
Calendar	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbCalGreg 0 Indicates	that	the

Gregorian	calendar	is
used.

vbCalHijri 1 Indicates	that	the	Hijri
calendar	is	used.

JavaScript:hhobj_3.Click()

Color	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbBlack 0x0 Black
vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

JavaScript:hhobj_3.Click()

	

Comparison	Constants

				

The	following	constants	are	defined	in	the	Visual	Basic	for	Applications	type
library	and	can	be	used	anywhere	in	your	code	in	place	of	the	actual	values:

Constant Value Description
vbUseCompareOption -1 Performs	a	comparison	using	the

setting	of	the	Option	Compare
statement.

vbBinaryCompare 0 Performs	a	binary	comparison.
vbTextCompare 1 Performs	a	textual	comparison.
vbDatabaseCompare 2 For	Microsoft	Access	(Windows	only),

performs	a	comparison	based	on
information	contained	in	your	database.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

	 	

Compiler	Constants

				

Visual	Basic	for	Applications	defines	constants	for	exclusive	use	with	the
#If...Then...#Else	directive.	These	constants	are	functionally	equivalent	to
constants	defined	with	the	#If...Then...#Else	directive	except	that	they	are	global
in	scope;	that	is,	they	apply	everywhere	in	a	project.

On	16-bit	development	platforms,	the	compiler	constants	are	defined	as	follows:

Constant Value Description
Win16 True Indicates	development	environment	is	16-bit.
Win32 False Indicates	that	the	development	environment	is

not	32-bit.

On	32-bit	development	platforms,	the	compiler	constants	are	defined	as	follows:

Constant Value Description

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Vba6 True Indicates	that	the	development	environment	is
Visual	Basic	for	Applications,	version	6.0.

Vba6 False Indicates	that	the	development	environment	is
not	Visual	Basic	for	Applications,	version	6.0.

Win16 False Indicates	that	the	development	environment	is
not	16-bit.

Win32 True Indicates	that	the	development	environment	is
32-bit.

Mac False Indicates	that	the	development	environment	is
not	Macintosh.

Win16 False Indicates	that	the	development	environment	is
not	16-bit.

Win32 False Indicates	that	the	development	environment	is
32-bit	Windows.

Mac True Indicates	that	the	development	environment	is
Macintosh.

Note			These	constants	are	provided	by	Visual	Basic,	so	you	cannot	define	your
own	constants	with	these	same	names	at	any	level.

	Date

Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Argument	Values

The	firstdayofweek	argument	has	the	following	values:

Constant Value Description
vbUseSystem 0 Use	NLS	API	setting.
vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The	firstdayofyear	argument	has	the	following	values:

Constant Value Description

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

vbUseSystem 0 Use	NLS	API	setting.
VbUseSystem
DayOfWeek

0 Use	the	day	of	the	week	specified	in	your
system	settings	for	the	first	day	of	the	week.

VbFirstJan1 1 Start	with	week	in	which	January	1	occurs
(default).

vbFirstFourDays 2 Start	with	the	first	week	that	has	at	least	four
days	in	the	new	year.

vbFirstFullWeek 3 Start	with	the	first	full	week	of	the	year.

Return	Values

Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Date	Format	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
vbGeneralDate 0 Display	a	date	and/or	time.	For	real	numbers,

display	a	data	and	time.	If	there	is	no	fractional
part,	display	only	a	date.	If	there	is	no	integer	part,
display	time	only.	Date	and	time	display	is
determined	by	your	system	settings.

vbLongDate 1 Display	a	date	using	the	long	date	format	specified
in	your	computer's	regional	settings.

vbShortDate 2 Display	a	date	using	the	short	date	format	specified
in	your	computer's	regional	settings.

vbLongTime 3 Display	a	time	using	the	long	time	format	specified
in	your	computer's	regional	settings.

vbShortTime 4 Display	a	time	using	the	short	time	format
specified	in	your	computer's	regional	settings.

JavaScript:hhobj_3.Click()

Dir,	GetAttr,	and	SetAttr	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbNormal 0 Normal	(default	for	Dir

and	SetAttr)
vbReadOnly 1 Read-only
vbHidden 2 Hidden
vbSystem 4 System	file
vbVolume 8 Volume	label
vbDirectory 16 Directory	or	folder
vbArchive 32 File	has	changed	since	last

backup
vbAlias 64 On	the	Macintosh,

identifier	is	an	alias.

Only	VbNormal,	vbReadOnly,	vbHidden,	and	vbAlias	are	available	on	the
Macintosh.

JavaScript:hhobj_3.Click()

DriveType	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
Unknown 0 Drive	type	can't	be	determined.
Removable 1 Drive	has	removable	media.	This	includes	all

floppy	drives	and	many	other	varieties	of	storage
devices.

Fixed 2 Drive	has	fixed	(nonremovable)	media.	This
includes	all	hard	drives,	including	hard	drives	that
are	removable.

Remote 3 Network	drives.	This	includes	drives	shared
anywhere	on	a	network.

CDROM 4 Drive	is	a	CD-ROM.	No	distinction	is	made
between	read-only	and	read/write	CD-ROM	drives.

RAMDisk 5 Drive	is	a	block	of	Random	Access	Memory
(RAM)	on	the	local	computer	that	behaves	like	a
disk	drive.

JavaScript:hhobj_3.Click()

File	Attribute	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
Normal 0 Normal	file.	No	attributes	are	set.
ReadOnly 1 Read-only	file.	Attribute	is	read/write.
Hidden 2 Hidden	file.	Attribute	is	read/write.
System 4 System	file.	Attribute	is	read/write.
Volume 8 Disk	drive	volume	label.	Attribute	is	read-only.
Directory 16 Folder	or	directory.	Attribute	is	read-only.
Archive 32 File	has	changed	since	last	backup.	Attribute	is

read/write.
Alias 64 Link	or	shortcut.	Attribute	is	read-only.
Compressed 128 Compressed	file.	Attribute	is	read-only.

JavaScript:hhobj_3.Click()

File	Input/Output	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
ForReading 1 Open	a	file	for	reading	only.	You	can't	write	to	this

file.
ForWriting 2 Open	a	file	for	writing.	If	a	file	with	the	same	name

exists,	its	previous	contents	are	overwritten.
ForAppending 8 Open	a	file	and	write	to	the	end	of	the	file.

JavaScript:hhobj_3.Click()

	

IMEStatus	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values.

The	constants	for	the	Japanese	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME

(default)
vbIMEModeOn 1 IME	on
vbIMEModeOff 2 IME	off
vbIMEModeDisable 3 IME	disabled
vbIMEModeHiragana 4 Full-width	Hiragana

mode
vbIMEModeKatakana 5 Full-width	Katakana

mode
vbIMEModeKatakanaHalf 6 Half-width	Katakana

mode
vbIMEModeAlphaFull 7 Full-width	Alphanumeric

mode
vbIMEModeAlpha 8 Half-width	Alphanumeric

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

mode

The	constant	values	for	the	Korean	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME(default)
vbIMEModeAlphaFull 7 Full-width	Alphanumeric

mode
vbIMEModeAlpha 8 Half-width	Alphanumeric

mode
vbIMEModeHangulFull 9 Full-width	Hangul	mode
vbIMEModeHangul 10 Half-width	Hangul	mode

The	constant	values	for	the	Chinese	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME

(default)
vbIMEModeOn 1 IME	on
vbIMEModeOff 2 IME	off

Keycode	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbKeyLButton 0x1 Left	mouse	button
vbKeyRButton 0x2 Right	mouse	button
vbKeyCancel 0x3 CANCEL	key
vbKeyMButton 0x4 Middle	mouse	button
vbKeyBack 0x8 BACKSPACE	key
vbKeyTab 0x9 TAB	key
vbKeyClear 0xC CLEAR	key
vbKeyReturn 0xD ENTER	key
vbKeyShift 0x10 SHIFT	key
vbKeyControl 0x11 CTRL	key
vbKeyMenu 0x12 MENU	key
vbKeyPause 0x13 PAUSE	key
vbKeyCapital 0x14 CAPS	LOCK	key
vbKeyEscape 0x1B ESC	key
vbKeySpace 0x20 SPACEBAR	key

JavaScript:hhobj_3.Click()

vbKeyPageUp 0x21 PAGE	UP	key
vbKeyPageDown 0x22 PAGE	DOWN	key
vbKeyEnd 0x23 END	key
vbKeyHome 0x24 HOME	key
vbKeyLeft 0x25 LEFT	ARROW	key
vbKeyUp 0x26 UP	ARROW	key
vbKeyRight 0x27 RIGHT	ARROW	key
vbKeyDown 0x28 DOWN	ARROW	key
vbKeySelect 0x29 SELECT	key
vbKeyPrint 0x2A PRINT	SCREEN	key
vbKeyExecute 0x2B EXECUTE	key
vbKeySnapshot 0x2C SNAPSHOT	key
vbKeyInsert 0x2D INSERT	key
vbKeyDelete 0x2E DELETE	key
vbKeyHelp 0x2F HELP	key
vbKeyNumlock 0x90 NUM	LOCK	key

The	A	key	through	the	Z	key	are	the	same	as	the	ASCII	equivalents	A	–	Z:

Constant Value Description
vbKeyA 65 A	key
vbKeyB 66 B	key
vbKeyC 67 C	key
vbKeyD 68 D	key
vbKeyE 69 E	key
vbKeyF 70 F	key
vbKeyG 71 G	key
vbKeyH 72 H	key
vbKeyI 73 I	key
vbKeyJ 74 J	key
vbKeyK 75 K	key
vbKeyL 76 L	key

vbKeyM 77 M	key
vbKeyN 78 N	key
vbKeyO 79 O	key
vbKeyP 80 P	key
vbKeyQ 81 Q	key
vbKeyR 82 R	key
vbKeyS 83 S	key
vbKeyT 84 T	key
vbKeyU 85 U	key
vbKeyV 86 V	key
vbKeyW 87 W	key
vbKeyX 88 X	key
vbKeyY 89 Y	key
vbKeyZ 90 Z	key

The	0	key	through	9	key	are	the	same	as	their	ASCII	equivalents	0	–	9:

Constant Value Description
vbKey0 48 0	key
vbKey1 49 1	key
vbKey2 50 2	key
vbKey3 51 3	key
vbKey4 52 4	key
vbKey5 53 5	key
vbKey6 54 6	key
vbKey7 55 7	key
vbKey8 56 8	key
vbKey9 57 9	key

The	following	constants	represent	keys	on	the	numeric	keypad:

Constant Value Description
vbKeyNumpad0 0x60 0	key
vbKeyNumpad1 0x61 1	key
vbKeyNumpad2 0x62 2	key
vbKeyNumpad3 0x63 3	key
vbKeyNumpad4 0x64 4	key
vbKeyNumpad5 0x65 5	key
vbKeyNumpad6 0x66 6	key
vbKeyNumpad7 0x67 7	key
vbKeyNumpad8 0x68 8	key
vbKeyNumpad9 0x69 9	key
vbKeyMultiply 0x6A MULTIPLICATION

SIGN	(*)	key
vbKeyAdd 0x6B PLUS	SIGN	(+)	key
vbKeySeparator 0x6C ENTER	key
vbKeySubtract 0x6D MINUS	SIGN	(–)	key
vbKeyDecimal 0x6E DECIMAL	POINT	(.)	key
vbKeyDivide 0x6F DIVISION	SIGN	(/)	key

The	following	constants	represent	function	keys:

Constant Value Description
vbKeyF1 0x70 F1	key
vbKeyF2 0x71 F2	key
vbKeyF3 0x72 F3	key
vbKeyF4 0x73 F4	key
vbKeyF5 0x74 F5	key
vbKeyF6 0x75 F6	key
vbKeyF7 0x76 F7	key
vbKeyF8 0x77 F8	key
vbKeyF9 0x78 F9	key

vbKeyF10 0x79 F10	key
vbKeyF11 0x7A F11	key
vbKeyF12 0x7B F12	key
vbKeyF13 0x7C F13	key
vbKeyF14 0x7D F14	key
vbKeyF15 0x7E F15	key
vbKeyF16 0x7F F16	key

	

Miscellaneous	Constants

				

The	following	constants	are	defined	in	the	Visual	Basic	for	Applications	type
library	and	can	be	used	anywhere	in	your	code	in	place	of	the	actual	values:

Constant Equivalent Description
vbCrLf Chr(13)	+	Chr(10) Carriage	return–linefeed

combination
vbCr Chr(13) Carriage	return	character
vbLf Chr(10) Linefeed	character
vbNewLine Chr(13)	+	Chr(10)	or,	on

the	Macintosh,	Chr(13)
Platform-specific	new	line
character;	whichever	is
appropriate	for	current
platform

vbNullChar Chr(0) Character	having	value	0
vbNullString String	having	value	0 Not	the	same	as	a	zero-length

string	("");	used	for	calling
external	procedures

vbObjectError -2147221504 User-defined	error	numbers
should	be	greater	than	this
value.	For	example:
Err.Raise	Number	=

vbObjectError	+	1000

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

vbTab Chr(9) Tab	character
vbBack Chr(8) Backspace	character
vbFormFeed Chr(12) Not	useful	in	Microsoft

Windows	or	on	the	Macintosh
vbVerticalTab Chr(11) Not	useful	in	Microsoft

Windows	or	on	the	Macintosh

MsgBox	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

MsgBox	Arguments

Constant Value Description
vbOKOnly 0 OK	button	only	(default)
vbOKCancel 1 OK	and	Cancel	buttons
vbAbortRetryIgnore 2 Abort,	Retry,	and	Ignore	buttons
vbYesNoCancel 3 Yes,	No,	and	Cancel	buttons
vbYesNo 4 Yes	and	No	buttons
vbRetryCancel 5 Retry	and	Cancel	buttons
vbCritical 16 Critical	message
vbQuestion 32 Warning	query
vbExclamation 48 Warning	message
vbInformation 64 Information	message
vbDefaultButton1 0 First	button	is	default	(default)
vbDefaultButton2 256 Second	button	is	default
vbDefaultButton3 512 Third	button	is	default
vbDefaultButton4 768 Fourth	button	is	default

JavaScript:hhobj_3.Click()

vbApplicationModal 0 Application	modal	message	box
(default)

vbSystemModal 4096 System	modal	message	box
vbMsgBoxHelpButton 16384 Adds	Help	button	to	the	message

box
VbMsgBoxSetForeground 65536 Specifies	the	message	box	window

as	the	foreground	window
vbMsgBoxRight 524288 Text	is	right	aligned
vbMsgBoxRtlReading 1048576 Specifies	text	should	appear	as

right-to-left	reading	on	Hebrew	and
Arabic	systems

MsgBox	Return	Values

Constant Value Description
vbOK 1 OK	button	pressed
vbCancel 2 Cancel	button	pressed
vbAbort 3 Abort	button	pressed
vbRetry 4 Retry	button	pressed
vbIgnore 5 Ignore	button	pressed
vbYes 6 Yes	button	pressed
vbNo 7 No	button	pressed

QueryClose	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbFormControlMenu 0 The	user	chose	the	Close	command

from	the	Control	menu	on	the	form.
vbFormCode 1 The	Unload	statement	is	invoked	from

code.
vbAppWindows 2 The	current	Microsoft	Windows

operating	environment	session	is
ending.

vbAppTaskManager 3 The	Windows	Task	Manager	is	closing
the	application.

JavaScript:hhobj_3.Click()

Shell	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbHide 0 Window	is	hidden	and	focus	is	passed

to	the	hidden	window.
vbNormalFocus 1 Window	has	focus	and	is	restored	to

its	original	size	and	position.
vbMinimizedFocus 2 Window	is	displayed	as	an	icon	with

focus.
vbMaximizedFocus 3 Window	is	maximized	with	focus.
vbNormalNoFocus 4 Window	is	restored	to	its	most	recent

size	and	position.	The	currently	active
window	remains	active.

vbMinimizedNoFocus 6 Window	is	displayed	as	an	icon.	The
currently	active	window	remains
active.

On	the	Macintosh,	vbNormalFocus,	vbMinimizedFocus,	and
vbMaximizedFocus	all	place	the	application	in	the	foreground;	vbHide,
vbNoFocus,	vbMinimizedFocus	all	place	the	application	in	the	background.

JavaScript:hhobj_3.Click()

SpecialFolder	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
WindowsFolder 0 The	Windows	folder	contains	files	installed	by

the	Windows	operating	system.
SystemFolder 1 The	System	folder	contains	libraries,	fonts,	and

device	drivers.
TemporaryFolder 2 The	Temp	folder	is	used	to	store	temporary	files.

Its	path	is	found	in	the	TMP	environment
variable.

JavaScript:hhobj_3.Click()

	 	

StrConv	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbUpperCase 1 Converts	the	string	to	uppercase	characters.
vbLowerCase 2 Converts	the	string	to	lowercase	characters.
vbProperCase 3 Converts	the	first	letter	of	every	word	in	string

to	uppercase.
vbWide 4 Converts	narrow	(single-byte)	characters	in

string	to	wide	(double-byte)	characters.	Applies
to	Far	East	locales.

vbNarrow 8 Converts	wide	(double-byte)	characters	in
string	to	narrow	(single-byte)	characters.
Applies	to	Far	East	locales.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

vbKatakana 16 Converts	Hiragana	characters	in	string	to
Katakana	characters.	Applies	to	Japan	only.

vbHiragana 32 Converts	Katakana	characters	in	string	to
Hiragana	characters.	Applies	to	Japan	only.

vbUnicode 64 Converts	the	string	to	Unicode	using	the
default	code	page	of	the	system.	(Not	available
on	the	Macintosh.)

vbFromUnicode 128 Converts	the	string	from	Unicode	to	the	default
code	page	of	the	system.	(Not	available	on	the
Macintosh.)

JavaScript:hhobj_5.Click()

System	Color	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbScrollBars 0x80000000 Scroll	bar	color
vbDesktop 0x80000001 Desktop	color
vbActiveTitleBar 0x80000002 Color	of	the	title	bar	for

the	active	window
vbInactiveTitleBar 0x80000003 Color	of	the	title	bar	for

the	inactive	window
vbMenuBar 0x80000004 Menu	background	color
vbWindowBackground 0x80000005 Window	background	color
vbWindowFrame 0x80000006 Window	frame	color
vbMenuText 0x80000007 Color	of	text	on	menus
vbWindowText 0x80000008 Color	of	text	in	windows
vbTitleBarText 0x80000009 Color	of	text	in	caption,

size	box,	and	scroll	arrow
vbActiveBorder 0x8000000A Border	color	of	active

window
vbInactiveBorder 0x8000000B Border	color	of	inactive

JavaScript:hhobj_3.Click()

window
vbApplicationWorkspace 0x8000000C Background	color	of

multiple-document
interface	(MDI)
applications

vbHighlight 0x8000000D Background	color	of	items
selected	in	a	control

vbHighlightText 0x8000000E Text	color	of	items
selected	in	a	control

vbButtonFace 0x8000000F Color	of	shading	on	the
face	of	command	buttons

vbButtonShadow 0x80000010 Color	of	shading	on	the
edge	of	command	buttons

vbGrayText 0x80000011 Grayed	(disabled)	text
vbButtonText 0x80000012 Text	color	on	push	buttons
vbInactiveCaptionText 0x80000013 Color	of	text	in	an

inactive	caption
vb3DHighlight 0x80000014 Highlight	color	for	3-D

display	elements
vb3DDKShadow 0x80000015 Darkest	shadow	color	for

3-D	display	elements
vb3DLight 0x80000016 Second	lightest	3-D	color

after	vb3DHighlight
vbInfoText 0x80000017 Color	of	text	in	ToolTips
vbInfoBackground 0x80000018 Background	color	of

ToolTips

Tristate	Constants

				

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.

Constant Value Description
vbTrue –1 True
vbFalse 	0 False
vbUseDefault –2 Use	default	setting

JavaScript:hhobj_3.Click()

	 	

	 	

	 	

	 	

	

VarType	Constants

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Description
vbEmpty 0 Uninitialized	(default)
vbNull 1 Contains	no	valid	data
vbInteger 2 Integer
vbLong 3 Long	integer
vbSingle 4 Single-precision	floating-point	number
vbDouble 5 Double-precision	floating-point	number
vbCurrency 6 Currency
vbDate 7 Date
vbString 8 String
vbObject 9 Object
vbError 10 Error
vbBoolean 11 Boolean
vbVariant 12 Variant	(used	only	for	arrays	of	variants)
vbDataObject 13 Data	access	object
vbDecimal 14 Decimal
vbByte 17 Byte
vbUserDefinedType 36 Variants	that	contain	user-defined	types
vbArray 8192 Array

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

Visual	Basic	Constants

				

Visual	Basic	for	Applications	defines	constants	to	simplify	your	programming.
The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Calendar	Constants

CallType	Constants

Color	Constants

Comparison	Constants

Compiler	Constants

Date	Constants

Date	Format	Constants

Dir,	GetAttr,	and	SetAttr	Constants

DriveType	Constants

File	Attribute	Constants

JavaScript:hhobj_3.Click()

File	Input/Output	Constants

Form	Constants

IMEStatus	Constants

Keycode	Constants

Miscellaneous	Constants

MsgBox	Constants

QueryClose	Constants

Shell	Constants

SpecialFolder	Constants

StrConv	Constants

System	Color	Constants

Tristate	Constants

VarType	Constants

Visual	Basic	Constants

	 	

	
Boolean	Data	Type

				 				

Boolean	variables	are	stored	as	16-bit	(2-byte)	numbers,	but	they	can	only	be
True	or	False.	Boolean	variables	display	as	either	True	or	False	(when	Print	is
used)	or	#TRUE#	or	#FALSE#	(when	Write	#	is	used).	Use	the	keywords	True	and
False	to	assign	one	of	the	two	states	to	Boolean	variables.

When	other	numeric	types	are	converted	to	Boolean	values,	0	becomes	False
and	all	other	values	become	True.	When	Boolean	values	are	converted	to	other
data	types,	False	becomes	0	and	True	becomes	-1.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	
Byte	Data	Type

				 				

Byte	variables	are	stored	as	single,	unsigned,	8-bit	(1-byte)	numbers	ranging	in
value	from	0–255.

The	Byte	data	type	is	useful	for	containing	binary	data.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

Currency	Data	Type

				 				

Currency	variables	are	stored	as	64-bit	(8-byte)	numbers	in	an	integer	format,
scaled	by	10,000	to	give	a	fixed-point	number	with	15	digits	to	the	left	of	the
decimal	point	and	4	digits	to	the	right.	This	representation	provides	a	range	of
-922,337,203,685,477.5808	to	922,337,203,685,477.5807.	The	type-declaration
character	for	Currency	is	the	at	sign	(@).

The	Currency	data	type	is	useful	for	calculations	involving	money	and	for
fixed-point	calculations	in	which	accuracy	is	particularly	important.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

Date	Data	Type

				 				

Date	variables	are	stored	as	IEEE	64-bit	(8-byte)	floating-point	numbers	that
represent	dates	ranging	from	1	January	100	to	31	December	9999	and	times
from	0:00:00	to	23:59:59.	Any	recognizable	literal	date	values	can	be	assigned
to	Date	variables.	Date	literals	must	be	enclosed	within	number	signs	(#),	for
example,	#January	1,	1993#	or	#1	Jan	93#.

Date	variables	display	dates	according	to	the	short	date	format	recognized	by
your	computer.	Times	display	according	to	the	time	format	(either	12-hour	or	24-
hour)	recognized	by	your	computer.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

When	other	numeric	types	are	converted	to	Date,	values	to	the	left	of	the
decimal	represent	date	information	while	values	to	the	right	of	the	decimal
represent	time.	Midnight	is	0	and	midday	is	0.5.	Negative	whole	numbers
represent	dates	before	30	December	1899.

JavaScript:hhobj_6.Click()

	
Decimal	Data	Type

				 				

Decimal	variables	are	stored	as	96-bit	(12-byte)	signed	integers	scaled	by	a
variable	power	of	10.	The	power	of	10	scaling	factor	specifies	the	number	of
digits	to	the	right	of	the	decimal	point,	and	ranges	from	0	to	28.	With	a	scale	of	0
(no	decimal	places),	the	largest	possible	value	is
+/-79,228,162,514,264,337,593,543,950,335.	With	a	28	decimal	places,	the
largest	value	is	+/-7.9228162514264337593543950335	and	the	smallest,	non-
zero	value	is	+/-0.0000000000000000000000000001.

Note			At	this	time	the	Decimal	data	type	can	only	be	used	within	a	Variant,	that
is,	you	cannot	declare	a	variable	to	be	of	type	Decimal.	You	can,	however,	create
a	Variant	whose	subtype	is	Decimal	using	the	CDec	function.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	
Double	Data	Type

				 				

Double	(double-precision	floating-point)	variables	are	stored	as	IEEE	64-bit	(8-
byte)	floating-point	numbers	ranging	in	value	from	-1.79769313486231E308	to
-4.94065645841247E-324	for	negative	values	and	from	4.94065645841247E-
324	to	1.79769313486232E308	for	positive	values.	The	type-declaration
character	for	Double	is	the	number	sign	(#).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

Integer	Data	Type

				 				

Integer	variables	are	stored	as	16-bit	(2-byte)	numbers	ranging	in	value	from
-32,768	to	32,767.	The	type-declaration	character	for	Integer	is	the	percent	sign
(%).

You	can	also	use	Integer	variables	to	represent	enumerated	values.	An
enumerated	value	can	contain	a	finite	set	of	unique	whole	numbers,	each	of
which	has	special	meaning	in	the	context	in	which	it	is	used.	Enumerated	values
provide	a	convenient	way	to	select	among	a	known	number	of	choices,	for
example,	black	=	0,	white	=	1,	and	so	on.	It	is	good	programming	practice	to

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

define	constants	using	the	Const	statement	for	each	enumerated	value.

JavaScript:hhobj_6.Click()

	
Long	Data	Type

				 				

Long	(long	integer)	variables	are	stored	as	signed	32-bit	(4-byte)	numbers
ranging	in	value	from	-2,147,483,648	to	2,147,483,647.	The	type-declaration
character	for	Long	is	the	ampersand	(&).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

	
Object	Data	Type

				 				

Object	variables	are	stored	as	32-bit	(4-byte)	addresses	that	refer	to	objects.
Using	the	Set	statement,	a	variable	declared	as	an	Object	can	have	any	object
reference	assigned	to	it.

Note			Although	a	variable	declared	with	Object	type	is	flexible	enough	to
contain	a	reference	to	any	object,	binding	to	the	object	referenced	by	that
variable	is	always	late	(run-time	binding).	To	force	early	binding	(compile-time
binding),	assign	the	object	reference	to	a	variable	declared	with	a	specific	class
name.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	
Single	Data	Type

				 				

Single	(single-precision	floating-point)	variables	are	stored	as	IEEE	32-bit	(4-
byte)	floating-point	numbers,	ranging	in	value	from	-3.402823E38	to
-1.401298E-45	for	negative	values	and	from	1.401298E-45	to	3.402823E38	for
positive	values.	The	type-declaration	character	for	Single	is	the	exclamation
point	(!).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

	 	

String	Data	Type

				 				

There	are	two	kinds	of	strings:	variable-length	and	fixed-length	strings.

A	variable-length	string	can	contain	up	to	approximately	2	billion	(2^31)

characters.

A	fixed-length	string	can	contain	1	to	approximately	64K	(2^16)	characters.
Note			A	Public	fixed-length	string	can't	be	used	in	a	class	module.

The	codes	for	String	characters	range	from	0–255.	The	first	128	characters	(0–
127)	of	the	character	set	correspond	to	the	letters	and	symbols	on	a	standard	U.S.
keyboard.	These	first	128	characters	are	the	same	as	those	defined	by	the	ASCII
character	set.	The	second	128	characters	(128–255)	represent	special	characters,
such	as	letters	in	international	alphabets,	accents,	currency	symbols,	and
fractions.	The	type-declaration	character	for	String	is	the	dollar	sign	($).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	
User-Defined	Data	Type

				 				

Any	data	type	you	define	using	the	Type	statement.	User-defined	data	types	can
contain	one	or	more	elements	of	a	data	type,	an	array,	or	a	previously	defined
user-defined	type.	For	example:

Type	MyType

				MyName	As	String				'	String	variable	stores	a	name.

				MyBirthDate	As	Date				'	Date	variable	stores	a	birthdate.

				MySex	As	Integer				'	Integer	variable	stores	sex	(0	for	

End	Type																'	female,	1	for	male).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Variant	Data	Type

				 				

The	Variant	data	type	is	the	data	type	for	all	variables	that	are	not	explicitly
declared	as	some	other	type	(using	statements	such	as	Dim,	Private,	Public,	or
Static).	The	Variant	data	type	has	no	type-declaration	character.

A	Variant	is	a	special	data	type	that	can	contain	any	kind	of	data	except	fixed-
length	String	data.	(Variant	types	now	support	user-defined	types.)	A	Variant
can	also	contain	the	special	values	Empty,	Error,	Nothing,	and	Null.	You	can
determine	how	the	data	in	a	Variant	is	treated	using	the	VarType	function	or
TypeName	function.

Numeric	data	can	be	any	integer	or	real	number	value	ranging	from
-1.797693134862315E308	to	-4.94066E-324	for	negative	values	and	from
4.94066E-324	to	1.797693134862315E308	for	positive	values.	Generally,
numeric	Variant	data	is	maintained	in	its	original	data	type	within	the	Variant.
For	example,	if	you	assign	an	Integer	to	a	Variant,	subsequent	operations	treat
the	Variant	as	an	Integer.	However,	if	an	arithmetic	operation	is	performed	on	a
Variant	containing	a	Byte,	an	Integer,	a	Long,	or	a	Single,	and	the	result
exceeds	the	normal	range	for	the	original	data	type,	the	result	is	promoted	within
the	Variant	to	the	next	larger	data	type.	A	Byte	is	promoted	to	an	Integer,	an
Integer	is	promoted	to	a	Long,	and	a	Long	and	a	Single	are	promoted	to	a
Double.	An	error	occurs	when	Variant	variables	containing	Currency,	Decimal,
and	Double	values	exceed	their	respective	ranges.

You	can	use	the	Variant	data	type	in	place	of	any	data	type	to	work	with	data	in

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

a	more	flexible	way.	If	the	contents	of	a	Variant	variable	are	digits,	they	may	be
either	the	string	representation	of	the	digits	or	their	actual	value,	depending	on
the	context.	For	example:

Dim	MyVar	As	Variant

MyVar	=	98052

In	the	preceding	example,	MyVar	contains	a	numeric	representation—the	actual
value	98052.	Arithmetic	operators	work	as	expected	on	Variant	variables	that
contain	numeric	values	or	string	data	that	can	be	interpreted	as	numbers.	If	you
use	the	+	operator	to	add	MyVar	to	another	Variant	containing	a	number	or	to	a
variable	of	a	numeric	type,	the	result	is	an	arithmetic	sum.

The	value	Empty	denotes	a	Variant	variable	that	hasn't	been	initialized
(assigned	an	initial	value).	A	Variant	containing	Empty	is	0	if	it	is	used	in	a
numeric	context	and	a	zero-length	string	("")	if	it	is	used	in	a	string	context.

Don't	confuse	Empty	with	Null.	Null	indicates	that	the	Variant	variable
intentionally	contains	no	valid	data.

In	a	Variant,	Error	is	a	special	value	used	to	indicate	that	an	error	condition	has
occurred	in	a	procedure.	However,	unlike	for	other	kinds	of	errors,	normal
application-level	error	handling	does	not	occur.	This	allows	you,	or	the
application	itself,	to	take	some	alternative	action	based	on	the	error	value.	Error
values	are	created	by	converting	real	numbers	to	error	values	using	the	CVErr
function.

JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()

	 	

	 	

	 	

	

#Const	Directive

				 				

Used	to	define	conditional	compiler	constants	for	Visual	Basic.

Syntax

#Const	constname	=	expression

The	#Const	compiler	directive	syntax	has	these	parts:

Part Description
constname Required;	Variant	(String).	Name	of	the	constant;	follows

standard	variable	naming	conventions.
expression Required.	Literal,	other	conditional	compiler	constant,	or	any

combination	that	includes	any	or	all	arithmetic	or	logical
operators	except	Is.

Remarks

Conditional	compiler	constants	are	always	Private	to	the	module	in	which	they
appear.	It	is	not	possible	to	create	Public	compiler	constants	using	the	#Const
directive.	Public	compiler	constants	can	only	be	created	in	the	user	interface.

Only	conditional	compiler	constants	and	literals	can	be	used	in	expression.	Using
a	standard	constant	defined	with	Const,	or	using	a	constant	that	is	undefined,
causes	an	error	to	occur.	Conversely,	constants	defined	using	the	#Const
keyword	can	only	be	used	for	conditional	compilation.

Conditional	compiler	constants	are	always	evaluated	at	the	module	level,
regardless	of	their	placement	in	code.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	 	

	

#If...Then...#Else	Directive

				 				

Conditionally	compiles	selected	blocks	of	Visual	Basic	code.

Syntax

#If	expression	Then

statements

[#ElseIf	expression-n	Then

[elseifstatements]]

[#Else

[elsestatements]]

#End	If

The	#If...Then...#Else	directive	syntax	has	these	parts:

Part Description
expression Required.	Any	expression,	consisting	exclusively	of	one	or

more	conditional	compiler	constants,	literals,	and	operators,
that	evaluates	to	True	or	False.

statements Required.	Visual	Basic	program	lines	or	compiler	directives
that	are	evaluated	if	the	associated	expression	is	True.

expression-n Optional.	Any	expression,	consisting	exclusively	of	one	or
more	conditional	compiler	constants,	literals,	and	operators,
that	evaluates	to	True	or	False.

elseifstatements Optional.	One	or	more	program	lines	or	compiler	directives
that	are	evaluated	if	expression-n	is	True.

elsestatements Optional.	One	or	more	program	lines	or	compiler	directives
that	are	evaluated	if	no	previous	expression	or	expression-n
is	True.

Remarks

The	behavior	of	the	#If...Then...#Else	directive	is	the	same	as	the
If...Then...Else	statement,	except	that	there	is	no	single-line	form	of	the	#If,
#Else,	#ElseIf,	and	#End	If	directives;	that	is,	no	other	code	can	appear	on	the
same	line	as	any	of	the	directives.	Conditional	compilation	is	typically	used	to
compile	the	same	program	for	different	platforms.	It	is	also	used	to	prevent
debugging	code	from	appearing	in	an	executable	file.	Code	excluded	during
conditional	compilation	is	completely	omitted	from	the	final	executable	file,	so	it
has	no	size	or	performance	effect.

Regardless	of	the	outcome	of	any	evaluation,	all	expressions	are	evaluated.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Therefore,	all	constants	used	in	expressions	must	be	defined	—	any	undefined
constant	evaluates	as	Empty.

Note			The	Option	Compare	statement	does	not	affect	expressions	in	#If	and
#ElseIf	statements.	Expressions	in	a	conditional-compiler	directive	are	always
evaluated	with	Option	Compare	Text.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	
Activate,	Deactivate	Events

				 				

				

The	Activate	event	occurs	when	an	object	becomes	the	active	window.	The
Deactivate	event	occurs	when	an	object	is	no	longer	the	active	window.

Syntax

Private	Sub	object_Activate()

Private	Sub	object_Deactivate()

The	object	placeholder	represents	an	object	expression	that	evaluates	to	an
object	in	the	Applies	To	list.

Remarks

An	object	can	become	active	by	using	the	Show	method	in	code.

JavaScript:hhobj_5.Click()

The	Activate	event	can	occur	only	when	an	object	is	visible.	A	UserForm
loaded	with	Load	isn't	visible	unless	you	use	the	Show	method.

The	Activate	and	Deactivate	events	occur	only	when	you	move	the	focus	within
an	application.	Moving	the	focus	to	or	from	an	object	in	another	application
doesn't	trigger	either	event.

The	Deactivate	event	doesn't	occur	when	unloading	an	object.

JavaScript:hhobj_6.Click()

	
Initialize	Event

				 				

				

Occurs	after	an	object	is	loaded,	but	before	it's	shown.

Syntax

Private	Sub	object_Initialize()

The	object	placeholder	represents	an	object	expression	that	evaluates	to	an
object	in	the	Applies	To	list.

Remarks

The	Initialize	event	is	typically	used	to	prepare	an	application	or	UserForm	for
use.	Variables	are	assigned	initial	values,	and	controls	may	be	moved	or	resized
to	accommodate	initialization	data.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	
Resize	Event

				 				

				

Occurs	when	a	user	form	is	resized.

Syntax

Private	Sub	UserForm_Resize()

Remarks

Use	a	Resize	event	procedure	to	move	or	resize	controls	when	the	parent

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

UserForm	is	resized.	You	can	also	use	this	event	procedure	to	recalculate
variables	or	properties.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	
Terminate	Event

				 				

				

Occurs	when	all	references	to	an	instance	of	an	object	are	removed	from
memory	by	setting	all	variables	that	refer	to	the	object	to	Nothing	or	when	the
last	reference	to	the	object	goes	out	of	scope.

Syntax

Private	Sub	object_Terminate()

The	object	placeholder	represents	an	object	expression	that	evaluates	to	an

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

object	in	the	Applies	To	list.

Remarks

The	Terminate	event	occurs	after	the	object	is	unloaded.	The	Terminate	event
isn't	triggered	if	the	instances	of	the	UserForm	or	class	are	removed	from
memory	because	the	application	terminated	abnormally.	For	example,	if	your
application	invokes	the	End	statement	before	removing	all	existing	instances	of
the	class	or	UserForm	from	memory,	the	Terminate	event	isn't	triggered	for	that
class	or	UserForm.

JavaScript:hhobj_8.Click()

	 	

	
Abs	Function

				 				

Returns	a	value	of	the	same	type	that	is	passed	to	it	specifying	the	absolute	value
of	a	number.

Syntax

Abs(number)

The	required	number	argument	can	be	any	valid	numeric	expression.	If	number
contains	Null,	Null	is	returned;	if	it	is	an	uninitialized	variable,	zero	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Remarks

The	absolute	value	of	a	number	is	its	unsigned	magnitude.	For	example,	ABS(-1)
and	ABS(1)	both	return	1.

	 	

	 	

	
Array	Function

				 				

Returns	a	Variant	containing	an	array.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

Array(arglist)

The	required	arglist	argument	is	a	comma-delimited	list	of	values	that	are
assigned	to	the	elements	of	the	array	contained	within	the	Variant.	If	no
arguments	are	specified,	an	array	of	zero	length	is	created.

Remarks

The	notation	used	to	refer	to	an	element	of	an	array	consists	of	the	variable	name
followed	by	parentheses	containing	an	index	number	indicating	the	desired
element.	In	the	following	example,	the	first	statement	creates	a	variable	named	A
as	a	Variant.	The	second	statement	assigns	an	array	to	variable	A.	The	last
statement	assigns	the	value	contained	in	the	second	array	element	to	another
variable.

Dim	A	As	Variant

A	=	Array(10,20,30)

B	=	A(2)

The	lower	bound	of	an	array	created	using	the	Array	function	is	determined	by
the	lower	bound	specified	with	the	Option	Base	statement,	unless	Array	is
qualified	with	the	name	of	the	type	library	(for	example	VBA.Array).	If
qualified	with	the	type-library	name,	Array	is	unaffected	by	Option	Base.

Note			A	Variant	that	is	not	declared	as	an	array	can	still	contain	an	array.	A
Variant	variable	can	contain	an	array	of	any	type,	except	fixed-length	strings
and	user-defined	types.	Although	a	Variant	containing	an	array	is	conceptually
different	from	an	array	whose	elements	are	of	type	Variant,	the	array	elements
are	accessed	in	the	same	way.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	 	

Asc	Function

				 				

Returns	an	Integer	representing	the	character	code	corresponding	to	the	first
letter	in	a	string.

Syntax

Asc(string)

The	required	string	argument	is	any	valid	string	expression.	If	the	string	contains
no	characters,	a	run-time	error	occurs.

Remarks

The	range	for	returns	is	0	–	255	on	non-DBCS	systems,	but	–32768	–	32767	on
DBCS	systems.

Note			The	AscB	function	is	used	with	byte	data	contained	in	a	string.	Instead	of
returning	the	character	code	for	the	first	character,	AscB	returns	the	first	byte.
The	AscW	function	returns	the	Unicode	character	code	except	on	platforms
where	Unicode	is	not	supported,	in	which	case,	the	behavior	is	identical	to	the
Asc	function.

Note			Visual	Basic	for	the	Macintosh	does	not	support	Unicode	strings.
Therefore,	AscW(n)	cannot	return	all	Unicode	characters	for	n	values	in	the
range	of	128	–	65,535,	as	it	does	in	the	Windows	environment.	Instead,	AscW(n)
attempts	a	"best	guess"	for	Unicode	values	n	greater	than	127.	Therefore,	you
should	not	use	AscW	in	the	Macintosh	environment.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	 	

	
Atn	Function

				 				

Returns	a	Double	specifying	the	arctangent	of	a	number.

Syntax

Atn(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

The	Atn	function	takes	the	ratio	of	two	sides	of	a	right	triangle	(number)	and
returns	the	corresponding	angle	in	radians.	The	ratio	is	the	length	of	the	side
opposite	the	angle	divided	by	the	length	of	the	side	adjacent	to	the	angle.

The	range	of	the	result	is	-pi/2	to	pi/2	radians.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to
degrees,	multiply	radians	by	180/pi.

Note			Atn	is	the	inverse	trigonometric	function	of	Tan,	which	takes	an	angle	as
its	argument	and	returns	the	ratio	of	two	sides	of	a	right	triangle.	Do	not	confuse
Atn	with	the	cotangent,	which	is	the	simple	inverse	of	a	tangent	(1/tangent).

JavaScript:hhobj_7.Click()

	 	

	 	

Choose	Function

				 				

Selects	and	returns	a	value	from	a	list	of	arguments.

Syntax

JavaScript:hhobj_4.Click()

Choose(index,	choice-1[,	choice-2,	...	[,	choice-n]])

The	Choose	function	syntax	has	these	parts:

Part Description
index Required.	Numeric	expression	or	field	that	results	in	a	value

between	1	and	the	number	of	available	choices.
choice Required.	Variant	expression	containing	one	of	the	possible

choices.

Remarks

Choose	returns	a	value	from	the	list	of	choices	based	on	the	value	of	index.	If
index	is	1,	Choose	returns	the	first	choice	in	the	list;	if	index	is	2,	it	returns	the
second	choice,	and	so	on.

You	can	use	Choose	to	look	up	a	value	in	a	list	of	possibilities.	For	example,	if
index	evaluates	to	3	and	choice-1	=	"one",	choice-2	=	"two",	and	choice-3	=
"three",	Choose	returns	"three".	This	capability	is	particularly	useful	if	index
represents	the	value	in	an	option	group.

Choose	evaluates	every	choice	in	the	list,	even	though	it	returns	only	one.	For
this	reason,	you	should	watch	for	undesirable	side	effects.	For	example,	if	you
use	the	MsgBox	function	as	part	of	an	expression	in	all	the	choices,	a	message
box	will	be	displayed	for	each	choice	as	it	is	evaluated,	even	though	Choose
returns	the	value	of	only	one	of	them.

The	Choose	function	returns	a	Null	if	index	is	less	than	1	or	greater	than	the
number	of	choices	listed.

If	index	is	not	a	whole	number,	it	is	rounded	to	the	nearest	whole	number	before
being	evaluated.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	 	

Chr	Function

				 				

Returns	a	String	containing	the	character	associated	with	the	specified	character
code.

Syntax

Chr(charcode)

The	required	charcode	argument	is	a	Long	that	identifies	a	character.

Remarks

Numbers	from	0	–	31	are	the	same	as	standard,	nonprintable	ASCII	codes.	For
example,	Chr(10)	returns	a	linefeed	character.	The	normal	range	for	charcode	is
0	–	255.	However,	on	DBCS	systems,	the	actual	range	for	charcode	is	-32768	to
65535.

Note			The	ChrB	function	is	used	with	byte	data	contained	in	a	String.	Instead
of	returning	a	character,	which	may	be	one	or	two	bytes,	ChrB	always	returns	a
single	byte.	The	ChrW	function	returns	a	String	containing	the	Unicode
character	except	on	platforms	where	Unicode	is	not	supported,	in	which	case,	the
behavior	is	identical	to	the	Chr	function.

Note			Visual	Basic	for	the	Macintosh	does	not	support	Unicode	strings.
Therefore,	ChrW(n)	cannot	return	all	Unicode	characters	for	n	values	in	the
range	of	128	–	65,535,	as	it	does	in	the	Windows	environment.	Instead,
ChrW(n)	attempts	a	"best	guess"	for	Unicode	values	n	greater	than	127.
Therefore,	you	should	not	use	ChrW	in	the	Macintosh	environment.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	
Command	Function

				 				

Returns	the	argument	portion	of	the	command	line	used	to	launch	Microsoft
Visual	Basic	or	an	executable	program	developed	with	Visual	Basic.	The	Visual
Basic	Command	function	is	not	available	in	Microsoft	Office	applications.

Syntax

Command

Remarks

When	Visual	Basic	is	launched	from	the	command	line,	any	portion	of	the
command	line	that	follows	/cmd	is	passed	to	the	program	as	the	command-line
argument.	In	the	following	example,	cmdlineargs	represents	the	argument
information	returned	by	the	Command	function.

VB	/cmd	cmdlineargs

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

For	applications	developed	with	Visual	Basic	and	compiled	to	an	.exe	file,
Command	returns	any	arguments	that	appear	after	the	name	of	the	application
on	the	command	line.	For	example:

MyApp	cmdlineargs

To	find	how	command	line	arguments	can	be	changed	in	the	user	interface	of	the
application	you're	using,	search	Help	for	"command	line	arguments."

	 	

	
Cos	Function

				 				

Returns	a	Double	specifying	the	cosine	of	an	angle.

Syntax

Cos(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression	that
expresses	an	angle	in	radians.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

The	Cos	function	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right
triangle.	The	ratio	is	the	length	of	the	side	adjacent	to	the	angle	divided	by	the
length	of	the	hypotenuse.

The	result	lies	in	the	range	-1	to	1.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to
degrees,	multiply	radians	by	180/pi.

JavaScript:hhobj_7.Click()

	 	

	 	

	 	

	

CreateObject	Function

				 				

Creates	and	returns	a	reference	to	an	ActiveX	object.

Syntax

CreateObject(class,[servername])

The	CreateObject	function	syntax	has	these	parts:

Part Description
class Required;	Variant	(String).	The	application	name	and	class	of	the

object	to	create.
servername Optional;	Variant	(String).	The	name	of	the	network	server	where

the	object	will	be	created.	If	servername	is	an	empty	string	(""),
the	local	machine	is	used.

The	class	argument	uses	the	syntax	appname.objecttype	and	has	these	parts:

Part Description
appname Required;	Variant	(String).	The	name	of	the	application	providing

the	object.
objecttype Required;	Variant	(String).	The	type	or	class	of	object	to	create.

Remarks

Every	application	that	supports	Automation	provides	at	least	one	type	of	object.
For	example,	a	word	processing	application	may	provide	an	Application	object,
a	Document	object,	and	a	Toolbar	object.

To	create	an	ActiveX	object,	assign	the	object	returned	by	CreateObject	to	an

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

object	variable:

'	Declare	an	object	variable	to	hold	the	object	

'	reference.	Dim	as	Object	causes	late	binding.	

Dim	ExcelSheet	As	Object

Set	ExcelSheet	=	CreateObject("Excel.Sheet")

This	code	starts	the	application	creating	the	object,	in	this	case,	a	Microsoft
Excel	spreadsheet.	Once	an	object	is	created,	you	reference	it	in	code	using	the
object	variable	you	defined.	In	the	following	example,	you	access	properties	and
methods	of	the	new	object	using	the	object	variable,	ExcelSheet,	and	other
Microsoft	Excel	objects,	including	the	Application	object	and	the	Cells
collection.

'	Make	Excel	visible	through	the	Application	object.

ExcelSheet.Application.Visible	=	True

'	Place	some	text	in	the	first	cell	of	the	sheet.

ExcelSheet.Application.Cells(1,	1).Value	=	"This	is	column	A,	row	1"

'	Save	the	sheet	to	C:\test.xls	directory.

ExcelSheet.SaveAs	"C:\TEST.XLS"

'	Close	Excel	with	the	Quit	method	on	the	Application	object.

ExcelSheet.Application.Quit

'	Release	the	object	variable.

Set	ExcelSheet	=	Nothing

Declaring	an	object	variable	with	the	As	Object	clause	creates	a	variable	that	can
contain	a	reference	to	any	type	of	object.	However,	access	to	the	object	through
that	variable	is	late	bound;	that	is,	the	binding	occurs	when	your	program	is	run.
To	create	an	object	variable	that	results	in	early	binding,	that	is,	binding	when
the	program	is	compiled,	declare	the	object	variable	with	a	specific	class	ID.	For
example,	you	can	declare	and	create	the	following	Microsoft	Excel	references:

Dim	xlApp	As	Excel.Application	

Dim	xlBook	As	Excel.Workbook

Dim	xlSheet	As	Excel.WorkSheet

Set	xlApp	=	CreateObject("Excel.Application")

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Set	xlBook	=	xlApp.Workbooks.Add

Set	xlSheet	=	xlBook.Worksheets(1)

The	reference	through	an	early-bound	variable	can	give	better	performance,	but
can	only	contain	a	reference	to	the	class	specified	in	the	declaration.

You	can	pass	an	object	returned	by	the	CreateObject	function	to	a	function
expecting	an	object	as	an	argument.	For	example,	the	following	code	creates	and
passes	a	reference	to	a	Excel.Application	object:

Call	MySub	(CreateObject("Excel.Application"))

You	can	create	an	object	on	a	remote	networked	computer	by	passing	the	name
of	the	computer	to	the	servername	argument	of	CreateObject.	That	name	is	the
same	as	the	Machine	Name	portion	of	a	share	name:	for	a	share	named
"\\MyServer\Public,"	servername	is	"MyServer."

Note			Refer	to	COM	documentation	(see	Microsoft	Developer	Network)	for
additional	information	on	making	an	application	visible	on	a	remote	networked
computer.	You	may	have	to	add	a	registry	key	for	your	application.

The	following	code	returns	the	version	number	of	an	instance	of	Excel	running
on	a	remote	computer	named	MyServer:

Dim	xlApp	As	Object

Set	xlApp	=	CreateObject("Excel.Application",	"MyServer")

Debug.Print	xlApp.Version

If	the	remote	server	doesn’t	exist	or	is	unavailable,	a	run-time	error	occurs.

Note			Use	CreateObject	when	there	is	no	current	instance	of	the	object.	If	an
instance	of	the	object	is	already	running,	a	new	instance	is	started,	and	an	object
of	the	specified	type	is	created.	To	use	the	current	instance,	or	to	start	the
application	and	have	it	load	a	file,	use	the	GetObject	function.

If	an	object	has	registered	itself	as	a	single-instance	object,	only	one	instance	of
the	object	is	created,	no	matter	how	many	times	CreateObject	is	executed.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	
CurDir	Function

				 				

Returns	a	Variant	(String)	representing	the	current	path.

Syntax

CurDir[(drive)]

The	optional	drive	argument	is	a	string	expression	that	specifies	an	existing
drive.	If	no	drive	is	specified	or	if	drive	is	a	zero-length	string	(""),	CurDir
returns	the	path	for	the	current	drive.	On	the	Macintosh,	CurDir	ignores	any
drive	specified	and	simply	returns	the	path	for	the	current	drive.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

	 	

	
CVErr	Function

				 				

Returns	a	Variant	of	subtype	Error	containing	an	error	number	specified	by	the
user.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

CVErr(errornumber)

The	required	errornumber	argument	is	any	valid	error	number.

Remarks

Use	the	CVErr	function	to	create	user-defined	errors	in	user-created	procedures.
For	example,	if	you	create	a	function	that	accepts	several	arguments	and
normally	returns	a	string,	you	can	have	your	function	evaluate	the	input
arguments	to	ensure	they	are	within	acceptable	range.	If	they	are	not,	it	is	likely
your	function	will	not	return	what	you	expect.	In	this	event,	CVErr	allows	you
to	return	an	error	number	that	tells	you	what	action	to	take.

Note	that	implicit	conversion	of	an	Error	is	not	allowed.	For	example,	you	can't
directly	assign	the	return	value	of	CVErr	to	a	variable	that	is	not	a	Variant.
However,	you	can	perform	an	explicit	conversion	(using	CInt,	CDbl,	and	so	on)
of	the	value	returned	by	CVErr	and	assign	that	to	a	variable	of	the	appropriate
data	type.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Date	Function

				 				

Returns	a	Variant	(Date)	containing	the	current	system	date.

Syntax

Date

Remarks

To	set	the	system	date,	use	the	Date	statement.

Date,	and	if	the	calendar	is	Gregorian,	Date$	behavior	is	unchanged	by	the
Calendar	property	setting.	If	the	calendar	is	Hijri,	Date$	returns	a	10-character
string	of	the	form	mm-dd-yyyy,	where	mm	(01-12),	dd	(01-30)	and	yyyy	(1400-
1523)	are	the	Hijri	month,	day	and	year.	The	equivalent	Gregorian	range	is	Jan
1,	1980	through	Dec	31,	2099.

	 	

	 	

DateAdd	Function

				 				

Returns	a	Variant	(Date)	containing	a	date	to	which	a	specified	time	interval	has
been	added.

Syntax

DateAdd(interval,	number,	date)

The	DateAdd	function	syntax	has	these	named	arguments:

Part Description
interval Required.	String	expression	that	is	the	interval	of	time	you	want

to	add.
number Required.	Numeric	expression	that	is	the	number	of	intervals

you	want	to	add.	It	can	be	positive	(to	get	dates	in	the	future)	or
negative	(to	get	dates	in	the	past).

date Required.	Variant	(Date)	or	literal	representing	date	to	which
the	interval	is	added.

Settings

The	interval	argument	has	these	settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day	of	year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

Remarks

You	can	use	the	DateAdd	function	to	add	or	subtract	a	specified	time	interval

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

from	a	date.	For	example,	you	can	use	DateAdd	to	calculate	a	date	30	days	from
today	or	a	time	45	minutes	from	now.

To	add	days	to	date,	you	can	use	Day	of	Year	("y"),	Day	("d"),	or	Weekday
("w").

The	DateAdd	function	won't	return	an	invalid	date.	The	following	example	adds
one	month	to	January	31:

DateAdd("m",	1,	"31-Jan-95")

In	this	case,	DateAdd	returns	28-Feb-95,	not	31-Feb-95.	If	date	is	31-Jan-96,	it
returns	29-Feb-96	because	1996	is	a	leap	year.

If	the	calculated	date	would	precede	the	year	100	(that	is,	you	subtract	more
years	than	are	in	date),	an	error	occurs.

If	number	isn't	a	Long	value,	it	is	rounded	to	the	nearest	whole	number	before
being	evaluated.

Note			The	format	of	the	return	value	for	DateAdd	is	determined	by	Control
Panel	settings,	not	by	the	format	that	is	passed	in	date	argument.

Note			For	date,	if	the	Calendar	property	setting	is	Gregorian,	the	supplied	date
must	be	Gregorian.	If	the	calendar	is	Hijri,	the	supplied	date	must	be	Hijri.	If
month	values	are	names,	the	name	must	be	consistent	with	the	current	Calendar
property	setting.	To	minimize	the	possibility	of	month	names	conflicting	with
the	current	Calendar	property	setting,	enter	numeric	month	values	(Short	Date
format).

JavaScript:hhobj_8.Click()

	 	

	 	

DateDiff	Function

				 				

Returns	a	Variant	(Long)	specifying	the	number	of	time	intervals	between	two
specified	dates.

Syntax

DateDiff(interval,	date1,	date2[,	firstdayofweek[,	firstweekofyear]])

The	DateDiff	function	syntax	has	these	named	arguments:

Part Description
interval Required.	String	expression	that	is	the	interval	of	time

you	use	to	calculate	the	difference	between	date1	and
date2.

date1,	date2 Required;	Variant	(Date).	Two	dates	you	want	to	use
in	the	calculation.

firstdayofweek Optional.	A	constant	that	specifies	the	first	day	of	the
week.	If	not	specified,	Sunday	is	assumed.

firstweekofyear Optional.	A	constant	that	specifies	the	first	week	of	the
year.	If	not	specified,	the	first	week	is	assumed	to	be
the	week	in	which	January	1	occurs.

Settings

The	interval	argument	has	these	settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day	of	year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

The	firstdayofweek	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	the	NLS	API

setting.
vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Constant Value Description
vbUseSystem 0 Use	the	NLS	API	setting.
vbFirstJan1 1 Start	with	week	in	which

January	1	occurs	(default).
vbFirstFourDays 2 Start	with	the	first	week

that	has	at	least	four	days
in	the	new	year.

vbFirstFullWeek 3 Start	with	first	full	week
of	the	year.

Remarks

You	can	use	the	DateDiff	function	to	determine	how	many	specified	time
intervals	exist	between	two	dates.	For	example,	you	might	use	DateDiff	to
calculate	the	number	of	days	between	two	dates,	or	the	number	of	weeks
between	today	and	the	end	of	the	year.

To	calculate	the	number	of	days	between	date1	and	date2,	you	can	use	either
Day	of	year	("y")	or	Day	("d").	When	interval	is	Weekday	("w"),	DateDiff
returns	the	number	of	weeks	between	the	two	dates.	If	date1	falls	on	a	Monday,

DateDiff	counts	the	number	of	Mondays	until	date2.	It	counts	date2	but	not
date1.	If	interval	is	Week	("ww"),	however,	the	DateDiff	function	returns	the
number	of	calendar	weeks	between	the	two	dates.	It	counts	the	number	of
Sundays	between	date1	and	date2.	DateDiff	counts	date2	if	it	falls	on	a	Sunday;
but	it	doesn't	count	date1,	even	if	it	does	fall	on	a	Sunday.

If	date1	refers	to	a	later	point	in	time	than	date2,	the	DateDiff	function	returns	a
negative	number.

The	firstdayofweek	argument	affects	calculations	that	use	the	"w"	and	"ww"
interval	symbols.

If	date1	or	date2	is	a	date	literal,	the	specified	year	becomes	a	permanent	part	of
that	date.	However,	if	date1	or	date2	is	enclosed	in	double	quotation	marks	("	"),
and	you	omit	the	year,	the	current	year	is	inserted	in	your	code	each	time	the
date1	or	date2	expression	is	evaluated.	This	makes	it	possible	to	write	code	that
can	be	used	in	different	years.

When	comparing	December	31	to	January	1	of	the	immediately	succeeding	year,
DateDiff	for	Year	("yyyy")	returns	1	even	though	only	a	day	has	elapsed.

