Microsoft® Visual Basic® Scripting Edition

Feature
Information

VBScript Language Reference
Version Information

VBScript Features

VBA Features not in VBScript
VBScript Features not in VBA
Microsoft Scripting Run-Time Features

Microsoft® Visual Basic® Scripting Edition

Alphabetic
Keyword List

VBScript Language Reference
Version Information

Abs Function
Addition Operator (+)
And Operator

Array Function

Asc Function
Assignment Operator (=
Atn Function

Call Statement
CBool Function
CByte Function
CCur Function

CDate Function
CDbl Function

Chr Function

CInt Function

Class Object

Class Statement
Clear Method

CLng Function
Color Constants

Comparison Constants
Concatenation Operator (&)
Const Statement

Cos Function

CreateObject Function
CSng Function

CStr Function

Date and Time Constants
Date Format Constants

Date Function
DateAdd Function
DateDiff Function
DatePart Function
DateSerial Function
DateValue Function
Day Function
Description Property
Dictionary Object
Dim Statement
Division Operator (/)
Do...L.oop Statement

Empty

Eqv Operator

Erase Statement

Err Object

Eval Function

Execute Method

Execute Statement

Exit Statement

Exp Function
Exponentiation Operator (A
False

FileSystemObject Object
Filter Function

FirstIndex Property

Fix Function

For...Next Statement

For Each...Next Statement
FormatCurrency Function
FormatDateTime Function
FormatNumber Function
FormatPercent Function
Function Statement
GetObject Function
GetRef Function

Global Property

Hex Function

HelpContext Property

HelpFile Property
Hour Function

If...Then...Else Statement

IgnoreCase Property
Imp Operator
Initialize Event
InputBox Function
InStr Function
InStrRev Function
Int Function

Integer Division Operator (\)
Is Operator

IsArray Function
IsDate Function
IsEmpty Function
IsNull Function
IsNumeric Function
IsObject Function
Join Function
LBound Function
LCase Function
Left Function

Len Function

Length Property
LoadPicture Function

Log Function

LTrim Function

Match Object

Matches Collection

Mid Function

Minute Function
Miscellaneous Constants
Mod Operator

Month Function
MonthName Function

MsgBox Constants
MsgBox Function
Multiplication Operator (*)
Negation Operator (-)
Not Operator

Now Function
Nothing

Null

Number Property

Oct Function

On Error Statement
Operator Precedence

Option Explicit Statement

Or Operator
Pattern Property

Private Statement

PropertyGet Statement

Propertyl.et Statement

PropertySet Statement

Public Statement

Raise Method

Randomize Statement

ReDim Statement

RegExp Object

Rem Statement

Replace Function

Replace Method

RGB Function

Right Function

Rnd Function

Round Function

RTrim Function

ScriptEngine Function
ScriptEngineBuildVersion Function
ScriptEngineMajorVersion Function
ScriptEngineMinorVersion Function
Second Function

Select Case Statement
Set Statement

Sgn Function

Sin Function

Source Property

Space Function
Split Function

Sqr Function
StrComp Function
String Constants
String Function
StrReverse Function
Sub Statement
Subtraction Operator (-)
Tan Function
Terminate Event
Test Method

Time Function
Timer Function
TimeSerial Function
TimeValue Function
Trim Function
Tristate Constants
True

TypeName Function
UBound Function
UCase Function
Value Property
VarType Constants
VarType Function
VBScript Constants
Weekday Function
WeekdayName Function
While...Wend Statement
With Statement

Xor Operator

Year Function

Microsoft® Visual Basic® Scripting Edition

Constants

VBScript Language Reference
Version Information

Color Constants
Comparison Constants
Date and Time Constants
Date Format Constants
Miscellaneous Constants

MsgBox Constants
String Constants

Tristate Constants

VarType Constants
VBScript Constants

Microsoft® Visual Basic® Scripting Edition VB Scrlpt L. angu age Reference
- Version Information
VBScript Errors

Run-time Errors

Syntax Errors

Microsoft® Visual Basic® Scripting Edition VB Scrlpt Languag e Ref erence
EV ent S Version Information

Initialize Event
Terminate Event

Microsoft® Visual Basic® Scripting

o JFUNCtions

VBScript Language Reference
Version Information

Abs Function

Array Function

Asc Function

Atn Function

CBool Function

CByte Function

CCur Function

CDate Function

CDbl Function

Chr Function

Clnt Function

CLng Function

Cos Function
CreateObject Function
CSng Function

CStr Function

Date Function

DateAdd Function
DateDiff Function
DatePart Function
DateSerial Function
DateValue Function
Day Function

