
New	Objects

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	objects	added	to	the	Microsoft	Office	2003	Web
Components	object	model.

Object Description
ChScrollView Use	the	properties	and	methods	of	the

ChScrollView	object	return	information	about,
or	to	scroll	and	zoom	the	view	of	a	chart.

ChSelectionCollection Use	the	ChSelectionCollection	collection	to
work	with	all	currently	selected	objects	in	a
chart.

ListObject A	ListObject	object	represents	an	XML	list	on	a
worksheet.

ListObjects Use	the	properties	and	methods	of	the
ListObjects	collection	to	work	with	all	the	XML
lists	on	a	worksheet.

ListRow A	ListRow	object	represents	a	row	in	an	XML
list.

ListRows Use	the	the	ListRows	collection	to	work	with
the	all	the	rows	in	an	XML	list.

XmlDataBinding An	XmlDataBinding	object	represents	an	XML
data	binding	for	XML	lists	and	mapped	data	in	a
Spreadsheet	component.

XmlDataBindings Use	the	XmlDataBindings	collection	to	work
with	all	the	XML	data	bindings	in	a	Spreadsheet
component.

XmlMap An	XmlMap	object	represents	an	XML	schema
map	that	maps	XML	data	to	the	worksheets	in	a
Spreadsheet	component.

XmlMaps Use	the	XmlMaps	collection	to	work	with	all	of

the	XML	schema	maps	in	a	Spreadsheet
component.

New	Properties	(Alphabetical	List)

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Microsoft	Office	2003
Web	Components	object	model	(sorted	alphabetically).

New	Property Object(s)
Active ListRow
AllowUISelection ChartSpace
Async XmlDataBinding
BarWidth ChChart
BindingData XmlDataBinding
BindingInProgress XmlDataBinding,	XmlDataBindings
CanQuery XmlDataBinding
CanUpdate XmlDataBinding
DataBodyRange ListObject
DefaultQueryOnLoad Spreadsheet
HeaderRowRange ListObject
HorizontalExtent ChScrollView
HorizontalExtentMax ChScrollView
HorizontalPosition ChScrollView
InsertRowRange ListObject
ListObject Range,	Workbook
ListObjects Worksheet
ListRows ListObject
LoadMode XmlDataBinding
MapData XmlMap
PropNames ListObject
ScrollView ChChart

SelectionCollection ChartSpace
VerticalExtent ChScrollView
VerticalExtentMax ChScrollView
VerticalPosition ChScrollView
XmlDataBindings Workbook
XmlMap XmlDataBinding
XmlMaps Workbook

New	Properties	(by	Object)

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Microsoft	Office	2003
Web	Components	object	model	(sorted	by	object	name).

Object New	Properties
ChartSpace AllowUISelection,	SelectionCollection
ChChart BarWidth,	ScrollView
ChScrollView HorizontalExtent,	HorizontalExtentMax,

HorizontalPosition,	VerticalExtent,
VerticalExtentMax,	VerticalPosition

ListObject DataBodyRange,	HeaderRowRange,
InsertRowRange,	ListRows,	PropNames

ListRow Active
PivotField SubtotalLabelBackColor,	SubtotalLabelFont,

SubtotalLabelForeColor,
SubtotalLabelHAlignment

Range ListObject
Spreadsheet DefaultQueryOnLoad
Workbook ListObject,	XmlDataBindings,	XmlMaps
Worksheet ListObjects
XmlDataBinding Async,	BindingData,	BindingInProgress,

CanQuery,	CanUpdate,	LoadMode,	XmlMap
XmlDataBindings BindingInProgress
XmlMap MapData

New	Methods	(Alphabetical	List)

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Microsoft	Office	2003	Web
Components	object	model	(sorted	alphabetically).

New	Method Object
Add XmlDataBindings,	XmlMaps
Delete XmlDataBinding,	XmlMap
ExportMetaData XmlMap
FireParametersOut Spreadsheet
GetDataPointVisible ChSeries
ExportXML XmlMap
ImportXml XmlMap
OverrideDefaultElementFormatting ChChartDraw
Refresh XmlDataBinding
Select2 ChPoint
SetExtent ChScrollView
SetPosition ChScrollView
Update XmlDataBinding
Validate Range

New	Methods	(by	Object)

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Microsoft	Office	2003	Web
Components	object	model	(sorted	by	object	name).

Object New	Method
ChChartDraw OverrideDefaultElementFormatting
ChPoint Select2
ChScrollView SetExtent,	SetPosition
ChSeries GetDataPointVisible
Range Validate
Spreadsheet FireParametersOut
XmlDataBinding Delete	,	Refresh,	Update
XmlDataBindings Add
XmlMap Delete	,	ExportMetaData,	ExportXML,	ImportXml
XmlMaps Add

New	Events

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network
(MSDN)	Web	site	for	the	latest	information	about	programming	with
Microsoft	Office	2003	Web	Components,	including	product	news,
technical	articles,	downloads,	and	samples.

The	following	table	lists	events	added	to	the	Microsoft	Office	2003	Web
Components	object	model.

New	Event Object
BindingAdded Spreadsheet
BindingCompleted Spreadsheet
BindingDeleted Spreadsheet
BindingError Spreadsheet
BindingUpdated Spreadsheet
ParametersOutReady Spreadsheet
RowReady Spreadsheet

Making	Connections	to	External	Data	Sources	More	Secure
When	you	define	a	connection	to	an	external	data	source	for	an	Office
Web	component	on	a	Web	page,	this	information	is	stored	as	an
unencrypted	(plain	text)	connection	string	in	the	HTML	source.	As	a
result,	a	user	opening	the	page	in	a	browser	can	easily	view	the	HTML
source	for	the	page	and	read	the	connection	string,	which	may	include	a
user	name	and	password,	depending	on	how	you	defined	the	connection.

To	prevent	unauthorized	access	using	information	from	the	connection
string,	if	the	data	source	supports	this	mode	of	authentication,	use
Windows	Authentication	(also	referred	to	as	a	Trusted	Connection	and
Integrated	Security),	which	uses	the	current	user's	Microsoft	Windows
account	to	connect	to	an	external	data	source.	Using	Windows
Authentication	to	connect	to	an	external	data	source	has	the	following
advantages:

The	programmer	or	page	designer	doesn't	have	to	enter	a	user	name	or
password	to	connect	to	the	data	source,	so	that	information	cannot	be
exposed	in	the	page's	HTML	source.

The	user	of	the	page	doesn't	have	to	enter	a	user	name	or	password	to
connect	to	the	data	source	when	opening	the	page,	so	that	information
cannot	be	compromised	while	it's	being	sent	to	the	server.

Only	a	Windows	user	account	that	is	configured	in	the	security	system	for
the	data	source	will	be	allowed	to	connect	to	that	data	source.

Important		To	use	Windows	Authentication,	the	users	you	want	to
connect	to	an	external	data	source	must	have	user	accounts	on	a
Windows	domain.	Users	that	are	members	of	a	Windows	Workgroup
cannot	use	Windows	Authentication.

Defining	a	Connection	in	an	Office	Web	Component's	User
Interface
For	example,	to	connect	to	Microsoft	SQL	Server	using	Windows
Authentication	from	the	user	interface	of	the	Spreadsheet	component,
use	the	following	procedure	when	defining	a	connection.

Important		Before	you	can	use	Windows	Authentication	to	connect	to	a
Microsoft	SQL	Server	database,	the	server	administrator	must	configure
the	server	to	use	this	mode	of	authentication,	and	must	grant	login
access	to	your	Windows	user	account	(or	a	group	of	which	your	user
account	is	a	member)	as	well	as	the	accounts	of	any	users	you	want	to
access	your	solution.	Additionally,	the	server	administrator	should	give
users'	accounts	the	minimum	level	of	permissions	to	the	tables	or	stored
procedures	required	for	your	solution.

1.	 In	the	design	window,	make	sure	the	spreadsheet	is	activated.
For	instructions,	see	Help	for	your	design	program.

2.	 Click	Commands	and	Options	on	the	toolbar,	and	then	click
the	Data	Source	tab.

3.	 Click	Edit,	and	then	double-click	New	SQL	Server	Connection.

4.	 In	Server	name,	specify	the	name	of	the	server.

5.	 Under	Log	on	credentials,	click	Use	Windows
Authentication.

6.	 Click	Next,	and	then	follow	the	directions	in	remaining	screens
of	the	Data	Connection	Wizard	to	specify	the	data	to	retrieve.

Notes

Some	design	programs	do	not	support	the	Spreadsheet's	design-time
user	interface	by	default.	If	you	are	using	such	a	program,	the	Data
Source	tab	will	not	be	displayed	in	step	2.	To	activate	the	design-time
user	interface,	you	must	set	the	DisplayDesignTimeUI	property	to	True.

Other	data	sources	that	support	Windows	Authentication	may	present
different	options	in	the	Data	Connection	Wizard.	For	example,	to

connect	to	an	Oracle	database	using	Windows	Authentication,	you	must
enter	only	a	forward	slash	(/)	in	the	User	Name	box.	For	more
information	using	Windows	Authentication	to	connect	to	a	data	source,
see	the	documentation	for	the	data	source	provider	you	are	using.

If	you	use	the	Data	Retrieval	Service	for	Microsoft	SQL	Server	(or	use
a	Data	Retrieval	Service	Connections	(.uxdc)	file	that	is	defined	to	use
that	data	retrieval	service)	to	connect	to	an	external	data	source,	and	you
do	not	use	Windows	Authentication,	the	user	name	and	password	used
to	connect	to	the	data	source	are	not	saved	in	the	Web	page.	When	you
use	this	method	to	connect	to	an	external	data	source,	users	of	the	Web
Page	that	hosts	your	spreadsheet	will	be	prompted	to	enter	their	login
information.	To	use	a	data	retrieval	service,	you	must	have	access	to	a
Windows	SharePoint	Services	server	on	which	that	data	retrieval	service
is	installed.	By	default,	Windows	SharePoint	Services	installs	a	data
retrieval	service	for	connecting	to	data	in	SharePoint	lists.	A	SharePoint
site	administrator	can	install	the	Office	2003	Web	Parts	and	Components
to	add	data	retrieval	services	for	Microsoft	SQL	Server	and	Microsoft
Business	Solutions.	The	Office	2003	Web	Parts	and	Components	is
available	from	Downloads	on	Microsoft	Office	Online.	To	start	defining	a
connection	using	a	data	retrieval	service,	in	step	2	in	the	procedure
above,	click	Edit,	click	New	Source,	and	then	click	either	Microsoft
Business	Solutions	(to	connect	to	Microsoft	Business	Solutions	data)	or
click	Data	retrieval	services	(to	connect	to	Windows	SharePoint
Services	lists	or	Microsoft	SQL	Server	data).

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010326641033&CTT=11&Origin=HV010467441033

Defining	a	Connection	to	External	Data	Programmatically
When	working	with	the	ConnectionString	property	to	define	the
connection	to	an	external	data	source	(or	defining	the	connection	string
for	an	ADO	Connection	object	to	pass	to	the	Connection	property	of	the
PivotTable	object)	,	you	should	use	Windows	Authentication	if	possible.
To	use	Windows	Authentication	with	SQL	Server,	your	connection	string
should	use	this	format,	which	includes	Integrated	Security=SSPI:

Provider=SQLOLEDB;Data	Source=NameOfServer;Initial	Catalog=NameOfDatabase
			Integrated	Security=SSPI

Other	data	sources	may	require	a	different	format	for	their	connection
strings,	for	example	to	connect	to	an	Oracle	database	using	Windows
Authentication	requires	you	to	pass	a	forward	slash	(/)	for	the	User	ID
value:

Provider=MSDAORA.1;User	ID=/;Data	Source=NameOfServer;
			Initial	Catalog=NameOfDatabase

Working	with	Data	Sources	that	Do	Not	Support	Windows
Authentication
If	Windows	Authentication	is	not	available	for	the	data	source	you	want	to
work	with,	you	must	pass	a	user	name	and	password	to	connect	to	the
data	source	when	you	define	a	connection	either	programmatically	or	in
the	user	interface	of	an	Office	Web	component.	Because	this	user	name
and	password	might	be	viewed	when	the	Spreadsheet,	Chart,	or
PivotTable	component	is	on	a	Web	page,	avoid	using	this	mode	of
authentication	to	connect	to	sensitive	data	from	a	component	on	a	Web
page.	Even	if	you	are	not	concerned	about	unauthorized	users	viewing
your	data,	you	should	connect	only	with	a	user	account	that	has	limited
permissions	on	the	data	source.	For	example,	when	connecting	to	a	SQL
Server	database	using	a	user	name	and	password,	do	not	use	the	SA
account	or	any	other	account	that	has	elevated	permissions,	because	an
unauthorized	user	might	be	able	to	use	this	account	and	password	to
access	other	data	on	the	server.

Creating	an	Accessible	Chart
When	you	create	a	new	chart,	by	default	the	HasSelectionMarks	and
AllowPropertyToolBox	properties	are	set	to	False.	As	a	result,	a	user
working	with	a	chart	using	only	a	keyboard	cannot	see	when	an	item	in
the	chart	is	selected	(HasSelectionMarks)	and	cannot	display	the
Commands	and	Options	dialog	box	for	setting	properties	of	the
selected	item	(AllowPropertyToolBox).	To	enable	these	features	to
make	a	chart	more	accessible	for	keyboard	users,	you	can	set	these
properties	manually	at	design	time	by	using	the	following	procedure.

Enable	selection	marks	and	the	Commands	and	Options	dialog
box			

1.	 Right-click	the	click	the	chart	control,	and	then	click	Commands
and	Options.

2.	 On	the	Show/Hide	tab	under	Let	users	view,	click	Selection
marks	and	Commands	and	Options	dialog	box.

Alternatively,	you	can	set	these	properties	programmatically	as	in	the
following	example.

Sub	Make_Accessible()

			'Show	selection	marks	for	individual	chart	elements.
			Chartspace1.HasSelectionMarks	=	True

			'Allow	the	user	to	display	the	Commands	and	Options	dialog	box.
			Chartspace1.AllowPropertyToolbox	=	True

End	Sub

AllGroupingDefs	Collection	Object

Multiple	objects AllGroupingDefs
GroupingDef
PageFields

Contains	all	of	the	GroupingDef	objects	in	the	data	source	control.

Using	the	AllGroupingDefs	Collection
The	DataSourceControl	object's	AllGroupingDefs	property	returns	an
AllGroupingDefs	collection.

AllPageFields	Collection	Object

Multiple	objects AllPageFields
PageField
Multiple	objects

Contains	all	the	PageField	objects	in	the	data	source	control.

Using	the	AllPageFields	Collection
The	DataSourceControl	object's	AllPageFields	property	returns	an
AllPageFields	collection.

Borders	Collection	Object

Range Borders
Multiple	objects

A	collection	of	four	Border	objects	that	represent	the	four	borders	of	a
worksheet	range.

Using	the	Borders	Collection
The	Range	object’s	Borders	property	returns	a	Borders	collection.

ChAxes	Collection

ChChart ChAxes
Multiple	objects

The	collection	of	ChAxis	objects	that	represent	the	axes	for	a	single
chart.	Each	chart	can	have	up	to	sixteen	axes.

Using	the	ChAxes	collection
The	ChChart	object’s	Axes	property	returns	a	ChAxes	collection.

ChCategoryLabels	Collection	Object

ChAxis ChCategoryLabels
Multiple	objects

Represents	a	collection	of	all	the	ChCategoryLabel	objects	for	the
specified	category	axis.

Using	the	ChCategoryLabels	Collection	Object
Use	the	CategoryLabels	property	of	the	ChAxis	object	to	return	a
ChCategoryLabels	collection.	The	following	example	displays	the
number	of	labels	for	the	category	axis	on	the	first	chart	in	Chartspace1.

Sub	DisplayItemCount

			Dim	chtChart1
			Dim	chConstants
				
			Set	chConstants	=	Chartspace1.Constants
				
			Set	chtChart1	=	Chartspace1.Charts(0)
				
			MsgBox	chChart1.Axes(chConstants.chAxisPositionCategory)	_
										.CategoryLabels.ItemCount

End	Sub

	 	

ChChartFields	Object

ChDropZone ChChartFields
Multiple	objects

Represents	the	fields	that	have	been	added	to	a	drop	zone.	Contains	a
collection	of	ChChartField	objects.

Using	the	ChChartFields	object
The	ChDropZone	object's	ChartFields	property	returns	a
ChChartFields	object.

ChCharts	Collection

Multiple	objects ChCharts
ChChart
Multiple	objects

The	collection	of	ChChart	objects	in	the	chart	workspace.	Each	ChChart
object	represents	a	single	chart.	The	chart	workspace	can	contain	up	to
64	charts.

Using	the	ChCharts	collection
The	ChartSpace	object’s	Charts	property	returns	a	ChCharts	collection.

ChDataLabelsCollection	Collection

ChSeries ChDataLabelsCollection
Multiple	objects

Represents	the	collection	of	ChDataLabels	objects	for	a	data	series.
Each	ChDataLabels	object	represents	a	set	of	data	labels	for	a	data
series.

Using	the	ChDataLabelsCollection	collection
Use	the	DataLabelsCollection	property	of	the	ChSeries	object	to	return
a	DataLabelsCollection	collection.

Use	the	Add	method	of	the	ChDataLabelsCollection	collection	to	add	a
set	of	data	labels	to	a	data	series.

The	following	example	adds	data	labels	to	the	first	series	in	the	first	chart
in	Chartspace1,	and	then	formats	the	data	labels.

Sub	AddDataLabels()

				Dim	serSeries1
				Dim	dlSeries1Labels

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	set	of	data	labels	to	the	first	series	and	return
				'	a	DataLabels	object.
				Set	dlSeries1Labels	=	serSeries1.DataLabelsCollection.Add

				'	Set	the	number	format	of	the	data	labels.
				dlSeries1Labels.NumberFormat	=	"0.00"

				'	Set	the	data	labels	to	display	the	category
				'	name	for	the	data	point.
				dlSeries1Labels.HasCategoryName	=	True

				'	Set	the	data	labels	to	display	the	value
				'	for	the	data	point.
				dlSeries1Labels.HasValue	=	True

End	Sub
	 	

ChErrorBarsCollection	Object

ChSeries ChErrorBarsCollection
Multiple	objects

The	collection	of	ChErrorBars	objects	for	a	single	series.

Using	the	ChErrorBarsCollection	object
The	ChSeries	object’s	ErrorBarsCollection	property	returns	a
ChErrorBarsCollection	object.

The	following	example	adds	error	bars	to	the	first	series	in	the	first	chart
in	ChartSpace1,	then	sets	the	properties	for	the	error	bars.

Sub	AddErrorBars()

				Dim	chConstants
				Dim	ebCollection
				Dim	ebSeries1

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	collection	of	error	bars	for
				'	the	first	series	in	the	first	chart	of	Chartspace1.
				Set	ebCollection	=	ChartSpace1.Charts(0).SeriesCollection(0).ErrorBarsCollection

				'	Add	error	bars	to	the	chart.
				ebCollection.Add

				'	Set	a	variable	to	the	error	bars	for	the	data	series.
				Set	ebSeries1	=	ebCollection.Item(0)

				'	Set	the	error	bars	so	that	they	represent	a	certain
				'	percentage	of	the	value	of	a	data	point.
				ebSeries1.Type	=	chConstants.chErrorBarTypePercent

				'	The	error	bars	represent	5%	of	a	data	point.
				ebSeries1.Amount	=	0.05

End	Sub

	 	

ChLegendEntries	Collection

ChLegend ChLegendEntries
Multiple	objects

The	collection	of	ChLegendEntry	objects	for	the	specified	legend.

Using	the	ChLegendEntries	collection
The	ChLegend	object’s	LegendEntries	property	returns	a
ChLegendEntries	collection.

Use	LegendEntries(index),	where	index	is	the	legend	entry	index
number,	to	return	a	single	LegendEntry	object.	You	cannot	return	legend
entries	by	name.

The	index	number	represents	the	position	of	the	legend	entry	in	the
legend.	LegendEntries(0)	is	at	the	top	of	the	legend,	and
LegendEntries(LegendEntries.Count	-	1)	is	at	the	bottom.	The	following
example	changes	the	font	for	the	text	of	the	legend	entry	at	the	top	of	the
chartspace	legend	(this	is	usually	the	legend	for	series	one)	in
Chartspace1.

Chartspace1.ChartSpaceLegend.LegendEntries(0)	_
				.Font.Bold	=	True
	 	

ChPoints	Collection

ChSeries ChPoints
Multiple	objects

A	collection	of	all	the	ChPoint	objects	in	a	data	series.	The	number	of
data	points	in	a	series	is	limited	only	by	the	amount	of	system	memory	in
the	computer	being	used.

Using	the	ChPoints	collection
The	ChSeries	object’s	Points	property	returns	a	ChPoints	collection.

Use	Points(index),	where	index	is	the	point	index	number,	to	return	a
single	ChPoint	object.	Points	are	numbered	from	left	to	right	on	the
series.	Points(0)	is	the	leftmost	point,	and	Points(Points.Count	-	1)	is
the	rightmost	point.	The	following	example	stores	the	value	of	the	third
point	in	the	first	data	series	of	the	first	chart	in	Chartspace1	in	a	variable.

Sub	GetPointValue()

Dim	ptSeries1Points
Dim	dblPointValue

'	Set	a	variable	to	the	collection	of	points	for	the	first
'	data	serties	in	the	first	chart	in	Chartspace1.
Set	ptSeries1Points	=
ChartSpace1.Charts(0).SeriesCollection(0).Points

'	Store	the	underlying	value	of	the	third	data	point	in	a	variable.
dblPointValue	=	ptSeries1Points(2).GetValue(chDimValues)

End	Sub

ChSelectionCollection	Collection

Multiple	objects ChSelectionCollection

Using	the	ChSelectionCollection	Collection
You	use	the	SelectionCollection	property	to	retrieve	the	selection	list.
The	SelectionCollection	property	of	the	ChartSpace	object	(for
example,	ChartSpace.SelectionCollection)	returns	a
ChSelectionCollection	collection	that	contains	all	selected	objects	in	a
chart,	including	both	primary	and	secondary	selections.	The	primary
selection	is	the	first	item	in	this	collection.	Any	additional	items	are
secondary	selections,	which	can	only	be	ChPoint	objects.	This	collection
always	contains	at	least	one	item,	which	is	the	primary	selection.	The
object	returned	by	ChartSpace.SelectionCollection(0)	is	the	same
object	that	is	returned	by	the	Selection	property	of	the	ChartSpace
object	(for	example,	ChartSpace.Selection).	The	ChSelectionCollection
collection	can	only	be	populated	by	using	the	Select2	method,	for
example,	Chartspace.Charts(0).Seriescollection(x),Points(y).Select2().
Multiple	items	cannot	be	selected	in	the	user	interface	of	the	Chart
component.	Items	must	be	added	to	or	removed	from	a	selection
programmatically.	To	capture	multiple	selections	when	a	user	clicks	on	a
chart,	you	must	monitor	the	mouse	move	and	mouse	button	events	and
identify	the	items	being	selected	using	the	RangeFromPoint	method	of
the	ChartSpace	object.	To	prevent	the	built-in	selection	handling
behavior	of	the	Chart	component	from	interfering	with	programmatic
tracking	of	multiple	selections,	you	must	make	sure	that	the
AllowUISelection	property	of	the	ChartSpace	object	is	set	to	False.

You	use	the	Item	property	to	return	a	single	selected	object	from	the
ChSelectionCollection	collection.	Individual	objects	in	the
ChSelectionCollection	collection	are	indexed	beginning	with	0	for	the
first	object,	1	for	the	second	object,	and	so	forth.	You	use	the	Count
property	to	return	the	number	of	items	in	the	ChSelectionCollection
collection.	The	Parent	property	returns	the	parent	object,	which	is	the
ChartSpace	object	in	this	case.

The	ChSelectionCollection	collection	has	no	methods.

ChSeriesCollection	Collection	Object

ChChart ChSeriesCollection
Multiple	objects

A	collection	of	all	the	ChSeries	objects	on	a	chart.	A	chart	can	contain	up
to	256	series.

Using	the	ChSeriesCollection	Collection	Object
The	ChChart	object’s	SeriesCollection	property	returns	a
ChSeriesCollection	collection.

Use	the	Add	method	to	create	a	new	series	and	add	it	to	the	chart.

Use	SeriesCollection(index),	where	index	is	the	series	index	number	or
name,	to	return	a	single	ChSeries	object.	The	following	example	sets	the
color	of	the	interior	for	the	first	series	in	the	first	chart	of	ChartSpace1.

ChartSpace1.Charts(0).SeriesCollection(1).Interior.Color	=	"Red"
	 	

ChTrendlines	Collection

ChSeries ChTrendlines
Multiple	objects

The	collection	of	ChTrendline	objects	for	a	series.

Using	the	ChTrendlines	collection
The	Trendlines	property	of	the	ChSeries	object	returns	a	ChTrendlines
collection.

Use	the	Add	method	of	the	ChTrendline	object	to	add	a	trendline	to	your
chart.

The	following	example	adds	a	trendline	to	the	first	series	in	the	first	chart
in	Chartspace1	and	then	formats	the	trendline.

Sub	AddPolyTrendline()

				Dim	serSeries1
				Dim	chConstants
				Dim	tlSeries1Trend

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	trendline	to	the	first	series	and	return
				'	a	Trendline	object.
				Set	tlSeries1Trend	=	serSeries1.Trendlines.Add

				'	Display	the	equation	used	to	calculate	the	trendline.
				tlSeries1Trend.IsDisplayingEquation	=	True

				'	Set	the	trendline	to	be	a	polynomial	trendline.
				tlSeries1Trend.Type	=	chConstants.chTrendlineTypePolynomial

End	Sub

	 	

DataPages	Collection	Object

Multiple	objects DataPages
DataPage
Multiple	objects

Contains	all	DataPage	objects	in	the	data	source	control.

Using	the	DataPages	Collection
The	DataSourceControl	object's	DataPages	property	returns	a
DataPages	collection.

ElementExtensions	Collection	Object

Multiple	objects ElementExtensions
ElementExtension

Contains	the	ElementExtension	objects	for	the	specified	data	source
control.

Using	the	ElementExtensions	Collection
The	DataSourceControl	object's	ElementExtensions	property	returns
an	ElementExtensions	collection.

Filters	Collection	Object

AutoFilter Filters
Multiple	objects

Represents	the	collection	of	filters	used	with	the	AutoFilter.	Each	filter	is
represented	by	a	Filter	object.	The	AutoFilter	object	contains	a	Filters
collection,	the	Filters	collection	contains	a	Filter	object	for	each	column
in	the	filtered	range,	and	each	Filter	object	contains	a	Criteria	object.

Using	the	Filters	Object
The	AutoFilter	object’s	Filters	property	returns	a	Filters	collection.

GroupingDefs	Collection	Object

RecordsetDef GroupingDefs
GroupingDef
PageFields

Represents	the	collection	of	GroupingDef	objects	that	create	grouping
parents	of	the	detail	records	in	a	recordset	definition.	Sequence	is
important:	the	lower	the	index,	the	higher	the	level	of	grouping.	Index	0
(zero)	is	the	lowest	grouping	level.

Using	the	GroupingDefs	Collection
The	RecordsetDef	object's	GroupingDefs	property	returns	a
GroupingDefs	collection.

GroupLevels	Collection	Object

Multiple	objects GroupLevels
GroupLevel

Represents	the	collection	of	GroupLevel	objects	for	the	specified	data
source	control.	Each	GroupLevel	object	represents	the	set	of	all	records
at	a	given	level	of	the	data	access	page	hierarchy.

Using	the	GroupLevels	Collection
The	DataSourceControl	object's	GroupLevels	property	returns	a
GroupLevels	collection.

Headings	Object

Window Headings
Multiple	objects

A	collection	of	the	row	and	column	headings	for	a	Window	object.

Using	the	Headings	object
The	following	properties	return	a	Headings	collection.

The	Window	object's	RowHeadings	property.

The	Window	object's	ColumnHeadings	property.

The	following	example	customizes	the	heading	of	column	D	in	the	active
sheet	in	Spreadsheet1:

Spreadsheet1.ActiveWindow.ColumnHeadings(4).Caption	=	"1999	Sales"
	 	

ListObjects	Collection

Worksheet ListObjects
Multiple	objects

Using	the	ListObjects	Collection
The	ListObjects	collection	is	a	collection	of	all	the	ListObject	objects	on
a	worksheet.	A	ListObject	object	represents	an	XML	list	in	a
Spreadsheet	component.	The	ListObject	object	is	a	member	of	the
ListObjects	collection.

Individual	ListObject	objects	in	the	ListObjects	collection	are	indexed
beginning	with	1	for	the	first	object,	2	for	the	second	object,	and	so	forth.
You	use	the	Item	property	to	return	a	single	ListObject	object	from	the
ListObjects	collection.	The	argument	for	the	Item	property	is	the	name
or	the	index	number	in	the	ListObjects	collection	of	the	ListObject
object.	The	name	is	the	value	of	the	IDattribute	of	an	MapInfo/Map/Entry
in	an	XML	Spreadsheet	file.	The	XML	fragment	where	these	details
appear	in	the	XML	Spreadsheet	file	looks	something	like	the	following:

<x2:MapInfo	xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">	
			<x2:Map	x2:ID="Cust_MapId">
						<x2:Entry	x2:ID="example_id"	x2:Type="table">
									...
						</x2:Entry>
			</x2:Map>
</x2:MapInfo>

In	the	example	above,	the	IDvalue	is	example_id.	You	can	also	get	the
name	by	using	the	Name	property	of	the	ListObject	object.	Using
Microsoft	Excel,	you	can	create	an	XML	Spreadsheet	file	by	creating	a
data	bound	spreadsheet	and	then	saving	the	workbook	as	an	XML
Spreadsheet.

You	use	the	read-only	Count	property	to	return	the	number	of	objects	in
the	ListObjects	collection.	Using	the	Application	and	Parent	properties
will	return	the	Spreadsheet	component	and	the	parent	object	(which	is
the	Worksheet	object)	for	the	specified	ListObjects	collection.

ListRows	Collection

ListObject ListRows
Multiple	objects

Using	the	ListRows	Collection
The	ListRows	collection	is	a	collection	of	all	the	ListRow	objects	in	a
ListObject	object	.	A	ListObject	object	represents	an	XML	list	in	a
Spreadsheet	component.	The	ListRow	object	is	a	member	of	the
ListRows	collection.

Individual	ListRow	objects	in	the	ListRows	collection	are	indexed
beginning	with	1	for	the	first	object,	2	for	the	second	object,	and	so	forth.
You	use	the	Item	property	to	return	a	single	ListRow	object	from	the
ListRows	collection.	The	argument	for	the	Item	property	is	the	index
number	in	the	ListRows	collection	of	the	ListRow	object.

You	create	a	new	row	in	the	ListRows	collection	by	promoting	the	cells	in
the	insert	row	to	an	"official"	row.	To	do	this,	you	use	the	Add	method,
which	returns	a	ListRow	object	representing	the	newly	created	row.	The
new	row	will	be	added	to	the	bottom	of	the	XML	list.

You	use	the	read-only	Count	property	to	return	the	number	of	objects	in
the	ListRows	collection.	The	Application	and	Parent	properties	return
the	Spreadsheet	component	and	the	parent	object	(which	is	the
ListObject	object)	for	the	specified	ListRows	object.

LookupRelationships	Collection	Object

PageRowsource LookupRelationships
PageRelationship
Multiple	objects

Represents	the	collection	of	PageRelationship	objects	that	define	a
lookup	join	relationship	with	a	page	row	source.	In	the	object	diagram
shown	in	this	topic,	the	first	PageRowsource	object	(above	the
LookupRelationships	collection)	is	the	object	on	the	“many”	side	of	the
one-to-many	relationship	and	the	PageRelationship	object	(below	the
collection)	is	the	object	on	the	“one”	side.

Using	the	LookupRelationships	Collection
The	PageRowsource	object's	LookupRelationships	property	returns	a
LookupRelationships	collection.

LookupSchemaRelationships	Collection	Object

SchemaRowsource LookupSchemaRelationships
SchemaRelationship
SchemaRelatedFields

Represents	the	collection	of	SchemaRelationship	objects	for	which	a
single	schema	row	source	acts	as	the	“many”	side	of	the	one-to-many
relationship.

Using	the	LookupSchemaRelationships	Collection
The	SchemaRowsource	object's	LookupSchemaRelationships
property	returns	a	LookupSchemaRelationships	collection.

Names	Collection

Multiple	objects Names
Name
Range

A	collection	of	all	the	Name	objects	in	the	workbook.	Each	Name	object
can	represent	a	defined	name	for	a	range	of	cells,	a	formula,	or	a
constants	value.

Using	the	Names	collection
Use	the	Names	property	to	return	the	Names	collection.	The	following
example	creates	a	list	of	all	the	names	in	the	active	workbook,	along	with
the	addresses	to	which	they	refer.

Sub	List_All_Names()
			Dim	nmCurrentName
			Dim	rngCurrent

			Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Range("A1")

			'	Loop	through	all	of	the	names	in	the	active	workbook.
			For	Each	nmCurrentName	In	Spreadsheet1.ActiveWorkbook.Names

						'	Write	the	current	name	to	the	worksheet.
						rngCurrent.Value	=	nmCurrentName.Name

						'	Write	the	definition	of	the	current	name	to	the	worksheet.
						rngCurrent.Offset(0,	1).Value	=	"'"	&	nmCurrentName.RefersTo

						Set	rngCurrent	=	rngCurrent.Offset(1,	0)
			Next
End	Sub
	 	

Use	the	Add	method	to	create	a	name	and	add	it	to	the	collection.	The
following	example	creates	a	new	name	that	refers	to	cells	A1:C20	on	the
worksheet	named	"Sheet1."

Spreadsheet1.Names.Add	"CurrentMonth",	"=Sheet1!A1:C20"
	 	

The	RefersTo	argument	must	be	specified	in	A1-style	notation,	including

dollar	signs	($)	where	appropriate.	For	example,	if	cell	A10	is	selected	on
Sheet1	and	you	define	a	name	by	using	the	RefersTo	argument
"=Sheet1!A1:B1",	the	new	name	actually	refers	to	cells	A10:B10
(because	you	specified	a	relative	reference).	To	specify	an	absolute
reference,	use	"=Sheet1!A1:B1".

OCCommands	Object

Multiple	objects OCCommands
OCCommand

Contains	a	collection	of	OCCommand	objects	that	represent	the
collection	of	all	of	the	user	interface	and	keyboard	commands	that	are
available	in	the	specified	Microsoft	Office	Web	Component.

Using	the	OCCommands	object
The	following	properties	return	a	OCCommands	collection:

The	ChartSpace	object's	Commands	property.

The	PivotTable	object's	Commands	property.

The	Spreadsheet	object's	Commands	property.

The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Web	component.

Use	the	Item	property	to	return	a	single	OCCommand	object.

PageFields	Collection	Object

Multiple	objects PageFields
PageField
Multiple	objects

The	collection	of	PageField	objects	describing	the	fields	that	will	be
present	in	the	recordset	produced	by	the	specified	recordset	definition.
These	fields	are	a	combination	of	output	fields	from	the	page	row	sources
that	make	up	this	recordset	definition	and	other	page	fields	that	are
added	to	this	collection.	Sequence	within	this	collection	is	unimportant
because	all	controls	bind	by	name	rather	than	by	their	ordinal	relationship
to	fields	in	the	output	recordset.

Using	the	PageFields	Collection	Object
The	RecordsetDef	,	PageRowSource	,	and	GroupingDef	objects'
PageFields	property	returns	a	PageFields	collection.

PageRelatedFields	Collection	Object

PageRelationship PageRelatedFields
PageRelatedField
PageField

The	collection	of	PageRelatedField	objects	that	belong	to	a	given
recordset	definition.	This	collection	is	automatically	filled	when	a
recordset	definition	based	on	the	SchemaRelatedFields	collection	is
created.

Using	the	PageRelatedFields	Collection
The	PageRelationship	object's	PageRelatedFields	property	returns	a
PageRelatedFields	collection.

PageRowsources	Collection	Object

RecordsetDef PageRowsources
PageRowsource
Multiple	objects

The	collection	of	PageRowsource	objects	in	the	data	model.

Using	the	PageRowsources	Collection	Object
The	RecordsetDef	object's	PageRowsources	property	returns	a
PageRowsources	collection.

Panes	Collection	Object

Window Panes
Multiple	objects

The	collection	of	Pane	objects	for	a	worksheet.

Using	the	Panes	Collection
The	Window	object’s	Panes	property	returns	a	Panes	collection.

ParameterValues	Collection	Object

RecordsetDef ParameterValues
ParameterValue

The	collection	of	ParameterValue	objects	for	a	recordset	definition.

Using	the	ParameterValues	Collection
The	RecordsetDef	object's	ParameterValues	property	returns	a
ParameterValues	collection.

PivotAggregates	Collection	Object

PivotCell PivotAggregates
PivotAggregate
Multiple	objects

The	collection	of	PivotAggregate	objects	for	the	specified	cell.

Using	the	PivotAggregates	Collection
The	PivotCell	object’s	Aggregates	property	returns	an	object	from	the
PivotAggregates	collection.

PivotAxisMembers	Collection

Multiple	objects PivotAxisMembers
PivotAxisMember
Multiple	objects

A	collection	of	PivotAxisMember	objects.

Using	the	PivotAxisMembers	collection
Use	the	Item	property	of	the	PivotAxisMembers	collection	to	return	a
PivotAxisMember	object.

PivotColumnMembers	Collection

Multiple	objects PivotColumnMembers
PivotColumnMember
Multiple	objects

A	collection	of	PivotColumnMember	objects.

Using	the	PivotColumnMembers	Collection
Use	the	Item	property	of	the	PivotColumnMembers	collection	to	return
a	PivotColumnMember	object.

PivotFields	Collection	Object

Multiple	objects PivotFields
PivotField
Multiple	objects

The	collection	of	PivotField	objects	in	the	specified	field	set.

Using	the	PivotFields	Collection
Use	the	Fields	property	of	the	following	objects	to	return	a	PivotFields
collection:	PivotDetailRange	,	PivotFieldSet	,	PivotResultColumnAxis
,	PivotResultDataAxis	,	PivotResultGroupAxis	,
PivotResultPageAxis	,	or	PivotResultRowAxis	.

PivotFieldSets	Collection	Object

Multiple	objects PivotFieldSets
PivotFieldSet
Multiple	objects

The	collection	of	PivotFieldSet	objects	on	the	specified	axis	or	in	the
specified	view.

Using	the	PivotFieldSets	Collection
The	following	properties	return	an	object	from	the	PivotFieldSets
collection:

The	PivotAxis	object’s	FieldSets	property

The	PivotDataAxis	object’s	FieldSets	property

The	PivotFilterAxis	object’s	FieldSets	property

The	PivotGroupAxis	object’s	FieldSets	property

The	PivotResultFilterAxis	object's	FieldSets	property

The	PivotView	object’s	FieldSets	property

PivotMemberProperties	Collection

PivotField PivotMemberProperties
PivotMemberProperty

A	collection	of	PivotMemberProperty	objects.

Using	the	PivotMemberProperties	collection
Use	the	Item	property	of	the	PivotMemberProperties	collection	to	return
a	PivotMemberProperty	object.

PivotMembers	Collection	Object

Multiple	objects PivotMembers
PivotMember
Multiple	objects

A	collection	of	PivotMember	objects.

Using	the	PivotMembers	Collection
The	following	properties	return	an	object	from	the	PivotMembers
collection:

The	ChildMembers	property	of	the	following	objects:	PivotAxisMember
,	PivotColumnMember	,	PivotMember	,	PivotPageMember	,	or
PivotRowMember

The	PivotField	object’s	CustomGroup	Members	property

PivotPageMembers	Collection

PivotPageMember PivotPageMembers
PivotPageMember
Multiple	objects

A	collection	of	PivotPageMember	objects.

Using	the	PivotPageMembers	Collection
Use	the	Item	property	of	the	PivotPageMembers	collection	to	return	a
PivotPageMember	object.

PivotResultGroupFields	Collection

Multiple	objects PivotResultGroupFields
PivotResultGroupField
Multiple	objects

A	collection	of	PivotResultGroupField	objects.

Using	the	PivotResultGroupFields	collection
The	following	properties	return	a	PivotResultGroupFields	collection:

The	PivotResultColumnAxis	object's	GroupFields	property.

The	PivotResultGroupAxis	object's	GroupFields	property.

The	PivotResultPageAxis	object's	GroupFields	property.

The	PivotResultRowAxis	object's	GroupFields	property.

PivotResultMemberProperties	Collection

Multiple	objects PivotResultMemberProperties
PivotResultMemberProperty
PivotMemberProperty

The	collection	of	member	properties	for	a	result	member.

Using	the	PivotResultMemberProperties	collection
The	following	properties	return	a	PivotResultMemberProperties
collection:

The	PivotAxisMember	object's	MemberProperties	property.

The	PivotColumnMember	object's	MemberProperties	property.

The	PivotPageMember	object's	MemberProperties	property.

The	PivotRowMember	object's	MemberProperties	property.

PivotRowMembers	Collection

Multiple	objects PivotRowMembers
PivotRowMember
Multiple	objects

A	collection	of	PivotRowMember	objects.

Using	the	PivotRowMembers	Collection
Use	the	Item	property	of	the	PivotRowMembers	collection	to	return	a
PivotRowMember	object.

PivotTotals	Collection	Object

Multiple	objects PivotTotals
PivotTotal
Multiple	objects

The	collection	of	PivotTotal	objects	on	the	specified	data	axis	or	in	the
specified	view.

Using	the	PivotTotals	Collection
The	PivotDataAxis	,	PivotResultDataAxis	,	and	PivotView	objects'
Totals	property	returns	a	PivotTotals	collection.

RecordsetDefs	Collection	Object

Multiple	objects RecordsetDefs
RecordsetDef
Multiple	objects

The	collection	of	RecordsetDef	objects	for	the	specified	data	source
control.

Using	the	RecordsetDefs	Collection
The	DataSourceControl	object's	RecordsetDefs	property	return	a
RecordsetDefs	collection.

SchemaFields	Collection	Object

SchemaRowsource SchemaFields
SchemaField
SchemaProperties

The	collection	of	all	available	SchemaField	objects	in	a	schema	row
source.

Using	the	SchemaFields	Collection
The	SchemaRowsource	object's	SchemaFields	property	returns	a
SchemaFields	collection.

SchemaParameters	Collection	Object

SchemaRowsource SchemaParameters
SchemaParameter
SchemaProperties

The	collection	of	SchemaParameter	objects	for	the	specified	schema
row	source.

Using	the	SchemaParameters	Collection
The	SchemaRowsource	object's	SchemaParameters	property	returns
a	SchemaParameters	collection.

SchemaRelationships	Collection	Object

Multiple	objects SchemaRelationships
SchemaRelationship
SchemaRelatedFields

The	collection	of	SchemaRelationship	objects	for	a	data	source	control.

Using	the	SchemaRelationships	Collection
The	DataSourceControl	object's	SchemaRelationships	property
returns	a	SchemaRelationships	collection.

SchemaRowsources	Collection	Object

Multiple	objects SchemaRowsources
SchemaRowsource
Multiple	objects

The	collection	of	SchemaRowsource	objects	for	the	specified	data
source	control.	This	collection	is	automatically	repopulated	with	objects	in
the	database	whenever	the	database	is	opened.

Using	the	SchemaRowsources	Collection
The	DataSourceControl	object's	SchemaRowsources	property	returns
a	SchemaRowsources	collection.

Sheets	Collection

Multiple	objects Sheets
Workbook

A	collection	of	all	the	Worksheet	objects	in	the	workbook.	Each
Worksheet	object	represents	a	worksheet.

Using	the	Sheets	collection
The	following	properties	return	a	Sheets	collection.

The	Spreadsheet	object's	Sheets	property.

The	Window	object's	SelectedSheets	property.

The	Workbook	object's	Sheets	property.

SublistRelationships	Collection	Object

RecordsetDef SublistRelationships
PageRelationship
Multiple	objects

The	collection	of	PageRelationship	objects	of	type	dscSublist	that	all
have	the	same	recordset	definition	as	their	“one”	side	(parent)	of	a	one-
to-many	relationship.	Records	in	the	child	of	a	sublist	relationship	are
retrieved	only	when	they	are	needed.

Using	the	SublistRelationships	Collection
The	RecordsetDef	object's	SublistRelationships	property	returns	a
SublistRelationships	collection.

SublistSchemaRelationships	Collection	Object

SchemaRowsource SublistSchemaRelationships
SchemaRelationship
SchemaRelatedFields

The	collection	of	SchemaRelationship	objects	that	all	have	the	same
schema	row	source	as	their	“one”	side	(from	a	one-to-many	relationship).

Using	the	SublistSchemaRelationships	Collection
The	SchemaRowsource	object's	SublistSchemaRelationships
property	returns	a	SublistSchemaRelationships	collection.

Windows	Collection	Object

Multiple	objects Windows
Window
Multiple	objects

A	collection	of	all	the	Window	objects	in	the	Spreadsheet	control.	The
Windows	collection	for	the	Spreadsheet	object	contains	all	the	windows
in	the	application,	whereas	the	Windows	collection	for	the	Workbook
object	contains	only	the	windows	in	the	specified	workbook.	In	both
cases,	the	Spreadsheet	object	contains	only	one	Window	object.	This
object	represents	the	window	for	active	sheet	within	the	workbook.

Each	sheet	has	a	distinct	Window	object	associated	with	it.
Application.ActiveWindow	or	Application.Workbooks(1).Windows(1)
always	returns	a	pointer	to	the	active	sheet's	window.	There	is	no
ActiveSheet.Window	or	Sheets(i).Window.

Using	the	Windows	Collection	Object
The	following	properties	return	a	Windows	collection.

The	Spreadsheet	object's	Windows	property

The	Workbook	object's	Windows	property.

Workbooks	Collection

Multiple	objects Workbooks
Multiple	objects

A	collection	containing	the	Workbook	object	that	is	open	in	the
spreadsheet	control.	The	spreadsheet	control	supports	only	one	open
workbook.

Using	the	Workbooks	collection
Use	the	ActiveWorkbook	property	to	refer	to	the	workbook	that	is
currently	open	in	the	spreadsheet	control.

Worksheets	Collection	Object

Multiple	objects Worksheets
Workbook

A	collection	of	all	the	Worksheet	objects	in	the	workbook.	Each
Worksheet	object	represents	a	worksheet.

Using	the	Worksheets	Collection	Object
Use	the	Worksheets	property	of	Spreadsheet	or	Workbook	object	to
return	the	Worksheets	collection.

Use	the	Add	method	to	create	a	new	worksheet	and	add	it	to	the
collection.	The	following	example	adds	two	new	worksheets	before	sheet
one	of	Spreadsheet1.

Spreadsheet1.Worksheets.Add	_
								Spreadsheet1.Worksheets(1),	,2
	 	

Use	Worksheets(index),	where	index	is	the	worksheet	index	number	or
name,	to	return	a	single	Worksheet	object.	The	following	example	hides
worksheet	one	in	the	Spreadsheet1.

Spreadsheet1.Worksheets(1).Visible	=	False
	 	

The	Worksheet	object	is	also	a	member	of	the	Sheets	collection.

XmlDataBindings	Collection

Workbook XmlDataBindings
Workbook

The	XmlDataBindings	collection	contains	all	of	the	XmlDataBinding
objects	associated	with	a	Spreadsheet	component.	Each
XmlDataBinding	object	contains	configuration	data	that	binds	the
Spreadsheet	component	to	a	data	retrieval	service,	SOAP	Web	Service,
XML	file,	or	a	Web	Part.

Using	the	XmlDataBindings	Collection
The	XMLDataBinding	object	is	a	member	of	the	XmlDataBindings
collection,	which	is	a	collection	of	all	of	the	XmlDataBinding	objects	in	a
Spreadsheet	component.	Within	the	collection,	individual
XmlDataBinding	objects	are	indexed	beginning	with	1	for	the	first	object,
2	for	the	second,	and	so	on.	You	can	return	a	XmlDataBinding	object
from	the	XmlDataBindings	collection	by	using	theItem	property	of	the
collection.	The	argument	for	the	Item	property	is	the	index	in	the
collection	of	the	object	you	want	to	return	or	the	binding	ID	of	the	object.
The	binding	ID	is	the	value	of	the	ID	attribute	in	the	XML	that	represents
the	binding.	You	can	find	this	in	the	XML	Spreadsheet	file	for	the
Spreadsheet	component	(or	Spreadsheet	Web	Part)	or	by	examining	the
BindingData	property	of	the	XmlDataBinding	object.	You	can	create	an
XML	Spreadsheet	file	by	creating	a	data	bound	spreadsheet	using
Microsoft	Excel	and	then	saving	the	workbook	as	an	XML	Spreadsheet.

You	create	a	new	XmlDataBinding	object	using	the	Add	method	of	the
XmlDataBindings	collection.	Once	you	have	created	the
XmlDataBinding	object,	you	can	use	its	BindingData	property	to	specify
binding	configuration	information	and	you	can	use	the	XmlMap	property
to	specify	the	schema	map	associated	with	the	binding.

The	following	example	creates	the	XmlDataBindings	object	using	the
XmlDataBindings	property	of	the	Workbook	object	and	shows	how	to
work	with	the	binding	information:

Dim	objBindings
Dim	objBinding
Dim	strBindingInfo

Set	objBindings	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings

For	Each	objBinding	in	objBindings

					'	Save	the	XML	binding	information	to	a	variable.					
					strBindingInfo	=	objBinding.BindingData
					'	Work	with	the	binding	information	here.
Next

XmlMaps	Collection

Workbook XmlMaps
Workbook

The	XmlMaps	collection	is	a	collection	of	all	of	the	XmlMap	objects
associated	with	a	Spreadsheet	component.	An	XmlMap	object	is	an	XML
schema	map	that	specifies	how	to	map	data	from	a	data	source	to	the
Spreadsheet	component.

Using	the	XmlMaps	Collection
In	the	XmlMaps	collection,	individual	XmlMap	objects	are	indexed
beginning	with	1	for	the	first	object,	2	for	the	second	object,	and	so	on.
You	return	a	XmlMap	object	from	the	XmlMaps	collection	using	the	Item
property.	The	argument	for	the	Item	property	is	the	index	in	the	collection
of	the	object	you	want	to	return	or	the	map	ID	of	the	object.	The	map	ID
is	the	value	of	the	ID	attribute	in	the	XML	that	represents	the	map.	You
can	find	this	in	the	XML	Spreadsheet	file	for	the	part	or	by	examining	the
MapData	property	of	the	XmlMap	object.	You	can	create	an	XML
Spreadsheet	file	by	creating	a	data-bound	spreadsheet	in	Microsoft	Excel
and	then	saving	the	workbook	as	an	XML	Spreadsheet.	You	can	create	a
new	XmlMap	object	by	using	the	Add	method	of	the	XmlMaps
collection.

The	following	example	uses	the	XmlMaps	property	to	return	the
XmlMaps	collection	object:

Dim	objMaps
Dim	objMap
Dim	strMapInfo

Set	objMaps	=	Spreadsheet1.ActiveWorkbook.XmlMaps

For	Each	objMap	in	objMaps
					'	Save	the	XML	map	information	to	a	variable.					
					strMapInfo	=	objMap.MapData
					'	Work	with	the	map	information	here.
Next

AutoFilter	Object

Multiple	objects AutoFilter
Multiple	objects

Represents	the	AutoFilter	container.	The	AutoFilter	object	contains	a
Range	collection	and	a	Filters	collection.

Using	the	AutoFilter	Object
The	Worksheet	object’s	AutoFilter	property	returns	the	AutoFilter
object	for	the	specified	worksheet.

Border	Object

Range Borders
Border
Range

Represents	the	border	of	an	object.

The	Border	object	is	a	member	of	the	Borders	collection.

Using	the	Border	Object
The	Borders	collection’s	Item	property	returns	a	Border	object.

ByRef	Object

ByRef

Contains	the	value	of	an	event	parameter.

Using	the	ByRef	object
Some	events	return	or	set	values	through	parameters	that	are	typed	as
ByRef	objects.	When	an	event	parameter	is	typed	as	a	ByRef	object,
use	the	Value	property	of	the	parameter	to	return	or	set	the	parameter.

The	following	event	parameters	return	or	set	values	through	a	ByRef
object:

The	BeforeContextMenu	event's	Menu	and	Cancel	parameters

The	BeforeKeyDown	event's	Cancel	parameter

The	BeforeKeyPress	event's	Cancel	parameter

The	BeforeKeyUp	event's	Cancel	parameter

The	BeforeRender	event's	Cancel	parameter

The	CommandBeforeExecute	event's	Cancel	parameter

The	CommandChecked	event's	Checked	parameter

The	CommandEnabled	event's	Enabled	parameter

The	CommandTipText	event's	Caption	parameter

The	EndEdit	event's	FinalValue,	Cancel,	and	ErrorDescription
parameters

The	StartEdit	event's	InitialValue,	Cancel,	and	ErrorDescription
parameters	(Spreadsheet)

The	StartEdit	event's	InitialValue,	ArrowMode,	CaretPosition,	Cancel,
and	ErrorDescription	parameters	(PivotTable)

ChartSpace	Object

ChartSpace Multiple	objects

Represents	the	chart	workspace.	The	chart	workspace	is	the	top-level
chart	container;	it	can	contain	more	than	one	chart,	with	each	chart
represented	by	a	ChChart	object.	When	a	chart	workspace	is	first
created,	it	is	empty	(it	does	not	contain	any	charts).	Use	the	Add	method
of	the	ChCharts	object	to	create	a	new	chart.

Using	the	ChartSpace	Object
You	can	use	either	the	CreateObject	method	or	the	New	keyword	to
create	a	new	ChartSpace	object.

The	object	ID	for	a	chart	control	on	an	HTML	page	or	a	Visual	Basic	form
returns	a	ChartSpace	object.

The	programmatic	identifier	for	the	ChartSpace	object	is
CLSID:0002E55D-0000-0000-C000-000000000046.	The	following
example	creates	a	chart	workspace	named	"ChartSpace1"	on	an	HTML
page.

<object	id=ChartSpace1	classid=CLSID:0002E55D-0000-0000-C000-000000000046	style="width:100%;height:350"></object>
	 	

ChAxis	Object

Multiple	objects ChAxis
Multiple	objects

Represents	a	single	axis	on	a	chart.	A	chart	can	have	up	to	sixteen	axes.
The	ChAxis	object	is	a	member	of	the	ChAxes	collection.

Using	the	ChAxis	object
Use	the	ChAxes	object’s	Add	method	to	add	an	axis	to	a	chart.

The	following	properties	and	methods	return	a	ChAxis	object.

The	ChAxes	object’s	Add	method

The	ChAxes	object’s	Item	property

The	ChAxis	object’s	CrossingAxis	property

The	ChGridlines	object’s	Parent	property

ChBorder	Object

Multiple	objects ChBorder

Represents	the	border	of	an	object	on	a	chart.

Using	the	ChBorder	object
The	following	properties	return	a	ChBorder	object:

The	ChChart	object's	Border	property

The	ChChartDraw	object's	Border	property

The	ChDataLabel	object's	Border	property

The	ChDataLabels	object's	Border	property

The	ChDropZone	object's	ButtonBorder	property

The	ChDropZone	object's	WatermarkBorder	property

The	ChLegend	object's	Border	property

The	ChPlotArea	object's	Border	property

The	ChPoint	object's	Border	property

The	ChSegmentBoundary	object's	Border	property

The	ChSeries	object's	Border	property

The	ChSurface	object's	Border	property

The	ChTitle	object's	Border	property

Use	the	Color	,	DashStyle	,	and	Weight	properties	to	set	the	attributes
of	a	border.	The	following	example	sets	border	properties	for	the	legend
of	ChartSpace1.

Sub	Format_Chartspace_Legend()

				Dim	ChartLegend
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	legend	for	the	chartspace.

				Set	ChartLegend	=	ChartSpace1.ChartSpaceLegend

				'	Set	the	legend	color.
				ChartLegend.Border.Color	=	"Blue"

				'	Set	the	line	weight	for	the	legend.
				ChartLegend.Border.Weight	=	chConstants.owcLineWeightThick

				'	Set	the	line	style	for	the	legend.
				ChartLegend.Border.DashStyle	=	chLineRoundDot

End	Sub
	 	

ChCategoryLabel	Object

Multiple	objects ChCategoryLabel
Multiple	objects

Represents	a	single	label	in	a	ChCategoryLabels	collection.

Using	the	ChCategoryLabel	object
You	can	use	the	following	properties	to	return	a	ChCategoryLabel
object:

The	Item	property	of	the	ChCategoryLabels	collection

The	ParentLabel	property	of	the	ChCategoryLabel	object

ChChart	Object

Multiple	objects ChChart
Multiple	objects

Represents	a	single	chart	in	the	chart	workspace.	The	chart	workspace
can	contain	up	to	16	charts.	The	ChChart	object	is	a	member	of	the
ChCharts	collection.

Using	the	ChChart	Object

Use	the	ChCharts	collection	object’s	Add	method	to	add	a	chart	to	the
chart	workspace:

The	following	properties	and	methods	return	a	ChChart	object.

The	ChAxes	object’s	Parent	property

The	ChAxis	object’s	Parent	property

The	ChCharts	object’s	Add	method

The	ChCharts	object’s	Item	property

The	ChPlotArea	object’s	Parent	property

The	ChSeries	object’s	Parent	property

The	ChSeriesCollection	object’s	Parent	property

ChChartDraw	Object

ChChartDraw Multiple	objects

Can	be	used	to	draw	items	on	a	chart,	such	as	a	line,	rectangle,	or
ellipse.

Using	the	ChChartDraw	object
The	DrawEllipse,	DrawLine,	DrawPolyLine,	DrawPolygon,	DrawLine
methods	can	be	used	to	add	drawing	objects	to	a	chart.	The	DrawText
method	can	be	used	to	add	text	to	a	chart.	The	Border,	Font,	Interior,
and	Line	properties	can	be	used	to	format	each	drawing	object	before	it
is	added	to	the	chart.

You	must	utilize	one	or	more	of	the	following	events	to	add	a	drawing
object	to	a	chart:	BeforeRender,	AfterRender,	or	AfterFinalRender.

ChChartField	Object

ChDropZone ChChartFields
ChChartField
ChDropZone

Represents	a	field	in	a	drop	zone.

Using	the	ChChartField	object
The	ChChartFields	object's	Item	property	returns	a	ChChartField
object.

Accessing	this	object	when	your	chart	is	bound	to	literal	data	will	result	in
a	run-time	error.

Unsupported	Language	Element
You	have	requested	Help	for	a	language	element	that	is	not	supported.

ChDataLabel	Object

Multiple	objects ChDataLabel
Multiple	objects

Represents	a	single	data	label	for	a	series,	or	the	single	data	label	for	a
trendline.

Using	the	ChDataLabel	object
The	following	properties	can	be	used	to	return	a	ChDataLabel	object:

The	ChDataLabels	object's	Item	property

The	ChTrendline	object's	DataLabel	property

The	following	example	adds	data	labels	to	the	first	series	in	the	first	chart
in	Chartspace1,	and	then	formats	the	third	data	label.

Sub	FormatSeriesLabel()

				Dim	serSeries1
				Dim	dlSeries1Labels

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	set	of	data	labels	to	the	first	series	and	return
				'	a	DataLabels	object.
				Set	dlSeries1Labels	=	serSeries1.DataLabelsCollection.Add

				dlSeries1Labels.Item(2).Font.Bold	=	True
				dlSeries1Labels.Item(2).Font.Color	=	"Red"

End	Sub
	 	

ChDataLabels	Object

Multiple	objects ChDataLabels
Multiple	objects

Contains	a	collection	of	ChDataLabel	objects	that	represent	all	the	data
labels	in	the	specified	set	of	data	labels	for	a	series.	Note	that	a	series
can	contain	more	than	one	set	of	data	labels.

Using	the	ChDataLabels	object
The	following	methods	and	properties	can	be	used	to	return	a
ChDataLabels	object:

The	ChDataLabelsCollection	collection	object's	Add	method.

The	ChDataLabelsCollection	collection	object's	Item	property.

The	following	example	adds	data	labels	to	the	first	series	in	the	first	chart
in	Chartspace1	and	then	formats	the	data	labels.

Sub	AddDataLabels()

				Dim	serSeries1
				Dim	dlSeries1Labels

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	set	of	data	labels	to	the	first	series	and	return
				'	a	DataLabels	object.
				Set	dlSeries1Labels	=	serSeries1.DataLabelsCollection.Add

				'	Set	the	number	format	of	the	data	labels.
				dlSeries1Labels.NumberFormat	=	"0.00"

				'	Set	the	data	labels	to	display	the	category
				'	name	for	the	data	point.
				dlSeries1Labels.HasCategoryName	=	True

				'	Set	the	data	labels	to	display	the	value
				'	for	the	data	point.
				dlSeries1Labels.HasValue	=	True

End	Sub
	 	

ChDropZone	Object

Multiple	objects ChDropZone
Multiple	objects

Represents	a	drop	zone	on	charts	that	are	bound	to	a	relational	data
source.

Using	the	ChDropZone	object
The	ChartSpace	object's	DropZones	method	returns	a	ChDropZone
object.

The	following	example	formats	the	button	and	the	watermark	of	the
series	drop	zone	in	Chartspace1.

Sub	Setup_DropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub
	 	

ChErrorBars	Object

ChSeries ChErrorBarsCollection
ChErrorBars
Multiple	objects

Represents	the	error	bars	for	a	series.	Error	bars	indicate	the	degree	of
uncertainty	for	chart	data.	Only	series	in	Radar,	Polar,	Area,	Bar,	Column,
Line,	and	XY	(Scatter)	charts	can	have	error	bars.	Only	series	in	scatter
charts	can	have	x	and	y	error	bars.	The	ChErrorBars	object	is	not	a
collection.	There	is	no	object	that	represents	a	single	error	bar;	you	either
have	x	error	bars	or	y	error	bars	turned	on	for	all	points	in	a	series	or	you
have	them	turned	off.

Using	the	ChErrorBars	object
Use	the	Add	method	of	the	ChErrorBarsCollection	object	to	add	error
bars	to	a	series.

The	following	methods	return	a	ChErrorBars	object.	For	more
information,	see	the	Help	topics	for	these	methods:

The	ChErrorBarsCollection	object’s	Add	method

The	ChErrorBarsCollection	object’s	Item	property

The	following	example	adds	error	bars	to	the	first	series	in	the	first	chart
in	ChartSpace1,	and	then	sets	the	properties	for	the	error	bars.

Sub	AddErrorBars()

				Dim	chConstants
				Dim	ebCollection
				Dim	ebSeries1

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	collection	of	error	bars	for
				'	the	first	series	in	the	first	chart	of	Chartspace1.
				Set	ebCollection	=	ChartSpace1.Charts(0).SeriesCollection(0).ErrorBarsCollection

				'	Add	error	bars	to	the	chart.
				ebCollection.Add

				'	Set	a	variable	to	the	error	bars	for	the	data	series.
				Set	ebSeries1	=	ebCollection.Item(0)

				'	Set	the	error	bars	so	that	they	represent	a	certain
				'	percentage	of	the	value	of	a	data	point.

				ebSeries1.Type	=	chConstants.chErrorBarTypePercent

				'	The	error	bars	represent	5%	of	a	data	point.
				ebSeries1.Amount	=	0.05

End	Sub

	 	

ChFont	Object

Multiple	objects ChFont

Contains	the	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	an
object	on	a	chart.

Using	the	ChFont	object
The	following	properties	can	be	used	to	return	a	ChFont	object:

The	ChAxis	object's	Font	property

The	ChChartDraw	object's	Font	property

The	ChDataLabel	object's	Font	property

The	ChDataLabels	object's	Font	property

The	ChDropZone	object's	ButtonFont	property

The	ChDropZone	object's	WatermarkFont	property

The	ChLegend	object's	Font	property

The	ChLegendEntry	object's	Font	property

The	ChTitle	object's	Font	property

Use	the	Name	property	to	set	the	font	for	a	particular	object.	The	Bold,
Italic,	Color,	Underline,	and	Size	properties	can	be	used	to	further
format	the	font	of	a	particular	object.

ChFormatMap	Object

Multiple	objects ChFormatMap
ChSegments

The	ChFormatMap	object	allows	formatting	to	represent	a	range	of	data
values.	The	ChFormatMap	object	can	be	used	provide	visual	cues	that
highlight	certain	portions	of	your	data.

Using	the	ChFormatMap	object
The	FormatMap	property	of	the	ChSeries	object	returns	a
ChFormatMap	object.

Format	maps	contain	one	or	more	ChSegment	objects,	each	of	which
can	be	formatted	independently.

The	following	example	binds	Chartspace1	to	the	Order	Details	table	in
the	SQL	Server	Northwind	database.	Then,	a	format	map	is	created.	The
smaller	values	are	displayed	in	white,	then	larger	values	are	displayed	in
a	light	shade	of	blue,	and	finally	the	largest	values	in	the	chart	are
displayed	in	dark	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=ServerName;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	details	table.
				ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Specify	that	the	divisions	in	formatting	be	created	automatically.
				segSegment1.HasAutoDivisions	=	True

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

End	Sub
	 	

The	following	example	binds	Chartspace1	to	the	Order	Details	table	in
the	Northwind	database.	Then,	two	segments	are	created.	The	first
segment	highlights	the	lowest	10%	of	values	in	the	first	series	in	the
chart.	The	second	segment	highlights	the	top	20%	of	values	in	the	first
series	in	the	chart.

Sub	Window_Onload()

				Dim	serseries1
				Dim	segBottom10Pct
				Dim	segTop20Pct
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

			'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
			'	Northwind	SQL	Server	database.
			ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																		"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																		"Data	Source=ServerName;"
			ChartSpace1.DataMember	=	"Order	Details"

			'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
			'	in	the	Order	details	table.
			ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
			ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

			'	Create	a	format	map.
			ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

			'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
			Set	serseries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

			'	Add	a	segment	to	the	format	map.	This	segment	will
			'	represent	the	bottom	10%	of	values	in	the	chart.
			Set	segBottom10Pct	=	serseries1.FormatMap.Segments.Add

			'	Measure	the	segment	boundaries	based	upon	a	percentage.
			segBottom10Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
			segBottom10Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

			'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	10%.

			segBottom10Pct.Begin.Value	=	0

			segBottom10Pct.End.Value	=	0.1

			'	Format	the	interior	of	the	matching	values.
			segBottom10Pct.Begin.Interior.Color	=	"red"
			segBottom10Pct.End.Interior.Color	=	"red"

			'	Add	a	segment	to	the	format	map.	This	segment	will
			'	represent	the	top	20%	of	values	in	the	chart.
				Set	segTop20Pct	=	serseries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segTop20Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segTop20Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	80%,	and	the	ending	value	to	100%.
				segTop20Pct.Begin.Value	=	0.8
				segTop20Pct.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segTop20Pct.Begin.Interior.Color	=	"green"
				segTop20Pct.End.Interior.Color	=	"green"

End	Sub

	 	

ChGridlines	Object

ChAxis ChGridlines
Multiple	objects

Represents	major	or	minor	gridlines	on	a	chart	axis.	You	cannot	have
gridlines	without	an	axis.	Gridlines	extend	the	tick	marks	on	a	chart	axis
to	make	it	easier	to	see	the	values	associated	with	the	data	markers.	This
object	is	not	a	collection.	There	is	no	object	that	represents	a	single
gridline;	you	either	have	all	gridlines	for	an	axis	turned	on	or	all	of	them
turned	off.

Using	the	ChGridlines	object
The	following	properties	return	a	ChGridlines	object.

The	ChAxis	object’s	MajorGridlines	property

The	ChAxis	object’s	MinorGridlines	property

The	following	example	enables	the	major	and	minor	gridlines	for	the
value	axis	in	the	first	chart	in	Chartspace1.	Then,	the	weight	of	the
gridlines	is	formatted.

Sub	EnableGridlines()

				Dim	chConstants
				Dim	axValueAxis

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	value	axis	in	the	first	chart	in	Chartspace1.
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)

				'	The	following	two	lines	of	code	turn	on	the	major	and
				'	minor	gridlines	for	the	value	axis.
				axValueAxis.HasMajorGridlines	=	True
				axValueAxis.HasMinorGridlines	=	True

				'	The	following	two	lines	of	code	set	the	line	weight	of	the
				'	major	and	minor	gridlines	for	the	value	axis.
				axValueAxis.MajorGridlines.Line.Weight	=	chConstants.owcLineWeightMedium
				axValueAxis.MinorGridlines.Line.Weight	=	chConstants.owcLineWeightHairline

End	Sub

	 	

ChInterior	Object

Multiple	objects ChInterior

Represents	the	interior	formatting	of	an	object.

Using	the	ChInterior	object
The	following	properties	return	a	ChInterior	object:

The	ChChart	object's	Interior	property

The	ChChartDraw	object's	Interior	property

The	ChartSpace	object's	Interior	property

The	ChDataLabel	object's	Interior	property

The	ChDataLabels	object's	Interior	property

The	ChDropZone	object's	ButtonInterior	property

The	ChDropZone	object's	WatermarkInterior	property

The	ChLegend	object's	Interior	property

The	ChPlotArea	object's	Interior	property

The	ChPoint	object's	Interior	property

The	ChSegmentBoundary	object's	Interior	property

The	ChSeries	object's	Interior	property

The	ChSurface	object's	Interior	property

The	ChTitle	object's	Interior	property

The	following	example	sets	the	interior	fill	of	the	first	two	series	and	the
plot	area	of	the	first	chart	in	ChartSpace1.

Sub	FormatInteriorFills()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	two-color	gradient.
				serSeries1.Interior.SetTwoColorGradient	chConstants.chGradientDiagonalDown,	_
															chConstants.chGradientVariantCenter,	"Blue",	"Silver"

				'	Set	the	interior	fill	of	the	second	series	to	a	solid	color.
				serSeries2.Interior.SetSolid	"Purple"

				'	Set	the	interior	fill	of	the	plot	area	to	a	preset	texture.
				ChartSpace1.Charts(0).PlotArea.Interior.SetTextured	_
															chConstants.chTextureParchment,	chConstants.chTile

End	Sub
	 	

ChLegend	Object

Multiple	objects ChLegend
Multiple	objects

Represents	a	chart	workspace	or	chart	legend.	A	chart	or	chart
workspace	can	have	only	one	legend.	The	ChLegend	object	contains	a
ChLegendEntries	collection	that	contains	one	or	more	ChLegendEntry
objects.

Using	the	ChLegend	object
Use	the	HasLegend	property	or	the	HasChartSpaceLegend	property	to
enable	the	legend.

The	following	properties	return	a	ChLegend	object.

The	ChartSpace	object’s	ChartSpaceLegend	property

The	ChChart	object’s	Legend	property

The	ChLegendEntries	object’s	Parent	property

The	ChLegendEntry	object’s	Parent	property

ChLegendEntry	Object

ChLegend ChLegendEntries
ChLegendEntry
Multiple	objects

Represents	a	single	legend	entry.	The	ChLegendEntry	object	is	a
member	of	the	ChLegendEntries	collection.

Using	the	ChLegendEntry	object
The	ChLegendEntries	collection’s	Item	property	returns	a
ChLegendEntry	object.

Use	LegendEntries(index),	where	index	is	the	legend	entry	index
number,	to	return	a	single	LegendEntry	object.	You	cannot	return	legend
entries	by	name.

The	index	number	represents	the	position	of	the	legend	entry	in	the
legend.	LegendEntries(0)	is	at	the	top	of	the	legend,	and
LegendEntries(LegendEntries.Count)	is	at	the	bottom.	The	following
example	changes	the	font	for	the	text	of	the	legend	entry	at	the	top	of	the
chartspace	legend	(this	is	usually	the	legend	for	series	one)	in
Chartspace1.

Chartspace1.ChartSpaceLegend.LegendEntries(0)	_
				.Font.Bold	=	True
	 	

ChLine	Object

Multiple	objects ChLine

Represents	the	formatting	of	a	line	on	a	chart.

Using	the	ChLine	object
You	can	use	the	following	properties	to	return	a	ChLine	object:

The	ChAxis	object's	Line	property

The	ChChartDraw	object's	Line	property

The	ChErrorBars	object's	Line	property

The	ChGridlines	object's	Line	property

The	ChPoint	object's	Line	property

The	ChSegmentBoundary	object's	Line	property

The	ChSeries	object's	Line	property

The	ChTrendline	object's	Line	property

ChMarker	Object

ChSeries ChMarker

Represents	a	data	marker	on	a	Line,	XY	(Scatter),	Radar,	or	Polar	chart.

Using	the	ChMarker	object
The	ChSeries	object’s	Marker	property	returns	a	ChMarker	object.

Use	the	Size	and	Style	properties	to	format	ChMarker	objects.

The	following	example	converts	the	first	series	in	the	first	chart	of
Chartspace1	to	a	line	chart,	and	then	formats	the	markers	on	the	line.

Sub	FormatMarkers()

				Dim	serSeries1
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Change	the	type	of	the	first	data	series	to	a	line	chart.
				serSeries1.Type	=	chConstants.chChartTypeLineMarkers

				'	Set	the	marker	style.
				serSeries1.Marker.Style	=	chConstants.chMarkerStyleDiamond

				'	Set	the	size	of	the	markers.
				serSeries1.Marker.Size	=	7

End	Sub

	 	

ChPlotArea	Object

Multiple	objects ChPlotArea
Multiple	objects

Represents	the	plot	area	on	a	chart	(the	area	where	the	chart	data	is
plotted).	Pie,	Doughnut,	Radar,	and	Polar	charts	do	not	have	a	plot	area;
instead,	these	charts	draw	directly	on	the	chart	area.

Using	the	ChPlotArea	object
The	ChChart	object’s	PlotArea	property	returns	a	ChPlotArea	object.

The	following	example	fills	the	plot	area	of	the	first	chart	in	Chartspace1
with	a	predefined	texture.

Sub	FormatPlotArea()
Dim	chConstants

Set	chConstants	=	ChartSpace1.Constants

'	Set	the	interior	fill	of	the	plot	area	to	a	preset	texture.
ChartSpace1.Charts(0).PlotArea.Interior.SetTextured	_

chConstants.chTextureParchment,	chConstants.chTile

End	Sub

ChPoint	Object

ChSeries ChPoints
ChPoint
Multiple	objects

Represents	a	single	data	point	in	a	series	on	a	chart.	The	ChPoint	object
is	a	member	of	the	ChPoints	collection,	which	contains	all	the	points	in	a
given	series.

Using	the	ChPoint	object
Use	this	object	to	format	single	data	points	in	a	series,	or	use	the
GetValue	method	to	return	a	point	value.

The	ChPoints	object’s	Item	property	returns	a	ChPoint	object.

ChScaling	Object

Multiple	objects ChScaling

Represents	the	scaling	for	a	data	series,	axis,	or	chart.

Using	the	ChScaling	object
The	following	properties	return	a	ChScaling	object:

The	ChAxis	object's	Scaling	property

The	ChChart	object's	Scalings	property

The	ChSeries	object's	Scalings	property

ChScrollView	Object

ChChart ChScrollView

Using	the	ChScrollView	Object
You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	and	to	control	the	scroll	view	of	a	chart.

You	use	the	the	ScrollView	property	of	the	ChChart	object	to	retrieve	the
ChScrollView	object	of	the	chart	(one	per	chart.)	This	object	is	the
primary	interface	that	allows	applications	to	retrieve	information	and
control	the	scroll	view.	The	ChScrollView	object	has	several	properties
that	you	can	use	to	specify	and	determine	the	scroll	view	of	the	chart.

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.

The	VerticalPosition	and	HorizontalPosition	properties	shift	the	scroll
view	vertically	and	horizontally.	The	initial	values	of	these	properties	are
treated	as	the	location	(0,	0),	and	are	relative	to	the	values	of	the	Left
and	Top	properties	of	the	actual	plot	area	(the	ChPlotArea	object).	The
incremental	shift	in	the	position	of	the	scroll	view	is	relative	to	the	ratio	of
the	VerticalExtent	and	VerticalExtentMax	properties,	and	to	the	ratio	of
the	HorizontalExtent	and	HorizontalExtentMax	properties.

The	ratio	of	the	VerticalExtent	and	VerticalExtentMax	properties
describes	the	position	of	the	scroll	view	area’s	vertical	dimension	relative
to	the	actual	plot	area’s	vertical	dimension.	The	ratio	of	the
HorizontalExtent	and	HorizontalExtentMax	properties	value	describes
the	position	of	the	scroll	view	area’s	horizontal	dimension	relative	to	the
actual	plot	area’s	horizontal	dimension.

You	can	zoom	the	display	of	the	chart	in	or	out	by	setting	the
VerticalExtentMax	and	HorizontalExtentMax	properties	to	values
greater	or	less	than	the	VerticalExtent	and	HorizontalExtent	properties,
respectively.	For	example,	to	zoom	the	chart	by	200%,	set	the

VerticalExtentMax	and	HorizontalExtentMax	properties	to	twice	the
value	of	the	VerticalExtent	and	HorizontalExtent	properties.

Whether	the	chart	is	zoomed	or	not,	you	can	access	the	scroll	view’s
dimensions	by	using	the	Top,	Left,	Right,	and	Bottom	properties	of	the
ChScrollView	object.	And,	you	can	access	the	actual	plot	area’s
dimensions	by	using	the	Top,	Left,	Right,	and	Bottom	properties	of	the
ChPlotArea	object.

If	the	value	of	either	the	HorizontalExtent	or	the	HorizontalExtentMax
property	is	less	than	or	equal	to	zero	(0),	the	scroll	view	is	disabled	and	a
chart	cannot	be	scrolled	horizontally.	Similarly,	a	chart	cannot	be	scrolled
vertically	if	the	value	of	either	the	VerticalExtentMax	or	the
VerticalExtent	property	is	less	than	or	equal	to	zero.

You	can	also	change	the	scroll	position	and	scroll	extent	using	the
SetPosition	and	SetExtent	methods	of	the	Chart	component.	Using	the
SetPosition	and	SetExtent	methods	is	the	same	as	setting	the	individual
HorizontalExtent,	VerticalExtent,	HorizontalPosition,	and
VerticalPosition	properties,	but	these	methods	allow	you	to	set	multiple
properties	at	the	same	time	to	reduce	the	number	of	times	the	chart	is
repainted.

ChSegment	Object

ChFormatMap ChSegments
ChSegment
ChSegmentBoundary

Represents	a	single	segment	in	a	format	map.	Each	segment	of	a	format
map	can	be	formatted	independently	of	the	other	segments.

Using	the	ChSegment	object
The	following	methods	and	properties	return	a	ChSegment	object.

The	ChSegments	object's	Add	method

The	ChSegments	object's	Item	property

Use	the	Add	method	of	the	ChSegments	object	to	create	a	new
segment.	Use	the	properties	of	the	ChSegmentBoundary	object
returned	by	the	Begin	property	to	format	the	beginning	of	a	segment.
Use	the	properties	of	the	ChSegmentBoundary	object	returned	by	the
End	property	to	format	the	end	of	a	segment.

Example
The	following	example	binds	Chartspace1	to	the	Order	Details	table	in
the	Northwind	database.	Then,	two	segments	are	created.	The	first
segment	highlights	the	lowest	10%	of	values	in	the	first	series	in	the
chart.	The	second	segment	highlights	the	top	20%	of	values	in	the	first
series	in	the	chart.

Sub	Window_Onload()

				Dim	serseries1
				Dim	segBottom10Pct
				Dim	segTop20Pct
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.

				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;Data	Source="	&	_
																																			"ServerName;"

				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	details	table.
				ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serseries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.	This	segment	will
				'	represent	the	bottom	10%	of	values	in	the	chart.
				Set	segBottom10Pct	=	serseries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.

				segBottom10Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segBottom10Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	10%
				segBottom10Pct.Begin.Value	=	0
				segBottom10Pct.End.Value	=	0.1

				'	Format	the	interior	of	the	matching	values.
				segBottom10Pct.Begin.Interior.Color	=	"red"
				segBottom10Pct.End.Interior.Color	=	"red"			

				'	Add	a	segment	to	the	format	map.	This	segment	will
				'	represent	the	top	20%	of	values	in	the	chart.

				Set	segTop20Pct	=	serseries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segTop20Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segTop20Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	80%,	and	the	ending	value	to	100%.
				segTop20Pct.Begin.Value	=	0.8
				segTop20Pct.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segTop20Pct.Begin.Interior.Color	=	"green"
				segTop20Pct.End.Interior.Color	=	"green"

End	Sub

	 	

ChSegmentBoundary	Object

ChSegment ChSegmentBoundary
Multiple	objects

Represents	the	boundaries	of	of	a	ChSegment	object.

Using	the	ChSegmentBoundary	object
The	following	properties	return	a	ChSegmentBoundary	object.

The	ChSegment	object's	Begin	property

The	ChSegment	object's	End	property

Use	the	Value	property	to	set	the	beginning	and	ending	values	of	a
ChSegmentBoundary	object.	Use	the	ValueType	property	to	specify
whether	a	value	represents	a	percentage	or	an	absolute	value.

Use	the	objects	returned	by	the	following	properties	to	format	a
ChSegmentBoundary	object:	Border	,	Interior	,	and	Line	.

ChSegments	Object

ChFormatMap ChSegments
Multiple	objects

Represents	the	collection	of	segments	for	a	ChFormatMap	object.

Using	the	ChSegments	object
The	Segments	property	of	the	ChFormatMap	object	can	be	used	to
return	a	ChSegments	object.

Use	the	Add	method	of	the	ChSegments	object	to	add	a	segment	to	a
format	map.

Use	the	Item	property	of	the	ChSegments	object	to	return	a	single
ChSegment	object.

ChSeries	Object

Multiple	objects ChSeries
Multiple	objects

Represents	a	series	on	a	chart.	The	ChSeries	object	is	a	member	of	the
ChSeriesCollection	collection.

Using	the	ChSeries	object
Use	the	Add	method	of	the	ChSeriesCollection	collection	to	add	a
series	to	a	chart.

The	following	properties	and	methods	return	a	ChSeries	object:

The	ChDataLabels	object’s	Parent	property

The	ChDataLabelsCollection	object’s	Parent	property

The	ChErrorBars	object’s	Parent	property

The	ChErrorBarsCollection	object’s	Parent	property

The	ChPoint	object’s	Parent	property

The	ChPoints	object’s	Parent	property

The	ChSeriesCollection	object’s	Add	method

The	ChSeriesCollection	object’s	Item	property

The	ChTrendline	object’s	Parent	property

The	ChTrendlines	object’s	Parent	property

ChSurface	Object

ChPlotArea ChSurface
Multiple	objects

Represents	the	surface	of	the	walls	and	floor	of	a	chart.

Using	the	ChSurface	object
The	following	properties	can	be	used	to	return	a	ChSurface	object:

The	ChChart	object's	BackWall	property

The	ChChart	object's	SideWall	property

The	ChChart	object's	Floor	property

You	can	use	the	Border,	Interior,	and	Thickness	properties	to	format	a
ChSurface	object.

ChTitle	Object

Multiple	objects ChTitle
Multiple	objects

Represents	the	title	of	a	chart	workspace,	axis,	or	chart.

Using	the	ChTitle	object
Use	the	HasTitle	or	HasChartspaceTitle	property	to	enable	titles.

The	following	properties	return	a	ChTitle	object:

The	ChartSpace	object’s	ChartSpaceTitle	property

The	ChAxis	object’s	Title	property

The	ChChart	object’s	Title	property

The	following	example	adds	a	title	to	the	first	chart	in	Chartpsace1	and
then	formats	the	newly-created	title.

Sub	AddChartTitle()

				Dim	Chart1Title
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Enable	the	title	for	the	first	chart	in	the
				'	chartspace.
				ChartSpace1.Charts(0).HasTitle	=	True

				'	Set	a	variable	to	the	chart	title.
				Set	Chart1Title	=	ChartSpace1.Charts(0).Title

				'	Set	the	caoption	for	the	title.
				Chart1Title.Caption	=	"2000	Sales	by	Department"

				'	Set	the	title	to	display	at	the	bottom	of	the	chart.
				Chart1Title.Position	=	chConstants.chTitlePositionBottom

				'	Format	the	font	used	for	the	title.

				Chart1Title.Font.Bold	=	True
				Chart1Title.Font.Name	=	"Tahoma"
				Chart1Title.Font.Size	=	16

End	Sub
	 	

ChTrendline	Object

ChSeries ChTrendlines
ChTrendline
Multiple	objects

Represents	a	trendline	on	a	chart.	A	trendline	shows	the	trend,	or
direction,	of	data	in	a	series.	The	ChTrendline	object	is	a	member	of	the
ChTrendlines	collection.

Using	the	ChTrendline	object
Use	the	Add	method	of	the	ChTrendlines	object	to	add	a	trendline	to	a
series.

The	following	method	and	property	return	a	ChTrendline	object.

The	ChTrendlines	collection’s	Add	method

The	ChTrendlines	collection’s	Item	property

The	following	example	adds	a	trendline	to	the	first	series	in	the	first	chart
in	Chartspace1	and	then	formats	the	trendline.

Sub	AddPolyTrendline()

				Dim	serSeries1
				Dim	chConstants
				Dim	tlSeries1Trend

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	series	of	the	first	chart
				'	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	trendline	to	the	first	series	and	return
				'	a	Trendline	object.
				Set	tlSeries1Trend	=	serSeries1.Trendlines.Add

				'	Display	the	equation	used	to	calculate	the	trendline.
				tlSeries1Trend.IsDisplayingEquation	=	True

				'	Set	the	trendline	to	be	a	polynomial	trendline.
				tlSeries1Trend.Type	=	chConstants.chTrendlineTypePolynomial

End	Sub

	 	

ChUserDefinedSelection	Object

ChUserDefinedSelection

Represents	an	object	drawn	on	the	chart	between	calls	to	the
BeginObject	and	EndObject	methods.

Using	the	ChUserDefinedSelection	object
When	a	custom	drawing	object	is	selected,	the	ChartSpace	object's
Selection	property	returns	a	ChUserDefinedSelection	object.

Coordinate	Object

Coordinate

Stores	the	X	and	Y-coordinates	of	a	data	point	for	later	retrieval.

Using	the	Coordinate	object
Use	the	ValueToPoint	method	of	the	ChAxis	or	ChSeries	object	to
return	a	Coordinate	object.

Use	the	x	and	y	properties	of	the	Coordinate	object	to	return	the	X	and
Y-coordinates	of	the	data	point	currently	stored	in	the	Coordinate	object.

The	following	example	changes	the	title	of	the	first	chart	in	Chartspace1
to	the	pixel	coordinates	of	a	data	point	in	the	first	series	of	the	chart.

Sub	GetPixelCoordinates()

				Dim	chChart1
				Dim	lXPos
				Dim	lYPos
				Dim	coPointCoordinates

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Enable	the	title	for	the	chart.
				chChart1.HasTitle	=	True

				'	Set	a	Coordinate	object	to	the	coordinates	of	a	data	point.
				Set	coPointCoordinates	=	chChart1.SeriesCollection(0).ValueToPoint("Pears",	10)

				'	Set	a	variable	to	the	X-coordinate.
				lXPos	=	coPointCoordinates.x

				'	Set	a	variable	to	the	Y-coordinate.
				lYPos	=	coPointCoordinates.y

				'	Set	the	chart's	titles	to	the	pixel	coordinates	of	the	specified

				'	data	point.
				chChart1.Title.Caption	=	"X("	&	lXPos	&	")	Y("	&	lYPos	&	")"

End	Sub
	 	

Criteria	Object

Filter Criteria
Filter

Contains	the	entire	array	of	AutoFilter	criteria.	Each	criterion	is	a	String
value.	The	AutoFilter	object	contains	a	Filters	collection,	the	Filters
collection	contains	a	Filter	object	for	each	column	in	the	filtered	range,
and	each	Filter	object	contains	a	Criteria	object.

Using	the	Criteria	Object
The	Filter	object’s	Criteria	property	returns	the	Criteria	object	for	the
specified	filter.

DataPage	Object

Multiple	objects DataPage
Multiple	objects

Represents	the	combination	of	sections	that	are	shown	on	a	data	access
page	when	the	expand	button	is	clicked.	These	sections	include	a
caption	section,	a	group	header	and	group	footer	section	for	each	record,
and	a	navigation	section	corresponding	to	the	set	of	visible	records	from
a	recordset	within	a	single	parent	record.

The	DataPage	object	is	a	member	of	the	DataPages	collection.

Using	the	DataPage	Object
The	following	properties	return	a	DataPage	object:

The	DataPages	object's	Item	property

The	Section	object's	DataPage	property

The	DSCEventInfo	object's	DataPage	property

DataSourceControl	Object

DataSourceControl Multiple	objects

Represents	a	data	source	control.	The	data	source	control	is	the	top-level
container	in	the	data	model.

Using	the	DataSourceControl	Object
You	can	use	either	the	CreateObject	method	or	the	New	keyword	to
create	a	DataSourceControl	object.

The	object	ID	for	a	data	source	control	on	an	HTML	page	returns	a
DataSourceControl	object.	The	programmatic	identifier	for	the
DataSourceControl	object	is	CLSID:CLSID:0002E55B-0000-0000-
C000-000000000046.	The	following	example	creates	a	data	source
control	named	"MSODSC"	on	an	HTML	page.

<object	id=MSODSC	classid=CLSID:0002E55B-0000-0000-C000-000000000046></object>
	 	

DSCEventInfo	Object

DSCEventInfo Multiple	objects

Contains	information	about	the	specified	data	source	control	event.

Using	the	DSCEventInfo	Object
The	following	data	source	control	events	use	a	DSCEventInfo	object	as
their	only	parameter:

The	AfterDelete	event

The	AfterInsert	event

The	AfterUpdate	event

The	BeforeCollapse	event

The	BeforeDelete	event

The	BeforeExpand	event

The	BeforeFirstPage	event

The	BeforeInitialBind	event

The	BeforeInsert	event

The	BeforeLastPage	event

The	BeforeNextPage	event

The	BeforeOverwrite	event

The	BeforePreviousPage	event

The	BeforeUpdate	event

The	Current	event

The	DataError	event

The	DataPageComplete	event

The	Dirty	event

The	Focus	event

The	RecordExit	event

The	RecordsetSaveProgress	event

The	Undo	event

You	can	use	the	properties	of	the	DSCEventInfo	object	to	return
information	about	the	data	access	page	when	an	event	is	trapped.	The
Section	property	can	be	used	to	determine	the	section	of	the	data
access	page	where	the	event	occurred.	You	can	use	the	ReturnValue
property	to	cancel	the	completion	of	some	events.

The	events	listed	above	vary	in	their	support	of	the	DSCEventInfo
properties.	Some	of	the	events	support	a	subset	of	the	DSCEventInfo
properties,	and	some	events	don't	support	any	of	the	DSCEventInfo
properties.	Using	an	unsupported	property	will	result	in	a	run-time	error.

The	following	example	cancels	the	deletion	of	a	record	if	the
Discontinued	field	is	set	the	No.	The	Section	property	of	the
DSCEventInfo	object	is	used	to	drill	down	to	the	value	of	the
Discontinued	field.	If	the	field	contains	the	value	No,	then	the
ReturnValue	of	the	DSCEventInfo	object	is	set	to	False,	canceling	the
deletion	of	the	record.

Sub	MSODSC_BeforeDelete(DSCEventInfo)

			Dim	txtDiscontinued

			'	Set	a	variable	to	the	text	box	that	contains	the	value
			'	of	the	Discontinued	field	for	the	record	that	is	to	be	deleted.
			Set	txtDiscontinued	=	DSCEventInfo.Section.HTMLContainer	_
																								.Children("Discontinued")

			'	Check	the	value	of	the	control.
			If	txtDiscontinued.Value	=	"No"	Then

						'	Display	a	message	to	the	user.
						Msgbox	"Do	not	delete	products	that	have	not	"	&	_
													"been	discontinued."

						Cancel	the	deletion	of	the	record.
						DSCEventInfo.ReturnValue	=	False
			End	If

End	Sub

	 	

ElementExtension	Object

Multiple	objects ElementExtensions
ElementExtension

Adds	data-related	properties	to	HTML	elements	such	as	text	boxes	and
drop-down	list	boxes.	Element	extensions	tie	recordset	and	grouping
definition	objects	such	as	page	fields	to	an	element	on	the	HTML	page
that	can	be	bound	to	their	resulting	data.

The	ElementExtension	object	is	a	member	of	the	ElementExtensions
collection.

Using	the	ElementExtension	Object
The	following	method	and	property	return	an	ElementExtension	object:

The	ElementExtensions	collection's	Add	method

The	ElementExtensions	collection's	Item	property

Filter	Object

Multiple	objects Filter
Multiple	objects

Represents	a	single	filter	used	with	the	AutoFilter.	The	Filter	object	is	a
member	of	the	Filters	collection.	The	AutoFilter	object	contains	a	Filters
collection,	the	Filters	collection	contains	a	Filter	object	for	each	column
in	the	filtered	range,	and	each	Filter	object	contains	a	Criteria	object.

Using	the	Filter	Object
The	Filters	object's	Item	property	returns	a	Filter	object.

Font	Object

Multiple	objects Font

Contains	the	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	an
object.

Using	the	Font	object
Use	the	Font	property	to	return	a	Font	object.

The	following	example	formats	cells	A1:C5	as	bold.

Spreadsheet1.ActiveSheet.Range("A1:A5").Font.Bold	=	True
	 	

GroupingDef	Object

Multiple	objects GroupingDef
PageFields

Represents	a	grouping	definition.	A	grouping	definition	is	a	special	type	of
recordset	definition.	As	with	RecordsetDef	objects,	you	can	use	a
grouping	definition's	name	in	the	Execute	method	and	in	the
RecordSource	property	of	a	group	level	or	element	extension.

A	grouping	definition	defines	an	ADO	grouping	recordset	that	appears	as
a	parent	of	the	containing	recordset	in	the	hierarchy	or	recordsets
produced	by	a	page.	At	run	time,	all	the	data	for	the	containing	recordset
definition	is	fetched	before	the	grouping	recordset	is	created.

Using	the	GroupingDef	Object
The	following	methods	and	property	return	a	GroupingDef	object:

The	GroupingDefs	collection's	Add	method

The	GroupingDefs	collection's	AddTotal	method

The	GroupingDefs	or	AllGroupingDefs	collections'	Item	property

GroupLevel	Object

Multiple	objects GroupLevel

Represents	the	set	of	all	records	at	a	given	level	of	the	data	access	page
hierarchy.	The	GroupLevel	object	is	a	member	of	the	GroupLevels
collection.

Using	the	GroupLevel	Object
The	following	method	and	property	return	a	GroupLevel	object:

The	GroupLevels	collection’s	Add	method

The	GroupLevels	collection’s	Item	property

The	DataPage	object's	GroupLevel	property

Heading	Object

Window Headings
Heading
Window

Represents	a	single	row	or	column	header	in	the	specified	window's
Headings	collection.

Using	the	Heading	object
Use	the	Headings	collection's	Item	property	to	return	an	individual
Heading	object.	This	can	be	expressed	as	Headings(Index)	or
Headings.Item(Index),	where	Index	is	the	index	number	of	the	individual
Heading	object.

Use	the	Caption	property	to	customize	the	row	and	column	headings	in	a
window.	The	following	example	illustrates	how	to	use	the	Caption
property	to	change	the	row	and	column	heading	in	a	window:

Sub	Change_Headings()

				Dim	hdrColHeadings
				Dim	hdrRowHeadings

				'	Set	a	variable	to	the	column	headings	in	the	active	window.
				Set	hdrColHeadings	=	Spreadsheet1.ActiveWindow.ColumnHeadings

				'	Set	a	variable	to	the	row	headings	in	the	active	window.
				Set	hdrRowHeadings	=	Spreadsheet1.ActiveWindow.RowHeadings

				'	Set	the	headings	of	columns	A	through	D.
				hdrColHeadings(1).Caption	=	"Qtr	1"
				hdrColHeadings(2).Caption	=	"Qtr	2"
				hdrColHeadings(3).Caption	=	"Qtr	3"
				hdrColHeadings(4).Caption	=	"Qtr	4"

				'	Set	the	headings	of	rows	1	though	5.
				hdrRowHeadings(1).Caption	=	"Sedan"
				hdrRowHeadings(2).Caption	=	"Convertible"
				hdrRowHeadings(3).Caption	=	"Truck"
				hdrRowHeadings(4).Caption	=	"Sport-Utility"

				hdrRowHeadings(5).Caption	=	"Minivan"

End	Sub
	 	

The	Caption	property	of	the	Heading	object	is	limited	to	256	characters,
and	the	text	cannot	be	wrapped	to	a	second	line.

Use	the	ResetHeadings	method	to	set	the	row	and	column	headings
back	to	their	default	values.

Hyperlink	Object

Range Hyperlink
Range

Represents	a	hyperlink.

Using	the	Hyperlink	Object
The	Range	object’s	Hyperlink	property	returns	a	Hyperlink	object.

Interior	Object

Multiple	objects Interior

Represents	the	interior	of	an	object.

Using	the	Interior	Object
The	following	properties	return	an	Interior	object:

The	Range	object’s	Interior	property

The	TitleBar	object’s	Interior	property

ListObject	Object

Multiple	objects ListObject
Multiple	objects

Using	the	ListObject	Object
A	ListObject	object	represents	an	XML	list	on	a	worksheet.	The
ListObject	object	is	a	member	of	the	ListObjects	collection.	Individual
ListObject	objects	in	the	ListObjects	collection	are	indexed	beginning
with	1	for	the	first	object,	2	for	the	second	object,	and	so	on.	You	use	the
Item	property	to	return	a	single	ListObject	object	from	the	ListObjects
collection.	The	argument	for	the	Item	property	is	the	name	or	the	index
number	in	the	ListObjects	collection	of	the	ListObject	object.	The	name
is	the	value	of	the	ID	attribute	of	an	Entry	element	(MapInfo/Map/Entry)
in	an	XML	spreadsheet	file.	The	XML	fragment	where	these	details
appear	in	the	XML	Spreadsheet	file	looks	something	like	the	following:

<x2:MapInfo	xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">	
			<x2:Map	x2:ID="Cust_MapId">
						<x2:Entry	x2:ID="example_id"	x2:Type="table">
									...
						</x2:Entry>
			</x2:Map>
</x2:MapInfo>

You	can	also	get	the	name	by	using	the	Name	property	of	the	ListObject
object.	Using	Microsoft	Excel,	you	can	create	an	XML	Spreadsheet	file	by
creating	a	data	bound	spreadsheet	and	then	saving	the	workbook	as	an
XML	Spreadsheet.

This	example	sets	the	line	weight	of	the	border	for	the	range	of	the
specified	list	in	the	Spreadsheet	component.

Sub	SetListBorder()
				Dim	ssConstants
				Dim	rngList

				Set	ssConstants	=	Spreadsheet1.Constants
			

				'	Set	a	variable	to	the	range	that	contains	the	list.
				Set	rngList	=	Spreadsheet1.ActiveSheet.ListObjects(1).Range
			
				'	Set	the	range	border	weight.
				rngList.Borders.Weight	=	ssConstants.owcLineWeightMedium
End	Sub

ListRow	Object

ListObject ListRows
ListRow
Multiple	objects

Using	the	ListRow	Object
A	ListRow	object	represents	a	row	in	a	ListObject	object	in	a
Spreadsheet	component.	The	ListRow	object	is	a	member	of	the
ListRows	collection.	The	ListRows	collection	contains	all	the	rows	in	a
ListObject	object.	The	ListRow	object	has	no	default	property.

Individual	ListRow	objects	in	the	ListRows	collection	are	indexed
beginning	with	1	for	the	first	object,	2	for	the	second	object,	and	so	forth.
You	use	the	Item	property	to	return	a	single	ListRow	object	from	the
ListRows	collection.	The	argument	for	the	Item	property	is	the	index
number	in	the	ListRows	collection	of	the	ListRow	object.

You	use	the	Delete	method	to	delete	the	cells	of	a	row	in	a	list.	Deleting
the	row	will	cause	a	shift	up	for	the	remaining	cells	below	the	deleted	row.
The	read/write	Active	property	of	the	ListRow	object	allows	you	to	find
out	if	a	row	is	selected	or	to	select	it.	You	use	the	Range	property	to
return	a	Range	object	that	represents	the	range	to	which	the	specified	list
row	applies.

You	find	out	the	current	ordinal	position	of	the	ListRow	object	in	the
ListRows	collection	using	the	Index	property.	The	Application	and
Parentproperties	return	the	Spreadsheet	component	and	the	parent
object	(which	is	the	ListObject	object)	for	the	specified	ListRows	object.

Name	Object

Multiple	objects Names
Name
Range

Represents	a	defined	name	for	a	range	of	cells,	a	formula,	or	a	constant
value.	The	Name	object	is	a	member	of	the	Names	collection.

Using	the	Name	object
Use	Names(index),	where	index	is	the	name,	index	number	or	defined
name,	to	return	a	single	Name	object.

The	index	number	indicates	the	position	of	the	name	within	the	collection.
The	following	example	displays	the	cell	reference	for	the	first	name	in	the
application	collection.

