
Microsoft	SQL	Server	Virtual	Backup	Device	Specification

The	SQL	Server	2005	Virtual	Backup	Device
Specification
In	addition	to	its	built-in	functionality,	Microsoft®	SQL	Server™	is	supported
by	a	large	number	of	third-party	backup	solutions.	SQL	Server	provides
application	programming	interfaces	(APIs)	that	enable	independent	software
vendors	to	integrate	SQL	Server	into	their	products.	These	APIs	are	engineered
to	provide	maximum	reliability	and	performance,	and	support	the	full	range	of
SQL	Server	backup	and	restore	functionality,	including	the	full	range	of	hot	and
snapshot	backup	capabilities.

This	document	contains	the	specifications	for	SQL	Server	application
programming	interfaces	intended	for	use	by	third-party	backup	software
vendors.

Note			If	you	are	not	a	backup	solution	developer,	you	probably	do	not	need
to	refer	to	the	material	in	this	document.	For	more	information	on	how	your
third-party	backup	solution	integrates	with	SQL	Server,	contact	your	backup
solution	vendor.

Methods	for	Third-Party	Backup	Software	Developers

Before	reading	this	documentation,	users	may	find	it	useful	to	refer	to	the	"SQL
Writer	in	SQL	Server	2005:	A	Guide	for	SQL	Server	Backup	Application
Vendors"	article	on	the	SQL	Server	TechCenter.

The	virtual	device	interface	(VDI)	provides	the	highest	online	backup
throughput	with	minimal	degradation	to	the	transaction	workload,	as	well	as	the
fastest	possible	restore	times.	It	enables	third	party	vendors	to	achieve	the	same
performance	characteristics	as	the	SQL	Server	native	backup/restore,	and	makes
the	full	range	of	backup/restore	functionality	available.	VDI	was	introduced	in
SQL	Server	7.0	and	is	supported	and	enhanced	in	later	versions.

VDI	supports	two	primary	types	of	backup	technologies:

Conventional	online	backups	where	the	entire	contents	of	the	backup	set
is	read	and	transferred	to	the	backup	media.

Snapshot	backups	using	underlying	split-mirror	or	copy-on-write
technology.

Conventional	online	backups	done	through	VDI	can	take	advantage	of	the	full
range	of	features	of	backup	and	restore	in	SQL	Server.	Snapshot	backups	are
limited	to	full	database	and	file/filegroup	backups	only.	However,	snapshot
backups	may	be	rolled	forward	with	conventional	database	differential,	file
differential,	and	transaction	log	backups.

The	remainder	of	this	document	describes	VDI	in	detail.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Changes	from	SQL	Server	2000
VDI	applications	written	for	SQL	Server	2000	should	work	with	SQL	Server
2005.	No	changes	should	be	necessary.

For	snapshot	backup	support,	we	recommend	the	use	of	the	VSS	backup
framework.	In	SQL	Server	2005,	the	"sqlwriter"	service	is	provided	as	the	VSS
writer	for	SQL	Server.

Streaming	VDI	backups	automatically	include	full-text	catalogs.	For	snapshot
backup,	the	application	is	responsible	for	copying	the	tree	of	files	where	the
catalog	is	stored.	Those	locations	can	be	found	by	querying	sys.database_files	or
sys.master_files.

VDI	error	messages	no	longer	are	written	to	the	VDI.LOG	file.	The	Windows
application	event	log	is	now	used.

VDI	shared	memory	segments	may	now	be	mapped	at	many	different	addresses.
This	has	no	impact	on	the	functionality	of	a	client,	but	should	help	in	situations
where	virtual	address	limitations	required	tweaking	the	"-g"	parameter	of
sqlservr.exe.	Larger	total	buffer	space	should	be	available.	In	previous	versions
of	VDI,	a	single	contiguous	allocation	was	required,	which	could	preclude	the
use	of	large	buffer	allocation.

Snapshot	restore	of	master	is	not	supported.	To	restore	master,	just	take	the
instance	offline	and	copy	the	files.

Online	restore	is	the	default	behavior	in	SQL	Server	2005	Enterprise	Edition.
However,	snapshot	restore	continues	to	be	an	offline	operation.

BACKUP	TO	PIPE	has	been	removed.

File	and	filegroup	backups	now	contain	log	data.	This	is	true	for	all	backups,	not
just	VDI	backups.	However,	for	snapshot	backups,	SQL	Server	2005	assumes
that	no	log	has	been	saved	in	the	snapshot.

Page	restore	is	not	supported	with	snapshot	backups.

Differences	from	the	Original	VDI	Specification
Be	aware	of	the	following	differences	from	the	original	VDI	specification:

Multi-instance	support.	IClientVirtualDevice2	supercedes
IClientVirtualDevice.	The	new	interface	is	identical	to	the	original
except	for	the	addition	of	the	'CreateEx'	and	'OpenInSecondaryEx'
methods.	These	extend	the	original	'Create'	and	'OpenInSecondary'	to
allow	for	an	instance	name	to	be	specified.

Removable	Pipe	support.	The	'VDF_Removable'	feature	is	now
supported	with	the	VDF_LikePipe	mode	of	operation.	This	assists
applications	which	wish	to	support	RESTORE	operations	using	fewer
devices	than	were	originally	used	to	BACKUP.

WITH	SNAPSHOT	support.	This	feature	enables	an	application	to
make	a	fast	backup	of	SQL	Server	data	and	log	files	in	a	manner	that
allows	integration	with	traditional	log	backup	support.	For	more
information,	see	SNAPSHOT	Support.

IServerVirtualDevice2.	This	does	not	substantially	affect	client	applications.
Improvements	were	made	to	the	server	interface,	which	permit	more	flexible
buffering	decisions	by	the	server.	The	'maxIoDepth'	and	'bufferAreaSize'	fields
in	the	VDConfig	structure	are	deprecated.	They	will	continue	to	be	filled	in	with
"reasonable"	values,	but	applications	should	avoid	using	these	fields.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Overview
The	interface	will	be	available	on	all	Microsoft®	SQL	Server™	platforms,
including	Microsoft	Windows®	98.	The	VDI	was	introduced	with	SQL	Server
version	7.0.	It	is	not	supported	by	earlier	versions	of	SQL	Server.	SQL	Server
2000	will	continue	to	support	named	pipes;	however,	VDI	is	the	preferred
mechanism.	Support	for	named	pipes	may	be	removed	from	SQL	Server	in	a
future	release.

This	illustration	shows	the	relationships	among	the	virtual	device,	SQL	Server,
and	third-party	backup	applications.

The	virtual	device	provides	an	interface	to	SQL	Server	that	allows	an	application
to	act	as	a	storage	device.	The	client	application	implements	the	virtual	device.
SQL	Server	writes	to	the	virtual	device	during	backup	and	reads	from	the	virtual
device	during	restore.

The	virtual	device	provides	a	server	interface	that	accepts	device-like
commands,	and	a	client	application	interface	that	executes	those	commands	and
provides	notification	of	command	completions.	Shared	memory	is	used	for
efficient	buffering	(that	is,	no	extra	data	copies).	An	application	should	perform
as	well	as	SQL	Server	with	direct	device	control.	The	client	application	must	be
running	on	the	same	computer	as	SQL	Server.

Note			The	server	side	interface	is	described	for	information	purposes	only.
This	interface	is	used	exclusively	by	the	SQL	Server	process.

This	illustration	shows	the	communication	between	the	client	and	the	server
during	the	active,	data-transfer	phase	of	operation.

During	backup,	SQL	Server	writes	a	stream	of	data	to	a	virtual	device.	In	some
cases,	reading	and	positioning	of	the	device	is	necessary.	During	restore,	it	reads
a	stream	of	data	from	a	virtual	device.	The	stream	read	must	be	identical	to	the
stream	written.

SQL	Server	allocates	a	buffer,	and	then	reads	or	writes	data	to	a	virtual	device	by
issuing	a	command.	The	client	performs	the	requested	action	and	indicates
completion	of	the	command.	During	the	command	processing,	the	client	has
exclusive	control	of	the	buffer	referenced	by	the	command.	Although	it	is	critical
that	the	client	preserves	the	stream	in	the	order	it	was	written,	command
completions	on	a	single	virtual	device	may	occur	in	any	order.	This	facilitates
the	client's	use	of	asynchronous	input/output	(I/O)	operation.	For	example,	the
client	can	schedule	I/O	for	one	request,	and	then	initiate	a	second	request
without	waiting	for	completion	of	the	first	request.

Completion	events	are	posted	to	SQL	Server	by	means	of	a	completion	agent.

If	multiple	devices	are	specified,	SQL	Server	reads	or	writes	multiple	streams	in
parallel,	one	per	device.	Streams	are	independent	in	terms	of	data	content,	but	at
certain	times	during	the	backup	or	restore	operation,	SQL	Server	must
synchronize	the	streams.	It	is	possible	for	a	GetCommand	on	one	virtual	device
to	block	while	SQL	Server	waits	for	activity	to	complete	on	another	virtual
device.	When	this	synchronization	occurs	can	vary	from	version	to	version.

Multiple	virtual	devices	are	typically	used	in	situations	when	the	client	is
backing	up	to	or	restoring	from	more	than	one	real	device.	If	the	number	of
virtual	devices	matches	the	number	of	physical	backup	devices,	the	client	need
not	perform	any	multiplexing	of	the	streams.	The	client	typically	has	one	thread
or	process	for	each	virtual	device.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Client	State	Diagram
This	illustration	shows	the	client	view	of	the	life	cycle	of	the	virtual	device	set.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Server	State	Diagram
This	illustration	shows	the	server	view	of	the	life	cycle	of	the	virtual	device	set.

For	the	functions	OpenDevice	and	ExecuteCompletionAgent,	the	active	state
is	not	entered	until	all	devices	are	opened	and	the	completion	agent	is	running.	If
Close	is	invoked	from	any	state	except	Terminated,	the	function	implicitly
performs	SignalAbort	processing	to	move	to	an	Abort	state.	It	then
immediately	transitions	to	the	Does	Not	Exist	state.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Client	Transitions
These	tables	display	the	full	set	of	client	transitions.	They	also	list	the	functions
associated	with	the	IClientVirtualDevice	and	the	IClientVirtualDeviceSet2,	the
possible	states	when	the	functions	can	be	invoked,	and	the	status	code	to	be
expected	when	a	function	is	invoked.	A	list	of	status	codes	and	their	descriptions
follows	the	Client	Transitions	tables.	If	the	invocation	of	the	function	results	in	a
state	change,	then	the	next	state	is	given,	identified	by	the	symbol	—>.	When	all
resources	are	released,	the	VDI	no	longer	exists	and	a	transition	to	the	Does	Not
Exist	(DNE)	state	occurs.

Functions
Does	Not	Exist
State Configurable	State Initializing	State

Create,CreateEx NOERROR	—>
Configurable

VD_E_PROTOCOLVD_E_PROTOCOL

GetConfiguration VD_E_PROTOCOLNOERROR->
Initializing

NOERROR

OpenDevice VD_E_PROTOCOLVD_E_PROTOCOLNOERROR	®
Active

GetCommand VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
CompleteCommandVD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
SignalAbort VD_E_PROTOCOLNOERROR	—>

Abort
NOERROR	—>
Abort

Close VD_E_PROTOCOLNOERROR	—>
DNE

NOERROR	—>
DNE

Functions Active	State
Normally
Terminated	State Abort	State

Create VD_E_PROTOCOL VD_E_PROTOCOLVD_E_PROTOCOL
GetConfiguration NOERROR NOERROR VD_E_ABORT
OpenDevice VD_E_PROTOCOL VD_E_PROTOCOLVD_E_ABORT
GetCommand NOERROR	or

VD_E_CLOSE	->
NormallyTerminated

VD_E_PROTOCOLVD_E_ABORT

CompleteCommandNOERROR VD_E_PROTOCOLVD_E_ABORT
SignalAbort NOERROR	—>

Abort
NOERROR	—>
Abort

NOERROR

Close NOERROR	—>
DNE

NOERROR	—>
DNE

NOERROR	—>
DNE

Status	Code Description
NOERROR The	function	succeeded.
VD_E_PROTOCOLA	protocol	error	has	occurred.	The	function	cannot	be

called	in	this	state.
VD_E_ABORT The	VDI	is	in	the	Abort	state.	Only	Close	is	useful

while	in	the	Abort	state.
VD_E_CLOSE When	the	server	issues	a	CloseDevice	call,	the	client

will	receive	a	VD_E_CLOSE	code	from
GetCommand.	When	the	last	device	in	the	set	returns
a	VD_E_CLOSE,	the	virtual	device	set	enters	the
NormallyTerminated	state.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Server	Transitions
These	tables	display	the	full	set	of	server	transitions.	The	tables	include	the
functions	associated	with	the	IServerVirtualDevice	and	the
IServerVirtualDeviceSet2,	the	possible	states	when	the	functions	can	be	invoked,
and	the	status	code	to	be	expected	when	a	function	is	invoked.	If	the	invocation
of	the	function	results	in	a	state	change,	then	the	next	state	is	given,	identified	by
the	symbol	—>.	When	all	resources	are	released,	the	VDI	no	longer	exists	and	a
transition	to	the	Does	Not	Exist	(DNE)	state	occurs.

Functions
Does	Not	Exist
State Configurable	State Initializing	State

Open NOERROR-
>Connected

VD_E_PROTOCOLVD_E_PROTOCOL

GetConfiguration VD_E_PROTOCOLNOERROR NOERROR
BeginConfiguration VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
RequestBuffers VD_E_PROTOCOLNOERROR NOERROR
QueryAvailableBuffers VD_E_PROTOCOLNOERROR NOERROR
EndConfiguration VD_E_PROTOCOLNOERROR-

>Initialize
VD_E_PROTOCOL

OpenDevice VD_E_PROTOCOLVD_E_PROTOCOLNOERROR	—>
Active

ExecuteCompletionAgentVD_E_PROTOCOLVD_E_PROTOCOLNOERROR	—>
Active

AllocateBuffer VD_E_PROTOCOLVD_E_PROTOCOLNOERROR
FreeBuffer VD_E_PROTOCOLVD_E_PROTOCOLNOERROR
SendCommand VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
CloseDevice VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
SignalAbort VD_E_PROTOCOLNOERROR	—>

Abort
NOERROR	—>
Abort

Close VD_E_PROTOCOLNOERROR	—>
DNE

NOERROR	—>
DNE

Normally Abnormally

Functions Active	State Terminated	State Terminated	State
Open VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
GetConfiguration NOERROR NOERROR VD_E_ABORT
BeginConfiguration VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
RequestBuffers NOERROR VD_E_PROTOCOLVD_E_PROTOCOL
QueryAvailableBuffers NOERROR VD_E_PROTOCOLVD_E_PROTOCOL
EndConfiguration VD_E_PROTOCOLVD_E_PROTOCOLVD_E_PROTOCOL
OpenDevice VD_E_PROTOCOLVD_E_PROTOCOLVD_E_ABORT
ExecuteCompletionAgentVD_E_PROTOCOLVD_E_PROTOCOLVD_E_ABORT
AllocateBuffer NOERROR NOERROR VD_E_ABORT
FreeBuffer NOERROR NOERROR VD_E_ABORT
SendCommand NOERROR VD_E_PROTOCOLVD_E_ABORT
CloseDevice NOERROR	—>

Terminated
NOERROR VD_E_ABORT

SignalAbort NOERROR	—>
Abort

NOERROR	—>
Abort

NOERROR

Close NOERROR	—>
DNE

NOERROR	—>
DNE

NOERROR	—>
DNE

Functions Connected	State
Open VD_E_PROTOCOL
GetConfiguration NOERROR
BeginConfiguration NOERROR->Configurable
RequestBuffers VD_E_PROTOCOL
QueryAvailableBuffers VD_E_PROTOCOL
EndConfiguration VD_E_PROTOCOL
OpenDevice VD_E_PROTOCOL
ExecuteCompletionAgent VD_E_PROTOCOL
AllocateBuffer VD_E_PROTOCOL
FreeBuffer NOERROR
SendCommand NOERROR
CloseDevice NOERROR	—>	Terminated

SignalAbort NOERROR	—>	Abort
Close NOERROR	—>	DNE

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Initialization
The	virtual	device	interface	is	implemented	as	a	set	of	Component	Object	Model
(COM)	interfaces.	An	application	gains	access	to	the	interface	by	standard	COM
methods.	First,	the	application	must	initialize	the	COM	environment	for
multithreading:

CoInitializeEx	(NULL,	COINIT_MULTITHREADED);

Once	COM	is	initialized,	then	the	application	creates	an	instance	of	an	interface:

CoCreateInstance	(CLSID_MSSQL_ClientVirtualDeviceSet,	NULL,	CLSCTX_INPROC_SERVER,	IID_IClientVirtualDeviceSet2,&vds))

Sample	code	accompanies	this	documentation.	Browsing	over	this	code	may
help	you	understand	the	details	covered	in	this	document.	If	you	don't	have	the
sample	code,	you	can	download	it	from	Microsoft.com.