Eval Function

Exp Function

Filter Function

Fix Function
FormatCurrency Function
FormatDateTime Function
FormatNumber Function
FormatPercent Function
GetObject Function

GetRef Function

Hex Function

Hour Function
InputBox Function
InStr Function
InStrRev Function

Int Function

IsArray Function
IsDate Function
IsEmpty Function
IsNull Function
IsNumeric Function
IsObject Function
Join Function
LBound Function
LCase Function

Left Function

Len Function
LoadPicture Function
Log Function

LTrim Function

Mid Function

Minute Function
Month Function
MonthName Function
MsgBox Function
Now Function

Oct Function

Replace Function
RGB Function

Right Function

Rnd Function

Round Function
RTrim Function
ScriptEngine Function
ScriptEngineBuildVersion Function
ScriptEngineMajorVersion Function

ScriptEngineMinorVersion Function
Second Function
Sgn Function

Sin Function

Space Function
Split Function

Sqr Function
StrComp Function
String Function
StrReverse Function
Tan Function

Time Function
Timer Function
TimeSerial Function
TimeValue Function
Trim Function
TypeName Function
UBound Function
UCase Function
VarType Function
Weekday Function
WeekdayName Function
Year Function

Microsoft® Visual Basic® Scripting Edition VBSCI‘I t Lan uage Reference
M Etho dS Version Information

Clear Method
Execute Method
Raise Method

Replace Method
Test Method

Microsoft® Visual Basic® Scripting Edition VBS Cript L. angu age Reference

O bj e Cts Version Information

Class Object
Dictionary Object
Err Object

FileSystemObject Object
Match Object

Matches Collection
RegExp Object

Microsoft® Visual Basic® Scripting Edition

Operators

VBScript Language Reference
Version Information

Addition Operator (+)

And Operator
Assignment Operator (=)

Concatenation Operator (&)
Division Operator (/)

Eqv Operator
Exponentiation Operator ()
Imp Operator
Integer Division Operator (\)

Is Operator

Mod Operator
Multiplication Operator (*)
Negation Operator (-)

Not Operator

Operator Precedence
Or Operator
Subtraction Operator (-)
Xor Operator

Microsoft® Visual Basic® Scripting Edition

Properties

VBScript Language Reference
Version Information

Description Property
FirstIndex Property
Global Property
HelpContext Property
HelpFile Property
IgnoreCase Property

Length Property
Number Property

Pattern Property

Source Property
Value Property

Microsoft® Visual Basic® Scripting

. Statements

VBScript Language Reference
Version Information

Call Statement

Class Statement

Const Statement

Dim Statement
Do...L.oop Statement
Erase Statement

Execute Statement

Exit Statement
For...Next Statement

For Each...Next Statement
Function Statement
If...Then...Else Statement
On Error Statement
Option Explicit Statement
Private Statement
Property Get Statement
Property Let Statement
Property Set Statement
Public Statement
Randomize Statement
ReDim Statement

Rem Statement

Select Case Statement
Set Statement

Sub Statement
While...Wend Statement
With Statement

Microsoft® Visual Basic® Scripting Edition U S 1 ng VB S Crip t TU torlal
Conditional Frese
Statements

Controlling Program Execution

You can control the flow of your script with conditional statements and
looping statements. Using conditional statements, you can write VBScript
code that makes decisions and repeats actions. The following conditional
statements are available in VBScript:

e If...Then...Else statement

e Select Case statement
Making Decisions Using If...Then...Else

The If...Then...Else statement is used to evaluate whether a condition is
True or False and, depending on the result, to specify one or more
statements to run. Usually the condition is an expression that uses a
comparison operator to compare one value or variable with another. For
information about comparison operators, see Comparison Operators.
If...Then...Else statements can be nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line
syntax for the If...Then...Else statement. The following example shows the
single-line syntax. Notice that this example omits the Else keyword.

Sub FixDate()

Dim myDate

myDate = #2/13/95#

If myDate < Now Then myDate = Now
End Sub

To run more than one line of code, you must use the multiple-line (or block)
syntax. This syntax includes the End If statement, as shown in the
following example:

Sub AlertUser(value)

If value = 0 Then
AlertLabel.ForeColor = vbRed
AlertLabel.Font.Bold = True
AlertLabel.Font.Italic = True

End If

End Sub

Running Certain Statements if a Condition is True and Running Others if a Condition is
False

You can use an If...Then...Else statement to define two blocks of
executable statements: one block to run if the condition is True, the other
block to run if the condition is False.

