named and Optional Arguments
	Understanding Objects, Properties, Methods, and Events
	Understanding Parameter Arrays
	Understanding Scope and Visibility
	Understanding the Lifetime of Variables
	Understanding Variants
	Understanding Visual Basic Syntax
	Using Arrays
	Using Constants
	Using Data Types Efficiently
	Using Do...Loop Statements
	Using For Each...Next Statements
	Using For...Next Statements
	Using If...Then...Else Statements
	Using Parentheses in Code
	Using Select Case Statements
	Using With Statements
	Visual Basic Naming Rules
	Working Across Applications
	Writing a Function Procedure
	Writing a Property Procedure
	Writing a Sub Procedure
	Writing Assignment Statements
	Writing Data to Files
	Writing Declaration Statements
	Writing Executable Statements
	Writing Visual Basic Statements