Note			For	date1	and	date2,	if	the	Calendar	property	setting	is	Gregorian,	the
supplied	date	must	be	Gregorian.	If	the	calendar	is	Hijri,	the	supplied	date	must
be	Hijri.

JavaScript:hhobj_8.Click()

	 	

	 	

DatePart	Function

				 				

Returns	a	Variant	(Integer)	containing	the	specified	part	of	a	given	date.

Syntax

DatePart(interval,	date[,firstdayofweek[,	firstweekofyear]])

The	DatePart	function	syntax	has	these	named	arguments:

Part Description
interval Required.	String	expression	that	is	the	interval	of	time	you

want	to	return.
date Required.	Variant	(Date)	value	that	you	want	to	evaluate.
firstdayofweek Optional.	A	constant	that	specifies	the	first	day	of	the

week.	If	not	specified,	Sunday	is	assumed.
firstweekofyear Optional.	A	constant	that	specifies	the	first	week	of	the

year.	If	not	specified,	the	first	week	is	assumed	to	be	the
week	in	which	January	1	occurs.

Settings

The	interval	argument	has	these	settings:

Setting Description
yyyy Year
q Quarter
m Month
y Day	of	year
d Day
w Weekday
ww Week
h Hour
n Minute
s Second

The	firstdayofweek	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	the	NLS	API	setting.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The	firstweekofyear	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	the	NLS	API	setting.
vbFirstJan1 1 Start	with	week	in	which

January	1	occurs	(default).
vbFirstFourDays 2 Start	with	the	first	week

that	has	at	least	four	days
in	the	new	year.

vbFirstFullWeek 3 Start	with	first	full	week
of	the	year.

Remarks

You	can	use	the	DatePart	function	to	evaluate	a	date	and	return	a	specific
interval	of	time.	For	example,	you	might	use	DatePart	to	calculate	the	day	of
the	week	or	the	current	hour.

The	firstdayofweek	argument	affects	calculations	that	use	the	"w"	and	"ww"
interval	symbols.

If	date	is	a	date	literal,	the	specified	year	becomes	a	permanent	part	of	that	date.
However,	if	date	is	enclosed	in	double	quotation	marks	("	"),	and	you	omit	the
year,	the	current	year	is	inserted	in	your	code	each	time	the	date	expression	is
evaluated.	This	makes	it	possible	to	write	code	that	can	be	used	in	different

JavaScript:hhobj_8.Click()

years.

Note	For	date,	if	the	Calendar	property	setting	is	Gregorian,	the	supplied	date
must	be	Gregorian.	If	the	calendar	is	Hijri,	the	supplied	date	must	be	Hijri.

The	returned	date	part	is	in	the	time	period	units	of	the	current	Arabic	calendar.
For	example,	if	the	current	calendar	is	Hijri	and	the	date	part	to	be	returned	is	the
year,	the	year	value	is	a	Hijri	year.

	 	

DateSerial	Function

				 				

Returns	a	Variant	(Date)	for	a	specified	year,	month,	and	day.

Syntax

DateSerial(year,	month,	day)

The	DateSerial	function	syntax	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()

year Required;	Integer.	Number	between	100	and	9999,
inclusive,	or	a	numeric	expression.

month Required;	Integer.	Any	numeric	expression.
day Required;	Integer.	Any	numeric	expression.

Remarks

To	specify	a	date,	such	as	December	31,	1991,	the	range	of	numbers	for	each
DateSerial	argument	should	be	in	the	accepted	range	for	the	unit;	that	is,	1–31
for	days	and	1–12	for	months.	However,	you	can	also	specify	relative	dates	for
each	argument	using	any	numeric	expression	that	represents	some	number	of
days,	months,	or	years	before	or	after	a	certain	date.

The	following	example	uses	numeric	expressions	instead	of	absolute	date
numbers.	Here	the	DateSerial	function	returns	a	date	that	is	the	day	before	the
first	day	(1	-	1),	two	months	before	August	(8	-	2),	10	years	before	1990	(1990
-	10);	in	other	words,	May	31,	1980.

DateSerial(1990	-	10,	8	-	2,	1	-	1)

Under	Windows	98	or	Windows	2000,	two	digit	years	for	the	year	argument	are
interpreted	based	on	user-defined	machine	settings.	The	default	settings	are	that
values	between	0	and	29,	inclusive,	are	interpreted	as	the	years	2000–2029.	The
default	values	between	30	and	99	are	interpreted	as	the	years	1930–1999.	For	all
other	year	arguments,	use	a	four-digit	year	(for	example,	1800).

Earlier	versions	of	Windows	interpret	two-digit	years	based	on	the	defaults
described	above.	To	be	sure	the	function	returns	the	proper	value,	use	a	four-
digit	year.

When	any	argument	exceeds	the	accepted	range	for	that	argument,	it	increments
to	the	next	larger	unit	as	appropriate.	For	example,	if	you	specify	35	days,	it	is
evaluated	as	one	month	and	some	number	of	days,	depending	on	where	in	the
year	it	is	applied.	If	any	single	argument	is	outside	the	range	-32,768	to	32,767,
an	error	occurs.	If	the	date	specified	by	the	three	arguments	falls	outside	the
acceptable	range	of	dates,	an	error	occurs.

Note	For	year,	month,	and	day,	if	the	Calendar	property	setting	is	Gregorian,

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

the	supplied	value	is	assumed	to	be	Gregorian.	If	the	Calendar	property	setting
is	Hijri,	the	supplied	value	is	assumed	to	be	Hijri.

The	returned	date	part	is	in	the	time	period	units	of	the	current	Visual	Basic
calendar.	For	example,	if	the	current	calendar	is	Hijri	and	the	date	part	to	be
returned	is	the	year,	the	year	value	is	a	Hijri	year.	For	the	argument	year,	values
between	0	and	99,	inclusive,	are	interpreted	as	the	years	1400-1499.	For	all	other
year	values,	use	the	complete	four-digit	year	(for	example,	1520).

	 	

	
DateValue	Function

				 				

Returns	a	Variant	(Date).

Syntax

DateValue(date)

The	required	date	argument	is	normally	a	string	expression	representing	a	date
from	January	1,	100	through	December	31,	9999.	However,	date	can	also	be	any
expression	that	can	represent	a	date,	a	time,	or	both	a	date	and	time,	in	that

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

range.

Remarks

If	date	is	a	string	that	includes	only	numbers	separated	by	valid	date	separators,
DateValue	recognizes	the	order	for	month,	day,	and	year	according	to	the	Short
Date	format	you	specified	for	your	system.	DateValue	also	recognizes
unambiguous	dates	that	contain	month	names,	either	in	long	or	abbreviated
form.	For	example,	in	addition	to	recognizing	12/30/1991	and	12/30/91,
DateValue	also	recognizes	December	30,	1991	and	Dec	30,	1991.

If	the	year	part	of	date	is	omitted,	DateValue	uses	the	current	year	from	your
computer's	system	date.

If	the	date	argument	includes	time	information,	DateValue	doesn't	return	it.
However,	if	date	includes	invalid	time	information	(such	as	"89:98"),	an	error
occurs.

Note	For	date,	if	the	Calendar	property	setting	is	Gregorian,	the	supplied	date
must	be	Gregorian.	If	the	calendar	is	Hijri,	the	supplied	date	must	be	Hijri.	If	the
supplied	date	is	Hijri,	the	argument	date	is	a	String	representing	a	date	from
1/1/100	(Gregorian	Aug	2,	718)	through	4/3/9666	(Gregorian	Dec	31,	9999).

JavaScript:hhobj_7.Click()

	 	

	 	

Day	Function

				 				

Returns	a	Variant	(Integer)	specifying	a	whole	number	between	1	and	31,
inclusive,	representing	the	day	of	the	month.

Syntax

Day(date)

The	required	date	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	date.	If	date	contains	Null,
Null	is	returned.

Note	If	the	Calendar	property	setting	is	Gregorian,	the	returned	integer
represents	the	Gregorian	day	of	the	month	for	the	date	argument.	If	the	calendar
is	Hijri,	the	returned	integer	represents	the	Hijri	day	of	the	month	for	the	date
argument.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	

DDB	Function

				 				

Returns	a	Double	specifying	the	depreciation	of	an	asset	for	a	specific	time
period	using	the	double-declining	balance	method	or	some	other	method	you
specify.

Syntax

DDB(cost,	salvage,	life,	period[,	factor])

The	DDB	function	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
cost Required.	Double	specifying	initial	cost	of	the	asset.
salvage Required.	Double	specifying	value	of	the	asset	at	the	end	of	its

useful	life.
life Required.	Double	specifying	length	of	useful	life	of	the	asset.
period Required.	Double	specifying	period	for	which	asset	depreciation	is

calculated.
factor Optional.	Variant	specifying	rate	at	which	the	balance	declines.	If

omitted,	2	(double-declining	method)	is	assumed.

Remarks

The	double-declining	balance	method	computes	depreciation	at	an	accelerated
rate.	Depreciation	is	highest	in	the	first	period	and	decreases	in	successive
periods.

The	life	and	period	arguments	must	be	expressed	in	the	same	units.	For	example,
if	life	is	given	in	months,	period	must	also	be	given	in	months.	All	arguments
must	be	positive	numbers.

The	DDB	function	uses	the	following	formula	to	calculate	depreciation	for	a
given	period:

Depreciation	/	period	=	((cost	–	salvage)	*	factor)	/	life

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

Dir	Function

				 				

Returns	a	String	representing	the	name	of	a	file,	directory,	or	folder	that	matches
a	specified	pattern	or	file	attribute,	or	the	volume	label	of	a	drive.

Syntax

Dir[(pathname[,	attributes])]

The	Dir	function	syntax	has	these	parts:

Part Description
pathname Optional.	String	expression	that	specifies	a	file	name	—

may	include	directory	or	folder,	and	drive.	A	zero-length
string	("")	is	returned	if	pathname	is	not	found.

attributes Optional.	Constant	or	numeric	expression,	whose	sum
specifies	file	attributes.	If	omitted,	returns	files	that	match
pathname	but	have	no	attributes.

Settings

The	attributes	argument	settings	are:

Constant Value Description
vbNormal 0 (Default)	Specifies	files	with	no

attributes.
vbReadOnly 1 Specifies	read-only	files	in	addition	to

files	with	no	attributes.
vbHidden 2 Specifies	hidden	files	in	addition	to

files	with	no	attributes.
VbSystem 4 Specifies	system	files	in	addition	to

files	with	no	attributes.	Not	available
on	the	Macintosh.

vbVolume 8 Specifies	volume	label;	if	any	other
attributed	is	specified,	vbVolume	is
ignored.	Not	available	on	the
Macintosh.

vbDirectory 16 Specifies	directories	or	folders	in
addition	to	files	with	no	attributes.

vbAlias 64 Specified	file	name	is	an	alias.
Available	only	on	the	Macintosh.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Note			These	constants	are	specified	by	Visual	Basic	for	Applications	and	can	be
used	anywhere	in	your	code	in	place	of	the	actual	values.

Remarks

In	Microsoft	Windows,	Dir	supports	the	use	of	multiple	character	(*)	and	single
character	(?)	wildcards	to	specify	multiple	files.	On	the	Macintosh,	these
characters	are	treated	as	valid	file	name	characters	and	can't	be	used	as	wildcards
to	specify	multiple	files.

Since	the	Macintosh	doesn't	support	the	wildcards,	use	the	file	type	to	identify
groups	of	files.	You	can	use	the	MacID	function	to	specify	file	type	instead	of
using	the	file	names.	For	example,	the	following	statement	returns	the	name	of
the	first	TEXT	file	in	the	current	folder:

Dir("SomePath",	MacID("TEXT"))

To	iterate	over	all	files	in	a	folder,	specify	an	empty	string:

Dir("")

If	you	use	the	MacID	function	with	Dir	in	Microsoft	Windows,	an	error	occurs.

Any	attribute	value	greater	than	256	is	considered	a	MacID	value.

You	must	specify	pathname	the	first	time	you	call	the	Dir	function,	or	an	error
occurs.	If	you	also	specify	file	attributes,	pathname	must	be	included.

Dir	returns	the	first	file	name	that	matches	pathname.	To	get	any	additional	file
names	that	match	pathname,	call	Dir	again	with	no	arguments.	When	no	more
file	names	match,	Dir	returns	a	zero-length	string	("").	Once	a	zero-length	string
is	returned,	you	must	specify	pathname	in	subsequent	calls	or	an	error	occurs.
You	can	change	to	a	new	pathname	without	retrieving	all	of	the	file	names	that
match	the	current	pathname.	However,	you	can't	call	the	Dir	function
recursively.	Calling	Dir	with	the	vbDirectory	attribute	does	not	continually
return	subdirectories.

Tip			Because	file	names	are	retrieved	in	no	particular	order,	you	may	want	to
store	returned	file	names	in	an	array,	and	then	sort	the	array.

JavaScript:hhobj_8.Click()

	
DoEvents	Function

				 				

Yields	execution	so	that	the	operating	system	can	process	other	events.

Syntax

DoEvents()

Remarks

The	DoEvents	function	returns	an	Integer	representing	the	number	of	open
forms	in	stand-alone	versions	of	Visual	Basic,	such	as	Visual	Basic,	Professional
Edition.	DoEvents	returns	zero	in	all	other	applications.

DoEvents	passes	control	to	the	operating	system.	Control	is	returned	after	the
operating	system	has	finished	processing	the	events	in	its	queue	and	all	keys	in
the	SendKeys	queue	have	been	sent.

JavaScript:hhobj_4.Click()

DoEvents	is	most	useful	for	simple	things	like	allowing	a	user	to	cancel	a
process	after	it	has	started,	for	example	a	search	for	a	file.	For	long-running
processes,	yielding	the	processor	is	better	accomplished	by	using	a	Timer	or
delegating	the	task	to	an	ActiveX	EXE	component..	In	the	latter	case,	the	task
can	continue	completely	independent	of	your	application,	and	the	operating
system	takes	case	of	multitasking	and	time	slicing.

Caution			Any	time	you	temporarily	yield	the	processor	within	an	event
procedure,	make	sure	the	procedure	is	not	executed	again	from	a	different	part	of
your	code	before	the	first	call	returns;	this	could	cause	unpredictable	results.	In
addition,	do	not	use	DoEvents	if	other	applications	could	possibly	interact	with
your	procedure	in	unforeseen	ways	during	the	time	you	have	yielded	control.

JavaScript:hhobj_5.Click()

	 	

	

Environ	Function

				 				

Returns	the	String	associated	with	an	operating	system	environment	variable.
Not	available	on	the	Macintosh

Syntax

Environ({envstring	|	number})

The	Environ	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()

Part Description
envstring Optional.	String	expression	containing	the	name	of	an

environment	variable.
number Optional.	Numeric	expression	corresponding	to	the	numeric	order

of	the	environment	string	in	the	environment-string	table.	The
number	argument	can	be	any	numeric	expression,	but	is	rounded
to	a	whole	number	before	it	is	evaluated.

Remarks

If	envstring	can't	be	found	in	the	environment-string	table,	a	zero-length	string
("")	is	returned.	Otherwise,	Environ	returns	the	text	assigned	to	the	specified
envstring;	that	is,	the	text	following	the	equal	sign	(=)	in	the	environment-string
table	for	that	environment	variable.

If	you	specify	number,	the	string	occupying	that	numeric	position	in	the
environment-string	table	is	returned.	In	this	case,	Environ	returns	all	of	the	text,
including	envstring.	If	there	is	no	environment	string	in	the	specified	position,
Environ	returns	a	zero-length	string.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	
EOF	Function

				 				

Returns	an	Integer	containing	the	Boolean	value	True	when	the	end	of	a	file
opened	for	Random	or	sequential	Input	has	been	reached.

Syntax

EOF(filenumber)

The	required	filenumber	argument	is	an	Integer	containing	any	valid	file
number.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Remarks

Use	EOF	to	avoid	the	error	generated	by	attempting	to	get	input	past	the	end	of
a	file.

The	EOF	function	returns	False	until	the	end	of	the	file	has	been	reached.	With
files	opened	for	Random	or	Binary	access,	EOF	returns	False	until	the	last
executed	Get	statement	is	unable	to	read	an	entire	record.

With	files	opened	for	Binary	access,	an	attempt	to	read	through	the	file	using	the
Input	function	until	EOF	returns	True	generates	an	error.	Use	the	LOF	and	Loc
functions	instead	of	EOF	when	reading	binary	files	with	Input,	or	use	Get	when
using	the	EOF	function.	With	files	opened	for	Output,	EOF	always	returns
True.

	 	

	
Error	Function

				 				

Returns	the	error	message	that	corresponds	to	a	given	error	number.

Syntax

Error[(errornumber)]

The	optional	errornumber	argument	can	be	any	valid	error	number.	If
errornumber	is	a	valid	error	number,	but	is	not	defined,	Error	returns	the	string
"Application-defined	or	object-defined	error."	If	errornumber	is	not	valid,	an

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

error	occurs.	If	errornumber	is	omitted,	the	message	corresponding	to	the	most
recent	run-time	error	is	returned.	If	no	run-time	error	has	occurred,	or
errornumber	is	0,	Error	returns	a	zero-length	string	("").

Remarks

Examine	the	property	settings	of	the	Err	object	to	identify	the	most	recent	run-
time	error.	The	return	value	of	the	Error	function	corresponds	to	the
Description	property	of	the	Err	object.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	
Exp	Function

				 				

Returns	a	Double	specifying	e	(the	base	of	natural	logarithms)	raised	to	a	power.

Syntax

Exp(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

If	the	value	of	number	exceeds	709.782712893,	an	error	occurs.	The	constant	e
is	approximately	2.718282.

Note			The	Exp	function	complements	the	action	of	the	Log	function	and	is
sometimes	referred	to	as	the	antilogarithm.

JavaScript:hhobj_7.Click()

	 	

	 	

FileAttr	Function

				 				

Returns	a	Long	representing	the	file	mode	for	files	opened	using	the	Open
statement.

JavaScript:hhobj_4.Click()

Syntax

FileAttr(filenumber,	returntype)

The	FileAttr	function	syntax	has	these	named	arguments:

Part Description
filenumber Required;	Integer.	Any	valid	file	number.
returntype Required;	Integer.	Number	indicating	the	type	of	information	to

return.	Specify	1	to	return	a	value	indicating	the	file	mode.	On
16-bit	systems	only,	specify	2	to	retrieve	an	operating	system	file
handle.	Returntype	2	is	not	supported	in	32-bit	systems	and
causes	an	error.

Return	Values

When	the	returntype	argument	is	1,	the	following	return	values	indicate	the	file
access	mode:

Mode Value
Input 1
Output 2
Random 4
Append 8
Binary 32

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	
FileDateTime	Function

				 				

Returns	a	Variant	(Date)	that	indicates	the	date	and	time	when	a	file	was	created
or	last	modified.

Syntax

FileDateTime(pathname)

The	required	pathname	argument	is	a	string	expression	that	specifies	a	file	name.
The	pathname	may	include	the	directory	or	folder,	and	the	drive.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

FileLen	Function

				 				

Returns	a	Long	specifying	the	length	of	a	file	in	bytes.

Syntax

FileLen(pathname)

The	required	pathname	argument	is	a	string	expression	that	specifies	a	file.	The
pathname	may	include	the	directory	or	folder,	and	the	drive.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

If	the	specified	file	is	open	when	the	FileLen	function	is	called,	the	value
returned	represents	the	size	of	the	file	immediately	before	it	was	opened.

Note			To	obtain	the	length	of	an	open	file,	use	the	LOF	function.

Filter	Function

				

				

Description

Returns	a	zero-based	array	containing	subset	of	a	string	array	based	on	a
specified	filter	criteria.

Syntax

Filter(sourcesrray,	match[,	include[,	compare]])

The	Filter	function	syntax	has	these	named	argument:

Part Description
sourcearray Required.	One-dimensional	array	of	strings	to	be

searched.
match Required.	String	to	search	for.
include Optional.	Boolean	value	indicating	whether	to	return

substrings	that	include	or	exclude	match.	If	include
is	True,	Filter	returns	the	subset	of	the	array	that
contains	match	as	a	substring.	If	include	is	False,
Filter	returns	the	subset	of	the	array	that	does	not
contain	match	as	a	substring.

compare Optional.	Numeric	value	indicating	the	kind	of	string

JavaScript:hhobj_4.Click()

comparison	to	use.	See	Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbUseCompareOption –1 Performs	a	comparison	using	the	setting	of

the	Option	Compare	statement.
vbBinaryCompare 	0 Performs	a	binary	comparison.
vbTextCompare 	1 Performs	a	textual	comparison.
vbDatabaseCompare 	2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in	your
database.

Remarks

If	no	matches	of	match	are	found	within	sourcearray,	Filter	returns	an	empty
array.	An	error	occurs	if	sourcearray	is	Null	or	is	not	a	one-dimensional	array.

The	array	returned	by	the	Filter	function	contains	only	enough	elements	to
contain	the	number	of	matched	items.

	 	

	
Int,	Fix	Functions

				 				

Returns	the	integer	portion	of	a	number.

Syntax

Int(number)

Fix(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression.	If

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

number	contains	Null,	Null	is	returned.

Remarks

Both	Int	and	Fix	remove	the	fractional	part	of	number	and	return	the	resulting
integer	value.

The	difference	between	Int	and	Fix	is	that	if	number	is	negative,	Int	returns	the
first	negative	integer	less	than	or	equal	to	number,	whereas	Fix	returns	the	first
negative	integer	greater	than	or	equal	to	number.	For	example,	Int	converts	-8.4
to	-9,	and	Fix	converts	-8.4	to	-8.

Fix(number)	is	equivalent	to:

Sgn(number)	*	Int(Abs(number))

JavaScript:hhobj_7.Click()

	 	

Format	Function

				 				

Returns	a	Variant	(String)	containing	an	expression	formatted	according	to
instructions	contained	in	a	format	expression.

Syntax

Format(expression[,	format[,	firstdayofweek[,	firstweekofyear]]])

The	Format	function	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()

expression Required.	Any	valid	expression.
format Optional.	A	valid	named	or	user-defined	format	expression.
firstdayofweek Optional.	A	constant	that	specifies	the	first	day	of	the	week.
firstweekofyear Optional.	A	constant	that	specifies	the	first	week	of	the

year.

Settings

The	firstdayofweek	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	NLS	API

setting.
VbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The	firstweekofyear	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	NLS	API	setting.
vbFirstJan1 1 Start	with	week	in	which

January	1	occurs	(default).
vbFirstFourDays 2 Start	with	the	first	week

that	has	at	least	four	days
in	the	year.

vbFirstFullWeek 3 Start	with	the	first	full
week	of	the	year.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

To	Format Do	This
Numbers Use	predefined	named	numeric	formats	or	create	user-

defined	numeric	formats.
Dates	and	times Use	predefined	named	date/time	formats	or	create	user-

defined	date/time	formats.
Date	and	time	serial
numbers

Use	date	and	time	formats	or	numeric	formats.

Strings Create	your	own	user-defined	string	formats.

If	you	try	to	format	a	number	without	specifying	format,	Format	provides
functionality	similar	to	the	Str	function,	although	it	is	internationally	aware.
However,	positive	numbers	formatted	as	strings	using	Format	don’t	include	a
leading	space	reserved	for	the	sign	of	the	value;	those	converted	using	Str	retain
the	leading	space.

If	you	are	formatting	a	non-localized	numeric	string,	you	should	use	a	user-
defined	numeric	format	to	ensure	that	you	get	the	look	you	want.

Note	If	the	Calendar	property	setting	is	Gregorian	and	format	specifies	date
formatting,	the	supplied	expression	must	be	Gregorian.	If	the	Visual	Basic
Calendar	property	setting	is	Hijri,	the	supplied	expression	must	be	Hijri.

If	the	calendar	is	Gregorian,	the	meaning	of	format	expression	symbols	is
unchanged.	If	the	calendar	is	Hijri,	all	date	format	symbols	(for	example,	dddd,
mmmm,	yyyy)	have	the	same	meaning	but	apply	to	the	Hijri	calendar.	Format
symbols	remain	in	English;	symbols	that	result	in	text	display	(for	example,	AM
and	PM)	display	the	string	(English	or	Arabic)	associated	with	that	symbol.	The
range	of	certain	symbols	changes	when	the	calendar	is	Hijri.

Symbol Range
d 1-30
dd 1-30
ww 1-51

mmm Displays	full	month	names	(Hijri
month	names	have	no	abbreviations).

y 1-355
yyyy 100-9666

FormatCurrency	Function

				 				

Description

Returns	an	expression	formatted	as	a	currency	value	using	the	currency	symbol
defined	in	the	system	control	panel.

Syntax

FormatCurrency(Expression[,NumDigitsAfterDecimal	[,IncludeLeadingDigit
[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatCurrency	function	syntax	has	these	parts:

Part Description
Expression Required.	Expression	to	be	formatted.
NumDigitsAfterDecimal Optional.	Numeric	value	indicating	how

many	places	to	the	right	of	the	decimal	are
displayed.	Default	value	is	–1,	which
indicates	that	the	computer's	regional
settings	are	used.

IncludeLeadingDigit Optional.	Tristate	constant	that	indicates
whether	or	not	a	leading	zero	is	displayed
for	fractional	values.	See	Settings	section

for	values.
UseParensForNegativeNumbers Optional.	Tristate	constant	that	indicates

whether	or	not	to	place	negative	values
within	parentheses.	See	Settings	section	for
values.

GroupDigits Optional.	Tristate	constant	that	indicates
whether	or	not	numbers	are	grouped	using
the	group	delimiter	specified	in	the
computer's	regional	settings.	See	Settings
section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and	GroupDigits
arguments	have	the	following	settings:

Constant Value Description
vbTrue –1 True
vbFalse 		0 False
vbUseDefault –2 Use	the	setting	from	the	computer's	regional

settings.

Remarks

When	one	or	more	optional	arguments	are	omitted,	the	values	for	omitted
arguments	are	provided	by	the	computer's	regional	settings.

The	position	of	the	currency	symbol	relative	to	the	currency	value	is	determined
by	the	system's	regional	settings.

Note			All	settings	information	comes	from	the	Regional	Settings	Currency	tab,
except	leading	zero	which	comes	from	the	Number	tab.

FormatDateTime	Function

				 				

Description

Returns	an	expression	formatted	as	a	date	or	time.

Syntax

FormatDateTime(Date[,NamedFormat])

The	FormatDateTime	function	syntax	has	these	parts:

Part Description
Date Required.	Date	expression	to	be	formatted.
NamedFormat Optional.	Numeric	value	that	indicates	the	date/time

format	used.	If	omitted,	vbGeneralDate	is	used.

Settings

The	NamedFormat	argument	has	the	following	settings:

Constant Value Description
vbGeneralDate 0 Display	a	date	and/or	time.	If	there	is	a	date

part,	display	it	as	a	short	date.	If	there	is	a	time

part,	display	it	as	a	long	time.	If	present,	both
parts	are	displayed.

vbLongDate 1 Display	a	date	using	the	long	date	format
specified	in	your	computer's	regional	settings.

vbShortDate 2 Display	a	date	using	the	short	date	format
specified	in	your	computer's	regional	settings.

vbLongTime 3 Display	a	time	using	the	time	format	specified
in	your	computer's	regional	settings.

vbShortTime 4 Display	a	time	using	the	24-hour	format
(hh:mm).

FormatNumber	Function

				 				

Description

Returns	an	expression	formatted	as	a	number.

Syntax

FormatNumber(Expression[,NumDigitsAfterDecimal	[,IncludeLeadingDigit
[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatNumber	function	syntax	has	these	parts:

Part Description
Expression Required.	Expression	to	be	formatted.
NumDigitsAfterDecimal Optional.	Numeric	value	indicating	how

many	places	to	the	right	of	the	decimal	are
displayed.	Default	value	is	–1,	which
indicates	that	the	computer's	regional
settings	are	used.

IncludeLeadingDigit Optional.	Tristate	constant	that	indicates
whether	or	not	a	leading	zero	is	displayed
for	fractional	values.	See	Settings	section
for	values.

UseParensForNegativeNumbers Optional.	Tristate	constant	that	indicates
whether	or	not	to	place	negative	values
within	parentheses.	See	Settings	section	for
values.

GroupDigits Optional.	Tristate	constant	that	indicates
whether	or	not	numbers	are	grouped	using
the	group	delimiter	specified	in	the
computer's	regional	settings.	See	Settings
section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and	GroupDigits
arguments	have	the	following	settings:

Constant Value Description
vbTrue –1 True
vbFalse 	0 False
vbUseDefault –2 Use	the	setting	from	the	computer's	regional

settings.

Remarks

When	one	or	more	optional	arguments	are	omitted,	the	values	for	omitted
arguments	are	provided	by	the	computer's	regional	settings.

Note			All	settings	information	comes	from	the	Regional	Settings	Number	tab.

FormatPercent	Function

				 				

Description

Returns	an	expression	formatted	as	a	percentage	(multipled	by	100)	with	a
trailing	%	character.

Syntax

FormatPercent(Expression[,NumDigitsAfterDecimal	[,IncludeLeadingDigit
[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatPercent	function	syntax	has	these	parts:

Part Description
Expression Required.	Expression	to	be	formatted.
NumDigitsAfterDecimal Optional.	Numeric	value	indicating	how

many	places	to	the	right	of	the	decimal	are
displayed.	Default	value	is	–1,	which
indicates	that	the	computer's	regional
settings	are	used.

IncludeLeadingDigit Optional.	Tristate	constant	that	indicates
whether	or	not	a	leading	zero	is	displayed
for	fractional	values.	See	Settings	section

for	values.
UseParensForNegativeNumbers Optional.	Tristate	constant	that	indicates

whether	or	not	to	place	negative	values
within	parentheses.	See	Settings	section	for
values.

GroupDigits Optional.	Tristate	constant	that	indicates
whether	or	not	numbers	are	grouped	using
the	group	delimiter	specified	in	the
computer's	regional	settings.	See	Settings
section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and	GroupDigits
arguments	have	the	following	settings:

Constant Value Description
vbTrue –1 True
vbFalse 	0 False
vbUseDefault –2 Use	the	setting	from	the	computer's	regional

settings.

Remarks

When	one	or	more	optional	arguments	are	omitted,	the	values	for	omitted
arguments	are	provided	by	the	computer's	regional	settings.

Note			All	settings	information	comes	from	the	Regional	Settings	Number	tab.

	 	

FreeFile	Function

				 				

Returns	an	Integer	representing	the	next	file	number	available	for	use	by	the
Open	statement.

Syntax

FreeFile[(rangenumber)]

The	optional	rangenumber	argument	is	a	Variant	that	specifies	the	range	from
which	the	next	free	file	number	is	to	be	returned.	Specify	a	0	(default)	to	return	a

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

file	number	in	the	range	1	–	255,	inclusive.	Specify	a	1	to	return	a	file	number	in
the	range	256	–	511.

Remarks

Use	FreeFile	to	supply	a	file	number	that	is	not	already	in	use.

	 	

	 	

FV	Function

				 				

Returns	a	Double	specifying	the	future	value	of	an	annuity	based	on	periodic,
fixed	payments	and	a	fixed	interest	rate.

JavaScript:hhobj_4.Click()

Syntax

FV(rate,	nper,	pmt[,	pv[,	type]])

The	FV	function	has	these	named	arguments:

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

nper Required.	Integer	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year	car
loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pmt Required.	Double	specifying	payment	to	be	made	each	period.
Payments	usually	contain	principal	and	interest	that	doesn't	change	over
the	life	of	the	annuity.

pv Optional.	Variant	specifying	present	value	(or	lump	sum)	of	a	series	of
future	payments.	For	example,	when	you	borrow	money	to	buy	a	car,	the
loan	amount	is	the	present	value	to	the	lender	of	the	monthly	car
payments	you	will	make.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

The	rate	and	nper	arguments	must	be	calculated	using	payment	periods
expressed	in	the	same	units.	For	example,	if	rate	is	calculated	using	months,
nper	must	also	be	calculated	using	months.

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	

GetAllSettings	Function

				 				

Returns	a	list	of	key	settings	and	their	respective	values	(originally	created	with
SaveSetting)	from	an	application's	entry	in	the	Windows	registry	or	(on	the

JavaScript:hhobj_4.Click()

Macintosh)	information	in	the	application’s	initialization	file.

Syntax

GetAllSettings(appname,	section)

The	GetAllSettings	function	syntax	has	these	named	arguments:

Part Description
appname Required.	String	expression	containing	the	name	of	the	application

or	project	whose	key	settings	are	requested.	On	the	Macintosh,	this
is	the	filename	of	the	initialization	file	in	the	Preferences	folder	in
the	System	folder.

section Required.	String	expression	containing	the	name	of	the	section
whose	key	settings	are	requested.	GetAllSettings	returns	a	Variant
whose	contents	is	a	two-dimensional	array	of	strings	containing	all
the	key	settings	in	the	specified	section	and	their	corresponding
values.

Remarks

GetAllSettings	returns	an	uninitialized	Variant	if	either	appname	or	section
does	not	exist.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	

GetAttr	Function

				 				

Returns	an	Integer	representing	the	attributes	of	a	file,	directory,	or	folder.

Syntax

GetAttr(pathname)

The	required	pathname	argument	is	a	string	expression	that	specifies	a	file	name.
The	pathname	may	include	the	directory	or	folder,	and	the	drive.

Return	Values

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	value	returned	by	GetAttr	is	the	sum	of	the	following	attribute	values:

Constant Value Description
vbNormal 0 Normal.
vbReadOnly 1 Read-only.
vbHidden 2 Hidden.
vbSystem 4 System	file.	Not	available	on	the	Macintosh.
vbDirectory 16 Directory	or	folder.
vbArchive 32 File	has	changed	since	last	backup.	Not	available	on

the	Macintosh.
vbAlias 64 Specified	file	name	is	an	alias.	Available	only	on	the

Macintosh.

Note			These	constants	are	specified	by	Visual	Basic	for	Applications.	The
names	can	be	used	anywhere	in	your	code	in	place	of	the	actual	values.

Remarks

To	determine	which	attributes	are	set,	use	the	And	operator	to	perform	a	bitwise
comparison	of	the	value	returned	by	the	GetAttr	function	and	the	value	of	the
individual	file	attribute	you	want.	If	the	result	is	not	zero,	that	attribute	is	set	for
the	named	file.	For	example,	the	return	value	of	the	following	And	expression	is
zero	if	the	Archive	attribute	is	not	set:

Result	=	GetAttr(FName)	And	vbArchive

A	nonzero	value	is	returned	if	the	Archive	attribute	is	set.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

	

GetObject	Function

				 				

Returns	a	reference	to	an	object	provided	by	an	ActiveX	component.

Syntax

GetObject([pathname]	[,	class])

The	GetObject	function	syntax	has	these	named	arguments:

Part Description
pathname Optional;	Variant	(String).	The	full	path	and	name	of	the	file

containing	the	object	to	retrieve.	If	pathname	is	omitted,	class	is
required.

class Optional;	Variant	(String).	A	string	representing	the	class	of	the
object.

The	class	argument	uses	the	syntax	appname.objecttype	and	has	these	parts:

Part Description
appname Required;	Variant	(String).	The	name	of	the	application

providing	the	object.
objecttype Required;	Variant	(String).	The	type	or	class	of	object	to	create.

Remarks

Use	the	GetObject	function	to	access	an	ActiveX	object	from	a	file	and	assign
the	object	to	an	object	variable.	Use	the	Set	statement	to	assign	the	object
returned	by	GetObject	to	the	object	variable.	For	example:

Dim	CADObject	As	Object

Set	CADObject	=	GetObject("C:\CAD\SCHEMA.CAD")

When	this	code	is	executed,	the	application	associated	with	the	specified
pathname	is	started	and	the	object	in	the	specified	file	is	activated.

If	pathname	is	a	zero-length	string	(""),	GetObject	returns	a	new	object	instance
of	the	specified	type.	If	the	pathname	argument	is	omitted,	GetObject	returns	a
currently	active	object	of	the	specified	type.	If	no	object	of	the	specified	type
exists,	an	error	occurs.

Some	applications	allow	you	to	activate	part	of	a	file.	Add	an	exclamation	point

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

(!)	to	the	end	of	the	file	name	and	follow	it	with	a	string	that	identifies	the	part	of
the	file	you	want	to	activate.	For	information	on	how	to	create	this	string,	see	the
documentation	for	the	application	that	created	the	object.

For	example,	in	a	drawing	application	you	might	have	multiple	layers	to	a
drawing	stored	in	a	file.	You	could	use	the	following	code	to	activate	a	layer
within	a	drawing	called	SCHEMA.CAD:

Set	LayerObject	=	GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If	you	don't	specify	the	object's	class,	Automation	determines	the	application	to
start	and	the	object	to	activate,	based	on	the	file	name	you	provide.	Some	files,
however,	may	support	more	than	one	class	of	object.	For	example,	a	drawing
might	support	three	different	types	of	objects:	an	Application	object,	a	Drawing
object,	and	a	Toolbar	object,	all	of	which	are	part	of	the	same	file.	To	specify
which	object	in	a	file	you	want	to	activate,	use	the	optional	class	argument.	For
example:

Dim	MyObject	As	Object

Set	MyObject	=	GetObject("C:\DRAWINGS\SAMPLE.DRW",	"FIGMENT.DRAWING")

In	the	example,	FIGMENT	is	the	name	of	a	drawing	application	and	DRAWING	is	one
of	the	object	types	it	supports.

Once	an	object	is	activated,	you	reference	it	in	code	using	the	object	variable
you	defined.	In	the	preceding	example,	you	access	properties	and	methods	of	the
new	object	using	the	object	variable	MyObject.	For	example:

MyObject.Line	9,	90

MyObject.InsertText	9,	100,	"Hello,	world."

MyObject.SaveAs	"C:\DRAWINGS\SAMPLE.DRW"

Note			Use	the	GetObject	function	when	there	is	a	current	instance	of	the	object
or	if	you	want	to	create	the	object	with	a	file	already	loaded.	If	there	is	no
current	instance,	and	you	don't	want	the	object	started	with	a	file	loaded,	use	the
CreateObject	function.

If	an	object	has	registered	itself	as	a	single-instance	object,	only	one	instance	of

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

the	object	is	created,	no	matter	how	many	times	CreateObject	is	executed.	With
a	single-instance	object,	GetObject	always	returns	the	same	instance	when
called	with	the	zero-length	string	("")	syntax,	and	it	causes	an	error	if	the
pathname	argument	is	omitted.	You	can't	use	GetObject	to	obtain	a	reference	to
a	class	created	with	Visual	Basic.

	 	

	

GetSetting	Function

				 				

Returns	a	key	setting	value	from	an	application's	entry	in	the	Windows	registry
or	(on	the	Macintosh)	information	in	the	application’s	initialization	file.

Syntax

GetSetting(appname,	section,	key[,	default])

The	GetSetting	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
appname Required.	String	expression	containing	the	name	of	the	application

or	project	whose	key	setting	is	requested.	On	the	Macintosh,	this	is
the	filename	of	the	initialization	file	in	the	Preferences	folder	in	the
System	folder.

section Required.	String	expression	containing	the	name	of	the	section
where	the	key	setting	is	found.

key Required.	String	expression	containing	the	name	of	the	key	setting
to	return.

default Optional.	Expression	containing	the	value	to	return	if	no	value	is	set
in	the	key	setting.	If	omitted,	default	is	assumed	to	be	a	zero-length
string	("").

Remarks

If	any	of	the	items	named	in	the	GetSetting	arguments	do	not	exist,	GetSetting
returns	the	value	of	default.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

	

Hex	Function

				 				

Returns	a	String	representing	the	hexadecimal	value	of	a	number.

Syntax

JavaScript:hhobj_4.Click()

Hex(number)

The	required	number	argument	is	any	valid	numeric	expression	or	string
expression.

Remarks

If	number	is	not	already	a	whole	number,	it	is	rounded	to	the	nearest	whole
number	before	being	evaluated.

If	number	is Hex	returns
Null Null
Empty Zero	(0)
Any	other	number Up	to	eight	hexadecimal	characters

You	can	represent	hexadecimal	numbers	directly	by	preceding	numbers	in	the
proper	range	with	&H.	For	example,	&H10	represents	decimal	16	in	hexadecimal
notation.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

Hour	Function

				 				

Returns	a	Variant	(Integer)	specifying	a	whole	number	between	0	and	23,
inclusive,	representing	the	hour	of	the	day.

Syntax

Hour(time)

The	required	time	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	time.	If	time	contains	Null,
Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	IIf

Function

				 				

Returns	one	of	two	parts,	depending	on	the	evaluation	of	an	expression.

Syntax

IIf(expr,	truepart,	falsepart)

The	IIf	function	syntax	has	these	named	arguments:

Part Description
expr Required.	Expression	you	want	to	evaluate.
truepart Required.	Value	or	expression	returned	if	expr	is	True.
falsepart Required.	Value	or	expression	returned	if	expr	is	False.

Remarks

IIf	always	evaluates	both	truepart	and	falsepart,	even	though	it	returns	only	one

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

of	them.	Because	of	this,	you	should	watch	for	undesirable	side	effects.	For
example,	if	evaluating	falsepart	results	in	a	division	by	zero	error,	an	error
occurs	even	if	expr	is	True.

	

IMEStatus	Function

				 				

Returns	an	Integer	specifying	the	current	Input	Method	Editor	(IME)	mode	of
Microsoft	Windows;	available	in	East	Asian	versions	only.

Syntax

IMEStatus

Return	Values

The	return	values	for	the	Japanese	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME

(default)
vbIMEModeOn 1 IME	on
vbIMEModeOff 2 IME	off

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

vbIMEModeDisable 3 IME	disabled
vbIMEModeHiragana 4 Full-width	Hiragana

mode
vbIMEModeKatakana 5 Full-width	Katakana

mode
vbIMEModeKatakanaHalf 6 Half-width	Katakana

mode
vbIMEModeAlphaFull 7 Full-width	Alphanumeric

mode
vbIMEModeAlpha 8 Half-width	Alphanumeric

mode

The	return	values	for	the	Korean	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME(default)
vbIMEModeAlphaFull 7 Full-width	Alphanumeric

mode
vbIMEModeAlpha 8 Half-width	Alphanumeric

mode
vbIMEModeHangulFull 9 Full-width	Hangul	mode
vbIMEModeHangul 10 Half-width	Hangul	mode

The	return	values	for	the	Chinese	locale	are	as	follows:

Constant Value Description
vbIMEModeNoControl 0 Don't	control	IME

(default)
vbIMEModeOn 1 IME	on
vbIMEModeOff 2 IME	off

	 	

Input	Function

				 				

Returns	String	containing	characters	from	a	file	opened	in	Input	or	Binary
mode.

Syntax

Input(number,	[#]filenumber)

The	Input	function	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()

number Required.	Any	valid	numeric	expression	specifying	the	number	of
characters	to	return.

filenumber Required.	Any	valid	file	number.

Remarks

Data	read	with	the	Input	function	is	usually	written	to	a	file	with	Print	#	or	Put.
Use	this	function	only	with	files	opened	in	Input	or	Binary	mode.

Unlike	the	Input	#	statement,	the	Input	function	returns	all	of	the	characters	it
reads,	including	commas,	carriage	returns,	linefeeds,	quotation	marks,	and
leading	spaces.

With	files	opened	for	Binary	access,	an	attempt	to	read	through	the	file	using	the
Input	function	until	EOF	returns	True	generates	an	error.	Use	the	LOF	and	Loc
functions	instead	of	EOF	when	reading	binary	files	with	Input,	or	use	Get	when
using	the	EOF	function.

Note			Use	the	InputB	function	for	byte	data	contained	within	text	files.	With
InputB,	number	specifies	the	number	of	bytes	to	return	rather	than	the	number
of	characters	to	return.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

	 	

InputBox	Function

				 				

Displays	a	prompt	in	a	dialog	box,	waits	for	the	user	to	input	text	or	click	a
button,	and	returns	a	String	containing	the	contents	of	the	text	box.

Syntax

InputBox(prompt[,	title]	[,	default]	[,	xpos]	[,	ypos]	[,	helpfile,	context])

The	InputBox	function	syntax	has	these	named	arguments:

Part Description
prompt Required.	String	expression	displayed	as	the	message	in	the

dialog	box.	The	maximum	length	of	prompt	is	approximately
1024	characters,	depending	on	the	width	of	the	characters	used.
If	prompt	consists	of	more	than	one	line,	you	can	separate	the
lines	using	a	carriage	return	character	(Chr(13)),	a	linefeed
character	(Chr(10)),	or	carriage	return–linefeed	character
combination	(Chr(13)	&	Chr(10))	between	each	line.

title Optional.	String	expression	displayed	in	the	title	bar	of	the
dialog	box.	If	you	omit	title,	the	application	name	is	placed	in
the	title	bar.

default Optional.	String	expression	displayed	in	the	text	box	as	the
default	response	if	no	other	input	is	provided.	If	you	omit
default,	the	text	box	is	displayed	empty.

xpos Optional.	Numeric	expression	that	specifies,	in	twips,	the
horizontal	distance	of	the	left	edge	of	the	dialog	box	from	the
left	edge	of	the	screen.	If	xpos	is	omitted,	the	dialog	box	is
horizontally	centered.

ypos Optional.	Numeric	expression	that	specifies,	in	twips,	the
vertical	distance	of	the	upper	edge	of	the	dialog	box	from	the
top	of	the	screen.	If	ypos	is	omitted,	the	dialog	box	is	vertically

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

positioned	approximately	one-third	of	the	way	down	the	screen.
helpfile Optional.	String	expression	that	identifies	the	Help	file	to	use	to

provide	context-sensitive	Help	for	the	dialog	box.	If	helpfile	is
provided,	context	must	also	be	provided.

context Optional.	Numeric	expression	that	is	the	Help	context	number
assigned	to	the	appropriate	Help	topic	by	the	Help	author.	If
context	is	provided,	helpfile	must	also	be	provided.

Remarks

When	both	helpfile	and	context	are	provided,	the	user	can	press	F1	(Windows)
or	HELP	(Macintosh)	to	view	the	Help	topic	corresponding	to	the	context.	Some
host	applications,	for	example,	Microsoft	Excel,	also	automatically	add	a	Help
button	to	the	dialog	box.	If	the	user	clicks	OK	or	presses	ENTER	,	the	InputBox
function	returns	whatever	is	in	the	text	box.	If	the	user	clicks	Cancel,	the
function	returns	a	zero-length	string	("").

Note			To	specify	more	than	the	first	named	argument,	you	must	use	InputBox
in	an	expression.	To	omit	some	positional	arguments,	you	must	include	the
corresponding	comma	delimiter.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	 	

	 	

InStr	Function

				 				

Returns	a	Variant	(Long)	specifying	the	position	of	the	first	occurrence	of	one
string	within	another.

Syntax

InStr([start,]string1,	string2[,	compare])

The	InStr	function	syntax	has	these	arguments:

Part Description
start Optional.	Numeric	expression	that	sets	the	starting	position	for

each	search.	If	omitted,	search	begins	at	the	first	character
position.	If	start	contains	Null,	an	error	occurs.	The	start	argument
is	required	if	compare	is	specified.

string1 Required.	String	expression	being	searched.
string2 Required.	String	expression	sought.
compare Optional.	Specifies	the	type	of	string	comparison.	If	compare	is

Null,	an	error	occurs.	If	compare	is	omitted,	the	Option	Compare
setting	determines	the	type	of	comparison.	Specify	a	valid	LCID
(LocaleID)	to	use	locale-specific	rules	in	the	comparison.

Settings

The	compare	argument	settings	are:

Constant Value Description
vbUseCompareOption -1 Performs	a	comparison	using	the

setting	of	the	Option	Compare
statement.

vbBinaryCompare 0 Performs	a	binary	comparison.
vbTextCompare 1 Performs	a	textual	comparison.
vbDatabaseCompare 2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in
your	database.

Return	Values

If InStr	returns

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

string1	is	zero-length 0
string1	is	Null Null
string2	is	zero-length start
string2	is	Null Null
string2	is	not	found 0
string2	is	found	within
string1

Position	at	which	match	is	found

start	>	string2 0

Remarks

The	InStrB	function	is	used	with	byte	data	contained	in	a	string.	Instead	of
returning	the	character	position	of	the	first	occurrence	of	one	string	within
another,	InStrB	returns	the	byte	position.

	 	

	

InStrRev	Function

				 				

Description

Returns	the	position	of	an	occurrence	of	one	string	within	another,	from	the	end
of	string.

Syntax

InstrRev(stringcheck,	stringmatch[,	start[,	compare]])

The	InstrRev	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()

Part Description
stringcheck Required.	String	expression	being	searched.
stringmatch Required.	String	expression	being	searched	for.
start Optional.	Numeric	expression	that	sets	the	starting

position	for	each	search.	If	omitted,	–1	is	used,	which
means	that	the	search	begins	at	the	last	character
position.	If	start	contains

Null,	an	error	occurs.

compare Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	If
omitted,	a	binary	comparison	is	performed.	See
Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbUseCompareOption –1 Performs	a	comparison	using	the	setting	of

the	Option	Compare	statement.
vbBinaryCompare 	0 Performs	a	binary	comparison.
vbTextCompare 	1 Performs	a	textual	comparison.
vbDatabaseCompare 	2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in	your
database.

Return	Values

InStrRev	returns	the	following	values:

If InStrRev	returns
stringcheck	is	zero-length 0
stringcheck	is	Null Null

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

stringmatch	is	zero-length start
stringmatch	is	Null Null
stringmatch	is	not	found 0
stringmatch	is	found	within
stringcheck

Position	at	which	match	is	found

start	>	Len(stringmatch) 0

Remarks

Note	that	the	syntax	for	the	InstrRev	function	is	not	the	same	as	the	syntax	for
the	Instr	function.

	 	

	

IPmt	Function

				 				

Returns	a	Double	specifying	the	interest	payment	for	a	given	period	of	an
annuity	based	on	periodic,	fixed	payments	and	a	fixed	interest	rate.

Syntax

IPmt(rate,	per,	nper,	pv[,	fv[,	type]])

The	IPmt	function	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

per Required.	Double	specifying	payment	period	in	the	range	1	through
nper.

nper Required.	Double	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year	car
loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pv Required.	Double	specifying	present	value,	or	value	today,	of	a	series	of
future	payments	or	receipts.	For	example,	when	you	borrow	money	to
buy	a	car,	the	loan	amount	is	the	present	value	to	the	lender	of	the
monthly	car	payments	you	will	make.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want	after
you've	made	the	final	payment.	For	example,	the	future	value	of	a	loan
is	$0	because	that's	its	value	after	the	final	payment.	However,	if	you
want	to	save	$50,000	over	18	years	for	your	child's	education,	then
$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

The	rate	and	nper	arguments	must	be	calculated	using	payment	periods
expressed	in	the	same	units.	For	example,	if	rate	is	calculated	using	months,
nper	must	also	be	calculated	using	months.

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	

IRR	Function

				 				

Returns	a	Double	specifying	the	internal	rate	of	return	for	a	series	of	periodic
cash	flows	(payments	and	receipts).

Syntax

IRR(values()[,	guess])

The	IRR	function	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
values() Required.	Array	of	Double	specifying	cash	flow	values.	The	array

must	contain	at	least	one	negative	value	(a	payment)	and	one
positive	value	(a	receipt).

guess Optional.	Variant	specifying	value	you	estimate	will	be	returned	by
IRR.	If	omitted,	guess	is	0.1	(10	percent).

Remarks

The	internal	rate	of	return	is	the	interest	rate	received	for	an	investment
consisting	of	payments	and	receipts	that	occur	at	regular	intervals.

The	IRR	function	uses	the	order	of	values	within	the	array	to	interpret	the	order
of	payments	and	receipts.	Be	sure	to	enter	your	payment	and	receipt	values	in
the	correct	sequence.	The	cash	flow	for	each	period	doesn't	have	to	be	fixed,	as	it
is	for	an	annuity.

IRR	is	calculated	by	iteration.	Starting	with	the	value	of	guess,	IRR	cycles
through	the	calculation	until	the	result	is	accurate	to	within	0.00001	percent.	If
IRR	can't	find	a	result	after	20	tries,	it	fails.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

IsArray	Function

				 				

Returns	a	Boolean	value	indicating	whether	a	variable	is	an	array.

Syntax

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

IsArray(varname)

The	required	varname	argument	is	an	identifier	specifying	a	variable.

Remarks

IsArray	returns	True	if	the	variable	is	an	array;	otherwise,	it	returns	False.
IsArray	is	especially	useful	with	variants	containing	arrays.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

IsDate	Function

				 				

Returns	a	Boolean	value	indicating	whether	an	expression	can	be	converted	to	a
date.

JavaScript:hhobj_4.Click()

Syntax

IsDate(expression)

The	required	expression	argument	is	a	Variant	containing	a	date	expression	or
string	expression	recognizable	as	a	date	or	time.

Remarks

IsDate	returns	True	if	the	expression	is	a	date	or	is	recognizable	as	a	valid	date;
otherwise,	it	returns	False.	In	Microsoft	Windows,	the	range	of	valid	dates	is
January	1,	100	A.D.	through	December	31,	9999	A.D.;	the	ranges	vary	among
operating	systems.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	 	

IsEmpty	Function

				 				

Returns	a	Boolean	value	indicating	whether	a	variable	has	been	initialized.

Syntax

IsEmpty(expression)

The	required	expression	argument	is	a	Variant	containing	a	numeric	or	string
expression.	However,	because	IsEmpty	is	used	to	determine	if	individual
variables	are	initialized,	the	expression	argument	is	most	often	a	single	variable
name.

Remarks

IsEmpty	returns	True	if	the	variable	is	uninitialized,	or	is	explicitly	set	to
Empty;	otherwise,	it	returns	False.	False	is	always	returned	if	expression
contains	more	than	one	variable.	IsEmpty	only	returns	meaningful	information
for	variants.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	 	

IsError	Function

				 				

Returns	a	Boolean	value	indicating	whether	an	expression	is	an	error	value.

Syntax

IsError(expression)

The	required	expression	argument	can	be	any	valid	expression.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Error	values	are	created	by	converting	real	numbers	to	error	values	using	the
CVErr	function.	The	IsError	function	is	used	to	determine	if	a	numeric
expression	represents	an	error.	IsError	returns	True	if	the	expression	argument
indicates	an	error;	otherwise,	it	returns	False.

JavaScript:hhobj_6.Click()

	 	

IsMissing	Function

				 				

Returns	a	Boolean	value	indicating	whether	an	optional	Variant	argument	has
been	passed	to	a	procedure.

Syntax

IsMissing(argname)

The	required	argname	argument	contains	the	name	of	an	optional	Variant
procedure	argument.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Remarks

Use	the	IsMissing	function	to	detect	whether	or	not	optional	Variant	arguments
have	been	provided	in	calling	a	procedure.	IsMissing	returns	True	if	no	value
has	been	passed	for	the	specified	argument;	otherwise,	it	returns	False.	If
IsMissing	returns	True	for	an	argument,	use	of	the	missing	argument	in	other
code	may	cause	a	user-defined	error.	If	IsMissing	is	used	on	a	ParamArray
argument,	it	always	returns	False.	To	detect	an	empty	ParamArray,	test	to	see	if
the	array’s	upper	bound	is	less	than	its	lower	bound.

Note			IsMissing	does	not	work	on	simple	data	types	(such	as	Integer	or
Double)	because,	unlike	Variants,	they	don't	have	a	provision	for	a	"missing"
flag	bit.	Because	of	this,	the	syntax	for	typed	optional	arguments	allows	you	to
specify	a	default	value.	If	the	argument	is	omitted	when	the	procedure	is	called,
then	the	argument	will	have	this	default	value,	as	in	the	example	below:

Sub	MySub(Optional	MyVar	As	String	=	"specialvalue")

				If	MyVar	=	"specialvalue"	Then

								'	MyVar	was	omitted.

				Else

				...

End	Sub

In	many	cases	you	can	omit	the	If	MyVar	test	entirely	by	making	the	default
value	equal	to	the	value	you	want	MyVar	to	contain	if	the	user	omits	it	from	the
function	call.	This	makes	your	code	more	concise	and	efficient.

JavaScript:hhobj_6.Click()

	 	

	 	

	 	

	
IsNull	Function

				 				

Returns	a	Boolean	value	that	indicates	whether	an	expression	contains	no	valid
data	(Null).

Syntax

IsNull(expression)

The	required	expression	argument	is	a	Variant	containing	a	numeric	expression
or	string	expression.

Remarks

IsNull	returns	True	if	expression	is	Null;	otherwise,	IsNull	returns	False.	If
expression	consists	of	more	than	one	variable,	Null	in	any	constituent	variable
causes	True	to	be	returned	for	the	entire	expression.

The	Null	value	indicates	that	the	Variant	contains	no	valid	data.	Null	is	not	the
same	as	Empty,	which	indicates	that	a	variable	has	not	yet	been	initialized.	It	is
also	not	the	same	as	a	zero-length	string	(""),	which	is	sometimes	referred	to	as	a
null	string.

Important			Use	the	IsNull	function	to	determine	whether	an	expression
contains	a	Null	value.	Expressions	that	you	might	expect	to	evaluate	to	True
under	some	circumstances,	such	as	If	Var	=	Null	and	If	Var	<>	Null,	are
always	False.	This	is	because	any	expression	containing	a	Null	is	itself	Null
and,	therefore,	False.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	 	

	 	

	
IsNumeric	Function

				 				

Returns	a	Boolean	value	indicating	whether	an	expression	can	be	evaluated	as	a
number.

JavaScript:hhobj_4.Click()

Syntax

IsNumeric(expression)

The	required	expression	argument	is	a	Variant	containing	a	numeric	expression
or	string	expression.

Remarks

IsNumeric	returns	True	if	the	entire	expression	is	recognized	as	a	number;
otherwise,	it	returns	False.

IsNumeric	returns	False	if	expression	is	a	date	expression.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	
IsObject	Function

				 				

Returns	a	Boolean	value	indicating	whether	an	identifier	represents	an	object
variable.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

IsObject(identifier)

The	required	identifier	argument	is	a	variable	name.

Remarks

IsObject	is	useful	only	in	determining	whether	a	Variant	is	of	VarType
vbObject.	This	could	occur	if	the	Variant	actually	references	(or	once
referenced)	an	object,	or	if	it	contains	Nothing.

IsObject	returns	True	if	identifier	is	a	variable	declared	with	Object	type	or	any
valid	class	type,	or	if	identifier	is	a	Variant	of	VarType	vbObject,	or	a	user-
defined	object;	otherwise,	it	returns	False.	IsObject	returns	True	even	if	the
variable	has	been	set	to	Nothing.

Use	error	trapping	to	be	sure	that	an	object	reference	is	valid.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	Join

Function

				 				

Description

Returns	a	string	created	by	joining	a	number	of	substrings	contained	in	an	array.