MsgBox	Names(1).RefersTo
	 	

The	following	example	deletes	the	name	"mySortRange"	from	the	active
workbook.

ActiveWorkbook.Names("mySortRange").Delete
	 	

Use	the	Name	property	to	return	or	set	the	text	of	the	name	itself.	The
following	example	changes	the	name	of	the	first	Name	object	in	the
active	workbook.

Names(1).Name	=	"stock_values"
	 	

Use	the	Add	method	to	create	a	name	and	add	it	to	the	collection.	The
following	example	creates	a	new	name	that	refers	to	cells	A1:C20	on	the
worksheet	named	"Sheet1."

Spreadsheet1.Names.Add	"CurrentMonth",	"=Sheet1!A1:C20"
	 	

The	RefersTo	argument	must	be	specified	in	A1-style	notation,	including
dollar	signs	($)	where	appropriate.	For	example,	if	cell	A10	is	selected	on
Sheet1	and	you	define	a	name	by	using	the	RefersTo	argument
"=Sheet1!A1:B1",	the	new	name	actually	refers	to	cells	A10:B10
(because	you	specified	a	relative	reference).	To	specify	an	absolute
reference,	use	"=Sheet1!A1:B1".

OCCommand	Object

Multiple	objects OCCommands
OCCommand

Represents	a	single	command	in	the	specified	Microsoft	Office	Web
Component.

Using	the	OCCommand	object
Use	the	Item	property	of	the	OCCommands	collection	to	return	a	single
OCCommand	object.

The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Microsoft	Office	Web	Component.

Use	the	Execute	method	of	the	OCCommand	object	to	execute	a
particular	command.	The	following	example	uses	the	Execute	method	to
select	the	upper-left	cell	in	the	active	sheet	of	Spreadsheet1.

Sub	SelectUpperLeft()

				Dim	ssConstants

				Set	ssConstants	=	Spreadsheet1.Constants

				'	Select	the	upper-left	cell	in	the	active	worksheet.
				Spreadsheet1.Commands(ssConstants.ssCommandMoveToOrigin).Execute

End	Sub
	 	

Use	the	CommandBeforeExecute	event	to	impose	certain	restrictions
before	a	command	is	executed,	or	to	cancel	a	command.	The	following
example	refreshes	PivotTable1	when	the	Export	command	is	invoked	so
that	the	latest	data	is	exported	to	Microsoft	Excel.

Sub	PivotTable1_CommandBeforeExecute(Command,	Cancel)

			Dim	ptConstants

			Set	ptConstants	=	PivotTable1.Constants

			'	Check	to	see	if	the	Export	command
			'	has	been	invoked.
			If	Command	=	ptConstants.plCommandExport	Then

							'	Refresh	the	PivotTable	list.
							PivotTable1.Refresh

			End	If

End	Sub
	 	

The	following	example	prevents	the	user	from	cutting,	copying,	or
exporting	the	contents	of	Spreadsheet1	to	Microsoft	Excel.

Sub	Spreadsheet1_CommandBeforeExecute(Command,	Cancel)

				Dim	ssConstants

				Set	ssConstants	=	Spreadsheet1.Constants

				Select	Case	Command

								'	Check	to	see	if	the	Export	command	has
								'	been	invoked.
								Case	ssConstants.ssCommandExport

												'	Cancel	the	command.
												Cancel.Value	=	True

												'	Display	a	message	to	the	user.
												MsgBox	"Export	of	the	data	is	prohibited."

								'	Check	to	see	if	the	Cut	or	Copy	commands

								'	have	been	invoked.
								Case	ssConstants.ssCommandCopy,	ssConstants.ssCommandCut

												'	Cancel	the	command.
												Cancel.Value	=	True

												'	Display	a	message	to	the	user.
												MsgBox	"Cutting	or	Copying	the	data	is	prohibited."
				End	Select

End	Sub

	 	

Use	the	CommandExecute	event	when	you	want	to	execute	a	set	of
commands	when	a	particular	command	is	executed.	The	following
example	writes	the	current	date	and	time	to	an	HTML	text	box	control
every	time	that	PivotTable1	is	refreshed.

Sub	PivotTable1_CommandExecute(Command)

			Dim	ptConstants

			Set	ptConstants	=	PivotTable1.Constants

			'	Check	to	see	if	the	PivotTable	list	has	been	refreshed.
			If	Command	=	ptConstants.plCommandRefresh	Then

						'	Write	the	current	data	and	time	to	the	text	box.
						TextBox.Value	=	"PivotTable	last	refeshed	on	"	&	_
																						Date	&	"	at	"	&	Time

			End	If

End	Sub
	 	

Hidden	Language	Element
You	have	requested	Help	for	a	language	element	that	is	hidden,	and
therefore	unavailable	for	programmatic	access.

OWCLanguageSettings	Object

Multiple	objects OWCLanguageSettings

Returns	information	about	the	language	settings	for	the	Microsoft	Office
Web	Components.

Using	the	OWCLanguageSettings	object
Use	Application.LanguageSettings.LanguageID(MsoAppLanguageID),
where	MsoAppLanguageID	is	one	of	the	following	constants	used	to
return	locale	identifier	(LCID)	information	to	the	specified	application:
msoLanguageIDHelp,	msoLanguageIDInstall,	msoLanguageIDUI,	or
msoLanguageIDUIPrevious.	The	following	example	returns	the	install
language,	user	interface	language,	and	Help	language	LCIDs	for	a
spreadsheet	control	named	Spreadsheet1	in	a	message	box.

MsgBox	"The	following	locale	IDs	are	registered	"	&	_
				"for	this	application:	Install	Language	-	"	&	_
				Spreadsheet1.LanguageSettings.LanguageID(msoLanguageIDInstall)	&	_
				"	User	Interface	Language	-	"	&	_
			
Spreadsheet1.LanguageSettings.LanguageID(msoLanguageIDUI)	&	_
				"	Help	Language	-	"	&	_
			
Spreadsheet1.LanguageSettings.LanguageID(msoLanguageIDHelp)
	 	

The	following	example	tests	whether	the	U.S.	English	language	is
registered	as	a	preferred	editing	language.

If	Spreadsheet1.LanguageSettings.	_
				LanguagePreferredForEditing(msoLanguageIDEnglishUS)	Then
				MsgBox	"U.S.	English	is	one	of	the	chosen	editing	languages."
End	If
	 	

PageField	Object

Multiple	objects PageField
Multiple	objects

Represents	a	field	in	a	recordset	or	grouping	definition.	The	page	field
name	is	used	by	a	control	on	a	data	access	page	to	bind	to	data	from	a
recordset.

PageField	objects	come	in	three	types:

Output.	This	type	comes	directly	from	a	schema	field	in	a	schema	row
source.	For	schema	row	sources	of	the	table	type	or	view	type,	this
means	the	field	is	listed	in	the	SELECT	list	of	the	SQL	statement
generated	by	the	data	model.	For	schema	row	sources	of	the	text	type	or
stored	procedure	type,	all	schema	fields	appear	as	output	and	the	page
field	name	must	be	the	same	as	the	schema	field	name.

Calculated.	This	is	a	locally	calculated	column	added	to	a	recordset.
Visual	Basic	for	Applications	expression	syntax	is	supported.
Expressions	can	reference	page	fields	of	type	dscOutput	or
dscGrouping	within	the	same	recordset	definition	or	grouping	definition.
Expressions	can	also	reference	HTML	elements	by	using	the	document
object	model	(for	example,
=Quantity*UnitPrice*Document.All("Text0").Value).	Calculated	fields
are	recalculated	whenever	an	updated	record	is	saved,	whenever	the
page	is	refreshed,	or	whenever	the	recordset's	Resync	method	is	called.

Grouping.	This	is	a	grouping	field	or	aggregate	field	attached	to	a
GroupingDef	or	RecordsetDef	object.

The	PageField	object	can	be	a	member	of	the	AllPageFields,
GroupingFields,	OutputFields,	or	PageFields	collection.

Using	the	PageField	Object
The	following	properties	and	method	return	a	PageField	object:

The	AllPageFields	collection's	Item	property

The	PageFields	collection's	Add	method

The	PageFields	collection's	Item	property

The	PageRelatedField	object's	ManySide	property

The	PageRelatedField	object's	OneSide	property

PageRelatedField	Object

PageRelationship PageRelatedFields
PageRelatedField
PageField

Represents	a	page	instance	of	the	column	pairings	that	make	up	a	page
relationship.	The	names	of	these	fields	are	used	in	generating	join
clauses	in	SQL	and	in	relating	a	parent	recordset	definition	to	a	child
recordset	definition.

The	PageRelatedField	object	is	a	member	of	the	PageRelatedFields
collection.

Using	the	PageRelatedField	Object
The	PageRelatedFields	collection's	Item	property	returns	a
PageRelatedField	object.

PageRelationship	Object

Multiple	objects PageRelationship
Multiple	objects

A	PageRelationship	object	ties	two	page	row	sources	together,	either
within	a	recordset	definition	(a	LookupRelationships	collection)	or
between	recordset	definitions	(a	SublistRelationships	collection).	A
page	relationship	is	created	from	information	in	a	SchemaRelationship
object.

The	PageRelationship	object	is	a	member	of	the	LookupRelationships
or	SublistRelationships	collection.

Using	the	PageRelationship	Object
The	following	methods	and	properties	return	a	PageRelationship	object:

The	LookupRelationships	collection's	Add	method

The	LookupRelationships	collection's	Item	property

The	SublistRelationships	collection's	Add	method

The	SublistRelationships	collection's	Item	property

PageRowsource	Object

Multiple	objects PageRowsource
Multiple	objects

A	PageRowsource	object	refers	to	an	instance	of	a	SchemaRowsource
object	that	is	currently	in	use	on	a	data	access	page.	A	table,	view,	or
stored	procedure	must	be	in	the	data	model	as	a	schema	row	source
before	it	can	be	added	as	a	page	row	source;	the	page	row	source	is
then	used	as	a	data	source	for	the	page.

The	PageRowsource	object	is	a	member	of	the	PageRowsources
collection.

Using	the	PageRowsource	Object
The	following	properties	return	a	PageRowsource	object:

The	PageField	object's	PageRowsource	property

The	PageRelationship	object's	ManySide	property

The	PageRelationship	object's	OneSide	property

The	PageRowsources	collection's	Item	property

The	RecordsetDef	object's	PrimaryPageRowsource	property

Pane	Object

Multiple	objects Pane
Multiple	objects

Represents	a	pane	in	a	window.	The	Pane	object	is	a	member	of	both
the	Panes	collection	and	the	Window	object.

Using	the	Pane	Object
The	following	properties	return	a	Pane	object:

The	Panes	collection’s	Item	property

The	Window	object’s	ActivePane	property

ParameterValue	Object

RecordsetDef ParameterValues
ParameterValue

Represents	an	input	parameter	value	expression.	This	expression	is
evaluated	at	execute	time	to	provide	a	run-time	parameter	value	to	a	row
source	of	type	dscProcedure	or	dscCommandText.

Using	the	ParameterValue	Object
The	following	method	and	property	return	a	ParameterValue	object:

The	ParameterValues	collection's	Add	method

The	ParameterValues	collection's	Item	property

PivotAggregate	Object

PivotCell PivotAggregates
PivotAggregate
Multiple	objects

Represents	the	data	associated	with	a	total	in	a	PivotTable	list.	A	total
defines	what	the	user	wants	to	see,	but	the	data	that	results	from	the	total
is	called	the	aggregate	or	aggregate	value.	The	PivotAggregate	object
is	a	member	of	the	PivotAggregates	collection.

Using	the	PivotAggregate	Object
The	PivotAggregates	collection’s	Item	property	returns	a
PivotAggregate	object.

PivotAxis	Object

Multiple	objects PivotAxis
Multiple	objects

Used	as	the	base	class	for	the	PivotResultAxis	,
PivotResultColumnAxis	,	PivotResultDataAxis	,
PivotResultFilterAxis	,	PivotResultGroupAxis	,	PivotResultPageAxis
,	and	PivotResultRowAxis	objects.	Use	the	SourceAxis	property	of	one
of	these	objects	to	return	a	PivotAxis	object.

PivotAxisMember	Object

Multiple	objects PivotAxisMember
Multiple	objects

Represents	the	values	displayed	for	a	grouped	field.	The
PivotAxisMember	object	is	a	member	of	the	PivotAxisMembers
collection.

Using	the	PivotAxisMember	object
The	following	properties	return	a	PivotAxisMember	object:

The	FindAxisMember	property	of	the	PivotAxisMember,
PivotColumnMember	,	PivotPageMember	,	and	PivotRowMember
objects

The	ParentAxisMember	property	of	the	PivotAxisMember,
PivotColumnMember,	PivotPageMember,	and	PivotRowMember
objects

The	TotalMember	property	of	the	PivotAxisMember,
PivotColumnMember,	PivotPageMember,	and	PivotRowMember
objects

The	Member	property	of	the	PivotResultColumnAxis	,
PivotResultGroupAxis	,	PivotResultPageAxis	,	and
PivotResultRowAxis	objects

The	Item	property	of	the	PivotAxisMembers	collection.

The	PivotAxisMember	has	many	properties	in	common	with	the
PivotMember	object.	However	the	PivotAxisMember	object	contains
some	properties	that	the	PivotMember	object	does	not	have.	You	can
use	the	GroupField	and	CustomGroupType	properties	to	access	the
grouping	settings	of	the	member.	You	can	use	the	Hyperlink	property	to
access	the	hyperlink	settings	of	the	member.	The	MemberProperties
property	can	be	used	to	access	any	member	properties	of	the	member.
The	Height	,	Left	,	and	Width	properties	can	be	used	to	set	the	size	and
position	of	the	member.

PivotCell	Object

Multiple	objects PivotCell
Multiple	objects

Represents	a	cell	(a	grouping	of	data)	in	a	PivotTable	list.	A	cell	displays
aggregates,	and	if	the	underlying	detail	records	are	available,	you	can
have	the	cell	display	a	detail	grid.	Grouped	fields	on	the	row	and	column
axis	determine	the	amount	of	data	that	a	given	cell	represents.	Even	a
simple	list	with	no	grouped	fields	is	really	a	single	cell	displaying	a	detail
grid.

Using	the	PivotCell	Object
The	following	properties	return	a	PivotCell	object:

The	PivotAggregate	,	PivotDetailCell	,	and	PivotDetailRange	objects'
Cell	property

The	PivotData	object’s	Cells	,	CellsEx	,	and	CurrentCell	properties

The	PivotRange	object’s	BottomRight	,	Cells,	and	TopLeft	properties

PivotColumnMember	Object

Multiple	objects PivotColumnMember
Multiple	objects

Represents	the	values	displayed	for	a	grouped	field	in	the	column	area	of
a	PivotTable	list.	The	PivotColumnMember	object	is	a	member	of	the
PivotColumnMembers	collection.

Using	the	PivotColumnMember	object
The	following	properties	return	a	PivotColumnMember	object:

The	PivotCell	object's	ColumnMember	property

The	PivotResultColumnAxis	object's	ColumnMember	property

The	PivotColumnMember	object's	FindColumnMember	property

The	PivotColumnMember	object's	ParentColumnMember	property

The	PivotColumnMember	object's	TotalColumnMember	property

The	PivotColumnMembers	collection's	Item	property

The	PivotData	object's	Left	property

The	PivotColumnMember	object	has	many	properties	in	common	with
the	PivotAxisMember	object.	Use	the	DetailLeft	,	DetailLeftOffset	,
DetailsExpanded	properties	or	MoveDetailLeft	method	to	customize	the
way	detail	records	are	displayed.

PivotData	Object

Multiple	objects PivotData
Multiple	objects

Represents	the	data	in	a	PivotTable	list.

Using	the	PivotData	Object
The	following	properties	return	a	PivotData	object:

The	Data	property	of	the	following	objects:	PivotCell	,	PivotResultAxis	,
PivotResultColumnAxis	,	PivotResultDataAxis	,
PivotResultFilterAxis	,	PivotResultGroupAxis	,	PivotResultPageAxis
,	and	PivotResultRowAxis	.

The	PivotTable	object’s	ActiveData	property.

PivotDataAxis	Object

Multiple	objects PivotDataAxis
Multiple	objects

Represents	the	data	axis	for	a	PivotTable	list.	The	data	axis	contains	field
sets	and	totals.

Using	the	PivotDataAxis	Object
The	following	properties	return	a	PivotDataAxis	object:

The	PivotView	object’s	DataAxis	property

The	PivotResultDataAxis	object's	SourceDataAxis	property

PivotDetailCell	Object

Multiple	objects PivotDetailCell
Multiple	objects

Represents	a	cell	in	the	detail	grid	for	a	PivotTable	list.

Using	the	PivotDetailCell	Object
The	following	properties	return	a	PivotDetailCell	object:

The	PivotCell	object’s	DetailCells	property

The	PivotDetailRange	object’s	BottomRight	property

The	PivotDetailRange	object’s	TopLeft	property

PivotDetailRange	Object

PivotCell PivotDetailRange
Multiple	objects

Represents	the	range	of	cells	in	the	detail	grid	for	a	PivotTable	list.

Using	the	PivotDetailRange	Object
The	PivotCell	object’s	DetailRange	property	returns	a
PivotDetailRange	object.

PivotField	Object

Multiple	objects PivotField
Multiple	objects

Represents	a	single	field	in	a	PivotTable	list.

Using	the	PivotField	Object
The	following	properties	and	methods	return	a	PivotField	object:

The	Field	property	of	the	following	objects:	PivotAxisMember	,
PivotColumnMember	,	PivotDetailCell	,	PivotMember	,
PivotPageMember	,	PivotRowMember	,	and	PivotTotal	.

The	PivotField	object's	FilterContext	property.

The	PivotFields	object’s	Item	property.

The	PivotFieldSet	object’s	AddCalculatedField	and
AddCustomGroupField	methods,	and	BoundField	property.

The	PivotResultField	and	PivotResultGroupField	objects'	SourceField
property.

PivotFieldSet	Object

Multiple	objects PivotFieldSet
Multiple	objects

Represents	a	set	of	fields	that	have	been	locked	together	to	form	a
hierarchy.	For	example,	in	a	field	set	for	geography,	the	fields	might	be
Continent,	Country/Region,	State,	and	City—	in	that	order.	Typically,	a
field	set	will	only	contain	a	single	field	if	the	data	source	is	a	recordset.

Using	the	PivotFieldSet	Object
The	following	properties	and	method	return	a	PivotFieldSet	object:

The	PivotField	object’s	FieldSet	property.

The	PivotFieldSets	object’s	Item	property.

The	PivotView	object's	AddFieldSet	method.

PivotFilterAxis	Object

Multiple	objects PivotFilterAxis
Multiple	objects

Represents	the	filter	axis	in	a	PivotTable	list.

Using	the	PivotFilterAxis	Object
The	following	properties	return	a	PivotFilterAxis	object:

The	PivotView	object’s	FilterAxis	property

The	PivotResultFilterAxis	object's	SourceFilterAxis	property

PivotFont	Object

Multiple	objects PivotFont

Contains	the	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	the
specified	object.

Using	the	PivotFont	Object
The	following	properties	return	a	PivotFont	object:

The	PivotField	object’s	DetailFont	,	GroupedFont	,	and	SubtotalFont
properties

The	PivotLabel	object’s	Font	property

The	PivotView	object’s	FieldLabelFont	,	HeaderFont	,
PropertyCaptionFont	,	PropertyValueFont	,	and	TotalFont	properties

PivotGroupAxis	Object

Multiple	objects PivotGroupAxis
Multiple	objects

Represents	the	group	axis	in	a	PivotTable	list.

Using	the	PivotGroupAxis	Object
The	following	properties	return	a	PivotGroupAxis	object:

The	PivotResultColumnAxis	object's	SourceColumnAxis	property

The	PivotResultPageAxis	object's	SourcePageAxis	property

The	PivotResultRowAxis	object's	SourceRowAxis	property

The	PivotView	object’s	ColumnAxis	,	PageAxis	,	and	RowAxis
properties

PivotHyperlink	Object

Multiple	objects PivotHyperlink

Represents	a	hyperlink	in	a	PivotTable	list.

Using	the	PivotHyperlink	object
Use	the	Hyperlink	property	of	the	PivotDetailCell	,	PivotAxisMember	,
PivotColumnMember	,	PivotRowMember	or	PivotPageMember
objects	to	return	a	PivotHyperlink	object.

The	PivotTable	control	will	treat	field	members	as	hyperlinks	when	the
IsHyperlink	property	of	the	field	is	set	to	True.

Use	the	Address	property	to	return	the	address	for	a	PivotHyperlink
object.	The	Address	property	of	a	PivotHyperlink	object	is	read-only.
You	must	update	the	database	itself	to	change	the	address	of	a	hyperlink
in	a	PivotTable	list.	Use	the	Follow	method	to	resolve,	download,	and
display	the	target	document.

PivotLabel	Object

Multiple	objects PivotLabel
PivotFont

Represents	the	label	for	the	specified	object.	Contains	format	attributes
(foreground	color,	background	color,	font,	and	so	on).

Using	the	PivotLabel	Object
The	following	properties	return	a	PivotLabel	object:

The	PivotAxis	object’s	Label	property

The	PivotDataAxis	object’s	Label	property

The	PivotFilterAxis	object’s	Label	property

The	PivotGroupAxis	object’s	Label	property

The	PivotResultLabel	object's	SourceLabel	property

The	PivotView	object’s	Label	property

The	PivotView	object’s	TitleBar	property

PivotMember	Object

Multiple	objects PivotMember
Multiple	objects

Represents	the	values	displayed	for	a	grouped	field.

Using	the	PivotMember	Object
The	following	properties	and	method	return	a	PivotMember	object:

The	FindMember	property	of	the	following	objects:	PivotAxisMember	,
PivotColumnMember	,	PivotFieldSet	,	PivotPageMember	,	or
PivotRowMember

The	ParentMember	property	of	the	following	objects:	PivotAxisMember,
PivotColumnMember,	PivotMember	,	PivotPageMember,	or
PivotRowMember

The	SourceMember	property	of	the	following	objects:
PivotAxisMember,	PivotColumnMember,	PivotPageMember,	or
PivotRowMember

The	PivotField	object's	AddCustomGroupMember	method

The	PivotFieldSet	object's	AllMember	or	Member	properties

The	PivotMembers	object’s	Item	property

PivotMemberProperty	Object

Multiple	objects PivotMemberProperty

Represents	a	member	property	for	a	PivotTable	member.	A	member
property	is	a	custom	property	that	has	been	defined	for	the	member	in	an
OLAP	cube.

Using	the	PivotMemberProperty	object
The	following	properties	return	a	PivotMemberProperty	object:

The	PivotMemberProperties	collection's	Item	property

The	PivotResultMemberProperty	object's	MemberProperty	property

Use	the	DisplayIn	property	to	control	whether	the	specified	member
property	is	displayed	in	the	PivotTable	list,	ScreenTip,	both	the	PivotTable
list	and	ScreenTip,	or	not	at	all.	Use	the	Caption	property	to	set	the
caption	for	a	member	property.

The	following	example	sets	the	captions	of,	and	then	displays	the
member	captions	of	the	Store	Name	field.

Sub	DisplayMemberProperties()

				Dim	ptView
				Dim	ptConstants
				Dim	fldStoreName

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	Name	field.
				Set	fldStoreName	=	ptView.FieldSets("Store").Fields("Store	Name")

				'	The	following	three	lines	of	code	specify	that	the	member	properties	are
				'	displayed	in	the	PivotTable	list.
				fldStoreName.MemberProperties("Store	Manager").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Type").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Sqft").DisplayIn	=	ptConstants.plDisplayPropertyInReport

				'	The	following	three	lines	of	code	set	the	caption	for	the	member	properties.
				fldStoreName.MemberProperties("Store	Manager").Caption	=	"Manager	Name"
				fldStoreName.MemberProperties("Store	Type").Caption	=	"Store	Type"
				fldStoreName.MemberProperties("Store	Sqft").Caption	=	"Size	in	SQFT"

End	Sub

	 	

PivotPageMember	Object

Multiple	objects PivotPageMember
Multiple	objects

Represents	the	values	displayed	for	a	grouped	field	in	the	page	area	of	a
PivotTable	list.	The	PivotPageMember	object	is	a	member	of	the
PivotPageMembers	collection.

Using	the	PivotPageMember	object
The	following	properties	return	a	PivotRowMember	object:

The	PivotCell	object's	PageMember	property

The	PivotResultPageAxis	object's	PageMember	property

The	PivotPageMember	object's	FindPageMember	property

The	PivotPageMember	object's	ParentPageMember	property

The	PivotPageMember	object's	TotalPageMember	property

The	PivotPageMember	collection's	Item	property

The	PivotPageMember	object	has	many	properties	in	common	with	the
PivotAxisMember	object.

PivotRange	Object

PivotData PivotRange
Multiple	objects

Represents	a	range	of	cells	in	a	PivotTable	list.

Using	the	PivotRange	Object
The	PivotData	object’s	Range	property	returns	a	PivotRange	object.

PivotResultAxis	Object

Multiple	objects PivotResultAxis
Multiple	objects

Contains	pointers	to	the	data	for	a	result	axis	in	a	PivotTable	list.

Using	the	PivotResultAxis	object
The	following	properties	return	a	PivotResultAxis	object:

The	PivotResultField	object's	Axis	property.

The	PivotResultGroupField	object's	Axis	property.

Use	the	Data	property	to	refer	to	the	data.	Use	the	SourceAxis	property
to	refer	to	the	source	axis.

PivotResultColumnAxis	Object

PivotData PivotResultColumnAxis
Multiple	objects

Represents	the	data	in	column	axis	of	a	PivotTable	list.

Using	the	PivotResultColumnAxis	object
The	ColumnAxis	property	of	the	PivotData	object	returns	a
PivotResultColumnAxis	object.

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourceColumnAxis	property	to	return	a	pointer	to	the	axis.

PivotResultDataAxis	Object

PivotData PivotResultDataAxis
Multiple	objects

Represents	the	data	axis	of	a	PivotTable	list.

Using	the	PivotResultDataAxis	object
The	DataAxis	property	of	the	PivotData	object	returns	a
PivotResultDataAxis	object.

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourceDataAxis	property	to	return	a	pointer	to	the	axis.

PivotResultField	Object

PivotResultField Multiple	objects

Points	to	the	source	field	and	axis	of	a	result	field.

Using	the	PivotResultField	object
Use	the	SourceAxis	property	of	the	object	returned	by	the	Axis	property
to	refer	to	the	source	axis	for	the	result	field.

Use	the	SourceField	property	to	refer	to	the	source	field	for	the	result
field.

PivotResultFilterAxis	Object

PivotData PivotResultFilterAxis
Multiple	objects

Represents	the	data	of	the	filter	axis	of	a	PivotTable	list.

Using	the	PivotResultFilterAxis	object
The	FilterAxis	property	of	the	PivotData	object	returns	a
PivotResultFilterAxis	object.

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourceFilterAxis	property	to	return	a	pointer	to	the	axis.

PivotResultGroupAxis	Object

Multiple	objects PivotResultGroupAxis
Multiple	objects

Represents	the	data	in	the	grouping	axis	of	a	PivotTable	list.

Using	the	PivotResultGroupAxis	object
The	following	properties	return	a	PivotResultGroupAxis	object:

The	ChCategoryLabels	object's	PivotAxis	property

The	ChSeriesCollection	object's	PivotAxis	property

The	PivotAxisMember	object's	Axis	property

The	PivotColumnMember	object's	Axis	property

The	PivotRowMember	object's	Axis	property

The	PivotPageMember	object's	Axis	property

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourceAxis	property	to	return	a	pointer	to	the	axis.

PivotResultGroupField	Object

Multiple	objects PivotResultGroupField
Multiple	objects

Represents	the	grouping	field	for	a	result	member.

Using	the	PivotResultGroupField	object
The	following	properties	return	a	PivotResultGroupField	object:

The	PivotResultGroupFields	collection's	Item	property.

The	PivotAxisMember	object's	GroupField	property.

The	PivotColumnMember	object's	GroupField	property.

The	PivotPageMember	object's	GroupField	property.

The	PivotRowMember	object's	GroupField	property.

Use	the	PivotResultAxis	object	returned	by	the	the	Axis	property	to
configure	the	source	axis.

Use	the	PivotField	object	returned	by	the	SourceField	property	to
configure	the	source	field.

PivotResultLabel	Object

Multiple	objects PivotResultLabel
PivotLabel

Represents	the	label	for	a	result	axis.

Using	the	PivotResultLabel	object
The	following	properties	return	a	PivotResultLabel	object:

The	PivotData	object's	Label	property

The	PivotResultAxis	object's	Label	property

The	PivotResultColumnAxis	object's	Label	property

The	PivotResultDataAxis	object's	Label	property

The	PivotResultFilterAxis	object's	Label	property

The	PivotResultGroupAxis	object's	Label	property

The	PivotResultPageAxis	object's	Label	property

The	PivotResultRowAxis	object's	Label	property

Use	the	PivotLabel	object	returned	by	the	SourceLabel	property	to
format	the	result	label.

PivotResultMemberProperty	Object

Multiple	objects PivotResultMemberProperties
PivotResultMemberProperty
PivotMemberProperty

Represents	a	member	property	for	a	result	member.

Using	the	PivotResultMemberProperty	object
The	Item	property	of	the	PivotResultMemberProperties	collection
returns	a	PivotResultMemberProperty	object.

Use	the	PivotMemberProperty	object	returned	by	the	MemberProperty
property	to	access	the	settings	for	the	member	property.

PivotResultPageAxis	Object

PivotData PivotResultPageAxis
Multiple	objects

Represents	the	data	the	of	row	axis	of	a	PivotTable	list.

Using	the	PivotResultPageAxis	object
The	PageAxis	property	of	the	PivotData	object	returns	a
PivotResultPageAxis	object.

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourcePageAxis	property	to	return	a	pointer	to	the	axis.

PivotResultRowAxis	Object

PivotData PivotResultRowAxis
Multiple	objects

Represents	the	data	the	of	row	axis	of	a	PivotTable	list.

Using	the	PivotResultRowAxis	object
The	RowAxis	property	of	the	PivotData	object	returns	a
PivotResultRowAxis	object.

Use	the	Data	property	to	return	a	pointer	to	the	data.

Use	the	SourceRowAxis	property	to	return	a	pointer	to	the	axis.

PivotRowMember	Object

Multiple	objects PivotRowMember
Multiple	objects

Represents	the	values	displayed	for	a	grouped	field	in	the	row	area	of	a
PivotTable	list.	The	PivotRowMember	object	is	a	member	of	the
PivotRowMembers	collection.

Using	the	PivotRowMember	object
The	following	properties	return	a	PivotRowMember	object:

The	PivotCell	object's	RowMember	property.

The	PivotResultRowAxis	object's	RowMember	property.

The	PivotRowMember	object's	FindRowMember	property.

The	PivotRowMember	object's	ParentRowMember	property.

The	PivotRowMember	object's	TotalRowMember	property.

The	PivotRowMember	collection's	Item	property.

The	PivotData	object's	Top	property.

The	PivotRowMember	object	has	many	properties	in	common	with	the
PivotAxisMember	object.	Use	the	TotalRowHeight	and
TotalRowMember	properties	to	customize	the	way	totals	are	displayed.

PivotTable	Object

PivotTable Multiple	objects

Represents	the	container	for	a	PivotTable	list.

Using	the	PivotTable	Object
You	can	use	either	the	CreateObject	method	or	the	New	keyword	to
create	a	PivotTable	object.

The	object	ID	for	a	PivotTable	list	on	an	HTML	page	returns	a	PivotTable
object.	The	programmatic	identifier	for	the	PivotTable	object	is
CLSID:0002E55A-0000-0000-C000-000000000046.	The	following
example	creates	a	PivotTable	list	named	"PivotTable1"	on	an	HTML
page.

<object	id=PivotTable1	classid=CLSID:0002E55A-0000-0000-C000-000000000046></object>
	 	

PivotTotal	Object

Multiple	objects PivotTotal
Multiple	objects

Represents	a	total	in	a	PivotTable	list.	A	total	is	the	aggregate	value	that
is	displayed	for	the	contents	of	a	given	cell.

Using	the	PivotTotal	Object
The	following	properties	and	methods	return	a	PivotTotal	object:

The	PivotAggregate	object's	Total	property

The	PivotField	object's	FilterOn	and	SortOn	properties

The	PivotTotals	object's	Item	property

The	PivotView	object's	AddCalculatedTotal	and	AddTotal	methods

PivotView	Object

Multiple	objects PivotView
Multiple	objects

Represents	a	specific	view	of	a	PivotTable	list.

Using	the	PivotView	Object
The	View	property	of	the	following	objects	returns	a	PivotView	object:
PivotAxis	,	PivotAxisMember	,	PivotColumnMember	,	PivotData	,
PivotDataAxis	,	PivotFieldSet	,	PivotFilterAxis	,	PivotGroupAxis	,
PivotMember	,	PivotPageMember	,	PivotRowMember	,	and
PivotTotal	.

The	PivotTable	object’s	ActiveView	property	also	returns	a	PivotView
object.

Protection	Object

Worksheet Protection
Worksheet

Contains	the	protection	properties	for	a	worksheet.

Using	the	Protection	Object
The	Worksheet	object’s	Protection	property	returns	a	Protection
object.

Range	Object

Multiple	objects Range
Multiple	objects

Represents	a	cell,	a	range	of	cells,	a	row,	or	a	column.

Using	the	Range	Object
The	following	properties	and	methods	return	a	Range	object.

Object Properties/Methods
AutoFilter Range
ListObject DataBodyRange

HeaderRowRange
InsertRowRange
Range

ListRow Range
Name RefersToRange
Pane VisibleRange
Range Cells

Columns
CurrentArray
CurrentRegion
End
EntireColumn
EntireRow
Find
FindNext
FindPrevious
Item
MergeArea
Next
Offset
Previous
Range
Rows

Spreadsheet ActiveCell

Cells
Columns
Range
RectIntersect
RectUnion
Rows
Selection

Window ActiveCell
RangeFromPoint
RangeSelection
Selection
VisibleRange

Worksheet Cells
Columns
Range
Rows
UsedRange

RecordNavigationControl	Object

RecordNavigationControl

Represents	a	record	navigation	control.

Using	the	RecordNavigationControl	Object
You	can	use	either	the	CreateObject	method	or	the	New	keyword	to
create	a	RecordNavigationControl	object.

The	object	ID	for	a	record	navigation	control	on	an	HTML	page	returns	a
RecordNavigationControl	object.	The	programmatic	identifier	for	the
RecordNavigationControl	object	is	CLSID:0002E55C-0000-0000-
C000-000000000046.	The	following	example	creates	a	record
navigation	control	named	"RNC1"	on	an	HTML	page.

<object	id=RNC1	classid=CLSID:0002E55C-0000-0000-C000-000000000046></object>
	 	

RecordsetDef	Object

Multiple	objects RecordsetDef
Multiple	objects

Represents	a	recordset	definition.

Using	the	RecordsetDef	Object
The	following	properties	return	a	RecordsetDef	object:

The	PageField	object's	RecordsetDef	property

The	PageRowsource	object's	RecordsetDef	property

The	RecordsetDef	object's	ParentRecordsetDef	property

The	RecordsetDefs	object's	Item	property,	and	its	Add	and	AddNew
methods

SchemaField	Object

SchemaRowsource SchemaFields
SchemaField
SchemaProperties

Represents	a	field	in	a	schema	row	source.	The	names	of	these	fields
are	used	in	generating	SELECT	statements	for	row	sources	of	type
dscTable	or	dscView.	The	SchemaField	object	is	a	member	of	the
SchemaFields	collection.

Using	the	SchemaField	Object
The	following	method	and	property	return	a	SchemaField	object:

The	SchemaFields	collection's	Add	method

The	SchemaFields	collection's	Item	property

SchemaParameter	Object

SchemaRowsource SchemaParameters
SchemaParameter
SchemaProperties

Represents	a	single	parameter	for	a	schema	row	source.	The
SchemaParameter	object	is	a	member	of	the	SchemaParameters
collection.

Using	the	SchemaParameter	Object
The	following	method	and	property	return	a	SchemaParameter	object:

The	SchemaParameters	collection's	Add	method

The	SchemaParameters	collection's	Item	property

SchemaProperties	Object

Multiple	objects SchemaProperties
SchemaProperty

This	object	is	not	documented.

SchemaProperty	Object

Multiple	objects SchemaProperties
SchemaProperty

This	object	is	not	documented.

SchemaRelatedField	Object

SchemaRelationship SchemaRelatedFields
SchemaRelatedField

Describes	the	column	pairings	that	make	up	a	schema	relationship.	The
names	of	these	fields	are	used	in	generating	join	clauses	in	SQL	and	for
tying	a	parent	recordset	definition	to	a	sublist	child	recordset	definition.
The	SchemaRelatedField	object	is	a	member	of	the
SchemaRelatedFields	collection.

Using	the	SchemaRelatedField
The	following	method	and	property	return	a	SchemaRelatedField	object:

The	SchemaRelatedFields	collection's	Add	method

The	SchemaRelatedFields	collection's	Item	property

SchemaRelatedFields	Collection	Object

SchemaRelationship SchemaRelatedFields
SchemaRelatedField

The	collection	of	SchemaRelatedField	objects	for	a	schema	relationship.

Using	the	SchemaRelatedFields	Collection
The	SchemaRelationship	object's	SchemaRelatedFields	property
returns	a	SchemaRelatedFields	collection.

SchemaRelationship	Object

Multiple	objects SchemaRelationship
SchemaRelatedFields

Represents	a	schema	relationship.	A	schema	relationship	describes	how
schema	row	sources	are	connected,	and	it	always	has	a	“one”	side	and	a
“many”	side	(from	a	one-to-many	relationship).	The
SchemaRelationship	object	is	a	member	of	the	SchemaRelationships
collection.

Using	the	SchemaRelationship	Object
The	following	properties	and	method	return	a	SchemaRelationship
object:

The	LookupSchemaRelationships	collection's	Item	property

The	SchemaRelationships	collection's	Add	and	AddNew	methods,	and
Item	property

The	SublistSchemaRelationships	collection's	Item	property

SchemaRowsource	Object

Multiple	objects SchemaRowsources
SchemaRowsource
Multiple	objects

Represents	a	schema	row	source.	Every	table,	view,	or	stored	procedure
in	the	database	is	a	potential	schema	row	source,	as	are	commands
defined	explicitly	to	the	data	source	control.

The	SchemaRowsource	object	is	a	member	of	the
SchemaRowsources	collection.

Using	the	SchemaRowsource	Object
The	following	method	and	property	return	a	SchemaRowsource	object:

The	SchemaRowsources	collection's	Add	and	AddNew	methods

The	SchemaRowsources	collection's	Item	property.

Section	Object

Multiple	objects Section
Multiple	objects

An	instance	of	a	single	group	header,	footer,	caption,	or	navigation
section.

Using	the	Section	Object
The	following	properties	and	method	return	a	Section	object:

Object Properties/Method
DataPage FirstSection
DataSourceControl CurrentSection

GetContainingSection
DSCEventInfo Section
Section ChildSection

NextSection
NextSibling
ParentSection
PreviousSection
PreviousSibling

Spreadsheet	Object

Spreadsheet Multiple	objects

Represents	the	container	for	the	spreadsheet.

Using	the	Spreadsheet	Object
You	can	use	the	CreateObject	method	or	the	New	keyword	to	create	a
Spreadsheet	object.

The	object	ID	for	a	spreadsheet	control	on	an	HTML	page	or	a	Visual
Basic	form	returns	a	Spreadsheet	object.

The	programmatic	identifier	for	the	Spreadsheet	object	is
CLSID:0002E559-0000-0000-C000-000000000046.	The	following
example	creates	a	spreadsheet	named	"Spreadsheet1"	on	an	HTML
page.

<object	id=Spreadsheet1	classid=CLSID:0002E559-0000-0000-C000-000000000046	style="width:49%;height:350"></object>
	 	

TitleBar	Object

Multiple	objects TitleBar
Multiple	objects

Represents	the	title	bar	on	the	spreadsheet.

Using	the	TitleBar	Object
The	Spreadsheet	object’s	TitleBar	property	returns	a	TitleBar	object.

Window	Object

Multiple	objects Window
Multiple	objects

Represents	a	window.	Many	worksheet	characteristics,	such	as	scroll
bars	and	gridlines,	are	actually	properties	of	the	window.	The	Window
object	is	a	member	of	the	Windows	collection.	Each	worksheet	has	a
unique	Window	object.	Code	can	only	access	the	window	for	the	active
sheet	of	the	workbook.	In	other	words,	although	the	Windows	collection
states	that	there	is	only	one	Window	object,	there	are,	in	fact,	multiple
Window	objects,	but	you	may	only	access	the	Window	object	for	the
active	sheet.

Using	the	Window	object
The	following	properties	return	a	Window	object.

The	Spreadsheet	object's	ActiveWindow	property.

The	Windows	collection's	Item	property.

The	following	example	hides	the	row	and	column	headings	in	the	active
window	of	Spreadsheet1.

Sub	HideHeadings()

			Spreadsheet1.ActiveWindow.DisplayColumnHeadings	=	False
			Spreadsheet1.ActiveWindow.DisplayRowHeadings	=	False

End	Sub
	 	

The	following	example	moves	column	C	so	that	it's	the	leftmost	column	in
the	window.

Spreadsheet1.ActiveWindow.ScrollColumn	=	3
	 	

Workbook	Object

Multiple	objects Workbook
Multiple	objects

Represents	a	workbook.	The	Workbook	object	is	a	member	of	the
Workbooks	collection.

Using	the	Workbook	object
Use	the	ActiveWorkbook	property	of	the	Spreadsheet	object	to	return	a
reference	to	the	open	workbook.

A	workbook	contains	a	Worksheets	collection.

Worksheet	Object

Multiple	objects Worksheet
Multiple	objects

Represents	a	single	worksheet	in	a	workbook.

Using	the	Worksheet	Object
The	following	properties	return	a	Worksheet	object:

The	Range	object’s	Worksheet	property

The	Spreadsheet	,	Window	,	and	Workbook	objects'	ActiveSheet
property

The	Worksheet	object's	Next	and	Previous	properties

The	Worksheets	collection's	Add	method	and	Item	property

XmlDataBinding	Object

XmlDataBindings XmlDataBinding
Multiple	objects

An	XmlDataBinding	object	represents	an	XML	data	binding	in	a
Spreadsheet	component.	You	can	bind,	or	connect,	a	Spreadsheet
component	to	a	data	retrieval	service,	SOAP	Web	Service,	XML	file,	or
Web	Part,	and	that	binding	is	represented	by	the	XmlDataBinding
object.

Using	the	XmlDataBinding	Object
The	XMLDataBinding	object	is	a	member	of	the	XmlDataBindings
collection,	which	is	a	collection	of	all	of	the	XmlDataBinding	objects	in	a
Spreadsheet	component.	Within	the	collection,	individual
XmlDataBinding	objects	are	indexed	beginning	with	1	for	the	first	object,
2	for	the	second,	and	so	on.	You	can	return	a	XmlDataBinding	object
from	the	XmlDataBindings	collection	by	using	theItem	property	of	the
collection.	The	argument	for	the	Item	property	is	the	index	in	the
collection	of	the	object	you	want	to	return	or	the	binding	ID	of	the	object.
The	binding	ID	is	the	value	of	the	ID	attribute	in	the	XML	that	represents
the	binding.	You	can	find	this	in	the	XML	Spreadsheet	file	for	the
Spreadsheet	component	(or	Spreadsheet	Web	Part)	or	by	examining	the
BindingData	property	of	the	XmlDataBinding	object.	You	can	create	an
XML	Spreadsheet	file	by	creating	a	data	bound	spreadsheet	using
Microsoft	Excel	and	then	saving	the	workbook	as	an	XML	Spreadsheet.

You	create	a	new	XmlDataBinding	object	using	the	Add	method	of	the
XmlDataBindings	collection.	Once	you	have	created	the
XmlDataBinding	object,	you	can	use	its	BindingData	property	to	specify
binding	configuration	information.

The	following	example	shows	how	to	work	with	each	XmlDataBinding
object	related	to	a	Spreadsheet	component:

Dim	objBindings
Dim	objBinding
Dim	strBindingInfo

Set	objBindings	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings

For	Each	objBinding	in	objBindings
					'	Save	the	XML	binding	information	to	a	variable.					
					strBindingInfo	=	objBinding.BindingData
					'	Work	with	the	binding	information	here.
Next

XmlMap	Object

Workbook XmlMaps
XmlMap
Workbook

An	XmlMap	object	represents	the	XML	schema	map	for	a	Spreadsheet
component.	The	XmlMap	object	is	a	member	of	the	XmlMaps	collection.

Using	the	XmlMap	Object
In	the	XmlMaps	collection,	individual	XmlMap	objects	are	indexed
beginning	with	1	for	the	first	object,	2	for	the	second	object,	and	so	on.
You	return	a	XmlMap	object	from	the	XmlMaps	collection	using	the	Item
property.	The	argument	for	the	Item	property	is	the	index	in	the	collection
of	the	object	you	want	to	return	or	the	map	ID	of	the	object.	The	map	ID
is	the	value	of	the	ID	attribute	in	the	XML	that	represents	the	map.	You
can	find	this	in	the	XML	Spreadsheet	file	for	the	part	or	by	examining	the
MapData	property	of	the	XmlMap	object.	You	can	create	an	XML
Spreadsheet	file	by	creating	a	data-bound	spreadsheet	in	Microsoft	Excel
and	then	saving	the	workbook	as	an	XML	Spreadsheet.	You	can	create	a
new	XmlMap	object	by	using	the	Add	method	of	the	XmlMaps
collection.

The	following	example	shows	how	to	work	with	each	XmlMap	object
related	to	a	Spreadsheet	component.	It	uses	the	XmlMaps	property	of
the	ActiveWorkbook	object	to	return	the	XmlMaps	collection	object:

Dim	objMaps
Dim	objMap
Dim	strMapInfo

Set	objMaps	=	Spreadsheet1.ActiveWorkbook.XmlMaps

For	Each	objMap	in	objMaps
					'	Save	the	XML	map	information	to	a	variable.					
					strMapInfo	=	objMap.MapData
					'	Work	with	the	map	information	XML	here.
Next

Show	All

Activate	Method

Activate	method	as	it	applies	to	the	Range	object.

Activate	method	as	it	applies	to	the	Worksheet	object.

Example
As	it	applies	to	the	Range	object.

As	it	applies	to	the	Worksheet	object.

Show	All

Add	Method

Add	method	as	it	applies	to	the	ChAxes	object.

Add	method	as	it	applies	to	the	ChCharts	object.

Add	method	as	it	applies	to	the	ChDataLabelsCollection	object.

Add	method	as	it	applies	to	the	ChErrorBarsCollection	object.

Add	method	as	it	applies	to	the	ChSegments	object.

Add	method	as	it	applies	to	the	ChSeriesCollection	object.

Add	method	as	it	applies	to	the	ChTrendlines	object.

Add	method	as	it	applies	to	the	ElementExtensions	object.

Add	method	as	it	applies	to	the	GroupingDefs	object.

Add	method	as	it	applies	to	the	GroupLevels	object.

Add	method	as	it	applies	to	the	Sheets	and	Worksheets	objects.

Add	method	as	it	applies	to	the	PageFields	object.

Add	method	as	it	applies	to	the	LookupRelationships	and
SublistRelationships	objects.

Add	method	as	it	applies	to	the	ParameterValues	object.

Add	method	as	it	applies	to	the	RecordsetDefs	object.

Add	method	as	it	applies	to	the	SchemaFields	object.

Add	method	as	it	applies	to	the	SchemaParameters	object.

Add	method	as	it	applies	to	the	SchemaRelatedFields	object.

Add	method	as	it	applies	to	the	SchemaRelationships	object.

Add	method	as	it	applies	to	the	SchemaRowsources	object.

Add	method	as	it	applies	to	the	Criteria	object.

Add	method	as	it	applies	to	the	Names	object.

Add	method	as	it	applies	to	the	ListRows	collection.

Add	method	as	it	applies	to	the	XmlDataBindings	collection.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV052752011033

Add	method	as	it	applies	to	the	XmlMaps	collection.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV052752011033

Example
As	it	applies	to	the	ChCharts	object.

As	it	applies	to	the	ChDataLabelsCollection	object.

As	it	applies	to	the	ChErrorBarsCollection	object.

As	it	applies	to	the	ChSeriesCollection	object.

As	it	applies	to	the	ChTrendlines	object.

As	it	applies	to	the	Criteria	object.

AddCalculatedField	Method

Adds	a	calculated	field	to	a	PivotTable.	A	calculated	field	can	be	used	like
any	other	field	for	sorting,	filtering,	or	grouping.	You	must	use	the
AddFieldSet	method	to	create	a	custom	field	set	before	you	add	a
calculated	field.	Returns	a	PivotField	object.

expression.AddCalculatedField(Name,	Caption,	DataField,
Expression)

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object	that	was	created	by	the	AddFieldSet	method.

Name			Required	String.	The	name	of	the	calculated	field.	The	name
must	be	unique	within	the	field	set.

Caption			Required	String.	The	caption	displayed	for	the	calculated	field
in	the	PivotTable	user	interface.	Although	this	argument	is	required,	you
can	assign	a	blank	string	to	the	caption.

DataField			Required	String.	The	name	of	the	new	field	that	is	created	in
the	underlying	recordset	for	the	PivotTable.

Expression			Required	String.	The	expression	used	to	calculate	the
items	in	the	new	field.	The	expression	must	be	compatible	with	the	Jet
expression	service.

Remarks
Custom	field	sets	can	contain	only	one	calculated	field.	Adding	a	second
calculated	field	to	a	custom	field	set	results	in	a	run-time	error.

Example
This	example	adds	a	new	field	set	named	"Variance"	to	PivotTable1.
Within	the	new	field	set,	a	calculated	field	with	the	caption	"Budget
Variance"	is	created.	The	calculated	field	is	then	inserted	into	the
PivotTable	view.

Sub	TestAddFieldSet()

				Dim	vwView
				Dim	fsNewFieldSet

				Set	vwView	=	PivotTable1.ActiveView

				'	Add	a	custom	field	set	to	the	PivotTable.
				Set	fsNewFieldSet	=	vwView.AddFieldSet("Variance")

				'	Add	a	calculated	total	to	the	newly	created	field	set.
				fsNewFieldSet.AddCalculatedField	"Variance",	_

				"Budget	Variance",	"fldVariance",	_

				"Budget	/	Actual"

				'	Insert	the	calculated	field	into	the	data	axis.
				vwView.DataAxis.InsertFieldSet	fsNewFieldSet

End	Sub
	 	

AddCalculatedTotal	Method

Adds	a	calculated	total	to	a	PivotTable.	Use	the	AddCalculatedTotal
method	to	create	a	custom	total	based	on	totals	already	defined	in	the
PivotTable.	The	calculated	total	is	returned	as	a	PivotTotal	object.

expression.AddCalculatedTotal(Name,	Caption,	Expression,
SolveOrder)

expression				Required.	An	expression	that	returns	a	PivotView	object.

Name			Required	String.	Used	to	identify	the	new	calculated	total	in	the
PivotTotals	collection.	This	parameter	must	be	unique	within	the
PivotTotals	collection.	Must	be	between	1	and	50	characters	in	length.

Caption			Required	String.	Used	to	identify	the	new	calculated	total	in
the	PivotTable	user	interface.

Expression			Required	String.	The	expression	used	to	calculate	the	new
calculated	total.	Must	be	a	valid	multidimensional	expression	(MDX)
statement	for	the	OLE	DB	provider	that	is	being	used	to	access	the	data.

SolveOrder			Optional	Long.	Indicates	the	solve	order	of	the	new
calculated	total	when	the	PivotTable	is	refreshed.	The	SolveOrder
parameter	is	useful	if	you	create	a	calculated	total	that	is	dependent	on
calculated	totals	that	were	created	earlier.

Example
The	following	example	adds	a	calculated	total	named	"Sales	in	Last
Period"	to	a	PivotTable	named	"PivotTable1."	The	new	calculated	total
displays	the	sales	in	the	previous	time	period.	The	example	utilizes	the
FoodMart	OLAP	cube	that	is	installed	with	Microsoft	SQL	Server	7.0
OLAP	Services.

Sub	TestAddCalculatedTotal()

			Dim	strExp
			Dim	totCalcTotal
			Dim	vwView

			Set	vwView	=	PivotTable1.ActiveView

			'	The	MDX	expression	used	for	the	new	calculated	total.
			strExp	=	"([Measures].[Store	Sales],	Time.PrevMember)"

			'	Create	the	new	calculated	total.
			Set	totCalcTotal	=	vwView.AddCalculatedTotal		_
																			("Sales	in	Last	Period",	"Sales	in	Last	Period",	strExp)

			'	Insert	the	calculated	total	in	the	data	area	of	the	PivotTable.
			vwView.DataAxis.InsertTotal	totCalcTotal

End	Sub

	 	

AddCustomGroupField	Method

Adds	a	custom	group	field	to	a	field	set.	Returns	a	PivotField	object.

expression.AddCustomGroupField(Name,	Caption,	Before)

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Name			Optional	String.	The	name	for	the	new	field.

Caption			Optional	String.	The	caption	to	display	for	the	new	field.

Before			Optional	Variant.	Index,	name,	or	reference	to	the	field.

Remarks
Once	you	have	used	this	method	to	create	a	custom	group	field,	use	the
AddCustomGroupMember	method	to	add	members	to	the	group.

Note	that	the	custom	group	field	and	its	members	are	created	at	the
client,	not	the	data	source.

Example
This	example	adds	a	custom	group	field	to	the	Time	field	set,	and	then
adds	two	members	to	the	field.

Sub	CreateCustomGroup()

			Dim	fsTime
			Dim	fsHalfYear

			'	Set	a	variable	to	the	Time	field	set.
			Set	fsTime	=	PivotTable1.ActiveView.FieldSets("Time")

			'	Add	a	custom	group	field	named	"Group1"	to	the	Time	field	set.
			Set	fsHalfYear	=	fsTime.AddCustomGroupField("Group1",	"Group1",	_
																				"Quarter")
				
			'	Add	a	member	to	the	custom	field	set.	This	member	includes	all	"Q1"
			'	and	"Q2"	members	under	1997.
			fsHalfYear.AddCustomGroupMember	fsTime.Member.Childmembers("1997").Name,	_
																																			Array("Q1","Q2"),	"1stHalf"

			'	Add	a	member	to	the	custom	field	set.	This	member	includes	all	"Q3"
			'	and	"Q4"	members	under	1997.
			fsHalfYear.AddCustomGroupMember	fsTime.Member.ChildMembers("1997").Name,	_
																																			Array("Q3","Q4"),	"2ndHalf"				

End	Sub

	 	

AddCustomGroupMember	Method

Adds	a	member	to	a	custom	group	field.	Returns	a	PivotMember	object.

expression.AddCustomGroupMember(Parent,	varChildMembers,
bstrCaption)

expression				Required.	An	expression	that	returns	a	PivotField	object.

Parent			Required	Variant.	Name,	unique	name,	reference	to	the	parent
member	for	the	new	member(s).

varChildMembers			Required	Variant.	Array	of	member	names,	unique
names,	or	member	references	to	add	to	the	new	custom	group	member.

bstrCaption			Optional	String.	The	caption	to	display	for	the	new
member.

Remarks
Use	this	method	to	populate	a	field	created	using	the
AddCustomGroupField	method.

Example
This	example	adds	a	custom	group	field	to	the	Time	field	set,	and	then
adds	two	members	to	the	field.

Sub	CreateCustomGroup()

			Dim	fsTime
			Dim	fsHalfYear

			'	Set	a	variable	to	the	Time	field	set.
			Set	fsTime	=	PivotTable1.ActiveView.FieldSets("Time")

			'	Add	a	custom	group	field	named	"Group1"	to	the	Time	field	set.
			Set	fsHalfYear	=	fsTime.AddCustomGroupField("Group1",	"Group1",	_
																				"Quarter")
				
			'	Add	a	member	to	the	custom	field	set.	This	member	includes	all	"Q1"
			'	and	"Q2"	members	under	1997.
			fsHalfYear.AddCustomGroupMember	fsTime.Member.Childmembers("1997").Name,	_
																																			Array("Q1","Q2"),	"1stHalf"

			'	Add	a	member	to	the	custom	field	set.	This	member	includes	all	"Q3"
			'	and	"Q4"	under	1997.
			fsHalfYear.AddCustomGroupMember	fsTime.Member.ChildMembers("1997").Name,	_
																																			Array("Q3","Q4"),	"2ndHalf"				

End	Sub

	 	

AddFieldSet	Method

Adds	a	custom	field	set	to	a	PivotTable.	Once	you	have	created	a	custom
field	set,	you	can	use	the	AddCalculatedField	method	to	define	a
custom	field.	Returns	a	PivotFieldSet	object.

expression.AddFieldSet(Name)

expression				Required.	An	expression	that	returns	a	PivotView	object.

Name			Required	String.	Specifies	the	name	of	the	new	field	set.	The
name	must	be	unique	within	the	the	PivotFieldSets	collection.	Must	be
between	1	and	24	characters	in	length.

Remarks
You	must	add	a	calculated	field	to	the	new	field	set	before	you	add	it	to
the	current	PivotTable	view.	Custom	field	sets	can	contain	only	one
calculated	field.	Adding	a	second	calculated	field	to	a	custom	field	set
results	in	a	run-time	error.

Note		You	can	add	a	custom	field	set	to	your	PivotTable	if	the	PivotTable
is	connected	to	an	online	analytical	processing	(OLAP)	data	source,	but
the	field	set	will	not	work	with	the	data	source.

Example
This	example	adds	a	calculated	field	named	"Variance"	to	a	new	field	set
in	PivotTable1.	The	calculated	field	is	then	inserted	into	the	PivotTable
view.

Sub	TestAddFieldSet()
				Dim	vwView
				Dim	fsNewFieldSet

				Set	vwView	=	PivotTable1.ActiveView

				'	Add	a	custom	field	set	to	the	PivotTable.
				Set	fsNewFieldSet	=	vwView.AddFieldSet("Variance")

				'	Add	a	calculated	total	to	the	newly	created	field	set.
				fsNewFieldSet.AddCalculatedField	"Variance",	_
																"Budget	Variance",	"fldVariance",	_
																"Budget	/	Actual"

				'	Insert	the	calculated	field	into	the	data	axis.
				vwView.DataAxis.InsertFieldSet	fsNewFieldSet

End	Sub

	 	

AddIn	Method

Adds	an	add-in	to	the	specified	spreadsheet.

expression.AddIn(AddIn)

expression				An	expression	that	returns	a	Spreadsheet	object.

AddIn				Required	Object.	Specifies	the	add-in.

AddNew	Method

Creates	a	new	schema	row	source	and	a	recordset	definition.	Returns	a
RecordsetDef	object.

expression.AddNew(Source,	RowsourceType,	Name)

expression				An	expression	that	returns	a	RecordsetDefs	object.

Source				Required	String.	Specifies	command	text	for	a	new	schema
row	source	of	type	dscCommandText	or	dscCommandFile,	or	for	the
name	of	a	table,	view,	or	stored	procedure	to	be	added	as	a	schema	row
source.	For	more	information,	see	the	Help	topic	for	the	CommandText
property.

RowsourceType				Optional	Variant.	Specifies	the	type	of	the	new
schema	row	source.	Can	be	one	of	the	dscRowsourceTypeEnum
constants.	The	default	constant	is	dscCommandText.

Name				Optional	Variant.	Specifies	the	name	of	the	recordset	definition,
page	row	source,	and	schema	row	source	created	by	using	the	AddNew
method.	If	you	do	not	specify	this	argument	and	the	value	of	the
RowsourceType	argument	is	dscTable,	dscView,	or	dscProcedure,
the	new	name	is	the	same	as	the	name	specified	in	the	Source
argument	(with	numerals	automatically	appended	to	it	to	make	it	unique,
if	necessary).	If	you	do	not	specify	this	argument	and	the	value	of	the
RowsourceType	argument	is	dscCommandText	or	dscCommandFile,
the	new	name	is	"CommandN",	where	N	is	one	or	more	appended
numerals.

Remarks
Page	fields	are	normally	created	with	names	that	are	unique	throughout
the	page	data	definition.	However,	when	a	page	field	is	added	to	a
recordset	definition	whose	primary	page	row	source	is	of	type
dscProcedure,	dscCommandText,	or	dscCommandFile,	the	page	field
name	must	be	the	same	as	the	schema	field	name.	This	can	result	in
multiple	page	field	objects	with	the	same	name	in	the	AllPageFields
collection.	To	differentiate	between	objects	with	the	same	name,	you	can
use	the	expression
AllPageFields("RecordsetdefName.PagefieldName")	where
RecordsetdefName	is	the	name	of	the	recordset	definition,	and
PagefieldName	is	the	name	of	the	page	field.	Note	that	page	field	names
themselves	cannot	contain	periods.

Show	All

AddTotal	Method

AddTotal	method	as	it	applies	to	the	GroupingDefs	object.

AddTotal	method	as	it	applies	to	the	PivotView	object.

Example
As	it	applies	to	the	PivotView	object.

Apply	Method

Applies	the	specified	AutoFilter.	You	typically	use	the	AutoFilter	method
to	turn	on	the	AutoFilter	and	add	one	or	more	criteria	to	it;	you	can	then
use	the	Apply	method	to	apply	the	new	filter.

expression.Apply

expression				An	expression	that	returns	an	AutoFilter	object.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.

Private	Sub	EnableAutoFilter()
Dim	afFilters
Dim	afCol1
Dim	afCol3

'	Turn	on	AutoFilter.
Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter

'	Set	a	variable	to	the	AutoFilter	object.
Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter

Set	afCol1	=	afFilters.Filters(1)
Set	afCol3	=	afFilters.Filters(3)

'	Add	a	criteria	that	excludes	blue	from	column	A.
afCol1.Criteria.Add	"blue"

'	Add	a	criteria	that	excludes	green	from	column	A.
afCol1.Criteria.Add	"green"

'	Add	a	criteria	that	excludes	yellow	from	column	c.
afCol3.Criteria.Add	"yellow"

'	Apply	the	criteria.
afFilters.Apply
End	Sub

ApplyFilter	Method

Filters	the	record	on	a	data	access	page	based	upon	the	currently
selected	field.	Equivalent	in	functionality	to	the	Filter	by	Selection	button
on	the	record	navigation	control.

expression.ApplyFilter

expression				Required.	An	expression	that	returns	a	DataPage	object.

Remarks
This	method	relies	upon	the	current	selection	on	the	data	access	page	to
determine	the	field	to	filter	by.	Therefore,	you	must	set	the	focus	to	the
field	to	sort	by,	when	the	procedure	containing	this	method	is	invoked	by
a	control	on	the	data	access	page,	such	as	a	command	button.

Example
This	example	filters	the	data	access	page	based	upon	the	currently
displayed	item	in	the	CategoryID	field.

Sub	Command0_onclick()

			MSODSC.Datapages(0).FirstSection.HTMLContainer.Children("CategoryID").Focus

			MSODSC.Datapages(0).ApplyFilter

End	Sub

	 	

AutoFilter	Method

Displays	or	hides	the	AutoFilter	drop-down	arrows.	You	typically	use	this
method	to	turn	on	the	AutoFilter	and	add	one	or	more	criteria	to	it;	you
can	then	use	the	Apply	method	to	apply	the	new	filter.

expression.AutoFilter(Field,	Criteria1,	Operator,	Criteria2,
VisibleDropDown)

expression				An	expression	that	returns	a	Range	object.

Field			Optional	Variant.	This	argument	is	not	supported.

Criteria1			Optional	Variant.	This	argument	is	not	supported.

Operator			Optional	Variant.	This	argument	is	not	supported.

Criteria2			Optional	Variant.	This	argument	is	not	supported.

VisibleDropDown			Optional	Variant.	This	argument	is	not	supported.

Remarks
Do	not	confuse	this	method	with	the	AutoFilter	property.	This	method
applies	to	a	Range	object	and	turns	on	the	AutoFilter,	whereas	the
AutoFilter	property	returns	the	AutoFilter	object	for	a	given	worksheet.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.

Sub	Apply_AutoFilter()
				Dim	afFilters
				Dim	afCol1
				Dim	afCol3
				
				'	Turn	on	AutoFilter.
				Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter
				
				'	Set	a	variable	to	the	AutoFilter	object.
				Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter
				
				Set	afCol1	=	afFilters.Filters(1)
				Set	afCol3	=	afFilters.Filters(3)
				
				'	Add	a	criteria	that	excludes	blue	from	column	A.
				afCol1.Criteria.Add	"blue"
				
				'	Add	a	criteria	that	excludes	green	from	column	A.
				afCol1.Criteria.Add	"green"
				
				'	Add	a	criteria	that	excludes	yellow	from	column	c.
				afCol3.Criteria.Add	"yellow"
				
				'	Apply	the	criteria.
				afFilters.Apply
End	Sub
	 	

AutoFit	Method

Changes	the	width	of	the	columns	in	the	range	or	the	height	of	the	rows
in	the	range	to	achieve	the	best	fit.

expression.AutoFit

expression				Required.	An	expression	that	returns	a	Range	object.	Must
be	a	row	or	a	range	of	rows,	or	a	column	or	a	range	of	columns.
Otherwise,	this	method	generates	an	error.

Example
This	example	adjusts	the	selected	rows	and	columns	to	the	best	fit.

Sub	AutoFitSelection()

			Dim	rngSelected

			Set	rngSelected	=	Spreadsheet1.Selection

			rngSelected.Rows.AutoFit
			rngSelected.Columns.AutoFit

End	Sub
	 	

AutoLayout	Method

Resets	the	specified	PivotTable	list	to	a	default	view	configuration.	If	the
PivotTable	is	bound	to	a	recordset,	a	field	set	is	added	to	the	data	axis	for
each	field	in	the	recordset.	If	the	PivotTable	is	bound	to	an
multidimensional	data	source,	such	as	an	OLAP	cube,	all	field	sets	are
removed	from	the	axes,	clearing	the	current	view.

expression.AutoLayout(MaxDataFields)

expression				An	expression	that	returns	a	PivotView	object.

MaxDataFields				Optional	Long.	Specifies	the	maximum	number	of
fields	that	can	be	added	to	the	data	axis	if	the	data	member	is	a
recordset.	If	this	argument	is	not	specified	or	is	zero	(0),	there	is	no	limit
to	the	number	of	fields	that	will	be	added.

Example
This	example	resets	the	active	view	for	PivotTable1.

PivotTable1.ActiveView.AutoLayout
	 	

BeginObject	Method

Begins	the	drawing	sequence	for	the	specified	ChChartDraw	object.

expression.BeginObject(id)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

id			Required	Long.	Set	this	argument	to	a	unique	identifier	that	will
subsequently	be	used	to	identify	the	object	being	drawn.	Set	to	-1	to
identify	the	ChChartDraw	object	that	has	been	passed	into	an	event
procedure.

Remarks
You	can	combine	multiple	drawing	elements	into	a	single	user-selectable
item	by	placing	them	between	calls	to	the	BeginObject	and	EndObject
methods.

Example
This	example	uses	the	BeforeRender	event	to	cancel	the	drawing	of	the
gridlines	and	the	plot	area	of	the	first	chart	in	Chartspace1.	The
AfterRenderEvent	then	replaces	the	plot	area	with	an	ellipse	that	is
drawn	after	the	chart	is	rendered.

Private	Sub	ChartSpace1_BeforeRender(chartObject,	Cancel)

				Select	Case	TypeName(chartObject)

								Case	"ChGridlines"

												'	Cancel	the	drawing	of	the	gridlines.
												Cancel.Value	=	True

								Case	"ChPlotArea"

												'	Cancel	the	drawing	of	the	plot	area.
												Cancel.Value	=	True

				End	Select

End	Sub

Private	Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Check	to	see	if	the	chart	has	been	rendered.
				If	TypeName(chartObject)	=	"ChChart"	Then

								'	The	next	three	lines	of	code	set	the	interior
								'	and	border	properties	of	the	ellipse.
								drawObject.Interior.SetPresetGradient	_
															chConstants.chGradientHorizontal,	_
															chConstants.chGradientVariantStart,	_
															Int((24	-	1	+	1)	*	Rnd	+	1)
								drawObject.Border.Weight	=	1
								drawObject.Border.Color	=	"black"

								'	Begin	the	drawing	object.
								drawObject.BeginObject	1

								'	Draw	the	ellipse.
								drawObject.DrawEllipse	chartObject.PlotArea.Left,	chartObject.PlotArea.Bottom,	_
																															chartObject.PlotArea.Right,	chartObject.PlotArea.Top

								drawObject.EndObject

		End	If

End	Sub
	 	

BeginUndo	Method

Specifies	the	beginning	of	an	undo	block.	This	means	that	all	statements
between	this	call	and	its	corresponding	EndUndo	method	call	will	be
undone	by	a	single	call	to	the	Undo	method.	This	makes	it	possible	for
you	to	combine	entire	macros	into	one	statement	that	can	be	easily
undone.	Undo	blocks	can	be	nested.

expression.BeginUndo

expression				An	expression	that	returns	a	ChartSpace	or	Spreadsheet
object.

Example
This	example	creates	an	undo	block	containing	code	that	sets	the
number	format	and	font	for	cell	D10.	You	can	undo	all	of	the	formatting	by
clicking	Undo	on	Spreadsheet1's	toolbar.

Sub	UndoBlock()
				Dim	rngCurrent
				
				'	Enable	undo.
				Spreadsheet1.EnableUndo	=	True
				
				'	Start	an	undo	block.
				Spreadsheet1.BeginUndo
				
								Set	rngCurrent	=	Spreadsheet1.Worksheets("sheet1").Range("D10")
								
								'	The	following	three	lines	of	code	apply
								'	various	formatting	to	cell	D10.
								rngCurrent.NumberFormat	=	"0.###"
								rngCurrent.Font.Color	=	"Blue"
								rngCurrent.Font.Name	=	"Times	New	Roman"
				
				'	End	the	undo	block.
				Spreadsheet1.EndUndo
End	Sub

	 	

Show	All

BorderAround	Method

Adds	a	border	to	a	range	and	sets	the	Color,	LineStyle,	and	Weight
properties	for	the	new	border.

expression.BorderAround(LineStyle,	Weight,	ColorIndex,	Color)

expression				Required.	An	expression	that	returns	a	Range	object.

LineStyle				Optional	Variant.	The	line	style	for	the	border.	Can	be	a
XlLineStyle	constant.

Weight				Optional	XlBorderWeight	.	The	border	weight.

ColorIndex					Optional	XlColorIndex	.	The	border	color,	as	an	index	into
the	current	color	palette,	or	as	an	XlColorIndex	constant.

Color							Optional	Variant.	The	border	color,	as	an	RGB	value.

Remarks
You	must	specify	either	ColorIndex	or	Color,	but	not	both.

You	can	specify	either	LineStyle	or	Weight,	but	not	both.	If	you	don't
specify	either	argument,	the	default	line	style	and	weight	are	used.

Example
This	example	adds	a	thick	red	border	around	the	range	A1:D4	on	Sheet1.

Sub	Add_Border()

			Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants

			Spreadsheet1.Worksheets("Sheet1").Range("A1:D4")	_
													.BorderAround	,	ssConstants.xlThick,	3

Enb	Sub

	 	

Calculate	Method

Calculates	the	open	workbook,	a	specific	worksheet	in	a	workbook,	or	a
specified	range	of	cells	on	a	worksheet.

expression.Calculate

expression				An	expression	that	returns	a	Range,	Spreadsheet,	or
Worksheet	object.

Example
This	example	causes	the	active	worksheet	on	the	spreadsheet	to	be
recalculated.

Spreadsheet1.ActiveSheet.Calculate
	 	

This	example	causes	the	range	A1:G5	in	Sheet1	to	be	recalculated.

Spreadsheet1.Worksheets("Sheet1").Range("A1:G5").Calculate
	 	

CalculateFull	Method

Forces	every	formula	in	the	open	workbook	to	be	recalculated.

expression.CalculateFull

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	forces	a	full	calculation	of	all	data	in	Spreadsheet1.

Spreadsheet1.CalculateFull
	 	 	
	 	

Show	All

Clear	Method

Clear	method	as	it	applies	to	the	ChartSpace	object.

Clear	Method	as	it	applies	to	the	Range	object.

Example
As	it	applies	to	the	ChartSpace	object.

At	is	applies	to	the	Range	object.

ClearContents	Method

Deletes	all	data	from	the	specified	range.

expression.ClearContents

expression				An	expression	that	returns	a	Range	object.

Example
This	example	deletes	all	data	from	cells	A4:B10	on	the	active	worksheet
in	Spreadhseet1.

Spreadsheet1.ActiveSheet.Range("A4:B10").ClearContents

ClearFormats	Method

Deletes	all	formatting	from	the	specified	range.

expression.ClearFormats

expression				An	expression	that	returns	a	Range	object.

Example
This	example	clears	the	formatting	from	all	cells	on	the	active	worksheet.

Spreadsheet1.ActiveSheet.Cells.ClearFormats

Collapse	Method

Causes	the	specified	section	to	collapse.

expression.Collapse

expression				An	expression	that	returns	a	Section	object.

Show	All

Copy	Method

Copy	method	as	it	applies	to	the	Sheets,	Worksheet,	and	Worksheets
objects.

Copy	method	as	it	applies	to	the	Range	object.

Copy	method	as	it	applies	to	the	PivotTable	object.

Example
As	it	applies	to	the	Sheets,	Worksheet,	and	Sheets	objects.

As	it	applies	to	the	Range	object.

As	it	applies	to	the	PivotTable	object.

CopyFromRecordset	Method

Copies	the	contents	of	an	ADO	or	DAO	Recordset	object	onto	a
worksheet,	beginning	at	the	upper-left	corner	of	the	specified	range.	If	the
Recordset	object	contains	fields	with	OLE	objects	in	them,	this	method
fails.

expression.CopyFromRecordset(Data,	MaxRows,	MaxColumns)

expression				Required.	An	expression	that	returns	a	Range	object.

Data			Required	Variant.	The	name	of	the	Recordset	object	to	copy	into
the	range.

MaxRows			Optional	Variant.	The	maximum	number	of	records	to	copy
onto	the	worksheet.	If	this	argument	is	omitted,	all	the	records	in	the
Recordset	object	are	copied.

MaxColumns			Optional	Variant.	The	maximum	number	of	fields	to	copy
onto	the	worksheet.	If	this	argument	is	omitted,	all	the	fields	in	the
Recordset	object	are	copied.

Remarks
Copying	begins	at	the	current	row	of	the	Recordset	object.	After	copying
is	completed,	the	EOF	property	of	the	Recordset	object	is	True.

When	this	method	copies	the	recordset	to	the	worksheet,	the	results	will
be	truncated	if	you	do	not	specify	a	range	that	is	large	enough	to	hold	the
contents	of	the	recordset.

Example
This	example	copies	a	recordset	named	rstAuthors	into	the	active	sheet
of	Spreadsheet1	starting	at	cell	A1.

Spreadsheet1.ActiveSheet.Cells.CopyFromRecordset	rstAuthors
	 	

Cut	Method

Cuts	the	specified	range	and	either	moves	it	to	the	Clipboard	or	pastes	it
into	a	specified	destination	range.

expression.Cut(Destination)

expression				An	expression	that	returns	a	Range	object.

Destination	Optional	Variant.	If	you	do	not	specify	this	argument,	the
specified	range	is	sent	to	the	Clipboard.	If	this	argument	is	a	Range
object,	the	source	range	is	moved	to	the	specified	range.

Example
This	example	moves	the	formula,	data,	and	formatting	from	cell	A3	to	cell
G7	on	the	active	worksheet.

Sub	MoveCell()
				Dim	shtSource
				
				Set	shtSource	=	Spreadsheet1.ActiveSheet
				
				'	Move	the	contents	of	cell	A3	to	cell	G7.
				shtSource.Range("A3").Cut	shtSource.Range("G7")
End	Sub

Show	All

Delete	Method

Delete	method	as	it	applies	to	the	Hyperlink,	ListRow,	Name,
PivotHyperlink,	Sheets,	Worksheet,	Worksheets,	XmlDataBinding,
and	XmlMap	objects.

Delete	method	as	it	applies	to	the	ChAxes,	ChCharts,
ChSeriesCollection,	ElementExtensions,	GroupingDefs,
GroupLevels,	LookupRelationships,	PageFields,	ParameterValues,
RecordsetDefs,	SchemaFields,	SchemaRelationships,
SchemaRowsources,	and	SublistRelationships	objects.

Delete	method	as	it	applies	to	the	ChDataLabelsCollection,
ChErrorBarsCollection,	ChSegments	and	ChTrendlines	objects.

Delete	method	as	it	applies	to	the	Range	object.

Example
As	it	applies	to	the	ChDataLabelsCollection	collection.

DeleteCustomGroupMember	Method

Deletes	a	member	from	a	custom	group	field.

expression.DeleteCustomGroupMember(CustomGroupMember)

expression				Required.	An	expression	that	returns	a	PivotField	object.

CustomGroupMember			Required	Variant.	Name,	unique	name,	or
reference	to	the	member	to	delete.

Remarks
This	method	will	return	a	run-time	error	if	the	member	referred	to	by	the
CustomGroupMember			argument	is	not	a	member	of	a	custom	group
field.

DeleteField	Method

Deletes	a	calculated	field	that	was	created	by	the	AddCalculatedField	or
AddCustomGroupField	methods	from	the	specified	field	set.

expression.DeleteField(Field)

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Field			Required	Variant.	The	name,	unique	name	or	reference	to	a
calculated	field	in	the	field	set.

DeleteFieldSet	Method

Deletes	a	field	set	that	was	created	using	the	AddFieldSet	method.	The
field	set	is	removed	from	the	PivotTable	view	and	from	the
PivotFieldSets	collection.

expression.DeleteFieldSet(FieldSet)

expression				Required.	An	expression	that	returns	a	PivotView	object.

FieldSet			Required	Variant.	The	name	of,	or	a	reference	to,	a	custom
field	set.

Example
The	following	line	of	code	deletes	a	custom	field	set	named	"Variance"
from	PivotTable1.

PivotTable1.ActiveView.DeleteFieldSet	"Variance"

DeleteRecord	Method

Deletes	a	record	from	the	specified	data	access	page.

expression.DeleteRecord

expression				An	expression	that	returns	a	DataPage	object.

DeleteTotal	Method

Deletes	a	PivotTotal	object	from	the	PivotTotals	collection.	You	can
delete	only	user-defined	totals.

expression.DeleteTotal(Total)

expression				An	expression	that	returns	a	PivotView	object.

Total				Required	Variant.	Specifies	the	name	or	number	of	the	total.

Example
This	example	deletes	a	total	named	"Total	Budget"	from	PivotTable1.

Sub	Delete_Total()
				Dim	vwView

				Set	vwView	=	PivotTable1.ActiveView

				'	Delete	the	total	named	"Total	Budget."
				vwView.DeleteTotal	vwView.Totals("Total	Budget")
End	Sub

DrawEllipse	Method

Draws	an	ellipse	on	the	specified	chart.	Use	the	current	settings	of	the
Border	and	Interior	properties	to	determine	the	properties	of	the	new
ellipse.

expression.DrawEllipse(Left,	Top,	Right,	Bottom)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Left			Required	Long.	Pixel	coordinate	of	the	left	edge	of	the	ellipse.

Top			Required	Long.	Pixel	coordinate	of	the	top	edge	of	the	ellipse.

Right			Required	Long.	Pixel	coordinate	of	the	right	edge	of	the	ellipse.

Bottom			Required	Long.	Pixel	coordinate	of	the	bottom	edge	of	the
ellipse.

Example
This	example	uses	the	BeforeRender	event	to	cancel	drawing	the
gridlines	and	plot	area	of	the	first	chart	in	Chartspace1.	The	AfterRender
event	then	replaces	the	plot	area	with	an	ellipse	that	is	drawn	after	the
chart	is	rendered.

Private	Sub	ChartSpace1_BeforeRender(chartObject,	Cancel)

				Select	Case	TypeName(chartObject)

								Case	"ChGridlines"

												'	Cancel	the	drawing	of	the	gridlines.
												Cancel.Value	=	True

								Case	"ChPlotArea"

												'	Cancel	the	drawing	of	the	plot	area.
												Cancel.Value	=	True

				End	Select

End	Sub

Private	Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Check	to	see	if	the	chart	has	been	rendered.
				If	TypeName(chartObject)	=	"ChChart"	Then

								'	The	next	three	lines	of	code	set	the	interior
								'	and	border	properties	of	the	ellipse.
								drawObject.Interior.SetPresetGradient	_
															chConstants.chGradientHorizontal,	_
															chConstants.chGradientVariantStart,	_
															Int((24	-	1	+	1)	*	Rnd	+	1)
								drawObject.Border.Weight	=	1
								drawObject.Border.Color	=	"black"

								'	Begin	the	drawing	object.
								drawObject.BeginObject	1

								'	Draw	the	ellipse.
								drawObject.DrawEllipse	chartObject.Left,	chartObject.Bottom,	_
																															chartObject.Right,	chartObject.Top

								drawObject.EndObject

				End	If

End	Sub

	 	

DrawLine	Method

Draws	a	line	on	the	specified	chart.	Uses	the	current	settings	of	the	Line
property	to	determine	the	properties	of	the	new	line.

expression.DrawLine(x0,	y0,	x1,	y1)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

x0			Required	Long.	Starting	pixel	coordinate	in	the	X	plane.

y0			Required	Long.	Starting	pixel	coordinate	in	the	Y	plane.

x1			Required	Long.	Ending	pixel	coordinate	in	the	X	plane.

y1			Required	Long.	Ending	pixel	coordinate	in	the	Y	plane.

Example
This	example	illustrates	how	you	can	use	the	BeforeRender	and
AfterRender	events	together	to	create	custom	gridlines.	The
BeforeRender	event	cancels	the	rendering	of	the	gridlines	and	the
AfterRender	event	draws	custom	gridlines.

Sub	ChartSpace1_BeforeRender(chartObject,	Cancel)

				'	Check	to	see	if	the	next	object	to	be	rendered
				'	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	Cancel	the	rendering	of	gridlines.
								Cancel.Value	=	True

				End	If

End	Sub

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chChart1
				Dim	plPlotArea
				Dim	lLeft
				Dim	lRight
				Dim	lHeight
				Dim	lTop
				Dim	lIncrement
				Dim	chConstants
				Dim	iCtr

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Set	a	variable	to	the	plot	area	of	the	chart.
				Set	plPlotArea	=	chChart1.PlotArea

				'	Check	to	see	if	the	rendered	object	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	The	next	four	lines	of	code	use	the	extents	of
								'	the	plot	area	to	calculate	the	dimensions	of	the	line.
								'	to	be	drawn.
								lLeft	=	plPlotArea.Left
								lTop	=	plPlotArea.Top
								lRight	=	plPlotArea.Right
								lHeight	=	plPlotArea.Bottom	-	lTop

								'	Determine	the	increment	to	use	between	gridlines.
								'	Change	the	divisor	to	adjust	the	increment.
								lIncrement	=	lHeight	/	10

								'	The	next	three	lines	of	code	set	the	properties	of	the
								'	line	to	be	drawn.
								drawObject.Line.DashStyle	=	chConstants.chLineRoundDot
								drawObject.Line.Color	=	"Green"
								drawObject.Line.Weight	=	chConstants.owcLineWeightMedium

								For	iCtr	=	1	To	9

												'	Draw	the	line.
												drawObject.DrawLine	lLeft,	lTop	+	iCtr	*	lIncrement,	_
																																lRight,	lTop	+	iCtr	*	lIncrement

								Next

				End	If

End	Sub
	 	

DrawPolygon	Method

Draws	a	polygon	on	the	chart.	The	points	for	the	polygon	are	specified	in
arrays	containing	the	X	and	Y	values	that	describe	the	segments	of	the
polygon.	Uses	the	current	settings	of	the	Border	and	Interior	properties
to	determine	the	properties	of	the	new	polygon.

expression.DrawPolygon(xValues,	yValues)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

xValues			Required	Variant.	An	array	containing	the	X	values	used	to
calculate	the	polygon.

yValues			Required	Variant.	An	array	containing	the	Y	values	used	to
calculate	the	polygon.

Example
This	example	uses	the	BeforeRender	event	to	cancel	rendering	the	chart
title	and	the	AfterRender	event	to	replace	the	chart	title	with	a	polygon.

Private	Sub	ChartSpace1_BeforeRender(chartObject,Cancel)

				If	TypeName(chartObject)	=	"ChTitle"	Then
												Cancel.Value	=	True
				End	If

End	Sub

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	alXValues(9)
				Dim	alYValues(9)
				Dim	chConstants
				Dim	iCutoff

				iCutoff	=	20

				Set	chConstants	=	ChartSpace1.Constants

				If	TypeName(chartObject)	=	"ChTitle"	Then

								'	Set	the	array	containing	the	x	values	for
								'	the	line.
								alXValues(0)	=	chartObject.Left	+	iCutoff
								alXValues(1)	=	chartObject.Right	-	iCutoff
								alXValues(2)	=	chartObject.Right
								alXValues(3)	=	chartObject.Right

								alXValues(4)	=	chartObject.Right	-	iCutoff
								alXValues(5)	=	chartObject.Left	+	iCutoff
								alXValues(6)	=	chartObject.Left
								alXValues(7)	=	chartObject.Left
								alXValues(8)	=	chartObject.Left	+	iCutoff

								'	Set	the	array	containing	the	y	values	for
								'	the	line.
								alYValues(0)	=	chartObject.Top
								alYValues(1)	=	chartObject.Top
								alYValues(2)	=	chartObject.Top	+	iCutoff
								alYValues(3)	=	chartObject.Bottom	-	iCutoff
								alYValues(4)	=	chartObject.Bottom
								alYValues(5)	=	chartObject.Bottom
								alYValues(6)	=	chartObject.Bottom	-	iCutoff
								alYValues(7)	=	chartObject.Top	+	iCutoff
								alYValues(8)	=	chartObject.Top

								'	Set	the	properties	for	the	polygon.
								drawObject.Interior.SetTwoColorGradient	chConstants.chGradientFromCenter,	_
																																		chConstants.chGradientVariantStart,	"Red",	"Green"

								'	Draw	the	polygon.
								drawObject.DrawPolygon	alXValues,	alYValues

				End	If

End	Sub
	 	

DrawPolyLine	Method

Draws	a	line	containing	multiple	segments.	The	points	for	the	line	are
specified	in	arrays	containing	the	X	and	Y	values	that	describe	the
segments	of	the	line.	Uses	the	current	settings	of	the	Line	property	to
determine	the	properties	of	the	new	line.

expression.DrawPolyLine(xValues,	yValues)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

xValues			Required	Variant.	An	array	containing	the	X	values	used	to
calculate	the	line.

yValues			Required	Variant.	An	array	containing	the	Y	values	used	to
calculate	the	line.

Example
This	example	uses	the	AfterRender	event	to	draw	a	custom	border
around	Chartspace1.

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	alXValues(9)
				Dim	alYValues(9)
				Dim	iCutOff
				Dim	chConstants

				iCutOff	=	10

				Set	chConstants	=	ChartSpace1.Constants

				If	TypeName(chartObject)	=	"ChChart"	Then

								'	Set	the	array	containing	the	x	values	for
								'	the	line.
								alXValues(0)	=	chartObject.Left	+	iCutOff
								alXValues(1)	=	chartObject.Right	-	iCutOff
								alXValues(2)	=	chartObject.Right
								alXValues(3)	=	chartObject.Right
								alXValues(4)	=	chartObject.Right	-	iCutOff
								alXValues(5)	=	chartObject.Left	+	iCutOff
								alXValues(6)	=	chartObject.Left
								alXValues(7)	=	chartObject.Left
								alXValues(8)	=	chartObject.Left	+	iCutOff

								'	Set	the	array	containing	the	y	values	for
								'	the	line.

								alYValues(0)	=	chartObject.Top
								alYValues(1)	=	chartObject.Top
								alYValues(2)	=	chartObject.Top	+	iCutOff
								alYValues(3)	=	chartObject.Bottom	-	iCutOff
								alYValues(4)	=	chartObject.Bottom
								alYValues(5)	=	chartObject.Bottom
								alYValues(6)	=	chartObject.Bottom	-	iCutOff
								alYValues(7)	=	chartObject.Top	+	iCutOff
								alYValues(8)	=	chartObject.Top

								'	Set	the	properties	for	the	line.
								drawObject.Line.Color	=	"blue"
								drawObject.Line.Weight	=	chConstants.owcLineWeightThick
								drawObject.Line.DashStyle	=	chConstants.chLineLongDashDot

								'	Draw	the	line.
								drawObject.DrawPolyLine	alXValues,	alYValues

				End	If

End	Sub

	 	

DrawRectangle	Method

Draws	a	rectangle	on	a	chart.	Uses	the	current	settings	of	the	Border
and	Interior	properties	to	determine	the	properties	of	the	new	rectangle.

expression.DrawRectangle(Left,	Top,	Right,	Bottom)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Left			Required	Long.	Pixel	coordinate	of	the	left	edge	of	the	rectangle.

Top			Required	Long.	Pixel	coordinate	of	the	top	edge	of	the	rectangle.

Right			Required	Long.	Pixel	coordinate	of	the	right	edge	of	the
rectangle.

Bottom			Required	Long.	Pixel	coordinate	of	the	bottom	edge	of	the
rectangle.

Example
This	example	uses	the	AfterRender	event	to	draw	rectangles	as	a
substitute	for	the	legend	entries	in	the	first	chart	of	Chartspace1.

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				If	TypeName(chartObject)	=	"ChLegendEntry"	Then

								'	Set	the	interior	of	the	rectangle	to	a	preset	texture.
								'	You	could	substitute	a	URL	to	a	custom	graphic
								'	for	the	texture.
								drawObject.Interior.SetTextured	chConstants.chTextureSand

								'	Begin	drawing	the	rectangle.
								drawObject.BeginObject	1

								'	Draw	the	rectangle.
								drawObject.DrawRectangle	chartObject.Left,	chartObject.Top,	_
																																	chartObject.Right,	chartObject.Bottom

								drawObject.EndObject

				End	If

End	Sub

	 	

DrawText	Method

Draws	a	text	string	on	a	chart.

expression.DrawText(bstrText,	Left,	Top)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

bstrText			Required	String.	The	text	to	draw	on	the	chart.

Left			Required	Long.	Pixel	coordinate	of	the	left	edge	of	the	text.

Top			Required	Long.	Pixel	coordinate	of	the	top	edge	of	the	text.

Example
This	example	adds	a	text	string	to	the	upper-left	corner	of	the	plot	area
each	time	that	the	chart	is	re-drawn.

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chChart1

				Set	chChart1	=	ChartSpace1.Charts(0)
				
				'	After	the	legend	has	been	rendered,	then	add	the	text
				'	to	the	chart.
				If	TypeName(chartObject)	=	"ChLegend"	Then
								drawObject.DrawText	"2000	Sales",	chChart1.PlotArea.Left	+	5,	_
																												chChart1.PlotArea.Top
				End	If

End	Sub

	 	

Show	All

DropZones	Method

Returns	a	ChDropZone	object.	Use	the	properties	of	the	returned	object
to	format	the	drop	zone.

expression.DropZones(dz)

expression				Required.	An	expression	that	returns	a	Chartspace	object.

dz			Required	ChartDropZonesEnum	.	Represents	the	drop	zone	that
you	want	to	format.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	chConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

DuplicateFormat	Method

Copies	the	formatting	and	type	of	the	specified	chart	to	other	charts	in	the
workspace	that	are	bound	to	the	same	data	source.	This	method	can
only	be	used	when	the	chart	control	is	bound	to	a	relational	data	source
list.

expression.DuplicateFormat

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
The	HasMultipleCharts	property	of	the	chart	control	must	be	set	to	True
before	using	this	method.

Example
This	example	copies	the	formatting	of	the	first	chart	in	Chartspace1	to	all
other	charts	in	Chartspace1	that	are	bound	to	the	same	PivotTable	list.

Chartspace1.Charts(0).DuplicateFormat
	 	 	
	 	

EndEdit	Method

Moves	the	active	cell	out	of	edit	mode.

expression.EndEdit(Accept)

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Accept			Optional	Boolean.	Specifies	whether	the	current	value	is
accepted.	Setting	this	argument	to	False	discards	any	changes	to	the
detail	cell	and	the	previous	value	is	restored.	The	default	value	is	True.

EndObject	Method

Ends	the	drawing	sequence	for	the	specified	ChChartDraw	object.

expression.EndObject

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Example
This	example	uses	the	BeforeRender	event	to	cancel	drawing	the
gridlines	and	plot	area	of	the	first	chart	in	Chartspace1.	The	AfterRender
event	then	replaces	the	plot	area	with	an	ellipse	that	is	drawn	after	the
chart	is	rendered.

Private	Sub	ChartSpace1_BeforeRender(chartObject,	Cancel)

				Select	Case	TypeName(chartObject)

								Case	"ChGridlines"

												'	Cancel	the	drawing	of	the	gridlines.
												Cancel.Value	=	True

								Case	"ChPlotArea"

												'	Cancel	the	drawing	of	the	plot	area.
												Cancel.Value	=	True

				End	Select

End	Sub

Private	Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Check	to	see	if	the	chart	has	been	rendered.
				If	TypeName(chartObject)	=	"ChChart"	Then

								'	The	next	three	lines	of	code	set	the	interior
								'	and	border	properties	of	the	ellipse.
								drawObject.Interior.SetPresetGradient	_
															chConstants.chGradientHorizontal,	_
															chConstants.chGradientVariantStart,	_
															Int((24	-	1	+	1)	*	Rnd	+	1)
								drawObject.Border.Weight	=	1
								drawObject.Border.Color	=	"black"

								'	Begin	the	drawing	object.
								drawObject.BeginObject	1

								'	Draw	the	ellipse.
								drawObject.DrawEllipse	chartObject.Left,	chartObject.Bottom,	_
																															chartObject.Right,	chartObject.Top

								drawObject.EndObject

		End	If

End	Sub

	 	

EndUndo	Method

Specifies	the	end	of	an	undo	block.	This	means	that	all	statements
between	this	call	and	its	corresponding	BeginUndo	method	call	will	be
undone	by	a	single	call	to	the	Undo	method.	This	makes	it	possible	for
you	to	combine	entire	macros	into	one	statement	that	can	be	easily
undone.	Undo	blocks	can	be	nested.

expression.EndUndo

expression				An	expression	that	returns	a	ChartSpace	or	Spreadsheet
object.

Example
This	example	creates	an	undo	block	containing	code	that	sets	the
number	format	and	font	for	cell	D10.	You	can	undo	all	of	the	formatting	by
clicking	Undo	on	Spreadsheet1's	toolbar.

Sub	UndoBlock()
				Dim	rngCurrent
				
				'	Enable	undo.
				Spreadsheet1.EnableUndo	=	True
				
				'	Start	an	undo	block.
				Spreadsheet1.BeginUndo
				
								Set	rngCurrent	=	Spreadsheet1.Worksheets("sheet1").Range("D10")
								
								'	The	following	three	lines	of	code	apply
								'	various	formatting	to	cell	D10.
								rngCurrent.NumberFormat	=	"0.###"
								rngCurrent.Font.Color	=	"Blue"
								rngCurrent.Font.Name	=	"Times	New	Roman"
				
				'	End	the	undo	block.
				Spreadsheet1.EndUndo
End	Sub

	 	

EuroConvert	Method

You	can	use	the	EuroConvert	method	to	convert	a	number	to	the	euro	or
from	the	euro	to	a	participating	currency.	You	can	also	use	it	to	convert	a
number	from	one	participating	currency	to	another	by	using	the	euro	as
an	intermediary	(triangulation).	The	E	uro	Convert	method	uses	fixed
conversion	rates	established	by	the	European	Commission.	Returns	a
Double	value.

expression.euro	Convert(Number,	SourceCurrency,	TargetCurrency,
FullPrecision,	TriangulationPrecision)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Number			Required	Double.	The	number	you	want	to	convert.

SourceCurrency			Required	String.	A	string	expression,	or	reference	to
a	field	containing	the	string,	corresponding	to	the	International	Standards
Organization	(ISO)	acronym	for	the	currency	you	want	to	convert.	Can	be
one	of	the	ISO	codes	listed	in	the	following	table.

Currency
ISO
Code

Calculation
Precision

Display
Precision

Belgian	franc BEF 0 0
Luxembourg	franc LUF 0 0
Deutsche	mark DEM 2 2
Spanish	peseta ESP 0 0
French	franc FRF 2 2
Irish	punt IEP 2 2
Italian	lira ITL 0 0
Netherlands	guilder NLG 2 2
Austrian	schilling ATS 2 2
Portuguese	escudo PTE 1 2
finish	Markka FIM 2 2
euro EUR 2 2
In	the	preceding	table,	the	calculation

precision	determines	what	currency	unit	to
round	the	result	to	based	on	the
conversion	currency.	For	example,	when
converting	to	Deutsche	marks,	the
calculation	precision	is	2,	and	the	result	is
rounded	to	the	nearest	pfennig,	100
pfennigs	to	a	mark.	The	display	precision
determines	how	many	decimal	places
appear	in	the	field	containing	the	result.

Later	versions	of	the	E	uro	Convert	method	may	support	additional
currencies.

Currency ISO	Code
Danish	Krone DKK
Drachma GRD
Swedish	Krona SEK
Pound	Sterling GBP

TargetCurrency			Required	String.	A	three-letter	string	corresponding	to
the	ISO	code	of	the	currency	to	which	you	want	to	convert	the	number.
See	the	previous	table	for	the	ISO	codes.	For	a	list	of	ISO	codes,	see	the
SourceCurrency				argument	description.

FullPrecision			Optional	Variant.	A	logical	value	(True	or	False),	or	an
expression	that	evaluates	to	a	value	of	True	or	False,	that	specifies	how
to	display	the	result.

Use If	you	want	to
False Display	the	result	with	the	currency-specific	rounding	rules	(see

the	table	in	the	SourceCurrency	argument	description).	The
calculation	precision	value	is	used	to	calculate	the	result	and	the
display	precision	value	to	display	the	result.	False	is	the	default	if
the	FullPrecision	argument	is	omitted.

True Display	the	result	with	all	significant	digits	resulting	from	the
calculation.

TriangulationPrecision			Optional	Variant.	A	value	greater	than	or	equal
to	3	that	specifies	the	number	of	significant	digits	in	the	calculation

precision	used	for	the	intermediate	euro	value	when	converting	between
two	national	currencies.

Remarks
Any	trailing	zeros	are	truncated	and	invalid	parameters	return	#Error.

If	the	source	ISO	code	is	the	same	as	the	target	ISO	code,	the	original
value	of	the	number	is	active.

This	method	does	not	apply	a	format.

The	E	uro	Convert	method	uses	the	current	rates	established	by	the
European	Commission.	If	the	rates	change,	Microsoft	will	update	the
method.	To	get	full	information	about	the	rules	and	the	rates	currently	in
effect,	see	the	European	Commission	publications	about	the	euro.

Example
This	example	converts	the	value	of	the	UnitPrice	field	from	French	francs
to	euros.

Dub	ConvertToEuros()

			Dim	dblSourceNum
			Dim	dblConvertedNum

			'	Set	a	variable	to	the	UnitPrice	field.
			dblSourceNum	=	Document.All("unitprice").Value
				
			'	Convert	the	UnitPrice	from	French	francs	to	euros.
			dblConvertedNum	=	MSODSC.EuroConvert(dblsourcenum,"FRF","EUR",False,3)
				
			'	Place	the	converted	value	in	the	EuroValue	field.
			Document.All("EuroValue").Value	=	dblConvertedNum
				
End	Sub

	 	

Evaluate	Method

Evaluates	an	expression	that	is	in	the	form	of	text	and	returns	the	result.
The	expression	can	include	any	combination	of	functions,	keywords,	or
other	syntax	that	the	Spreadsheet	Component	can	resolve.

expression.Evaluate(Expression)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Expression			Required	Variant.	The	expression	to	evaluate.

Remarks
The	following	types	of	names	in	Microsoft	Excel	can	be	used	with	this
method:

A1-style	references.	You	can	use	any	reference	to	a	single	cell	in	A1-
style	notation.	All	references	are	considered	to	be	absolute	references.

Ranges.	You	can	use	the	range,	intersect,	and	union	operators	(colon,
space,	and	comma,	respectively)	with	references.

Defined	names.	You	can	specify	any	name	in	the	language	of	the	macro.

Example
This	example	uses	the	the	Evaluate	method	to	calculate	the	cotangent	of
an	angle.

Function	CalcCotangent(sngAngleInDegrees)

				Dim	strExpression

				'	Put	together	the	expression	to	calculate	the	cotangent
				'	of	the	angle.
				strExpression	=	"1/TAN("	&	sngAngleInDegrees	&	"*PI()/180)"

				'	Evaluate	the	string	and	return	the	result.
				CalcCotangent	=	Spreadsheet1.ActiveSheet.Evaluate(strExpression)

End	Function

	 	

Show	All

Execute	Method

Execute	method	as	it	applies	to	the	DataSourceControl	object.