The	client	uses	IClientVirtualDeviceSet2::CreateEx	to	give	a	unique	system-
wide	name	to	the	virtual	device	set	and	establish	some	basic	configuration
information,	such	as	the	number	of	devices.	The	client	then	issues	a	BACKUP	or
RESTORE	command	through	ODBC	or	an	alternative.	However,	rather	than
specifying	disk	or	tape	the	keyword	VIRTUAL_DEVICE	should	be	used.	If
more	than	one	device	is	to	be	used,	then	the	command	must	have	one
VIRTUAL_DEVICE	clause	for	each	device.	The	first	VIRTUAL_DEVICE
clause	must	specify	the	exact	name	given	on	the
IClientVirtualDeviceSet2::CreateEx	invocation.	Subsequent	clauses	name	each
additional	virtual	device	within	the	set.	The	only	restriction	on	these	names	is
that	they	be	unique	within	the	set.	For	example,	if	three	devices	were	specified,	a
BACKUP	command	might	look	like:

BACKUP	DATABASE	MYDB	
TO	VIRTUAL_DEVICE='{0D0F5BA0-B21A-4519-A961-A6E2292A17CA}',
VIRTUAL_DEVICE='dev2',	VIRTUAL_DEVICE='dev3'

To	ensure	uniqueness,	it	is	recommended	that	a	GUID	be	used	as	the	name	of	the
virtual	device	set.	The	sample	code	uses	this	approach.	However,	clients	are	free
to	use	any	scheme	they	wish.

Note			Usually	the	same	number	of	devices	is	used	during	both	RESTORE
and	BACKUP.	However,	for	removable	media,	it	is	possible	to	use	fewer
devices.	In	that	case,	after	each	data	stream	has	been	read,	SQL	Server
requests	a	new,	unprocessed	data	stream	by	issuing	a	mount	request.	For
more	information	about	media	sets,	backup	sets,	and	media	families,	see
Microsoft	SQL	Server	Books	Online.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Configuration
At	this	point	Microsoft®	SQL	Server™	is	executing	in	parallel	with	the	client.
The	virtual	device	set	is	in	the	Configurable	state	until	the	server	completes	the
configuration	of	the	virtual	device.	The	client	invokes
IClientVirtualDeviceSet2::GetConfiguration	to	wait	for	this	event.	Meanwhile,
SQL	Server	begins	execution	of	the	utility	command	and	invokes
IServerVirtualDeviceSet2::Open	using	the	name	provided	by	the	first
VIRTUAL_DEVICE	clause.	SQL	Server	inspects	the	virtual	device
configuration	by	using	IServerVirtualDeviceSet2::GetConfiguration.	If	the
configuration	is	satisfactory,	the	server	proceeds	to	invoke
IServerVirtualDeviceSet2::BeginConfiguration,	RequestBuffers	and
CompleteConfiguration	to	complete	the	configuration.	The	server	decides	on	the
total	buffer	space	requirement,	device	block	size,	and	maximum	transfer	size	by
using	defaults	or	input	from	the	BUFFERCOUNT,	BLOCKSIZE,	and
MAXTRANSFERSIZE	options	of	the	backup	command.	These	options	are
specified	as	part	of	the	WITH	clause.	For	example:

BACKUP	DATABASE	MYDB	TO	
VIRTUAL_DEVICE='{0D0F5BA0-B21A-4519-A961-A6E2292A17CA}'
WITH	BLOCKSIZE=4096,	BUFFERCOUNT=20,	MAXTRANSFERSIZE=524288.

BLOCKSIZE	is	the	size,	in	bytes,	that	is	used	as	the	device	BLOCKSIZE.	All
data	transfers	are	in	integral	multiples	of	this	value.	Values	must	be	a	power	of	2
between	512	bytes	and	64	kilobytes	(KB)	inclusive.	If	this	option	is	not	specified
with	the	command,	then	a	default	number	of	512	bytes	is	used.

BUFFERCOUNT	is	the	total	number	of	buffers	(of	size	MAXTRANSFERSIZE)
that	is	used	by	the	BACKUP	or	RESTORE	operation.	When	more	than	one
virtual	device	is	used,	the	buffers	are	used	as	needed	and	are	not	associated	with
any	given	device.	Note	that	some	smaller	buffers	may	be	used	by	SQL	Server	to
handle	the	small	meta	data	transfers.	These	small	buffers	are	not	included	in	the
BUFFERCOUNT.

MAXTRANSFERSIZE	is	the	size,	in	bytes,	of	the	maximum	input	or	output
request	which	is	issued	by	SQL	Server	to	the	device.	The
MAXTRANSFERSIZE	must	be	a	multiple	of	64	KB.	The	range	is	from	64	KB

through	4	megabytes	(MB).	If	this	option	is	not	specified	with	the	command,
then	a	default	of	64	KB	is	used.

When	the	configuration	is	complete,	the	virtual	device	set	is	in	the	Initializing
state	until	all	devices	are	open	between	the	client	and	server,	and	the	completion
agent	is	started.	The	client	uses	IClientVirtualDeviceSet2::OpenDevice	to	obtain
the	IClientVirtualDevice	interface	to	each	of	the	virtual	devices.	At	this	point,
the	virtual	device	set	is	in	the	Active	state	and	all	devices	are	ready	to	begin
work.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Active
As	Microsoft®	SQL	Server™	executes	the	utility	command,	it	will	allocate	or
free	buffers	as	necessary	by	accessing	the	single	shared	buffer	pool.	Whenever
SQL	Server	needs	to	perform	I/O	against	one	of	its	data	streams,	it	builds	a
command	and	sends	it	to	the	appropriate	device.	The	command	specifies	the
action	to	perform.	When	data	transfer	is	involved,	a	shared	buffer	accessible	in
the	client	process	is	identified.	The	client	loops,	invoking
IClientVirtualDevice::GetCommand	to	retrieve	a	sequence	of	commands.	The
client	executes	the	command,	and	when	it	is	complete,	invokes
IClientVirtualDevice::CompleteCommand	to	notify	the	server.	This	prompts	the
completion	agent	in	SQL	Server	to	call	back	to	a	SQL	Server	function	associated
with	that	command.

The	virtual	device	is	responsible	for	ensuring	that	the	exact	sequence	of	data
written	during	BACKUP	is	retrieved	during	RESTORE.	During	RESTORE,	the
same	BLOCKSIZE	must	be	used	as	that	used	during	the	BACKUP.	Generally,
the	same	MAXTRANSFERSIZE	should	also	be	used.	However,	if	the	backup
does	not	contain	full-text	data,	then	any	MAXTRANSFERSIZE	can	be	specified
during	the	RESTORE.	Regardless	of	these	settings,	the	RESTORE	command
may	request	data	to	be	read	in	any	size	between	BLOCKSIZE	and
MAXTRANSFERSIZE	(in	multiples	of	BLOCKSIZE).	There	is	no	guarantee
that	the	RESTORE	command	will	request	data	in	the	same	sequence	of	sizes	as
were	used	during	the	BACKUP.

If	a	client	is	using	asynchronous	I/O,	it	must	ensure	that	a	mechanism	exists	to
complete	outstanding	requests	when	it	is	blocked	in	a
IClientVirtualDevice::GetCommand	call.	Because	GetCommand	waits	in	an
Alertable	state,	that	use	of	Alertable	I/O	is	one	such	technique.	In	this	case,	the
operating	system	calls	back	to	a	completion	routine	set	up	by	the	client.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Normal	Termination
When	the	operation	is	complete,	Microsoft®	SQL	Server™	invokes
IServerVirtualDevice::CloseDevice	for	each	device.	This	results	in	the
IClientVirtualDevice::GetCommand	returning	a	VD_E_CLOSE	status	code.	The
client	responds	by	terminating	its	GetCommand	loop.

After	all	devices	are	closed,	the	completion	agent	is	terminated	and	the	virtual
device	set	enters	the	Normally	Terminated	state.	The	client	invokes
IClientVirtualDeviceSet2::Close	and	the	server	invokes
IServerVirtualDeviceSet2::Close	to	release	any	resources	used	by	the	virtual
device	set.

The	client	does	not	need	to	wait	for	the	completion	agent	to	terminate.	The	client
can	issue	IClientVirtualDeviceSet2::Close	as	soon	as	all	of	the	devices	have
received	a	Close	status	code.

The	server	is	permitted	to	call	IServerVirtualDeviceSet2::Close	without	freeing
any	allocated	buffers.	The	Close	function	will	free	them.	It	is	permissible	to
invoke	FreeBuffer	as	part	of	the	cleanup	processing	in	the	server.

The	backup	history	written	for	VDI	backups	is	the	same	as	for	non-VDI
backups.	The	only	distinction	is	that	msdb..backupmediafamily.device_type	is
set	to	7.

Note	on	"sp_addumpdevice":	VDI	devices	should	not	be	added	as	backup
devices.	This	is	not	prevented	in	SQL	Server	2005,	but	is	deprecated.	Since	VDI
devices	should	use	unique	names,	it	does	not	make	sense	to	add	persistent	names
to	the	catalog.	GUIDs	are	recommended	for	names.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Abnormal	Termination
When	a	fatal	error	occurs,	each	side	of	the	Virtual	Device	Interface	is	provided
with	a	function	to	signal	that	abnormal	termination	should	occur.	The	client
function	is	IClientVirtualDeviceSet2::SignalAbort.	The	server	function	is
IServerVirtualDeviceSet2::SignalAbort.	When	SQL	Server	uses	SignalAbort	to
initiate	termination,	the	BACKUP	or	RESTORE	command	completes	with	one
or	more	messages	explaining	the	reason	for	the	abnormal	termination.	It	is
recommended	that	the	client	likewise	log	errors.	When	either	the	client	or	server
invokes	the	SignalAbort	interface,	the	virtual	device	set	enters	the	Abort	state.
As	a	result,	this	document	does	not	always	specify	what	caused	the	SignalAbort
invocation.

The	use	of	SignalAbort	is	not	always	necessary	as	a	means	to	terminate	a
BACKUP	or	RESTORE	command.	If	the	server	receives	an	error	code	from
IClientVirtualDevice::CompleteCommand	or	from	an	operation	internal	to	the
server,	it	will	usually	terminate	the	command	by	waiting	for	outstanding	virtual
device	commands	to	complete,	and	then	closing	the	virtual	device(s).

When	SignalAbort	must	be	used,	it	performs	a	fail-fast	protocol,	effectively
disconnecting	the	client	and	server.	In-progress	commands	have	aborted
completion	notifications	sent	to	SQL	Server	and	the	client	receives	aborting
error	codes	when	attempting	to	get	or	complete	commands.

Actions	triggered	by	SignalAbort	vary	with	the	state	of	the	virtual	device.
Actions	and	effects	include:

Any	in-progress	functions	terminate,	returning	with	a	VD_E_ABORT
result.	Examples	include	GetCommand	and	GetConfiguration.

No	new	SendCommands	are	accepted.

No	new	commands	are	delivered	by	GetCommand.

No	new	buffers	are	returned	from	GetBuffer.

Buffers	already	in	the	control	of	the	client	and	server	remain	in	their
control	until	each	invokes	its	VirtualDeviceSet::Close	function.

Any	outstanding	commands	are	automatically	completed	with	an
ERROR_OPERATION_ABORTED	completion	code.	The	notification
agent	calls	the	callback	functions	as	if	the	client	had	performed	the
completion.

Any	command	completions	attempted	by	the	client	are	ignored.

The	server's	completion	agent	returns	from	its
ExecuteCompletionAgent	call.

After	SignalAbort	has	been	used	and	after	use	of	any	resources	is	ended,	the
only	requirement	on	the	server	and	client	is	to	invoke
IServerVirtualDeviceSet2::Close	and	IClientVirtualDeviceSet2::Close.	For
example,	if	an	I/O	is	being	performed	with	a	buffer	when	the	aborting	status	is
noticed,	the	I/O	must	be	cancelled	or	completed	before	the	Close	interface	is
invoked.

IServerVirtualDeviceSet2::FreeBuffer	and	IServerVirtualDevice::CloseDevice
do	not	need	to	be	invoked	after	the	virtual	device	set	is	in	an	Abort	state.	If	they
are	invoked,	the	only	action	FreeBuffer	or	CloseDevice	performs	is	to	return
VD_E_ABORT.

If	either	server	or	client	exits	without	invoking	the	Close	method,	the	WIN32®
synchronization	primitives	will	alert	the	interface.	SignalAbort	processing	is
internally	triggered	and	VD_E_ABORT	is	returned	by	the	interface.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Process	Model
The	process	model	used	by	Microsoft®	SQL	Server™	is	a	single	process	with
multiple	threads.	When	processing	a	BACKUP	or	RESTORE	command,	there	is
one	thread	for	each	virtual	device.

On	the	client	side,	several	process	models	are	possible.	This	illustration	shows
the	simplest	model,	which	is	one	process,	with	one	thread	per	virtual	device.

Notice	that	the	<x>	in	the	preceding	illustration	denotes	that	server	or	client	is
intended.	For	example,	IServerVirtualDeviceSet2	is	used	by	the	server	process
while	IClientVirtualDeviceSet2	is	used	by	the	client	process.	The
I<x>VirtualDeviceSet	interface	can	be	used	by	any	thread	in	the	process.	The
I<x>VirtualDevice	interface	is	intended	to	be	used	by	a	single	thread	to	control
one	of	the	virtual	devices	in	the	virtual	device	set.