Sub AlertUser(value)

If value = 0 Then
AlertLabel.ForeColor = vbRed
AlertLabel.Font.Bold = True
AlertLabel.Font.Italic = True

Else
AlertLabel.Forecolor = vbBlack
AlertLabel.Font.Bold = False
AlertLabel.Font.Italic = False
End If
End Sub

Deciding Between Several Alternatives

A variation on the If...Then...Else statement allows you to choose from
several alternatives. Adding Elself clauses expands the functionality of the
If...Then...Else statement so you can control program flow based on
different possibilities. For example:

Sub ReportValue(value)
If value = 0 Then
MsgBox value
Elself value = 1 Then
MsgBox value
Elself value = 2 then
Msgbox value
Else
Msgbox "Value out of range!"
End If

You can add as many Elself clauses as you need to provide alternative
choices. Extensive use of the Elself clauses often becomes cumbersome. A
better way to choose between several alternatives is the Select Case
statement.

Making Decisions with Select Case

The Select Case structure provides an alternative to If...Then...Elself for
selectively executing one block of statements from among multiple blocks
of statements. A Select Case statement provides capability similar to the
If...Then...Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated
once, at the top of the structure. The result of the expression is then
compared with the values for each Case in the structure. If there is a match,
the block of statements associated with that Case is executed:

Select Case Document.Form1.CardType.Options(:

Case "MasterCard"
DisplayMCLogo
ValidateMCA ccount

Case "Visa"
DisplayVisal.ogo
ValidateVisaAccount

Case "American Express"
DisplayAMEXCOLogo
Validate AMEXCOAccount

Case Else
DisplayUnknownImage
PromptAgain

End Select

Notice that the Select Case structure evaluates an expression once at the top
of the structure. In contrast, the If...Then...ElseIf structure can evaluate a
different expression for each Elself statement. You can replace an

If...Then...Elself structure with a Select Case structure only if each Elself
statement evaluates the same expression.

) . .
VBScript Tutorial
Microsoft® Visual Basic® Scripting Edition L 0 0 p lng -

Previous

Through Code e

Using Loops to Repeat Code

Looping allows you to run a group of statements repeatedly. Some loops
repeat statements until a condition is False; others repeat statements until a
condition is True. There are also loops that repeat statements a specific
number of times.

The following looping statements are available in VBScript:

e Do...L.oop: Loops while or until a condition is True.

e While...Wend: Loops while a condition is True.

e For...Next: Uses a counter to run statements a specified number of
times.

e For Each...Next: Repeats a group of statements for each item in a
collection or each element of an array.

Using Do Loops

You can use Do...Loop statements to run a block of statements an indefinite
number of times. The statements are repeated either while a condition is
True or until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a De...Loop statement. You
can check the condition before you enter the loop (as shown in the
following ChkFirstWhile example), or you can check it after the loop has
run at least once (as shown in the ChkLastWhile example). In the
ChkFirstWhile procedure, if myNum is set to 9 instead of 20, the statements
inside the loop will never run. In the ChkLastWhile procedure, the

statements inside the loop run only once because the condition is already
False.

Sub ChkFirstWhile()
Dim counter, myNum
counter =0
myNum = 20
Do While myNum > 10
myNum = myNum - 1
counter = counter + 1
Loop
MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastWhile()
Dim counter, myNum
counter =0
myNum =9
Do
myNum = myNum - 1
counter = counter + 1
Loop While myNum > 10
MsgBox "The loop made " & counter & " repetitions."
End Sub

Repeating a Statement Until a Condition Becomes True

You can use the Until keyword in two ways to check a condition in a
Do...Loop statement. You can check the condition before you enter the loop
(as shown in the following ChkFirstUntil example), or you can check it
after the loop has run at least once (as shown in the ChkLastUntil example).
As long as the condition is False, the looping occurs.

Sub ChkFirstUntil()
Dim counter, myNum

counter = 0
myNum = 20
Do Until myNum = 10
myNum = myNum - 1
counter = counter + 1
Loop
MsgBox "The loop made " & counter & " repetitions."
End Sub

Sub ChkLastUntil()
Dim counter, myNum
counter = 0
myNum = 1
Do
myNum = myNum + 1
counter = counter + 1
Loop Until myNum = 10
MsgBox "The loop made " & counter & " repetitions."
End Sub

Exiting a Do...Loop Statement from Inside the Loop

You can exit a Do...Loop by using the Exit Do statement. Because you
usually want to exit only in certain situations, such as to avoid an endless
loop, you should use the Exit Do statement in the True statement block of
an If...Then...Else statement. If the condition is False, the loop runs as
usual.

In the following example, myNum is assigned a value that creates an endless loop. The
If...Then...Else statement checks for this condition, preventing the endless repetition.