Execute	method	as	it	applies	to	the	OCCommand	object.

Expand	Method

Causes	the	specified	section	to	expand.

expression.Expand

expression				An	expression	that	returns	a	Section	object.

Show	All

Export	Method

Export	method	as	it	applies	to	the	and	PivotTable	object.

Export	method	as	it	applies	to	the	Spreadsheet	object.

Example
As	it	applies	to	the	Spreadsheet	object.

ExportMetaData	Method

Use	this	method	to	return	a	Variant	(String)	that	contains	the
<pagingInfo>	tag	from	the	data	retrieval	services	query	response	from
the	most	recent	binding	refresh	operation.

expression.ExportMetaData(ShowDialogs)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ShowDialogs				Optional	Boolean.	Specifies	whether	a	dialog	box	is
displayed	if	the	ExportMetaData	method	encounters	an	error	that	is
returned	by	the	Spreadsheet	component	itself.	When	ShowDialogs				is
set	to	True,	a	dialog	box	is	displayed	if	the	ExportMetaData	method
encounters	an	error	returned	by	the	Spreadsheet	component.	When
ShowDialogs				is	set	to	False,	dialog	boxes	for	Spreadsheet	component
errors	are	not	displayed.	The	default	is	False.

Note		The	ShowDialogs	argument	does	not	control	whether	a	dialog	box
will	be	displayed	for	errors	external	to	the	Spreadsheet	component,	such
as	errors	returned	by	scripting	components.	To	prevent	a	dialog	box	from
displaying	for	errors	external	to	the	Spreadsheet	component,	you	must
trap	those	errors	in	your	script.

Remarks

The	<pagingInfo>	tag	will	not	always	be	present	in	the	query	response.
When	it	is	not	present,	the	ExportMetaData	method	will	return	an	empty
String.

ExportPicture	Method

Saves	the	specified	chart	workspace	or	PivotTable	list	as	a	graphics	file.

expression.ExportPicture(FileName,	FilterName,	Width,	Height)

expression				An	expression	that	returns	a	ChartSpace	or	PivotTable
object.

FileName				Optional	String.	Specifies	the	name	of	the	saved	file.	If	you
do	not	specify	this	argument,	the	default	file	name	is	“Chart.gif”	for	a
chart	workspace	or	“Pivot.gif”	for	a	PivotTable	list.

FilterName				Optional	String.	Specifies	the	name	of	the	graphics	filter
that	is	used.	Supported	filter	names	are	GIF,	JPG,	and	PNG.	The	default
is	GIF.

Width				Optional	Long.	Specifies	the	width	of	the	graphic,	in	pixels.	You
must	specify	this	argument	for	server-side	charts.

Height				Optional	Long.	Specifies	the	height	of	the	graphic,	in	pixels.
You	must	specify	this	argument	for	server-side	charts.

Example
This	example	saves	the	chart	workspace	as	a	graphics	file.

ChartSpace1.ExportPicture	"sales.gif",	"gif",	320,	240
	 	

Show	All

ExportXML	Method

As	it	applies	to	the	DataSourceControl	object.

As	it	applies	to	the	XmlMap	object.

Example
As	it	applies	to	the	DataSourceControl	object.

FillDown	Method

Fills	down	from	the	top	cell	or	cells	in	the	specified	range	to	the	bottom	of
the	range.	The	contents	and	formatting	of	the	cell	or	cells	in	the	top	row
are	copied	into	the	rest	of	the	rows	in	the	range.

expression.FillDown

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	fills	the	range	A1:A10	on	the	active	worksheet,	based	on
the	contents	of	cell	A1.

Spreadsheet1.ActiveSheet.Range("A1:A10").FillDown
	 	

FillRight	Method

Fills	right	from	the	leftmost	cell	or	cells	in	the	specified	range.	The
contents	and	formatting	of	the	cell	or	cells	in	the	leftmost	column	are
copied	into	the	rest	of	the	columns	in	the	range.

expression.FillRight

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	fills	the	range	A1:M1	on	the	active	worksheet,	based	on	the
contents	of	cell	A1.

Spreadsheet1.ActiveSheet.Range("A1:M1").FillRight
	 	

Show	All

Find	Method

Finds	specific	information	in	a	given	range	and	returns	a	Range	object
that	represents	the	first	cell	where	that	information	is	found.	Returns
Nothing	if	no	match	is	found.	Does	not	affect	either	the	selection	or	the
active	cell.

expression.Find(What,	After,	LookIn,	LookAt,	SearchOrder,
SearchDirection,	MatchCase,	MatchByte)

expression				An	expression	that	returns	a	Range	object.

What				Required	Variant.	The	data	to	be	searched	for.

After				Optional	Variant.	Specifies	a	single	cell	after	which	the	search
begins.	This	corresponds	to	the	position	of	the	active	cell	when	a	search
is	done	from	the	user	interface.	Remember	that	the	search	begins	after			
this	cell;	the	specified	cell	isn’t	searched	until	the	method	wraps	back
around	to	this	cell.	If	you	don’t	specify	this	argument,	the	search	starts
after	the	cell	in	the	upper-left	corner	of	the	range

LookIn				Optional	XlFindLookIn	.	Specifies	whether	to	search	formulas
or	the	displayed	value.

LookAt				Optional	XlLookAt	.	Set	this	argument	to	xlWhole	to	force	the
entire	contents	of	the	cell	to	match	the	contents	of	the	What	argument.

SearchOrder				Optional	XlSearchOrder	.	Specifies	whether	to	search
by	columns	or	rows.

SearchDirection				Optional	XlSearchDirection	.	Specifies	the	search
direction.

MatchCase				Optional	Boolean.	True	to	make	the	search	case
sensitive.	The	default	value	is	False.

MatchByte				Optional	Variant.	Used	only	if	you’ve	selected	or	installed
double-byte	language	support.	True	to	have	double-byte	characters
match	only	double-byte	characters.	False	to	have	double-byte	characters
match	their	single-byte	equivalents.

Example
This	example	finds	all	occurrences	of	"Mike"	in	the	range	A1:F10	and
makes	those	cells	bold.

Sub	Find_Mike()
				Dim	ssConstants
				Dim	rngFindRange
				Dim	rngFoundCell
				Dim	rngFirstFound

				Set	ssConstants	=	Spreadsheet1.Constants

				'	Set	a	variable	to	the	range	to	search.
				Set	rngFindRange	=	Spreadsheet1.Sheets("Sheet1").Range("A1:F10")

				'	Find	the	first	occurrence	of	Mike.
				Set	rngFoundCell	=	rngFindRange.Find("Mike",	rngFindRange.Cells(1,	1),	_
																				ssConstants.xlValues,	ssConstants.xlPart)

				'	If	Mike	was	found...
				If	Not	rngFoundCell	Is	Nothing	Then

								'	Set	a	variable	to	the	first	found	instance.
								Set	rngFirstFound	=	rngFoundCell

								Do
												'	Set	the	font	to	bold.
												rngFoundCell.Font.Bold	=	True

												'Find	the	next	occurrence	of	Mike.
												Set	rngFoundCell	=	rngFindRange.FindNext(rngFoundCell)

								'	Loop	until	you	return	to	the	first	occurrence	of	Mike.
								Loop	Until	rngFoundCell.Address	=	rngFirstFound.Address
				End	If
End	Sub
	 	

FindNext	Method

Continues	a	search	that	was	begun	with	the	Find	method.	Finds	the	next
cell	that	matches	those	same	conditions	and	returns	a	Range	object	that
represents	that	cell.	Doesn’t	affect	the	selection	or	the	active	cell.

expression.FindNext(After)

expression				Required.	An	expression	that	returns	a	Range	object.

After			Optional	Variant.	The	cell	after	which	you	want	to	search.	This
corresponds	to	the	position	of	the	active	cell	in	the	user	interface.	Note
that	After	must	be	a	single	cell	in	the	range.	Remember	that	the	search
begins	after				the	active	cell;	the	active	cell	itself	isn’t	searched	until	the
FindNext	method	wraps	back	around	to	the	active	cell.	If	this	argument
isn’t	specified,	the	search	starts	after	the	cell	in	the	upper-left	corner	of
the	range.

Example
This	example	finds	all	occurrences	of	"Mike"	in	Sheet1	and	makes	those
cells	bold.

Sub	FindMike()

				Dim	ssConstants
				Dim	rngFindRange
				Dim	rngFoundCell
				Dim	rngFirstFound

				Set	ssConstants	=	Spreadsheet1.Constants

				'	Set	a	variable	to	the	range	to	search.
				Set	rngFindRange	=	Spreadsheet1.Sheets("Sheet1").UsedRange

				'	Find	the	first	ocurence	of	Mike.
				Set	rngFoundCell	=	rngFindRange.Find("Mike",	rngFindRange.Cells(1,	1),	_
																							ssConstants.xlValues,	ssConstants.xlPart)

				'	If	Mike	was	found...
				If	Not	rngFoundCell	Is	Nothing	Then

								'	Set	a	variable	to	the	first	found	instance.
								Set	rngFirstFound	=	rngFoundCell

								Do
												'	Set	the	font	to	bold.
												rngFoundCell.Font.Bold	=	True

												'Find	the	next	occurrence	of	Mike.

												Set	rngFoundCell	=	rngFindRange.FindNext(rngFoundCell)

								'	Loop	until	you	return	to	the	first	occurrence	of	Mike.
								Loop	Until	rngFoundCell.Address	=	rngFirstFound.Address

				End	If

End	Sub
	 	

FindPrevious	Method

Continues	a	search	that	was	begun	with	the	Find	method.	Finds	the
previous	cell	that	matches	those	same	conditions	and	returns	a	Range
object	that	represents	that	cell.	Doesn’t	affect	the	selection	or	the	active
cell.

expression.FindPrevious(After)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

After			Optional	Variant.	The	cell	before	which	you	want	to	search.	This
corresponds	to	the	position	of	the	active	cell	in	the	user	interface.	Note
that	After	must	be	a	single	cell	in	the	range.	Remember	that	the	search
begins	before				the	active	cell;	the	active	cell	itself	isn’t	searched	until	the
FindPrevious	method	wraps	back	around	to	this	cell.	If	this	argument
isn’t	specified,	the	search	starts	before	the	upper-left	cell	in	the	range.

Example
This	example	shows	how	the	FindPrevious	method	is	used	with	the
Find	and	FindNext	methods.	Before	running	this	example,	make	sure
that	Sheet1	contains	at	least	two	occurrences	of	the	word	“Redmond”	in
column	B.

Sub	Find_Methods()

				Dim	rngFoundCell
				Dim	rngFindRange

				'	Set	a	variable	to	the	range	to	search.
				Set	rngFindRange	=	Spreadsheet1.ActiveSheet.Columns("B")

				'	Find	the	first	occurence	of	Redmond	in	column	B.
				Set	rngFoundCell	=	rngFindRange.Find("Redmond")

				'	Display	the	location	of	the	first	occurence	of	Redmond.
				MsgBox	"The	first	occurrence	is	in	cell	"	&	rngFoundCell.Address

				'	Find	the	next	occurence	of	Redmond	in	column	B.
				Set	rngFoundCell	=	rngFindRange.FindNext(after:=rngFoundCell)

				'	Display	the	location	of	the	next	occurence	of	Redmond.
				MsgBox	"The	next	occurrence	is	in	cell	"	&	rngFoundCell.Address

				'	Find	the	previous	occurence	of	Redmond	in	column	B.
				Set	rngFoundCell	=	rngFindRange.FindPrevious(after:=rngFoundCell)

				'	Display	the	location	of	the	previous	occurence	of	Redmond.
				MsgBox	"The	previous	occurrence	is	in	cell	"	&	rngFoundCell.Address

End	Sub

	 	

FireParametersOut	Method

Use	this	this	method	to	trigger	the	ParametersOutReady	event.	Returns
Nothing.

expression.FireParametersOut(InterfaceName,	ParamArray)

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

InterfaceName			Required.	Name	of	a	ParametersOutProvider
interface,	as	specified	in	the	solution	specification	file.

ParamArray			Optional.	One	dimensional	array	of	strings	in	which	each
string	is	the	value	of	a	parameter.	If	a	parameter	is	not	specified,	the
value	in
/ParametersOutProvider/SendParameters/Parameter/DefaultValue	will	be
used.	If	both	are	missing,	an	error	is	returned.

Remarks

Note	that	this	method	doesn't	apply	unless	the	Spreadsheet	component
is	running	in	the	context	of	a	Spreadsheet	Web	Part	on	a	Web	Part	Page
on	a	SharePoint	site.

The	Spreadsheet	Web	Part	can	implement	the	IParametersOutProvider
interface.	The	ParametersOutReady	event	is	triggered	when	a	separate
Web	Part	that	implements	the	IParametersOutProvider	interface
invokes	its	FireParametersOut	method.	The	ParametersOutReady
event	passes	a	set	of	developer-defined	parameters	to	another	Web	Part
that	implements	the	IParametersOutConsumer	interface.

For	more	information	on	the	schema	of	a	solution	specification	file,
search	the	Microsoft	Developer	Network	(MSDN)	Web	site	for	"solution
specification	file."	For	general	information	on	the	solution	specification	file
and	some	examples,	search	Microsoft	Office	Excel	2003	help	for
"spreadsheet	web	part."

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010685951033&CTT=11&Origin=HV010329441033

FlipHorizontal	Method

Flips	all	of	the	series	in	the	specified	chart	horizontally.

expression.FlipHorizontal

expression				An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	flips	all	of	the	series	in	the	specified	chart	horizontally.

ChartSpace1.Charts(0).PlotArea.FlipHorizontal
	 	

FlipVertical	Method

Flips	all	of	the	series	in	the	specified	chart	vertically.

expression.FlipVertical

expression				An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	flips	all	of	the	series	in	the	specified	chart	vertically.

ChartSpace1.Charts(0).PlotArea.FlipVertical
	 	

Show	All

Follow	Method

Follow	method	as	it	applies	to	the	Hyperlink	object.

Follow	method	as	it	applies	to	the	PivotHyperlink	object.

Example
This	example	resolves	the	hyperlink	in	cell	B15	on	the	active	worksheet,
downloads	the	target	document,	and	then	displays	the	document.

Spreadsheet1.ActiveSheet.Range("b15").Hyperlink.Follow
	 	

GetContainingSection	Method

Returns	the	containing	section	for	the	specified	HTML	element.

expression.GetContainingSection(Element)

expression				An	expression	that	returns	a	DataSourceControl	object.

Element				Required	Object.	Represents	the	specified	HTML	element.

Show	All

GetDataPointVisible	Method

Returns	the	index	of	the	data	point	that	is	visible	in	the	scroll	view.	Long.

expression.GetDataPointVisible(datapoint)

expression				Required.	An	expression	that	returns	a	ChSeries	object.

datapoint			Required	ChartDataPointEnum.

Remarks

A	data	point	is	considered	visible	only	if	the	associated	category	is	within
the	scroll	view.	This	method	is	valid	only	for	bar	and	column	charts.	For
other	chart	types,	the	value	returned	is	undefined.

Example
The	following	example	demonstrates	how	to	get	the	index	of	the	data
point	that	is	visible	in	the	scroll	view.

Dim	objSeries
Dim	chChart
Dim	lngPointFirst
Dim	lngPointLast

Set	chChart	=	ChartSpace.Constants

'	Save	the	lowest	and	highest	visible	data	point	index	values	to	variables.
lngPointFirst	=	_
				objSeries.GetDataPointVisible(chChart.chDataPointFirst)
lngPointLast	=	_
				objSeries.GetDataPointVisible(chChart.chDataPointLast)

GetPicture	Method

Returns	a	picture	of	a	chart	from	a	binary	data	stream.

expression.GetPicture(FilterName,	Width,	Height)

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

FilterName			Optional	String.	The	name	of	the	graphics	filter	to	use.	The
default	value	is	"GIF".

Width			Optional	Long.	The	width	of	the	chart	in	pixels.

Height			Optional	Long.	The	height	of	the	chart	in	pixels.

Remarks
You	can	use	the	BinaryWrite	method	to	write	the	picture	returned	by	this
method	to	the	current	HTTP	session.

Example
This	example	uses	an	ASP	script	to	create	a	chart	based	on	data	in	a
SQL	Server	database.	Once	the	chart	has	been	created,	an	picture	of	the
chart	is	displayed	in	the	browser	window.

		<%
			Dim	PictType
			Dim	NewChart
			Dim	chConstants

			Set	NewChart	=	CreateObject("OWC11.ChartSpace")

			Response.Expires	=	0
			Response.Buffer	=	True
			Response.Clear

			PictType	=	"jpg"
			Response.ContentType	=	"image/"	&	PictType

			Set	chConstants	=	NewChart.Constants

			NewChart.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																															"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																															"Data	Source=servername;"
			NewChart.DataMember	=	"Order	Details"

			NewChart.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
			NewChart.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

			NewChart.Charts(0).Type	=	chConstants.chChartTypeColumn3D
			NewChart.Charts(0).HasTitle	=	True

			NewChart.Charts(0).Title.Caption	=	"Server-Rendered	Chart"

			Response.BinaryWrite	NewChart.GetPicture(PictType,	500,	400)
			%>

	 	

Show	All

GetValue	Method

Returns	a	data	value	for	the	specified	point	in	a	custom	data	dimension.

expression.GetValue(Dimension,	scaled)

expression				An	expression	that	returns	a	ChPoint	object.

Dimension				Required	ChartDimensionsEnum	.	The	dimension	from
which	you	are	retrieving	the	value.

Scaled	Optional	Variant.	Specifies	whether	to	return	the	actual	value	of
the	point,	or	its	percentage	as	it	relates	to	the	other	related	points.	Set
this	argument	to	True	to	return	the	percentage.	This	argument	is	relevant
only	when	you	are	using	a	Pie,	Doughnut,	or	Stacked	Column	chart.

Remarks
Alternatively,	you	can	specify	a	ChartErrorBarCustomValuesEnum
constant	for	the	Dimension	argument	to	return	the	value	of	an	error	bar.

Group	Method

Groups	the	specidfied	series	with	the	series	specified	in	the	Series
argument.

expression.Group(Series)

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Series			Required	ChSeries	object.	The	series	to	group	the	specified
series	with.

HideDetails	Method

Hides	the	details	cells	for	the	specified	object.	If	the	specified	object	is	a
PivotData	object,	all	detail	cells	are	hidden.	If	the	specified	object	is	a
PivotRowMember	object,	then	all	details	cells	in	that	row	are	hidden.	If
the	specified	object	is	a	PivotColumnMember	object,	then	all	details
cells	in	that	column	are	hidden.

expression.HideDetails

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	hides	all	of	the	detail	cells	in	PivotTable1.

PivotTable1.ActiveData.HideDetails
	 	

ImportXml	Method

When	this	method	is	called,	the	specified	Spreadsheet	component	map	is
updated	with	an	XML	data	stream.	Returns	Nothing.

expression.ImportXml(XMLData,	ShowDialogs,	UseIDXPath)

expression				An	expression	that	returns	an	XmlMap	object.

XMLData			Required	Variant.	A	String	or	IStream	object	that	contains
the	XML	data	to	be	imported.

ShowDialogs			Optional	Boolean.	Specifies	whether	a	dialog	box	is
displayed	if	the	ImportXml	method	encounters	an	error	that	is	returned
by	the	Spreadsheet	component	itself.	When	ShowDialogs				is	set	to
True,	a	dialog	box	is	displayed	if	the	ImportXml	method	encounters	an
error	returned	by	the	Spreadsheet	component.	When	ShowDialogs	is
set	to	False,	dialog	boxes	for	Spreadsheet	component	errors	are	not
displayed.	The	default	is	False.

UseIDXPath			Optional	Boolean.	Specifies	how	to	import	XML	data	into
a	Spreadsheet	Web	Part	that	implements	an	IRowConsumer	connection
interface	in	the	RowConsumer	element	of	its	solution	specification	file.
When	set	to	False,	the	Spreadsheet	Web	Part	imports	the	XML	data
according	to	the	XPath	statement	specified	in	the	XPath	element	within
the	Map	element	in	the	XML	Spreadsheet	file	associated	with	the	Web
Part.	When	set	to	True,	the	Spreadsheet	Web	Part	imports	the	XML	data
using	a	root/row	schema	(as	shown	below),	and	maps	the	row	elements
to	the	Field	elements	within	the	Map	element	of	the	XML	Spreadsheet	file
associated	with	the	Web	Part.	The	default	is	False.

Root/Row	Schema

<Root>
				<Row>
								<Field1>Field1Value</Field1>
								<Field2>Field2Value</Field2>
				</Row>
</Root>

The	Spreadsheet	Web	Part	will	attempt	to	match	each	field	tag	name
(such	as	Field1	and	Field2	in	the	schema	example	above)	to	the	ID
attribute	of	a	Field	element	within	the	Map	element	of	an	XML
Spreadsheet	file.	For	example,	the	following	XML	fragment	from	an	XML
Spreadsheet	file	shows	a	Field	element	with	an	ID	attribute	value	of
"Field1".

<Map	x2:ID="Products_Map"	x2:SchemaID="Schema1"	x2:RootElement="Products">
				<Entry	x2:Type="table"	x2:ID="2"	x2:ShowTotals="false"	x2:NoInserts="true">
				<Range>Products!R2C1:R4C8</Range>
				<HeaderRange>R1C1</HeaderRange>
				<x:FilterOn>True</x:FilterOn>
				<XPath>/Products/Products_Row</XPath>
				<Field	x2:ID="Field1">
								<Range>RC</Range>
								<XPath>ProductID</XPath>
								<XSDType>int</XSDType>
				</Field>
				.	.	.

Note		The	ShowDialogs	argument	does	not	control	whether	a	dialog	box
will	be	displayed	for	errors	external	to	the	Spreadsheet	component,	such
as	errors	returned	by	scripting	components.	To	prevent	a	dialog	box	from
displaying	for	errors	external	to	the	Spreadsheet	component,	you	must
trap	those	errors	in	your	script.

Remarks

Use	the	ImportXml	method	to	import	the	contents	of	an	XML	data	file
into	cells	or	into	an	XML	list	mapped	to	a	specific	schema	map.	If	the
contents	of	the	XML	data	file	to	be	imported	do	not	match	the	specified
schema	map	and	the	ImportXml	operation	fails,	an	error	dialog	box	will
be	displayed	when	the	optional	ShowDialogs	argument	is	set	to	True.

The	XML	data	being	imported	needs	to	"match"	the	XmlMap	it's	being
imported	into	—	that	is,	the	XPaths	contained	in	the	XmlMap	entries	and
fields	should	correspond	to	some	element	or	attribute	in	the	imported
data.

During	an	asynchronous	binding,	all	data-binding	object	model	calls	that
include	XmlMap.ImportXml	will	return	an	error	message	that	says	the
requested	operation	cannot	be	completed	because	an	asynchronous
binding	is	in	progress.	Object	model	calls	will	start	to	succeed	when	the
asynchronous	binding	is	complete.

Example
This	example	shows	how	you	can	use	the	CanQuery	property	to	first
check	whether	a	binding	can	be	queried.	If	it	can,	the	code	refreshes	the
binding.	An	event	hander	traps	the	BindingCompleted	event,	which	then
calls	the	ExportXmlInfo	function,	passing	another	instance	of	the
Spreadsheet	component	as	an	argument	to	that	function.	In	the
ExportXmlInfo	function,	the	ExportXML	method	is	called	and	the	XML
data	stream	is	returned	to	the	calling	function	and	used	as	the	input	for
the	ImportXml	method.

Dim	objBinding
Dim	objBindings
Dim	objXmlStringIn
Dim	objXmlMap

Set	objXmlMap	=	Spreadsheet1.ActiveWorkbook.XmlMaps.Item(1)
Set	objBindings	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings

For	Each	objBinding	In	objBindings
				If	objBinding.CanQuery	=	True
								objBinding.Refresh
				End	If
Next

Sub	Spreadsheet1_BindingCompleted(bindingID,	Action)

Dim	objXmlStringIn
Dim	objXmlMap

				'	Write	out	the	data	in	the	specified	map	to	an	XML	data	stream.
				objXmlStringIn	=	ExportXmlInfo(Spreadsheet2)

				'	Use	the	XML	data	stream	by	passing	it	as	the	argument	to	the	ImportXml	method.
				objXmlMap.ImportXml	objXmlStringIn

End	Sub

Function	ExportXmlInfo(Spreadsheet2)
				Dim	objXmlMap

				Set	objXmlMap	=	Spreadsheet2.ActiveWorkbook.XmlMaps.Item(1)
				'	Return	the	map	to	the	calling	function.
				ExportXmlInfo	=	objXmlMap.ExportXml()
End	Function

Note		For	information	on	trapping	the	BindingCompleted	event	from
script	running	in	a	Web	page,	see	the	BindingCompleted	event	topic.

Insert	Method

Inserts	a	cell	or	a	range	of	cells	into	the	worksheet	and	shifts	other	cells
away	to	make	space.

expression.Insert(Shift)

expression				Required.	An	expression	that	returns	a	Range	object.

Shift			Optional	Variant.	Specifies	which	way	to	shift	the	cells.	Can	be
one	of	the	following	XlInsertShiftDirection	constants:	xlShiftToRight	or
xlShiftDown.	If	this	argument	is	omitted,	Microsoft	Excel	decides	based
on	the	shape	of	the	range.

InsertFieldSet	Method

Inserts	a	field	set	on	the	specified	axis.

expression.InsertFieldSet(FieldSet,	Before,	Remove)

expression				An	expression	that	returns	a	PivotAxis	,	PivotDataAxis	,
PivotFilterAxis	,	or	PivotGroupAxis	object.

FieldSet				Required	PivotFieldSet	object.	Specifies	the	field	set	to	be
inserted.

Before				Optional	Variant.	Specifies	the	index	of	the	field	set	before
which	the	inserted	field	set	will	be	placed.

Remove				Optional	Boolean.	This	argument	is	reserved	for	future	use,
and	its	value	is	always	True.	When	the	field	set	is	added	to	the	specified
axis,	it	is	removed	from	any	other	axis.

Example
This	example	adds	a	fieldset	to	the	row	axis,	data	axis,	and	filter	axis	of
PivotTable1.

Sub	Add_Fields_To_PivotTable()
				Dim	vwView
				Dim	ptConstants
				Dim	totOrderCount
				
				Set	ptConstants	=	PivotTable1.Constants
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Add	the	ShipCountry	field	to	the	row	axis.
				vwView.RowAxis.InsertFieldSet	vwView.FieldSets("ShipCountry")
				
				'	Add	the	OrderId	field	to	the	data	axis.
				vwView.DataAxis.InsertFieldSet	vwView.FieldSets("OrderID")
				
				'	Add	the	ShipVia	field	to	the	filter	axis
				vwView.FilterAxis.InsertFieldSet	vwView.FieldSets("ShipVia")
				
				'	Create	a	total	named	"Order	Count"	that	counts	the	OrderID	field.
				Set	totOrderCount	=	vwView.AddTotal("Order	Count",	vwView.FieldSets("OrderId").Fields("OrderId"),	_
																								ptConstants.plFunctionCount)
				
				'	Add	the	Order	Count	total	to	the	data	axis.
				vwView.DataAxis.InsertTotal	totOrderCount
End	Sub

	 	

InsertTotal	Method

Adds	a	PivotTotal	object	to	the	PivotTotals	collection.

expression.InsertTotal(Total,	Before)

expression				An	expression	that	returns	a	PivotDataAxis	object.

Total				Required	PivotTotal	object.	Specifies	the	total	to	be	inserted.

Before				Optional	Variant.	Specifies	the	index	of	the	total	before	which
the	inserted	total	will	be	placed.	If	you	do	not	specify	this	argument,	the
total	is	inserted	at	the	end	of	the	collection.

Remarks
If	the	PivotTotal	object	is	currently	part	of	the	PivotTotals	collection,	the
object	is	first	removed	from	that	collection	and	then	reinserted	into	it.	This
changes	the	display	order	because	totals	are	displayed	in	their	collection
order.

Example
This	example	adds	a	total	named	"Total	Budget"	that	sums	the	values	in
the	Budget	field	to	PivotTable1,	then	then	inserts	the	total	into	the
PivotTable	view.

Sub	Add_Total()
				Dim	vwView
				Dim	ptConstants
				Dim	totNewTotal

				Set	vwView	=	PivotTable1.ActiveView
				Set	ptConstants	=	PivotTable1.Constants
				
				'	Add	a	new	total	named	"Total	Budget"	to	the	current	view.
				Set	totNewTotal	=	vwView.AddTotal("Total	Budget",	vwView.Fieldsets("budget").Fields(0),	_
													ptConstants.plFunctionSum)
													
				'	Insert	the	newly	created	total	into	the	detail	area	of	the	PivotTable.													
				vwView.DataAxis.InsertTotal	totNewTotal

End	Sub
	 	

Show	All

IsButtonEnabled	Method

IsButtonEnabled	method	as	it	applies	to	the	DataPage	object.

IsButtonEnabled	method	as	it	applies	to	the	RecordNavigationControl
object.

Item	Method

Returns	a	Name	object	from	the	Names	collection.

expression.Item(Index,	IndexLocal,	RefersTo)

expression				Required.	An	expression	that	returns	a	Names	object.

Index			Optional	Variant.	The	name	or	number	of	the	defined	name	to	be
returned.

IndexLocal			Optional	Variant.	The	name	of	the	defined	name,	in	the
language	of	the	user.	No	names	will	be	translated	if	you	use	this
argument.

RefersTo			Optional	Variant.	This	argument	is	not	supported.

Remarks
You	must	specify	one,	and	only	one,	of	these	three	arguments.

Example
This	example	deletes	the	name	"SortRange"	from	the	workbook.

Spreadsheet1.ActiveWorkbook.Names("SortRange").Delete
	 	

LargeScroll	Method

Scrolls	the	contents	of	the	window	by	pages.	The	size	of	the	pages	is
determined	by	the	number	of	rows	and	columns	visible	in	the	active
window.

expression.LargeScroll(Down,	Up,	ToRight,	ToLeft)

expression				Required.	An	expression	that	returns	a	Window	object.

Down			Optional	Variant.	The	number	of	pages	to	scroll	the	contents
down.

Up			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	up.

ToRight			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	to
the	right.

ToLeft			Optional	Variant.	The	number	of	pages	to	scroll	the	contents	to
the	left.

Remarks
If	Down	and	Up	or	ToRight	and	ToLeft	are	both	specified,	the	contents
of	the	window	are	scrolled	by	the	difference	of	the	arguments.	For
example,	if	Down	is	3	and	Up	is	6,	the	contents	are	scrolled	up	three
pages.

Any	of	the	arguments	can	be	a	negative	number.

Example
This	example	scrolls	the	contents	of	the	active	window	of	Spreadsheet1
down	three	pages	and	to	the	right	two	pages.

Spreadsheet1.ActiveWindow.LargeScroll	3,	,2
	 	

Load	Method

Loads	XML	chart	data	from	a	URL	or	local	file.	The	file	must	consist	of
only	charting	XML,	and	it	cannot	contain	any	leading	HTML.	The	string
must	begin	with	<script	language="XML">	and	end	with	</script>.

expression.Load(FileName	As	String)

expression				An	expression	that	returns	a	ChartSpace	object.

FileName				Required	String.	Specifies	the	file	containing	XML	chart
data.

Example
This	example	loads	the	specified	XML	data	file.

ChartSpace1.Load	"chart.xml"
	 	

LoadText	Method

Loads	and	parses	the	specified	text	file	into	a	worksheet.	The	contents	of
the	text	file	are	loaded	into	the	worksheet	beginning	at	the	specified	cell.
Existing	cell	contents	will	be	overwritten.

expression.LoadText(File,	Delimiters,	ConsecutiveDelimAsOne,
TextQualifier)

expression				An	expression	that	returns	a	Range	object.

File				Required	String.	Specifies	the	name	of	the	text	file.

Delimiters				Optional	String.	Specifies	the	field	delimiters.	The	default
value	is	no	delimiter.

ConsecutiveDelimAsOne				Optional	Boolean.	True	to	have
consecutive	delimiters	considered	as	a	single	delimiter.	The	default	value
is	False.

TextQualifier				Optional	String.	Specifies	the	text	qualifier.	The	default
value	is	the	double	quotation	mark	character.

Example
This	example	inserts	a	tab-delimited	text	file	into	the	active	worksheet	of
Spreadsheet1.	The	contents	of	the	text	file	will	begin	in	cell	B10.

Spreadsheet1.ActiveSheet.Range("B10").LoadText	"tabfile.txt",
Chr$(9)

MakeCurrent	Method

Makes	the	specified	section	the	current	section.

expression.MakeCurrent(ScrollIntoView)

expression				An	expression	that	returns	a	Section	object.

ScrollIntoView	Optional	Boolean.	Set	this	argument	to	True	to	scroll	the
section	into	view.	The	default	value	is	False.

Merge	Method

Creates	a	merged	cell	from	the	specified	range.	When	you	create	a
merged	cell,	the	value	in	the	upper-left	cell	in	the	specified	range	is	used
for	the	merged	cell	value.	All	other	cell	values	in	the	merged	cell	are
ignored.

expression.Merge(Across)

expression				An	expression	that	returns	a	Range	object.	This	method
fails	if	the	range	only	partially	encloses	a	previously	merged	cell.

Across			Optional	Variant.	True	to	merge	cells	in	each	row	in	the
specified	range	as	separate	merged	cells.	The	default	value	is	False.

Example
This	example	creates	a	merged	cell	from	the	range	B2:C5	and	puts	a
thick	red	border	around	the	merged	cell.

Sub	Merge_Cells()
Dim	ssConstants
Dim	rngMerged

Set	ssConstants	=	Spreadsheet1.Constants

'	Merge	cells	B2:C5.
Spreadsheet1.ActiveSheet.Range("B2:C5").Merge

'	Set	a	variable	to	the	merged	range.
Set	rngMerged	=	Spreadsheet1.ActiveSheet.Range("B2").MergeArea

'	Format	the	merged	cell.
rngMerged.Borders.Color	=	"Red"
rngMerged.Borders.Weight	=	ssConstants.owcLineWeightThick
rngMerged.HorizontalAlignment	=	ssConstants.xlHAlignCenter
rngMerged.VerticalAlignment	=	ssConstants.xlVAlignCenter
End	Sub

Move	Method

Moves	the	sheet	to	another	location	in	the	workbook.

expression.Move(Before,	After)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Before			Optional	Variant.	The	sheet	before	which	the	moved	sheet	will
be	placed.	You	cannot	specify	Before	if	you	specify	After.

After			Optional	Variant.	The	sheet	after	which	the	moved	sheet	will	be
placed.	You	cannot	specify	After	if	you	specify	Before.

MoveDetailLeft	Method

Scrolls	the	detail	area	to	the	left	starting	at	the	specified	column	member.

expression.MoveDetailLeft(DetailLeft,	DetailLeftOffset,	Update)

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

DetailLeft			Required	Long.	An	index	number	indicating	for	the	cell	to
use	as	the	basis	for	scrolling.	For	example,	use	a	value	of	2	to	start	the
scrolling	at	the	third	column	in	the	detail	area.

DetailLeftOffset			Required	Long.	The	number	of	pixels	to	scroll.

Update			Optional	Boolean.	Determines	whether	or	not	the	display	is
updated.	The	default	value	is	True.

Example
This	example	scrolls	the	detail	area	to	the	left	by	10	pixels	starting	at	the
second	column.

Sub	ScrollDetailColumns()

				Dim	ptData
				Dim	pmColumnMember

				Set	ptData	=	PivotTable1.ActiveData

				Set	pmColumnMember	=	ptData.ColumnAxis.Member

				'	Scroll	the	first	column	in	the	detail	area
				'	the	left	by	10	pixels.
				pmColumnMember.MoveDetailLeft	1,	10

End	Sub

	 	

MoveDetailTop	Method

Scrolls	the	the	detail	area	down	starting	at	the	specified	cell.

expression.MoveDetailTop(DetailTop,	DetailTopOffset,	Update)

expression				Required.	An	expression	that	returns	a	PivotCell	object.

DetailTop			Required	Long.	An	index	number	indicating	the	cell	to	use	as
the	basis	for	scrolling.	For	example,	use	a	value	of	5	to	start	the	scrolling
at	the	sixth	row	in	the	detail	area.

DetailTopOffset			Required	Long.	The	number	of	pixels	to	scroll.	Use	0
to	scroll	the	record	specified	in	the	DetailTop				argument	to	the	top	of	the
detail	area.

Update			Optional	Boolean.	Determines	whether	or	not	the	display	is
updated.	The	default	value	is	True.

Remarks
Use	the	MoveDetailLeft	method	to	scroll	the	detail	area	to	the	left.

Example
This	example	scrolls	the	fifteenth	row	to	the	first	row	displayed	in	the
detail	area.

Sub	ScrollDetailArea()

				Dim	ptData
				Dim	pmColumnMember
				Dim	pmRowMember

				Set	ptData	=	PivotTable1.ActiveData

				Set	pmRowMember	=	ptData.RowAxis.Member
				Set	pmColumnMember	=	ptData.ColumnAxis.Member

				'	Starting	at	the	15th	row	of	the	detail	area,	scroll	100	pixels.
				ptData.Cells(pmRowMember,	pmColumnMember).MoveDetailTop

End	Sub
	 	

MoveFirst	Method

Moves	to	the	first	record	in	the	data	access	page	recordset.	This	method
fails	if	the	current	record	is	the	first	record	in	the	recordset.

expression.MoveFirst

expression				An	expression	that	returns	a	DataPage	object.

MoveLast	Method

Moves	to	the	last	record	in	the	data	access	page	recordset.	This	method
fails	if	the	current	record	is	the	last	record	in	the	recordset.

expression.MoveLast

expression				An	expression	that	returns	a	DataPage	object.

MoveLeft	Method

Scrolls	a	column	field	member	left	by	the	specified	number	of	pixels,	or
until	the	next	row	member	has	been	scrolled	to	the	left	side	of	the	display.

expression.MoveLeft(Left,	LeftOffset,	Update)

expression				Required.	An	expression	that	returns	a	PivotData	object.

Left			Required	PivotColumnMember	object.	The	column	member	to
scroll.

LeftOffset			Required	Long.	The	number	of	pixels	to	scroll	the	member.

Update			Optional	Boolean.	Determines	whether	or	not	the	display	is
updated.	The	default	value	is	True.

Remarks
Use	the	MoveTop	property	to	scroll	row	field	members.

Example
This	example	scrolls	the	PivotTable	view	to	the	next	column	member.

Sub	ScrolltoNextColumnMember()

				Dim	ptData

				Set	ptConstants	=	PivotTable1.Constants

				Set	ptData	=	PivotTable1.ActiveData

				'	Scroll	to	the	next	column	member.
				ptData.MoveLeft	ptData.Left,	1000

End	Sub
	 	

MoveNext	Method

Moves	to	the	next	record	in	the	data	access	page	recordset.	This	method
fails	if	the	current	record	is	the	last	record	in	the	recordset.

expression.MoveNext

expression				An	expression	that	returns	a	DataPage	object.

MovePrevious	Method

Moves	to	the	previous	record	in	the	data	access	page	recordset.	This
method	fails	if	the	current	record	is	the	first	record	in	the	recordset.

expression.MovePrevious

expression				An	expression	that	returns	a	DataPage	object.

MoveTop	Method

Scrolls	a	row	field	member	up	by	the	specified	number	of	pixels,	or	until
the	next	row	member	has	been	scrolled	to	the	top	of	the	display.

expression.MoveTop(Top,	TopOffset,	Update)

expression				Required.	An	expression	that	returns	a	PivotData	object.

Top			Required	PivotRowMember	object.	The	row	member	to	scroll.

TopOffset			Required	Long.	The	number	of	pixels	to	scroll	the	member.

Update			Optional	Boolean.	Determines	whether	or	not	the	display	is
updated.	The	default	value	is	True.

Remarks
Use	the	MoveLeft	property	to	scroll	column	field	members.

Example
This	example	scrolls	the	PivotTable	view	to	the	next	row	member.

Sub	ScrolltoNextRowMember()

				Dim	ptData

				Set	ptConstants	=	PivotTable1.Constants

				Set	ptData	=	PivotTable1.ActiveData

				'	Scroll	to	the	next	row	member.
				ptData.MoveTop	ptData.Top,	1000

End	Sub

	 	

NewRecord	Method

Adds	a	new	record	to	the	data	access	page	recordset.	This	method	fails
if	the	recordset	cannot	be	updated.

expression.NewRecord

expression				An	expression	that	returns	a	DataPage	object.

Nz	Method

Use	this	method	to	return	zero,	a	zero-length	string	("	"),	or	another
specified	value	when	a	value	is	Null.	For	example,	you	can	use	this
function	to	convert	a	Null	value	to	another	value	and	prevent	it	from
propagating	through	an	expression.	Returns	a	Variant.

expression.Nz(Value,	ValueIfNull)

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Value			Required	Variant.	The	value	to	convert.

ValueIfNull			Optional	Variant.	Value	to	return	if	the	Value	argument
argument	is	Null.	This	argument	enables	you	to	return	a	value	other	than
zero	or	a	zero-length	string.

Remarks
This	method	is	useful	for	expressions	that	may	include	Null	values.	To
force	an	expression	to	evaluate	to	a	non-Null	value	even	when	it
contains	a	Null	value,	use	the	this	method	to	return	a	zero,	a	zero-length
string,	or	a	custom	return	value.

For	example,	the	expression	2	+	varX	will	always	return	a	Null	value
when	the	Variant	varX	is	Null.	However,	2	+	MSODSC.Nz(varX)
returns	2.

In	the	next	example,	the	optional	argument	supplied	to	the	Nz	method
provides	the	string	to	be	returned	if	varFreight	is	Null.

varResult	=	MSODSC.Nz(varFreight,	"No	Freight	Charge")
	 	

OverrideDefaultElementFormatting	Method

You	use	the	OverrideDefaultElementFormatting	method	to	use	the
drawing	format	of	the	current	ChChartDraw	object	to	draw	a	chart.
Returns	Nothing.

expression.OverrideDefaultElementFormatting()

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Remarks

Most	chart	elements	that	generate	a	BeforeRender	event	initialize	the
drawing	surface	by	using	the	default	formatting	of	the	Chart	component.
You	can	use	the	OverrideDefaultElementFormatting	method	in	the
BeforeRender	event	procedure	to	change	the	default	properties	of	the
current	ChChartDraw	object	passed	to	the	BeforeRender	event	as	its
drawObject	parameter.

Example
The	following	example	uses	the	OverrideDefaultElementFormatting
method	to	change	a	property	of	the	ChChartDraw	object:

Sub	Chartspace_BeforeRender(drawObject	As	ChChartDraw,	chartObject	As	Object,	Cancel	As	ByRef)
	 On	Error	Resume	Next

	 	 	 	 '	This	format	will	be	applied	only	to	all	legends.
	 If	TypeName(chartObject)="ChLegend"	Then
	 	 drawObject.border.weight	=	5
	 	 drawObject.border.color	=	"green"
	 	 drawObject.OverrideDefaultElementFormatting
	 End	If
	
	 '	This	format	will	only	be	applied	to	all	titles.
	 If	TypeName(chartObject)="ChTitle"	Then
	 	 drawObject.border.weight	=	10
	 	 drawObject.border.color	=	"violet"
	 	 drawObject.OverrideDefaultElementFormatting
	 End	If
End	Sub

Sub	Chartspace_AfterRender(drawObject	As	ChChartDraw,	chartObject	As	Object)
	 Select	Case	TypeName(chartObject)
	 	 Case	"ChLegend",	"ChTitle"
	 	 	 '	Chartspace	will	apply	the	overrided	drawObject	format	to	the	Title	and	Legend	objects.
	 	 	 drawObject.DrawRectangle	chartObject.Left,	_
	 	 	 	 	 	 	 chartObject.Top,	chartObject.right,	chartObject.bottom
	 End	Select
End	Sub

ParseText	Method

Parses	the	specified	text	string	and	places	the	result	in	the	specified
range.

expression.ParseText(Text,	Delimiters,	ConsecutiveDelimAsOne,
TextQualifier)

expression				An	expression	that	returns	a	Range	object.

Text				Required	String.	Specifies	the	string	to	be	parsed.

Delimiters				Optional	String.	Specifies	the	field	delimiters.

ConsecutiveDelimAsOne				Optional	Boolean.	True	to	have
consecutive	delimiters	considered	as	one	delimiter.	The	default	value	is
False.

TextQualifier				Optional	String.	Specifies	the	text	qualifier.	The	default
value	is	the	double	quotation	mark	character.

Example
This	example	parses	the	specified	string	into	the	range	starting	at	cell	A1.

Spreadsheet1.ActiveSheet.Range("A1").ParseText	"name,	address,	city,	state",	","
	 	

Show	All

Paste	Method

	Paste	method	as	it	applies	to	the	Worksheet	object.

Paste	method	as	it	applies	to	the	Range	object.

Example
As	it	applies	to	the	Worksheet	object.

As	it	applies	to	the	Range	object.

PointsToScreenPixelsX	Method

Returns	a	Long	value	that	represents	the	number	of	pixels	from	the	left
edge	of	the	spreadsheet's	window	to	the	left	edge	the	first	column	in	the
spreadsheet,	plus	the	value	specified	in	the	Points	argument.

expression.PointsToScreenPixelsX(Points)

expression				Required.	An	expression	that	returns	a	Window	object.

Points			Required	Long.	The	number	of	pixels	to	add	to	this	method's
result.

Remarks
Although	the	name	of	this	method	suggests	that	it	will	convert	point
values	to	screen	pixel	values,	it	actually	performs	the	action	described
above	using	only	pixel	values.	For	the	PointsToScreenPixelsX	method,
this	value	will	vary	by	a	fixed	amount	(24	pixels)	depending	on	whether
row	headers	are	turned	on.

Example
This	example	returns	25	when	row	headers	are	turned	on,	and	returns	1
when	row	headers	are	turned	off.

Sub	Window_OnLoad()

					MsgBox	Spreadsheet1.ActiveWindow.PointsToScreenPixelsX(0)			

End	Sub

	 	

PointsToScreenPixelsY	Method

Returns	a	Long	value	that	represents	the	number	of	pixels	from	the	top
edge	of	the	spreadsheet's	window	to	the	top	edge	of	the	first	row	in	the
spreadsheet,	plus	the	value	specified	in	the	Points	argument.

expression.PointsToScreenPixelsY(Points)

expression				Required.	An	expression	that	returns	a	Window	object.

Points			Required	Long.	The	number	of	pixels	to	add	to	this	method's
result.

Remarks
Although	the	name	of	this	method	suggests	that	it	will	convert	point
values	to	screen	pixel	values,	it	actually	performs	the	action	described
above	using	only	pixel	values.	For	the	PointsToScreenPixelsY	method,
this	value	will	vary	depending	on	whether	the	toolbar	(22	pixels)	and
column	headers	(17	pixels)	are	turned	on.

Example
This	example	returns	40	when	both	the	toolbar	and	column	headers	are
turned	on,	and	returns	1	when	the	toolbar	and	column	headers	are	turned
off.

Sub	Window_OnLoad()

					MsgBox	Spreadsheet1.ActiveWindow.PointsToScreenPixelsY(0)			

End	Sub

	 	

Show	All

Protect	Method

Protect	method	as	it	applies	to	the	Worksheet	object.

Protect	method	as	it	applies	to	the	Workbook	object.

Remarks
Setting	an	unsupported	argument	to	True	will	result	in	an	run-time	error.

Example
As	it	applies	to	the	Worksheet	object.

Show	All

RangeFromPoint	Method

RangeFromPoint	method	as	it	applies	to	the	ChartSpace	object.

RangeFromPoint	method	as	it	applies	to	the	Window	object.

Example
As	it	applies	to	the	ChartSpace	object.

RectIntersect	Method

Returns	a	Range	object	that	represents	the	rectangular	intersection	of
the	specified	ranges.	Returns	Nothing	if	the	specified	ranges	do	not
overlap.

expression.RectIntersect(Range1,	Range2)

expression				Required.	An	expression	that	returns	a	Spreadsheet	object

Range1			Required	Range.

Range2			Required	Range.

Example
This	example	bolds	the	cells	where	the	named	range	"Range1"	overlaps
the	named	range	"Range2"	in	the	active	sheet	of	Spreadsheet1.

Sub	BoldIntersection()

				Dim	rngIntersect
				Dim	rngFirstRange
				Dim	rngSecondRange

				'	Set	a	variable	to	the	first	named	range.
				Set	rngFirstRange	=	Spreadsheet1.ActiveSheet.Range("Range1")

				'	Set	a	variable	to	the	second	named	range.
				Set	rngSecondRange	=	Spreadsheet1.ActiveSheet.Range("Range2")

				'	Set	a	variable	to	the	intersection	of	the	two	named	ranges.
				Set	rngIntersect	=	Spreadsheet1.RectIntersect(rngFirstRange,	rngSecondRange)

				'	Check	whether	the	named	ranges	overlap.
				If	Not	rngIntersect	Is	Nothing	Then

								'	Bold	the	font	in	the	overlapping	portion
								'	of	the	two	ranges.
								rngIntersect.Font.Bold	=	True

				End	If

End	Sub

	 	

RectUnion	Method

Returns	a	Range	object	that	represents	the	smallest	range	of	cells	that
includes	the	union	of	the	specified	ranges.

expression.RectUnion(Range1,	Range2)

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Range1			Required	Range.

Range2			Required	Range.

Remarks
This	method	always	returns	a	rectangular	range.	For	example,	if	you
specify	A1:A5	and	F1:F10,	the	return	value	is	the	rectangular	range
A1:F10.	Also,	you	cannot	use	this	method	to	create	a	range	containing
noncontiguous	areas.

Show	All

Refresh	Method

Refresh	method	as	it	applies	to	the	XmlDataBinding	object

Refresh	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Example
As	it	applies	to	the	XmlDataBinding	object.

As	it	applies	to	the	ChartSpace	object

RefreshJetCache	Method

Refreshes	the	data	access	page's	connection	with	a	Microsoft	Access
database.

expression.RefreshJetCache()

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

RemoveFieldSet	Method

Removes	a	field	set	from	the	specified	axis.

expression.RemoveFieldSet(FieldSet)

expression				An	expression	that	returns	a	PivotDataAxis	,
PivotFilterAxis	,	or	PivotGroupAxis	object.

FieldSet				Required	Variant.	Specifies	the	field	set	to	be	removed.	Can
be	a	PivotFieldSet	object,	a	field	set	name,	or	a	field	set	index	number.

Example
This	example	removes	the	ShipVia	field	from	the	filter	axis	in	PivotTable1.

PivotTable1.ActiveView.FilterAxis.RemoveFieldSet	"ShipVia"
	 	

RemoveTotal	Method

Removes	a	total	from	the	specified	data	axis.

expression.RemoveTotal(Total)

expression				An	expression	that	returns	a	PivotDataAxis	object.

Total				Required	Variant.	Specifies	the	total	to	be	removed.	Can	be	a
PivotTotal	object,	a	total’s	name,	or	a	total’s	index	number.

Example
This	example	removes	the	Order	Count	total	from	the	current	view	in
PivotTable1.

PivotTable1.ActiveView.DataAxis.RemoveTotal	"Order	Count"
	 	

Repaint	Method

Forces	a	redraw	of	the	specified	object.

expression.Repaint

expression				Required.	An	expression	that	returns	a	ChartSpace	or
Spreadsheet	object.

Requery	Method

Executes	the	query	that	returned	the	recordset	and	all	related	recordsets
for	the	specified	object.

expression.Requery

expression				An	expression	that	returns	a	DataPage	object.

Reset	Method

Resets	the	specified	Heading	object.	Use	this	method	to	reset	a	specific
row	or	column	heading.	Use	the	ResetHeadings	method	if	you	want	to
reset	all	row	and	column	headings	in	a	window	to	their	default	values.

expression.Reset

expression				Required.	An	expression	that	returns	a	Heading	object.

Example
This	example	resets	the	caption	of	column	D	in	the	active	window	of
Spreadsheet1	to	its	default	value.

Spreadsheet1.ActiveWindow.ColumnHeadings(4).Reset
	 	 	
	 	

ResetColors	Method

Resets	the	color	palette	of	the	specified	workbook	to	the	default	colors.

expression.ResetColors

expression				Required.	An	expression	that	returns	a	Workbook	object.

Example
The	following	example	resets	the	color	palette	of	the	workbook	that	is
open	in	Spreadsheet1	back	to	its	default	setting.

Spreadsheet1.ActiveWorkbook.ResetColors
	 	 	
	 	

ResetHeadings	Method

Resets	the	row	and	columns	headings	of	the	specified	window	to	their
default	values.	Use	the	Reset	method	instead	if	you	want	to	reset
specific	row	and	column	headings.

expression.ResetHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Example
The	following	example	resets	the	row	and	column	headings	of	the	active
window	in	Spreadsheet1	to	their	default	values.

Spreadsheet1.ActiveWindow.ResetHeadings
	 	

RotateClockwise	Method

Rotates	all	series	in	the	specified	chart	clockwise	in	90-degree
increments.

expression.RotateClockwise

expression				An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	rotates	all	series	in	the	specified	chart	clockwise	90
degrees.

ChartSpace1.Charts(0).PlotArea.RotateClockwise
	 	

RotateCounterClockwise	Method

Rotates	all	series	in	the	specified	chart	counterclockwise	in	90-degree
increments.

expression.RotateCounterClockwise

expression				An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	rotates	all	series	in	the	specified	chart	counterclockwise	90
degrees.

ChartSpace1.Charts(0).PlotArea.RotateCounterClockwise
	 	

Save	Method

Saves	the	current	record	to	the	database	associated	with	the	specified
data	access	page.

expression.Save

expression				An	expression	that	returns	a	DataPage	object.

ScrollIntoView	Method

Scrolls	the	document	window	so	that	the	contents	of	a	specified
rectangular	area	are	displayed	in	either	the	upper-left	or	lower-right
corner	of	the	document	window	or	pane	(depending	on	the	value	of	the
Start	argument).

expression.ScrollIntoView(Left,	Top,	Width,	Height,	Start)

expression				Required.	An	expression	that	returns	a	Window	object.

Left			Required	Long.	The	horizontal	position	of	the	rectangle	(in	points)
from	the	left	edge	of	the	document	window	or	pane.

Top			Required	Long.	The	vertical	position	of	the	rectangle	(in	points)
from	the	top	of	the	document	window	or	pane.

Width			Required	Long.	The	width	of	the	rectangle	in	points.

Height			Required	Long.	The	height	of	the	rectangle	in	points.

Start			Optional	Variant.	True	to	have	the	upper-left	corner	of	the
rectangle	appear	in	the	upper-left	corner	of	the	document	window	or
pane.	False	to	have	the	lower-right	corner	of	the	rectangle	appear	in	the
lower-right	corner	of	the	document	window	or	pane.	The	default	value	is
True.

Remarks
The	Start	argument	is	useful	for	orienting	the	screen	display	when	the
rectangle	is	larger	than	the	document	window.

Example
This	example	defines	a	100-by-200-pixel	rectangle	in	the	active
document	window,	positioned	20	pixels	from	the	top	of	the	window	and
50	pixels	from	the	left	edge	of	the	window.	The	example	then	scrolls	the
document	up	and	to	the	left	so	that	the	upper-left	corner	of	the	rectangle
is	aligned	with	the	upper-left	corner	of	the	window.

Spreadsheet1.ActiveWindow.ScrollIntoView	50,	20,	100,	200
	 	

Show	All

Select	Method

Select	method	as	it	applies	to	the	ChartSpace,	ChAxis,
ChCategoryLabel,	ChChart,	ChChartField,	ChDataLabel,
ChDataLabels,	ChErrorBars,	ChGridlines,	ChLegend,
ChLegendEntry,	ChPlotArea,	ChPoint,	ChSeries,	ChSurface,	ChTitle,
ChTrendline,	Range,	Sheets,	Worksheet,	and	Worksheets	objects.

Select	method	as	it	applies	to	the	PivotTable	object.

Example
This	example	selects	the	cell	that	is	one	column	to	the	right	of	and	in	the
same	row	as	the	active	cell.

Spreadsheet1.ActiveCell.Offset(0,	1).Select
	 	

Show	All

Select2	Method

You	use	the	Select2	method	of	the	ChPoint	object	to	work	with	an	object
in	the	collection	of	currently	selected	objects.	Returns	Nothing.

expression.Select2(selmode)

expression				Required.	An	expression	that	returns	a	ChPoint	object.

selmode			Optional	ChartSelectMode.

Remarks

The	Select2	method	is	similar	to	the	Select	method	of	the	ChPoint
object,	except	the	Select2	method	has	an	optional	selmode	parameter.
The	primary	selection	is	typically	the	first	object	selected.	Other	selected
objects	are	secondary	selections.	Only	the	primary	selection	is
recognized	by	Chart	component	methods	and	properties	that	work	with
the	current	selection.

Show	All

SetData	Method

Sets	data	for	the	specified	chart	object.

expression.SetData(Dimension,	DataSourceIndex,	DataReference)

expression				An	expression	that	returns	a	ChChart,	ChErrorBars
ChSeries,or	ChartSpace	object.

Dimension				Required	ChartDimensionsEnum	constant.	Specifies	the
data	dimension	to	be	set.

DataSourceIndex				Required	Long.	Can	be	a
ChartSpecialDataSourcesEnum	constant.

DataReference				Optional	Variant.	For	ChChart	and	ChSeries	objects,
this	argument	specifies	the	data	reference	as	a	Microsoft	Excel-style
range	reference	("A1:D4"	,	for	example),	or	a	row-set	column	name.
When	the	DataSourceIndex	argument	is	set	to	chDataLiteral,	you	can
set	DataReference	to	a	one-dimensional	array	or	a	comma-delimited	list.
For	ChErrorBars	objects,	this	argument	specifies	an	array	of	Double	or
String	values	you	can	use	for	error-bar	values.	Note	that	you	can	use
this	argument	only	with	custom	error	bars	(the	error-bar	Type	property
must	be	set	to	chErrorBarTypeCustom).

Remarks
Alternatively,	you	can	specify	a	ChartErrorBarCustomValuesEnum
constant	for	the	Dimension	argument	to	specify	the	values	to	use	for
error	bars.

You	can	bind	a	chart	to	only	one	data	source.	For	example,	if	you	have
two	charts	in	a	ChartSpace,	you	cannot	bind	them	to	different	data
sources.	However,	you	can	bind	a	chart	or	data	series	to	a	set	of	literal
data	once	the	chart	or	ChartSpace	has	been	bound	to	an	external	data
source.

When	binding	to	an	OLAP	data	source,	the	DataReference	argument
can	bind	to	a	field	set,	but	not	a	field.	You	can	pass	an	array	of	fields	to
the	DataReference	argument	to	bind	to	a	specific	field	or	fields	when
connected	to	an	OLAP	data	source.

Example
This	example	creates	a	chart	using	literal	data	arrays.

Sub	BindChartToArrays()

				Dim	asSeriesNames(1)
				Dim	asCategories(7)
				Dim	aiValues(7)
				Dim	chConstants
				Dim	chtNewChart

				asSeriesNames(0)	=	"Satisfaction	Data"

				asCategories(0)	=	"Very	Good"
				asCategories(1)	=	"Good"
				asCategories(2)	=	"N/A"
				asCategories(3)	=	"Average"
				asCategories(4)	=	"No	Response"
				asCategories(5)	=	"Poor"
				asCategories(6)	=	"Very	Poor"

				aiValues(0)	=	10
				aiValues(1)	=	22
				aiValues(2)	=	6
				aiValues(3)	=	31
				aiValues(4)	=	5
				aiValues(5)	=	14
				aiValues(6)	=	12

				Set	chConstants	=	ChartSpace1.Constants

				'	Add	a	new	chart	to	Chartspace1.
				Set	chtNewChart	=	ChartSpace1.Charts.Add

				'	Specify	that	the	chart	is	a	column	chart.
				chtNewChart.Type	=	chConstants.chChartTypeColumnClustered

				'	Bind	the	chart	to	the	arrays.
				chtNewChart.SetData	chConstants.chDimSeriesNames,	chConstants.chDataLiteral,	asSeriesNames
				chtNewChart.SetData	chConstants.chDimCategories,	chConstants.chDataLiteral,	asCategories
				chtNewChart.SeriesCollection(0).SetData	chConstants.chDimValues,	chConstants.chDataLiteral,	aiValues

End	Sub

	 	

This	example	creates	a	chart	that	is	bound	to	a	spreadsheet.	The	series
name	is	in	cell	B1,	the	category	names	are	in	cells	A2:A28,	and	the
values	are	in	cells	B2:B28.

Sub	BindToSpreadsheet()
				Dim	chConstants
				Dim	chtChart1

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	the	data	source	of	ChartSpace1	to	Spreadsheet1.
				Set	ChartSpace1.DataSource	=	Spreadsheet1

				'	Set	a	variable	to	a	new	chart	in	Chartspace1.
				Set	chtChart1	=	ChartSpace1.Charts.Add

				'	Set	the	chart	type.
				chtChart1.Type	=	chConstants.chChartTypeLineMarkers

				'	Bind	the	series	name	to	cell	B1	in	the	first	sheet	of	Spreadsheet1.
				chtChart1.SetData	chConstants.chDimSeriesNames,	chConstants.chDataBound,	"B1"

				'	Bind	the	category	axis	to	cell	A2:A28	in	the	first	sheet	of	Spreadsheet1.
				chtChart1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"A2:A28"

				'	Bind	the	values	of	the	data	series	to	cells	B2:B28	in	the	first	sheet	of	Spreadsheet1.
				chtChart1.SeriesCollection(0).SetData	chConstants.chDimValues,	chConstants.chDataBound,	"B2:B28"

End	Sub
	 	

The	following	example	binds	Chartspace1	to	the	Order	Details	table	in
the	SQL	Server	Northwind	database.	Then,	a	format	map	is	created.	The
smaller	values	are	displayed	in	white,	then	larger	values	are	displayed	in
a	light	shade	of	blue,	and	finally	the	largest	values	in	the	chart	are
displayed	in	dark	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=ServerName;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields

				'	in	the	Order	details	table.
				ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Specify	that	the	divisions	in	formatting	be	created	automatically.
				segSegment1.HasAutoDivisions	=	True

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

End	Sub
	 	

SetExtent	Method

You	use	the	SetExtent	method	to	to	specify	the	view	extent	of	the
ChScrollView	object	of	a	Chart	component.	Returns	Nothing.

expression.SetExtent(HorizontalExtent,	VerticalExtent)

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

HorizontalExtent			Required	Long.

VerticalExtent			Required	Long.

Remarks

Using	this	method	to	specify	the	current	scroll	view	position	has	the	same
effect	as	setting	the	HorizontalExtent	and	VerticalExtent	properties
individually.	If	you	use	the	SetExtent	method	rather	than	the
HorizontalExtent	and	VerticalExtent	properties	individually,	however,
less	repainting	will	occur.

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

The	VerticalPosition	and	HorizontalPosition	properties	describe	the
upper-left	corner	of	the	visible	plot	area.	The	VerticalExtent	and
HorizontalExtent	properties	describe	the	lower-right	corner	of	the	visible
plot	area.	Because	you	will	frequently	work	with	these	properties
together,	you	can	use	SetPosition	method	to	specify	the	upper-left
corner	of	the	visible	plot	area	and	the	SetExtent	method	to	specify	the
lower-right	corner.

Example
The	following	example	uses	the	SetExtent	method	to	set	the	vertical	and
horizontal	extent	of	the	scroll	view	of	a	chart	to	zoom	by	200	percent.

Dim	lngHMax
Dim	lngVMax

lngHMax	=	ChartSpace1.Charts(0).ScrollView.HorizontalExtentMax	*	2
lngVMax	=	ChartSpace1.Charts(0).ScrollView.VerticalExtentMax	*	2

ChartSpace1.Charts(0).ScrollView.SetExtent	lngHMax,	lngVMax
	 	 	

Show	All

SetOneColorGradient	Method

Fills	the	specified	ChInterior	object	with	a	one-color	gradient.

expression.SetOneColorGradient(GradientStyle,	GradientVariant,
GradientDegree,	Color)

expression				Required.	An	expression	that	returns	a	ChInterior	object.

GradientStyle			Required	ChartGradientStyleEnum	.	The	gradient
style.

GradientVariant			Required	ChartGradientVariantEnum	.	The	gradient
variant.

GradientDegree			Required	Double.	The	gradient	degree.	Can	be	a
value	from	0.0	(dark)	through	1.0	(light).

Color			Optional	Variant.	The	foreground	color	for	the	gradient.	You	can
use	either	a	Long	value	representing	a	red-green-blue	color	value	or	a
String	value	naming	a	valid	HTML	color	value.	In	Microsoft	Visual	Basic,
you	can	use	the	RGB	function	to	create	a	red-green-blue	color	value	(for
example,	red	is	RGB(255,0,0)).	If	this	argument	is	omitted,	then	the
Color	property	is	used.

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	FormatInteriorColors()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	one-color	gradient.
				serSeries1.Interior.SetOneColorGradient	chConstants.chGradientDiagonalDown,	_
														chConstants.chGradientVariantCenter,	0.2,	"Blue"

				'	Set	the	interior	fill	of	the	second	series	to	a	preset	gradient.
				serSeries2.Interior.SetPresetGradient	chConstants.chGradientFromCenter,	_
															chConstants.chGradientVariantEnd,	chConstants.chGradientDaybreak

				'	Set	the	interior	fill	of	the	plot	area	to	a	pattern.
				ChartSpace1.Charts(0).PlotArea.Interior.SetPatterned	chConstants.chPattern10Percent,	_
															"Yellow",	"Blue"

End	Sub

	 	

Show	All

SetPatterned	Method

Fills	the	specified	ChInterior	object	with	a	preset	pattern.

expression.SetPatterned(patternType,	Color,	BackColor)

expression				Required.	An	expression	that	returns	a	ChInterior	object.

patternType			Required	ChartPatternTypeEnum	.	The	pattern	style.

Color			Optional	Variant.	The	foreground	color	for	the	pattern.	You	can
use	either	a	Long	value	representing	a	red-green-blue	color	value	or	a
String	value	naming	a	valid	HTML	color	value.	In	Microsoft	Visual	Basic,
you	can	use	the	RGB	function	to	create	a	red-green-blue	color	value	(for
example,	red	is	RGB(255,0,0)).	If	this	argument	is	omitted,	then	the
Color	property	is	used.

BackColor			Optional	Variant.	The	background	color	for	the	pattern.	You
can	use	either	a	Long	value	representing	a	red-green-blue	color	value	or
a	String	value	naming	a	valid	HTML	color	value.	In	Microsoft	Visual
Basic,	you	can	use	the	RGB	function	to	create	a	red-green-blue	color
value	(for	example,	red	is	RGB(255,0,0)).	If	this	argument	is	omitted,
then	the	BackColor	property	is	used.

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	Format_Interior_Colors()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	one-color	gradient.
				serSeries1.Interior.SetOneColorGradient	chConstants.chGradientDiagonalDown,	_
														chConstants.chGradientVariantCenter,	0.2,	"Blue"

				'	Set	the	interior	fill	of	the	second	series	to	a	preset	gradient.
				serSeries2.Interior.SetPresetGradient	chConstants.chGradientFromCenter,	_
														chConstants.chGradientVariantEnd,	chConstants.chGradientDaybreak

				'	Set	the	interior	fill	of	the	plot	area	to	a	pattern.
				ChartSpace1.Charts(0).PlotArea.Interior.SetPatterned	chConstants.chPattern10Percent,	_
														"Yellow",	"Blue"

End	Sub

	 	

SetPosition	Method

You	use	the	SetPosition	method	to	to	specify	the	current	view	position	of
the	ChScrollView	object	of	a	Chart	component.	Returns	Nothing.

expression.SetPosition(HorizontalPosition,	VerticalPosition)

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

HorizontalPosition			Required	Long.

VerticalPosition			Required	Long.

Remarks

Using	this	method	to	specify	the	current	scroll	view	position	has	the	same
effect	as	setting	the	HorizontalPosition	and	VerticalPosition	properties
individually.	If	you	use	the	SetPosition	method	rather	than	the
HorizontalPosition	and	VerticalPosition	properties	individually,
however,	less	repainting	will	occur.

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area,	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart;	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

The	VerticalPosition	and	HorizontalPosition	properties	describe	the
upper-left	corner	of	the	visible	plot	area.	The	VerticalExtent	and
HorizontalExtent	properties	describe	the	lower-right	corner	of	the	visible
plot	area.	Because	you	will	frequently	work	with	these	properties
together,	you	can	use	SetPosition	method	to	specify	the	upper-left
corner	of	the	visible	plot	area	and	the	SetExtent	method	to	specify	the
lower-right	corner.

Example
This	example	shows	the	lower-left	corner	of	a	zoomed	chart	in	the	lower-
left	corner	of	the	visible	plot	area.

Dim	lngVE
Dim	lngHE
Dim	lngVEM
Dim	lngHEM
Dim	objScrollView

Set	objScrollView	=	ChartSpace1.Charts(0).ScrollView
lngVE	=	objScrollView.VerticalExtent
lngHE	=	objScrollView.HorizontalExtent
lngVEM	=	objScrollView.VerticalExtentMax
lngHEM	=	objScrollView.HorizontalExtentMax

'	For	zoomed	chart,	display	lower	left	corner	of	virtual	plot	area	in
'	the	lower	left	corner	of	the	visible	plot	area.
If	(lngVE	<>	lngVEM)	Or	(lngHE	<>	lngHEM)	Then
	objScrollView.SetPosition	0,	objScrollView.VerticalPosition	+	(lngVEM	-	lngVE)
End	If

Show	All

SetPresetGradient	Method

Fills	the	specified	ChInterior	object	with	a	preset	gradient	style.

expression.SetPresetGradient(GradientStyle,	gradientVarient,
gradientPreset)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

GradientStyle			Required	ChartGradientStyleEnum	.	The	gradient
style.

gradientVarient			Required	ChartGradientVariantEnum	.	The	gradient
variant.

gradientPreset			Required	ChartPresetGradientTypeEnum	.	The
gradient	style	used	to	fill	the	specified	object.

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	Format_Interior_Colors()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	one-color	gradient.
				serSeries1.Interior.SetOneColorGradient	chConstants.chGradientDiagonalDown,	_
															chConstants.chGradientVariantCenter,	0.2,	"Blue"

				'	Set	the	interior	fill	of	the	second	series	to	a	preset	gradient.
				serSeries2.Interior.SetPresetGradient	chConstants.chGradientFromCenter,	_
															chConstants.chGradientVariantEnd,	chConstants.chGradientDaybreak

				'	Set	the	interior	fill	of	the	plot	area	to	a	pattern.
				ChartSpace1.Charts(0).PlotArea.Interior.SetPatterned	chConstants.chPattern10Percent,	_
															"Yellow",	"Blue"

End	Sub

	 	

SetRootRecordset	Method

Sets	the	root	recordset	for	the	specified	DataSourceControl	object.	Use
this	method	to	change	the	recordset	to	which	a	data	access	page	is
bound.

expression.SetRootRecordset(RecordsetName,	Recordset)

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

RecordsetName			Required	String.	The	name	to	use	for	the	new
recordset.	If	the	DataSource	control	contains	a	recordset	of	this	name,	it
will	be	replaced.

Recordset			Required	Recordset	object.	The	ADO	recordset.

Remarks
This	method	supports	connecting	to	any	ADO	recordset.

Example
This	example	changes	the	root	recordset	used	by	the	data	source
control.

Sub	ChangeRootRecordset()
			Dim	rstCategories
			Dim	strShapeText
			Dim	strConnectionString

			strShapeText	=	MSODSC.RootRecordsetDefs(0).ShapeText

			strConnectionString	=	"Provider=MSDataShape.1;Persist	Security	Info=True;Data	Source"	&
																								"=sqlsvr;Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&
																								"Data	Provider=SQLOLEDB.1"

			Set	rstCategories	=	CreateObject("ADODB.Recordset")

			rstCategories.Open	strShapeText,	strConnectionString,	1,	3

			MSODSC.SetRootRecordset	"Categories",	rstCategories

End	Sub

	 	

SetSolid	Method

Fills	the	specified	ChInterior	object	with	a	solid	color.	Use	this	method	to
convert	a	gradient,	textured,	patterned,	or	background	fill	back	to	a	solid
fill.

expression.SetSolid(Color)

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Color			Optional	Variant.	The	color	for	the	specified	ChInterior	object.
You	can	use	either	a	Long	value	representing	a	red-green-blue	color
value	or	a	String	value	naming	a	valid	HTML	color	value.	In	Microsoft
Visual	Basic,	you	can	use	the	RGB	function	to	create	a	red-green-blue
color	value	(for	example,	red	is	RGB(255,0,0)).

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	Format_Interior_Fills()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	two-color	gradient.
				serSeries1.Interior.SetTwoColorGradient	chConstants.chGradientDiagonalDown,	_
															chConstants.chGradientVariantCenter,	"Blue",	"Silver"

				'	Set	the	interior	fill	of	the	second	series	to	a	solid	color.
															serSeries2.Interior.SetSolid	"Purple"

				'	Set	the	interior	fill	of	the	plot	area	to	a	preset	texture.
				ChartSpace1.Charts(0).PlotArea.Interior.SetTextured	_
															chConstants.chTextureParchment,	chConstants.chTile

End	Sub
	 	

SetSpreadsheetData	Method

Binds	the	specified	chart	or	chartspace	to	a	range	of	cells	on	on	a
worksheet	in	the	Spreadsheet	Component.	The	chart	must	already	be
bound	to	a	range	of	cells	in	the	Spreadsheet	Component	before	you	call
this	method.

expression.SetSpreadsheetData(DataReference,	SeriesByRows)

expression				Required.	An	expression	that	returns	a	ChartSpace	or
ChChart	object.

DataReference			Required	String.	A	reference	to	the	range	of	cells	to
bind	to.	This	can	be	in	the	form	of	a	cell	reference	(A1:D5),	or	a	defined
name.

SeriesByRows			Optional	Boolean.	Specifies	whether	or	not	each	row
represents	a	data	series.	Set	this	property	to	False	if	each	column
represents	a	data	series.

Example
This	example	binds	ChartSpace1	to	cells	A1:F25	in	the	first	sheet	of
Spreadsheet1.

ChartSpace1.SetSpreadsheetData	"Sheet1!A1:F25",	False
	 	

Show	All

SetTextured	Method

Fills	the	specified	ChInterior	object	with	an	image	or	a	preset	texture.

expression.SetTextured(textureFile,	TextureFormat,	stackUnit,
TexturePlacement)

expression				Required.	An	expression	that	returns	a	ChInterior	object.

textureFile			Required	Variant.	The	image	used	to	fill	the	interior	of	the
object.	You	can	specify	a	URL	that	points	to	an	image	file	or	a
ChartPresetTextureEnum	constant.

TextureFormat			Optional	ChartTextureFormatEnum	.	Determines	how
the	picture	is	displayed	within	the	specified	ChInterior	object.

stackUnit			Optional	Double.	Specifies	how	the	picture	is	stacked	and
scaled	when	the	TextureFormat	argument	is	set	to	chStackScale.

TexturePlacement			Optional	ChartTexturePlacementEnum	.	Affects
where	the	picture	is	displayed	within	the	specified	ChInterior	object.	This
setting	only	affects	3-D	charts.

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	Format_Interior_Fills()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	two-color	gradient.
				serSeries1.Interior.SetTwoColorGradient	chConstants.chGradientDiagonalDown,	_
															chConstants.chGradientVariantCenter,	"Blue",	"Silver"

				'	Set	the	interior	fill	of	the	second	series	to	a	solid	color.
				serSeries2.Interior.SetSolid	"Purple"

				'	Set	the	interior	fill	of	the	plot	area	to	a	preset	texture.
				ChartSpace1.Charts(0).PlotArea.Interior.SetTextured	_
														chConstants.chTextureParchment,	chConstants.chTile

End	Sub
	 	

Show	All

SetTwoColorGradient	Method

Fills	the	specified	ChInterior	object	with	a	two-color	gradient.

expression.SetTwoColorGradient(GradientStyle,	GradientVariant,
Color,	BackColor)

expression				Required.	An	expression	that	returns	a	ChInterior	object.

GradientStyle			Required	ChartGradientStyleEnum	.	The	gradient
style.

GradientVariant			Required	ChartGradientVariantEnum	.	The	gradient
variant.	If	GradientStyle	is	chGradientFromCenter,	the
GradientVariant	argument	can	only	be	chGradientVariantStart	or
chGradientVariantEnd.

Color			Optional	Variant.	The	foreground	color	of	the	gradient.	You	can
use	either	a	Long	value	representing	a	red-green-blue	color	value	or	a
String	value	naming	a	valid	HTML	color	value.	In	Microsoft	Visual	Basic,
you	can	use	the	RGB	function	to	create	a	red-green-blue	color	value	(for
example,	red	is	RGB(255,0,0)).	If	omitted,	the	Color	property	is	used	to
determine	the	foreground	color.

BackColor			Optional	Variant.	The	background	color	of	the	gradient.	You
can	use	either	a	Long	value	representing	a	red-green-blue	color	value	or
a	String	value	naming	a	valid	HTML	color	value.	In	Microsoft	Visual
Basic,	you	can	use	the	RGB	function	to	create	a	red-green-blue	color
value	(for	example,	red	is	RGB(255,0,0)).	If	omitted,	the	BackColor
property	is	used	to	determine	the	foreground	color.

Example
This	example	sets	the	interior	fill	of	the	first	two	series	and	the	plot	area
of	the	first	chart	in	ChartSpace1.

Sub	Format_Interior_Fills()

				Dim	chConstants
				Dim	serSeries1
				Dim	serSeries2

				Set	chConstants	=	ChartSpace1.Constants

				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)
				Set	serSeries2	=	ChartSpace1.Charts(0).SeriesCollection(1)

				'	Set	the	interior	fill	of	the	first	series	to	a	two-color	gradient.
				serSeries1.Interior.SetTwoColorGradient	chConstants.chGradientDiagonalDown,	_
														chConstants.chGradientVariantCenter,	"Blue",	"Silver"

				'	Set	the	interior	fill	of	the	second	series	to	a	solid	color.
				serSeries2.Interior.SetSolid	"Purple"

				'	Set	the	interior	fill	of	the	plot	area	to	a	preset	texture.
				ChartSpace1.Charts(0).PlotArea.Interior.SetTextured	_
														chConstants.chTextureParchment,	chConstants.chTile

End	Sub

	 	

Show	Method

Scrolls	the	spreadsheet	window	to	move	the	specified	range	into	view.

expression.Show

expression				An	expression	that	returns	a	Range	object.

Remarks
If	you	specify	a	range	that	is	not	on	the	active	worksheet,	this	method	will
not	activate	that	worksheet.	However,	the	specified	range	will	be	visible
when	you	activate	that	worksheet.	For	example,	if	Sheet1	is	currently
active	and	you	use	this	method	with	cell	A500	on	Sheet2,	Sheet1
remains	active.	Cell	A500	will	be	active	if	you	immediately	activate
Sheet2,	either	manually	or	by	using	the	Activate	method	of	the
Worksheet	object.

Example
This	example	scrolls	the	spreadsheet	until	cell	P75	is	visible.

Spreadsheet1.ActiveSheet.Range("p75").Show
	 	

ShowAbout	Method

Displays	the	About	Microsoft	Office	Web	Components	dialog	box.

expression.ShowAbout

expression				Required.	An	expression	that	returns	a	Spreadsheet	or
PivotTable	object.

ShowAllData	Method

Makes	all	filtered	rows	visible	on	the	specified	worksheet	and	sets	all
filters	to	Show	All.

expression.ShowAllData

expression				An	expression	that	returns	a	Worksheet	object.

Example
This	example	makes	all	filtered	rows	visible	on	the	active	worksheet	and
sets	all	filters	to	Show	All.

Spreadsheet1.ActiveSheet.ShowAllData
	 	

ShowContextMenu	Method

Displays	a	customized	context	menu	at	the	specified	screen	coordinates.

expression.ShowContextMenu(x,	y,	Menu)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

x			Required	Long.	Represents	the	x-coordinate	where	the	context	menu
is	to	appear.

y			Required	Long.	Represents	the	y-coordinate	where	the	context	menu
is	to	appear.

Menu			Required	Variant.	The	array	that	contains	the	menu	items	to
display.

Example
This	example	displays	a	context	menu.

Sub	ShowMenu()

				Dim	cmContextMenu(4)
				Dim	cmClearSubMenu(2)

				cmClearSubMenu(0)	=	Array("&All",	"ClearAll")
				cmClearSubMenu(1)	=	Array("&Formats",	"ClearFormats")
				cmClearSubMenu(2)	=	Array("&Values",	"ClearValues")

				cmContextMenu(0)	=	Array("Cu&t",	"owc2")
				cmContextMenu(1)	=	Array("&Copy",	"owc3")
				cmContextMenu(2)	=	Array("&Paste",	"owc4")
				cmContextMenu(3)	=	Empty
				cmContextMenu(4)	=	Array("Clea&r",	cmClearSubMenu)

				Spreadsheet1.ShowContextMenu	10,	40,	cmContextMenu

End	Sub

	 	

ShowDetails	Method

Expands	the	details	cells	for	the	specified	object.	If	the	specified	object	is
a	PivotData	object,	all	detail	cells	are	expanded.	If	the	specified	object	is
a	PivotRowMember	object,	then	all	details	cells	in	that	row	are
expanded.	If	the	specified	object	is	a	PivotColumnMember	object,	then
all	details	cells	in	that	column	are	expanded.

expression.ShowDetails

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	expands	all	of	the	detail	cells	in	PivotTable1.

PivotTable1.ActiveData.ShowDetails
	 	 	
	 	

Show	All

ShowHelp	Method

ShowHelp	method	as	it	applies	to	the	ChartSpace	object.

ShowHelp	method	as	it	applies	to	the	PivotTable	and	Spreadsheet
objects.

SmallScroll	Method

Scrolls	the	contents	of	the	window	by	rows	or	columns.

expression.SmallScroll(Down,	Up,	ToRight,	ToLeft)

expression				Required.	An	expression	that	returns	a	Window	object.

Down			Optional	Variant.	The	number	of	rows	to	scroll	the	contents
down.

Up			Optional	Variant.	The	number	of	rows	to	scroll	the	contents	up.

ToRight			Optional	Variant.	The	number	of	columns	to	scroll	the	contents
to	the	right.

ToLeft			Optional	Variant.	The	number	of	columns	to	scroll	the	contents
to	the	left.

Remarks
If	Down	and	Up	or	ToLeft	andToRight	are	both	specified,	the	contents
of	the	window	are	scrolled	by	the	difference	of	the	arguments.	For
example,	if	Down	is	3	and	Up	is	6,	the	the	contents	are	scrolled	up	three
rows.

Any	of	these	arguments	can	be	a	negative	number.

Example
This	example	scrolls	the	contents	of	the	active	window	of	Spreadsheet1
down	three	rows.

Spreadsheet1.ActiveWindow.SmallScroll	3
	 	

Show	All

Sort	Method

Sorts	a	range	or,	if	the	specified	range	contains	only	one	cell,	the	current
region

expression.Sort(ColumnKey,	Order,	Header)

expression				An	expression	that	returns	a	Range	object.

ColumnKey				Optional	Long.	The	number	of	the	first	sort	column.	The
default	value	is	1.

Order				Optional	XlSortOrder	.	The	sort	order.

Header			Optional	XlYesNoGuess	.	Determines	whether	the	first	row
contains	headers.

Example
This	example	sorts	the	range	A1:F10	in	descending	order	based	on
column	B.

Sub	SortData()
Dim	ssConstants

Set	ssConstants	=	Spreadsheet1.Constants

'	Sort	Range	A1:F10	on	column	B	in	descending	order	and	specify
that
'	row	1	contains	headings.
Spreadsheet1.ActiveSheetRange("A1:F10").Sort	2,	_
ssConstants.xlDescending,	ssConstants.xlYes
End	Sub

SortAscending	Method

Sorts	a	field	on	a	data	access	page	in	ascending	order.

expression.SortAscending

expression				Required.	An	expression	that	returns	a	DataPage	object.

Remarks
This	method	relies	upon	the	current	selection	on	the	data	access	page	to
determine	the	field	to	sort	by.	Therefore,	you	must	set	the	focus	to	the
field	to	sort	by,	when	the	procedure	containing	this	method	is	invoked	by
a	control	on	the	data	access	page,	such	as	a	command	button.

Example
This	example	sorts	the	ProductName	field	in	ascending	order.

Sub	SortProductNameAscending()

			'	Set	focus	to	the	control	for	the	ProductName	field.
			MSODSC.Datapages(0).FirstSection.HTMLContainer.Children("ProductName").Focus

			'	Sort	the	field	in	descending	order.
			MSODSC.DataPages(0).SortAscending

End	Sub

	 	

SortDescending	Method

Sorts	a	field	on	a	data	access	page	in	descending	order.

expression.SortDescending

expression				Required.	An	expression	that	returns	a	DataPage	object.

Remarks
This	method	relies	upon	the	current	selection	on	the	data	access	page	to
determine	the	field	to	sort	by.	Therefore,	you	must	set	the	focus	to	the
field	to	sort	by,	when	the	procedure	containing	this	method	is	invoked	by
a	control	on	the	data	access	page,	such	as	a	command	button.

Example
This	example	sorts	the	ProductName	field	in	descending	order.

Sub	SortProductNameDescending()

			'	Set	focus	to	the	control	for	the	ProductName	field.
			MSODSC.Datapages(0).FirstSection.HTMLContainer.Children("ProductName").Focus

			'	Sort	the	field	in	descending	order.
			MSODSC.DataPages(0).SortDescending

End	Sub

	 	

Show	All

StartEdit	Method

Places	the	active	detail	cell	into	edit	mode.

expression.StartEdit(InitialValue,	ArrowMode,	CaretPosition)

expression				Required.	An	expression	that	returns	one	of	the	a
PivotTable	object.

InitialValue			Optional	Variant.	Specifies	the	initial	value	to	use	when
editing	the	cell.	The	current	value	is	used	if	you	do	not	specify	a	value	for
this	argument.

ArrowMode			Optional	PivotArrowModeEnum	.	Specifies	how	the	left
and	right	arrows	function	while	the	user	is	in	edit	mode.

CaretPosition			Optional	PivotCaretPositionEnum	.	Specifies	the
position	of	the	insertion	point	within	the	cell.

Remarks
This	method	will	result	in	a	run-time	error	if	the	current	selection	is	not	a
detail	cell,	or	if	the	current	data	is	not	editable.

TextHeight	Method

Calculates	and	returns	a	Variant	that	represents	the	width	of	the
specified	text	in	pixels,	based	on	the	current	font	setting.

expression.TextHeight(Text)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Text			Required	String.	The	text	whose	size	you	want	to	calculate.

TextWidth	Method

Calculates	and	returns	a	Variant	that	represents	the	width	of	the
specified	text	in	pixels,	based	on	the	current	font	setting.

expression.TextWidth(Text)

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Text			Required	String.	The	text	whose	size	you	want	to	calculate.

ToggleFilter	Method

Toggles	the	state	of	the	current	filter	that	has	been	applied	to	the	data
access	page.	If	the	filter	is	active,	calling	this	method	deactivates	the
filter.	Calling	this	method	a	second	time	reapplies	the	filter.

expression.ToggleFilter

expression				Required.	An	expression	that	returns	a	DataPage	object.

Example
This	example	toggles	the	filter	on	the	first	data	access	page	in	the	data
source	control	named	MSODSC.

MSODSC.DataPages(0).ToggleFilter
	 	 	
	 	

Undo	Method

For	the	ChartSpace	and	Spreadsheet	objects,	undoes	the	last	single
action	or	the	last	macro	block	surrounded	by	BeginUndo	and	EndUndo
method	calls.

For	the	DataPage	object,	restores	the	data	access	page	to	the	condition
before	the	recordset	was	edited	if	the	edits	have	not	been	saved.

expression.Undo

expression				An	expression	that	returns	a	ChartSpace,	DataPage,	or
Spreadsheet	object.

Example
This	example	undoes	the	last	action	or	displays	a	message	box	if	this
action	cannot	be	undone.

If	Spreadsheet1.CanUndo	Then
				Spreadsheet1.Undo
Else
				MsgBox	"can't	undo	last	action"
End	If
	 	

Ungroup	Method

Moves	the	specified	series	into	a	new	layer.

expression.Ungroup(UseNewScaling)

expression				Required.	An	expression	that	returns	a	ChSeries	object.

UseNewScaling			Optional	Boolean.	Set	this	argument	to	True	to
specify	that	the	series	uses	a	different	scaling	than	the	previous	layer.
The	default	value	is	False.

Remarks
When	you	move	a	series	into	a	new	layer,	you	can	assign	the	series	to
an	axis	that	is	based	on	a	different	value	scale.

Example
This	example	creates	a	combination	chart	based	on	literal	data.	The	first
data	series	is	plotted	as	a	line.	The	second	data	series	is	plotted	as
columns,	and	on	a	it's	own	value	axis.

Sub	Window_Onload()

				Dim	asSeriesNames(1)
				Dim	asCategories(3)
				Dim	aiSeries1(3)
				Dim	alSeries2(3)
				Dim	chConstants
				Dim	chtNewChart
				Dim	serUnitSales
				Dim	serDispInc
				Dim	axIncomeAxis

				asSeriesNames(0)	=	"UnitSales"
				asSeriesNames(1)	=	"Disposable	Income"

				asCategories(0)	=	"Item	1"
				asCategories(1)	=	"Item	2"
				asCategories(2)	=	"Item	3"
				asCategories(3)	=	"Item	4"

				aiSeries1(0)	=	75
				aiSeries1(1)	=	84
				aiSeries1(2)	=	30
				aiSeries1(3)	=	94

				alSeries2(0)	=	14522

				alSeries2(1)	=	17321
				alSeries2(2)	=	9424
				alSeries2(3)	=	41782

				Set	chConstants	=	ChartSpace1.Constants

				'	Enagble	the	display	of	the	legend.
				ChartSpace1.HasChartSpaceLegend	=	True

				'	Add	a	new	chart	to	Chartspace1.
				Set	chtNewChart	=	ChartSpace1.Charts.Add

				'	Specify	that	the	chart	is	a	column	chart.
				chtNewChart.Type	=	chConstants.chChartTypeLineMarkers

				'	Bind	the	chart	to	the	arrays.
				chtNewChart.SetData	chConstants.chDimSeriesNames,	chConstants.chDataLiteral,	asSeriesNames
				chtNewChart.SetData	chConstants.chDimCategories,	chConstants.chDataLiteral,	asCategories

				Set	serUnitSales	=	chtNewChart.SeriesCollection(0)

				serUnitSales.SetData	chConstants.chDimValues,	chConstants.chDataLiteral,	aiSeries1

				Set	serDispInc	=	chtNewChart.SeriesCollection(1)

				serDispInc.SetData	chConstants.chDimValues,	chConstants.chDataLiteral,	alSeries2

				'	Ungroup	the	series.
				serDispInc.Ungroup	True

				'	Add	a	new	value	axis	to	the	chart	based	on	the	values	in	the	series.
				Set	axIncomeAxis	=	chtNewChart.Axes.Add(serDispInc.Scalings(chConstants.chDimValues))

				'	Place	the	axis	on	the	right	side	of	the	chart.
				axIncomeAxis.Position	=	chConstants.chAxisPositionRight

				'	Display	the	series	as	columns.
				serDispInc.Type	=	chConstants.chChartTypeColumnClustered

End	Sub

	 	

UnMerge	Method

Separates	the	specified	merged	area	into	individual	cells.	When	you
separate	a	merged	area,	the	value	in	the	merged	area	is	placed	in	the
cell	in	the	upper-left	corner	of	the	area.	All	other	cells	are	cleared.

expression.UnMerge

expression				An	expression	that	returns	a	Range	object.

Example
This	example	separates	the	merged	area	containing	cell	A1.

Spreadsheet1.ActiveSheet.Range("A1").UnMerge
	 	

Unprotect	Method

Removes	protection	from	a	worksheet	or	workbook.	This	method	has	no
effect	if	the	worksheet	or	workbook	isn't	protected.	This	method	is
equivalent	to	setting	the	Enabled	property	of	the	Protection	object	to
False.

expression.Unprotect(Password)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Password				This	argument	is	not	supported	in	this	version	of	the
Microsoft	Office	Spreadsheet	Component.

Update	Method

You	use	the	Update	method	to	write	data	contained	in	an	XML	map	to	a
data	source	bound	to	a	SOAP	Web	service.	Returns	Nothing.

expression.Update(ShowDialogs)

expression				Required.	An	expression	that	returns	an	XmlDataBinding
object.

ShowDialogs			Optional	Boolean.	Specifies	whether	a	dialog	box	is
displayed	if	the	Update	method	encounters	an	error	that	is	returned	by
the	Spreadsheet	component	itself.	When	ShowDialogs				is	set	to	True,
a	dialog	box	is	displayed	if	the	Update	method	encounters	an	error
returned	by	the	Spreadsheet	component.	When	ShowDialogs	is	set	to
False,	dialog	boxes	for	Spreadsheet	component	errors	are	not	displayed.
The	default	is	False.

Note		The	ShowDialogs	argument	does	not	control	whether	a	dialog	box
will	be	displayed	for	errors	external	to	the	Spreadsheet	component,	such
as	errors	returned	by	scripting	components.	To	prevent	a	dialog	box	from
displaying	for	errors	external	to	the	Spreadsheet	component,	you	must
trap	those	errors	in	your	script.

Remarks

If	the	Update	method	fails,	the	BindingError	event	of	the	Spreadsheet
component	will	fire,	and	any	scripting	errors	will	be	returned.	To	catch	an
update	error	you	must	add	code	to	the	BindingError	event,	or	trap	errors
in	script.	During	asynchronous	binding,	any	effort	to	work	with	an
XmlDataBinding	object	programmatically	will	fail.	You	can	use	the
Async	property	of	the	XmlDataBinding	object	to	determine	if	a	binding
supports	asynchronous	binding.	You	use	the	BindingInProgress
property	of	the	XmlDataBinding	object	to	determine	of	an	asynchronous
binding	is	in	progress.

Example
You	can	add	code	to	the	BindingCompleted	event	of	the	Spreadsheet
component	that	calls	the	Update	method	or	you	can	use	the
BindingInProgress	property	to	determine	if	data	binding	is	in	progress.
The	following	example	uses	the	Update	method	to	write	data	back	to	the
data	source	of	a	SOAP	Web	service	for	all	XmlDataBinding	objects	in	a
Spreadsheet	component:

Sub	UpdateBinding	(Spreadsheet1)

				Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(2).Update

End	Sub

Sub	Spreadsheet1_BindingCompleted(bindingID,	Action)

				If	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(bindingID).CanUpdate	=	True	Then
								'	Write	code	here	to	perform	any	additional	actions	on	this	update	binding.
				End	If

End	Sub

Note		For	information	on	trapping	the	BindingCompleted	event	from
script	running	in	a	Web	page,	see	the	BindingCompleted	event	topic.

UpdatePropertyToolbox	Method

Updates	the	Commands	and	Options	window	from	the	currently	selected
object.

expression.UpdatePropertyToolbox

expression				An	expression	that	returns	a	Spreadsheet	object.

Validate	Method

You	use	the	Validate	method	to	validate	data	in	a	cell	or	range	of	cells	in
the	Spreadsheet	component.	Returns	Nothing.

expression.Validate

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks

The	easiest	way	to	create	one	or	more	data	validation	rules	for	cells	in	a
Spreadsheet	component	is	to	use	Microsoft	Excel.	You	can	use	Excel	to
create	a	new	spreadsheet,	or	open	an	existing	spreadsheet,	and	then
use	the	Excel	data	validation	features	to	create	data	validation	rules.	You
save	the	spreadsheet	as	an	XML	Spreadsheet	file	and	then	set	the
Spreadsheet	component's	XmlUrl	property	to	the	saved	file.	Validation
rules	created	in	the	XML	Spreadsheet	file	trigger	validation	rule	error
messages	only	when	data	is	entered	through	the	user	interface.	For
example,	when	a	user	enters	data	into	a	cell	that	violates	a	validation
rule,	a	validation	rule	error	message	is	displayed	to	the	user.	However,	if
data	is	entered	into	a	cell	programmatically,	or	if	the	ImportXml	method
is	used	to	import	a	new	XML	data	file	into	the	Spreadsheet	component
that	contains	invalid	data,	no	error	messages	are	triggered.	In	this
circumstance,	you	can	use	the	Validate	method	to	determine	whether
such	data	is	valid.

The	Validate	method	does	not	return	a	value	indicating	that	a	cell	or
range	of	cells	contains	invalid	data.	If	you	are	using	Microsoft	Visual
Basic	Scripting	Edition	(VBScript)	to	validate	data,	you	must	use	the	On
Error	Resume	Next	statement	on	the	line	immediately	preceding	the	call
to	the	Validate	method.	In	the	line	immediately	after	the	call	to	the
Validate	method,	use	the	Number	property	of	the	VBScript	Err	object	to
test	whether	validation	succeeded.

Example
The	following	example	illustrates	a	function	that	returns	True	if	the	data	in
a	cell	is	valid	and	False	if	not	it	is	not	valid.

Dim	objRange
Spreadsheet1.xmlurl	=	"MyXmlSpreadsheetFile.xml"
Set	objRange	=	Spreadsheet1.Workbooks(1).ListObject("EntryID").DataBodyRange

If	ValidateRange(objRange)	=	True	Then
					'	Validation	succeeded.
Else
					'	Validation	failed.
End	If

Function	ValidateRange(objRange)
				Dim	lngError
				On	Error	Resume	Next
				objRange.Validate()
				lngError	=	Err.Number
				If	lngError	<>	0		Then
									ValidateRange	=	True
									Exit	Function
				End	If
				ValidateRange	=	False
End	Function

The	next	example	adds	data	to	a	cell	and	then	uses	the	Validate	method
to	determine	whether	the	data	satisfies	the	cell's	validation	rule:

Dim	objRange

Set	objRange	=	Spreadsheet1.ActiveCell

objRange.Value	=	100
On	Error	Resume	Next

objRange.Validate

If	Err.Number	<>	0	then
				objRange.Value	=	""
End	If

Show	All

ValueToPoint	Method

ValueToPoint	method	as	it	applies	to	the	ChAxis	object.

ValueToPoint	method	as	it	applies	to	the	ChSeries	object.

Remarks
Use	the	x	and	y	properties	of	the	returned	Coordinate	object	to	return
the	X	and	Y-coordinates	for	the	specified	data	point.

Example
As	it	applies	to	the	ChSeries	object.

Active	Property

Returns	True	if	the	row	represented	by	the	ListRow	object	is	selected.
Read/write	Boolean.

expression.Active

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks

Setting	the	Active	property	of	a	ListRow	object	equal	to	True	is	not
reflected	in	the	Range	object	returned	by	the	Selection	property.	To	add
a	row	to	a	selected	range,	you	must	use	the	Select	method	instead.

Example
This	example	checks	whether	the	specified	row	in	the	XML	list	is
selected.

Sub	IsRowActive()

						Dim	objLists
						Dim	objLRows
						Dim	objLRow

						Set	objLists	=	Spreadsheet1.ActiveSheet.ListObjects
						Set	objLRows	=	objLists.Item(1).ListRows
	
					'	Save	list	row	information	for	the	third	row	to	a	variable.	
						Set	objLRow	=	objLRows.Item(3)

					'	Display	whether	the	current	row	is	selected.	
						If	objLRow.Active	Then
												MsgBox	("Row	is	selected.")
						Else
												MsgBox	("Row	is	not	selected.")
						End	If	

End	Sub

ActiveCell	Property

Returns	a	Range	object	that	represents	the	active	cell.	Read-only.

expression.ActiveCell

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks

Be	careful	to	distinguish	between	the	active	cell	and	the	selection.	The
active	cell	is	a	single	cell	inside	the	current	selection.	The	selection	may
contain	more	than	one	cell,	but	only	one	is	the	active	cell.

Example
This	example	sets	the	number	format	in	the	active	cell	on	the	worksheet.

Spreadsheet1.ActiveCell.NumberFormat	=	"0.##"
	 	

ActiveData	Property

Returns	a	PivotData	object	that	represents	the	data	in	the	active
PivotTable	list.

expression.ActiveData

expression				Required.	An	expression	that	returns	a	PivotTable	object.

ActiveObject	Property

Returns	or	sets	an	Object	that	represents	the	selected	cell	in	the	detail
area	of	the	PivotTable	list.	Use	the	Value	property	of	the	returned	object
to	change	the	value	of	the	selected	cell.

expression.ActiveObject

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Remarks
This	property	returns	Nothing	if	no	detail	cells	are	selected.

Example
This	example	enables	the	editing	of	detail	records	in	PivotTable1,	then
places	the	current	date	in	the	selected	detail	cell.	The	editing	of	detail
records	is	disallowed	once	the	date	has	been	inserted	into	the	selected
cell.