Some	users	might	require	a	multiple-process	architecture.	For	that	case,	a	special
method	is	provided	to	open	the	virtual	device	set	in	the	secondary	client:
IClientVirtualDeviceSet2::OpenInSecondary.	In	this	model,	rather	than	threads
in	the	client	process	handling	each	virtual	device,	secondary	processes	are
employed.	The	primary	process	is	responsible	for	creating	the	virtual	device	set,
configuring	it,	and	communicating	with	the	secondary	processes.	The	secondary
processes	gain	access	to	the	virtual	device	set	by	employing	the
OpenInSecondary	method.	The	secondary	processes	can	then	use	OpenDevice

to	access	the	virtual	devices	as	if	they	were	threads	in	the	primary	process.
Applications	choosing	this	model	are	responsible	for	detecting	abnormal
termination	of	the	secondary	clients.	The	VDI	will	only	detect	the	abnormal
termination	of	the	SQL	Server	process	or	the	primary	client.	The	following
drawing	illustrates	the	multiple	process	model,	with	one	thread	for	each	virtual
device.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Security
The	system	objects	used	to	implement	the	virtual	device	set	are	secured	with	an
access	control	list.	This	list	permits	access	to	all	processes	running	under	the
account	used	by	the	primary	client.	Access	is	also	permitted	to	processes	running
under	the	account	used	by	Microsoft®	SQL	Server™,	as	recorded	in	the	system
services	configuration.

The	server	connection	for	SQL	Server	that	is	used	to	issue	the	BACKUP	or
RESTORE	commands	must	be	logged	in	with	the	sysadmin	fixed	server	role.
For	more	information,	see	Microsoft	SQL	Server	Books	Online.

The	CreateEx	(and	Create)	calls	modify	the	security	DACL	on	the	process
handle	in	the	client	process.	Because	of	this	any	other	modification	of	the
process	handle	must	be	serialized	with	invocation	of	CreateEx.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Client	Functions
This	chapter	contains	descriptions	of	each	of	the	client	functions.	The
descriptions	include	the	following	information:

Function	purpose

Function	syntax

Parameter	list

Return	values

Remarks

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::CreateEx

Purpose This	function	creates	the	virtual	device	set.
Syntax HRESULT	IClientVirtualDeviceSet2::CreateEx	(

			LPCWSTR									lpInstanceName,

			LPCWSTR									lpName,

			VDConfig*						pCfg

);

Parameters Argument Explanation
	 lpInstanceName This	string	identifies	the

SQL	Server	instance	to
which	the	SQL
command	will	be	sent.

	 lpName This	identifies	the
virtual	device	set.	The
rules	for	names	used	by
CreateFileMapping()
must	be	followed.	Any
character	except
backslash	(\)	may	be
used.	This	is	a	wide-
character	Unicode
string.	Prefixing	the
string	with	the	user's
product	or	company
name	and	database
name	is	recommended.

	 pCfg This	is	the	configuration
for	the	virtual	device
set.	For	more
information,	see
Configuration.

Return	Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_NOTSUPPORTEDOne	or	more	of	the

fields	in	the
configuration	was
invalid	or	otherwise
unsupported.

	 VD_E_PROTOCOL The	virtual	device	set
has	been	created.

Remarks The	CreateEx	method	should	be	called	only	once
per	BACKUP	or	RESTORE	operation.	After
invoking	the	Close	method,	the	client	can	reuse	the
interface	to	create	another	virtual	device	set.

The	instance	name	must	identify	the	instance	to
which	the	Transact-SQL	is	issued.	NULL	identifies
the	default	instance.	No	"machineName\"	prefix	is
accepted.

The	CreateEx	(and	Create)	calls	will	modify	the
security	DACL	on	the	process	handle	in	the	client
process.	Because	of	this,	any	other	modification	of
the	process	handle	must	be	serialized	with
invocation	of	CreateEx.	CreateEx	will	serialize	with
other	calls	to	CreateEx,	but	is	unable	to	serialize
with	external	processing.	Access	is	granted	to	the
account	running	the	SQL	Server	service.

The	CreateEx	method	supersedes	the	Create
method	defined	in	the	original
IClientVirtualDeviceSet.	The	original	Create
method	is	deprecated	and	should	not	be	used	in
future	development.	The	original	Create	method
implements	a	form	of	instance	name	support	with
the	_VIRTUAL_SERVER_NAME_	environment
variable.	If	that	variable	is	set	in	the	environment,
then	the	Create	method	internally	calls	CreateEx,
passing	the	value	of

_VIRTUAL_SERVER_NAME_	as	the	instance
name.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::GetConfiguration

Purpose This	function	is	used	to	wait	for	the	server	to	configure	the
virtual	device	set.

Syntax HRESULT
IClientVirtualDeviceSet2::GetConfiguration	(

			DWORD									dwTimeOut,

			VDConfig*						pCfg

);

Parameters Argument Explanation
	 DwTimeOut This	is	the	time-out	in

milliseconds.	Use	INFINITE
to	prevent	time-out.

	 pCfg Upon	successful	execution,
this	contains	the
configuration	selected	by	the
server.	For	more
information,	see
Configuration.

Return	Values Argument Explanation
	 NOERROR The	configuration	was

returned.
	 VD_E_ABORT SignalAbort	was	invoked.
	 VD_E_TIMEOUT The	function	timed	out.

Remarks

This	function	blocks	in	an	Alertable	state.	After
successful	invocation,	the	devices	in	the	virtual
device	set	may	be	opened.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::OpenDevice

Purpose This	function	opens	one	of	the	devices	in	the	virtual	device
set.

Syntax HRESULT
IClientVirtualDeviceSet2::OpenDevice	(

			LPCWSTR																		lpName,

			IClientVirtualDevice**			ppVirtualDevice

);

Parameters Argument Explanation
	 lpName This	identifies	the	virtual	device.
	 ppVirtualDevice When	the	function	succeeds,	an

interface	pointer	to	the	virtual
device	is	returned.	This	interface
is	used	for	the	GetCommand	and
CompleteCommand.

Return	Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_ABORT Abort	was	requested.
	 VD_E_OPEN All	devices	are	open.
	 VD_E_PROTOCOL The	set	is	not	in	the	initializing

state	or	this	particular	device	is
already	open.

	 VD_E_INVALID The	device	name	is	invalid.	It	is
not	one	of	the	names	known	to
comprise	the	set.

Remarks VD_E_OPEN	may	be	returned	without	problem.	The
client	may	call	OpenDevice	by	means	of	a	loop	until	this
code	is	returned.

If	more	than	one	device	is	configured	(for	example,	n
devices),	the	virtual	device	set	will	return	n	unique

device	interfaces.	The	first	device	has	the	same	name	as
the	virtual	device	set.	Other	devices	are	named	as
specified	with	the	VIRTUAL_DEVICE	clauses	of	the
BACKUP/RESTORE	statement.

The	GetConfiguration	function	can	be	used	to	wait	until
the	devices	can	be	opened.

If	this	function	does	not	succeed,	then	a	null	value	is
returned	through	the	ppVirtualDevice.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDevice::GetCommand

Purpose This	function	is	used	to	obtain	the	next	command	queued	to
a	device.	When	requested,	this	function	waits	for	the	next
command.

Syntax HRESULT	IClientVirtualDevice::GetCommand	(

			DWORD															dwTimeOut,

			VDC_Command**						const	ppCmd

);

Parameters Argument Explanation
	 ppCmd When	a	command	is	successfully

returned,	the	parameter	returns	the
address	of	a	command	to	execute.	The
memory	returned	is	read-only.	When
the	command	is	completed,	this
pointer	is	passed	to	the
CompleteCommand	routine.	For
more	information	about	each
command,	see	Commands.

	 dwTimeOut This	is	the	time	to	wait,	in
milliseconds.	Use	INFINTE	to	wait
indefinitely.	Use	0	to	poll	for	a
command.	VD_E_TIMEOUT	is
returned	if	no	command	is	currently
available.	If	the	time-out	occurs,	the
client	decides	the	next	action.

Return
Values Argument Explanation
	 NOERROR A	command	was	fetched.
	 VD_E_CLOSE The	device	has	been	closed	by	the

server.
	 VD_E_TIMEOUT No	command	was	available	and	the

time-out	expired.
	 VD_E_ABORT Either	the	client	or	the	server	has	used

the	SignalAbort	to	force	a	shutdown.
Remarks When	VD_E_CLOSE	is	returned,

SQL	Server	has	closed	the	device.
This	is	part	of	the	normal	shutdown.
After	all	devices	have	been	closed,	the
client	invokes
IClientVirtualDeviceSet2::Close	to
close	the	virtual	device	set.
When	this	routine	must	block	to	wait
for	a	command,	the	thread	is	left	in	an
Alertable	condition.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDevice::CompleteCommand

Purpose This	function	is	used	to	notify	SQL	Server	that	a	command
has	finished.	Completion	information	appropriate	for	the
command	should	be	returned.	For	more	information,	see
Commands.

Syntax HRESULT
IClientVirtualDevice::CompleteCommand	(

			VDC_Command*						const	pCmd,

			UINT32															dwCompletionCode,

			UINT32															dwBytesTransferred,

			UINT64															dwlPosition

);

Parameters Argument Explanation
	 pCmd This	is	the	address	of	a	command

previously	returned	from
IClientVirtualDevice::GetCommand.

	 dwCompletionCode This	is	a	WIN32	status	code	that
indicates	the	completion	status.	This
parameter	must	be	returned	for	all
commands.	The	code	returned	should
be	appropriate	to	the	command	being
performed.	ERROR_SUCCESS	is
used	in	all	cases	to	denote	a
successfully	executed	command.	For
the	complete	list	of	possible	codes,
see	the	file,	Winerror.h.	A	list	of
typical	status	codes	for	each
command	appears	in	Commands.

	 dwBytesTransferred This	is	the	number	of	successfully
transferred	bytes.	This	is	returned

only	for	data	transfer	commands
Read	and	Write.

	 dwlPosition This	is	a	response	to	the	GetPosition
command	only.

Return
Values Argument Explanation
	 NOERROR The	completion	was	correctly	noted.
	 VD_E_INVALID pCmd	was	not	an	active	command.
	 VD_E_ABORT Abort	was	signaled.
	 VD_E_PROTOCOL The	device	is	not	open.
Remarks None

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::SignalAbort

Purpose This	function	is	used	to	signal	that	an	abnormal	termination
should	occur.

Syntax HRESULT	IClientVirtualDeviceSet2::SignalAbort
();

Parameters Argument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 NOERROR The	Abort	notification	was

successfully	posted.
Remarks At	any	time,	the	client	may	choose	to	abort	the	BACKUP	or

RESTORE	operation.	This	routine	signals	that	all	operations
should	cease.	The	state	of	the	overall	virtual	device	set	enters
the	Abort	state.	No	further	commands	are	returned	on	any
devices.	All	uncompleted	commands	are	automatically
completed,	returning	ERROR_OPERATION_ABORTED	as
a	completion	code.	The	client	should	call
IClientVirtualDeviceSet2::Close	after	it	has	safely	terminated
any	outstanding	use	of	buffers	provided	to	the	client.	For
more	information,	see	Abnormal	Termination.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::Close

Purpose This	function	closes	the	virtual	device	set	created	by
IClientVirtualDeviceSet2::Create.	It	results	in	the	release	of
all	resources	associated	with	the	virtual	device	set.

Syntax HRESULT	IClientVirtualDeviceSet2::Close	();
Parameters Argument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 NOERROR This	is	returned	when	the	virtual

device	set	was	successfully	closed.
	 VD_E_PROTOCOL No	action	was	taken	because	the

virtual	device	set	was	not	open.
	 VD_E_OPEN Devices	were	still	open.
Remarks The	invocation	of	Close	is	a	declaration	by	the	client	that	all

resources	used	by	the	virtual	device	set	should	be	released.
The	client	must	ensure	that	all	activity	involving	data	buffers
and	virtual	devices	is	terminated	before	invoking	Close.	All
virtual	device	interfaces	returned	by	OpenDevice	are
invalidated	by	Close.

The	client	is	permitted	to	issue	a	Create	call	on	the	virtual
device	set	interface	after	the	Close	call	returns.	Such	a	call
would	create	a	new	virtual	device	set	for	a	subsequent
BACKUP	or	RESTORE	operation.

If	Close	is	called	when	one	or	more	virtual	devices	are	still
open,	VD_E_OPEN	is	returned.	In	this	case,	SignalAbort	is
internally	triggered,	to	ensure	a	proper	shutdown	if	possible.
VDI	resources	are	released.	The	client	should	wait	for	a
VD_E_CLOSE	indication	on	each	device	before	invoking
IClientVirtualDeviceSet2::Close.	If	the	client	knows	that	the
virtual	device	set	is	already	in	an	Abnormally	Terminated
state,	then	it	should	not	expect	a	VD_E_CLOSE	indication

from	GetCommand,	and	may	invoke
IClientVirtualDeviceSet2::Close	as	soon	as	activity	on	the
shared	buffers	is	terminated.

For	more	information,	see	Abnormal	Termination.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::OpenInSecondaryEx

Purpose This	function	opens	the	virtual	device	set	in	a	secondary
client.	The	primary	client	must	have	already	used	CreateEx
and	GetConfiguration	to	set	up	the	virtual	device	set.

Syntax HRESULT
IClientVirtualDeviceSet2::OpenInSecondaryEx	(

			LPCWSTR						lpInstanceName,

			LPCWSTR						lpSetName

);

Parameters Argument Explanation
	 lpInstanceName This	string	identifies	the	SQL	Server

instance	to	which	the	SQL	command
will	be	sent.

	 lpSetName This	identifies	the	set.	This	name	is
case-sensitive	and	must	match	the
name	used	by	the	primary	client	when
it	invoked
IClientVirtualDeviceSet2::Create.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_PROTOCOL The	virtual	device	set	has	been

opened	or	the	virtual	device	set	is	not
ready	to	accept	open	requests	from
secondary	clients.

	 VD_E_ABORT The	operation	is	being	aborted.
Remarks When	using	a	multiple	process	model,	the	primary	client	is

responsible	for	detecting	normal	and	abnormal	termination	of
secondary	clients.
The	instance	name	must	identify	the	instance	to	which	the	T-
SQL	is	issued.	NULL	identifies	the	default	instance.	No

"machineName\"	prefix	is	accepted.

OpenInSecondaryEx	supersedes	the	original
IClientVirtualDeviceSet::OpenInSecondary	that	was
defined	in	the	original	SQL	Server	version	7.0	interface.	New
development	should	use	OpenInSecondaryEx.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::GetBufferHandle

Purpose Some	applications	may	require	more	than	one	process	to
operate	on	the	buffers	returned	by
IClientVirtualDevice2::GetCommand.	In	such	cases,	the
process	that	receives	the	command	can	use	GetBufferHandle
to	obtain	a	process	independent	handle	that	identifies	the
buffer.	This	handle	can	then	be	communicated	to	any	other
process	that	also	has	the	same	Virtual	Device	Set	open.	That
process	would	then	use
IClientVirtualDeviceSet2::MapBufferHandle	to	obtain	the
address	of	the	buffer.	The	address	will	likely	be	a	different
address	than	in	its	partner	because	each	process	may	be
mapping	buffers	at	different	addresses.

Syntax HRESULT
IClientVirtualDeviceSet2::GetBufferHandle	(

			BYTE*									pBuffer,

			DWORD*						pBufferHandle

);

Parameters Argument Explanation
	 pBuffer This	is	the	address	of	a	buffer

obtained	from	a	Read	or	Write
command.

	 pBufferHandle A	unique	identifier	for	the	buffer	is
returned.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_PROTOCOL The	virtual	device	set	is	not	currently

open.
	 VD_E_INVALID The	pBuffer	is	not	a	valid	address.
Remarks The	process	that	invokes	the	GetBufferHandle	function	is

responsible	for	invoking
IClientVirtualDevice2::CompleteCommand	when	the	data
transfer	is	complete.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IClientVirtualDeviceSet2::MapBufferHandle

Purpose This	function	is	used	to	obtain	a	valid	buffer	address	from	a
buffer	handle	obtained	from	some	other	process.