Sub ExitExample()
Dim counter, myNum
counter =0
myNum =9

Do Until myNum = 10
myNum = myNum - 1
counter = counter + 1
If myNum < 10 Then Exit Do
Loop
MsgBox "The loop made " & counter & " repetitions."
End Sub

Using While...Wend

The While...Wend statement is provided in VBScript for those who are
familiar with its usage. However, because of the lack of flexibility in
While...Wend, it is recommended that you use Do...Loop instead.

Using For...Next

You can use For...Next statements to run a block of statements a specific
number of times. For loops, use a counter variable whose value is increased
or decreased with each repetition of the loop.

For example, the following procedure causes a procedure called MyProc to execute 50 times. The
For statement specifies the counter variable x and its start and end values. The Next statement
increments the counter variable by 1.

Sub DoMyProc50Times()
Dim x
Forx =1 To 50
MyProc
Next
End Sub

Using the Step keyword, you can increase or decrease the counter variable
by the value you specify. In the following example, the counter variable j is
incremented by 2 each time the loop repeats. When the loop is finished,
total is the sum of 2, 4, 6, 8, and 10.

Sub TwosTotal()

Dim j, total
For j =2 To 10 Step 2
total = total + j
Next
MsgBox "The total is " & total
End Sub

To decrease the counter variable, you use a negative Step value. You must
specify an end value that is less than the start value. In the following
example, the counter variable myNum is decreased by 2 each time the loop
repeats. When the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4,
and 2.

Sub NewTotal()
Dim myNum, total
For myNum = 16 To 2 Step -2
total = total + myNum
Next
MsgBox "The total is " & total
End Sub

You can exit any For...Next statement before the counter reaches its end
value by using the Exit For statement. Because you usually want to exit
only in certain situations, such as when an error occurs, you should use the
Exit For statement in the True statement block of an If...Then...Else
statement. If the condition is False, the loop runs as usual.

Using For Each...Next

A For Each...Next loop is similar to a For...Next loop. Instead of repeating
the statements a specified number of times, a For Each...Next loop repeats
a group of statements for each item in a collection of objects or for each
element of an array. This is especially helpful if you don't know how many
elements are in a collection.

In the following HTML code example, the contents of a Dictionary object is used to place text in
several text boxes:

<HTML>
<HEAD><TITLE>Forms and Elements</TITLE></HEAD>
<SCRIPT LANGUAGE="VBScript">
<l--
Sub cmdChange_OnClick
Dim d 'Create a variable
Set d = CreateObject("Scripting.Dictionary")
d.Add "0", "Athens" 'Add some keys and items
d.Add "1", "Belgrade"
d.Add "2", "Cairo"

For EachIind
Document.frmForm.Elements(I).Value = D.Item(])

Next

End Sub

>

</SCRIPT>

<BODY>

<CENTER>

<FORM NAME="frmForm"

<Input Type = "Text"><p>

<Input Type = "Text"><p>

<Input Type = "Text"><p>

<Input Type = "Text"><p>

<Input Type = "Button" NAME="cmdChange" VALUE="Click F
</FORM>

</CENTER>

</BODY>

</HTML>

Microsoft® Visual Basic® Scripting Edition
VBScript Tutorial
VBScript and Y reviaus
Next
Forms

Simple Validation

You can use Visual Basic Scripting Edition to do much of the form
processing that you'd usually have to do on a server. You can also do things
that just can't be done on the server.

Here's an example of simple client-side validation. The HTML code is for a text box and a button. If
you use Microsoft® Internet Explorer to view the page produced by the following code, you'll see a
small text box with a button next to it.

<HTML>
<HEAD><TITLE>Simple Validation</TITLE>
<SCRIPT LANGUAGE="VBScript">
<l--
Sub Buttonl OnClick
Dim TheForm
Set TheForm = Document.ValidForm
If IsNumeric(TheForm.Text1.Value) Then
If TheForm.Text1.Value < 1 Or TheForm.Text1.
MsgBox "Please enter a number between 1 and
Else
MsgBox "Thank you."
End If
Else

MsgBox "Please enter a numeric value."

End If
End Sub
>
</SCRIPT>
</HEAD>
<BODY>
<H3>Simple Validation</H3><HR>
<FORM NAME="ValidForm">
Enter a value between 1 and 10:
<INPUT NAME="Text1" TYPE="TEXT" SIZE="
<INPUT NAME="Button1" TYPE="BUTTON" V
</FORM>
</BODY>
</HTML>

The difference between this text box and the examples on A Simple
VBScript Page is that the Value property of the text box is used to check
the entered value. To get the Value property, the code has to qualify the
reference to the name of the text box.