Syntax

Join(sourcearray[,	delimiter])

The	Join	function	syntax	has	these	named	arguments:

Part Description
sourcearray Required.	One-dimensional	array	containing	substrings	to	be

joined.
delimiter Optional.	String	character	used	to	separate	the	substrings	in	the

returned	string.	If	omitted,	the	space	character	("	")	is	used.	If
delimiter	is	a	zero-length	string	(""),	all	items	in	the	list	are

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

concatenated	with	no	delimiters.

	 	

LBound	Function

				 				

Returns	a	Long	containing	the	smallest	available	subscript	for	the	indicated
dimension	of	an	array.

Syntax

LBound(arrayname[,	dimension])

The	LBound	function	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

arrayname Required.	Name	of	the	array	variable;	follows	standard	variable
naming	conventions.

dimension Optional;	Variant	(Long).	Whole	number	indicating	which
dimension's	lower	bound	is	returned.	Use	1	for	the	first
dimension,	2	for	the	second,	and	so	on.	If	dimension	is	omitted,	1
is	assumed.

Remarks

The	LBound	function	is	used	with	the	UBound	function	to	determine	the	size	of
an	array.	Use	the	UBound	function	to	find	the	upper	limit	of	an	array	dimension.

LBound	returns	the	values	in	the	following	table	for	an	array	with	the	following
dimensions:

Dim	A(1	To	100,	0	To	3,	-3	To	4)

Statement Return	Value
LBound(A,	1) 1
LBound(A,	2) 0
LBound(A,	3) -3

The	default	lower	bound	for	any	dimension	is	either	0	or	1,	depending	on	the
setting	of	the	Option	Base	statement.	The	base	of	an	array	created	with	the
Array	function	is	zero;	it	is	unaffected	by	Option	Base.

Arrays	for	which	dimensions	are	set	using	the	To	clause	in	a	Dim,	Private,
Public,	ReDim,	or	Static	statement	can	have	any	integer	value	as	a	lower
bound.

JavaScript:hhobj_6.Click()

	 	

	
LCase	Function

				 				

Returns	a	String	that	has	been	converted	to	lowercase.

Syntax

LCase(string)

The	required	string	argument	is	any	valid	string	expression.	If	string	contains
Null,	Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Remarks

Only	uppercase	letters	are	converted	to	lowercase;	all	lowercase	letters	and
nonletter	characters	remain	unchanged.

	 	

	

Left	Function

				 				

Returns	a	Variant	(String)	containing	a	specified	number	of	characters	from	the
left	side	of	a	string.

Syntax

Left(string,	length)

The	Left	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()

Part Description
string Required.	String	expression	from	which	the	leftmost	characters	are

returned.	If	string	contains	Null,	Null	is	returned.
length Required;	Variant	(Long).	Numeric	expression	indicating	how	many

characters	to	return.	If	0,	a	zero-length	string	("")	is	returned.	If
greater	than	or	equal	to	the	number	of	characters	in	string,	the	entire
string	is	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

Note			Use	the	LeftB	function	with	byte	data	contained	in	a	string.	Instead	of
specifying	the	number	of	characters	to	return,	length	specifies	the	number	of
bytes.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

	 	

	 	

Len	Function

				 				

Returns	a	Long	containing	the	number	of	characters	in	a	string	or	the	number	of
bytes	required	to	store	a	variable.

Syntax

Len(string	|	varname)

The	Len	function	syntax	has	these	parts:

Part Description
string Any	valid	string	expression.	If	string	contains	Null,	Null	is

returned.
Varname Any	valid	variable	name.	If	varname	contains	Null,	Null	is

returned.	If	varname	is	a	Variant,	Len	treats	it	the	same	as	a	String
and	always	returns	the	number	of	characters	it	contains.

Remarks

One	(and	only	one)	of	the	two	possible	arguments	must	be	specified.	With	user-
defined	types,	Len	returns	the	size	as	it	will	be	written	to	the	file.

Note			Use	the	LenB	function	with	byte	data	contained	in	a	string,	as	in	double-
byte	character	set	(DBCS)	languages.	Instead	of	returning	the	number	of
characters	in	a	string,	LenB	returns	the	number	of	bytes	used	to	represent	that

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

string.	With	user-defined	types,	LenB	returns	the	in-memory	size,	including	any
padding	between	elements.	For	sample	code	that	uses	LenB,	see	the	second
example	in	the	example	topic.

Note			Len	may	not	be	able	to	determine	the	actual	number	of	storage	bytes
required	when	used	with	variable-length	strings	in	user-defined	data	types.

JavaScript:hhobj_12.Click()

	 	

	

Loc	Function

				 				

Returns	a	Long	specifying	the	current	read/write	position	within	an	open	file.

Syntax

Loc(filenumber)

The	required	filenumber	argument	is	any	valid	Integer	file	number.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

The	following	describes	the	return	value	for	each	file	access	mode:

Mode Return	Value
Random Number	of	the	last	record	read	from	or	written	to	the	file.
Sequential Current	byte	position	in	the	file	divided	by	128.	However,

information	returned	by	Loc	for	sequential	files	is	neither	used
nor	required.

Binary Position	of	the	last	byte	read	or	written.

	 	

	
LOF	Function

				 				

Returns	a	Long	representing	the	size,	in	bytes,	of	a	file	opened	using	the	Open
statement.

Syntax

LOF(filenumber)

The	required	filenumber	argument	is	an	Integer	containing	a	valid	file	number.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Note			Use	the	FileLen	function	to	obtain	the	length	of	a	file	that	is	not	open.

	 	

	
Log	Function

				 				

Returns	a	Double	specifying	the	natural	logarithm	of	a	number.

Syntax

Log(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression
greater	than	zero.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

The	natural	logarithm	is	the	logarithm	to	the	base	e.	The	constant	e	is
approximately	2.718282.

You	can	calculate	base-n	logarithms	for	any	number	x	by	dividing	the	natural
logarithm	of	x	by	the	natural	logarithm	of	n	as	follows:

Logn(x)	=	Log(x)	/	Log(n)

The	following	example	illustrates	a	custom	Function	that	calculates	base-10
logarithms:

Static	Function	Log10(X)

				Log10	=	Log(X)	/	Log(10#)

End	Function

JavaScript:hhobj_7.Click()

	 	

LTrim,	RTrim,	and	Trim	Functions

				 				

Returns	a	Variant	(String)	containing	a	copy	of	a	specified	string	without
leading	spaces	(LTrim),	trailing	spaces	(RTrim),	or	both	leading	and	trailing
spaces	(Trim).

Syntax

LTrim(string)

RTrim(string)

Trim(string)

The	required	string	argument	is	any	valid	string	expression.	If	string	contains
Null,	Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

Mid	Function

				 				

Returns	a	Variant	(String)	containing	a	specified	number	of	characters	from	a
string.

Syntax

Mid(string,	start[,	length])

The	Mid	function	syntax	has	these	named	arguments:

Part Description
string Required.	String	expression	from	which	characters	are	returned.	If

string	contains	Null,	Null	is	returned.
start Required;	Long.	Character	position	in	string	at	which	the	part	to	be

taken	begins.	If	start	is	greater	than	the	number	of	characters	in
string,	Mid	returns	a	zero-length	string	("").

length Optional;	Variant	(Long).	Number	of	characters	to	return.	If	omitted
or	if	there	are	fewer	than	length	characters	in	the	text	(including	the
character	at	start),	all	characters	from	the	start	position	to	the	end	of
the	string	are	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

Note			Use	the	MidB	function	with	byte	data	contained	in	a	string,	as	in	double-
byte	character	set	languages.	Instead	of	specifying	the	number	of	characters,	the
arguments	specify	numbers	of	bytes.	For	sample	code	that	uses	MidB,	see	the
second	example	in	the	example	topic.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

Minute	Function

				 				

Returns	a	Variant	(Integer)	specifying	a	whole	number	between	0	and	59,
inclusive,	representing	the	minute	of	the	hour.

Syntax

Minute(time)

The	required	time	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	time.	If	time	contains	Null,
Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	

MIRR	Function

				 				

Returns	a	Double	specifying	the	modified	internal	rate	of	return	for	a	series	of
periodic	cash	flows	(payments	and	receipts).

Syntax

MIRR(values(),	finance_rate,	reinvest_rate)

The	MIRR	function	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
values() Required.	Array	of	Double	specifying	cash	flow	values.	The

array	must	contain	at	least	one	negative	value	(a	payment)	and
one	positive	value	(a	receipt).

finance_rate Required.	Double	specifying	interest	rate	paid	as	the	cost	of
financing.

reinvest_rate Required.	Double	specifying	interest	rate	received	on	gains
from	cash	reinvestment.

Remarks

The	modified	internal	rate	of	return	is	the	internal	rate	of	return	when	payments
and	receipts	are	financed	at	different	rates.	The	MIRR	function	takes	into
account	both	the	cost	of	the	investment	(finance_rate)	and	the	interest	rate
received	on	reinvestment	of	cash	(reinvest_rate).

The	finance_rate	and	reinvest_rate	arguments	are	percentages	expressed	as
decimal	values.	For	example,	12	percent	is	expressed	as	0.12.

The	MIRR	function	uses	the	order	of	values	within	the	array	to	interpret	the
order	of	payments	and	receipts.	Be	sure	to	enter	your	payment	and	receipt	values
in	the	correct	sequence.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

Month	Function

				 				

Returns	a	Variant	(Integer)	specifying	a	whole	number	between	1	and	12,
inclusive,	representing	the	month	of	the	year.

Syntax

Month(date)

The	required	date	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	date.	If	date	contains	Null,
Null	is	returned.

Note	If	the	Calendar	property	setting	is	Gregorian,	the	returned	integer
represents	the	Gregorian	day	of	the	week	for	the	date	argument.	If	the	calendar	is
Hijri,	the	returned	integer	represents	the	Hijri	day	of	the	week	for	the	date
argument.	For	Hijri	dates,	the	argument	number	is	any	numeric	expression	that
can	represent	a	date	and/or	time	from	1/1/100	(Gregorian	Aug	2,	718)	through
4/3/9666	(Gregorian	Dec	31,	9999).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

MonthName	Function

				 				

Description

Returns	a	string	indicating	the	specified	month.

Syntax

MonthName(month[,	abbreviate])

The	MonthName	function	syntax	has	these	parts:

Part Description
month Required.	The	numeric	designation	of	the	month.	For	example,

January	is	1,	February	is	2,	and	so	on.
abbreviate Optional.	Boolean	value	that	indicates	if	the	month	name	is	to

be	abbreviated.	If	omitted,	the	default	is	False,	which	means
that	the	month	name	is	not	abbreviated.

	 	

	 	

	 	

	

MsgBox	Function

				 				

Displays	a	message	in	a	dialog	box,	waits	for	the	user	to	click	a	button,	and
returns	an	Integer	indicating	which	button	the	user	clicked.

Syntax

MsgBox(prompt[,	buttons]	[,	title]	[,	helpfile,	context])

The	MsgBox	function	syntax	has	these	named	arguments:

Part Description
prompt Required.	String	expression	displayed	as	the	message	in	the	dialog

box.	The	maximum	length	of	prompt	is	approximately	1024
characters,	depending	on	the	width	of	the	characters	used.	If
prompt	consists	of	more	than	one	line,	you	can	separate	the	lines
using	a	carriage	return	character	(Chr(13)),	a	linefeed	character
(Chr(10)),	or	carriage	return	–	linefeed	character	combination
(Chr(13)	&	Chr(10))	between	each	line.

buttons Optional.	Numeric	expression	that	is	the	sum	of	values	specifying
the	number	and	type	of	buttons	to	display,	the	icon	style	to	use,	the
identity	of	the	default	button,	and	the	modality	of	the	message	box.
If	omitted,	the	default	value	for	buttons	is	0.

title Optional.	String	expression	displayed	in	the	title	bar	of	the	dialog
box.	If	you	omit	title,	the	application	name	is	placed	in	the	title	bar.

helpfile Optional.	String	expression	that	identifies	the	Help	file	to	use	to
provide	context-sensitive	Help	for	the	dialog	box.	If	helpfile	is
provided,	context	must	also	be	provided.

context Optional.	Numeric	expression	that	is	the	Help	context	number
assigned	to	the	appropriate	Help	topic	by	the	Help	author.	If
context	is	provided,	helpfile	must	also	be	provided.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Settings

The	buttons	argument	settings	are:

Constant Value Description
vbOKOnly 0 Display	OK	button	only.
vbOKCancel 1 Display	OK	and	Cancel	buttons.
vbAbortRetryIgnore 2 Display	Abort,	Retry,	and	Ignore

buttons.
vbYesNoCancel 3 Display	Yes,	No,	and	Cancel	buttons.
vbYesNo 4 Display	Yes	and	No	buttons.
vbRetryCancel 5 Display	Retry	and	Cancel	buttons.
vbCritical 16 Display	Critical	Message	icon.
vbQuestion 32 Display	Warning	Query	icon.
vbExclamation 48 Display	Warning	Message	icon.
vbInformation 64 Display	Information	Message	icon.
vbDefaultButton1 0 First	button	is	default.
vbDefaultButton2 256 Second	button	is	default.
vbDefaultButton3 512 Third	button	is	default.
vbDefaultButton4 768 Fourth	button	is	default.
vbApplicationModal 0 Application	modal;	the	user	must

respond	to	the	message	box	before
continuing	work	in	the	current
application.

vbSystemModal 4096 System	modal;	all	applications	are
suspended	until	the	user	responds	to	the
message	box.

vbMsgBoxHelpButton 16384 Adds	Help	button	to	the	message	box
VbMsgBoxSetForeground 65536 Specifies	the	message	box	window	as

the	foreground	window
vbMsgBoxRight 524288 Text	is	right	aligned
vbMsgBoxRtlReading 1048576 Specifies	text	should	appear	as	right-to-

left	reading	on	Hebrew	and	Arabic
systems

JavaScript:hhobj_7.Click()

The	first	group	of	values	(0–5)	describes	the	number	and	type	of	buttons
displayed	in	the	dialog	box;	the	second	group	(16,	32,	48,	64)	describes	the	icon
style;	the	third	group	(0,	256,	512)	determines	which	button	is	the	default;	and
the	fourth	group	(0,	4096)	determines	the	modality	of	the	message	box.	When
adding	numbers	to	create	a	final	value	for	the	buttons	argument,	use	only	one
number	from	each	group.

Note			These	constants	are	specified	by	Visual	Basic	for	Applications.	As	a
result,	the	names	can	be	used	anywhere	in	your	code	in	place	of	the	actual
values.

Return	Values

Constant Value Description
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

Remarks

When	both	helpfile	and	context	are	provided,	the	user	can	press	F1	(Windows)
or	HELP	(Macintosh)	to	view	the	Help	topic	corresponding	to	the	context.	Some
host	applications,	for	example,	Microsoft	Excel,	also	automatically	add	a	Help
button	to	the	dialog	box.

If	the	dialog	box	displays	a	Cancel	button,	pressing	the	ESC	key	has	the	same
effect	as	clicking	Cancel.	If	the	dialog	box	contains	a	Help	button,	context-
sensitive	Help	is	provided	for	the	dialog	box.	However,	no	value	is	returned	until
one	of	the	other	buttons	is	clicked.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Note			To	specify	more	than	the	first	named	argument,	you	must	use	MsgBox	in
an	expression.	To	omit	some	positional	arguments,	you	must	include	the
corresponding	comma	delimiter.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Now	Function

				 				

Returns	a	Variant	(Date)	specifying	the	current	date	and	time	according	your
computer's	system	date	and	time.

Syntax

Now

	 	

	

NPer	Function

				 				

Returns	a	Double	specifying	the	number	of	periods	for	an	annuity	based	on
periodic,	fixed	payments	and	a	fixed	interest	rate.

Syntax

NPer(rate,	pmt,	pv[,	fv[,	type]])

The	NPer	function	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

pmt Required.	Double	specifying	payment	to	be	made	each	period.
Payments	usually	contain	principal	and	interest	that	doesn't	change	over
the	life	of	the	annuity.

pv Required.	Double	specifying	present	value,	or	value	today,	of	a	series	of
future	payments	or	receipts.	For	example,	when	you	borrow	money	to
buy	a	car,	the	loan	amount	is	the	present	value	to	the	lender	of	the
monthly	car	payments	you	will	make.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want	after
you've	made	the	final	payment.	For	example,	the	future	value	of	a	loan
is	$0	because	that's	its	value	after	the	final	payment.	However,	if	you
want	to	save	$50,000	over	18	years	for	your	child's	education,	then
$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

NPV	Function

				 				

Returns	a	Double	specifying	the	net	present	value	of	an	investment	based	on	a
series	of	periodic	cash	flows	(payments	and	receipts)	and	a	discount	rate.

Syntax

NPV(rate,	values())

The	NPV	function	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

rate Required.	Double	specifying	discount	rate	over	the	length	of	the
period,	expressed	as	a	decimal.

values() Required.	Array	of	Double	specifying	cash	flow	values.	The	array
must	contain	at	least	one	negative	value	(a	payment)	and	one
positive	value	(a	receipt).

Remarks

The	net	present	value	of	an	investment	is	the	current	value	of	a	future	series	of
payments	and	receipts.

The	NPV	function	uses	the	order	of	values	within	the	array	to	interpret	the	order
of	payments	and	receipts.	Be	sure	to	enter	your	payment	and	receipt	values	in
the	correct	sequence.

The	NPV	investment	begins	one	period	before	the	date	of	the	first	cash	flow
value	and	ends	with	the	last	cash	flow	value	in	the	array.

The	net	present	value	calculation	is	based	on	future	cash	flows.	If	your	first	cash
flow	occurs	at	the	beginning	of	the	first	period,	the	first	value	must	be	added	to
the	value	returned	by	NPV	and	must	not	be	included	in	the	cash	flow	values	of
values().

The	NPV	function	is	similar	to	the	PV	function	(present	value)	except	that	the
PV	function	allows	cash	flows	to	begin	either	at	the	end	or	the	beginning	of	a
period.	Unlike	the	variable	NPV	cash	flow	values,	PV	cash	flows	must	be	fixed
throughout	the	investment.

JavaScript:hhobj_6.Click()

	 	

	 	

Oct	Function

				 				

Returns	a	Variant	(String)	representing	the	octal	value	of	a	number.

Syntax

Oct(number)

The	required	number	argument	is	any	valid	numeric	expression	or	string
expression.

Remarks

If	number	is	not	already	a	whole	number,	it	is	rounded	to	the	nearest	whole
number	before	being	evaluated.

If	number	is Oct	returns
Null Null
Empty Zero	(0)
Any	other	number Up	to	11	octal	characters

You	can	represent	octal	numbers	directly	by	preceding	numbers	in	the	proper
range	with	&O.	For	example,	&O10	is	the	octal	notation	for	decimal	8.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	

Partition	Function

				 				

Returns	a	Variant	(String)	indicating	where	a	number	occurs	within	a	calculated
series	of	ranges.

Syntax

Partition(number,	start,	stop,	interval)

The	Partition	function	syntax	has	these	named	arguments:

Part Description
number Required.	Whole	number	that	you	want	to	evaluate	against

the	ranges.
start Required.	Whole	number	that	is	the	start	of	the	overall

range	of	numbers.	The	number	can't	be	less	than	0.
stop Required.	Whole	number	that	is	the	end	of	the	overall	range

JavaScript:hhobj_4.Click()

of	numbers.	The	number	can't	be	equal	to	or	less	than	start.

Remarks

The	Partition	function	identifies	the	particular	range	in	which	number	falls	and
returns	a	Variant	(String)	describing	that	range.	The	Partition	function	is	most
useful	in	queries.	You	can	create	a	select	query	that	shows	how	many	orders	fall
within	various	ranges,	for	example,	order	values	from	1	to	1000,	1001	to	2000,
and	so	on.

The	following	table	shows	how	the	ranges	are	determined	using	three	sets	of
start,	stop,	and	interval	parts.	The	First	Range	and	Last	Range	columns	show
what	Partition	returns.	The	ranges	are	represented	by	lowervalue:uppervalue,
where	the	low	end	(lowervalue)	of	the	range	is	separated	from	the	high	end
(uppervalue)	of	the	range	with	a	colon	(:).

start stop interval Before	First First	Range Last	Range After	Last
0 99 5 "	:-1" "	0:	4" "	95:	99" "	100:	"
20 199 10 "	:	19" "	20:	29" "	190:	199" "	200:	"
100 1010 20 "	:	99" "	100:	119" "	1000:

1010"
"	1011:	"

In	the	table	shown	above,	the	third	line	shows	the	result	when	start	and	stop
define	a	set	of	numbers	that	can't	be	evenly	divided	by	interval.	The	last	range
extends	to	stop	(11	numbers)	even	though	interval	is	20.

If	necessary,	Partition	returns	a	range	with	enough	leading	spaces	so	that	there
are	the	same	number	of	characters	to	the	left	and	right	of	the	colon	as	there	are
characters	in	stop,	plus	one.	This	ensures	that	if	you	use	Partition	with	other
numbers,	the	resulting	text	will	be	handled	properly	during	any	subsequent	sort
operation.

If	interval	is	1,	the	range	is	number:number,	regardless	of	the	start	and	stop
arguments.	For	example,	if	interval	is	1,	number	is	100	and	stop	is	1000,
Partition	returns	"	100:	100".

If	any	of	the	parts	is	Null,	Partition	returns	a	Null.

JavaScript:hhobj_5.Click()

	 	

	 	

Pmt	Function

				 				

Returns	a	Double	specifying	the	payment	for	an	annuity	based	on	periodic,	fixed
payments	and	a	fixed	interest	rate.

JavaScript:hhobj_4.Click()

Syntax

Pmt(rate,	nper,	pv[,	fv[,	type]])

The	Pmt	function	has	these	named	arguments:

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

nper Required.	Integer	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year	car
loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pv Required.	Double	specifying	present	value	(or	lump	sum)	that	a	series
of	payments	to	be	paid	in	the	future	is	worth	now.	For	example,	when
you	borrow	money	to	buy	a	car,	the	loan	amount	is	the	present	value	to
the	lender	of	the	monthly	car	payments	you	will	make.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want	after
you've	made	the	final	payment.	For	example,	the	future	value	of	a	loan
is	$0	because	that's	its	value	after	the	final	payment.	However,	if	you
want	to	save	$50,000	over	18	years	for	your	child's	education,	then
$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

The	rate	and	nper	arguments	must	be	calculated	using	payment	periods
expressed	in	the	same	units.	For	example,	if	rate	is	calculated	using	months,
nper	must	also	be	calculated	using	months.

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

	 	

	 	

PPmt	Function

				 				

Returns	a	Double	specifying	the	principal	payment	for	a	given	period	of	an
annuity	based	on	periodic,	fixed	payments	and	a	fixed	interest	rate.

JavaScript:hhobj_4.Click()

Syntax

PPmt(rate,	per,	nper,	pv[,	fv[,	type]])

The	PPmt	function	has	these	named	arguments:

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

per Required.	Integer	specifying	payment	period	in	the	range	1	through
nper.

nper Required.	Integer	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year	car
loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pv Required.	Double	specifying	present	value,	or	value	today,	of	a	series	of
future	payments	or	receipts.	For	example,	when	you	borrow	money	to
buy	a	car,	the	loan	amount	is	the	present	value	to	the	lender	of	the
monthly	car	payments	you	will	make.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want	after
you've	made	the	final	payment.	For	example,	the	future	value	of	a	loan
is	$0	because	that's	its	value	after	the	final	payment.	However,	if	you
want	to	save	$50,000	over	18	years	for	your	child's	education,	then
$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

The	rate	and	nper	arguments	must	be	calculated	using	payment	periods
expressed	in	the	same	units.	For	example,	if	rate	is	calculated	using	months,
nper	must	also	be	calculated	using	months.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

	 	

	 	

PV	Function

				 				

Returns	a	Double	specifying	the	present	value	of	an	annuity	based	on	periodic,
fixed	payments	to	be	paid	in	the	future	and	a	fixed	interest	rate.

JavaScript:hhobj_4.Click()

Syntax

PV(rate,	nper,	pmt[,	fv[,	type]])

The	PV	function	has	these	named	arguments:

Part Description
rate Required.	Double	specifying	interest	rate	per	period.	For	example,	if

you	get	a	car	loan	at	an	annual	percentage	rate	(APR)	of	10	percent	and
make	monthly	payments,	the	rate	per	period	is	0.1/12,	or	0.0083.

nper Required.	Integer	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year	car
loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pmt Required.	Double	specifying	payment	to	be	made	each	period.
Payments	usually	contain	principal	and	interest	that	doesn't	change	over
the	life	of	the	annuity.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want	after
you've	made	the	final	payment.	For	example,	the	future	value	of	a	loan
is	$0	because	that's	its	value	after	the	final	payment.	However,	if	you
want	to	save	$50,000	over	18	years	for	your	child's	education,	then
$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	when	payments	are	due.	Use	0	if	payments
are	due	at	the	end	of	the	payment	period,	or	use	1	if	payments	are	due	at
the	beginning	of	the	period.	If	omitted,	0	is	assumed.

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

The	rate	and	nper	arguments	must	be	calculated	using	payment	periods
expressed	in	the	same	units.	For	example,	if	rate	is	calculated	using	months,
nper	must	also	be	calculated	using	months.

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

positive	numbers.

	

QBColor	Function

				 				

Returns	a	Long	representing	the	RGB	color	code	corresponding	to	the	specified
color	number.

Syntax

QBColor(color)

The	required	color	argument	is	a	whole	number	in	the	range	0–15.

Settings

The	color	argument	has	these	settings:

Number Color Number Color
0 Black 8 Gray
1 Blue 9 Light	Blue

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

2 Green 10 Light	Green
3 Cyan 11 Light	Cyan
4 Red 12 Light	Red
5 Magenta 13 Light	Magenta
6 Yellow 14 Light	Yellow
7 White 15 Bright	White

Remarks

The	color	argument	represents	color	values	used	by	earlier	versions	of	Basic
(such	as	Microsoft	Visual	Basic	for	MS-DOS	and	the	Basic	Compiler).	Starting
with	the	least-significant	byte,	the	returned	value	specifies	the	red,	green,	and
blue	values	used	to	set	the	appropriate	color	in	the	RGB	system	used	by	Visual
Basic	for	Applications.

	 	

	

Rate	Function

				 				

Returns	a	Double	specifying	the	interest	rate	per	period	for	an	annuity.

Syntax

Rate(nper,	pmt,	pv[,	fv[,	type[,	guess]]])

The	Rate	function	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

nper Required.	Double	specifying	total	number	of	payment	periods	in	the
annuity.	For	example,	if	you	make	monthly	payments	on	a	four-year
car	loan,	your	loan	has	a	total	of	4	*	12	(or	48)	payment	periods.

pmt Required.	Double	specifying	payment	to	be	made	each	period.
Payments	usually	contain	principal	and	interest	that	doesn't	change
over	the	life	of	the	annuity.

pv Required.	Double	specifying	present	value,	or	value	today,	of	a	series
of	future	payments	or	receipts.	For	example,	when	you	borrow	money
to	buy	a	car,	the	loan	amount	is	the	present	value	to	the	lender	of	the
monthly	car	payments	you	will	make.

fv Optional.	Variant	specifying	future	value	or	cash	balance	you	want
after	you	make	the	final	payment.	For	example,	the	future	value	of	a
loan	is	$0	because	that's	its	value	after	the	final	payment.	However,	if
you	want	to	save	$50,000	over	18	years	for	your	child's	education,
then	$50,000	is	the	future	value.	If	omitted,	0	is	assumed.

type Optional.	Variant	specifying	a	number	indicating	when	payments	are
due.	Use	0	if	payments	are	due	at	the	end	of	the	payment	period,	or
use	1	if	payments	are	due	at	the	beginning	of	the	period.	If	omitted,	0
is	assumed.

guess Optional.	Variant	specifying	value	you	estimate	will	be	returned	by
Rate.	If	omitted,	guess	is	0.1	(10	percent).

Remarks

An	annuity	is	a	series	of	fixed	cash	payments	made	over	a	period	of	time.	An
annuity	can	be	a	loan	(such	as	a	home	mortgage)	or	an	investment	(such	as	a
monthly	savings	plan).

For	all	arguments,	cash	paid	out	(such	as	deposits	to	savings)	is	represented	by
negative	numbers;	cash	received	(such	as	dividend	checks)	is	represented	by
positive	numbers.

Rate	is	calculated	by	iteration.	Starting	with	the	value	of	guess,	Rate	cycles
through	the	calculation	until	the	result	is	accurate	to	within	0.00001	percent.	If
Rate	can't	find	a	result	after	20	tries,	it	fails.	If	your	guess	is	10	percent	and	Rate
fails,	try	a	different	value	for	guess.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	Replace

Function

				 				

Description

Returns	a	string	in	which	a	specified	substring	has	been	replaced	with	another
substring	a	specified	number	of	times.

Syntax

Replace(expression,	find,	replace[,	start[,	count[,	compare]]])

The	Replace	function	syntax	has	these	named	arguments:

Part Description
expression Required.	String	expression	containing	substring	to

replace.
find Required.	Substring	being	searched	for.
replace Required.	Replacement	substring.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

start Optional.	Position	within	expression	where	substring
search	is	to	begin.	If	omitted,	1	is	assumed.

count Optional.	Number	of	substring	substitutions	to
perform.	If	omitted,	the	default	value	is	–1,	which
means	make	all	possible	substitutions.

compare Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	See
Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbUseCompareOption –1 Performs	a	comparison	using	the	setting	of

the	Option	Compare	statement.
vbBinaryCompare 0 Performs	a	binary	comparison.
vbTextCompare 1 Performs	a	textual	comparison.
vbDatabaseCompare 2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in	your
database.

Return	Values

Replace	returns	the	following	values:

If Replace	returns
expression	is	zero-length Zero-length	string	("")
expression	is	Null An	error.
find	is	zero-length Copy	of	expression.
replace	is	zero-length Copy	of	expression	with	all	occurences	of

find	removed.
start	>	Len(expression) Zero-length	string.
count	is	0 Copy	of	expression.

Remarks

The	return	value	of	the	Replace	function	is	a	string,	with	substitutions	made,
that	begins	at	the	position	specified	by	start	and	and	concludes	at	the	end	of	the
expression	string.	It	is	not	a	copy	of	the	original	string	from	start	to	finish.

	 	

	 	

RGB	Function

				 				

Returns	a	Long	whole	number	representing	an	RGB	color	value.

Syntax

JavaScript:hhobj_4.Click()

RGB(red,	green,	blue)

The	RGB	function	syntax	has	these	named	arguments:

Part Description
red Required;	Variant	(Integer).	Number	in	the	range	0–255,

inclusive,	that	represents	the	red	component	of	the	color.
green Required;	Variant	(Integer).	Number	in	the	range	0–255,

inclusive,	that	represents	the	green	component	of	the	color.
blue Required;	Variant	(Integer).	Number	in	the	range	0–255,

inclusive,	that	represents	the	blue	component	of	the	color.

Remarks

Application	methods	and	properties	that	accept	a	color	specification	expect	that
specification	to	be	a	number	representing	an	RGB	color	value.	An	RGB	color
value	specifies	the	relative	intensity	of	red,	green,	and	blue	to	cause	a	specific
color	to	be	displayed.

The	value	for	any	argument	to	RGB	that	exceeds	255	is	assumed	to	be	255.

The	following	table	lists	some	standard	colors	and	the	red,	green,	and	blue
values	they	include:

Color Red	Value Green	Value Blue	Value
Black 0 0 0
Blue 0 0 255
Green 0 255 0
Cyan 0 255 255
Red 255 0 0
Magenta 255 0 255
Yellow 255 255 0
White 255 255 255

The	RGB	color	values	returned	by	this	function	are	incompatible	with	those	used

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

by	the	Macintosh	operating	system.	They	may	be	used	within	the	context	of
Microsoft	applications	for	the	Macintosh,	but	should	not	be	used	when
communicating	color	changes	directly	to	the	Macintosh	operating	system.

	 	

	

Right	Function

				 				

Returns	a	Variant	(String)	containing	a	specified	number	of	characters	from	the
right	side	of	a	string.

Syntax

Right(string,	length)

The	Right	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()

Part Description
string Required.	String	expression	from	which	the	rightmost	characters	are

returned.	If	string	contains	Null,	Null	is	returned.
length Required;	Variant	(Long).	Numeric	expression	indicating	how	many

characters	to	return.	If	0,	a	zero-length	string	("")	is	returned.	If
greater	than	or	equal	to	the	number	of	characters	in	string,	the	entire
string	is	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

Note			Use	the	RightB	function	with	byte	data	contained	in	a	string.	Instead	of
specifying	the	number	of	characters	to	return,	length	specifies	the	number	of
bytes.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	

Rnd	Function

				 				

Returns	a	Single	containing	a	random	number.

Syntax

Rnd[(number)]

The	optional	number	argument	is	a	Single	or	any	valid	numeric	expression.

Return	Values

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

If	number	is Rnd	generates
Less	than	zero The	same	number	every	time,	using	number	as	the

seed.
Greater	than	zero The	next	random	number	in	the	sequence.
Equal	to	zero The	most	recently	generated	number.
Not	supplied The	next	random	number	in	the	sequence.

Remarks

The	Rnd	function	returns	a	value	less	than	1	but	greater	than	or	equal	to	zero.

The	value	of	number	determines	how	Rnd	generates	a	random	number:

For	any	given	initial	seed,	the	same	number	sequence	is	generated	because	each
successive	call	to	the	Rnd	function	uses	the	previous	number	as	a	seed	for	the
next	number	in	the	sequence.

Before	calling	Rnd,	use	the	Randomize	statement	without	an	argument	to
initialize	the	random-number	generator	with	a	seed	based	on	the	system	timer.

To	produce	random	integers	in	a	given	range,	use	this	formula:

Int((upperbound	-	lowerbound	+	1)	*	Rnd	+	lowerbound)

Here,	upperbound	is	the	highest	number	in	the	range,	and	lowerbound	is	the
lowest	number	in	the	range.

Note			To	repeat	sequences	of	random	numbers,	call	Rnd	with	a	negative
argument	immediately	before	using	Randomize	with	a	numeric	argument.	Using
Randomize	with	the	same	value	for	number	does	not	repeat	the	previous
sequence.

JavaScript:hhobj_7.Click()

Round	Function

				

				

Description

Returns	a	number	rounded	to	a	specified	number	of	decimal	places.

Syntax

Round(expression	[,numdecimalplaces])

The	Round	function	syntax	has	these	parts:

Part Description
expression Required.	Numeric	expression	being	rounded.
numdecimalplaces Optional.	Number	indicating	how	many	places	to	the

right	of	the	decimal	are	included	in	the	rounding.	If
omitted,	integers	are	returned	by	the	Round	function.

JavaScript:hhobj_4.Click()

	 	

	 	

Second	Function

				 				

Returns	a	Variant	(Integer)	specifying	a	whole	number	between	0	and	59,
inclusive,	representing	the	second	of	the	minute.

Syntax

Second(time)

The	required	time	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	time.	If	time	contains	Null,
Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	

Seek	Function

				 				

Returns	a	Long	specifying	the	current	read/write	position	within	a	file	opened
using	the	Open	statement.

Syntax

Seek(filenumber)

The	required	filenumber	argument	is	an	Integer	containing	a	valid	file	number.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Seek	returns	a	value	between	1	and	2,147,483,647	(equivalent	to	2^31	–	1),
inclusive.

The	following	describes	the	return	values	for	each	file	access	mode.

Mode Return	Value
Random Number	of	the	next	record	read	or	written
Binary,
Output,
Append,
Input

Byte	position	at	which	the	next	operation	takes	place.	The	first
byte	in	a	file	is	at	position	1,	the	second	byte	is	at	position	2,	and
so	on.

	Sgn

Function

				 				

Returns	a	Variant	(Integer)	indicating	the	sign	of	a	number.

Syntax

Sgn(number)

The	required	number	argument	can	be	any	valid	numeric	expression.

Return	Values

If	number	is Sgn	returns
Greater	than	zero 1
Equal	to	zero 0
Less	than	zero -1

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	sign	of	the	number	argument	determines	the	return	value	of	the	Sgn
function.

	 	

Shell	Function

				 				

Runs	an	executable	program	and	returns	a	Variant	(Double)	representing	the
program's	task	ID	if	successful,	otherwise	it	returns	zero.

Syntax

Shell(pathname[,windowstyle])

The	Shell	function	syntax	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()

pathname Required;	Variant	(String).	Name	of	the	program	to
execute	and	any	required	arguments	or	command-line
switches;	may	include	directory	or	folder	and	drive.	On	the
Macintosh,	you	can	use	the	MacID	function	to	specify	an
application's	signature	instead	of	its	name.	The	following
example	uses	the	signature	for	Microsoft	Word:	Shell
MacID("MSWD")

windowstyle Optional.	Variant	(Integer)	corresponding	to	the	style	of
the	window	in	which	the	program	is	to	be	run.	If
windowstyle	is	omitted,	the	program	is	started	minimized
with	focus.	On	the	Macintosh	(System	7.0	or	later),
windowstyle	only	determines	whether	or	not	the	application
gets	the	focus	when	it	is	run.

The	windowstyle	named	argument	has	these	values:

Constant Value Description
vbHide 0 Window	is	hidden	and	focus	is	passed	to

the	hidden	window.	The	vbHide	constant
is	not	applicable	on	Macintosh	platforms.

vbNormalFocus 1 Window	has	focus	and	is	restored	to	its
original	size	and	position.

vbMinimizedFocus 2 Window	is	displayed	as	an	icon	with
focus.

vbMaximizedFocus 3 Window	is	maximized	with	focus.
vbNormalNoFocus 4 Window	is	restored	to	its	most	recent	size

and	position.	The	currently	active
window	remains	active.

vbMinimizedNoFocus 6 Window	is	displayed	as	an	icon.	The
currently	active	window	remains	active.

Remarks

If	the	Shell	function	successfully	executes	the	named	file,	it	returns	the	task	ID

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

of	the	started	program.	The	task	ID	is	a	unique	number	that	identifies	the
running	program.	If	the	Shell	function	can't	start	the	named	program,	an	error
occurs.

On	the	Macintosh,	vbNormalFocus,	vbMinimizedFocus,	and
vbMaximizedFocus	all	place	the	application	in	the	foreground;	vbHide,
vbNoFocus,	vbMinimizeFocus	all	place	the	application	in	the	background.

Note			By	default,	the	Shell	function	runs	other	programs	asynchronously.	This
means	that	a	program	started	with	Shell	might	not	finish	executing	before	the
statements	following	the	Shell	function	are	executed.

	 	

	
Sin	Function

				 				

Returns	a	Double	specifying	the	sine	of	an	angle.

Syntax

Sin(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression	that
expresses	an	angle	in	radians.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

The	Sin	function	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right
triangle.	The	ratio	is	the	length	of	the	side	opposite	the	angle	divided	by	the
length	of	the	hypotenuse.

The	result	lies	in	the	range	-1	to	1.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to
degrees,	multiply	radians	by	180/pi.

JavaScript:hhobj_7.Click()

	 	

SLN	Function

				 				

Returns	a	Double	specifying	the	straight-line	depreciation	of	an	asset	for	a	single
period.

Syntax

SLN(cost,	salvage,	life)

The	SLN	function	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

cost Required.	Double	specifying	initial	cost	of	the	asset.
salvage Required.	Double	specifying	value	of	the	asset	at	the	end	of	its

useful	life.
life Required.	Double	specifying	length	of	the	useful	life	of	the	asset.

Remarks

The	depreciation	period	must	be	expressed	in	the	same	unit	as	the	life	argument.
All	arguments	must	be	positive	numbers.

JavaScript:hhobj_6.Click()

Space	Function

				 				

Returns	a	Variant	(String)	consisting	of	the	specified	number	of	spaces.

Syntax

Space(number)

The	required	number	argument	is	the	number	of	spaces	you	want	in	the	string.

Remarks

The	Space	function	is	useful	for	formatting	output	and	clearing	data	in	fixed-
length	strings.

JavaScript:hhobj_4.Click()

	
Spc	Function

				 				

Used	with	the	Print	#	statement	or	the	Print	method	to	position	output.

Syntax

Spc(n)

The	required	n	argument	is	the	number	of	spaces	to	insert	before	displaying	or
printing	the	next	expression	in	a	list.

Remarks

If	n	is	less	than	the	output	line	width,	the	next	print	position	immediately	follows
the	number	of	spaces	printed.	If	n	is	greater	than	the	output	line	width,	Spc
calculates	the	next	print	position	using	the	formula:

currentprintposition	+	(n	Mod	width)

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

For	example,	if	the	current	print	position	is	24,	the	output	line	width	is	80,	and
you	specify	Spc(90),	the	next	print	will	start	at	position	34	(current	print	position
+	the	remainder	of	90/80).	If	the	difference	between	the	current	print	position
and	the	output	line	width	is	less	than	n	(or	n	Mod	width),	the	Spc	function	skips
to	the	beginning	of	the	next	line	and	generates	spaces	equal	to	n	–	(width	–
currentprintposition).

Note			Make	sure	your	tabular	columns	are	wide	enough	to	accommodate	wide
letters.

When	you	use	the	Print	method	with	a	proportionally	spaced	font,	the	width	of
space	characters	printed	using	the	Spc	function	is	always	an	average	of	the	width
of	all	characters	in	the	point	size	for	the	chosen	font.	However,	there	is	no
correlation	between	the	number	of	characters	printed	and	the	number	of	fixed-
width	columns	those	characters	occupy.	For	example,	the	uppercase	letter	W
occupies	more	than	one	fixed-width	column	and	the	lowercase	letter	i	occupies
less	than	one	fixed-width	column.

	 	

Split	Function

				 				

Description

Returns	a	zero-based,	one-dimensional	array	containing	a	specified	number	of
substrings.

Syntax

Split(expression[,	delimiter[,	limit[,	compare]]])

The	Split	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
expression Required.	String	expression	containing	substrings

and	delimiters.	If	expression	is	a	zero-length
string(""),	Split	returns	an	empty	array,	that	is,	an
array	with	no	elements	and	no	data.

delimiter Optional.	String	character	used	to	identify	substring
limits.	If	omitted,	the	space	character	("	")	is	assumed
to	be	the	delimiter.	If	delimiter	is	a	zero-length
string,	a	single-element	array	containing	the	entire
expression	string	is	returned.

limit Optional.	Number	of	substrings	to	be	returned;	–1
indicates	that	all	substrings	are	returned.

compare Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	See
Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbUseCompareOption –1 Performs	a	comparison	using	the	setting	of

the	Option	Compare	statement.
vbBinaryCompare 0 Performs	a	binary	comparison.
vbTextCompare 1 Performs	a	textual	comparison.
vbDatabaseCompare 2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in	your
database.

JavaScript:hhobj_6.Click()

	 	

Sqr	Function

				 				

Returns	a	Double	specifying	the	square	root	of	a	number.

Syntax

Sqr(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression
greater	than	or	equal	to	zero.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

Str	Function

				 				

Returns	a	Variant	(String)	representation	of	a	number.

Syntax

Str(number)

The	required	number	argument	is	a	Long	containing	any	valid	numeric
expression.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

When	numbers	are	converted	to	strings,	a	leading	space	is	always	reserved	for
the	sign	of	number.	If	number	is	positive,	the	returned	string	contains	a	leading
space	and	the	plus	sign	is	implied.

Use	the	Format	function	to	convert	numeric	values	you	want	formatted	as	dates,
times,	or	currency	or	in	other	user-defined	formats.	Unlike	Str,	the	Format
function	doesn't	include	a	leading	space	for	the	sign	of	number.

Note			The	Str	function	recognizes	only	the	period	(.)	as	a	valid	decimal
separator.	When	different	decimal	separators	may	be	used	(for	example,	in
international	applications),	use	CStr	to	convert	a	number	to	a	string.

	 	

	 	

StrComp	Function

				 				

Returns	a	Variant	(Integer)	indicating	the	result	of	a	string	comparison.

Syntax

JavaScript:hhobj_4.Click()

StrComp(string1,	string2[,	compare])

The	StrComp	function	syntax	has	these	named	arguments:

Part Description
string1 Required.	Any	valid	string	expression.
string2 Required.	Any	valid	string	expression.
compare Optional.	Specifies	the	type	of	string	comparison.	If	the	compare

argument	is	Null,	an	error	occurs.	If	compare	is	omitted,	the
Option	Compare	setting	determines	the	type	of	comparison.

Settings

The	compare	argument	settings	are:

Constant Value Description
vbUseCompareOption -1 Performs	a	comparison	using	the	setting

of	the	Option	Compare	statement.
vbBinaryCompare 0 Performs	a	binary	comparison.
vbTextCompare 1 Performs	a	textual	comparison.
vbDatabaseCompare 2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in
your	database.

Return	Values

The	StrComp	function	has	the	following	return	values:

If StrComp	returns
string1	is	less	than	string2 -1
string1	is	equal	to	string2 0
string1	is	greater	than
string2

1

string1	or	string2	is	Null Null

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	 	

	 	

	

StrConv	Function

				 				

Returns	a	Variant	(String)	converted	as	specified.

Syntax

StrConv(string,	conversion,	LCID)

The	StrConv	function	syntax	has	these	named	arguments:

Part Description
string Required.	String	expression	to	be	converted.
conversion Required.	Integer.	The	sum	of	values	specifying	the	type	of

conversion	to	perform.
LCID Optional.	The	LocaleID,	if	different	than	the	system	LocaleID.

(The	system	LocaleID	is	the	default.)

Settings

The	conversion	argument	settings	are:

Constant Value Description
vbUpperCase 1 Converts	the	string	to	uppercase	characters.
vbLowerCase 2 Converts	the	string	to	lowercase	characters.
vbProperCase 3 Converts	the	first	letter	of	every	word	in	string	to

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

uppercase.
vbWide* 4* Converts	narrow	(single-byte)	characters	in	string	to

wide	(double-byte)	characters.
vbNarrow* 8* Converts	wide	(double-byte)	characters	in	string	to

narrow	(single-byte)	characters.
vbKatakana** 16** Converts	Hiragana	characters	in	string	to	Katakana

characters.
vbHiragana** 32** Converts	Katakana	characters	in	string	to	Hiragana

characters.
vbUnicode 64 Converts	the	string	to	Unicode	using	the	default	code

page	of	the	system.	(Not	available	on	the
Macintosh.)

vbFromUnicode 128 Converts	the	string	from	Unicode	to	the	default	code
page	of	the	system.	(Not	available	on	the
Macintosh.)

*Applies	to	Far	East	locales.

**Applies	to	Japan	only.

Note			These	constants	are	specified	by	Visual	Basic	for	Applications.	As	a
result,	they	may	be	used	anywhere	in	your	code	in	place	of	the	actual	values.
Most	can	be	combined,	for	example,	vbUpperCase	+	vbWide,	except	when
they	are	mutually	exclusive,	for	example,	vbUnicode	+	vbFromUnicode.	The
constants	vbWide,	vbNarrow,	vbKatakana,	and	vbHiragana	cause	run-time
errors	when	used	in	locales	where	they	do	not	apply.

The	following	are	valid	word	separators	for	proper	casing:	Null	(Chr$(0)),
horizontal	tab	(Chr$(9)),	linefeed	(Chr$(10)),	vertical	tab	(Chr$(11)),	form	feed
(Chr$(12)),	carriage	return	(Chr$(13)),	space	(SBCS)	(Chr$(32)).	The	actual
value	for	a	space	varies	by	country	for	DBCS.

Remarks

When	you're	converting	from	a	Byte	array	in	ANSI	format	to	a	string,	you
should	use	the	StrConv	function.	When	you're	converting	from	such	an	array	in

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

Unicode	format,	use	an	assignment	statement.

StrReverse	Function

				 				

Description

Returns	a	string	in	which	the	character	order	of	a	specified	string	is	reversed.

Syntax

StrReverse(expression)

The	expression	argument	is	the	string	whose	characters	are	to	be	reversed.	If
expression	is	a	zero-length	string	(""),	a	zero-length	string	is	returned.	If
expression	is	Null,	an	error	occurs.

	 	

	 	

	

String	Function

				 				

Returns	a	Variant	(String)	containing	a	repeating	character	string	of	the	length
specified.

Syntax

String(number,	character)

The	String	function	syntax	has	these	named	arguments:

Part Description
number Required;	Long.	Length	of	the	returned	string.	If	number	contains

Null,	Null	is	returned.
character Required;	Variant.	Character	code	specifying	the	character	or

string	expression	whose	first	character	is	used	to	build	the	return
string.	If	character	contains	Null,	Null	is	returned.

Remarks

If	you	specify	a	number	for	character	greater	than	255,	String	converts	the
number	to	a	valid	character	code	using	the	formula:

character	Mod	256

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

Switch	Function

				 				

Evaluates	a	list	of	expressions	and	returns	a	Variant	value	or	an	expression
associated	with	the	first	expression	in	the	list	that	is	True.

JavaScript:hhobj_4.Click()

Syntax

Switch(expr-1,	value-1[,	expr-2,	value-2	…	[,	expr-n,value-n]])

The	Switch	function	syntax	has	these	parts:

Part Description
expr Required.	Variant	expression	you	want	to	evaluate.
value Required.	Value	or	expression	to	be	returned	if	the

corresponding	expression	is	True.

Remarks

The	Switch	function	argument	list	consists	of	pairs	of	expressions	and	values.
The	expressions	are	evaluated	from	left	to	right,	and	the	value	associated	with
the	first	expression	to	evaluate	to	True	is	returned.	If	the	parts	aren't	properly
paired,	a	run-time	error	occurs.	For	example,	if	expr-1	is	True,	Switch	returns
value-1.	If	expr-1	is	False,	but	expr-2	is	True,	Switch	returns	value-2,	and	so	on.

Switch	returns	a	Null	value	if:

None	of	the	expressions	is	True.

The	first	True	expression	has	a	corresponding	value	that	is	Null.

Switch	evaluates	all	of	the	expressions,	even	though	it	returns	only	one	of	them.
For	this	reason,	you	should	watch	for	undesirable	side	effects.	For	example,	if
the	evaluation	of	any	expression	results	in	a	division	by	zero	error,	an	error
occurs.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

SYD	Function

				 				

Returns	a	Double	specifying	the	sum-of-years'	digits	depreciation	of	an	asset	for
a	specified	period.

Syntax

SYD(cost,	salvage,	life,	period)

The	SYD	function	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

cost Required.	Double	specifying	initial	cost	of	the	asset.
salvage Required.	Double	specifying	value	of	the	asset	at	the	end	of	its

useful	life.
life Required.	Double	specifying	length	of	the	useful	life	of	the	asset.
period Required.	Double	specifying	period	for	which	asset	depreciation	is

calculated.

Remarks

The	life	and	period	arguments	must	be	expressed	in	the	same	units.	For	example,
if	life	is	given	in	months,	period	must	also	be	given	in	months.	All	arguments
must	be	positive	numbers.

JavaScript:hhobj_6.Click()

	 	

	
Tab	Function

				 				

Used	with	the	Print	#	statement	or	the	Print	method	to	position	output.

Syntax

Tab[(n)]

The	optional	n	argument	is	the	column	number	moved	to	before	displaying	or
printing	the	next	expression	in	a	list.	If	omitted,	Tab	moves	the	insertion	point	to
the	beginning	of	the	next	print	zone.	This	allows	Tab	to	be	used	instead	of	a

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

comma	in	locales	where	the	comma	is	used	as	a	decimal	separator.

Remarks

If	the	current	print	position	on	the	current	line	is	greater	than	n,	Tab	skips	to	the
nth	column	on	the	next	output	line.	If	n	is	less	than	1,	Tab	moves	the	print
position	to	column	1.	If	n	is	greater	than	the	output	line	width,	Tab	calculates	the
next	print	position	using	the	formula:

n	Mod	width

For	example,	if	width	is	80	and	you	specify	Tab(90),	the	next	print	will	start	at
column	10	(the	remainder	of	90/80).	If	n	is	less	than	the	current	print	position,
printing	begins	on	the	next	line	at	the	calculated	print	position.	If	the	calculated
print	position	is	greater	than	the	current	print	position,	printing	begins	at	the
calculated	print	position	on	the	same	line.

The	leftmost	print	position	on	an	output	line	is	always	1.	When	you	use	the
Print	#	statement	to	print	to	files,	the	rightmost	print	position	is	the	current
width	of	the	output	file,	which	you	can	set	using	the	Width	#	statement.

Note			Make	sure	your	tabular	columns	are	wide	enough	to	accommodate	wide
letters.

When	you	use	the	Tab	function	with	the	Print	method,	the	print	surface	is
divided	into	uniform,	fixed-width	columns.	The	width	of	each	column	is	an
average	of	the	width	of	all	characters	in	the	point	size	for	the	chosen	font.
However,	there	is	no	correlation	between	the	number	of	characters	printed	and
the	number	of	fixed-width	columns	those	characters	occupy.	For	example,	the
uppercase	letter	W	occupies	more	than	one	fixed-width	column	and	the
lowercase	letter	i	occupies	less	than	one	fixed-width	column.

JavaScript:hhobj_7.Click()

	 	

	
Tan	Function

				 				

Returns	a	Double	specifying	the	tangent	of	an	angle.

Syntax

Tan(number)

The	required	number	argument	is	a	Double	or	any	valid	numeric	expression	that
expresses	an	angle	in	radians.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

Tan	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right	triangle.	The	ratio
is	the	length	of	the	side	opposite	the	angle	divided	by	the	length	of	the	side
adjacent	to	the	angle.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to
degrees,	multiply	radians	by	180/pi.

JavaScript:hhobj_7.Click()

Time	Function

				 				

Returns	a	Variant	(Date)	indicating	the	current	system	time.

Syntax

Time

Remarks

To	set	the	system	time,	use	the	Time	statement.

Timer	Function

				 				

Returns	a	Single	representing	the	number	of	seconds	elapsed	since	midnight.

Syntax

Timer

Remarks

In	Microsoft	Windows	the	Timer	function	returns	fractional	portions	of	a
second.	On	the	Macintosh,	timer	resolution	is	one	second.

	 	

	

TimeSerial	Function

				 				

Returns	a	Variant	(Date)	containing	the	time	for	a	specific	hour,	minute,	and
second.

Syntax

TimeSerial(hour,	minute,	second)

The	TimeSerial	function	syntax	has	these	named	arguments:

JavaScript:hhobj_4.Click()

Part Description
hour Required;	Variant	(Integer).	Number	between	0	(12:00

A.M.)	and	23	(11:00	P.M.),	inclusive,	or	a	numeric
expression.

minute Required;	Variant	(Integer).	Any	numeric	expression.
second Required;	Variant	(Integer).	Any	numeric	expression.

Remarks

To	specify	a	time,	such	as	11:59:59,	the	range	of	numbers	for	each	TimeSerial
argument	should	be	in	the	normal	range	for	the	unit;	that	is,	0–23	for	hours	and
0–59	for	minutes	and	seconds.	However,	you	can	also	specify	relative	times	for
each	argument	using	any	numeric	expression	that	represents	some	number	of
hours,	minutes,	or	seconds	before	or	after	a	certain	time.	The	following	example
uses	expressions	instead	of	absolute	time	numbers.	The	TimeSerial	function
returns	a	time	for	15	minutes	before	(-15)	six	hours	before	noon	(12	-	6),	or
5:45:00	A.M.

TimeSerial(12	-	6,	-15,	0)

When	any	argument	exceeds	the	normal	range	for	that	argument,	it	increments	to
the	next	larger	unit	as	appropriate.	For	example,	if	you	specify	75	minutes,	it	is
evaluated	as	one	hour	and	15	minutes.	If	any	single	argument	is	outside	the
range	-32,768	to	32,767,	an	error	occurs.	If	the	time	specified	by	the	three
arguments	causes	the	date	to	fall	outside	the	acceptable	range	of	dates,	an	error
occurs.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	
TimeValue	Function

				 				

Returns	a	Variant	(Date)	containing	the	time.

Syntax

TimeValue(time)

The	required	time	argument	is	normally	a	string	expression	representing	a	time
from	0:00:00	(12:00:00	A.M.)	to	23:59:59	(11:59:59	P.M.),	inclusive.	However,
time	can	also	be	any	expression	that	represents	a	time	in	that	range.	If	time

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

contains	Null,	Null	is	returned.

Remarks

You	can	enter	valid	times	using	a	12-hour	or	24-hour	clock.	For	example,
"2:24PM"	and	"14:24"	are	both	valid	time	arguments.

If	the	time	argument	contains	date	information,	TimeValue	doesn't	return	it.
However,	if	time	includes	invalid	date	information,	an	error	occurs.

JavaScript:hhobj_7.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Type	Conversion	Functions

				 				

Each	function	coerces	an	expression	to	a	specific	data	type.

Syntax

CBool(expression)

CByte(expression)

CCur(expression)

CDate(expression)

CDbl(expression)

CDec(expression)

CInt(expression)

CLng(expression)

CSng(expression)

CStr(expression)

CVar(expression)

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	required	expression	argument	is	any	string	expression	or	numeric
expression.

Return	Types

The	function	name	determines	the	return	type	as	shown	in	the	following:

Function Return	Type Range	for	expression	argument
CBool Boolean Any	valid	string	or	numeric	expression.
CByte Byte 0	to	255.
CCur Currency -922,337,203,685,477.5808	to

922,337,203,685,477.5807.
CDate Date Any	valid	date	expression.
CDbl Double -1.79769313486231E308	to	

-4.94065645841247E-324	for	negative
values;	4.94065645841247E-324	to
1.79769313486232E308	for	positive	values.

CDec Decimal +/-79,228,162,514,264,337,593,543,950,335
for	zero-scaled	numbers,	that	is,	numbers
with	no	decimal	places.	For	numbers	with
28	decimal	places,	the	range	is	
+/-7.9228162514264337593543950335.
The	smallest	possible	non-zero	number	is
0.0000000000000000000000000001.

CInt Integer -32,768	to	32,767;	fractions	are	rounded.
CLng Long -2,147,483,648	to	2,147,483,647;	fractions

are	rounded.
CSng Single -3.402823E38	to	-1.401298E-45	for

negative	values;	1.401298E-45	to
3.402823E38	for	positive	values.

CStr String Returns	for	CStr	depend	on	the	expression
argument.

CVar Variant Same	range	as	Double	for	numerics.	Same
range	as	String	for	non-numerics.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()

Remarks

If	the	expression	passed	to	the	function	is	outside	the	range	of	the	data	type
being	converted	to,	an	error	occurs.

In	general,	you	can	document	your	code	using	the	data-type	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use	CCur	to
force	currency	arithmetic	in	cases	where	single-precision,	double-precision,	or
integer	arithmetic	normally	would	occur.