Sub	EditSelectedCell()

				Dim	objActiveCell

				'	Allow	editing	of	detail	records.
				PivotTable1.ActiveView.AllowEdits	=	True

				'	Set	a	variable	to	the	currently	selected	cell.
				Set	objActiveCell	=	PivotTable1.ActiveObject

				'	Check	whether	a	detail	cell	is	selected.
				If	Not	objActiveCell	Is	Nothing	Then

								'	Set	the	value	of	the	detail	cell
								'	to	the	current	date.
								'	Note:	This	will	result	in	a	run-time
								'	error	if	the	data	type	of	the	selected
								'	cell	does	not	support	date	values.
								objActiveCell.Value	=	Date

				End	If

				'	Disallow	editing	of	detail	records.
				PivotTable1.ActiveView.AllowEdits	=	False

End	Sub

	 	

ActivePane	Property

Returns	a	Pane	object	that	represents	the	active	spreadsheet	pane.
Read-only.

expression.ActivePane

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	sets	the	value	of	the	cell	in	the	upper-left	corner	of	the
visible	range	in	the	active	pane	on	the	spreadsheet.

Spreadsheet1.ActivePane.VisibleRange.Cells(1,	1).Value	=	"top	left"
	 	

ActiveSheet	Property

Returns	a	read-only	Worksheet	object	that	represents	the	active
worksheet.

expression.ActiveSheet

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	changes	the	name	of	the	active	worksheet.

Spreadsheet1.ActiveSheet.Name	=	"Budget	Sheet"
	 	

ActiveView	Property

Returns	a	PivotView	object	that	represents	the	layout	of	the	active
PivotTable	list.	Setting	a	variable	to	the	active	view	of	the	PivotTable
provides	you	with	a	convenient	method	to	make	changes	to	the	active
view.	Read-only.

expression.Case

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Example
This	example	inserts	two	fieldsets	in	the	active	view	of	PivotTable1.

Sub	Insert_Fieldsets()
				Dim	vwView

				Set	vwView	=	PivotTable1.ActiveView
	
				'	Add	the	Store	Type	field	to	the	column	axis.
				vwView.ColumnAxis.InsertFieldSet	vwView.FieldSets("Store	Type")
				
				'	Add	the	Promotions	field	to	the	row	axis.
				vwView.RowAxis.InsertFieldSet	vwView.FieldSets("Promotions")
End	Sub				

	 	

ActiveWindow	Property

Returns	a	Window	object	that	represents	the	current	window.

expression.ActiveWindow

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	hides	the	row	and	column	headings	in	the	active	window	of
Spreadsheet1.

Sub	HideHeadings()
			Spreadsheet1.ActiveWindow.DisplayColumnHeadings	=	False
			Spreadsheet1.ActiveWindow.DisplayRowHeadings	=	False
End	Sub
	 	

ActiveWorkbook	Property

Returns	a	Workbook	object	that	represents	the	open	workbook.

expression.ActiveWorkbook

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	protects	the	structure	of	the	open	workbook	in
Spreadsheet1.

Speadsheet1.ActiveWorkbook.Protect	,	True
	 	

Show	All

Address	Property

Address	property	as	it	applies	to	the	Hyperlink	and	PivotHyperlink
objects.

Address	property	as	it	applies	to	the	Range	object.

Example
As	it	applies	to	the	Hyperlink	object.

As	it	applies	to	the	Range	object	.

Aggregates	Property

Returns	the	PivotAggregates	collection	for	the	specified	cell.

expression.Aggregates

expression				Required.	An	expression	that	returns	a	PivotCell	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

AllGroupingDefs	Property

Returns	the	AllGroupingDefs	collection	for	the	data	source	control.
Read-only.

expression.AllGroupingDefs

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Show	All

AllIncludeExclude	Property

Returns	or	sets	a	PivotFieldSetAllIncludeExcludeEnum	that
represents	the	inclusion	state	of	all	members	that	are	not	listed	in	the
IncludedMembers	or	ExcludedMembers	lists	for	the	specified	field	set.
Read/write.

expression.AllIncludeExclude

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Example
This	example	sets	the	included	and	excluded	members	of	the	Store	State
and	Store	City	fields	in	PivotTable1.	Members	not	listed	in	the	include
and	exclude	lists	are	excluded.

Sub	MemberFiltering()

				Dim	fldStoreCity
				Dim	fldStoreState
				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	State	field.
				Set	fldStoreState	=	ptView.FieldSets("Store").Fields("Store	State")

				'	Set	a	variable	to	the	Store	City	field.
				Set	fldStoreCity	=	ptView.FieldSets("Store").Fields("Store	City")

				'	Exclude	California	and	Washington	from	the	Store	State	field.
				fldStoreState.ExcludedMembers	=	Array("CA",	"WA")

				'	Include	members	of	the	Store	City	field.	Note	that	the	cities	are
				'	in	states	that	have	been	excluded	by	the	previous	line.	Since
				'	Store	State	is	a	parent	to	Store	City,	then	the	excluded	states
				'	are	displayed	in	the	PivotTable.
				fldStoreCity.IncludedMembers	=	Array("Los	Angeles",	"San	Diego",	_

																																									"Seattle",	"Spokane")

				'	Exclude	all	members	that	are	not	in	the	list	for	the	IncludedMembers	and
				'	ExcludedMembers	properties.
				ptView.FieldSets("Store").AllIncludeExclude	=	ptConstants.plAllExclude

End	Sub

	 	

AllMember	Property

Returns	a	PivotMember	object	that	represents	the	top	member	in	the
specified	field	set.

expression.AllMember

expression				Required.	An	expression	that	returns	PivotFieldSet	object.

AllowAdditions	Property

GroupLevel	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	add	records	to	the	specified	group.	Set	this	property	to
False	to	prevent	users	from	adding	records	to	a	group.	The	default	value
is	True.	Read/write.

PivotView	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	add	a	new	record	to	the	detail	area	of	a	PivotTable	list.	Set
this	property	to	True	to	allow	the	user	to	insert	new	records.	The	default
value	if	False.	Read/write.

expression.AllowAdditions

expression				Required.	An	expression	that	returns	a	GroupLevel	or
PivotView	object.

Remarks
When	this	property	is	set	to	True,	an	asterisk	(*)	will	be	displayed	in	a
blank	row	in	the	detail	area.	Any	new	records	added	to	the	detail	area	of
a	PivotTable	list	are	also	added	to	the	source	database.

You	cannot	add	records	to	the	detail	area	of	the	PivotTable	list	if	the
source	recordset	does	not	allow	insertions.

Example
This	example	allows	the	user	to	add	new	records	to	the	detail	area	of
PivotTable1.

PivotTable1.ActiveView.AllowAdditions	=	True
	 	

AllowCustomOrdering	Property

Returns	or	sets	whether	the	user	can	reorder	row	axis	or	column	axis
members.	Set	this	property	to	False	to	prevent	users	from	row	axis	or
column	axis	member	reordering.	The	default	value	is	True.	Read/write
Boolean.

expression.AllowCustomOrdering

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Example
This	example	prevents	users	from	reordering	members	of	the	row	axis	or
column	axis	in	PivotTable1.

PivotTable1.AllowCustomOrdering	=	False
	 	

AllowDeletingColumns	Property

Specifies	whether	a	worksheet	column	can	be	deleted	when	the
worksheet	has	been	protected.	The	default	value	is	False,	but	this
property	has	no	effect	if	the	Enabled	property	of	the	Protection	object	is
set	to	False.	Read/write	Boolean.

expression.AllowDeletingColumns

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	enables	the	insertion	and	deletion
of	columns,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True
				
				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection
				
				'	Allows	user	to	delete	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowDeletingColumns	=	True
				
				'	Allows	user	to	insert	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowInsertingColumns	=	True
				
				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub

	 	

AllowDeletingRows	Property

Specifies	whether	a	worksheet	row	can	be	deleted	when	the	worksheet
has	been	protected.	The	default	value	is	False,	but	this	property	has	no
effect	if	the	Enabled	property	of	the	Protection	object	is	set	to	False.
Read/write	Boolean.

expression.AllowDeletingRows

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	and	then	it	enables	the	insertion
and	deletion	of	rows,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True
				
				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection
				
				'	Allows	user	to	delete	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowDeletingRows	=	True
				
				'	Allows	user	to	insert	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowInsertingRows	=	True
				
				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub
	 	

AllowDeletions	Property

GroupLevel	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	delete	records	from	the	specified	group.	Set	this	property	to
False	to	prevent	users	from	deleting	records	from	a	group.	The	default
value	is	True.	Read/write.

PivotView	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	delete	a	record	from	detail	area	of	a	PivotTable	list.	Set	this
property	to	True	to	allow	the	user	to	delete	records.	The	default	value	is
False.	Read/write.

expression.AllowDeletions

expression				Required.	An	expression	that	returns	a	GroupLevel	or
PivotView	object.

Remarks
Any	records	that	are	deleted	from	the	detail	area	of	a	PivotTable	list	are
also	deleted	from	the	source	database.	The	user	cannot	delete	records
from	the	detail	area	of	the	PivotTable	list	if	the	source	recordset	does	not
allow	deletions.

Example
This	example	allows	the	user	to	delete	records	from	the	detail	area	of
PivotTable1.

PivotTable1.ActiveView.AllowDeletions	=	True
	 	

AllowDetails	Property

Specifies	whether	the	user	can	expand	an	inner	member	of	the	specified
PivotTable	list	to	display	detail	records.	The	default	value	is	True.
Read/write	Boolean.

expression.AllowDetails

expression	Required.	An	expression	that	returns	a	PivotTable	object.

Remarks
When	this	property	is	False,	inner	members	do	not	display	expand
indicators,	the	Expand	command	is	disabled	for	most	aggregates,	and
double-clicking	an	aggregate	does	not	display	detail	data.	If	this	property
is	False,	the	user	can	still	view	details	programmatically.

Example
This	example	disables	detail	viewing	for	the	PivotTable	list.

PivotTable1.AllowDetails	=	False
	 	

AllowEdits	Property

GroupLevel	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	edit	records	in	the	specified	group.	Set	this	property	to
False	to	prevent	users	from	editing	records	in	a	group.	The	default	value
is	True.	Read/write.

PivotView	object:	Returns	or	sets	a	Boolean	that	represents	whether
the	user	can	edit	cells	in	the	detail	area	of	a	PivotTable	list.	Set	this
property	to	True	to	allow	the	user	to	edit	cells	in	the	detail	area.	The
default	value	is	False.	Read/write.

expression.AllowEdits

expression				Required.	An	expression	that	returns	a	GroupLevel	or
PivotView	object.

Remarks
Changing	a	cell	value	results	in	a	corresponding	change	in	the	source
database.	Fields	that	are	marked	as	read-only	in	the	source	database
cannot	be	edited	in	the	PivotTable	list.

Example
This	example	enables	editing	in	the	detail	area	of	PivotTable1.

PivotTable1.ActiveView.AllowEdits	=	True
	 	

Show	All

AllowFiltering	Property

AllowFiltering	property	as	it	applies	to	the	Protection	object.

AllowFiltering	property	as	it	applies	to	the	PivotTable	object.

Example
As	it	applies	to	the	Protection	object.

As	it	applies	to	the	PivotTable	object.

AllowFormattingColumns	Property

Returns	or	sets	whether	or	not	columns	can	resized	on	a	protected
worksheet.	Set	this	property	to	True	to	enable	columns	to	be	resized
when	the	worksheet	is	protected.	The	default	value	is	False.	Read/write
Boolean.

expression.AllowFormattingColumns

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	and	then	it	enables	the	user	to
resize	rows	and	columns,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'	Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True

				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection

				'	Allows	user	to	resize	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowFormattingRows	=	True

				'	Allows	user	to	resize	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowFormattingColumns	=	True

				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub
	 	

AllowFormattingRows	Property

Returns	or	sets	whether	or	not	rows	can	resized	on	a	protected
worksheet.	Set	this	property	to	True	to	enable	rows	to	be	resized	when
the	worksheet	is	protected.	The	default	value	is	False.	Read/write
Boolean.

expression.AllowFormattingRows

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	and	then	it	enables	the	user	to
resize	rows	and	columns,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()

				Dim	ptProtSheet1

				'	Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True

				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection

				'	Allows	user	to	resize	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowFormattingRows	=	True

				'	Allows	user	to	resize	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowFormattingColumns	=	True

				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True

End	Sub
	 	

AllowGrouping	Property

True	if	the	user	is	able	to	group	fields	on	the	row	axis	or	the	column	axis
in	the	specified	PivotTable	list.	If	this	property	is	set	to	False,	the
grouping	buttons	are	disabled	but	the	user	can	still	group	fields
programmatically.	The	default	value	is	True.	Read/write	Boolean.

expression.AllowGrouping

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
When	this	property	is	set	to	False,	pivoting	is	disabled.	This	means	that
membership	in	the	row	and	column	areas	is	fixed;	you	cannot	drag	a	field
to	or	from	these	areas.	All	commands	related	to	grouping	are	disabled,
including	the	following	commands:

Move	to	Column	Area

Move	to	Detail,	if	the	selection	is	a	field	in	the	row	or	column	area

Move	to	Filtering

Move	to	Row	Area

If	False,	the	report	layout	is	frozen,	but	the	user	can	still	filter	the	data.

Example
This	example	disables	field	grouping	for	the	PivotTable	list.

PivotTable1.AllowGrouping	=	False
	 	

AllowHeadingRename	Property

Specifies	whether	row	and	column	headers	in	a	protected	worksheet	can
be	customized.	Set	this	property	to	True	to	customize	the	column
headers	of	a	protected	worksheet.	The	default	value	is	False.	Read/write
Boolean.

expression.AllowHeadingRename

expression				Required.	An	expression	that	returns	a	Protection	object.

Remarks
Setting	the	Caption	property	of	a	row	or	column	heading	after	setting	this
property	to	False	results	in	a	run-time	error.	You	must	set	the	Enabled
property	of	the	Protection	object	to	True	for	this	property	to	take	effect.

Example
This	example	locks	all	cells	on	Sheet1,	enables	the	insertion	and	deletion
of	columns,	disables	the	customization	of	row	and	column	headings,	and
then	protects	Sheet1.

Sub	Protect_Worksheet()

				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True

				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection

				'	Allows	user	to	delete	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowDeletingColumns	=	True

				'	Allows	user	to	insert	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowInsertingColumns	=	True

				'	prevent	row	and	column	headings	from	being	customized.
				ptProtectSheet1.AllowHeadingRename	=	False

				'	Protect	Sheet1.
				ptProtectSheet1.Enabled	=	True

End	Sub

	 	

AllowInsertingColumns	Property

Specifies	whether	a	worksheet	column	can	be	inserted	when	the
worksheet	has	been	protected.	The	default	value	is	False,	but	this
property	has	no	effect	if	the	Enabled	property	of	the	Protection	object	is
set	to	False.	Read/write	Boolean.

expression.AllowInsertingColumns

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	and	then	it	enables	the	insertion
and	deletion	of	columns,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True
				
				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection
				
				'	Allows	user	to	delete	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowDeletingColumns	=	True
				
				'	Allows	user	to	insert	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowInsertingColumns	=	True
				
				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub

	 	

AllowInsertingRows	Property

Specifies	whether	a	worksheet	row	can	be	inserted	when	the	worksheet
has	been	protected.	The	default	value	is	False,	but	this	property	has	no
effect	if	the	Enabled	property	of	the	Protection	object	is	set	to	False.
Read/write	Boolean.

expression.AllowInsertingRows

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	and	then	it	enables	the	insertion
and	deletion	of	rows,	and	then	protects	Sheet1.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True
				
				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection
				
				'	Allows	user	to	delete	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowDeletingRows	=	True
				
				'	Allows	user	to	insert	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowInsertingRows	=	True
				
				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub
	 	

AllowLayoutEvents	Property

Set	this	property	to	True	to	enable	the	AfterLayout	event.	The	default
value	is	False.	Read/write	Boolean.

expression.AllowLayoutEvents

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	enables	all	events	for	ChartSpace1.

Sub	Window_Onload()

				'	Allow	the	AfterLayout	event	to	fire.
				ChartSpace1.AllowLayoutEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	fire	as	each	data	point	is	rendered.
				ChartSpace1.AllowPointRenderEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	fire	as	each	chart	element	is	rendered.
				'	The	AfterFinalRender	event	will	fire	after
				'	all	chart	elements	have	been	rendered.
				ChartSpace1.AllowRenderEvents	=	True

				'	Allow	the	BeforeScreenTip	event	to	fire.
				ChartSpace1.AllowScreenTipEvents	=	True

End	Sub

	 	

AllowMultiFilter	Property

Returns	or	sets	whether	or	not	the	user	can	select	multiple	items	when
the	specified	field	set	is	in	the	filter	area	of	a	PivotTable	list.	The	default
value	is	True.	Read/write	Boolean.

expression.AllowMultiFilter

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
Set	this	property	to	False	to	emulate	the	behavior	of	a	field	set	in	the	filter
area	of	the	Microsoft	Office	2000	PivotTable	Component.

Example
The	following	example	disables	the	selection	of	multiple	items	in	the
Merchant	field	when	it	is	in	the	filter	area	of	PivotTable1.

PivotTable1.ActiveView.FieldSets("Merchant").AllowMultiFilter	=	False
	 	

AllowPointRenderEvents	Property

Set	this	property	to	True	to	enable	the	BeforeRender	and	AfterRender
events	to	be	called	as	each	data	point	is	rendered.	The	default	value	is
False.	Read/write	Boolean.

expression.AllowPointRenderEvents

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	enables	all	events	for	ChartSpace1.

Sub	Window_Onload()

				'	Allow	the	AfterLayout	event	to	be	called.
				ChartSpace1.AllowLayoutEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	be	called	as	each	data	point	is	rendered.
				ChartSpace1.AllowPointRenderEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	be	called	as	each	chart	element	is	rendered.
				'	The	AfterFinalRender	event	will	fire	after
				'	all	chart	elements	have	been	rendered.
				ChartSpace1.AllowRenderEvents	=	True

				'	Allow	the	BeforeScreenTip	event	to	be	called.
				ChartSpace1.AllowScreenTipEvents	=	True

End	Sub

	 	

AllowPropertyToolbox	Property

Determines	whether	the	user	can	display	the	Commands	and	Options
dialog	box	at	run	time.	Setting	the	AllowPropertyToolbox	property	to
False	disables	the	Commands	and	Options	button	on	the	toolbar.	The
default	value	is	True.	Read/write	Boolean.

expression.AllowPropertyToolbox

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	disables	the	Commands	and	Options	button	on	the
Spreadsheeet1	toolbar	at	run	time.

Spreadsheet1.AllowPropertyToolbox	=	False
	 	

AllowRenderEvents	Property

Set	this	property	to	True	to	enable	the	BeforeRender,	AfterRender,	and
AfterFinalRender	events.	The	default	value	is	False.	Read/write
Boolean.

expression.AllowRenderEvents

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	enables	all	events	for	ChartSpace1.

Sub	Window_Onload()

				'	Allow	the	AfterLayout	event	to	fire.
				ChartSpace1.AllowLayoutEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	fire	as	each	data	point	is	rendered.
				ChartSpace1.AllowPointRenderEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	fire	as	each	chart	element	is	rendered.
				'	The	AfterFinalRender	event	will	fire	after
				'	all	chart	elements	have	been	rendered.
				ChartSpace1.AllowRenderEvents	=	True

				'	Allow	the	BeforeScreenTip	event	to	fire.
				ChartSpace1.AllowScreenTipEvents	=	True

End	Sub
	 	

AllowScreenTipEvents	Property

Set	this	property	to	True	to	enable	the	BeforeScreenTip	event.	The
default	value	if	False.	Read/write	Boolean.

expression.AllowScreenTipEvents

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
The	BeforeScreenTip	event	allows	you	to	modify	ScreenTips	before	they
are	displayed.

Example
This	example	enables	all	events	for	ChartSpace1.

Sub	Window_Onload()

				'	Allow	the	AfterLayout	event	to	be	called.
				ChartSpace1.AllowLayoutEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	fire	as	each	data	point	is	rendered.
				ChartSpace1.AllowPointRenderEvents	=	True

				'	Allow	BeforeRender	and	AfterRender	events
				'	to	be	called	as	each	chart	element	is	rendered.
				'	The	AfterFinalRender	event	will	be	called	after
				'	all	chart	elements	have	been	rendered.
				ChartSpace1.AllowRenderEvents	=	True

				'	Allow	the	BeforeScreenTip	event	to	be	called.
				ChartSpace1.AllowScreenTipEvents	=	True

End	Sub
	 	

AllowSorting	Property

Specifies	whether	a	worksheet	can	be	sorted	when	the	worksheet	has
been	protected.	The	default	value	is	False,	but	this	property	has	no	effect
if	the	Enabled	property	of	the	Protection	object	is	set	to	False.
Read/write	Boolean.

expression.AllowSorting

expression				Required.	An	expression	that	returns	a	Protection	object.

Example
This	example	locks	all	cells	on	Sheet1,	enables	the	filtering	and	sorting	of
rows	and	columns,	and	then	protects	the	worksheet.

Sub	Protect_Worksheet()
				Dim	ptProtSheet1

				'Lock	all	cells	on	the	worksheet.
				Spreadsheet1.Worksheets("Sheet1").Cells.Locked	=	True
				
				Set	ptProtSheet1	=	Spreadsheet1.Worksheets("Sheet1").Protection
				
				'	Allows	user	to	filter	rows	while	Sheet1	is	protected.
				ptProtSheet1.AllowFiltering	=	True
				
				'	Allows	user	to	sort	rows	and	columns	while	Sheet1	is	protected.
				ptProtSheet1.AllowSorting	=	True
				
				'	Protect	Sheet1.
				ptProtSheet1.Enabled	=	True
End	Sub

	 	

AllowUISelection	Property

Returns	or	sets	whether	an	element	on	a	chart	is	selected	when	the	user
clicks	on	an	element	with	the	mouse.	Read/write	Boolean.

expression.AllowUISelection

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks

If	this	property	is	set	to	True,	when	a	user	clicks	on	a	chart	element	with
the	mouse,	the	current	list	of	selections	is	emptied	and	replaced	with	only
the	element	that	was	clicked	by	the	user.	If	this	property	is	set	to	False,
when	the	user	clicks	on	an	element	with	the	mouse,	the	current	list	of
selections	is	preserved	and	the	mouse	click	event	is	ignored.	The	default
value	is	True.

Example
The	following	example	disables	the	AllowUISelection	property.

ChartSpace1.AllowUISelection	=	False

AllPageFields	Property

Returns	the	AllPageFields	collection	for	the	data	source	control.	Read-
only.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

AlternateDataSource	Property

Returns	or	sets	the	ID	of	the	alternate	data	source	(another	complex
data-bound	control	that	will	be	used	as	the	data	source).	Read/write
String.

expression.AlternateDataSource

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

AlternateRowColor	Property

Returns	or	sets	a	String	that	represents	the	color	to	use	for	every	other
row	in	the	specified	group.	Read/write.

expression.AlternateRowColor

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

AlwaysIncludeInCube	Property

Returns	or	sets	whether	the	specified	field	set	is	always	included	in	the
PivotTable	list's	local	cache.	Set	this	property	to	True	to	ensure	that	the
specified	field	set	is	included	in	the	local	cache.	The	default	value	is
False.	Read/write	Boolean.

expression.AlwaysIncludeInCube

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
Setting	this	property	to	True	for	a	field	set	ensures	that	calculated	totals
that	depend	on	the	field	set	will	calculate	correctly.

AmbientLightIntensity	Property

Returns	or	sets	a	Double	specifying	the	percentage	of	ambient	light
illuminating	a	three-dimensional	chart.	Valid	settings	range	from	0	to	1.
Read/write.

expression.AmbientLightIntensity

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Bar	chart
and	sets	the	lighting	options	for	the	chart.

Sub	Format3DLightSources()

				Dim	cht3DBar

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DBar	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Bar	chart.
				cht3DBar.Type	=	chChartTypeBar3D

				'	Set	the	intensity	of	the	ambient	light.
				cht3DBar.AmbientLightIntensity	=	0.7

				'	Set	the	inclination	of	the	directional	light	source.
				cht3DBar.DirectionalLightInclination	=	35

				'	Set	the	intensity	of	the	directional	light	source.
				cht3DBar.DirectionalLightIntensity	=	0.8

				'	Set	the	rotation	of	the	directional	light	source.
				cht3DBar.DirectionalLightRotation	=	120

End	Sub
	 	

Amount	Property

Returns	or	sets	the	error	amount	for	fixed-value	and	percentage	error
bars.	You	specify	data-bound	error	bar	amounts	by	using	the	SetData
method.	Read/write	Double.

expression.Amount

expression				Required.	An	expression	that	returns	a	ChErrorBars
object.

Remarks
This	value	is	mathematically	correct,	meaning	that	5%	is	represented	as
0.05	and	not	5.	An	error	bar	with	the	fixed	amount	of	5	will	become	500%
when	changed	to	a	percentage.

Example
This	example	adds	error	bars	to	all	of	the	series	in	the	first	chart	of
ChartSpace1	and	then	sets	the	error	amount.

Sub	Add_Error_Bars()
				Dim	ebErrorBars
				Dim	serChartSeries
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Loop	through	all	of	the	series	in	the	first	chart
				'	of	ChartSpace1.
				For	Each	serChartSeries	in	ChartSpace1.Charts(0).SeriesCollection

								'	Add	error	bars	to	the	current	series.
								Set	ebErrorBars	=	serChartSeries.ErrorBarsCollection.Add

								'	Set	the	error	bars	to	be	a	percentage	of	the	value.
								ebErrorBars.Type	=	chConstants.chErrorBarTypePercent

								'	Set	the	percentage	amount.
								ebErrorBars.Amount	=	0.05
				Next
End	Sub

	 	

Show	All

Application	Property

Application	property	as	it	applies	to	all	objects	in	the	Applies	To	list
except	for	the	OWCLanguageSettings	object.

Application	property	as	it	applies	to	the	OWCLanguageSettings	object.

	 	

AspectRatio	Property

Returns	or	sets	a	Long	specifying	the	ratio	of	height	to	the	width	of	the
specified	three-dimensional	chart.	Setting	this	property	to	a	value	greater
than	100	will	make	a	chart	which	is	taller	than	it	is	wide,	while	a	value
less	than	100	will	make	a	chart	wider	than	it	is	tall.	Valid	settings	range
from	0	to	500.	Read/write.

expression.AspectRatio

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
This	property	has	no	effect	on	a	3-D	Pie	chart.	Use	the	Thickness
property	to	increase	the	thickness	of	a	3-D	Pie	chart.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	increases	the	width	and	depth	of	the	chart.

Sub	Format3DDepthWidth()

				Dim	cht3DColumn

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumnClustered3D

				'	Increase	the	depth	of	the	chart	in	relation
				'	to	it's	width.
				cht3DColumn.ChartDepth	=	125

				'	Increase	the	width	of	the	chart	in	relation
				'	to	it's	height.
				cht3DColumn.AspectRatio	=	80

End	Sub

	 	

Async	Property

Indicates	whether	the	binding	of	the	XMLDataBinding	object	is
asynchronous	or	not.	Read-only.

expression.Async

expression				Required.	An	expression	that	returns	an	XmlDataBinding
object.

Remarks

You	can	use	the	Async	property	of	the	XmlDataBinding	object	to	find
out	if	a	binding	supports	asynchronous	binding.	It	returns	True	if	the
binding	is	asynchronous,	otherwise	it	returns	False.	The	default	value	is
False.

It	only	affects	the	behavior	of	Query	bindings.	When	the	value	is	True,	on
page	load,	the	Spreadsheet	component	will	render	along	with	any	static
data	before	the	LoadMode=Normal	bindings	actually	occurs.	While
asynchronous	bindings	are	in	progress,	the	Spreadsheet	component	will
be	non-interactive	(same	as	ViewOnly	mode).	Once	the	binding	is	done
and	the	events	have	occured,	the	user	interface	will	become	interactive.

When	the	value	is	False,	the	page	will	not	render	until	bindings	where
LoadMode=Normal	have	completed	loading.	Subsequent	refresh
operations	with	user	interface	commands	or	with	calls	to	the	Refresh
method	will	not	respond	until	binding	operations	have	completed.

When	an	asynchronous	binding	is	in	progress,	any	attempt	to	work	with
an	XmlDataBinding	object	programmatically	will	fail.

Example
The	following	VBScript	example	checks	if	the	binding	state	of	the	first
XMLDataBinding	object	in	the	XMLDataBindings	collection	is
asynchronous.	If	it	is,	a	message	box	is	displayed.

Sub	Async()

				Dim	objBinding
				Set	objBinding	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(1)

				'	Check	to	see	if	the	binding	is	asynchronous.
				If	objBinding.Async	=	True	Then

								'	Alert	the	user	if	the	binding	state	is	asynchronous.
								MsgBox	("The	binding	is	asynchronous.")

				End	If

End	Sub

AutoFilter	Property

Returns	the	AutoFilter	object	for	the	specified	worksheet.

expression.AutoFilter

expression				An	expression	that	returns	a	Worksheet	object.

Remarks
Do	not	confuse	this	property	with	the	AutoFilter	method.	This	property
returns	the	AutoFilter	object	for	a	given	worksheet,	whereas	the
AutoFilter	method	applies	to	a	Range	object	and	turns	on	the	AutoFilter.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.

Sub	Apply_AutoFilter()
				Dim	afFilters
				Dim	afCol1
				Dim	afCol3
				
				'	Turn	on	AutoFilter.
				Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter
				
				'	Set	a	variable	to	the	AutoFilter	object.
				Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter
				
				Set	afCol1	=	afFilters.Filters(1)
				Set	afCol3	=	afFilters.Filters(3)
				
				'	Add	a	criteria	that	excludes	blue	from	column	A.
				afCol1.Criteria.Add	"blue"
				
				'	Add	a	criteria	that	excludes	green	from	column	A.
				afCol1.Criteria.Add	"green"
				
				'	Add	a	criteria	that	excludes	yellow	from	column	C.
				afCol3.Criteria.Add	"yellow"
				
				'	Apply	the	criteria.
				afFilters.Apply
End	Sub
	 	

AutoFilterMode	Property

Returns	True	if	the	AutoFilter	drop-down	arrows	are	currently	displayed.
You	can	set	this	property	to	False	to	hide	the	arrows,	but	you	cannot	set
it	to	True.	Use	the	AutoFilter	method	to	filter	a	list	and	display	the	drop-
down	arrows.	Read/write	Boolean.

expression.AutoFilterMode

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Remarks
If	the	AutoFilter	drop-down	arrows	are	visible	but	no	rows	are	currently
filtered	(all	rows	are	visible),	the	AutoFilterMode	property	is	True	and
the	FilterMode	property	is	False.

Example
This	example	turns	off	the	AutoFilter	for	the	active	worksheet.

Spreadsheet1.ActiveSheet.AutoFilterMode	=	False
	 	

AutoFit	Property

Spreadsheet	or	PivotTable	objects:	True	if	the	overall	size	of	the
spreadsheet	or	PivotTable	list	is	determined	by	the	number	of	visible
columns	and	rows.	The	row	height	and	column	width	cannot	exceed	the
value	of	the	spreadsheet’s	or	PivotTable	list’s	MaxHeight	and	MaxWidth
properties.	The	default	value	is	True.	If	the	AutoFit	property	is	set	to
False,	the	overall	size	of	the	spreadsheet	or	PivotTable	list	is	set	based
on	its	Width	and	Height	properties.	Read/write	Boolean.

PivotAxisMember	or	PivotTotal	objects:	True	if	the	width	of	the	total	is
set	automatically.	The	default	value	is	True.	When	this	property	is	set	to
True,	any	layout	change	also	updates	the	Width	and	Height	property
values.	When	you	change	the	Width	and	Height	values
programmatically,	the	value	of	the	AutoFit	property	is	set	to	False.
Read/write	Boolean.

expression.AutoFit

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	disables	automatic	sizing	for	the	PivotTable	list	and	then
sets	its	width.

Note		The	object	property	of	the	OBJECT	HTML	element	is	used	to
access	the	Width	property	of	the	PivotTable	object
(PivotTable1.Object.Width)	because	the	OBJECT	element	on	an	HTML
page	also	has	its	own	Width	property.	This	is	not	necessary	when	a
PivotTable	control	is	on	a	user	form	or	other	ActiveX	container.

Sub	DisableAutoFit()

			PivotTable1.AutoFit	=	False
			PivotTable1.Object.Width	=	8000

End	Sub

	 	

Axes	Property

Returns	the	ChAxes	collection	for	the	specified	chart.	Use	the	Axes
property	to	set	the	properties	for	a	chart	axis.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.Axes

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	adds	a	title	to,	and	changes	the	font	of	the	value	and
category	axes	of	the	first	chart	in	ChartSpace1.

Sub	Format_Chart_Axes()

				Dim	axCategoryAxis
				Dim	axValueAxis

				'	Set	a	variable	to	the	Category	(X)	axis.
				Set	axCategoryAxis	=	ChartSpace1.Charts(0).Axes(0)
				
				'	Set	a	variable	to	the	Value	(Y)	axis.
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(1)

				'	The	following	two	lines	of	code	enable,	and	then
				'	set	the	title	for	the	category	axis.
				axCategoryAxis.HasTitle	=	True
				axCategoryAxis.Title.Caption	=	"Sales	by	Quarter"
				
				'	The	following	three	lines	of	code	set	the	font
				'	for	the	values	displayed	on	the	category	axis.
				axCategoryAxis.Font	=	"Tahoma"
				axCategoryAxis.Font.Size	=	8
				axCategoryAxis.Font.Bold	=	True

				'	The	following	two	lines	of	code	enable,	and	then
				'	set	the	title	for	the	value	axis.
				axValueAxis.HasTitle	=	True
				axValueAxis.Title.Caption	=	"Dollars	($)"
				

				'	The	following	three	lines	of	code	set	the	font
				'	for	the	values	displayed	on	the	value	axis.
				axValueAxis.Font	=	"Tahoma"
				axValueAxis.Font.Size	=	8
				axValueAxis.Font.Bold	=	True
end	sub

	 	

Show	All

Axis	Property

Axis	property	as	it	applies	to	the	PivotResultField	and
PivotResultGroupField	objects.

Axis	property	as	it	applies	to	the	PivotAxisMember,
PivotColumnMember,	PivotPageMember,	and	PivotRowMember
objects.

BackColor	Property

Returns	or	sets	the	background	color	for	the	specified	object	or	area.
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	(RGB)	color	value	or	a	String	value
representing	a	valid	HTML	color	value.	For	example,	to	set	the	object
color	to	red,	you	could	use	the	hexadecimal	value	&HFF,	the	decimal
value	255,	or	the	string	value	"red."	In	Microsoft	Visual	Basic,	you	can
use	the	RGB	function	to	create	a	red-green-blue	color	value	(for
example,	red	is	RGB(255,0,0)).	Read/write	Variant.
expression.BackColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
This	property	always	returns	the	color	as	a	Long	value	representing	an
RGB	color	value.

Example
This	example	sets	the	font	size,	foreground	color,	and	background	color
for	the	title	bar	in	PivotTable1	.

Sub	Format_Titlebar()
				Dim	vwView
				
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	the	background	color	of	the	title	bar.
				vwView.Label.BackColor	=	"DarkSalmon"
				
				'	Set	the	font	size	of	the	title	bar.
				vwView.Label.Font.Size	=	16
				
				'	Set	the	foreground	color	of	the	title	bar.
				vwView.Label.ForeColor	=	"Sienna"
End	Sub

	 	

BackWall	Property

Returns	a	ChSurface	object	that	represents	the	back	wall	of	a	three-
dimensional	chart.	Use	the	properties	and	methods	of	the	returned
ChSurface	object	to	format	the	back	wall	of	the	specified	chart.

expression.BackWall

expression				Required.	An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	formats	the	back	wall,	side	wall,	and	floor	of	the	chart.

Sub	FormatWallsFloor()

				Dim	cht3DColumn
				Dim	chConstants
				Dim	paPlotArea

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Set	a	variable	to	the	plot	area.
				Set	paPlotArea	=	cht3DColumn.PlotArea

				'	Change	the	chart	to	a	3D	Column	chart.
				cht3DColumn.Type	=	chConstants.chChartTypeColumnClustered3D

				'	Format	the	back	wall	of	the	chart.
				paPlotArea.BackWall.Interior.SetSolid	"Yellow"
				paPlotArea.BackWall.Thickness	=	5

				'	Format	the	side	wall	of	the	chart.
				paPlotArea.SideWall.Interior.SetSolid	"Yellow"
				paPlotArea.SideWall.Thickness	=	5

				'	Format	the	floor	of	the	chart.
				paPlotArea.Floor.Interior.SetSolid	"Blue"

				paPlotArea.Floor.Thickness	=	5

End	Sub

	 	

BarWidth	Property

Use	to	set	or	specify	a	specific	width	for	the	data	markers	in	bar	and
column	charts.	Returns	Long.	Read/write	Long.

expression.BarWidth

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks

The	BarWidth	property	is	specified	in	hundredths	of	a	point	(1/7200	of	an
inch.)	The	default	value	of	zero	(0)	means	"automatic".

Setting	this	property	changes	the	scroll	view	extent	of	the	ChScrollView
object	of	a	chart	control.	This	property	is	only	valid	for	bar	and	column
charts.	It	has	no	effect	on	other	chart	types.	This	property	has	an	effect
only	if	the	HorizontalExtentMax	property	for	the	column	charts	and	the
VerticalExtentMax	property	for	the	bar	chart	are	non-zero.

After	you	set	the	BarWidth	property,	users	won't	be	able	to	change	the
HorizontalExtent	or	VerticalExtent	properties.	Changing	the
HorizontalExtent	or	VerticalExtent	properties	will	have	no	effect
because	the	BarWidth	property	value	will	override	any	HorizontalExtent
or	VerticalExtent	values	and	maintain	the	bar	width	until	the	BarWidth
property	is	disabled.	You	disable	the	BarWidth	property	by	setting	it	to
zero	(0).

Example
The	example	below	shows	you	how	to	set	the	bar	width	of	the	chart	to
one	inch	by	setting	its	value	to	7200.	If	you	want	to	set	the	bar	width	to
half	an	inch,	the	value	to	specify	would	be	3600.

Chartspace1.Charts(0).Barwidth	=	7200

BaseName	Property

Returns	the	name	of	the	specified	field	as	it	appears	in	the	source
database.	Read-only	String.

expression.BaseName

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
A	field	can	have	several	names,	as	shown	in	the	following	table.

Name Description
Caption The	name	the	user	sees.
Name The	name	used	to	identify	the	field	in	code.
DataField The	name	of	the	field	in	the	underlying	recordset.	(This	is	not

necessarily	the	same	as	the	base	name;	you	can	use	a
different	name	if	there	is	a	naming	conflict	or	if	you	want	to
make	the	name	easier	to	use	and	remember.)

BaseName The	name	of	the	field	in	the	original	source	database.

Begin	Property

Returns	a	ChSegmentBoundary	object	that	represents	the	beginning	of
a	segment	boundary	on	a	format	map.

expression.Begin

expression				Required.	An	expression	that	returns	a	ChSegment	object.

Remarks
Use	the	Value	property	of	the	returned	ChSegmentBoundary	object	to
set	the	beginning	value	for	the	specified	segment	of	the	format	map.	Use
the	Interior,	Line,	and	Border	properties	to	format	the	segment
boundary.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	highlights
the	bottom	10%	of	the	values	in	red	and	the	top	20%	of	values	in	green.

Sub	Window_Onload()

				Dim	serseries1
				Dim	segBottom10Pct
				Dim	segTop20Pct
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=SeverName;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	details	table.
				ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serseries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.	This	segment	will
				'	represent	the	bottom	10%	of	values	in	the	chart.
				Set	segBottom10Pct	=	serseries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segBottom10Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segBottom10Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	10%.
				segBottom10Pct.Begin.Value	=	0
				segBottom10Pct.End.Value	=	0.1

				'	Format	the	interior	of	the	matching	values.
				segBottom10Pct.Begin.Interior.Color	=	"red"
				segBottom10Pct.End.Interior.Color	=	"red"

				'	Add	a	segment	to	the	format	map.	This	segment	will
				'	represent	the	top	20%	of	values	in	the	chart.
				Set	segTop20Pct	=	serseries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segTop20Pct.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segTop20Pct.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	80%,	and	the	ending	value	to	100%.
				segTop20Pct.Begin.Value	=	0.8
				segTop20Pct.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segTop20Pct.Begin.Interior.Color	=	"Green"
				segTop20Pct.End.Interior.Color	=	"Green"

End	Sub

	 	

BindingData	Property

Returns	or	sets	the	configuration	data	for	a	given	XmlDataBinding
object.	Read/write	String.

expression.BindingData

expression				Required.	An	expression	that	returns	an	XmlDataBinding
object.

Remarks

The	XmlDataBinding	object	contains	configuration	data	in	the	form	of
XML.	The	format	of	the	configuration	data	must	follow	the	Spreadsheet
component	XML	schema	as	defined	in	the	XML	spreadsheet	file.	The
BindingId	is	a	new	XML	fragment	that	must	be	the	same	as	the	current
value,	or	a	run-time	error	will	be	generated.	The	BindingID	is	the	ID
attribute	of	an	XmlDataBinding	object	and	must	be	unique	across	all
worksheets	in	a	workbook.

Example
The	following	example	first	gets	the	number	of	XMLDataBinding	objects
in	the	XmlDataBindings	collection	of	the	Workbook	object.	Then	it
iterates	through	each	of	the	XMLDataBinding	objects	to	get	the
BindingData	property.

Sub	ViewBindings()

				Dim	strXml
				Dim	intBinding
				Dim	intCounter

				'	Get	the	number	of	XmlDataBinding	objects	in	the	XmlDataBindings	collection.				
				intBinding	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Count
				
				'	Display	a	message	box.
				 MsgBox	("There	are	"	&	intBinding	&	"	XmlDataBinding	objects	in	the	collection")
	 				
				'	Loop	through	each	XmlDataBinding	object	in	the	collection.	
				intCounter	=1
				For	intCounter	=	1	to	intBinding

	 	 				'	Get	the	configuration	data	for	a	given	XmlDataBinding	object	from	a	XmlDataBindings	collection.
	 	 	 					strXml	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(intCounter).BindingData
	 	 	 					MsgBox	("Binding	item	#"		&		intCounter		&	"	returned	XML:"	&	chr(10)	&	strXml)
	 	 	
	 	 		Next

End	Sub

Show	All

BindingInProgress	Property

As	it	applies	to	the	XmlDataBinding	object.

As	it	applies	to	the	XmlDataBindings	collection.

Example
As	it	applies	to	the	XmlDataBindings	collection.

Bold	Property

Font	object:	True	if	the	specified	font	is	bold.	Read/write	Variant	(returns
Null	if	some	cells	in	the	range	are	bold	and	some	are	not).	Use	the	IsNull
function	to	determine	whether	the	return	value	is	Null.

PivotFont	and	ChFont	objects:	Returns	or	sets	a	Boolean	that
determines	whether	the	font	for	the	specified	object	is	bold.	Read/write.

expression.Bold

expression				Required.	An	expression	that	returns	one	of	the	above
objects.

Example
This	example	sets	font	properties	for	the	specified	axis	in	the	chart
workspace.

Sub	SetAxisFont()

Dim	axs

Set	axs	=	ChartSpace1.Charts(0).Axes(1)

axs.Font.Name	=	"Arial"
axs.Font.Size	=	8
axs.Font.Bold	=	True

End	Sub

Bookmark	Property

Returns	a	Variant	that	identifies	the	bookmark	in	the	current	ADO
recordset.	Read-only.

expression.Bookmark

expression				Required.	An	expression	that	returns	a	PivotDetailCell
object.

Border	Property

Returns	a	ChBorder	object	that	represents	the	border	of	the	specified
object.

expression.Border

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
The	border	for	a	chart	series	represents	the	outline	color	on	column,	bar,
pie,	doughnut,	area,	and	high-low-close	charts.	On	charts	with	markers
(such	as	a	line	chart	with	markers),	the	border	represents	the	outline
color	for	the	markers.

Example
This	example	sets	the	line	weight	of	the	border	for	the	specified	series	in
the	chart	workspace.

Sub	SetBorder()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).SeriesCollection(0).Border	_
																								.Weight	=	chConstants.owcLineWeightMedium

End	Sub

	 	

Borders	Property

Returns	a	Borders	collection	that	represents	the	four	borders	of	a	range
of	cells.	Read-only.

expression.Borders

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	adds	a	medium-weight	green	border	to	each	cell	in	the
range	B5:C10	on	Sheet1.

Sub	SetBorders()
				Dim	ssConstants
				Dim	rngBorder
				
				Set	ssConstants	=	Spreadsheet1.Constants
				
				'	Set	a	variable	to	the	range	to	add	the	borders	to.
				Set	rngBorder	=	Spreadsheet1.Worksheets("Sheet1").Range("b5:c10")

				'	Set	the	border	weight.
				rngBorder.Borders.Weight	=	ssConstants.owcLineWeightMedium
				
				'	Set	the	border	color.
				rngBorder.Borders.Color	=	"green"
End	Sub	

	 	

Show	All

Bottom	Property

Bottom	property	as	it	applies	to	the	ChPlotArea	object.

Bottom	property	as	it	applies	to	the	ChartSpace,	ChAxis,
ChCategoryLabel,	ChChart,	ChChartField,	ChDataLabel,
ChDataLabels,	ChDropZone,	ChErrorBars,	ChLegend,
ChLegendEntry,	ChPoint,	ChSeries,	ChScrollView,	ChTitle,	and
ChTrendline	objects.

Show	All

BottomRight	Property

BottomRight	property	as	it	applies	to	the	PivotRange	object.

BottomRight	property	as	it	applies	to	the	PivotDetailRange	object.

BoundField	Property

Returns	the	PivotField	object	used	for	data-binding	information	when	the
source	is	a	recordset.	When	the	source	is	multidimensional,	this	property
returns	Nothing.

expression.BoundField

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

BubbleScale	Property

Returns	or	sets	a	scale	factor	for	all	bubble	series	on	the	specified	chart.
The	default	value	is	100,	and	the	valid	range	is	0–300.	The	value	of	this
property	indicates	the	bubble	size	relative	to	the	default	setting.	Setting
the	BubbleScale	property	to	300	(three	times	greater	than	the	default
value)	produces	a	chart	on	which	the	bubbles	appear	three	times	the
default	size.	Read/write	Double.

expression.BubbleScale

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	sets	the	bubble	scale	factor	for	the	specified	chart	in	the
chart	workspace.	Note	that	Charts(0)	must	refer	to	a	bubble	chart.

ChartSpace1.Charts(0).BubbleScale	=	200
	 	

Build	Property

Returns	a	Long	that	represents	the	Microsoft	Office	Web	Components
build	number.	Read-only.

expression.Build

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Remarks
This	property	returns	the	same	information	as	the	BuildNumber
property,	but	as	a	Long	instead	of	as	a	String.

BuildNumber	Property

Returns	the	Microsoft	Office	Web	Components	build	number.	Read-only
String.

expression.BuildNumber

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	displays	the	Microsoft	Office	Web	Components	build
number	in	the	active	cell	of	Spreadsheet1.

Spreadsheet1.ActiveCell.Value	=	"MSOWC	Build	"	&	Spreadsheet1.BuildNumber
	 	

ButtonBorder	Property

Returns	a	ChBorder	object	that	represents	the	border	of	each	button	in
the	specified	drop	zone.	Use	the	properties	of	the	returned	ChBorder
object	to	format	the	border	of	each	button	in	the	drop	zone.

expression.ButtonBorder

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

	 	 	 Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

ButtonFont	Property

Returns	a	ChFont	object	that	represents	the	font	of	each	button	in	the
specified	drop	zone.	Use	the	properties	of	the	returned	ChFont	object	to
format	the	font	of	each	button	in	the	drop	zone.

expression.ButtonFont

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

ButtonInterior	Property

Returns	a	ChInterior	object	that	represents	the	interior	of	each	button	in
the	specified	drop	zone.	Use	the	properties	of	the	returned	ChInterior
object	to	format	the	interior	of	each	button	in	the	drop	zone.

expression.ButtonInterior

expression				Required.	An	expression	that	returns	a	ChDropZone
property.

Remarks
By	default,	the	chart	control	uses	the	color	setting	specified	for	3D
Objects	on	the	Appearance	tab	of	the	Display	Control	Panel	as	the
interior	color	for	drop	zone	buttons.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

Show	All

Calculation	Property

Returns	or	sets	an	XlCalculation	constant	specifying	the	calculation
mode.	Read/write.

expression.Calculation

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	places	Spreadsheet1	into	manual	calculation	mode.

Sub	ManualCalculationMode()

			Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants

			'	Set	Spreadsheet1	to	manual	calculation	mode.
			Spreadsheet1.Calculation	=	ssConstants.xlCalculationManual

End	Sub

	 	

CalculationVersion	Property

Returns	a	number	whose	rightmost	two	digits	are	the	minor	version
number	of	the	calculation	engine,	and	whose	other	digits	(on	the	left)	are
the	major	version	of	the	Microsoft	Office	Spreadsheet	Component.	Read-
only	Long.

expression.CalculationVersion

expression				Required.	An	expression	that	returns	a	Spreadsheet	or
Workbook	object.

CanQuery	Property

Returns	True	if	the	XmlDataBinding	object	(as	specified	in	the
<Binding>	element	in	the	XML	Spreadsheet	file)	contains	a	child
<DataSource>	element	with	a	Purpose	attribute
(/Binding/DataSource/ConnectionInfo@Purpose)	that	has	the	value
"Query".	Otherwise	it	returns	False.	Read-only.

expression.CanQuery

expression				Required.	An	expression	that	returns	an	XmlDataBinding
object.

Remarks

If	True	is	returned,	the	Purpose	attribute	of	the	<DataSource>	element
has	the	value	"Query".	This	means	you	can	call	the	Refresh	method	of
the	XmlDataBinding	object	to	requery	the	data	source.	Note	that	an
XMLDataBinding	object	can	contain	more	than	one	<DataSource>
element	tag:	one	in	which	Purpose	has	the	value	"Query"	and	one	in
which	Purpose	is	"Update".	For	information	on	update	bindings,	see	the
CanUpdate	property.

An	XMLDataBinding	object	represents	a	binding	to	an	XML	file,	a	SOAP
service,	another	Web	part	(only	when	binding	from	a	Spreadsheet	Web
Part),	or	a	data	retrieval	service	connection.

The	XML	fragment	where	the	<DataSource>	element	details	appear	in
the	XML	Spreadsheet	file	looks	something	like	the	following:

<x2:Binding	x2:ID="Cust_bind_id"	x2:LoadMode="Normal"	x2:Async="False">
<x2:MapID>Cust_MapId</x2:MapID>
<udc:DataSource	MajorVersion="1"	MinorVersion="0">
<udc:Type	Type="XMLFile"	MajorVersion="1"	MinorVersion="0"/>
<udc:Name>sample_name</udc:Name>
			<udc:ConnectionInfo	Purpose="Query">
						...
			</udc:ConnectionInfo>
</udc:DataSource>

Example
The	following	example	attempts	to	refresh	a	binding.	This	will	cause	an
event	handler	for	the	BindingCompleted	event	to	run,	which	determines
whether	a	binding	can	be	queried	(that	is,	whether	its	Purpose	attribute
has	the	value	"Query").	You	can	write	code	in	the	event	handler	to
perform	any	additional	actions	on	the	binding.

Sub	RefreshBinding(Spreadsheet1)
				Dim	objBinding

				Set	objBinding	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings("Cust_bind_id")
				objBinding.Refresh

End	Sub		

Sub	Spreadsheet1_BindingCompleted(bindingID,	Action)

				If	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(bindingID).CanQuery	=	True	Then
								'	Write	code	here	to	perform	any	additional	actions	on	this	query	binding.
				End	If

End	Sub

Note		For	information	on	trapping	the	BindingCompleted	event	from
script	running	in	a	Web	page,	see	the	BindingCompleted	event	topic.

CanUndo	Property

True	if	there	is	a	previous	action	that	can	be	undone.	Read-only
Boolean.

expression.CanUndo

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	undoes	the	last	action	performed	or	displays	a	message
box	if	the	action	cannot	be	undone.

Sub	Undo_Action()
				If	Spreadsheet1.CanUndo	Then
								Spreadsheet1.Undo
				Else
								MsgBox	"Can't	undo	last	action."
				End	If
End	Sub

	 	

CanUpdate	Property

Returns	True	if	the	XmlDataBinding	object	(as	specified	by	the
<Binding>	element	in	the	XML	Spreadsheet	file)	contains	a
<DataSource>	element	with	a	Purpose	attribute
(/Binding/DataSource/ConnectionInfo@Purpose)	that	has	the	value
"Update".	Otherwise	it	returns	False.	Read-only.

expression.CanUpdate

expression				Required.	An	expression	that	returns	an
XmlDataBindingobject.

Remarks

Note	that	an	XMLDataBinding	object	can	contain	more	than	one
<DataSource>	element	tag:	one	in	which	Purpose	has	the	value	"Query"
and	one	in	which	Purpose	is	"Update".	For	information	on	update
bindings,	see	the	CanUpdate	property.

An	XMLDataBinding	object	represents	a	binding	to	an	XML	file,	a	SOAP
service,	another	Web	part	(only	when	binding	from	a	Spreadsheet	Web
Part),	or	a	data	retrieval	service	connection.

The	XML	fragment	where	the	details	appear	in	the	XML	Spreadsheet	file
looks	something	like	the	following:

<udc:DataSource	MajorVersion="1"	MinorVersion="0"	xmlns:udc="http://schemas.microsoft.com/data/udc">
			<udc:Type	Type="XMLFile"	MajorVersion="1"	MinorVersion="0"/>
			<udc:Name>Example_Filename<udc:Name/>	
			<udc:ConnectionInfo	Purpose="Update">
						...
			</udc:ConnectionInfo>
</udc:DataSource>

Example
The	following	example	first	determines	wheter	a	data	retrieval	service
connection	binding	can	be	updated	(that	is,	whether	its	Purpose	attribute
has	the	value	"Update").	If	so,	the	code	calls	the	UpdateBinding
function,	passing	in	the	BindingId	attribute	value	as	the	argument.
Because	update	bindings	are	always	performed	synchronously,	there	is
no	need	to	check	if	the	binding	is	asynchronous,	and	the	function	calls
the	Update	method	immediately.

Dim	objBinding

Set	objBinding	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings("Cust_bind_id")
				If	objBinding.CanUpdate	=	True	Then
								'	Fetch	the	data	and	update	the	corresponding	map.
								UpdateBinding("Cust_bind_id")
				End	If
								
Next

Function	UpdateBinding(strBindingID)
				Dim	objBinding
				
				Set	objBinding	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings(strBindingID)

				objBinding.Update
End	Function			
				

Show	All

Caption	Property

Caption	property	as	it	applies	to	the	ChSeries,	ChTitle,	ChTrendline,
Heading,	Spreadsheet,	PivotField,	PivotFieldSet,	PivotLabel,
PivotMemberProperty,	PivotTotal,	and	TitleBar	objects.

Caption	property	as	it	applies	to	the	ChCategoryLabel,
PivotAxisMember,	PivotColumnMember,	PivotMember,
PivotPageMember,	PivotResultMemberProperty,	and
PivotRowMember	objects.

Example
As	it	applies	to	the	Spreadsheet	object	.

Show	All

CaptionHAlignment	Property

Returns	or	sets	the	horizontal	alignment	for	the	detail	footer	label	in	the
specified	PivotTable	list.	Read/write	PivotHAlignmentEnum	.

expression.CaptionHAlignment

expression				Required.	An	expression	that	returns	a	PivotTotal	object.

Remarks
Captions	can	be	displayed	only	to	the	left	of	aggregates	in	the	detail
footer.	Use	the	CaptionHAlignment	property	to	align	the	caption	close	to
the	aggregate	(plHAlignRight)	or	to	align	the	caption	close	to	the	left
edge	of	the	footer	(plHAlignLeft).	If	there	is	another	aggregate	displayed
to	the	left,	the	caption	is	displayed	to	the	right	of	the	other	aggregate.	If
there	is	not	enough	room	to	display	the	caption,	it	is	not	visible.

Example
This	example	formats	totals	and	their	captions	in	the	PivotTable1.

Sub	Set_Total_Alignment()
				Dim	ptConstants
				Dim	vwView
				Dim	totTotal

				Set	ptConstants	=	PivotTable1.Constants
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Loop	through	all	totals	in	the	view.
				For	Each	totTotal	in	vwView.DataAxis.Totals
				
								'	Set	the	horizontal	alignment	of	the	total	to	center.
								totTotal.HAlignment	=	ptConstants.plHAlignCenter
								
								'	Set	the	horizontal	alignment	of	the	caption	to	center.
								totTotal.CaptionHAlignment	=	ptConstants.plHAlignCenter
				Next
End	Sub

	 	

CaptionSection	Property

True	if	the	specified	group	level	has	a	caption	section	showing.
Read/write	Boolean.

expression.CaptionSection

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

Remarks
The	caption	section	appears	on	a	data	access	page	only	once,	above	all
the	visible	records	at	a	given	group	level.	The	caption	section	remains
visible	as	you	scroll	through	the	records.

CategoryLabels	Property

Returns	the	collection	of	ChCategoryLabels	for	the	specified	axis.	Valid
only	for	category	and	timescale	axes.

expression.CategoryLabels

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Cell	Property

Returns	a	PivotCell	object	that	indicates	the	location	of	the	aggregate
cell	or	detail	cell.	Use	this	property	to	return	more	information	about	the
selected	area	in	a	PivotTable	list.

expression.Cell

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	utilizes	the	DoubleClick	event	of	PivotTable1	to	display
more	information	about	a	cell	in	the	detail	area	of	the	PivotTable.	This
example	assumes	that	PivotTable1	is	using	the	Customers	table	form	the
Northwind	database.

Sub	PivotTable1_DblClick()
				Dim	ptSelection
				Dim	nRow
				Dim	rs

				Set	ptSelection	=	PivotTable1.Selection

				'	If	the	current	selection	is	in	the
				'	detail	area	of	the	PivotTable	list.
				If	TypeName(ptSelection)	=	"PivotDetailRange"	then

								nRow	=	ptSelection.TopLeft.Row

								'	Set	a	variable	to	the	recordset	of	the	top-left
								'	cell	in	the	selection.
								Set	rs	=	ptSelection.TopLeft.Cell.Recordset

								'	Move	the	cursor	the	the	correct	record	in	the	recordset.
								rs.Move	nRow

								MsgBox	"The	row	that	was	double-clicked	was..."	&	String(2,	vbCrLf)	&	_
												"Customer	ID	=	"	&	rs("CustomerID")	&	vbCrLf	&	_
												"Company	Name	=	"	&	rs("CompanyName")	&	vbCrLf	&	_
												"Contact	Name	=	"	&	rs("ContactName")
				Else
								MsgBox	"Double-click	on	a	row!",	vbExclamation

				End	If

End	Sub

	 	

Show	All

Cells	Property

Cells	property	as	it	applies	to	the	Range,	Spreadsheet,	and
Worksheet	objects.

Cells	property	as	it	applies	to	the	PivotData	and	PivotRange	objects.

Example
As	it	applies	to	the	Range,	Spreadsheet,	and	Worksheet	objects.

CellsEx	Property

Returns	a	PivotCell	object	that	represents	the	intersection	of	the
specified	row,	column,	and	page	members.

expression.CellsEx(Row,	Column,	Page)

expression				Required.	An	expression	that	returns	a	PivotData	object.

Row			Required	PivotRowMember	object.	Specifies	the	row	containing
the	returned	cell.

Column			Required	PivotColumnMember	object.	Specifies	the	column
containing	the	returned	cell.

Page			Required	PivotPageMember	object.	Specifies	the	page
containing	the	returned	cell.

Example
This	example	sets	a	variable	to	the	total	amount	shipped	via	2-Day
shipping	to	postal	code	28016	in	North	Carolina.

Sub	Get2DayShippingToNC()

				Dim	ptData
				Dim	pmRowMember
				Dim	pmColMember
				Dim	pmPageMember
				Dim	pmIntersection
				Dim	dblShipTotal

				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	a	row	field	member.
				Set	pmRowMember	=	ptData.RowAxis.Member.ChildAxisMembers("North	Carolina")

				'	Set	a	variable	to	a	column	field	member.
				Set	pmColMember	=	ptData.ColumnAxis.Member.ChildAxisMembers("2-Day")

				'	Set	a	variable	to	a	page	field	member.
				Set	pmPageMember	=	ptData.PageAxis.Member.ChildAxisMembers("28016")

				'	Set	a	variable	to	the	intersection	of	the	row,	column,	and	page	field	members.
				Set	pmIntersection	=	ptData.CellsEx(pmRowMember,	pmColMember,	pmPageMember)

				'	Set	a	variable	to	the	total	shipping	amount	for	the	item.
				dblShipTotal	=	pmIntersection.Aggregates("Shipping").Value

End	Sub

	 	

ChartDepth	Property

Returns	or	sets	a	Long	specifying	the	depth	of	a	three-dimensional	chart
in	relation	to	it's	width.	Setting	this	property	to	a	value	a	value	greater
than	100	will	make	a	chart	which	is	deeper	than	it	is	wide,	while	a	value
less	than	100	will	make	a	chart	wider	than	it	is	deep.	Valid	settings	range
from	0	to	500.	Read/write.

expression.ChartDepth

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
This	property	has	no	effect	on	a	3-D	Pie	chart.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	increases	the	width	and	depth	of	the	chart.

Sub	Format_3D_Depth_Width()

				Dim	cht3DColumn

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumnClustered3D

				'	Increase	the	depth	of	the	chart	in	relation
				'	to	it's	width.
				cht3DColumn.ChartDepth	=	125

				'	Increase	the	width	of	the	chart	in	relation
				'	to	it's	height.
				cht3DColumn.AspectRatio	=	80

End	Sub

	 	

ChartFields	Property

Returns	a	ChChartFields	object	as	the	collection	of	fields	that	have	been
added	to	the	specified	drop	zone.

expression.ChartFields

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	displays	the	number	of	fields	that	have	been	added	to	the
series	drop	zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	Display	the	number	of	fields	that	have	been	added	to	the
				'	series	drop	zone.
				MsgBox	dzSeriesDropZone.ChartFields.Count

End	Sub

	 	

Show	All

ChartLayout	Property

Returns	or	sets	the	layout	for	all	the	charts	in	the	specified	chart
workspace.	Read/write	ChartChartLayoutEnum	.

expression.ChartLayout

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Because	the	chart	workspace	can	contain	one	or	more	charts,	you	can
use	both	the	ChartLayout	and	ChartWrapCount	properties	to	specify
how	multiple	charts	are	positioned.	The	ChartLayout	property	makes	it
possible	to	create	custom	chart	arrangements,	such	as	three	charts
positioned	horizontally	in	a	single	row.

There	are	two	distinct	layout	types	for	charts:

ChChartLayoutHorizontal				Charts	are	positioned	horizontally	from	left
to	right	until	the	number	of	charts	specified	by	the	ChartWrapCount
property	is	reached.	When	this	occurs,	a	new	row	is	created	below	the
active	row	and	the	positioning	process	begins	again	at	the	left.	This
method	continues	(wrapping	every	ChartWrapCount	number)	until	all
charts	have	been	placed.

ChChartLayoutVertical				Charts	are	positioned	vertically	from	top	to
bottom	until	the	number	of	charts	specified	by	the	ChartWrapCount
property	is	reached.	When	this	occurs,	a	new	column	is	created	to	the
right	of	the	active	column	and	positioning	begins	again	at	the	top.	This
method	continues	(wrapping	every	ChartWrapCount	number	of	charts)
until	all	charts	have	been	placed.

Example
This	example	sets	the	ChartWrapCount	and	ChartLayout	properties
and	then	adds	six	additional	charts	to	the	specified	chart	workspace.

Sub	AddCharts()
				Dim	chtChart
				Dim	chConstants
				Dim	iCtr
					
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	the	chart	workspace	so	that	a	row	or	column
				'	of	charts	is	created	for	every	two	charts
				'	in	the	chart	workspace.
				ChartSpace1.ChartWrapCount	=	2
				
				'	Set	the	chart	workspace	so	that	the	charts	are	laid	our	horizontally.
				'	Since	this	code	adds	six	charts	to	the	chart	workspace	and	the	
				'	ChrtWrapCount	property	has	been	set	to	wrap	every	two	charts,
				'	then	the	code	results	in	three	rows	of	two	charts.
				ChartSpace1.ChartLayout	=	chConstants.chChartLayoutHorizontal
				
				For	iCtr	=	1	To	6
								'	Add	a	chart	to	the	chart	workspace.
								Set	chtChart	=	ChartSpace1.Charts.Add
								
								'	Enable	the	chart	title.
								chtChart.HasTitle	=	True
								
								'	Add	a	title	to	the	chart	that	indicates	the	order
								'	in	which	the	chart	was	created.

								chtChart.Title.Caption	=	"Chart	#	"	&	iCtr
								
								'	Specify	that	the	chart	is	to	be	a	line	chart.
								chtChart.Type	=	chConstants.chChartTypeLine								
				Next
End	Sub

	 	

Charts	Property

Returns	the	ChCharts	collection	for	the	specified	chart	workspace.

expression.Charts

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
By	default,	a	new	chart	workspace	contains	no	charts.	After	you	create	a
new	chart	workspace,	you	must	add	a	Chart	object	to	it	before	you	can
create	a	chart.	Use	the	Add	method	to	create	a	new	chart.

Example
This	example	adds	a	chart	to	the	specified	chart	workspace.

Set	cht	=	ChartSpace1.Charts.Add
	 	

ChartWrapCount	Property

Returns	or	sets	the	number	of	charts	that	are	placed	horizontally	or
vertically	before	wrapping	occurs.	For	a	more	complete	discussion	of
layout	and	wrapping,	see	the	Help	topic	for	the	ChartLayout	property.
Read/write	Long.

expression.ChartWrapCount

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	sets	the	ChartWrapCount	and	ChartLayout	properties
and	then	adds	six	additional	charts	to	the	specified	chart	workspace.

Sub	AddCharts()
				Dim	chtChart
				Dim	chConstants
				Dim	iCtr
					
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	the	chart	workspace	so	that	a	row	or	column
				'	of	charts	is	created	for	every	two	charts
				'	in	the	chart	workspace.
				ChartSpace1.ChartWrapCount	=	2
				
				'	Set	the	chart	workspace	so	that	the	charts	are	laid	our	horizontally.
				'	Since	this	code	adds	six	charts	to	the	chart	workspace	and	the	
				'	ChrtWrapCount	property	has	been	set	to	wrap	every	two	charts,
				'	then	the	code	results	in	three	rows	of	two	charts.
				ChartSpace1.ChartLayout	=	chConstants.chChartLayoutHorizontal
				
				For	iCtr	=	1	To	6
								'	Add	a	chart	to	the	chart	workspace.
								Set	chtChart	=	ChartSpace1.Charts.Add
								
								'	Enable	the	chart	title.
								chtChart.HasTitle	=	True
								
								'	Add	a	title	to	the	chart	that	indicates	the	order
								'	in	which	the	chart	was	created.

								chtChart.Title.Caption	=	"Chart	#	"	&	iCtr
								
								'	Specify	that	the	chart	is	to	be	a	line	chart.
								chtChart.Type	=	chConstants.chChartTypeLine								
				Next				
End	Sub

	 	

Checked	Property

Returns	whether	the	specified	command	is	enabled.	Read-only	Boolean.

expression.Checked

expression				Required.	An	expression	that	returns	an	OCCommand
object.

Remarks
The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Web	component.

ChildAxisMembers	Property

Returns	a	PivotAxisMembers	collection	that	represents	the	children	of
the	specified	PivotAxisMember	object.

expression.ChildAxisMembers

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

Example
This	example	sets	a	variable	to	the	total	amount	shipped	via	2-Day
shipping	to	postal	code	28016	in	North	Carolina.

Sub	Get2DayShippingToNC()

				Dim	ptData
				Dim	pmRowMember
				Dim	pmColMember
				Dim	pmPageMember
				Dim	pmIntersection
				Dim	dblShipTotal

				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	a	row	field	member.
				Set	pmRowMember	=	ptData.RowAxis.Member.ChildAxisMembers

				'	Set	a	variable	to	a	column	field	member.
				Set	pmColMember	=	ptData.ColumnAxis.Member.ChildAxisMembers

				'	Set	a	variable	to	a	page	field	member.
				Set	pmPageMember	=	ptData.PageAxis.Member.ChildAxisMembers

				'	Set	a	variable	to	the	intersection	of	the	row,	column,	and	page	field	members.
				Set	pmIntersection	=	ptData.CellsEx(pmRowMember,	pmColMember,	pmPageMember)

				'	Set	a	variable	to	the	total	shipping	amount	for	the	item.
				dblShipTotal	=	pmIntersection.Aggregates("Shipping").Value

End	Sub
	 	

ChildColumnMembers	Property

Returns	a	PivotColumnMembers	collection	that	represents	the	children
of	the	specified	PivotColumnMember	object.

expression.ChildColumnMembers

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

Example
This	example	sets	a	variable	to	the	total	amount	shipped	via	2-Day
shipping	to	postal	code	28016	in	North	Carolina.

Sub	Get2DayShippingToNC()

				Dim	ptData
				Dim	pmRowMember
				Dim	pmColMember
				Dim	pmPageMember
				Dim	pmIntersection
				Dim	dblShipTotal

				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	a	row	field	member.
				Set	pmRowMember	=	ptData.RowAxis.RowMember.ChildRowMembers("North	Carolina")

				'	Set	a	variable	to	a	column	field	member.
				Set	pmColMember	=	ptData.ColumnAxis.ColumnMember.ChildColumnMembers

				'	Set	a	variable	to	a	page	field	member.
				Set	pmPageMember	=	ptData.PageAxis.PageMember.ChildPageMembers("28016")

				'	Set	a	variable	to	the	intersection	of	the	row,	column,	and	page	field	members.
				Set	pmIntersection	=	ptData.CellsEx(pmRowMember,	pmColMember,	pmPageMember)

				'	Set	a	variable	to	the	total	shipping	amount	for	the	item.
				dblShipTotal	=	pmIntersection.Aggregates("Shipping").Value

End	Sub
	 	

ChildLabel	Property

Gets	or	sets	the	value	of	the	ID	attribute	of	the	label	associated	with	a
control.	Read/write	String.

expression.ChildLabel

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

ChildMembers	Property

Returns	a	PivotMembers	collection	that	represents	the	child	members	of
the	specified	member.

expression.ChildMembers

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

ChildPageMembers	Property

Returns	a	PivotPageMembers	collection	that	represents	the	children	of
the	specified	PivotPageMember	object.

expression.ChildPageMembers

expression				Required.	An	expression	that	returns	a	PivotPageMember
object.

Example
This	example	sets	a	variable	to	the	total	amount	shipped	via	2-Day
shipping	to	postal	code	28016	in	North	Carolina.

Sub	Get2DayShippingToNC()

				Dim	ptData
				Dim	pmRowMember
				Dim	pmColMember
				Dim	pmPageMember
				Dim	pmIntersection
				Dim	dblShipTotal

				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	a	row	field	member.
				Set	pmRowMember	=	ptData.RowAxis.RowMember.ChildRowMembers("North	Carolina")

				'	Set	a	variable	to	a	column	field	member.
				Set	pmColMember	=	ptData.ColumnAxis.ColumnMember.ChildColumnMembers("2-Day")

				'	Set	a	variable	to	a	page	field	member.
				Set	pmPageMember	=	ptData.PageAxis.PageMember.ChildPageMembers

				'	Set	a	variable	to	the	intersection	of	the	row,	column,	and	page	field	members.
				Set	pmIntersection	=	ptData.CellsEx(pmRowMember,	pmColMember,	pmPageMember)

				'	Set	a	variable	to	the	total	shipping	amount	for	the	item.
				dblShipTotal	=	pmIntersection.Aggregates("Shipping").Value

End	Sub
	 	

ChildRowMembers	Property

Returns	a	PivotRowMembers	collection	that	represents	the	children	of
the	specified	PivotRowMember	object.

expression.ChildRowMembers

expression				Required.	An	expression	that	returns	a	PivotRowMember
object.

Example
This	example	sets	a	variable	to	the	total	amount	shipped	via	2-Day
shipping	to	postal	code	28016	in	North	Carolina.

Sub	Get2DayShippingToNC()

				Dim	ptData
				Dim	pmRowMember
				Dim	pmColMember
				Dim	pmPageMember
				Dim	pmIntersection
				Dim	dblShipTotal

				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	a	row	field	member.
				Set	pmRowMember	=	ptData.RowAxis.RowMember.ChildRowMembers

				'	Set	a	variable	to	a	column	field	member.
				Set	pmColMember	=	ptData.ColumnAxis.ColumnMember.ChildColumnMembers("2-Day")

				'	Set	a	variable	to	a	page	field	member.
				Set	pmPageMember	=	ptData.PageAxis.PageMember.ChildPageMembers("28016")

				'	Set	a	variable	to	the	intersection	of	the	row,	column,	and	page	field	members.
				Set	pmIntersection	=	ptData.CellsEx(pmRowMember,	pmColMember,	pmPageMember)

				'	Set	a	variable	to	the	total	shipping	amount	for	the	item.
				dblShipTotal	=	pmIntersection.Aggregates("Shipping").Value

End	Sub
	 	

ChildSection	Property

Returns	a	Section	object	that	represents	the	child	section	for	the
specified	section.	This	property	fails	if	the	specified	section	is	not
expanded.

expression.ChildSection

expression				Required.	An	expression	that	returns	a	Section	object.

Color	Property

Returns	or	sets	the	primary	color	of	the	specified	object.	Read/write
Variant.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

On	charts,	you	can	also	use	either	of	the	following	two	special	constants:
chColorAutomatic	(to	reset	the	color	to	the	default	value)	or
chColorNone	(to	indicate	no	color,	or	transparency).	However,	you
cannot	set	a	font	color	to	chColorNone.

Example
This	example	adds	a	medium-weight	green	border	to	all	cells	in	the	range
B5:C10	on	the	spreadsheet.

Sub	SetBorder()
	 	

Set	ssConstants	=	Spreadsheet1.Constants
				
				Spreadsheet1.ActiveSheet.Range("b5:c10").Borders.Weight	=	ssConstants.owcLineWeightMedium
				Spreadsheet1.ActiveSheet.Range("b5:c10").Borders.Color	=	"green"
End	Sub

	 	

Show	All

ColorIndex	Property

ColorIndex	property	as	it	applies	to	the	Border	object.

ColorIndex	property	as	it	applies	to	the	Borders	object.

ColorIndex	property	as	it	applies	to	the	Font	object.

ColorIndex	property	as	it	applies	to	the	Interior	object.

Remarks
This	property	specifies	a	color	as	an	index	into	the	workbook	color
palette.	You	can	use	the	Colors	method	to	return	the	current	color
palette.

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example
As	it	applies	to	the	Font	object.

Colors	Property

Returns	or	sets	colors	in	the	palette	for	the	workbook.	The	palette	has	56
entries,	each	represented	by	an	RGB	value.	Read/write	Variant.

expression.Colors(Index)

expression				Required.	An	expression	that	returns	a	Workbook	object.

Index			Optional	Variant.	The	color	number	(from	1	to	56).	If	this
argument	isn’t	specified,	this	method	returns	an	array	that	contains	all	56
of	the	colors	in	the	palette.

Example
This	example	sets	color	five	in	the	color	palette	for	the	active	workbook.

Spreadsheet1.ActiveWorkbook.Colors(5)	=	RGB(255,	0,	0)
	 	

This	example	creates	a	table	on	the	active	worksheet	in	Spreadsheet1
that	displays	the	available	color	palette.

Sub	Create_Color_Table()
				Dim	avarColorArray()
				Dim	iCtr
				Dim	rngCurrent

				'	Set	an	array	variable	to	the	colors	in	the	color	palette.
				avarColorArray	=	Spreadsheet1.ActiveWorkbook.Colors

				Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Range("A1")

				'	Loop	through	all	of	the	colors	in	the	array.
				For	iCtr	=	1	To	UBound(avarColorArray)
								rngCurrent.Value	=	"Color	"	&	iCtr

								'	Set	the	color	of	a	cell	in	column	B	to
								'	the	appropriate	color.
								rngCurrent.Offset(0,	1).Interior.Color	_
																								=	avarColorArray(iCtr)

								Set	rngCurrent	=	rngCurrent.Offset(1,	0)
				Next
End	Sub

	 	

Column	Property

Returns	the	number	of	the	first	column	in	the	specified	range.	Read-only
Long.

expression.Column

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	font	to	bold	in	every	other	column	of	the	visible
range	on	the	active	worksheet.

Sub	BoldColumns()
				Dim	col

				For	Each	col	In	Spreadsheet1.ActiveSheet.VisibleRange.Columns
								If	col.Column	Mod	2	=	0	Then	col.Font.Bold	=	True
				Next
End	Sub

	 	

ColumnAxis	Property

PivotData	object:	Returns	a	PivotResultColumnAxis	object	that
represents	the	column	axis	in	the	specified	PivotTable	list.

PivotView	object:	Returns	a	PivotGroupAxis	object	that	represents	the
column	axis	in	the	specified	PivotTable	list.

expression.ColumnAxis

expression				Required.	An	expression	that	returns	a	PivotData	or
PivotView	object.

Example
This	example	inserts	two	field	sets	into	the	PivotTable	list	in	the	active
view.

Sub	AddFieldsToPT()

			Dim	ptView

			Set	ptView=	PivotTable1.ActiveView

			ptView.ColumnAxis.InsertFieldSet	ptView.FieldSets("Store	Type")

			ptView.RowAxis.InsertFieldSet	ptView.FieldSets("Promotions")

End	Sub

	 	

ColumnHeadings	Property

Returns	a	Headings	collection	that	represents	the	column	headings	in
the	specified	window.	Use	the	Caption	property	to	customize	the	column
headings.

expression.ColumnHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	sets	the	creates	a	custom	data	entry	sheet	by	disabling
some	user	interface	elements,	limiting	the	viewable	range	in	the	active
window,	and	customizing	the	row	and	column	headings.

Sub	Create_Datasheet()
				Dim	hdrColHeadings
				Dim	hdrRowHeadings
				Dim	wndActive

				Set	wndActive	=	Spreadsheet1.ActiveWindow

				'	Hide	various	UI	elements.
				wndActive.DisplayWorkbookTabs	=	False
				Spreadsheet1.DisplayToolbar	=	False

				'	Display	the	title	bar	and	set	it's	caption.
				Spreadsheet1.DisplayTitleBar	=	True
				Spreadsheet1.TitleBar.Caption	=	"Revenue	Worksheet"

				'	Resize	the	spreadsheet	component.
				Spreadsheet1.AutoFit	=	True

				'	Limit	the	viewable	range	of	the	active	sheet.
				wndActive.ViewableRange	=	"A1:D5"

				'	Set	a	variable	to	the	column	headings	in	the	active	window.
				Set	hdrColHeadings	=	wndActive.ColumnHeadings

				'	Set	a	variable	to	the	row	headings	in	the	active	window.
				Set	hdrRowHeadings	=	wndActive.RowHeadings

				'	Set	the	headings	of	columns	A	through	D.
				hdrColHeadings(1).Caption	=	"Qtr	1"
				hdrColHeadings(2).Caption	=	"Qtr	2"
				hdrColHeadings(3).Caption	=	"Qtr	3"
				hdrColHeadings(4).Caption	=	"Qtr	4"

				'	Set	the	headings	of	rows	1	though	5.
				hdrRowHeadings(1).Caption	=	"1996"
				hdrRowHeadings(2).Caption	=	"1997"
				hdrRowHeadings(3).Caption	=	"1998"
				hdrRowHeadings(4).Caption	=	"1999"
				hdrRowHeadings(5).Caption	=	"2000"
End	Sub
	 	

ColumnMember	Property

Returns	a	PivotColumnMember	object	that	represents	the	innermost
member	on	the	column	axis	that	intersects	the	specified	cell.

expression.ColumnMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ColumnMembers	Property

Returns	a	PivotColumnMembers	collection	that	represents	all	the
members	of	the	specified	column.

expression.ColumnMembers

expression				Required.	An	expression	that	returns	a	PivotRange	object.

Remarks
The	collection	of	column	members	does	not	include	any	members	that
you	have	filtered	by	setting	their	IsFiltered	property	to	True.

Show	All

Columns	Property

Column	property	as	it	applies	to	the	Range	object.

Column	property	as	it	applies	to	the	Spreadsheet	and	Worksheet
objects.

Example
As	it	applies	to	the	Range	object.

As	it	applies	to	the	Worksheet	object.

ColumnWidth	Property

Returns	or	sets	the	width	of	all	columns	in	the	specified	range.	Returns
Null	if	the	columns	in	the	range	are	not	all	the	same	width.	Use	the
IsNull	function	to	determine	whether	the	return	value	is	Null.	Read/write
Variant.

expression.ColumnWidth

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	formula,	column	width,	and	number	format	for	all
the	cells	in	the	range	A1:F10	on	the	active	worksheet.

Sub	Format_Sheet1()
				Dim	rngCurrent
				
				Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Range("A1:F10")
				
				rngCurrent.Formula	=	"=rand()"
				
				rngCurrent.ColumnWidth	=	10
				
				rngCurrent.NumberFormat	=	"#.###"
End	Sub
	 	

Commands	Property

Returns	an	OCCommands	object	that	represents	the	collection	of
commands	available.

expression.Commands

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

CommandText	Property

Returns	or	sets	the	command	string	for	the	specified	object.	Read-only
String	for	the	RecordsetDef	and	SchemaRowsource	objects;
read/write	String	for	all	other	objects	in	the	AppliesTo	list.

expression.CommandText

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
For	type	dscCommandText,	this	property	returns	or	sets	a	text	string
(usually	SQL)	that	returns	a	single	result	set	from	the	provider.

For	type	dscCommandFile,	this	property	returns	or	sets	the	URL	of	an
XML	file	containing	data	for	the	specified	SchemaRowsource	object.

Show	All

CompareMemberCaptionsBy	Property

Returns	or	sets	a	PivotMembersCompareByEnum	constant	that
determines	how	the	PivotTable	control	compares	member	captions	to	the
list	of	custom	captions	set	by	the	MemberCaptions	property.	Captions
that	match	the	custom	list	established	by	the	MemberCaptions	property
are	renamed	using	the	custom	caption.	Read/write.

expression.CompareMemberCaptionsBy

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
The	default	setting	when	the	specified	field	set	is	a	time-based	field	is
plMembersCompareByName.	Otherwise,	the	default	setting	is
plMembersCompareByUniqueName.

Show	All

CompareOrderedMembersBy	Property

Returns	or	sets	a	PivotMembersCompareByEnum	constant	that
determines	how	the	PivotTable	control	sorts	members	of	the	specified
field	set	when	a	custom	sort	order	has	been	established	by	the
OrderedMembers	property.	Read/write.

expression.CompareOrderedMembersBy

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
The	default	setting	when	the	specified	field	set	is	a	time-based	field	is
plMembersCompareByName.	Otherwise,	the	default	setting	is
plMembersCompareByUniqueName.

Connection	Property

Returns	or	sets	the	ADO	Connection	object	used	by	the	specified	object.
Read/write	for	the	PivotTable	object;	read-only	for	the
DataSourceControl	and	DSCEventInfo	objects.

expression.Connection

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Use	caution	when	calling	methods	or	setting	properties	for	the
Connection	object	returned	by	this	property.	For	example,	you	should
not	call	the	Connection	object's	Close	method.

Important			For	information	about	secure	data	connections,	see	Making
Connections	to	External	Data	Sources	More	Secure.

ConnectionFile	Property

Returns	or	sets	a	String	that	specifies	the	Office	Database	Connection
(.odc)	or	Microsoft	Data	Link	(.udl)	file	that	is	used	to	connect	the	data
access	page	to	a	data	source.	Read/write.

expression.ConnectionFile

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Example
This	example	connects	the	data	access	page	to	a	Office	Database
Connection	file	named	"SQL	Northwind.odc".

MSODSC.ConnectionFile	=	"SQL	Northwind.odc"
	 	

ConnectionString	Property

Returns	or	sets	the	ADO	connection	string	for	a	two-tier	database
connection.	Read/write	String.

expression.ConnectionString

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
With	the	data	source	control,	this	property	is	equivalent	to
CurrentProject.BaseConnectionString	in	Microsoft	Access.	When	the
data	source	control	creates	a	connection,	the	value	of	the	data	source
control	ConnectionString	property	may	not	be	the	same	as	the	value
returned	by	the	ConnectionString	property	of	the	Connection	object
because	the	data	source	control	uses	other	OLE	DB	providers	to	supply
additional	services.	For	example,	on	an	HTML	page	containing	a	data
source	control	with	ID	"MSODSC"	the	following	expressions	may	not	be
equivalent.

Important			For	information	about	secure	data	connections,	see	Making
Connections	to	External	Data	Sources	More	Secure.

MSODSC.ConnectionString
MSODSC.Connection.ConnectionString
	 	

Example
This	example	establishes	a	connection	to	a	database,	queries	the	data,
and	then	adds	fields	to	PivotTable1	when	the	Web	page	containing	the
PivotTable1	is	loaded.

Sub	Window_OnLoad()

				Dim	sConnStr
				Dim	ptView
				
				'	Set	a	variable	to	the	connection	string.
				sConnStr	=	"Provider=sqloledb;Data	Source=DataServer;Initial	Catalog=Testing;Integrated	Security=SSPI;"
				
				'	Set	the	connection	string
				PivotTable1.ConnectionString	=	sConnStr

				'	Return	all	data	from	the	Spending	table.
				PivotTable1.CommandText	=	"Select	*	from	Spending"
				
				Set	ptView	=	PivotTable1.ActiveView
				
				'	The	following	four	lines	of	code	add	fields	to	the	row	area	and	data
				'	areas	of	the	PivotTable	list.
				ptView.RowAxis.InsertFieldSet	ptView.FieldSets("Project")
				ptView.RowAxis.InsertFieldSet	ptView.FieldSets("Year")
				ptView.DataAxis.InsertFieldSet	ptView.FieldSets("Budget")
				ptView.DataAxis.InsertFieldSet	ptView.FieldSets("Actual")

End	Sub

	 	

Constants	Property

Returns	an	object	that	allows	script	users	to	use	named	constants.	Read-
only.

For	more	information,	see	Using	Named	Constants	in	VBScript	.

This	property	is	required	only	on	HTML	pages.	In	other	containers	(such
as	Visual	Basic),	you	can	use	defined	constants	from	the	object	model
directly,	without	first	using	the	Constants	property.	Using	the	Constants
property	in	other	containers	will	work	but	is	not	recommended,	as	it	will
cause	your	code	to	run	significantly	slower.

expression.Constants

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	adds	a	medium-weight	green	border	to	each	cell	in	the
range	B5:C10	on	the	spreadsheet.	Because	named	constants	are	not
available	in	VBScript,	the	example	sets	a	variable	to	the	object	returned
by	the	Constants	property.

Sub	SetBorder()
				Dim	ssConstants
	
				'	Set	a	variable	to	the	constants	of	the	Spreadsheet	component.		
				Set	ssConstants	=	Spreadsheet1.Constants
				
				'	Set	the	border	weight.
				Spreadsheet1.Range("b5:c10").Borders.Weight	=	ssConstants.owcLineWeightMedium
				
				'	Set	the	border	color.
				Spreadsheet1.Range("b5:c10").Borders.Color	=	"green"
End	Sub

	 	

ConsumesRecordset	Property

True	for	complex	controls	if	data	is	supplied	by	the	data	source	control.
Any	data-bound	control	has	either	a	ControlSource	property	(used	with
a	simple	HTML	control)	or	a	ConsumesRecordset	property	(used	with	a
complex	control	such	as	a	PivotTable	list	or	chart	workspace).	Read/write
Boolean.

expression.ConsumesRecordset

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

Control	Property

Returns	a	PivotTable	object	that	represents	the	PivotTable	list	for	the
specified	PivotData	or	PivotView	object.

expression.Control

expression				Required.	An	expression	that	returns	a	PivotData	or
PivotView	object.

ControlSource	Property

Returns	or	sets	the	name	of	the	control	to	which	the	specified	control	is
bound.	Read/write	String.

expression.ControlSource

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

Remarks
This	property	returns	or	sets	the	values	of	the	Name	and	Source
properties	for	the	field	to	which	the	specified	control	is	bound.	The
property	values	are	returned	as	a	string	in	the	following	format:
"PageField.Name:PageField.Source"	where	the	strings	in	italics	are
replaced	with	the	actual	values	of	the	Name	and	Source	properties.	If
the	Name	and	Source	property	values	are	identical,	only	one	value	is
returned.

If	you	set	this	property	to	the	name	of	a	schema	field	in	a	schema	row
source	used	by	the	section	containing	the	specified	control,	the	schema
field	is	automatically	added	as	a	page	field.

Count	Property

Returns	the	number	of	objects	in	the	specified	collection.	Read-only
Long.

expression.Count

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	variables	to	the	number	of	columns	and	the	number	of
rows	in	the	visible	range	on	the	active	worksheet,	and	then	formats	the
color	of	the	cells	in	every	other	row.

Sub	Format_Odd_Rows()
				Dim	rngUsed
				Dim	iUsedRows
				Dim	iUsedColumns
				Dim	shtActive
				Dim	iCtr
				
				Set	shtActive	=	Spreadsheet1.ActiveSheet
				
				'	Set	a	variable	ot	the	used	range	of	the	active	sheet.
				Set	rngUsed	=	shtActive.UsedRange
				
				'	Get	the	count	of	used	rows	in	the	active	sheet.
				iUsedRows	=	rngUsed.Rows.Count
				
				'	Get	the	count	of	used	columns	in	the	active	sheet.
				iUsedColumns	=	rngUsed.Columns.Count
				
				'	Loop	through	every	odd	row	in	the	used	range.
				For	iCtr	=	1	To	iUsedRows	Step	2
				
								'	Color	the	background	of	the	cells	green.
								shtActive.Range(shtActive.Cells(iCtr,	1),	shtActive.	_
												Cells(iCtr,	iUsedColumns)).Interior.ColorIndex	=	43
				Next
End	Sub

	 	

Criteria	Property

Returns	the	Criteria	object	for	the	specified	filter.	Use	the	Add	method	of
the	Criteria	object	returned	by	this	property	to	add	criteria	to	a	Filter
object.	Read-only.

expression.Criteria

expression				Required.	An	expression	that	returns	a	Filter	object.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.

Sub	Apply_AutoFilter()
Dim	afFilters
Dim	afCol1
Dim	afCol3

'	Turn	on	AutoFilter.
Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter

'	Set	a	variable	to	the	AutoFilter	object
Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter

Set	afCol1	=	afFilters.Filters(1)
Set	afCol3	=	afFilters.Filters(3)

'	Add	a	criteria	that	excludes	blue	from	column	A.
afCol1.Criteria.Add	"blue"

'	Add	a	criteria	that	excludes	green	from	column	A.
afCol1.Criteria.Add	"green"

'	Add	a	criteria	that	excludes	yellow	from	column	c.
afCol3.Criteria.Add	"yellow"

'Apply	the	criteria
afFilters.Apply
End	Sub

Show	All

Crosses	Property

Returns	or	sets	a	value	that	indicates	how	the	specified	axis	crosses
another	axis.	Read/write	ChartAxisCrossesEnum	.

expression.Crosses

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	category	axis	to	cross	the	value	axis	at	value	zero
(0)	in	the	chart	workspace	if	a	custom	crossing	point	has	not	already
been	set	for	the	category	axis.

Sub	Format_Axis()
				Dim	chConstants
				Dim	axValueAxis
				Dim	axCategoryAxis

				Set	chConstants	=	ChartSpace1.Constants
				
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				Set	axCategoryAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)
				
				If	axCategoryAxis.Crosses	=	chConstants.chAxisCrossesAutomatic	Then
								axValueAxis.CrossingAxis	=	axCategoryAxis
								axCategoryAxis.CrossesAtValue	=	0
				End	If

End	Sub

	 	

CrossesAtValue	Property

Returns	or	sets	the	crossing	point	for	the	specified	axis.	When	you	set
this	value	for	an	axis,	you	are	setting	the	value	on	the	other	axis	where
the	axis	you	are	setting	will	cross	that	other	axis.	For	example,	setting
this	property	on	the	value	(y)	axis	sets	the	category	number	where	the
value	axis	will	cross	the	category	(x)	axis.	Read/write	Double.

expression.CrossesAtValue

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	category	axis	to	cross	the	value	axis	at	value	zero
(0)	in	the	chart	workspace.

Sub	SetCrossingValue()
				Dim	chConstants
				Dim	axValueAxis
				Dim	axCategoryAxis
				
				Set	chContants	=	ChartSpace1.Constants
				
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				Set	axCategoryAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)
				
				axValueAxis.CrossingAxis	=	axCategoryAxis
				
				axCategoryAxis.CrossesAtValue	=	0
End	Sub
	 	

The	following	example	causes	the	value	axis	to	cross	the	category	axis	at
the	third	category.

Sub	SetCrossingCategory()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft).CrossesAtValue
End	Sub
	 	

CrossingAxis	Property

Returns	or	sets	the	crossing	axis.	If	the	specified	axis	is	deleted,	this
property	is	set	to	Null,	and	the	Crosses	property	is	reset	to
chAxisCrossesAutomatic.	Read/write	ChAxis.

expression.CrossingAxis

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	category	axis	to	cross	the	value	axis	at	value	zero
(0)	in	the	chart	workspace.

Sub	SetCrossingValue()
				Dim	chConstants
				Dim	axValueAxis
				Dim	axCategoryAxis
				
				Set	chtContants	=	ChartSpace1.Constants
				
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				Set	axCategoryAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)
				
				axValueAxis.CrossingAxis	=	axCategoryAxis
				
				axCategoryAxis.CrossesAtValue	=	0
End	Sub
	 	

CSVData	Property

Returns	or	sets	spreadsheet	data	as	a	comma-delimited	list.	Read/write
String.

expression.CSVData

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	sets	the	values	for	cells	A1:G1.

Spreadsheet1.CSVData	=	"1,1,2,3,5,8,13"
	 	

CSVURL	Property

Returns	or	sets	the	URL	(Internet	address)	for	the	comma-delimited
spreadsheet	data	file.	Read/write	String.

expression.CSVURL

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	sets	spreadsheet	data	from	a	file	on	the	user's	computer.

Spreadsheet1.CSVURL	=	"file:\test.csv"
	 	

CurrentArray	Property

If	the	specified	cell	is	part	of	an	array,	returns	a	Range	object	that
represents	the	entire	array.	Results	in	a	run-time	error	if	the	specified	cell
is	not	part	of	an	array.	Read-only.

expression.CurrentArray

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks
Use	the	HasArray	property	to	determine	whether	or	not	a	cell	is	part	of
an	array.

Example
Assuming	that	the	active	cell	is	part	of	an	array,	this	example	selects	the
array.

Spreadsheet1.ActiveCell.CurrentArray.Select
	 	

CurrentCell	Property

Returns	a	PivotCell	object	that	contains	the	detail	cell	that	is	currently
being	edited.

expression.CurrentCell

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
This	property	is	relevant	only	when	the	PivotTable	list	is	connected	to	a
relational	data	source.

CurrentRegion	Property

Returns	a	Range	object	that	represents	the	current	region.	The	current
region	is	a	range	bounded	by	any	combination	of	blank	rows	and	blank
columns.	Read-only.

expression.CurrentRegion

expression				Required.	An	expression	that	returns	a	Range	object.

Example
The	function	in	this	example	returns	True,	if	the	entire	current	region	for
cell	A1	on	the	active	worksheet	is	visible	(if	the	current	region	extends
outside	the	visible	range,	the	function	returns	False).

Function	IsCurrentRegionVisible()
				Dim	rngCurrent
				Dim	rngVisible
				Dim	rngIntersect

				'	Set	the	varible	to	the	current	region	of	cell	A1.
				Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Cells(1,	1).CurrentRegion

				'	Set	a	variable	to	the	currently	visible	range.
				Set	rngVisible	=	Spreadsheet1.ActiveWindow.VisibleRange
	
				'	Set	a	variable	to	the	overlapping	portion	of	the	current	region
				'	and	the	visible	range.
				Set	rngIntersect	=	Spreadsheet1.RectIntersect(rngCurrent,	rngVisible)

				'	If	the	overlapping	region	is	the	same	as	the	current	region,	then
				'	return	true.
				IsCurrentRegionVisible	=	(rngIntersect.Address	=	rngCurrent.Address)
End	Function

	 	

CurrentSection	Property

Returns	a	Section	object	that	represents	the	current	section	(the	section
containing	the	control	that	currently	has	the	focus).

expression.CurrentSection

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

CustomGroupMembers	Property

Returns	a	PivotMembers	collection	that	represents	the	members	of	a
custom	group	field.

expression.CustomGroupMembers

expression				Required.	An	expression	that	returns	a	PivotField	object.

Show	All

CustomGroupType	Property

Returns	a	PivotMemberCustomGroupTypeEnum	constant	that
represents	the	type	of	group	that	the	specified	member	is	included	in.
Read-only.

expression.CustomGroupType

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

Show	All

DashStyle	Property

Returns	or	sets	a	ChartLineDashStyleEnum	constant	indicating	the
dash	style	for	the	specified	line	or	border.	Read/write.

expression.DashStyle

expression				Required.	An	expression	that	returns	a	ChLine	or
ChBorder	object.

Remarks
This	property	is	valid	only	for	series	lines.

Example
This	example	changes	the	first	chart	in	Chartspace1	to	a	line	chart	and
then	formats	the	line	for	the	first	data	series	in	the	chart.

Sub	Set_Series_LineStyle()

				Dim	chConstants
				Dim	serSeries1

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	line	chart.
				ChartSpace1.Charts(0).Type	=	chChartTypeLine

				'	Set	a	variable	to	refer	to	the	first	data	series	in	the	chart.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Set	the	miter	of	the	line	of	the	first	series.
				serSeries1.Line.Miter	=	chConstants.chLineMiterBevel

				'	Set	the	line	weight	of	the	first	series.
				serSeries1.Line.Weight	=	chConstants.owcLineWeightThick

				'	Set	the	line	style	of	the	first	series.
				serSeries1.Line.DashStyle	=	chConstants.chLineRoundDot

End	Sub

	 	

Data	Property

Returns	a	PivotData	object	that	represents	the	source	data	for	the
PivotTable	list.

expression.Data

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DataAxis	Property

Returns	a	PivotDataAxis	object	that	represents	the	data	axis.	Use	the
PivotDataAxis	object	returned	by	this	property	to	insert	fields	and	totals
on	the	data	axis	of	a	PivotTable	list.	Read-only.

Example
This	example	adds	a	total	to	the	PivotTable	list	in	the	active	view	and
inserts	a	field	set	on	the	data	axis.

Sub	InsertTotal()
				Dim	ptView
				Dim	ptConstants
				Dim	totNewtotal
				
				Set	ptView	=	PivotTable1.ActiveView
				Set	ptConstants	=	PivotTable1.Constants

				Set	totNewTotal	=	view.AddTotal("myTotal",	view.FieldSets("Freight").Fields(0),	_
																																				ptConstants.plFunctionSum)
				
				ptView.DataAxis.InsertTotal	totNewTotal
				ptView.DataAxis.InsertFieldSet	ptView.FieldSets("OrderDate")
End	Sub
	 	

DataBodyRange	Property

Returns	the	databound	rows	from	a	specified	ListObject	object	as	a
Range	object.	Read-only	Range.

expression.DataBodyRange

expression				Required.	An	expression	that	returns	a	ListObject	object.

Remarks

Some	Range	properties	and	methods	are	not	supported.	The	properties
not	supported	are	Locked,	MergeArea	and	MergeCells.	The	methods
not	supported	are	Delete,	Insert,	Merge,	and	UnMerge.	The
DataBodyRange	does	not	include	the	HeaderRowRange	property	(the
header	row	above	the	data	bound	rows)	or	the	InsertRowRange
property	(the	insert	row	below	the	data	bound	rows).

Note	that	if	you	want	to	set	colors	on	rows,	you	can	only	do	so	on	entire
rows	within	the	XML	list.	You	cannot	set	the	color	of	the	insert	row.

Example
This	example	sets	the	interior	color	of	the	DataBodyRange	of	a
ListObject	object	to	yellow	and	the	border	color	to	red.

Dim	rngDataBody
				
'	Set	a	variable	to	the	data	body	range.
Set	rngDataBody	=	Spreadsheet1.ActiveSheet.ListObjects(1).DataBodyRange
				
'	Set	the	interior	color	and	the	border	color	of	the	data	body	range.
With	rngDataBody
				.Interior.ColorIndex	=	6
				.Borders.ColorIndex	=	3
End	With

DataEntry	Property

True	if	the	specified	page	is	used	only	for	data	entry	(False	if	the	page
includes	a	populated	recordset).	The	default	value	is	False.	Read/write
Boolean.

expression.DataEntry

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

DataField	Property

Returns	the	name	of	the	field	that	the	PivotField	object	is	bound	to	if	the
data	is	coming	from	a	recordset.	Read-only	String.

expression.DataField

expression				Required.	An	expression	that	returns	a	PivotField	object.