You can always write out the full reference Document.ValidForm.Text1. However, where you have
multiple references to form controls, you'll want to do what was done here. First declare a variable.
Then use the Set statement to assign the form to the variable TheForm. A regular assignment

statement, such as Dim, doesn't work here; you must use Set to preserve the reference to an object.

Using Numeric Values

Notice that the example directly tests the value against a number: it uses the
IsNumeric function to make sure the string in the text box is a number.
Although VBScript automatically converts strings and numbers, it's always

a good practice to test a user-entered value for its data subtype and to use
conversion functions as necessary. When doing addition with text box
values, convert the values explicitly to numbers because the plus sign (+)
operator represents both addition and string concatenation. For example, if
Text1 contains "1" and Text2 contains "2", you see the following results:

A = Text1.Value + Text2.Value "Ais"12"
A = CDbl(Text1.Value) + Text2.Value ' A is 3

Validating and Passing Data Back to the Server

The simple validation example uses a plain button control. If a Submit
control was used, the example would never see the data to check it—
everything would go immediately to the server. Avoiding the Submit
control lets you check the data, but it doesn't submit the data to the server.
That requires an additional line of code:

<SCRIPT LANGUAGE="VBScript">
<l--
Sub Button1_OnClick
Dim TheForm
Set TheForm = Document.ValidForm
If IsNumeric(TheForm.Text1.Value) Then
If TheForm.Text1.Value < 1 Or TheForm.Text1.Value > 10 The
MsgBox "Please enter a number between 1 and 10."
Else
MsgBox "Thank you."
TheForm.Submit ' Data correct; send to server.
End If
Else
MsgBox "Please enter a numeric value."
End If

End Sub
>

</SCRIPT>

To send the data to the server, the code invokes the Submit method on the
form object when the data is correct. From there, the server handles the data
just as it otherwise would—except that the data is correct before it gets
there. Find complete information about the Submit method and other
methods in the Internet Explorer Scripting Object Model documentation,
which can be found on the Microsoft® Web site
(http://www.microsoft.com).

So far, you've seen only the standard HTML <FORM> objects. Internet Explorer also lets you exploit
the full power of ActiveX® controls (formerly called OLE controls) and Java™ objects.

tags"> tags'>

Microsoft® Visual Basic® Scripting Edition U Sing

o o VBScript Tutorial
VBS Cl‘lpt Wlth Previous
Objects

Using Objects

Whether you use an ActiveX® control (formerly called an OLE control) or
a Java™ object, Microsoft Visual Basic Scripting Edition and Microsoft®
Internet Explorer handle it the same way. If you're using Internet Explorer
and have installed the Label control, you can see the page produced by the
following code.

You include an object using the <OBJECT> tags and set its initial property values using <PARAM>
tags. If you're a Visual Basic programmer, you'll recognize that using the <PARAM> tags is just like
setting initial properties for a control on a form. For example, the following set of <OBJECT> and
<PARAM> tags adds the ActiveX Label control to a page:

<OBJECT
classid="clsid:99B42120-6EC7-11CF-A6C7-I
id=1blActiveL.bl
width=250
height=250
align=left
hspace=20
vspace=0
>
<PARAM NAME="Angle" VALUE="90">

<PARAM NAME="Alignment" VALUE="4">
<PARAM NAME="BackStyle" VALUE="0">
<PARAM NAME="Caption" VALUE="A Simple
<PARAM NAME="FontName" VALUE="Verdan:
<PARAM NAME="FontSize" VALUE="20">
<PARAM NAME="FontBold" VALUE="1">
<PARAM NAME="FrColor" VALUE="0">
</OBJECT>

You can get properties, set properties, and invoke methods just as with any
of the form controls. The following code, for example, includes <FORM>
controls you can use to manipulate two properties of the Label control:

<FORM NAME="LabelControls">

<INPUT TYPE="TEXT" NAME="txtNewText" S.
<INPUT TYPE="BUTTON" NAME="cmdChang¢
<INPUT TYPE="BUTTON" NAME="cmdRotate'
</FORM>

With the form defined, an event procedure for the cmdChangelt button
changes the label text:

<SCRIPT LANGUAGE="VBScript">

<l--

Sub cmdChangelt_onClick
Dim TheForm
Set TheForm = Document.l.abelControls
IblActiveLLbl.Caption = TheForm.txtNewText

End Sub
>

</SCRIPT>

The code qualifies references to controls and values inside the forms just as
in the Simple Validation example.

Several ActiveX controls are available for use with Internet Explorer. You can find complete
information about the properties, methods, and events there, as well as the class identifiers (CLSID)
for the controls on the Microsoft® Web site (http://www.microsoft.com). You can find more
information about the <OBJECT> tag on the Internet Explorer 4.0 Author's Guide and HTML
Reference page.