Syntax HRESULT
IClientVirtualDeviceSet2::MapBufferHandle	(

			DWORD						dwBuffer,

			BYTE**						ppBuffer

);

ParametersArgument Explanation
	 dwBuffer This	is	the	handle	returned	by

IClientVirtualDeviceSet2::GetBufferHandle.
	 ppBuffer This	is	the	address	of	the	buffer	that	is	valid

in	the	current	process.
Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_PROTOCOLThe	virtual	device	set	is	not	currently	open.
	 VD_E_INVALID The	ppBuffer	is	an	invalid	handle.
Remarks Care	must	be	taken	to	communicate	the	handles	correctly.

Handles	are	local	to	a	single	virtual	device	set.	The	partner
processes	sharing	a	handle	must	ensure	that	buffer	handles	are
used	only	within	the	scope	of	the	virtual	device	set	from	which
the	buffer	was	originally	obtained.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Server	Functions
The	following	topics	contain	descriptions	of	each	of	the	server	functions.	The
descriptions	include	the	following	information:

Function	purpose

Function	syntax

Parameter	list

Return	values

Remarks

Note			The	server	functions	are	for	the	exclusive	use	of	SQL
Server.	They	are	described	here	for	information	purposes	only.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::Open

Purpose This	function	opens	the	virtual	device	set	on	the	server,	and	it
must	be	the	first	call	made	using	the	COM-provided	interface
handle.

Syntax HRESULT	IServerVirtualDeviceSet2::Open	(

			LPCWSTR						lpInstanceName,

			LPCWSTR						lpName

);

Parameters Argument Explanation
	 lpInstanceName This	string	identifies	the	SQL	Server

instance	to	which	the	SQL	command
will	be	sent.	NULL	may	be	passed	to
identify	the	default	instance	on	the
current	machine.

	 lpName This	is	provided	from	the	first
VIRTUAL_DEVICE=	clause	of	the
BACKUP	or	RESTORE	command.
This	name	is	used	as	the	key	to	obtain
access	to	the	virtual	device	set	created
by	the	client.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_INVALID The	name	provided	did	not	identify	a

virtual	device	set	that	is	accessible	to
the	server.

Remarks After	this	function	is	successfully	invoked,	the	server	may
proceed	to	configure	the	virtual	device	set	by	using
GetConfiguration	and	SetConfiguration.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::GetConfiguration

Purpose This	function	obtains	the	configuration	requested	by	the
client.

Syntax HRESULT
IServerVirtualDeviceSet2::GetConfiguration	(

			VDConfig*			pCfg

);

Parameters Argument Explanation
	 pCfg This	is	the	configuration	specified	by

the	client	using
IClientVirtualDeviceSet2::Create.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
Remarks The	server	is	expected	to	inspect	and	respond	to	the	settings

provided	by	the	client.	For	more	information,	see
Configuration.	The	server	can	use	SignalAbort	if	it
determines	that	it	cannot	operate	correctly	with	the	provided
configuration.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::BeginConfiguration

Purpose The	server	invokes	this	function	to	begin	configuration	of	the
virtual	device	set.

Syntax HRESULT
IServerVirtualDeviceSet2::BeginConfiguration	(

			DWORD			dwFeatures,

			DWORD			dwAlignment,

			DWORD			dwBlockSize,

			DWORD			dwMaxTransferSize,

			DWORD			dwTimeout

);

Parameters Argument Explanation
	 dwFeatures The	modified	features	mask.

VDF_WriteMedia	and/or
VDF_ReadMedia.

	 dwAlignment The	final	alignment.	If	0,	defaults	to
dwBlockSize.	Must	be	a	power	of	2,
>=	dwBlockSize	and	<=	64	KB.

	 dwBlockSize The	minimum	unit	of	transfer,	in
bytes.	Must	be	a	power	of	2,	>=512
and	<=	64	KB.

	 dwMaxTransferSize The	largest	transfer	which	will	be
attempted.	Must	be	a	multiple	of	64
KB.

	 dwTimeout Milliseconds	to	wait	for	the	primary
client	to	finish	declaring	buffer	areas
it	will	provide.

Return
Values Argument Explanation

	 NOERROR The	virtual	device	set	is	in	the
Configurable	state.

	 VD_E_ABORT The	SignalAbort	was	invoked.
	 VD_E_PROTOCOL The	virtual	device	set	is	not	in	the

Connected	state.
Remarks After	this	function	is	invoked,	the	virtual	device	set	moves	to

the	Configurable	state,	in	which	buffer	layout	is	decided.
Once	the	basic	configuration	is	set	(as	per	the	parameters),
these	values	remain	fixed	for	the	life	of	the	virtual	device	set.
The	alignment	property	for	the	virtual	device	set	is	used	to
control	alignment	of	data	buffers.	This	value	sets	a	minimum
alignment	value	that	may	be	overridden	on	a	buffer-by-buffer
basis.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::EndConfiguration

Purpose This	function	informs	the	VDI	that	the	server	is	finished	with
its	configuration.

Syntax HRESULT
IServerVirtualDeviceSet2::EndConfiguration	();

Parameters Argument Explanation
	 None Not	applicable.
Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_ABORT Abort	was	requested.
	 VD_E_PROTOCOL The	set	is	not	in	the	Configurable

state.
	 VD_E_MEMORY The	memory	required	via	the

'RequestBuffers'	calls	could	not	be
obtained.	The	set	remains	in	the
configurable	state	with	no	buffer
space	available.	The	server	can	either
reduce	its	buffer	requirements	or	abort
the	operation.

Remarks 	

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::RequestBuffers

Purpose This	function	informs	the	VDI	that	the	server	will	need	a
certain	number	of	buffers	with	a	given	size	and	alignment
requirement.

Syntax HRESULT
IServerVirtualDeviceSet2::RequestBuffers	(

			DWORD			dwSize,

			DWORD			dwAlignment,

			DWORD			dwCount

);

Parameters Argument Explanation
	 dwSize Identifies	the	size	of	each	buffer.	This

size	should	only	include	the	region
needed	for	data.	The	VDI	takes	care
of	any	alignment	and	prefix
requirements.

	 dwAlignment The	alignment	required	for	these
buffers.	A	value	more	restrictive	than
the	basic	alignment	value	specified
with	'BeginConfiguration'	may	be
used.	If	the	value	is	0,	it	will	default
to	the	basic	alignment	value.

	 dwCount The	number	of	buffers	which	will	be
requested	by	'AllocateBuffer'	with	the
given	size	and	alignment.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_ABORT Abort	was	requested.
	 VD_E_PROTOCOL The	set	is	not	in	a	state	in	which

buffer	allocations	may	be	declared
(see	the	state	transition	matrix).

	 VD_E_MEMORY The	requested	memory	could	not	be
obtained.

Remarks This	method	should	be	used	before	buffers	are	allocated	with
AllocateBuffer.	Sets	of	buffers	with	a	given	size	and
alignment	are	requested	with	RequestBuffers	and	then
individual	buffers	are	allocated	with	AllocateBuffer.

During	the	configuration	phase,	RequestBuffers	calls	are
"summed"	together	so	that	at	the	EndConfiguration	call	a
single	buffer	area	can	be	used	(it	is	allocated	at	that	time).
After	configuration	is	complete,	any	RequestBuffers	calls
result	in	immediate	allocation	of	more	buffer	space.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::ExecuteCompletionAgent

Purpose This	function	is	used	to	implement	the	main	loop	of	the
completion	agent.

Syntax HRESULT
IServerVirtualDeviceSet2::ExecuteCompletionAgent
();

ParametersArgument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
Remarks The	completion	agent	provides	a	mechanism	through	which

SQL	Server	can	synchronize	itself	with	virtual	device	command
completions.	It	must	be	active	before	any	commands	can	be
issued	and	it	should	remain	active	until	all	devices	are	closed.
Since	SQL	Server	might	have	to	perform	special	thread
initialization,	this	interface	does	not	start	a	new	thread	of
control.	Instead,	SQL	Server	sets	up	a	thread,	and	then	passes
control	to	this	routine.	The	thread	must	be	blockable	on
Windows	NT	Inter-process	Communication	(IPC)	mechanisms
and	capable	of	calling	any	of	the	callback	functions	that	are
provided	with	commands	sent	through
IServerVirtualDevice::SendCommand.
This	function	will	not	return	until
IServerVirtualDeviceSet2::Close	or	SignalAbort	is	invoked.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::OpenDevice

Purpose This	function	obtains	virtual	device	interfaces	from	the
virtual	device	set.

Syntax HRESULT
IServerVirtualDeviceSet2::OpenDevice	(

			LPCWSTR																					lpName,

			IServerVirtualDevice**						ppVirtualDevice

);

Parameters Argument Explanation
	 lpName This	is	provided	from	the	first

VIRTUAL_DEVICE=	clause	of	the
BACKUP	or	RESTORE	command.
This	name	is	used	as	the	key	to	obtain
access	to	the	virtual	device	set	created
by	the	client.

	 ppVirtualDevice This	is	used	to	return	a	virtual	device
interface.

Return
Values Argument Explanation
	 NOERROR The	function	succeeded.
	 VD_E_OPEN All	devices	have	been	opened.
Remarks Each	call	returns	the	next	unopened	device.	This	function	can

be	called	only	the	number	of	times	equal	to	the	number	of
devices	specified	in	the	virtual	device	set	configuration.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::AllocateBuffer

Purpose This	function	obtains	a	shared	memory	buffer	from	the	virtual
device	set.

Syntax HRESULT
IServerVirtualDeviceSet2::AllocateBuffer	(

			LPVOID*						ppBuffer,

			UINT32						dwSize,

			UINT32						dwAlignment

);

Parameters Argument Explanation
	 ppBuffer This	returns	a	pointer	to	the	start	of

the	buffer.
	 dwSize This	is	the	size	of	the	buffer	in	bytes.

This	does	not	include	any	prefix	zone
requested	by	the	client.	Any	such
zone	is	hidden	from	the	server	and
there	will	be	space	available	prior	to
when	the	buffer	address	is	returned.

	 dwAlignment This	specifies	the	alignment	boundary
for	the	buffer.	For	example,	a	value	of
4096	would	ensure	that	the	buffer	is
aligned	on	a	4096-byte	boundary.
This	means	that	the	address	returned
would	have	the	low	order	12	bits	set
to	zero.
This	parameter	must	be	a	power	of	2.

Return
Values Argument Explanation
	 NOERROR The	buffer	is	returned.
	 VD_E_MEMORY An	out	of	memory	condition	has

occurred.
	 VD_E_INVALID A	parameter	was	invalid.
Remarks None

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::FreeBuffer

Purpose This	function	obtains	a	shared	memory	buffer	from	the	virtual
device	set.

Syntax HRESULT	IServerVirtualDeviceSet2::FreeBuffer
(

			LPVOID			pBuffer,

			UINT32			dwSize

);

Parameters Argument Explanation
	 pBuffer This	returns	a	buffer	returned	by

IServerVirtualDeviceSet2::AllocateBuffer.
	 dwSize This	is	the	size	of	the	buffer	in	bytes.	This

does	not	include	any	prefix	zone
requested	by	the	client.	Any	such	zone	is
hidden	from	the	server	and	there	will	be
space	available	prior	to	when	the	buffer
address	is	returned.

Return
Values Argument Explanation
	 NOERROR The	buffer	is	returned.
	 VD_E_INVALID A	parameter	was	invalid.
Remarks None

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::IsSharedBuffer

Purpose This	function	determines	if	the	given	buffer	address	refers	to
one	of	the	shared	buffers	made	available	by	the
AllocateBuffer	method.

Syntax HRESULT
IServerVirtualDeviceSet2::IsSharedBuffer	(

			LPVOID			lpBuffer

);

Parameters Argument Explanation
	 lpBuffer This	is	an	address	of	a	buffer.
Return
Values Argument Explanation
	 TRUE The	buffer	is	a	shared	buffer.
	 FALSE The	buffer	is	not	part	of	the	virtual

device	set.
Remarks None

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDevice::SendCommand

Purpose This	function	sends	a	command	to	the	client	by	using	a	virtual	device
object	returned	from	IServerVirtualDeviceSet2::OpenDevice.

Syntax HRESULT	IServerVirtualDevice::SendCommand	(

			VDS_Command*			pCmd

);

ParametersArgument Explanation
	 pCmd This	is	a	pointer	to	a	command	request	block.

For	more	information,	see	Commands.	The
completionFunction	field	must	be	set	to	point
to	the	address	of	a	function	with	the	following
signature:

void	callbackFunction	(VDS_Command
*pCmd);

This	callback	is	made	by	the	completion	agent
when	the	client	indicates	that	a	command	has
been	completed.

SQL	Server	sets	the	completionContext	field
of	the	pCmd.	Its	purpose	is	to	provide	context
to	the	callback	function.

Return
Values Argument Explanation
	 NOERROR The	command	is	successfully	queued	to	the

client.
	 VD_E_QUEUE_FULL The	device	queue	is	full.
	 VD_E_IO_ERROR The	device	is	in	an	IO-ERROR	state.
	 VD_E_PROTOCOL The	device	is	not	active.
Remarks When	an	error	occurs	while	attempting	to	send	the	command,	the	callback

function	is	invoked,	and	the	completionCode	in	the	command	buffer	is	set

as	follows:

VD_E_QUEUE_FULL				ERROR_NO_SYSTEM_RESOURCES

VD_E_IO_ERROR								ERROR_IO_DEVICE

VD_E_PROTOCOL								ERROR_INVALID_HANDLE

VD_E_ABORT												ERROR_OPERATION_ABORTED

For	more	information,	see	Command	Error	Handling.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDevice::CloseDevice

Purpose This	function	closes	a	virtual	device	that	had	been	opened
with	IServerVirtualDeviceSet2::OpenDevice

Syntax HRESULT	IServerVirtualDevice::CloseDevice	();
Parameters Argument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 VD_E_CLOSE The	device	is	already	closed.
	 VD_E_ABORT The	interface	is	in	the	Abort	state.
Remarks CloseDevice	is	not	required	after	SignalAbort	is	used	to

force	abnormal	termination.	If	CloseDevice	is	invoked	after
SignalAbort	is	used,	no	action	is	taken.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::SignalAbort

Purpose This	function	signals	that	an	abnormal	termination	should
occur.

Syntax HRESULT
IServerVirtualDeviceSet2::SignalAbort	();

Parameters Argument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 NOERROR The	abort	message	was	successfully

posted.
Remarks At	any	time,	the	server	may	choose	to	abort	the	BACKUP	or

RESTORE	operation.
This	routine	signals	that	all	operations	should	cease.	The
overall	interface	enters	an	abort	state.	No	further	commands
are	accepted	on	any	devices.	The	completion	agent	returns
ERROR_OPERATION_ABORTED	for	each	outstanding
request	and	returns	to	its	caller.	Any	completions	recorded	at
the	client	are	ignored.
The	server	ensures	that	there	is	no	further	required	use	of	the
buffers	or	devices	returned	from	the	virtual	device	interface.
The	server	then	performs	abnormal	termination	cleanup,
which	should	include	calling	the
IServerVirtualDeviceSet2::Close	function.
For	more	information,	see	Abnormal	Termination.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

IServerVirtualDeviceSet2::Close

Purpose This	function	closes	a	virtual	device	set	opened	by
IServerVirtualDeviceSet2::Open.	It	results	in	releasing	all
resources	associated	with	the	virtual	device.	The
IServerVirtualDeviceSet2	handle	is	not	useful	after	this
function	returns	and	it	should	be	returned	to	COM.