DataLabel	Property

Returns	a	ChDataLabel	object	that	represents	the	data	label	associated
with	the	specified	trendline.	Read-only.

expression.DataLabel

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Example
This	example	adds	a	trendline	to	the	specified	series	in	the	chart
workspace,	sets	the	font	for	the	data	label	to	bold,	and	causes	the
trendline	to	display	only	its	equation	(the	R-squared	value	is	not
displayed).

Sub	AddTrendLine()
Dim	trndline

'	Add	a	trendline	to	the	first	series	in	the	first	chart	in	ChartSpace1.
Set	trndline	=
ChartSpace1.Charts(0).SeriesCollection(0).Trendlines.Add

'	Set	the	font	of	the	trendline	to	bold.
trndline.DataLabel.Font.Bold	=	True

'	Do	not	display	the	R-Squared	value	with	the	trendline.
trndline.IsDisplayingRSquared	=	False

'	Display	the	equation	for	the	trendline.
trndline.IsDisplayingEquation	=	True
End	Sub

DataLabelsCollection	Property

Returns	a	ChDataLabelsCollection	object	that	contains	the	data	labels
for	the	specified	series.	Each	series	can	contain	only	one	set	of	data
labels.	Read-only.

For	more	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.DataLabelsCollection

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Example
This	example	adds	data	labels	to	the	specified	series	in	the	chart
workspace.

ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection.Add
	 	

This	example	sets	the	font	for	the	data	labels	for	the	specified	series.

ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection(0).Font.Bold	=	True
	 	

DataMember	Property

Returns	or	sets	the	data	member	name	(the	name	of	the	recordset	that
the	specified	control	will	request	from	the	data	source).	Read/write
DataMember.

expression.DataMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DataPage	Property

Returns	a	DataPage	object	that	represents	the	data	access	page	for	the
specified	section.

expression.DataPage

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
A	data	page	is	a	cluster	of	sections	that	share	a	common	record
navigation	control.

DataPages	Property

Returns	the	DataPages	collection	for	the	data	source	control.

expression.DataPages

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

DataPageSize	Property

Returns	or	sets	the	number	of	records	shown	for	the	specified	banding
level	on	a	data	access	page.	The	default	value	is	5	for	a	banded	page
and	1	for	a	non-banded	page.	Read/write	Long.

expression.DataPageSize

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

DataSource	Property

Returns	or	sets	the	ADO	DataSource	object	that	represents	the	data
source	for	the	specified	control.

expression.DataSource

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	creates	a	chart	that	is	bound	to	a	spreadsheet.	The	series
name	is	in	cell	B1,	the	category	names	are	in	cells	A2:A28,	and	the
values	are	in	cells	B2:B28.

Set	c	=	ChartSpace1.Constants
Set	ChartSpace1.DataSource	=	Spreadsheet1.Object
ChartSpace1.Charts.Add
ChartSpace1.Charts(0).Type	=	c.chChartTypeLineMarkers
ChartSpace1.Charts(0).SetData	c.chDimCategories,	0,	"a2:a28"
ChartSpace1.Charts(0).SetData	c.chDimSeriesNames,	0,	"b1"
ChartSpace1.Charts(0).SeriesCollection(0).SetData	c.chDimValues,	0,	"b2:b28"
	 	

DataSourceName	Property

Returns	or	sets	a	String	specifying	the	name	of	the	ActiveX	control	that
serves	as	the	data	source	for	the	chart	control.	This	property	can	be	used
in	containers	that	support	the	Microsoft	Internet	Explorer	Document
Object	Model.	Read/write.

expression.DataSourceName

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	establishes	PivotTable1	as	the	data	source	for
Chartspace1	and	then	displays	the	field	list	so	that	the	user	can	add	data
to	the	chart.

Sub	ConnectChart()

			'	Bind	ChartSpace1	to	PivotTable1.
			Chartspace1.DataSourceName	=	"PivotTable1"

			'	Display	the	field	list.
			Chartspace1.DisplayFieldList	=	True

End	Sub

	 	

Show	All

DataSourceType	Property

Returns	or	sets	the	data	source	type	for	the	specified	chart	workspace.
Read-only	ChartDataSourceTypeEnum	.

expression.DataSourceType

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Show	All

DataType	Property

DataType	property	as	it	applies	to	the	SchemaField	and
SchemaParameter	objects.

DataType	property	as	it	applies	to	the	PivotField	object.

DataType	property	as	it	applies	to	the	Spreadsheet	object.

DefaultColor	Property

Returns	a	RGB-packed	integer	that	represents	the	specified	fill	color
when	the	Color	property	is	chColorAutomatic.	Read-only	Variant.

expression.DefaultColor

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Show	All

DefaultControlType	Property

Returns	or	sets	the	default	control	type	for	the	specified	data	source
control.	Read/write	DefaultControlTypeEnum	.

expression.DefaultControlType

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

DefaultMember	Property

Returns	a	PivotMember	object	that	represents	the	default	member	for
the	specified	field	set.

expression.DefaultMember

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
This	property	is	valid	only	when	the	PivotTable	list	is	connected	to	an
OLAP	data	source.

The	default	member	is	usually	All	or	one	of	the	top	members	in	the
dimension.

DefaultQueryOnLoad	Property

When	this	property	is	set	to	True,	bindings	that	have	a	Purpose	attribute
with	the	value	"Query"	and	a	LoadMode	attribute	with	the	value	"Normal"
will	refresh	when	the	page	loads.	When	set	to	False,	no	bindings	are
refreshed	when	the	page	is	loaded.	Read/write.

expression.DefaultQueryOnLoad

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Remarks

An	XmlDataBinding	object	can	be	a	binding	to	an	XML	file,	a	SOAP
service,	another	Web	Part	(only	when	binding	from	a	Spreadsheet	Web
Part),	or	a	data	retrieval	service.

The	default	value	for	the	DefaultQueryOnLoad	property	is	True.	The
Purpose	attribute	is	in	the	data	retrieval	service	connection	binding	detail
contained	in	the	<DataSource>	element	in	the	XML	Spreadsheet	file
(Binding/DataSource/ConnectionInfo@Purpose).	The	LoadMode
attribute	is	in	the	<Binding>	element.	The	XML	fragment	where	these
details	appear	in	the	XML	Spreadsheet	file	looks	something	like
following:

<x2:Binding	x2:ID="Cust_bind_id"	x2:LoadMode="Normal"	x2:Async="False">
<x2:MapID>Cust_MapId</x2:MapID>
			<udc:DataSource	MajorVersion="1"	MinorVersion="0">
			<udc:Type	Type="XMLFile"	MajorVersion="1"	MinorVersion="0"/>
			<udc:Name>sample_name</udc:Name>
			<udc:ConnectionInfo	Purpose="Query">

DefaultRecordset	Property

Returns	the	default	ADO	Recordset	object	for	the	specified	control.
Read-only.

expression.DefaultRecordset

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
You	should	not	use	this	property	with	sections	that	are	bound	to
recordsets;	instead,	use	the	DataPage	object's	Recordset	property.

DefaultSort	Property

Returns	or	sets	the	field	(or	fields)	on	which	the	specified	banding	level	is
sorted.	The	field	must	be	part	of	the	banding	level.	If	you	use	this
property	to	specify	multiple	fields,	use	commas	to	separate	the	fields.
Read/write	String.

expression.DefaultSort

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

DefaultValue	Property

Returns	or	sets	the	value	that	is	placed	in	the	specified	control	whenever
the	user	creates	a	new	record.	Applies	to	any	bound	control,	any	control
with	a	Value	property,	or	any	control	that	meets	both	of	these	criteria.
Read/write	String	for	the	ElementExtension	object;	read/write	Variant
for	the	PivotField	object.

expression.DefaultValue

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DesignMode	Property

True	if	the	spreadsheet	control	is	currently	in	design	mode.	Read-only
Boolean.

expression.DesignMode

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Show	All

DetailAutoFit	Property

DetailAutoFit	property	as	it	applies	to	the	PivotField	object.

DetailAutoFit	property	as	it	applies	to	the	PivotView	object.

DetailBackColor	Property

Returns	or	sets	the	back	color	for	the	specified	field	when	the	field	is
displayed	in	a	detail	grid.	The	default	back	color	is	white.	Read/write
Variant.

expression.DetailBackColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

DetailCells	Property

Returns	a	PivotDetailCell	object	based	on	a	row	and	column	index.	Use
this	property	to	access	the	properties	of	individual	cells	in	the	detail	area
of	a	PivotTable	list.

expression.Cell(Row,	Column)

expression				An	expression	that	returns	a	PivotCell	object.

Row				Required	Long.	Specifies	the	row	that	contains	the	specified	cell.

Column				Required	Long.	Specifies	the	column	that	contains	the
specified	cell.

DetailColumnCount	Property

Returns	a	Long	value	that	represents	the	number	of	columns	of	detail
cells	in	the	specified	cell.	Read-only.

expression.DetailColumnCount

expression				Required.	An	expression	that	returns	a	PivotCell	object.

Remarks
Using	this	property	when	the	PivotTable	list	is	connected	to	an	OLAP
data	source	will	result	in	a	run-time	error.

DetailFont	Property

Returns	a	PivotFont	object	that	represents	the	font	used	when	the
specified	field	is	displayed	in	the	detail	grid.	Read-only.

expression.DetailFont

expression				Required.	An	expression	that	returns	a	PivotField	object.

DetailForeColor	Property

Returns	or	sets	the	foreground	color	for	the	specified	field	when	the	field
is	displayed	in	a	detail	grid.	Read/write	Variant.

expression.DetailForeColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

Example
This	example	adds	inserts	fields	into	PivotTable1,	add	a	total,	and	then
formats	the	field	in	the	detail	area	of	the	PivotTable	list.

Sub	Layout_PivotTable1()
				Dim	vwView
				Dim	ptConstants
				Dim	totOrderCount
				
				Set	ptConstants	=	PivotTable1.Constants
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Add	the	ShipCountry	field	to	the	row	axis.
				vwView.RowAxis.InsertFieldSet	vwView.FieldSets("ShipCountry")
				
				'	Add	the	OrderId	field	to	the	data	axis.
				vwView.DataAxis.InsertFieldSet	vwView.FieldSets("OrderID")
				
				'	Add	the	ShipVia	field	to	the	filter	axis.
				vwView.FilterAxis.InsertFieldSet	vwView.FieldSets("ShipVia")
				
				'	Create	a	total	named	"Order	Count"	that	counts	the	OrderID	field.
				Set	totOrderCount	=	vwView.AddTotal("Order	Count",	vwView.FieldSets("OrderId").Fields("OrderId"),	_
																								ptConstants.plFunctionCount)
				
				'	Add	the	Order	Count	total	to	the	data	axis.
				vwView.DataAxis.InsertTotal	totOrderCount
				
				'	Set	the	horizontal	alignment	of	the	OrderID	field.
				vwView.FieldSets("OrderId").Fields("OrderId").DetailHAlignment	=	plHAlignCenter
				

				'	Set	the	foreground	color	of	the	OrderId	field.
				vwView.FieldSets("OrderId").Fields("OrderId").DetailForeColor	=	RGB(100,	100,	200)
				
End	Sub

	 	

Show	All

DetailHAlignment	Property

Returns	or	sets	the	way	field	values	are	horizontally	aligned	when	the
specified	field	is	displayed	in	a	detail	grid.	By	default,	values	are	left-
aligned.	Read/write	PivotHAlignmentEnum	.

expression.DetailHAlignment

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	adds	inserts	fields	into	PivotTable1,	add	a	total,	and	then
formats	the	field	in	the	detail	area	of	the	PivotTable	list.

Sub	Layout_PivotTable1()
				Dim	vwView
				Dim	ptConstants
				Dim	totOrderCount
	
				Set	ptConstants	=	PivotTable1.Constants
				Set	vwView	=	PivotTable1.ActiveView
	
				'	Add	the	ShipCountry	field	to	the	row	axis.
				vwView.RowAxis.InsertFieldSet
				vwView.FieldSets("ShipCountry")
	
				'	Add	the	OrderId	field	to	the	data	axis.
				vwView.DataAxis.InsertFieldSet	vwView.FieldSets("OrderID")
	
				'	Add	the	ShipVia	field	to	the	filter	axis.
				vwView.FilterAxis.InsertFieldSet
				vwView.FieldSets("ShipVia")
				
				'	Create	a	total	named	"Order	Count"	that	counts
				'	the	OrderID	field.	
				Set	totOrderCount	=	vwView.AddTotal("Order	Count",
				vwView.FieldSets("OrderId").Fields("OrderId"),	_
				ptConstants.plFunctionCount)
				
				'	Add	the	Order	Count	total	to	the	data	axis.
				vwView.DataAxis.InsertTotal	totOrderCount

				
				'	Set	the	horizontal	alignment	of	the	OrderID	field.
				vwView.FieldSets("OrderId").Fields("OrderId").DetailHAlignment
							
				'	Set	the	foreground	color	of	the	OrderId	field.
				vwView.FieldSets("OrderId").Fields("OrderId").DetailForeColor	=	RGB(100,	100,	200)
	
End	Sub
	 	

DetailLeft	Property

Returns	or	sets	a	Long	that	represents	the	leftmost	visible	column	in	the
detail	grid.	Read/write.

expression.DetailLeft(Column)

expression				An	expression	that	returns	one	of	the	objects	in	the	Applies
To	list.

Column	Required	PivotMember	object.	Specifies	the	leftmost	visible
column	in	the	detail	grid.

DetailLeftOffset	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	pixels	that
the	data	in	the	detail	area	is	offset	to	the	left.	Use	this	property	to	move
the	data	in	the	detail	area	to	the	left.	Read/write.

expression.DetailLeftOffset

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

Remarks
Setting	this	property	to	a	negative	value	will	result	in	a	run-time	error.

Example
This	example	moves	the	data	in	the	detail	area	of	PivotTable1	10	pixels
to	the	left.

PivotTable1.ActiveData.ColumnAxis.ColumnMember.DetailLeftOffset
	 	

DetailMaxHeight	Property

Returns	or	sets	the	maximum	height	(in	pixels)	that	the	detail	grid	can
attain	when	the	value	of	the	DetailAutoFit	property	is	True.	A	scroll	bar
is	displayed	if	the	height	of	the	detail	grid	would	exceed	the	maximum
height.	The	default	value	is	250	pixels.	This	property	is	ignored	if	the
value	of	the	DetailAutoFit	property	is	False.	Read/write	Long.

expression.DetailMaxHeight

expression				Required.	An	expression	that	returns	a	PivotView	object.

DetailMaxWidth	Property

Returns	or	sets	the	maximum	width	(in	pixels)	that	the	detail	grid	can
attain	when	the	value	of	the	DetailAutoFit	property	is	True.	A	scroll	bar
is	displayed	if	the	width	of	the	detail	grid	would	exceed	the	maximum
width.	The	default	value	is	1024	pixels.	This	property	is	ignored	if	the
value	of	the	DetailAutoFit	property	is	False.	Read/write	Long.

expression.DetailMaxWidth

expression				Required.	An	expression	that	returns	a	PivotView	object.

DetailRange	Property

Returns	a	PivotDetailRange	object	for	the	specified	area.

expression.DetailRange(TopLeft,	BottomRight)

expression				An	expression	that	returns	a	PivotCell	object.

TopLeft				Required	PivotDetailCell	object.	Specifies	the	upper-left	cell
in	the	detail	range.

BottomRight				Required	PivotDetailCell	object.	Specifies	the	lower-
right	cell	in	the	detail	range.

DetailRowCount	Property

Returns	a	Long	value	that	represents	the	number	of	rows	in	the	detail
area	that	contains	the	specified	cell.	Read-only.

expression.DetailRowCount

expression				Required.	An	expression	that	returns	a	PivotCell	object.

Remarks
Using	this	property	when	the	PivotTable	list	is	connected	to	an	OLAP
data	source	will	result	in	a	run-time	error.

DetailRowHeight	Property

Returns	or	sets	the	row	height	for	the	detail	grid	(in	pixels).	The	default
value	is	10	pixels.	Read/write	Long.

expression.DetailRowHeight

expression				Required.	An	expression	that	returns	a	PivotView	object.

DetailsExpanded	Property

Returns	whether	or	not	the	details	have	been	expanded	in	the	detail	area
of	the	PivotTable	list.	Read-only	Boolean.

expression.DetailsExpanded

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

Remarks
Using	this	property	when	the	PivotTable	list	is	connected	to	an	OLAP
data	source	will	result	in	a	run-time	error.

DetailSortOrder	Property

Returns	or	sets	the	sort	order	for	fields	on	the	summary	axis.	Read/write
Variant.

expression.DetailSortOrder

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
Fields	are	sorted	in	array	order.	If	a	field	included	in	the	sort	order	array
has	its	SortDirection	property	set	to	plSortDirectionDefault,	the	field	is
ignored.

DetailTop	Property

Returns	or	sets	the	index	of	the	uppermost	visible	row	in	the	detail	grid.
Read/write	Long.

expression.DetailTop

expression				Required.	An	expression	that	returns	a	PivotCell	object.

DetailTopOffset	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	pixels	that
the	specified	cell	in	the	detail	area	is	offset	to	the	top.	Use	this	property	to
move	a	cell	in	the	detail	area	upward.	Read/write.

expression.DetailTopOffset

expression				Required.	An	expression	that	returns	a	PivotCell	object.

Remarks
Setting	this	property	to	a	negative	value	will	result	in	a	run-time	error.

Example
This	example	moves	scrolls	the	currently	selected	cell	in	the	detail	area
of	PivotTable1	up	by	15	pixels

PivotTable1.ActiveData.CurrentCell.DetailTopOffset	=	15
	 	

DetailWidth	Property

Returns	or	sets	the	width	of	the	specified	field	(in	pixels)	when	it	is
displayed	in	the	detail	grid.	Read/write	Long.

expression.DetailWidth

expression				Required.	An	expression	that	returns	a	PivotField	object.

Show	All

Direction	Property

Direction	property	as	it	applies	to	the	ChErrorBars	object.

Direction	property	as	it	applies	to	the	SchemaParameter	object.

Example
As	it	applies	to	the	ChErrorBars	object.

DirectionalLightInclination	Property

Returns	or	sets	a	Double	specifying	the	rotation	of	the	directional	light
source	along	the	x-z	plane	of	the	specified	chart.	Valid	settings	range
from	-90	to	90.	Setting	this	property	to	-90	places	the	light	source	directly
below	the	chart.	Setting	this	property	to	90	places	the	light	source	directly
above	the	chart.	Read/write.

expression.DirectionalLightInclination

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Bar	chart
and	sets	the	lighting	options	for	the	chart.

Sub	Format3DLightSources()

				Dim	cht3DBar

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DBar	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Bar	chart.
				cht3DBar.Type	=	chChartTypeBar3D

				'	Set	the	intensity	of	the	ambient	light.
				cht3DBar.AmbientLightIntensity	=	0.7

				'	Set	the	inclination	of	the	directional	light	source.
				cht3DBar.DirectionalLightInclination	=	35

				'	Set	the	intensity	of	the	directional	light	source.
				cht3DBar.DirectionalLightIntensity	=	0.8

				'	Set	the	rotation	of	the	directional	light	source.
				cht3DBar.DirectionalLightRotation	=	120

End	Sub

	 	

DirectionalLightIntensity	Property

Returns	or	sets	a	Double	specifying	the	intensity	of	the	directional	light
source	for	a	three-dimensional	chart.	Valid	settings	range	from	0	to	1.
Read/write.

expression.DirectionalLightIntensity

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Bar	chart
and	sets	the	lighting	options	for	the	chart.

Sub	Format_3D_LightSources()

				Dim	cht3DBar

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DBar	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Bar	chart.
				cht3DBar.Type	=	chChartTypeBar3D

				'	Set	the	intensity	of	the	ambient	light.
				cht3DBar.AmbientLightIntensity	=	0.7

				'	Set	the	inclination	of	the	directional	light	source.
				cht3DBar.DirectionalLightInclination	=	35

				'	Set	the	intensity	of	the	directional	light	source.
				cht3DBar.DirectionalLightIntensity	=	0.8

				'	Set	the	rotation	of	the	directional	light	source.
				cht3DBar.DirectionalLightRotation	=	120
End	Sub

	 	

DirectionalLightRotation	Property

Returns	or	sets	a	Double	specifying	the	rotation	of	the	directional	light
source	for	a	three-dimensional	chart.	Valid	settings	are	between	0	and
360.	Read/write.

expression.DirectionalLightRotation

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
The	directional	light	source	rotates	around	the	y-axis	of	the	chart.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Bar	chart
and	sets	the	lighting	options	for	the	chart.

Sub	Format3DLightSources()

				Dim	cht3DBar

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DBar	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Bar	chart.
				cht3DBar.Type	=	chChartTypeBar3D

				'	Set	the	intensity	of	the	ambient	light.
				cht3DBar.AmbientLightIntensity	=	0.7

				'	Set	the	inclination	of	the	directional	light	source.
				cht3DBar.DirectionalLightInclination	=	35

				'	Set	the	intensity	of	the	directional	light	source.
				cht3DBar.DirectionalLightIntensity	=	0.8

				'	Set	the	rotation	of	the	directional	light	source.
				cht3DBar.DirectionalLightRotation	=	120

End	Sub

	 	

Dirty	Property

True	if	changes	have	been	made	to	the	spreadsheet	since	the	last	time	it
was	saved.	Read/write	Boolean.

expression.Dirty

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	exports	the	spreadsheet	to	a	file	if	changes	have	been
made	to	it	since	the	last	time	it	was	saved.

If	Spreadsheet1.Dirty	Then
				Spreadsheet1.Export	"sstest.xls",	Spreadsheet1.Constants.ssExportActionNone
End	If
	 	

Show	All

DisplayAlert	Property

Returns	or	sets	a	DscDisplayAlert	constant	that	indicates	whether	or	not
an	alert	will	be	displayed	when	the	BeforeDelete	and	BeforeOverwrite
events	are	called.	Read/write.

expression.DisplayAlert

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

Example
The	following	example	uses	the	DisplayAlert	property	in	the
BeforeOverwrite	event	to	prevent	the	user	from	being	prompted	to
overwrite	an	existing	file	when	the	ExportXML	method	is	called.

Sub	MSODSC_BeforeOverwrite(DSCEventInfo)

			Dim	dscConstants
			Set	dscConstants	=	MSODSC.Constants

			'	Don't	alert	the	user	when	overwriting	an	existing	file.
			DSCEventInfo.DisplayAlert	=	dscConstants.dscDataAlertContinue

End	Sub

	 	

DisplayAlerts	Property

True	if	certain	alerts	and	messages	are	to	be	displayed	while	code	is
running.	The	default	value	is	True.	Set	this	property	to	False	if	you	don't
want	to	be	disturbed	by	prompts	and	alert	messages;	any	time	a
message	requires	a	response,	the	default	response	is	chosen.

If	you	set	this	property	to	False,	it	is	not	automatically	set	back	to	True,
and	must	be	set	to	True	for	messages	and	alerts	to	appear.	Read/write
Boolean.

expression.DisplayAlerts

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DisplayCalculatedMembers	Property

Returns	or	sets	a	Boolean	that	determines	whether	calculated	members
are	displayed.	Set	this	property	to	False	to	hide	calculated	members.	The
default	value	is	True.	Read/write.

expression.DisplayCalculatedMembers

expression				Required.	An	expression	that	returns	a	PivotView	object

DisplayColumnHeadings	Property

Returns	or	sets	whether	column	headings	are	displayed	in	the	specified
window.	Set	this	property	to	False	to	hide	the	columns	headings.	The
default	value	is	True.	Read/write	Boolean.

expression.DisplayColumnHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	hides	the	row	and	column	headings	in	the	active	window	of
Spreadsheet1.

Sub	HideHeadings()
			Spreadsheet1.ActiveWindow.DisplayColumnHeadings	=	False
			Spreadsheet1.ActiveWindow.DisplayRowHeadings	=	False
End	Sub

	 	

DisplayCustomHeadings	Property

Determines	whether	custom	row	and	column	headings,	if	they	exist,	are
to	be	displayed	in	the	specified	window.	The	default	value	it	True.
Read/write	Boolean.

expression.DisplayCustomHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
Although	setting	this	property	to	False	hides	custom	row	and	column
headings,	they	are	not	reset	them	to	their	default	values.	Use	this
property	instead	of	using	the	ResetHeadings	method	to	temporarily	hide
the	custom	row	and	column	headings.

Example
This	example	prevents	the	display	of	the	custom	row	and	column
headings	in	the	active	window	of	Spreadsheet1.

Spreadsheet1.ActiveWindow.DisplayCustomHeadings	=	False
	 	

DisplayDesignTimeUI	Property

True	to	display	the	design-time	version	of	the	Commands	and	Options
window	is	displayed	at	run	time.	The	default	value	is	False.	Read/write
Boolean.

expression.DisplayDesignTimeUI

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	Spreadsheet1	so	that	the	design-time	Commands	and
Options	window	will	be	displayed	at	run	time.

Spreadsheet1.DisplayDesignTimeUI	=	True
	 	

DisplayEmptyMembers	Property

True	if	empty	members	are	displayed,	even	if	they	do	not	have
aggregates.	The	default	value	is	False.	Read/write	Boolean.

expression.DisplayEmptyMembers

expression				Required.	An	expression	that	returns	a	PivotGroupAxis
object.

DisplayExpandIndicator	Property

True	if	expansion	indicators	are	displayed	for	members	with	available
child	members	or	detail	records.	When	the	expansion	indicator	is	hidden,
the	member	display	name	appears	in	this	space.	The	default	value	is
True.	Read/write	Boolean.

expression.DisplayExpandIndicator

expression				Required.	An	expression	that	returns	a	PivotTable	object.

DisplayFieldButtons	Property

Returns	or	sets	whether	field	buttons	and	drop	zones	are	displayed	on
the	chart.	Set	this	property	to	False	to	hide	the	field	buttons	and	drop
zones.	The	default	value	is	True.	Read/write	Boolean.

expression.DisplayFieldButtons

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
This	property	has	no	effect	if	the	chart	control	is	bound	to	a	literal	data
source.

Example
This	example	hides	the	drop	zones	and	field	buttons	on	Chartspace1.

Chartspace1.DisplayFieldButtons	=	False
	 	

DisplayFieldList	Property

Set	this	property	to	True	to	display	the	Field	List.	The	default	value	is
False.	Read/write	Boolean.

expression.DisplayFieldList

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DisplayGridlines	Property

True	if	gridlines	are	displayed	on	the	specified	spreadsheet.	The	default
value	is	True.	Read/write	Boolean.

expression.DisplayGridlines

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	hides	gridlines	on	the	spreadsheet.

Spreadsheet1.ActiveWindow.DisplayGridlines	=	False
	 	

DisplayHeadings	Property

True	if	both	row	and	column	headings	are	displayed;	False	if	there	are
no	headings	displayed,	or	if	either	the	column	or	row	headings	are	not
displayed.	Read/write	Boolean.

expression.DisplayHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
You	can	use	the	DisplayColumnHeadings	and	DisplayRowHeadings
properties	to	independently	control	the	display	of	column	and	row
headings.

Example
This	example	hides	the	row	and	column	headings	in	the	active	window	of
Spreadsheet1.

Spreadsheet1.ActiveWindow.DisplayHeadings	=	False

DisplayHorizontalScrollBar	Property

True	if	the	horizontal	scroll	bar	is	displayed	on	the	specified	spreadsheet.
The	default	value	is	True.	Read/write	Boolean.

expression.DisplayHorizontalScrollBar

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	hides	the	horizontal	scroll	bar	on	the	spreadsheet.

Spreadsheet1.ActiveWindow.DisplayHorizontalScrollBar	=	False
	 	

Show	All

DisplayIn	Property

Returns	or	sets	a	PivotMemberPropertyDisplayEnum	constant	that
determines	whether	the	specified	member	property	is	displayed	in	the
PivotTable	list,	ScreenTip,	both	the	PivotTable	list	and	ScreenTip,	or	not
at	all.	Read/write.

expression.DisplayIn

expression				Required.	An	expression	that	returns	a
PivotMemberProperty	object.

Example
This	example	sets	the	captions	of,	and	then	displays	the	member
captions	of	the	Store	Name	field.

Sub	Display_MemberProperties()
				Dim	ptView
				Dim	ptConstants
				Dim	fldStoreName

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	Name	field.
				Set	fldStoreName	=	ptView.FieldSets("Store").Fields("Store	Name")

				'	The	following	three	lines	of	code	specify	that	the	member	properties	are
				'	displayed	in	the	PivotTable	list.
				fldStoreName.MemberProperties("Store	Manager").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Type").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Sqft").DisplayIn	=	ptConstants.plDisplayPropertyInReport

				'	The	following	three	lines	of	code	set	the	caption	for	the	member	properties.
				fldStoreName.MemberProperties("Store	Manager").Caption	=	"Manager	Name"
				fldStoreName.MemberProperties("Store	Type").Caption	=	"Store	Type"
				fldStoreName.MemberProperties("Store	Sqft").Caption	=	"Size	in	SQFT"
End	Sub

	 	

DisplayInFieldList	Property

Returns	or	sets	whether	the	specified	field	set	or	total	appears	in	the
PivotTable	Field	List	dialog	box.	Set	this	property	to	False	to	prevent	the
specified	field	set	or	total	from	appearing	in	the	PivotTable	Field	List
dialog	box.	The	default	value	is	True.	Read/write	Boolean.

expression.DisplayInFieldList

expression				Required.	An	expression	that	returns	a	PivotFieldSet	or
PivotTotal	object.

Example
This	example	adds	a	new	total	to	PivotTable1.	The	new	total	is	formatted
to	display	as	a	percentage	of	the	parent	row	field,	and	will	not	appear	in
the	PivotTable	Field	List	dialog	box.

Sub	Add_Total()

				Dim	vwView
				Dim	ptConstants
				Dim	totNewTotal

				Set	vwView	=	PivotTable1.ActiveView
				Set	ptConstants	=	PivotTable1.Constants

				'	Add	a	new	total	named	"Total	Budget"	to	the	current	view.
				Set	totNewTotal	=	vwView.AddTotal("Total	Budget",	vwView.FieldSets("Budget").Fields(0),	_
													ptConstants.plFunctionSum)

				'	Insert	the	newly	created	total	into	the	detail	area	of	the	PivotTable.
				vwView.DataAxis.InsertTotal	totNewTotal

				'	Show	the	totals	as	a	percentage	of	the	parent	row	field.
				totNewTotal.ShowAs	=	ptConstants.plShowAsPercentOfRowParent

				'	Do	not	display	the	new	total	in	the	PivotTable	Field	List	dialog	box.
				totNewTotal.DisplayInFieldList	=	False

End	Sub

	 	

DisplayOfficeLogo	Property

True	to	display	the	Microsoft	Office	logo	on	the	toolbar.	Read/write
Boolean.

expression.DisplayOfficeLogo

expression				Required.	An	expression	that	returns	a	ChartSpace,
PivotTable,	or	Spreadsheet	object.

Example
This	example	hides	the	Microsoft	Office	logo	on	PivotTable1's	toolbar.

PivotTable1.DisplayOfficeLogo	=	False
	 	

DisplayPropertyToolbox	Property

Set	this	property	to	True	to	display	the	Command	and	Options	window.
Read/write	Boolean.

expression.DisplayPropertyToolbox

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

DisplayRowHeadings	Property

Determines	whether	row	headings	are	displayed	in	the	specified	window.
Set	this	property	to	False	to	hide	the	row	headers.	The	default	value	is
True.	Read/write	Boolean.

expression.DisplayRowHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	hides	the	row	and	column	headings	in	the	active	window	of
Spreadsheet1.

Sub	HideHeadings()
			Spreadsheet1.ActiveWindow.DisplayColumnHeadings	=	False
			Spreadsheet1.ActiveWindow.DisplayRowHeadings	=	False
End	Sub
	 	

DisplayScreenTips	Property

Returns	or	sets	whether	ScreenTips	are	displayed.	Set	this	property	to
False	to	prevent	the	display	of	ScreenTips.	The	default	value	is	True.
Read/write	Boolean.

expression.DisplayScreenTips

expression				Required.	An	expression	that	returns	a	PivotTable	or
ChartSpace	object.

Example
This	example	disables	ScreenTips	for	PivotTable1.

PivotTable1.DisplayScreenTips	=	False
	 	

DisplayTitleBar	Property

True	if	the	title	bar	on	the	specified	spreadsheet	is	displayed.	The	default
value	is	True.	Read/write	Boolean.

expression.DisplayTitleBar

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	hides	the	spreadsheet’s	title	bar.

Spreadsheet1.DisplayTitleBar	=	False
	 	

DisplayToolbar	Property

True	if	the	toolbar	on	the	specified	spreadsheet,	chartspace,	or
PivotTable	list	is	displayed.	The	default	value	is	True.	Read/write
Boolean.

expression.DisplayToolbar

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Hiding	the	toolbar	does	not	change	the	height	of	the	PivotTable	list,	but	it
does	cause	a	layout	change.	The	width	is	unchanged	unless	the	AutoFit
property	is	True	and	the	PivotTable	list	was	sized	wider	than	the
necessary	to	accommodate	the	toolbar.

Example
This	example	hides	the	spreadsheet’s	toolbar.

Spreadsheet1.DisplayToolbar	=	False
	 	

DisplayTotal	Property

Returns	whether	or	not	totals	are	displayed	for	the	specified
PivotResultGroupField	object.	Read-only	Boolean.

expression.DisplayTotal

expression				Required.	An	expression	that	returns	a
PivotResultGroupField	object.

DisplayVerticalScrollBar	Property

True	if	the	vertical	scroll	bar	on	the	specified	spreadsheet	is	displayed.
The	default	value	is	True.	Read/write	Boolean.

expression.DisplayVerticalScrollBar

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	hides	the	spreadsheet’s	vertical	scrollbar.

Spreadsheet1.ActiveWindow.DisplayVerticalScrollBar	=	False
	 	

DisplayWorkbookTabs	Property

True	if	the	workbook	tabs	are	displayed.	Setting	this	property	to	False	for
a	single	Window	object	sets	this	property	to	False	for	all	windows	in	the
workbook.	The	default	value	is	True.	Read/write	Boolean.

expression.DisplayWorkbookTabs

expression				Required.	An	expression	that	returns	a	Window	object.

DisplayZeros	Property

True	if	zero	values	are	displayed.	Set	this	property	to	False	if	you	want	to
hide	all	zero	values	in	the	specified	window.	Read/write	Boolean.

expression.DisplayZeros

expression				Required.	An	expression	that	returns	a	Window	object.

Divisions	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	divisions	that
appear	in	the	legend	for	the	specified	segment.	Read/write.

expression.Divisions

expression				Required.	An	expression	that	returns	a	ChSegment	object.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	displays
the	larger	values	in	the	chart	with	a	darker	shade	of	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=ServerName;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	int	he	Order	details	table.
				ChartSpace1.SetData	chConstants.chDimCategories,	chConstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chConstants.chDimValues,	chConstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chConstants.chDimFormatValues,	chConstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chConstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chConstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

				segSegment1.HasDiscreteDivisions	=	True

				segSegment1.Divisions	=	3

End	Sub
	 	

Show	All

DrawType	Property

Returns	a	ChartDrawModesEnum	constant	indicating	which	drawing
pass	is	being	performed.	Read-only.

expression.DrawType

expression				Required.	An	expression	that	returns	a	ChChartDraw
object.

Show	All

EditMode	Property

Returns	a	PivotEditModeEnum	constant	that	indicates	whether	the
PivotTable	list	is	currently	in	edit	mode.	Read-only.

expression.EditMode

expression				Required.	An	expression	that	returns	a	PivotTable	object.

ElementExtensions	Property

Returns	the	ElementExtensions	object	for	the	data	source	control.

expression.ElementExtensions

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

ElementID	Property

Specifies	the	ID	tag	for	the	HTML	element	used	with	the	specified
extension.	Read-only	String.

expression.ElementID

expression				Required.	An	expression	that	returns	a	ElementExtension
object.

EnableAutoFilter	Property

True	if	the	specified	worksheet	can	be	filtered.	This	property	has	no
effect	if	the	Protection	Enabled	property	is	set	to	False.	Read/write
Boolean.

expression.EnableAutoFilter

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Example
This	example	enables	AutoFilter	for	the	active	worksheet,	and	then
protects	the	worksheet	in	Spreadsheet1.

Sub	ProtectWorksheet_EnableAutoFilter
				Spreadsheet1.ActiveSheet.EnableAutoFilter	=	True
				Spreadsheet1.ActiveSheet.Protection.Enabled	=	True
End	Sub

	 	

Enabled	Property

OCCommand	object:	Returns	a	Boolean	that	represents	whether	or	not
the	specified	command	is	enabled.	Read	only.

Protection	object:	Returns	or	sets	a	Boolean	that	determines	whether	or
not	protection	is	enabled	for	the	specified	worksheet.	Set	this	property	to
True	to	protect	the	worksheet.	If	this	property	is	set	to	False,	the	other
Protection	object	property	settings	are	ignored.	Read/write.

expression.Enabled

expression				Required.	An	expression	that	returns	an	OCCommand	or
Protection	object.

Example
This	example	prevents	a	user	from	inserting	rows	on	the	active
worksheet.

Sub	PreventInsertingRows()

			Dim	pt

			Set	pt	=	Spreadsheet1.ActiveSheet.Protection

			pt.AllowInsertingRows	=	False

			pt.Enabled	=	True

End	Sub

	 	

EnableEvents	Property

True	if	events	are	enabled	for	the	spreadsheet	or	the	chart	workspace.
Read/write	Boolean.

expression.EnableEvents

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	prevents	spreadsheet	event	procedures	from	running.

Spreadsheet1.EnableEvents	=	False
	 	

EnableResize	Property

True	if	the	spreadsheet	control	can	be	resized	by	the	user.	Set	this
property	to	False	to	prevent	the	user	from	resizing	the	spreadsheet
control.	The	default	value	is	True.	Read/write	Boolean.

expression.EnableResize

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	sets	the	height	and	width	of	the	spreadsheet	control	and
then	prevents	the	user	from	resizing	the	control.

Sub	Size_Spreadsheet()
			'	Set	the	height	of	the	spreadsheet	control.
			Spreadsheet1.Height	=	4000

			'	Set	the	width	of	the	spreadsheet	control.
			Spreadsheet1.Width	=	6000

			'	Prevent	the	user	from	resizing	the	spreadsheet	control.
			Spreadsheet1.ActiveWindow.EnableResize	=	False
End	Sub

	 	

EnableUndo	Property

True	if	the	undo	functionality	is	enabled	for	the	specified	spreadsheet.
Setting	the	EnableUndo	property	to	False	disables	the	undo	functionality
of	the	spreadsheet	component.	Read/write	Boolean.

expression.EnableUndo

expression				Required.	An	expression	that	returns	a	Spreadsheet	object.

Example
This	example	creates	an	undo	block	containing	code	that	sets	the
number	format	and	font	for	the	cell	D10.

Sub	Undo_Block()
				Dim	rngCurrent
				
				'	Enable	undo.
				Spreadsheet1.EnableUndo	=	True
				
				'	Start	an	undo	block.
				Spreadsheet1.BeginUndo
				
								Set	rngCurrent	=	Spreadsheet1.Worksheets("sheet1").Range("D10")
								
								'	The	following	three	lines	of	code	apply
								'	various	formatting	to	cell	D10.
								rngCurrent.NumberFormat	=	"0.###"
								rngCurrent.Font.Color	=	"Blue"
								rngCurrent.Font.Name	=	"Times	New	Roman"
				
				'	End	the	undo	block.
				Spreadsheet1.EndUndo
End	Sub

	 	

Show	All

End	Property

End	property	as	it	applies	to	the	Range	object.

End	property	as	it	applies	to	the	ChSegment	object.

Example
As	it	applies	to	the	Range	object.

As	it	applies	to	the	ChSegment	object.

Show	All

EndStyle	Property

Returns	or	sets	the	end	style	for	error	bars.	Read/write
ChartEndStyleEnum	.

expression.EndStyle

expression				Required.	An	expression	that	returns	a	ChErrorBars	object

Example
This	example	adds	error	bars	to	all	of	the	series	in	the	first	chart	in
ChartSpace1	and	then	sets	the	error	amount	and	end	style.

Sub	Add_Error_Bars()
				Dim	ebErrorBars
				Dim	serChartSeries
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Loop	through	all	of	the	series	in	the	first	chart
				'	in	ChartSpace1.	
				For	Each	serChartSeries	in	ChartSpace1.Charts(0).SeriesCollection

								'	Add	error	bars	to	the	current	series.
								Set	ebErrorBars	=	serChartSeries.ErrorBarsCollection.Add

								'	Set	the	error	bars	to	be	a	percentage	of	the	value.
								eberrorBars.Type	=	chConstants.chErrorBarTypePercent
								
								'	Set	the	percentage	amount.
								ebErrorBars.Amount	=	0.05
								
								'	Set	the	end	style	of	the	error	bars.
								ebErrorBars.EndStyle	=	chConstants.chEndStyleNone
				Next
End	Sub
	 	

EntireColumn	Property

Returns	a	Range	object	that	represents	the	entire	column	(or	columns)
containing	the	specified	range.	Read-only.

expression.EntireColumn

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	font	color	for	the	entire	column	containing	the
active	cell.

Spreadsheet1.ActiveCell.EntireColumn.Font.Color	=	"green"
	 	

EntireRow	Property

Returns	a	Range	object	that	represents	the	entire	row	(or	rows)
containing	the	specified	range.	Read-only.

expression.EntireRow

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	font	color	for	the	entire	row	containing	the	active
cell.

Spreadsheet1.ActiveCell.EntireRow.Font.Color	=	"red"
	 	

Error	Property

Returns	an	ADO	Error	object	that	contains	error	information	about	the
specified	event.	Read-only.

expression.Error

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

ErrorBarsCollection	Property

Returns	a	ChErrorBarsCollection	collection	that	contains	a
ChErrorBars	object	for	each	set	of	error	bars	in	the	specified	series.	A
series	can	have	only	one	set	of	error	bars,	so	the
ChErrorBarsCollection	collection	never	contains	more	than	one	object.
Read-only.

expression.ErrorBarsCollection

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Example
This	example	adds	error	bars	to	all	of	the	series	in	the	first	chart	in
ChartSpace1	and	then	sets	the	error	amount	and	end	style.

Sub	Add_Error_Bars()
				Dim	ebErrorBars
				Dim	serChartSeries
				Dim	chConstants

				Set	chConstants	=	ChartSpace1.Constants

				'	Loop	through	all	of	the	series	in	the	first	chart
				'	in	ChartSpace1.	
				For	Each	serChartSeries	in	ChartSpace1.Charts(0).SeriesCollection

								'	Add	error	bars	to	the	current	series.
								Set	ebErrorBars	=	serChartSeries.ErrorBarsCollection.Add

								'	Set	the	error	bars	to	be	a	percentage	of	the	value.
								eberrorBars.Type	=	chConstants.chErrorBarTypePercent
								
								'	Set	the	percentage	amount.
								ebErrorBars.Amount	=	0.05
								
								'	Set	the	end	style	of	the	error	bars.
								ebErrorBars.EndStyle	=	chConstants.chEndStyleNone
				Next
End	Sub
	 	

ExcludedMembers	Property

Returns	or	sets	the	members	that	you	do	not	want	to	be	displayed	in	the
specified	field.	This	property	can	be	set	to	a	single	member	or	a	Variant
array	of	members.	The	members	can	be	passed	as	one	or	more
PivotMember	objects,	member	names,	or	unique	member	names.

expression.ExcludedMembers

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
Members	that	are	explicitly	excluded	still	appear	in	the	PivotTable	list	if
one	or	more	of	their	children	are	included.	Setting	this	property	clears	all
previous	settings	of	this	property	for	the	specified	field.	You	can	set	the
ExcludedMembers	property	to	Empty	(ExcludedMembers	=	Empty)	or
to	a	zero-length	Variant	array	(ExcludedMembers	=	Array())	to	clear
the	included	members	list	for	the	specified	field.

Example
This	example	sets	the	included	and	excluded	members	of	the	Store	State
and	Store	City	fields	in	PivotTable1.

Sub	Member_Filtering()

				Dim	fldStoreCity
				Dim	fldStoreState
				Dim	ptView

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	State	field.
				Set	fldStoreState	=	ptView.FieldSets("Store").Fields("Store	State")

				'	Set	a	variable	to	the	Store	City	field.
				Set	fldStoreCity	=	ptView.FieldSets("Store").Fields("Store	City")

				'	Exclude	California	and	Washington	from	the	Store	State	field.
				fldStoreState.ExcludedMembers	=	Array("CA",	"WA")

				'	Include	members	of	the	Store	City	field.	Note	that	the	cities	are
				'	in	states	that	have	been	excluded	by	the	previous	line.	Since
				'	Store	State	is	a	parent	to	Store	City,	then	the	excluded	states
				'	are	displayed	in	the	PivotTable.
				fldStoreCity.IncludedMembers	=	Array("Los	Angeles",	"San	Diego",	_
																																									"Seattle",	"Spokane")

End	Sub

	 	

Show	All

ExpandDetails	Property

Returns	or	sets	a	PivotTableExpandEnum	constant	that	represents
whether	or	not	fields	are	expanded	when	added	to	the	detail	area	of	a
PivotTable	list.	Read/write.

expression.ExpandDetails

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	sets	PivotTable1	so	that	fields	are	never	expanded	when
they	are	added	to	the	PivotTable	list.

Sub	NeverExpand()
				Dim	pvtView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view.
				Set	pvtView	=	PivotTable1.ActiveView

				'	Always	expand	fields	when	they	are	added
				'	to	a	PivotTable	list.
				pvtView.ExpandMembers	=	ptConstants.plExpandNever

				'	Always	expand	fields	when	they	are	added
				'	to	the	detail	area	PivotTable	list.
				pvtView.ExpandDetails	=	ptConstants.plExpandNever
End	Sub

	 	

Expanded	Property

PivotCell	object:	True	if	the	detail	grid	is	being	displayed	for	the	specified
cell.	If	this	property	is	set	to	False,	the	detail	grid	is	not	displayed	but
aggregates	are	displayed	if	they	are	available.	Read/write	Boolean.

PivotAxisMember	object:	True	if	child	members	are	being	displayed	for
the	specified	member;	False	if	child	members	are	collapsed.	Read/write
Boolean.

PivotField	object:	Returns	or	sets	the	expanded	state	of	all	the	members
of	the	specified	field	at	the	same	time.	Setting	the	Expanded	property	for
the	field	immediately	sets	the	Expanded	property	for	all	the	members
associated	with	the	field.	Setting	the	Expanded	property	for	a	single
member	of	the	field	does	not	affect	the	Expanded	property	for	the	field
itself.	Read/write	Boolean.

expression.Expanded

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ExpandedByDefault	Property

True	if	the	specified	group	level	is	expanded	by	default.	The	default	value
is	False.	Read/write	Boolean.

expression.ExpandedByDefault

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

Show	All

ExpandMembers	Property

Returns	or	sets	a	PivotTableExpandEnum	constant	that	represents
whether	or	not	fields	and	their	members	are	expanded	when	a	field	is
added	to	a	PivotTable	list.	Read/write.

expression.ExpandMembers

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	sets	PivotTable1	so	that	fields	are	never	expanded	when
they	are	added	to	the	PivotTable	list.

Sub	NeverExpand()
				Dim	pvtView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view.
				Set	pvtView	=	PivotTable1.ActiveView

				'	Always	expand	fields	when	they	are	added
				'	to	a	PivotTable	list.
				pvtView.ExpandMembers	=	ptConstants.plExpandNever

				'	Always	expand	fields	when	they	are	added
				'	to	the	detail	area	PivotTable	list.
				pvtView.ExpandDetails	=	ptConstants.plExpandNever
End	Sub

	 	

Show	All

Explosion	Property

Explosion	property	as	it	applies	to	the	ChPoint	object.

Explosion	property	as	it	applies	to	the	ChSeries	object.

Example
As	it	applies	to	the	ChPoint	object.

As	it	applies	to	the	ChSeries	object.

Expression	Property

Returns	or	sets	a	String	that	represents	the	expression	used	to	calculate
the	specified	calculated	field	or	calculated	total.	The	expression	must	be
compatible	with	the	Jet	expression	service.	Read/write.

expression.Expression

expression				Required.	An	expression	that	returns	a	one	of	the	objects	in
the	Applies	To	list.

Remarks
The	Expression	property	will	return	a	blank	string	if	it	is	not	used	with	a
calculated	field	or	calculated	total.

Example
The	following	example	displays	the	current	expression	used	for	a
calculated	field	named	"Variance"	in	PivotTable1.	When	you	edit	the
expression	and	then	click	OK,	the	new	expression	is	assigned	to	the
Variance	field.

Sub	Change_Expression()

				Dim	vwView
				Dim	cfCalcField
				Dim	strCurrentExpression
				Dim	strNewExpression

				Set	vwView	=	PivotTable1.ActiveView

				'	Set	a	varible	to	the	calculated	field.
				Set	cfCalcField	=	_
								vwView.Fieldsets("Variance").Fields("Variance")

				'	Set	a	variable	to	the	current	expression	used	in	the
				'	Variance	field.
				strCurrentExpression	=	cfCalcField.Expression

				'	Display	an	input	box	that	contains	the	current	expression	for	the
				'	Variance	field.	Edit	the	expression	and	then	click	OK.
				strNewExpression	=	InputBox("Edit	the	expression	used	for	the	calculated"	&	_
								"field	and	then	click	OK.",	,	strCurrentExpression)

				'	Set	the	expression	used	to	calculate	the	Variance	field	to	the
				'	expression	entered	in	the	input	box.
				cfCalcField.Expression		=	strNewExpression

End	Sub
	 	

ExtrudeAngle	Property

Returns	or	sets	a	Double	specifying	the	direction	of	extrusion	for	a	three-
dimensional	chart.	This	property	is	valid	only	if	the	ProjectionMode
property	of	the	chart	has	been	set	to	chProjectionModeOrthographic.
Valid	values	range	from	0	to	360.	The	default	value	is	45.	Read/write.

expression.ExtrudeAngle

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	projection	mode	of	the	chart.

Sub	SetExtrudeAngle()

				Dim	cht3DColumn
				Dim	chConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumnClustered3D

				'	Set	the	projection	mode	to	orthographic.
				cht3DColumn.ProjectionMode	=	chConstants.chProjectionModeOrthographic

				'	Set	the	extrusion	angle.
				cht3DColumn.ExtrudeAngle	=	75

End	Sub

	 	

Field	Property

Returns	a	PivotField	object	that	represents	the	field	associated	with	the
specified	member	or	total.

expression.Field

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

FieldLabelBackColor	Property

Returns	or	sets	the	back	color	used	for	field	labels	for	rows,	columns,	and
filters.	The	default	value	is	25%	gray.	Read/write	Variant.

expression.FieldLabelBackColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

FieldLabelFont	Property

Returns	a	PivotFont	object	that	represents	the	field	label	font	for	rows,
columns,	and	filters.	Read-only.

expression.FieldLabelFont

expression				Required.	An	expression	that	returns	a	PivotView	object.

FieldLabelForeColor	Property

Returns	or	sets	the	foreground	color	used	for	field	labels	for	rows,
columns,	and	filters.	Read/write	Variant.

expression.FieldLabelForeColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

FieldLabelHeight	Property

Returns	the	height	of	the	field	labels	for	rows,	columns,	and	filters.	Read-
only	Long.

expression.FieldLabelHeight

expression				Required.	An	expression	that	returns	a	PivotView	object.

Fields	Property

Returns	the	PivotFields	collection	for	the	specified	field	set.

expression.Fields

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

FieldSet	Property

Returns	a	PivotFieldSet	object	that	represents	the	field	set	to	which	the
specified	field	belongs.

expression.FieldSet

expression				Required.	An	expression	that	returns	a	PivotField	object.

FieldSets	Property

Returns	a	PivotFieldSets	object	that	contains	the	field	sets	associated
with	the	specified	axis	or	view.

expression.FieldSets

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

FieldType	Property

Returns	the	field	type	for	the	specified	field.	Read-only
DscFieldTypeEnum.

expression.FieldType

expression				Required.	An	expression	that	returns	a	PageField	property.

Show	All

FillType	Property

Returns	a	ChartFillTypeEnum	constant	indicating	the	type	of	fill	used	for
the	specified	ChInterior	object.	Read-only.

expression.FillType

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
You	can	use	the	following	methods	to	set	the	type	of	fill	for	a	ChInterior
object:	SetOneColorGradient,	SetPatterned,	SetPresetGradient,
SetSolid,	SetTextured,	and	SetTwoColorGradient.

Filter	Property

Returns	the	ADO	filter	string	for	the	recordset	that	corresponds	to	the
data	access	page.	Read/write	Variant.

expression.Filter

expression				Required.	An	expression	that	returns	a	DataPage	object.

FilterAxis	Property

PivotData	object:	Returns	a	PivotResultFilterAxis	object	that
represents	the	filter	axis.

PivotView	object:	Returns	a	PivotFilterAxis	object	that	represents	the
filter	axis.

expression.FilterAxis

expression				Required.	An	expression	that	returns	a	PivotData	or
PivotView	object.

FilterCaption	Property

Returns	a	String	that	represents	the	caption	displayed	just	below	a	field
set	on	the	filter	axis.	Read-only.

expression.FilterCaption

expression				Required.	An	expression	that	returns	a	PivotFieldSet
object.

Remarks
If	the	user	has	selected	only	one	item	in	the	specified	field,	this	property
will	return	that	item.	If	the	user	has	selected	multiple	items	in	the	field,
this	property	will	most	likely	return	"(Multiple	Items)".

FilterContext	Property

Returns	a	PivotField	object	that	represents	the	context	by	which	the
conditional	filter	will	be	evaluated.

expression.FilterContext

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	apply	a	conditional	filter	to	a	field,	the	filter	can	apply	to	that
field,	or	one	of	its	parent	fields	in	the	field	set.	For	example,	assume	that
your	PivotTable	list	contains	a	field	set	named	Store.	The	Store	field	set
contains	the	following	fields:	Country,	Region,	City,	and	Store	Number.
The	Country	field	is	a	parent	to	the	Region	field,	the	Region	field	is	a
parent	to	the	City	field,	and	the	City	field	is	a	parent	to	the	Store	Number
field.

Now	you	want	to	find	the	top	five	most	profitable	cities.	If	you	set	this
property	to	the	City	field,	then	the	top	five	most	profitable	cities	will	be
displayed	in	the	PivotTable	list.	If	you	set	this	property	to	the	Region	field,
then	the	top	five	cities	will	be	returned	for	each	region.

Setting	this	property	to	a	child	of	the	field	that	you	are	applying	a
conditional	filter	to	will	result	in	a	run-time	error.	For	example,	you	cannot
set	this	property	to	the	Store	Number	field	when	you	are	applying	a
conditional	filter	to	the	City	field.

Example
This	example	displays	the	least	profitable	city	in	each	state.

Sub	LeastProfitableByState()

				Dim	ptView
				Dim	ptConstants
				Dim	fldFilterField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable	list.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	field	that	is	to	be	filtered.
				Set	fldFilterField	=	PivotTable1.ActiveData.RowAxis.Fields("Store	City")

				'	Filter	the	stores	based	on	profit.
				Set	fldFilterField.FilterOn	=	ptView.Totals("Profit")

				'	Set	the	function	used	to	filter	the	stores.
				fldFilterField.FilterFunction	=	ptConstants.plFilterFunctionBottomCount

				'	Display	the	least	profitable	store.
				fldFilterField.FilterFunctionValue	=	1

				'	Set	the	context	of	the	filter.	Although	we	are	filtering	based	on
				'	the	Store	City	field,	setting	the	filter	context	to	the	Store	State
				'	field	means	that	the	least	profitable	store	from	each	state	will	be
				'	displayed.
				Set	ptView.FieldSets("Store").Fields("Store	City").FilterContext	=	_

															ptView.FieldSets("Store").Fields("Store	State")

End	Sub

	 	

FilterCrossJoins	Property

Returns	or	sets	a	Boolean	that	determines	how	the	PivotTable	control
processes	empty	members	when	retrieving	the	data	for	the	current	view.
The	default	value	is	True.	Read/write.

expression.FilterCrossJoins

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
In	most	cases,	do	not	want	to	set	this	property	to	False.	However,	if	your
OLAP	cube	contains	a	field	set	where	the	top	member	is	empty,	then	you
may	want	to	set	this	property	to	False.

Show	All

FilterFunction	Property

FilterFunction	property	as	it	applies	to	the	PivotField	object.

FilterFunction	property	as	it	applies	to	the	Criteria	object.

FilterFunctionValue	Property

Returns	or	sets	a	Variant	representing	the	value	used	to	filter	a	field.	The
type	of	value	will	vary	based	on	the	current	setting	of	the	FilterFunction
property.	Use	the	following	table	to	determine	an	appropriate	value	for
this	property.	Read/write.

FilterFunction	setting Appropriate	value	range
plFilterFunctionBottomCount Integer	value	representing	how	many

of	the	bottom	members	that	you	want
to	display.

plFilterFunctionBottomPercent Double	value	between	0	and	1
representing	the	percentage	of
members	that	you	want	to	display.

plFilterFunctionBottomSum
plFIlterFunctionNone
plFilterFunctionTopCount Integer	value	representing	how	many

of	the	top	members	that	you	want	to
display.

plFilterFunctionTopPercent Double	value	between	0	and	1
representing	the	percentage	of
members	that	you	want	to	display.

plFilterFunctionTopSum

expression.FilterFunctionValue

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	applies	a	conditional	filter	to	the	Store	City	field	based	on
the	Profit	total.	The	three	most	profitable	stores	are	displayed.

Sub	TopThreeStores()

				Dim	ptView
				Dim	ptConstants
				Dim	fldFilterField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable	list.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	field	that	is	to	be	filtered.
				Set	fldFilterField	=	PivotTable1.ActiveData.RowAxis.Fields("Store	City")

				'	Filter	the	stores	based	on	profit.
				Set	fldFilterField.FilterOn	=	ptView.Totals("Profit")

				'	Set	the	function	used	to	filter	the	stores.
				fldFilterField.FilterFunction	=	ptConstants.plFilterFunctionTopCount

				'	Display	the	three	most	profitable	stores.
				fldFilterField.FilterFunctionValue	=	3

End	Sub

	 	

FilterMode	Property

True	if	any	worksheet	rows	are	currently	hidden	by	AutoFilter	criteria.
The	default	value	is	False.	Read-only	Boolean.

expression.FilterMode

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Remarks
If	the	AutoFilter	drop-down	arrows	are	visible	but	no	rows	are	currently
filtered	(all	rows	are	visible),	the	AutoFilterMode	property	is	True	and
the	FilterMode	property	is	False.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.	The	FilterMode	property
returns	False	until	the	AutoFilter	criteria	has	been	applied	to	the	list.

Sub	Apply_AutoFilter()
				Dim	afFilters
				Dim	afCol1
				Dim	afCol3
				
				'	Turn	on	AutoFilter.
				Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter
				
				'	Set	a	variable	to	the	AutoFilter	object.
				Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter
				
				Set	afCol1	=	afFilters.Filters(1)
				Set	afCol3	=	afFilters.Filters(3)
				
				'	Add	a	criteria	that	excludes	blue	from	column	A.
				afCol1.Criteria.Add	"blue"
				
				'	Add	a	criteria	that	excludes	green	from	column	A.
				afCol1.Criteria.Add	"green"
				
				'	Add	a	criteria	that	excludes	yellow	from	column	c.
				afCol3.Criteria.Add	"yellow"
				
				'	At	this	point,	the	FilterMode	property	is	False
				'	because	the	AutoFilter	criteria	has	not	been	applied.
				MsgBox	Spreadsheet1.Worksheets("Sheet1").FilterMode

				
				'	Apply	the	criteria.
				afFilters.Apply
				
				'	The	FilterMode	property	is	now	True	since	you
				'	have	hidden	several	rows	in	the	list.
				MsgBox	Spreadsheet1.Worksheets("Sheet1").FilterMode
End	Sub
	 	

FilterOn	Property

Returns	a	PivotTotal	object	that	represents	the	total	to	use	when
conditionally	filtering	a	field.

expression.FilterOn

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	applies	a	conditional	filter	to	the	Store	City	field	based	on
the	Profit	total.	The	three	most	profitable	stores	are	displayed.

Sub	TopThreeStores()

				Dim	ptView
				Dim	ptConstants
				Dim	fldFilterField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable	list.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	field	that	is	to	be	filtered.
				Set	fldFilterField	=	PivotTable1.ActiveData.RowAxis.Fields("Store	City")

				'	Filter	the	stores	based	on	profit.
				Set	fldFilterField.FilterOn	=	ptView.Totals("Profit")

				'	Set	the	function	used	to	filter	the	stores.
				fldFilterField.FilterFunction	=	ptConstants.plFilterFunctionTopCount

				'	Display	the	three	most	profitable	stores.
				fldFilterField.FilterFunctionValue	=	3

End	Sub

	 	

FilterOnScope	Property

This	property	establishes	the	scope	that	is	used	when	conditionally
filtering	a	field.	You	can	pass	a	String	containing	the	unique	name	of	a
member	or	an	array	of	unique	names	of	members.	Returns	a	Variant
array	containing	PivotMember	objects.	Read/write.

expression.FilterOnScope

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
The	scope	is	based	on	one	or	more	members	of	a	different	field	than	the
field	that	is	being	filtered.	For	example,	you	may	want	to	apply	a	filter	to
the	Customer	field,	which	has	been	added	to	the	row	axis	of	your
PivotTable	list,	to	display	the	three	customers	to	whom	you	have	made
the	most	sales.	To	do	this,	you	set	the	FilterFunction	property	to
plFilterFunctionTopCount,	the	FilterFunctionValue	property	to	3,	and
the	FilterOn	property	to	the	Total	Sales	total.	The	PivotTable	list	displays
your	three	best	customers.

If	you	need	to	narrow	your	query	to	a	more	specific	set	of	customers,
then	you	would	use	the	FilterOnScope	property.	If	you	want	to	see	the
your	top	customers	in	the	Southeast	region,	then	you	would	set	the
FilterOnScope	property	to	an	expression	that	evaluates	to	the	Southeast
member	in	the	Region	field.

Example
This	example	displayes	the	two	top-selling	products	in	Canada.

Sub	DisplayTopTwoCanadianSellers()

				Dim	objPivotView
				Dim	objPivotData
				Dim	fldProductName

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	objPivotView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	active	data	of	the	PivotTable.
				Set	objPivotData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	the	Product	Name	field,	which	has	been
				'	added	to	the	row	axis	of	the	PivotTable	list.
				Set	fldProductName	=	objPivotData.RowAxis.Fields("Product	Name")

				'	The	following	two	lines	of	code	set	the	PivotTable	list	to	filter	for	the
				'	top	2	items.
				fldProductName.FilterFunction	=	PivotTable1.Constants.plFilterFunctionTopCount
				fldProductName.FilterFunctionValue	=	2

				'	Filter	based	on	the	Unit	Sales	total.
				Set	fldProductName.FilterOn	=	objPivotView.Totals("Unit	Sales")

				'	Set	the	filter	scope	to	include	only	sales	in	Canada.
				fldProductName.FilterOnScope	=	objPivotView.FieldSets("Store").Member.ChildMembers("Canada").UniqueName

End	Sub

	 	

Filters	Property

Returns	the	Filters	collection	for	the	specified	AutoFilter.	The	Filters
collection	contains	one	Filter	object	for	each	column	in	the	filtered	range.
Read-only.

expression.Filters

expression				Required.	An	expression	that	returns	an	AutoFilter	object.

Example
This	example	turns	on	the	AutoFilter	for	the	range	A1:C20,	sets	filters	for
columns	A	and	C,	and	then	applies	the	filters.

Sub	Apply_AutoFilter()
				Dim	afFilters
				Dim	afCol1
				Dim	afCol3
				
				'	Turn	on	AutoFilter.
				Spreadsheet1.Worksheets("Sheet1").Range("A1:C20").AutoFilter
				
				'	Set	a	variable	to	the	AutoFilter	object.
				Set	afFilters	=	Spreadsheet1.Worksheets("sheet1").AutoFilter
				
				Set	afCol1	=	afFilters.Filters(1)
				Set	afCol3	=	afFilters.Filters(3)
				
				'	Add	a	criteria	that	excludes	blue	from	column	A.
				afCol1.Criteria.Add	"blue"
				
				'	Add	a	criteria	that	excludes	green	from	column	A.
				afCol1.Criteria.Add	"green"
				
				'	Add	a	criteria	that	excludes	yellow	from	column	c.
				afCol3.Criteria.Add	"yellow"
				
				'	Apply	the	criteria.
				afFilters.Apply
End	Sub

	 	

Show	All

FindAxisMember	Property

Finds	an	axis	member,	given	a	reference	to	the	member.	Returns	a
PivotAxisMember	object.

expression.FindAxisMember(Path,	Format)

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

Path			Required	String.	A	variable	or	string	that	contains	a	reference	to
the	member	to	find.

Format			Required	PivotMemberFindFormatEnum	.	Indicates	the
format	used	for	the	Path	argument.

Remarks
If	the	requested	member	is	not	found,	a	PivotAxisMember	object	with
the	IsValid	property	set	to	False	is	returned.	This	allows	you	to	refer	to	a
member	that	might	later	be	added	to	the	schema.

This	property	can	be	used	to	find	a	member	from	the	top	member	of	the
specified	axis.	Use	the	Member	property
(PivotAxisMember.Axis.Member)	to	return	the	top	member	of	an	axis.

Show	All

FindColumnMember	Property

Finds	a	column	member,	given	a	reference	to	the	member.	Returns	a
PivotColumnMember	object.

expression.FindColumnMember(Path,	Format)

expression				Required.	An	expression	that	returns	a	a
PivotColumnMember	object.

Path			Required	String.	A	variable	or	string	that	contains	a	reference	to
the	member	to	find.

Format			Required	PivotMemberFindFormatEnum	.	Indicates	the
format	used	for	the	Path	argument.

Remarks
If	the	requested	member	is	not	found,	a	PivotColumnMember	object
with	the	IsValid	property	set	to	False	is	returned.	This	allows	you	to	refer
to	a	member	that	might	later	be	added	to	the	schema.

This	property	can	be	used	to	find	a	member	from	the	top	member	of	the
column	axis.	Use	the	Member	property	to	return	the	top	member	of	the
column	axis.	

Show	All

FindMember	Property

FindMember	property	as	it	applies	to	the	PivotFieldSet	object.

FindMember	property	as	it	applies	to	the	PivotAxisMember,
PivotColumnMember,	PivotMember,	PivotPageMember,	and
PivotRowMember	objects.

Remarks
If	the	requested	member	is	not	found,	a	PivotMember	object	with	the
IsValid	property	set	to	False	is	returned.	This	allows	you	to	refer	to	a
member	that	might	later	be	added	to	the	schema.

Example
This	example	attempts	to	find	a	specific	warehouse	in	the	Warehouse
field	set.	The	user	is	alerted	if	the	specified	warehouse	is	not	found.

Sub	FindWarehouse()

				Dim	ptView
				Dim	ptConstants
				Dim	fsWarehouse
				Dim	pmFound

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Warehouse	field	set.
				Set	fsWarehouse	=	ptView.FieldSets("Warehouse")

				'	Set	a	variable	to	the	results	of	the	FindMember	property.
				Set	pmFound	=	fsWarehouse.FindMember("Quality	Distribution,	Inc.",	ptConstants.plFindFormatMember)

				'	Check	to	see	if	the	member	was	found.
				If	pmFound.IsValid	=	False	Then

								'	Alert	the	user	if	the	member	was	not	found.
								MsgBox	"The	specified	member	does	not	exist."

				End	If

End	Sub

	 	

Show	All

FindPageMember	Property

Finds	a	page	member,	given	a	reference	to	the	member.	Returns	a
PivotPageMember	object.

expression.FindPageMember(Path,	Format)

expression				Required.	An	expression	that	returns	a	PivotPageMember
object.

Path			Required	String.	A	variable	or	string	that	contains	a	reference	to
the	member	to	the	member	to	find.

Format			Required	PivotMemberFindFormatEnum	.	Indicates	the
format	used	for	the	Path	argument.

Remarks
If	the	requested	member	is	not	found,	a	PivotPageMember	object	with
the	IsValid	property	set	to	False	is	returned.	This	allows	you	to	refer	to	a
member	that	might	later	be	added	to	the	schema.

This	property	can	be	used	to	find	a	member	from	the	top	member	of	the
page	axis.	Use	the	Member	property	to	return	the	top	member	of	the
page	axis.

Show	All

FindRowMember	Property

Finds	a	row	member,	given	a	reference	to	the	member.	Returns	a
PivotRowMember	object.

expression.FindRowMember(Path,	Format)

expression				Required.	An	expression	that	returns	a	PivotRowMember
object.

Path			Required	String.	A	variable	or	string	that	contains	a	reference	to
the	member	to	find.

Format			Required	PivotMemberFindFormatEnum	.	Indicates	the
format	used	for	the	Path	argument.

Remarks
If	the	requested	member	is	not	found,	a	PivotRowMember	object	with
the	IsValid	property	set	to	False	is	returned.	This	allows	you	to	refer	to	a
member	that	might	later	be	added	to	the	schema.	

FirstSection	Property

Returns	a	Section	object	that	represents	the	first	section	on	the	specified
data	access	page.	Read-only.

expression.FirstSection

expression				Required.	An	expression	that	returns	a	DataPage	object.

FirstSliceAngle	Property

Returns	or	sets	the	angle	of	the	first	pie-chart	or	doughnut-chart	slice,	in
degrees	(clockwise	from	vertical).	Applies	only	to	pie	and	doughnut
charts.	Read/write	Long.

expression.FirstSliceAngle

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	sets	the	angle	of	the	first	pie-chart	or	doughnut-chart	slice
to	45	degrees.	Charts(0)	must	refer	to	a	pie	or	doughnut	chart.

ChartSpace1.Charts(0).FirstSliceAngle	=	45
	 	

Floor	Property

Returns	a	ChSurface	object	that	represents	the	floor	of	a	three-
dimensional	chart.	Use	the	properties	and	methods	of	the	returned
ChSurface	object	to	format	the	floor	of	the	specified	chart.

expression.Floor

expression				Required.	An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	formats	the	back	wall,	side	wall,	and	floor	of	the	chart.

Sub	FormatWallsFloor()

				Dim	cht3DColumn
				Dim	chConstants
				Dim	paPlotArea

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Column	chart.
				cht3DColumn.Type	=	chConstants.chChartTypeColumnClustered3D

				'	Set	a	variable	to	the	plot	area.
				Set	paPlotArea	=	cht3DColumn.PlotArea

				'	Format	the	back	wall	of	the	chart.
				paPlotArea.BackWall.Interior.SetSolid	"Yellow"
				paPlotArea.BackWall.Thickness	=	5

				'	Format	the	side	wall	of	the	chart.
				paPlotArea.SideWall.Interior.SetSolid	"Yellow"
				paPlotArea.SideWall.Thickness	=	5

				'	Format	the	floor	of	the	chart.
				paPlotArea.Floor.Interior.SetSolid	"Blue"

				paPlotArea.Floor.Thickness	=	5

End	Sub

	 	

Font	Property

Returns	a	ChFont	,	Font	,	or	PivotFont	object	that	represents	the	font
for	the	specified	object	(the	returned	object	type	depends	on	the	object	to
which	this	property	is	applied).

expression.Font

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	number	format	and	font	for	the	active	cell.

Sub	SetFont()

			Dim	rngCurrentCell

			Set	rngCurrentCell	=	Spreadsheet1.ActiveCell

			rngCurrentCell.NumberFormat	=	"0.###"

			rngCurrentCell.Font.Color	=	"Blue"

			rngCurrentCell.Font.Name	=	"Times	New	Roman"

End	Sub

	 	

FontName	Property

Returns	or	sets	the	name	of	the	font	in	the	specified
RecordNavigationControl	object.	Read/write	String.

expression.FontName

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

Example

This	example	sets	the	font	name	to	"Courier	New"	for	control	RNC1.

RNC1.FontName	=	"Courier	New"
	 	

ForeColor	Property

Returns	or	sets	the	foreground	color	for	the	specified	object	or	area.
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	(RGB)	color	value	or	a	String	value
representing	a	valid	HTML	color	value.	For	example,	to	set	the	object
color	to	red,	you	could	use	the	hexadecimal	value	&HFF,	the	decimal
value	255,	or	the	string	value	"red."	In	Microsoft	Visual	Basic,	you	can
use	the	RGB	function	to	create	an	RGB	color	value	(for	example,	red	is
RGB(255,0,0)).	Read/write	Variant.
expression.ForeColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
This	property	always	returns	the	color	as	a	Long	value	representing	an
RGB	color	value.

Example
This	example	sets	the	font	size,	foreground	color,	and	background	color
for	the	title	bar	in	PivotTable1	.

Sub	Format_Titlebar()
				Dim	vwView
				
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	the	background	color	of	the	title	bar.
				vwView.Label.BackColor	=	"DarkSalmon"
				
				'	Set	the	font	size	of	the	title	bar.
				vwView.Label.Font.Size	=	16
				
				'	Set	the	foreground	color	of	the	title	bar.
				vwView.Label.ForeColor	=	"Sienna"
End	Sub

	 	

Format	Property

Returns	or	sets	a	String	that	represents	the	number	formatting	for	the
specified	element.	Read/write.

expression.Format

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

FormatMap	Property

Returns	a	ChFormatMap	object	that	represents	the	format	map	for	the
specified	series.

expression.FormatMap

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Formula	Property

Returns	or	sets	the	object's	formula	in	A1-style	notation	and	in	the
language	of	the	script.	If	the	cell	contains	a	constant,	this	property	returns
the	constant.	If	the	cell	is	empty,	it	returns	an	empty	string.	If	the	cell
contains	a	formula,	the	Formula	property	returns	the	formula	as	a	string
in	the	same	format	that	it	would	be	displayed	if	the	formula	were	being
actively	edited	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	the	Spreadsheet
component	checks	to	see	whether	that	cell	is	already	formatted	with	one
of	the	date	or	time	number	formats.	If	not,	the	Spreadsheet	component
changes	the	number	format	to	the	default	short	date	number	format.

If	the	range	is	a	one	or	two-dimensional	range,	you	can	set	the	formula	to
an	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula	into
an	array.

Setting	the	formula	for	a	multiple-cell	range	fills	all	cells	in	the	range	with
the	formula.	Read/write	Variant.

expression.Formula

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	formula,	column	width,	and	number	format	for	cell
B5	on	Sheet1	in	Spreadsheet1.

Sub	SetFormula()
Dim	rngRandomNum

'	Set	a	variable	to	cell	B5	on	Sheet1.
Set	rngRandomNum	=
Spreadsheet1.Worksheets("Sheet1").Range("B5")

'	Insert	a	formula	into	cell	B5.
rngRandomNum.Formula	=	"=5*RAND()"

'	Set	the	number	format	for	cell	B5.
rngRandomNum.NumberFormat	=	"#.###"

'	Autofit	column	B.
rngRandomNum.Columns.AutoFit

End	Sub

FormulaArray	Property

Returns	or	sets	a	Variant	representing	the	array	formula	of	a	range.
Returns	(or	can	be	set	to)	a	single	formula	or	a	Visual	Basic	array.	If	the
specified	range	doesn't	contain	an	array	formula,	this	property	returns	a
null	string	("").	Read/write.

expression.FormulaArray

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	enters	the	array	formula	=SUM(A1:A3)	in	cells	E1:E3	on
the	active	worksheet.

Spreadsheet1.ActiveSheet.Range("E1:E3").FormulaArray	=	_
									"=SUM(A1:A3)"

	 	

FormulaLocal	Property

Returns	or	sets	the	range	formula	in	the	language	that	the	user	is
working	in.	If	the	cell	contains	a	constant,	this	property	returns	the
constant.	If	the	cell	is	empty,	it	returns	an	empty	string.	If	the	cell	contains
a	formula,	the	Formula	property	returns	the	formula	as	a	string	in	the
same	format	that	it	would	be	displayed	if	the	formula	were	being	actively
edited	(including	the	equal	sign).

If	you	set	the	value	or	formula	of	a	cell	to	a	date,	the	Spreadsheet
component	checks	to	see	whether	that	cell	is	already	formatted	with	one
of	the	date	or	time	number	formats.	If	not,	the	Spreadsheet	component
changes	the	number	format	to	the	default	short	date	number	format.

If	the	range	is	a	one	or	two-dimensional	range,	you	can	set	the	formula	to
an	array	of	the	same	dimensions.	Similarly,	you	can	put	the	formula	into
an	array.

Setting	the	formula	for	a	multiple-cell	range	fills	all	cells	in	the	range	with
the	formula.	Read/write	Variant.

expression.FormulaLocal

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	displays	the	formula	in	the	active	cell	of	Spreadsheet1	in
the	language	of	the	user.

MsgBox	Spreadsheet1.ActiveCell.FormulaLocal
	 	 	
	 	

FreezePanes	Property

Set	this	property	to	True	to	create	panes	in	the	active	worksheet.	The
panes	are	created	above	and	to	the	left	of	the	active	cell.	For	example,
setting	this	property	to	True	while	cell	D5	is	the	active	cell	results	in	a
horizontal	pane	between	rows	4	and	5	and	a	vertical	pane	between
columns	C	and	D.	Set	this	property	to	False	to	remove	all	panes	from	a
worksheet.	Read/write	Boolean.

expression.FreezePanes

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	creates	panes	in	the	active	worksheet.

Spreadsheet1.ActiveWindow.FreezePanes	=	True

	 	

Show	All

Function	Property

Returns	or	sets	the	function	to	be	used	for	generating	aggregate	values.
Read/write	PivotTotalFunctionEnum.

expression.Function

expression				Required.	An	expression	that	returns	a	PivotTotal	object.

Remarks
The	Sum	operator	is	the	default	value	for	numeric	data	types.	The	Count
operator	is	the	default	value	for	other	data	types.

GapDepth	Property

Returns	or	sets	a	Long	specifying	the	amount	of	spacing	along	the	z-axis
for	adjacent	data	series	in	a	three-dimensional	chart.	Valid	values	range
from	0	to	500.	Read/write.

expression.GapDepth

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
Setting	this	property	to	a	value	of	100	results	in	the	gaps	that	are	the
same	thickness	as	the	data	series	series.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	gap	depth	of	the	chart.

Sub	SetGapDepth()

				Dim	cht3DColumn	As	ChChart

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumn3D

				'	Set	the	gap	depth.
				cht3DColumn.GapDepth	=	75

End	Sub

	 	

GapWidth	Property

Returns	or	sets	the	amount	of	spacing	between	markers	in	adjacent
categories,	as	a	percentage	of	the	column	width.	A	value	of	zero	provides
no	space	between	adjacent	category	markers,	while	positive	values
create	a	gap.	Read/write	Long.

expression.GapWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	spacing	between	markers	in	adjacent	categories	to
250	points.

ChartSpace1.Charts(0).GapWidth	=	250
	 	

GradientDegree	Property

Returns	a	Double	indicating	the	gradient	degree	of	the	specified	shaded
fill	as	a	value	from	0.0	(dark)	through	1.0	(light).	Read-only.

expression.GradientDegree

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetOneColorGradient	method	to	set	the	gradient	degree	for	a
ChInterior	object.

Show	All

GradientStyle	Property

Returns	a	ChartGradientStyleEnum	constant	indicating	the	gradient
style	for	the	specified	ChInterior	object.	Read-only.

expression.GradientStyle

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetPresetGradient,	SetOneColorGradient	or
SetTwoColorGradient	method	to	set	the	gradient	style	for	a	ChInterior
object.

Show	All

GradientVariant	Property

Returns	a	ChartGradientVariantEnum	constant	indicating	the	shade
variant	for	the	specified	ChInterior	object.	Read-only.

expression.GradientVariant

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	OneColorGradient	or	TwoColorGradient	method	to	set	the
gradient	variant	for	a	ChInterior	object.

GridlineColor	Property

Returns	or	sets	the	gridline	color	as	an	RGB	value.	Read/write	Long.

expression.GridlineColor

expression				Required.	An	expression	that	returns	a	Window	object.

Example
The	following	example	sets	the	gridline	color	of	the	active	window	in
Spreadsheet1	to	Red.

Spreadsheet1.ActiveWindow.GridlineColor	=	RGB(255,0,0)
	 	

Show	All

GridlineColorIndex	Property

Returns	or	sets	the	gridline	color	as	an	index	into	the	current	color
palette,	or	as	an	XlColorIndex	constant.	Read/write.

expression.GridlineColorIndex

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Set	this	property	to	xlColorIndexAutomatic	to	specify	the	automatic
color.

The	following	illustration	shows	the	color-index	values	in	the	default	color
palette.

Example
This	example	sets	the	gridline	color	in	the	active	window	of	Spreadsheet1
to	blue.

Spreadsheet1.ActiveWindow.GridlineColorIndex	=	5
	 	

GridX	Property

Returns	or	sets	the	number	of	dotted	gridlines	per	inch	on	the	x-axis	in
the	specified	data	access	page’s	designer	default	section.	Read/write
Long.

expression.GridX

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

GridY	Property

Returns	or	sets	the	number	of	dotted	gridlines	per	inch	on	the	y-axis	in
the	specified	data	access	page’s	designer	default	section.	Read/write
Long.

expression.GridY

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

GroupedAutoFit	Property

True	if	the	specified	field's	column	width	is	set	automatically	when	the
field	is	used	on	the	row	axis	or	the	column	axis.	To	set	the	width	of	a
field's	column,	set	the	property	to	False.	Then,	set	the	GroupedWidth
property	of	the	field	to	the	desired	width.	The	default	value	is	True.
Read/write	Boolean.

expression.GroupedAutoFit

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	disables	the	GroupedAutoFit	property	of	the
"ProductName"	field	in	PivotTable1	and	then	sets	the	width	of	the	field	to
150	pixels.

Sub	Set_ColumnWidth()
				Dim	fldProducts
				
				'	Set	a	variable	to	the	ProductName	field.
				Set	fldProducts	=	PivotTable1.ActiveView.FieldSets("ProductName").Fields(0)
				
				'	Set	the	GroupedAutoFit	for	the	ProductName	field.
				fldProducts.GroupedAutoFit	=	False
				
				'	Set	the	width	of	the	ProductName	field	to	150	pixels.
				fldProducts.GroupedWidth	=	150
End	Sub

	 	

GroupedBackColor	Property

Returns	or	sets	a	Variant	representing	the	background	color	of	a	filed
when	it	has	been	grouped.	Read/write.

expression.GroupedBackColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

GroupedFont	Property

Returns	a	PivotFont	object	that	represents	the	font	for	the	specified	field
when	it	has	been	grouped.

expression.GroupedFont

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

GroupedForeColor	Property

Returns	or	sets	a	Variant	representing	the	foreground	color	of	a	field
when	it	has	been	grouped.	Use	this	property	to	set	the	color	of	a	grouped
item.	Read/write.

expression.GroupedForeColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

Show	All

GroupedHAlignment	Property

Returns	or	sets	a	PivotHAlignmentEnum	constant	that	represents	the
horizontal	alignment	of	the	specified	field	when	it	has	been	grouped.
Read/write.

expression.GroupedHAlignment

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

GroupedHeight	Property

Returns	or	sets	a	Long	that	represents	the	height	of	a	field	when	it	has
been	grouped.	Read/write.

expression.GroupedHeight

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

GroupedWidth	Property

Returns	or	sets	the	width	of	the	specified	field	(pixels)	when	the	field	is
displayed	on	the	row	axis	or	the	column	axis.	The	default	value	is	50
pixels.	This	property	is	ignored	if	the	GroupedAutoFit	property	for	the
specified	field	is	set	to	True.	Read/write	Long.

expression.GroupedWidth

expression				Required.	An	expression	that	returns	a	PivotField	object.

Example
This	example	disables	the	GroupedAutoFit	property	of	the
"ProductName"	field	in	PivotTable1	and	then	sets	the	width	of	the	field	to
150	pixels.

Sub	Set_ColumnWidth()
				Dim	fldProducts
				
				'	Set	a	variable	to	the	ProductName	field.
				Set	fldProducts	=	PivotTable1.ActiveView.FieldSets("ProductName").Fields(0)
				
				'	Set	the	GroupedAutoFit	for	the	ProductName	field.
				fldProducts.GroupedAutoFit	=	False
				
				'	Set	the	width	of	the	ProductName	field	to	150	pixels.
				fldProducts.GroupedWidth	=	150
End	Sub
	 	

GroupEnd	Property

Returns	or	sets	a	Variant	representing	the	ending	value	of	the	grouping
interval	for	the	specified	field.	Read/write.

expression.GroupEnd

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
If	the	specified	field	contains	values	greater	than	the	setting	for	this
property,	then	a	group	titled	">=(GroupEnd	+1)"	is	created	where
GroupEnd	is	the	value	specified	for	this	property.	This	group	will	contain
all	values	that	are	greater	than	the	setting	for	this	property.

If	this	property	is	not	set	or	is	set	to	Empty,	then	the	largest	value	in	the
field	is	used	as	the	ending	value.

If	the	current	setting	for	the	GroupOn	property	is
plGroupOnPrefixChars,	then	you	will	receive	a	run-time	error	when	you
set	this	property.

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

GroupField	Property

Returns	a	PivotResultGroupField	object.	Use	the	properties	of	the
returned	object	to	access	the	source	field	and	axis	properties	of	the
specified	axis	member.

expression.GroupField

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

GroupFields	Property

Returns	the	PivotResultGroupFields	collection	for	the	specified	group
axis.

expression.GroupFields

expression				Required.	An	expression	that	returns	a
PivotResultGroupAxis	object.

GroupFilterControl	Property

Returns	or	sets	the	ID	of	the	list	box	or	combo	box	used	to	set	currency.
Read/write	String.

expression.GroupFilterControl

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

GroupFilterField	Property

Returns	or	sets	the	filter	string	used	by	the	group	filter	control	(the	field
on	which	the	control	will	set	currency).	This	string	must	be	the	name	of	a
page	field	in	the	group	level's	record	source.	Read/write	String.

expression.GroupFilterField

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

GroupFooter	Property

True	if	the	specified	section	has	a	footer.	You	can	set	this	property	for
any	banding	level	except	the	innermost	one.	The	default	value	is	False.
Read/write	Boolean.

expression.GroupFooter

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

GroupHeader	Property

True	if	the	specified	section	has	a	header.	The	default	value	is	True.
Read/write	Boolean.

expression.GroupHeader

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

GroupingDefs	Property

Returns	the	GroupingDefs	collection	for	the	specified	recordset
definition.	This	collection	contains	the	GroupingDef	objects	that	create
grouping	levels	for	the	detail	records.

expression.GroupingDefs

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Show	All

GroupingTotalFunction	Property

Returns	or	sets	a	ChartGroupingTotalFunctionEnum	constant	that
represents	the	function	used	to	display	the	values	in	a	group.	Read/write.

expression.GroupingTotalFunction

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	line	chart,	then
formats	the	category	axis	so	that	the	values	are	grouped	by	month.	The
average	value	of	each	month	is	displayed	on	the	chart.

Sub	FormatTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	Line	chart.
				ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLine

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)

				'	Specify	that	you	will	determine	the	grouping	settings	of	the
				'	axis.	Note	that	this	line	of	code	is	necessary	only	if	the
				'	GroupingType	property	for	the	axis	has	been	previously	set	to
				'	chAxisGroupingNone.
				axCategory.GroupingType	=	chConstants.chAxisGroupingManual

				'	Group	the	category	axis	by	month.
				axCategory.GroupingUnitType	=	chConstants.chAxisUnitMonth

				'	Create	a	new	grouping	for	every	month.
				axCategory.GroupingUnit	=	1

				'	Display	the	average	of	the	items	in	each	group.

				axCategory.GroupingTotalFunction	=	chConstants.chFunctionAvg

				'	A	tick	label	is	displayed	for	every	month.
				axCategory.TickLabelUnitType	=	chConstants.chAxisUnitMonth

				'	A	tick	mark	is	displayed	for	every	three	months.
				axCategory.TickMarkUnitType	=	chConstants.chAxisUnitQuarter

End	Sub

	 	

Show	All

GroupingType	Property

Returns	or	sets	a	ChartAxisGroupingEnum	constant	that	represents
whether	or	not	the	items	on	a	chart	axis	are	grouped,	and	if	so,	whether
the	grouping	was	done	automatically.	Read/write.

expression.GroupingType

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Remarks
The	Chart	control	automatically	creates	a	time	scale	and	groups	on	the
category	axis	when	the	following	conditions	are	true:

The	Chart	control	detects	that	the	category	information	is	a	date.

The	Chart	control	is	bound	to	a	PivotTable	list,	and	the	PivotTable	list	is
not	bound	to	an	OLAP	data	source.

Example
This	example	disables	time	scaling	on	the	category	axis	of	the	first	chart
in	Chartspace1.

Sub	DisableTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionTimescale)

				'	Disable	time	scaling	on	the	category	axis.
				axCategory.GroupingType	=	chConstants.chAxisGroupingNone

End	Sub

	 	

GroupingUnit	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	items	in	a
group.	Read/write.

expression.GroupingUnit

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	line	chart,	then
formats	the	category	axis	so	that	the	values	are	grouped	by	month.	The
average	value	of	each	month	is	displayed	on	the	chart.

Sub	FormatTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	Line	chart.
				ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLine

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)

				'	Specify	that	you	will	determine	the	grouping	settings	of	the
				'	axis.	Note	that	this	line	of	code	is	necessary	only	if	the
				'	GroupingType	property	for	the	axis	has	been	previously	set	to
				'	chAxisGroupingNone.
				axCategory.GroupingType	=	chConstants.chAxisGroupingManual

				'	Group	the	category	axis	by	month.
				axCategory.GroupingUnitType	=	chConstants.chAxisUnitMonth

				'	Create	a	new	grouping	for	every	month.
				axCategory.GroupingUnit	=	1

				'	Display	the	average	of	the	items	in	each	group.

				axCategory.GroupingTotalFunction	=	chConstants.chFunctionAvg

				'	A	tick	label	is	displayed	for	every	month.
				axCategory.TickLabelUnitType	=	chConstants.chAxisUnitMonth

				'	A	tick	mark	is	displayed	for	every	three	months.
				axCategory.TickMarkUnitType	=	chConstants.chAxisUnitQuarter

End	Sub

	 	

Show	All

GroupingUnitType	Property

Returns	or	sets	a	ChartAxisUnitTypeEnum	constant	that	represents
how	items	are	grouped	on	an	axis.

expression.GroupingUnitType

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Remarks
Setting	this	property	sets	the	GroupingType	property	to
chAxisGroupingManual.

The	Chart	control	automatically	creates	a	time	scale	and	groups	on	the
category	axis	when	the	following	conditions	are	true:

The	Chart	control	detects	that	the	category	information	is	a	date.

The	Chart	control	is	bound	to	a	PivotTable	list,	and	the	PivotTable	list	is
not	bound	to	an	OLAP	data	source.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	line	chart,	then
formats	the	category	axis	so	that	the	values	are	grouped	by	month.	The
average	value	of	each	month	is	displayed	on	the	chart.

Sub	FormatTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	Line	chart.
				ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLine

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)

				'	Specify	that	you	will	determine	the	grouping	settings	of	the
				'	axis.	Note	that	this	line	of	code	is	necessary	only	if	the
				'	GroupingType	property	for	the	axis	has	been	previously	set	to
				'	chAxisGroupingNone.
				axCategory.GroupingType	=	chConstants.chAxisGroupingManual

				'	Group	the	category	axis	by	month.
				axCategory.GroupingUnitType	=	chConstants.chAxisUnitMonth

				'	Create	a	new	grouping	for	every	month.
				axCategory.GroupingUnit	=	1

				'	Display	the	average	of	the	items	in	each	group.

				axCategory.GroupingTotalFunction	=	chConstants.chFunctionAvg

				'	A	tick	label	is	displayed	for	every	month.
				axCategory.TickLabelUnitType	=	chConstants.chAxisUnitMonth

				'	A	tick	mark	is	displayed	for	every	three	months.
				axCategory.TickMarkUnitType	=	chConstants.chAxisUnitQuarter

End	Sub

	 	

Show	All

GroupInterval	Property

GroupInterval	property	as	it	applies	to	the	PivotField	object.

GroupInterval	property	as	it	applies	to	the	GroupLevel	and	PageField
objects.

Example
As	it	applies	to	the	PivotField	object.

GroupLevel	Property

Returns	the	GroupLevel	object	for	the	specified	data	access	page.	A
GroupLevel	object	corresponds	to	a	recordset	produced	by	a	recordset
definition	or	grouping	definition.	Read-only.

expression.GroupLevel

expression				Required.	An	expression	that	returns	a	DataPage	object.

GroupLevels	Property

Returns	the	GroupLevels	collection	for	the	specified	data	source	control.
Read-only.

expression.GroupLevels

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Show	All

GroupOn	Property

GroupOn	property	as	it	applies	to	the	PivotField	object.

GroupOn	property	as	it	applies	to	the	GroupLevel	and	PageField
objects.

Example
As	it	applies	to	the	PivotField	object.

GroupStart	Property

Returns	or	sets	a	Variant	representing	the	starting	value	of	the	grouping
interval	for	the	specified	field.	Read/write.

expression.GroupStart

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
If	the	specified	field	contains	values	smaller	than	the	setting	for	this
property,	then	a	group	entitled	"<GroupStart	"	is	created	where
GroupStart	is	the	value	specified	for	this	property.	This	group	will	contain
all	values	that	are	smaller	than	the	setting	for	this	property.

If	this	property	is	not	set	or	is	set	to	Empty,	then	the	smallest	value	in	the
field	is	used	as	the	starting	value.

If	the	current	setting	for	the	GroupOn	property	is
plGroupOnPrefixChars,	then	you	will	receive	a	run-time	error	when	you
set	this	property.

Example
This	example	groups	the	Age	field	of	PivotTable1.	Starting	at	age	15,	a
new	group	will	be	created	for	every	five	years	until	age	80.	Then,	the	font,
foreground,	background,	height	and	alignment	of	the	resulting	groups	are
formatted.

Sub	AddGrouping()

				Dim	vwView
				Dim	ptConstants
				Dim	pfGroupedField

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	vwView	=	PivotTable1.ActiveView
				
				'	Set	a	variable	to	the	Age	field.
				Set	pfGroupedField	=	vwView.FieldSets("Age").Fields("Age")
				
				'	Set	the	GroupOn	property	so	that	the	Age	field	will	be
				'	grouped	by	the	GroupInterval	setting.
				pfGroupedField.GroupOn	=	ptConstants.plGroupOnInterval

				'	Create	a	new	grouping	for	every	five	years.
				pfGroupedField.GroupInterval	=	5

			'	Start	the	grouping	at	age	15.
				pfGroupedField.GroupStart	=	15

				'	End	the	grouping	at	age	80.
				pfGroupedField.GroupEnd	=	80

				
				'	Set	the	font	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedFont.Bold	=	True

				'	Set	the	foreground	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedForeColor	=	"Black"

				'	Set	the	Background	color	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedBackColor	=	"Blue"

				'	Set	the	height	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHeight	=	15

				'	Set	the	horizontal	alignment	for	the	field	when	it	is	grouped.
				pfGroupedField.GroupedHAlignment	=	ptConstants.plHAlignRight
				
End	Sub
	 	

Show	All

HAlignment	Property

Returns	or	sets	the	way	data	is	aligned	in	the	specified	label	or	total.
Read/write	PivotHAlignmentEnum.

expression.HAlignment

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

HasAbsoluteLabels	Property

Returns	or	sets	whether	the	legend	entries	for	percentage-calculated
segments	are	displayed	as	absolute	values	in	the	legend.	Set	this
property	to	True	in	order	to	display	the	actual	beginning	and	ending
values	for	a	segment	that	was	calculated	as	a	percentage.	The	default
value	is	False.	Read/write	Boolean.

expression.HasAbsoluteLabels

expression				Required.	An	expression	that	returns	a	ChSegment	object.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	displays
the	larger	values	in	the	chart	with	a	darker	shade	of	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1	As	ChSegment
				Dim	chconstants

				Set	chconstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=DataServer;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	Details	table.
				ChartSpace1.SetData	chconstants.chDimCategories,	chconstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chconstants.chDimValues,	chconstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chconstants.chDimFormatValues,	chconstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chconstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chconstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"
				segSegment1.HasAutoDivisions	=	False
				segSegment1.HasAbsoluteLabels	=	True
				segSegment1.HasDiscreteDivisions	=	False

End	Sub

	 	

HasArray	Property

True	if	the	specified	cell	is	part	of	an	array	formula.	Read-only	Variant.

expression.HasArray

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks
Use	the	CurrentArray	property	to	determine	the	the	cells	that	are	part	of
the	current	array.

Example
This	example	determines	whether	the	active	cell	in	Spreadsheet1	is	part
of	an	array.	Is	so,	the	array	is	selected.

If	Spreadsheet1.ActiveCell.HasArray	Then	_
					Spreadsheet1.ActiveCell.CurrentArray.Select

	 	

HasAutoAspectRatio	Property

False	if	the	aspect	ratio	of	the	specified	chart	has	been	modified.	Set	this
property	to	True	to	restore	the	specified	chart	to	it's	default	aspect	ratio.
Read-write	Boolean.

expression.HasAutoAspectRatio

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	resets	the	first	chart	in	Chartspace1	to	its	default	aspect
ratio.

Chartspace1.Charts(0).HasAutoAspectRatio	=	True
	 	

HasAutoCaption	Property

True	if	the	name	for	the	specified	trendline	is	generated	automatically
from	the	trendline	type	and	series	index	("Poly.	(Series	1)",	for	example).
Setting	the	trendline’s	Caption	property	sets	this	property	to	False.
Read/write	Boolean.

expression.HasAutoCaption

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Example
This	example	sets	the	caption	for	the	specified	trendline	caption	if	the
caption	is	currently	set	to	be	generated	automatically.	Note	that
SeriesCollection(0)	must	refer	to	a	series	that	already	has	a	trendline.

Sub	SetCaption()
				Dim	serZero
				Dim	trndline
				
				Set	serZero	=	ChartSpace1.Charts(0).SeriesCollection(0)
				serZero.Line.Color	=	"red"
				Set	trndline	=	serZero.Trendlines(0)
				If	trndline.HasAutoCaption	Then	trndline.Caption	=	"data	trend"
End	Sub

	 	

HasAutoChartDepth	Property

False	if	the	depth	of	the	specified	chart	has	been	modified.	Set	this
property	to	True	to	restore	the	specified	chart	to	its	default	depth.	Read-
write	Boolean.

expression.HasAutoChartDepth

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	resets	the	first	chart	in	Chartspace1	to	it's	default	depth.

Chartspace1.Charts(0).HasAutoChartDepth	=	True
	 	

HasAutoDivisions	Property

Returns	or	sets	whether	divisions	are	automatically	created	for	the
specified	segment.	The	default	value	is	True.	Read/write	Boolean.

expression.HasAutoDivisions

expression				Required.	An	expression	that	returns	a	ChSegment	object.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	displays
the	larger	values	in	the	chart	with	a	darker	shade	of	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1	As	ChSegment
				Dim	chconstants

				Set	chconstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=DataServer;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	Details	table.
				ChartSpace1.SetData	chconstants.chDimCategories,	chconstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chconstants.chDimValues,	chconstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chconstants.chDimFormatValues,	chconstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chconstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chconstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

				segSegment1.HasAutoDivisions	=	False

				segSegment1.HasAbsoluteLabels	=	True

				segSegment1.HasDiscreteDivisions	=	False

End	Sub

	 	

HasAutoMajorUnit	Property

True	if	the	major	unit	for	the	specified	axis	is	determined	automatically.
The	default	value	is	True.	You	should	use	this	property	only	for	value
axes.	Read/write	Boolean.

expression.HasAutoMajorUnit

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	major	unit	for	the	specified	axis	if	the	major	unit	is
currently	set	to	be	determined	automatically.

Sub	SetMajorUnit()
				Dim	chtConstants
				dim	axs
				
				Set	chtConstants	=	ChartSpace1.Constants
				Set	axs	=	ChartSpace1.Charts(0).Axes(chtConstants.chAxisPositionValue)
				If	axs.HasAutoMajorUnit	Then	axs.MajorUnit	=	5000
End	Sub

	 	

HasAutoMaximum	Property

True	if	the	maximum	scale	value	for	the	specified	axis	is	set	to	be
determined	automatically.	The	default	value	is	True.	Read/write	Boolean.

expression.HasAutoMaximum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	sets	the	maximum	scale	value	for	the	specified	axis	if	the
maximum	value	is	currently	set	to	be	determined	automatically.

Sub	SetScale()
				Dim	chConstants
				dim	axisScale
				
				Set	chConstants	=	ChartSpace1.Constants
				Set	axisScale	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling
				If	axisScale.HasAutoMaximum	Then	axisScale.Maximum	=	50000
End	Sub				

	 	

HasAutoMinimum	Property

True	if	the	minimum	scale	value	for	the	specified	axis	is	set	to	be
determined	automatically.	The	default	value	is	True.Read/write	Boolean.

expression.HasAutoMinimum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	sets	the	minimum	scale	value	for	the	specified	axis	if	the
minimum	value	is	currently	set	to	be	determined	automatically.