You	should	use	the	data-type	conversion	functions	instead	of	Val	to	provide
internationally	aware	conversions	from	one	data	type	to	another.	For	example,
when	you	use	CCur,	different	decimal	separators,	different	thousand	separators,
and	various	currency	options	are	properly	recognized	depending	on	the	locale
setting	of	your	computer.

When	the	fractional	part	is	exactly	0.5,	CInt	and	CLng	always	round	it	to	the
nearest	even	number.	For	example,	0.5	rounds	to	0,	and	1.5	rounds	to	2.	CInt
and	CLng	differ	from	the	Fix	and	Int	functions,	which	truncate,	rather	than
round,	the	fractional	part	of	a	number.	Also,	Fix	and	Int	always	return	a	value	of
the	same	type	as	is	passed	in.

Use	the	IsDate	function	to	determine	if	date	can	be	converted	to	a	date	or	time.
CDate	recognizes	date	literals	and	time	literals	as	well	as	some	numbers	that	fall
within	the	range	of	acceptable	dates.	When	converting	a	number	to	a	date,	the
whole	number	portion	is	converted	to	a	date.	Any	fractional	part	of	the	number
is	converted	to	a	time	of	day,	starting	at	midnight.

CDate	recognizes	date	formats	according	to	the	locale	setting	of	your	system.
The	correct	order	of	day,	month,	and	year	may	not	be	determined	if	it	is	provided
in	a	format	other	than	one	of	the	recognized	date	settings.	In	addition,	a	long
date	format	is	not	recognized	if	it	also	contains	the	day-of-the-week	string.

A	CVDate	function	is	also	provided	for	compatibility	with	previous	versions	of
Visual	Basic.	The	syntax	of	the	CVDate	function	is	identical	to	the	CDate
function,	however,	CVDate	returns	a	Variant	whose	subtype	is	Date	instead	of
an	actual	Date	type.	Since	there	is	now	an	intrinsic	Date	type,	there	is	no	further

JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()

need	for	CVDate.	The	same	effect	can	be	achieved	by	converting	an	expression
to	a	Date,	and	then	assigning	it	to	a	Variant.	This	technique	is	consistent	with
the	conversion	of	all	other	intrinsic	types	to	their	equivalent	Variant	subtypes.

Note			The	CDec	function	does	not	return	a	discrete	data	type;	instead,	it	always
returns	a	Variant	whose	value	has	been	converted	to	a	Decimal	subtype.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

TypeName	Function

				 				

Returns	a	String	that	provides	information	about	a	variable.

Syntax

TypeName(varname)

The	required	varname	argument	is	a	Variant	containing	any	variable	except	a
variable	of	a	user-defined	type.

Remarks

The	string	returned	by	TypeName	can	be	any	one	of	the	following:

String	returned Variable
object	type An	object	whose	type	is	objecttype
Byte Byte	value
Integer Integer
Long Long	integer
Single Single-precision	floating-point	number
Double Double-precision	floating-point	number
Currency Currency	value
Decimal Decimal	value
Date Date	value

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

String String
Boolean Boolean	value
Error An	error	value
Empty Uninitialized
Null No	valid	data
Object An	object
Unknown An	object	whose	type	is	unknown
Nothing Object	variable	that	doesn't	refer	to	an

object

If	varname	is	an	array,	the	returned	string	can	be	any	one	of	the	possible
returned	strings	(or	Variant)	with	empty	parentheses	appended.	For	example,	if
varname	is	an	array	of	integers,	TypeName	returns	"Integer()".

JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()

	 	

UBound	Function

				 				

Returns	a	Long	containing	the	largest	available	subscript	for	the	indicated
dimension	of	an	array.

Syntax

UBound(arrayname[,	dimension])

The	UBound	function	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

arrayname Required.	Name	of	the	array	variable;	follows	standard	variable
naming	conventions.

dimension Optional;	Variant	(Long).	Whole	number	indicating	which
dimension's	upper	bound	is	returned.	Use	1	for	the	first
dimension,	2	for	the	second,	and	so	on.	If	dimension	is	omitted,	1
is	assumed.

Remarks

The	UBound	function	is	used	with	the	LBound	function	to	determine	the	size	of
an	array.	Use	the	LBound	function	to	find	the	lower	limit	of	an	array	dimension.

UBound	returns	the	following	values	for	an	array	with	these	dimensions:

Dim	A(1	To	100,	0	To	3,	-3	To	4)

Statement Return	Value
UBound(A,	1) 100
UBound(A,	2) 3
UBound(A,	3) 4

JavaScript:hhobj_6.Click()

	 	

UCase	Function

				 				

Returns	a	Variant	(String)	containing	the	specified	string,	converted	to
uppercase.

Syntax

UCase(string)

The	required	string	argument	is	any	valid	string	expression.	If	string	contains
Null,	Null	is	returned.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Remarks

Only	lowercase	letters	are	converted	to	uppercase;	all	uppercase	letters	and
nonletter	characters	remain	unchanged.

	
Val	Function

				 				

Returns	the	numbers	contained	in	a	string	as	a	numeric	value	of	appropriate	type.

Syntax

Val(string)

The	required	string	argument	is	any	valid	string	expression.

Remarks

The	Val	function	stops	reading	the	string	at	the	first	character	it	can't	recognize
as	part	of	a	number.	Symbols	and	characters	that	are	often	considered	parts	of
numeric	values,	such	as	dollar	signs	and	commas,	are	not	recognized.	However,
the	function	recognizes	the	radix	prefixes	&O	(for	octal)	and	&H	(for	hexadecimal).
Blanks,	tabs,	and	linefeed	characters	are	stripped	from	the	argument.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	following	returns	the	value	1615198:

Val("				1615	198th	Street	N.E.")

In	the	code	below,	Val	returns	the	decimal	value	-1	for	the	hexadecimal	value
shown:

Val("&HFFFF")

Note			The	Val	function	recognizes	only	the	period	(.)	as	a	valid	decimal
separator.	When	different	decimal	separators	are	used,	as	in	international
applications,	use	CDbl	instead	to	convert	a	string	to	a	number.

	 	

	 	

	 	

	 	

VarType	Function

				 				

Returns	an	Integer	indicating	the	subtype	of	a	variable.

Syntax

VarType(varname)

The	required	varname	argument	is	a	Variant	containing	any	variable	except	a
variable	of	a	user-defined	type.

Return	Values

Constant Value Description
vbEmpty 0 Empty	(uninitialized)
vbNull 1 Null	(no	valid	data)
vbInteger 2 Integer
vbLong 3 Long	integer
vbSingle 4 Single-precision	floating-point	number
vbDouble 5 Double-precision	floating-point	number
vbCurrency 6 Currency	value
vbDate 7 Date	value
vbString 8 String
vbObject 9 Object

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

vbError 10 Error	value
vbBoolean 11 Boolean	value
vbVariant 12 Variant	(used	only	with	arrays	of

variants)
vbDataObject 13 A	data	access	object
vbDecimal 14 Decimal	value
vbByte 17 Byte	value
vbUserDefinedType 36 Variants	that	contain	user-defined	types
vbArray 8192 Array

Note			These	constants	are	specified	by	Visual	Basic	for	Applications.	The
names	can	be	used	anywhere	in	your	code	in	place	of	the	actual	values.

Remarks

The	VarType	function	never	returns	the	value	for	vbArray	by	itself.	It	is	always
added	to	some	other	value	to	indicate	an	array	of	a	particular	type.	The	constant
vbVariant	is	only	returned	in	conjunction	with	vbArray	to	indicate	that	the
argument	to	the	VarType	function	is	an	array	of	type	Variant.	For	example,	the
value	returned	for	an	array	of	integers	is	calculated	as	vbInteger	+	vbArray,	or
8194.	If	an	object	has	a	default	property,	VarType	(object)	returns	the	type	of
the	object's	default	property.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

	 	

	 	

	

Weekday	Function

				 				

Returns	a	Variant	(Integer)	containing	a	whole	number	representing	the	day	of
the	week.

Syntax

Weekday(date,	[firstdayofweek])

The	Weekday	function	syntax	has	these	named	arguments:

Part Description
date Required.	Variant,	numeric	expression,	string	expression,	or

any	combination,	that	can	represent	a	date.	If	date	contains
Null,	Null	is	returned.

firstdayofweek Optional.	A	constant	that	specifies	the	first	day	of	the	week.
If	not	specified,	vbSunday	is	assumed.

Settings

The	firstdayofweek	argument	has	these	settings:

Constant Value Description
vbUseSystem 0 Use	the	NLS	API

setting.
vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Return	Values

The	Weekday	function	can	return	any	of	these	values:

Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Remarks

If	the	Calendar	property	setting	is	Gregorian,	the	returned	integer	represents	the
Gregorian	day	of	the	week	for	the	date	argument.	If	the	calendar	is	Hijri,	the
returned	integer	represents	the	Hijri	day	of	the	week	for	the	date	argument.	For
Hijri	dates,	the	argument	number	is	any	numeric	expression	that	can	represent	a
date	and/or	time	from	1/1/100	(Gregorian	Aug	2,	718)	through	4/3/9666
(Gregorian	Dec	31,	9999).

WeekdayName	Function

				 				

Description

Returns	a	string	indicating	the	specified	day	of	the	week.

Syntax

WeekdayName(weekday,	abbreviate,	firstdayofweek)

The	WeekdayName	function	syntax	has	these	parts:

Part Description
weekday Required.	The	numeric	designation	for	the	day	of	the	week.

Numeric	value	of	each	day	depends	on	setting	of	the
firstdayofweek	setting.

abbreviate Optional.	Boolean	value	that	indicates	if	the	weekday	name
is	to	be	abbreviated.	If	omitted,	the	default	is	False,	which
means	that	the	weekday	name	is	not	abbreviated.

firstdayofweek Optional.	Numeric	value	indicating	the	first	day	of	the	week.
See	Settings	section	for	values.

Settings

The	firstdayofweek	argument	can	have	the	following	values:

Constant Value Description
vbUseSystem 0 Use	National	Language	Support	(NLS)	API

setting.
vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

	 	

	 	

Year	Function

				 				

Returns	a	Variant	(Integer)	containing	a	whole	number	representing	the	year.

Syntax

Year(date)

The	required	date	argument	is	any	Variant,	numeric	expression,	string
expression,	or	any	combination,	that	can	represent	a	date.	If	date	contains	Null,
Null	is	returned.

Note	If	the	Calendar	property	setting	is	Gregorian,	the	returned	integer
represents	the	Gregorian	year	for	the	date	argument.	If	the	calendar	is	Hijri,	the
returned	integer	represents	the	Hijri	year	for	the	date	argument.	For	Hijri	dates,
the	argument	number	is	any	numeric	expression	that	can	represent	a	date	and/or
time	from	1/1/100	(Gregorian	Aug	2,	718)	through	4/3/9666	(Gregorian	Dec	31,
9999).

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Arithmetic	Operators

^	Operator

*	Operator

/	Operator

\	Operator

Mod	Operator

+	Operator

-	Operator

Concatenation	Operators

&	Operator

+	Operator

Conversion	Functions

Asc	Function

CBool	Function

CByte	Function

CCur	Function

CDate	Function

CDec	Function

CDbl	Function

Chr	Function

CInt	Function

CLng	Function

CSng	Function

CStr	Function

CVar	Function

CVErr	Function

Format	Function

Hex	Function

Oct	Function

Str	Function

Val	Function

	Data
Type

Summary

				

The	following	table	shows	the	supported	data	types,	including	storage	sizes	and
ranges.

Data	type Storage	size Range
Byte 1	byte 0	to	255
Boolean 2	bytes True	or	False
Integer 2	bytes -32,768	to	32,767
Long	(long
integer)

4	bytes -2,147,483,648	to	2,147,483,647

Single
(single-precision
floating-point)

4	bytes -3.402823E38	to	-1.401298E-45	for
negative	values;	1.401298E-45	to
3.402823E38	for	positive	values

Double
(double-precision
floating-point)

8	bytes -1.79769313486231E308	to	
-4.94065645841247E-324	for	negative
values;	4.94065645841247E-324	to
1.79769313486232E308	for	positive	values

Currency
(scaled	integer)

8	bytes -922,337,203,685,477.5808	to
922,337,203,685,477.5807

Decimal 14	bytes +/-79,228,162,514,264,337,593,543,950,335
with	no	decimal	point;	

JavaScript:hhobj_3.Click()

+/-7.9228162514264337593543950335	with
28	places	to	the	right	of	the	decimal;
smallest	non-zero	number	is	
+/-0.0000000000000000000000000001

Date 8	bytes January	1,	100	to	December	31,	9999
Object 4	bytes Any	Object	reference
String	
(variable-length)

10	bytes	+	string
length

0	to	approximately	2	billion

String
(fixed-length)

Length	of	string 1	to	approximately	65,400

Variant
(with	numbers)

16	bytes Any	numeric	value	up	to	the	range	of	a
Double

Variant
(with	characters)

22	bytes	+	string
length

Same	range	as	for	variable-length	String

User-defined
(using	Type)

Number
required	by
elements

The	range	of	each	element	is	the	same	as	the
range	of	its	data	type.

Note			Arrays	of	any	data	type	require	20	bytes	of	memory	plus	4	bytes	for	each
array	dimension	plus	the	number	of	bytes	occupied	by	the	data	itself.	The
memory	occupied	by	the	data	can	be	calculated	by	multiplying	the	number	of
data	elements	by	the	size	of	each	element.	For	example,	the	data	in	a	single-
dimension	array	consisting	of	4	Integer	data	elements	of	2	bytes	each	occupies	8
bytes.	The	8	bytes	required	for	the	data	plus	the	24	bytes	of	overhead	brings	the
total	memory	requirement	for	the	array	to	32	bytes.

A	Variant	containing	an	array	requires	12	bytes	more	than	the	array	alone.

Note			Use	the	StrConv	function	to	convert	one	type	of	string	data	to	another.

JavaScript:hhobj_4.Click()

Derived	Math	Functions

				

The	following	is	a	list	of	nonintrinsic	math	functions	that	can	be	derived	from
the	intrinsic	math	functions:

Function Derived	equivalents
Secant Sec(X)	=	1	/	Cos(X)
Cosecant Cosec(X)	=	1	/	Sin(X)
Cotangent Cotan(X)	=	1	/	Tan(X)
Inverse	Sine Arcsin(X)	=	Atn(X	/	Sqr(-X	*	X	+	1))
Inverse	Cosine Arccos(X)	=	Atn(-X	/	Sqr(-X	*	X	+	1))	+	2	*	Atn(1)
Inverse	Secant Arcsec(X)	=	Atn(X	/	Sqr(X	*	X	–	1))	+	Sgn((X)	–	1)	*

(2	*	Atn(1))
Inverse	Cosecant Arccosec(X)	=	Atn(X	/	Sqr(X	*	X	-	1))	+	(Sgn(X)	–	1)	*

(2	*	Atn(1))
Inverse	Cotangent Arccotan(X)	=	Atn(X)	+	2	*	Atn(1)
Hyperbolic	Sine HSin(X)	=	(Exp(X)	–	Exp(-X))	/	2
Hyperbolic	Cosine HCos(X)	=	(Exp(X)	+	Exp(-X))	/	2
Hyperbolic	Tangent HTan(X)	=	(Exp(X)	–	Exp(-X))	/	(Exp(X)	+	Exp(-X))
Hyperbolic	Secant HSec(X)	=	2	/	(Exp(X)	+	Exp(-X))
Hyperbolic	Cosecant HCosec(X)	=	2	/	(Exp(X)	–	Exp(-X))
Hyperbolic	Cotangent HCotan(X)	=	(Exp(X)	+	Exp(-X))	/	(Exp(X)	–	Exp(-X))
Inverse	Hyperbolic
Sine

HArcsin(X)	=	Log(X	+	Sqr(X	*	X	+	1))

Inverse	Hyperbolic
Cosine

HArccos(X)	=	Log(X	+	Sqr(X	*	X	–	1))

Inverse	Hyperbolic HArctan(X)	=	Log((1	+	X)	/	(1	–	X))	/	2

Tangent
Inverse	Hyperbolic
Secant

HArcsec(X)	=	Log((Sqr(-X	*	X	+	1)	+	1)	/	X)

Inverse	Hyperbolic
Cosecant

HArccosec(X)	=	Log((Sgn(X)	*	Sqr(X	*	X	+	1)	+	1)	/
X)

Inverse	Hyperbolic
Cotangent

HArccotan(X)	=	Log((X	+	1)	/	(X	–	1))	/	2

Logarithm	to	base	N LogN(X)	=	Log(X)	/	Log(N)

Logical	Operators

And	Operator

Eqv	Operator

Imp	Operator

Not	Operator

Or	Operator

Xor	Operator

Math	Functions

Abs	Function

Atn	Function

Cos	Function

Exp	Function

Fix	Function

Int	Function

Log	Function

Rnd	Function

Sgn	Function

Sin	Function

Sqr	Function

Tan	Function

Derived	Math	Functions

	

Operator	Precedence

				 				

When	several	operations	occur	in	an	expression,	each	part	is	evaluated	and
resolved	in	a	predetermined	order	called	operator	precedence.

When	expressions	contain	operators	from	more	than	one	category,	arithmetic
operators	are	evaluated	first,	comparison	operators	are	evaluated	next,	and
logical	operators	are	evaluated	last.	Comparison	operators	all	have	equal
precedence;	that	is,	they	are	evaluated	in	the	left-to-right	order	in	which	they
appear.	Arithmetic	and	logical	operators	are	evaluated	in	the	following	order	of
precedence:

Arithmetic Comparison Logical
Exponentiation	(^) Equality	(=) Not
Negation	(–) Inequality	(<>) And
Multiplication	and
division	(*,	/)

Less	than	(<) Or

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Integer	division	(\) Greater	than	(>) Xor
Modulus	arithmetic
(Mod)

Less	than	or	equal
to	(<=)

Eqv

Addition	and
subtraction	(+,	–)

Greater	than	or
equal	to	(>=)

Imp

String	concatenation
(&)

Like
Is

	

When	multiplication	and	division	occur	together	in	an	expression,	each
operation	is	evaluated	as	it	occurs	from	left	to	right.	When	addition	and
subtraction	occur	together	in	an	expression,	each	operation	is	evaluated	in	order
of	appearance	from	left	to	right.	Parentheses	can	be	used	to	override	the	order	of
precedence	and	force	some	parts	of	an	expression	to	be	evaluated	before	others.
Operations	within	parentheses	are	always	performed	before	those	outside.
Within	parentheses,	however,	operator	precedence	is	maintained.

The	string	concatenation	operator	(&)	is	not	an	arithmetic	operator,	but	in
precedence,	it	does	follow	all	arithmetic	operators	and	precede	all	comparison
operators.

The	Like	operator	is	equal	in	precedence	to	all	comparison	operators,	but	is
actually	a	pattern-matching	operator.

The	Is	operator	is	an	object	reference	comparison	operator.	It	does	not	compare
objects	or	their	values;	it	checks	only	to	determine	if	two	object	references	refer
to	the	same	object.

Operator	Summary

				

Operators Description
Arithmetic
Operators

Operators	used	to	perform	mathematical	calculations.

Comparison
Operators

Operators	used	to	perform	comparisons.

Concatenation
Operators

Operators	used	to	combine	strings.

Logical	Operators Operators	used	to	perform	logical	operations.

Arrays	Keyword	Summary

Action Keywords
Verify	an	array. IsArray
Create	an	array. Array
Change	default	lower
limit.

Option	Base

Declare	and	initialize
an	array.

Dim,	Private,	Public,	ReDim,	Static

Find	the	limits	of	an
array.

LBound,	UBound

Reinitialize	an	array. Erase,	ReDim

Collection	Object	Keyword	Summary

Action Keywords
Create	a	Collection	object. Collection
Add	an	object	to	a
collection.

Add

Remove	an	object	from	a
collection.

Remove

Reference	an	item	in	a
collection.

Item

Compiler	Directive	Keyword	Summary

Action Keywords
Define	compiler	constant. #Const
Compile	selected	blocks	of
code.

#If...Then...#Else

Control	Flow	Keyword	Summary

Action Keywords
Branch. GoSub...Return,	GoTo,	On	Error,	On...GoSub,

On...GoTo
Exit	or	pause	the
program.

DoEvents,	End,	Exit,	Stop

Loop. Do...Loop,	For...Next,	For	Each...Next,	While...Wend,
With

Make	decisions. Choose,	If...Then...Else,	Select	Case,	Switch
Use	procedures. Call,	Function,	Property	Get,	Property	Let,	Property	Set,

Sub

Conversion	Keyword	Summary

Action Keywords
ANSI	value	to	string. Chr
String	to	lowercase	or
uppercase.

Format,	LCase,	Ucase

Date	to	serial	number. DateSerial,	DateValue
Decimal	number	to
other	bases.

Hex,	Oct

Number	to	string. Format,	Str
One	data	type	to
another.

CBool,	CByte,	CCur,	CDate,	CDbl,	CDec,	CInt,	CLng,
CSng,	CStr,	CVar,	CVErr,	Fix,	Int

Date	to	day,	month,
weekday,	or	year.

Day,	Month,	Weekday,	Year

Time	to	hour,	minute,
or	second.

Hour,	Minute,	Second

String	to	ASCII	value. Asc
String	to	number. Val
Time	to	serial	number. TimeSerial,	TimeValue

Data	Types	Keyword	Summary

Action Keywords
Convert	between	data
types.

CBool,	CByte,	CCur,	CDate,	CDbl,	CDec,	CInt,	CLng,
CSng,	CStr,	CVar,	CVErr,	Fix,	Int

Set	intrinsic	data
types.

Boolean,	Byte,	Currency,	Date,	Double,	Integer,	Long,
Object,	Single,	String,	Variant	(default)

Verify	data	types. IsArray,	IsDate,	IsEmpty,	IsError,	IsMissing,	IsNull,
IsNumeric,	IsObject

Dates	and	Times	Keyword	Summary

Action Keywords
Get	the	current	date	or
time.

Date,	Now,	Time

Perform	date
calculations.

DateAdd,	DateDiff,	DatePart

Return	a	date. DateSerial,	DateValue
Return	a	time. TimeSerial,	TimeValue
Set	the	date	or	time. Date,	Time
Time	a	process. Timer

Directories	and	Files	Keyword	Summary

Action Keywords
Change	directory	or	folder. ChDir
Change	the	drive. ChDrive
Copy	a	file. FileCopy
Make	directory	or	folder. MkDir
Remove	directory	or	folder. RmDir
Rename	a	file,	directory,	or
folder.

Name

Return	current	path. CurDir
Return	file	date/time	stamp. FileDateTime
Return	file,	directory,	label
attributes.

GetAttr

Return	file	length. FileLen
Return	file	name	or	volume
label.

Dir

Set	attribute	information	for	a
file.

SetAttr

Errors	Keyword	Summary

Action Keywords
Generate	run-time
errors.

Clear,	Error,	Raise

Get	error	messages. Error
Provide	error
information.

Err

Return	Error	variant. CVErr
Trap	errors	during	run
time.

On	Error,	Resume

Type	verification. IsError

Financial	Keyword	Summary

Action Keywords
Calculate	depreciation. DDB,	SLN,	SYD
Calculate	future	value. FV
Calculate	interest	rate. Rate
Calculate	internal	rate	of
return.

IRR,	MIRR

Calculate	number	of
periods.

NPer

Calculate	payments. IPmt,	Pmt,	PPmt
Calculate	present	value. NPV,	PV

Input	and	Output	Keyword	Summary

Action Keywords
Access	or	create	a	file. Open
Close	files. Close,	Reset
Control	output
appearance.

Format,	Print,	Print	#,	Spc,	Tab,	Width	#

Copy	a	file. FileCopy
Get	information	about
a	file.

EOF,	FileAttr,	FileDateTime,	FileLen,	FreeFile,
GetAttr,	Loc,	LOF,	Seek

Manage	files. Dir,	Kill,	Lock,	Unlock,	Name
Read	from	a	file. Get,	Input,	Input	#,	Line	Input	#
Return	length	of	a	file. FileLen
Set	or	get	file
attributes.

FileAttr,	GetAttr,	SetAttr

Set	read-write	position
in	a	file.

Seek

Write	to	a	file. Print	#,	Put,	Write	#

Keywords	by	Task

Category Description
Arrays Creating,	defining,	and	using	arrays.
Compiler	Directives Controlling	compiler	behavior.
Control	Flow Looping	and	controlling	procedure	flow.
Conversion Converting	numbers	and	data	types.
Data	Types Data	types	and	variant	subtypes.
Dates	and	Times Converting	and	using	date	and	time	expressions.
Directories	and	Files Controlling	the	file	system	and	processing	files.
Errors Trapping	and	returning	error	values.
Financial Performing	financial	calculations.
Input	and	Output Receiving	input	and	displaying	or	printing	output.
Math Performing	trigonometric	and	other	mathematical

calculations.
Miscellaneous Starting	other	applications	and	processing	events.
Operators Comparing	expressions	and	other	operations.
String	Manipulation Manipulating	strings	and	string	type	data.
Variables	and
Constants

Declaring	and	defining	variables	and	constants.

Math	Keyword	Summary

Action Keywords
Derive	trigonometric
functions.

Atn,	Cos,	Sin,	Tan

General	calculations. Exp,	Log,	Sqr
Generate	random
numbers.

Randomize,	Rnd

Get	absolute	value. Abs
Get	the	sign	of	an
expression.

Sgn

Perform	numeric
conversions.

Fix,	Int

Miscellaneous	Keyword	Summary

Action Keywords
Process	pending	events. DoEvents
Run	other	programs. AppActivate,	Shell
Send	keystrokes	to	an
application.

SendKeys

Sound	a	beep	from	computer. Beep
System. Environ
Provide	a	command-line
string.

Command

Automation. CreateObject,	GetObject
Color. QBColor,	RGB

Operators	Keyword	Summary

Action Keywords
Arithmetic. ^,	–,	*,	/,	\,	Mod,	+,	&,	=
Comparison. =,	<>,	<,	>,	<=,	>=,	Like,	Is
Logical	operations. Not,	And,	Or,	Xor,	Eqv,	Imp

Registry	Keyword	Summary

Action Keywords
Delete	program	settings. DeleteSetting
Read	program	settings. GetSetting,	GetAllSettings
Save	program	settings. SaveSetting

String	Manipulation	Keyword	Summary

Action Keywords
Compare	two	strings. StrComp
Convert	strings. StrConv
Convert	to	lowercase
or	uppercase.

Format,	Lcase,	Ucase

Create	string	of
repeating	character.

Space,	String

Find	length	of	a	string. Len
Format	a	string. Format
Justify	a	string. LSet,	Rset
Manipulate	strings. InStr,	Left,	LTrim,	Mid,	Right,	RTrim,	Trim
Set	string	comparison
rules.

Option	Compare

Work	with	ASCII	and
ANSI	values.

Asc,	Chr

Variables	and	Constants	Keyword	Summary

Action Keywords
Assign	value. Let
Declare	variables	or
constants.

Const,	Dim,	Private,	Public,	New,	Static

Declare	module	as
private.

Option	Private	Module

Get	information	about
a	variant.

IsArray,	IsDate,	IsEmpty,	IsError,	IsMissing,	IsNull,
IsNumeric,	IsObject,	TypeName,	VarType

Refer	to	current
object.

Me

Require	explicit
variable	declarations.

Option	Explicit

Set	default	data	type. Deftype

As

The	As	keyword	is	used	in	these	contexts:

Const	Statement

Declare	Statement

Dim	Statement

Function	Statement

Name	Statement

Open	Statement

Private	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Public	Statement

ReDim	Statement

Static	Statement

Sub	Statement

Type	Statement

Binary

The	Binary	keyword	is	used	in	these	contexts:

Open	Statement

Option	Compare	Statement

ByRef

The	ByRef	keyword	is	used	in	these	contexts:

Call	Statement

Declare	Statement

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Sub	Statement

ByVal

The	ByVal	keyword	is	used	in	these	contexts:

Call	Statement

Declare	Statement

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Sub	Statement

Date

The	Date	keyword	is	used	in	these	contexts:

Date	Data	Type

Date	Function

Date	Statement

Else

The	Else	keyword	is	used	in	these	contexts:

If...Then...Else	Statement

Select	Case	Statement

	 	

Empty

The	Empty	keyword	is	used	as	a	Variant	subtype.	It	indicates	an	uninitialized
variable	value.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Error

The	Error	keyword	is	used	in	these	contexts:

Error	Function

Error	Statement

On	Error	Statement

False

The	False	keyword	has	a	value	equal	to	0.

JavaScript:hhobj_2.Click()

For

The	For	keyword	is	used	in	these	contexts:

For...Next	Statement

For	Each...Next	Statement

Open	Statement

Get

The	Get	keyword	is	used	in	these	contexts:

Get	Statement

Property	Get	Statement

Input

The	Input	keyword	is	used	in	these	contexts:

Input	Function

Input	#	Statement

Line	Input	#	Statement

Open	Statement

Is

The	Is	keyword	is	used	in	these	contexts:

If...Then...Else	Statement

Is	Operator

Select	Case	Statement

Len

The	Len	keyword	is	used	in	these	contexts:

Len	Function

Open	Statement

Let

The	Let	keyword	is	used	in	these	contexts:

Let	Statement

Property	Let	Statement

Lock

The	Lock	keyword	is	used	in	these	contexts:

Lock,	Unlock	Statements

Open	Statement

	 	

	 	

	 	

	
Me

The	Me	keyword	behaves	like	an	implicitly	declared	variable.	It	is	automatically
available	to	every	procedure	in	a	class	module.	When	a	class	can	have	more	than

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

one	instance,	Me	provides	a	way	to	refer	to	the	specific	instance	of	the	class
where	the	code	is	executing.	Using	Me	is	particularly	useful	for	passing
information	about	the	currently	executing	instance	of	a	class	to	a	procedure	in
another	module.	For	example,	suppose	you	have	the	following	procedure	in	a
module:

Sub	ChangeFormColor(FormName	As	Form)

				FormName.BackColor	=	RGB(Rnd	*	256,	Rnd	*	256,	Rnd	*	256)

End	Sub

You	can	call	this	procedure	and	pass	the	current	instance	of	the	Form	class	as	an
argument	using	the	following	statement:

ChangeFormColor	Me

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Mid

The	Mid	keyword	is	used	in	these	contexts:

Mid	Function

Mid	Statement

New

The	New	keyword	is	used	in	these	contexts:

Dim	Statement

Private	Statement

Public	Statement

Set	Statement

Static	Statement

Next

The	Next	keyword	is	used	in	these	contexts:

For...Next	Statement

For	Each...Next	Statement

On	Error	Statement

Resume	Statement

	 	

Nothing

The	Nothing	keyword	is	used	to	disassociate	an	object	variable	from	an	actual
object.	Use	the	Set	statement	to	assign	Nothing	to	an	object	variable.	For
example:

Set	MyObject	=	Nothing

Several	object	variables	can	refer	to	the	same	actual	object.	When	Nothing	is
assigned	to	an	object	variable,	that	variable	no	longer	refers	to	an	actual	object.
When	several	object	variables	refer	to	the	same	object,	memory	and	system
resources	associated	with	the	object	to	which	the	variables	refer	are	released
only	after	all	of	them	have	been	set	to	Nothing,	either	explicitly	using	Set,	or
implicitly	after	the	last	object	variable	set	to	Nothing	goes	out	of	scope.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

	 	

	
Null

The	Null	keyword	is	used	as	a	Variant	subtype.	It	indicates	that	a	variable
contains	no	valid	data.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

On

The	On	keyword	is	used	in	these	contexts:

On	Error	Statement

On...GoSub	Statement

On...GoTo	Statement

Option

The	Option	keyword	is	used	in	these	contexts:

Option	Base	Statement

Option	Compare	Statement

Option	Explicit	Statement

Option	Private	Statement

Optional

The	Optional	keyword	is	used	in	these	contexts:

Declare	Statement

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Sub	Statement

ParamArray

The	ParamArray	keyword	is	used	in	these	contexts:

Declare	Statement

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Sub	Statement

Print

The	Print	keyword	is	used	in	these	contexts:

Print	Method

Print	#	Statement

Private

The	Private	keyword	is	used	in	these	contexts:

Const	Statement

Declare	Statement

Enum	Statement

Function	Statement

Option	Private	Statement

Private	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Sub	Statement

Type	Statement

Property

The	Property	keyword	is	used	in	these	contexts:

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Public

The	Public	keyword	is	used	in	these	contexts:

Const	Statement

Declare	Statement

Enum	Statement

Event	Statement

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Public	Statement

Sub	Statement

Type	Statement

Resume

The	Resume	keyword	is	used	in	these	contexts:

On	Error	Statement

Resume	Statement

Seek

The	Seek	keyword	is	used	in	these	contexts:

Seek	Function

Seek	Statement

Set

The	Set	keyword	is	used	in	these	contexts:

Set	Statement

Property	Set	Statement

Static

The	Static	keyword	is	used	in	these	contexts:

Function	Statement

Property	Get	Statement

Property	Let	Statement

Property	Set	Statement

Static	Statement

Sub	Statement

Step

The	Step	keyword	is	used	in	these	contexts:

For...Next	Statement

For	Each...Next	Statement

String

The	String	keyword	is	used	in	these	contexts:

String	Data	Type

String	Function

Then

The	Then	keyword	is	used	in	these	contexts:

#If...Then...#Else	Directive

If...Then...Else	Statement

Time

The	Time	keyword	is	used	in	these	contexts:

Time	Function

Time	Statement

To

The	To	keyword	is	used	in	these	contexts:

Dim	Statement

For...Next	Statement

Lock,	Unlock	Statements

Private	Statement

Public	Statement

ReDim	Statement

Select	Case	Statement

Static	Statement

Type	Statement

True

The	True	keyword	has	a	value	equal	to	-1.

JavaScript:hhobj_2.Click()

WithEvents

The	WithEvents	keyword	is	used	in	these	contexts:

Dim	Statement

Private	Statement

Public	Statement

	 	

	 	

	 	

	

Add	Method

				 				

				

Adds	a	member	to	a	Collection	object.

Syntax

object.Add	item,	key,	before,	after

The	Add	method	syntax	has	the	following	object	qualifier	and	named
arguments:

Part Description
object Required.	An	object	expression	that	evaluates	to	an	object	in	the

Applies	To	list.
item Required.	An	expression	of	any	type	that	specifies	the	member	to	add

to	the	collection.
key Optional.	A	unique	string	expression	that	specifies	a	key	string	that

can	be	used,	instead	of	a	positional	index,	to	access	a	member	of	the
collection.

before Optional.	An	expression	that	specifies	a	relative	position	in	the
collection.	The	member	to	be	added	is	placed	in	the	collection	before
the	member	identified	by	the	before	argument.	If	a	numeric
expression,	before	must	be	a	number	from	1	to	the	value	of	the
collection's	Count	property.	If	a	string	expression,	before	must
correspond	to	the	key	specified	when	the	member	being	referred	to
was	added	to	the	collection.	You	can	specify	a	before	position	or	an
after	position,	but	not	both.

after Optional.	An	expression	that	specifies	a	relative	position	in	the
collection.	The	member	to	be	added	is	placed	in	the	collection	after
the	member	identified	by	the	after	argument.	If	numeric,	after	must
be	a	number	from	1	to	the	value	of	the	collection's	Count	property.	If

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

a	string,	after	must	correspond	to	the	key	specified	when	the	member
referred	to	was	added	to	the	collection.	You	can	specify	a	before
position	or	an	after	position,	but	not	both.

Remarks

Whether	the	before	or	after	argument	is	a	string	expression	or	numeric
expression,	it	must	refer	to	an	existing	member	of	the	collection,	or	an	error
occurs.

An	error	also	occurs	if	a	specified	key	duplicates	the	key	for	an	existing	member
of	the	collection.

Add	Method	(Dictionary)

				 				

				

Description

Adds	a	key	and	item	pair	to	a	Dictionary	object.

Syntax

object.Add	key,	item

The	Add	method	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	The	key	associated	with	the	item	being

added.
item Required.	The	item	associated	with	the	key	being

added.

Remarks

An	error	occurs	if	the	key	already	exists.

Add	Method	(Folders)

				 				

				

Description

Adds	a	new	Folder	to	a	Folders	collection.

Syntax

object.Add	folderName

The	Add	method	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Folders	collection.
folderName Required.	The	name	of	the	new	Folder	being

added.

Remarks

An	error	occurs	if	the	folderName	already	exists.

BuildPath	Method

				 				

				

Description

Appends	a	name	to	an	existing	path.

Syntax

object.BuildPath(path,	name)

The	BuildPath	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
path Required.	Existing	path	to	which	name	is	appended.	Path	can

be	absolute	or	relative	and	need	not	specify	an	existing
folder.

name Required.	Name	being	appended	to	the	existing	path.

Remarks

The	BuildPath	method	inserts	an	additional	path	separator	between	the	existing
path	and	the	name,	only	if	necessary.

	
Clear	Method

				 				

				

Clears	all	property	settings	of	the	Err	object.

Syntax

object.Clear

The	object	is	always	the	Err	object.

Remarks

Use	Clear	to	explicitly	clear	the	Err	object	after	an	error	has	been	handled,	for
example,	when	you	use	deferred	error	handling	with	On	Error	Resume	Next.
The	Clear	method	is	called	automatically	whenever	any	of	the	following
statements	is	executed:

Any	type	of	Resume	statement

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Exit	Sub,	Exit	Function,	Exit	Property

Any	On	Error	statement
Note			The	On	Error	Resume	Next	construct	may	be	preferable	to	On	Error	GoTo	when	handling	errors	generated	during	access	to
other	objects.	Checking	Err	after	each	interaction	with	an	object	removes	ambiguity	about	which	object	was	accessed	by	the	code.	You
can	be	sure	which	object	placed	the	error	code	in	Err.Number,	as	well	as	which	object	originally	generated	the	error	(the	object
specified	in	Err.Source).

Close	Method

				 				

				

Description

Closes	an	open	TextStream	file.

Syntax

object.Close

The	object	is	always	the	name	of	a	TextStream	object.

Copy	Method

				 				

				

Description

Copies	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Copy	destination[,	overwrite]

The	Copy	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.
destination Required.	Destination	where	the	file	or	folder	is	to	be	copied.

Wildcard	characters	are	not	allowed.
overwrite Optional.	Boolean	value	that	is	True	(default)	if	existing

files	or	folders	are	to	be	overwritten;	False	if	they	are	not.

Remarks

The	results	of	the	Copy	method	on	a	File	or	Folder	are	identical	to	operations
performed	using	FileSystemObject.CopyFile	or
FileSystemObject.CopyFolder	where	the	file	or	folder	referred	to	by	object	is

passed	as	an	argument.	You	should	note,	however,	that	the	alternative	methods
are	capable	of	copying	multiple	files	or	folders.

CopyFile	Method

				 				

				

Description

Copies	one	or	more	files	from	one	location	to	another.

Syntax

object.CopyFile	source,	destination[,	overwrite]

The	CopyFile	method	syntax	has	these	parts:

Part Description
object Required.	The	object	is	always	the	name	of	a

FileSystemObject.
source Required.	Character	string	file	specification,	which	can

include	wildcard	characters,	for	one	or	more	files	to	be
copied.

destination Required.	Character	string	destination	where	the	file	or
files	from	source	are	to	be	copied.	Wildcard	characters	are
not	allowed.

overwrite Optional.	Boolean	value	that	indicates	if	existing	files	are
to	be	overwritten.	If	True,	files	are	overwritten;	if	False,
they	are	not.	The	default	is	True.	Note	that	CopyFile	will

fail	if	destination	has	the	read-only	attribute	set,
regardless	of	the	value	of	overwrite.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component	of	the	source
argument.	For	example,	you	can	use:

FileSystemObject.CopyFile	"c:\mydocuments\letters*.doc",	"c:\tempfolder\"

But	you	can't	use:

FileSystemObject.CopyFile	"c:\mydocuments*\R1???97.xls",	"c:\tempfolder"

If	source	contains	wildcard	characters	or	destination	ends	with	a	path	separator
(\),	it	is	assumed	that	destination	is	an	existing	folder	in	which	to	copy	matching
files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a	file	to	create.	In
either	case,	three	things	can	happen	when	an	individual	file	is	copied.

If	destination	does	not	exist,	source	gets	copied.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs	if	overwrite	is	False.
Otherwise,	an	attempt	is	made	to	copy	source	over	the	existing	file.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't	match	any
files.	The	CopyFile	method	stops	on	the	first	error	it	encounters.	No	attempt	is
made	to	roll	back	or	undo	any	changes	made	before	an	error	occurs.

CopyFolder	Method

				 				

				

Description

Recursively	copies	a	folder	from	one	location	to	another.

Syntax

object.CopyFolder	source,	destination[,	overwrite]

The	CopyFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
source Required.	Character	string	folder	specification,	which	can

include	wildcard	characters,	for	one	or	more	folders	to	be
copied.

destination Required.	Character	string	destination	where	the	folder	and
subfolders	from	source	are	to	be	copied.	Wildcard	characters	are
not	allowed.

overwrite Optional.	Boolean	value	that	indicates	if	existing	folders	are	to
be	overwritten.	If	True,	files	are	overwritten;	if	False,	they	are
not.	The	default	is	True.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component	of	the	source
argument.	For	example,	you	can	use:

FileSystemObject.CopyFolder	"c:\mydocuments\letters*",	"c:\tempfolder\"

But	you	can't	use:

FileSystemObject.CopyFolder	"c:\mydocuments**",	"c:\tempfolder\"

If	source	contains	wildcard	characters	or	destination	ends	with	a	path	separator
(\),	it	is	assumed	that	destination	is	an	existing	folder	in	which	to	copy	matching
folders	and	subfolders.	Otherwise,	destination	is	assumed	to	be	the	name	of	a
folder	to	create.	In	either	case,	four	things	can	happen	when	an	individual	folder
is	copied.

If	destination	does	not	exist,	the	source	folder	and	all	its	contents	gets
copied.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.	

If	destination	is	a	directory,	an	attempt	is	made	to	copy	the	folder	and	all	its
contents.	If	a	file	contained	in	source	already	exists	in	destination,	an	error
occurs	if	overwrite	is	False.	Otherwise,	it	will	attempt	to	copy	the	file	over
the	existing	file.

If	destination	is	a	read-only	directory,	an	error	occurs	if	an	attempt	is	made	to
copy	an	existing	read-only	file	into	that	directory	and	overwrite	is	False.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't	match	any
folders.

The	CopyFolder	method	stops	on	the	first	error	it	encounters.	No	attempt	is
made	to	roll	back	any	changes	made	before	an	error	occurs.

CreateFolder	Method

				

				 				

Description

Creates	a	folder.

Syntax

object.CreateFolder(foldername)

The	CreateFolder	method	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
foldername Required.	String	expression	that	identifies	the	folder	to	create.

Remarks

JavaScript:hhobj_5.Click()

An	error	occurs	if	the	specified	folder	already	exists.

CreateTextFile	Method

				

				 				

Description

Creates	a	specified	file	name	and	returns	a	TextStream	object	that	can	be	used
to	read	from	or	write	to	the	file.

Syntax

object.CreateTextFile(filename[,	overwrite[,	unicode]])

The	CreateTextFile	method	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject	or	Folder

object.
filename Required.	String	expression	that	identifies	the	file	to	create.

JavaScript:hhobj_5.Click()

overwrite Optional.	Boolean	value	that	indicates	if	an	existing	file	can	be
overwritten.	The	value	is	True	if	the	file	can	be	overwritten;
False	if	it	can't	be	overwritten.	If	omitted,	existing	files	are	not
overwritten.

unicode Optional.	Boolean	value	that	indicates	whether	the	file	is	created
as	a	Unicode	or	ASCII	file.	The	value	is	True	if	the	file	is	created
as	a	Unicode	file;	False	if	it's	created	as	an	ASCII	file.	If	omitted,
an	ASCII	file	is	assumed.

Remarks

The	following	code	illustrates	how	to	use	the	CreateTextFile	method	to	create
and	open	a	text	file:

Sub	CreateAfile

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	a	=	fs.CreateTextFile("c:\testfile.txt",

				a.WriteLine("This	is	a	test.")

				a.Close

End	Sub

If	the	overwrite	argument	is	False,	or	is	not	provided,	for	a	filename	that	already
exists,	an	error	occurs.

Delete	Method

				 				

				

Description

Deletes	a	specified	file	or	folder.

Syntax

object.Delete	force

The	Delete	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.
force Optional.	Boolean	value	that	is	True	if	files	or	folders	with	the

read-only	attribute	set	are	to	be	deleted;	False	(default)	if	they	are
not.

Remarks

An	error	occurs	if	the	specified	file	or	folder	does	not	exist.

The	results	of	the	Delete	method	on	a	File	or	Folder	are	identical	to	operations
performed	using	FileSystemObject.DeleteFile	or

FileSystemObject.DeleteFolder.

The	Delete	method	does	not	distinguish	between	folders	that	have	contents	and
those	that	do	not.	The	specified	folder	is	deleted	regardless	of	whether	or	not	it
has	contents.

DeleteFile	Method

				 				

				

Description

Deletes	a	specified	file.

Syntax

object.DeleteFile	filespec[,	force]

The	DeleteFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
filespec Required.	The	name	of	the	file	to	delete.	The	filespec	can	contain

wildcard	characters	in	the	last	path	component.
force Optional.	Boolean	value	that	is	True	if	files	with	the	read-only

attribute	set	are	to	be	deleted;	False	(default)	if	they	are	not.

Remarks

An	error	occurs	if	no	matching	files	are	found.	The	DeleteFile	method	stops	on
the	first	error	it	encounters.	No	attempt	is	made	to	roll	back	or	undo	any	changes
that	were	made	before	an	error	occurred.

DeleteFolder	Method

				 				

				

Description

Deletes	a	specified	folder	and	its	contents.

Syntax

object.DeleteFolder	folderspec[,	force]

The	DeleteFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
folderspec Required.	The	name	of	the	folder	to	delete.	The	folderspec	can

contain	wildcard	characters	in	the	last	path	component.
force Optional.	Boolean	value	that	is	True	if	folders	with	the	read-only

attribute	set	are	to	be	deleted;	False	(default)	if	they	are	not.

Remarks

The	DeleteFolder	method	does	not	distinguish	between	folders	that	have
contents	and	those	that	do	not.	The	specified	folder	is	deleted	regardless	of
whether	or	not	it	has	contents.

An	error	occurs	if	no	matching	folders	are	found.	The	DeleteFolder	method
stops	on	the	first	error	it	encounters.	No	attempt	is	made	to	roll	back	or	undo	any
changes	that	were	made	before	an	error	occurred.

DriveExists	Method

				 				

				

Description

Returns	True	if	the	specified	drive	exists;	False	if	it	does	not.

Syntax

object.DriveExists(drivespec)

The	DriveExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
drivespec Required.	A	drive	letter	or	a	complete	path

specification.

Remarks

For	drives	with	removable	media,	the	DriveExists	method	returns	True	even	if
there	are	no	media	present.	Use	the	IsReady	property	of	the	Drive	object	to
determine	if	a	drive	is	ready.

Exists	Method

				 				

				

Description

Returns	True	if	a	specified	key	exists	in	the	Dictionary	object;	False	if	it	does
not.

Syntax

object.Exists(key)

The	Exists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	Key	value	being	searched	for	in	the	Dictionary

object.

FileExists	Method

				 				

				

Description

Returns	True	if	a	specified	file	exists;	False	if	it	does	not.

Syntax

object.FileExists(filespec)

The	FileExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
filespec Required.	The	name	of	the	file	whose	existence	is	to	be

determined.	A	complete	path	specification	(either	absolute	or
relative)	must	be	provided	if	the	file	isn't	expected	to	exist	in	the
current	folder.

FolderExists	Method

				 				

				

Description

Returns	True	if	a	specified	folder	exists;	False	if	it	does	not.

Syntax

object.FolderExists(folderspec)

The	FolderExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
folderspec Required.	The	name	of	the	folder	whose	existence	is	to	be

determined.	A	complete	path	specification	(either	absolute	or
relative)	must	be	provided	if	the	folder	isn't	expected	to	exist	in
the	current	folder.

GetAbsolutePathName	Method

				 				

				

Description

Returns	a	complete	and	unambiguous	path	from	a	provided	path	specification.

Syntax

object.GetAbsolutePathName(pathspec)

The	GetAbsolutePathName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
pathspec Required.	Path	specification	to	change	to	a	complete

and	unambiguous	path.

Remarks

A	path	is	complete	and	unambiguous	if	it	provides	a	complete	reference	from	the
root	of	the	specified	drive.	A	complete	path	can	only	end	with	a	path	separator
character	(\)	if	it	specifies	the	root	folder	of	a	mapped	drive.

Assuming	the	current	directory	is	c:\mydocuments\reports,	the	following	table

illustrates	the	behavior	of	the	GetAbsolutePathName	method.

pathspec Returned	path
"c:" "c:\mydocuments\reports"
"c:.." "c:\mydocuments"
"c:\\\" "c:\"
"c:*.*\may97" "c:\mydocuments\reports*.*\may97"
"region1" "c:\mydocuments\reports\region1"
"c:\..\..\mydocuments" "c:\mydocuments"

GetBaseName	Method

				 				

				

Description

Returns	a	string	containing	the	base	name	of	the	last	component,	less	any	file
extension,	in	a	path.

Syntax

object.GetBaseName(path)

The	GetBaseName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
path Required.	The	path	specification	for	the	component	whose	base

name	is	to	be	returned.

Remarks

The	GetBaseName	method	returns	a	zero-length	string	("")	if	no	component
matches	the	path	argument.

Note			The	GetBaseName	method	works	only	on	the	provided	path	string.	It

does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the	existence	of	the
specified	path.

GetDrive	Method

				 				

				

Description

Returns	a	Drive	object	corresponding	to	the	drive	in	a	specified	path.

Syntax

object.GetDrive	drivespec

The	GetDrive	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
drivespec Required.	The	drivespec	argument	can	be	a	drive	letter	(c),	a

drive	letter	with	a	colon	appended	(c:),	a	drive	letter	with	a
colon	and	path	separator	appended	(c:\),	or	any	network	share
specification	(\\computer2\share1).

Remarks

For	network	shares,	a	check	is	made	to	ensure	that	the	share	exists.

An	error	occurs	if	drivespec	does	not	conform	to	one	of	the	accepted	forms	or

does	not	exist.

To	call	the	GetDrive	method	on	a	normal	path	string,	use	the	following
sequence	to	get	a	string	that	is	suitable	for	use	as	drivespec:

DriveSpec	=	GetDriveName(GetAbsolutePathName(Path))

GetDriveName	Method

				 				

				

Description

Returns	a	string	containing	the	name	of	the	drive	for	a	specified	path.

Syntax

object.GetDriveName(path)

The	GetDriveName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
path Required.	The	path	specification	for	the	component	whose	drive

name	is	to	be	returned.

Remarks

The	GetDriveName	method	returns	a	zero-length	string	("")	if	the	drive	can't	be
determined.

Note			The	GetDriveName	method	works	only	on	the	provided	path	string.	It
does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the	existence	of	the

specified	path.

GetExtensionName	Method

				 				

				

Description

Returns	a	string	containing	the	extension	name	for	the	last	component	in	a	path.

Syntax

object.GetExtensionName(path)

The	GetExtensionName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
path Required.	The	path	specification	for	the	component	whose

extension	name	is	to	be	returned.

Remarks

For	network	drives,	the	root	directory	(\)	is	considered	to	be	a	component.

The	GetExtensionName	method	returns	a	zero-length	string	("")	if	no
component	matches	the	path	argument.

GetFile	Method

				 				

				

Description

Returns	a	File	object	corresponding	to	the	file	in	a	specified	path.

Syntax

object.GetFile(filespec)

The	GetFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
filespec Required.	The	filespec	is	the	path	(absolute	or	relative)	to	a

specific	file.

Remarks

An	error	occurs	if	the	specified	file	does	not	exist.

GetFileName	Method

				 				

				

Description

Returns	the	last	component	of	specified	path	that	is	not	part	of	the	drive
specification.

Syntax

object.GetFileName(pathspec)

The	GetFileName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
pathspec Required.	The	path	(absolute	or	relative)	to	a	specific

file.

Remarks

The	GetFileName	method	returns	a	zero-length	string	("")	if	pathspec	does	not
end	with	the	named	component.

Note			The	GetFileName	method	works	only	on	the	provided	path	string.	It	does

not	attempt	to	resolve	the	path,	nor	does	it	check	for	the	existence	of	the
specified	path.

GetFolder	Method

				 				

				

Description

Returns	a	Folder	object	corresponding	to	the	folder	in	a	specified	path.

Syntax

object.GetFolder(folderspec)

The	GetFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
folderspec Required.	The	folderspec	is	the	path	(absolute	or	relative)	to	a

specific	folder.

Remarks

An	error	occurs	if	the	specified	folder	does	not	exist.

GetParentFolderName	Method

				 				

				

Description

Returns	a	string	containing	the	name	of	the	parent	folder	of	the	last	component
in	a	specified	path.

Syntax

object.GetParentFolderName(path)

The	GetParentFolderName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
path Required.	The	path	specification	for	the	component	whose	parent

folder	name	is	to	be	returned.

Remarks

The	GetParentFolderName	method	returns	a	zero-length	string	("")	if	there	is
no	parent	folder	for	the	component	specified	in	the	path	argument.

Note			The	GetParentFolderName	method	works	only	on	the	provided	path

string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the	existence
of	the	specified	path.

GetSpecialFolder	Method

				 				

				

Description

Returns	the	special	folder	specified.

Syntax

object.GetSpecialFolder(folderspec)

The	GetSpecialFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
folderspec Required.	The	name	of	the	special	folder	to	be	returned.

Can	be	any	of	the	constants	shown	in	the	Settings	section.

Settings

The	folderspec	argument	can	have	any	of	the	following	values:

Constant Value Description
WindowsFolder 0 The	Windows	folder	contains	files	installed	by

the	Windows	operating	system.

SystemFolder 1 The	System	folder	contains	libraries,	fonts,	and
device	drivers.

TemporaryFolder 2 The	Temp	folder	is	used	to	store	temporary
files.	Its	path	is	found	in	the	TMP	environment
variable.

GetTempName	Method

				 				

				

Description

Returns	a	randomly	generated	temporary	file	or	folder	name	that	is	useful	for
performing	operations	that	require	a	temporary	file	or	folder.

Syntax

object.GetTempName

The	optional	object	is	always	the	name	of	a	FileSystemObject.

Remarks

The	GetTempName	method	does	not	create	a	file.	It	provides	only	a	temporary
file	name	that	can	be	used	with	CreateTextFile	to	create	a	file.

	 	

	 	

	 	

Item	Method

				 				

				

Returns	a	specific	member	of	a	Collection	object	either	by	position	or	by	key.

Syntax

object.Item(index)

The	Item	method	syntax	has	the	following	object	qualifier	and	part:

Part Description
object Required.	An	object	expression	that	evaluates	to	an	object	in	the

Applies	To	list.
index Required.	An	expression	that	specifies	the	position	of	a	member	of	the

collection.	If	a	numeric	expression,	index	must	be	a	number	from	1	to
the	value	of	the	collection's	Count	property.	If	a	string	expression,
index	must	correspond	to	the	key	argument	specified	when	the	member
referred	to	was	added	to	the	collection.

Remarks

If	the	value	provided	as	index	doesn’t	match	any	existing	member	of	the
collection,	an	error	occurs.

The	Item	method	is	the	default	method	for	a	collection.	Therefore,	the	following
lines	of	code	are	equivalent:

Print	MyCollection(1)

Print	MyCollection.Item(1)

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Items	Method

				 				

				

Description

Returns	an	array	containing	all	the	items	in	a	Dictionary	object.

Syntax

object.Items

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Items	method:

Dim	a,	d,	i													'Create	some	variables

Set	d	=	CreateObject("Scripting.Dictionary")

d.Add	"a",	"Athens"					'Add	some	keys	and	items

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

a	=	d.Items													'Get	the	items

For	i	=	0	To	d.Count	-1	'Iterate	the	array

				Print	a(i)										'Print	item

Next

...

Keys	Method

				 				

				

Description

Returns	an	array	containing	all	existing	keys	in	a	Dictionary	object.

Syntax

object.Keys

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Keys	method:

Dim	a,	d,	i													'Create	some	variables

Set	d	=	CreateObject("Scripting.Dictionary")

d.Add	"a",	"Athens"					'Add	some	keys	and	items.

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

a	=	d.keys														'Get	the	keys

For	i	=	0	To	d.Count	-1	'Iterate	the	array

				Print	a(i)										'Print	key

Next

...

Move	Method

				 				

				

Description

Moves	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Move	destination

The	Move	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.
destination Required.	Destination	where	the	file	or	folder	is	to	be	moved.

Wildcard	characters	are	not	allowed.

Remarks

The	results	of	the	Move	method	on	a	File	or	Folder	are	identical	to	operations
performed	using	FileSystemObject.MoveFile	or
FileSystemObject.MoveFolder.	You	should	note,	however,	that	the	alternative
methods	are	capable	of	moving	multiple	files	or	folders.

MoveFile	Method

				 				

				

Description

Moves	one	or	more	files	from	one	location	to	another.

Syntax

object.MoveFile	source,	destination

The	MoveFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
source Required.	The	path	to	the	file	or	files	to	be	moved.	The	source

argument	string	can	contain	wildcard	characters	in	the	last	path
component	only.

destination Required.	The	path	where	the	file	or	files	are	to	be	moved.	The
destination	argument	can't	contain	wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path	separator	(\),	it	is
assumed	that	destination	specifies	an	existing	folder	in	which	to	move	the

matching	files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a	destination
file	to	create.	In	either	case,	three	things	can	happen	when	an	individual	file	is
moved:

If	destination	does	not	exist,	the	file	gets	moved.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source	doesn't	match
any	files.	The	MoveFile	method	stops	on	the	first	error	it	encounters.	No	attempt
is	made	to	roll	back	any	changes	made	before	the	error	occurs.

Important			This	method	allows	moving	files	between	volumes	only	if
supported	by	the	operating	system.

MoveFolder	Method

				 				

				

Description

Moves	one	or	more	folders	from	one	location	to	another.

Syntax

object.MoveFolder	source,	destination

The	MoveFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
source Required.	The	path	to	the	folder	or	folders	to	be	moved.	The

source	argument	string	can	contain	wildcard	characters	in	the
last	path	component	only.

destination Required.	The	path	where	the	folder	or	folders	are	to	be	moved.
The	destination	argument	can't	contain	wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path	separator	(\),	it	is
assumed	that	destination	specifies	an	existing	folder	in	which	to	move	the

matching	files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a	destination
folder	to	create.	In	either	case,	three	things	can	happen	when	an	individual	folder
is	moved:

If	destination	does	not	exist,	the	folder	gets	moved.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source	doesn't	match
any	folders.	The	MoveFolder	method	stops	on	the	first	error	it	encounters.	No
attempt	is	made	to	roll	back	any	changes	made	before	the	error	occurs.