Syntax HRESULT	IServerVirtualDeviceSet2::Close	();
Parameters Argument Explanation
	 None Not	applicable
Return
Values Argument Explanation
	 VD_E_PROTOCOL The	devices	were	still	open.
Remarks Closing	the	virtual	device	set	before	closing	the	devices

should	not	be	performed.	If	this	situation	occurs,
VD_E_PROTOCOL	is	returned.	This	action	results	in	Close
immediately	releasing	its	mapping	of	shared	memory.	The
server	is	subject	to	access	violations	if	it	continues	to	expect
ownership	of	resources	returned	from	the	virtual	device
interface.	The	interface	performs	SignalAbort	processing.

The	completion	agent,	if	running,	completes	any	outstanding
commands	before	returning	to	its	caller.	Any	outstanding
commands	are	completed	with
ERROR_OPERATION_ABORTED.	That	is,	the	callback
function	is	invoked	for	each	such	command.

In	all	cases	including	when	errors	are	returned,	Close
releases	all	resources	for	the	virtual	device	interface.	Any
buffers	and	other	interface	pointers	returned	from	the	VDI
become	invalid.

It	is	important	to	ensure	that	the	completion	agent	has	been
terminated	before	the	COM	library	is	unloaded.	If	the	library
is	unloaded	before	the	completion	agent	returns	to	its	caller,
then	the	process	could	cause	an	instruction	violation.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Configuration
The	following	topics	describe	the	virtual	device	configuration,	list	the	client
inputs	to	the	VDConfig	structure,	describe	the	feature	bit	positioning	methods,
and	describe	the	feature	bits.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Description
When	a	client	creates	the	virtual	device	set,	it	specifies	inputs	to	the
configuration	to	be	used	by	initializing	a	VDConfig	structure.	When	the	server
opens	the	virtual	device	set,	it	examines	these	inputs	and	the	BACKUP	or
RESTORE	command	inputs,	such	as	BLOCKSIZE,	MAXTRANSFERSIZE,	and
BUFFERCOUNT.	This	information	helps	determine	the	actual	configuration
used.

After	the	virtual	device	set	has	been	configured	by	the	server,	the	client	can
obtain	the	configuration	by	using	the	GetConfiguration	function.

If	either	the	server	or	the	client	is	unable	to	work	with	the	selected	configuration,
SignalAbort	can	be	used	to	terminate	the	connection.

The	VDI	supports	an	optional	buffer	prefix	zone	for	the	convenience	of	the
client.

Note			The	start	of	the	data	zone	is	used	for	alignment	purposes.	The	prefix
zone	is	placed	immediately	prior	to	the	start	of	the	data.

The	configuration	supports	a	serverTimeOut.	The	client	may	choose	a	time-out
interval	to	be	used	by	the	server.	If	the	server's	completion	agent	waits	longer
than	two	time-out	intervals	with	requests	pending	and	no	request	completing,	the
operation	is	aborted	automatically.

This	feature	is	intended	to	be	a	debugging	aid.	Applications	may	need	to
implement	their	own	time-out	logic	to	reliably	handle	issues	such	as	mount
requests	for	removable	media.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDConfig	Structure
This	table	lists	the	client	inputs	to	the	VDConfig	structure.

Field Type Value
deviceCount UINT32This	is	the	number	of	devices,	from	1	to

64,	to	be	used.
features UINT32This	is	a	bit	mask	of	features.	For	more

information,	see	Feature	Bits.
prefixZoneSize UINT32This	is	the	size,	in	bytes,	of	the	prefix

zone.	The	value	0	indicates	that	no	prefix
zone	will	be	used.	The	zone	appears	at	a
negative	offset	from	the	aligned	data
buffers.

alignment UINT32This	is	the	minimum	alignment	of	buffers
required	by	the	client.	For	example,	1024
indicates	that	any	buffer	must	have	the
data	zone	starting	at	a	1-KB	boundary.

softFileMarkBlockSize UINT32This	field	is	used	only	when
VDF_FileMarks	is	set.	If	the	field	is	set	to
zero,	then	the	Microsoft	Tape	Format
(MTF)	control	blocks	indicate	that
softFileMarks	are	not	used.	For	any	other
value,	this	field	provides	the	size,	in	bytes,
of	the	softFileMarks	implemented	by	the
client.	The	server	uses	this	value	to	format
the	MTF	control	blocks	properly.

SQL	Server	writes	this	value	into	the	MTF
control	block	fields	that	require	the
softFileMarkBlockSize.

EOMWarningSize UINT32This	is	the	size,	in	bytes,	of	the	end	of	the
media	warning	zone.	If	this	field	is	set	to
0,	SQL	Server	will	not	attempt	to	constrain
itself	for	this	factor.

For	more	information,	see	End	Of	Media
and	Unexpected	Filemarks.

serverTimeOut UINT32This	is	the	time-out,	in	milliseconds,	used
by	SQL	Server	to	limit	the	client	response
time.

The	value	0	causes	an	infinite	time-out.

This	table	lists	the	server	inputs	to	the	VDConfig	structure.

Field Type Value
blockSize UINT32This	is	the	size,	in	bytes,	that	is	used	as	the

device	BLOCKSIZE.
maxIODepth UINT32This	field	is	deprecated.	It	is	now	always

returned	as	4.	This	used	to	be	the	count	of	the
maximum	number	of	I/O	requests	outstanding
at	any	one	time.

maxTransferSize UINT32This	is	the	size,	in	bytes,	of	the	maximum	I/O
request	that	is	issued	by	SQL	Server	to	the
device.	This	is	the	size	of	the	data	portion	of	the
buffer.

bufferAreaSize UINT32This	field	is	deprecated.	It	is	now	always
returned	as	maxTransferSize	*	4	*
deviceCount.	This	used	to	be	the	byte	count	of
the	total	amount	of	space	being	used	for	buffer
memory.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Feature	Bits
The	selection	of	features	determines	which	commands	Microsoft®	SQL
Server™	sends	to	the	device.	For	more	information	about	commands,	see
Commands.	Only	certain	combinations	of	features	are	supported:	PIPE-like,
TAPE-like,	and	DISK-like.	The	following	describes	which	commands	are
required	for	each	of	the	supported	feature	bit	combinations.	When	selecting	the
feature	bits,	the	first	consideration	is	to	select	a	positioning	method:

PIPE-like.	In	this	mode,	the	client	acts	like	a	pipe.	This	is	a	pure
sequential	method.	It	requires	the	minimal	level	of	client	function.
Feature	bits:	VDF_LikePipe,	all	bits	are	zero	(0).
Optional	feature	bits:	VDF_Removable.

TAPE-like.	In	this	mode,	the	client	acts	like	a	tape	device.	The	virtual
tape	device	is	a	full-function	device,	capable	of	handling	filemarks,
removable	media,	reverse	positioning,	block	relative	positioning,	and
skipping	forward	over	blocks.
Feature	bits:	VDF_LikeTape.	This	is	equivalent	to:	VDF_FileMarks	|
VDF_Removable	|	VDF_ReversePosition	|	VDF_Rewind	|
VDF_Position	|	VDF_SkipBlocks.

DISK-like.	In	this	mode,	the	client	acts	like	a	disk	device.	All	data
transfer	Read	and	Write	commands	provide	the	position	field	in	the
command.	This	specifies	a	byte	address	relative	to	the	start	of	the	file.
The	client	must	ensure	that	data	is	read	or	written	to	the	location
specified	by	the	position.	Data	transfer	is	sequential,	with	the	following
exception:	During	the	validation	and	positioning	phase	of	media
handling,	a	header	is	read	at	position	0	and	soft	filemarks	are	scanned.
Feature	bits:	VDF_LikeDisk.	This	is	equivalent	to
VDF_RandomAccess.
Optional	feature	bits:	VDF_Removable.

This	option	can	be	included	with	any	of	the	combinations	described	previously:

VDF_Discard.	This	feature	bit	is	set	by	the	client	to	indicate	that	it

supports	the	Discard	command.

Only	combinations	of	feature	bits	described	earlier	are	supported.	Behavior
resulting	from	using	other	combinations	is	undefined.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_Removable	(0x001)
This	feature	bit	specifies	the	device	that	supports	the	VDC_Load	command.
Support	for	end	of	media	handling	must	be	in	the	client.	For	more	information,
see	End	of	Media	and	Unexpected	Filemarks.	The	client	must	support	the
VDC_Load	command.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_FileMarks	(0x100)
The	device	uses	filemarks.	In	this	case,	the	softFileMarkBlockSize	field	of	the
VDConfig	structure	must	specify	the	size	of	the	soft	filemark	block.	A	size	of	0
indicates	that	hard	filemarks	will	be	used.	Otherwise,	the	client	implements	soft
filemarks	and	Microsoft®	SQL	Server™	writes	this	size	into	control	fields
required	by	Microsoft	Tape	Format	(MTF).	The	client	must	respond	to
VDC_WriteMarks	and	VDC_SkipMarks	commands.	The	client	must	return
ERROR_FILEMARK_DETECTED	if	SQL	Server	attempts	to	read	through	a
filemark.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_RandomAccess	(x200)
When	this	bit	is	set,	the	client	supports	the	position	field	in	all	VDC_Read	or
VDC_Write	commands.	The	client	must	respond	to	the	VDC_SetPosition
command.	It	specifies	an	origin	(current,	beginning,	or	end),	but	must	return	a
position	relative	to	the	start	of	the	file.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_Rewind	(x002)
The	device	must	support	the	VDC_Rewind	command	to	position	at	the	start	of
the	data.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_Position	(x010)
The	device	must	support	the	VDC_GetPosition	and	VDC_SetPosition
commands.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_SkipBlocks	(x020)
The	device	must	support	the	VDC_SkipBlocks	command.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_ReversePosition	(x040)
Reverse	positioning	is	required	for	removable	devices	that	use	filemarks.	The
VDC_SkipMarks	command	may	specify	a	negative	direction	for	the	movement.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_Discard	(0x080)
The	device	must	support	the	VDC_Discard	command.	This	allows	the	client	to
gain	control	of	processing	when	the	backup	set	is	being	aborted	by	SQL	Server.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_SnapshotPrepare	(0x0400)
Used	with	BACKUP	WITH	SNAPSHOT	operations.	When	this	bit	is	set,	SQL
Server	will	send	a	VDC_PrepareToFreeze	command	prior	to	freezing	the
database	files.	This	allows	the	VDI	application	control	over	the	timing	of	the
freeze.	It	is	particularly	useful	when	coordinating	snapshots	of	multiple
databases.

This	feature	bit	is	only	defined	in	Microsoft®	SQL	Server™	2000	Service	Pack
2	and	later.	In	earlier	versions	of	SQL	Server,	the	bit	is	ignored	and	no
VDC_PrepareToFreeze	command	is	issued.	The	snapshot	proceeds	immediately
to	the	frozen	state	and	a	VDC_Snapshot	command	is	issued.

For	more	information,	see	SNAPSHOT	Support

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_WriteMedia	(0x10000)
This	bit	is	set	by	Microsoft®	SQL	Server™.	Only	this	and	the	VDF_ReadMedia
feature	bit	are	set	in	this	manner.	It	is	visible	after
IClientVirtualDeviceSet2::GetConfiguration	returns	the	final	configuration.	This
bit	is	for	the	convenience	of	the	client,	informing	it	that	a	BACKUP	is	being
performed	and	that	it	should	be	prepared	to	receive	VDC_Write	data	transfer
commands.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDF_ReadMedia	(0x20000)
For	the	convenience	of	the	client,	this	bit	is	set	by	Microsoft®	SQL™	Server.
The	client	should	be	prepared	to	receive	VDC_Read	data	transfer	commands.
This	bit	is	always	set	on	RESTORE	operations	and	can	be	set	on	BACKUP
operations	when	the	client	supports	positioning,	enabling	disk-like	or	tape-like
behavior.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Commands
This	section	provides	a	description	of	each	command	and	lists	the	client
command	inputs,	server	command	inputs	and	outputs,	the	commands	that	must
be	supported	by	the	client	based	on	selected	features,	and	the	command
completion	codes.	This	section	also	describes	command	error	handling,	as	well
as	end-of-media	and	unexpected	filemark	handling.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Command	General	Rules
All	commands	must	return	a	completion	code:

ERROR_OPERATION_ABORTED	is	returned	as	the	completion	code
when	the	server	or	client	uses	its	SignalAbort	interface.

ERROR_SUCCESS	is	returned	whenever	a	command	successfully
completes.

ERROR_NOT_SUPPORTED	is	returned	if	the	client	is	asked	to
perform	any	command	for	which	no	support	exists.	This	could	happen	if
the	client	specifies	incorrect	feature	support	bits	during
IClientVirtualDeviceSet2::Create.

In	other	cases,	a	code	appropriate	to	the	operation	must	be	returned.	For
WIN32-defined	codes,	see	the	file	Winerror.h.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Command	Error	Handling
When	an	error	is	returned	for	a	command	the	device	enters	an	IO-ERROR	state.
To	clear	this	state	the	server	must	issue	a	ClearError	command.	The	client	must
complete	outstanding	commands	using	the	CompleteCommand	function	and
then	acknowledge	the	ClearError	command.

At	the	server	interface,	when	a	virtual	device	is	in	the	IO-ERROR	state,	further
commands	are	immediately	rejected	with	a	code	of	ERROR_IO_DEVICE.	This
is	done	by	calling	the	callback	function	immediately	from	the	thread	issuing	the
SendCommand.	The	server	is	not	able	to	send	any	command	other	than	a
ClearError	command.	This	command	is	not	delivered	from	the	GetCommand
interface	until	the	client	has	delivered	command	completions	for	commands	that
were	outstanding	at	the	time	the	device	entered	the	IO-ERROR	state.	When	the
client	receives	the	ClearError	command,	it	can	take	any	necessary	actions,	and
then	can	respond	with	a	successful	completion	code.	Commands	queued	but	not
yet	delivered	to	the	client	are	automatically	completed	with
ERROR_IO_DEVICE.	The	client	never	sees	these	commands.

After	the	server	receives	the	completion	on	the	ClearError	command,	the	state
of	the	device	becomes	Active	again	and	any	command	can	be	issued.

This	diagram	describes	the	device	states.

The	reason	for	this	error	handling	protocol	is	to	ensure	that	the	server	is	able	to
reliably	recover	from	errors	while	asynchronous	I/O	is	pending.

Instead	of	issuing	a	ClearError	command,	the	server	is	free	to	CloseDevice	or
SignalAbort.	In	either	case,	the	client	sees	an	appropriate	response	from	a

subsequent	GetCommand	call.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Command	Descriptions
This	is	a	list	of	the	VDI	commands	and	a	description	of	each.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Read
This	command	must	always	be	supported.	It	transfers	the	size	bytes	from	the
device	into	the	buffer.	The	number	of	bytes	successfully	transferred	must	be
returned.	Position	is	defined	only	if	VDF_RandomAccess	is	set.

This	is	a	list	of	error	codes	and	their	descriptions:

ERROR_HANDLE_EOF.	No	more	data	is	available.

ERROR_NO_DATA_DETECTED.	No	more	data	is	available.
Microsoft®	SQL	Server™	handles	this	error	and
ERROR_HANDLE_EOF	in	a	similar	fashion.

ERROR_FILEMARK_DETECTED.	This	error	occurs	when	attempting
to	read	past	a	filemark.	For	more	information,	see	End	of	Media	and
Unexpected	Filemarks.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Write
This	command	must	always	be	supported.	It	transfers	size	bytes	from	the	buffer
to	the	device.	The	number	of	bytes	successfully	transferred	must	be	returned.
Position	is	defined	only	if	VDF_RandomAccess	is	set.