Sub	SetScaling()
				Dim	chConstants
				Dim	axisScale
				
				Set	chConstants	=	ChartSpace1.Constants
				Set	axisScale	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling
				If	axisScale.HasAutoMinimum	Then	axisScale.Minimum	=	10
End	Sub

	 	

HasAutoMinorUnit	Property

True	if	the	minor	unit	for	the	specified	axis	is	set	to	be	determined
automatically.	The	default	value	is	True.	You	should	use	this	property
only	for	value	axes.	Read/write	Boolean.

expression.HasAutoMinorUnit

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	minor	unit	for	the	specified	axis	to	increments	of
500	if	the	unit	is	currently	set	to	be	determined	automatically.

Sub	SetMinorUnit()
				Dim	chConstants
				Dim	axs
				
				Set	chConstants	=	ChartSpace1.Constants
				Set	axs	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				If	axs.HasAutoMinorUnit	Then	axs.MinorUnit	=	500
End	Sub

	 	

HasBubbleSize	Property

True	if	every	data	label	for	the	specified	series	or	chart	currently	displays
its	bubble	size.	The	default	value	is	False.	Note	that	this	property	is
available	only	for	bubble	charts.	Read/write	Boolean.

expression.HasBubbleSize

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Remarks
Data	label	components	are	always	displayed	in	the	following	order:
[SeriesName]	[CategoryName]	[Value]	[BubbleSize]	[Percentage].

Example
This	example	causes	the	data	labels	for	the	specified	series	to	display
their	bubble	size.	Note	that	Charts(0)	must	refer	to	a	bubble	chart.

Sub	DisplayLabels()
				Dim	dlBubbleLabels
				
				Set	dlBubbleLabels	=	ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection.Add
				
				dlBubbleLabels.HasBubbleSize	=	True
End	Sub

	 	

HasCategoryName	Property

True	if	every	data	label	for	the	specified	series	or	chart	currently	displays
its	category	name	or	label.	The	default	value	is	False.	Read/write
Boolean.

expression.HasCategoryName

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Remarks
Data	label	components	are	always	displayed	in	the	following	order:
[SeriesName]	[CategoryName]	[Value]	[BubbleSize]	[Percentage]

Example
This	example	causes	the	data	labels	for	the	specified	series	to	display
their	category	and	series	names.

Sub	ShowLabels()
				Dim	dl

				Set	dl	=	ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection(0)

				'	Display	the	category	names.
				dl.HasCategoryName	=	True
				
				'	Display	the	series	names.
				dl.HasSeriesName	=	True
End	Sub				

	 	

HasDetails	Property

True	if	detail	records	can	be	displayed	for	a	given	cell;	False	if	detail
records	are	not	available	for	display.	This	property	is	automatically	reset
whenever	the	data	is	requeried.	If	this	property	is	set	to	False,	the
expansion	indicators	are	not	displayed	for	inner	members.	This	property
is	always	set	to	False	if	the	provider	is	multidimensional.	Read-only
Boolean.

expression.HasDetails

expression				Required.	An	expression	that	returns	a	PivotTable	object.

HasDiscreteDivisions	Property

Returns	or	sets	the	method	used	to	interpolate	the	formatting	of	the
specified	segment	between	its	beginning	and	ending	values.	Setting	this
property	to	True	causes	the	Chart	control	to	assign	a	number	of	divisions
to	the	segment.	Setting	this	property	to	False	causes	the	Chart	control	to
interpolate	between	the	beginning	and	ending	values	of	the	segment
without	creating	discrete	divisions	in	formatting.	The	default	value	is
False.	Read/write	Boolean.

expression.HasDiscreteDivisions

expression				Required.	An	expression	that	returns	a	ChSegment	object.

Remarks
To	illustrate	the	differences	when	setting	this	property	to	True	or	False,
assume	that	you	set	the	following	properties	for	a	segment:

.Begin.Value	=	10

.Begin.Interior.Color	=	"White"

.End.Value	=	50

.End.Interior.Color	=	"Green"

When	setting	this	property	to	True,	the	Chart	control	would	create
several	divisions	which	contain	a	different	interpolation	of	the	above	color
settings.	However,	points	that	are	very	close	to	each	other	in	value	can
be	formatted	very	differently	because	each	point	is	in	a	different	division.
A	point	with	a	value	of	24	may	be	white	while	a	point	with	a	value	of	25
may	be	a	fairly	dark	shade	of	green,	because	a	division	was	created
between	24	and	25.	Setting	this	property	to	False	results	in	a	more
gradual	interpolation	between	white	and	green.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	displays
the	larger	values	in	the	chart	with	a	darker	shade	of	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1	As	ChSegment
				Dim	chconstants

				Set	chconstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=DataServer;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	Details	table.
				ChartSpace1.SetData	chconstants.chDimCategories,	chconstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chconstants.chDimValues,	chconstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chconstants.chDimFormatValues,	chconstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chconstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chconstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

				segSegment1.HasAutoDivisions	=	False

				segSegment1.HasAbsoluteLabels	=	True

				segSegment1.HasDiscreteDivisions	=	False

End	Sub

	 	

HasFormula	Property

True	if	all	cells	in	the	range	contain	formulas,	False	if	none	contain
formulas,	and	Null	if	some	cells	contain	formulas	and	others	do	not.
Read-only	Variant.	Use	the	IsNull	function	to	determine	if	the	return
value	is	Null.

expression.HasFormula

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	recalculates	the	active	worksheet	if	any	cell	in	the	currently
selected	range	contains	a	formula.

Sub	CalcIfSelectionHasFormulas()
				Dim	vntHasFormula
				Dim	rngCurrent
				
				Set	rngCurrent	=	Spreadsheet1.Selection
				
				'	Set	a	variable	to	the	HasFormula	property
				'	for	the	current	selection.				
				vntHasFormula	=	rngCurrent.HasFormula
				
				If	IsNull(vntHasFormula)	Then
				
								'	Calculate	the	active	worksheet	if	the
								'	selection	contains	one	or	more	formulas.
								Spreadsheet1.ActiveSheet.Calculate
								
				ElseIf	vntHasFormula	Then
				
								'	Calculate	the	active	worksheet	if	all
								'	selected	cells	contain	a	formula.
								Spreadsheet1.ActiveSheet.Calculate
				End	If
End	Sub

	 	

HasLegend	Property

True	if	the	specified	chart	has	a	legend.	Read/write	Boolean.

expression.HasLegend

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	sets	the	specified	chart	to	have	a	legend.

ChartSpace1.Charts(0).HasLegend	=	True
	 	

HasMajorGridlines	Property

True	if	the	specified	axis	has	major	gridlines.	Note	that	any	axis	can	have
gridlines.	Read/write	Boolean.

expression.HasMajorGridlines

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	turns	on	the	major	and	minor	gridlines	on	the	first	chart	in
ChartSpace1.

Sub	EnableGridlines()
				Dim	chConstants
				Dim	axValueAxis
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	a	variable	to	refer	to	the	value	axis.
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				
				'	Enable	the	major	gridlines	on	the	value	axis.
				axValueAxis.HasMajorGridlines	=	True
				
				'	Enable	the	major	gridlines	on	the	value	axis.
				axValueAxis.HasMinorGridlines	=	True
End	Sub

	 	

HasMinorGridlines	Property

True	if	the	specified	axis	has	minor	gridlines.	Note	that	any	axis	can	have
gridlines.	Read/write	Boolean.

expression.HasMinorGridlines

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	turns	on	the	major	and	minor	gridlines	on	the	first	chart	in
ChartSpace1.

Sub	EnableGridlines()
				Dim	chConstants
				Dim	axValueAxis
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	a	variable	to	refer	to	the	value	axis.
				Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)
				
				'	Enable	the	major	gridlines	on	the	value	axis.
				axValueAxis.HasMajorGridlines	=	True
				
				'	Enable	the	major	gridlines	on	the	value	axis.
				axValueAxis.HasMinorGridlines	=	True
End	Sub

	 	

HasMultipleCharts	Property

Returns	or	sets	a	Boolean	that	indicates	whether	the	specified
ChartSpace	contains	multiple	charts.	The	default	value	is	False.
Read/write.

expression.HasMultipleCharts

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

HasPassiveAlerts	Property

Returns	or	sets	whether	passive	alerts	are	to	be	used	when	a	non-critical
error	in	encountered.	The	default	value	is	True.	Read/write	Boolean.

expression.HasPassiveAlerts

expression				Required.	An	expression	that	returns	a	Chartspace	object.

Remarks
Passive	alerts	are	presented	as	a	small	exclamation	symbol	in	the	lower
left	corner	of	the	chart	control.	Clicking	the	symbol	displays	more
information	about	the	non-critical	error	that	has	occurred.	This	feature	is
similar	to	the	Microsoft	Internet	Explorer	feature	of	displaying	an	alert
symbol	in	the	status	bar	when	script	errors	have	occurred.

HasPercentage	Property

True	if	every	data	label	for	the	specified	series	or	chart	currently	displays
its	percentage	value.	The	default	value	is	False.	This	property	is
available	only	for	pie,	doughnut,	and	stacked	charts.	Read/write
Boolean.

expression.HasPercentage

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Remarks
Data	label	components	are	always	displayed	in	the	following	order:
[SeriesName]	[CategoryName]	[Value]	[BubbleSize]	[Percentage].

Example
This	example	adds	data	labels	showing	percentage	value	to	a	series.
Note	that	Charts(0)	must	refer	to	a	pie,	doughnut,	or	stacked	chart.

Sub	AddPercentabeLabels()
				Dim	dl
				
				Set	dl	=	ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection.Add
				
				'	Display	percentage	labels.
				dl.HasPercentage	=	True
End	Sub				

	 	

HasPlotDetails	Property

True	if	detail	fields	will	be	plotted	when	the	chart	does	not	contain	a
category	field.	The	default	value	is	False.	Read/write	Boolean.

expression.HasPlotDetails

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	enables	detail	fields	in	ChartSpace1	to	be	plotted	when	the
chart	does	not	contain	a	category	field.

ChartSpace1.HasPlotDetails	=	True
	 	

HasRuntimeSelection	Property

Returns	or	sets	the	selection	mode	in	the	charts	of	the	specified	chart
control.	When	this	property	is	True,	the	first	click	selects	the	inner	object;
the	second	click	selects	the	outer	object.	For	example,	if	this	property	is
True	and	the	user	clicks	the	third	data	point	in	a	data	series,	only	that
point	is	selected.	The	second	time	that	the	user	clicks	the	data	point,	the
entire	data	series	is	selected.	Setting	this	property	to	False	forces	the
entire	data	series	to	be	selected	when	the	user	clicks	the	third	data	point
for	the	first	time.	The	user	has	to	click	the	third	data	point	a	second	time
in	order	to	select	only	that	data	point.	The	default	value	it	True.
Read/write	Boolean.

expression.HasRuntimeSelection

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

HasSelectionMarks	Property

Set	this	property	to	True	to	display	selection	marks	when	the	user	selects
an	item	on	a	chart.	The	default	value	is	False.	Read/write	Boolean.

expression.HasSelectionMarks

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
In	addition	to	setting	this	property	to	True,	you	must	also	set	the
AllowPropertyToolbox	property	to	True	to	allow	the	user	to	format
individual	chart	elements.

Example
This	example	enables	the	user	to	select	and	format	individual	chart
elements	in	Chartspace1.

Sub	Allow_Formatting()

			'Allow	the	user	to	display	the	Commands	and	Options	dialog	box.
			Chartspace1.AllowPropertyToolbox	=	True

			'	Display	selection	marks	for	chart	elements.
			Chartspace1.HasSelectionMarks	=	True

End	Sub

	 	

HasSeriesByRows	Property

Returns	or	sets	how	series	and	categories	of	the	charts	in	the	specified
chart	control	are	mapped	to	the	rows	and	columns	of	the	data	source.	By
default,	if	the	chart	is	bound	to	a	relational	data	source,	then	the	series	of
the	chart	correspond	to	the	columns	of	the	underlying	PivotTable	list.	The
default	value	is	False.	Read/write	Boolean.

expression.HasSeriesByRows

expression				Required.	An	expression	that	returns	a	ChartSpace	control.

HasSeriesName	Property

True	if	every	data	label	for	the	specified	series	or	chart	currently	displays
its	series	name.	The	default	value	is	False.	This	property	is	available	only
for	pie,	doughnut,	and	stacked	charts.	Read/write	Boolean.

expression.HasSeriesName

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Remarks
Data	label	components	are	always	displayed	in	the	following	order:
[SeriesName]	[CategoryName]	[Value]	[BubbleSize]	[Percentage].

Example
This	example	causes	the	data	labels	for	the	specified	series	to	display
their	category	and	series	names.

Sub	ShowLabels()
				Dim	dl

				Set	dl	=	ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection(0)

				'	Display	the	category	names.
				dl.HasCategoryName	=	True
				
				'	Display	the	series	names.
				dl.HasSeriesName	=	True
End	Sub	

	 	

HasSplit	Property

True	if	the	scale	for	the	specified	axis	has	a	split	point	between	the	value
of	its	SplitMinimum	property	and	the	value	of	its	SplitMaximum
property.	The	default	value	is	False.	Read/write	Boolean.

expression.HasSplit

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	splits	the	value	axis	of	the	first	chart	in	ChartSpace1	and
sets	the	split	minimum	and	split	maximum	values.	The	value	axis	is	split,
and	values	between	1000	and	5000	will	not	be	displayed.

Sub	Split_Value_Axis()
				Dim	chConstants
				Dim	scValueAxis
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	a	variable	to	the	scaling	object	of	the	value	axis.
				Set	scValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling
				
				'	Add	a	split	to	the	value	axis.
				scValueAxis.HasSplit	=	True
				
				'	Specify	the	minnimum	value	of	the	split.
				scValueAxis.SplitMinimum	=	1000
				
				'		Specify	the	maximum	value	for	the	split.
				scValueAxis.SplitMaximum	=	5000
End	Sub
	 	

HasTickLabels	Property

True	if	the	specified	axis	has	a	label	at	each	major	tick	mark.	The	default
value	is	True.	Read/write	Boolean.

expression.HasTickLabels

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	turns	off	tick-mark	labels	on	the	category	axis	on	the	first
chart	in	ChartSpace1.

Sub	DisableTickLabels()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Turn	off	the	tick	mark	labels	on	the	category	axis.
				ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory).HasTickLabels
End	Sub

	 	

HasTitle	Property

True	if	the	specified	chart	or	axis	has	a	title.	The	default	value	is	False.
Read/write	Boolean.

expression.HasTitle

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	causes	the	title	of	the	specified	chart	to	be	displayed	and
sets	the	title	font.

Sub	SetChartTitle()

				'	Enable	the	chart	title	for	the	first	chart	in	ChartSpace1.
				ChartSpace1.Charts(0).HasTitle	=	True
				
				'	Set	the	title	caption.
				ChartSpace1.Charts(0).Title.Caption	=	"Monthly	Sales"
				
				'	Set	the	title	font.
				ChartSpace1.Charts(0).Title.Font.Name	=	"times	new	roman"
End	Sub

	 	

HasUnifiedScales	Property

True	if	all	charts	in	the	specified	chart	control	use	the	same	scaling	for
their	axes.	The	default	value	is	False.	Read/write	Boolean.

expression.HasUnifiedScales

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
This	property	will	return	a	run-time	error	when	the	chart	control	contains
multiple	charts	with	incompatible	axes.	For	example,	an	error	will	be
returned	when	the	chart	control	contains	an	XY	(Scatter)	chart	and	a
Column	chart.	This	property	cannot	be	set	because	a	Column	chart
contains	a	category	axis,	and	the	XY	(Scatter)	chart	does	not.

When	you	use	the	Add	method	to	add	a	new	chart	to	the	chart	control
after	setting	this	property	to	True,	the	new	chart's	axes	are	not
automatically	unified	with	the	existing	charts.	You	must	set	this	property
to	False	and	then	back	to	True	to	unify	the	new	chart's	axes	with	the
existing	charts.

HasValue	Property

True	if	every	data	label	for	the	specified	series	or	chart	currently	displays
its	y-axis	value.	The	default	value	is	False.	Read/write	Boolean.

expression.HasValue

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Remarks
Data	label	components	are	always	displayed	in	the	following	order:
[SeriesName]	[CategoryName]	[Value]	[BubbleSize]	[Percentage].

Setting	this	property	to	True	on	a	scatter	chart	or	polar	chart	causes	both
x-axis	values	and	y-axis	values	to	be	displayed.

Example
This	example	sets	the	data	labels	for	the	specified	series	to	display	their
y-axis	values.

ChartSpace1.Charts(0).SeriesCollection(0).DataLabelsCollection(0)HasValue
	 	

HeaderBackColor	Property

Returns	or	sets	a	V	ariant	indicating	the	background	color	of	the
headings	in	the	data	area	or	an	item	in	the	filter	area.	Read/write.

expression.HeaderBackColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
Use	the	HeaderFont,	HeaderForeColor,	and	HeaderHAlignment
properties	in	addition	to	this	property	to	format	the	heading	in	the	data
area	or	an	item	in	the	filter	area	of	a	PivotTable	list.

Example
This	example	formats	the	header	for	the	data	area	and	the	filter	area	of
the	current	view	in	PivotTable1.

Sub	SetHeaderProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	the	background	color.
				ptView.HeaderBackColor	=	"Gray"

				'	Set	the	foreground	color.
				ptView.HeaderForeColor	=	"Blue"

				'	Set	the	font.
				ptView.HeaderFont	=	"Tahoma"

				'	Set	the	alignment.
				ptView.HeaderHAlignment	=	ptConstants.plHAlignLeft

End	Sub
	 	

HeaderFont	Property

Returns	a	P	ivotFont	object	representing	the	font	for	the	headings	in	the
data	area	or	an	item	in	the	filter	area	of	the	specified	view.

expression.HeaderFont

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
Use	the	HeaderBackColor,	HeaderForeColor,	and	HeaderHAlignment
properties	to	in	addition	to	this	property	to	format	the	heading	in	the	data
area	or	an	item	in	the	filter	area	of	a	PivotTable	list.

Example
This	example	formats	the	header	for	the	data	area	and	the	filter	area	of
the	current	view	in	PivotTable1.

Sub	SetHeaderProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	the	background	color.
				ptView.HeaderBackColor	=	"Gray"

				'	Set	the	foreground	color.
				ptView.HeaderForeColor	=	"Blue"

				'	Set	the	font.
				ptView.HeaderFont	=	"Tahoma"

				'	Set	the	alignment.
				ptView.HeaderHAlignment	=	ptConstants.plHAlignLeft

End	Sub

	 	

HeaderForeColor	Property

Returns	or	sets	a	V	ariant	indicating	the	foreground	color	of	the	headings
in	the	data	area	or	an	item	in	the	filter	area	of	the	specified	view.
Read/write.

expression.HeaderForeColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
Use	the	HeaderBackColor,	HeaderFont,	and	HeaderHAlignment
properties	in	addition	to	this	property	to	format	the	heading	in	the	data
area	or	an	item	in	the	filter	area	of	a	PivotTable	list.

Example
This	example	formats	the	header	for	the	data	area	and	the	filter	area	of
the	current	view	in	PivotTable1.

Sub	SetHeaderProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	the	background	color.
				ptView.HeaderBackColor	=	"Gray"

				'	Set	the	foreground	color.
				ptView.HeaderForeColor	=	"Blue"

				'	Set	the	font.
				ptView.HeaderFont	=	"Tahoma"

				'	Set	the	alignment.
				ptView.HeaderHAlignment	=	ptConstants.plHAlignLeft

End	Sub
	 	

Show	All

HeaderHAlignment	Property

Returns	or	sets	a	PivotHAlignmentEnum	constant	that	represents	the
horizontal	alignment	of	a	heading	in	the	data	area	or	an	item	in	the	filter
area	of	the	specified	view.	Read/write.

expression.HeaderHAlignment

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
Use	the	HeaderBackColor,	HeaderForeColor,	and	HeaderFont
properties	in	addition	to	this	property	to	format	the	heading	in	the	data
area	or	an	item	in	the	filter	area	of	a	PivotTable	list.

Example
This	example	formats	the	header	for	the	data	area	and	the	filter	area	of
the	current	view	in	PivotTable1.

Sub	SetHeaderProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	the	background	color.
				ptView.HeaderBackColor	=	"Gray"

				'	Set	the	foreground	color.
				ptView.HeaderForeColor	=	"Blue"

				'	Set	the	font.
				ptView.HeaderFont	=	"Tahoma"

				'	Set	the	alignment.
				ptView.HeaderHAlignment	=	ptConstants.plHAlignLeft

End	Sub

	 	

HeaderHeight	Property

Returns	a	Long	value	that	represents	the	height	of	the	headers	for	fields
on	the	data	axis	and	the	items	in	the	filter	field	of	the	specified	view.
Read-only.

expression.HeaderHeight

expression				Required.	An	expression	that	returns	a	PivotView	object.

HeaderRowRange	Property

Returns	a	Range	object	that	represents	the	header	row	from	a	specified
ListObject	object.	Read-only.

expression.HeaderRowRange

expression				Required.	An	expression	that	returns	a	ListObject	object.

Remarks

If	a	header	row	is	present,	a	Range	object	representing	the	header	row
for	the	specified	ListObject	object	is	returned.	If	a	header	row	isn't
present,	the	Nothing	object	is	returned.

Example
The	example	below	saves	the	header	row	range	information	to	a
variable.

Dim	rngHeaderRowRange
Dim	objList
	 	
Set		objList	=	Spreadsheet1.ActiveSheet.ListObjects(1)
Set	rngHeaderRowRange	=	objList.HeaderRowRange

Height	Property

Returns	or	sets	the	height	of	the	specified	object	in	points.

Read-only	Double	for	the	Window	object.

Read-only	Variant	for	the	Range	object.

Read-write	Long	for	the	PivotAxisMember	,	PivotColumnMember	,
PivotPageMember	,	PivotRowMember	,	and	PivotTable	objects.

Read-only	Long	for	all	other	objects	in	the	Applies	To	list.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
The	AutoFit	property	of	the	PivotTable	list	is	set	to	False	when	the	value
of	the	Height	property	is	changed.

Example
This	example	sets	the	height	of	the	PivotTable	list	to	36	points.

PivotTable1.Object.Height	=	36
	 	

HeightRatio	Property

Returns	or	sets	the	height	ratio	for	the	specified	chart	in	relation	to	the
other	charts	in	the	chart	workspace.	The	default	value	is	100.	Read/write
Long.

expression.HeightRatio

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
This	property	sets	the	height	of	the	specified	chart	relative	to	the	height	of
the	other	charts	in	the	chart	workspace.	For	this	property	to	have	any
effect,	you	must	have	more	than	one	chart	in	the	chart	workspace.	When
more	than	one	chart	is	displayed,	the	charts	are	displayed	in	a	grid	(for
more	information,	see	the	Help	topics	for	the	ChartLayout	and
ChartWrapCount	properties).	Initially,	the	HeightRatio	and	WidthRatio
properties	are	set	to	100	for	all	charts	in	the	grid,	and	all	charts	are	the
same	size.

To	change	the	height	of	charts	in	the	grid,	adjust	the	HeightRatio
property	settings.	For	example,	if	each	chart	is	displayed	in	three	rows,
all	the	charts	have	an	initial	HeightRatio	setting	of	100.	If	you	want	row	3
to	be	only	half	the	available	height,	set	its	HeightRatio	setting	to	200;	the
remaining	half	of	the	chart	height	is	divided	between	rows	1	and	2.
Because	the	height	specified	by	the	HeightRatio	property	is	relative,	you
can	set	this	property	for	the	three	rows	to	1,1,2;	100,100,200;	or
20,20,40,	all	of	which	have	the	same	effect.

If	the	chart	workspace	contains	charts	displayed	in	more	than	one	row,
the	largest	HeightRatio	setting	in	each	row	is	used	to	set	the	relative
height	for	the	entire	row.

This	property	is	useful	for	creating	price	and	volume	stock	charts	in	which
the	volume	chart	is	half	the	size	of	the	price	chart.

Hidden	Property

True	if	the	specified	range	is	currently	hidden.	The	range	must	span	an
entire	column	or	row.	You	can	use	the	EntireRow	and	EntireColumn
properties	to	return	a	reference	to	an	entire	row	or	column.	Read/write
Boolean.

expression.Hidden

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	loops	through	a	row	that	contains	date	values.	When	the
month	in	the	cell	does	not	match	the	current	month,	the	column	is	hidden.
When	the	month	matches	the	current	month	and	the	column	is	hidden,
then	the	column	is	unhidden.

Sub	Hide_Dates()
				Dim	rngLoopRange
				Dim	rngCurrCell
				Dim	ssConstants

				Set	ssConstants	=	Spreadsheet1.Constants

				'	Set	range	to	loop	through	the	range	of	contiguous
				'	cells	in	row	1	starting	in	column	A.
				Set	rngLoopRange	=	Spreadsheet1.ActiveSheet.Range("A1",	_
												Spreadsheet1.ActiveSheet.Range("A1").End(ssConstants.xlToRight))

				'	Loop	through	the	cells.
				For	Each	rngCurrCell	In	rngLoopRange

								'	Hide	the	column	if	the	month	in	the	current	cell	does
								'	not	match	the	current	month.
								If	Month(rngCurrCell.Value)	<>	Month(Date)	Then
												rngCurrCell.EntireColumn.Hidden	=	True

								'	If	the	month	in	the	current	cell	matches	the	current	month
								'	and	the	column	is	hidden,	then	unhide	the	column.
								ElseIf	rngCurrCell.EntireColumn.Hidden	Then
												rngCurrCell.EntireColumn.Hidden	=	False
								End	If
				Next

End	Sub

	 	

HoleSize	Property

Returns	or	sets	the	hole	size	for	the	specified	doughnut	chart.	The	hole
size	must	be	a	value	from	0	through	90	(the	default	value	is	50).
Read/write	Long.

expression.HoleSize

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
Setting	this	property	to	zero	(0)	changes	the	doughnut	chart	to	a	pie	chart
(the	Type	property	for	the	ChChart	object	returns
chChartTypePieStacked).

Example
This	example	sets	hole	size	for	the	specified	chart.	Note	that	Charts(0)
must	refer	to	a	doughnut	chart.

ChartSpace1.Charts(0).HoleSize	=	25
	 	

Show	All

HorizontalAlignment	Property

Returns	or	sets	a	Variant	representing	the	horizontal	alignment	for	the
specified	range.	Can	be	an	XlHAlign	constant.

expression.HorizontalAlignment

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	left-aligns	the	range	A1:A5	on	Sheet1.

Sub	AlignRange()

			Dim	ssConstants
			Set	ssConstants	=	Spreadsheet1.Constants

			Worksheets("Sheet1").Range("A1:A5").HorizontalAlignment	=	ssConstants.xlHAlignLeft

End	Sub

	 	

HorizontalExtent	Property

You	use	the	HorizontalExtent	property	to	specify	or	determine	the	extent
of	the	horizontal	view	of	the	ChScrollView	object.	Returns	a	Long.
Read/write	Long.

expression.HorizontalExtent

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

Example
The	following	example	uses	the	HorizontalExtent	and	the
HorizontalExtentMax	properties	to	toggle	a	chart	view	between	zoomed
and	unzoomed	(horizontally).	In	this	example,	the	Chart	component	is
called	ChartSpace1.

Sub	ZoomView()
				Dim	lngHEM

				lngHEM	=	Chartspace1.Charts(0).ScrollView.HorizontalExtentMax

				If	Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	lngHEM	Then
										'	Zoom	the	chart.
										Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	(lngHEM	/	3)
				Else
										'	Zoom	out	on	the	chart.
										Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	lngHEM
				End	If
End	Sub

HorizontalExtentMax	Property

Use	this	property	to	specify	or	determine	the	maximum	extent	of	the
horizontal	view	of	the	ChScrollView	object.	Returns	a	Long.	Read/write
Long.

expression.HorizontalExtentMax

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	The	HorizontalExtentMax	property	represents	the
total	height	of	a	chart	whether	that	chart	is	zoomed	or	not.	For
information	on	how	the	values	of	the	properties	of	the	ChScrollView
object	relate	to	each	other,	see	the	ChScrollView	object	topic.

Example
The	following	example	uses	the	HorizontalExtent	and	the
HorizontalExtentMax	properties	to	toggle	a	chart	view	between	zoomed
and	unzoomed	(horizontally).	In	this	example,	the	Chart	component	is
called	ChartSpace1.

Sub	ZoomView()
				Dim	lngHEM

				lngHEM	=	Chartspace1.Charts(0).ScrollView.HorizontalExtentMax

				If	Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	lngHEM	Then
										'	Zoom	the	chart.
										Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	(lngHEM	/	3)
				Else
										'	Zoom	out	on	the	chart.
										Chartspace1.Charts(0).ScrollView.HorizontalExtent	=	lngHEM
				End	If
End	Sub

HorizontalPosition	Property

You	use	the	HorizontalPosition	property	to	specify	or	determine	the
current	horizontal	view	position	of	the	ChScrollView	object.	Returns	a
Long.	Read/write	Long.

expression.HorizontalPosition

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

The	HorizontalPosition	property	provides	information	about	the
horizontal	position	of	a	chart.	The	extreme	left	of	the	viewable	area	of	the
Chart	component	is	0	and	the	extreme	right	of	the	viewable	area	is	where
the	value	of	the	HorizontalPosition	property	equals	the	value	of	the
HorizontalExtentMax	property	(although	you	can	set	the	the
HorizontalPosition	property	to	values	greater	than	the	value	of	the
HorizontalExtentMax	property	or	even	to	negative	values).	As	long	as
the	value	of	the	HorizontalExtent	property	is	greater	than	the	value	of
the	HorizontalExtentMax	property,	the	entire	chart	will	be	visible.

When	the	HorizontalPosition	property	equals	zero,	the	extreme	left	of
the	plot	area	will	be	at	the	extreme	left	of	the	scroll	view	window.	When
the	HorizontalPosition	equals	HorizontalExtentMax,	the	plot	area	is
pushed	to	the	left	so	that	right	of	the	plot	area	is	visible	at	the	left	of	the
scroll	view	window.	The	HorizontalPosition	property	can	be	a	negative
number.	For	example	if	HorizontalPosition	=	(-0.25	*
HorizontalExtentMax)	then	the	plot	area	will	be	pushed	to	the	right	by
25%	of	the	virtual	width	of	the	plot	area.

Example
The	following	example	changes	the	horizontal	and	vertical	positions	of
the	scroll	view	of	the	Chart	component	(called	ChartSpace1	in	this
example).

Dim	lngHorizontal
Dim	lngVertical

lngHorizontal	=	ChartSpace1.Charts(0)ScrollView.HorizontalPosition
lngVertical	=	ChartSpace1.Charts(0)ScrollView.VerticalPosition

ChartSpace1.Charts(0)ScrollView.SetPosition	lngHorizontal	+	300,	lngVertical	+	200

HTMLContainer	Property

Returns	the	HTML	DIV	element	that	contains	the	specified	section.	Read-
only.

expression.HTMLContainer

expression				Required.	An	expression	that	returns	a	Section	object.

HTMLData	Property

PivotTable	and	Range	objects:	Returns	a	String	that	represents	the
specified	PivotTable	list	or	range	as	a	properly-formatted	HTML	string.
Read-only.

Spreadsheet	object:	Returns	or	sets	a	String	that	represents	the
spreadsheet	data	as	a	properly-formatted	HTML	string.	Read/write.

expression.HTMLData

expression				Required.	An	expression	that	returns	one	of	the	object	in
the	Applies	To	list.

HTMLURL	Property

Returns	or	sets	the	URL	(Internet	address)	for	the	spreadsheet	HTML
data	file.	Read/write	String.

expression.HTMLURL

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Hwnd	Property

Returns	a	Long	indicating	the	top-level	window	handle	of	the	PivotTable
control's	window.	Read-only.

expression.Hwnd

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Hyperlink	Property

PivotAxisMember,	PivotColumnMember,	PivotDetailCell,
PivotPageMember,	and	PivotRowMember	objects:	Returns	a
PivotHyperlink	object	that	represents	the	hyperlink	for	the	specified
object.

Range	object:	Returns	a	Hyperlink	object	that	represents	the	hyperlink
for	the	specified	range.

expression.Hyperlink

expression				Required.	An	expression	that	returns	one	of	the	object	in
the	Applies	To	list.

Example
This	example	resolves	the	hyperlink	in	cell	B15	on	the	active	worksheet,
downloads	the	target	document,	and	then	displays	the	document.

Spreadsheet1.ActiveSheet.Range("b15").Hyperlink.Follow
	 	

Inclination	Property

Returns	or	sets	a	Double	indicating	the	inclination	of	the	view	of	the
specified	three-dimensional	(3-D)	chart.	Valid	values	range	from	-90	to
90.	Read/write.

expression.Inclination

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
Setting	this	property	to	90	yields	an	overhead	view	of	the	specified	chart.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	inclination	of	the	view.

Sub	SetGapDepth()

				Dim	cht3DColumn	As	ChChart

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumn3D

				'	Set	the	inclination.
				cht3DColumn.Inclination	=	45

End	Sub

	 	

Show	All

Include	Property

Returns	or	sets	the	error	bar	elements	that	will	be	included	on	the
specified	chart.	The	default	value	is	chErrorBarIncludeBoth.	Read/write
ChartErrorBarIncludeEnum	.

expression.Include

expression				Required.	An	expression	that	returns	a	ChErrorBars
object.

Example
This	example	adds	error	bars	to	the	specified	chart	and	sets	the	error
bars	to	display	only	plus	values.

Sub	Format_ErrorBars()
				Dim	chConstants
				Dim	ebErrorBars
			
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Add	error	bars	to	the	first	series	in	the	first	chart.
				Set	ebErrorBars	=	ChartSpace1.Charts(0).SeriesCollection(0).ErrorBarsCollection.Add
				
				'	Include	positive	values.
				ebErrorBars.Include	=	chConstants.chErrorBarIncludePlusValues				
End	Sub

	 	

IncludedMembers	Property

Returns	or	sets	the	members	to	be	displayed	in	the	specified	field.	This
property	can	be	set	to	a	single	member	or	a	Variant	array	of	members.
The	members	can	be	passed	as	one	or	more	PivotMember	objects,
member	names,	or	unique	member	names.	Read/write.

expression.IncludedMembers

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
Members	not	listed	when	you	set	this	property	may	still	appear	in	the
PivotTable	list	if	their	parent	member	is	included.	Setting	this	property
clears	all	previous	settings	of	this	property	for	the	specified	field.	You	can
set	this	property	to	Empty	(IncludedMembers	=	Empty)	or	to	a	zero-
length	Variant	array	(IncludedMembers	=	Array())	to	clear	the	included
members	list	for	the	specified	field.

Example
This	example	sets	the	included	and	excluded	members	of	the	Store	State
and	Store	City	fields	in	PivotTable1.

Sub	Member_Filtering()

				Dim	fldStoreCity
				Dim	fldStoreState
				Dim	ptView

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	State	field.
				Set	fldStoreState	=	ptView.FieldSets("Store").Fields("Store	State")

				'	Set	a	variable	to	the	Store	City	field.
				Set	fldStoreCity	=	ptView.FieldSets("Store").Fields("Store	City")

				'	Exclude	California	and	Washington	from	the	Store	State	field.
				fldStoreState.ExcludedMembers	=	Array("CA",	"WA")

				'	Include	members	of	the	Store	City	field.	Note	that	the	cities	are
				'	in	states	that	have	been	excluded	by	the	previous	line.	Since
				'	Store	State	is	a	parent	to	Store	City,	then	the	excluded	states
				'	are	displayed	in	the	PivotTable.
				fldStoreCity.IncludedMembers	=	Array("Los	Angeles",	"San	Diego",	_
																																									"Seattle",	"Spokane")

End	Sub

	 	

Index	Property

Returns	the	index	number	of	the	specified	object	within	the	collection	of
similar	objects.	Read/write	Long	for	the	ChSeries	object;	read-only	Long
for	all	other	objects	in	the	Applies	To	list.

expression.Index

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
You	can	set	the	index	number	of	a	ChSeries	object.	The	specified	series
is	moved	to	the	specified	position,	and	other	series	are	reordered	as
necessary.

The	index	value	of	a	ListRow	object	corresponds	to	its	current	position	in
the	XML	list.	Following	a	sort,	or	after	adding	or	deleting	a	row,	a	given
row	may	have	a	new	index	value	based	on	its	new	position.

Example
This	example	moves	series	1	to	the	fourth	index	position	of	an	XY	chart
containing	6	series.	During	the	move,	series	2	through	4	are	reordered	to
series	1	through	3.	Series	0	and	series	5	stay	in	the	same	position.

ChartSpace1.Charts(0).SeriesCollection(1).Index	=	4
	 	

InsertRowRange	Property

Returns	the	Range	object	of	the	insert	row,	if	any,	from	a	specified
ListObject	object.	Read-only.

expression.InsertRowRange

expression				Required.	An	expression	that	returns	a	ListObject	object.

Remarks

Some	Range	properties	and	methods	are	not	supported.	The	properties
not	supported	are	Locked,	MergeArea	and	MergeCells.	The	methods
not	supported	are	Delete,	Insert,	Merge,	and	UnMerge.	If	the	insert	row
is	not	currently	visible,	the	Nothing	object	will	be	returned.

You	can	reference	any	cell	in	the	insert	row	using	the	InsertRowRange
property.	Properties	of	the	border	of	the	Range	returned	by	the
InsertRowRange	property	are	not	saved	after	a	new	row	is	added	to	an
XML	list.

Example
The	example	below	gets	the	insert	row	range	information	and	displays	it.

Dim	rngInsertRow
Dim	objList
								
Set	objList	=	Spreadsheet1.Worksheets(1).ListObjects(1)

'	Save	the	insert	range	information	to	a	variable.
Set	rngInsertRow	=	objList.InsertRowRange

MsgBox	("The	insert	row	range	is:	"	&	Chr(10)	&	rngInsertRow.Address)

Show	All

Interior	Property

Interior	property	as	it	applies	to	the	ChartSpace,	ChChart,
ChChartDraw,	ChDataLabel,	ChDataLabels,	ChLegend,	ChPlotArea,
ChPoint,	ChSegmentBoundary,	ChSeries,	ChSurface,	and	ChTitle
objects.

Interior	property	as	it	applies	to	the	Range	and	TitleBar	objects.

Example
This	example	sets	the	interior	color	for	the	specified	series.

ChartSpace1.Charts(0).SeriesCollection(0).Interior.Color	=	"red"
	 	

InternalPivotTable	Property

Returns	a	PivotTable	object	that	is	used	internally	by	the	chart	control	to
bind	to	an	external	data	source.

expression.InternalPivotTable

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

International	Property

Returns	information	about	the	current	country/region	and	international
settings.	Read-only	Variant.

expression.International(Index)

expression				Required.	An	expression	that	returns	a	Spreadsheet	or	a
ChartSpace	object.

Index				Required	Long.	The	setting	to	be	returned.	Can	be	one	of	the
XlApplicationInternational	constants	listed	in	the	following	table.

Index Type Meaning
xlCountryCode Long Country/region	version	of	the

Microsoft	Office	Web
Components.

xlCountrySetting Long Current	locale	setting	in	Control
Panel.

xlDecimalSeparator String Decimal	separator.
xlThousandsSeparator String Zero	or	thousands	separator.
xlListSeparator String List	separator.
xlUpperCaseRowLetter String Uppercase	row	letter	(for	R1C1-

style	references).
xlUpperCaseColumnLetter String Uppercase	column	letter.
xlLowerCaseRowLetter String Lowercase	row	letter.
xlLowerCaseColumnLetter String Lowercase	column	letter.
xlLeftBracket String Character	used	instead	of	the	left

bracket	([)	in	R1C1-style	relative
references.

xlRightBracket String Character	used	instead	of	the
right	bracket	(])	in	R1C1-style
references.

xlLeftBrace String Character	used	instead	of	the	left
brace	({)	in	array	literals.

xlRightBrace String Character	used	instead	of	the

right	brace	(})	in	array	literals.
xlColumnSeparator String Character	used	to	separate

columns	in	array	literals.
xlRowSeparator String Character	used	to	separate	rows

in	array	literals.
xlAlternateArraySeparator String Alternate	array	item	separator	to

be	used	if	the	current	array
separator	is	the	same	as	the
decimal	separator.

xlDateSeparator String Date	separator	(/).
xlTimeSeparator String Time	separator	(:).
xlYearCode String Year	symbol	in	number	formats

(y).
xlMonthCode String Month	symbol	(m).
xlDayCode String Day	symbol	(d).
xlHourCode String Hour	symbol	(h).
xlMinuteCode String Minute	symbol	(m).
xlSecondCode String Second	symbol	(s).
xlCurrencyCode String Currency	symbol.
xlGeneralFormatName String Name	of	the	General	number

format.
xlCurrencyDigits Long Number	of	decimal	digits	to	be

used	in	currency	formats.
xlCurrencyNegative Long Currency	format	for	negative

currency	values:
0	=	(symbolx)	or	(xsymbol)
1	=	-symbolx	or	-xsymbol
2	=	symbol-x	or	x-symbol
3	=	symbolx-	or	xsymbol-
where	symbol	is	the	currency
symbol	of	the	country	or	region.
Note	that	the	position	of	the
currency	symbol	is	determined	by
xlCurrencyBefore.

xlNoncurrencyDigits Long Number	of	decimal	digits	to	be

used	in	non-currency	formats.
xlMonthNameChars Long Always	returns	three	characters

for	backward	compatibility.
Abbreviated	month	names	are
read	from	Microsoft	Windows	and
can	be	any	length.

xlWeekdayNameChars Long Always	returns	three	characters
for	backward	compatibility.
Abbreviated	weekday	names	are
read	from	Microsoft	Windows	and
can	be	any	length.

xlDateOrder Long Order	of	date	elements:
0	=	month-day-year
1	=	day-month-year
2	=	year-month-day

xl24HourClock Boolean True	if	you’re	using	24-hour	time;
False	if	you’re	using	12-hour
time.

xlNonEnglishFunctions Boolean True	if	you’re	not	displaying
functions	in	English.

xlMetric Boolean True	if	you’re	using	the	metric
system;	False	if	you’re	using	the
English	measurement	system.

xlCurrencySpaceBefore Boolean True	if	a	space	is	added	before
the	currency	symbol.

xlCurrencyBefore Boolean True	if	the	currency	symbol
precedes	the	currency	values;
False	if	it	follows	them.

xlCurrencyMinusSign Boolean True	if	you’re	using	a	minus	sign
for	negative	numbers;	False	if
you’re	using	parentheses.

xlCurrencyTrailingZeros Boolean True	if	trailing	zeros	are	displayed
for	zero	currency	values.

xlCurrencyLeadingZeros Boolean True	if	leading	zeros	are
displayed	for	zero	currency
values.

xlMonthLeadingZero Boolean True	if	a	leading	zero	is	displayed
in	months	(when	months	are
displayed	as	numbers).

xlDayLeadingZero Boolean True	if	a	leading	zero	is	displayed
in	days.

xl4DigitYears Boolean True	if	you’re	using	four-digit
years;	False	if	you’re	using	two-
digit	years.

xlMDY Boolean True	if	the	date	order	is	month-
day-year	for	dates	displayed	in
the	long	form;	False	if	the	date
order	is	day-month-year.

xlTimeLeadingZero Boolean True	if	a	leading	zero	is	displayed
in	times.

Remarks
Symbols,	separators,	and	currency	formats	shown	in	the	preceding	table
may	differ	from	those	used	in	your	language	or	geographic	location	and
may	not	be	available	to	you,	depending	on	the	language	support	(U.S.
English,	for	example)	that	you’ve	selected	or	installed.	

IsConsistent	Property

Returns	a	Boolean	that	indicates	whether	the	source	data	set	is
consistent	with	the	specified	PivotData	object.	Read-only.

expression.IsConsistent

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
This	property	returns	False	when	changes	to	the	data	set	have	been
committed,	but	the	totals	have	not	been	updated.	When	this	occurs,	you
can	use	the	Refresh	method	of	the	PivotTable	object	to	update	the
totals.

IsDataBound	Property

Returns	or	sets	a	Boolean	that	determines	whether	the	specified
worksheet	is	bound	to	an	outside	data	source.	Read/write.

expression.IsDataBound

expression				Required.	An	expression	that	returns	a	Worksheet	object.

IsDirty	Property

Returns	or	sets	a	Boolean	that	indicates	whether	the	PivotTable	list	has
changed	since	the	last	time	it	was	saved.	Read/write.

expression.IsDirty

expression				Required.	An	expression	that	returns	a	PivotTable	object.

IsDisplayingEquation	Property

True	if	the	equation	for	the	trendline	for	the	specified	series	is	displayed
on	the	chart	(in	the	same	data	label	as	the	R-squared	value).	The	default
value	is	True.	Read/write	Boolean.

expression.IsDisplayingEquation

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Example
This	example	adds	a	trendline	to	the	specified	series.	Only	the	trendline
equation	is	displayed.

Sub	AddTrendLine()
				Dim	trndline
				
				'	Add	a	trendline	to	the	first	series	in	the	first	chart	in	ChartSpace1.
				Set	trndline	=	ChartSpace1.Charts(0).SeriesCollection(0).Trendlines.Add
				
				'	Set	the	font	of	the	trendline	to	bold.
				trndline.DataLabel.Font.Bold	=	True
				
				'	Do	not	display	the	R-Squared	value	with	the	trendline.
				trndline.IsDisplayingRSquared	=	False
				
				'	Display	the	equation	for	the	trendline.
				trndline.IsDisplayingEquation	=	True
End	Sub

	 	

IsDisplayingRSquared	Property

True	if	the	R-squared	value	for	the	trendline	for	the	specified	series	is
displayed	on	the	chart	(in	the	same	data	label	as	the	equation).	Setting
this	property	to	True	automatically	turns	on	data	labels.	The	default	value
is	True.	Read/write	Boolean.

expression.IsDisplayingRSquared

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Example
This	example	adds	a	trendline	to	the	specified	series.	Only	the	trendline
equation	is	displayed.

Sub	AddTrendLine()
				Dim	trndline
				
				'	Add	a	trendline	to	the	first	series	in	the	first	chart	in	ChartSpace1.
				Set	trndline	=	ChartSpace1.Charts(0).SeriesCollection(0).Trendlines.Add
				
				'	Set	the	font	of	the	trendline	to	bold.
				trndline.DataLabel.Font.Bold	=	True
				
				'	Do	not	display	the	R-Squared	value	with	the	trendline.
				trndline.IsDisplayingRSquared	=	False
				
				'	Display	the	equation	for	the	trendline.
				trndline.IsDisplayingEquation	=	True
End	Sub

	 	

IsExpanded	Property

True	if	the	specified	section	is	expanded.	Read-only	Boolean.

expression.IsExpanded

expression				Required.	An	expression	that	returns	a	Section	object.

IsFiltered	Property

True	if	the	current	filter	is	applied.	The	default	value	is	True.	Read/write
Boolean.

expression.IsFiltered

expression				Required.	An	expression	that	returns	a	PivotView	object.

IsFilterOn	Property

True	if	the	data	access	page	filter	is	applied.	Read/write	Boolean.

expression.IsFilterOn

expression				Required.	An	expression	that	returns	a	DataPage	object.

Show	All

IsHyperlink	Property

IsHyperlink	property	as	it	applies	to	the	PivotField	object.

IsHyperlink	property	as	it	applies	to	the	SchemaField	and
SchemaParameter	objects.

Example
As	it	applies	to	the	PivotField	object.

IsIncluded	Property

True	if	the	field	is	included	and	active	in	the	specified	field	set.	Read/write
Boolean.

expression.IsIncluded

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Inactive	fields	are	not	visible	in	the	PivotTable	list.	A	field	set	must	have	at
least	one	field	for	which	the	IsIncluded	property	is	set	to	True.
Attempting	to	set	this	property	to	False	for	the	only	field	where	it	is	set	to
True	generates	a	run-time	error.	This	property	is	ignored	when	the	field
set	is	used	on	the	filter	axis.	If	the	user	hides	the	last	field	in	the	user
interface,	the	field	set	is	removed	from	the	axis.

IsTotal	Property

True	if	the	specified	member	is	used	to	display	a	subtotal.	Read-only
Boolean.

expression.IsTotal

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

IsValid	Property

Returns	a	Boolean	that	indicated	whether	the	specified	member	is	a
valid	member	within	the	specified	context.	Read-only.

expression.IsValid

expression				Required.	An	expression	that	returns	a	PivotMember
object.

Example
This	example	attempts	to	find	a	specific	warehouse	in	the	Warehouse
field	set.	The	user	is	alerted	if	the	specified	warehouse	is	not	found.

Sub	FindWarehouse()

				Dim	ptView
				Dim	ptConstants
				Dim	fsWarehouse
				Dim	pmFound

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Warehouse	field	set.
				Set	fsWarehouse	=	ptView.FieldSets("Warehouse")

				'	Set	a	variable	to	the	results	of	the	FindMember	property.
				Set	pmFound	=	fsWarehouse.FindMember("Quality	Distribution,	Inc.",	ptConstants.plFindFormatPathName)

				'	Check	to	see	if	the	member	was	found.
				If	pmFound.IsValid	=	False	Then

								'	Alert	the	user	if	the	member	was	not	found.
								MsgBox	"The	specified	member	does	not	exist."

				End	If

End	Sub
	 	

Italic	Property

True	if	the	font	style	is	italic.	Read/write	Boolean	for	the	ChFont	and
PivotFont	objects;	read/write	Variant	for	the	Font	object	(returns	Null	if
some	portions	of	the	text	are	italic	and	some	are	not).	Use	the	IsNull
function	to	determine	whether	the	return	value	is	Null.

expression.Italic

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	font	to	italic	for	the	contents	of	column	B.

Spreadsheet1.Columns(2).Font.Italic	=	True
	 	

Show	All

Item	Property

Item	property	as	it	applies	to	the	Borders	object.

Item	property	as	it	applies	to	the	ChCategoryLabels	object.

Item	property	as	it	applies	to	the	PivotMemberProperties	and
PivotResultMemberProperties	objects.

Item	property	as	it	applies	to	the	Range	object.

Item	property	as	it	applies	to	the	XmlDataBindings	collection.

Item	property	as	it	applies	to	the	XmlMaps	object.

Item	property	as	it	applies	to	the	ListObjects	collection.

Item	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

ItemCount	Property

Returns	a	Long	specifying	the	number	of	category	labels	for	the
specified	chart	axis.	Read-only.

expression.ItemCount(Level)

expression				Required.	An	expression	that	returns	a	ChCategoryLabels
object.

Level			Optional	Long.	The	level	of	category	labels	to	return	the	count	of.
By	default,	the	count	of	the	innermost	level	of	labels	is	returned.

Show	All

JoinType	Property

Returns	or	sets	the	way	a	query	will	be	formed.	Read/write
DscJoinTypeEnum	.

expression.JoinType

expression				Required.	An	expression	that	returns	a	PageRelationship
object.

Remarks
You	can	use	this	property	only	if	the	PageRelationship	object's	Type
property	is	set	to	dscLookup.

Show	All

Label	Property

Label	property	as	it	applies	to	the	PivotAxis,	PivotDataAxis,
PivotFilterAxis,	PivotGroupAxis,	and	PivotView	objects.

Label	property	as	it	applies	to	the	PivotData,	PivotResultAxis,
PivotResultColumnAxis,	PivotResultDataAxis,
PivotResultFilterAxis,	PivotResultGroupAxis,	PivotResultPageAxis,
and	PivotResultRowAxis	objects.

Show	All

LanguageID	Property

Returns	a	Long	representing	the	locale	identifier	(LCID)	for	the	install
language,	the	user	interface	language,	or	the	Help	language.	Read-only.

expression.LanguageID(id)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

id			Required	MsoAppLanguageID	.

Show	All

LanguagePreferredForEditing	Property

Returns	True	if	the	value	for	the	msoLanguageID	constant	has	been
identified	in	the	registry	as	a	preferred	language	for	editing.	Read-only
Boolean.

expression.LanguagePreferredForEditing(lid)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

lid			Required	MsoLanguageID	.	The	language	to	check	for	in	the
registry.

Remarks
You	must	test	all	valid	msoLanguageID	values	to	enumerate	the	set	of
preferred	languages.

Example
The	following	example	tests	whether	the	U.S.	English	language	is
registered	as	a	preferred	editing	language.

If	Spreadsheet1.LanguageSettings.	_
				LanguagePreferredForEditing(msoLanguageIDEnglishUS)	Then

			MsgBox	"U.S.	English	is	one	of	the	chosen	editing	languages."

End	If

	 	

Show	All

Left	Property

Left	property	as	it	applies	to	the	ChartSpace,	ChCategoryLabel,
ChChartField,	ChDataLabel,	ChDataLabels,	ChErrorBars,
ChLegendEntry,	ChPoint,	ChSeries,	ChTrendline,	PivotAggregate,
PivotAxisMember,	PivotColumnMember,	PivotDetailCell,
PivotPageMember,	PivotResultAxis,	PivotResultColumnAxis,
PivotResultDataAxis,	PivotResultFilterAxis,	PivotResultGroupAxis,
PivotResultLabel,	PivotResultPageAxis,	PivotResultRowAxis,
PivotRowMember,	and	PivotTable	objects.

Left	property	as	it	applies	to	the	ChScrollView	object.

Left	property	as	it	applies	to	the	PivotData	object.

Left	property	as	it	applies	to	the	Range	object.

Left	property	as	it	applies	to	the	Window	object.

Example
This	example	scrolls	to	the	left	through	the	spreadsheet	window	to
display	cell	F1	if	this	cell	is	currently	to	the	left	of	the	visible	range.

Sub	ScrollSheet

			Dim	rngScroll

			Set	rngScroll	=	Spreadsheet1.Range("f1")

			If	rngScroll.Left	<	0	Then	Spreadsheet1.ActiveSheet.Scroll	rngScroll

End	Sub

	 	

Left2	Property

Returns	a	Long	value	that	represents	the	distance	from	the	left	side	of
the	PivotTable	list	to	the	data	area.	This	property	always	returns	1.	Read-
only.

expression.Left2

expression				Required.	An	expression	that	returns	a	PivotData	object.

LeftOffset	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	pixels	to
scroll	the	data	area	to	the	left.	Read/write.

expression.LeftOffset

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
Use	the	TopOffset	to	scroll	the	data	area	down.

Example
This	example	scrolls	the	data	area	of	PivotTable1	down	45	pixels	and	left
45	pixels.

Sub	ScrollDataArea()

				Dim	ptData

				Set	ptData	=	PivotTable1.ActiveData

				'	Scroll	45	pixels	down.
				ptData.TopOffset	=	45

				'	Scroll	the	data	area	to	the	left.
				ptData.LeftOffset	=	45

End	Sub

	 	

Legend	Property

Returns	a	ChLegend	object	that	represents	the	legend	for	the	specified
chart.

expression.Legend

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	causes	the	specified	chart	to	display	its	legend	and	then
sets	the	legend	font.

Sub	AddLegend()

			'	Enable	the	legend	for	the	first	chart	in	Chartspace1.
			ChartSpace1.Charts(0).HasLegend	=	True

			'	Set	the	font	for	the	legend.
			ChartSpace1.Charts(0).Legend.Font.Name	=	"Times	New	Roman"

End	Sub

	 	

LegendEntries	Property

Returns	a	ChLegendEntries	collection	for	the	specified	legend.

expression.LegendEntries

expression				Required.	An	expression	that	returns	a	ChLegend	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Example
This	example	hides	the	specified	legend	entry.

ChartSpace1.Charts(0).Legend.LegendEntries(1).Visible	=	False
	 	

Length	Property

Returns	or	sets	the	maximum	field	or	parameter	length.	Read/write	Long.

expression.Length

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

LevelCount	Property

Returns	a	Long	indicating	the	number	of	levels	in	a	hierarchical	chart
axis.	Read-only.

expression.LevelCount

expression				Required.	An	expression	that	returns	a	ChCategoryLabels
object.

LightNormal	Property

Returns	or	sets	a	Double	specifying	the	amount	that	the	light	is	bent	from
90	degrees	in	a	three-dimensional	(3-D)	chart.	Valid	values	range	from	0
to	1.	Read/write.

expression.LightNormal

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
Setting	this	property	to	0	results	in	a	flat	look	for	your	chart,	while	setting
this	property	to	0.5	yields	a	more	three-dimensional	look.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	LightNormal	property	of	the	chart.

Sub	SetGapDepth()

				Dim	cht3DColumn	As	ChChart

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumn3D

				cht3DColumn.LightNormal	=	0.8

End	Sub
	 	

Line	Property

Returns	a	ChLine	object	that	you	can	use	to	change	the	appearance	of
the	specified	chart	element.

expression.Line

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
When	used	with	other	properties,	the	Line	property	can	format	axes,
trendlines,	lines	on	line	or	stock	charts,	error	bars,	and	gridlines.

Example
This	example	sets	the	line	color	for	the	specified	series.

ChartSpace1.Charts(0).SeriesCollection(0).Line.Color	=	"red"
	 	

LineStyle	Property

Returns	or	sets	the	border	line	style	for	the	specified	range.	Can	be	one
of	the	LineStyleEnum	constants;	returns	Null	if	the	borders	do	not	all
have	the	same	style.	Use	the	IsNull	function	to	determine	whether	the
return	value	is	Null.	Read/write	Variant.

expression.LineStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
You	cannot	set	this	property	for	a	ChBorder	object	that	represents	a
chart	element.

Example
This	example	puts	a	green	dash-dot	border	around	each	cell	in	the	range
A1:E5.

Sub	SetBorder()

			Dim	rngCurrent
			Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants

			Set	rngCurrent	=	Spreadsheet1.Range("a1:e5")

			rngCurrent.Borders.LineStyle	=	ssConstants.ssConstants.xlDashDot

			rngCurrent.Borders.Color	=	"Green"

End	Sub

	 	

ListBoundField	Property

Returns	or	sets	the	field	that	is	bound	in	the	specified	list	or	combo	box
(as	opposed	to	the	field	that	is	displayed).	Applies	only	to	list	boxes	and
combo	boxes.	Read/write	String.

expression.ListBoundField

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

Remarks
Use	the	ListDisplayField	property	to	return	or	set	the	displayed	field.

This	property	is	used	with	the	ListRowSource	and	ListDisplayField
properties	to	control	how	data	is	displayed	in	a	list	box	or	combo	box.	For
example,	consider	a	list	box	that	displays	product	names	in	a	section
called	Order	Details.	The	recordset	behind	the	Order	Details	section
includes	a	field	named	ProductID	that	represents	the	product	for	a	given
Order	Detail	record.	But	instead	of	displaying	ProductID	in	a	textbox,	the
page	author	wants	to	display	product	names	in	a	dropdown	list	box.	The
list	box	can	be	filled	with	a	recordset	definition	named	Products	which
contains	fields	called	ProdID	and	ProductName	from	the	Product	table.
The	properties	of	this	list	box	element	would	be	set	as	shown	in	the
following	table.

Property Value
ListRowSource Products
ListBoundField ProdID
ListDisplayField ProductName
ControlSource ProductID

ListDisplayField	Property

Returns	or	sets	the	field	that	is	displayed	in	the	list	or	combo	box	(as
opposed	to	the	field	that	is	bound).	There	can	be	only	one	displayed	field.
This	property	applies	only	to	list	boxes	and	combo	boxes.	Read/write
String.

expression.ListDisplayField

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

Remarks
Use	the	ListBoundField	property	to	return	or	set	the	bound	field.

This	property	is	used	with	the	ListRowSource	and	ListBoundField
properties	to	control	how	data	is	displayed	in	a	list	box	or	combo	box.	For
example,	consider	a	list	box	that	displays	product	names	in	a	section
called	Order	Details.	The	recordset	behind	the	Order	Details	section
includes	a	field	named	ProductID	that	represents	the	product	for	a	given
Order	Detail	record.	But	instead	of	displaying	ProductID	in	a	textbox,	the
page	author	wants	to	display	product	names	in	a	dropdown	list	box.	The
list	box	can	be	filled	with	a	recordset	definition	named	Products	which
contains	fields	called	ProdID	and	ProductName	from	the	Product	table.
The	properties	of	this	list	box	element	would	be	set	as	shown	in	the
following	table.

Property Value
ListRowSource Products
ListBoundField Prod	ID
ListDisplayField Product	Name
ControlSource Product	ID

Show	All

ListObject	Property

As	it	applies	to	the	Range	object.

As	it	applies	to	the	Workbook	object.

Example
As	it	applies	to	the	Range	object.As	it	applies	to	the	Workbook	object.

ListObjects	Property

Returns	the	ListObjects	collection	for	the	Worksheet	object.	Read-only.

expression.ListObjects

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Remarks

You	use	the	ListObjects	property	to	return	the	ListObjects	collection	for
a	specified	Worksheet	object.	Then	you	iterate	through	the	ListObjects
collection	to	get	each	ListObject	object	on	that	worksheet.

Example
The	following	example	works	with	each	ListObjects	object	related	to	a
Spreadsheet	component	(named	Spreadsheet1).	The	code	uses	the
ListObjects	property	of	the	second	Worksheet	object	to	return	the
ListObjects	collection.	It	then	gets	the	name	of	the	ListObject	object.
This	name	corresponds	to	the	value	of	the	ID	attribute	of	an
MapInfo/Map/Entry	in	the	schema	map	syntax	in	the	XML	Spreadsheet
file.

The	XML	fragment	where	the	details	appear	in	the	XML	Spreadsheet	file
looks	something	like	the	following	fragment.	In	this	example,	the	name	of
the	ListObject	object	is	Cust_MapId:

<x2:MapInfo	xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">	
			<x2:Map	x2:ID="Cust_MapId">
						<x2:Entry	x2:ID="example_id"	x2:Type="table">
									...
						</x2:Entry>
			</x2:Map>
</x2:MapInfo>

Dim	objLists
Dim	objList
Dim	strName

Set	objLists	=	Spreadsheet1.Worksheets(2).ListObjects

For	Each	objList	in	objLists
				'	Save	the	ListObject	name	to	a	variable.	
				strName	=	objList.Name	

				'	Work	with	that	particular	list	object	here.

Next
	 	

This	example	sets	the	line	weight	of	the	border	for	the	specified
ListObject	in	the	Spreadsheet	component	(named	Spreadsheet1).

Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants
		
				'	Set	a	variable	to	the	range	to	add	the	borders	to.
				rngList	=	Spreadsheet1.ActiveSheet.ListObjects(1).Range
			
				'	Set	whole	range	border	weight.
						rngList.Weight	=	ssConstants.owcLineWeightMedium

ListRows	Property

Returns	a	ListRows	collection	that	represents	all	the	rows	of	data	in	the
ListObject	object.	It	does	not	include	the	header	or	insert	rows.	Read-
only.

expression.ListRows

expression				Required.	An	expression	that	returns	a	ListObject	object.

Remarks

You	use	the	ListRows	property	to	return	the	ListRows	collection	for	a
specified	ListObject	object.	Then	you	iterate	through	the	ListRows
collection	to	get	each	ListRow	object	on	that	worksheet.

Example
The	following	example	shows	you	how	to	retrieve	list	row	information	for
a	specific	list	row,	in	this	case,	the	eighth	row.

Dim	objLists
Dim	objLRows
Dim	objLRow

Set	objLists	=	Spreadsheet1.ActiveSheet.ListObjects
Set	objLRows	=	objLists.Item(1).ListRows
	
'	Save	the	list	row	information	of	list	row	number	8	to	a	variable.	
Set	objRow	=	objLRows.Item(8)

'	Work	with	the	list	row	information	here.

ListRowSource	Property

Specifies	the	data	source	for	a	list	box	or	combo	box.	This	property
applies	only	to	list	boxes	and	combo	boxes,	and	it	must	be	set	before	the
ListBoundField	or	ListDisplayField	property	is	set.	Read/write	String.

expression.ListRowSource

expression				Required.	An	expression	that	returns	an
ElementExtension	object.

Remarks
This	property	is	used	with	the	ListBoundField	and	ListDisplayField
properties	to	control	how	data	is	displayed	in	a	list	box	or	combo	box.	For
example,	consider	a	list	box	that	displays	product	names	in	a	section
called	Order	Details.	The	recordset	behind	the	Order	Details	section
includes	a	field	named	ProductID	that	represents	the	product	for	a	given
Order	Detail	record.	But	instead	of	displaying	ProductID	in	a	textbox,	the
page	author	wants	to	display	product	names	in	a	dropdown	list	box.	The
list	box	can	be	filled	with	a	recordset	definition	named	Products	which
contains	fields	called	ProdID	and	ProductName	from	the	Product	table.
The	properties	of	this	list	box	element	would	be	set	as	shown	in	the
following	table.

Property Value
ListRowSource Products
ListBoundField Prod	ID
ListDisplayField Product	Name
ControlSource Product	ID

LoadMode	Property

Returns	an	enumeration	constant	that	represents	the	numeric	equivalent
of	the	LoadMode	attribute	value	of	the	<Binding>	element	for	a	particular
data	binding.	Read-only	BindingLoadMode.

expression.LoadMode

expression				Required.	An	expression	that	returns	an	XMLDataBinding
object.

Remarks

An	XMLDataBinding	object	can	be	a	binding	to	an	XML	file,	an	arbitrary
SOAP	service,	another	Web	part	(for	the	Spreadsheet	Web	Part),	or	a
data	retrieval	service.	The	LoadMode	property	describes	the	binding
behavior	for	loading.	The	possible	LoadMode	property	settings	and	their
numeric	equivalent	are	shown	below.	If	not	provided,	a	default	of
"normal"	is	assumed:

BindingLoadMode Description
Normal	(0) For	a	query	binding,	binding	occurs	at	first	load,

when	the	user	clicks	the	Refresh	All	toolbar	button,
Refresh	command	on	the	toolstrip	in	the
Spreadsheet	Web	Part,	or	the	Refresh	Data
command	on	the	context	menu	in	the	Spreadsheet
component.	Binding	can	be	done	programmatically
as	well.

For	an	update	binding,	binding	occurs	every	time
the	user	clicks	the	Update	Data	command	on	the
toolstrip	in	the	Spreadsheet	Web	Part,	or	when
using	theSave	Data	command	on	the	context	menu.
Binding	can	also	occur	programmatically

OM	(1) For	a	query	binding,	binding	does	not	occur	at	first
load,	when	the	user	clicks	the	Refresh	All	toolbar
button,	Refresh	command	on	the	toolstrip	in	the
Spreadsheet	Web	Part,	or	the	Refresh	Data
command	on	the	context	menu	in	the	Spreadsheet
component.	Binding	also	does	not	occur	when	the
Refresh	method	is	called	on	the	Spreadsheet
object.	Binding	only	occurs	when	the	Refresh
method	of	the	XmlDataBinding	object	is	called.

For	an	update	binding,	binding	does	not	occur	at
first	load,	when	the	user	clicks	the	Update	Data
command	on	the	toolstrip	in	the	Spreadsheet	Web

Part,	or	when	using	the	Save	Data	command	on	the
context	menu.	Binding	only	occurs	when	the	Update
method	of	the	XmlDataBinding	object	is	called.

Delay	(2) For	a	query	binding,	when	the	user	clicks	the
Refresh	All	toolbar	button,	the	Refresh	command
on	the	toolstrip	in	the	Spreadsheet	Web	Part,	or	the
Refresh	Data	command	on	the	context	menu.
Binding	can	be	done	programmatically	as	well.

For	an	update	binding,	the	behavior	is	the	same	as
described	for	the	Normal	enumeration.

Show	All

Location	Property

Returns	or	sets	the	location	of	the	calculated	field	evaluation.	Read/write
DscLocationEnum.

expression.Location

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
This	property	controls	where	calculated	fields	are	evaluated.	When	this
property	is	set	to	dscServer,	the	expression	is	included	in	the	SQL	string
sent	to	the	database	and	must	be	in	the	correct	SQL	syntax	for	the
database.	When	this	property	is	set	to	dscClient,	the	expression	is
evaluated	on	the	client	computer	using	Visual	Basic	for	Applications
expressions.

Locked	Property

True	if	all	cells	in	the	specified	range	are	locked,	False	if	none	of	the
cells	are	locked,	and	Null	if	some	cells	are	locked	and	some	are	not.	The
default	value	is	True.	Use	the	IsNull	function	to	determine	whether	the
return	value	is	Null.	Read/write	Variant.

expression.Locked

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	locks	only	the	cells	in	column	B	on	the	active	sheet	in
Spreadsheet1	and	then	protects	the	worksheet.

Sub	LockColumnB()
				Dim	shtCurrent
				
				Set	shtCurrent	=	Spreadsheet1.ActiveSheet
				
				'	Clear	the	locked	attribute	for	all	cells	on	the	active	sheet.
				shtCurrent.Cells.Locked	=	False
				
				'	Lock	all	of	the	cells	in	Column	B.
				shtCurrent.Columns(2).Locked	=	True
				
				'	Enable	protection	on	the	active	sheet.
				shtCurrent.Protection.Enabled	=	True
End	Sub

	 	

LogBase	Property

Sets	the	base	of	the	logarithm	when	you	are	using	log	scales.	Attempting
to	set	this	property	to	a	value	less	than	or	equal	to	zero	(0)	causes	an
error.	Read/write	Double.

expression.LogBase

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	causes	the	specified	axis	to	use	a	base	2	logarithmic	scale.

Sub	SetScaling()

			Dim	chConstants
			Dim	scValueAxisScaling

			Set	chConstants	=	ChartSpace1.Constants

			'	Set	a	variable	to	the	scaling	object	of	the	value	axis.
			Set	scValueAxisScaling	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling

			'	Set	the	scaling	type.
			scValueAxisScaling.Type	=	chConstants.chScaleTypeLogarithmic

			'	Set	the	base	value.
			scValueAxisScaling.LogBase	=	2

End	Sub

	 	

LookupRelationships	Property

Returns	the	LookupRelationships	collection	for	the	specified	page	row
source.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.LookupRelationships

expression				Required.	An	expression	that	returns	a	PageRowsource
object.

Remarks
LookupRelationship	objects	refer	to	row	sources	that	have	a	one-to-
many	relationship	with	the	specified	page	row	source.	Fields	from	these
row	sources	can	appear	in	the	same	section	or	PivotTable	list	as	fields
from	the	specified	row	source.

LookupSchemaRelationships	Property

Returns	the	LookupSchemaRelationships	collection	for	the	specified
schema	row	source.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.LookupSchemaRelationships

expression				Required.	An	expression	that	returns	a
SchemaRowSource	object.

MajorGridlines	Property

Returns	a	ChGridlines	object	that	represents	the	major	gridlines	for	the
specified	axis.	Note	that	you	can	use	gridlines	on	any	axis.	Read-only.

expression.MajorGridlines

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	color	and	line	weight	for	the	gridlines	on	the	value
axis	of	the	first	chart	in	ChartSpace1.

Sub	Format_Gridlines()
				Dim	chConstants
				Dim	glMajorGridlines
				Dim	glMinorGridlines

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	major	gridlines	on	the	value	axis.
				Set	glMajorGridlines	=	ChartSpace1.Charts(0).Axes(_
											chConstants.chAxisPositionValue).MajorGridlines

				'	Set	a	variable	to	the	minor	gridlines	on	the	value	axis.
				Set	glMinorGridlines	=	ChartSpace1.Charts(0).Axes(_
											chConstants.chAxisPositionValue).MinorGridlines

				'	Set	the	color	and	weight	of	the	major	gridlines.
				glMajorGridlines.Line.Color	=	"white"
				glMajorGridlines.Line.Weight	=	5

				'	Set	the	color	and	weight	of	the	minor	gridlines.
				glMinorGridlines.Line.Color	=	"yellow"
				glMajorGridlines.Line.Weight	=	2
End	Sub

	 	

Show	All

MajorTickMarks	Property

Returns	or	sets	the	major	tick-mark	type	for	the	specified	axis.	Read/write
ChartTickMarkEnum	.

expression.MajorTickMarks

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	turns	off	major	tick	marks	on	the	specified	axis.

Sub	DisableMajorTickMarks()
			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft).MajorTickMarks
													=	chConstants.chTickMarkNone
End	Sub

	 	

MajorUnit	Property

Returns	or	sets	the	major	unit	for	the	specified	axis.	Use	this	property
only	with	a	value	axis.	Read/write	Double.

expression.MajorUnit

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Remarks
Setting	this	property	causes	the	HasAutoMajorUnit	property	to	be	set	to
False.

Example
This	example	sets	the	major	and	minor	unit	for	the	value	axis.

Sub	SetValueAxis()
			Dim	chConstants
			Dim	axValueAxis

			Set	chConstants	=	ChartSpace1.Constants

			Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)

			axValueAxis.MajorUnit	=	7
			axValueAxis.MinorUnit	=	2.5
End	Sub
	 	

MajorVersion	Property

Returns	the	major	version	of	the	Microsoft	Office	Web	Components
object	library.	Read-only	Long.

expression.MajorVersion

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	displays	the	major	version	of	Spreadsheet1.

Msgbox	Spreadsheet1.MajorVersion
	 	 	
	 	

Show	All

ManySide	Property

ManySide	property	as	it	applies	to	the	PageRelatedField	object.

ManySide	property	as	it	applies	to	the	PageRelationship	object.

ManySide	property	as	it	applies	to	the	SchemaRelatedField	and
SchemaRelationship	objects.

MapData	Property

You	use	the	MapData	property	to	specify	or	determine	the	schema	map
for	an	XmlMap	object.	Read/write	String.

expression.MapData

expression				Required.	An	expression	that	returns	an	XmlMap	object.

Remarks

The	XmlMap	object	is	created	when	an	XML	Spreadsheet	file	containing
binding	and	mapping	information	is	loaded	into	the	Spreadsheet
component	by	setting	the	XMLURL	or	XMLData	property.	You	can	create
an	XML	Spreadsheet	file	by	importing	and	mapping	data	to	a	worksheet
using	Microsoft	Office	Excel	2003,	and	then	saving	the	workbook	as	an
XML	Spreadsheet	file.	Setting	the	MapData	property	will	replace	any
existing	schema	map	with	the	new	schema	map	you	specify.

Example
The	following	example	uses	the	MapData	property	of	the	XmlMap	object
to	return	the	schema	map:

Dim	objMap
Dim	strMapData

For	Each	objMap	in	Spreadsheet1.ActiveWorkbook.XmlMaps
					'	Save	the	xml	map	information	to	a	variable.					
					strMapData	=	objMap.MapData
					'	Work	with	map	info	xml	here.
Next

The	next	example	is	a	function	that	sets	the	MapData	property:

Function	ChangeMapSchema(objMap,	strMapData)
On	Error	Resume	Next
objMap.MapData	=	strMapData

	 If	Err.Number	<>	0	Then
	 	 ChangeMapSchema	=	True
	 Else
	 	 ChangeMapSchema	=	False
	 End	If
End	Function

Marker	Property

Returns	a	ChMarker	object	that	represents	the	markers	for	every	point	in
the	specified	series.	Read-only.

expression.Marker

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Example
This	example	sets	the	chart	type	and	then	sets	the	marker	type	and
interior	color	for	the	specified	series.

Sub	SetMarkerStyle()
			Dim	chConstants
			Dim	serSeries1

			Set	chConstants	=	ChartSpace1.Constants

			Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

			ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLineMarkers

			serSeries1.Marker.Style	=	chConstants.chMarkerStyleSquare

			serSeries1.Interior.Color	=	"blue"
End	Sub

	 	

Show	All

MaxHeight	Property

MaxHeight	property	as	it	applies	to	the	PivotTable	object.

MaxHeight	property	as	it	applies	to	the	Spreadsheet	object.

Maximum	Property

Returns	or	sets	the	maximum	value	for	the	specified	scale.	Read/write
Double.

expression.Maximum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	sets	the	maximum	and	minimum	values	for	the	specified
axis	scale.

Sub	SetScalingLimits()
			Dim	chConstants
			Dim	axisScale

			Set	chConstants	=	ChartSpace1.Constants

			Set	axisScale	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling

			axisScale.Maximum	=	70
			axisScale.Minimum	=	-10
End	Sub0
	 	

MaxRecords	Property

Returns	or	sets	the	maximum	number	of	records	that	the	connection	will
return	to	the	local	computer.	Read/write	Long.

expression.MaxRecords

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Show	All

MaxWidth	Property

MaxWidth	property	as	it	applies	to	the	PivotTable	object.

MaxWidth	property	as	it	applies	to	the	Spreadsheet	object.

Show	All

Member	Property

Member	property	as	it	applies	to	the	PivotResultColumnAxis,
PivotResultGroupAxis,	PivotResultPageAxis,	and
PivotResultRowAxis	objects.

Member	property	as	it	applies	to	the	PivotFieldSet	object.

MemberCaptions	Property

Returns	or	sets	an	array	of	Variant	values	that	contains	the	captions	of
the	members	in	the	specified	field.	Use	this	property	to	customize	the
captions	of	the	members	in	a	field.	Read/write.

expression.MemberCaptions

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
The	array	that	you	pass	to	this	property	contains	an	array	for	each
caption	that	you	want	to	modify.	The	first	element	in	the	array	can	contain
either	a	member	name,	unique	name,	or	a	reference	to	a	PivotMember
object.	The	second	element	in	the	array	is	the	new	caption	to	be	used	for
the	member.

Members	not	specified	in	the	array	will	use	the	default	captions	provided
by	the	data	source.

Note		This	property	will	work	only	with	Online	Analytical	Processing
(OLAP)	data	sources.

Example
This	example	replaces	the	captions	in	the	State	Province	field	of	the
Customers	field	set	with	captions	that	are	more	readable.

Sub	NewMemberCaptions()

				Dim	fldStateCaptions
				Dim	avarNewCaptions(2)

				Set	fldStateCaptions	=	PivotTable1.ActiveView.FieldSets("Customers")	_
																										.Fields("State	Province")

				'	The	following	three	lines	of	code	specify	the	new	captions	to
				'	be	displayed	for	the	states	in	the	State	Province	field.
				avarNewCaptions(0)	=	Array("[State	Province].[CA]",	"California")
				avarNewCaptions(1)	=	Array("[State	Province].[WA]",	"Washington")
				avarNewCaptions(2)	=	Array("[State	Province].[OR]",	"Oregon")

				'	Apply	the	new	captions	to	the	State	Province	field.
				fldStateCaptions.MemberCaptions	=	avarNewCaptions

End	Sub

	 	

Show	All

MemberProperties	Property

MemberProperties	property	as	it	applies	to	the	PivotField	object.

MemberProperties	property	as	it	applies	to	the	PivotAxisMember,
PivotColumnMember,	PivotPageMember,	and	PivotRowMember
objects.

Example
As	it	applies	to	the	PivotField	object.

MemberPropertiesOrder	Property

Returns	or	sets	an	array	of	Variant	values	that	represents	the	order	that
the	member	properties	are	to	be	displayed	in	the	specified	field.	Use	this
property	to	rearrange	the	order	that	member	properties	are	displayed	in.
Read/write.

expression.MemberPropertiesOrder

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
The	array	that	you	pass	to	this	property	can	contain	a	list	of
PivotMemberProperty	objects	or	a	String	list	of	member	captions.

Example
This	example	enables	the	member	captions	for	the	Store	Name	field	in
PivotTable1.	Then,	the	member	captions	are	rearranged,	and	their
captions	are	customized.

Sub	Format_MemberProperties()
				Dim	ptView
				Dim	ptConstants
				Dim	fldStoreName

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	active	view	of	the	PivotTable.
				Set	ptView	=	PivotTable1.ActiveView

				'	Set	a	variable	to	the	Store	Name	field.
				Set	fldStoreName	=	ptView.FieldSets("Store").Fields("Store	Name")

				'	The	following	three	lines	of	code	specify	that	the	member	properties	are
				'	displayed	in	the	PivotTable	list.
				fldStoreName.MemberProperties("Store	Manager").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Type").DisplayIn	=	ptConstants.plDisplayPropertyInReport
				fldStoreName.MemberProperties("Store	Sqft").DisplayIn	=	ptConstants.plDisplayPropertyInReport

				fldStoreName.MemberPropertiesOrder	=	Array("Store	Type",	"Store	Sqft",	"Store	Manager")

				'	The	following	three	lines	of	code	set	the	caption	for	the	member	properties.
				fldStoreName.MemberProperties("Store	Manager").Caption	=	"Manager	Name"
				fldStoreName.MemberProperties("Store	Type").Caption	=	"Store	Type"
				fldStoreName.MemberProperties("Store	Sqft").Caption	=	"Size	in	SQFT"
End	Sub

	 	

MemberProperty	Property

Returns	a	PivotMemberProperty	object	that	represents	the	member
property	of	the	specified	result	member.

expression.MemberProperty

expression				Required.	An	expression	that	returns	a
PivotResultMemberProperty	object.

MergeArea	Property

Returns	a	Range	object	that	represents	the	merged	range	containing	any
part	of	the	specified	range.	The	specified	range	can	contain	more	than
one	cell;	if	the	range	does	not	contain	any	merged	cells,	it	is	returned
unchanged.	Read-only.

expression.MergeArea

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	creates	a	merged	cell	from	the	range	B2:C5	in	Sheet1	and
puts	a	thick	red	border	around	the	merged	cell.

Sub	Merge_Cells()
				Dim	ssConstants
				Dim	shtCurrent
				
				Set	ssConstants	=	Spreadsheet1.Constants
				Set	shtCurrent	=	Spreadsheet1.Worksheets("Sheet1")
				
				'	Merge	cells	B2:C5.
				shtCurrent.Range("B2:C5").Merge
				
				'	Set	the	border	color	of	the	merged	cell.
				shtCurrent.Range("B2").MergeArea.Borders.Color	=	"Red"
				
				'	Set	the	border	weight	of	the	merged	cell.
				shtCurrent.Range("B2").MergeArea.Borders.Weight	=	ssConstants.owcLineWeightThick
End	Sub

	 	

MergeCells	Property

True	if	the	specified	range	is	within	a	merged	cell.	False	if	the	specified
range	does	not	contain	a	merged	cell.	Null	if	the	specified	range	contains
all	or	part	of	a	merged	cell	and	other	cells	outside	of	the	merged	cell.
Read/write	Variant.

expression.MergeCells

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks
When	you	select	a	range	that	contains	merged	cells,	the	resulting
selection	may	be	different	from	the	intended	selection.

Use	the	Address	property	to	check	the	address	of	the	selected	range.

Use	the	UnMerge	method	to	unmerge	the	specified	range.

Minimum	Property

Returns	or	sets	the	minimum	value	for	the	specified	scale.	Read/write
Double.

expression.Minimum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	sets	the	maximum	and	minimum	values	for	the	specified
axis	scale.

Sub	SetScalingLimits()
			Dim	chConstants
			Dim	axisScale

			Set	chConstants	=	ChartSpace1.Constants

			Set	axisScale	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling

			axisScale.Maximum	=	70
			axisScale.Minimum	=	-10
End	Sub

	 	

MinorGridlines	Property

Returns	a	ChGridlines	object	that	represents	the	minor	gridlines	for	the
specified	axis.	Note	that	you	can	use	gridlines	on	any	axis.	Read-only.

expression.MinorGridlines

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	color	and	line	weight	for	the	gridlines	on	the	value
axis	of	the	first	chart	in	ChartSpace1.

Sub	Format_Gridlines()
				Dim	chConstants
				Dim	glMajorGridlines
				Dim	glMinorGridlines

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	major	gridlines	on	the	value	axis.
				Set	glMajorGridlines	=	ChartSpace1.Charts(0).Axes(_
											chConstants.chAxisPositionValue).MajorGridlines

				'	Set	a	variable	to	the	minor	gridlines	on	the	value	axis.
				Set	glMinorGridlines	=	ChartSpace1.Charts(0).Axes(_
											chConstants.chAxisPositionValue).MinorGridlines

				'	Set	the	color	and	weight	of	the	major	gridlines.
				glMajorGridlines.Line.Color	=	"white"
				glMajorGridlines.Line.Weight	=	5

				'	Set	the	color	and	weight	of	the	minor	gridlines.
				glMinorGridlines.Line.Color	=	"yellow"
				glMajorGridlines.Line.Weight	=	2
End	Sub
	 	

Show	All

MinorTickMarks	Property

Returns	or	sets	the	minor	tick-mark	type	for	the	specified	axis.	Read/write
ChartTickMarkEnum	.

expression.MinorTickMarks

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	turns	on	minor	gridlines	and	minor	tick	marks	for	the
specified	axis	and	sets	the	gridline	color	and	tick-mark	style.

Sub	FormatValueAxis()
			Dim	chConstants
			Dim	axValueAxis

			Set	chConstants	=	ChartSpace1.Constants

			Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft)

			axValueAxis.HasMinorGridlines	=	True

			axValueAxis.MinorGridlines.Line.Color	=	"green"

			axValueAxis.MinorTickMarks	=	chConstants.chTickMarkOutside
End	Sub

	 	

MinorUnit	Property

Returns	or	sets	the	minor	unit	for	the	specified	axis.	Use	this	property
only	with	a	value	axis.	Read/write	Double.

expression.MinorUnit

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Remarks
Setting	this	property	causes	the	HasAutoMinorUnit	property	to	be	set	to
False.

Example
This	example	sets	the	major	and	minor	unit	for	the	value	axis.

Sub	SetValueAxis()
			Dim	chConstants
			Dim	axValueAxis

			Set	chConstants	=	ChartSpace1.Constants

			Set	axValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue)

			axValueAxis.MajorUnit	=	7
			axValueAxis.MinorUnit	=	2.5
End	Sub

	 	

MinorVersion	Property

Returns	the	minor	version	of	the	Microsoft	Office	Web	Components
object	library.	Read-only	String.

expression.MinorVersion

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

Miter	Property

Returns	or	sets	a	ChartLineMiterEnum	constant	indicating	the	way	that
a	line's	exterior	edges	are	joined.	Read/write.

expression.Miter

expression				Required.	An	expression	that	returns	a	ChLine	object.

Example
This	example	changes	the	first	chart	in	Chartspace1	to	a	line	chart	and
then	formats	the	line	for	the	first	data	series	in	the	chart.

Sub	Set_Series_LineStyle()

				Dim	chConstants
				Dim	serSeries1

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	line	chart.
				ChartSpace1.Charts(0).Type	=	chChartTypeLine

				'	Set	a	variable	to	refer	to	the	first	data	series	in	the	chart.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Set	the	miter	of	the	line	of	the	first	series.
				serSeries1.Line.Miter	=	chConstants.chLineMiterBevel

				'	Set	the	line	weight	of	the	first	series.
				serSeries1.Line.Weight	=	chConstants.owcLineWeightThick

				'	Set	the	line	style	of	the	first	series.
				serSeries1.Line.DashStyle	=	chConstants.chLineRoundDot

End	Sub

	 	

MoveAfterReturn	Property

Determines	whether	the	active	cell	will	be	moved	when	the	user	presses
the	ENTER	key.	The	default	value	is	True.	Use	the
MoveAfterReturnDirection	property	to	determine	which	direction	the
active	cell	moves	when	the	user	presses	ENTER.	Read/write	Boolean.

expression.MoveAfterReturn

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	causes	the	active	cell	to	remain	selected	after	the	user
presses	the	ENTER	key.

Spreadsheet1.MoveAfterReturn	=	False
	 	

Show	All

MoveAfterReturnDirection	Property

Returns	or	sets	the	direction	in	which	the	focus	is	moved	when	the	user
presses	the	ENTER	key	and	the	MoveAfterReturn	property	is	set	to
True.	Read/write	XlDirection	.

expression.MoveAfterReturnDirection

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	causes	the	cell	to	the	right	of	the	active	cell	to	be	selected
after	the	user	presses	the	ENTER	key.

Sub	MoveAfterEnter()
				Dim	ssConstants
				
				Set	ssConstants	=	Spreadsheet1.Constants
				
				'	Enable	the	MoveAfterReturn	property.
				Spreadsheet1.MoveAfterReturn	=	True
				
				'	Move	the	cursor	one	cell	to	the	right	when
				'	the	user	presses	ENTER.
				Spreadsheet1.MoveAfterReturnDirection	=	xlToRight
End	Sub

	 	

Name	Property

Returns	or	sets	the	name	of	the	specified	object.

Read/write	Variant	for	the	Font	object.

Read/write	for	the	Range	object.	Returns	a	Name	object.	Set	using	a
String.

Read/write	String	for	the	ChAxis,	ChChart,	ChFont,	ChSeries,
GroupingDef,	Name,	PageField,	PivotFont,	PivotHyperlink,
PivotTotal,	RecordsetDef,	SchemaField,	SchemaRowsource,	and
Worksheet	objects.

Read-only	String	for	all	other	objects	in	the	Applies	To	list.

expression.Name

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	name	of	the	specified	chart.

ChartSpace1.Charts(0).Name	=	"Line	Chart"
	 	

After	the	chart	name	has	been	set,	you	can	refer	to	the	chart	by	name,	as
shown	in	the	following	example.

ChartSpace1.Charts("Line	Chart").HasLegend	=	True
	 	

Show	All

Names	Property

Names	property	as	it	applies	to	the	Spreadsheet	and	Workbook
objects.

Names	property	as	it	applies	to	the	Worksheet	object.

Example
As	it	applies	to	the	Spreadsheet	and	Workbook	objects.

Show	All

Next	Property

Next	property	as	it	applies	to	the	Range	object.

Next	property	as	it	applies	to	the	Worksheet	object.

Example
As	it	applies	to	the	Range	object.

NextSection	Property

Returns	a	Section	object	that	represents	the	next	physical	section	on	the
specified	page,	regardless	of	siblings	or	parents.	This	property	fails	on
the	final	section	on	the	page.	Read-only.

expression.NextSection

expression				Required.	An	expression	that	returns	a	Section	object.

NextSibling	Property

Returns	a	Section	object	that	represents	the	next	sibling	in	the	current
data	access	page.	This	may	cause	the	next	page	of	records	to	populate
itself.	This	property	will	not	cross	parents,	and	it	will	fail	on	the	last	sibling
of	the	current	data	access	page.

expression.NextSibling

expression				Required.	An	expression	that	returns	a	Section	object.

NumberFormat	Property

Returns	or	sets	the	number	format	for	the	specified	object.	Read/write
Variant	for	the	Range	object;	read/write	String	for	all	other	objects	in	the
Applies	To	list.

expression.NumberFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
You	can	define	a	number	format	by	using	the	same	format	codes	as
Microsoft	Excel.	For	information	on	number	format	codes,	see	the
"Create	or	delete	a	custom	number	format"	topic	in	Microsoft	Excel	Help.

Example
The	following	example	sets	the	number	format	for	the	ranges	A1:E10	and
F1:F10	on	the	active	worksheet.

Sub	FormatCells()

			Spreadsheet1.ActiveSheet.Range("A1:E10").NumberFormat	=	"0.###"
			Spreadsheet1.ActiveSheet.Range("F1:F10").NumberFormat	=	"Currency"

End	Sub

	 	

NumericScale	Property

Returns	the	maximum	number	of	digits	you	can	have	to	the	right	of	the
decimal	point	for	numeric	types.	Read-only	Long.

expression.NumericScale

expression				Required.	An	expression	that	returns	a	SchemaParameter
object.

Show	All

ObjectType	Property

Returns	a	ChartSelectionsEnum	that	represents	the	type	of	object	that
is	currently	selected.

expression.ObjectType

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Offline	Property

Returns	a	B	oolean	indicating	whether	Microsoft	Internet	Explorer	is	in
offline	mode.	Read-only.

expression.Offline

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Example
This	example	changes	the	text	of	a	label	control	to	indicate	the	offline
status	of	a	data	access	page	before	the	data	access	page	is	bound	to	its
data	source.

Sub	MSODSC_BeforeInitialBind(DSCEventInfo)

			If	MSODSC.Offline	=	True	then
						Label.innerText	=	"Offline"
			Else
						Label.innerText	=	"Online"
			End	If

End	Sub

	 	

OfflinePublication	Property

Returns	or	sets	a	String	that	represents	the	publication	to	use	when	the
data	access	page	is	taken	offline.	Read/write.

expression.OfflinePublication

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
This	property	is	valid	only	when	the	OfflineType	property	is	set	to
dscOfflineMerge.

OfflineSource	Property

Returns	or	sets	a	String	that	represents	the	data	source	used	when	the
data	access	page	is	offline.	Read/write.

expression.OfflineSource

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
The	value	used	to	set	this	property	varies	based	upon	the	current	setting
of	the	OfflineType	and	XMLLocation	properties.	If	the	OfflineType
property	is	set	to	dscOfflineMerge,	then	this	property	should	be	set	to	a
connection	string	for	the	local	MSDE	database.	If	the	OfflineType
property	is	set	to	dscOfflineXMLDataFile	and	the	XMLLocation
property	is	set	to	dscXMLDataFile,	then	this	property	should	be	set	to	a
string	containing	the	path	to	the	XML	data	file.

Example
This	example	sets	the	offline	settings	from	the	data	source	control	named
MSODSC.

Sub	SetOfflineSettings()

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Set	the	offline	type.
			MSODSC.OfflineType	=	dscConstants.dscOfflineXMLDataFile

			'	Set	the	location	of	the	XML	data	to	a	data	file.
			MSODSC.XMLLocation	=	dscconstants.dscXMLDataFile

			'	Set	the	XML	data	file	to	use	when	the	page	is	offline.
			MSODSC.OfflineSource	=	"Q1	Sales	Analysis.xml"

End	Sub

	 	

Show	All

OfflineType	Property

Returns	or	sets	a	DscOfflineTypeEnum	constant	that	represents	the
type	of	connection	used	to	persist	the	data	when	a	data	access	page	is
taken	offline.	Read/write.

expression.OfflineType

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Example
This	example	sets	the	offline	settings	from	the	data	source	control	named
MSODSC.

Sub	SetOfflineSettings()

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Set	the	offline	type.
			MSODSC.OfflineType	=	dscConstants.dscOfflineXMLDataFile

			'	Set	the	location	of	the	XML	data	to	a	data	file.
			MSODSC.XMLLocation	=	dscconstants.dscXMLDataFile

			'	Set	the	XML	data	file	to	use	when	the	page	is	offline.
			MSODSC.OfflineSource	=	"Q1	Sales	Analysis.xml"

End	Sub

	 	

Offset	Property

Returns	a	Range	object	that	represents	a	range	that	is	offset	from	the
specified	range.

expression.Offset(RowOffset,	ColumnOffset)

expression				Required.	An	expression	that	returns	a	Range	object.

RowOffset			Optional	Variant.	The	number	of	rows	(positive,	negative,	or
0	(zero))	by	which	the	range	is	to	be	offset.	Positive	values	are	offset
downward,	and	negative	values	are	offset	upward.	The	default	value	is	0.

ColumnOffset			Optional	Variant.	The	number	of	columns	(positive,
negative,	or	0	(zero))	by	which	the	range	is	to	be	offset.	Positive	values
are	offset	to	the	right,	and	negative	values	are	offset	to	the	left.	The
default	value	is	0.

Example
This	example	sets	the	font	for	the	contents	of	the	cell	that	is	one	column
to	the	right	of	the	active	cell.

Spreadsheet1.ActiveCell.Offset(0,	1).Font.Bold	=	True
	 	

This	example	loops	through	the	contiguous	values	in	column	A	in	the
active	sheet	of	Spreadsheet1	and	deletes	any	rows	that	contain	odd-
numbered	values.

Sub	Delete_Odd_Values()

				Spreadsheet1.ActiveSheet.Range("A1").Select

				'	Loop	until	an	empty	cell	is	selected.
				Do	Until	IsEmpty(Spreadsheet1.ActiveCell)

								'	If	the	active	cell	contains	an	odd	number.
								If	Spreadsheet1.ActiveCell.Value	Mod	2	=	1	Then
												'	Delete	the	row.
												Spreadsheet1.ActiveCell.EntireRow.Delete
								Else
												'	Select	the	next	cell.
												Spreadsheet1.ActiveCell.Offset(1,	0).Select
								End	If
				Loop
End	Sub

	 	

Show	All

OneSide	Property

OneSide	property	as	it	applies	to	the	PageRelatedField	object.

OneSide	property	as	it	applies	to	the	PageRelationship	object.

OneSide	property	as	it	applies	to	the	SchemaRelatedField	and
SchemaRelationship	objects.

Order	Property

Returns	or	sets	the	polynomial	order	for	the	specified	trendline	(an
integer	value	greater	than	1).	If	you	set	this	property	for	a	linear	trendline,
it	becomes	a	polynomial	trendline.	Read/write	Long.

expression.Order

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Example
This	example	sets	the	order	for	the	specified	trendline.

ChartSpace1.Charts(0).SeriesCollection(0).Trendlines(0).Order	=	2
	 	

OrderedMembers	Property

Returns	or	sets	a	Variant	that	determines	how	the	members	of	a	field	are
sorted	when	the	SortDirection	property	is	set	to
plSortDirectionCustom,	plSortDirectionCustomAscending,	or
plSortDirectionCustomDescending.	Set	this	property	to	an	array	of
members	that	is	ordered	in	the	way	that	you	want	them	to	appear	in	the
PivotTable	list.	When	setting	this	property,	you	can	pass	an	array	of
member	names,	member	unique	names,	or	member	object	references.
When	retrieving	this	property,	the	array	will	always	contain	PivotMember
object	references.	Read/write.

expression.OrderedMembers

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
Any	members	in	the	field	that	are	not	listed	in	this	array	will	appear	below
the	last	member	listed	in	the	array.

Setting	this	property	replaces	the	current	list.	To	add	items	to	an	existing
list,	you	must	retrieve	the	list	and	add	add	members	to	it,	or	use	a
variable	to	hold	the	current	list,	append	to	it,	and	reset	this	property.

It	is	allowable	to	pass	member	names	or	unique	names	that	currently	do
not	exist	in	the	data	results.	If	you	pass	a	name	or	unique	name	that
cannot	be	resolved	to	a	resulting	member,	it	will	be	converted	to	a
PivotMember	object	with	its	IsValid	property	set	to	False.

To	clear	this	list,	set	this	property	to	Empty	or	an	array	of	zero	elements.

Example
This	example	creates	a	custom	sort	order	in	the	Title	field.

Sub	CustomSort()

			Dim	ptConstants
			Dim	ptView
			Dim	pfTitle

			Set	ptConstants	=	PivotTable1.Constants

			Set	ptView	=	PivotTable1.ActiveView

			'	Set	a	variable	to	the	Title	field.
			Set	pfTitle	=	ptView.FieldSets("Title").Fields("Title")

			'	Specify	the	ordering	for	some	of	the	items	in	the	Title	field.
			pfTitle.OrderedMembers	=	Array("Sales	Representative",	_
																																		"Sales	Manager",	"Vice	President,	Sales")

			'	Set	the	sort	direction.
			pfTitle.SortDirection	=	ptConstants.plSortDirectionCustom

End	Sub

	 	

Show	All

Orientation	Property

PivotFieldSet	object:	Returns	a	PivotFieldSetOrientationEnum
constant	that	represents	the	field	set	orientation.	A	field	set	can	be
located	on	both	the	summary	axis	and	the	column,	row,	or	filter	axis	at
the	same	time.	Read-only.

ChAxis	object:	Returns	or	sets	a	Long	that	represents	the	orientation	of
the	labels	on	the	specified	axis.	Can	be	a	ChartLabelOrientationEnum
constant.	Read/write.

ChScaling	object:	Returns	or	sets	a	ChartScaleOrientationEnum
constant	that	represents	the	scaling	orientation.	Changing	the	value	of
this	property	flips	the	chart.	Read/write.

expression.Orientation

expression				Required.	An	expression	that	returns	one	of	the	object	in
the	Applies	To	list.

Example
This	example	sets	the	scaling	orientation	for	the	specified	axis.

Sub	SetAxisOrientation()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).Axes(1).Scaling.Orientation	=	chConstants.chScaleOrientationMaxMin

End	Sub

	 	

Overlap	Property

Returns	or	sets	the	amount	of	overlap	between	markers	within	a	single
category.	Positive	values	cause	the	markers	to	overlap,	and	negative
values	cause	the	markers	to	separate.	The	default	value	is	zero	(0),	and
the	valid	range	is	from	–100	through	100.	Read/write	Long.

expression.Overlap

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	overlap	value	for	the	specified	chart.

ChartSpace1.Charts(0).Overlap	=	25
	 	

PageAxis	Property

PivotView	object:	Returns	a	PivotGroupAxis	object	that	represents	the
page	axis.

PivotData	object:	Returns	a	PivotResultGroupAxis	object	that
represents	the	page	axis.

expression.PageAxis

expression				Required.	An	expression	that	returns	a	PivotView	or
PivotData	object.

PageFields	Property

Returns	the	PageFields	collection	for	the	specified	recordset	definition.

expression.PageFields

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

PageMember	Property

PivotCell	object:	Returns	a	PivotPageMember	object	that	represents
the	page	member	for	the	specified	cell.

PivotResultPageAxis	object:	Returns	a	PivotPageMember	object	that
represents	the	page	member	for	the	specified	result	axis.

expression.PageMember

expression				Required.	An	expression	that	returns	a	PivotCell	or
PivotResultPageAxis	object.