Note Earlier releases of Internet Explorer required braces ({})
around the classid attribute and did not conform to the W3C
specification. Using braces with the current release generates a
"This page uses an outdated version of the <OBJECT> tag"
message.

Microsoft® Visual Basic® Scripting Edition

Scripting Run-

o o Lang}lage Referepce
Tlme lerary Version Information
Reference

Welcome to the Scripting Run-Time Library
Reference

These handy blocks of information will help
you explore the many different parts of the
Scripting Run-Time Library.
¢ Feature Information You'll find all the parts of the Scripting Run-
Time Library listed alphabetically under the
Alphabetic Keyword List. But if you want to
examine just one category, say, objects, each
language category has its own, more compact

% Alphabetic Keyword
List

4 Constants

section.
¢ Methods How's it work? Click on one of the headings to
) the left to display a list of items contained in
% Objects

that category. From this list, select the topic that
you want to view. Once you've opened that
topic, you can easily link to other related
sections.

% Properties

So, go ahead and take a look! Study some
statements, mull over the methods, or figure out
a few functions. You'll see just how versatile the
Scripting Run-Time Library can be!

© 1999 Microsoft Corporation. All rights reserved.

Microsoft® Visual Basic® Scripting Edition

Scripting Run-Time Library

F eatll re Reference
. Version Information
Information

Microsoft Scripting Run-Time Features

Microsoft® Visual Basic® Scripting Edition

Alphabetic
Keyword List

Scripting Run-Time Library
Reference
Version Information

Add Method (Dictionary)
Add Method (Folders)
AtEndOfLine Property
AtEndOfStream Property
Attributes Property
AvailableSpace Property
BuildPath Method

Close Method

Column Property
CompareMode Property
Copy Method

CopyFile Method
CopyFolder Method
Count Property
CreateFolder Method
CreateTextFile Method
DateCreated Property
Datel.astAccessed Property
Datel.astModified Property
Delete Method
DeleteFile Method
DeleteFolder Method
Dictionary Object

Drive Object

Drive Property

Drive Type Constants
DriveExists Method
DriveL.etter Property
Drives Collection

Drives Property

DriveType Property

Exists Method

FileExists Method

File Attribute Constants
File Input/Output Constants
File Object

Files Collection

Files Property
FileSystemObject Constants
FileSystemObject Object
FileSystem Property

Folder Object

Folders Collection
FolderExists Method

FreeSpace Property
GetAbsolutePathName Method

GetBaseName Method
GetDrive Method
GetDriveName Method
GetExtensionName Method
GetFile Method
GetFileName Method
GetFileVersion Method
GetFolder Method
GetParentFolderName Method
GetSpecialFolder Method
GetTempName Method
IsReady Property
IsRootFolder Property

Item Property

Items Method

Key Property

Keys Method

Line Property

Move Method

MoveFile Method

MoveFolder Method
Name Property
OpenAsTextStream Method

OpenTextFile Method
ParentFolder Property
Path Property

Read Method

ReadAll Method
ReadLine Method
Remove Method
RemoveAll Method
RootFolder Property
SerialNumber Property
ShareName Property
ShortName Property
ShortPath Property
Size Property

Skip Method

SkipLine Method
SpecialFolder Constants
Subfolders Property
TextStream Object
TotalSize Property
Type Property
VolumeName Property
Write Method
WriteBlankLines Method
WriteLine Method

Scripting Run-Time Library
Reference

C OnStantS Version Information

Microsoft® Visual Basic® Scripting Edition

DriveType Constants
File Attribute Constants

File Input/Output Constants
FileSystemObject Constants

SpecialFolder Constants

Microsoft® Visual Basic® Scripting Edition

Methods

Scripting Run-Time Library
Reference
Version Information

Add Method (Dictionary)
Add Method (Folders)
BuildPath Method

Close Method

Copy Method

CopyFile Method
CopyFolder Method
CreateFolder Method
CreateTextFile Method
Delete Method
DeleteFile Method
DeleteFolder Method
DriveExists Method
Exists Method

FileExists Method
FolderExists Method
GetAbsolutePathName Method

GetBaseName Method
GetDrive Method
GetDriveName Method
GetExtensionName Method
GetFile Method
GetFileName Method
GetFileVersion Method
GetFolder Method
GetParentFolderName Method
GetSpecialFolder Method
GetTempName Method
Items Method