During	BACKUP	operations,	the	client	may	cache	the	output	data	stream.
Microsoft®	SQL	Server™	issues	the	Flush	command	when	it	needs	to	be	sure
that	data	is	actually	stored	in	a	durable	fashion.

The	following	is	a	list	of	error	codes	and	their	descriptions:

ERROR_DISK_FULL.	This	indicates	that	the	device	is	not	capable	of
storing	more	information.	SQL	Server	responds	to	this	code	by	aborting
the	BACKUP	operation.

ERROR_EOM_OVERFLOW.	This	indicates	that	the	device	is	not
capable	of	storing	more	information.	SQL	Server	responds	to	this	code
by	aborting	the	BACKUP	operation.

ERROR_END_OF_MEDIA.	This	indicates	that	the	device	has	reached
the	end	of	media	warning.	For	more	information,	see	End	of	Media	and
Unexpected	Filemarks.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_ClearError
This	command	must	always	be	supported.	It	is	used	to	clear	the	device	out	of	the
I/O-error	state	after	an	error	has	been	returned	for	a	previous	command.	Only	a
successful	completion	code	should	be	used.	If	the	device	cannot	recover	from	a
previously	returned	error	code,	then	Microsoft®	SQL	Server™	aborts	the
operation.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Rewind
This	command	is	supported	when	VDF_Rewind	is	set	in	the	configuration.	It
rewinds	the	medium	to	the	beginning	of	the	data.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_WriteMark
This	command	is	supported	if	VDF_FileMarks	is	set.	It	puts	a	filemark	on	the
medium.	At	a	later	time	when	reading	the	medium,	an	attempt	to	read	the
filemark	should	return	ERROR_FILEMARK_DETECTED.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_SkipMarks
This	command	is	supported	if	VDF_FileMarks	is	set.	It	skips	forward	and
backward	size	filemarks.	The	size	is	interpreted	as	a	signed	integer	for	this
command.	A	negative	size	will	be	requested	only	if	the	VDF_ReversePosition
bit	is	set.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_SkipBlocks
This	command	is	supported	only	if	the	VDF_SkipBlocks	bit	is	set	in	the
configuration.	It	skips	forward	and	backward	size	physical	blocks.	The	size	is
interpreted	as	a	signed	integer.	A	negative	size	will	be	requested	only	if	the
VDF_ReversePosition	bit	is	set.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Load
This	command	is	supported	if	VDF_Removable	is	set	in	the	configuration.	This
loads	media	onto	the	device.	On	completion,	the	medium	should	be	positioned	at
the	start	of	data.	Size	is	interpreted	as	an	unload-first	flag.	If	size	is	set	to	one,
the	existing	medium	should	be	ejected	before	requesting	another.

Note			If	serverTimeOut	is	set	to	a	value	other	than	0,	the	load	command	can
time	out	while	waiting	for	the	user	to	mount	a	tape.	This	causes	Microsoft®
SQL	Server™	to	abnormally	terminate	the	BACKUP	or	RESTORE
operation.	Consider	setting	the	serverTimeOut	to	the	0	(infinite)	value	if
VDF_Removable	is	set	in	the	configuration.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_GetPosition
This	command	is	supported	if	VDF_Position	or	VDF_RandomAccess	is	set	in
the	configuration.	The	position	field	must	be	provided	on	command	completion.

If	VDF_RandomAccess	is	specified,	the	position	returned	to	Microsoft®	SQL
Server™	must	always	be	a	zero-origin	byte	offset	from	the	beginning	of	data.	If
VDF_RandomAccess	is	not	specified,	the	position	is	treated	as	a	block	address.

Microsoft	Tape	Format	(MTF)	requires	a	Physical	Block	Address	(PBA)	in
several	of	its	fields.	SQL	Server	does	not	support	tapes	that	do	not	return	block
addresses.	SQL	Server	chooses	logical	block	addressing	before	physical	block
addressing	when	both	are	available.	Because	pipes	do	not	provide	PBA,	the
virtual	device	interface	permits	client	configurations	without	positioning
support.	In	this	case,	SQL	Server	creates	a	PBA	based	on	the	media's	apparent
position.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_SetPosition
This	command	is	required	if	VDF_Position	or	VDF_RandomAccess	is	set	in	the
configuration.	The	position	field	must	be	provided	as	input	to	this	command.
The	resulting	position	must	be	returned	on	command	completion	similar	to	when
a	GetPosition	command	is	executed	immediately	after	the	SetPosition.

If	VDF_RandomAccess	is	specified,	the	input	position	is	interpreted	as	a	byte
offset	relative	to	the	beginning	of	data,	current	position,	or	end	of	data.	The
beginning	of	data,	VDC_Beginning	(0),	current	position,	VDC_Current	(1),	or
end	of	data,	VDC_End	(2),	information	is	obtained	from	the	size	field	of	the
command.

If	SetPosition	is	used	without	VDF_RandomAccess,	then	the	position	is	device
defined.	Only	positions	previously	returned	by	a	GetPosition	command	are
specified	by	a	SetPosition	command.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Discard
This	command	is	supported	if	VDF_Discard	is	set	in	the	configuration.	If	the
device	supports	the	Discard	command,	Microsoft®	SQL	Server™	issues	a
Discard	command	before	closing	the	device.	This	allows	the	client	to	gain
control	over	the	discard	processing	for	aborted	BACKUP	sets.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Flush
This	command	is	required.	It	is	used	by	Microsoft®	SQL	Server™	to	request
that	all	previously	received	write	operations	are	durably	stored.	During
BACKUP	operations,	the	client	may	cache	the	output	data	stream.	SQL	Server
issues	the	Flush	command	when	it	must	ensure	that	data	is	stored	in	a	durable
fashion.

If	VDF_LikeDisk	is	being	used,	the	end-of-file	marker	is	implicitly	set	when	the
Flush	command	is	received.	Clients	implementing	a	disk-like	device	must
ensure	that	the	file	ends	at	the	last	position	previously	written.	The
SetEndOfFile()	Windows	function	can	be	used	to	accomplish	this.	This	is
important	for	cases	where	a	pre-existing	disk	file	is	being	overwritten.	For
example,	when	the	WITH	INIT	statement	is	used	to	overwrite	an	existing
backup	file	and	the	new	backup	file	is	shorter	than	the	original,	then	the	Flush
command	should	be	used	to	set	the	end-of-file	marker.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Snapshot
When	BACKUP	WITH	SNAPSHOT	is	used,	this	command	indicates	that
Microsoft®	SQL	Server™	has	suspended	writes	to	its	database	files.	The
application	must	copy	the	files	as	quickly	as	possible	and	then	complete	the
command.	To	abort	the	command,	the	application	should	return	the
'ERROR_OPERATION_ABORTED'	error	code.	For	more	information,	see
SNAPSHOT	Support.

At	the	time	this	command	is	received,	the	meta	data	that	is	being	written	over	the
VDI	channel	is	complete.	The	application	may	close	its	output	stream	and	is	free
to	include	the	meta	data	with	the	actual	data	portion	of	the	snapshot.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_PrepareToFreeze
When	BACKUP	WITH	SNAPSHOT	is	used,	and	the	VDF_SnapshotPrepare
configuration	bit	is	set,	the	VDC_PrepareToFreeze	command	is	sent	prior	to	the
freeze	of	the	database	files.	Refer	to	SNAPSHOT	Support	for	more	information
on	the	use	of	this	command.

This	command	was	added	in	Service	Pack	2	for	Microsoft®	SQL	Server™	2000.
In	earlier	versions	the	VDF_SnapshotPrepare	configuration	bit	is	ignored	and	the
VDC_PrepareToFreeze	command	is	never	issued.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_MountSnapshot
When	RESTORE	WITH	SNAPSHOT	is	used,	this	command	indicates	that	the
application	should	make	the	data	files	available	to	Microsoft®	SQL	Server™.	To
abort	the	command,	the	application	should	return	the
'ERROR_OPERATION_ABORTED'	error	code.	For	more	information,	see
SNAPSHOT	Support.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDC_Command	Client	Command	Inputs
This	table	provides	the	client	command	inputs	for	VDC_Command.

Field Type Value
Command	Code UINT32This	is	an	operation	code.
Buffer PTR This	is	the	address	of	the	data	transfer	area.
Size UINT32This	is	the	number	of	bytes	to	transfer.	This	field

is	overloaded	for	some	commands.
Position UINT64This	is	the	device	position	to	locate.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDS_Command	Server	Command	Inputs
This	table	provides	the	server	command	inputs	for	VDS_Command.

Field Type Value
Command	Code UINT32This	is	an	operation	code.
Buffer PTR This	is	a	data	transfer	area.
Size UINT32This	is	the	number	of	bytes	to	transfer.	This	field

is	overloaded	for	some	commands.
Position UINT64This	is	the	device	position	to	locate.
Completion
Routine

PTR This	is	a	callback	function	invoked	by	the
completion	agent.

Completion
Context

PTR This	is	the	context	for	the	completion	routine.	Its
use	is	decided	by	Microsoft®	SQL	Server™.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VDS_Command	Server	Command	Outputs
This	table	provides	the	server	command	outputs	for	VDS_Command.

Field Type Value
Completion
Code

UINT32This	is	an	appropriate	Windows	completion
code.	An	example	is	ERROR_SUCCESS.

Bytes
transferred

UINT32This	is	the	number	of	bytes	successfully
transferred.

Position UINT64This	is	the	result	of	the	GetPosition	command.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Command	Inputs
This	table	shows	the	command	inputs	that	are	required.

Command
(VDC_x) Buffer Size Position

Completion
Routine

VDC_Read X X 	 X
VDC_Write X X 	 X
VDC_ClearError 	 	 	 X
VDC_WriteMark 	 	 	 X
VDC_SkipMarks 	 X 	 X
VDC_SkipBlocks 	 X 	 X
VDC_Load 	 X 	 X
VDC_Rewind 	 	 	 X
VDC_GetPosition 	 	 	 X
VDC_SetPosition 	 	 X X
VDC_Discard 	 	 	 X
VDC_Flush 	 	 	 X
VDC_Snapshot 	 	 	 X
VDC_MountSnapshot 	 	 	 X

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Command	Outputs
This	table	shows	the	command	outputs	that	are	returned	for	each	command.

Command
(VDC_x)

Completion
Code

Bytes
Transferred Position

VDC_Read X X 	
VDC_Write X X 	
VDC_ClearError X 	 	
VDC_WriteMark X 	 	
VDC_SkipMarks X 	 	
VDC_SkipBlocks X 	 	
VDC_Load X 	 	
VDC_Rewind X 	 	
VDC_GetPosition X 	 X
VDC_SetPosition X 	 X
VDC_Discard X 	 	
VDC_Flush X 	 	
VDC_Snapshot X 	 	
VDC_MountSnapshot X 	 	

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Client	Supported	Commands
This	is	a	list	of	commands	that	are	supported	by	the	client,	depending	on	features
selected	in	the	configuration.	An	X	indicates	that	the	command	must	be
supported	by	the	client.	An	O	indicates	that	the	command	is	optional.
VDC_Discard	is	optional	in	all	configurations.

Command
(VDC_x) Pipe-like Tape-like Disk-like

Disk-like
(removable)

VDC_Read X X X X
VDC_Write X X X X
VDC_ClearError X X X X
VDC_WriteMark 	 X 	 	
VDC_SkipMarks 	 X 	 	
VDC_SkipBlocks 	 X 	 	
VDC_Load O X 	 X
VDC_Rewind 	 X 	 	
VDC_GetPosition 	 X 	 	
VDC_SetPosition 	 X X X
VDC_Discard O O O O
VDC_Flush X X X X
VDC_Snapshot O O O O
VDC_MountSnapshotO O O O

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

End	Of	Media	and	Unexpected	Filemarks
For	nonremovable	devices,	there	is	no	available	response	to	an	end-of-file	or
disk-full	condition.	Microsoft®	SQL	Server™	aborts	the	operation	in	this
situation.

Proper	handling	of	end	of	media,	especially	with	overlapped,	asynchronous	I/O,
for	removable	devices	can	be	challenging.

In	the	case	of	RESTORE	operations,	SQL	Server	has	one	or	more	read
operations	issued	to	a	device	when	one	of	the	following	errors	is	returned:

ERROR_NO_DATA_DETECTED

ERROR_HANDLE_EOF

ERROR_FILEMARK_DETECTED

SQL	Server	waits	for	any	other	outstanding	I/O	to	complete.	After	determining
that	the	backup	set	was	properly	terminated,	SQL	Server	issues	a	VDC_Load
command	to	begin	processing	the	next	media.

During	RESTORE	operations,	SQL	Server	either	terminates	or	continues
depending	on	the	operation	being	performed	and	the	state	of	the	medium.	For
example,	RESTORE	can	be	used	to	restore	data	to	the	database,	to	scan	tapes,	to
verify	media,	and	so	on.

During	BACKUP	operations,	removable	devices	respond	with
ERROR_END_OF_MEDIA	when	an	end-of-medium	warning	zone	is	reached.
SQL	Server	currently	requires	that	all	I/O	pending	at	the	time	this	warning
occurs	must	be	stored.	If	the	bytesWritten	does	not	equal	the	requested	number
of	bytes,	SQL	Server	reissues	the	write	requests.	If	the	device	cannot	store	the
queued	data,	SQL	Server	aborts	the	BACKUP.	SQL	Server	attempts	to	avoid
overrunning	this	warning	zone	by	responding	to	the	size	of	the	zone	reported	in
the	device	configuration.

Clients	supporting	removable	media	may	hide	the	end-of-media	conditions	from
SQL	Server.	When	end-of-media	conditions	are	hidden,	the	native	SQL	Server

support	of	the	backup	set	is	prevented.	SQL	Server	is	not	able	to	read	the	backup
set	directly	from	the	media	without	the	assistance	of	the	client	application.	In
such	cases,	the	client	should	indicate,	by	configuration,	that	the	media	is	not	a
removable	device.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

SNAPSHOT	Support
We	recommend	the	use	of	the	VSS	framework	for	managing	snapshot	backup
and	restore.	The	following	information	describes	how	snapshot	backup	and
restore	is	implemented	using	VDI.	Some	of	the	information	is	also	relevant	to
snapshot	backup	and	restore	implemented	using	the	VSS	sqlwriter	component.
The	sqlwriter	supports	database	differential	snapshot	backup.	No	such	support	is
planned	for	the	VDI/snapshot	interface.	However,	the	sqlwriter	does	not	yet
support	file	and	filegroup	granularity	restore.	Refer	to	the	article	"SQL	Writer	in
SQL	Server	2005:	A	Guide	for	SQL	Server	Backup	Application	Vendors"	for
more	information.

A	snapshot	of	a	Microsoft®	SQL	Server™	database	is	a	copy	of	data	and	log
files	at	a	single	point	in	time.	The	data	is	not	transactionally	consistent,	but	can
be	made	so	by	applying	the	log	as	is	done	by	regular	RESTORE	operations.	A
full	backup	will	make	a	copy	of	all	data	and	log	files.	'File'	backups	are	also
supported,	in	which	case	only	a	subset	of	the	data	files	are	copied.

Snapshots	may	be	hardware-assisted	or	done	by	software.

Motivations	for	snapshots,	particularly	hardware	assisted	ones,	include:

Extremely	fast	restores	from	disk	backups.

Fast	creation	of	database	copies	for	reporting,	DBCC,	or	testing.