PageRelatedFields	Property

Returns	the	PageRelatedFields	collection	for	the	specified	page
relationship.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.PageRelatedFields

expression				Required.	An	expression	that	returns	a	PageRelationship
object.

PageRowsource	Property

Returns	the	PageRowsource	object	for	the	specified	page	field.	Read-
only.

expression.PageRowsource

expression				Required.	An	expression	that	returns	a	PageField	object.

PageRowsources	Property

Returns	the	PageRowsources	collection	for	the	specified	recordset
definition.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

expression.PageRowsources

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

Panes	Property

Returns	the	Panes	collection	for	the	specified	worksheet.

expression.Panes

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Example
This	example	sets	a	variable	for	the	visible	range	in	the	specified	pane
and	displays	the	range's	location.

Sub	SetVisibleRange()

			Dim	rngVisible

			Set	rngVisible	=	Spreadsheet1.ActiveSheet.Panes(1).VisibleRange

			MsgBox	"rngVisible.Address	"	&	vr.Address

End	Sub

	 	

ParameterValues	Property

Returns	the	ParameterValues	collection	for	the	specified	recordset
definition.

expression.ParameterValues

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Parent	Property

Returns	the	parent	object	for	the	specified	object.

expression.Parent

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
The	event	procedure	in	this	example	runs	whenever	the	user	clicks	in	the
chart	workspace.

Sub	ChartSpace1_Click()

			Dim	chConstants
			Dim	iSeriesNum
			Dim	iPointNum

			Set	chConstants	=	ChartSpace1.Constants

			If	ChartSpace1.SelectionType	=	chConstants.chSelectionPoint	Then
						'	Point	parent	is	series.
						iSeriesNum	=	ChartSpace1.Selection.Parent.Index

						iPointNum	=	ChartSpace1.Selection.Index

						MsgBox	"Series:	"	&	iSeriesNum	&	"	Point:	"	&	iPointNum
			End	If

End	Sub

	 	

ParentAxisMember	Property

Returns	a	PivotAxisMember	object	that	represents	the	parent	member
for	the	specified	axis	member.

expression.ParentAxisMember

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

Remarks
This	property	returns	Nothing	if	this	property	is	used	for	the	top	level	axis
member.

ParentColumnMember	Property

Returns	a	PivotColumnMember	object	that	represents	the	parent
member	for	the	specified	column	member.

expression.ParentColumnMember

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

Remarks
This	property	returns	Nothing	if	this	property	is	used	for	the	top	level
column	member.

ParentLabel	Property

Returns	a	ChCategoryLabel	object	that	represents	the	parent	label	for
the	specified	label.

expression.ParentLabel

expression				Required.	An	expression	that	returns	a	ChCategoryLabel
object.

Remarks
Using	this	property	with	a	label	that	does	not	have	a	parent	label	will
result	in	a	run-time	error.

ParentMember	Property

Returns	a	PivotMember	object	that	represents	the	parent	member	for
the	specified	member.

expression.ParentMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ParentPageMember	Property

Returns	a	PivotPageMember	object	that	represents	the	parent	member
for	the	specified	page	member.

expression.ParentPageMember

expression				Required.	An	expression	that	returns	a	PivotPageMember
object.

ParentRecordsetDef	Property

Returns	a	RecordsetDef	object	that	represents	the	parent	for	the
specified	recordset	definition.

expression.ParentRecordsetDef

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

ParentRowMember	Property

Returns	a	PivotRowMember	object	that	represents	the	parent	member
for	the	specified	row	member.

expression.ParentRowMember

expression				Required.	An	expression	that	returns	a	PivotRowMember
object.

Remarks
This	property	returns	Nothing	if	this	property	is	used	for	the	top	level	row
member.

ParentSection	Property

Returns	a	Section	object	that	represents	the	parent	of	the	specified
section.

expression.ParentSection

expression				Required.	An	expression	that	returns	a	Section	object.

Show	All

Path	Property

Returns	a	String	that	represents	the	path	to	the	specified	member.	Read-
only.

expression.Path(Format)

expression				Required.	An	expression	that	returns	a	PivotMember
object.

Format			Required	PivotMemberFindFormatEnum	.

Show	All

Pattern	Property

Returns	a	ChartPatternTypeEnum	constant	indicating	the	fill	pattern	for
the	specified	ChInterior	object.	Read-only.

expression.Pattern

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetPatterned	method	to	set	the	pattern	for	a	ChInterior	object.

PercentComplete	Property

Returns	a	Long	value	that	represents	the	completed	portion	of	the
current	operation.	This	property	is	supported	only	in	the
RecordsetSaveProgress	event.	Read-only.

expression.PercentComplete

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

Remarks
Use	this	property	with	the	RecordsetSaveProgress	event	to	update	a
control	in	the	container,	such	as	the	status	bar.

Using	this	property	with	an	unsupported	event	will	result	in	a	run-time
error.

Example
This	example	uses	the	RecordsetSaveProgess	event	to	update	the
Microsoft	Internet	Explorer's	status	bar	when	the	recordset	contained	by
the	DataSourceControl	object	is	saved.

Sub	MSODSC_RecordsetSaveProgress(DSCEventInfo)

				'	Update	the	status	bar	with	the	current
				'	completion	percentage.
				Window.Status	=	DSCEventInfo.PercentComplete

				'	Check	to	see	if	the	save	has	been	completed.
				If	DSCEventInfo.PercentComplete	=	100	then

								'	Clear	the	status	bar	when	the	save	is	complete.
								Window.Status	=	""
				End	If

End	Sub

	 	

Period	Property

Returns	or	sets	a	Long	that	represents	the	period	for	a	moving-average
trendline.	Read/write.

expression.Period

expression				Required.	An	expression	that	returns	a	ChTrendline	object.

Perspective	Property

Returns	or	sets	a	Long	indicating	the	amount	of	perspective	on	a	three-
dimensional	chart.	This	property	has	no	effect	if	the	ProjectionMode
property	of	the	chart	has	been	set	to	chProjectionModeOrthographic.
Valid	values	range	from	0	to	80.	Read/write.

expression.Perspective

expression				Required.	An	expression	that	returns	a	ChChart	object

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	perspective	for	the	chart.

Sub	SetPerspective()

				Dim	cht3DColumn

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumnClustered3D

				'	Set	the	perspective.
				cht3DColumn.Perspective	=	35

End	Sub

	 	

PivotAxis	Property

Returns	the	PivotResultGroupAxis	object	for	the	specified	category
label	or	data	series.

expression.PivotAxis

expression				Required.	An	expression	that	returns	a	ChCategoryLabels
or	ChSeriesCollection	object.

Show	All

PivotObject	Property

PivotObject	property	as	it	applies	to	the	ChPoint	object.

PivotObject	property	as	it	applies	to	the	ChCategoryLabel,
ChChartField,	ChLegendEntry,	and	ChSeries	objects.

Remarks
This	property	returns	Null	if	the	chart	is	not	bound	to	a	relational	data
source.

Show	All

PlotAllAggregates	Property

Returns	or	sets	a	ChartPlotAggregatesEnum	constant	that	determines
which	fields	are	plotted	when	the	chart	control	is	bound	to	a	relational
data	source.	Read/write.

expression.PlotAllAggregates

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
This	property	is	relevant	only	when	multiple	fields	have	been	added	to
the	data	area	of	the	chart.

PlotArea	Property

Returns	a	ChPlotArea	object	that	represents	the	plot	area	on	the
specified	chart.	Note	that	pie,	doughnut,	radar,	and	polar	charts	do	not
have	plot	areas.

expression.PlotArea

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	sets	the	interior	color	for	the	plot	area	on	the	specified
chart.

ChartSpace1.Charts(0).PlotArea.Interior.Color	=	"Green"
	 	

Points	Property

Returns	the	ChPoints	collection	for	the	specified	series.

expression.Points

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Example
This	example	sets	the	interior	color	for	point	two	in	the	specified	series.

ChartSpace1.Charts(0).SeriesCollection(0).Points(2).Interior.Color	=	"green"
	 	

Show	All

Position	Property

Returns	or	sets	the	position	of	the	object.

Read/write	ChartAxisPositionEnum	for	the	ChAxis	object.

Read/write	ChartDataLabelPositionEnum	for	the	ChDataLabels	object.

Read/write	ChartLegendPositionEnum	for	the	ChLegend	object.

Read/write	ChartTitlePositionEnum	for	the	ChTitle	object.

expression.Position

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	puts	the	legend	for	the	specified	chart	to	the	left	of	the	plot
area.

Sub	AddLegend()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			'	Enbable	the	legend	for	the	first	chart	in	Chartspace1.
			ChartSpace1.Charts(0).HasLegend	=	True

			'	Set	the	position	of	the	legend.
			ChartSpace1.Charts(0).Legend.Position	=	chConstants.chLegendPositionLeft

End	Sub

	 	

Precision	Property

Returns	the	maximum	number	of	digits	you	can	use	for	numeric	types.
Read-only	Long.

expression.Precision

expression				Required.	An	expression	that	returns	a	SchemaParameter
object.

PrefixCharacter	Property

Returns	the	prefix	character	for	the	specified	range.	Returns	an
apostrophe	(')	if	the	specified	range	contains	a	value	that	was	preceded
with	an	apostrophe	when	it	was	entered	into	the	worksheet.	Returns	a
blank	string	if	the	specified	range	does	not	contain	a	prefix	character.
Read-only	Variant.

expression.PrefixCharacter

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	deletes	all	prefix	characters	from	the	active	worksheet	in
Spreadsheet1.

Sub	Delete_PrefixCharacters()
				Dim	rngCell

				'	Loop	through	all	used	cells	in	the	active	worksheet.
				For	Each	rngCell	In	Spreadsheet1.ActiveSheet.UsedRange

								'	If	a	prefix	character	exists,	delete	it.
								If	rngCell.PrefixCharacter	<>	""	Then
												rngCell.Value	=	rngCell.Value
								End	If
				Next
End	Sub

	 	

Show	All

PresetGradientType	Property

Returns	a	ChartPresetGradientTypeEnum	constant	indicating	the
preset	gradient	type	for	the	specified	ChInterior	object.	Read-only.

expression.PresetGradientType

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetPresetGradient	method	to	set	the	preset	gradient	type	for
the	fill.

Show	All

PresetTexture	Property

Returns	a	ChartPresetTextureEnum	constant	indicating	the	preset
texture	for	the	specified	ChInterior	object.	Read-only.

expression.PresetTexture

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetTextured	method	to	set	the	preset	texture	for	a	ChInterior
object.

Show	All

Previous	Property

Previous	property	as	it	applies	to	the	Range	object.

Previous	property	as	it	applies	to	the	Worksheet	object.

Example
As	it	applies	to	the	Range	object.

PreviousSection	Property

Returns	a	Section	object	that	represents	the	previous	section	on	the
specified	page,	regardless	of	siblings	or	parents.	This	property	fails	on
the	first	section	of	the	page.

expression.PreviousSection

expression				Required.	An	expression	that	returns	a	Section	object.

PreviousSibling	Property

Returns	a	Section	object	that	represents	the	previous	sibling	in	the
current	data	access	page.	This	property	fails	on	the	first	sibling	of	the
current	data	access	page.

expression.PreviousSibling

expression				Required.	An	expression	that	returns	a	Section	object.

PrimaryPageRowsource	Property

Returns	a	PageRowsource	object	that	represents	the	primary	page	row
source	for	the	specified	recordset	definition.	When	a	recordset	definition
is	created,	the	row	source	named	in	the	Add	or	AddNew	method
becomes	the	primary	page	row	source.

expression.PrimaryPageRowsource

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

PrintQuality3D	Property

Returns	or	sets	a	Double	indicating	the	ratio	of	the	printed	resolution	of	a
three-dimensional	(3-D)	chart	to	the	resolution	of	your	printer.	Valid
values	range	from	0	to	1.	The	default	value	is	0.25.	Read/write.

expression.PrintQuality3D

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
The	lower	the	value	of	this	property,	the	faster	your	3-D	chart	will	print.
However,	setting	this	value	of	this	property	too	low	may	yield
unsatisfactory	results.

Example
This	example	sets	the	3-D	charts	in	Chartspace1	to	print	at	75%	of	the
printer's	resolution.

Chartspace1.PrintQuality3D	=	0.75
	 	

Show	All

ProjectionMode	Property

Returns	or	sets	a	ChartProjectionModeEnum	constant	indicating	the
viewing	perspective	of	a	three-dimensional	chart.	Read/write.

expression.ProjectionMode

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	sets	the	projection	mode	of	the	chart.

Sub	SetExtrudeAngle()

				Dim	cht3DColumn
				Dim	chConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumnClustered3D

				'	Sets	the	projection	mode	to	orthographic.
				cht3DColumn.ProjectionMode	=	chConstants.chProjectionModeOrthographic

				'	Sets	the	extrusion	angle.
				cht3DColumn.ExtrudeAngle	=	75

End	Sub
	 	

PropertyCaptionFont	Property

Returns	a	PivotFont	object	that	represents	the	font	settings	used	to
display	the	caption	of	OLAP	member	properties	in	the	specified	view.	Use
the	returned	object	to	format	the	font	used	for	member	property	captions.

expression.PropertyCaptionFont

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	formats	the	alignment	and	the	font	of	member	property
captions	and	values	in	the	active	view	of	PivotTable1.

Sub	Format_MemberProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	The	following	three	lines	of	code	format	the
				'	font	for	member	property	captions.
				ptView.PropertyCaptionFont.Name	=	"Tahoma"
				ptView.PropertyCaptionFont.Size	=	8
				ptview.PropertyCaptionFont.Bold	=	True

				'	Left-align	the	member	property	captions.
				ptview.PropertyCaptionHAlignment	=	ptConstants.plHAlignLeft

				'	The	following	two	lines	of	code	format	the
				'	font	for	member	property	values.
				ptview.PropertyValueFont.Name	=	"Tahoma"
				ptview.PropertyValueFont.Size	=	8

				'	Right-align	the	member	property	values.
				ptview.PropertyValueHAlignment	=	ptConstants.plHAlignRight

End	Sub

	 	

Show	All

PropertyCaptionHAlignment	Property

Returns	or	sets	a	PivotHAlignmentEnum	constant	that	represents	the
horizontal	alignment	of	OLAP	member	property	captions	in	the	specified
view.	Use	this	property	to	set	the	horizontal	alignment	of	member
property	captions.	Read/write.

expression.PropertyCaptionHAlignment

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	formats	the	alignment	and	the	font	of	member	property
captions	and	values	in	the	active	view	of	PivotTable1.

Sub	Format_MemberProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	The	following	three	lines	of	code	format	the
				'	font	for	member	property	captions.
				ptView.PropertyCaptionFont.Name	=	"Tahoma"
				ptView.PropertyCaptionFont.Size	=	8
				ptview.PropertyCaptionFont.Bold	=	True

				'	Left-align	the	member	property	captions.
				ptview.PropertyCaptionHAlignment	=	ptConstants.plHAlignLeft

				'	The	following	two	lines	of	code	format	the
				'	font	for	member	property	values.
				ptview.PropertyValueFont.Name	=	"Tahoma"
				ptview.PropertyValueFont.Size	=	8

				'	Right-align	the	member	property	values.
				ptview.PropertyValueHAlignment	=	ptConstants.plHAlignRight

End	Sub

	 	

PropertyCaptionWidth	Property

Returns	or	sets	a	Long	that	represents	the	width	of	the	caption	of	a
member	property	that	is	displayed	in	the	specified	field.	Read/write.

expression.PropertyCaptionWidth

expression				Required.	An	expression	that	returns	a	PivotField	object.

PropertyHeight	Property

Returns	or	sets	a	Long	that	represents	the	height	of	a	member	property
that	is	displayed	in	the	specified	field.	Read/write.

expression.PropertyHeight

expression				Required.	An	expression	that	returns	a	PivotField	object.

PropertyValueFont	Property

Returns	a	PivotFont	object	that	represents	the	font	settings	used	to
display	the	value	of	OLAP	member	properties	in	the	specified	view.	Use
the	returned	object	to	format	the	font	used	for	member	property	values.

expression.PropertyValueFont

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	formats	the	alignment	and	the	font	of	member	property
captions	and	values	in	the	active	view	of	PivotTable1.

Sub	Format_MemberProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	The	following	three	lines	of	code	format	the
				'	font	for	member	property	captions.
				ptView.PropertyCaptionFont.Name	=	"Tahoma"
				ptView.PropertyCaptionFont.Size	=	8
				ptview.PropertyCaptionFont.Bold	=	True

				'	Left-align	the	member	property	captions.
				ptview.PropertyCaptionHAlignment	=	ptConstants.plHAlignLeft

				'	The	following	two	lines	of	code	format	the
				'	font	for	member	property	values.
				ptview.PropertyValueFont.Name	=	"Tahoma"
				ptview.PropertyValueFont.Size	=	8

				'	Right-align	the	member	property	values.
				ptview.PropertyValueHAlignment	=	ptConstants.plHAlignRight

End	Sub

	 	

Show	All

PropertyValueHAlignment	Property

Returns	or	sets	a	PivotHAlignmentEnum	constant	that	represents	the
horizontal	alignment	of	OLAP	member	property	values	in	the	specified
view.	Use	this	property	to	set	the	horizontal	alignment	of	member
property	values.	Read/write.

expression.PropertyValueHAlignment

expression				Required.	An	expression	that	returns	a	PivotView	object.

Example
This	example	formats	the	alignment	and	the	font	of	member	property
captions	and	values	in	the	active	view	of	PivotTable1.

Sub	Format_MemberProperties()

				Dim	ptView
				Dim	ptConstants

				Set	ptConstants	=	PivotTable1.Constants

				'	Set	a	variable	to	the	current	PivotTable	view.
				Set	ptView	=	PivotTable1.ActiveView

				'	The	following	three	lines	of	code	format	the
				'	font	for	member	property	captions.
				ptView.PropertyCaptionFont.Name	=	"Tahoma"
				ptView.PropertyCaptionFont.Size	=	8
				ptview.PropertyCaptionFont.Bold	=	True

				'	Left-align	the	member	property	captions.
				ptview.PropertyCaptionHAlignment	=	ptConstants.plHAlignLeft

				'	The	following	two	lines	of	code	format	the
				'	font	for	member	property	values.
				ptview.PropertyValueFont.Name	=	"Tahoma"
				ptview.PropertyValueFont.Size	=	8

				'	Right-align	the	member	property	values.
				ptview.PropertyValueHAlignment	=	ptConstants.plHAlignRight

End	Sub

	 	

PropertyValueWidth	Property

Returns	or	sets	a	Long	that	represents	the	width	of	the	value	of	a
member	property	that	is	displayed	in	the	specified	field.	Read/write.

expression.PropertyValueWidth

expression				Required.	An	expression	that	returns	a	PivotField	object.

PropNames	Property

Returns	a	string	array	containing	the	values	of	the	ID	attribute	for	each
Field	element	in	the	schema	map	for	the	XML	list	(/Map/Entry/Field@ID)
in	left-to-right	order,	which	corresponds	to	the	ordering	of	/Field/Range
elements	in	the	map.	Read-only	Variant.

expression.PropNames

expression				Required.	An	expression	that	returns	a	ListObject	object.

Remarks

For	XML	lists	created	by	saving	a	file	from	Microsoft	Office	Excel	2003	as
an	XML	Spreadsheet	file,	the	ID	values	returned	by	the	PropName
property	correspond	to	the	column	names	in	the	header	row	of	the	XML
list	represented	by	the	ListObject	object.	The	ordering	of	the	values
returned	in	the	array	depends	on	the	setting	of	the	RightToLeft	property.

Example
The	following	example	shows	how	to	get	the	column	names	in	a	list	when
the	active	cell	is	within	the	list:

Dim	strFieldName
Dim	objListObject

Set	objListObject	=	Spreadsheet1.ActiveCell.ListObject
For	Each	strFieldName	in	objListObject.PropNames
		'	strFieldName	now	contains	element	(field)	name	for	a	column	in	the	list.
Next

ProtectContents	Property

True	if	the	contents	of	the	sheet	are	protected.	Read-only	Boolean.

expression.ProtectContents

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Protection	Property

Returns	a	Protection	object	that	contains	the	protection	properties	for
the	specified	worksheet.	The	protection	properties	are	ignored	if	the
Enabled	property	is	set	to	False.

expression.Protection

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Example
This	example	locks	the	cells	in	column	B	and	enables	protection	for	the
sheet.

Sub	ProtectColumnB()

			'	Unlock	all	of	the	cells	in	the	active	sheet.
			Spreadsheet1.ActiveSheet.Cells.Locked	=	False

			'	Lock	the	cells	in	column	B.
			Spreadsheet1.Columns(2).Locked	=	True

			'	Protect	the	locked	cells.
			Spreadsheet1.ActiveSheet.Protection.Enabled	=	True

End	Sub

	 	

ProtectionMode	Property

True	if	user-interface-only	protection	is	enabled.	Always	returns	True.
Read-only	Boolean.

expression.ProtectionMode

expression				Required.	An	expression	that	returns	a	Worksheet	object.

ProtectStructure	Property

True	if	the	order	of	the	sheets	in	the	workbook	is	protected.	Read-only
Boolean.

expression.ProtectStructure

expression				Required.	An	expression	that	returns	a	Workbook	object.

ProviderFormattedValue	Property

Returns	a	Variant	that	represents	the	value	of	the	specified	aggregate	as
it	is	formatted	by	the	data	source.	Read-only.

expression.ProviderFormattedValue

expression				Required.	An	expression	that	returns	a	PivotAggregate
object.

ProviderType	Property

Returns	a	ProviderType	constant	that	represents	the	type	of	data
provider	for	the	specified	PivotTable	list.	Read-only.

expression.ProviderType

expression				Required.	An	expression	that	returns	a	PivotTable	object.

Show	All

Range	Property

As	it	applies	to	the	AutoFilter	object.

As	it	applies	to	the	PivotData	object.

As	it	applies	to	the	Range,	Spreadsheet,	and	Worksheet	objects.

As	it	applies	to	the	ListObject	object.

As	it	applies	to	the	ListRow	object.

Example
As	it	applies	to	the	Range,	Spreadsheet,	and	Worksheet	objects.

RangeSelection	Property

Returns	a	Range	object	that	represents	the	selected	cells	on	the
worksheet	in	the	specified	window.	Read-only.

expression.RangeSelection

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
This	property	in	identical	in	functionality	to	the	Selection	property.

Example
This	example	sets	sets	the	font	of	the	selected	cells	to	bold.

Spreadsheet1.ActiveWindow.RangeSelection.Font.Bold	=	True
	 	

Show	All

ReadingOrder	Property

Returns	or	sets	a	Long	representing	the	reading	order	for	the	specified
object.	Can	be	a	XlReadingOrder	constant.	Read/write.

expression.ReadingOrder

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks
Some	of	these	constants	may	not	be	available	to	you,	depending	on	the
language	support	(U.S.	English,	for	example)	that	you've	selected	or
installed.

RecordNavigationSection	Property

True	if	there	is	a	navigation	section	for	any	given	banding	section.	The
default	value	is	True.	Read/write	Boolean.

expression.RecordNavigationSection

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

RecordSelector	Property

Returns	or	sets	a	Boolean	that	indicates	whether	or	not	to	display	the
record	selector	for	the	specified	group.	Read/write.

expression.RecordSelector

expression				Required.	An	expression	that	returns	a	GroupLevel	object.

Recordset	Property

PivotCell	object:	Returns	an	ADO	Recordset	object	that	contains	the
detail	records	for	the	cell	if	they	are	available.

PivotData	object:	Returns	an	ADO	Recordset	object	that	contains	the
detail	records	for	the	specified	PivotData	object	if	they	are	available.

DataPage	object:	Returns	an	ADO	Recordset	object	for	the	specified
data	access	page.

expression.Recordset

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

RecordsetDef	Property

Returns	the	containing	RecordsetDef	object	for	the	specified	page	field
or	page	row	source.

expression.RecordsetDef

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

RecordsetDefs	Property

Returns	the	RecordsetDefs	collection	for	the	data	source	control.

expression.RecordsetDefs

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

RecordsetLabel	Property

Returns	or	sets	the	recordset	label	for	the	record	navigation	control	when
the	page	is	not	banded	and	one	record	is	displayed,	and	when	the	page
is	banded	and	two	or	more	records	are	displayed.	Read/write	String.

expression.RecordsetLabel

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

Remarks
The	label	consists	of	two	strings	separated	by	a	semicolon.	The	first
string	represents	the	label	that	is	displayed	when	one	record	is	displayed
on	the	page,	and	the	second	string	represents	the	label	that	is	displayed
when	two	or	more	records	are	displayed	on	the	page.	The	label	can
contain	the	following	placeholders	for	displaying	recordset	information	on
the	page.

Placeholder Description
|0 The	number	of	the	current	record,	or	the	number	of	the	first

visible	record	in	the	group.
|1 The	number	of	the	last	visible	record	in	the	group.
|2 The	number	of	records	in	the	recordset.

Example
This	example	sets	the	recordset	label.	If	the	page	is	banded	and	records
1	through	5	out	of	8	are	displayed,	the	label	says	"Categories	1-5	of	8."	If
the	page	is	not	banded	and	the	first	record	is	displayed,	the	label	says
"Category	1	of	8."

ProductNavigation.RecordsetLabel	=	_
				"Category	|1	of	|2;Categories	|0-|1	of	|2"
	 	

Show	All

RecordsetType	Property

Returns	or	sets	the	recordset	type	for	the	data	source	control.	Read/write
DscRecordsetTypeEnum.

expression.RecordsetType

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

RecordSource	Property

ElementExtension	and	GroupLevel	objects:	Returns	or	sets	a	String
that	represents	the	record	source	(the	name	of	a	recordset	definition	or
grouping	definition)	for	the	section.	Applies	only	to	DIV	sections.
Read/write.

RecordNavigationControl	object:	Returns	or	sets	a	DataMember	object
that	represents	the	record	source	for	the	section.	Read/write.

expression.RecordSource

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

RefersTo	Property

Returns	or	sets	the	formula	that	the	name	as	defined	refers	to,	in	the
language	of	the	script	and	in	A1-style	notation,	beginning	with	an	equal
sign.	Read/write	Variant.

expression.RefersTo

expression				Required.	An	expression	that	returns	a	Name	object.

Example
The	following	example	creates	a	list	of	all	the	names	in	the	active
workbook,	along	with	the	formulas	to	which	they	refer.

Sub	List_All_Names()
			Dim	nmCurrentName
			Dim	rngCurrent

			Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Range("A1")

			'	Loop	through	all	of	the	names	in	the	active	workbook.
			For	Each	nmCurrentName	In	Spreadsheet1.ActiveWorkbook.Names

						'	Write	the	current	name	to	the	worksheet.
						rngCurrent.Value	=	nmCurrentName.Name

						'	Write	the	definition	of	the	current	name	to	the	worksheet.
						rngCurrent.Offset(0,	1).Value	=	"'"	&	nmCurrentName.RefersTo

						Set	rngCurrent	=	rngCurrent.Offset(1,	0)
			Next
End	Sub
	 	

RefersToLocal	Property

Returns	or	sets	a	Variant	representing	the	formula	that	the	name	refers
to.	The	formula	is	in	the	language	of	the	user,	and	it's	in	A1-style
notation,	beginning	with	an	equals	sign.	Read/write.

expression.RefersToLocal

expression				Required.	An	expression	that	returns	a	Name	object.

Example
The	following	example	creates	a	list	of	all	the	names	in	the	active
workbook,	along	with	the	formulas	to	which	they	refer,	in	the	language	of
the	user.

Sub	List_All_Names()
			Dim	nmCurrentName
			Dim	rngCurrent

			Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Range("A1")

			'	Loop	through	all	of	the	names	in	the	active	workbook.
			For	Each	nmCurrentName	In	Spreadsheet1.ActiveWorkbook.Names

						'	Write	the	current	name	to	the	worksheet.
						rngCurrent.Value	=	nmCurrentName.Name

						'	Write	the	definition	of	the	current	name	to	the	worksheet.
						rngCurrent.Offset(0,	1).Value	=	"'"	&	nmCurrentName.RefersToLocal

						Set	rngCurrent	=	rngCurrent.Offset(1,	0)
			Next
End	Sub
	 	

RefersToRange	Property

Returns	the	Range	object	referred	to	by	a	Name	object.	If	the	Name
object	doesn't	refer	to	a	range	(for	example,	if	it	refers	to	a	constant	or	a
formula),	this	property	generates	a	run-time	error.	Read-only.

expression.RefersToRange

expression				Required.	An	expression	that	returns	a	Name	object.

ResyncCommand	Property

Specifies	an	SQL	command	parameterized	by	the	key	field	values	from
the	specified	recordset’s	unique	table	such	that	the	command	returns
exactly	one	record.	The	resync	command	is	executed	to	"fix	up"	a	row
after	an	update	or	insertion	is	made.	Read/write	String.

expression.ResyncCommand

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
You	must	set	this	property	for	any	form	based	on	a	stored	procedure	that
contains	a	join	or	expression	column.	In	all	other	cases,	Microsoft	Access
can	fix	tables	automatically.	If	you	do	not	set	this	property,	users	will	not
see	fixed-up	field	values	after	an	update	or	insertion,	but	the	update	or
insertion	will	still	be	executed	correctly.

ReturnValue	Property

Returns	or	sets	the	return	value	for	the	specified	event.	You	can	cancel
the	default	action	for	some	events	by	setting	this	property	to	False.
Read/write	Boolean.

expression.ReturnValue

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

Example
This	example	uses	the	BeforeInsert	event	to	prevent	the	user	from
adding	another	record	to	the	recordset	once	it	reaches	75	records.

Sub	MSODSC_BeforeInsert(DSCEventInfo)
			Dim	rstCurrentData

			'	Set	a	variable	to	the	recordset.
			Set	rstCurrentData	=	DSCEventInfo.DataPage.Recordset

			'	Check	to	see	if	the	recordset	has	reached	its	limit.
			If	rstCurrentData.RecordCount	>=	75	then

						'	Display	a	message	to	the	user.
						MsgBox	"Cannot	add	any	more	records."

						'	Cancel	the	insertion	of	the	record.
						DSCEventInfo.ReturnValue	=	False
			End	If
End	Sub
	 	

RevisionNumber	Property

Returns	the	Microsoft	Office	Web	Components	revision	number.	Read-
only	String.

expression.RevisionNumber

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

Right	Property

Right	property	as	it	applies	to	the	ChPlotArea	object.

Right	property	as	it	applies	to	the	ChartSpace,	ChAxis,
ChCategoryLabel,	ChChart,	ChChartField,	ChDataLabel,
ChDataLabels,	ChDropZone,	ChErrorBars,	ChLegend,
ChLegendEntry,	ChPoint,	ChSeries,	ChScrollView,	ChTitle,	and
ChTrendline	objects.

RightToLeft	Property

True	if	right-to-left	language	support	is	enabled.	For	example,	setting	this
property	to	True	causes	scroll	bars	to	be	displayed	on	the	left.	Read/write
Boolean.

expression.RightToLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Rotation	Property

Returns	or	sets	a	Double	indicating	the	rotation	in	degrees	of	the
specified	three-dimensional	chart.	Valid	values	range	from	0	to	360.
Read/write.

expression.Rotation

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	rotates	the	chart	145	degrees.

Sub	SetGapDepth()

				Dim	cht3DColumn	As	ChChart

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3-D	Column	chart.
				cht3DColumn.Type	=	chChartTypeColumn3D

				'	Rotate	the	chart.
				cht3DColumn.Rotation	=	145

End	Sub

	 	

Row	Property

Returns	the	number	of	the	first	row	in	the	specified	range.	Read-only
Long.

expression.Row

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	makes	every	other	row	green	in	the	current	region	for	cell
A1.

Sub	FormatRows()

			Dim	rngCurrentRow

			'	Loop	through	all	of	the	rows	int	he	current	region.
			For	Each	rngCurrentRow	In	Spreadsheet1.Cells(1,	1).CurrentRegion.Rows

						'	Check	to	see	if	the	row	number	is	an	even	number.
						If	rngCurrentRow.Row	Mod	2	=	0	Then

									'	Set	the	interior	color	of	the	row.
									rngCurrentRow.Interior.Color	=	"LightGreen"
						End	If
			Next
End	Sub

	 	

RowAxis	Property

PivotData	object:	Returns	a	PivotResultRowAxis	object	that	represents
the	row	axis.

PivotView	object:	Returns	a	PivotGroupAxis	object	that	represents	the
row	axis.

expression.RowAxis

expression				Required.	An	expression	that	returns	one	of	the	object	in
the	Applies	To	list.

Example
This	example	inserts	two	field	sets	into	the	PivotTable	list	in	the	active
view.

Sub	AddFieldsToPT()

			Dim	ptView

			Set	ptView	=	PivotTable1.ActiveView

			ptView.ColumnAxis.InsertFieldSet	ptView.FieldSets("Store	Type")

			ptView.RowAxis.InsertFieldSet	ptView.FieldSets("Promotions")

End	Sub

	 	

RowHeadings	Property

Returns	a	Headings	collection	that	represents	the	row	headings	in	the
specified	window.	Use	the	Caption	property	to	customize	the	row
headings.

expression.RowHeadings

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	sets	the	creates	a	custom	data	entry	sheet	by	disabling
some	user	interface	elements,	limiting	the	viewable	range	in	the	active
window,	and	customizing	the	row	and	column	headings.

Sub	Create_Datasheet()
				Dim	hdrColHeadings
				Dim	hdrRowHeadings
				Dim	wndActive

				Set	wndActive	=	Spreadsheet1.ActiveWindow

				'	Hide	various	UI	elements.
				wndActive.DisplayWorkbookTabs	=	False
				Spreadsheet1.DisplayToolbar	=	False

				'	Display	the	title	bar	and	set	it's	caption.
				Spreadsheet1.DisplayTitleBar	=	True
				Spreadsheet1.TitleBar.Caption	=	"Revenue	Worksheet"

				'	Resize	the	spreadsheet	component.
				Spreadsheet1.AutoFit	=	True

				'	Limit	the	viewable	range	of	the	active	sheet.
				wndActive.ViewableRange	=	"A1:D5"

				'	Set	a	variable	to	the	column	headings	in	the	active	window.
				Set	hdrColHeadings	=	wndActive.ColumnHeadings

				'	Set	a	variable	to	the	row	headings	in	the	active	window.
				Set	hdrRowHeadings	=	wndActive.RowHeadings

				'	Set	the	headings	of	columns	A	through	D.
				hdrColHeadings(1).Caption	=	"Qtr	1"
				hdrColHeadings(2).Caption	=	"Qtr	2"
				hdrColHeadings(3).Caption	=	"Qtr	3"
				hdrColHeadings(4).Caption	=	"Qtr	4"

				'	Set	the	headings	of	rows	1	though	5.
				hdrRowHeadings(1).Caption	=	"1996"
				hdrRowHeadings(2).Caption	=	"1997"
				hdrRowHeadings(3).Caption	=	"1998"
				hdrRowHeadings(4).Caption	=	"1999"
				hdrRowHeadings(5).Caption	=	"2000"
End	Sub
	 	

RowHeight	Property

Returns	or	sets	the	height	(in	points)	of	all	rows	in	the	specified	range.
Returns	Null	if	the	rows	are	not	all	the	same	height.	Use	the	IsNull
function	to	determine	whether	the	return	value	is	Null.	Read/write
Variant.

expression.RowHeight

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	row	height	to	15	points	for	rows	1	through	10.

Spreadsheet1.Range("a1:a10").RowHeight	=	15
	 	

RowMember	Property

Returns	a	PivotRowMember	object	that	represents	the	inner	member	on
the	row	axis	that	intersects	the	specified	cell.

expression.RowMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

RowMembers	Property

Returns	a	PivotRowMembers	collection	that	contains	the	members	on
the	row	axis.

expression.RowMembers

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Rows	Property

Range	object:	Returns	a	Range	object	that	represents	all	the	rows	in	the
specified	range.

Spreadsheet	object:	Returns	a	Range	object	that	represents	all	the	rows
on	the	active	worksheet.

Worksheet	object:	Returns	a	Range	object	that	represents	all	the	rows
on	the	specified	worksheet.

expression.Rows

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	makes	every	other	row	bold	in	the	current	region	for	cell
A1.

Sub	BoldEvenRows()

			Dim	rngCurrentRow

			'	Loop	through	the	rows	in	the	current	region.
			For	Each	rngCurrentRow	In	Spreadsheet1.Cells(1,	1).CurrentRegion.

						'	Check	whenther	the	current	row	number	is	an	even	number.
						If	rngCurrentRow.Row	Mod	2	=	0	Then

									'	Bold	the	font	in	the	current	row.
									rngCurrentRow.Font.Bold	=	True
						End	If
			Next
End	Sub
	 	

This	example	makes	row	2	bold.

Spreadsheet1.Rows(2).Font.Bold	=	True
	 	

Scaling	Property

Returns	the	ChScaling	object	for	the	specified	axis.

expression.Scaling

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	adds	a	second	value	(y)	axis	to	the	right	side	of	the
specified	chart.	The	second	axis	uses	the	same	scale	as	the	primary
value	axis.

Sub	AddAxis()

			Dim	chConstants
			Dim	axisScale

			Set	chConstants	=	ChartSpace1.Constants

			Set	axisScale	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft).

			ChartSpace1.Charts(0).Axes.Add	axisScale

End	Sub

	 	

Show	All

Scalings	Property

Returns	a	ChScaling	object	for	the	specified	chart	or	series.

expression.Scalings(Dimension)

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Dimension			Required	ChartDimensionsEnum.	Specifies	the	dimension
to	be	returned.

Example
This	example	sets	the	minimum	value	for	the	specified	ChScaling	object.

Sub	SetScaling()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).SeriesCollection(0).Scalings	_
																	(chConstants.chDimCategories).Minimum	=	-10
End	Sub

	 	

SchemaFields	Property

Returns	the	SchemaFields	collection	for	the	specified	schema	row
source.

expression.SchemaFields

expression				Required.	An	expression	that	returns	a
SchemaRowsource	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

SchemaParameters	Property

Returns	the	SchemaParameters	collection	for	the	specified	schema	row
source.

expression.SchemaParameters

expression				Required.	An	expression	that	returns	a
SchemaRowsource	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

SchemaRelatedFields	Property

Returns	the	SchemaRelatedFields	collection	for	the	specified	schema
relationship.

expression.SchemaRelatedFields

expression				Required.	An	expression	that	returns	a
SchemaRelationship	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

SchemaRelationships	Property

Returns	the	SchemaRelationships	collection	for	the	data	source	control.

expression.SchemaRelationships

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

SchemaRowsources	Property

Returns	the	SchemaRowsources	collection	for	the	data	source	control.

expression.SchemaRowsources

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
In	design	mode,	this	collection	is	automatically	populated	with	information
from	the	database.	In	browse	mode,	this	collection	contains	any	schema
objects	that	are	used	on	the	specified	page,	plus	any	that	are	explicitly
added	by	the	user.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

ScreenUpdating	Property

True	if	screen	updating	is	turned	on.	The	default	value	is	True.
Read/write	Boolean.

expression.ScreenUpdating

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Setting	this	property	to	False	causes	the	chart	workspace	or	spreadsheet
to	stop	redrawing.	To	prevent	screen	flicker	or	to	prevent	the	user	from
seeing	individual	updates,	set	this	property	to	False,	perform	your	update
operations,	and	then	reset	this	property	to	True.	After	setting	the
ScreenUpdating	property	to	False,	the	chart	workspace	or	spreadsheet
will	still	redraw	if	the	user	refreshes	the	page,	and	if	the	Repaint	method
is	called	on	the	control.

Example
This	example	turns	off	screen	updating.

Spreadsheet1.ScreenUpdating	=	False
	 	

ScrollColumn	Property

Returns	or	sets	the	number	of	the	leftmost	column	in	the	pane	or	window.
If	the	panes	are	frozen,	this	property	excludes	the	frozen	areas.
Read/write	Long.

expression.ScrollColumn

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	moves	column	C	so	that	it's	the	leftmost	column	in	the
window.

Spreadsheet1.ActiveWindow.ScrollColumn	=	3
	 	

ScrollRow	Property

Returns	or	sets	the	number	of	the	row	that	appears	at	the	top	of	the	pane
or	window.	If	the	panes	are	frozen,	this	property	excludes	the	frozen
areas.	Read/write	Long.

expression.ScrollRow

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	moves	row	ten	to	the	top	of	the	window.

Spreadsheet1.ActiveWindow.ScrollRow	=	10
	 	

ScrollView	Property

You	use	the	ScrollView	property	to	return	the	ChScrollView	object	for	a
chart.	Read-only	ChScrollView.

expression.ScrollView

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks

The	ChartSpace	object	supports	multiple	charts	and	each	is	can	be
scrolled	independently.	There	is	one	ChScrollView	object	per	chart.	You
use	the	properties	and	methods	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	scroll	view	of	a	chart.

Example
The	following	example	uses	the	ScrollView	property	to	work	with	the
SetPosition	method	of	the	ChScrollView	object:

Chartspace1.Charts(1).ScrollView.SetPosition	(HorizontalPosition.Value	+	200,	VerticalPosition.Value	+	200)

Section	Property

Returns	a	Section	object	that	represents	the	section	where	the	specified
event	occurred.

expression.Section

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

Segments	Property

Returns	a	ChSegments	object	that	represents	the	collection	of	segments
in	the	specified	format	map.

expression.Segments

expression				Required.	An	expression	that	returns	a	ChFormatMap
object.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created.	The	smaller
values	are	displayed	in	white,	then	larger	values	are	displayed	in	a	light
shade	of	blue,	and	finally	the	larger	values	in	the	chart	are	displayed	with
in	dark	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1
				Dim	chconstants

				Set	chconstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=DataServer;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in	the	Order	Details	table.
				ChartSpace1.SetData	chconstants.chDimCategories,	chconstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chconstants.chDimValues,	chconstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chconstants.chDimFormatValues,	chconstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Specify	that	the	divisions	in	formatting	be	created	automatically.
				segSegment1.HasAutoDivisions	=	True

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chconstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chconstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

End	Sub

	 	

SelectedSheets	Property

Returns	a	Sheets	collection	that	represents	all	the	selected	sheets	in	the
specified	window.	This	collection	will	only	contain	one	sheet,	the	active
sheet.

expression.SelectedSheets

expression				Required.	An	expression	that	returns	a	Window	object.

Selection	Property

ChartSpace	object:	Returns	an	Object	that	represents	the	selected
object.	Use	the	TypeName	function	to	determine	the	type	of	the	selected
object.

PivotTable	object:	Returns	or	sets	an	Object	that	represents	the
selected	object.

Spreadsheet	and	Window	objects:	Returns	a	Range	object	that
represents	the	selected	cells.

expression.Selection

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
The	procedure	in	this	example	runs	whenever	the	selection	in	the	chart
workspace	changes.	If	the	user	selects	an	axis,	the	procedure	displays
the	minimum	and	maximum	values	for	the	axis.

Sub	ChartSpace1_SelectionChange()

			Dim	chConstants
			Dim	minval
			Dim	maxval

			Set	chConstants	=	ChartSpace1.Constants

			If	ChartSpace1.SelectionType	=	chConstants.chSelectionAxis	Then

						minval	=	ChartSpace1.Selection.Scaling.Minimum

						maxval	=	ChartSpace1.Selection.Scaling.Maximum

						MsgBox	"minimum	=	"	&	minval	&	"	maximum	=	"	&	maxval
			End	If

End	Sub
	 	

SelectionCollection	Property

The	SelectionCollection	property	to	returns	the	ChSelectionCollection
collection	of	the	ChartSpace	object.

expression.SelectionCollection

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
The	ChSelectionCollection	object	contains	all	currently	selected	objects
in	a	chart.	The	first	item	in	the	collection	is	the	primary	selection.
Additional	items	are	secondary	selections.	The	number	of	items	in	this
collection	can	never	be	zero	because	the	object	returned	by
ChartSpace.SelectionCollection(0)	is	the	same	object	as	that	returned
by	the	Selection	property	of	the	ChartSpace	object.	The	first	object	in
the	collection	can	be	any	chart	object	selection,	but	all	subsequent
objects	must	be	points.	If	the	Selection	property	is	null	and	there	are	no
secondary	selections,	the	SelectionCollection	will	equal	0.

Multiple	items	cannot	be	selected	in	the	user	interface	of	the	Chart
component.	Items	must	be	added	to	or	removed	from	a	selection
programmatically.	To	capture	multiple	selections	when	a	user	clicks	on	a
chart,	you	must	monitor	the	mouse	move	and	mouse	button	events	and
identify	the	items	being	selected	using	the	RangeFromPoint	method	of
the	ChartSpace	object.	To	prevent	the	built-in	selection	handling
behavior	of	the	Chart	component	from	interfering	with	programmatic
tracking	of	multiple	selections,	you	must	make	sure	that	the
AllowUISelection	property	of	the	ChartSpace	object	is	set	to	False.

Example
The	following	example	shows	how	to	use	the	SelectionCollection
property	to	iterate	through	a	set	of	selected	data	points	in	a	chart.

Dim	intCount
Dim	intIndex
With	ChartSpace.Charts(0).SeriesCollection(0)
				.Points(0).Select2	1
				.Points(1).Select2	1
				.Points(2).Select2	1
				.Points(3).Select2	1
				.Points(4).Select2	1
End	With
intCount	=	ChartSpace.SelectionCollection.Count

For	intIndex	=	0	To	intCount	-	1
		MsgBox	"Item("	&	iIndex	&	")	=	"	&	TypeName(ChartSpace.SelectionCollection
Next

Show	All

SelectionType	Property

ChartSpace	object:	Returns	a	ChartSelectionsEnum	constant	that
represents	the	type	of	object	currently	selected	in	the	chart	workspace.
Read-only.

PivotTable	object:	Returns	a	String	that	represents	the	type	of	object
currently	selected	in	the	PivotTable	list.	Read-only.

expression.SelectionType

expression				Required.	An	expression	that	returns	a	ChartSpace	or
PivotTable	object.

Example
The	procedure	in	this	example	runs	whenever	the	selection	in	the	chart
workspace	changes.	If	the	user	selects	an	axis,	the	procedure	displays
the	minimum	and	maximum	values	for	the	axis.

Sub	ChartSpace1_SelectionChange()

			Dim	chConstants
			Dim	minval
			Dim	maxval

			Set	chConstants	=	ChartSpace1.Constants

			If	ChartSpace1.SelectionType	=	chConstants.chSelectionAxis	Then

						minval	=	ChartSpace1.Selection.Scaling.Minimum

						maxval	=	ChartSpace1.Selection.Scaling.Maximum

						MsgBox	"minimum	=	"	&	minval	&	"	maximum	=	"	&	maxval
			End	If

End	Sub

	 	

Separator	Property

Returns	or	sets	the	string	that	separates	data	label	components	in	the
specified	series	or	chart.	Read/write	String.

expression.Separator

expression				Required.	An	expression	that	returns	a	ChDataLabels
object.

Example
This	example	changes	the	data-label	separator	character	for	the
specified	series.

Sub	FormatDataLabels()

			Dim	dlDataLabels

			'	Add	data	labels	to	the	first	series.
			Set	dlDataLabels	=	ChartSpace1.Charts(0).SeriesCollection(0)	_
																						.DataLabelsCollection.Add

			'	Display	the	category	name	in	the	data	labels.
			dlDataLabels.HasCategoryName	=	True

			'	Set	the	data	label	seperator.
			dlDataLabels.Separator	=	":"

End	Sub

	 	

SeriesCollection	Property

Returns	the	ChSeriesCollection	collection	for	the	specified	chart.

expression.SeriesCollection

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Example
This	example	sets	the	line	color	to	red	for	the	specified	series.

ChartSpace1.Charts(0).SeriesCollection(0).Line.Color	=	"red"
	 	

ServerFilter	Property

Returns	or	sets	the	server	filter	for	the	specified	object.	Read/write
String.

expression.ServerFilter

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
A	server	filter	is	a	criterion	for	specifying	the	type	or	types	of	records	to
be	fetched	from	the	server.	The	data	model	adds	a	server	filter	string	to
the	WHERE	clause	of	the	SQL	statement	that	it	generates.	You	can	set	a
server	filter	only	on	recordsets	that	have	a	primary	row	source	of	type
dscTable	or	dscView.

Show	All

Sheets	Property

Sheets	property	as	it	applies	to	the	Spreadsheet	object.

Sheets	property	as	it	applies	to	the	Workbook	object.

Example
As	it	applies	to	the	Workbook	object.

ShowAll	Property

Clears	AutoFilter	criteria	when	set	to	True.	Adding	criteria	sets	this
property	to	False.	If	there	are	no	criteria	and	this	property	is	set	to	False,
no	data	will	be	shown.	Read/write	Boolean.

expression.ShowAll

expression				Required.	An	expression	that	returns	a	Criteria	object.

Example
This	example	clears	the	AutoFilter	criteria	for	column	1	on	the	active
worksheet	and	reapplies	the	AutoFilter	to	the	worksheet.

Sub	ReapplyAutoFilter()

			Dim	afAutoFilter

			'	Set	a	variable	to	the	current	filter	settings.
			Set	afAutoFilter	=	Spreadsheet1.ActiveSheet.AutoFilter

			'	Show	all	records.
			afAutoFilter.Filters(1).Criteria.ShowAll	=	True

			'	Reapply	the	filters.
			afAutoFilter.Apply

End	Sub

	 	

Show	All

ShowAs	Property

Returns	or	sets	a	PivotShowAsEnum	constant	that	represents	how	a
PivotTotal	object	is	displayed.	Read-write.

expression.ShowAs

expression				Required.	An	expression	that	returns	a	PivotTotal	object.

Example
This	example	adds	a	new	total	to	PivotTable1.	The	new	total	is	formatted
to	display	as	a	percentage	of	the	parent	row	field,	and	will	not	appear	in
the	PivotTable	Field	List	dialog	box.

Sub	Add_Total()

				Dim	vwView
				Dim	ptConstants
				Dim	totNewTotal

				Set	vwView	=	PivotTable1.ActiveView
				Set	ptConstants	=	PivotTable1.Constants

				'	Add	a	new	total	named	"Total	Budget"	to	the	current	view.
				Set	totNewTotal	=	vwView.AddTotal("Total	Budget",	vwView.FieldSets("Budget").Fields(0),	_
													ptConstants.plFunctionSum)

				'	Insert	the	newly	created	total	into	the	detail	area	of	the	PivotTable.
				vwView.DataAxis.InsertTotal	totNewTotal

				'	Show	the	totals	as	a	percentage	of	the	parent	row	field.
				totNewTotal.ShowAs	=	ptConstants.plShowAsPercentOfRowParent

				'	Do	not	display	the	new	total	in	the	PivotTable	Field	List	dialog	box.
				totNewTotal.DisplayInFieldList	=	False

End	Sub

	 	

ShowAsValue	Property

Returns	a	Variant	that	represents	the	value	of	the	specified
PivotAggregate	object	without	percentage	formatting.	Use	this	property
to	return	the	value	of	a	cell's	aggregate	when	the	ShowAs	property	has
been	set	to	one	of	the	following	values:
plShowAsPercentOfColumnParent,
plShowAsPercentOfColumnTotal,	plShowAsPercentOfGrandTotal,
plShowAsPercentOfRowParent,	plShowAsPercentOfRowTotal.
Read-only.

expression.ShowAsValue

expression				Required.	An	expression	that	returns	a	PivotAggregate
object.

Example
This	example	displays	the	aggregate	for	the	third	member	of	the	row	field
in	a	message	box.

Sub	GetTotal()

				Dim	ptData
				Dim	pmRowMem
				Dim	pmColMem

				'	Set	a	variable	to	the	PivotTable	data.
				Set	ptData	=	PivotTable1.ActiveData

				'	Set	a	variable	to	the	third	item	contained	in	the	field
				'	that	has	been	added	to	the	row	axis.
				Set	pmRowMem	=	ptData.RowAxis.Member.ChildMembers(2)

				'	In	this	example,	there	are	no	fields	on	the	column	axis.
				Set	pmColMem	=	ptData.ColumnAxis.Member

				'	Display	the	value	of	the	aggregate.
				MsgBox	ptData.Cells(pmRowMem,	pmColMem).Aggregates(0).ShowAsValue

End	Sub

	 	

ShowDelButton	Property

True	if	the	Delete	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowDelButton

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ShowFilterBySelectionButton	Property

True	if	the	Filter	by	Selection	button	(record	navigation	control)	is
displayed.	The	default	value	is	True.	Read/write	Boolean.

expression.ShowFilterBySelectionButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowFirstButton	Property

True	if	the	First	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowFirstButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowHelpButton	Property

True	if	the	Help	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowHelpButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowLabel	Property

True	if	the	record	navigation	control	label	is	displayed.	The	default	value
is	True.	Read/write	Boolean.

expression.ShowLabel

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowLastButton	Property

True	if	the	Last	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowLastButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowNewButton	Property

True	if	the	New	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowNewButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowNextButton	Property

True	if	the	Next	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowNextButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowPrevButton	Property

True	if	the	Previous	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowPrevButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowSaveButton	Property

True	if	the	Save	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowSaveButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowSortAscendingButton	Property

True	if	the	Sort	Ascending	button	(record	navigation	control)	is
displayed.	The	default	value	is	True.	Read/write	Boolean.

expression.ShowSortAscendingButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowSortDescendingButton	Property

True	if	the	Sort	Descending	button	(record	navigation	control)	is
displayed.	The	default	value	is	True.	Read/write	Boolean.

expression.ShowSortDescendingButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowToggleFilterButton	Property

True	if	the	Toggle	Filter	button	(record	navigation	control)	is	displayed.
The	default	value	is	True.	Read/write	Boolean.

expression.ShowToggleFilterButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

ShowUndoButton	Property

True	if	the	Undo	button	(record	navigation	control)	is	displayed.	The
default	value	is	True.	Read/write	Boolean.

expression.ShowUndoButton

expression				Required.	An	expression	that	returns	a
RecordNavigationControl	object.

SideWall	Property

Returns	a	ChSurface	object	that	represents	the	side	wall	of	a	three-
dimensional	chart.	Use	the	properties	and	methods	of	the	returned
ChSurface	object	to	format	the	side	wall	of	the	specified	chart.

expression.SideWall

expression				Required.	An	expression	that	returns	a	ChPlotArea	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Column
chart	and	then	formats	the	back	wall,	side	wall,	and	floor	of	the	chart.

Sub	FormatWallsFloor()

				Dim	cht3DColumn
				Dim	chConstants
				Dim	paPlotArea

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DColumn	=	ChartSpace1.Charts(0)

				'	Set	a	variable	to	the	plot	area.
				Set	paPlotArea	=	cht3DColumn.PlotArea

				'	Change	the	chart	to	a	3D	Column	chart.
				cht3DColumn.Type	=	chConstants.chChartTypeColumnClustered3D

				'	Format	the	back	wall	of	the	chart.
				paPlotArea.BackWall.Interior.SetSolid	"Yellow"
				paPlotArea.BackWall.Thickness	=	5

				'	Format	the	side	wall	of	the	chart.
				paPlotArea.SideWall.Interior.SetSolid	"Yellow"
				paPlotArea.SideWall.Thickness	=	5

				'	Format	the	floor	of	the	chart.
				paPlotArea.Floor.Interior.SetSolid	"Blue"

				paPlotArea.Floor.Thickness	=	5

End	Sub

	 	

Size	Property

Returns	or	sets	the	font	or	marker	size	(in	points).	Returns	Null	if	it	is
used	on	a	range	in	which	the	characters	are	not	all	the	same	size.	Use
the	IsNull	function	to	determine	whether	the	return	value	is	Null.
Read/write	Variant	for	the	Font	object;	read/write	Long	for	all	other
objects	in	the	Applies	To	list.

expression.Size

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	font	size	to	6	points	for	the	specified	axis.

Set	c	=	ChartSpace1.Constants
ChartSpace1.Charts(0).Axes(c.chAxisPositionLeft).Font.Size	=	6
	 	

Show	All

SizeRepresents	Property

Returns	or	sets	what	the	bubble	size	represents	on	a	bubble	chart.
Read/write	ChartSizeRepresentsEnum.

expression.SizeRepresents

expression				Required.	An	expression	that	returns	a	ChChart	object.

Example
This	example	sets	the	SizeRepresents	property	for	a	bubble	chart.

Sub	SetSizeParameter()

			Dim	chConstants

			Set	chConstants	=	Chartspace1.Constants

			ChartSpace1.Charts(0).SizeRepresents	=	chConstants.chSizeIsArea

End	Sub

	 	

SolveOrder	Property

Returns	or	sets	a	Long	that	represents	the	solve	order	for	the	specified
total.	Read/write.

expression.SolveOrder

expression				Required.	An	expression	that	returns	a	PivotTotal	object.

Show	All

SortDirection	Property

Returns	or	sets	the	direction	in	which	the	specified	field	is	to	be	sorted.
Read/write	PivotFieldSortDirectionEnum.

expression.SortDirection

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
The	field	is	sorted	based	on	the	sorting	rules	of	the	underlying	data
provider.	For	example,	a	data	provider	might	sort	dates	alphanumerically
(February,	January,	and	so	on)	or	in	a	chronological	monthly	sequence
(January,	February,	and	so	on)

SortOn	Property

Returns	or	sets	the	total	used	to	sort	the	specified	field.	Read/write
PivotTotal	.

expression.SortOn

expression				Required.	An	expression	that	returns	a	PivotField	object..

SortOnScope	Property

Returns	or	sets	the	array	of	strings	used	to	narrow	the	sorting	scope	for
the	specified	field.	Read/write	Variant.

expression.SortOnScope

expression				Required.	An	expression	that	returns	a	PivotField	object.

Source	Property

Returns	or	sets	the	source	for	the	specified	page	field	or	page	row
source.	Read/write	String.

expression.Source

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

SourceAxis	Property

Returns	a	PivotAxis	object	that	represents	the	source	axis	of	the
specified	result	axis.

expression.SourceAxis

expression				Required.	An	expression	that	returns	a	PivotResultAxis
object.

SourceColumnAxis	Property

Returns	a	PivotGroupAxis	object	that	represents	the	source	axis	of	the
specified	result	axis.

expression.SourceColumnAxis

expression				Required.	An	expression	that	returns	a
PivotResultColumnAxis	object.

SourceDataAxis	Property

Returns	a	PivotDataAxis	object	that	represents	the	source	axis	of	the
specified	result	axis.

expression.SourceDataAxis

expression				Required.	An	expression	that	returns	a
PivotResultDataAxis	object.

SourceField	Property

Returns	a	PivotField	object	that	represents	the	source	field	for	the
specified	result	field.

expression.SourceField

expression				Required.	An	expression	that	returns	a	PivotResultField
object.

SourceFilterAxis	Property

Returns	a	PivotFilterAxis	object	that	represents	the	source	axis	of	the
specified	result	axis.

expression.SourceFilterAxis

expression				Required.	An	expression	that	returns	a
PivotResultFilterAxis	object.

SourceLabel	Property

Returns	a	PivotLabel	object	that	represents	the	source	label	of	the
specified	result	label.

expression.SourceLabel

expression				Required.	An	expression	that	returns	a	PivotResultLabel
object.

SourceMember	Property

Returns	a	PivotMember	object	that	represents	the	source	member	for
the	specified	axis	member.

expression.SourceMember

expression				Required.	An	expression	that	returns	a	PivotAxisMember
object.

SourcePageAxis	Property

Returns	a	PivotGroupAxis	object	that	represents	the	source	axis	of	the
specified	result	axis.

expression.SourcePageAxis

expression				Required.	An	expression	that	returns	a
PivotResultPageAxis	object.

SourceRowAxis	Property

Returns	a	PivotGroupAxis	object	that	represents	the	source	axis	for	the
specified	result	axis.

expression.SourceRowAxis

expression				Required.	An	expression	that	returns	a
PivotResultRowAxis	property.

SplitMaximum	Property

If	the	specified	ChScaling	object	has	a	split,	this	property	returns	or	sets
the	maximum	value	for	the	split.	This	value	should	be	greater	than	the
value	of	the	SplitMinimum	property.	Read/write	Double.

expression.SplitMaximum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	splits	the	value	axis	of	the	first	chart	in	ChartSpace1	and
sets	the	split	minimum	and	split	maximum	values.	The	value	axis	is	split,
and	values	between	1000	and	5000	will	not	be	displayed.

Sub	Split_Value_Axis()
				Dim	chConstants
				Dim	scValueAxis
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	a	variable	to	the	scaling	object	of	the	value	axis.
				Set	scValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling
				
				'	Add	a	split	to	the	value	axis.
				scValueAxis.HasSplit	=	True
				
				'	Specify	the	minnimum	value	of	the	split.
				scValueAxis.SplitMinimum	=	1000
				
				'	Specify	the	maximum	value	for	the	split.
				scValueAxis.SplitMaximum	=	5000
End	Sub
	 	

SplitMinimum	Property

If	the	specified	ChScaling	object	has	a	split,	this	property	returns	or	sets
the	minimum	value	for	the	split.	This	value	should	be	less	than	the	value
of	the	SplitMaximum	property.	Read/write	Double.

expression.SplitMinimum

expression				Required.	An	expression	that	returns	a	ChScaling	object.

Example
This	example	splits	the	value	axis	of	the	first	chart	in	ChartSpace1	and
sets	the	split	minimum	and	split	maximum	values.	The	value	axis	is	split,
and	values	between	1000	and	5000	will	not	be	displayed.

Sub	Split_Value_Axis()
				Dim	chConstants
				Dim	scValueAxis
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Set	a	variable	to	the	scaling	object	of	the	value	axis.
				Set	scValueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Scaling
				
				'	Add	a	split	to	the	value	axis.
				scValueAxis.HasSplit	=	True
				
				'	Specify	the	minnimum	value	of	the	split.
				scValueAxis.SplitMinimum	=	1000
				
				'		Specify	the	maximum	value	for	the	split.
				scValueAxis.SplitMaximum	=	5000
End	Sub
	 	

StandardHeight	Property

Returns	the	standard	(default)	height	of	all	the	rows	in	the	worksheet	in
points.	Read-only	Double.

expression.StandardHeight

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Example
This	example	resets	the	rows	and	columns	in	the	active	sheet	of
Spreadsheet1	to	their	default	size.

Sub	Reset_Height_Width()
					Dim	shtActive
					Set	shtActive	=	Spreadsheet1.ActiveSheet

					shtActive.Rows.RowHeight	=	shtActive.StandardHeight
					shtActive.Columns.ColumnWidth	=	shtActive.StandardWidth
End	Sub

	 	

StandardWidth	Property

Returns	the	standard	(default)	width	of	all	the	columns	in	the	worksheet.
The	width	of	one	character	in	the	Normal	style	is	used	as	the	unit	of
measure.	Read/write	Double.

expression.StandardWidth

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Example
This	example	resets	the	rows	and	columns	in	the	active	sheet	of
Spreadsheet1	to	their	default	size.

Sub	Reset_Height_Width()
			Dim	shtActive
			Set	shtActive	=	Spreadsheet1.ActiveSheet

			shtActive.Rows.RowHeight	=	shtActive.StandardHeight
			shtActive.Columns.ColumnWidth	=	shtActive.StandardWidth
End	Sub
	 	

Show	All

Status	Property

Returns	a	DscStatusEnum	constant	that	represents	the	status	of	the
current	event.	This	property	is	supported	only	in	the	AfterDelete	event.
Read-only.

expression.Status

expression				Required.	An	expression	that	returns	a	DSCEventInfo
object.

Remarks
Using	this	property	with	an	unsupported	event	will	result	in	a	run-time
error.

Show	All

Style	Property

Returns	or	sets	the	marker	style	for	the	specified	series	or	chart.
Read/write	ChartMarkerStyleEnum.

expression.Style

expression				Required.	An	expression	that	returns	a	ChMarker	object.

Example
This	example	sets	the	marker	style	for	the	specified	series.

Sub	SetMarkerStyle()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).SeriesCollection(0).Marker	_
															.Style	=	chConstants.chMarkerStyleStar

End	Sub

	 	

SublistRelationships	Property

Returns	the	SublistRelationships	collection	for	the	specified	recordset
definition.

expression.SublistRelationships

expression				Required.	An	expression	that	returns	a	RecordsetDef
object.

Remarks
A	sublist	relationship	refers	to	a	row	source	in	another	recordset	definition
that	has	a	many-to-one	relationship	with	the	primary	page	row	source	in
the	specified	recordset	definition.

For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

SublistSchemaRelationships	Property

Returns	the	SublistSchemaRelationships	collection	for	the	specified
schema	row	source.

expression.SublistSchemaRelationships

expression				Required.	An	expression	that	returns	a
SchemaRowsource	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

SubtotalBackColor	Property

Returns	or	sets	the	back	color	for	the	subtotal	in	the	specified	field.	For
subtotals,	this	property’s	setting	overrides	the	TotalBackColor	property
setting.	Read/write	Variant.

expression.SubtotalBackColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

SubtotalFont	Property

Returns	a	PivotFont	object	that	represents	the	font	for	subtotals.

expression.SubtotalFont

expression				Required.	An	expression	that	returns	a	PivotField	object.

SubtotalForeColor	Property

Returns	or	sets	the	foreground	color	for	subtotals	in	the	specified	field.
This	property’s	setting	overrides	the	TotalForeColor	property	setting.
Read/write	Variant.

expression.SubtotalForeColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

SubtotalLabelBackColor	Property

Returns	or	sets	the	back	color	for	the	subtotal	in	the	specified	field.
Read/write	Variant.

expression.SubtotalLabelBackColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

SubtotalLabelFont	Property

Returns	a	PivotFont	object	that	represents	the	font	for	subtotal	labels	in
the	specified	field.

expression.SubtotalLabelFont

expression				Required.	An	expression	that	returns	a	PivotField	object.

SubtotalLabelForeColor	Property

Returns	or	sets	the	foreground	color	for	subtotal	labels	in	the	specified
field.	Read/write	Variant.

expression.SubtotalLabelForeColor

expression				Required.	An	expression	that	returns	a	PivotField	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

Show	All

SubtotalLabelHAlignment	Property

Returns	or	sets	a	PivotHAlignmentEnum	constant	that	represents	the
horizontal	alignment	of	the	subtotal	labels	for	the	specified	field.
Read/write.

expression.SubtotalLabelHAlignment

expression				Required.	An	expression	that	returns	a	PivotField	object.

Subtotals	Property

True	if	the	subtotal	is	displayed	for	the	specified	field.	Read/write
Boolean.

expression.Subtotals(Subtotals)

expression				An	expression	that	returns	a	PivotField	object.	The	field
must	be	on	a	row	or	column	axis.

Subtotals				Required	Long.	Specifies	the	subtotal.

TabRatio	Property

Returns	or	sets	the	ratio	of	the	width	of	the	workbook's	tab	area	to	the
width	of	the	window's	horizontal	scroll	bar	(as	a	number	between	0	(zero)
and	1;	the	default	value	is	0.6).	Changing	the	value	of	this	property	has
an	inverse	effect	on	the	length	of	the	window's	horizontal	scroll	bar.
Increasing	this	property	from	the	default	value	decreases	the	length	of
the	scroll	bar,	while	decreasing	this	property	from	the	default	value
increases	the	length	of	the	scroll	bar.	Read/write	Double.

expression.TabRatio

expression				Required.	An	expression	that	returns	a	Window	object.

Example
This	example	makes	the	workbook	tab	half	the	width	of	the	horizontal
scroll	bar.

Spreadsheet1.ActiveWindow.TabRatio	=	0.5
	 	

Show	All

Text	Property

Text	property	as	it	applies	to	the	PivotAggregate	and	PivotDetailCell
objects.

Text	property	as	it	applies	to	the	Range	object.

Example
This	example	sets	a	variable	for	the	formatted	value	of	cell	A1.

txt	=	Spreadsheet1.Range("a1").Text
	 	

Show	All

TextureFormat	Property

Returns	a	ChartTextureFormatEnum	constant	indicating	the	format
used	to	display	the	texture	for	the	specified	ChInterior	object.	This
property	will	return	a	run-time	error	if	the	specified	interior	is	not	filled	with
a	texture	or	a	picture.	Read-only.

expression.TextureFormat

expression				Required.	An	expression	that	returns	a	ChInterior	object.

TextureName	Property

Returns	a	String	indicating	the	name	of	and	path	to	the	picture	file	that
was	used	to	fill	the	specified	ChInterior	object.	This	property	will	return	a
run-time	error	if	the	interior	of	the	specified	object	was	set	to	a	preset
texture.	Read-only.

expression.TextureName

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
Use	the	SetTextured	method	to	set	the	texture	file	for	the	fill.

Show	All

TexturePlacement	Property

Returns	a	ChartTexturePlacementEnum	constant	indicating	how	the
texture	has	been	applied	to	the	specified	ChInterior	object.	Read-only.

expression.TexturePlacement

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Remarks
This	property	only	affects	3-D	charts.

TextureStackUnit	Property

Returns	a	Double	indicating	the	texture	stack	unit	for	the	specified
ChInterior	object.	This	property	will	return	a	run-time	error	unless	the
SetTexture	method	was	used	to	fill	the	interior	of	the	object	and	the
method's	TextureFormat	argument	is	set	to	a	value	of	chStackScale.
Read-only.

expression.TextureStackUnit

expression				Required.	An	expression	that	returns	a	ChInterior	object.

Thickness	Property

Returns	or	sets	a	Long	specifying	the	thickness	of	the	specified	data
series	or	surface	in	a	three-dimensional	chart.	Read/write.

expression.Thickness

expression				Required.	An	expression	that	returns	a	ChSeries	or	a
ChSurface	object.

Remarks
Use	this	property	to	set	the	thickness	of	a	line	in	a	3-D	Line	chart	or	the
thickness	of	the	pie	in	a	3-D	Pie	chart.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	3-D	Line	chart
and	then	sets	the	thickness	for	each	line	in	the	chart.

Sub	SetLineThickness()

				Dim	cht3DLine
				Dim	serSeries

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	cht3DLine	=	ChartSpace1.Charts(0)

				'	Change	the	chart	to	a	3D	Line	chart.
				cht3DLine.Type	=	chChartTypeLine3D

				'	Set	the	thickness	of	each	line	in	the	chart.
				For	Each	serSeries	In	cht3DLine.SeriesCollection
								serSeries.Thickness	=	4
				Next
End	Sub

	 	

TickLabelSpacing	Property

Returns	or	sets	the	number	of	categories	between	tick-mark	labels	for	the
specified	axis.	Applies	only	to	category	axes.	Read/write	Long.

expression.TickLabelSpacing

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	number	of	categories	between	tick-mark	labels	for
the	specified	axis	to	two.

ChartSpace1.Charts(0).Axes(1).TickLabelSpacing	=	2
	 	

Show	All

TickLabelUnitType	Property

Returns	or	sets	a	ChartAxisUnitTypeEnum	constant	that	represents	the
interval	used	to	display	tick	mark	labels	on	a	time-scaled	category	axis.
Read/write.

expression.TickLabelUnitType

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	line	chart,	then
formats	the	category	axis	so	that	the	values	are	grouped	by	month.	The
average	value	of	each	month	is	displayed	on	the	chart.

Sub	FormatTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	Line	chart.
				ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLine

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)

				'	Specify	that	you	will	determine	the	grouping	settings	of	the
				'	axis.	Note	that	this	line	of	code	is	necessary	only	if	the
				'	GroupingType	property	for	the	axis	has	been	previously	set	to
				'	chAxisGroupingNone.
				axCategory.GroupingType	=	chConstants.chAxisGroupingManual

				'	Group	the	category	axis	by	month.
				axCategory.GroupingUnitType	=	chConstants.chAxisUnitMonth

				'	Create	a	new	grouping	for	every	month.
				axCategory.GroupingUnit	=	1

				'	Display	the	average	of	the	items	in	each	group.

				axCategory.GroupingTotalFunction	=	chConstants.chFunctionAvg

				'	A	tick	label	is	displayed	for	every	month.
				axCategory.TickLabelUnitType	=	chConstants.chAxisUnitMonth

				'	A	tick	mark	is	displayed	for	every	three	months.
				axCategory.TickMarkUnitType	=	chConstants.chAxisUnitQuarter

End	Sub

	 	

TickMarkSpacing	Property

Returns	or	sets	the	number	of	categories	between	tick	marks	on	the
specified	axis.	Applies	only	to	category	axes.	Use	the	MajorUnit	and
MinorUnit	properties	to	set	tick-mark	spacing	on	value	axes.	Read/write
Long.

expression.TickMarkSpacing

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	sets	the	number	of	categories	between	tick	marks	on	the
specified	axis	to	two.

ChartSpace1.Charts(0).Axes(1).TickMarkSpacing	=	2
	 	

Show	All

TickMarkUnitType	Property

Returns	or	sets	a	ChartAxisUnitTypeEnum	constant	that	represents	the
interval	used	to	display	tick	marks	on	a	time-scaled	category	axis.
Read/write.

expression.TickMarkUnitType

expression				Required.	An	expression	that	returns	a	ChAxis	object.

Example
This	example	converts	the	first	chart	in	Chartspace1	to	a	line	chart,	then
formats	the	category	axis	so	that	the	values	are	grouped	by	month.	The
average	value	of	each	month	is	displayed	on	the	chart.

Sub	FormatTimeScaling()

				Dim	chConstants
				Dim	axCategory

				Set	chConstants	=	ChartSpace1.Constants

				'	Change	the	chart	to	a	Line	chart.
				ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLine

				'	Set	a	variable	to	the	category	axis.
				Set	axCategory	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionCategory)

				'	Specify	that	you	will	determine	the	grouping	settings	of	the
				'	axis.	Note	that	this	line	of	code	is	necessary	only	if	the
				'	GroupingType	property	for	the	axis	has	been	previously	set	to
				'	chAxisGroupingNone.
				axCategory.GroupingType	=	chConstants.chAxisGroupingManual

				'	Group	the	category	axis	by	month.
				axCategory.GroupingUnitType	=	chConstants.chAxisUnitMonth

				'	Create	a	new	grouping	for	every	month.
				axCategory.GroupingUnit	=	1

				'	Display	the	average	of	the	items	in	each	group.

				axCategory.GroupingTotalFunction	=	chConstants.chFunctionAvg

				'	A	tick	label	is	displayed	for	every	month.
				axCategory.TickLabelUnitType	=	chConstants.chAxisUnitMonth

				'	A	tick	mark	is	displayed	for	every	three	months.
				axCategory.TickMarkUnitType	=	chConstants.chAxisUnitQuarter

End	Sub

	 	

TimeValue	Property

Returns	a	Variant	that	represents	the	value	of	the	specified	member	with
the	appropriate	date	of	time	format.	Read-only.

expression.TimeValue

expression				Required.	An	expression	that	returns	a	PivotMember
object.

Show	All

TipText	Property

TipText	property	as	it	applies	to	the	ChSeries	object.

TipText	property	as	it	applies	to	the	OCCommand	object.

Example
As	it	applies	to	the	ChSeries	object.

Title	Property

Returns	a	ChTitle	object	that	represents	the	title	of	the	specified	axis	or
chart.

expression.Title

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	specified	chart	to	include	a	title	and	sets	the	title
text.

Sub	SetChartTitle()

			'	Enable	the	chart	title.
			ChartSpace1.Charts(0).HasTitle	=	True

			'	Set	the	chart	title.
			ChartSpace1.Charts(0).Title.Caption	=	"Satisfaction	Data"

End	Sub

	 	

Show	All

TitleBar	Property

TitleBar	property	as	it	applies	to	the	PivotView	object.

TitleBar	property	as	it	applies	to	the	Spreadsheet	object.

Example
This	example	sets	the	title	caption	for	the	spreadsheet.

Spreadsheet1.TitleBar.Caption	=	"Monthly	Sales"
	 	

Toolbar	Property

Returns	an	MSComctlLib.Toolbar	object	that	represents	the	toolbar.

expression.Toolbar

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Use	the	returned	MSComctlLib.Toolbar	object	to	customize	the	toolbar
in	the	Microsoft	Office	Web	Components.	You	can	add	or	remove	built-in
buttons	as	well	as	custom	buttons.

Show	All

Top	Property

Top	property	as	it	applies	to	the	ChartSpace,	ChCategoryLabel,
ChChartField,	ChDataLabel,	ChDataLabels,	ChErrorBars,
ChLegendEntry,	ChPoint,	ChSeries,	ChTrendline,	PivotAggregate,
PivotAxisMember,	PivotColumnMember,	PivotDetailCell,
PivotPageMember,	PivotResultAxis,	PivotResultColumnAxis,
PivotResultDataAxis,	PivotResultFilterAxis,	PivotResultGroupAxis,
PivotResultLabel,	PivotResultPageAxis,	PivotResultRowAxis,
PivotRowMember,	and	PivotTable	objects.

Top	property	as	it	applies	to	the	ChScrollView	object.

Top	property	as	it	applies	to	the	PivotData	object.

Top	property	as	it	applies	to	the	Range	object.

Top	property	as	it	applies	to	the	Window	object.

Example
This	example	sets	a	variable	for	the	distance	from	the	top	of	the
spreadsheet	window	to	cell	A35.

t2	=	Spreadsheet1.Range("A35").Top
	 	

Top2	Property

Returns	a	Long	value	that	represents	the	top	of	the	data	area	of	the
PivotTable	list.	Read-only.

expression.Top2

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
This	property	will	return	a	value	of	1	if	the	toolbar	is	not	displayed.

Show	All

TopLeft	Property

TopLeft	property	as	it	applies	to	the	PivotRange	object.

TopLeft	property	as	it	applies	to	the	PivotDetailRange	object.

TopOffset	Property

Returns	or	sets	a	Long	value	that	represents	the	number	of	pixels	to
scroll	the	data	area	down.	Read/write.

expression.TopOffset

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
Use	the	LeftOffset	to	scroll	the	data	area	to	the	left.

Example
This	example	scrolls	the	data	area	of	PivotTable	1	down	45	pixels	and	left
45	pixels.

Sub	ScrollDataArea()

				Dim	ptData

				Set	ptData	=	PivotTable1.ActiveData

				'	Scroll	45	pixels	down.
				ptData.TopOffset	=	45

				'	Scroll	the	data	area	to	the	left.
				ptData.LeftOffset	=	45

End	Sub
	 	

Total	Property

Returns	a	PivotTotal	object	that	represents	the	total	for	the	specified
aggregate.

expression.Total

expression				Required.	An	expression	that	returns	a	PivotAggregate
object.

TotalAllMembers	Property

True	if	filtered	members	are	included	in	subtotals.	If	this	property	is	set	to
False,	subtotals	do	not	include	members	that	have	been	filtered	out	of
the	view.	The	default	value	is	False.	Read/write	Boolean.

expression.TotalAllMembers

expression				Required.	An	expression	that	returns	a	PivotView	object.

TotalBackColor	Property

Returns	or	sets	the	background	color	for	all	totals.	Read/write	Variant.

expression.TotalBackColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

TotalColumnMember	Property

Returns	a	PivotColumnMember	object	that	represents	the	member
used	to	display	the	grand	total..

expression.TotalColumnMember

expression				Required.	An	expression	that	returns	a
PivotColumnMember	object.

TotalFont	Property

Returns	a	PivotFont	object	that	represents	the	font	used	for	aggregates
displayed	in	a	cell	or	in	a	detail	grid	footer.

expression.TotalFont

expression				Required.	An	expression	that	returns	a	PivotView	object.

TotalForeColor	Property

Returns	or	sets	the	foreground	color	for	all	totals.	Read/write	Variant.

expression.TotalForeColor

expression				Required.	An	expression	that	returns	a	PivotView	object.

Remarks
When	you	set	this	property,	you	can	use	either	a	Long	value
representing	a	red-green-blue	color	value	or	a	String	value	naming	a
valid	HTML	color	value.	For	example,	to	set	the	object	color	to	red,	you
could	use	the	hexadecimal	value	&HFF,	the	decimal	value	255,	or	the
string	value	"red."	In	Microsoft	Visual	Basic,	you	can	use	the	RGB
function	to	create	a	red-green-blue	color	value	(red	is	RGB(255,0,0)).
This	property	always	returns	the	color	as	a	Long	value	representing	a
red-green-blue	color	value.

TotalMember	Property

Returns	a	PivotAxisMember	object	that	represents	the	member	used	to
display	subtotals.

expression.TotalMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

TotalOrientation	Property

Returns	or	sets	the	orientation	used	to	display	summary	totals	when
there	is	more	than	one	total.	Read/write
PivotViewTotalOrientationEnum.

expression.TotalOrientation

expression				Required.	An	expression	that	returns	a	PivotView	object.

TotalPageMember	Property

Returns	a	PivotPageMember	object	that	represents	the	member	used	to
display	the	grand	total.

expression.TotalPageMember

expression				Required.	An	expression	that	returns	a	PivotPageMember
object.

TotalRowHeight	Property

Returns	or	sets	a	Long	value	that	represents	the	height	of	the	row	that
contains	the	subtotal	for	the	specified	member.	Read/write.

expression.TotalRowHeight

expression				Required.	An	expression	that	returns	a	PivotRowMember
object.

TotalRowMember	Property

Returns	a	PivotRowMember	object	that	represents	the	member	used	to
display	the	grand	total.

expression.TotalRowMember

expression				Required.	An	expression	that	returns	a	PivotRowMember
object.

Totals	Property

PivotDataAxis	and	PivotResultDataAxis	objects:	Returns	a
PivotTotals	collection	that	contains	all	the	PivotTotal	objects	on	the
summary	axis.	The	totals	are	displayed	in	the	summary	area	for	each
cell.

PivotView	object:	Returns	a	PivotTotals	collection	that	contains	all	the
totals	in	the	current	view.

expression.Totals

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

TotalType	Property

Returns	or	sets	the	type	of	total.	Read/write	DscTotalTypeEnum.

expression.TotalType

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Values	other	than	dscNone	are	valid	only	with	page	fields	of	type
dscGrouping.

Show	All

Type	Property

Type	property	as	it	applies	to	the	ChAxis	object.

Type	property	as	it	applies	to	the	ChChart	and	ChSeries	objects.

Type	property	as	it	applies	to	the	ChErrorBars	object.

Type	property	as	it	applies	to	the	ChScaling	object.

Type	property	as	it	applies	to	the	ChTrendline	object.

Type	property	as	it	applies	to	the	PageRelationship	object.

Type	property	as	it	applies	to	the	PivotField	object.

Type	property	as	it	applies	to	the	PivotFieldSet	object.

Type	property	as	it	applies	to	the	PivotTotal	object.

Type	property	as	it	applies	to	the	SchemaRowsource	object.

Type	property	as	it	applies	to	the	Section	object.

Type	property	as	it	applies	to	the	Worksheet	object.

Type	property	as	it	applies	to	the	Window	object.

Example
This	example	sets	the	chart	type	for	the	specified	chart.

Sub	SetChartType()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).Type	=	chConstants.chChartTypeLineMarkers

End	Sub

	 	

Show	All

Underline	Property

Returns	or	sets	the	font	underline	style	for	the	specified	range.
Read/write	UnderlineStyleEnum	for	the	ChFont	and	PivotFont	objects;
read/write	Variant	for	the	Font	object	(returns	Null	if	the	characters	in	the
font	do	not	all	have	the	same	underline	style;	otherwise,	returns	one	of
the	UnderlineStyleEnum	constants).	Use	the	IsNull	function	to
determine	whether	the	return	value	is	Null.

expression.Underline

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	adds	a	single	underline	to	all	cell	values	in	row	1.

Sub	FormatFont()

			Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants

			Spreadsheet1.Rows(1).Font.Underline	=	ssConstants.owcUnderlineStyleSingle

End	Sub

	 	

UniqueName	Property

Returns	the	unique	name	of	the	specified	object	(the	unique	member
reference	returned	by	the	provider).	Returns	Null	if	the	member	source	is
a	RecordsetDef	object.	Read-only	String.

expression.UniqueName

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

UniqueTable	Property

Specifies	the	name	of	the	updatable	table	when	a	form	is	bound	to	a
multitable	view	or	stored	procedure.	Read/write	String.

expression.UniqueTable

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

UsableHeight	Property

Returns	the	maximum	height	of	the	space	in	pixels	that	a	window	can
occupy	in	the	application	window	area.	Returns	the	same	value	as	the
Height	property.	Read-only	Double.

expression.UsableHeight

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
You	can	use	the	UsableWidth	property	to	return	the	maximum	possible
width	for	a	window.

UsableWidth	Property

Returns	the	maximum	width	of	the	space	in	pixels	that	a	window	can
occupy	in	the	application	window	area.	Returns	the	same	value	as	the
Width	property.	Read-only	Double.

expression.UsableWidth

expression				Required.	An	expression	that	returns	a	Window	object.

Remarks
Use	the	UsableHeight	property	to	return	the	maximum	possible	height
for	a	window.

UsedRange	Property

Returns	a	Range	object	that	represents	the	used	range	on	the	specified
worksheet.

expression.UsedRange

expression				Required.	An	expression	that	returns	a	Worksheet	object.

Example
This	example	adjusts	the	row	height	and	column	width	for	the	used	range
on	the	active	worksheet	to	fit	the	data	contained	in	the	range.

Sub	AutoFitSpreadsheet()

			Dim	rngUsedRange

			'	Set	a	variable	tot	he	used	range	in	the	active	sheet.
			Set	rngUsedRange	=	Spreadsheet1.ActiveSheet.UsedRange

			'	Autofit	the	rows.
			rngUsedRange.AutoFitRows

			'	Autofit	the	columns.
			rngUsedRange.AutoFitColumns

End	Sub

	 	

UseRemoteProvider	Property

True	if	the	data	source	control	is	using	a	remote	provider.	Read/write
Boolean.

expression.UseRemoteProvider

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
When	this	property	is	set	to	True,	the	data	source	control	uses	the
Microsoft	Remote	Data	Services	provider	for	data	connections.	You	can
use	this	property	only	with	pages	that	are	read	from	a	Microsoft	Internet
Information	Server	using	an	HTTP	or	HTTPS	address.	The	Microsoft
Remote	Data	Services	provider	fetches	data	by	passing	HTTP	or	HTTPS
requests	to	IIS,	which	then	makes	an	OLE	DB	connection	to	the
database.

UserMode	Property

Returns	a	Boolean	that	indicates	whether	the	PivotTable	list	is	in	view-
only	mode.	Read-only.

expression.UserMode

expression				Required.	An	expression	that	returns	a	PivotTable	object.

UseStandardHeight	Property

True	if	the	row	height	of	the	Range	object	equals	the	standard	height	of
the	sheet.	Returns	Null	if	the	range	contains	more	than	one	row	and
some	of	the	rows	are	standard	height.	Returns	False	when	none	of	the
rows	are	the	standard	height.	Read/write	Variant.

expression.UseStandardHeight

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	height	of	row	four	on	Sheet1	in	Spreadsheet1	to
the	standard	height.

Spreadsheet1.Worksheets("Sheet1").Rows(4).UseStandardHeight	=	True
	 	

UseStandardWidth	Property

True	if	the	column	width	of	the	Range	object	equals	the	standard	width	of
the	sheet.	Returns	Null	if	the	range	contains	more	than	one	column	and
some	of	the	columns	are	standard	width.	False	when	none	of	the
columns	are	the	standard	width.	Read/write	Variant.

expression.UseStandardWidth

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	sets	the	width	of	column	B	on	Sheet1	in	Spreadsheet1	to
the	standard	width.

Spreadsheet1.Worksheets("Sheet1").Columns("B").UseStandardWidth
	 	

UseXMLData	Property

Returns	or	sets	whether	the	data	access	page	will	bind	to	XML	data.
Read/write	Boolean.

expression.UseXMLData

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Remarks
Use	the	XMLLocation	property	to	set	whether	the	data	is	located	in	an
XML	data	island,	or	a	separate	XML	data	file.	Use	the	XMLDataTarget
property	to	specify	the	path	or	ID	to	use	when	binding	to	the	data.

Example
This	example	binds	the	data	access	page	to	an	XML	data	file.

Sub	MSODSC_BeforeInitialBind(DSCEventInfo)

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Set	the	offline	type.
			MSODSC.XMLLocation	=	dscConstants.dscXMLDataFile

			'	Set	the	location	of	the	XML	data	to	a	data	file.
			MSODSC.XMLDataTarget	=	"Q1	Sales	Analysis.xml"

			'	Bind	to	the	XML	data.
			MSODSC.UseXMLData	=	True		

End	Sub

	 	

Show	All

Value	Property

Value	property	as	it	applies	to	the	ChSegmentBoundary	object.

Value	property	as	it	applies	to	the	Name	and	Spreadsheet	objects.

Value	property	as	it	applies	to	the	Borders,	ByRef,	ParameterValue,
and	PivotDetailCell	objects.

Value	property	as	it	applies	to	the	Range	object.

Value	property	as	it	applies	to	the	PivotAggregate,	PivotAxisMember,
PivotColumnMember,	PivotMember,	PivotPageMember,
PivotResultMemberProperty,	PivotRowMember,	and
SchemaProperty	objects.

Example
This	example	creates	a	merged	cell	from	the	specified	range	and	then
places	a	value	in	the	merged	cell.

Sub	MergeCells()

			Spreadsheet1.Range("A1:C3").Merge

			Spreadsheet1.Range("A1").Value	=	"Monday"

End	Sub

	 	

Value2	Property

Returns	or	sets	a	Variant	representing	the	cell	value.	Read/write.

expression.Value2

expression				Required.	An	expression	that	returns	a	Range	object.

Remarks
The	only	difference	between	this	property	and	the	Value	property	is	that
the	Value2	property	doesn’t	use	the	Currency	and	Date	data	types.	You
can	return	values	formatted	with	these	data	types	as	floating-point
numbers	by	using	the	Double	data	type.

Example
This	example	illustrates	the	differences	between	the	Value	and	the
Value2	properties.

Sub	Value_vs_Value2()
			Dim	rngCell1
			Dim	rngCell2

			'	Set	a	variable	to	the	cells	used	in	this	example.
			Set	rngCell1	=	Spreadsheet1.ActiveSheet.Range("A1")
			Set	rngCell2	=	Spreadsheet1.ActiveSheet.Range("A2")

			'	Set	the	number	formats	used	by	the	cells	in	this	example.
			rngCell1.NumberFormat	=	"Currency"
			rngCell2.NumberFormat	=	"Short	Date"

			'	Set	the	value	of	cell	A1	to	a	currency	value.
			rngCell1.Value	=	"$123.456789"

			'	Set	the	value	of	cell	A2	to	a	date.
			rngCell2.Value	=	"9/7/1970"

				'	Use	the	Value	property	to	return	the	value	of	cell	A1.
			MsgBox	"Currency	returned	by	the	Value	Property	=	"	&	_
										rngCell1.Value

			'	Use	the	Value2	property	to	return	the	value	of	cell	A1.
			MsgBox	"Currency	returned	by	the	Value2	Property	=	"	&	_
										rngCell1.Value2

			'	Use	the	Value	property	to	return	the	value	of	cell	A2.

			MsgBox	"Date	returned	by	the	Value	Property	=	"	&	_
										rngCell2.Value

			'	Use	the	Value2	property	to	return	the	value	of	cell	A2.
			MsgBox	"Date	returned	by	the	Value2	Property	=	"	&	_
										rngCell2.Value2
End	Sub

	 	

Show	All

ValueType	Property

Returns	or	sets	a	ChartBoundaryValueTypeEnum	constant	that
represents	how	the	Value	property	of	the	specified	segment	boundary	is
interpreted.	Read/write.

expression.ValueType

expression				Required.	An	expression	that	returns	a
ChSegmentBoundary	object.

Remarks
When	this	property	is	set	to	chBoundaryValuePercent,	then	the	Value
property	of	the	specified	segment	boundary	must	be	between	0	and	1.

Example
This	example	binds	Chartspace1	to	the	Order	Details	table	in	the	SQL
Server	Northwind	database.	Then,	a	format	map	is	created	that	displays
the	larger	values	in	the	chart	with	a	darker	shade	of	blue.

Sub	Window_Onload()

				Dim	serSeries1
				Dim	segSegment1	As	ChSegment
				Dim	chconstants

				Set	chconstants	=	ChartSpace1.Constants

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Order	Details	table	in	the
				'	Northwind	SQL	Server	database.
				ChartSpace1.ConnectionString	=	"Provider=SQLOLEDB.1;Persist	Security	Info=TRUE;"	&	_
																																			"Integrated	Security=SSPI;Initial	Catalog=Northwind;"	&	_
																																			"Data	Source=DataServer;"
				ChartSpace1.DataMember	=	"Order	Details"

				'	The	following	two	lines	of	code	bind	Chartspace1	to	the	Quantity	and	ProductID	fields
				'	in		the	Order	Details	table.
				ChartSpace1.SetData	chconstants.chDimCategories,	chconstants.chDataBound,	"ProductID"
				ChartSpace1.SetData	chconstants.chDimValues,	chconstants.chDataBound,	"Quantity"

				'	Create	a	format	map.
				ChartSpace1.SetData	chconstants.chDimFormatValues,	chconstants.chDataBound,	"Quantity"

				'	Set	a	variable	to	the	first	series	in	the	first	chart	in	Chartspace1.
				Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

				'	Add	a	segment	to	the	format	map.
				Set	segSegment1	=	serSeries1.FormatMap.Segments.Add

				'	Measure	the	segment	boundaries	based	upon	a	percentage.
				segSegment1.Begin.ValueType	=	chconstants.chBoundaryValuePercent
				segSegment1.End.ValueType	=	chconstants.chBoundaryValuePercent

				'	Set	the	beginning	value	to	0%,	and	the	ending	value	to	100%.
				segSegment1.Begin.Value	=	0
				segSegment1.End.Value	=	1

				'	Format	the	interior	of	the	matching	values.
				segSegment1.Begin.Interior.Color	=	"White"
				segSegment1.End.Interior.Color	=	"Blue"

End	Sub

	 	

Version	Property

Returns	the	Microsoft	Office	Web	Components	version.	Read-only
String.

expression.Version

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Show	All

VerticalAlignment	Property

Returns	or	sets	the	vertical	alignment	of	the	specified	object.	Can	be	an
XlVAlign	constant.	Read/write	Variant.

expression.VerticalAlignment

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	top-aligns	the	contents	of	cells	C7:G10	on	Sheet1	in
Spreadsheet1.

Sub	SetAlignment()
			Dim	rngAlign
			Dim	ssConstants

			Set	ssConstants	=	Spreadsheet1.Constants

			Set	rngAlign	=	Spreadsheet1.Worksheets("Sheet1").Range("C7:G10")

			'	Center	the	contents	of	the	range	horizontally.
			rngAlign.HorizontalAlignment	=	ssConstants.xlHAlignCenter

			'	Vertically	align	the	contents	of	the	range	at	the	top	of	the	cells.
			rngAlign.VerticalAlignment	=	ssConstants.xlVAlignTop
End	Sub

	 	

VerticalExtent	Property

You	use	the	VerticalExtent	property	to	specify	or	determine	the	extent	of
the	vertical	view	of	the	ChScrollView	object.	Returns	a	Long.	Read/write
Long.

expression.VerticalExtent

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

Example
The	following	example	uses	the	VerticalExtentMax	property	to	toggle	a
chart	view	between	a	zoomed	and	unzoomed.

Sub	ToggleZoom()
					If	objChart.ChScrollView.VerticalExtent	=	objChart.ChScrollView.VerticalExtentMax	Then
										'	Zoom	chart	and	make	it	scrollable.
										objChart.ChScrollView.VerticalExtent	=	(objChart.ChScrollView.VerticalExtentMax	/	2)
										objChart.ChScrollView.HorizontalExtent	=	(objChart.ChScrollView.HorizontalExtentMax	/	2)
					Else
										'	Unzoom	chart	and	remove	scrolling.
										objChart.ChScrollView.VerticalExtent	=	objChart.ChScrollView.VerticalExtentMax
										objChart.ChScrollView.HorizontalExtent	=	objChart.ChScrollView.HorizontalExtentMax
					End	If
End	Sub

VerticalExtentMax	Property

You	use	the	VerticalExtentMax	property	to	specify	or	determine	the
maximum	extent	of	the	vertical	view	of	the	ChScrollView	object.	Returns
a	Long.	Read/write	Long.

expression.VerticalExtentMax

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	The	VerticalExtentMax	property	represents	the	total
height	of	a	chart	whether	that	chart	is	zoomed	or	not.	For	information	on
how	the	values	of	the	properties	of	the	ChScrollView	object	relate	to
each	other,	see	the	ChScrollView	object	topic.

Example
The	following	example	uses	the	VerticalExtentMax	property	to	toggle	a
chart	view	between	a	zoomed	and	unzoomed:

Sub	ToggleZoom()
					If	objChart.ChScrollView.VerticalExtent	=	objChart.ChScrollView.VerticalExtentMax
										'	Zoom	chart.
										objChart.ChScrollView.VerticalExtent	=	(objChart.ChScrollView.
										objChart.ChScrollView.HorizontalExtent	=	(objChart.ChScrollView.HorizontalExtentMax	/	2)
					Else
										'	Unzoom	chart.
										objChart.ChScrollView.VerticalExtent	=	objChart.ChScrollView.
										objChart.ChScrollView.HorizontalExtent	=	objChart.ChScrollView.HorizontalExtentMax
					End	If
End	Sub

VerticalPosition	Property

You	use	the	VerticalPosition	property	to	specify	or	determine	the	current
vertical	view	position	of	the	ChScrollView	object.	Returns	a	Long.
Read/write	Long.

expression.VerticalPosition

expression				Required.	An	expression	that	returns	a	ChScrollView
object.

Remarks

You	use	methods	and	properties	of	the	ChScrollView	object	to	retrieve
information	about	and	control	the	view	of	a	chart.	The	portion	of	the	Chart
component	that	displays	the	chart	itself	is	the	visible	plot	area	and	it	can
display	the	entire	chart	or	a	portion	of	the	chart.	When	only	a	portion	of
the	chart	is	displayed	in	the	visible	plot	area,	the	effect	is	as	if	you	have
zoomed	in	on	that	portion	of	the	chart	and	the	remainder	of	the	chart	is
contained	within	a	virtual	plot	area	that	extends	beyond	the	boundary	of
the	visible	plot	area.	For	information	on	how	the	values	of	the	properties
of	the	ChScrollView	object	relate	to	each	other,	see	the	ChScrollView
object	topic.

When	the	VerticalPosition	property	equals	zero,	the	top	of	the	plot	area
will	be	at	the	top	of	the	scroll	view	window.	The	VerticalPosition	property
can	be	a	negative	number.	For	example	if	VerticalPosition	=	(-0.25	*
VerticalExtentMax),	the	plot	area	will	be	pushed	down	by	25%	of	the
virtual	height	of	the	plot	area.

Example
The	following	code	shows	different	ways	of	working	with	the	properties
and	methods	of	the	ChScrollView	object.

Dim	lngVP
Dim	lngHP
Dim	lngVE
Dim	lngHE
Dim	lngVEM
Dim	lngHEM
Dim	objScrollView

Set	objScrollView	=	ChartSpace1.Charts(0).ScrollView
lngVP	=	objScrollView.VerticalPosition
lngHP	=	objScrollView.HorizontalPosition
lngVE	=	objScrollView.VerticalExtent
lngHE	=	objScrollView.HorizontalExtent
lngVEM	=	objScrollView.VerticalExtentMax
lngHEM	=	objScrollView.HorizontalExtentMax

'	Toggle	the	scroll	view	between	unzoomed	and	200%	zoomed:
If	lngVE	=	lngVEM	And	lngHE	=	lngHEM	Then
								'	Chart	is	not	zoomed	so	zoom	to	200%.
								objScrollView.VerticalExtentMax	=	objScrollView.VerticalExtentMax	*	2
		objScrollView.HorizontalExtentMax	=	objScrollView.HorizontalExtentMax	*	2
Else
		'	Chart	is	zoomed,	return	it	to	unzoomed	state.
		objScrollView.VerticalExtentMax	=	objScrollView.VerticalExtent
		objScrollView.HorizontalExtentMax	=	objScrollView.HorizontalExtent
End	If

'	For	zoomed	chart,	display	lower	left	corner	of	virtual	plot	area	in
'	the	lower	left	corner	of	the	visible	plot	area.
If	lngVE	<>	lngVEM	Or	lngHE	<>	lngHEM	Then
'	Move	bottom	edge	of	virtual	plot	area	to	bottom	of	visible	plot	area.
	objScrollView.VerticalPosition	=	objScrollView.VerticalPosition	+	(lngVEM	-	lngVM)
'	Move	left	edge	of	virtual	plot	area	to	left	edge	of	visilble	plot	area.
objScrollView.HorizontalPosition	=	0
End	If

'	This	example	does	the	same	thing	as	the	previous	example	using	the	SetPosition	method.
If	lngVE	<>	lngVEM	Or	lngHE	<>	lngHEM	Then
	objScrollView.SetPosition	0,	objScrollView.VerticalPosition	+	(lngVEM	-	lngVE)
End	If

View	Property

Returns	a	PivotView	object	that	represents	the	current	view	for	the
specified	object.

expression.View

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ViewableRange	Property

Returns	or	sets	the	range	of	cells	that	the	user	can	view.	This	makes	it
possible	to	hide	worksheet	cells	(that	contain	intermediate	calculations,
for	example).	Read/write	String.

expression.ViewableRange

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Do	not	confuse	this	property	with	the	VisibleRange	property,	which
returns	a	Range	object	that	represents	all	the	cells	that	are	currently
visible.