Important			This	method	allows	moving	folders	between	volumes	only	if
supported	by	the	operating	system.

OpenAsTextStream	Method

				 				

				

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can	be	used	to	read
from,	write	to,	or	append	to	the	file.

Syntax

object.OpenAsTextStream([iomode,	[format]])

The	OpenAsTextStream	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	object.
iomode Optional.	Indicates	input/output	mode.	Can	be	one	of

three	constants:	ForReading,	ForWriting,	or
ForAppending.

format Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	any	of	the	following	settings:

Constant Value Description
ForReading 1 Open	a	file	for	reading	only.	You	can't	write	to

this	file.
ForWriting 2 Open	a	file	for	writing.	If	a	file	with	the	same

name	exists,	its	previous	contents	are
overwritten.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the	file.

The	format	argument	can	have	any	of	the	following	settings:

Constant Value Description
TristateUseDefault –2 Opens	the	file	using	the	system	default.
TristateTrue –1 Opens	the	file	as	Unicode.
TristateFalse 		0 Opens	the	file	as	ASCII.

Remarks

The	OpenAsTextStream	method	provides	the	same	functionality	as	the
OpenTextFile	method	of	the	FileSystemObject.	In	addition,	the
OpenAsTextStream	method	can	be	used	to	write	to	a	file.

The	following	code	illustrates	the	use	of	the	OpenAsTextStream	method:

Sub	TextStreamTest

				Const	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	3

				Const	TristateUseDefault	=	-2,	TristateTrue	=	-1,	TristateFalse	=	0

				Dim	fs,	f,	ts,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				fs.CreateTextFile	"test1.txt"												'Create	a	file

				Set	f	=	fs.GetFile("test1.txt")

				Set	ts	=	f.OpenAsTextStream(ForWriting,	TristateUseDefault

				ts.Write	"Hello	World"

				ts.Close

				Set	ts	=	f.OpenAsTextStream(ForReading,	TristateUseDefault

				s	=	ts.ReadLine

				MsgBox	s

				ts.Close

End	Sub

OpenTextFile	Method

				

				 				

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can	be	used	to	read
from	or	append	to	the	file.

Syntax

object.OpenTextFile(filename[,	iomode[,	create[,	format]]])

The	OpenTextFile	method	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.
filename Required.	String	expression	that	identifies	the	file	to

open.

JavaScript:hhobj_5.Click()

iomode Optional.	Indicates	input/output	mode.	Can	be	one	of	two
constants,	either	ForReading	or	ForAppending.

create Optional.	Boolean	value	that	indicates	whether	a	new
file	can	be	created	if	the	specified	filename	doesn't	exist.
The	value	is	True	if	a	new	file	is	created;	False	if	it	isn't
created.	The	default	is	False.

format Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	either	of	the	following	settings:

Constant Value Description
ForReading 1 Open	a	file	for	reading	only.	You	can't	write	to

this	file.
ForAppending 8 Open	a	file	and	write	to	the	end	of	the	file.

The	format	argument	can	have	any	of	the	following	settings:

Constant Value Description
TristateUseDefault –2 Opens	the	file	using	the	system	default.
TristateTrue –1 Opens	the	file	as	Unicode.
TristateFalse 		0 Opens	the	file	as	ASCII.

Remarks

The	following	code	illustrates	the	use	of	the	OpenTextFile	method	to	open	a	file
for	appending	text:

Sub	OpenTextFileTest

				Const	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	3

				Dim	fs,	f

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.OpenTextFile("c:\testfile.txt",	ForAppending

				f.Write	"Hello	world!"

				f.Close

End	Sub

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Print	Method

				 				

				

Prints	text	in	the	Immediate	window.

Syntax

object.Print	[outputlist]

The	Print	method	syntax	has	the	following	object	qualifier	and	part:

Part Description
object Optional.	An	object	expression	that	evaluates	to	an	object	in	the

Applies	To	list.
outputlist Optional.	Expression	or	list	of	expressions	to	print.	If	omitted,	a

blank	line	is	printed.

The	outputlist	argument	has	the	following	syntax	and	parts:

{Spc(n)	|	Tab(n)}	expression	charpos

Part Description
Spc(n) Optional.	Used	to	insert	space	characters	in	the	output,	where	n	is

the	number	of	space	characters	to	insert.
Tab(n) Optional.	Used	to	position	the	insertion	point	at	an	absolute

column	number	where	n	is	the	column	number.	Use	Tab	with	no
argument	to	position	the	insertion	point	at	the	beginning	of	the
next	print	zone.

expression Optional.	Numeric	expression	or	string	expression	to	print.
charpos Optional.	Specifies	the	insertion	point	for	the	next	character.	Use

a	semicolon	(;)	to	position	the	insertion	point	immediately
following	the	last	character	displayed.	Use	Tab(n)	to	position	the
insertion	point	at	an	absolute	column	number.	Use	Tab	with	no
argument	to	position	the	insertion	point	at	the	beginning	of	the
next	print	zone.	If	charpos	is	omitted,	the	next	character	is	printed
on	the	next	line.

Remarks

Multiple	expressions	can	be	separated	with	either	a	space	or	a	semicolon.

All	data	printed	to	the	Immediate	window	is	properly	formatted	using	the

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

decimal	separator	for	the	locale	settings	specified	for	your	system.	The	keywords
are	output	in	the	appropriate	language	for	the	host	application.

For	Boolean	data,	either	True	or	False	is	printed.	The	True	and	False	keywords
are	translated	according	to	the	locale	setting	for	the	host	application.

Date	data	is	written	using	the	standard	short	date	format	recognized	by	your
system.	When	either	the	date	or	the	time	component	is	missing	or	zero,	only	the
data	provided	is	written.

Nothing	is	written	if	outputlist	data	is	Empty.	However,	if	outputlist	data	is	Null,
Null	is	output.	The	Null	keyword	is	appropriately	translated	when	it	is	output.

For	error	data,	the	output	is	written	as	Error	errorcode.	The	Error	keyword	is
appropriately	translated	when	it	is	output.

The	object	is	required	if	the	method	is	used	outside	a	module	having	a	default
display	space.	For	example	an	error	occurs	if	the	method	is	called	in	a	standard
module	without	specifying	an	object,	but	if	called	in	a	form	module,	outputlist	is
displayed	on	the	form.

Note			Because	the	Print	method	typically	prints	with	proportionally-spaced
characters,	there	is	no	correlation	between	the	number	of	characters	printed	and
the	number	of	fixed-width	columns	those	characters	occupy.	For	example,	a
wide	letter,	such	as	a	"W",	occupies	more	than	one	fixed-width	column,	and	a
narrow	letter,	such	as	an	"i",	occupies	less.	To	allow	for	cases	where	wider	than
average	characters	are	used,	your	tabular	columns	must	be	positioned	far	enough
apart.	Alternatively,	you	can	print	using	a	fixed-pitch	font	(such	as	Courier)	to
ensure	that	each	character	uses	only	one	column.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()

	 	

	 	

	 	

	 	

Raise	Method

				 				

				

Generates	a	run-time	error.

Syntax

object.Raise	number,	source,	description,	helpfile,	helpcontext

The	Raise	method	has	the	following	object	qualifier	and	named	arguments:

Argument Description
object Required.	Always	the	Err	object.
number Required.	Long	integer	that	identifies	the	nature	of	the	error.

Visual	Basic	errors	(both	Visual	Basic-defined	and	user-defined
errors)	are	in	the	range	0–65535.	The	range	0–512	is	reserved
for	system	errors;	the	range	513–65535	is	available	for	user-
defined	errors.	When	setting	the	Number	property	to	your	own
error	code	in	a	class	module,	you	add	your	error	code	number
to	the	vbObjectError	constant.	For	example,	to	generate	the
error	number	513,	assign	vbObjectError	+	513	to	the	Number
property.

source Optional.	String	expression	naming	the	object	or	application
that	generated	the	error.	When	setting	this	property	for	an
object,	use	the	form	project.class.	If	source	is	not	specified,	the
programmatic	ID	of	the	current	Visual	Basic	project	is	used.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

description Optional.	String	expression	describing	the	error.	If	unspecified,
the	value	in	Number	is	examined.	If	it	can	be	mapped	to	a
Visual	Basic	run-time	error	code,	the	string	that	would	be
returned	by	the	Error	function	is	used	as	Description.	If	there
is	no	Visual	Basic	error	corresponding	to	Number,	the
"Application-defined	or	object-defined	error"	message	is	used.

helpfile Optional.	The	fully	qualified	path	to	the	Help	file	in	which	help
on	this	error	can	be	found.	If	unspecified,	Visual	Basic	uses	the
fully	qualified	drive,	path,	and	file	name	of	the	Visual	Basic
Help	file.

helpcontext Optional.	The	context	ID	identifying	a	topic	within	helpfile	that
provides	help	for	the	error.	If	omitted,	the	Visual	Basic	Help
file	context	ID	for	the	error	corresponding	to	the	Number
property	is	used,	if	it	exists.

Remarks

All	of	the	arguments	are	optional	except	number.	If	you	use	Raise	without
specifying	some	arguments,	and	the	property	settings	of	the	Err	object	contain
values	that	have	not	been	cleared,	those	values	serve	as	the	values	for	your	error.

Raise	is	used	for	generating	run-time	errors	and	can	be	used	instead	of	the	Error
statement.	Raise	is	useful	for	generating	errors	when	writing	class	modules,
because	the	Err	object	gives	richer	information	than	is	possible	if	you	generate
errors	with	the	Error	statement.	For	example,	with	the	Raise	method,	the	source
that	generated	the	error	can	be	specified	in	the	Source	property,	online	Help	for
the	error	can	be	referenced,	and	so	on.

JavaScript:hhobj_13.Click()

Read	Method

				 				

				

Description

Reads	a	specified	number	of	characters	from	a	TextStream	file	and	returns	the
resulting	string.

Syntax

object.Read(characters)

The	Read	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStreamobject.
characters Required.	Number	of	characters	you	want	to	read	from	the

file.

ReadAll	Method

				 				

				

Description

Reads	an	entire	TextStream	file	and	returns	the	resulting	string.

Syntax

object.ReadAll

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

For	large	files,	using	the	ReadAll	method	wastes	memory	resources.	Other
techniques	should	be	used	to	input	a	file,	such	as	reading	a	file	line	by	line.

ReadLine	Method

				 				

				

Description

Reads	an	entire	line	(up	to,	but	not	including,	the	newline	character)	from	a
TextStream	file	and	returns	the	resulting	string.

Syntax

object.ReadLine

The	object	argument	is	always	the	name	of	a	TextStream	object.

	 	

	 	

	 	

	

Remove	Method

				 				

				

Removes	a	member	from	a	Collection	object.

Syntax

object.Remove	index

The	Remove	method	syntax	has	the	following	object	qualifier	and	part:

Part Description
object Required.	An	object	expression	that	evaluates	to	an	object	in	the

Applies	To	list.
index Required.	An	expression	that	specifies	the	position	of	a	member	of	the

collection.	If	a	numeric	expression,	index	must	be	a	number	from	1	to
the	value	of	the	collection's	Count	property.	If	a	string	expression,
index	must	correspond	to	the	key	argument	specified	when	the	member
referred	to	was	added	to	the	collection.

Remarks

If	the	value	provided	as	index	doesn’t	match	an	existing	member	of	the
collection,	an	error	occurs.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

Remove	Method

				 				

				

Description

Removes	a	key,	item	pair	from	a	Dictionary	object.

Syntax

object.Remove(key)

The	Remove	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	Key	associated	with	the	key,	item	pair	you	want	to

remove	from	the	Dictionary	object.

Remarks

An	error	occurs	if	the	specified	key,	item	pair	does	not	exist.

The	following	code	illustrates	use	of	the	Remove	method:

Dim	a,	d,	i													'Create	some	variables

Set	d	=	CreateObject("Scripting.Dictionary")

d.Add	"a",	"Athens"					'Add	some	keys	and	items

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

...

a	=	d.Remove()										'Remove	second	pair

RemoveAll	Method

				 				

				

Description

The	RemoveAll	method	removes	all	key,	item	pairs	from	a	Dictionary	object.

Syntax

object.RemoveAll

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	RemoveAll	method:

Dim	a,	d,	i													'Create	some	variables

Set	d	=	CreateObject("Scripting.Dictionary")

d.Add	"a",	"Athens"					'Add	some	keys	and	items

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

...

a	=	d.RemoveAll									'Clear	the	dictionary

Skip	Method

				 				

				

Description

Skips	a	specified	number	of	characters	when	reading	a	TextStream	file.

Syntax

object.Skip(characters)

The	Skip	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.
characters Required.	Number	of	characters	to	skip	when	reading	a

file.

Remarks

Skipped	characters	are	discarded.

SkipLine	Method

				 				

				

Description

Skips	the	next	line	when	reading	a	TextStream	file.

Syntax

object.SkipLine

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

Skipping	a	line	means	reading	and	discarding	all	characters	in	a	line	up	to	and
including	the	next	newline	character.

An	error	occurs	if	the	file	is	not	open	for	reading.

Write	Method

				 				

				

Description

Writes	a	specified	string	to	a	TextStream	file.

Syntax

object.Write(string)

The	Write	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream

object.
string Required.	The	text	you	want	to	write	to	the	file.

Remarks

Specified	strings	are	written	to	the	file	with	no	intervening	spaces	or	characters
between	each	string.	Use	the	WriteLine	method	to	write	a	newline	character	or
a	string	that	ends	with	a	newline	character.

WriteBlankLines	Method

				 				

				

Description

Writes	a	specified	number	of	newline	characters	to	a	TextStream	file.

Syntax

object.WriteBlankLines(lines)

The	WriteBlankLines	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.
lines Required.	Number	of	newline	characters	you	want	to	write	to	the

file.

WriteLine	Method

				 				

				

Description

Writes	a	specified	string	and	newline	character	to	a	TextStream	file.

Syntax

object.WriteLine([string])

The	WriteLine	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.
string Optional.	The	text	you	want	to	write	to	the	file.	If	omitted,	a

newline	character	is	written	to	the	file.

Character	Set	(0	–	127)

				

0 32 [space] 64 @ 96 `
1 33 ! 65 A 97 a
2 34 " 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
6 38 & 70 F 102 f
7 39 ' 71 G 103 g
8 *	* 40 (72 H 104 h
9 *	* 41) 73 I 105 i
10 *	* 42 * 74 J 106 j
11 43 + 75 K 107 k
12 44 , 76 L 108 l
13 *	* 45 - 77 M 109 m
14 46 . 78 N 110 n
15 47 / 79 O 111 o
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w

24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 : 90 Z 122 z
27 59 ; 91 [123 {
28 60 < 92 \ 124 |
29 61 = 93] 125 }
30 62 > 94 ^ 126 ~
31 63 ? 95 _ 127

​These	characters	aren't	supported	by	Microsoft	Windows.

*	*Values	8,	9,	10,	and	13	convert	to	backspace,	tab,	linefeed,	and	carriage	return
characters,	respectively.	They	have	no	graphical	representation	but,	depending
on	the	application,	can	affect	the	visual	display	of	text.

Character	Set	(128	–	255)

				

128 € 160 [space] 192 À 224 à
129 € 161 ¡ 193 Á 225 á
130 € 162 ¢ 194 Â 226 â
131 € 163 £ 195 Ã 227 ã
132 € 164 ¤ 196 Ä 228 ä
133 € 165 ¥ 197 Å 229 å
134 € 166 ¦ 198 Æ 230 æ
135 € 167 § 199 Ç 231 ç
136 € 168 ¨ 200 È 232 è
137 € 169 © 201 É 233 é
138 € 170 ª 202 Ê 234 ê
139 € 171 « 203 Ë 235 ë
140 € 172 ¬ 204 Ì 236 ì
141 € 173 205 Í 237 í
142 € 174 ® 206 Î 238 î
143 € 175 ¯ 207 Ï 239 ï
144 € 176 ° 208 Ð 240 ð
145 € 177 ± 209 Ñ 241 ñ
146 € 178 ² 210 Ò 242 ò
147 € 179 ³ 211 Ó 243 ó
148 € 180 ´ 212 Ô 244 ô
149 € 181 µ 213 Õ 245 õ
150 € 182 ¶ 214 Ö 246 ö
151 € 183 · 215 × 247 ÷

152 € 184 ¸ 216 Ø 248 ø
153 € 185 ¹ 217 Ù 249 ù
154 € 186 º 218 Ú 250 ú
155 € 187 » 219 Û 251 û
156 € 188 ¼ 220 Ü 252 ü
157 € 189 ½ 221 Ý 253 ý
158 € 190 ¾ 222 Þ 254 þ
159 € 191 ¿ 223 ß 255 ÿ

€These	characters	aren't	supported	by	Microsoft	Windows.

The	values	in	the	table	are	the	Windows	default.	However,	values	in	the	ANSI
character	set	above	127	are	determined	by	the	code	page	specific	to	your
operating	system.

Document	Conventions

Visual	Basic	documentation	uses	the
following	typographic	conventions.

Convention Description
Sub,	If,	ChDir,
Print,	True,	Debug

Words	in	bold	with
initial	letter
capitalized	indicate
language-specific
keywords.

Setup Words	you	are
instructed	to	type
appear	in	bold.

object,	varname,
arglist

Italic,	lowercase
letters	indicate
placeholders	for
information	you
supply.

pathname,
filenumber

Bold,	italic,	and
lowercase	letters
indicate
placeholders	for
arguments	where
you	can	use	either
positional	or	named-
argument	syntax.

[expressionlist] In	syntax,	items
inside	brackets	are
optional.

{While	|	Until} In	syntax,	braces
and	a	vertical	bar
indicate	a
mandatory	choice
between	two	or
more	items.	You

JavaScript:hhobj_1.Click()

must	choose	one	of
the	items	unless	all
of	the	items	are	also
enclosed	in
brackets.	For
example:

[{This	|	OrThat}]

ESC,	ENTER Words	in	capital
letters	indicate	key
names	and	key
sequences.

ALT+F1,	CTRL+R A	plus	sign	(+)
between	key	names
indicates	a
combination	of
keys.	For	example,
ALT+F1	means	hold
down	the	ALT	key
while	pressing	the
F1	key.

Code	Conventions

The	following	code	conventions	are	used:

Sample	Code Description
MyString	=	"Hello,	world!" This	font	is	used	for	code,	variables,

and	error	message	text.
'	This	is	a	comment. An	apostrophe	(')	introduces	code

comments.
MyVar	=	"This	is	an	"	_

&	"example"	_

&	"	of	how	to	continue	code."

A	space	and	an	underscore	(_)
continue	a	line	of	code.

	 	

Collection	Object

				 				

				 				

				

A	Collection	object	is	an	ordered	set	of	items	that	can	be	referred	to	as	a	unit.

Remarks

The	Collection	object	provides	a	convenient	way	to	refer	to	a	related	group	of
items	as	a	single	object.	The	items,	or	members,	in	a	collection	need	only	be
related	by	the	fact	that	they	exist	in	the	collection.	Members	of	a	collection	don't
have	to	share	the	same	data	type.

A	collection	can	be	created	the	same	way	other	objects	are	created.	For	example:

Dim	X	As	New	Collection

Once	a	collection	is	created,	members	can	be	added	using	the	Add	method	and
removed	using	the	Remove	method.	Specific	members	can	be	returned	from	the
collection	using	the	Item	method,	while	the	entire	collection	can	be	iterated
using	the	For	Each...Next	statement.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Debug	Object

				 				

				 				

				

The	Debug	object	sends	output	to	the	Immediate	window	at	run	time.

JavaScript:hhobj_7.Click()

Dictionary	Object

				 				

				 				

				

Description

Object	that	stores	data	key,	item	pairs.

Syntax

Scripting.Dictionary

Remarks

A	Dictionary	object	is	the	equivalent	of	a	PERL	associative	array.	Items,	which
can	be	any	form	of	data,	are	stored	in	the	array.	Each	item	is	associated	with	a
unique	key.	The	key	is	used	to	retrieve	an	individual	item	and	is	usually	a	integer
or	a	string,	but	can	be	anything	except	an	array.

The	following	code	illustrates	how	to	create	a	Dictionary	object:

Dim	d																			'Create	a	variable

Set	d	=	CreateObject(Scripting.Dictionary)

d.Add	"a",	"Athens"					'Add	some	keys	and	items

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

...

Drive	Object

				 				

				 				

				

Description

Provides	access	to	the	properties	of	a	particular	disk	drive	or	network	share.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	object	to	access	drive
properties:

Sub	ShowFreeSpace(drvPath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(drvPath)

				s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	

				s	=	s	&	d.VolumeName		&	vbCrLf

				s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	

				s	=	s	&	"	Kbytes"

				MsgBox	s

End	Sub

Drives	Collection

				 				

				 				

				

Description

Read-only	collection	of	all	available	drives.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them	to	appear	in	the
Drives	collection.

The	following	code	illustrates	how	to	get	the	Drives	collection	and	iterate	the
collection	using	the	For	Each...Next	statement:

Sub	ShowDriveList

				Dim	fs,	d,	dc,	s,	n

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	dc	=	fs.Drives

				For	Each	d	in	dc

								s	=	s	&	d.DriveLetter	&	"	-	"	

								If	d.DriveType	=	Remote	Then

												n	=	d.ShareName

								Else

												n	=	d.VolumeName

								End	If

								s	=	s	&	n	&	vbCrLf

				Next

				MsgBox	s

End	Sub

	 	

Err	Object

				 				

				 				

				

Contains	information	about	run-time	errors.

JavaScript:hhobj_7.Click()

Remarks

The	properties	of	the	Err	object	are	set	by	the	generator	of	an	error	—	Visual
Basic,	an	object,	or	the	programmer.

The	default	property	of	the	Err	object	is	Number.	Because	the	default	property
can	be	represented	by	the	object	name	Err,	earlier	code	written	using	the	Err
function	or	Err	statement	doesn't	have	to	be	modified.

When	a	run-time	error	occurs,	the	properties	of	the	Err	object	are	filled	with
information	that	uniquely	identifies	the	error	and	information	that	can	be	used	to
handle	it.	To	generate	a	run-time	error	in	your	code,	use	the	Raise	method.

The	Err	object's	properties	are	reset	to	zero	or	zero-length	strings	("")	after	an
Exit	Sub,	Exit	Function,	Exit	Property	or	Resume	Next	statement	within	an
error-handling	routine.	Using	any	form	of	the	Resume	statement	outside	of	an
error-handling	routine	will	not	reset	the	Err	object's	properties.	The	Clear
method	can	be	used	to	explicitly	reset	Err.

Use	the	Raise	method,	rather	than	the	Error	statement,	to	generate	run-time
errors	for	system	errors	and	class	modules.	Using	the	Raise	method	in	other
code	depends	on	the	richness	of	the	information	you	want	to	return.

The	Err	object	is	an	intrinsic	object	with	global	scope.	There	is	no	need	to	create
an	instance	of	it	in	your	code.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

File	Object

				 				

				 				

				

Description

Provides	access	to	all	the	properties	of	a	file.

Remarks

The	following	code	illustrates	how	to	obtain	a	File	object	and	how	to	view	one
of	its	properties.

Sub	ShowFileInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	f.DateCreated

				MsgBox	s

End	Sub

Files	Collection

				 				

				 				

				

Description

Collection	of	all	File	objects	within	a	folder.

Remarks

The	following	code	illustrates	how	to	get	a	Files	collection	and	iterate	the
collection	using	the	For	Each...Next	statement:

Sub	ShowFolderList(folderspec)

				Dim	fs,	f,	f1,	fc,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(folderspec)

				Set	fc	=	f.Files

				For	Each	f1	in	fc

								s	=	s	&	f1.name	

								s	=	s	&	vbCrLf

				Next

				MsgBox	s

End	Sub

FileSystemObject	Object

				 				

				 				

				

Description

Provides	access	to	a	computer's	file	system.

Syntax

Scripting.FileSystemObject

Remarks

The	following	code	illustrates	how	the	FileSystemObject	is	used	to	return	a
TextStream	object	that	can	be	read	from	or	written	to:

Set	fs	=	CreateObject("Scripting.FileSystemObject

Set	a	=	fs.CreateTextFile("c:\testfile.txt",	True)

a.WriteLine("This	is	a	test.")

a.Close

In	the	code	shown	above,	the	CreateObject	function	returns	the
FileSystemObject	(fs).	The	CreateTextFile	method	then	creates	the	file	as	a
TextStream	object	(a),	and	the	WriteLine	method	writes	a	line	of	text	to	the
created	text	file.	The	Close	method	flushes	the	buffer	and	closes	the	file.

Folder	Object

				 				

				 				

				

Description

Provides	access	to	all	the	properties	of	a	folder.

Remarks

The	following	code	illustrates	how	to	obtain	a	Folder	object	and	how	to	return
one	of	its	properties:

Sub	ShowFolderInfo(folderspec)

				Dim	fs,	f,	s,

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(folderspec)

				s	=	f.DateCreated

				MsgBox	s

End	Sub

Folders	Collection

				 				

				 				

				

Description

Collection	of	all	Folder	objects	contained	within	a	Folder	object.

Remarks

The	following	code	illustrates	how	to	get	a	Folders	collection	and	how	to	iterate
the	collection	using	the	For	Each...Next	statement:

Sub	ShowFolderList(folderspec)

				Dim	fs,	f,	f1,	fc,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(folderspec)

				Set	fc	=	f.SubFolders

				For	Each	f1	in	fc

								s	=	s	&	f1.name	

								s	=	s	&		vbCrLf

				Next

				MsgBox	s

End	Sub

TextStream	Object

				 				

				 				

				

Description

Facilitates	sequential	access	to	file.

Syntax

TextStream.{property	|	method}

The	property	and	method	arguments	can	be	any	of	the	properties	and	methods
associated	with	the	TextStream	object.	Note	that	in	actual	usage	TextStream	is
replaced	by	a	variable	placeholder	representing	the	TextStream	object	returned
from	the	FileSystemObject.

Remarks

In	the	following	code,	a	is	the	TextStream	object	returned	by	the

CreateTextFile	method	on	the	FileSystemObject:

Set	fs	=	CreateObject("Scripting.FileSystemObject")

Set	a	=	fs.CreateTextFile("c:\testfile.txt",	True)

a.WriteLine("This	is	a	test.")

a.Close

WriteLine	and	Close	are	two	methods	of	the	TextStream	Object.

	 	

	 	

	 	

	

&	Operator

				 				

Used	to	force	string	concatenation	of	two	expressions.

Syntax

result	=	expression1	&	expression2

The	&	operator	syntax	has	these	parts:

Part Description
result Required;	any	String	or	Variant	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

If	an	expression	is	not	a	string,	it	is	converted	to	a	String	variant.	The	data	type
of	result	is	String	if	both	expressions	are	string	expressions;	otherwise,	result	is
a	String	variant.	If	both	expressions	are	Null,	result	is	Null.	However,	if	only
one	expression	is	Null,	that	expression	is	treated	as	a	zero-length	string	("")
when	concatenated	with	the	other	expression.	Any	expression	that	is	Empty	is
also	treated	as	a	zero-length	string.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	 	

	 	

	 	

	 	

	 	

	 	

*	Operator

				 				

Used	to	multiply	two	numbers.

Syntax

result	=	number1*number2

The	*	operator	syntax	has	these	parts:

Part Description

result Required;	any	numeric	variable.
number1 Required;	any	numeric	expression.
number2 Required;	any	numeric	expression.

Remarks

The	data	type	of	result	is	usually	the	same	as	that	of	the	most	precise	expression.
The	order	of	precision,	from	least	to	most	precise,	is	Byte,	Integer,	Long,	Single,
Currency,	Double,	and	Decimal.	The	following	are	exceptions	to	this	order:

If Then	result	is
Multiplication	involves	a	Single	and	a
Long,

converted	to	a	Double.

The	data	type	of	result	is	a	Long,
Single,	or	Date	variant	that	overflows
its	legal	range,

converted	to	a	Variant	containing	a
Double.

The	data	type	of	result	is	a	Byte	variant
that	overflows	its	legal	range,

converted	to	an	Integer	variant.

the	data	type	of	result	is	an	Integer
variant	that	overflows	its	legal	range,

converted	to	a	Long	variant.

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	If	an	expression	is
Empty,	it	is	treated	as	0.

Note			The	order	of	precision	used	by	multiplication	is	not	the	same	as	the	order
of	precision	used	by	addition	and	subtraction.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

+	Operator

				 				

Used	to	sum	two	numbers.

Syntax

result	=	expression1+expression2

The	+	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

When	you	use	the	+	operator,	you	may	not	be	able	to	determine	whether	addition
or	string	concatenation	will	occur.	Use	the	&	operator	for	concatenation	to
eliminate	ambiguity	and	provide	self-documenting	code.

If	at	least	one	expression	is	not	a	Variant,	the	following	rules	apply:

If Then
Both	expressions	are	numeric	data	types
(Byte,	Boolean,	Integer,	Long,	Single,
Double,	Date,	Currency,	or	Decimal)

Add.

Both	expressions	are	String Concatenate.
One	expression	is	a	numeric	data	type
and	the	other	is	any	Variant	except	Null

Add.

One	expression	is	a	String	and	the	other
is	any	Variant	except	Null

Concatenate.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

One	expression	is	an	Empty	Variant Return	the	remaining	expression
unchanged	as	result.

One	expression	is	a	numeric	data	type
and	the	other	is	a	String

A	Type	mismatch	error	occurs.

Either	expression	is	Null result	is	Null.

If	both	expressions	are	Variant	expressions,	the	following	rules	apply:

If Then
Both	Variant	expressions	are	numeric Add.
Both	Variant	expressions	are	strings Concatenate.
One	Variant	expression	is	numeric	and
the	other	is	a	string

Add.

For	simple	arithmetic	addition	involving	only	expressions	of	numeric	data	types,
the	data	type	of	result	is	usually	the	same	as	that	of	the	most	precise	expression.
The	order	of	precision,	from	least	to	most	precise,	is	Byte,	Integer,	Long,
Single,	Double,	Currency,	and	Decimal.	The	following	are	exceptions	to	this
order:

If Then	result	is
A	Single	and	a	Long	are	added, a	Double.
The	data	type	of	result	is	a	Long,	Single,
or	Date	variant	that	overflows	its	legal
range,

converted	to	a	Double	variant.

The	data	type	of	result	is	a	Byte	variant
that	overflows	its	legal	range,

converted	to	an	Integer	variant.

The	data	type	of	result	is	an	Integer
variant	that	overflows	its	legal	range,

converted	to	a	Long	variant.

A	Date	is	added	to	any	data	type, a	Date.

JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	If	both
expressions	are	Empty,	result	is	an	Integer.	However,	if	only	one	expression	is
Empty,	the	other	expression	is	returned	unchanged	as	result.

Note			The	order	of	precision	used	by	addition	and	subtraction	is	not	the	same	as
the	order	of	precision	used	by	multiplication.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

-	Operator

				 				

Used	to	find	the	difference	between	two	numbers	or	to	indicate	the	negative
value	of	a	numeric	expression.

JavaScript:hhobj_4.Click()

Syntax	1

result	=	number1–number2

Syntax	2

–number

The	–	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
number Required;	any	numeric	expression.
number1 Required;	any	numeric	expression.
number2 Required;	any	numeric	expression.

Remarks

In	Syntax	1,	the	–	operator	is	the	arithmetic	subtraction	operator	used	to	find	the
difference	between	two	numbers.	In	Syntax	2,	the	–	operator	is	used	as	the	unary
negation	operator	to	indicate	the	negative	value	of	an	expression.

The	data	type	of	result	is	usually	the	same	as	that	of	the	most	precise	expression.
The	order	of	precision,	from	least	to	most	precise,	is	Byte,	Integer,	Long,	Single,
Double,	Currency,	and	Decimal.	The	following	are	exceptions	to	this	order:

If Then	result	is
Subtraction	involves	a	Single	and	a
Long,

converted	to	a	Double.

The	data	type	of	result	is	a	Long,	Single,
or	Date	variant	that	overflows	its	legal
range,

converted	to	a	Variant	containing	a
Double.

The	data	type	of	result	is	a	Byte	variant
that	overflows	its	legal	range,

converted	to	an	Integer	variant.

The	data	type	of	result	is	an	Integer
variant	that	overflows	its	legal	range,

converted	to	a	Long	variant.

Subtraction	involves	a	Date	and	any a	Date.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

other	data	type,
Subtraction	involves	two	Date
expressions,

a	Double.

One	or	both	expressions	are	Null	expressions,	result	is	Null.	If	an	expression	is
Empty,	it	is	treated	as	0.

Note			The	order	of	precision	used	by	addition	and	subtraction	is	not	the	same	as
the	order	of	precision	used	by	multiplication.

JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

	 	

	 	

	 	

	 	

	 	

	

/	Operator

				 				

Used	to	divide	two	numbers	and	return	a	floating-point	result.

Syntax

result	=	number1/number2

The	/	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
number1 Required;	any	numeric	expression.
number2 Required;	any	numeric	expression.

Remarks

The	data	type	of	result	is	usually	a	Double	or	a	Double	variant.	The	following

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

are	exceptions	to	this	rule:

If Then	result	is
Both	expressions	are	Byte,	Integer,	or
Single	expressions,

a	Single	unless	it	overflows	its	legal
range;	in	which	case,	an	error	occurs.

Both	expressions	are	Byte,	Integer,	or
Single	variants,

a	Single	variant	unless	it	overflows	its
legal	range;	in	which	case,	result	is	a
Variant	containing	a	Double.

Division	involves	a	Decimal	and	any
other	data	type,

a	Decimal	data	type.

One	or	both	expressions	are	Null	expressions,	result	is	Null.	Any	expression	that
is	Empty	is	treated	as	0.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()

	 	

	 	

	 	

	 	

\	Operator

				 				

Used	to	divide	two	numbers	and	return	an	integer	result.

Syntax

result	=	number1\number2

The	\	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
number1 Required;	any	numeric	expression.
number2 Required;	any	numeric	expression.

Remarks

Before	division	is	performed,	the	numeric	expressions	are	rounded	to	Byte,
Integer,	or	Long	expressions.

Usually,	the	data	type	of	result	is	a	Byte,	Byte	variant,	Integer,	Integer	variant,
Long,	or	Long	variant,	regardless	of	whether	result	is	a	whole	number.	Any
fractional	portion	is	truncated.	However,	if	any	expression	is	Null,	result	is	Null.
Any	expression	that	is	Empty	is	treated	as	0.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

	 	

	 	

	 	

^Operator

				 				

Used	to	raise	a	number	to	the	power	of	an	exponent.

Syntax

result	=	number^exponent

The	^	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
number Required;	any	numeric	expression.
exponent Required;	any	numeric	expression.

Remarks

A	number	can	be	negative	only	if	exponent	is	an	integer	value.	When	more	than
one	exponentiation	is	performed	in	a	single	expression,	the	^	operator	is
evaluated	as	it	is	encountered	from	left	to	right.

Usually,	the	data	type	of	result	is	a	Double	or	a	Variant	containing	a	Double.
However,	if	either	number	or	exponent	is	a	Null	expression,	result	is	Null.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	 	

	 	

	

=	Operator

				 				

Description

Used	to	assign	a	value	to	a	variable	or	property.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

variable	=	value

The	=	operator	syntax	has	these	parts:

Part Description
variable Any	variable	or	any	writable	property.
value Any	numeric	or	string	literal,	constant,	or

expression.

Remarks

The	name	on	the	left	side	of	the	equal	sign	can	be	a	simple	scalar	variable	or	an
element	of	an	array.	Properties	on	the	left	side	of	the	equal	sign	can	only	be
those	properties	that	are	writable	at	run	time.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

And	Operator

				 				

Used	to	perform	a	logical	conjunction	on	two	expressions.

Syntax

JavaScript:hhobj_4.Click()

result	=	expression1	And	expression2

The	And	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

If	both	expressions	evaluate	to	True,	result	is	True.	If	either	expression
evaluates	to	False,	result	is	False.	The	following	table	illustrates	how	result	is
determined:

If	expression1	is And	expression2	is The	result	is
True True True
True False False
True Null Null
False True False
False False False
False Null False
Null True Null
Null False False
Null Null Null

The	And	operator	also	performs	a	bitwise	comparison	of	identically	positioned
bits	in	two	numeric	expressions	and	sets	the	corresponding	bit	in	result
according	to	the	following	table:

If	bit	in	expression1
is

And	bit	in	expression2
is The	result	is

0 0 0
0 1 0

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

1 0 0
1 1 1

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Comparison	Operators

				 				

Used	to	compare	expressions.

Syntax

result	=	expression1	comparisonoperator	expression2

result	=	object1	Is	object2

result	=	string	Like	pattern

Comparison	operators	have	these	parts:

Part Description
result Required;	any	numeric	variable.
expression Required;	any	expression.
comparisonoperator Required;	any	comparison	operator.
object Required;	any	object	name.
string Required;	any	string	expression.
pattern Required;	any	string	expression	or	range	of

characters.

Remarks

The	following	table	contains	a	list	of	the	comparison	operators	and	the

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

conditions	that	determine	whether	result	is	True,	False,	or	Null:

Operator True	if False	if Null	if
<	(Less	than) expression1	<

expression2
expression1	>=
expression2

expression1	or
expression2	=	Null

<=	(Less	than	or
equal	to)

expression1	<=
expression2

expression1	>
expression2

expression1	or
expression2	=	Null

>	(Greater	than) expression1	>
expression2

expression1	<=
expression2

expression1	or
expression2	=	Null

>=	(Greater	than
or	equal	to)

expression1	>=
expression2

expression1	<
expression2

expression1	or
expression2	=	Null

=	(Equal	to) expression1	=
expression2

expression1	<>
expression2

expression1	or
expression2	=	Null

<>	(Not	equal
to)

expression1	<>
expression2

expression1	=
expression2

expression1	or
expression2	=	Null

Note			The	Is	and	Like	operators	have	specific	comparison	functionality	that
differs	from	the	operators	in	the	table.

When	comparing	two	expressions,	you	may	not	be	able	to	easily	determine
whether	the	expressions	are	being	compared	as	numbers	or	as	strings.	The
following	table	shows	how	the	expressions	are	compared	or	the	result	when
either	expression	is	not	a	Variant:

If Then
Both	expressions	are	numeric	data	types
(Byte,	Boolean,	Integer,	Long,	Single,
Double,	Date,	Currency,	or	Decimal)

Perform	a	numeric	comparison.

Both	expressions	are	String Perform	a	string	comparison.
One	expression	is	a	numeric	data	type
and	the	other	is	a	Variant	that	is,	or	can
be,	a	number

Perform	a	numeric	comparison.

One	expression	is	a	numeric	data	type
and	the	other	is	a	string	Variant	that

A	Type	Mismatch	error	occurs.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()

can't	be	converted	to	a	number
One	expression	is	a	String	and	the	other
is	any	Variant	except	a	Null

Perform	a	string	comparison.

One	expression	is	Empty	and	the	other	is
a	numeric	data	type

Perform	a	numeric	comparison,	using
0	as	the	Empty	expression.

One	expression	is	Empty	and	the	other	is
a	String

Perform	a	string	comparison,	using	a
zero-length	string	("")	as	the	Empty
expression.

If	expression1	and	expression2	are	both	Variant	expressions,	their	underlying
type	determines	how	they	are	compared.	The	following	table	shows	how	the
expressions	are	compared	or	the	result	from	the	comparison,	depending	on	the
underlying	type	of	the	Variant:

If Then
Both	Variant	expressions	are	numeric Perform	a	numeric	comparison.
Both	Variant	expressions	are	strings Perform	a	string	comparison.
One	Variant	expression	is	numeric	and
the	other	is	a	string

The	numeric	expression	is	less	than
the	string	expression.

One	Variant	expression	is	Empty	and
the	other	is	numeric

Perform	a	numeric	comparison,	using
0	as	the	Empty	expression.

One	Variant	expression	is	Empty	and
the	other	is	a	string

Perform	a	string	comparison,	using	a
zero-length	string	("")	as	the	Empty
expression.

Both	Variant	expressions	are	Empty The	expressions	are	equal.

When	a	Single	is	compared	to	a	Double,	the	Double	is	rounded	to	the	precision
of	the	Single.

If	a	Currency	is	compared	with	a	Single	or	Double,	the	Single	or	Double	is
converted	to	a	Currency.	Similarly,	when	a	Decimal	is	compared	with	a	Single
or	Double,	the	Single	or	Double	is	converted	to	a	Decimal.	For	Currency,	any
fractional	value	less	than	.0001	may	be	lost;	for	Decimal,	any	fractional	value

JavaScript:hhobj_22.Click()

less	than	1E-28	may	be	lost,	or	an	overflow	error	can	occur.	Such	fractional
value	loss	may	cause	two	values	to	compare	as	equal	when	they	are	not.

	 	

	 	

Eqv	Operator

				 				

Used	to	perform	a	logical	equivalence	on	two	expressions.

Syntax

JavaScript:hhobj_4.Click()

result	=	expression1	Eqv	expression2

The	Eqv	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

If	either	expression	is	Null,	result	is	also	Null.	When	neither	expression	is	Null,
result	is	determined	according	to	the	following	table:

If	expression1	is And	expression2	is The	result	is
True True True
True False False
False True False
False False True

The	Eqv	operator	performs	a	bitwise	comparison	of	identically	positioned	bits	in
two	numeric	expressions	and	sets	the	corresponding	bit	in	result	according	to	the
following	table:

If	bit	in
expression1	is

And	bit	in	expression2
is The	result	is

0 0 1
0 1 0
1 0 0
1 1 1

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

Imp	Operator

				 				

Used	to	perform	a	logical	implication	on	two	expressions.

Syntax

JavaScript:hhobj_4.Click()

result	=	expression1	Imp	expression2

The	Imp	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

The	following	table	illustrates	how	result	is	determined:

If	expression1	is And	expression2	is The	result	is
True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null
Null Null Null

The	Imp	operator	performs	a	bitwise	comparison	of	identically	positioned	bits	in
two	numeric	expressions	and	sets	the	corresponding	bit	in	result	according	to	the
following	table:

If	bit	in	expression1	is And	bit	in	expression2	is The	result	is
0 0 1
0 1 1
1 0 0
1 1 1

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Is	Operator

				

				

Used	to	compare	two	object	reference	variables.

Syntax

result	=	object1	Is	object2

The	Is	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
object1 Required;	any	object	name.
object2 Required;	any	object	name.

Remarks

If	object1	and	object2	both	refer	to	the	same	object,	result	is	True;	if	they	do	not,
result	is	False.	Two	variables	can	be	made	to	refer	to	the	same	object	in	several
ways.

In	the	following	example,	A	has	been	set	to	refer	to	the	same	object	as	B:

Set	A	=	B

JavaScript:hhobj_4.Click()

The	following	example	makes	A	and	B	refer	to	the	same	object	as	C:

Set	A	=	C

Set	B	=	C

	 	

	 	

	 	

	 	

	

Like	Operator

				 				

Used	to	compare	two	strings.

Syntax

result	=	string	Like	pattern

The	Like	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
string Required;	any	string	expression.
pattern Required;	any	string	expression	conforming	to	the	pattern-matching

conventions	described	in	Remarks.

Remarks

If	string	matches	pattern,	result	is	True;	if	there	is	no	match,	result	is	False.	If
either	string	or	pattern	is	Null,	result	is	Null.

The	behavior	of	the	Like	operator	depends	on	the	Option	Compare	statement.
The	default	string-comparison	method	for	each	module	is	Option	Compare
Binary.

Option	Compare	Binary	results	in	string	comparisons	based	on	a	sort	order

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

derived	from	the	internal	binary	representations	of	the	characters.	Sort	order	is
determined	by	the	code	page.	In	the	following	example,	a	typical	binary	sort
order	is	shown:

A	<	B	<	E	<	Z	<	a	<	b	<	e	<	z	<	À	<	Ê	<	Ø	<	à	<	ê	<	ø

Option	Compare	Text	results	in	string	comparisons	based	on	a	case-insensitive,
textual	sort	order	determined	by	your	system's	locale.	When	you	sort	The	same
characters	using	Option	Compare	Text,	the	following	text	sort	order	is
produced:

(A=a)	<	(À=à)	<	(B=b)	<	(E=e)	<	(Ê=ê)	<	(Z=z)	<	(Ø=ø)

Built-in	pattern	matching	provides	a	versatile	tool	for	string	comparisons.	The
pattern-matching	features	allow	you	to	use	wildcard	characters,	character	lists,	or
character	ranges,	in	any	combination,	to	match	strings.	The	following	table
shows	the	characters	allowed	in	pattern	and	what	they	match:

Characters
in	pattern Matches	in	string
? Any	single	character.
* Zero	or	more	characters.
# Any	single	digit	(0–9).
[charlist] Any	single	character	in	charlist.
[!charlist] Any	single	character	not	in	charlist.

A	group	of	one	or	more	characters	(charlist)	enclosed	in	brackets	([])	can	be
used	to	match	any	single	character	in	string	and	can	include	almost	any	character
code,	including	digits.

Note			To	match	the	special	characters	left	bracket	([),	question	mark	(?),	number
sign	(#),	and	asterisk	(*),	enclose	them	in	brackets.	The	right	bracket	(])	can't	be
used	within	a	group	to	match	itself,	but	it	can	be	used	outside	a	group	as	an
individual	character.

By	using	a	hyphen	(–)	to	separate	the	upper	and	lower	bounds	of	the	range,

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

charlist	can	specify	a	range	of	characters.	For	example,	[A-Z]	results	in	a	match
if	the	corresponding	character	position	in	string	contains	any	uppercase	letters	in
the	range	A–Z.	Multiple	ranges	are	included	within	the	brackets	without
delimiters.

The	meaning	of	a	specified	range	depends	on	the	character	ordering	valid	at	run
time	(as	determined	by	Option	Compare	and	the	locale	setting	of	the	system	the
code	is	running	on).	Using	the	Option	Compare	Binary	example,	the	range	[A–
E]	matches	A,	B	and	E.	With	Option	Compare	Text,	[A–E]	matches	A,	a,	À,	à,
B,	b,	E,	e.	The	range	does	not	match	Ê	or	ê	because	accented	characters	fall	after
unaccented	characters	in	the	sort	order.

Other	important	rules	for	pattern	matching	include	the	following:

An	exclamation	point	(!)	at	the	beginning	of	charlist	means	that	a	match	is
made	if	any	character	except	the	characters	in	charlist	is	found	in	string.
When	used	outside	brackets,	the	exclamation	point	matches	itself.

A	hyphen	(–)	can	appear	either	at	the	beginning	(after	an	exclamation	point	if
one	is	used)	or	at	the	end	of	charlist	to	match	itself.	In	any	other	location,	the
hyphen	is	used	to	identify	a	range	of	characters.

When	a	range	of	characters	is	specified,	they	must	appear	in	ascending	sort
order	(from	lowest	to	highest).	[A-Z]	is	a	valid	pattern,	but	[Z-A]	is	not.

The	character	sequence	[]	is	considered	a	zero-length	string	("").

In	some	languages,	there	are	special	characters	in	the	alphabet	that	represent	two
separate	characters.	For	example,	several	languages	use	the	character	"æ"	to
represent	the	characters	"a"	and	"e"	when	they	appear	together.	The	Like
operator	recognizes	that	the	single	special	character	and	the	two	individual
characters	are	equivalent.

When	a	language	that	uses	a	special	character	is	specified	in	the	system	locale
settings,	an	occurrence	of	the	single	special	character	in	either	pattern	or	string

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

matches	the	equivalent	2-character	sequence	in	the	other	string.	Similarly,	a
single	special	character	in	pattern	enclosed	in	brackets	(by	itself,	in	a	list,	or	in	a
range)	matches	the	equivalent	2-character	sequence	in	string.

	 	

	 	

	 	

	 	

	

Mod	Operator

				 				

Used	to	divide	two	numbers	and	return	only	the	remainder.

Syntax

result	=	number1	Mod	number2

The	Mod	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
number1 Required;	any	numeric	expression.
number2 Required;	any	numeric	expression.

Remarks

The	modulus,	or	remainder,	operator	divides	number1	by	number2	(rounding
floating-point	numbers	to	integers)	and	returns	only	the	remainder	as	result.	For
example,	in	the	following	expression,	A	(result)	equals	5.

A	=	19	Mod	6.7

Usually,	the	data	type	of	result	is	a	Byte,	Byte	variant,	Integer,	Integer	variant,
Long,	or	Variant	containing	a	Long,	regardless	of	whether	or	not	result	is	a
whole	number.	Any	fractional	portion	is	truncated.	However,	if	any	expression	is

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Null,	result	is	Null.	Any	expression	that	is	Empty	is	treated	as	0.

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

	 	

Not	Operator

				 				

Used	to	perform	logical	negation	on	an	expression.

Syntax

result	=	Not	expression

The	Not	operator	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()

result Required;	any	numeric	variable.
expression Required;	any	expression.

Remarks

The	following	table	illustrates	how	result	is	determined:

If	expression	is Then	result	is
True False
False True
Null Null

In	addition,	the	Not	operator	inverts	the	bit	values	of	any	variable	and	sets	the
corresponding	bit	in	result	according	to	the	following	table:

If	bit	in	expression	is Then	bit	in	result	is
o 1
1 0

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

Or	Operator

				 				

Used	to	perform	a	logical	disjunction	on	two	expressions.

Syntax

JavaScript:hhobj_4.Click()

result	=	expression1	Or	expression2

The	Or	operator	syntax	has	these	parts:

Part Description
result Required;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

If	either	or	both	expressions	evaluate	to	True,	result	is	True.	The	following	table
illustrates	how	result	is	determined:

If	expression1	is And	expression2	is Then	result	is
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True
Null False Null
Null Null Null

The	Or	operator	also	performs	a	bitwise	comparison	of	identically	positioned
bits	in	two	numeric	expressions	and	sets	the	corresponding	bit	in	result
according	to	the	following	table:

If	bit	in	expression1	is And	bit	in	expression2	is Then	result	is
0 0 0
0 1 1
1 0 1
1 1 1

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

Xor	Operator

				 				

Used	to	perform	a	logical	exclusion	on	two	expressions.

Syntax

JavaScript:hhobj_4.Click()

[result	=]	expression1	Xor	expression2

The	Xor	operator	syntax	has	these	parts:

Part Description
result Optional;	any	numeric	variable.
expression1 Required;	any	expression.
expression2 Required;	any	expression.

Remarks

If	one,	and	only	one,	of	the	expressions	evaluates	to	True,	result	is	True.
However,	if	either	expression	is	Null,	result	is	also	Null.	When	neither
expression	is	Null,	result	is	determined	according	to	the	following	table:

If	expression1	is And	expression2	is Then	result	is
True True False
True False True
False True True
False False False

The	Xor	operator	performs	as	both	a	logical	and	bitwise	operator.	A	bit-wise
comparison	of	two	expressions	using	exclusive-or	logic	to	form	the	result,	as
shown	in	the	following	table:

If	bit	in	expression1	is And	bit	in	expression2	is Then	result	is
0 0 0
0 1 1
1 0 1
1 1 0

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

AtEndOfLine	Property

				 				

				

Description

Read-only	property	that	returns	True	if	the	file	pointer	immediately	precedes	the
end-of-line	marker	in	a	TextStream	file;	False	if	it	does	not.

Syntax

object.AtEndOfLine

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfLine	property	applies	only	to	TextStream	files	that	are	open	for
reading;	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfLine	property:

Dim	fs,	a,	retstring

Set	fs	=	CreateObject("Scripting.FileSystemObject")

Set	a	=	fs.OpenTextFile("c:\testfile.txt",	ForReading,	False)

Do	While	a.AtEndOfLine	<>	True

				retstring	=	a.Read(1)

				...

Loop

a.Close

AtEndOfStream	Property

				 				

				

Description

Read-only	property	that	returns	True	if	the	file	pointer	is	at	the	end	of	a
TextStream	file;	False	if	it	is	not.

Syntax

object.AtEndOfStream

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfStream	property	applies	only	to	TextStream	files	that	are	open
for	reading;	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfStream	property:

Dim	fs,	a,	retstring

Set	fs	=	CreateObject("Scripting.FileSystemObject")

Set	a	=	fs.OpenTextFile("c:\testfile.txt",	ForReading,	False)

Do	While	a.AtEndOfStream	<>	True

				retstring	=	a.ReadLine

				...

Loop

a.Close

Attributes	Property

				 				

				

Description

Sets	or	returns	the	attributes	of	files	or	folders.	Read/write	or	read-only,
depending	on	the	attribute.

Syntax

object.Attributes	[=	newattributes]

The	Attributes	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.
newattributes Optional.	If	provided,	newattributes	is	the	new	value	for	the

attributes	of	the	specified	object.

Settings

The	newattributes	argument	can	have	any	of	the	following	values	or	any	logical
combination	of	the	following	values:

Constant Value Description

Normal 0 Normal	file.	No	attributes	are	set.
ReadOnly 1 Read-only	file.	Attribute	is	read/write.
Hidden 2 Hidden	file.	Attribute	is	read/write.
System 4 System	file.	Attribute	is	read/write.
Volume 8 Disk	drive	volume	label.	Attribute	is	read-only.
Directory 16 Folder	or	directory.	Attribute	is	read-only.
Archive 32 File	has	changed	since	last	backup.	Attribute	is

read/write.
Alias 64 Link	or	shortcut.	Attribute	is	read-only.
Compressed 128 Compressed	file.	Attribute	is	read-only.

Remarks

The	following	code	illustrates	the	use	of	the	Attributes	property	with	a	file:

Sub	SetClearArchiveBit(filespec)

				Dim	fs,	f,	r

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(fs.GetFileName(filespec))

				If	f.attributes	and	32	Then

								r	=	MsgBox("The	Archive	bit	is	set,	do	you	want	to	clear	it?",	vbYesNo,	"Set/Clear	Archive	Bit")

								If	r	=	vbYes	Then	

												f.attributes	=	f.attributes	-	32

												MsgBox	"Archive	bit	is	cleared."

								Else

												MsgBox	"Archive	bit	remains	set."

								End	If

				Else

								r	=	MsgBox("The	Archive	bit	is	not	set.	Do	you	want	to	set	it?",	vbYesNo,	"Set/Clear	Archive	Bit")

								If	r	=	vbYes	Then	

												f.attributes	=	f.attributes	+	32

												MsgBox	"Archive	bit	is	set."

								Else

												MsgBox	"Archive	bit	remains	clear."

								End	If

				End	If

End	Sub

AvailableSpace	Property

				 				

				

Description

Returns	the	amount	of	space	available	to	a	user	on	the	specified	drive	or	network
share.

Syntax

object.AvailableSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	AvailableSpace	property	is	typically	the	same	as	that
returned	by	the	FreeSpace	property.	Differences	may	occur	between	the	two
values	for	computer	systems	that	support	quotas.

The	following	code	illustrates	the	use	of	the	AvailableSpace	property:

Sub	ShowAvailableSpace(drvPath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(drvPath))

				s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	

				s	=	s	&	d.VolumeName		&	vbCrLf

				s	=	s	&	"Available	Space:	"	&	FormatNumber(d.AvailableSpace

				s	=	s	&	"	Kbytes"

				MsgBox	s

End	Sub

Calendar	Property

				

				 				

Returns	or	sets	a	value	specifying	the	type	of	calendar	to	use	with	your	project.

You	can	use	one	of	two	settings	for	Calendar:

Setting Value Description
vbCalGreg 0 Use	Gregorian	calendar	(default).
vbCalHijri 1 Use	Hijri	calendar.

Remarks

You	can	only	set	the	Calendar	property	programmatically.	For	example,	to	use
the	Hijri	calendar,	use:

Calendar	=	vbCalHijri

JavaScript:hhobj_5.Click()

Column	Property

				 				

				

Description

Read-only	property	that	returns	the	column	number	of	the	current	character
position	in	a	TextStream	file.

Syntax

object.Column

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	newline	character	has	been	written,	but	before	any	other	character	is
written,	Column	is	equal	to	1.

CompareMode	Property

				 				

				

Description

Sets	and	returns	the	comparison	mode	for	comparing	string	keys	in	a	Dictionary
object.

Syntax

object.CompareMode[=	compare]

The	CompareMode	property	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
compare Optional.	If	provided,	compare	is	a	value	representing	the

comparison	mode	used	by	functions	such	as	StrComp.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbUseCompareOption –1 Performs	a	comparison	using	the	setting	of

the	Option	Compare	statement.
vbBinaryCompare 	0 Performs	a	binary	comparison.
vbTextCompare 	1 Performs	a	textual	comparison.
vbDatabaseCompare 	2 Microsoft	Access	only.	Performs	a

comparison	based	on	information	in	your
database.

Remarks

An	error	occurs	if	you	try	to	change	the	comparison	mode	of	a	Dictionary	object
that	already	contains	data.

The	CompareMode	property	uses	the	same	values	as	the	compare	argument	for
the	StrComp	function.	Values	greater	than	2	can	be	used	to	refer	to	comparisons
using	specific	Locale	IDs	(LCID).

	
Count	Property

				 				

				

Returns	a	Long	(long	integer)	containing	the	number	of	objects	in	a	collection.
Read-only.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Count	Property

				 				

				

Description

Returns	the	number	of	items	in	a	collection	or	Dictionary	object.	Read-only.

Syntax

object.Count

The	object	is	always	the	name	of	one	of	the	items	in	the	Applies	To	list.

Remarks

The	following	code	illustrates	use	of	the	Count	property:

Dim	a,	d,	i													'Create	some	variables

Set	d	=	CreateObject("Scripting.Dictionary")

d.Add	"a",	"Athens"					'Add	some	keys	and	items.

d.Add	"b",	"Belgrade"

d.Add	"c",	"Cairo"

a	=	d.Keys														'Get	the	keys

For	i	=	0	To	d.Count	-1	'Iterate	the	array

				Print	a(i)										'Print	key

Next

...

DateCreated	Property

				 				

				

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	created.	Read-only.

Syntax

object.DateCreated

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateCreated	property	with	a	file:

Sub	ShowFileInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	"Created:	"	&	f.DateCreated

				MsgBox	s

End	Sub

DateLastAccessed	Property

				 				

				

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last	accessed.
Read-only.

Syntax

object.DateLastAccessed

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastAccessed	property	with	a
file:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	UCase(filespec)	&	vbCrLf

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

Important			This	method	depends	on	the	underlying	operating	system	for	its
behavior.	If	the	operating	system	does	not	support	providing	time	information,
none	will	be	returned.

DateLastModified	Property

				 				

				

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last	modified.
Read-only.