Keys Method

Move Method

MoveFile Method
MoveFolder Method
OpenAsTextStream Method

OpenTextFile Method
Read Method
ReadAll Method
Readl.ine Method
Remove Method
RemoveAll Method
Skip Method
SkipLine Method
Write Method
WriteBlankl.ines Method
WritelLine Method

Scripting Run-Time Library
Reference

O bj e Cts Version Information

Microsoft® Visual Basic® Scripting Edition

Dictionary Object
Drive Object
Drives Collection

File Object
Files Collection

FileSystemObject Object
Folder Object

Folders Collection
TextStream Object

Microsoft® Visual Basic® Scripting Edition

Properties

Scripting Run-Time Library
Reference
Version Information

AtEndOfLine Property
AtEndOfStream Property
Attributes Property
AvailableSpace Property
Column Property
CompareMode Property
Count Property
DateCreated Property

Datel.astAccessed Property
Datel.astModified Property
Drive Property

DriveL.etter Property
Drives Property

DriveType Property

Files Property

FileSystem Property

FreeSpace Property

IsReady Property
IsRootFolder Property

Item Property

Key Property

Line Property

Name Property
ParentFolder Property
Path Property
RootFolder Property
SerialNumber Property
ShareName Property
ShortName Property
ShortPath Property

Size Property
SubFolders Property

TotalSize Property

Type Property
VolumeName Property

Microsoft® Scripting Library - FileSystemObject Th e
FileSystemObject
Object Model

z
(D
>
-+

When writing scripts for Active Server Pages, the Windows Scripting Host,
or other applications where scripting can be used, it's often important to
add, move, change, create, or delete folders (directories) and files on the
Web server. It may also be necessary to get information about and
manipulate drives attached to the Web server.

Scripting allows you to process drives, folders, and files using the
FileSystemObject (FSO) object model, which is explained in the following
sections:

¢ Introduction to the FileSystemObject
and the Scripting Run-Time Library Reference

e FileSystemObject Objects

¢ Programming the FileSystemObject
e Working with Drives and Folders

e Working with Files

e FileSystemObject Sample Code

Microsoft® Scripting Library - FileSystemObject

Introduction to the
FileSystemObject

and the Brevious
Scripting Run- -
Time Library

Reference

The FileSystemObject (FSO) object model allows you to use the familiar
object.method syntax with a rich set of properties, methods, and events to
process folders and files.

Use this object-based tool with:

e HTML to create Web pages
e Windows Scripting Host to create batch files for Microsoft Windows

e Script Control to provide a scripting capability to applications developed in
other languages

Because use of the FSO on the client side raises serious security issues about
providing potentially unwelcome access to a client's local file system, this
documentation assumes use of the FSO object model to create scripts executed
by Internet Web pages on the server side. Since the server side is used, the
Internet Explorer default security settings do not allow client-side use of the
FileSystemObject object. Overriding those defaults could subject a local
computer to unwelcome access to the file system, which could result in total
destruction of the file system's integrity, causing loss of data, or worse.

The FSO object model gives your server-side applications the ability to create, alter, move, and delete
folders, or to detect if particular folders exist, and if so, where. You can also find out information about

folders, such as their names, the date they were created or last modified, and so forth.

The FSO object model also makes it easy to process files. When processing files, the primary goal is to
store data in a space- and resource-efficient, easy-to-access format. You need to be able to create files, insert
and change the data, and output (read) the data. Since storing data in a database, such as Access or SQL
Server, adds a significant amount of overhead to your application, storing your data in a binary or text file
may be the most efficient solution. You may prefer not to have this overhead, or your data access
requirements may not require all the extra features associated with a full-featured database.

The FSO object model, which is contained in the Scripting type library (Scrrun.dll), supports text file
creation and manipulation through the TextStream object. Although it does not yet support the creation or
manipulation of binary files, future support of binary files is planned.

Microsoft® Scripting Library - FileSystemObject

FileSystemObject Previos
Objects

The FileSystemObject (FSO) object model contains the following objects
and collections.

Object/Collection"Description

Main object. Contains methods and
properties that allow you to create, delete,
gain information about, and generally

FileSystemObject|manipulate drives, folders, and files. Many
of the methods associated with this object
duplicate those in other FSO objects; they
are provided for convenience.

Object. Contains methods and properties that
allow you to gather information about a
drive attached to the system, such as its share
name and how much room is available. Note
that a "drive" isn't necessarily a hard disk,
but can be a CD-ROM drive, a RAM disk,
and so forth. A drive doesn't need to be
physically attached to the system; it can be
also be logically connected through a
network.

Drive

Collection. Provides a list of the drives
attached to the system, either physically or
logically. The Drives collection includes all
drives, regardless of type. Removable-media
drives need not have media inserted for them
to appear in this collection.