Example
This	example	sets	the	viewable	range	on	the	spreadsheet.

Sub	Shrink_Viewable_Range()

				'	Set	the	viewable	range	of	the	window	to	cells	A1:D10.
				Spreadsheet1.ActiveWindow.ViewableRange	=	"A1:D10"
				
				'	Resize	the	spreadsheet	to	eliminate	the	gray	area.
				Spreadsheet1.Autofit	=	True
End	Sub

	 	

ViewOnlyMode	Property

True	if	the	Microsoft	Office	Web	Components	are	in	view-only	mode.	The
Web	Components	will	be	in	view-only	mode	if	the	user	does	not	have	the
appropriate	license	installed	on	their	computer.	Read-only	Boolean.

expression.ViewOnlyMode

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

ViewportLeft	Property

Returns	or	sets	a	Long	value	that	represents	the	left	side	of	the	viewable
data	range.	Use	this	property	to	scroll	that	data	area	to	the	left	by	a
specific	number	of	pixels.	Read/write.

expression.ViewportLeft

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
Use	the	ViewportTop	property	to	return	or	set	the	top	of	the	viewable
data	range.

Setting	this	property	to	an	invalid	value	will	result	in	a	run-time	error.	For
example,	setting	this	property	to	5000	when	the	data	range	cannot	be
scrolled	by	that	many	pixels	will	result	in	a	run-time	error.

ViewportTop	Property

Returns	or	sets	a	Long	value	that	represents	the	top	of	the	viewable	data
range.	Use	this	property	to	scroll	that	data	area	down	by	a	specific
number	of	pixels.	Read/write.

expression.ViewportTop

expression				Required.	An	expression	that	returns	a	PivotData	object.

Remarks
Use	the	ViewportLeft	property	to	return	or	set	the	left	side	of	the
viewable	data	range.

Setting	this	property	to	an	invalid	value	will	result	in	a	run-time	error.	For
example,	setting	this	property	to	5000	when	the	data	range	cannot	be
scrolled	by	that	many	pixels	will	result	in	a	run-time	error.

Show	All

Visible	Property

ChDataLabel,	ChLegendEntry,	PivotLabel,	and	TitleBar	objects:
Returns	or	sets	a	Boolean	that	determines	whether	the	specified	object
is	visible.	Set	this	property	to	False	to	hide	the	specified	object.
Read/write.

Sheets	and	Worksheets	objects:	Returns	or	sets	a	Variant	that
determines	whether	the	specified	object	is	visible.	Set	this	property	to
False	to	hide	the	specified	object.	Read/write.

Window	object.	Returns	a	Boolean	that	indicates	whether	the	specified
window	is	visible.	Read-only.

Worksheet	object.	Returns	or	sets	a	XlSheetVisibility	constant	that
determines	the	visibility	of	the	specified	worksheet.	Read/write.

expression.Visible

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	displays	the	legend	for	the	specified	chart	and	hides	the
specified	legend	entry.

Sub	ShowLegend()

			ChartSpace1.Charts(0).HasLegend	=	True
			ChartSpace1.Charts(0).Legend.LegendEntries(1).Visible	=	False

End	Sub

	 	

VisibleRange	Property

Returns	a	Range	object	that	represents	all	the	cells	that	are	currently
visible.	Read-only.

expression.VisibleRange

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Do	not	confuse	this	property	with	the	ViewableRange	property,	which
returns	a	String	that	specifies	the	range	that	the	user	can	view	(part	of
that	range	may	not	be	currently	visible).

Example
This	example	sets	the	font	to	bold	in	every	other	column	in	the	visible
range	on	the	active	worksheet.

Sub	Bold_Odd_Columns()
				Dim	rngColumn
			
				'Loop	through	the	visible	columns.	
				For	Each	rngColumn	In	Spreadsheet1.ActiveWindow.VisibleRange.Columns
				
								'Set	the	font	to	bold	if	the	column	is	odd-numbered.
								If	rngColumn.Column	Mod	2	=	0	Then
												rngColumn.Font.Bold	=	True
								End	If
				Next
End	Sub

	 	

The	function	in	this	example	returns	True	if	the	entire	current	region	for
cell	A1	is	visible	(if	the	current	region	extends	outside	the	visible	range,
the	function	returns	False).

Function	IsCurrentRegionVisible()
				Dim	rngCurrent
				Dim	rngVisible
				Dim	rngIntersect

				'	Set	the	varible	to	the	current	region	of	cell	A1.
				Set	rngCurrent	=	Spreadsheet1.ActiveSheet.Cells(1,	1).CurrentRegion
				
				'	Set	a	variable	to	the	currently	visible	range.
				Set	rngVisible	=	Spreadsheet1.ActiveWindow.VisibleRange

				
				'	Set	a	variable	to	the	overlapping	portion	of	the	current	region
				'	and	the	visible	range.
				Set	rngIntersect	=	Spreadsheet1.RectIntersect(rngCurrent,	rngVisible)
				
				'	If	the	overlapping	region	is	the	same	as	the	current	ragion,	then
				'	return	true.
				IsCurrentRegionVisible	=	(rngIntersect.Address	=	rngCurrent.Address)
End	Function

	 	

WatermarkBorder	Property

Returns	a	ChBorder	object	that	represents	the	border	of	the	watermark
in	the	specified	drop	zone.	Use	the	properties	of	the	returned	ChBorder
object	to	format	the	border	of	the	drop	zone's	watermark.

expression.WatermarkBorder

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

WatermarkFont	Property

Returns	a	ChFont	object	that	represents	the	font	of	the	watermark	in	the
specified	drop	zone.	Use	the	properties	of	the	returned	ChFont	object	to
format	the	font	of	the	drop	zone's	watermark.

expression.WatermarkFont

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

WatermarkInterior	Property

Returns	a	ChInterior	object	that	represents	the	interior	of	the	watermark
in	the	specified	drop	zone.	Use	the	properties	of	the	returned	ChInterior
object	to	format	the	interior	of	the	drop	zone's	watermark.

expression.WatermarkInterior

expression				Required.	An	expression	that	returns	a	ChDropZone
object.

Example
This	example	formats	the	button	and	the	watermark	of	the	series	drop
zone	in	Chartspace1.

Sub	SetupDropZone()

				Dim	dzSeriesDropZone
				Dim	ChConstants

				Set	chConstants	=	Chartspace1.Constants

				'	Set	a	variable	to	the	series	drop	zone	in	Chartspace1.
				Set	dzSeriesDropZone	=	ChartSpace1.DropZones(chConstants.chDropZoneSeries)

				'	The	next	three	lines	of	code	format	the	button	of	the	drop	zone.
				dzSeriesDropZone.ButtonBorder.Weight	=	chConstants.owcLineWeightMedium
				dzSeriesDropZone.ButtonInterior.SetSolid	"Red"
				dzSeriesDropZone.ButtonFont.Size	=	14

				'	The	next	three	lines	of	code	format	the	watermark	of	the	drop	zone.
				dzSeriesDropZone.WatermarkBorder.Color	=	"Red"
				dzSeriesDropZone.WatermarkFont.Color	=	"Red"
				dzSeriesDropZone.WatermarkInterior.SetSolid	"Green"

End	Sub

	 	

Weight	Property

Returns	or	sets	the	weight	for	the	specified	border	or	line.	Can	be	one	of
the	LineWeightEnum	constants,	or	can	be	Null	if	the	borders	are	not	all
the	same	weight.	Read/write	Variant.

expression.Weight

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Example
This	example	sets	the	axis	line	and	border	weight	of	the	chart	to	thick.

Sub	FormatChart()

			Dim	chConstants

			Set	chConstants	=	ChartSpace1.Constants

			ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionValue).Line	_
																							.Weight	=	chConstants.owcLineWeightThick

			ChartSpace1.Border.Weight	=	chConstants.owcLineWeightThick

End	Sub

	 	

Show	All

Width	Property

Width	property	as	it	applies	to	the	Window	object.

Width	property	as	it	applies	to	the	PivotAxisMember,
PivotColumnMember,	PivotFieldSet,	PivotPageMember,
PivotRowMember,	PivotTable,	and	PivotTotal	objects.

Width	property	as	it	applies	to	the	PivotAggregate,	PivotDetailCell,
PivotResultAxis,	PivotResultColumnAxis,	PivotResultDataAxis,
PivotResultFilterAxis,	PivotResultGroupAxis,	PivotResultLabel,
PivotResultPageAxis,	and	PivotResultRowAxis	objects.

Width	property	as	it	applies	to	the	Range	object.

Remarks
The	AutoFit	property	of	the	PivotTable	list	is	set	to	False	when	the	value
of	the	Width	property	is	changed.

Example
This	example	sets	the	width	of	the	PivotTable	list	to	150	points.

PivotTable1.Object.Width	=	150

	 	

WidthRatio	Property

Returns	or	sets	the	width	ratio	for	the	specified	chart	in	relation	to	the
other	charts	in	the	chart	workspace.	The	default	value	is	100.	Read/write
Long.

expression.WidthRatio

expression				Required.	An	expression	that	returns	a	ChChart	object.

Remarks
For	this	property	to	have	any	effect,	you	must	have	more	than	one	chart
in	the	chart	workspace.	When	more	than	one	chart	is	displayed,	the
charts	are	displayed	in	a	grid	(for	more	information,	see	the	Help	topics
for	the	ChartLayout	and	ChartWrapCount	properties).	Initially,	the
HeightRatio	and	WidthRatio	properties	are	set	to	100	for	all	charts	in
the	grid,	and	all	charts	are	the	same	size.

To	change	the	width	of	charts	in	the	grid,	adjust	the	WidthRatio	property
settings.	For	example,	if	each	chart	is	displayed	in	three	columns	all
charts	have	an	initial	WidthRatio	setting	of	100.	If	you	want	column	3	to
be	only	half	the	available	column	width,	set	its	WidthRatio	setting	to	200;
the	remaining	half	of	the	chart	width	will	be	divided	between	columns	1
and	2.	Because	the	width	specified	by	the	WidthRatio	property	is
relative,	you	can	set	this	property	for	the	three	columns	to	1,1,2;
100,100,200;	or	20,20,40.	all	of	which	have	the	same	effect.

If	the	chart	workspace	contains	charts	displayed	in	more	than	one
column,	the	largest	WidthRatio	setting	in	each	column	is	used	to	set	the
relative	width	for	the	entire	column.

This	property	is	useful	for	creating	price	and	volume	stock	charts	in	which
the	volume	chart	is	half	the	size	of	the	price	chart.

WindowNumber	Property

Returns	the	window	number.	Always	returns	1	in	this	version	of	the
Microsoft	Office	Spreadsheet	Component.	Read-only	Long.

expression.WindowNumber

expression				Required.	An	expression	that	returns	a	Window	object.

Windows	Property

Returns	a	Windows	collection	that	represents	the	windows	in	the	open
workbook.

expression.Windows

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Although	each	worksheet	in	the	open	workbook	has	its	own	window,	this
property	always	returns	a	reference	to	the	active	worksheet's	window.

Workbooks	Property

Returns	a	Workbooks	collection	that	represents	the	open	workbook.

expression.Workbooks

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Worksheet	Property

Returns	a	Worksheet	object	that	represents	the	worksheet	containing
the	specified	range.	Read-only.

expression.Worksheet

expression				Required.	An	expression	that	returns	a	Range	object.

Example
This	example	activates	the	worksheet	in	Spreadsheet1	that	contains	the
range	named	"Revenue."

Spreadsheet1.Range("Revenue").Worksheet.Activate
	 	

Worksheets	Property

Returns	a	Worksheets	collection	that	represents	the	worksheets	in	the
open	workbook.

expression.Worksheets

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

XMLData	Property

Returns	or	sets	the	XML	data	for	the	specified	component.	Read/write
String.

expression.XMLData

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

XmlDataBindings	Property

You	use	the	XmlDataBindings	property	to	return	an	XmlDataBindings
collection.	Read-only	XmlDataBindings	collection.

expression.XmlDataBindings

expression				Required.	An	expression	that	returns	a	Workbook	object.

Remarks

The	XmlDataBindings	collection	contains	one	or	more	XmlDataBinding
objects.	Each	XmlDataBinding	object	contains	configuration	data	that
binds	the	Spreadsheet	component	to	a	data	retrieval	service,	a	SOAP
Web	Service,	an	XML	file,	or	another	Spreadsheet	component.

Example
The	following	example	uses	the	XmlDataBindings	property	of	the
Workbook	object	to	return	a	member	of	the	XmlDataBindings	collection
and	then	work	with	the	XML	that	represents	the	binding	information:

Dim	objBindings
Dim	objBinding
Dim	strBindingInfo

Set	objBindings	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings

For	Each	objBinding	in	objBindings
					'	Save	the	XML	binding	information	to	a	variable.					
					strBindingInfo	=	objBinding.BindingData
					'	Work	with	binding	information	here.
Next

XMLDataTarget	Property

Returns	or	sets	a	String	that	represents	the	location	of	the	XML	data	to
load	or	save.	Read/write.

expression.XMLDataTarget

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Example
This	example	exports	the	current	data	in	the	data	source	control	named
MSODSC	to	an	XML	data	file.

Sub	ExportData()

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Set	the	location	of	the	XML	data	to	a	data	file.
			MSODSC.XMLLocation	=	dscConstants.dscXMLDataFile

			'	Set	the	specific	target	to	export	to.
			MSODSC.XMLDataTarget	=	"Q1	Sales	Analysis.xml"

			'	Export	the	current	data.
			MSODSC.ExportXML
End	Sub
	 	

Show	All

XMLLocation	Property

Returns	or	sets	a	DscXMLLocationEnum	constant	that	specifies
whether	the	XML	data	is	to	be	loaded	or	saved	from	an	XML	data	file	or
an	XML	data	island	inside	of	the	current	data	access	page.	Read/write.

expression.XMLLocation

expression				Required.	An	expression	that	returns	a	DataSourceControl
object.

Example
This	example	exports	the	current	data	in	the	data	source	control	named
MSODSC	to	an	XML	data	file.

Sub	ExportData()

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Set	the	location	of	the	XML	data	to	a	data	file.
			MSODSC.XMLLocation	=	dscConstants.dscXMLDataFile

			'	Set	the	specific	target	to	export	to.
			MSODSC.XMLDataTarget	=	"Q1	Sales	Analysis.xml"

			'	Export	the	current	data.
			MSODSC.ExportXML

End	Sub
	 	

XmlMap	Property

You	use	the	XmlMap	property	to	return	an	XmlMap	object	representing
the	XML	schema	map	associated	with	an	XmlDataBinding	object.
Returns	an	XmlMap	object.	Read-only.

expression.XmlMap

expression				Required.	An	expression	that	returns	an	XmlDataBinding
object.

Remarks

You	can	use	the	MapData	property	of	the	XmlMap	object	to	specify	or
determine	the	mapping	information	for	the	data	source	specified	in	the
XmlDataBinding	object.

Example
The	following	example	uses	the	XmlMap	property	to	return	the	schema
map	associated	with	a	binding.

Dim	objBindings
Dim	objBinding
Dim	strMapInfo

Set	objBindings	=	Spreadsheet1.ActiveWorkbook.XmlDataBindings

For	Each	objBinding	in	objBindings
					'	Save	the	XML	binding	information	to	a	variable.					
					Set	strMapInfo	=	objBinding.XmlMap
					'	Work	with	binding	information	here.
Next

XmlMaps	Property

You	use	the	XmlMaps	property	of	the	Workbook	object	to	return	an
XmlMaps	collection.	Returns	an	XmlMaps	collection.	Read-only.

expression.XmlMaps

expression				Required.	An	expression	that	returns	a	Workbook	object.

Remarks

The	XmlMaps	object	is	a	collection	of	all	of	the	XmlMap	objects
associated	with	a	Spreadsheet	component.	An	XmlMap	is	an	XML
schema	map	that	specifies	how	to	map	data	from	a	data	source	in	the
Spreadsheet	component.

You	can	create	a	new	XmlMap	object	by	using	the	Add	method	of	the
XmlMaps	collection.	The	XmlMap	object	is	also	available	when	you	set
the	XmlUrl	property	of	a	Spreadsheet	component	to	the	name	of	an	XML
Spreadsheet	file,	or	a	string	containing	properly	configured	XML	data,
that	contains	the	binding	and	mapping	configuration	for	the	Spreadsheet
component.	You	can	create	an	XML	Spreadsheet	file	by	creating	a
databound	spreadsheet	using	Microsoft	Excel	and	then	saving	the
workbook	as	an	XML	Spreadsheet.

Example
The	following	example	illustrates	how	to	use	the	XmlMaps	property	of
the	WorkBook	object	to	return	an	XmlMaps	collection.

Dim	objMaps
Dim	objMap
Dim	strMapInfo

Set	objMaps	=	Spreadsheet1.ActiveWorkbook.XmlMaps

For	Each	objMap	in	objMaps
					'	Save	the	XML	map	information	to	a	variable.					
					strMapInfo	=	objMap.MapData
					'	Work	with	map	information	here.
Next

XMLURL	Property

Returns	or	sets	a	String	representing	the	URL	to	an	Extensible	Markup
Language	(XML)	file.	Setting	this	property	discards	the	currently-open
workbook	and	loads	the	specified	XML	file	into	a	new	workbook.
Read/write.

expression.XMLURL

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

Example
This	example	loads	the	contents	of	the	specified	XML	file	into	Sheet1	of
Spreadsheet1.

Spreadsheet1.XMLURL	=	"http://example.microsoft.com/Test.xml"
	 	

ZOrder	Property

Returns	or	sets	a	Long	that	specifies	the	the	order	in	which	a	series	is
rendered	from	front	to	back.	Read/write.

expression.ZOrder

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Remarks
Set	this	property	to	0	to	render	the	series	at	the	front	of	the	chart.

This	property	affects	only	clustered	or	overlapping	3-D	Area,	Bar,
Column,	and	Line	charts.

AfterDelete	Event

Occurs	after	a	record	has	been	deleted,	or	the	deletion	of	a	record	has
been	canceled.	Use	this	event	is	you	want	to	perform	a	set	of	actions
when	a	record	is	deleted.

Private	Sub	Object_AfterDelete(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	Status	property	of	the	DSCEventInfo	object	to	determine
whether	the	record	deletion	was	canceled.

Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

Example
This	example	displays	a	message	box	that	indicates	the	status	of	the
record	deletion	that	fired	the	event.

Sub	MSODSC_AfterDelete(DSCEventInfo)

			Dim	dscConstants

			Set	dscConstants	=	MSODSC.Constants

			'	Check	the	status	of	the	record	deletion.
			Select	Case	DSCEventInfo.Status

						'	The	record	was	deleted.
						Case	dscConstants.dscDeleteOK

									MsgBox	"Record	deleted	successfully."

						'	The	deletion	was	canceled	via	code.
						Case	dscConstants.dscDeleteCancel

									MsgBox	"Record	deletion	canceled	by	code."

						'	The	delection	was	canceled	by	the	user.
						Case	dscConstants.dscDeleteUserCancel
									MsgBox	"Record	deletion	canceled	by	user."

			End	Select

End	Sub

	 	

AfterFinalRender	Event

Occurs	after	all	chart	elements	have	been	rendered.

Private	Sub	ChartSpace_AfterFinalRender(ByVal	drawObject	As
ChChartDraw)

drawObject				A	ChChartDraw	object.	Use	the	methods	and	properties	of
this	object	to	draw	objects	on	the	chart.

Remarks
You	must	set	the	AllowRenderEvents	property	to	True	in	order	to	use
this	event.

AfterInsert	Event

Occurs	after	a	record	has	been	inserted.	Use	this	event	if	you	want	to
perform	a	set	of	actions	when	a	record	is	inserted.

Private	Sub	Object_AfterInsert(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

AfterLayout	Event

Occurs	after	all	charts	in	the	specified	chart	control	have	been	laid	out,
but	before	they	have	been	rendered.	During	this	event,	you	can
reposition	the	ChTitle,	ChLegend,	ChChart,	and	ChAxis	objects	of
each	chart	by	changing	their	Left	and	Top	properties.	You	can	reposition
the	ChPlotArea	object	by	changing	its	Left,	Top,	Right,	and	Bottom
properties.	These	properties	cannot	be	changed	outside	of	this	event.

Private	Sub	ChartSpace_AfterLayout(ByVal	drawObject	As
ChChartDraw)

drawObject	A	ChChartDraw	object.	Use	the	methods	and	properties	of
this	object	to	manipulate	drawing	objects	on	the	chart.

Remarks
The	AllowLayoutEvents	property	must	be	set	to	True	in	order	to	capture
this	event.

Example
This	example	uses	the	AfterLayout	event	to	move	the	title	for	the	first
chart	in	Chartspace1	to	the	left	side	of	the	chart.	It	then	moves	the	legend
towards	the	top	of	the	chart.

Private	Sub	ChartSpace1_AfterLayout(drawObject)

				'	Move	the	title	to	the	left	side	of	the	chart.
				ChartSpace1.Charts(0).Title.Left	=	1

				'	Move	the	legend	towards	the	top	of	the	chart.
				ChartSpace1.Charts(0).Legend.Top	=	20

End	Sub

	 	

AfterRender	Event

Occurs	after	the	object	represented	by	the	chartObject	argument	has
been	rendered.

Private	Sub	ChartSpace_AfterRender(ByVal	drawObject	As
ChChartDraw,	ByVal	chartObject	As	Object)

drawObject				A	ChChartDraw	object.	Use	the	methods	and	properties
of	this	object	to	manipulate	drawing	objects	on	the	chart.

chartObject				The	object	that	has	just	been	rendered.	Use	the
TypeName	function	to	determine	what	type	of	object	has	just	been
rendered.

Remarks
You	must	set	the	AllowRenderEvents	and	AllowPointsRenderEvents
properties	to	True	in	order	to	use	this	event	with	all	chart	objects.

Example
This	example	adds	a	text	string	to	the	upper-left	corner	of	the	plot	area
each	time	that	the	chart	is	redrawn.

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chChart1

				Set	chChart1	=	ChartSpace1.Charts(0)
				
				'	After	the	legend	has	been	rendered,	then	add	the	text
				'	to	the	chart.
				If	TypeName(chartObject)	=	"ChLegend"	Then
								drawObject.DrawText	"2000	Sales",	chChart1.PlotArea.Left	+	5,	_
																												chChart1.PlotArea.Top

				End	If

End	Sub
	 	

This	example	illustrates	how	you	can	use	the	BeforeRender	and
AfterRender	events	together	to	create	custom	gridlines.	The
BeforeRender	event	cancels	the	rendering	of	the	gridlines	and	the
AfterRender	event	draws	custom	gridlines.

Sub	ChartSpace1_BeforeRender(drawObject,	chartObject,	Cancel)

				'	Check	to	see	if	the	next	object	to	be	rendered
				'	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	Cancel	the	rendering	of	gridlines.

								Cancel.Value	=	True

				End	If

End	Sub

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)

				Dim	chChart1
				Dim	plPlotArea
				Dim	lLeft
				Dim	lRight
				Dim	lHeight
				Dim	lTop
				Dim	lIncrement
				Dim	chConstants
				Dim	iCtr

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Set	a	variable	to	the	plot	area	of	the	chart.
				Set	plPlotArea	=	chChart1.PlotArea

				'	Check	to	see	if	the	rendered	object	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	The	next	four	lines	of	code	use	the	extents	of
								'	the	plot	area	to	calculate	the	dimensions	of	the	line
								'	to	be	drawn.
								lLeft	=	plPlotArea.Left

								lTop	=	plPlotArea.Top
								lRight	=	plPlotArea.Right
								lHeight	=	plPlotArea.Bottom	-	lTop

								'	Determine	the	increment	to	use	between	gridlines.
								'	Change	the	divisor	to	adjust	the	increment.
								lIncrement	=	lHeight	/	10

								'	The	next	three	lines	of	code	set	the	properties	of	the
								'	line	to	be	drawn.
								drawObject.Line.DashStyle	=	chConstants.chLineRoundDot
								drawObject.Line.Color	=	"Green"
								drawObject.Line.Weight	=	chConstants.owcLineWeightMedium

								For	iCtr	=	1	To	9

												'	Draw	the	line.
												drawObject.DrawLine	lLeft,	lTop	+	iCtr	*	lIncrement,	_
																																lRight,	lTop	+	iCtr	*	lIncrement

								Next
				End	If

End	Sub

	 	

AfterUpdate	Event

Occurs	after	a	record	is	updated	with	new	data	or	the	record	loses	focus.

Private	Sub	Object_AfterUpdate(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

Example
This	example	displays	information	about	the	section	that	contains	the
record	that	was	updated.

Sub	MSODSC_AfterUpdate(DSCInfo)

				MsgBox	DSCInfo.Section.HTMLContainer.All(1).InnerText

End	Sub

	 	

BeforeCollapse	Event

Occurs	when	the	collapse	button	is	clicked	on	a	data	access	page.

Private	Sub	Object_BeforeCollapse(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeContextMenu	Event

Occurs	before	a	context	menu	is	to	be	shown.	A	context	menu	is	shown
when	the	user	right-clicks	or	they	press	the	Application	key.

Private	Sub	Object_BeforeContextMenu(ByVal	x	As	Long,	ByVal	y
As	Long,	ByVal	Menu	As	Byref,	ByVal	Cancel	As	ByRef)

x					Represents	the	x-coordinate	where	the	context	menu	is	to	appear.

y					Represents	the	y-coordinate	where	the	context	menu	is	to	appear.

Menu				Set	the	Value	property	of	this	object	to	an	array	that	contains	the
menu	items	to	display.

Cancel					Set	the	Value	property	of	this	object	to	True	to	cancel	the
keystroke.

Remarks
Use	this	event	to	customize	the	context	menus	in	the	Microsoft	Office
Web	Components.

Example
This	example	displays	a	custom	context	menu.	The	menu	contains	four
options,	the	last	option	displays	a	submenu.

Sub	Spreadsheet1_BeforeContextMenu(x,	y,	Menu,	Cancel)

				Dim	cmContextMenu(4)
				Dim	cmClearSubMenu(2)

				cmClearSubMenu(0)	=	Array("&All",	"ClearAll")
				cmClearSubMenu(1)	=	Array("&Formats",	"ClearFormats")
				cmClearSubMenu(2)	=	Array("&Values",	"ClearValues")

				cmContextMenu(0)	=	Array("Cu&t",	"owc2")
				cmContextMenu(1)	=	Array("&Copy",	"owc3")
				cmContextMenu(2)	=	Array("&Paste",	"owc4")
				cmContextMenu(3)	=	Empty
				cmContextMenu(4)	=	Array("Clea&r",	cmClearSubMenu)

				Menu.Value	=	cmContextMenu

End	Sub

	 	

BeforeDelete	Event

Occurs	before	a	record	is	deleted.	Use	this	event	if	you	want	to	apply	a
set	of	conditions	before	a	record	is	deleted.

Private	Sub	Object_BeforeDelete(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Set	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False	to
cancel	the	deletion	of	a	record.	When	you	cancel	the	deletion	of	a	record,
the	AfterDelete	event	still	fires.

Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

Use	the	DisplayAlert	property	to	determine	whether	or	not	the	user	is
prompted	when	this	event	is	called.

Example
This	example	cancels	the	deletion	of	a	record	if	the	"Discontinued"	field	is
set	the	No.

Sub	MSODSC_BeforeDelete(DSCEventInfo)

			Dim	txtDiscontinued

			'	Set	a	variable	to	the	text	box	that	contains	the	value
			'	of	the	Discontinued	field	for	the	record	that	is	to	be	deleted.
			Set	txtDiscontinued	=	DSCEventInfo.Section.HTMLContainer	_
																								.Children("Discontinued")

			'	Check	the	value	of	the	control.
			If	txtDiscontinued.Value	=	"No"	Then

						'	Display	a	message	to	the	user.
						Msgbox	"Do	not	delete	products	that	have	not	"	&	_
													"been	discontinued."

						Cancel	the	deletion	of	the	record.
						DSCEventInfo.ReturnValue	=	False
			End	If

End	Sub

	 	

BeforeExpand	Event

Occurs	whenever	the	expand	button	is	clicked	on	a	data	access	page.

Private	Sub	Object_BeforeExpand(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeFirstPage	Event

Occurs	before	the	first	set	of	records	is	displayed	on	a	banded	data
access	page.

Private	SubObject_BeforeFirstPage(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeInitialBind	Event

Occurs	before	the	controls	on	the	specified	data	access	page	are	bound
to	the	recordset	for	the	first	time.	Use	this	event	to	set	the	properties	for
the	data	access	page	before	the	controls	are	populated	with	data.

Private	Sub	Object_BeforeInitialBind(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
This	event	does	not	support	any	of	the	DSCEventInfo	properties.

BeforeInsert	Event

Occurs	when	the	first	character	is	entered	into	a	new	record,	but	before
the	record	is	added	to	the	recordset.

Private	Sub	Object_BeforeInsert(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Set	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False	to
cancel	the	insertion	of	a	new	record.

You	can	use	the	DataPage	property	of	the	DSCEventInfo	object	to	get
more	information	about	the	data	access	page.

Example
This	example	uses	the	BeforeInsert	event	to	prevent	the	user	from
adding	another	record	to	the	recordset	once	it	reaches	75	records.

Sub	MSODSC_BeforeInsert(DSCEventInfo)
			Dim	rstCurrentData

			'	Set	a	variable	to	the	recordset.
			Set	rstCurrentData	=	DSCEventInfo.DataPage.Recordset

			'	Check	to	see	if	the	recordset	has	reached	its	limit.
			If	rstCurrentData.RecordCount	>=	75	then

						'	Display	a	message	to	the	user.
						MsgBox	"Cannot	add	any	more	records."

						'	Cancel	the	insertion	of	the	record.
						DSCEventInfo.ReturnValue	=	False
			End	If
End	Sub

	 	

BeforeKeyDown	Event

Occurs	when	a	user	presses	a	key	on	the	keyboard,	but	before	the
control	has	processed	the	keystroke.	If	the	user	holds	the	key	down,	this
event	repeats	itself	at	the	key-repeat	interval	that	has	been	set	on	the
user’s	computer.

Private	Sub	Object_BeforeKeyDown(ByVal	KeyCode	As	Long,	ByVal
Shift	As	Long,	ByVal	Cancel	As	ByRef)

Object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

KeyCode				An	integer	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	and	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	nor	ALT	keys
were	pressed.

Cancel					Set	the	Value	property	of	this	object	to	True	to	cancel	the
keystroke.

Remarks
Canceling	this	event	also	cancels	the	BeforeKeyPress	and	KeyPress
events,	but	does	not	prevent	the	the	KeyDown	or	KeyUp	events	from
firing.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

BeforeKeyPress	Event

Occurs	when	a	user	presses	and	releases	a	key	on	the	keyboard,	but
before	the	control	has	processed	the	keystroke.	If	the	user	holds	the	key
down,	this	event	repeats	itself	at	the	key-repeat	interval	that	has	been	set
on	the	user’s	computer.

Private	Sub	Object_BeforeKeyPress(ByVal	KeyAscii	As	Long,	ByVal
Cancel	As	ByRef)

Object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

KeyAscii				An	integer	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Cancel					Set	the	Value	property	of	this	object	to	True	to	cancel	the
keystroke.

Remarks
Canceling	this	event	does	not	prevent	the	KeyPress	or	KeyUp	events
from	firing.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

BeforeKeyUp	Event

Occurs	when	a	user	releases	a	key	on	the	keyboard,	but	before	the
control	has	processed	the	keystroke.

Private	Sub	Object_BeforeKeyUp(ByVal	KeyCode	As	Long,	ByVal
Shift	As	Long,	ByVal	Cancel	As	ByRef)

Object				The	name	of	the	ChartSpace,	PivotTable,	or	Spreadsheet
object	that	this	event	applies	to..

KeyCode				An	integer	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	and	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	or	ALT	keys
were	pressed.

Cancel				Set	the	Value	property	of	this	object	to	True	to	cancel	the
keystroke.

Remarks
Canceling	this	event	does	not	prevent	the	KeyUp	event	from	firing.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

BeforeLastPage	Event

Occurs	before	the	last	set	of	records	is	displayed	on	a	banded	data
access	page.

Private	Sub	Object_BeforeLastPage(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeNextPage	Event

Occurs	before	the	next	set	of	records	is	displayed	on	a	banded	data
access	page.

Private	Sub	Object_BeforeNextPage(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeOverwrite	Event

Occurs	when	an	existing	file	is	about	to	be	overwritten.

Private	Sub	Object_BeforeOverwrite(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
This	event	may	occur	when	you	use	the	ExportXML	method	to	export
the	current	recordset.	Set	the	ReturnValue	property	of	the
DSCEventInfo	object	to	False	to	prevent	the	existing	file	from	being
overwritten.	Set	the	DisplayAlert	property	of	the	DSCEventInfo	object	to
dscDataAlertContinue	to	overwrite	the	file	without	prompting	the	user.

Note:	Files	that	were	not	created	by	the	Data	Source	Control	will	not	be
overwritten.

Example
This	example	allows	a	file	created	by	the	ExportXML	method	to	be
overwritten	without	prompting	the	user.

Sub	MSODSC_BeforeOverwrite(DSCEventInfo)

			Dim	dscConstants
			Set	dscConstants	=	MSODSC.Constants

			'Don't	alert	the	user	when	overwriting	an	existing	file.
			DSCEventInfo.DisplayAlert	=	dscConstants.dscDataAlertContinue

End	Sub

	 	

BeforePreviousPage	Event

Occurs	before	the	previous	set	of	records	is	displayed	on	a	banded	data
access	page.

Private	Sub	Object_BeforePreviousPage(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

BeforeRender	Event

Occurs	before	the	object	passed	in	the	chartObject	argument	has	been
rendered.

Private	Sub	Object_BeforeRender(ByVal	drawObject	As
ChChartDraw,	ByVal	chartObject	As	Object,	Cancel	As	ByRef)

Object	The	name	of	the	ChartSpace	object	that	you	are	trapping	this
event	for.

drawObject				A	reference	to	the	ChChartDraw	object.	Use	the
DrawType	property	of	the	returned	object	to	determine	what	type	of
rendering	is	about	to	occur.

chartObject				The	object	that	is	to	be	rendered.	Use	the	TypeName
function	to	determine	the	type	of	the	object.

Cancel	Set	the	Value	property	of	this	object	to	True	to	cancel	the
rendering	of	the	object	represented	by	chartObject			.

Remarks
You	must	set	the	AllowRenderEvents	and	AllowPointsRenderEvents
properties	to	True	in	order	to	use	this	event	with	all	chart	objects.

Example
This	example	illustrates	how	you	can	use	the	BeforeRender	and
AfterRender	events	together	to	create	custom	gridlines.	The
BeforeRender	event	cancels	the	rendering	of	the	gridlines	and	the
AfterRender	event	draws	custom	gridlines.

Sub	ChartSpace1_BeforeRender(drawObject,	chartObject,	Cancel)

				'	Check	to	see	if	the	next	object	to	be	rendered
				'	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	Cancel	the	rendering	of	gridlines.
								Cancel.Value	=	True
				End	If
End	Sub

Sub	ChartSpace1_AfterRender(drawObject,	chartObject)
				Dim	chChart1
				Dim	plPlotArea
				Dim	lLeft
				Dim	lRight
				Dim	lHeight
				Dim	lTop
				Dim	lIncrement
				Dim	chConstants
				Dim	iCtr

				Set	chConstants	=	ChartSpace1.Constants

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Set	a	variable	to	the	plot	area	of	the	chart.
				Set	plPlotArea	=	chChart1.PlotArea

				'	Check	to	see	if	the	rendered	object	is	a	gridline.
				If	TypeName(chartObject)	=	"ChGridlines"	Then

								'	The	next	four	lines	of	code	use	the	extents	of
								'	the	plot	area	to	calculate	the	dimensions	of	the	line
								'	to	be	drawn.
								lLeft	=	plPlotArea.Left
								lTop	=	plPlotArea.Top
								lRight	=	plPlotArea.Right
								lHeight	=	plPlotArea.Bottom	-	lTop

								'	Determine	the	increment	to	use	between	gridlines.
								'	Change	the	divisor	to	adjust	the	increment.
								lIncrement	=	lHeight	/	10

								'	The	next	three	lines	of	code	set	the	properties	of	the
								'	line	to	be	drawn.
								drawObject.Line.DashStyle	=	chConstants.chLineRoundDot
								drawObject.Line.Color	=	"Green"
								drawObject.Line.Weight	=	chConstants.owcLineWeightMedium

								For	iCtr	=	1	To	9

												'	Draw	the	line.
												drawObject.DrawLine	lLeft,	lTop	+	iCtr	*	lIncrement,	_
																																lRight,	lTop	+	iCtr	*	lIncrement
								Next
				End	If
End	Sub

	 	

Show	All

BeforeScreenTip	Event

BeforeScreenTip	event	as	it	applies	to	the	ChartSpace	object.

BeforeScreenTip	event	as	it	applies	to	the	PivotTable	object.

Remarks
Use	this	event	to	customize	ScreenTips	displayed	in	a	chart	or	PivotTable
list.

BeforeUpdate	Event

Occurs	when	data	is	changed,	but	before	the	recordset	is	updated.	Use
this	event	to	validate	data	before	it	is	committed	to	the	database.

Private	Sub	Object_BeforeUpdate(ByVal	DSCEventInfo	As
DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

Set	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False	to
cancel	the	update.

Example
This	example	cancels	the	updating	of	the	recordset	when	the	user	enters
a	value	greater	than	0	for	the	UnitsOnOrder	field	when	the	UnitsInStock
field	is	greater	than	100.

Sub	MSODSC_BeforeUpdate(DSCEventInfo)

			Dim	txtUnitsOnOrder
			Dim	txtUnitsInStock

			'	Set	a	variable	to	the	text	box	that	contains	the	value
			'	for	the	UnitsOnOrder	field.
			Set	txtUnitsOnOrder	=	DSCEventInfo.Section.HTMLContainer	_
																									.Children("UnitsOnOrder")

			'	Set	a	variable	to	the	text	box	that	contains	the	value
			'	for	the	UnitsInStock	field.
			Set	txtUnitsInStock	=	DSCEventInfo.Section.HTMLContainer	_
																									.Children("UnitsInStock")

			'	Check	the	value	of	the	UnitsOnOrder	Field.
			If	CLng(txtUnitsOnOrder.Value)	>	0	then

						'	Check	the	value	of	the	UnitsInStock	Field.
						If	CLng(txtUnitsInStock.Value)	>	100	then

									'	Display	a	message	to	the	user.
									MsgBox	"Don't	reorder	the	part	until	fewer	than	100	are	in	stock."

									'	Cancel	the	update.
									DSCEventInfo.ReturnValue	=	False

						End	If
			End	If

End	Sub

	 	

BindingAdded	Event

Occurs	when	a	new	or	existing	XmlDataBinding	object	is	added	or
modified	through	the	Edit	Query	command.

Private	Sub	Spreadsheet1_BindingAdded(BindingId)

BindingId			The	unique	ID	of	an	XmlDataBinding	object.

Remarks

The	BindingId	is	automatically	generated	by	the	Spreadsheet
component	when	you	bind	to	a	data	retrieval	service	connection	(.uxdc)
file.	Microsoft	Excel	also	automatically	generates	the	BindingId	when
you	use	Excel	to	create	a	data-bound	spreadsheet	and	later	save	it	as	an
XML	Spreadsheet	file.	In	the	XML	Spreadsheet	file,	the	XML	fragment
that	contains	the	BindingId	looks	something	like	the	following:

<x2:Binding	x2:ID="Bind_id89929"	x2:LoadMode="Normal"
x2:Async="False">
You	can	also	manually	assign	a	BindingId	value	by	adding	the	relevant
XML	fragment	that	contains	data-binding	details	into	an	XML
Spreadsheet	file.

Example
The	following	example	in	Microsoft	Visual	Basic	Scripting	Edition
(VBScript)	tracks	the	number	of	XmlDataBinding	object	events	and
displays	the	BindingId	of	the	given	event	when	it	occurs.

'global	XmlDataBinding	object	BindingAdded	event	counter.
Dim	gintCounterBindingAdded
gintCounterBindingAdded	=	0

Sub	Spreadsheet1_BindingAdded(BindingId)

				gintCounterBindingAdded	=	gintCounterBindingAdded	+	1
				MsgBox	("BindingAdded	and	BindingID	is:	"	&	BindingId)

End	Sub

BindingCompleted	Event

Occurs	after	data	is	successfully	loaded	into	or	exported	from	a	map
through	a	Refresh	or	Update	method.

Private	Sub	Spreadsheet_BindingCompleted(BindingId,	Action)

BindingId			Required	String.	The	unique	ID	of	an	XmlDataBinding
object.	You	can	also	manually	assign	a	BindingId				value	by	adding	the
relevant	XML	fragment	that	contains	data-binding	details	into	an	XML
Spreadsheet	file.

Action			Refers	to	the	type	of	binding	operation	that	was	completed.	The
possible	values	are	"Refresh"	and	"Update".

Remarks

A	unique	BindingId	is	automatically	generated	by	the	Spreadsheet
component	when	you	bind	to	a	data	retrieval	service	connection	(.uxdc)
file.	Microsoft	Excel	also	automatically	generates	a	BindingId	when	you
use	Excel	to	create	a	data-bound	spreadsheet	and	later	save	it	as	an
XML	spreadsheet	file.	In	the	XML	Spreadsheet	file,	the	XML	fragment
that	contains	the	BindingId	looks	something	like	the	following:

<x2:Binding	x2:ID="bind_id0"	x2:Async="True"	
	xmlns:x2="urn:schemas-microsoft-com:office:excel2"
	xmlns:dsp="http://schemas.microsoft.com/sharepoint/dsp"
	xmlns:udc="http://schemas.microsoft.com/data/udc"
	xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
	xmlns:udcs="http://schemas.microsoft.com/data/udc/soap">
			<x2:MapID>map_id0</x2:MapID>
			<udc:DataSource	MajorVersion="1"	MinorVersion="0">
					<udc:Name/>
					<udc:Type	Type="SOAP"	MajorVersion="1"	MinorVersion="0">
	 <udc:SubType	Type="DSP"	MajorVersion="1"	MinorVersion="0"/>
					</udc:Type>
				<udc:ConnectionInfo	Purpose="Query">
						<udcs:SOAPAction>http://schemas.microsoft.com/sharepoint/dsp/queryRequest</udcs:SOAPAction>
						<udcs:Location	href="Data_Retrieval_Services_URL">SQLDataAdapter</udcs:Location>
						<soap-env:Body>
							<dsp:queryRequest>
								<dsp:dsQuery	select="/database[@id='Database_Name']/table[@id='Table_Name']"	resultContent="dataOnly">
									<dsp:Query	RowLimit="10"	QueryType="DSPQ">
										<dsp:Fields>
																					<dsp:Field	Name="Column_Name"/>
										</dsp:Fields>										
									</dsp:Query>
								</dsp:dsQuery>

							</dsp:queryRequest>
						</soap-env:Body>
						<soap-env:Header>
							<dsp:versions>
								<dsp:version>1.0</dsp:version>
							</dsp:versions>
							<dsp:dataRoot>
								<dsp:root>SQL_Server</dsp:root>
							</dsp:dataRoot>
							<dsp:request	service="DspSql"	document="content"	method="query"/>
								<dsp:authentication>
								<dsp:basic>
									<dsp:useExplicit>
										<dsp:userId>user_name</dsp:userId>
										<dsp:password>password</dsp:password>
									</dsp:useExplicit>
								</dsp:basic>
							</dsp:authentication>
						</soap-env:Header>
					</udc:ConnectionInfo>
				</udc:DataSource>
</x2:Binding>

The	BindingCompleted	event	is	triggered	after	data	is	successfully
loaded	into	or	exported	out	of	a	map	through	a	Refresh	or	Update
method.	This	event	is	also	triggered	when	the	page	is	first	rendered	for
query	bindings	where	the	LoadMode	attribute	of	the	Binding	element	is
set	to	"normal".

During	an	asynchronous	binding,	some	methods	related	to	data	binding
will	generate	run-time	errors	saying	that	the	requested	operation	cannot
be	completed	because	an	asynchronous	binding	is	in	progress.	Calls	to
these	methods	succeed	when	the	asynchronous	binding	is	done.	For
more	information,	see	the	XMLDataBinding	object	documentation.

Solution	developers	should	trap	the	BindingCompleted	and

BindingError	events	to	find	out	when	the	binding	is	finished.	Note	that
using	the	BindingCompleted	event	to	select	an	XML	row	does	not	send
that	row	to	a	part-to-part	binding	consumer	when	the	page	is	loaded.	Use
the	Window.Onload	event	for	that	purpose.

The	following	XML	fragment	example	shows	LoadMode	=	"normal":

<x2:Binding	x2:ID="Bind_id89929"	x2:LoadMode="normal"	x2:Async="true"	xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">
	 ...
</x2:Binding>

The	following	example	shows	how	to	trap	the	BindingCompleted	event
from	script	running	in	a	Web	page	when	the	page	is	first	loaded	and
whenever	the	user	refreshes	the	bound	data	(the	behavior	when	the
LoadMode	attribute	is	set	to	"normal").	To	work	correctly,	you	must	put
the	event	handler	for	the	BindingCompleted	event	in	a	<SCRIPT>	tag
that	is	located	before	the	<OBJECT>	tag	of	the	Spreadsheet	component.

<SCRIPT	language=vbscript	for="Spreadsheet1"	event="BindingCompleted(bindingID,	Action)">

				If	Spreadsheet1.ActiveWorkbook.XmlDataBindings.Item(bindingID).CanQuery	=	True	Then

								MsgBox	"Binding	Completed."

				End	If

</SCRIPT>

<OBJECT	id=Spreadsheet1	classid=CLSID:0002E559-0000-0000-C000-000000000046>
				...
</OBJECT>

BindingDeleted	Event

Occurs	when	a	new	XmlDataBinding	object	is	deleted.

Private	Sub	Spreadsheet_BindingDeleted(BindingId)

BindingId				Required	String.	The	unique	ID	of	an	XmlDataBinding
object.	The	unique	BindingId				is	automatically	generated	by	the
Spreadsheet	component	when	you	bind	to	a	data	retrieval	service
connection	(.uxdc)	file.	Microsoft	Excel	also	automatically	generates	the
BindingId				when	you	use	Excel	to	create	a	data-bound	spreadsheet
and	later	save	it	as	an	XML	Spreadsheet	file.	In	the	XML	Spreadsheet
file,	the	XML	fragment	that	contains	the	BindingId				looks	something	like
the	following:
<x2:Binding	x2:ID="Bind_id89929"	x2:LoadMode="normal"
x2:Async="False">.
You	can	also	manually	assign	a	BindingId				value	by	adding	the	relevant
XML	fragment	that	contains	data-binding	details	into	an	XML
Spreadsheet	file.

Example
The	following	example	tracks	the	number	of	BindingDeleted	events	and
displays	the	BindingId	of	the	given	event	when	it	occurs.

'global	XmlDataBinding	object	BindingDeleted	event	counter.
Dim	gintCounterBindingDeleted
gintCounterBindingDeleted	=	0

Sub	Spreadsheet1_BindingDeleted(BindingId)
				gintCounterBindingDeleted	=	gintCounterBindingDeleted	+	1
				MsgBox	"BindingDeleted	and	BindingId	is:	"	&	BindingId
End	Sub

BindingError	Event

Occurs	after	an	error	is	received	from	the	data	source	following	a	call	to
Refresh	or	Update	method	operation.

Private	Sub	Spreadsheet1_BindingError(BindingId,	Action,
DialogText,	FaultCode,	FaultString,	FaultDetail)

BindingId				Required	String.	The	unique	ID	of	an	XmlDataBinding
object.	The	unique	BindingId				is	automatically	generated	by	the
Spreadsheet	component	when	you	bind	to	a	data	retrieval	service
connection	(.uxdc)	file.	Microsoft	Excel	also	automatically	generates	the
BindingId				when	you	use	Excel	to	create	a	data-bound	spreadsheet
and	later	save	it	as	an	XML	Spreadsheet	file.	In	the	XML	Spreadsheet
file,	the	XML	fragment	that	contains	the	BindingId				looks	something	like
the	following:
<x2:Binding	x2:ID="Bind_id89929"	x2:LoadMode="normal"
x2:Async="False">.
You	can	also	manually	assign	a	BindingId				value	by	adding	the	relevant
XML	fragment	that	contains	data-binding	details	into	an	XML
Spreadsheet	file.

Action			Required	String.	Refers	to	the	type	of	binding	operation	that
was	completed.	The	possible	values	are	"Refresh"	and	"Update".

DialogText			Required	String.	Refers	to	the	error	string	mapped	to	the
fault	code	received.

FaultCode			Required	String.	Corresponds	to	the	<FaultCode>	element
in	the	fault	message	—	for	example,	"Client.Dsp.Authentication".

FaultString			Required	String.	Corresponds	to	the	<FaultString>	element
in	the	fault	message	—	for	example,	"Can't	logon	user	<username>".

FaultDetail			Required	String.	Corresponds	to	the	<Detail>	element	in
the	fault	message	—	for	example,	<dsp:queryResponse	status="failure"
xmlns:dsp="http://schemas.microsoft.com/sharepoint/dsp">
</dsp:queryResponse>	<dsp:author>authorName</dsp:author>	These
strings	match	the	structure	of	data	retrieval	service	connection	SOAP
fault	messages.

Remarks

For	XML	Spreadsheet	files	and	part-to-part	bindings,	the	DialogText
error	string	will	be	present	in	the	fault	message	but	not	in	the	FaultCode,
FaultString	and	FaultDetail	parameters.	For	arbitrary	SOAP	bindings,
FaultCode	and	FaultString	are	returned	by	all	XML	Web	services	fault
messages	—		but	the	optional	element	FaultDetail	is	not	returned	by
most	XML	Web	services,	including	data	retrieval	services.

When	a	Refresh	or	Update	method	fails,	the	BindingError	event	fires
and	an	error	dialog	box	is	displayed.	To	catch	the	error	in	script,	solution
developers	should	trap	the	BindingError	event.	The	error	won't	be
returned	by	the	Refresh	or	Update	methods	or	by	Internet	Explorer.
When	Refresh	or	Update	is	called	on	an	asynchronous	binding,	these
methods	return	immediately.

Solution	developers	should	trap	the	BindingCompleted	and
BindingError	events	to	find	out	when	the	binding	is	finished.	Note	that
using	the	BindingCompleted	event	to	select	an	XML	row	does	not	send
that	row	to	a	part-to-part	binding	consumer	when	the	page	is	loaded.	Use
the	Window.Onload	event	for	this	purpose.

BindingUpdated	Event

Occurs	when	the	BindingData	property	of	an	existing	XmlDataBinding
object	is	changed.

Private	Sub	Spreadsheet1_BindingUpdated(BindingId)

BindingId				Required	String.	The	unique	ID	of	an	XmlDataBinding
object.

BindingId				Required	String.	The	unique	ID	of	an	XmlDataBinding
object.	The	unique	BindingId				is	automatically	generated	by	the
Spreadsheet	component	when	you	bind	to	a	data	retrieval	service
connection	(.uxdc)	file.	Microsoft	Excel	also	automatically	generates	the
BindingId				when	you	use	Excel	to	create	a	data-bound	spreadsheet
and	later	save	it	as	an	XML	Spreadsheet	file.	In	the	XML	Spreadsheet
file,	the	XML	fragment	that	contains	the	BindingId				looks	something	like
the	following:
<x2:Binding	x2:ID="Bind_id89929"	x2:LoadMode="normal"
x2:Async="False">.
You	can	also	manually	assign	a	BindingId				value	by	adding	the	relevant
XML	fragment	that	contains	data-binding	details	into	an	XML
Spreadsheet	file.

Remarks

The	XmlDataBinding	object	contains	configuration	data	in	the	form	of
XML.	You	can	use	the	BindingData	property	to	return	or	set	the
configuration	data	for	a	given	XmlDataBinding	object.

Show	All

ButtonClick	Event

Occurs	whenever	the	user	clicks	a	navigation	button.

Private	Sub	RecordNavigationControl_ButtonClick(NavButton	As
NavButtonEnum)

NavButton				Specifies	the	button	that,	when	clicked,	triggers	the
ButtonClick	event.	Can	be	one	of	the	NavButtonEnum	constants.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

Change	Event

Occurs	whenever	data	in	one	or	more	cells	changes.	Both	edits	and
copy-and-paste	operations	cause	this	event	to	occur.

Private	Sub	Range_Change()

Remarks
This	event	occurs	after	the	EndEdit	event;	at	this	point,	the	data	has
already	been	changed	and	the	change	cannot	be	canceled.

This	event	requires	the	WithEvents	keyword,	so	it	cannot	be	used	with
VBScript	or	JScript.

Example
The	following	example	updates	a	label	control	on	a	Visual	Basic	form
when	the	value	in	cell	A1	of	Sheet1	in	Spreadsheet1	changes.

Dim	WithEvents	rngRange1	As	Range

Private	Sub	Form_Load()

				'	Set	a	variable	to	the	range	for	which	you	want	to	capture
				'	the	Change	event.
				Set	rngRange1	=	Spreadsheet1.Worksheets("Sheet1").Range("A1")

End	Sub

Private	Sub	rngRange1_Change()
				'	Change	the	caption	of	Label1	to	the	current	value
				'	of	cell	A1.
				Label1.Caption	=	rngRange1.Value
End	Sub

	 	

Click	Event

Occurs	whenever	the	user	clicks	the	specified	control.

Private	Sub	object_Click()

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

CommandBeforeExecute	Event

Occurs	before	a	command	is	executed.	Use	this	event	when	you	want	to
impose	certain	restrictions	before	a	command	is	executed.

Private	Sub	object_CommandBeforeExecute	(ByVal	Command	As
Variant,	ByVal	Cancel	As	ByRef)

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Command	Required.	The	command	that	has	been	executed.

Cancel	Required.	Set	the	Value	property	of	this	object	to	True	to	cancel
the	command.

Remarks
The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	of	the	Microsoft	Office	Web	Components.

Example
This	example	refreshes	PivotTable1	when	the	export	command	is
invoked	so	that	the	latest	data	is	exported	to	Microsoft	Excel.

Sub	PivotTable1_CommandBeforeExecute(Command,	Cancel)

			Dim	ptConstants

			Set	ptConstants	=	PivotTable1.Constants

			'	Check	to	see	if	the	Export	command
			'	has	been	invoked.
			If	Command	=	ptConstants.plCommandExport	Then

							'	Refresh	the	PivotTable	list.
							PivotTable1.Refresh

			End	If

End	Sub

	 	

CommandChecked	Event

Occurs	when	the	the	specified	Microsoft	Office	Web	Component
determines	whether	a	command	is	checked.

Private	Sub	object_CommandChecked	(ByVal	Command	As	Variant,
ByVal	Checked	As	ByRef)

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Command	Required.	The	command	that	has	been	executed.

Checked	Required.	Set	the	Value	property	of	this	object	to	True	to
uncheck	the	command.

Remarks
The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Web	component.

CommandEnabled	Event

Occurs	when	the	the	specified	Microsoft	Office	Web	Component
command	is	enabled.

Private	Sub	object_CommandEnabled	(ByVal	Command	As	Variant,
ByVal	Enabled	As	ByRef)

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Command	Required.	The	command	that	has	been	executed.

Enabled	Required.	Set	the	Value	property	of	this	object	to	True	to
disable	the	command.

Remarks
The	OCCommandID,	ChartCommandIDEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Web	component.

CommandExecute	Event

Occurs	after	a	command	is	executed.	Use	this	event	when	you	want	to
execute	a	set	of	commands	after	a	particular	command	is	executed.

Private	Sub	object_CommandExecute	(ByVal	Command	As	Variant,
ByVal	Succeeded	As	Boolean)

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Command	The	command	that	has	been	executed.

Succeeded	Returns	True	if	the	command	succeeded.

Remarks
The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	of	the	Office	Web	Components.

Example
This	example	writes	the	current	date	and	time	to	a	HTML	text	box	control
every	time	that	PivotTable1	is	refreshed.

Sub	PivotTable1_CommandExecute(Command,	Succeeded)

			Dim	ptConstants

			Set	ptConstants	=	PivotTable1.Constants

			'	Check	to	see	if	the	PivotTable	list	has	been	refreshed.
			If	Command	=	ptConstants.plCommandRefresh	Then

						'	Write	the	current	data	and	time	to	the	text	box.
						TextBox.Value	=	"PivotTable	Last	Refeshed	on	"	&	_
																						Date	&	"	at	"	&	Time

			End	If

End	Sub

	 	

CommandTipText	Event

Occurs	when	the	the	specified	Microsoft	Office	Web	Component	queries
a	command's	ScreenTip	text.

Private	Sub	object_CommandTipText	(ByVal	Command	As	Variant,
ByVal	Caption	As	ByRef)

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Command	The	command	that	has	been	executed.

Caption	The	Value	property	of	this	object	contains	the	ScreenTip	text	for
the	command.

Remarks
The	OCCommandId,	ChartCommandIdEnum,	PivotCommandId,	and
SpreadsheetCommandId	constants	contain	lists	of	the	supported
commands	for	each	Web	component.

Current	Event

Occurs	when	a	record	becomes	the	current	record.

Private	Sub	Object_Current(DSCEventInfo	As	DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Show	All

DataChange	Event

Occurs	when	certain	properties	are	changed	or	when	certain	methods
are	executed.	See	the	PivotDataReasonEnum	constant	for	more
information	about	the	properties	and	methods	that	can	trigger	this	event.

Private	Sub	Object_DataChange(ByVal	Reason	As
PivotDataReasonEnum)

Object				The	name	of	the	PivotTable	object	that	you	are	trapping	this
event	for.

Reason	Use	the	value	of	the	PivotDataReasonEnum	constant	to
determine	the	reason	that	this	event	was	triggered.

DataError	Event

Occurs	whenever	a	data	error	occurs.

Private	Sub	Object_DataError(DSCEventInfo	As	DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

DataPageComplete	Event

Occurs	when	the	specified	data	access	page	finishes	loading.

Private	Sub	Object_DataPageComplete(DSCEventInfo	As
DSCEVENTINFO)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

DataSetChange	Event

Occurs	whenever	a	chart	workspace	is	data-bound	and	the	data	set
changes—	for	example,	when	a	filter	operation	takes	place.	This	event
also	occurs	when	initial	data	is	available	from	the	data	source.

Private	Sub	Object_DataSetChange()

Object				The	name	of	the	ChartSpace	object	that	this	event	applies	to.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

DblClick	Event

Occurs	whenever	the	user	double-clicks	the	specified	control.

Private	Sub	object_DblClick()

object				A	ChartSpace	,	PivotTable	,	or	Spreadsheet	object.

Dirty	Event

Occurs	when	the	contents	of	a	data	access	page	are	changed	by	the
user.

Private	Sub	Object_Dirty(ByVal	DSCEventInfo	As	DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Set	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False	to
restore	the	previous	value.

Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

This	event	fires	before	the	BeforeUpdate	event.

EndEdit	Event

Occurs	whenever	the	user	switches	from	edit	mode	on	the	specified
Spreadsheet	Control	or	PivotTable	list.	You	can	use	this	event	to	validate
data	entry	in	a	worksheet	or	in	the	detail	area	of	a	PivotTable	list.

Private	Sub	Object_EndEdit(ByVal	Accept	As	Boolean,	ByVal
FinalValue	As	ByRef,	ByVal	Cancel	As	ByRef,	ByVal
ErrorDescription	As	ByRef)

Object					A	PivotTable	or	Spreadsheet	object.

Accept				Specifies	whether	or	not	the	specified	control	is	accepting	the
edit.	If	this	argument	is	False,	then	the	control	is	leaving	edit	mode
because	the	user	cancelled	the	edit.	If	this	argument	is	True,	then	you
can	cancel	the	edit.

FinalValue				The	Value	property	of	this	argument	returns	the	value	that
is	to	be	entered	into	the	worksheet	or	PivotTable	list.

Cancel					Set	the	Value	property	of	this	argument	to	True	to	cancel	the
edit	and	leave	the	user	in	edit	mode.

ErrorDescription				Set	the	Value	property	of	this	argument	to	the	text
that	you	want	to	display	to	the	user.	The	default	text	is	"The	new	value
was	not	accepted.".

Focus	Event

Occurs	when	a	section	in	a	data	access	page	receives	focus.

Private	Sub	Object_Focus(ByVal	DSCEventInfo	As	DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

Initialize	Event

Occurs	when	the	Spreadsheet	Component	is	loading,	but	before	it	is
loaded	completely.

Private	Sub	Object_Initialize()

Object				The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Remarks
Use	this	event	to	initialize	the	settings	for	the	spreadsheet.

Example
This	example	uses	the	Initialize	event	to	set	the	spreadsheet	data	from	a
file	on	the	user's	computer.

Sub	Spreadsheet1_Initialize()

			'	Load	a	CSV	file	into	the	spreadsheet.
			Spreadsheet1.CSVURL	=	"Data.csv"

End	Sub

	 	

KeyDown	Event

Occurs	whenever	the	user	presses	a	key	on	the	keyboard.	If	the	user
holds	the	key	down,	this	event	repeats	itself	at	the	key-repeat	interval
that	has	been	set	on	the	user’s	computer.

Private	Sub	Object_KeyDown(ByVal	KeyCode	As	Long,	ByVal	Shift
As	Long)

Object					The	name	of	the	ChartSpace,	PivotTable	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

KeyCode				A	Long	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	and	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	nor	ALT	keys
were	pressed.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

KeyPress	Event

Occurs	whenever	the	user	presses	and	releases	a	key	on	the	keyboard.

Private	Sub	Object_KeyPress(ByVal	KeyAscii	As	Long)

Object					The	name	of	the	ChartSpace,	PivotTable	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

KeyAscii	A	Long	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Remarks
This	event	will	not	be	called	if	the	BeforeKeyDown	event	is	cancelled.

For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

KeyUp	Event

Occurs	whenever	the	user	releases	a	key	on	the	keyboard.

Private	Sub	Object_KeyUp(ByVal	KeyCode	As	Long,	ByVal	Shift	As
Long)

Object					The	name	of	the	ChartSpace,	PivotTable	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

KeyCode				A	Long	that	represents	the	key	code	of	the	key	that	was
pressed	or	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	and	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	nor	ALT	keys
were	pressed.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

The	sequence	of	keyboard-related	events	is:

1.	 BeforeKeyDown

2.	 KeyDown

3.	 BeforeKeyPress

4.	 KeyPress

5.	 BeforeKeyUp

6.	 KeyUp

LoadCompleted	Event

Occurs	when	the	Spreadsheet	Component	has	completed	loading.

Private	Sub	Object_LoadCompleted()

Object				The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

MouseDown	Event

Occurs	whenever	the	user	presses	a	mouse	button	while	the	pointer	is
positioned	over	the	spreadsheet,	PivotTable	list,	or	the	chart	workspace.

Private	Sub	Object_MouseDown(ByVal	Button	As	Long,	ByVal	Shift
As	Long,	ByVal	x	As	Long,	ByVal	y	As	Long)

Object					The	name	of	the	ChartSpace,	PivotTable	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

Button	The	mouse	button	that	was	released.	Returns	1	if	the	primary
mouse	button	was	released,	2	if	the	secondary	mouse	button	was
released,	or	4	if	the	middle	mouse	button	was	released.

Shift	The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event
occurred.	Returns	1	if	the	SHIFT	key	was	pressed,	2	if	the	CTRL	key	was
pressed,	or	4	if	the	ALT	key	was	pressed.	Returns	0	if	neither	the	SHIFT,
CTRL,	nor	ALT	keys	were	pressed.

x	The	X	coordinate	of	the	mouse	pointer.

y	The	Y	coordinate	of	the	mouse	pointer.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

MouseMove	Event

Occurs	whenever	the	user	moves	the	mouse	pointer	over	the	PivotTable
list	or	the	chart	workspace.

Private	Sub	Object_MouseMove(ByVal	Button	As	Long,	ByVal	Shift
As	Long,	ByVal	x	As	Long,	ByVal	y	As	Long)

Object					The	name	of	the	ChartSpace	or	PivotTable	object	that	you
are	trapping	this	event	for.

Button	The	mouse	button	that	was	released.	Returns	1	if	the	primary
mouse	button	was	released,	2	if	the	secondary	mouse	button	was
released,	or	4	if	the	middle	mouse	button	was	released.

Shift	The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event
occurred.	Returns	1	if	the	SHIFT	key	was	pressed,	2	if	the	CTRL	key	was
pressed,	or	4	if	the	ALT	key	was	pressed.	Returns	0	if	neither	the	SHIFT,
CTRL,	nor	ALT	keys	were	pressed.

x	The	X	coordinate	of	the	mouse	pointer.

y	The	Y	coordinate	of	the	mouse	pointer.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

MouseOut	Event

Occurs	whenever	the	user	moves	the	mouse	pointer	out	of	a	cell	on	a
spreadsheet.

Private	Sub	Object_MouseOut(ByVal	Button	As	Long,	ByVal	Shift	As
Long,	ByVal	Target	As	Range)

Object					The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Button				The	mouse	button	that	was	released.	Returns	1	if	the	primary
mouse	button	was	released,	2	if	the	secondary	mouse	button	was
released,	or	4	if	the	middle	mouse	button	was	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	or	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	nor	ALT	keys
were	pressed.

Target	A	Range	object	that	represents	the	cell	or	cells	that	the	mouse
pointer	was	moved	out	of.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

MouseOver	Event

Occurs	whenever	the	user	moves	the	mouse	pointer	over	a	cell	on	the
specified	spreadsheet.

Private	Sub	Object_MouseOut(ByVal	Button	As	Long,	ByVal	Shift	As
Long,	ByVal	Target	As	Range)

Object					The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Button				The	mouse	button	that	was	released.	Returns	1	if	the	primary
mouse	button	was	released,	2	if	the	secondary	mouse	button	was
released,	or	4	if	the	middle	mouse	button	was	released.

Shift				The	state	of	the	SHIFT,	CTRL,	and	ALT	keys.	Returns	1	if	the
SHIFT	key	was	pressed,	2	if	the	CTRL	key	was	pressed,	or	4	if	the	ALT
key	was	pressed.	Returns	0	if	neither	the	SHIFT,	CTRL,	nor	ALT	keys
were	pressed.

Target	A	Range	object	that	represents	the	cell	or	cells	that	the	mouse
pointer	was	moved	over.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

MouseUp	Event

Occurs	whenever	the	user	releases	a	mouse	button	while	the	pointer	is
positioned	over	the	spreadsheet,	PivotTable	list,	or	the	chart	workspace.

Private	Sub	Object_MouseUp(ByVal	Button	As	Long,	ByVal	Shift	As
Long,	ByVal	x	As	Long,	ByVal	y	As	Long)

Object					The	name	of	the	ChartSpace,	PivotTable	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

Button	The	mouse	button	that	was	released.	Returns	1	if	the	primary
mouse	button	was	released,	2	if	the	secondary	mouse	button	was
released,	4	if	the	middle	mouse	button	was	released.

Shift	The	state	of	the	SHIFT,	CTRL,	and	ALT	keys	when	the	event
occurred.	Returns	1	if	the	SHIFT	key	was	pressed,	2	if	the	CTRL	key	was
pressed,	and	4	if	the	ALT	key	was	pressed.	Returns	0	if	neither	the
SHIFT,	CTRL,	nor	ALT	keys	were	pressed.

x	The	x	coordinate	of	the	mouse	pointer.

y	The	y	coordinate	of	the	mouse	pointer.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

MouseWheel	Event

Occurs	when	the	user	rotates	the	mouse	wheel	on	a	mouse	device	that
has	a	wheel.

Private	Sub	Object_MouseWheel	(ByVal	Page	As	Boolean,	ByVal
Count	As	Long)

Object				The	name	of	the	ChartSpace,	PivotTable,	or	Spreadsheet
object	that	you	are	trapping	this	event	for.

Page				Returns	True	if	the	page	was	changed.

Count				The	number	of	lines	that	were	scrolled.

ParametersOutReady	Event

The	ParametersOutReady	event	occurs	when	a	set	of	parameters	is
passed	from	a	connected	Web	Part	that	implements	the
IParametersOutProvider	interface	to	a	Spreadsheet	Web	Part	that
implements	the	IParametersOutConsumer	interface.

expression.ParametersOutReady(InterfaceName	As	String,
ParamValues	As	Variant)

expression				Required.	An	expression	that	returns	a	Spreadsheet
object.

InterfaceName			The	name	of	the	IParametersOutConsumer	interface
receiving	the	event	(as	defined	in	the	solution	specification	file:
InterfaceConnections/ParametersOutConsumer@Name).

ParamValues			An	array	of	strings	that	contains	the	parameters	provided
by	the	Web	Part	implementing	the	IParametersOutProvider	interface.

Remarks

This	event	applies	only	to	a	Spreadsheet	Web	Part	on	a	Web	Part	Page
on	a	SharePoint	site.	For	more	information	on	the	Spreadsheet	Web
Part,	search	Excel	help	and	the	Microsoft	Developer	Network	(MSDN)
Web	site.

The	ParametersOutReady	event	fires	when	a	separate	Web	Part	that
implements	the	IParametersOutProvider	interface	invokes	the
FireParametersOut	method.	The	ParamValues	parameter	is	an	array	of
strings	in	which	each	string	contains	the	value	of	a	parameter.	The
ParamValues	parameter	must	have	the	same	length	and	order	as	the
items	listed	in	the	IParametersOutProvider	interface	declaration.	When
this	event	fires,	you	can	query	the	Web	Part	data	source	to	get	the
updated	data	that	has	been	sent	to	the	data	source	by	the	Web	Part	that
implements	the	IParametersOutProvider	interface.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010183231033&CTT=11&Origin=HV010329411033

Show	All

PivotTableChange	Event

Occurs	whenever	a	PivotTable	list	field,	field	set,	or	total	is	added	or
deleted.

Private	Sub	PivotTable_PivotTableChange(Reason	As
PivotTableReasonEnum)

Reason				Specifies	how	the	PivotTable	list	changed.	Can	be	one	of	the
PivotTableReasonEnum	constants.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

Query	Event

Occurs	whenever	a	PivotTable	list	query	becomes	necessary.	The	query
may	not	occur	immediately;	it	may	be	delayed	until	the	new	data	is
displayed.

Private	Sub	PivotTable_Query()

RecordExit	Event

Occurs	when	the	user	navigates	to	another	record,	refreshe	the	data
access	page,	or	closes	the	data	access	page.

Private	Sub	Object_RecordExit(DSCEventInfo	As	DSCEventInfo)

Object				The	name	of	the	DataSourceControl	object	that	this	event
applies	to.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
This	event	occurs	after	the	BeforeUpdate	event,	but	before	the	record	is
changed.

In	the	case	of	a	banded	data	access	page,	moving	among	child	records
for	the	same	parent	does	not	fire	this	event.

Setting	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False
cancels	this	event	and	prevents	the	record	from	being	changed.

Use	the	DataPage	and	Section	properties	of	the	DSCEventInfo	object
to	determine	the	data	access	page,	section,	and	recordset	that	was
updated.

RecordsetSaveProgress	Event

Occurs	repeatedly	when	the	ExportXML	method	is	called.	Use	this	event
to	provide	feedback	to	the	user	when	a	recordset	is	exported.

Private	Sub	Object_RecordsetSaveProgress(ByVal	DSCEventInfo
As	DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Use	the	PercentComplete	property	to	determine	the	current	progress	of
the	export	operation.

You	cannot	use	this	event	to	update	the	contents	of	the	current	HTML
document.

Example
This	example	uses	the	RecordsetSaveProgess	event	to	update	Microsoft
Internet	Explorer's	status	bar	when	the	recordset	contained	by	the
DataSourceControl	is	saved.

Sub	MSODSC_RecordsetSaveProgress(DSCEventInfo)

				'	Update	the	status	bar	with	the	current
				'	completion	percentage.
				Window.Status	=	DSCEventInfo.PercentComplete

				'	Check	to	see	if	the	save	has	been	completed.
				If	DSCEventInfo.PercentComplete	=	100	then

								'	Clear	the	status	bar	when	the	save	is	complete.
								Window.Status	=	""
				End	If

End	Sub

	 	

RowReady	Event

The	RowReady	event	procedure	of	the	Spreadsheet	component	is	called
when	a	ListObject	object	is	loaded	into	the	component,	when	a	single
row	in	a	ListObject	object	is	selected,	and	when	the	Refresh	method	of
the	XmlDataBinding	object	is	called,	regardless	of	the	success	or	failure
of	that	method.

Private	Sub	Spreadsheet1_RowReady(XDTName	As	String,
RowDataArray	As	Variant,	SelectionStatus	As	String)

XDTName			Contains	the	value	of	the	Name	property	of	the	ListObject
object.

RowDataArray			This	parameter	contains	an	array	of	values	from	each
cell	in	the	selected	row	when	SelectionStatus	returns	"Standard".	The
array	will	be	empty	when	SelectionStatus	returns	"New"	or	"None".

SelectionStatus			Contains	one	of	the	values	described	in	the	following
table:

Value Description
New Indicates	that	the	new,	or	insert	row,	is	selected.	The	array	of

values	in	RowDataArray	will	be	empty.
None Indicates	that	no	row	is	selected.	The	array	of	values	in

RowDataArray	will	be	empty.
Standard Indicates	that	an	existing	row	is	selected.	The	array	of	values

in	RowDataArray	contain	values	from	each	cell	in	the	selected
row.

Remarks

If	this	event	fires	as	a	result	of	loading	a	new	XML	Spreadsheet	file	or
XML	data	into	the	control,	the	value	of	the	SelectionStatus	parameter
will	be	"None".	The	Spreadsheet	component	will	fire	the	RowReady
event	any	time	the	active	cell	is	moved	to	a	different	row	in	a	list.	The
RowReady	event	will	not	fire	if	a	user	clicks	within	a	selected	row,	or
clicks	outside	of	the	list,	and	then	selects	multiple	rows	within	the	list.

Example
The	following	example	uses	the	RowReady	event	procedure	to	work	with
the	information	contained	in	the	event	procedure	parameters:

Sub	Spreadsheet1_RowReady(XDTName,	RowDataArray,	SelectionStatus)
Dim	strCellData
Dim	intItem

	 Select	Case	SelectionStatus
	 	 Case	"None"
	 	 Case	"New"
	 	 Case	"Standard"
	 	 	 	 For	intItem	=	0	to	UBound(RowDataArray)	-	1
	 	 	 	 	 	 strCellData	=	RowDataArray(intItem)
						'	Work	with	data	in	cells	of	selected	row	here.
	 	 	 	 Next
		Case	Else
	 End	Select
End	Sub

SelectionChange	Event

Occurs	whenever	the	user	makes	a	new	selection.	The	user	cannot
cancel	this	event.

Private	Sub	Object_SelectionChange()

Object				The	name	of	the	ChartSpace	,	PivotTable	,	or	Spreadsheet
object	that	this	event	applies	to.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

You	can	use	the	Selection	property	to	determine	the	object	type	of	the
current	selection,	as	shown	in	the	following	example.

Private	Sub	PivotTable_SelectionChange()
				If	TypeName(PivotTable.Selection)	=	"PivotTotal"	Then
								'Handle	selection	of	a	total	here
				End	If
End	Sub
	 	

SelectionChanging	Event

Occurs	whenever	the	user	moves	the	mouse	pointer	while	selecting	a
range.	This	event	does	not	occur	when	the	user	selects	a	range	by	using
the	keyboard.	The	user	cannot	cancel	this	event.

Private	Sub	Object	_SelectionChanging(ByVal	Range	As	Range)

Object					The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Range	A	Range	object	that	represents	the	range	of	cells	that	are	being
selected.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

SheetActivate	Event

Occurs	when	a	worksheet	is	activated.

Private	Sub	Object_SheetActivate(ByVal	Sh	As	Worksheet)

Object	The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Sh				Required	Worksheet.	The	worksheet	that	has	been	activated.

Remarks
When	a	user	changes	worksheets,	the	SheetDeactivate	event	is	called
before	the	SheetActivate	event.

Example
This	example	displays	the	name	of	the	activated	worksheet	each	time
that	a	worksheet	is	activated	in	Spreadsheet1.

Sub	Spreadsheet1_SheetActivate(Sh)

			MsgBox	Sh.Name

End	Sub

	 	

SheetCalculate	Event

Occurs	after	any	worksheet	has	been	calculated.

Private	Sub	Object_SheetCalculate(ByVal	Sh	As	Worksheet)

Object	The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Sh				A	Worksheet	object	that	represents	the	worksheet	that	was
calculated.

Example
This	example	uses	the	SheetCalculate	event	to	monitor	the	status	of	the
value	in	cell	A5	in	Sheet1	of	Spreadsheet1.

Sub	Spreadsheet1_SheetCalculate(Sh)

				Dim	rngRangeToWatch

				'	Set	a	variable	to	the	cell	that	you	want	to	watch.
				Set	rngRangeToWatch	=	Spreadsheet1.Worksheets("Sheet1").Range("A5")

				'	If	the	calculated	sheet	is	Sheet1...
				If	Sh.Name	=	"Sheet1"	Then

								'	...and	the	value	of	the	cell	to	watch	is	less	thant	10...
								If	rngRangeToWatch.Value	<	10	Then

												'	...	alert	the	user	of	the	status.
												MsgBox	"Inventory	is	less	than	10.	Reorder	the	part."
								End	If

				End	If

End	Sub

	 	

SheetChange	Event

Occurs	when	cells	in	any	worksheet	are	changed	by	the	user	or	by	an
external	link.

Private	Sub	Object_SheetChange(ByVal	Sh	As	Object,	ByVal	Target
As	Range)

Object	The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Sh				A	Worksheet	object	that	represents	the	sheet.

Target				A	Range	object	that	represents	the	changed	range.

Example
This	example	illustrates	how	to	use	the	SheetChange	event	to	perform
conditional	formatting	on	cells	A1:10	in	Sheet1	of	Spreadsheet1.

Sub	Spreadsheet1_SheetChange(Sh,	Target)
				Dim	rngIntersect
				Dim	rngCondFormat

				'	Set	a	variable	to	the	range	to	be	conditionally	formatted.	In	this
				'	case,	the	range	is	cells	A1:A10	on	Sheet1.
				Set	rngCondFormat	=	Spreadsheet1.Worksheets("Sheet1").Range("A1:A10")

				'	Check	to	see	if	the	change	was	made	on	Sheet1.
				If	Sh.Name	=	"Sheet1"	Then

								'	Set	a	variable	to	the	intersection	of	the	changed	cell
								'	and	the	conditional	formatting	range.
								Set	rngIntersect	=	Spreadsheet1.RectIntersect(Target,	rngCondFormat)

								'	Check	to	see	if	the	changed	cell	intersects	with	the
								'	conditional	formatting	range.
								If	Not	rngIntersect	Is	Nothing	Then

												'	Format	the	target	cell	based	on	its	value.
												Select	Case	Target.Value

																Case	Is	>=	25
																				Target.Font.Color	=	"Green"
																				Target.Font.Bold	=	True
																				Target.Font.Italic	=	False
																Case	Is	>=	10

																				Target.Font.Color	=	"Blue"
																				Target.Font.Bold	=	False
																				Target.Font.Italic	=	True
																Case	Is	<	10
																				Target.Font.Color	=	"Red"
																				Target.Font.Bold	=	True
																				Target.Font.Italic	=	False
												End	Select
								End	If
				End	If
End	Sub

	 	

SheetDeactivate	Event

Occurs	when	a	worksheet	is	deactivated.

Private	Sub	Object	_SheetDeactivate(ByVal	Sh	As	Worksheet)

Object	The	name	of	the	Spreadsheet	object	that	you	are	trapping	this
event	for.

Sh				Required	Worksheet.	The	worksheet	that	has	been	deactivated.

Remarks
When	a	user	changes	worksheets,	this	event	is	called	before	the
SheetActivate	event.

Example
This	example	displays	the	name	of	the	deactivated	worksheet	each	time
that	a	worksheet	is	deactivated	in	Spreadsheet1.

Sub	Spreadsheet1_SheetDeactivate(Sh)

			MsgBox	Sh.Name	&	"	was	just	deactivated."

End	Sub

	 	

SheetFollowHyperlink	Event

Occurs	when	a	hyperlink	is	clicked.

Private	Sub	object_SheetFollowHyperlink(ByVal	Sh	As	Worksheet,
Target	As	Hyperlink)

object	Required.	The	name	of	a	Spreadsheet	object	that	you	are
trapping	this	event	for.

Sh				Required.	The	worksheet	that	has	been	deactivated.

Target	Required.	The	hyperlink	that	has	been	clicked.

Example
This	example	keeps	a	log	of	hyperlinks	clicked	in	Spreadsheet1.	The
name	of	the	sheet	containing	the	hyperlink	and	the	target	address	are
written	to	Sheet3	each	time	that	a	hyperlink	is	clicked.

Sub	Spreadsheet1_SheetFollowHyperlink(Sh,	Target)

				Dim	ssConstants
				Dim	rngNewItem
				Dim	shtListSheet

				Set	ssConstants	=	Spreadsheet1.Constants

				'	Set	a	variable	to	Sheet3.
				Set	shtListSheet	=	Spreadsheet1.ActiveWorkbook.Worksheets("Sheet3")

				'	Set	a	variable	to	the	first	available	cell	in	column	A	of	Sheet3.
				Set	rngNewItem	=	shtListSheet.Range("A262144").End(ssConstants.xlUp).Offset(1,	0)

				'	Write	the	name	of	the	sheet	to	Column	A	of	Sheet3.
				rngNewItem.Value	=	Sh.Name

				'	Write	the	target	address	of	the	hyperlink	to	Column	B	of	Sheet3.
				rngNewItem.Offset(0,	1).Value	=	Target.Address

End	Sub

	 	

Show	All

StartEdit	Event

StartEdit	event	as	it	applies	to	the	Spreadsheet	object.

StartEdit	Event	as	it	applies	to	the	PivotTable	object.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

Undo	Event

Occurs	when	the	user	clicks	the	Undo	button	on	the	navigation	control,
or	the	Dirty	event	is	canceled.	This	event	fires	before	the	data	is	returned
to	its	original	values.	Use	this	event	to	set	the	conditions	under	which	the
user	is	allowed	to	undo	a	change.

Private	Sub	Object_Undo(ByVal	DSCEventInfo	As	DSCEventInfo)

Object				A	DataSourceControl	object.

DSCEventInfo				The	DSCEventInfo	object	that	contains	information
about	the	event.

Remarks
Set	the	ReturnValue	property	of	the	DSCEventInfo	object	to	False	to
cancel	the	undo	action.

You	can	use	the	DataPage	and	Section	properties	of	the	DSCEventInfo
object	to	get	more	information	about	the	page.

Show	All

ViewChange	Event

ViewChange	event	as	it	applies	to	the	ChartSpace	object.

ViewChange	event	as	it	applies	to	the	PivotTable	object.

ViewChange	event	as	it	applies	to	the	Spreadsheet	object.

Remarks
For	information	about	using	events	with	VBScript,	see	Declaring	and
Using	Event	Procedures	in	VBScript	.

Show	All

Office	Web	Components	Constants

This	topic	provides	a	list	of	all	constants	in	the	Office	Web	Components
object	model.	For	information	on	how	to	use	these	constants,	see	Using
Named	Constants	in	VBScript.

AddinClientTypeEnum

BindingLoadMode

Chart3DSurfaceEnum

ChartAxisCrossesEnum

ChartAxisGroupingEnum

ChartAxisPositionEnum

ChartAxisTypeEnum

ChartAxisUnitTypeEnum

ChartBoundaryValueTypeEnum

ChartChartLayoutEnum

ChartChartTypeEnum

ChartColorIndexEnum

ChartCommandIdEnum

ChartDataGroupingFunctionEnum

ChartDataLabelPositionEnum

ChartDataPointEnum

ChartDataSourceTypeEnum

ChartDimensionsEnum

ChartDrawModesEnum

ChartDropZonesEnum

ChartEndStyleEnum

ChartErrorBarCustomValuesEnum

ChartErrorBarDirectionEnum

ChartErrorBarIncludeEnum

ChartErrorBarTypeEnum

ChartFillStyleEnum

ChartFillTypeEnum

ChartGradientStyleEnum

ChartGradientVariantEnum

ChartGroupingTotalFunctionEnum

ChartLabelOrientationEnum

ChartLegendPositionEnum

ChartLineDashStyleEnum

ChartLineMiterEnum

ChartMarkerStyleEnum

ChartPatternTypeEnum

ChartPivotDataReferenceEnum

ChartPlotAggregatesEnum

ChartPresetGradientTypeEnum

ChartPresetTextureEnum

ChartProjectionModeEnum

ChartScaleOrientationEnum

ChartScaleTypeEnum

ChartSelectionMarksEnum

ChartSelectionsEnum

ChartSelectMode

ChartSeriesByEnum

ChartSizeRepresentsEnum

ChartSpecialDataSourcesEnum

ChartTextureFormatEnum

ChartTexturePlacementEnum

ChartTickMarkEnum

ChartTitlePositionEnum

ChartTrendlineTypeEnum

DefaultControlTypeEnum

DscAdviseTypeEnum

DscDisplayAlert

DscDropLocationEnum

DscDropTypeEnum

DscEncodingEnum

DscFetchTypeEnum

DscFieldTypeEnum

DscGroupOnEnum

DscHyperlinkPartEnum

DscJoinTypeEnum

DscLocationEnum

DscObjectTypeEnum

DscOfflineTypeEnum

DscPageRelTypeEnum

DscRecordsetTypeEnum

DscRowsourceTypeEnum

DscSaveAsEnum

DscStatusEnum

DscTotalTypeEnum

DscXMLLocationEnum

ExpandBitmapTypeEnum

LineStyleEnum

LineWeightEnum

MsoAppLanguageID

MsoLanguageID

NavButtonEnum

NotificationType

OCCommandId

PivotArrowModeEnum

PivotCaretPositionEnum

PivotCommandId

PivotDataReasonEnum

PivotEditModeEnum

PivotExportActionEnum

PivotFieldFilterFunctionEnum

PivotFieldGroupOnEnum

PivotFieldSetAllIncludeExcludeEnum

PivotFieldSetOrientationEnum

PivotFieldSetTypeEnum

PivotFieldSortDirectionEnum

PivotFieldTypeEnum

PivotFilterUpdateMemberStateEnum

PivotHAlignmentEnum

PivotMemberCustomGroupTypeEnum

PivotMemberFindFormatEnum

PivotMemberPropertyDisplayEnum

PivotMembersCompareByEnum

PivotScrollTypeEnum

PivotShowAsEnum

PivotTableExpandEnum

PivotTableReasonEnum

PivotTotalFunctionEnum

PivotTotalTypeEnum

PivotViewReasonEnum

PivotViewTotalOrientationEnum

ProviderType

SectTypeEnum

SheetCommandEnum

SheetExportActionEnum

SheetExportFormat

SheetFilterFunction

SpreadSheetCommandId

SynchronizationStatus

TipTypeEnum

UnderlineStyleEnum

XlApplicationInternational

XlBordersIndex

XlBorderWeight

XlCalculation

XlColorIndex

XlConstants

XlDeleteShiftDirection

XlDirection

XlFindLookIn

XlHAlign

XlInsertShiftDirection

XlLineStyle

XlLookAt

XlOrientation

XlRangeValueType

XlReadingOrder

XlReferenceStyle

XlSearchDirection

XlSearchOrder

XlSheetType

XlSheetVisibility

XlSortOrder

XlUnderlineStyle

XlVAlign

XlWindowType

XlYesNoGuess

Trendlines	Property

Returns	the	ChTrendlines	collection	for	the	specified	series.	Note	that	a
series	can	have	only	one	trendline.

expression.Trendlines

expression				Required.	An	expression	that	returns	a	ChSeries	object.

Remarks
For	information	about	returning	a	single	member	of	a	collection,	see
Returning	an	Object	from	a	Collection	.

Example
This	example	adds	a	trendline	to	the	specified	series	and	then	hides	the
trendline’s	R-squared	value.

Sub	AddTrendline()

			Dim	serSeries1

			'	Set	a	variable	to	the	first	series	in	the	first	chart	of	Chartspace1.
			Set	serSeries1	=	ChartSpace1.Charts(0).SeriesCollection(0)

			'	Add	a	trendline	to	the	series.
			serSeries1.Trendlines.Add

			'	Hide	the	R	Squared	value	for	the	trendline.
			serSeries1.Trendlines(0).IsDisplayingRSquared	=	False

End	Sub

	 	

HasChartSpaceLegend	Property

True	if	the	specified	chart	workspace	has	a	legend.	Read/write	Boolean.

expression.HasChartSpaceLegend

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
Setting	this	property	to	False	causes	the	legend	to	be	deleted	from	the
chart	workspace.	When	this	happens,	all	custom	formatting	is	lost	and
must	be	reset	if	the	property	is	subsequently	set	to	True.

Example
This	example	sets	the	chart	workspace	title	and	positions	the	chart
workspace	legend	on	the	left	side	of	the	workspace.

Sub	Format_ChartSpace()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Enable	the	title	for	the	chartspace.
				ChartSpace1.HasChartSpaceTitle	=	True

				'	Set	the	chartspace	title.
				ChartSpace1.ChartSpaceTitle.Caption	=	"Monthly	Sales	Data"
				
				'	Enable	the	legend	for	the	chartspace.
				ChartSpace1.HasChartSpaceLegend	=	True

				'	Specify	the	position	of	the	chartspace	legend.
				ChartSpace1.ChartSpaceLegend.Position	=	chConstants.chLegendPositionLeft
End	Sub

	 	

ChartSpaceLegend	Property

Returns	a	ChLegend	object	that	represents	the	chart	workspace	legend.
Use	this	property	to	set	the	properties	for	the	chart	workspace	legend.
Note	that	the	ChartSpaceLegend	property	represents	the	legend	for	the
entire	chart	workspace.	Use	the	Legend	property	of	the	ChChart	object
to	set	the	legend	for	individual	charts	within	the	chart	workspace.	Returns
Nothing	if	the	chart	workspace	does	not	have	a	legend.	Read-only.

expression.ChartSpaceLegend

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	sets	the	chart	workspace	title	and	positions	the	chart
workspace	legend	on	the	left	side	of	the	workspace.

Sub	SetLegend()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Enable	the	title	for	the	chart	workspace.
				ChartSpace1.HasChartSpaceTitle	=	True
				
				'	Set	the	title	for	the	chart	workspace.
				ChartSpace1.ChartSpaceTitle.Caption	=	"Monthly	Sales	Data"
				
				'	Enable	the	legend	for	the	chart	workspace.
				ChartSpace1.HasChartSpaceLegend	=	True
				
				'	Position	the	legend	for	the	chart	workspace.
				ChartSpace1.ChartSpaceLegend.Position	=	chConstants.chLegendPositionLeft
End	Sub				

	 	

HasChartSpaceTitle	Property

True	if	the	specified	chart	workspace	has	a	title.	Read/write	Boolean.

expression.HasChartSpaceTitle

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Remarks
Setting	this	property	to	False	causes	the	title	to	be	deleted	from	the	chart
workspace.	When	this	happens,	all	custom	formatting	is	lost	and	must	be
reset	if	the	property	is	subsequently	set	to	True.

Example
This	example	sets	the	chart	workspace	title	and	positions	the	chart
workspace	legend	on	the	left	side	of	the	workspace.

Sub	Format_ChartSpace()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Enable	the	title	for	the	chartspace.
				ChartSpace1.HasChartSpaceTitle	=	True

				'	Set	the	chartspace	title.
				ChartSpace1.ChartSpaceTitle.Caption	=	"Monthly	Sales	Data"
				
				'	Enable	the	legend	for	the	chartspace.
				ChartSpace1.HasChartSpaceLegend	=	True

				'	Specify	the	position	of	the	chartspace	legend.
				ChartSpace1.ChartSpaceLegend.Position	=	chConstants.chLegendPositionLeft
End	Sub
	 	

ChartSpaceTitle	Property

Returns	a	ChTitle	object	that	represents	the	chart	workspace	title.	Use
this	property	to	set	the	properties	for	the	chart	workspace	title.	Note	that
the	ChartSpaceTitle	property	represents	the	title	for	the	entire	chart
workspace.	Use	the	Title	property	of	the	ChChart	object	to	set	the	title
for	individual	charts	within	the	chart	workspace.	Returns	Nothing	if	the
chart	workspace	does	not	have	a	title.	Read-only.

expression.ChartSpaceTitle

expression				Required.	An	expression	that	returns	a	ChartSpace	object.

Example
This	example	sets	the	chart	workspace	title	and	positions	the	chart
workspace	legend	on	the	left	side	of	the	workspace.

Sub	SetLegend()
				Dim	chConstants
				
				Set	chConstants	=	ChartSpace1.Constants
				
				'	Enable	the	title	for	the	chart	workspace.
				ChartSpace1.HasChartSpaceTitle	=	True
				
				'	Set	the	title	for	the	chart	workspace.
				ChartSpace1.ChartSpaceTitle.Caption	=	"Monthly	Sales	Data"
				
				'	Enable	the	legend	for	the	chart	workspace.
				ChartSpace1.HasChartSpaceLegend	=	True
				
				'	Position	the	legend	for	the	chart	workspace.
				ChartSpace1.ChartSpaceLegend.Position	=	chConstants.chLegendPositionLeft
End	Sub

	 	

X	Property

Returns	a	Long	that	represents	the	X-coordinate	of	the	data	point
currently	stored	in	the	Coordinate	object.	Read-only.

expression.x

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Use	the	ValueToPoint	method	to	return	the	coordinates	of	a	data	point	to
a	Coordinate	object.

Use	the	y	property	to	return	the	Y-coordinate	of	the	data	point	currently
stored	in	the	Coordinate	object.

Example
This	example	changes	the	title	of	the	first	chart	in	Chartspace1	to	the
pixel	coordinates	of	a	data	point	in	the	first	series	of	the	chart.

Sub	GetPixelCoordinates()

				Dim	chChart1
				Dim	lXPos
				Dim	lYPos
				Dim	coPointCoordinates

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Enable	the	title	for	the	chart.
				chChart1.HasTitle	=	True

				'	Set	a	Coordinate	object	to	the	coordinates	of	a	data	point.
				Set	coPointCoordinates	=	chChart1.SeriesCollection(0).ValueToPoint("Pears",	10)

				'	Set	a	variable	to	the	X-coordinate.
				lXPos	=	coPointCoordinates.x

				'	Set	a	variable	to	the	Y-coordinate.
				lYPos	=	coPointCoordinates.y

				'	Set	the	chart's	titles	to	the	pixel	coordinates	of	the	specified
				'	data	point.
				chChart1.Title.Caption	=	"X("	&	lXPos	&	")	Y("	&	lYPos	&	")"

End	Sub
	 	

Y	Property

Returns	a	Long	that	represents	the	Y	coordinate	of	the	data	point
currently	stored	in	the	Coordinate	object.	Read-only.

expression.y

expression				Required.	An	expression	that	returns	one	of	the	objects	in
the	Applies	To	list.

Remarks
Use	the	ValueToPoint	method	to	return	the	coordinates	of	a	data	point	to
a	Coordinate	object.

Use	the	x	property	to	return	the	X	coordinate	of	the	data	point	currently
stored	in	the	Coordinate	object.

Example
This	example	changes	the	title	of	the	first	chart	in	Chartspace1	to	the
pixel	coordinates	of	a	data	point	in	the	first	series	of	the	chart.

Sub	GetPixelCoordinates()

				Dim	chChart1
				Dim	lXPos
				Dim	lYPos
				Dim	coPointCoordinates

				'	Set	a	variable	to	the	first	chart	in	Chartspace1.
				Set	chChart1	=	ChartSpace1.Charts(0)

				'	Enable	the	title	for	the	chart.
				chChart1.HasTitle	=	True

				'	Set	a	Coordinate	object	to	the	coordinates	of	a	data	point.
				Set	coPointCoordinates	=	chChart1.SeriesCollection(0).ValueToPoint("Pears",	10)

				'	Set	a	variable	to	the	X-coordinate.
				lXPos	=	coPointCoordinates.x

				'	Set	a	variable	to	the	Y-coordinate.
				lYPos	=	coPointCoordinates.y

				'	Set	the	chart's	titles	to	the	pixel	coordinates	of	the	specified
				'	data	point.
				chChart1.Title.Caption	=	"X("	&	lXPos	&	")	Y("	&	lYPos	&	")"

End	Sub
	 	

Returning	an	Object	from	a	Collection

The	Item	property	returns	a	single	object	from	a	collection.	The	following
example	sets	the	variable	thisChart	to	a	ChChart	object	that	represents
chart	one.

Set	thisChart	=	ChartWorkspace1.Charts.Item(1)

The	Item	property	is	the	default	property	for	most	collections,	so	you	can
write	the	same	statement	more	concisely	by	omitting	the	Item	keyword.

Set	thisChart	=	ChartWorkspace1.Charts(1)

Some	collections	use	an	enumerated	type	with	their	Item	property	to
return	specific	members	of	the	collection.	For	example,	the	ChAxes
collection	uses	the	ChartAxisPositionEnum	enumerated	type,	as	shown
in	the	following	example.

Set	chConstants	=	ChartSpace1.Constants
Set	valueAxis	=	ChartSpace1.Charts(0).Axes.Item(chConstants.chAxisPositionLeft)
Set	categoryAxis	=	ChartSpace1.Charts(0).Axes.Item(chConstants.chAxisPositionBottom)

Again,	you	can	omit	the	Item	keyword,	as	shown	in	the	following
example.

Set	chConstants	=	ChartSpace1.Constants
Set	valueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft)
Set	categoryAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionBottom)

For	more	information	about	a	specific	collection,	see	the	Help	topic	for
that	collection.

Using	Named	Constants	in	VBScript

You	cannot	use	named	constants	in	VBScript	code.	The	following
example	works	in	Visual	Basic	but	does	not	work	in	VBScript.

Set	valueAxis	=	ChartSpace1.Charts(0).Axes(chAxisPositionLeft)
	 	

VBScript	regards	the	named	constant	chAxisPositionLeft	as	just
another	uninitialized	variable,	so	its	value	is	0	(zero).	Because	the	actual
value	of	chAxisPositionLeft	is	–3,	this	code	does	not	work	as	expected
in	VBScript.

The	Constants	property	returns	an	object	that	allows	VBScript
programmers	to	use	named	constants.	This	property	applies	to	each	of
the	top-level	container	objects	(ChartSpace,	DataSourceControl,
PivotTable,	and	Spreadsheet).	It	returns	an	object	that	contains	all	of
the	named	constants	available	in	the	Microsoft	Office	Web	Components
type	library	(no	matter	which	object	the	Constants	property	is	applied	to,
it	always	returns	the	complete	set	of	named	constants).

To	use	named	constants	in	VBScript,	you	can	set	an	object	variable	to
the	object	returned	by	the	Constants	property	and	then	use	that	object	to
qualify	the	named	constants	in	your	code,	as	shown	in	the	following
example.

Set	chConstants	=	ChartSpace1.Constants
Set	valueAxis	=	ChartSpace1.Charts(0).Axes(chConstants.chAxisPositionLeft)

	 	

You	can	also	use	the	Constants	property	directly	in	an	expression,	as
shown	in	the	following	example.

Spreadsheet1.ActiveSheet.Export	"sstest.xls",	Spreadsheet1.Constants.ssExportActionNone

	 	

Note		You	can	use	the	Constants	property	in	Visual	Basic,	but	it	is

neither	required	nor	recommended.	Using	the	Constants	property	in
containers	where	it	is	not	required	will	cause	your	code	to	run
significantly	slower.

Declaring	and	Using	Event	Procedures	in	VBScript

You	declare	event	procedures	in	Visual	Basic	by	using	the	Private	and
ByVal	keywords	and	arguments	with	explicit	type	declarations,	as	shown
in	the	following	example.

Private	Sub	Spreadsheet1_MouseOver(ByVal	Button	As	Long,	ByVal	Shift	As	Long,	ByVal	Target	As	Range)
	 	

This	procedure	declaration	will	not	work	in	VBScript	because	VBScript
does	not	use	these	keywords	and	because	all	arguments	are	passed	as
Variant.	Instead,	you	declare	event	procedures	in	VBScript	simply	by
using	the	event	name	and	argument	names,	as	shown	in	the	following
example.

Sub	Spreadsheet1_MouseOver(Button,	Shift,	Target)
	 	

The	argument	names	themselves	are	simply	a	convention	in	any
container	(you	could	use	any	argument	names).

Caution		Some	script	editors	(including	Microsoft	Script	Editor)	do	not	fill
in	the	argument	list	when	they	create	an	event	procedure.	To	ensure	that
your	event	procedure	runs	correctly,	consult	the	Object	Browser	or	the
appropriate	event	topic	in	Help,	and	fill	in	the	argument	list	yourself.