Syntax

object.DateLastModified

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastModified	property	with	a
file:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	UCase(filespec)	&	vbCrLf

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	vbCrLf

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

	 	

Description	Property

				 				

				

Returns	or	sets	a	string	expression	containing	a	descriptive	string	associated	with
an	object.	Read/write.

For	the	Err	object,	returns	or	sets	a	descriptive	string	associated	with	an	error.

Remarks

The	Description	property	setting	consists	of	a	short	description	of	the	error.	Use
this	property	to	alert	the	user	to	an	error	that	you	either	can't	or	don't	want	to

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

handle.	When	generating	a	user-defined	error,	assign	a	short	description	of	your
error	to	the	Description	property.	If	Description	isn’t	filled	in,	and	the	value	of
Number	corresponds	to	a	Visual	Basic	run-time	error,	the	string	returned	by	the
Error	function	is	placed	in	Description	when	the	error	is	generated.

JavaScript:hhobj_7.Click()

Drive	Property

				 				

				

Description

Returns	the	drive	letter	of	the	drive	on	which	the	specified	file	or	folder	resides.
Read-only.

Syntax

object.Drive

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	property:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	f.Name	&	"	on	Drive	"	&	UCase(f.Drive)	&	vbCrLf

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	vbCrLf

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

DriveLetter	Property

				 				

				

Description

Returns	the	drive	letter	of	a	physical	local	drive	or	a	network	share.	Read-only.

Syntax

object.DriveLetter

The	object	is	always	a	Drive	object.

Remarks

The	DriveLetter	property	returns	a	zero-length	string	("")	if	the	specified	drive
is	not	associated	with	a	drive	letter,	for	example,	a	network	share	that	has	not
been	mapped	to	a	drive	letter.

The	following	code	illustrates	the	use	of	the	DriveLetter	property:

Sub	ShowDriveLetter(drvPath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(drvPath))

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	

				s	=	s	&	d.VolumeName		&	vbCrLf

				s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	

				s	=	s	&	"	Kbytes"

				MsgBox	s

End	Sub

Drives	Property

				 				

				

Description

Returns	a	Drives	collection	consisting	of	all	Drive	objects	available	on	the	local
machine.

Syntax

object.Drives

The	object	is	always	a	FileSystemObject.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them	to	appear	in	the
Drives	collection.

You	can	iterate	the	members	of	the	Drives	collection	using	a	For	Each...Next
construct	as	illustrated	in	the	following	code:

Sub	ShowDriveList

				Dim	fs,	d,	dc,	s,	n

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	dc	=	fs.Drives

				For	Each	d	in	dc

								s	=	s	&	d.DriveLetter	&	"	-	"	

								If	d.DriveType	=	3	Then

												n	=	d.ShareName

								Else

												n	=	d.VolumeName

								End	If

								s	=	s	&	n	&	vbCrLf

				Next

				MsgBox	s

End	Sub

DriveType	Property

				 				

				

Description

Returns	a	value	indicating	the	type	of	a	specified	drive.

Syntax

object.DriveType

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	DriveType	property:

Sub	ShowDriveType(drvpath)

				Dim	fs,	d,	s,	t

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(drvpath)

				Select	Case	d.DriveType

								Case	0:	t	=	"Unknown"

								Case	1:	t	=	"Removable"

								Case	2:	t	=	"Fixed"

								Case	3:	t	=	"Network"

								Case	4:	t	=	"CD-ROM"

								Case	5:	t	=	"RAM	Disk"

				End	Select

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t

				MsgBox	s

End	Sub

Files	Property

				 				

				

Description

Returns	a	Files	collection	consisting	of	all	File	objects	contained	in	the	specified
folder,	including	those	with	hidden	and	system	file	attributes	set.

Syntax

object.Files

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Files	property:

Sub	ShowFileList(folderspec)

				Dim	fs,	f,	f1,	fc,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(folderspec)

				Set	fc	=	f.Files

				For	Each	f1	in	fc

								s	=	s	&	f1.name	

								s	=	s	&		vbCrLf

				Next

				MsgBox	s

End	Sub

FileSystem	Property

				 				

				

Description

Returns	the	type	of	file	system	in	use	for	the	specified	drive.

Syntax

object.FileSystem

The	object	is	always	a	Drive	object.

Remarks

Available	return	types	include	FAT,	NTFS,	and	CDFS.

The	following	code	illustrates	the	use	of	the	FileSystem	property:

Sub	ShowFileSystemType

				Dim	fs,d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive("e:")

				s	=	d.FileSystem

				MsgBox	s

End	Sub

FreeSpace	Property

				 				

				

Description

Returns	the	amount	of	free	space	available	to	a	user	on	the	specified	drive	or
network	share.	Read-only.

Syntax

object.FreeSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	FreeSpace	property	is	typically	the	same	as	that
returned	by	the	AvailableSpace	property.	Differences	may	occur	between	the
two	for	computer	systems	that	support	quotas.

The	following	code	illustrates	the	use	of	the	FreeSpace	property:

Sub	ShowFreeSpace(drvPath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(drvPath))

				s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	

				s	=	s	&	d.VolumeName		&	vbCrLf

				s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace

				s	=	s	&	"	Kbytes"

				MsgBox	s

End	Sub

	 	

HelpContext	Property

				 				

				

Returns	or	sets	a	string	expression	containing	the	context	ID	for	a	topic	in	a	Help
file.	Read/write.

Remarks

The	HelpContext	property	is	used	to	automatically	display	the	Help	topic
specified	in	the	HelpFile	property.	If	both	HelpFile	and	HelpContext	are	empty,
the	value	of	Number	is	checked.	If	Number	corresponds	to	a	Visual	Basic	run-
time	error	value,	then	the	Visual	Basic	Help	context	ID	for	the	error	is	used.	If

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

the	Number	value	doesn’t	correspond	to	a	Visual	Basic	error,	the	contents
screen	for	the	Visual	Basic	Help	file	is	displayed.

Note			You	should	write	routines	in	your	application	to	handle	typical	errors.
When	programming	with	an	object,	you	can	use	the	object's	Help	file	to	improve
the	quality	of	your	error	handling,	or	to	display	a	meaningful	message	to	your
user	if	the	error	isn’t	recoverable.

HelpFile	Property

				 				

				

Returns	or	sets	a	string	expression	the	fully	qualified	path	to	a	Help	file.
Read/write.

Remarks

If	a	Help	file	is	specified	in	HelpFile,	it	is	automatically	called	when	the	user
presses	the	Help	button	(or	the	F1	KEY	in	Windows	or	the	HELP	key	on	the
Macintosh)	in	the	error	message	dialog	box.	If	the	HelpContext	property
contains	a	valid	context	ID	for	the	specified	file,	that	topic	is	automatically
displayed.	If	no	HelpFile	is	specified,	the	Visual	Basic	Help	file	is	displayed.

Note			You	should	write	routines	in	your	application	to	handle	typical	errors.
When	programming	with	an	object,	you	can	use	the	object's	Help	file	to	improve
the	quality	of	your	error	handling,	or	to	display	a	meaningful	message	to	your
user	if	the	error	isn’t	recoverable.

JavaScript:hhobj_5.Click()

IsReady	Property

				 				

				

Description

Returns	True	if	the	specified	drive	is	ready;	False	if	it	is	not.

Syntax

object.IsReady

The	object	is	always	a	Drive	object.

Remarks

For	removable-media	drives	and	CD-ROM	drives,	IsReady	returns	True	only
when	the	appropriate	media	is	inserted	and	ready	for	access.

The	following	code	illustrates	the	use	of	the	IsReady	property:

Sub	ShowDriveInfo(drvpath)

				Dim	fs,	d,	s,	t

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(drvpath)

				Select	Case	d.DriveType

								Case	0:	t	=	"Unknown"

								Case	1:	t	=	"Removable"

								Case	2:	t	=	"Fixed"

								Case	3:	t	=	"Network"

								Case	4:	t	=	"CD-ROM"

								Case	5:	t	=	"RAM	Disk"

				End	Select

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t

				If	d.IsReady	Then	

								s	=	s	&	vbCrLf	&	"Drive	is	Ready."

				Else

								s	=	s	&	vbCrLf	&	"Drive	is	not	Ready."

				End	If

				MsgBox	s

End	Sub

IsRootFolder	Property

				 				

				

Description

Returns	True	if	the	specified	folder	is	the	root	folder;	False	if	it	is	not.

Syntax

object.IsRootFolder

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	IsRootFolder	property:

Dim	fs

Set	fs	=	CreateObject("Scripting.FileSystemObject")

Sub	DisplayLevelDepth(pathspec)

				Dim	f,	n

				Set	f	=	fs.GetFolder(pathspec)

				If	f.IsRootFolder	Then

								MsgBox	"The	specified	folder	is	the	root	folder."

				Else

								Do	Until	f.IsRootFolder

												Set	f	=	f.ParentFolder

												n	=	n	+	1

								Loop

								MsgBox	"The	specified	folder	is	nested	"	&	n	&	"	levels	deep."

				End	If

End	Sub

Item	Property

				 				

				

Description

Sets	or	returns	an	item	for	a	specified	key	in	a	Dictionary	object.	For	collections,
returns	an	item	based	on	the	specified	key.	Read/write.

Syntax

object.Item(key)	[=	newitem]

The	Item	property	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	collection	or	Dictionary	object.
key Required.	Key	associated	with	the	item	being	retrieved	or	added.
newitem Optional.	Used	for	Dictionary	object	only;	no	application	for

collections.	If	provided,	newitem	is	the	new	value	associated	with
the	specified	key.

Remarks

If	key	is	not	found	when	changing	an	item,	a	new	key	is	created	with	the
specified	newitem.	If	key	is	not	found	when	attempting	to	return	an	existing	item,

a	new	key	is	created	and	its	corresponding	item	is	left	empty.

Key	Property

				

				 				

Description

Sets	a	key	in	a	Dictionary	object.

Syntax

object.Key(key)	=	newkey

The	Key	property	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	Key	value	being	changed.
newkey Required.	New	value	that	replaces	the	specified

key.

Remarks

If	key	is	not	found	when	changing	a	key,	a	run-time	error	will	occur.

JavaScript:hhobj_5.Click()

	
LastDLLError	Property

				 				

				

Returns	a	system	error	code	produced	by	a	call	to	a	dynamic-link	library	(DLL).
Read-only.	LastDLLError	always	returns	zero	on	the	Macintosh.

Remarks

The	LastDLLError	property	applies	only	to	DLL	calls	made	from	Visual	Basic
code.	When	such	a	call	is	made,	the	called	function	usually	returns	a	code
indicating	success	or	failure,	and	the	LastDLLError	property	is	filled.	Check
the	documentation	for	the	DLL's	functions	to	determine	the	return	values	that
indicate	success	or	failure.	Whenever	the	failure	code	is	returned,	the	Visual
Basic	application	should	immediately	check	the	LastDLLError	property.	No
exception	is	raised	when	the	LastDLLError	property	is	set.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Line	Property

				 				

				

Description

Read-only	property	that	returns	the	current	line	number	in	a	TextStream	file.

Syntax

object.Line

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	file	is	initially	opened	and	before	anything	is	written,	Line	is	equal	to	1.

Name	Property

				 				

				

Description

Sets	or	returns	the	name	of	a	specified	file	or	folder.	Read/write.

Syntax

object.Name	[=	newname]

The	Name	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.
newname Optional.	If	provided,	newname	is	the	new	name	of	the	specified

object.

Remarks

The	following	code	illustrates	the	use	of	the	Name	property:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	f.Name	&	"	on	Drive	"	&	UCase(f.Drive)	&	vbCrLf

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	vbCrLf

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

Number	Property

				 				

				

Returns	or	sets	a	numeric	value	specifying	an	error.	Number	is	the	Err	object's
default	property.	Read/write.

Remarks

When	returning	a	user-defined	error	from	an	object,	set	Err.Number	by	adding
the	number	you	selected	as	an	error	code	to	the	vbObjectError	constant.	For
example,	you	use	the	following	code	to	return	the	number	1051	as	an	error	code:

Err.Raise	Number	:=	vbObjectError	+	1051,	Source:=	"SomeClass"

JavaScript:hhobj_5.Click()

ParentFolder	Property

				 				

				

Description

Returns	the	folder	object	for	the	parent	of	the	specified	file	or	folder.	Read-only.

Syntax

object.ParentFolder

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ParentFolder	property	with	a	file:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	UCase(f.Name)	&	"	in	"	&	UCase(f.ParentFolder

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	vbCrLf

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

Path	Property

				 				

				

Description

Returns	the	path	for	a	specified	file,	folder,	or	drive.

Syntax

object.Path

The	object	is	always	a	File,	Folder,	or	Drive	object.

Remarks

For	drive	letters,	the	root	drive	is	not	included.	For	example,	the	path	for	the	C
drive	is	C:,	not	C:\.

The	following	code	illustrates	the	use	of	the	Path	property	with	a	File	object:

Sub	ShowFileAccessInfo(filespec)

				Dim	fs,	d,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	UCase(f.Path)	&	vbCrLf

				s	=	s	&	"Created:	"	&	f.DateCreated	&	vbCrLf

				s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	vbCrLf

				s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		

				MsgBox	s,	0,	"File	Access	Info"

End	Sub

RootFolder	Property

				 				

				

Description

Returns	a	Folder	object	representing	the	root	folder	of	a	specified	drive.	Read-
only.

Syntax

object.RootFolder

The	object	is	always	a	Drive	object.

Remarks

All	the	files	and	folders	contained	on	the	drive	can	be	accessed	using	the
returned	Folder	object.

SerialNumber	Property

				 				

				

Description

Returns	the	decimal	serial	number	used	to	uniquely	identify	a	disk	volume.

Syntax

object.SerialNumber

The	object	is	always	a	Drive	object.

Remarks

You	can	use	the	SerialNumber	property	to	ensure	that	the	correct	disk	is
inserted	in	a	drive	with	removable	media.

The	following	code	illustrates	the	use	of	the	SerialNumber	property:

Sub	ShowDriveInfo(drvpath)

				Dim	fs,	d,	s,	t

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(fs.GetAbsolutePathName(drvpath)))

				Select	Case	d.DriveType

								Case	0:	t	=	"Unknown"

								Case	1:	t	=	"Removable"

								Case	2:	t	=	"Fixed"

								Case	3:	t	=	"Network"

								Case	4:	t	=	"CD-ROM"

								Case	5:	t	=	"RAM	Disk"

				End	Select

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t

				s	=	s	&	vbCrLf	&	"SN:	"	&	d.SerialNumber

				MsgBox	s

End	Sub

ShareName	Property

				 				

				

Description

Returns	the	network	share	name	for	a	specified	drive.

Syntax

object.ShareName

The	object	is	always	a	Drive	object.

Remarks

If	object	is	not	a	network	drive,	the	ShareName	property	returns	a	zero-length
string	("").

The	following	code	illustrates	the	use	of	the	ShareName	property:

Sub	ShowDriveInfo(drvpath)

				Dim	fs,	d,	s	

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(fs.GetAbsolutePathName(drvpath)))

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	d.ShareName

				MsgBox	s

End	Sub

ShortName	Property

				 				

				

Description

Returns	the	short	name	used	by	programs	that	require	the	earlier	8.3	naming
convention.

Syntax

object.ShortName

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName	property	with	a	File
object:

Sub	ShowShortName(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	"The	short	name	for	"	&	""	&	UCase(f.Name)

				s	=	s	&	""	&	vbCrLf

				s	=	s	&	"is:	"	&	""	&	f.ShortName	&	""

				MsgBox	s,	0,	"Short	Name	Info"

End	Sub

ShortPath	Property

				 				

				

Description

Returns	the	short	path	used	by	programs	that	require	the	earlier	8.3	file	naming
convention.

Syntax

object.ShortPath

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName	property	with	a	File
object:

Sub	ShowShortPath(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFile(filespec)

				s	=	"The	short	path	for	"	&	""	&	UCase(f.Name)

				s	=	s	&	""	&	vbCrLf

				s	=	s	&	"is:	"	&	""	&	f.ShortPath	&	""

				MsgBox	s,	0,	"Short	Path	Info"

End	Sub

Size	Property

				 				

				

Description

For	files,	returns	the	size,	in	bytes,	of	the	specified	file.	For	folders,	returns	the
size,	in	bytes,	of	all	files	and	subfolders	contained	in	the	folder.

Syntax

object.Size

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Size	property	with	a	Folder	object:

Sub	ShowFolderSize(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(filespec)

				s	=	UCase(f.Name)	&	"	uses	"	&	f.size	&	"	bytes."

				MsgBox	s,	0,	"Folder	Size	Info"

End	Sub

	 	

	 	

	 	

Source	Property

				 				

				

Returns	or	sets	a	string	expression	specifying	the	name	of	the	object	or
application	that	originally	generated	the	error.	Read/write.

Remarks

The	Source	property	specifies	a	string	expression	representing	the	object	that
generated	the	error;	the	expression	is	usually	the	object's	class	name	or
programmatic	ID.	Use	Source	to	provide	information	when	your	code	is	unable
to	handle	an	error	generated	in	an	accessed	object.	For	example,	if	you	access
Microsoft	Excel	and	it	generates	a	Division	by	zero	error,	Microsoft	Excel	sets
Err.Number	to	its	error	code	for	that	error	and	sets	Source	to
Excel.Application.

When	generating	an	error	from	code,	Source	is	your	application’s	programmatic
ID.	For	class	modules,	Source	should	contain	a	name	having	the	form
project.class.	When	an	unexpected	error	occurs	in	your	code,	the	Source
property	is	automatically	filled	in.	For	errors	in	a	standard	module,	Source
contains	the	project	name.	For	errors	in	a	class	module,	Source	contains	a	name
with	the	project.class	form.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

StartUpPosition	Property

				 				

				

Returns	or	sets	a	value	specifying	the	position	of	a	UserForm	when	it	first
appears.

You	can	use	one	of	four	settings	for	StartUpPosition:

Setting Value Description
Manual 0 No	initial	setting	specified.
CenterOwner 1 Center	on	the	item	to	which	the	UserForm

belongs.
CenterScreen 2 Center	on	the	whole	screen.
WindowsDefault 3 Position	in	upper-left	corner	of	screen.

Remarks

You	can	set	the	StartUpPosition	property	programmatically	or	from	the
Properties	window.

SubFolders	Property

				 				

				

Description

Returns	a	Folders	collection	consisting	of	all	folders	contained	in	a	specified
folder,	including	those	with	Hidden	and	System	file	attributes	set.

Syntax

object.SubFolders

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	SubFolders	property:

Sub	ShowFolderList(folderspec)

				Dim	fs,	f,	f1,	s,	sf

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(folderspec)

				Set	sf	=	f.SubFolders

				For	Each	f1	in	sf

								s	=	s	&	f1.name	

								s	=	s	&		vbCrLf

				Next

				MsgBox	s

End	Sub

TotalSize	Property

				 				

				

Description

Returns	the	total	space,	in	bytes,	of	a	drive	or	network	share.

Syntax

object.TotalSize

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	TotalSize	property:

Sub	ShowSpaceInfo(drvpath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(fs.GetAbsolutePathName(drvpath)))

				s	=	"Drive	"	&	d.DriveLetter	&	":"

				s	=	s	&	vbCrLf

				s	=	s	&	"Total	Size:	"	&	FormatNumber(d.TotalSize

				s	=	s	&	vbCrLf

				s	=	s	&	"Available:	"	&	FormatNumber(d.AvailableSpace/1024,	0)	&	"	Kbytes"

				MsgBox	s

End	Sub

Type	Property

				 				

				

Description

Returns	information	about	the	type	of	a	file	or	folder.	For	example,	for	files
ending	in	.TXT,	"Text	Document"	is	returned.

Syntax

object.Type

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Type	property	to	return	a	folder
type.	In	this	example,	try	providing	the	path	of	the	Recycle	Bin	or	other	unique
folder	to	the	procedure.

Sub	ShowFileSize(filespec)

				Dim	fs,	f,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	f	=	fs.GetFolder(filespec)

				s	=	UCase(f.Name)	&	"	is	a	"	&	f.Type	

				MsgBox	s,	0,	"File	Size	Info"

End	Sub

VolumeName	Property

				 				

				

Description

Sets	or	returns	the	volume	name	of	the	specified	drive.	Read/write.

Syntax

object.VolumeName	[=	newname]

The	VolumeName	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Drive	object.
newname Optional.	If	provided,	newname	is	the	new	name	of	the	specified

object.

Remarks

The	following	code	illustrates	the	use	of	the	VolumeName	property:

Sub	ShowVolumeInfo(drvpath)

				Dim	fs,	d,	s

				Set	fs	=	CreateObject("Scripting.FileSystemObject")

				Set	d	=	fs.GetDrive(fs.GetDriveName(fs.GetAbsolutePathName(drvpath)))

				s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	d.VolumeName

				MsgBox	s

End	Sub

	 	

AppActivate	Statement

				 				

Activates	an	application	window.

Syntax

AppActivate	title[,	wait]

The	AppActivate	statement	syntax	has	these	named	arguments:

Part Description

JavaScript:hhobj_4.Click()

title Required.	String	expression	specifying	the	title	in	the	title	bar	of	the
application	window	you	want	to	activate.	The	task	ID	returned	by	the
Shell	function	can	be	used	in	place	of	title	to	activate	an	application.

wait Optional.	Boolean	value	specifying	whether	the	calling	application	has
the	focus	before	activating	another.	If	False	(default),	the	specified
application	is	immediately	activated,	even	if	the	calling	application	does
not	have	the	focus.	If	True,	the	calling	application	waits	until	it	has	the
focus,	then	activates	the	specified	application.

Remarks

The	AppActivate	statement	changes	the	focus	to	the	named	application	or
window	but	does	not	affect	whether	it	is	maximized	or	minimized.	Focus	moves
from	the	activated	application	window	when	the	user	takes	some	action	to
change	the	focus	or	close	the	window.	Use	the	Shell	function	to	start	an
application	and	set	the	window	style.

In	determining	which	application	to	activate,	title	is	compared	to	the	title	string
of	each	running	application.	If	there	is	no	exact	match,	any	application	whose
title	string	begins	with	title	is	activated.	If	there	is	more	than	one	instance	of	the
application	named	by	title,	one	instance	is	arbitrarily	activated.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Beep	Statement

				 				

Sounds	a	tone	through	the	computer's	speaker.

Syntax

Beep

Remarks

The	frequency	and	duration	of	the	beep	depend	on	your	hardware	and	system
software,	and	vary	among	computers.

	 	

	 	

	 	

Call	Statement

				 				

Transfers	control	to	a	Sub	procedure,	Function	procedure,	or	dynamic-link
library	(DLL)	procedure.

Syntax

[Call]	name	[argumentlist]

The	Call	statement	syntax	has	these	parts:

Part Description
Call Optional;	keyword.	If	specified,	you	must	enclose	argumentlist

in	parentheses.	For	example:
	 Call	MyProc(0)

name Required.	Name	of	the	procedure	to	call.
argumentlist Optional.	Comma-delimited	list	of	variables,	arrays,	or

expressions	to	pass	to	the	procedure.	Components	of
argumentlist	may	include	the	keywords	ByVal	or	ByRef	to
describe	how	the	arguments	are	treated	by	the	called
procedure.	However,	ByVal	and	ByRef	can	be	used	with	Call
only	when	calling	a	DLL	procedure.	On	the	Macintosh,	ByVal
and	ByRef	can	be	used	with	Call	when	making	a	call	to	a
Macintosh	code	resource.

Remarks

You	are	not	required	to	use	the	Call	keyword	when	calling	a	procedure.
However,	if	you	use	the	Call	keyword	to	call	a	procedure	that	requires
arguments,	argumentlist	must	be	enclosed	in	parentheses.	If	you	omit	the	Call
keyword,	you	also	must	omit	the	parentheses	around	argumentlist.	If	you	use
either	Call	syntax	to	call	any	intrinsic	or	user-defined	function,	the	function's

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

return	value	is	discarded.

To	pass	a	whole	array	to	a	procedure,	use	the	array	name	followed	by	empty
parentheses.

	
ChDir	Statement

				 				

Changes	the	current	directory	or	folder.

Syntax

ChDir	path

The	required	path	argument	is	a	string	expression	that	identifies	which	directory
or	folder	becomes	the	new	default	directory	or	folder.	The	path	may	include	the
drive.	If	no	drive	is	specified,	ChDir	changes	the	default	directory	or	folder	on
the	current	drive.

Remarks

The	ChDir	statement	changes	the	default	directory	but	not	the	default	drive.	For
example,	if	the	default	drive	is	C,	the	following	statement	changes	the	default
directory	on	drive	D,	but	C	remains	the	default	drive:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

ChDir	"D:\TMP"				

On	the	Power	Macintosh,	the	default	drive	always	changes	to	the	drive	specified
in	path.	Full	path	specifications	begin	with	the	volume	name,	and	relative	paths
begin	with	a	colon	(:).	ChDir	resolves	any	aliases	specified	in	the	path:

ChDir	"MacDrive:Tmp"				'	On	the	Macintosh.

Note	that	when	making	relative	directory	changes,	different	symbols	are	used	in
Microsoft	Windows	and	on	the	Macintosh:

ChDir	".."				'	Moves	up	one	directory	in	Microsoft	Windows.

ChDir	"::"				'	Moves	up	one	directory	on	the	Macintosh.

	
ChDrive	Statement

				 				

Changes	the	current	drive.

Syntax

ChDrive	drive

The	required	drive	argument	is	a	string	expression	that	specifies	an	existing
drive.	If	you	supply	a	zero-length	string	(""),	the	current	drive	doesn't	change.	If
the	drive	argument	is	a	multiple-character	string,	ChDrive	uses	only	the	first
letter.

On	the	Macintosh,	ChDrive	changes	the	current	folder	to	the	root	folder	of	the
specified	drive.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	
Close	Statement

				 				

Concludes	input/output	(I/O)	to	a	file	opened	using	the	Open	statement.

Syntax

Close	[filenumberlist]

The	optional	filenumberlist	argument	can	be	one	or	more	file	numbers	using	the
following	syntax,	where	filenumber	is	any	valid	file	number:

[[#]filenumber]	[,	[#]filenumber]	.	.	.

Remarks

If	you	omit	filenumberlist,	all	active	files	opened	by	the	Open	statement	are
closed.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

When	you	close	files	that	were	opened	for	Output	or	Append,	the	final	buffer
of	output	is	written	to	the	operating	system	buffer	for	that	file.	All	buffer	space
associated	with	the	closed	file	is	released.

When	the	Close	statement	is	executed,	the	association	of	a	file	with	its	file
number	ends.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Const	Statement

				 				

Declares	constants	for	use	in	place	of	literal	values.

Syntax

[Public	|	Private]	Const	constname	[As	type]	=	expression

The	Const	statement	syntax	has	these	parts:

Part Description
Public Optional.	Keyword	used	at	module	level	to	declare	constants	that

are	available	to	all	procedures	in	all	modules.	Not	allowed	in
procedures.

Private Optional.	Keyword	used	at	module	level	to	declare	constants	that
are	available	only	within	the	module	where	the	declaration	is
made.	Not	allowed	in	procedures.

constname Required.	Name	of	the	constant;	follows	standard	variable

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

naming	conventions.
type Optional.	Data	type	of	the	constant;	may	be	Byte,	Boolean,

Integer,	Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String,	or	Variant.	Use	a	separate	As	type
clause	for	each	constant	being	declared.

expression Required.	Literal,	other	constant,	or	any	combination	that
includes	all	arithmetic	or	logical	operators	except	Is.

Remarks

Constants	are	private	by	default.	Within	procedures,	constants	are	always
private;	their	visibility	can't	be	changed.	In	standard	modules,	the	default
visibility	of	module-level	constants	can	be	changed	using	the	Public	keyword.	In
class	modules,	however,	constants	can	only	be	private	and	their	visibility	can't	be
changed	using	the	Public	keyword.

To	combine	several	constant	declarations	on	the	same	line,	separate	each
constant	assignment	with	a	comma.	When	constant	declarations	are	combined	in
this	way,	the	Public	or	Private	keyword,	if	used,	applies	to	all	of	them.

You	can't	use	variables,	user-defined	functions,	or	intrinsic	Visual	Basic
functions	(such	as	Chr)	in	expressions	assigned	to	constants.

Note			Constants	can	make	your	programs	self-documenting	and	easy	to	modify.
Unlike	variables,	constants	can't	be	inadvertently	changed	while	your	program	is
running.

If	you	don't	explicitly	declare	the	constant	type	using	As	type,	the	constant	has
the	data	type	that	is	most	appropriate	for	expression.

Constants	declared	in	a	Sub,	Function,	or	Property	procedure	are	local	to	that
procedure.	A	constant	declared	outside	a	procedure	is	defined	throughout	the
module	in	which	it	is	declared.	You	can	use	constants	anywhere	you	can	use	an
expression.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()

Date	Statement

				 				

Sets	the	current	system	date.

Syntax

Date	=	date

For	systems	running	Microsoft	Windows	95,	the	required	date	specification	must
be	a	date	from	January	1,	1980	through	December	31,	2099.	For	systems	running
Microsoft	Windows	NT,	date	must	be	a	date	from	January	1,	1980	through
December	31,	2079.	For	the	Macintosh,	date	must	be	a	date	from	January	1,
1904	through	February	5,	2040.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Declare	Statement

				 				

Used	at	module	level	to	declare	references	to	external	procedures	in	a	dynamic-
link	library	(DLL).

Syntax	1

[Public	|	Private]	Declare	Sub	name	Lib	"libname"	[Alias	"aliasname"]
[([arglist])]

Syntax	2

[Public	|	Private]	Declare	Function	name	Lib	"libname"	[Alias	"aliasname"]
[([arglist])]	[As	type]

The	Declare	statement	syntax	has	these	parts:

Part Description
Public Optional.	Used	to	declare	procedures	that	are	available	to	all

other	procedures	in	all	modules.
Private Optional.	Used	to	declare	procedures	that	are	available	only

within	the	module	where	the	declaration	is	made.
Sub Optional	(either	Sub	or	Function	must	appear).	Indicates	that

the	procedure	doesn't	return	a	value.
Function Optional	(either	Sub	or	Function	must	appear).	Indicates	that

the	procedure	returns	a	value	that	can	be	used	in	an	expression.
name Required.	Any	valid	procedure	name.	Note	that	DLL	entry

points	are	case	sensitive.
Lib Required.	Indicates	that	a	DLL	or	code	resource	contains	the

procedure	being	declared.	The	Lib	clause	is	required	for	all
declarations.

libname Required.	Name	of	the	DLL	or	code	resource	that	contains	the

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

declared	procedure.
Alias Optional.	Indicates	that	the	procedure	being	called	has	another

name	in	the	DLL.	This	is	useful	when	the	external	procedure
name	is	the	same	as	a	keyword.	You	can	also	use	Alias	when	a
DLL	procedure	has	the	same	name	as	a	public	variable,
constant,	or	any	other	procedure	in	the	same	scope.	Alias	is	also
useful	if	any	characters	in	the	DLL	procedure	name	aren't
allowed	by	the	DLL	naming	convention.

aliasname Optional.	Name	of	the	procedure	in	the	DLL	or	code	resource.	If
the	first	character	is	not	a	number	sign	(#),	aliasname	is	the
name	of	the	procedure's	entry	point	in	the	DLL.	If	(#)	is	the	first
character,	all	characters	that	follow	must	indicate	the	ordinal
number	of	the	procedure's	entry	point.

arglist Optional.	List	of	variables	representing	arguments	that	are
passed	to	the	procedure	when	it	is	called.

type Optional.	Data	type	of	the	value	returned	by	a	Function
procedure;	may	be	Byte,	Boolean,	Integer,	Long,	Currency,
Single,	Double,	Decimal	(not	currently	supported),	Date,	String
(variable	length	only),	or	Variant,	a	user-defined	type,	or	an
object	type.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]

Part Description
Optional Optional.	Indicates	that	an	argument	is	not	required.	If	used,	all

subsequent	arguments	in	arglist	must	also	be	optional	and
declared	using	the	Optional	keyword.	Optional	can't	be	used
for	any	argument	if	ParamArray	is	used.

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Indicates	that	the	argument	is	passed	by	reference.	ByRef	is	the

default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()

arbitrary	number	of	arguments.	The	ParamArray	keyword	can't
be	used	with	ByVal,	ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument	being
passed	to	the	procedure;	follows	standard	variable	naming
conventions.

() Required	for	array	variables.	Indicates	that	varname	is	an	array.
type Optional.	Data	type	of	the	argument	passed	to	the	procedure;

may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,
Double,	Decimal	(not	currently	supported),	Date,	String
(variable	length	only),	Object,	Variant,	a	user-defined	type,	or
an	object	type.

Remarks

For	Function	procedures,	the	data	type	of	the	procedure	determines	the	data
type	it	returns.	You	can	use	an	As	clause	following	arglist	to	specify	the	return
type	of	the	function.	Within	arglist,	you	can	use	an	As	clause	to	specify	the	data
type	of	any	of	the	arguments	passed	to	the	procedure.	In	addition	to	specifying
any	of	the	standard	data	types,	you	can	specify	As	Any	in	arglist	to	inhibit	type
checking	and	allow	any	data	type	to	be	passed	to	the	procedure.

Empty	parentheses	indicate	that	the	Sub	or	Function	procedure	has	no
arguments	and	that	Visual	Basic	should	ensure	that	none	are	passed.	In	the
following	example,	First	takes	no	arguments.	If	you	use	arguments	in	a	call	to
First,	an	error	occurs:

Declare	Sub	First	Lib	"MyLib"	()

If	you	include	an	argument	list,	the	number	and	type	of	arguments	are	checked
each	time	the	procedure	is	called.	In	the	following	example,	First	takes	one
Long	argument:

Declare	Sub	First	Lib	"MyLib"	(X	As	Long)

Note			You	can't	have	fixed-length	strings	in	the	argument	list	of	a	Declare
statement;	only	variable-length	strings	can	be	passed	to	procedures.	Fixed-length

strings	can	appear	as	procedure	arguments,	but	they	are	converted	to	variable-
length	strings	before	being	passed.

Note			The	vbNullString	constant	is	used	when	calling	external	procedures,
where	the	external	procedure	requires	a	string	whose	value	is	zero.	This	is	not
the	same	thing	as	a	zero-length	string	("").

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Deftype	Statements

				 				

Used	at	module	level	to	set	the	default	data	type	for	variables,	arguments	passed
to	procedures,	and	the	return	type	for	Function	and	Property	Get	procedures
whose	names	start	with	the	specified	characters.

Syntax

DefBool	letterrange[,	letterrange]	.	.	.

DefByte	letterrange[,	letterrange]	.	.	.

DefInt	letterrange[,	letterrange]	.	.	.

DefLng	letterrange[,	letterrange]	.	.	.

DefCur	letterrange[,	letterrange]	.	.	.

DefSng	letterrange[,	letterrange]	.	.	.

DefDbl	letterrange[,	letterrange]	.	.	.

DefDec	letterrange[,	letterrange]	.	.	.

DefDate	letterrange[,	letterrange]	.	.	.

DefStr	letterrange[,	letterrange]	.	.	.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

DefObj	letterrange[,	letterrange]	.	.	.

DefVar	letterrange[,	letterrange]	.	.	.

The	required	letterrange	argument	has	the	following	syntax:

letter1[-letter2]

The	letter1	and	letter2	arguments	specify	the	name	range	for	which	you	can	set	a
default	data	type.	Each	argument	represents	the	first	letter	of	the	variable,
argument,	Function	procedure,	or	Property	Get	procedure	name	and	can	be	any
letter	of	the	alphabet.	The	case	of	letters	in	letterrange	isn't	significant.

Remarks

The	statement	name	determines	the	data	type:

Statement Data	Type
DefBool Boolean
DefByte Byte
DefInt Integer
DefLng Long
DefCur Currency
DefSng Single
DefDbl Double
DefDec Decimal	(not	currently	supported)
DefDate Date
DefStr String
DefObj Object
DefVar Variant

For	example,	in	the	following	program	fragment,	Message	is	a	string	variable:

DefStr	A-Q

.	.	.

Message	=	"Out	of	stack	space."

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()

A	Deftype	statement	affects	only	the	module	where	it	is	used.	For	example,	a
DefInt	statement	in	one	module	affects	only	the	default	data	type	of	variables,
arguments	passed	to	procedures,	and	the	return	type	for	Function	and	Property
Get	procedures	declared	in	that	module;	the	default	data	type	of	variables,
arguments,	and	return	types	in	other	modules	is	unaffected.	If	not	explicitly
declared	with	a	Deftype	statement,	the	default	data	type	for	all	variables,	all
arguments,	all	Function	procedures,	and	all	Property	Get	procedures	is
Variant.

When	you	specify	a	letter	range,	it	usually	defines	the	data	type	for	variables	that
begin	with	letters	in	the	first	128	characters	of	the	character	set.	However,	when
you	specify	the	letter	range	A–Z,	you	set	the	default	to	the	specified	data	type	for
all	variables,	including	variables	that	begin	with	international	characters	from
the	extended	part	of	the	character	set	(128–255).

Once	the	range	A–Z	has	been	specified,	you	can't	further	redefine	any	subranges
of	variables	using	Deftype	statements.	Once	a	range	has	been	specified,	if	you
include	a	previously	defined	letter	in	another	Deftype	statement,	an	error	occurs.
However,	you	can	explicitly	specify	the	data	type	of	any	variable,	defined	or	not,
using	a	Dim	statement	with	an	As	type	clause.	For	example,	you	can	use	the
following	code	at	module	level	to	define	a	variable	as	a	Double	even	though	the
default	data	type	is	Integer:

DefInt	A-Z

Dim	TaxRate	As	Double

Deftype	statements	don't	affect	elements	of	user-defined	types	because	the
elements	must	be	explicitly	declared.

JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()

	 	

	 	

DeleteSetting	Statement

				 				

Deletes	a	section	or	key	setting	from	an	application's	entry	in	the	Windows
registry	or	(on	the	Macintosh)	information	in	the	application’s	initialization	file.

JavaScript:hhobj_4.Click()

Syntax

DeleteSetting	appname,	section[,	key]

The	DeleteSetting	statement	syntax	has	these	named	arguments:

Part Description
appname Required.	String	expression	containing	the	name	of	the	application

or	project	to	which	the	section	or	key	setting	applies.	On	the
Macintosh,	this	is	the	filename	of	the	initialization	file	in	the
Preferences	folder	in	the	System	folder.

section Required.	String	expression	containing	the	name	of	the	section
where	the	key	setting	is	being	deleted.	If	only	appname	and	section
are	provided,	the	specified	section	is	deleted	along	with	all	related
key	settings.

key Optional.	String	expression	containing	the	name	of	the	key	setting
being	deleted.

Remarks

If	all	arguments	are	provided,	the	specified	setting	is	deleted.	A	run-time	error
occurs	if	you	attempt	to	use	the	DeleteSetting	statement	on	a	non-existent
section	or	key	setting.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Dim	Statement

				 				

Declares	variables	and	allocates	storage	space.

Syntax

JavaScript:hhobj_4.Click()

Dim	[WithEvents]	varname[([subscripts])]	[As	[New]	type]	[,	[WithEvents]
varname[([subscripts])]	[As	[New]	type]]	.	.	.

The	Dim	statement	syntax	has	these	parts:

Part Description
WithEvents Optional.	Keyword	that	specifies	that	varname	is	an	object

variable	used	to	respond	to	events	triggered	by	an	ActiveX
object.	WithEvents	is	valid	only	in	class	modules.	You	can
declare	as	many	individual	variables	as	you	like	using
WithEvents,	but	you	can't	create	arrays	with	WithEvents.	You
can't	use	New	with	WithEvents.

varname Required.	Name	of	the	variable;	follows	standard	variable
naming	conventions.

subscripts Optional.	Dimensions	of	an	array	variable;	up	to	60	multiple
dimensions	may	be	declared.	The	subscripts	argument	uses	the
following	syntax:

[lower	To]	upper	[,	[lower	To]	upper]	.	.	.

When	not	explicitly	stated	in	lower,	the	lower	bound	of	an	array	is	controlled	by	the
Option	Base	statement.	The	lower	bound	is	zero	if	no	Option	Base	statement	is
present.

New Optional.	Keyword	that	enables	implicit	creation	of	an	object.	If
you	use	New	when	declaring	the	object	variable,	a	new	instance
of	the	object	is	created	on	first	reference	to	it,	so	you	don't	have
to	use	the	Set	statement	to	assign	the	object	reference.	The	New
keyword	can't	be	used	to	declare	variables	of	any	intrinsic	data
type,	can't	be	used	to	declare	instances	of	dependent	objects,	and
can’t	be	used	with	WithEvents.

type Optional.	Data	type	of	the	variable;	may	be	Byte,	Boolean,
Integer,	Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String	(for	variable-length	strings),	String	*
length	(for	fixed-length	strings),	Object,	Variant,	a	user-defined
type,	or	an	object	type.	Use	a	separate	As	type	clause	for	each
variable	you	declare.

Remarks

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()

Variables	declared	with	Dim	at	the	module	level	are	available	to	all	procedures
within	the	module.	At	the	procedure	level,	variables	are	available	only	within	the
procedure.

Use	the	Dim	statement	at	module	or	procedure	level	to	declare	the	data	type	of	a
variable.	For	example,	the	following	statement	declares	a	variable	as	an	Integer.

Dim	NumberOfEmployees	As	Integer

Also	use	a	Dim	statement	to	declare	the	object	type	of	a	variable.	The	following
declares	a	variable	for	a	new	instance	of	a	worksheet.

Dim	X	As	New	Worksheet

If	the	New	keyword	is	not	used	when	declaring	an	object	variable,	the	variable
that	refers	to	the	object	must	be	assigned	an	existing	object	using	the	Set
statement	before	it	can	be	used.	Until	it	is	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing,	which	indicates	that	it	doesn't	refer	to
any	particular	instance	of	an	object.

You	can	also	use	the	Dim	statement	with	empty	parentheses	to	declare	a
dynamic	array.	After	declaring	a	dynamic	array,	use	the	ReDim	statement	within
a	procedure	to	define	the	number	of	dimensions	and	elements	in	the	array.	If	you
try	to	redeclare	a	dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Private,	Public,	or	Dim	statement,	an	error	occurs.

If	you	don't	specify	a	data	type	or	object	type,	and	there	is	no	Deftype	statement
in	the	module,	the	variable	is	Variant	by	default.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0,	a	variable-
length	string	is	initialized	to	a	zero-length	string	(""),	and	a	fixed-length	string	is
filled	with	zeros.	Variant	variables	are	initialized	to	Empty.	Each	element	of	a
user-defined	type	variable	is	initialized	as	if	it	were	a	separate	variable.

Note			When	you	use	the	Dim	statement	in	a	procedure,	you	generally	put	the
Dim	statement	at	the	beginning	of	the	procedure.

JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()

	 	

	

Do...Loop	Statement

				 				

Repeats	a	block	of	statements	while	a	condition	is	True	or	until	a	condition
becomes	True.

Syntax

Do	[{While	|	Until}	condition]
[statements]
[Exit	Do]
[statements]

JavaScript:hhobj_4.Click()

Loop

Or,	you	can	use	this	syntax:

Do
[statements]
[Exit	Do]
[statements]

Loop	[{While	|	Until}	condition]

The	Do	Loop	statement	syntax	has	these	parts:

Part Description
condition Optional.	Numeric	expression	or	string	expression	that	is

True	or	False.	If	condition	is	Null,	condition	is	treated	as
False.

statements One	or	more	statements	that	are	repeated	while,	or	until,
condition	is	True.

Remarks

Any	number	of	Exit	Do	statements	may	be	placed	anywhere	in	the	Do…Loop
as	an	alternate	way	to	exit	a	Do…Loop.	Exit	Do	is	often	used	after	evaluating
some	condition,	for	example,	If…Then,	in	which	case	the	Exit	Do	statement
transfers	control	to	the	statement	immediately	following	the	Loop.

When	used	within	nested	Do…Loop	statements,	Exit	Do	transfers	control	to	the
loop	that	is	one	nested	level	above	the	loop	where	Exit	Do	occurs.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	 	

	 	

	 	

End	Statement

				 				

Ends	a	procedure	or	block.

Syntax

End

End	Function

End	If

End	Property

End	Select

End	Sub

End	Type

End	With

The	End	statement	syntax	has	these	forms:

Statement Description
End Terminates	execution	immediately.	Never	required	by	itself

but	may	be	placed	anywhere	in	a	procedure	to	end	code
execution,	close	files	opened	with	the	Open	statement	and
to	clear	variables.

End	Function Required	to	end	a	Function	statement.
End	If Required	to	end	a	block	If…Then…Else	statement.
End	Property Required	to	end	a	Property	Let,	Property	Get,	or

Property	Set	procedure.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

End	Select Required	to	end	a	Select	Case	statement.
End	Sub Required	to	end	a	Sub	statement.
End	Type Required	to	end	a	user-defined	type	definition	(Type

statement).
End	With Required	to	end	a	With	statement.

Remarks

When	executed,	the	End	statement	resets	all	module-level	variables	and	all	static
local	variables	in	all	modules.	To	preserve	the	value	of	these	variables,	use	the
Stop	statement	instead.	You	can	then	resume	execution	while	preserving	the
value	of	those	variables.

Note			The	End	statement	stops	code	execution	abruptly,	without	invoking	the
Unload,	QueryUnload,	or	Terminate	event,	or	any	other	Visual	Basic	code.	Code
you	have	placed	in	the	Unload,	QueryUnload,	and	Terminate	events	of	forms
and	class	modules	is	not	executed.	Objects	created	from	class	modules	are
destroyed,	files	opened	using	the	Open	statement	are	closed,	and	memory	used
by	your	program	is	freed.	Object	references	held	by	other	programs	are
invalidated.

The	End	statement	provides	a	way	to	force	your	program	to	halt.	For	normal
termination	of	a	Visual	Basic	program,	you	should	unload	all	forms.	Your
program	closes	as	soon	as	there	are	no	other	programs	holding	references	to
objects	created	from	your	public	class	modules	and	no	code	executing.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

	 	

	 	

	

Erase	Statement

				 				

Reinitializes	the	elements	of	fixed-size	arrays	and	releases	dynamic-array
storage	space.

JavaScript:hhobj_4.Click()

Syntax

Erase	arraylist

The	required	arraylist	argument	is	one	or	more	comma-delimited	array	variables
to	be	erased.

Remarks

Erase	behaves	differently	depending	on	whether	an	array	is	fixed-size	(ordinary)
or	dynamic.	Erase	recovers	no	memory	for	fixed-size	arrays.	Erase	sets	the
elements	of	a	fixed	array	as	follows:

Type	of	Array Effect	of	Erase	on	Fixed-Array	Elements
Fixed	numeric	array Sets	each	element	to	zero.
Fixed	string	array
(variable	length)

Sets	each	element	to	a	zero-length	string	("").

Fixed	string	array
(fixed	length)

Sets	each	element	to	zero.

Fixed	Variant	array Sets	each	element	to	Empty.
Array	of	user-defined
types

Sets	each	element	as	if	it	were	a	separate	variable.

Array	of	objects Sets	each	element	to	the	special	value	Nothing.

Erase	frees	the	memory	used	by	dynamic	arrays.	Before	your	program	can	refer
to	the	dynamic	array	again,	it	must	redeclare	the	array	variable's	dimensions
using	a	ReDim	statement.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	 	

	

Error	Statement

				 				

Simulates	the	occurrence	of	an	error.

Syntax

Error	errornumber

The	required	errornumber	can	be	any	valid	error	number.

Remarks

The	Error	statement	is	supported	for	backward	compatibility.	In	new	code,
especially	when	creating	objects,	use	the	Err	object's	Raise	method	to	generate
run-time	errors.

If	errornumber	is	defined,	the	Error	statement	calls	the	error	handler	after	the
properties	of	Err	object	are	assigned	the	following	default	values:

Property Value
Number Value	specified	as	argument	to	Error	statement.	Can	be	any

valid	error	number.
Source Name	of	the	current	Visual	Basic	project.
Description String	expression	corresponding	to	the	return	value	of	the

Error	function	for	the	specified	Number,	if	this	string	exists.
If	the	string	doesn't	exist,	Description	contains	a	zero-length
string	("").

HelpFile The	fully	qualified	drive,	path,	and	file	name	of	the
appropriate	Visual	Basic	Help	file.

HelpContext The	appropriate	Visual	Basic	Help	file	context	ID	for	the	error
corresponding	to	the	Number	property.

LastDLLError Zero.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

If	no	error	handler	exists	or	if	none	is	enabled,	an	error	message	is	created	and
displayed	from	the	Err	object	properties.

Note			Not	all	Visual	Basic	host	applications	can	create	objects.	See	your	host
application's	documentation	to	determine	whether	it	can	create	classes	and
objects.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

	Exit

Statement

				 				

Exits	a	block	of	Do…Loop,	For...Next,	Function,	Sub,	or	Property	code.

Syntax

Exit	Do

Exit	For

Exit	Function

Exit	Property

Exit	Sub

The	Exit	statement	syntax	has	these	forms:

Statement Description

Exit	Do Provides	a	way	to	exit	a	Do...Loop	statement.	It	can	be
used	only	inside	a	Do...Loop	statement.	Exit	Do	transfers
control	to	the	statement	following	the	Loop	statement.
When	used	within	nested	Do...Loop	statements,	Exit	Do
transfers	control	to	the	loop	that	is	one	nested	level	above
the	loop	where	Exit	Do	occurs.

Exit	For Provides	a	way	to	exit	a	For	loop.	It	can	be	used	only	in	a
For...Next	or	For	Each...Next	loop.	Exit	For	transfers
control	to	the	statement	following	the	Next	statement.
When	used	within	nested	For	loops,	Exit	For	transfers
control	to	the	loop	that	is	one	nested	level	above	the	loop
where	Exit	For	occurs.

Exit	Function Immediately	exits	the	Function	procedure	in	which	it
appears.	Execution	continues	with	the	statement	following
the	statement	that	called	the	Function.

Exit	Property Immediately	exits	the	Property	procedure	in	which	it
appears.	Execution	continues	with	the	statement	following
the	statement	that	called	the	Property	procedure.

Exit	Sub Immediately	exits	the	Sub	procedure	in	which	it	appears.
Execution	continues	with	the	statement	following	the
statement	that	called	the	Sub	procedure.

Remarks

Do	not	confuse	Exit	statements	with	End	statements.	Exit	does	not	define	the
end	of	a	structure.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	

FileCopy	Statement

				 				

Copies	a	file.

Syntax

FileCopy	source,	destination

The	FileCopy	statement	syntax	has	these	named	arguments:

Part Description
source Required.	String	expression	that	specifies	the	name	of	the	file	to

be	copied.	The	source	may	include	directory	or	folder,	and
drive.

destination Required.	String	expression	that	specifies	the	target	file	name.
The	destination	may	include	directory	or	folder,	and	drive.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

If	you	try	to	use	the	FileCopy	statement	on	a	currently	open	file,	an	error	occurs.

	 	

	 	

	

For	Each...Next	Statement

				 				

Repeats	a	group	of	statements	for	each	element	in	an	array	or	collection.

Syntax

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

For	Each	element	In	group	[statements]
[Exit	For]
[statements]

Next	[element]

The	For...Each...Next	statement	syntax	has	these	parts:

Part Description
element Required.	Variable	used	to	iterate	through	the	elements	of

the	collection	or	array.	For	collections,	element	can	only	be
a	Variant	variable,	a	generic	object	variable,	or	any	specific
object	variable.	For	arrays,	element	can	only	be	a	Variant
variable.

group Required.	Name	of	an	object	collection	or	array	(except	an
array	of	user-defined	types).

statements Optional.	One	or	more	statements	that	are	executed	on	each
item	in	group.

Remarks

The	For...Each	block	is	entered	if	there	is	at	least	one	element	in	group.	Once
the	loop	has	been	entered,	all	the	statements	in	the	loop	are	executed	for	the	first
element	in	group.	If	there	are	more	elements	in	group,	the	statements	in	the	loop
continue	to	execute	for	each	element.	When	there	are	no	more	elements	in
group,	the	loop	is	exited	and	execution	continues	with	the	statement	following
the	Next	statement.

Any	number	of	Exit	For	statements	may	be	placed	anywhere	in	the	loop	as	an
alternative	way	to	exit.	Exit	For	is	often	used	after	evaluating	some	condition,
for	example	If…Then,	and	transfers	control	to	the	statement	immediately
following	Next.

You	can	nest	For...Each...Next	loops	by	placing	one	For...Each...Next	loop
within	another.	However,	each	loop	element	must	be	unique.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Note			If	you	omit	element	in	a	Next	statement,	execution	continues	as	if	element
is	included.	If	a	Next	statement	is	encountered	before	its	corresponding	For
statement,	an	error	occurs.

You	can't	use	the	For...Each...Next	statement	with	an	array	of	user-defined	types
because	a	Variant	can't	contain	a	user-defined	type.

	 	

	 	

For...Next	Statement

				 				

Repeats	a	group	of	statements	a	specified	number	of	times.

Syntax

JavaScript:hhobj_4.Click()

For	counter	=	start	To	end	[Step	step]
[statements]
[Exit	For]
[statements]

Next	[counter]

The	For…Next	statement	syntax	has	these	parts:

Part Description
counter Required.	Numeric	variable	used	as	a	loop	counter.	The

variable	can't	be	a	Boolean	or	an	array	element.
start Required.	Initial	value	of	counter.
end Required.	Final	value	of	counter.
step Optional.	Amount	counter	is	changed	each	time	through	the

loop.	If	not	specified,	step	defaults	to	one.
statements Optional.	One	or	more	statements	between	For	and	Next

that	are	executed	the	specified	number	of	times.

Remarks

The	step	argument	can	be	either	positive	or	negative.	The	value	of	the	step
argument	determines	loop	processing	as	follows:

Value Loop	executes	if
Positive	or	0 counter	<=	end
Negative counter	>=	end

After	all	statements	in	the	loop	have	executed,	step	is	added	to	counter.	At	this
point,	either	the	statements	in	the	loop	execute	again	(based	on	the	same	test	that
caused	the	loop	to	execute	initially),	or	the	loop	is	exited	and	execution
continues	with	the	statement	following	the	Next	statement.

Tip			Changing	the	value	of	counter	while	inside	a	loop	can	make	it	more

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

difficult	to	read	and	debug	your	code.

Any	number	of	Exit	For	statements	may	be	placed	anywhere	in	the	loop	as	an
alternate	way	to	exit.	Exit	For	is	often	used	after	evaluating	of	some	condition,
for	example	If...Then,	and	transfers	control	to	the	statement	immediately
following	Next.

You	can	nest	For...Next	loops	by	placing	one	For...Next	loop	within	another.
Give	each	loop	a	unique	variable	name	as	its	counter.	The	following
construction	is	correct:

For	I	=	1	To	10

				For	J	=	1	To	10

								For	K	=	1	To	10

												...

								Next	K

				Next	J

Next	I

Note			If	you	omit	counter	in	a	Next	statement,	execution	continues	as	if	counter
is	included.	If	a	Next	statement	is	encountered	before	its	corresponding	For
statement,	an	error	occurs.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Function	Statement

				 				

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a	Function
procedure.

Syntax

[Public	|	Private	|	Friend]	[Static]	Function	name	[(arglist)]	[As	type]
[statements]
[name	=	expression]
[Exit	Function]	
[statements]
[name	=	expression]

End	Function

The	Function	statement	syntax	has	these	parts:

Part Description
Public Optional.	Indicates	that	the	Function	procedure	is	accessible	to

all	other	procedures	in	all	modules.	If	used	in	a	module	that
contains	an	Option	Private,	the	procedure	is	not	available
outside	the	project.

Private Optional.	Indicates	that	the	Function	procedure	is	accessible
only	to	other	procedures	in	the	module	where	it	is	declared.

Friend Optional.	Used	only	in	a	class	module.	Indicates	that	the
Function	procedure	is	visible	throughout	the	project,	but	not
visible	to	a	controller	of	an	instance	of	an	object.

Static Optional.	Indicates	that	the	Function	procedure's	local	variables
are	preserved	between	calls.	The	Static	attribute	doesn't	affect
variables	that	are	declared	outside	the	Function,	even	if	they	are
used	in	the	procedure.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

name Required.	Name	of	the	Function;	follows	standard	variable
naming	conventions.

arglist Optional.	List	of	variables	representing	arguments	that	are
passed	to	the	Function	procedure	when	it	is	called.	Multiple
variables	are	separated	by	commas.

type Optional.	Data	type	of	the	value	returned	by	the	Function
procedure;	may	be	Byte,	Boolean,	Integer,	Long,	Currency,
Single,	Double,	Decimal	(not	currently	supported),	Date,	String,
or	(except	fixed	length),	Object,	Variant,	or	any	user-defined
type.

statements Optional.	Any	group	of	statements	to	be	executed	within	the
Function	procedure.

expression Optional.	Return	value	of	the	Function.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]	[=
defaultvalue]

Part Description
Optional Optional.	Indicates	that	an	argument	is	not	required.	If	used,	all

subsequent	arguments	in	arglist	must	also	be	optional	and
declared	using	the	Optional	keyword.	Optional	can't	be	used
for	any	argument	if	ParamArray	is	used.

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

ByRef	is	the	default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an
arbitrary	number	of	arguments.	It	may	not	be	used	with	ByVal,
ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument;
follows	standard	variable	naming	conventions.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;
may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,
Double,	Decimal	(not	currently	supported)	Date,	String
(variable	length	only),	Object,	Variant,	or	a	specific	object
type.	If	the	parameter	is	not	Optional,	a	user-defined	type	may
also	be	specified.

defaultvalue Optional.	Any	constant	or	constant	expression.	Valid	for
Optional	parameters	only.	If	the	type	is	an	Object,	an	explicit
default	value	can	only	be	Nothing.

Remarks

If	not	explicitly	specified	using	Public,	Private,	or	Friend,	Function
procedures	are	public	by	default.	If	Static	isn't	used,	the	value	of	local	variables
is	not	preserved	between	calls.	The	Friend	keyword	can	only	be	used	in	class
modules.	However,	Friend	procedures	can	be	accessed	by	procedures	in	any
module	of	a	project.	A	Friend	procedure	does't	appear	in	the	type	library	of	its
parent	class,	nor	can	a	Friend	procedure	be	late	bound.

Caution			Function	procedures	can	be	recursive;	that	is,	they	can	call
themselves	to	perform	a	given	task.	However,	recursion	can	lead	to	stack
overflow.	The	Static	keyword	usually	isn't	used	with	recursive	Function
procedures.

All	executable	code	must	be	in	procedures.	You	can't	define	a	Function
procedure	inside	another	Function,	Sub,	or	Property	procedure.

The	Exit	Function	statement	causes	an	immediate	exit	from	a	Function
procedure.	Program	execution	continues	with	the	statement	following	the
statement	that	called	the	Function	procedure.	Any	number	of	Exit	Function
statements	can	appear	anywhere	in	a	Function	procedure.