Extremely	fast	backup	of	highly	available	VLDB	systems	with	"no
impact".

Fast	initialization	of	warm	standby	servers	prior	to	log	shipping.

Both	full	database	and	file	snapshots	are	supported.	Differential	snapshots	are
not	supported.

A	full	database	snapshot	captures	all	data	and	log	files,	and	is	equivalent	to	a	full
database	backup.	In	particular,	one	can	perform	a	file,	file	group,	or	partial
database	restore	from	a	full	database	snapshot.

A	file	snapshot	captures	a	subset	of	the	data	files,	but	does	not	capture	the	log
files.	The	list	of	files	captured	must	match	the	list	of	files	and	filegroups
provided	to	the	BACKUP	DATABASE	command.	File	snapshots	are	subject	to
the	same	operational	model	as	conventional	file	backups;	a	complete	set	of	file
backups	and	a	full	set	of	conventional	log	backups	are	required	for	recovery.

Conventional	differential	database	backups	will	be	based	on	the	most	recent	full
database	snapshot	or	full	database	backup.	That	is,	only	those	extents	modified
since	the	most	recent	full	database	snapshot	or	conventional	backup	will	be
backed	up.

Developers	of	backup	applications	will	write	a	snapshot	provider	application	to
issue	the	backup	and	restore	commands	and	interact	with	the	server	through
VDI.	This	is	similar	to,	yet	simpler	than,	the	agents	developed	by	backup
application	vendors	that	support	VDI.	With	snapshots,	only	a	single	"device"	is
allowed	and	vendors	are	only	required	to	save	the	backup	set	meta	data.

A	volume	is	the	minimum	unit	of	which	a	snapshot	can	be	taken.	The	snapshot
may	be	created	by	any	technique	that	makes	a	"near-instant"	copy	of	the	files
being	captured.	Typically,	this	will	involve	split-mirror	or	copy-on-write
technology.

The	duration	of	the	snapshot	is	the	length	of	time	between	SQL	Server's
issuance	of	the	snapshot	command	to	the	snapshot	provider,	and	the	return	of	a
successful	completion	indication.	Writes	to	the	database	files	being	captured	are
suspended	for	the	duration	of	the	snapshot	operation.	Hence,	the	snapshot	must
be	completed	as	quickly	as	possible	in	order	to	avoid	impact	on	SQL	Server
users.

Note			Microsoft	recommends	that	the	duration	of	the	snapshot	be	limited	to
10	seconds	or	less.

Holding	a	database	frozen	for	long	periods	of	time	may	result	in	server-wide
effects.	This	is	particularly	true	for	SQL	Server	2000.	In	SQL	Server	2005,
background	operations	such	as	the	lazy	writer	and	checkpoint	processes	have
been	improved	to	avoid	some	of	this	"freeze	spillover"	effect.

The	snapshot	provider	should	return	indication	of	completion	as	soon	as	it	can
allow	writes	to	the	database	while	protecting	the	snapshot	from	modification.
The	snapshot	operation	must	appear	to	SQL	Server	as	if	it	completed	before	the
provider	returned	success.	For	split-mirror	snapshots,	it	may	be	that	the	cache

can	be	marked	appropriately	without	waiting	for	the	flush	of	the	cache	to	disk	or
the	actual	split.	For	copy-on-write	technology,	it	is	normally	necessary	only	to
set	up	the	copy,	and	then	materialize	the	snapshot	on	separate	media	later.

We	use	the	term	mount	to	refer	to	the	restoration	of	snapshot	volume(s)	to	the
operating	system.	In	the	case	of	a	copy-on-write	snapshot,	this	may	involve
copying	the	volume	content	into	place	from	other	media.	For	split-mirror
snapshots,	this	involves	a	reconciliation	of	the	two	mirrors,	where	the	snapshot	is
the	correct	copy.	This	reconciliation	is	typically	done	in	the	background,
resulting	in	an	apparent	"near-instant"	restore.

A	volume	is	the	smallest	unit	that	can	be	captured	with	a	snapshot.	Typically,	a
volume	contains	files	from	only	one	database	because	in	SQL	Server	2000
Service	Pack	1	(SP1)	and	earlier,	there	is	no	way	to	freeze	and	back	up	more
than	a	single	database	at	one	time.	The	freeze	is	done	in	the	context	of	a	backup
command,	which	backs	up	a	single	database	at	a	time.	There	is	no	way	to	specify
that	more	than	one	database	is	being	backed	up.

However,	SQL	Server	2000	Service	Pack	2	(SP2)	includes	a	PrepareToFreeze
capability	that	allows	multiple	databases	to	be	frozen	and	captured	in	a	single
snapshot.

For	more	information,	see	Creation	of	a	Snapshot.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Creation	of	a	Snapshot
The	BACKUP	command	supports	the	'WITH	SNAPSHOT'	option	to	be	used
with	virtual	devices.	An	application	issues	the	BACKUP	DATABASE
command,	and	then	interacts	with	the	server	through	the	Virtual	Device	Interface
(VDI)	to	capture	the	backup	set	meta	data	and	perform	the	snapshot.	Only	meta
data	is	transferred	to	the	application.	Instead	of	receiving	the	data	and	log
portions	of	the	backup	set,	the	application	receives	a	command	to	perform	the
snapshot.	To	prevent	torn	pages,	writes	to	the	database	files	are	suspended	within
Microsoft®	SQL	Server™	until	this	command	completes	or	aborts.	Upon
successful	completion	of	the	snapshot,	SQL	Server	will	resume	writing	to	the
files.	The	meta	data	must	be	saved	by	the	application,	as	it	is	required	to	restore
the	snapshot.

Note			When	full	database	snapshot	backups	are	being	performed,	all
database	and	log	files	must	reside	on	the	volumes	being	captured.

The	development	kit	contains	a	sample	application	(snapshot.cpp)	that
demonstrates	how	a	snapshot	is	created.

Here	are	the	basic	steps	for	creating	a	snapshot:

1.	 Create	the	VirtualDeviceSet.

Setting	the	VDF_SnapshotPrepare	configuration	bit	is	optional.	If
omitted,	SQL	Server	will	not	issue	the	VDC_PrepareToFreeze
command	during	the	process.

2.	 Issue	the	BACKUP	DATABASE	command,	including	the	WITH
SNAPSHOT	clause.	

3.	 Open	the	VirtualDevice.

There	may	be	only	one	VirtualDevice	for	each	SNAPSHOT	BACKUP
command.

4.	 Consume	the	MTF	header	data	(a	sequence	of	VDC_Write
commands).

5.	 If	the	VDF_SnapshotPrepare	bit	has	been	set	(optional	in	SQL	Server
2000	SP2),	the	VDC_PrepareToFreeze	command	is	issued.	The	VDI
application	can	coordinate	actions	prior	to	the	database	freeze	at	this
point.	For	example,	if	multiple	databases	are	hosted	on	a	single
volume,	multiple	BACKUP	WITH	SNAPSHOT	commands	can	be
issued,	and	the	application	can	wait	for	the	VDC_PrepareToFreeze
from	each	of	the	active	backup	statements.

6.	 When	VDC_PrepareToFreeze	is	completed,	the	database	files	are
frozen.	Meta	data	describing	the	frozen	state	is	collected	and	sent	as	a
sequence	of	VDC_Write	commands.

7.	 The	VDC_Snapshot	command	is	issued.

The	snapshot	is	made	stable	(mirror	split,	etc.).

8.	 When	the	VDC_Snapshot	command	is	completed,	the	database	files
are	unfrozen.	The	VirtualDeviceSet	is	closed	and	the	BACKUP
command	returns	a	successful	status	code.

9.	 When	freezing	the	master	database	along	with	multiple	other
databases,	always	freeze	the	master	database	last.	When	finished	with
the	snapshot,	there	is	no	need	to	serialize	the	completions	of	the
VDC_Snapshot	commands.	All	the	databases	should	be	unfrozen	as
quickly	as	possible	by	calling	CompleteCommand	for	the
VDC_Snapshot	commands.

10.	 When	freezing	multiple	databases,	there	is	a	BACKUP	statement
active	against	each	database.	This	consumes	resources	inside	SQL
Server.	Thus	there	are	limits	to	how	many	databases	can	be	frozen	at	a
time.	We	recommend	that	no	more	than	a	few	databases	be	included	in
a	joint	snapshot.

See	also

BACKUP	statement

VDC_Snapshot

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Media	Recovery	Using	the	Snapshot
The	RESTORE	command	supports	use	of	the	'WITH	SNAPSHOT'	option	with
virtual	devices.	An	application	issues	the	RESTORE	DATABASE	command,
then	interacts	with	the	server	through	the	VDI	interface	to	provide	the	backup	set
meta	data.	After	inspecting	the	meta	data,	the	application	receives	a	command	to
mount	the	snapshot.	It	makes	the	original	content	of	the	data	files	available	on
the	system	and	responds	when	this	is	complete.	The	data	files	mounted	must	be
byte-for-byte	exactly	the	same	as	when	the	snapshot	was	taken	with	the
BACKUP	command.

Ideally,	the	file	content	is	provided	to	the	operating	system	(mounted)	in
response	to	the	mount	command.	This	provides	the	most	functionality,	highest
availability,	and	easiest	administration.	However,	some	technologies	or	scenarios
may	not	allow	this,	instead	requiring	a	reboot	of	the	operating	system.

If	the	files	cannot	be	mounted	during	the	RESTORE	command,	the	database
should	be	detached	or	dropped	from	a	running	SQL	Server	prior	to	execution	of
the	RESTORE	command.	This	approach	precludes	restoration	of	individual	files.
Snapshot	restore	of	individual	files	is	only	supported	if	the	database	exists.

See	also

RESTORE	statement

VDC_MountSnapshot

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Scenarios
The	following	topics	address	common	recovery	scenarios	with	snapshot
backups.	The	scenarios	involving	restore	assume	that	the	volumes	are	mounted
in	response	to	the	VDC_MountSnapshot	command	issued	by	Microsoft®	SQL
Server™	during	execution	of	the	RESTORE.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Restore	Database
The	database	must	be	restored,	but	the	server	is	functional	and	other	databases
remain	available.	The	restore	requires	application	of	a	full	database	backup
followed	by	application	of	one	or	more	transaction	log	backups.	The	full
database	backup	is	a	hardware-assisted	snapshot.

Steps

Restore	the	snapshot	with	norecovery.	

Apply	log	backups	and	recover.

Data	and	log	files	can	be	relocated	by	using	the	MOVE	option.	The	snapshot
files	are	placed	in	their	new	locations	by	the	snapshot	provider;	MOVE	specifies
the	new	pathname.

A	very	similar	scenario	can	be	described	in	which	only	the	damaged	files	are
restored.	The	only	difference	is	in	the	restore	command	issued	and	the	snapshot
files	restored	by	the	provider.	Point-in-time	recovery	is	not	an	option,	since	all
the	restored	files	will	need	to	be	restored	to	the	end	of	log,	consistent	with	the
files	that	were	not	restored.

Snapshot	restore	of	the	master	database	is	not	supported.	If	a	snapshot	backup	of
the	master	database	was	taken,	it	can	be	restored	by	stopping	the	SQL	Server
service,	copying	the	master	files,	and	then	restarting	the	service.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Disaster	Recovery,	Master	Backup	Available
The	entire	server	is	being	recovered	after	a	catastrophic	failure.	Current
conventional	backups	of	master,	MSDB	and	model	are	available.	Full	database
snapshots	and	conventional	log	backups	are	available	for	some	user	databases.
The	snapshot	backups	are	mounted	after	recovery	of	master.

Steps

Restore	Microsoft®	SQL	Server™	service.	(This	may	require	restore
from	a	file	system	backup	or	a	reinstall.)

Start	SQL	Server	in	single	user	mode	(-m).

Restore	master	database.

Restart	server	normally.

For	each	selected	database	{

Restore	database	with	norecovery.

Apply	log	backups	and	recover.

}

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Disaster	Recovery,	Master	Backup	Not	Available
The	entire	server	is	being	recovered	after	a	catastrophic	failure.	A	current
conventional	backup	of	master	is	not	available.	Full	database	snapshots	and
conventional	log	backups	are	available	for	some	user	databases.

Steps

Restore	Microsoft®	SQL	Server™	service.	(This	may	require	restore
from	a	file	system	backup	or	a	reinstall.)

Restart	server	normally.

Recreate	objects	in	master,	but	do	not	create	user	databases	for	which
there	are	backups	(snapshot	or	conventional).

Fix	or	restore	MSDB	and	model	as	required.

For	each	database	to	be	restored	{

Restore	database	with	norecovery.

Apply	log	backups	and	recover.

}

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Initialize	Warm	Standby
The	snapshot	is	used	to	initialize	the	secondary	database	on	the	standby	server.
Once	initialized,	the	standby	database	will	be	maintained	in	the	usual	manner	via
log	shipping.

Steps

Restore	the	database	with	norecovery	or	standby.

Maintain	database	via	log	shipping.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Restore	and	Recover	Database,	Relocating	Files
The	database	must	be	restored,	but	the	server	is	functional	and	other	databases
remain	available.	The	restore	requires	a	snapshot	restore	followed	by	application
of	one	or	more	transaction	log	backups.	One	or	more	files	must	be	relocated	due
to	a	different	media	reconfiguration.

Steps

Restore	the	database	with	norecovery	and	appropriate	move	options.

Apply	log	backups	and	recover.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Restore	Damaged	Files	from	File	Backups
A	few	database	volumes	are	damaged	and	must	be	restored,	but	the	server	is
functional	and	other	databases	remain	available.	Available	backups	consist	of	a
full	set	of	file/filegroup	snapshot	backups	and	a	set	of	conventional	transaction
log	backups.	Database	recovery	requires	restore	of	the	snapshots	of	the	damaged
volumes	followed	by	application	of	the	transaction	log	backups.

Note			This	scenario	is	not	possible	if	the	snapshot	technology	does	not	allow
mounting	of	the	volumes	during	the	execution	of	the	RESTORE	statement.

Steps

For	each	damaged	volume	{

Restore	file/filegroup	snapshot	with	NORECOVERY.

}

Apply	conventional	log	backups	and	recover.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Disaster	Recovery,	Backup	of	"System	Volumes"
Available
The	entire	server	is	being	recovered	after	a	catastrophic	failure.	An	image
snapshot	of	the	system	volumes	(those	volumes	containing	Windows	and	SQL
Server	installations)	is	available.	The	system	volume	snapshot	includes	current
contents	of	master,	model,	and	MSDB.	Conventional	log	or	differential	backups
are	available	for	some	user	databases.

This	scenario	assumes	that	the	snapshot	backups	are	mounted	(or	copied	into
place)	at	the	beginning	of	the	sequence	as	part	of	the	system	volume(s).	It	is	also
possible	to	mount	or	copy	the	files	into	place	during	the	execution	of	the
individual	restore	commands.

Recovery	of	user	databases	needing	roll-forward	is	prevented	by	bringing	up	the
server	in	minimal	mode	(-f)	to	prevent	recovery	of	the	databases,	then	taking
these	databases	offline.	The	server	must	not	be	allowed	to	come	up	without	this
flag,	or	the	capability	to	roll-forward	will	be	lost.	It	is	usually	desirable	for	SQL
Server	to	start	automatically	without	the	–f	option,	so	the	snapshot	image	will
not	have	this	option	set.	Therefore,	Microsoft	recommends	starting	Windows	in
safe	mode	and	adding	the	–f	option	to	the	startup	parameters	of	the	SQL	Server
service.	If	this	is	not	possible,	recovery	of	a	database	may	also	be	prevented	by
temporarily	renaming	one	of	the	database	files.