Like	a	Sub	procedure,	a	Function	procedure	is	a	separate	procedure	that	can
take	arguments,	perform	a	series	of	statements,	and	change	the	values	of	its
arguments.	However,	unlike	a	Sub	procedure,	you	can	use	a	Function	procedure
on	the	right	side	of	an	expression	in	the	same	way	you	use	any	intrinsic	function,

JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()

such	as	Sqr,	Cos,	or	Chr,	when	you	want	to	use	the	value	returned	by	the
function.

You	call	a	Function	procedure	using	the	function	name,	followed	by	the
argument	list	in	parentheses,	in	an	expression.	See	the	Call	statement	for	specific
information	on	how	to	call	Function	procedures.

To	return	a	value	from	a	function,	assign	the	value	to	the	function	name.	Any
number	of	such	assignments	can	appear	anywhere	within	the	procedure.	If	no
value	is	assigned	to	name,	the	procedure	returns	a	default	value:	a	numeric
function	returns	0,	a	string	function	returns	a	zero-length	string	(""),	and	a
Variant	function	returns	Empty.	A	function	that	returns	an	object	reference
returns	Nothing	if	no	object	reference	is	assigned	to	name	(using	Set)	within	the
Function.

The	following	example	shows	how	to	assign	a	return	value	to	a	function	named
BinarySearch.	In	this	case,	False	is	assigned	to	the	name	to	indicate	that	some
value	was	not	found.

Function	BinarySearch(.	.	.)	As	Boolean

.	.	.

				'	Value	not	found.	Return	a	value	of	False.

				If	lower	>	upper	Then

								BinarySearch	=	False

								Exit	Function

				End	If

.	.	.

End	Function

Variables	used	in	Function	procedures	fall	into	two	categories:	those	that	are
explicitly	declared	within	the	procedure	and	those	that	are	not.	Variables	that	are
explicitly	declared	in	a	procedure	(using	Dim	or	the	equivalent)	are	always	local
to	the	procedure.	Variables	that	are	used	but	not	explicitly	declared	in	a
procedure	are	also	local	unless	they	are	explicitly	declared	at	some	higher	level
outside	the	procedure.

Caution			A	procedure	can	use	a	variable	that	is	not	explicitly	declared	in	the

JavaScript:hhobj_30.Click()

procedure,	but	a	naming	conflict	can	occur	if	anything	you	defined	at	the	module
level	has	the	same	name.	If	your	procedure	refers	to	an	undeclared	variable	that
has	the	same	name	as	another	procedure,	constant,	or	variable,	it	is	assumed	that
your	procedure	refers	to	that	module-level	name.	Explicitly	declare	variables	to
avoid	this	kind	of	conflict.	You	can	use	an	Option	Explicit	statement	to	force
explicit	declaration	of	variables.

Caution			Visual	Basic	may	rearrange	arithmetic	expressions	to	increase	internal
efficiency.	Avoid	using	a	Function	procedure	in	an	arithmetic	expression	when
the	function	changes	the	value	of	variables	in	the	same	expression.

JavaScript:hhobj_31.Click()

	 	

	 	

	 	

	 	

Get	Statement

				 				

Reads	data	from	an	open	disk	file	into	a	variable.

Syntax

Get	[#]filenumber,	[recnumber],	varname

The	Get	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
recnumber Optional.	Variant	(Long).	Record	number	(Random	mode	files)

or	byte	number	(Binary	mode	files)	at	which	reading	begins.
varname Required.	Valid	variable	name	into	which	data	is	read.

Remarks

Data	read	with	Get	is	usually	written	to	a	file	with	Put.

The	first	record	or	byte	in	a	file	is	at	position	1,	the	second	record	or	byte	is	at
position	2,	and	so	on.	If	you	omit	recnumber,	the	next	record	or	byte	following
the	last	Get	or	Put	statement	(or	pointed	to	by	the	last	Seek	function)	is	read.
You	must	include	delimiting	commas,	for	example:

Get	#4,,FileBuffer

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

For	files	opened	in	Random	mode,	the	following	rules	apply:

If	the	length	of	the	data	being	read	is	less	than	the	length	specified	in	the	Len
clause	of	the	Open	statement,	Get	reads	subsequent	records	on	record-length
boundaries.	The	space	between	the	end	of	one	record	and	the	beginning	of
the	next	record	is	padded	with	the	existing	contents	of	the	file	buffer.
Because	the	amount	of	padding	data	can't	be	determined	with	any	certainty,	it
is	generally	a	good	idea	to	have	the	record	length	match	the	length	of	the	data
being	read.

If	the	variable	being	read	into	is	a	variable-length	string,	Get	reads	a	2-byte
descriptor	containing	the	string	length	and	then	reads	the	data	that	goes	into
the	variable.	Therefore,	the	record	length	specified	by	the	Len	clause	in	the
Open	statement	must	be	at	least	2	bytes	greater	than	the	actual	length	of	the
string.

If	the	variable	being	read	into	is	a	Variant	of	numeric	type,	Get	reads	2	bytes
identifying	the	VarType	of	the	Variant	and	then	the	data	that	goes	into	the
variable.	For	example,	when	reading	a	Variant	of	VarType	3,	Get	reads	6
bytes:	2	bytes	identifying	the	Variant	as	VarType	3	(Long)	and	4	bytes
containing	the	Long	data.	The	record	length	specified	by	the	Len	clause	in
the	Open	statement	must	be	at	least	2	bytes	greater	than	the	actual	number	of
bytes	required	to	store	the	variable.
Note			You	can	use	the	Get	statement	to	read	a	Variant	array	from	disk,	but	you	can't	use	Get	to	read	a	scalar	Variant	containing	an
array.	You	also	can't	use	Get	to	read	objects	from	disk.

If	the	variable	being	read	into	is	a	Variant	of	VarType	8	(String),	Get	reads
2	bytes	identifying	the	VarType,	2	bytes	indicating	the	length	of	the	string,
and	then	reads	the	string	data.	The	record	length	specified	by	the	Len	clause
in	the	Open	statement	must	be	at	least	4	bytes	greater	than	the	actual	length
of	the	string.

If	the	variable	being	read	into	is	a	dynamic	array,	Get	reads	a	descriptor
whose	length	equals	2	plus	8	times	the	number	of	dimensions,	that	is,	2	+	8	*
NumberOfDimensions.	The	record	length	specified	by	the	Len	clause	in	the

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Open	statement	must	be	greater	than	or	equal	to	the	sum	of	all	the	bytes
required	to	read	the	array	data	and	the	array	descriptor.	For	example,	the
following	array	declaration	requires	118	bytes	when	the	array	is	written	to
disk.
Dim	MyArray(1	To	5,1	To	10)	As	Integer

The	118	bytes	are	distributed	as	follows:	18	bytes	for	the	descriptor	(2	+	8	*	2),	and	100	bytes	for	the	data	(5	*	10	*	2).

If	the	variable	being	read	into	is	a	fixed-size	array,	Get	reads	only	the	data.
No	descriptor	is	read.

If	the	variable	being	read	into	is	any	other	type	of	variable	(not	a	variable-
length	string	or	a	Variant),	Get	reads	only	the	variable	data.	The	record
length	specified	by	the	Len	clause	in	the	Open	statement	must	be	greater
than	or	equal	to	the	length	of	the	data	being	read.

Get	reads	elements	of	user-defined	types	as	if	each	were	being	read
individually,	except	that	there	is	no	padding	between	elements.	On	disk,	a
dynamic	array	in	a	user-defined	type	(written	with	Put)	is	prefixed	by	a
descriptor	whose	length	equals	2	plus	8	times	the	number	of	dimensions,	that
is,	2	+	8	*	NumberOfDimensions.	The	record	length	specified	by	the	Len
clause	in	the	Open	statement	must	be	greater	than	or	equal	to	the	sum	of	all
the	bytes	required	to	read	the	individual	elements,	including	any	arrays	and
their	descriptors.

For	files	opened	in	Binary	mode,	all	of	the	Random	rules	apply,	except:

The	Len	clause	in	the	Open	statement	has	no	effect.	Get	reads	all	variables
from	disk	contiguously;	that	is,	with	no	padding	between	records.

For	any	array	other	than	an	array	in	a	user-defined	type,	Get	reads	only	the
data.	No	descriptor	is	read.

Get	reads	variable-length	strings	that	aren't	elements	of	user-defined	types
without	expecting	the	2-byte	length	descriptor.	The	number	of	bytes	read

JavaScript:hhobj_11.Click()

equals	the	number	of	characters	already	in	the	string.	For	example,	the
following	statements	read	10	bytes	from	file	number	1:
VarString	=	String(10,"	")

Get	#1,,VarString

JavaScript:hhobj_12.Click()

	 	

	 	

GoSub...Return	Statement

				 				

Branches	to	and	returns	from	a	subroutine	within	a	procedure.

Syntax

JavaScript:hhobj_4.Click()

GoSub	line	...
line
...

Return

The	line	argument	can	be	any	line	label	or	line	number.

Remarks

You	can	use	GoSub	and	Return	anywhere	in	a	procedure,	but	GoSub	and	the
corresponding	Return	statement	must	be	in	the	same	procedure.	A	subroutine
can	contain	more	than	one	Return	statement,	but	the	first	Return	statement
encountered	causes	the	flow	of	execution	to	branch	back	to	the	statement
immediately	following	the	most	recently	executed	GoSub	statement.

Note			You	can't	enter	or	exit	Sub	procedures	with	GoSub...Return.

Tip			Creating	separate	procedures	that	you	can	call	may	provide	a	more
structured	alternative	to	using	GoSub...Return.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

GoTo	Statement

				 				

Branches	unconditionally	to	a	specified	line	within	a	procedure.

Syntax

JavaScript:hhobj_4.Click()

GoTo	line

The	required	line	argument	can	be	any	line	label	or	line	number.

Remarks

GoTo	can	branch	only	to	lines	within	the	procedure	where	it	appears.

Note			Too	many	GoTo	statements	can	make	code	difficult	to	read	and	debug.
Use	structured	control	statements	(Do...Loop,	For...Next,	If...Then...Else,
Select	Case)	whenever	possible.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	 	

	 	

	 	

	 	

	

If...Then...Else	Statement

				 				

Conditionally	executes	a	group	of	statements,	depending	on	the	value	of	an
expression.

Syntax

If	condition	Then	[statements]	[Else	elsestatements]

Or,	you	can	use	the	block	form	syntax:

If	condition	Then	[statements]

[ElseIf	condition-n	Then
[elseifstatements]	...

[Else
[elsestatements]]

End	If

The	If...Then...Else	statement	syntax	has	these	parts:

Part Description
condition Required.	One	or	more	of	the	following	two	types	of

expressions:
	 A	numeric	expression	or	string	expression	that	evaluates	to

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

True	or	False.	If	condition	is	Null,	condition	is	treated	as
False.

	 An	expression	of	the	form	TypeOf	objectname	Is
objecttype.	The	objectname	is	any	object	reference	and
objecttype	is	any	valid	object	type.	The	expression	is	True
if	objectname	is	of	the	object	type	specified	by	objecttype;
otherwise	it	is	False.

statements Optional	in	block	form;	required	in	single-line	form	that
has	no	Else	clause.	One	or	more	statements	separated	by
colons;	executed	if	condition	is	True.

condition-n Optional.	Same	as	condition.
elseifstatements Optional.	One	or	more	statements	executed	if	associated

condition-n	is	True.
elsestatements Optional.	One	or	more	statements	executed	if	no	previous

condition	or	condition-n	expression	is	True.

Remarks

You	can	use	the	single-line	form	(first	syntax)	for	short,	simple	tests.	However,
the	block	form	(second	syntax)	provides	more	structure	and	flexibility	than	the
single-line	form	and	is	usually	easier	to	read,	maintain,	and	debug.

Note			With	the	single-line	form,	it	is	possible	to	have	multiple	statements
executed	as	the	result	of	an	If...Then	decision.	All	statements	must	be	on	the
same	line	and	separated	by	colons,	as	in	the	following	statement:

If	A	>	10	Then	A	=	A	+	1	:	B	=	B	+	A	:	C	=	C	+	B

A	block	form	If	statement	must	be	the	first	statement	on	a	line.	The	Else,	ElseIf,
and	End	If	parts	of	the	statement	can	have	only	a	line	number	or	line	label
preceding	them.	The	block	If	must	end	with	an	End	If	statement.

To	determine	whether	or	not	a	statement	is	a	block	If,	examine	what	follows	the
Then	keyword.	If	anything	other	than	a	comment	appears	after	Then	on	the
same	line,	the	statement	is	treated	as	a	single-line	If	statement.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

The	Else	and	ElseIf	clauses	are	both	optional.	You	can	have	as	many	ElseIf
clauses	as	you	want	in	a	block	If,	but	none	can	appear	after	an	Else	clause.
Block	If	statements	can	be	nested;	that	is,	contained	within	one	another.

When	executing	a	block	If	(second	syntax),	condition	is	tested.	If	condition	is
True,	the	statements	following	Then	are	executed.	If	condition	is	False,	each
ElseIf	condition	(if	any)	is	evaluated	in	turn.	When	a	True	condition	is	found,
the	statements	immediately	following	the	associated	Then	are	executed.	If	none
of	the	ElseIf	conditions	are	True	(or	if	there	are	no	ElseIf	clauses),	the
statements	following	Else	are	executed.	After	executing	the	statements	following
Then	or	Else,	execution	continues	with	the	statement	following	End	If.

Tip			Select	Case	may	be	more	useful	when	evaluating	a	single	expression	that
has	several	possible	actions.	However,	the	TypeOf	objectname	Is	objecttype
clause	can't	be	used	with	the	Select	Case	statement.

Note			TypeOf	cannot	be	used	with	hard	data	types	such	as	Long,	Integer,	and	so
forth	other	than	Object.

	 	

	 	

	 	

	 	

	 	

Input	#	Statement

				 				

Reads	data	from	an	open	sequential	file	and	assigns	the	data	to	variables.

Syntax

Input	#filenumber,	varlist

The	Input	#	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
varlist Required.	Comma-delimited	list	of	variables	that	are	assigned

values	read	from	the	file	—	can't	be	an	array	or	object	variable.
However,	variables	that	describe	an	element	of	an	array	or	user-
defined	type	may	be	used.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Data	read	with	Input	#	is	usually	written	to	a	file	with	Write	#.	Use	this
statement	only	with	files	opened	in	Input	or	Binary	mode.

When	read,	standard	string	or	numeric	data	is	assigned	to	variables	without
modification.	The	following	table	illustrates	how	other	input	data	is	treated:

Data Value	assigned	to	variable
Delimiting	comma	or	blank
line

Empty

#NULL# Null
#TRUE#	or	#FALSE# True	or	False
#yyyy-mm-dd	hh:mm:ss# The	date	and/or	time	represented	by	the	expression
#ERROR	errornumber# errornumber	(variable	is	a	Variant	tagged	as	an

error)

Double	quotation	marks	("	")	within	input	data	are	ignored.

Note			You	should	not	write	strings	that	contain	embedded	quotation	marks,	for
example,	"1,2""X"	for	use	with	the	Input	#	statement:	Input	#	parses	this	string
as	two	complete	and	separate	strings.

Data	items	in	a	file	must	appear	in	the	same	order	as	the	variables	in	varlist	and
match	variables	of	the	same	data	type.	If	a	variable	is	numeric	and	the	data	is	not
numeric,	a	value	of	zero	is	assigned	to	the	variable.

If	you	reach	the	end	of	the	file	while	you	are	inputting	a	data	item,	the	input	is
terminated	and	an	error	occurs.

Note			To	be	able	to	correctly	read	data	from	a	file	into	variables	using	Input	#,
use	the	Write	#	statement	instead	of	the	Print	#	statement	to	write	the	data	to
the	files.	Using	Write	#	ensures	each	separate	data	field	is	properly	delimited.

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

	
Kill	Statement

				 				

Deletes	files	from	a	disk.

Syntax

Kill	pathname

The	required	pathname	argument	is	a	string	expression	that	specifies	one	or
more	file	names	to	be	deleted.	The	pathname	may	include	the	directory	or	folder,
and	the	drive.

Remarks

In	Microsoft	Windows,	Kill	supports	the	use	of	multiple-character	(*)	and
single-character	(?)	wildcards	to	specify	multiple	files.	However,	on	the
Macintosh,	these	characters	are	treated	as	valid	file	name	characters	and	can't	be
used	as	wildcards	to	specify	multiple	files.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Since	the	Macintosh	doesn't	support	the	wildcards,	use	the	file	type	to	identify
groups	of	files	to	delete.	You	can	use	the	MacID	function	to	specify	file	type
instead	of	repeating	the	command	with	separate	file	names.	For	example,	the
following	statement	deletes	all	TEXT	files	in	the	current	folder.

Kill	MacID("TEXT")

If	you	use	the	MacID	function	with	Kill	in	Microsoft	Windows,	an	error	occurs.

An	error	occurs	if	you	try	to	use	Kill	to	delete	an	open	file.

Note			To	delete	directories,	use	the	RmDir	statement.

	 	

	 	

	 	

	 	

	 	

	

Let	Statement

				 				

Assigns	the	value	of	an	expression	to	a	variable	or	property.

Syntax

[Let]	varname	=	expression

The	Let	statement	syntax	has	these	parts:

Part Description
Let Optional.	Explicit	use	of	the	Let	keyword	is	a	matter	of	style,	but

it	is	usually	omitted.
varname Required.	Name	of	the	variable	or	property;	follows	standard

variable	naming	conventions.
expression Required.	Value	assigned	to	the	variable	or	property.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

A	value	expression	can	be	assigned	to	a	variable	or	property	only	if	it	is	of	a	data
type	that	is	compatible	with	the	variable.	You	can't	assign	string	expressions	to
numeric	variables,	and	you	can't	assign	numeric	expressions	to	string	variables.
If	you	do,	an	error	occurs	at	compile	time.

Variant	variables	can	be	assigned	either	string	or	numeric	expressions.	However,
the	reverse	is	not	always	true.	Any	Variant	except	a	Null	can	be	assigned	to	a
string	variable,	but	only	a	Variant	whose	value	can	be	interpreted	as	a	number
can	be	assigned	to	a	numeric	variable.	Use	the	IsNumeric	function	to	determine
if	the	Variant	can	be	converted	to	a	number.

Caution			Assigning	an	expression	of	one	numeric	type	to	a	variable	of	a
different	numeric	type	coerces	the	value	of	the	expression	into	the	numeric	type
of	the	resulting	variable.

Let	statements	can	be	used	to	assign	one	record	variable	to	another	only	when
both	variables	are	of	the	same	user-defined	type.	Use	the	LSet	statement	to
assign	record	variables	of	different	user-defined	types.	Use	the	Set	statement	to
assign	object	references	to	variables.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()

	 	

	

Line	Input	#	Statement

				 				

Reads	a	single	line	from	an	open	sequential	file	and	assigns	it	to	a	String
variable.

Syntax

Line	Input	#filenumber,	varname

The	Line	Input	#	statement	syntax	has	these	parts:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
filenumber Required.	Any	valid	file	number.
varname Required.	Valid	Variant	or	String	variable	name.

Remarks

Data	read	with	Line	Input	#	is	usually	written	from	a	file	with	Print	#.

The	Line	Input	#	statement	reads	from	a	file	one	character	at	a	time	until	it
encounters	a	carriage	return	(Chr(13))	or	carriage	return–linefeed	(Chr(13)	+
Chr(10))	sequence.	Carriage	return–linefeed	sequences	are	skipped	rather	than
appended	to	the	character	string.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Load	Statement

				 				

Loads	an	object	but	doesn't	show	it.

Syntax

Load	object

The	object	placeholder	represents	an	object	expression	that	evaluates	to	an
object	in	the	Applies	To	list.

Remarks

When	an	object	is	loaded,	it	is	placed	in	memory,	but	isn't	visible.	Use	the	Show
method	to	make	the	object	visible.	Until	an	object	is	visible,	a	user	can't	interact
with	it.	The	object	can	be	manipulated	programmatically	in	its	Initialize	event
procedure.

JavaScript:hhobj_4.Click()

	Lock,
Unlock

Statements

				 				

Controls	access	by	other	processes	to	all	or	part	of	a	file	opened	using	the	Open
statement.

Syntax

Lock	[#]filenumber[,	recordrange]
.	.	.

Unlock	[#]filenumber[,	recordrange]

The	Lock	and	Unlock	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
recordrange Optional.	The	range	of	records	to	lock	or	unlock.

JavaScript:hhobj_4.Click()

Settings

The	recordrange	argument	settings	are:

recnumber	|	[start]	To	end

Setting Description
recnumber Record	number	(Random	mode	files)	or	byte	number	(Binary

mode	files)	at	which	locking	or	unlocking	begins.
start Number	of	the	first	record	or	byte	to	lock	or	unlock.
end Number	of	the	last	record	or	byte	to	lock	or	unlock.

Remarks

The	Lock	and	Unlock	statements	are	used	in	environments	where	several
processes	might	need	access	to	the	same	file.

Lock	and	Unlock	statements	are	always	used	in	pairs.	The	arguments	to	Lock
and	Unlock	must	match	exactly.

The	first	record	or	byte	in	a	file	is	at	position	1,	the	second	record	or	byte	is	at
position	2,	and	so	on.	If	you	specify	just	one	record,	then	only	that	record	is
locked	or	unlocked.	If	you	specify	a	range	of	records	and	omit	a	starting	record
(start),	all	records	from	the	first	record	to	the	end	of	the	range	(end)	are	locked
or	unlocked.	Using	Lock	without	recnumber	locks	the	entire	file;	using	Unlock
without	recnumber	unlocks	the	entire	file.

If	the	file	has	been	opened	for	sequential	input	or	output,	Lock	and	Unlock
affect	the	entire	file,	regardless	of	the	range	specified	by	start	and	end.

Caution			Be	sure	to	remove	all	locks	with	an	Unlock	statement	before	closing	a
file	or	quitting	your	program.	Failure	to	remove	locks	produces	unpredictable
results.

JavaScript:hhobj_5.Click()

	 	

	 	

LSet	Statement

				 				

Left	aligns	a	string	within	a	string	variable,	or	copies	a	variable	of	one	user-
defined	type	to	another	variable	of	a	different	user-defined	type.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

LSet	stringvar	=	string

LSet	varname1	=	varname2

The	LSet	statement	syntax	has	these	parts:

Part Description
stringvar Required.	Name	of	string	variable.
string Required.	String	expression	to	be	left-aligned	within	stringvar.
varname1 Required.	Variable	name	of	the	user-defined	type	being	copied	to.
varname2 Required.	Variable	name	of	the	user-defined	type	being	copied

from.

Remarks

LSet	replaces	any	leftover	characters	in	stringvar	with	spaces.

If	string	is	longer	than	stringvar,	LSet	places	only	the	leftmost	characters,	up	to
the	length	of	the	stringvar,	in	stringvar.

Warning			Using	LSet	to	copy	a	variable	of	one	user-defined	type	into	a	variable
of	a	different	user-defined	type	is	not	recommended.	Copying	data	of	one	data
type	into	space	reserved	for	a	different	data	type	can	cause	unpredictable	results.

When	you	copy	a	variable	from	one	user-defined	type	to	another,	the	binary	data
from	one	variable	is	copied	into	the	memory	space	of	the	other,	without	regard
for	the	data	types	specified	for	the	elements.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	Mid

Statement

				 				

Replaces	a	specified	number	of	characters	in	a	Variant	(String)	variable	with
characters	from	another	string.

Syntax

Mid(stringvar,	start[,	length])	=	string

The	Mid	statement	syntax	has	these	parts:

Part Description
stringvar Required.	Name	of	string	variable	to	modify.
start Required;	Variant	(Long).	Character	position	in	stringvar	where

the	replacement	of	text	begins.
length Optional;	Variant	(Long).	Number	of	characters	to	replace.	If

omitted,	all	of	string	is	used.

JavaScript:hhobj_4.Click()

string Required.	String	expression	that	replaces	part	of	stringvar.

Remarks

The	number	of	characters	replaced	is	always	less	than	or	equal	to	the	number	of
characters	in	stringvar.

Note			Use	the	MidB	statement	with	byte	data	contained	in	a	string.	In	the	MidB
statement,	start	specifies	the	byte	position	within	stringvar	where	replacement
begins	and	length	specifies	the	numbers	of	bytes	to	replace.

JavaScript:hhobj_5.Click()

	
MkDir	Statement

				 				

Creates	a	new	directory	or	folder.

Syntax

MkDir	path

The	required	path	argument	is	a	string	expression	that	identifies	the	directory	or
folder	to	be	created.	The	path	may	include	the	drive.	If	no	drive	is	specified,
MkDir	creates	the	new	directory	or	folder	on	the	current	drive.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	Name

Statement

				 				

Renames	a	disk	file,	directory,	or	folder.

Syntax

Name	oldpathname	As	newpathname

The	Name	statement	syntax	has	these	parts:

Part Description
oldpathname Required.	String	expression	that	specifies	the	existing	file

name	and	location	—	may	include	directory	or	folder,	and
drive.

newpathname Required.	String	expression	that	specifies	the	new	file	name
and	location	—	may	include	directory	or	folder,	and	drive.
The	file	name	specified	by	newpathname	can't	already
exist.

JavaScript:hhobj_4.Click()

Remarks

The	Name	statement	renames	a	file	and	moves	it	to	a	different	directory	or
folder,	if	necessary.	Name	can	move	a	file	across	drives,	but	it	can	only	rename
an	existing	directory	or	folder	when	both	newpathname	and	oldpathname	are
located	on	the	same	drive.	Name	cannot	create	a	new	file,	directory,	or	folder.

Using	Name	on	an	open	file	produces	an	error.	You	must	close	an	open	file
before	renaming	it.	Name	arguments	cannot	include	multiple-character	(*)	and
single-character	(?)	wildcards.

JavaScript:hhobj_5.Click()

	 	

	 	

	 	

	 	

	

On	Error	Statement

				 				

Enables	an	error-handling	routine	and	specifies	the	location	of	the	routine	within
a	procedure;	can	also	be	used	to	disable	an	error-handling	routine.

Syntax

On	Error	GoTo	line

On	Error	Resume	Next

On	Error	GoTo	0

The	On	Error	statement	syntax	can	have	any	of	the	following	forms:

Statement Description
On	Error	GoTo	line Enables	the	error-handling	routine	that	starts	at	line

specified	in	the	required	line	argument.	The	line
argument	is	any	line	label	or	line	number.	If	a	run-time
error	occurs,	control	branches	to	line,	making	the	error
handler	active.	The	specified	line	must	be	in	the	same
procedure	as	the	On	Error	statement;	otherwise,	a
compile-time	error	occurs.

On	Error	Resume
Next

Specifies	that	when	a	run-time	error	occurs,	control	goes
to	the	statement	immediately	following	the	statement
where	the	error	occurred	where	execution	continues.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Use	this	form	rather	than	On	Error	GoTo	when
accessing	objects.

On	Error	GoTo	0 Disables	any	enabled	error	handler	in	the	current
procedure.

Remarks

If	you	don't	use	an	On	Error	statement,	any	run-time	error	that	occurs	is	fatal;
that	is,	an	error	message	is	displayed	and	execution	stops.

An	"enabled"	error	handler	is	one	that	is	turned	on	by	an	On	Error	statement;	an
"active"	error	handler	is	an	enabled	handler	that	is	in	the	process	of	handling	an
error.	If	an	error	occurs	while	an	error	handler	is	active	(between	the	occurrence
of	the	error	and	a	Resume,	Exit	Sub,	Exit	Function,	or	Exit	Property
statement),	the	current	procedure's	error	handler	can't	handle	the	error.	Control
returns	to	the	calling	procedure.	If	the	calling	procedure	has	an	enabled	error
handler,	it	is	activated	to	handle	the	error.	If	the	calling	procedure's	error	handler
is	also	active,	control	passes	back	through	previous	calling	procedures	until	an
enabled,	but	inactive,	error	handler	is	found.	If	no	inactive,	enabled	error	handler
is	found,	the	error	is	fatal	at	the	point	at	which	it	actually	occurred.	Each	time	the
error	handler	passes	control	back	to	a	calling	procedure,	that	procedure	becomes
the	current	procedure.	Once	an	error	is	handled	by	an	error	handler	in	any
procedure,	execution	resumes	in	the	current	procedure	at	the	point	designated	by
the	Resume	statement.

Note			An	error-handling	routine	is	not	a	Sub	procedure	or	Function	procedure.
It	is	a	section	of	code	marked	by	a	line	label	or	line	number.

Error-handling	routines	rely	on	the	value	in	the	Number	property	of	the	Err
object	to	determine	the	cause	of	the	error.	The	error-handling	routine	should	test
or	save	relevant	property	values	in	the	Err	object	before	any	other	error	can
occur	or	before	a	procedure	that	might	cause	an	error	is	called.	The	property
values	in	the	Err	object	reflect	only	the	most	recent	error.	The	error	message
associated	with	Err.Number	is	contained	in	Err.Description.

On	Error	Resume	Next	causes	execution	to	continue	with	the	statement
immediately	following	the	statement	that	caused	the	run-time	error,	or	with	the
statement	immediately	following	the	most	recent	call	out	of	the	procedure

containing	the	On	Error	Resume	Next	statement.	This	statement	allows
execution	to	continue	despite	a	run-time	error.	You	can	place	the	error-handling
routine	where	the	error	would	occur,	rather	than	transferring	control	to	another
location	within	the	procedure.	An	On	Error	Resume	Next	statement	becomes
inactive	when	another	procedure	is	called,	so	you	should	execute	an	On	Error
Resume	Next	statement	in	each	called	routine	if	you	want	inline	error	handling
within	that	routine.

Note			The	On	Error	Resume	Next	construct	may	be	preferable	to	On	Error
GoTo	when	handling	errors	generated	during	access	to	other	objects.	Checking
Err	after	each	interaction	with	an	object	removes	ambiguity	about	which	object
was	accessed	by	the	code.	You	can	be	sure	which	object	placed	the	error	code	in
Err.Number,	as	well	as	which	object	originally	generated	the	error	(the	object
specified	in	Err.Source).

On	Error	GoTo	0	disables	error	handling	in	the	current	procedure.	It	doesn't
specify	line	0	as	the	start	of	the	error-handling	code,	even	if	the	procedure
contains	a	line	numbered	0.	Without	an	On	Error	GoTo	0	statement,	an	error
handler	is	automatically	disabled	when	a	procedure	is	exited.

To	prevent	error-handling	code	from	running	when	no	error	has	occurred,	place
an	Exit	Sub,	Exit	Function,	or	Exit	Property	statement	immediately	before	the
error-handling	routine,	as	in	the	following	fragment:

Sub	InitializeMatrix(Var1,	Var2,	Var3,	Var4)

				On	Error	GoTo	ErrorHandler

				.	.	.

				Exit	Sub

ErrorHandler:

				.	.	.

				Resume	Next

End	Sub

Here,	the	error-handling	code	follows	the	Exit	Sub	statement	and	precedes	the
End	Sub	statement	to	separate	it	from	the	procedure	flow.	Error-handling	code
can	be	placed	anywhere	in	a	procedure.

Untrapped	errors	in	objects	are	returned	to	the	controlling	application	when	the
object	is	running	as	an	executable	file.	Within	the	development	environment,
untrapped	errors	are	only	returned	to	the	controlling	application	if	the	proper
options	are	set.	See	your	host	application's	documentation	for	a	description	of
which	options	should	be	set	during	debugging,	how	to	set	them,	and	whether	the
host	can	create	classes.

If	you	create	an	object	that	accesses	other	objects,	you	should	try	to	handle
errors	passed	back	from	them	unhandled.	If	you	cannot	handle	such	errors,	map
the	error	code	in	Err.Number	to	one	of	your	own	errors,	and	then	pass	them
back	to	the	caller	of	your	object.	You	should	specify	your	error	by	adding	your
error	code	to	the	vbObjectError	constant.	For	example,	if	your	error	code	is
1052,	assign	it	as	follows:

Err.Number	=	vbObjectError	+	1052

Note			System	errors	during	calls	to	Windows	dynamic-link	libraries	(DLL)	or
Macintosh	code	resources	do	not	raise	exceptions	and	cannot	be	trapped	with
Visual	Basic	error	trapping.	When	calling	DLL	functions,	you	should	check	each
return	value	for	success	or	failure	(according	to	the	API	specifications),	and	in
the	event	of	a	failure,	check	the	value	in	the	Err	object's	LastDLLError
property.	LastDLLError	always	returns	zero	on	the	Macintosh.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

	 	

	 	

	

On...GoSub,	On...GoTo	Statements

				 				

Branch	to	one	of	several	specified	lines,	depending	on	the	value	of	an
expression.

JavaScript:hhobj_4.Click()

Syntax

On	expression	GoSub	destinationlist

On	expression	GoTo	destinationlist

The	On...GoSub	and	On...GoTo	statement	syntax	has	these	parts:

Part Description
expression Required.	Any	numeric	expression	that	evaluates	to	a

whole	number	between	0	and	255,	inclusive.	If	expression
is	any	number	other	than	a	whole	number,	it	is	rounded
before	it	is	evaluated.

destinationlist Required.	List	of	line	numbers	or	line	labels	separated	by
commas.

Remarks

The	value	of	expression	determines	which	line	is	branched	to	in	destinationlist.
If	the	value	of	expression	is	less	than	1	or	greater	than	the	number	of	items	in	the
list,	one	of	the	following	results	occurs:

If	expression	is Then
Equal	to	0 Control	drops	to	the	statement

following	On...GoSub	or	On...GoTo.
Greater	than	number	of	items	in	list Control	drops	to	the	statement

following	On...GoSub	or	On...GoTo.
Negative An	error	occurs.
Greater	than	255 An	error	occurs.

You	can	mix	line	numbers	and	line	labels	in	the	same	list.	You	can	use	as	many
line	labels	and	line	numbers	as	you	like	with	On...GoSub	and	On...GoTo.
However,	if	you	use	more	labels	or	numbers	than	fit	on	a	single	line,	you	must
use	the	line-continuation	character	to	continue	the	logical	line	onto	the	next
physical	line.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Tip			Select	Case	provides	a	more	structured	and	flexible	way	to	perform
multiple	branching.

	 	

Open	Statement

				 				

Enables	input/output	(I/O)	to	a	file.

Syntax

Open	pathname	For	mode	[Access	access]	[lock]	As	[#]filenumber
[Len=reclength]

The	Open	statement	syntax	has	these	parts:

Part Description

pathname Required.	String	expression	that	specifies	a	file	name	—	may
include	directory	or	folder,	and	drive.

mode Required.	Keyword	specifying	the	file	mode:	Append,	Binary,
Input,	Output,	or	Random.	If	unspecified,	the	file	is	opened	for
Random	access.

access Optional.	Keyword	specifying	the	operations	permitted	on	the
open	file:	Read,	Write,	or	Read	Write.

lock Optional.	Keyword	specifying	the	operations	restricted	on	the
open	file	by	other	processes:	Shared,	Lock	Read,	Lock	Write,
and	Lock	Read	Write.

filenumber Required.	A	valid	file	number	in	the	range	1	to	511,	inclusive.	Use
the	FreeFile	function	to	obtain	the	next	available	file	number.

reclength Optional.	Number	less	than	or	equal	to	32,767	(bytes).	For	files
opened	for	random	access,	this	value	is	the	record	length.	For
sequential	files,	this	value	is	the	number	of	characters	buffered.

Remarks

You	must	open	a	file	before	any	I/O	operation	can	be	performed	on	it.	Open
allocates	a	buffer	for	I/O	to	the	file	and	determines	the	mode	of	access	to	use
with	the	buffer.

If	the	file	specified	by	pathname	doesn't	exist,	it	is	created	when	a	file	is	opened
for	Append,	Binary,	Output,	or	Random	modes.

If	the	file	is	already	opened	by	another	process	and	the	specified	type	of	access
is	not	allowed,	the	Open	operation	fails	and	an	error	occurs.

The	Len	clause	is	ignored	if	mode	is	Binary.

Important			In	Binary,	Input,	and	Random	modes,	you	can	open	a	file	using	a
different	file	number	without	first	closing	the	file.	In	Append	and	Output
modes,	you	must	close	a	file	before	opening	it	with	a	different	file	number.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

	
Option	Base	Statement

				 				

Used	at	module	level	to	declare	the	default	lower	bound	for	array	subscripts.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

Option	Base	{0	|	1}

Remarks

Because	the	default	base	is	0,	the	Option	Base	statement	is	never	required.	If
used,	the	statement	must	appear	in	a	module	before	any	procedures.	Option
Base	can	appear	only	once	in	a	module	and	must	precede	array	declarations	that
include	dimensions.

Note			The	To	clause	in	the	Dim,	Private,	Public,	ReDim,	and	Static	statements
provides	a	more	flexible	way	to	control	the	range	of	an	array's	subscripts.
However,	if	you	don't	explicitly	set	the	lower	bound	with	a	To	clause,	you	can
use	Option	Base	to	change	the	default	lower	bound	to	1.	The	base	of	an	array
created	with	the	the	ParamArray	keyword	is	zero;	Option	Base	does	not	affect
ParamArray	(or	the	Array	function,	when	qualified	with	the	name	of	its	type
library,	for	example	VBA.Array).

The	Option	Base	statement	only	affects	the	lower	bound	of	arrays	in	the	module
where	the	statement	is	located.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	
Option	Compare	Statement

				 				

Used	at	module	level	to	declare	the	default	comparison	method	to	use	when
string	data	is	compared.

JavaScript:hhobj_4.Click()

Syntax

Option	Compare	{Binary	|	Text	|	Database}

Remarks

If	used,	the	Option	Compare	statement	must	appear	in	a	module	before	any
procedures.

The	Option	Compare	statement	specifies	the	string	comparison	method
(Binary,	Text,	or	Database)	for	a	module.	If	a	module	doesn't	include	an
Option	Compare	statement,	the	default	text	comparison	method	is	Binary.

Option	Compare	Binary	results	in	string	comparisons	based	on	a	sort	order
derived	from	the	internal	binary	representations	of	the	characters.	In	Microsoft
Windows,	sort	order	is	determined	by	the	code	page.	A	typical	binary	sort	order
is	shown	in	the	following	example:

A	<	B	<	E	<	Z	<	a	<	b	<	e	<	z	<	À	<	Ê	<	Ø	<	à	<	ê	<	ø

Option	Compare	Text	results	in	string	comparisons	based	on	a	case-insensitive
text	sort	order	determined	by	your	system's	locale.	When	the	same	characters	are
sorted	using	Option	Compare	Text,	the	following	text	sort	order	is	produced:

(A=a)	<	(À=à)	<	(B=b)	<	(E=e)	<	(Ê=ê)	<	(Z=z)	<	(Ø=ø)	

Option	Compare	Database	can	only	be	used	within	Microsoft	Access.	This
results	in	string	comparisons	based	on	the	sort	order	determined	by	the	locale	ID
of	the	database	where	the	string	comparisons	occur.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	
Option	Explicit	Statement

				 				

Used	at	module	level	to	force	explicit	declaration	of	all	variables	in	that	module.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Syntax

Option	Explicit

Remarks

If	used,	the	Option	Explicit	statement	must	appear	in	a	module	before	any
procedures.

When	Option	Explicit	appears	in	a	module,	you	must	explicitly	declare	all
variables	using	the	Dim,	Private,	Public,	ReDim,	or	Static	statements.	If	you
attempt	to	use	an	undeclared	variable	name,	an	error	occurs	at	compile	time.

If	you	don't	use	the	Option	Explicit	statement,	all	undeclared	variables	are	of
Variant	type	unless	the	default	type	is	otherwise	specified	with	a	Deftype
statement.

Note			Use	Option	Explicit	to	avoid	incorrectly	typing	the	name	of	an	existing
variable	or	to	avoid	confusion	in	code	where	the	scope	of	the	variable	is	not
clear.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	 	

	 	

Option	Private	Statement

				 				

When	used	in	host	applications	that	allow	references	across	multiple	projects,
Option	Private	Module	prevents	a	module’s	contents	from	being	referenced
outside	its	project.	In	host	applications	that	don’t	permit	such	references,	for
example,	standalone	versions	of	Visual	Basic,	Option	Private	has	no	effect.

Syntax

Option	Private	Module

Remarks

If	used,	the	Option	Private	statement	must	appear	at	module	level,	before	any
procedures.

When	a	module	contains	Option	Private	Module,	the	public	parts,	for	example,
variables,	objects,	and	user-defined	types	declared	at	module	level,	are	still
available	within	the	project	containing	the	module,	but	they	are	not	available	to
other	applications	or	projects.

Note			Option	Private	is	only	useful	for	host	applications	that	support
simultaneous	loading	of	multiple	projects	and	permit	references	between	the
loaded	projects.	For	example,	Microsoft	Excel	permits	loading	of	multiple
projects	and	Option	Private	Module	can	be	used	to	restrict	cross-project
visibility.	Although	Visual	Basic	permits	loading	of	multiple	projects,	references

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

between	projects	are	never	permitted	in	Visual	Basic.

	 	

	 	

	 	

	 	

	 	

Print	#	Statement

				 				

Writes	display-formatted	data	to	a	sequential	file.

Syntax

Print	#filenumber,	[outputlist]

The	Print	#	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
outputlist Optional.	Expression	or	list	of	expressions	to	print.

Settings

The	outputlist	argument	settings	are:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

[{Spc(n)	|	Tab[(n)]}]	[expression]	[charpos]

Setting Description
Spc(n) Used	to	insert	space	characters	in	the	output,	where	n	is	the

number	of	space	characters	to	insert.
Tab(n) Used	to	position	the	insertion	point	to	an	absolute	column

number,	where	n	is	the	column	number.	Use	Tab	with	no
argument	to	position	the	insertion	point	at	the	beginning	of	the
next	print	zone.

expression Numeric	expressions	or	string	expressions	to	print.
charpos Specifies	the	insertion	point	for	the	next	character.	Use	a

semicolon	to	position	the	insertion	point	immediately	after	the	last
character	displayed.	Use	Tab(n)	to	position	the	insertion	point	to
an	absolute	column	number.	Use	Tab	with	no	argument	to
position	the	insertion	point	at	the	beginning	of	the	next	print	zone.
If	charpos	is	omitted,	the	next	character	is	printed	on	the	next
line.

Remarks

Data	written	with	Print	#	is	usually	read	from	a	file	with	Line	Input	#	or	Input.

If	you	omit	outputlist	and	include	only	a	list	separator	after	filenumber,	a	blank
line	is	printed	to	the	file.	Multiple	expressions	can	be	separated	with	either	a
space	or	a	semicolon.	A	space	has	the	same	effect	as	a	semicolon.

For	Boolean	data,	either	True	or	False	is	printed.	The	True	and	False	keywords
are	not	translated,	regardless	of	the	locale.

Date	data	is	written	to	the	file	using	the	standard	short	date	format	recognized	by
your	system.	When	either	the	date	or	the	time	component	is	missing	or	zero,
only	the	part	provided	gets	written	to	the	file.

Nothing	is	written	to	the	file	if	outputlist	data	is	Empty.	However,	if	outputlist
data	is	Null,	Null	is	written	to	the	file.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

For	Error	data,	the	output	appears	as	Error	errorcode.	The	Error	keyword	is
not	translated	regardless	of	the	locale.

All	data	written	to	the	file	using	Print	#	is	internationally	aware;	that	is,	the	data
is	properly	formatted	using	the	appropriate	decimal	separator.

Because	Print	#	writes	an	image	of	the	data	to	the	file,	you	must	delimit	the	data
so	it	prints	correctly.	If	you	use	Tab	with	no	arguments	to	move	the	print
position	to	the	next	print	zone,	Print	#	also	writes	the	spaces	between	print
fields	to	the	file.

Note			If,	at	some	future	time,	you	want	to	read	the	data	from	a	file	using	the
Input	#	statement,	use	the	Write	#	statement	instead	of	the	Print	#	statement	to
write	the	data	to	the	file.	Using	Write	#	ensures	the	integrity	of	each	separate
data	field	by	properly	delimiting	it,	so	it	can	be	read	back	in	using	Input	#.
Using	Write	#	also	ensures	it	can	be	correctly	read	in	any	locale.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Private	Statement

				 				

Used	at	module	level	to	declare	private	variables	and	allocate	storage	space.

Syntax

Private	[WithEvents]	varname[([subscripts])]	[As	[New]	type]	[,[WithEvents]
varname[([subscripts])]	[As	[New]	type]]	.	.	.

The	Private	statement	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

WithEvents Optional.	Keyword	that	specifies	that	varname	is	an	object
variable	used	to	respond	to	events	triggered	by	an	ActiveX
object.	WithEvents	is	valid	only	in	class	modules.	You	can
declare	as	many	individual	variables	as	you	like	using
WithEvents,	but	you	can't	create	arrays	with	WithEvents.	You
can't	use	New	with	WithEvents.

varname Required.	Name	of	the	variable;	follows	standard	variable
naming	conventions.

subscripts Optional.	Dimensions	of	an	array	variable;	up	to	60	multiple
dimensions	may	be	declared.	The	subscripts	argument	uses	the
following	syntax:

	 [lower	To]	upper	[,[lower	To]	upper]	.	.	.
	 When	not	explicitly	stated	in	lower,	the	lower	bound	of	an	array

is	controlled	by	the	Option	Base	statement.	The	lower	bound	is
zero	if	no	Option	Base	statement	is	present.

New Optional.	Keyword	that	enables	implicit	creation	of	an	object.	If
you	use	New	when	declaring	the	object	variable,	a	new	instance
of	the	object	is	created	on	first	reference	to	it,	so	you	don't	have
to	use	the	Set	statement	to	assign	the	object	reference.	The	New
keyword	can't	be	used	to	declare	variables	of	any	intrinsic	data
type,	can't	be	used	to	declare	instances	of	dependent	objects,	and
can’t	be	used	with	WithEvents.

type Optional.	Data	type	of	the	variable;	may	be	Byte,	Boolean,
Integer,	Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String	(for	variable-length	strings),	String	*
length	(for	fixed-length	strings),	Object,	Variant,	a	user-defined
type,	or	an	object	type.	Use	a	separate	As	type	clause	for	each
variable	being	defined.

Remarks

Private	variables	are	available	only	to	the	module	in	which	they	are	declared.

Use	the	Private	statement	to	declare	the	data	type	of	a	variable.	For	example,	the
following	statement	declares	a	variable	as	an	Integer:

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()

Private	NumberOfEmployees	As	Integer

You	can	also	use	a	Private	statement	to	declare	the	object	type	of	a	variable.	The
following	statement	declares	a	variable	for	a	new	instance	of	a	worksheet.

Private	X	As	New	Worksheet

If	the	New	keyword	isn't	used	when	declaring	an	object	variable,	the	variable
that	refers	to	the	object	must	be	assigned	an	existing	object	using	the	Set
statement	before	it	can	be	used.	Until	it's	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing,	which	indicates	that	it	doesn't	refer	to
any	particular	instance	of	an	object.

If	you	don't	specify	a	data	type	or	object	type,	and	there	is	no	Deftype	statement
in	the	module,	the	variable	is	Variant	by	default.

You	can	also	use	the	Private	statement	with	empty	parentheses	to	declare	a
dynamic	array.	After	declaring	a	dynamic	array,	use	the	ReDim	statement	within
a	procedure	to	define	the	number	of	dimensions	and	elements	in	the	array.	If	you
try	to	redeclare	a	dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Private,	Public,	or	Dim	statement,	an	error	occurs.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0,	a	variable-
length	string	is	initialized	to	a	zero-length	string	(""),	and	a	fixed-length	string	is
filled	with	zeros.	Variant	variables	are	initialized	to	Empty.	Each	element	of	a
user-defined	type	variable	is	initialized	as	if	it	were	a	separate	variable.

Note			When	you	use	the	Private	statement	in	a	procedure,	you	generally	put	the
Private	statement	at	the	beginning	of	the	procedure.

JavaScript:hhobj_27.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Property	Get	Statement

				 				

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a	Property
procedure,	which	gets	the	value	of	a	property.

Syntax

[Public	|	Private	|	Friend]	[Static]	Property	Get	name	[(arglist)]	[As	type]
[statements]
[name	=	expression]
[Exit	Property]	
[statements]
[name	=	expression]

End	Property

The	Property	Get	statement	syntax	has	these	parts:

Part Description
Public Optional.	Indicates	that	the	Property	Get	procedure	is

accessible	to	all	other	procedures	in	all	modules.	If	used	in	a
module	that	contains	an	Option	Private	statement,	the
procedure	is	not	available	outside	the	project.

Private Optional.	Indicates	that	the	Property	Get	procedure	is
accessible	only	to	other	procedures	in	the	module	where	it	is
declared.

Friend Optional.	Used	only	in	a	class	module.	Indicates	that	the
Property	Get	procedure	is	visible	throughout	the	project,	but
not	visible	to	a	controller	of	an	instance	of	an	object.

Static Optional.	Indicates	that	the	Property	Get	procedure's	local
variables	are	preserved	between	calls.	The	Static	attribute
doesn't	affect	variables	that	are	declared	outside	the	Property

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Get	procedure,	even	if	they	are	used	in	the	procedure.
name Required.	Name	of	the	Property	Get	procedure;	follows

standard	variable	naming	conventions,	except	that	the	name	can
be	the	same	as	a	Property	Let	or	Property	Set	procedure	in	the
same	module.

arglist Optional.	List	of	variables	representing	arguments	that	are
passed	to	the	Property	Get	procedure	when	it	is	called.
Multiple	arguments	are	separated	by	commas.	The	name	and
data	type	of	each	argument	in	a	Property	Get	procedure	must
be	the	same	as	the	corresponding	argument	in	a	Property	Let
procedure	(if	one	exists).

type Optional.	Data	type	of	the	value	returned	by	the	Property	Get
procedure;	may	be	Byte,	Boolean,	Integer,	Long,	Currency,
Single,	Double,	Decimal	(not	currently	supported),	Date,	String
(except	fixed	length),	Object,	Variant,	user-defined	type,	and
Arrays.

The	return	type	of	a	Property	Get	procedure	must	be	the	same	data	type	as	the	last
(or	sometimes	the	only)	argument	in	a	corresponding	Property	Let	procedure	(if	one
exists)	that	defines	the	value	assigned	to	the	property	on	the	right	side	of	an
expression.

statements Optional.	Any	group	of	statements	to	be	executed	within	the
body	of	the	Property	Get	procedure.

expression Optional.	Value	of	the	property	returned	by	the	procedure
defined	by	the	Property	Get	statement.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]	[=
defaultvalue]

Part Description
Optional Optional.	Indicates	that	an	argument	is	not	required.	If	used,	all

subsequent	arguments	in	arglist	must	also	be	optional	and
declared	using	the	Optional	keyword.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

ByRef	is	the	default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an
arbitrary	number	of	arguments.	It	may	not	be	used	with	ByVal,
ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument;
follows	standard	variable	naming	conventions.

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;
may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,
Double,	Decimal	(not	currently	supported),	Date,	String
(variable	length	only),	Object,	Variant,	or	a	specific	object
type.	If	the	parameter	is	not	Optional,	a	user-defined	type	may
also	be	specified.

defaultvalue Optional.	Any	constant	or	constant	expression.	Valid	for
Optional	parameters	only.	If	the	type	is	an	Object,	an	explicit
default	value	can	only	be	Nothing.

Remarks

If	not	explicitly	specified	using	Public,	Private,	or	Friend,	Property	procedures
are	public	by	default.	If	Static	is	not	used,	the	value	of	local	variables	is	not
preserved	between	calls.	The	Friend	keyword	can	only	be	used	in	class
modules.	However,	Friend	procedures	can	be	accessed	by	procedures	in	any
module	of	a	project.	A	Friend	procedure	doesn't	appear	in	the	type	library	of	its
parent	class,	nor	can	a	Friend	procedure	be	late	bound.

All	executable	code	must	be	in	procedures.	You	can't	define	a	Property	Get
procedure	inside	another	Property,	Sub,	or	Function	procedure.

The	Exit	Property	statement	causes	an	immediate	exit	from	a	Property	Get
procedure.	Program	execution	continues	with	the	statement	following	the
statement	that	called	the	Property	Get	procedure.	Any	number	of	Exit	Property

JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()

statements	can	appear	anywhere	in	a	Property	Get	procedure.

Like	a	Sub	and	Property	Let	procedure,	a	Property	Get	procedure	is	a	separate
procedure	that	can	take	arguments,	perform	a	series	of	statements,	and	change
the	values	of	its	arguments.	However,	unlike	a	Sub	or	Property	Let	procedure,
you	can	use	a	Property	Get	procedure	on	the	right	side	of	an	expression	in	the
same	way	you	use	a	Function	or	a	property	name	when	you	want	to	return	the
value	of	a	property.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Property	Let	Statement

				 				

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a	Property	Let
procedure,	which	assigns	a	value	to	a	property.

Syntax

[Public	|	Private	|	Friend]	[Static]	Property	Let	name	([arglist,]	value)
[statements]
[Exit	Property]	
[statements]

End	Property

The	Property	Let	statement	syntax	has	these	parts:

Part Description
Public Optional.	Indicates	that	the	Property	Let	procedure	is

accessible	to	all	other	procedures	in	all	modules.	If	used	in	a
module	that	contains	an	Option	Private	statement,	the
procedure	is	not	available	outside	the	project.

Private Optional.	Indicates	that	the	Property	Let	procedure	is
accessible	only	to	other	procedures	in	the	module	where	it	is
declared.

Friend Optional.	Used	only	in	a	class	module.	Indicates	that	the
Property	Let	procedure	is	visible	throughout	the	project,	but

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

not	visible	to	a	controller	of	an	instance	of	an	object.
Static Optional.	Indicates	that	the	Property	Let	procedure's	local

variables	are	preserved	between	calls.	The	Static	attribute
doesn't	affect	variables	that	are	declared	outside	the	Property
Let	procedure,	even	if	they	are	used	in	the	procedure.

name Required.	Name	of	the	Property	Let	procedure;	follows
standard	variable	naming	conventions,	except	that	the	name	can
be	the	same	as	a	Property	Get	or	Property	Set	procedure	in	the
same	module.

arglist Required.	List	of	variables	representing	arguments	that	are
passed	to	the	Property	Let	procedure	when	it	is	called.	Multiple
arguments	are	separated	by	commas.	The	name	and	data	type	of
each	argument	in	a	Property	Let	procedure	must	be	the	same	as
the	corresponding	argument	in	a	Property	Get	procedure.

value Required.	Variable	to	contain	the	value	to	be	assigned	to	the
property.	When	the	procedure	is	called,	this	argument	appears
on	the	right	side	of	the	calling	expression.	The	data	type	of
value	must	be	the	same	as	the	return	type	of	the	corresponding
Property	Get	procedure.

statements Optional.	Any	group	of	statements	to	be	executed	within	the
Property	Let	procedure.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]	[=
defaultvalue]

Part Description
Optional Optional.	Indicates	that	an	argument	is	not	required.	If	used,	all

subsequent	arguments	in	arglist	must	also	be	optional	and
declared	using	the	Optional	keyword.	Note	that	it	is	not
possible	for	the	right	side	of	a	Property	Let	expression	to	be
Optional.

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

ByRef	is	the	default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an
arbitrary	number	of	arguments.	It	may	not	be	used	with	ByVal,
ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument;
follows	standard	variable	naming	conventions.

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;
may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,	Double,
Decimal	(not	currently	supported),	Date,	String	(variable	length
only),	Object,	Variant,	or	a	specific	object	type.	If	the	parameter
is	not	Optional,	a	user-defined	type	may	also	be	specified.

defaultvalue Optional.	Any	constant	or	constant	expression.	Valid	for
Optional	parameters	only.	If	the	type	is	an	Object,	an	explicit
default	value	can	only	be	Nothing.

Note			Every	Property	Let	statement	must	define	at	least	one	argument	for	the
procedure	it	defines.	That	argument	(or	the	last	argument	if	there	is	more	than
one)	contains	the	actual	value	to	be	assigned	to	the	property	when	the	procedure
defined	by	the	Property	Let	statement	is	invoked.	That	argument	is	referred	to
as	value	in	the	preceding	syntax.

Remarks

If	not	explicitly	specified	using	Public,	Private,	or	Friend,	Property	procedures
are	public	by	default.	If	Static	isn't	used,	the	value	of	local	variables	is	not
preserved	between	calls.	The	Friend	keyword	can	only	be	used	in	class
modules.	However,	Friend	procedures	can	be	accessed	by	procedures	in	any
module	of	a	project.	A	Friend	procedure	doesn't	appear	in	the	type	library	of	its
parent	class,	nor	can	a	Friend	procedure	be	late	bound.

All	executable	code	must	be	in	procedures.	You	can't	define	a	Property	Let
procedure	inside	another	Property,	Sub,	or	Function	procedure.

The	Exit	Property	statement	causes	an	immediate	exit	from	a	Property	Let

JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()

procedure.	Program	execution	continues	with	the	statement	following	the
statement	that	called	the	Property	Let	procedure.	Any	number	of	Exit	Property
statements	can	appear	anywhere	in	a	Property	Let	procedure.

Like	a	Function	and	Property	Get	procedure,	a	Property	Let	procedure	is	a
separate	procedure	that	can	take	arguments,	perform	a	series	of	statements,	and
change	the	value	of	its	arguments.	However,	unlike	a	Function	and	Property
Get	procedure,	both	of	which	return	a	value,	you	can	only	use	a	Property	Let
procedure	on	the	left	side	of	a	property	assignment	expression	or	Let	statement.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Property	Set	Statement

				 				

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a	Property
procedure,	which	sets	a	reference	to	an	object.

Syntax

[Public	|	Private	|	Friend]	[Static]	Property	Set	name	([arglist,]	reference)
[statements]
[Exit	Property]	
[statements]

End	Property

The	Property	Set	statement	syntax	has	these	parts:

Part Description
Optional Optional.	Indicates	that	the	argument	may	or	may	not	be

supplied	by	the	caller.
Public Optional.	Indicates	that	the	Property	Set	procedure	is	accessible

to	all	other	procedures	in	all	modules.	If	used	in	a	module	that
contains	an	Option	Private	statement,	the	procedure	is	not
available	outside	the	project.

Private Optional.	Indicates	that	the	Property	Set	procedure	is	accessible
only	to	other	procedures	in	the	module	where	it	is	declared.

Friend Optional.	Used	only	in	a	class	module.	Indicates	that	the
Property	Set	procedure	is	visible	throughout	the	project,	but	not
visible	to	a	controller	of	an	instance	of	an	object.

Static Optional.	Indicates	that	the	Property	Set	procedure's	local
variables	are	preserved	between	calls.	The	Static	attribute
doesn't	affect	variables	that	are	declared	outside	the	Property
Set	procedure,	even	if	they	are	used	in	the	procedure.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

name Required.	Name	of	the	Property	Set	procedure;	follows
standard	variable	naming	conventions,	except	that	the	name	can
be	the	same	as	a	Property	Get	or	Property	Let	procedure	in	the
same	module.

arglist Required.	List	of	variables	representing	arguments	that	are
passed	to	the	Property	Set	procedure	when	it	is	called.	Multiple
arguments	are	separated	by	commas.

reference Required.	Variable	containing	the	object	reference	used	on	the
right	side	of	the	object	reference	assignment.

statements Optional.	Any	group	of	statements	to	be	executed	within	the
body	of	the	Property	procedure.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]	[=
defaultvalue]

Part Description
Optional Optional.	Indicates	that	an	argument	is	not	required.	If	used,	all

subsequent	arguments	in	arglist	must	also	be	optional	and
declared	using	the	Optional	keyword.	Note	that	it	is	not
possible	for	the	right	side	of	a	Property	Set	expression	to	be
Optional.

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

ByRef	is	the	default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an
arbitrary	number	of	arguments.	It	may	not	be	used	with	ByVal,
ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument;
follows	standard	variable	naming	conventions.

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()

may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,	Double,
Decimal	(not	currently	supported),	Date,	String	(variable	length
only),	Object,	Variant,	or	a	specific	object	type.	If	the	parameter
is	not	Optional,	a	user-defined	type	may	also	be	specified.

defaultvalue Optional.	Any	constant	or	constant	expression.	Valid	for
Optional	parameters	only.	If	the	type	is	an	Object,	an	explicit
default	value	can	only	be	Nothing.

Note			Every	Property	Set	statement	must	define	at	least	one	argument	for	the
procedure	it	defines.	That	argument	(or	the	last	argument	if	there	is	more	than
one)	contains	the	actual	object	reference	for	the	property	when	the	procedure
defined	by	the	Property	Set	statement	is	invoked.	It	is	referred	to	as	reference	in
the	preceding	syntax.	It	can't	be	Optional.

Remarks

If	not	explicitly	specified	using	Public,	Private,	or	Friend,	Property	procedures
are	public	by	default.	If	Static	isn't	used,	the	value	of	local	variables	is	not
preserved	between	calls.	The	Friend	keyword	can	only	be	used	in	class
modules.	However,	Friend	procedures	can	be	accessed	by	procedures	in	any
module	of	a	project.	A	Friend	procedure	doesn't	appear	in	the	type	library	of	its
parent	class,	nor	can	a	Friend	procedure	be	late	bound.

All	executable	code	must	be	in	procedures.	You	can't	define	a	Property	Set
procedure	inside	another	Property,	Sub,	or	Function	procedure.

The	Exit	Property	statement	causes	an	immediate	exit	from	a	Property	Set
procedure.	Program	execution	continues	with	the	statement	following	the
statement	that	called	the	Property	Set	procedure.	Any	number	of	Exit	Property
statements	can	appear	anywhere	in	a	Property	Set	procedure.

Like	a	Function	and	Property	Get	procedure,	a	Property	Set	procedure	is	a
separate	procedure	that	can	take	arguments,	perform	a	series	of	statements,	and
change	the	value	of	its	arguments.	However,	unlike	a	Function	and	Property
Get	procedure,	both	of	which	return	a	value,	you	can	only	use	a	Property	Set
procedure	on	the	left	side	of	an	object	reference	assignment	(Set	statement).

JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Public	Statement

				 				

Used	at	module	level	to	declare	public	variables	and	allocate	storage	space.

Syntax

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Public	[WithEvents]	varname[([subscripts])]	[As	[New]	type]	[,[WithEvents]
varname[([subscripts])]	[As	[New]	type]]	.	.	.

The	Public	statement	syntax	has	these	parts:

Part Description
WithEvents Optional.	Keyword	specifying	that	varname	is	an	object	variable

used	to	respond	to	events	triggered	by	an	ActiveX	object.
WithEvents	is	valid	only	in	class	modules.	You	can	declare	as
many	individual	variables	as	you	like	using	WithEvents,	but
you	can't	create	arrays	with	WithEvents.	You	can't	use	New
with	WithEvents.

varname Required.	Name	of	the	variable;	follows	standard	variable
naming	conventions.

subscripts Optional.	Dimensions	of	an	array	variable;	up	to	60	multiple
dimensions	may	be	declared.	The	subscripts	argument	uses	the
following	syntax:

[lower	To]	upper	[,[lower	To]	upper]	.	.	.

When	not	explicitly	stated	in	lower,	the	lower	bound	of	an	array	is	controlled	by	the
Option	Base	statement.	The	lower	bound	is	zero	if	no	Option	Base	statement	is
present.

New Optional.	Keyword	that	enables	implicit	creation	of	an	object.	If
you	use	New	when	declaring	the	object	variable,	a	new	instance
of	the	object	is	created	on	first	reference	to	it,	so	you	don't	have
to	use	the	Set	statement	to	assign	the	object	reference.	The	New
keyword	can't	be	used	to	declare	variables	of	any	intrinsic	data
type,	can't	be	used	to	declare	instances	of	dependent	objects,	and
can't	be	used	with	WithEvents.

type Optional.	Data	type	of	the	variable;	may	be	Byte,	Boolean,
Integer,	Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String,	(for	variable-length	strings),	String	*
length	(for	fixed-length	strings),	Object,	Variant,	a	user-defined
type,	or	an	object	type.	Use	a	separate	As	type	clause	for	each
variable	being	defined.

Remarks

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()

Variables	declared	using	the	Public	statement	are	available	to	all	procedures	in
all	modules	in	all	applications	unless	Option	Private	Module	is	in	effect;	in
which	case,	the	variables	are	public	only	within	the	project	in	which	they	reside.

Caution			The	Public	statement	can't	be	used	in	a	class	module	to	declare	a
fixed-length	string	variable.

Use	the	Public	statement	to	declare	the	data	type	of	a	variable.	For	example,	the
following	statement	declares	a	variable	as	an	Integer:

Public	NumberOfEmployees	As	Integer

Also	use	a	Public	statement	to	declare	the	object	type	of	a	variable.	The
following	statement	declares	a	variable	for	a	new	instance	of	a	worksheet.

Public	X	As	New	Worksheet

If	the	New	keyword	is	not	used	when	declaring	an	object	variable,	the	variable
that	refers	to	the	object	must	be	assigned	an	existing	object	using	the	Set
statement	before	it	can	be	used.	Until	it	is	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing,	which	indicates	that	it	doesn't	refer	to
any	particular	instance	of	an	object.

You	can	also	use	the	Public	statement	with	empty	parentheses	to	declare	a
dynamic	array.	After	declaring	a	dynamic	array,	use	the	ReDim	statement	within
a	procedure	to	define	the	number	of	dimensions	and	elements	in	the	array.	If	you
try	to	redeclare	a	dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Private,	Public,	or	Dim	statement,	an	error	occurs.

If	you	don't	specify	a	data	type	or	object	type	and	there	is	no	Deftype	statement
in	the	module,	the	variable	is	Variant	by	default.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0,	a	variable-
length	string	is	initialized	to	a	zero-length	string	(""),	and	a	fixed-length	string	is
filled	with	zeros.	Variant	variables	are	initialized	to	Empty.	Each	element	of	a
user-defined	type	variable	is	initialized	as	if	it	were	a	separate	variable.

JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()

	 	

	 	

	

Put	Statement

				 				

Writes	data	from	a	variable	to	a	disk	file.

Syntax

JavaScript:hhobj_4.Click()

Put	[#]filenumber,	[recnumber],	varname

The	Put	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
recnumber Optional.	Variant	(Long).	Record	number	(Random	mode	files)

or	byte	number	(Binary	mode	files)	at	which	writing	begins.
varname Required.	Name	of	variable	containing	data	to	be	written	to	disk.

Remarks

Data	written	with	Put	is	usually	read	from	a	file	with	Get.

The	first	record	or	byte	in	a	file	is	at	position	1,	the	second	record	or	byte	is	at
position	2,	and	so	on.	If	you	omit	recnumber,	the	next	record	or	byte	after	the
last	Get	or	Put	statement	or	pointed	to	by	the	last	Seek	function	is	written.	You
must	include	delimiting	commas,	for	example:

Put	#4,,FileBuffer

For	files	opened	in	Random	mode,	the	following	rules	apply:

If	the	length	of	the	data	being	written	is	less	than	the	length	specified	in	the
Len	clause	of	the	Open	statement,	Put	writes	subsequent	records	on	record-
length	boundaries.	The	space	between	the	end	of	one	record	and	the
beginning	of	the	next	record	is	padded	with	the	existing	contents	of	the	file
buffer.	Because	the	amount	of	padding	data	can't	be	determined	with	any
certainty,	it	is	generally	a	good	idea	to	have	the	record	length	match	the
length	of	the	data	being	written.	If	the	length	of	the	data	being	written	is
greater	than	the	length	specified	in	the	Len	clause	of	the	Open	statement,	an
error	occurs.

If	the	variable	being	written	is	a	variable-length	string,	Put	writes	a	2-byte
descriptor	containing	the	string	length	and	then	the	variable.	The	record
length	specified	by	the	Len	clause	in	the	Open	statement	must	be	at	least	2

JavaScript:hhobj_5.Click()

bytes	greater	than	the	actual	length	of	the	string.

If	the	variable	being	written	is	a	Variant	of	a	numeric	type,	Put	writes	2	bytes
identifying	the	VarType	of	the	Variant	and	then	writes	the	variable.	For
example,	when	writing	a	Variant	of	VarType	3,	Put	writes	6	bytes:	2	bytes
identifying	the	Variant	as	VarType	3	(Long)	and	4	bytes	containing	the
Long	data.	The	record	length	specified	by	the	Len	clause	in	the	Open
statement	must	be	at	least	2	bytes	greater	than	the	actual	number	of	bytes
required	to	store	the	variable.
Note			You	can	use	the	Put	statement	to	write	a	Variant	array	to	disk,	but	you	can't	use	Put	to	write	a	scalar	Variant	containing	an
array	to	disk.	You	also	can't	use	Put	to	write	objects	to	disk.

If	the	variable	being	written	is	a	Variant	of	VarType	8	(String),	Put	writes	2
bytes	identifying	the	VarType,	2	bytes	indicating	the	length	of	the	string,	and
then	writes	the	string	data.	The	record	length	specified	by	the	Len	clause	in
the	Open	statement	must	be	at	least	4	bytes	greater	than	the	actual	length	of
the	string.

If	the	variable	being	written	is	a	dynamic	array,	Put	writes	a	descriptor
whose	length	equals	2	plus	8	times	the	number	of	dimensions,	that	is,	2	+	8	*
NumberOfDimensions.	The	record	length	specified	by	the	Len	clause	in	the
Open	statement	must	be	greater	than	or	equal	to	the	sum	of	all	the	bytes
required	to	write	the	array	data	and	the	array	descriptor.	For	example,	the
following	array	declaration	requires	118	bytes	when	the	array	is	written	to
disk.
Dim	MyArray(1	To	5,1	To	10)	As	Integer

The	118	bytes	are	distributed	as	follows:	18	bytes	for	the	descriptor	(2	+	8	*
2),	and	100	bytes	for	the	data	(5	*	10	*	2).

If	the	variable	being	written	is	a	fixed-size	array,	Put	writes	only	the	data.	No
descriptor	is	written	to	disk.

If	the	variable	being	written	is	any	other	type	of	variable	(not	a	variable-

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

length	string	or	a	Variant),	Put	writes	only	the	variable	data.	The	record
length	specified	by	the	Len	clause	in	the	Open	statement	must	be	greater
than	or	equal	to	the	length	of	the	data	being	written.

Put	writes	elements	of	user-defined	types	as	if	each	were	written
individually,	except	there	is	no	padding	between	elements.	On	disk,	a
dynamic	array	in	a	user-defined	type	written	with	Put	is	prefixed	by	a
descriptor	whose	length	equals	2	plus	8	times	the	number	of	dimensions,	that
is,	2	+	8	*	NumberOfDimensions.	The	record	length	specified	by	the	Len
clause	in	the	Open	statement	must	be	greater	than	or	equal	to	the	sum	of	all
the	bytes	required	to	write	the	individual	elements,	including	any	arrays	and
their	descriptors.

For	files	opened	in	Binary	mode,	all	of	the	Random	rules	apply,	except:

The	Len	clause	in	the	Open	statement	has	no	effect.	Put	writes	all	variables
to	disk	contiguously;	that	is,	with	no	padding	between	records.

For	any	array	other	than	an	array	in	a	user-defined	type,	Put	writes	only	the
data.	No	descriptor	is	written.

Put	writes	variable-length	strings	that	are	not	elements	of	user-defined	types
without	the	2-byte	length	descriptor.	The	number	of	bytes	written	equals	the
number	of	characters	in	the	string.	For	example,	the	following	statements
write	10	bytes	to	file	number	1:
VarString$	=	String$(10,"	")

Put	#1,,VarString$

JavaScript:hhobj_9.Click()

	 	

	
Randomize	Statement

				 				

Initializes	the	random-number	generator.

Syntax

Randomize	[number]

The	optional	number	argument	is	a	Variant	or	any	valid	numeric	expression.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Randomize	uses	number	to	initialize	the	Rnd	function's	random-number
generator,	giving	it	a	new	seed	value.	If	you	omit	number,	the	value	returned	by
the	system	timer	is	used	as	the	new	seed	value.

If	Randomize	is	not	used,	the	Rnd	function	(with	no	arguments)	uses	the	same
number	as	a	seed	the	first	time	it	is	called,	and	thereafter	uses	the	last	generated
number	as	a	seed	value.

Note			To	repeat	sequences	of	random	numbers,	call	Rnd	with	a	negative
argument	immediately	before	using	Randomize	with	a	numeric	argument.	Using
Randomize	with	the	same	value	for	number	does	not	repeat	the	previous
sequence.

JavaScript:hhobj_7.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

ReDim	Statement

				 				

Used	at	procedure	level	to	reallocate	storage	space	for	dynamic	array	variables.

Syntax

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

ReDim	[Preserve]	varname(subscripts)	[As	type]	[,	varname(subscripts)	[As
type]]	.	.	.

The	ReDim	statement	syntax	has	these	parts:

Part Description
Preserve Optional.	Keyword	used	to	preserve	the	data	in	an	existing	array

when	you	change	the	size	of	the	last	dimension.
varname Required.	Name	of	the	variable;	follows	standard	variable

naming	conventions.
subscripts Required.	Dimensions	of	an	array	variable;	up	to	60	multiple

dimensions	may	be	declared.	The	subscripts	argument	uses	the
following	syntax:

[lower	To]	upper	[,[lower	To]	upper]	.	.	.

When	not	explicitly	stated	in	lower,	the	lower	bound	of	an	array	is	controlled	by	the
Option	Base	statement.	The	lower	bound	is	zero	if	no	Option	Base	statement	is
present.

type Optional.	Data	type	of	the	variable;	may	be	Byte,	Boolean,
Integer,	Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String	(for	variable-length	strings),	String	*
length	(for	fixed-length	strings),	Object,	Variant,	a	user-defined
type,	or	an	object	type.	Use	a	separate	As	type	clause	for	each
variable	being	defined.	For	a	Variant	containing	an	array,	type
describes	the	type	of	each	element	of	the	array,	but	doesn't
change	the	Variant	to	some	other	type.

Remarks

The	ReDim	statement	is	used	to	size	or	resize	a	dynamic	array	that	has	already
been	formally	declared	using	a	Private,	Public,	or	Dim	statement	with	empty
parentheses	(without	dimension	subscripts).

You	can	use	the	ReDim	statement	repeatedly	to	change	the	number	of	elements
and	dimensions	in	an	array.	However,	you	can't	declare	an	array	of	one	data	type
and	later	use	ReDim	to	change	the	array	to	another	data	type,	unless	the	array	is
contained	in	a	Variant.	If	the	array	is	contained	in	a	Variant,	the	type	of	the

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()

elements	can	be	changed	using	an	As	type	clause,	unless	you’re	using	the
Preserve	keyword,	in	which	case,	no	changes	of	data	type	are	permitted.

If	you	use	the	Preserve	keyword,	you	can	resize	only	the	last	array	dimension
and	you	can't	change	the	number	of	dimensions	at	all.	For	example,	if	your	array
has	only	one	dimension,	you	can	resize	that	dimension	because	it	is	the	last	and
only	dimension.	However,	if	your	array	has	two	or	more	dimensions,	you	can
change	the	size	of	only	the	last	dimension	and	still	preserve	the	contents	of	the
array.	The	following	example	shows	how	you	can	increase	the	size	of	the	last
dimension	of	a	dynamic	array	without	erasing	any	existing	data	contained	in	the
array.

ReDim	X(10,	10,	10)

.	.	.

ReDim	Preserve	X(10,	10,	15)

Similarly,	when	you	use	Preserve,	you	can	change	the	size	of	the	array	only	by
changing	the	upper	bound;	changing	the	lower	bound	causes	an	error.

If	you	make	an	array	smaller	than	it	was,	data	in	the	eliminated	elements	will	be
lost.	If	you	pass	an	array	to	a	procedure	by	reference,	you	can't	redimension	the
array	within	the	procedure.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0,	a	variable-
length	string	is	initialized	to	a	zero-length	string	(""),	and	a	fixed-length	string	is
filled	with	zeros.	Variant	variables	are	initialized	to	Empty.	Each	element	of	a
user-defined	type	variable	is	initialized	as	if	it	were	a	separate	variable.	A
variable	that	refers	to	an	object	must	be	assigned	an	existing	object	using	the	Set
statement	before	it	can	be	used.	Until	it	is	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing,	which	indicates	that	it	doesn't	refer	to
any	particular	instance	of	an	object.

Caution			The	ReDim	statement	acts	as	a	declarative	statement	if	the	variable	it
declares	doesn't	exist	at	module	level	or	procedure	level.	If	another	variable	with
the	same	name	is	created	later,	even	in	a	wider	scope,	ReDim	will	refer	to	the
later	variable	and	won't	necessarily	cause	a	compilation	error,	even	if	Option
Explicit	is	in	effect.	To	avoid	such	conflicts,	ReDim	should	not	be	used	as	a
declarative	statement,	but	simply	for	redimensioning	arrays.

JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()

Note			To	resize	an	array	contained	in	a	Variant,	you	must	explicitly	declare	the
Variant	variable	before	attempting	to	resize	its	array.

	 	

	 	

	
Rem	Statement

				 				

Used	to	include	explanatory	remarks	in	a	program.

Syntax

Rem	comment

You	can	also	use	the	following	syntax:

'	comment

The	optional	comment	argument	is	the	text	of	any	comment	you	want	to	include.
A	space	is	required	between	the	Rem	keyword	and	comment.

Remarks

If	you	use	line	numbers	or	line	labels,	you	can	branch	from	a	GoTo	or	GoSub
statement	to	a	line	containing	a	Rem	statement.	Execution	continues	with	the
first	executable	statement	following	the	Rem	statement.	If	the	Rem	keyword
follows	other	statements	on	a	line,	it	must	be	separated	from	the	statements	by	a
colon	(:).

You	can	use	an	apostrophe	(')	instead	of	the	Rem	keyword.	When	you	use	an
apostrophe,	the	colon	is	not	required	after	other	statements.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Reset	Statement

				 				

Closes	all	disk	files	opened	using	the	Open	statement.

Syntax

Reset

Remarks

The	Reset	statement	closes	all	active	files	opened	by	the	Open	statement	and
writes	the	contents	of	all	file	buffers	to	disk.

	 	

	 	

Resume	Statement

				 				

Resumes	execution	after	an	error-handling	routine	is	finished.

Syntax

Resume	[0]

Resume	Next

Resume	line

The	Resume	statement	syntax	can	have	any	of	the	following	forms:

Statement Description
Resume If	the	error	occurred	in	the	same	procedure	as	the	error

handler,	execution	resumes	with	the	statement	that	caused	the
error.	If	the	error	occurred	in	a	called	procedure,	execution
resumes	at	the	statement	that	last	called	out	of	the	procedure
containing	the	error-handling	routine.

Resume	Next If	the	error	occurred	in	the	same	procedure	as	the	error
handler,	execution	resumes	with	the	statement	immediately
following	the	statement	that	caused	the	error.	If	the	error
occurred	in	a	called	procedure,	execution	resumes	with	the
statement	immediately	following	the	statement	that	last	called
out	of	the	procedure	containing	the	error-handling	routine	(or
On	Error	Resume	Next	statement).

Resume	line Execution	resumes	at	line	specified	in	the	required	line
argument.	The	line	argument	is	a	line	label	or	line	number	and
must	be	in	the	same	procedure	as	the	error	handler.

Remarks

If	you	use	a	Resume	statement	anywhere	except	in	an	error-handling	routine,	an
error	occurs.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

	
RmDir	Statement

				 				

Removes	an	existing	directory	or	folder.

Syntax

RmDir	path

The	required	path	argument	is	a	string	expression	that	identifies	the	directory	or
folder	to	be	removed.	The	path	may	include	the	drive.	If	no	drive	is	specified,
RmDir	removes	the	directory	or	folder	on	the	current	drive.

Remarks

An	error	occurs	if	you	try	to	use	RmDir	on	a	directory	or	folder	containing	files.
Use	the	Kill	statement	to	delete	all	files	before	attempting	to	remove	a	directory
or	folder.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

RSet	Statement

				 				

Right	aligns	a	string	within	a	string	variable.

Syntax

RSet	stringvar	=	string

The	RSet	statement	syntax	has	these	parts:

Part Description

JavaScript:hhobj_4.Click()

stringvar Required.	Name	of	string	variable.
string Required.	String	expression	to	be	right-aligned	within

stringvar.

Remarks

If	stringvar	is	longer	than	string,	RSet	replaces	any	leftover	characters	in
stringvar	with	spaces,	back	to	its	beginning.

Note			RSet	can't	be	used	with	user-defined	types.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	 	

	 	

SaveSetting	Statement

				 				

Saves	or	creates	an	application	entry	in	the	application's	entry	in	the	Windows
registry	or	(on	the	Macintosh)	information	in	the	application’s	initialization	file.

JavaScript:hhobj_4.Click()

Syntax

SaveSetting	appname,	section,	key,	setting

The	SaveSetting	statement	syntax	has	these	named	arguments:

Part Description
appname Required.	String	expression	containing	the	name	of	the	application

or	project	to	which	the	setting	applies.	On	the	Macintosh,	this	is	the
filename	of	the	initialization	file	in	the	Preferences	folder	in	the
System	folder.

section Required.	String	expression	containing	the	name	of	the	section
where	the	key	setting	is	being	saved.

key Required.	String	expression	containing	the	name	of	the	key	setting
being	saved.

setting Required.	Expression	containing	the	value	that	key	is	being	set	to.

Remarks

An	error	occurs	if	the	key	setting	can’t	be	saved	for	any	reason.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Seek	Statement

				

				

Sets	the	position	for	the	next	read/write	operation	within	a	file	opened	using	the
Open	statement.

Syntax

Seek	[#]filenumber,	position

The	Seek	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
position Required.	Number	in	the	range	1	–	2,147,483,647,	inclusive,	that

indicates	where	the	next	read/write	operation	should	occur.

Remarks

Record	numbers	specified	in	Get	and	Put	statements	override	file	positioning
performed	by	Seek.

Performing	a	file-write	operation	after	a	Seek	operation	beyond	the	end	of	a	file
extends	the	file.	If	you	attempt	a	Seek	operation	to	a	negative	or	zero	position,
an	error	occurs.

JavaScript:hhobj_4.Click()

	 	

	 	

	

Select	Case	Statement

				 				

Executes	one	of	several	groups	of	statements,	depending	on	the	value	of	an
expression.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Syntax

Select	Case	testexpression	[Case	expressionlist-n
[statements-n]]	...
[Case	Else
[elsestatements]]

End	Select

The	Select	Case	statement	syntax	has	these	parts:

Part Description
testexpression Required.	Any	numeric	expression	or	string	expression.
expressionlist-n Required	if	a	Case	appears.	Delimited	list	of	one	or	more	of

the	following	forms:	expression,	expression	To	expression,
Is	comparisonoperator	expression.	The	To	keyword
specifies	a	range	of	values.	If	you	use	the	To	keyword,	the
smaller	value	must	appear	before	To.	Use	the	Is	keyword
with	comparison	operators	(except	Is	and	Like)	to	specify	a
range	of	values.	If	not	supplied,	the	Is	keyword	is
automatically	inserted.

statements-n Optional.	One	or	more	statements	executed	if
testexpression	matches	any	part	of	expressionlist-n.

elsestatements Optional.	One	or	more	statements	executed	if
testexpression	doesn't	match	any	of	the	Case	clause.

Remarks

If	testexpression	matches	any	Case	expressionlist	expression,	the	statements
following	that	Case	clause	are	executed	up	to	the	next	Case	clause,	or,	for	the
last	clause,	up	to	End	Select.	Control	then	passes	to	the	statement	following
End	Select.	If	testexpression	matches	an	expressionlist	expression	in	more	than
one	Case	clause,	only	the	statements	following	the	first	match	are	executed.

The	Case	Else	clause	is	used	to	indicate	the	elsestatements	to	be	executed	if	no
match	is	found	between	the	testexpression	and	an	expressionlist	in	any	of	the

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

other	Case	selections.	Although	not	required,	it	is	a	good	idea	to	have	a	Case
Else	statement	in	your	Select	Case	block	to	handle	unforeseen	testexpression
values.	If	no	Case	expressionlist	matches	testexpression	and	there	is	no	Case
Else	statement,	execution	continues	at	the	statement	following	End	Select.

You	can	use	multiple	expressions	or	ranges	in	each	Case	clause.	For	example,
the	following	line	is	valid:

Case	1	To	4,	7	To	9,	11,	13,	Is	>	MaxNumber

Note			The	Is	comparison	operator	is	not	the	same	as	the	Is	keyword	used	in	the
Select	Case	statement.

You	also	can	specify	ranges	and	multiple	expressions	for	character	strings.	In	the
following	example,	Case	matches	strings	that	are	exactly	equal	to	everything,
strings	that	fall	between	nuts	and	soup	in	alphabetic	order,	and	the	current	value
of	TestItem:

Case	"everything",	"nuts"	To	"soup",	TestItem

Select	Case	statements	can	be	nested.	Each	nested	Select	Case	statement	must
have	a	matching	End	Select	statement.

	 	

	 	

SendKeys	Statement

				 				

Sends	one	or	more	keystrokes	to	the	active	window	as	if	typed	at	the	keyboard.

Syntax

SendKeys	string[,	wait]

The	SendKeys	statement	syntax	has	these	named	arguments:

Part Description
string Required.	String	expression	specifying	the	keystrokes	to	send.
Wait Optional.	Boolean	value	specifying	the	wait	mode.	If	False	(default),

control	is	returned	to	the	procedure	immediately	after	the	keys	are
sent.	If	True,	keystrokes	must	be	processed	before	control	is	returned
to	the	procedure.

Remarks

Each	key	is	represented	by	one	or	more	characters.	To	specify	a	single	keyboard
character,	use	the	character	itself.	For	example,	to	represent	the	letter	A,	use	"A"
for	string.	To	represent	more	than	one	character,	append	each	additional
character	to	the	one	preceding	it.	To	represent	the	letters	A,	B,	and	C,	use	"ABC"
for	string.

The	plus	sign	(+),	caret	(^),	percent	sign	(%),	tilde	(~),	and	parentheses	()	have
special	meanings	to	SendKeys.	To	specify	one	of	these	characters,	enclose	it
within	braces	({}).	For	example,	to	specify	the	plus	sign,	use	{+}.	Brackets	([])
have	no	special	meaning	to	SendKeys,	but	you	must	enclose	them	in	braces.	In
other	applications,	brackets	do	have	a	special	meaning	that	may	be	significant
when	dynamic	data	exchange	(DDE)	occurs.	To	specify	brace	characters,	use	{{}
and	{}}.

To	specify	characters	that	aren't	displayed	when	you	press	a	key,	such	as	ENTER
or	TAB,	and	keys	that	represent	actions	rather	than	characters,	use	the	codes
shown	below:

Key Code
BACKSPACE {BACKSPACE},	{BS},	or	{BKSP}
BREAK {BREAK}

CAPS	LOCK {CAPSLOCK}

DEL	or	DELETE {DELETE}	or	{DEL}
DOWN	ARROW {DOWN}

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

END {END}

ENTER {ENTER}or	~
ESC {ESC}

HELP {HELP}

HOME {HOME}

INS	or	INSERT {INSERT}	or	{INS}
LEFT	ARROW {LEFT}

NUM	LOCK {NUMLOCK}

PAGE	DOWN {PGDN}

PAGE	UP {PGUP}

PRINT	SCREEN {PRTSC}

RIGHT	ARROW {RIGHT}

SCROLL	LOCK {SCROLLLOCK}

TAB {TAB}

UP	ARROW {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

To	specify	keys	combined	with	any	combination	of	the	SHIFT,	CTRL,	and	ALT
keys,	precede	the	key	code	with	one	or	more	of	the	following	codes:

Key Code
SHIFT +

CTRL ^

ALT %

To	specify	that	any	combination	of	SHIFT,	CTRL,	and	ALT	should	be	held
down	while	several	other	keys	are	pressed,	enclose	the	code	for	those	keys	in
parentheses.	For	example,	to	specify	to	hold	down	SHIFT	while	E	and	C	are
pressed,	use	"+(EC)".	To	specify	to	hold	down	SHIFT	while	E	is	pressed,
followed	by	C	without	SHIFT,	use	"+EC".

To	specify	repeating	keys,	use	the	form	{key	number}.	You	must	put	a	space
between	key	and	number.	For	example,	{LEFT	42}	means	press	the	LEFT
ARROW	key	42	times;	{h	10}	means	press	H	10	times.

Note			You	can't	use	SendKeys	to	send	keystrokes	to	an	application	that	is	not
designed	to	run	in	Microsoft	Windows	or	Macintosh.	Sendkeys	also	can't	send
the	PRINT	SCREEN	key	{PRTSC}	to	any	application.

	 	

	 	

	 	

	 	

	

Set	Statement

				 				

Assigns	an	object	reference	to	a	variable	or	property.

Syntax

Set	objectvar	=	{[New]	objectexpression	|	Nothing}

The	Set	statement	syntax	has	these	parts:

Part Description
objectvar Required.	Name	of	the	variable	or	property;	follows

standard	variable	naming	conventions.
New Optional.	New	is	usually	used	during	declaration	to

enable	implicit	object	creation.	When	New	is	used	with
Set,	it	creates	a	new	instance	of	the	class.	If	objectvar
contained	a	reference	to	an	object,	that	reference	is
released	when	the	new	one	is	assigned.	The	New	keyword
can't	be	used	to	create	new	instances	of	any	intrinsic	data
type	and	can't	be	used	to	create	dependent	objects.

objectexpression Required.	Expression	consisting	of	the	name	of	an	object,
another	declared	variable	of	the	same	object	type,	or	a
function	or	method	that	returns	an	object	of	the	same
object	type.

Nothing Optional.	Discontinues	association	of	objectvar	with	any

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

specific	object.	Assigning	Nothing	to	objectvar	releases
all	the	system	and	memory	resources	associated	with	the
previously	referenced	object	when	no	other	variable	refers
to	it.

Remarks

To	be	valid,	objectvar	must	be	an	object	type	consistent	with	the	object	being
assigned	to	it.

The	Dim,	Private,	Public,	ReDim,	and	Static	statements	only	declare	a	variable
that	refers	to	an	object.	No	actual	object	is	referred	to	until	you	use	the	Set
statement	to	assign	a	specific	object.

The	following	example	illustrates	how	Dim	is	used	to	declare	an	array	with	the
type	Form1.	No	instance	of	Form1	actually	exists.	Set	then	assigns	references	to
new	instances	of	Form1	to	the	myChildForms	variable.	Such	code	might	be	used	to
create	child	forms	in	an	MDI	application.

Dim	myChildForms(1	to	4)	As	Form1

Set	myChildForms(1)	=	New	Form1

Set	myChildForms(2)	=	New	Form1

Set	myChildForms(3)	=	New	Form1

Set	myChildForms(4)	=	New	Form1

Generally,	when	you	use	Set	to	assign	an	object	reference	to	a	variable,	no	copy
of	the	object	is	created	for	that	variable.	Instead,	a	reference	to	the	object	is
created.	More	than	one	object	variable	can	refer	to	the	same	object.	Because
such	variables	are	references	to	the	object	rather	than	copies	of	the	object,	any
change	in	the	object	is	reflected	in	all	variables	that	refer	to	it.	However,	when
you	use	the	New	keyword	in	the	Set	statement,	you	are	actually	creating	an
instance	of	the	object.

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

	 	

	 	

	

SetAttr	Statement

				 				

Sets	attribute	information	for	a	file.

Syntax

SetAttr	pathname,	attributes

The	SetAttr	statement	syntax	has	these	named	arguments:

Part Description
pathname Required.	String	expression	that	specifies	a	file	name	—

may	include	directory	or	folder,	and	drive.
attributes Required.	Constant	or	numeric	expression,	whose	sum

specifies	file	attributes.

Settings

The	attributes	argument	settings	are:

Constant Value Description
vbNormal 0 Normal	(default).
vbReadOnly 1 Read-only.
vbHidden 2 Hidden.
vbSystem 4 System	file.	Not	available

on	the	Macintosh.
vbArchive 32 File	has	changed	since	last

backup.
vbAlias 64 Specified	file	name	is	an

alias.	Available	only	on
the	Macintosh.

Note			These	constants	are	specified	by	Visual	Basic	for	Applications.	The
names	can	be	used	anywhere	in	your	code	in	place	of	the	actual	values.

Remarks

A	run-time	error	occurs	if	you	try	to	set	the	attributes	of	an	open	file.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Static	Statement

				 				

Used	at	procedure	level	to	declare	variables	and	allocate	storage	space.	Variables
declared	with	the	Static	statement	retain	their	values	as	long	as	the	code	is
running.

Syntax

Static	varname[([subscripts])]	[As	[New]	type]	[,	varname[([subscripts])]	[As
[New]	type]]	.	.	.

The	Static	statement	syntax	has	these	parts:

Part Description
varname Required.	Name	of	the	variable;	follows	standard	variable	naming

conventions.
subscripts Optional.	Dimensions	of	an	array	variable;	up	to	60	multiple

dimensions	may	be	declared.	The	subscripts	argument	uses	the
following	syntax:

[lower	To]	upper	[,[lower	To]	upper]	.	.	.

When	not	explicitly	stated	in	lower,	the	lower	bound	of	an	array	is	controlled	by	the
Option	Base	statement.	The	lower	bound	is	zero	if	no	Option	Base	statement	is	present.

New Optional.	Keyword	that	enables	implicit	creation	of	an	object.	If
you	use	New	when	declaring	the	object	variable,	a	new	instance	of
the	object	is	created	on	first	reference	to	it,	so	you	don't	have	to
use	the	Set	statement	to	assign	the	object	reference.	The	New
keyword	can't	be	used	to	declare	variables	of	any	intrinsic	data
type	and	can't	be	used	to	declare	instances	of	dependent	objects.

type Optional.	Data	type	of	the	variable;	may	be	Byte,	Boolean,	Integer,
Long,	Currency,	Single,	Double,	Decimal	(not	currently
supported),	Date,	String,	(for	variable-length	strings),	String	*

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()

length	(for	fixed-length	strings),	Object,	Variant,	a	user-defined
type,	or	an	object	type.	Use	a	separate	As	type	clause	for	each
variable	being	defined.

Remarks

Once	module	code	is	running,	variables	declared	with	the	Static	statement	retain
their	value	until	the	module	is	reset	or	restarted.	In	class	modules,	variables
declared	with	the	Static	statement	retain	their	value	in	each	class	instance	until
that	instance	is	destroyed.	In	form	modules,	static	variables	retain	their	value
until	the	form	is	closed.	Use	the	Static	statement	in	nonstatic	procedures	to
explicitly	declare	variables	that	are	visible	only	within	the	procedure,	but	whose
lifetime	is	the	same	as	the	module	in	which	the	procedure	is	defined.

Use	a	Static	statement	within	a	procedure	to	declare	the	data	type	of	a	variable
that	retains	its	value	between	procedure	calls.	For	example,	the	following
statement	declares	a	fixed-size	array	of	integers:

Static	EmployeeNumber(200)	As	Integer

The	following	statement	declares	a	variable	for	a	new	instance	of	a	worksheet:

Static	X	As	New	Worksheet

If	the	New	keyword	isn't	used	when	declaring	an	object	variable,	the	variable
that	refers	to	the	object	must	be	assigned	an	existing	object	using	the	Set
statement	before	it	can	be	used.	Until	it	is	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing,	which	indicates	that	it	doesn't	refer	to
any	particular	instance	of	an	object.	When	you	use	the	New	keyword	in	the
declaration,	an	instance	of	the	object	is	created	on	the	first	reference	to	the
object.

If	you	don't	specify	a	data	type	or	object	type,	and	there	is	no	Deftype	statement
in	the	module,	the	variable	is	Variant	by	default.

Note			The	Static	statement	and	the	Static	keyword	are	similar,	but	used	for
different	effects.	If	you	declare	a	procedure	using	the	Static	keyword	(as	in
Static	Sub	CountSales	()),	the	storage	space	for	all	local	variables	within	the

JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()

procedure	is	allocated	once,	and	the	value	of	the	variables	is	preserved	for	the
entire	time	the	program	is	running.	For	nonstatic	procedures,	storage	space	for
variables	is	allocated	each	time	the	procedure	is	called	and	released	when	the
procedure	is	exited.	The	Static	statement	is	used	to	declare	specific	variables
within	nonstatic	procedures	to	preserve	their	value	for	as	long	as	the	program	is
running.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0,	a	variable-
length	string	is	initialized	to	a	zero-length	string	(""),	and	a	fixed-length	string	is
filled	with	zeros.	Variant	variables	are	initialized	to	Empty.	Each	element	of	a
user-defined	type	variable	is	initialized	as	if	it	were	a	separate	variable.

Note			When	you	use	Static	statements	within	a	procedure,	put	them	at	the
beginning	of	the	procedure	with	other	declarative	statements	such	as	Dim.

JavaScript:hhobj_31.Click()

	 	

Stop	Statement

				 				

Suspends	execution.

Syntax

Stop

Remarks

You	can	place	Stop	statements	anywhere	in	procedures	to	suspend	execution.
Using	the	Stop	statement	is	similar	to	setting	a	breakpoint	in	the	code.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	Stop	statement	suspends	execution,	but	unlike	End,	it	doesn't	close	any	files
or	clear	variables,	unless	it	is	in	a	compiled	executable	(.exe)	file.

JavaScript:hhobj_6.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Sub	Statement

				 				

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a	Sub	procedure.

Syntax

[Private	|	Public	|	Friend]	[Static]	Sub	name	[(arglist)]	
[statements]
[Exit	Sub]
[statements]

End	Sub

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

The	Sub	statement	syntax	has	these	parts:

Part Description
Public Optional.	Indicates	that	the	Sub	procedure	is	accessible	to	all

other	procedures	in	all	modules.	If	used	in	a	module	that
contains	an	Option	Private	statement,	the	procedure	is	not
available	outside	the	project.

Private Optional.	Indicates	that	the	Sub	procedure	is	accessible	only	to
other	procedures	in	the	module	where	it	is	declared.

Friend Optional.	Used	only	in	a	class	module.	Indicates	that	the	Sub
procedure	is	visible	throughout	the	project,	but	not	visible	to	a
controller	of	an	instance	of	an	object.

Static Optional.	Indicates	that	the	Sub	procedure's	local	variables	are
preserved	between	calls.	The	Static	attribute	doesn't	affect
variables	that	are	declared	outside	the	Sub,	even	if	they	are	used
in	the	procedure.

name Required.	Name	of	the	Sub;	follows	standard	variable	naming
conventions.

arglist Optional.	List	of	variables	representing	arguments	that	are
passed	to	the	Sub	procedure	when	it	is	called.	Multiple	variables
are	separated	by	commas.

statements Optional.	Any	group	of	statements	to	be	executed	within	the
Sub	procedure.

The	arglist	argument	has	the	following	syntax	and	parts:

[Optional]	[ByVal	|	ByRef]	[ParamArray]	varname[()]	[As	type]	[=
defaultvalue]

Part Description
Optional Optional.	Keyword	indicating	that	an	argument	is	not	required.

If	used,	all	subsequent	arguments	in	arglist	must	also	be
optional	and	declared	using	the	Optional	keyword.	Optional
can't	be	used	for	any	argument	if	ParamArray	is	used.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

ByRef	is	the	default	in	Visual	Basic.
ParamArray Optional.	Used	only	as	the	last	argument	in	arglist	to	indicate

that	the	final	argument	is	an	Optional	array	of	Variant
elements.	The	ParamArray	keyword	allows	you	to	provide	an
arbitrary	number	of	arguments.	ParamArray	can't	be	used	with
ByVal,	ByRef,	or	Optional.

varname Required.	Name	of	the	variable	representing	the	argument;
follows	standard	variable	naming	conventions.

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;
may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,	Double,
Decimal	(not	currently	supported),	Date,	String	(variable-length
only),	Object,	Variant,	or	a	specific	object	type.	If	the	parameter
is	not	Optional,	a	user-defined	type	may	also	be	specified.

defaultvalue Optional.	Any	constant	or	constant	expression.	Valid	for
Optional	parameters	only.	If	the	type	is	an	Object,	an	explicit
default	value	can	only	be	Nothing.

Remarks

If	not	explicitly	specified	using	Public,	Private,	or	Friend,	Sub	procedures	are
public	by	default.	If	Static	isn't	used,	the	value	of	local	variables	is	not	preserved
between	calls.	The	Friend	keyword	can	only	be	used	in	class	modules.
However,	Friend	procedures	can	be	accessed	by	procedures	in	any	module	of	a
project.	A	Friend	procedure	doesn't	appear	in	the	type	library	of	its	parent	class,
nor	can	a	Friend	procedure	be	late	bound.

Caution			Sub	procedures	can	be	recursive;	that	is,	they	can	call	themselves	to
perform	a	given	task.	However,	recursion	can	lead	to	stack	overflow.	The	Static
keyword	usually	is	not	used	with	recursive	Sub	procedures.

All	executable	code	must	be	in	procedures.	You	can't	define	a	Sub	procedure
inside	another	Sub,	Function,	or	Property	procedure.

The	Exit	Sub	keywords	cause	an	immediate	exit	from	a	Sub	procedure.

JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()
JavaScript:hhobj_33.Click()
JavaScript:hhobj_34.Click()
JavaScript:hhobj_35.Click()

Program	execution	continues	with	the	statement	following	the	statement	that
called	the	Sub	procedure.	Any	number	of	Exit	Sub	statements	can	appear
anywhere	in	a	Sub	procedure.

Like	a	Function	procedure,	a	Sub	procedure	is	a	separate	procedure	that	can
take	arguments,	perform	a	series	of	statements,	and	change	the	value	of	its
arguments.	However,	unlike	a	Function	procedure,	which	returns	a	value,	a	Sub
procedure	can't	be	used	in	an	expression.

You	call	a	Sub	procedure	using	the	procedure	name	followed	by	the	argument
list.	See	the	Call	statement	for	specific	information	on	how	to	call	Sub
procedures.

Variables	used	in	Sub	procedures	fall	into	two	categories:	those	that	are
explicitly	declared	within	the	procedure	and	those	that	are	not.	Variables	that	are
explicitly	declared	in	a	procedure	(using	Dim	or	the	equivalent)	are	always	local
to	the	procedure.	Variables	that	are	used	but	not	explicitly	declared	in	a
procedure	are	also	local	unless	they	are	explicitly	declared	at	some	higher	level
outside	the	procedure.

Caution			A	procedure	can	use	a	variable	that	is	not	explicitly	declared	in	the
procedure,	but	a	naming	conflict	can	occur	if	anything	you	defined	at	the	module
level	has	the	same	name.	If	your	procedure	refers	to	an	undeclared	variable	that
has	the	same	name	as	another	procedure,	constant	or	variable,	it	is	assumed	that
your	procedure	is	referring	to	that	module-level	name.	To	avoid	this	kind	of
conflict,	explicitly	declare	variables.	You	can	use	an	Option	Explicit	statement
to	force	explicit	declaration	of	variables.

Note			You	can't	use	GoSub,	GoTo,	or	Return	to	enter	or	exit	a	Sub	procedure.

JavaScript:hhobj_36.Click()

	 	

Time	Statement

				 				

Sets	the	system	time.

Syntax

Time	=	time

The	required	time	argument	is	any	numeric	expression,	string	expression,	or	any
combination,	that	can	represent	a	time.

Remarks

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

If	time	is	a	string,	Time	attempts	to	convert	it	to	a	time	using	the	time	separators
you	specified	for	your	system.	If	it	can't	be	converted	to	a	valid	time,	an	error
occurs.

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Type	Statement

				 				

Used	at	module	level	to	define	a	user-defined	data	type	containing	one	or	more
elements.

Syntax

[Private	|	Public]	Type	varname
elementname	[([subscripts])]	As	type
[elementname	[([subscripts])]	As	type]
.	.	.

End	Type

The	Type	statement	syntax	has	these	parts:

Part Description
Public Optional.	Used	to	declare	user-defined	types	that	are	available

to	all	procedures	in	all	modules	in	all	projects.
Private Optional.	Used	to	declare	user-defined	types	that	are	available

only	within	the	module	where	the	declaration	is	made.
varname Required.	Name	of	the	user-defined	type;	follows	standard

variable	naming	conventions.
elementname Required.	Name	of	an	element	of	the	user-defined	type.

Element	names	also	follow	standard	variable	naming
conventions,	except	that	keywords	can	be	used.

subscripts When	not	explicitly	stated	in	lower,	the	lower	bound	of	an
array	is	controlled	by	the	Option	Base	statement.	The	lower
bound	is	zero	if	no	Option	Base	statement	is	present.

type Required.	Data	type	of	the	element;	may	be	Byte,	Boolean,
Integer,	Long,	Currency,	Single,	Double,	Decimal	(not
currently	supported),	Date,	String	(for	variable-length	strings),

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()

String	*	length	(for	fixed-length	strings),	Object,	Variant,
another	user-defined	type,	or	an	object	type.

Remarks

The	Type	statement	can	be	used	only	at	module	level.	Once	you	have	declared	a
user-defined	type	using	the	Type	statement,	you	can	declare	a	variable	of	that
type	anywhere	within	the	scope	of	the	declaration.	Use	Dim,	Private,	Public,
ReDim,	or	Static	to	declare	a	variable	of	a	user-defined	type.

In	standard	modules	and	class	modules,	user-defined	types	are	public	by	default.
This	visibility	can	be	changed	using	the	Private	keyword.

Line	numbers	and	line	labels	aren't	allowed	in	Type...End	Type	blocks.

User-defined	types	are	often	used	with	data	records,	which	frequently	consist	of
a	number	of	related	elements	of	different	data	types.

The	following	example	shows	the	use	of	fixed-size	arrays	in	a	user-defined	type:

Type	StateData

				CityCode	(1	To	100)	As	Integer				'	Declare	a	static	array.

				County	As	String	*	30

End	Type

Dim	Washington(1	To	100)	As	StateData

In	the	preceding	example,	StateData	includes	the	CityCode	static	array,	and	the
record	Washington	has	the	same	structure	as	StateData.

When	you	declare	a	fixed-size	array	within	a	user-defined	type,	its	dimensions
must	be	declared	with	numeric	literals	or	constants	rather	than	variables.

JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()

	 	

	

While...Wend	Statement

				 				

Executes	a	series	of	statements	as	long	as	a	given	condition	is	True.

Syntax

While	condition	[statements]

Wend

The	While...Wend	statement	syntax	has	these	parts:

JavaScript:hhobj_4.Click()

Part Description
condition Required.	Numeric	expression	or	string	expression	that

evaluates	to	True	or	False.	If	condition	is	Null,	condition	is
treated	as	False.

statements Optional.	One	or	more	statements	executed	while	condition
is	True.

Remarks

If	condition	is	True,	all	statements	are	executed	until	the	Wend	statement	is
encountered.	Control	then	returns	to	the	While	statement	and	condition	is	again
checked.	If	condition	is	still	True,	the	process	is	repeated.	If	it	is	not	True,
execution	resumes	with	the	statement	following	the	Wend	statement.

While...Wend	loops	can	be	nested	to	any	level.	Each	Wend	matches	the	most
recent	While.

Tip			The	Do...Loop	statement	provides	a	more	structured	and	flexible	way	to
perform	looping.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

	Width	#

Statement

				 				

Assigns	an	output	line	width	to	a	file	opened	using	the	Open	statement.

Syntax

Width	#filenumber,	width

The	Width	#	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
width Required.	Numeric	expression	in	the	range	0–255,	inclusive,	that

indicates	how	many	characters	appear	on	a	line	before	a	new	line
is	started.	If	width	equals	0,	there	is	no	limit	to	the	length	of	a	line.
The	default	value	for	width	is	0.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

	 	

With	Statement

				 				

Executes	a	series	of	statements	on	a	single	object	or	a	user-defined	type.

Syntax

With	object	[statements]

End	With

The	With	statement	syntax	has	these	parts:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Part Description
object Required.	Name	of	an	object	or	a	user-defined	type.
statements Optional.	One	or	more	statements	to	be	executed	on	object.

Remarks

The	With	statement	allows	you	to	perform	a	series	of	statements	on	a	specified
object	without	requalifying	the	name	of	the	object.	For	example,	to	change	a
number	of	different	properties	on	a	single	object,	place	the	property	assignment
statements	within	the	With	control	structure,	referring	to	the	object	once	instead
of	referring	to	it	with	each	property	assignment.	The	following	example
illustrates	use	of	the	With	statement	to	assign	values	to	several	properties	of	the
same	object.

With	MyLabel

				.Height	=	2000

				.Width	=	2000

				.Caption	=	"This	is	MyLabel"

End	With

Note			Once	a	With	block	is	entered,	object	can't	be	changed.	As	a	result,	you
can't	use	a	single	With	statement	to	affect	a	number	of	different	objects.

You	can	nest	With	statements	by	placing	one	With	block	within	another.
However,	because	members	of	outer	With	blocks	are	masked	within	the	inner
With	blocks,	you	must	provide	a	fully	qualified	object	reference	in	an	inner
With	block	to	any	member	of	an	object	in	an	outer	With	block.

Note			In	general,	it's	recommended	that	you	don't	jump	into	or	out	of	With
blocks.	If	statements	in	a	With	block	are	executed,	but	either	the	With	or	End
With	statement	is	not	executed,	a	temporary	variable	containing	a	reference	to
the	object	remains	in	memory	until	you	exit	the	procedure.

JavaScript:hhobj_6.Click()

	 	

	 	

	 	

	 	

	

Write	#	Statement

				 				

Writes	data	to	a	sequential	file.

Syntax

Write	#filenumber,	[outputlist]

The	Write	#	statement	syntax	has	these	parts:

Part Description
filenumber Required.	Any	valid	file	number.
outputlist Optional.	One	or	more	comma-delimited	numeric	expressions	or

string	expressions	to	write	to	a	file.

Remarks

Data	written	with	Write	#	is	usually	read	from	a	file	with	Input	#.

If	you	omit	outputlist	and	include	a	comma	after	filenumber,	a	blank	line	is
printed	to	the	file.	Multiple	expressions	can	be	separated	with	a	space,	a
semicolon,	or	a	comma.	A	space	has	the	same	effect	as	a	semicolon.

When	Write	#	is	used	to	write	data	to	a	file,	several	universal	assumptions	are
followed	so	the	data	can	always	be	read	and	correctly	interpreted	using	Input	#,
regardless	of	locale:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Numeric	data	is	always	written	using	the	period	as	the	decimal	separator.

For	Boolean	data,	either	#TRUE#	or	#FALSE#	is	printed.	The	True	and	False
keywords	are	not	translated,	regardless	of	locale.

Date	data	is	written	to	the	file	using	the	universal	date	format.	When	either
the	date	or	the	time	component	is	missing	or	zero,	only	the	part	provided	gets
written	to	the	file.

Nothing	is	written	to	the	file	if	outputlist	data	is	Empty.	However,	for	Null
data,	#NULL#	is	written.

If	outputlist	data	is	Null	data,	#NULL#	is	written	to	the	file.

For	Error	data,	the	output	appears	as	#ERROR	errorcode#.	The	Error
keyword	is	not	translated,	regardless	of	locale.

Unlike	the	Print	#	statement,	the	Write	#	statement	inserts	commas	between
items	and	quotation	marks	around	strings	as	they	are	written	to	the	file.	You
don't	have	to	put	explicit	delimiters	in	the	list.	Write	#	inserts	a	newline
character,	that	is,	a	carriage	return–linefeed	(Chr(13)	+	Chr(10)),	after	it	has
written	the	final	character	in	outputlist	to	the	file.

Note			You	should	not	write	strings	that	contain	embedded	quotation	marks,	for
example,	"1,2""X"	for	use	with	the	Input	#	statement:	Input	#	parses	this	string
as	two	complete	and	separate	strings.

JavaScript:hhobj_8.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

CallType	Constants

				

				

The	following	constantscan	be	used	anywhere	in	your	code	in	place	of	the	actual
values:

Constant Value Decription
vbMethod 1 Indicates	that	a	method

has	been	invoked.
vbGet 2 Indicates	a	Property	Get

procedure.
vbLet 4 Indicates	a	Property	Let

procedure.
vbSet 8 Indicates	a	Property	Set

procedure.

JavaScript:hhobj_4.Click()

Form	Constants

				

				

The	following	constants	can	be	used	anywhere	in	your	code	in	place	of	the
actual	values:

Constant Value Decription
vbModeless 0 UserForm	is	modeless.
vbModal 1 UserForm	is	modal

(default).

JavaScript:hhobj_4.Click()

	 	

	

Returns	for	CStr

If	expression	is CStr	returns
Boolean A	string	containing	True	or	False
Date A	string	containing	a	date	in	the	short

date	format	of	your	system
Null A	run-time	error
Empty A	zero-length	string	("")
Error A	string	containing	the	word	Error

followed	by	the	error	number
Other	numeric A	string	containing	the	number

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

	 	

	 	

	 	

	 	

	

Enum	Statement

				 				

Declares	a	type	for	an	enumeration.

Syntax

[Public	|	Private]	Enum	name

membername	[=	constantexpression]

membername	[=	constantexpression]

.	.	.

End	Enum

The	Enum	statement	has	these	parts:

Part Description
Public Optional.	Specifies	that	the	Enum	type	is	visible

throughout	the	project.	Enum	types	are	Public	by
default.

Private Optional.	Specifies	that	the	Enum	type	is	visible	only
within	the	module	in	which	it	appears.

name Required.	The	name	of	the	Enum	type.	The	name	must
be	a	valid	Visual	Basic	identifier	and	is	specified	as	the

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

type	when	declaring	variables	or	parameters	of	the
Enum	type.

membername Required.	A	valid	Visual	Basic	identifier	specifying	the
name	by	which	a	constituent	element	of	the	Enum	type
will	be	known.

constantexpression Optional.	Value	of	the	element	(evaluates	to	a	Long).	If
no	constantexpression	is	specified,	the	value	assigned	is
either	zero	(if	it	is	the	first	membername),	or	1	greater
than	the	value	of	the	immediately	preceding
membername.

Remarks

Enumeration	variables	are	variables	declared	with	an	Enum	type.	Both	variables
and	parameters	can	be	declared	with	an	Enum	type.	The	elements	of	the	Enum
type	are	initialized	to	constant	values	within	the	Enum	statement.	The	assigned
values	can't	be	modified	at	run	time	and	can	include	both	positive	and	negative
numbers.	For	example:

Enum	SecurityLevel

				IllegalEntry	=	-1

				SecurityLevel1	=	0

				SecurityLevel2	=	1

End	Enum

An	Enum	statement	can	appear	only	at	module	level.	Once	the	Enum	type	is
defined,	it	can	be	used	to	declare	variables,	parameters,	or	procedures	returning
its	type.	You	can't	qualify	an	Enum	type	name	with	a	module	name.	Public
Enum	types	in	a	class	module	are	not	members	of	the	class;	however,	they	are
written	to	the	type	library.	Enum	types	defined	in	standard	modules	aren’t
written	to	type	libraries.	Public	Enum	types	of	the	same	name	can't	be	defined
in	both	standard	modules	and	class	modules,	since	they	share	the	same	name
space.	When	two	Enum	types	in	different	type	libraries	have	the	same	name,	but
different	elements,	a	reference	to	a	variable	of	the	type	depends	on	which	type
library	has	higher	priority	in	the	References.

You	can't	use	an	Enum	type	as	the	target	in	a	With	block.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Event	Statement

				 				

Declares	a	user-defined	event.

Syntax

[Public]	Event	procedurename	[(arglist)]

The	Event	statement	has	these	parts:

Part Description
Public Optional.	Specifies	that	the	Event	visible	throughout	the

project.	Events	types	are	Public	by	default.	Note	that	events
can	only	be	raised	in	the	module	in	which	they	are	declared.

procedurename Required.	Name	of	the	event;	follows	standard	variable
naming	conventions.

The	arglist	argument	has	the	following	syntax	and	parts:

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

[ByVal	|	ByRef]	varname[()]	[As	type]

Part Description
ByVal Optional.	Indicates	that	the	argument	is	passed	by	value.
ByRef Optional.	Indicates	that	the	argument	is	passed	by	reference.

ByRef	is	the	default	in	Visual	Basic.
varname Required.	Name	of	the	variable	representing	the	argument

being	passed	to	the	procedure;	follows	standard	variable
naming	conventions.

type Optional.	Data	type	of	the	argument	passed	to	the	procedure;
may	be	Byte,	Boolean,	Integer,	Long,	Currency,	Single,
Double,	Decimal	(not	currently	supported),	Date,	String
(variable	length	only),	Object,	Variant,	a	user-defined	type,	or
an	object	type.

Remarks

Once	the	event	has	been	declared,	use	the	RaiseEvent	statement	to	fire	the
event.	A	syntax	error	occurs	if	an	Event	declaration	appears	in	a	standard
module.	An	event	can't	be	declared	to	return	a	value.	A	typical	event	might	be
declared	and	raised	as	shown	in	the	following	fragments:

'	Declare	an	event	at	module	level	of	a	class	module

Event	LogonCompleted	(UserName	as	String)

Sub

				RaiseEvent	LogonCompleted("AntoineJan")

End	Sub

Note			You	can	declare	event	arguments	just	as	you	do	arguments	of	procedures,
with	the	following	exceptions:	events	cannot	have	named	arguments,	Optional
arguments,	or	ParamArray	arguments.	Events	do	not	have	return	values.

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()