If	the	model,	msdb	and	tempdb	databases	are	being	relocated,	use	of	the	–T3608
flag	prevents	startup	of	these	databases.	Then	sp_detach_db	and	sp_attach_db
can	be	used	to	point	at	the	new	locations.	In	SQL	Server	2005,	a	better	method	is
available:	use	ALTER	DATABASE	MODIFY	FILE	to	tell	SQL	Server	when	the
files	will	be	located	on	the	next	restart.

Steps

Mount	all	volumes	containing	the	system	image	snapshot	

Start	SQL	Server	in	minimal	configuration	(-f	startup	parameter)

Detach	databases	for	which	log	or	differential	backups	are	available

using	sp_detach_db.

Start	SQL	Server	normally	(without	–f)

For	each	user	database	detached	{

Restore	database	snapshot	with	NORECOVERY,	REPLACE.

Apply	conventional	log	and/or	differential	backups	and	recover.

}

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Details

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

BACKUP	Statement
Syntax

BACKUP	DATABASE	{database_name	|	@database_name_var}
TO	<backup_device>	[,...n]
[WITH	
[BLOCKSIZE	=	{blocksize	|	@blocksize_variable}]
[[,]	DESCRIPTION	=	{text	|	@text_variable}]
[[,]	DIFFERENTIAL]
[[,]	EXPIREDATE	=	{date	|	@date_var}	
|	RETAINDAYS	=	{days	|	@days_var}]
[[,]	FORMAT	|	NOFORMAT]
[[,]	{INIT	|	NOINIT}]
[[,]	MEDIADESCRIPTION	=	{text	|	@text_variable}]
[[,]	MEDIANAME	=	{media_name	|	@media_name_variable}]
[[,]	[NAME	=	{backup_set_name	|	@backup_set_name_var}]
[[,]	{NOSKIP	|	SKIP}]
[[,]	{NOUNLOAD	|	UNLOAD}]
[[,]	[RESTART]

[[,]	SNAPSHOT]
[[,]	STATS	[=	percentage]]
]

The	following	restrictions	apply	if	the	SNAPSHOT	option	is	given:

The	backup	device	must	be	a	virtual	device.

Only	a	single	virtual	device	may	be	specified.

The	following	options	may	not	be	specified:

DIFFERENTIAL

It	is	expected	that	the	application	will	specify	PIPE-like	behavior	for	the	virtual
device.	This	mode	is	write-only	and	implies	FORMAT.	In	any	case,	the	behavior
of	the	command	options	will	be	as	it	is	today	for	VDI.

Note			For	complete	documentation	on	the	BACKUP	statement,	see	SQL
Server	Books	Online.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

RESTORE	Statement
Syntax

RESTORE	DATABASE	{database_name	|	@database_name_var}
[FROM	<backup_device>	[,...n]]
[WITH	
[DBO_ONLY]
[[,]	FILE	=	file_number]
[[,]	MEDIANAME	=	{media_name	|	@media_name_variable}]
[[,]	MOVE	'logical_file_name'	TO	'operating_system_file_name']
[,...n]
[[,]	{NORECOVERY	|	RECOVERY	|	STANDBY	=
undo_file_name}]
[[,]	{NOUNLOAD	|	UNLOAD}]
[[,]	REPLACE]
[[,]	RESTART]

[[,]	SNAPSHOT]
[[,]	STATS	[=	percentage]]
]

The	SNAPSHOT	option	instructs	RESTORE	to	skip	the	data	and	log	laydown
phases	of	the	restore,	as	the	snapshot	will	be	present	on	disk.	Instead,	restore	will
issue	a	VDC_MountSnapshot	command	to	the	VDI	application.	Successful
completion	of	the	command	indicates	to	backup	that	the	data	and	log	files	are	in
place.

The	following	restrictions	apply	if	the	SNAPSHOT	option	is	given:

The	backup	device	must	be	a	virtual	device.

Only	a	single	virtual	device	may	be	specified.

It	is	expected	that	the	application	will	specify	PIPE-like	behavior	for	the	virtual
device.	Whatever	mode	is	chosen,	the	behavior	of	the	command	options	will	be

consistent	with	VDI	behavior.	In	particular,	MOVE	can	be	used	to	indicate	that
an	individual	file	is	in	a	different	location	than	indicated	in	the	backup	set	meta
data.

Note			For	complete	documentation	on	the	RESTORE	statement,	see	SQL
Server	Books	Online.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Error	Codes	and	Logs
The	I/O	completion	codes	are	returned	as	part	of	command	completion.	These
are	appropriate	WIN32	codes.

The	virtual	device	methods	return	the	COM	standard	of	HRESULTS.	The	caller
can	use	SUCCEEDED	or	FAILED	macros	to	determine	if	the	function	failed.

Errors	from	WIN32	functions	will	be	encoded	as	HRESULT_FROM_WIN32().
This	is	defined	in	the	file	Winerror.h.	Another	useful	function:	GetScode()	is	also
defined	in	Winerror.h.	The	GetScode()	function	can	extract	a	WIN32	status	code
from	a	WIN32-HRESULT.

VDI	error	messages	are	now	stored	in	the	Windows	application	event	log.	Look
for	events	with	the	source	"SQLVDI".	A	regkey	is	available	to	turn	off	VDI	error
logging:

under	HKLM\Software\Microsoft\SQL	Virtual	Device	Interface

Create	a	REG_SZ	value	with	name	"Log	File",	but	leave	the	string	null.

In	SQL	Server	2000	Service	Pack	4	(SP4),	this	key	could	be	used	to	redirect
VDI.LOG	to	another	location.

In	SQL	Server	2005,	this	key	just	controls	whether	or	not	VDI	errorlogging	is
enabled.

Refer	to	vdierror.h	for	the	list	of	errors.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_NOTOPEN	(0x80770002)
The	device	or	virtual	device	set	was	not	open.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_TIMEOUT	(0x80770003)
The	specified	time-out	interval	elapsed	before	the	event	occurred.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_ABORT	(0x80770004)
SignalAbort	was	used	to	force	abnormal	termination.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_SECURITY(0x80770005)
A	problem	initializing	the	security	environment	occurred.	For	more	information,
check	the	application	event	log.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_INVALID	(0x80770006)
An	invalid	parameter	was	supplied	to	the	interface	returning	this	error.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_INSTANCE_NAME	(0x80770007)
An	invalid	instance	name	was	passed	to	the	CreateEx	interface.	The	instance
name	is	used	to	identify	the	SQL	Server	service	account	in	the	Service	Control
Manager.	Verify	that	a	valid	instance	name	was	passed	and	that	no	machine
name	was	included	in	the	string.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_NOTSUPPORTED	(0x80770009)
The	configuration	is	invalid	or	not	supported.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_MEMORY	(0x8077000A)
An	out-of-memory	condition	has	occurred.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_UNEXPECTED	(0x8077000B)
An	internal	error	in	SQLVDI.DLL	has	occurred.	Check	the	application	event	log
for	more	information.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_PROTOCOL	(0x8077000C)
A	request	was	made	that	is	incompatible	with	the	current	state	of	the	object.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_OPEN	(0x8077000D)
All	devices	were	already	open.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_CLOSE	(0x8077000E)
The	object	was	closed.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

VD_E_BUSY	(0x8077000F)
The	device	queue	is	full.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Converting	Applications	Written	for	Pipes
Currently,	an	application	written	to	use	named	pipes	must	perform	basic	Open,
Close,	Read,	and	Write	processing	on	a	pipe.	With	the	VDI,	these	operations	are
performed	with	the	following	function	calls:

Read

Write

Flush

ClearError

Initialization

For	pipes,	the	WIN32	interfaces	attempt	to	open	and	wait	for	the	pipe	interface
to	become	available:

while(1)	{
			h	=	CreateFile(<pipename>,	OPEN_EXISTING...)
			if	(h	!=	INVALID_HANDLE_VALUE)
						break;		//	continue	with	active	phase
			WaitNamedPipe(<some	interval	of	time>)
}

With	the	VDI,	the	client	obtains	a	COM	interface,	creates	the	virtual	device	set,
and	then	waits	for	the	server	to	finish	configuring	it:

VDConfig	config;
IClientVirtualDeviceSet2	*vds;
memset	(&config,	0,	sizeof(config));
config.deviceCount	=	1;
CoCreateInstance(CLSID_MSSQL_ClientVirtualDeviceSet,
							NULL,	CLSCTX_INPROC_SERVER,	

							IID_IClientVirtualDeviceSet2,
							&vds);
vds->	Create(<VDNAME>,	&config)
vds->	GetConfiguration(&newConfig,	timeout)

The	invocation	of	the	BACKUP	or	RESTORE	command	was	not	shown.	The
only	difference	in	the	command	syntax	is	to	specify	VIRTUAL_DEVICE	rather
than	pipe	and	the	names	of	the	devices	themselves.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Reading	or	Writing
With	pipes,	the	application	will	loop:

while(1)	{
			if(readingPipe)
							ReadFile(h,	buf,	maxBytes,	&bytesRead)
			else
							WriteFile(h,	buf,	numBytes,	&bytesWritten)

			switch	(error)	{
case	ERROR_BROKEN_PIPE:
			//	the	server	closed	its	end,	so	we're	done
			goto	exit;		//	break	while	loop

			case	ERROR_MORE_DATA
			//	more	data	to	read;	a	normal	situation
			break;

			default:
			//	unexpected	error
			//	break	out	of	while	loop
			goto	exit;
}

//	deal	with	buffer,	either	writing	it	somewhere,
//	or	read	the	next	chunk	from	somewhere
}
exit:	//	proceed	with	termination

With	the	VDI:

while(1)	{

			errCode	=	vds->GetCommand(&cmd)
			switch	(errCode)	{
						case	NOERROR:		//	we	got	a	command
									break;

						case	VD_E_CLOSE:			//	time	to	close
									//	break	out	of	loop
									goto	exit;

						default:	//	unexpected
									goto	exit;
			}

			compCode	=	ERROR_SUCCESS;
			bytesTransferred	=	0;
						
			switch	(cmd.commandCode)	{
						case	Read:
									//	read	bytes	into	cmd.Buffer
									break;

						case	Write:
									//	write	bytes	from	cmd.Buffer
									break;

						case	Flush:
									//	flush	the	real	output	device
									break;

						case	ClearError:
						//	simply	acknowledging	the	command
									//	is	sufficient

									break;

						default:
									//	unexpected,	so	abort
									vds->SignalAbort();
									goto	exit;
			}

			vds->CompleteCommand	(cmd,	compCode,	bytesTransferred,	0);
}
exit:
//	continue	with	termination

The	main	phase	of	processing	is	slightly	more	complicated	with	the	VDI	than
with	pipes.	No	complex	asynchronous	I/O	processing	is	required.	A	simple	fetch,
execute,	and	complete	loop	is	sufficient.	Higher	performance	is	possible	by
exploiting	an	asynchronous	model.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Termination
CloseFile()	is	used	to	terminate	using	pipes.

vds->Close()	is	used	to	terminate	using	the	VDI.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Glossary
BLOCKSIZE

This	is	the	size,	in	bytes,	that	is	used	as	the	device	BLOCKSIZE.	All	data
transfers	are	in	integral	multiples	of	this	value.	Values	must	be	a	power	of	2
between	512	bytes	and	64	kilobytes	(KB)	inclusive.	If	this	option	is	not
specified	with	the	command,	then	a	default	of	512	bytes	is	used.

The	BLOCKSIZE	parameter	is	specified	in	the	WITH	clause	of	the
BACKUP	and	RESTORE	statements.	For	example:

BACKUP	DATABASE	pubs	to	VIRTUAL_DEVICE='...'	WITH
BLOCKSIZE=65536

BUFFERCOUNT

This	is	the	total	number	of	buffers	(of	size	MAXTRANSFERSIZE)	used	by
the	BACKUP	or	RESTORE	operation.

The	BUFFERCOUNT	parameter	is	specified	in	the	WITH	clause	of	the
BACKUP	and	RESTORE	statements.	For	example:

BACKUP	DATABASE	pubs	to	VIRTUAL_DEVICE='...'	WITH
BUFFERCOUNT=20

buffers

Shared	buffers	are	provided	from	the	virtual	device	set	to	Microsoft®	SQL
Server™	on	demand.	These	buffers	are	referenced	by	commands	issued	to
the	virtual	devices.	While	the	commands	are	being	processed	by	the	device,
the	buffers	are	in	client	control.	The	server	will	not	read	or	write	to	the	buffer
while	the	command	is	outstanding	to	the	client.	The	client	may	only	read	or
write	to	the	buffer,	or	remember	the	buffer's	address,	from	the	time	it
receives	a	command	until	the	time	it	completes	the	command.	When	the
client	indicates	that	the	command	is	completed,	then	the	buffer	is	implicitly
returned	to	SQL	Server	control.

data	stream

A	data	stream	is	an	ordered	sequence	of	bytes	and	filemarks.

MAXTRANSFERSIZE

This	is	the	size,	in	bytes,	of	the	maximum	input	or	output	request	that	is
issued	by	SQL	Server	to	the	device.	This	is	the	size	of	the	data	portion	of	the
buffer.	It	does	not	include	the	prefix	zone,	if	any.	The
MAXTRANSFERSIZE	must	be	a	multiple	of	64KB.	The	range	is	from
64KB	through	4	megabytes	(MB).	If	this	option	is	not	specified	with	the
command,	then	a	default	of	64KB	is	used.

The	MAXTRANSFERSIZE	parameter	is	specified	in	the	WITH	clause	of
the	BACKUP	and	RESTORE	statements.	For	example:

BACKUP	DATABASE	pubs	to	VIRTUAL_DEVICE=	'...'	WITH
MAXTRANSFERSIZE=524288

virtual	device

The	virtual	device	is	implemented	by	the	client.	It	is	used	by	SQL	Server	as	a
storage	device,	like	any	other	device.	During	BACKUP,	a	data	stream	is
written	to	the	device.	During	RESTORE,	the	data	stream	is	read	from	the
device.

The	number	of	devices	used	during	a	RESTORE	will	typically	be	the	same
as	that	used	for	the	BACKUP.	It	is	possible	to	use	fewer	devices	during
RESTORE	operations	if	the	media	is	removable.	However,	for	removable
media,	it	is	possible	to	use	fewer	devices.	In	that	case,	once	each	data	stream
has	been	read,	SQL	Server	requests	a	new,	unprocessed	data	stream	by
issuing	a	mount	request.	For	more	information	about	media	sets,	backup	sets,
and	media	families,	see	Microsoft	SQL	Server	Books	Online.

Virtual	Device	Interface	(VDI)

The	VDI	is	a	set	of	Component	Object	Model	(COM)	interfaces.	Behind	the
interfaces	are	COM	objects	that	implement	the	behavior	of	virtual	devices.

virtual	device	set

The	virtual	device	set	is	the	top-level	object	to	be	manipulated	by	the	client
and	server	sides	of	the	interface.	The	client	is	responsible	for	creating	the
virtual	device	set.	The	server	opens	and	configures	the	virtual	device	set.

Microsoft	SQL	Server	Virtual	Backup	Device	Specification

Finding	More	Information
For	more	information	about	the	Microsoft®	SQL	Server™	BACKUP	and
RESTORE	operations,	see	the	following	sources.

Microsoft	SQL	Server	Books	Online

Microsoft	Tape	Format	(MTF)	specification

Sqlwriter.doc,	VSS	SDK.