Drives

Object. Contains methods and properties that
allow you to create, delete, or move a file.

File

Also allows you to query the system for a
file name, path, and various other properties.

Files

Collection. Provides a list of all files
contained within a folder.

Folder

Object. Contains methods and properties that
allow you to create, delete, or move folders.
Also allows you to query the system for
folder names, paths, and various other
properties.

Folders

Collection. Provides a list of all the folders
within a Folder.

TextStream

files.

Object. Allows you to read and write text ‘

Microsoft® Scripting Library - FileSystemObject

Programming the Previs
FileSystemObject

To program with the FileSystemObject (FSO) object model:

o Use the CreateObject method to create a FileSystemObject object.
o Use the appropriate method on the newly created object.

e Access the object's properties.

The FSO object model is contained in the Scripting type library, which is
located in the Scrrun.dll file. Therefore, you must have Scrrun.dll in the
appropriate system directory on your Web server to use the FSO object
model.

Creating a FileSystemObject Object

First, create a FileSystemObject object by using the CreateObject
method. In VBScript, use the following code to create an instance of the
FileSystemObject:

Dim fso
Set fso = CreateObject("Scripting.FileSystemObject")

This sample code demonstrates how to create an instance of the
FileSystemObject.

In JScript, use this code to do the same thing:

var fso;
fso = new ActiveXObject("Scripting.FileSystemObject");

In both of these examples, Scripting is the name of the type library and
FileSystemObject is the name of the object that you want to create. You

can create only one instance of the FileSystemObject object, regardless of
how many times you try to create another.

Using the Appropriate Method

Second, use the appropriate method of the FileSystemObject object. For
example, to create a new object, use either CreateTextFile or
CreateFolder (the FSO object model doesn't support the creation or
deletion of drives).

To delete objects, use the DeleteFile and DeleteFolder methods of the FileSystemObject object, or
the Delete method of the File and Folder objects. You can also copy and move files and folders, by
using the appropriate methods.

Note Some functionality in the FileSystemObject object model
is redundant. For example, you can copy a file using either the
CopyFile method of the FileSystemObject object, or you can
use the Copy method of the File object. The methods work the
same; both exist to offer programming flexibility.

Accessing Existing Drives, Files, and Folders

To gain access to an existing drive, file, or folder, use the appropriate "get"
method of the FileSystemObject object:

e GetDrive
o GetFolder

o GetFile
To gain access to an existing file in VBScript:

Dim fso, f1

Set fso = CreateObject("Scripting.FileSystemObject")
Set f1 = fso.GetFile("c:\test.txt™)

To do the same thing in JScript, use the following code:

var fso, f1;
fso = new ActiveXObject("Scripting.FileSystemObject");
f1 = fso.GetFile("c:\\test.txt");

Do not use the "get" methods for newly created objects, since the "create"
functions already return a handle to that object. For example, if you create a
new folder using the CreateFolder method, don't use the GetFolder
method to access its properties, such as Name, Path, Size, and so forth. Just
set a variable to the CreateFolder function to gain a handle to the newly
created folder, then access its properties, methods, and events. To do this in
VBScript, use the following code:

Sub CreateFolder
Dim fso, fldr
Set fso = CreateObject("Scripting.FileSystemObject")
Set fldr = fso.CreateFolder("C:\MyTest")
Response.Write "Created folder: " & fldr.Name

End Sub

To set a variable to the CreateFolder function in JScript, use this syntax:

function CreateFolder()

{
var fso, fldr;
fso = new ActiveXObject("Scripting.FileSystemObject");
fldr = fso.CreateFolder("C:\\MyTest");
Response.Write("'Created folder: " + fldr.Name);

}

Accessing the Object's Properties

Once you have a handle to an object, you can access its properties. For
example, to get the name of a particular folder, first create an instance of the
object, then get a handle to it with the appropriate method (in this case, the

GetFolder method, since the folder already exists).

Use this code to get a handle to the GetFolder method in VBScript:

Set fldr = fso.GetFolder("c:\")

To do the same thing in JScript, use the following code:
var fldr = fso.GetFolder("c:\\");

Now that you have a handle to a Folder object, you can check its Name
property. Use the following code to check this in VBScript:

Response.Write "Folder name is: " & fldr.Name
To check a Name property in JScript, use this syntax:
Response.Write("Folder name is: " + fldr.Name);

To find out the last time a file was modified, use the following VBScript
syntax:

Dim fso, f1

Set fso = CreateObject("Scripting.FileSystemObject")

' Get a File object to query.

Set f1 = fso.GetFile("c:\detlog.txt")

' Print information.

Response.Write "File last modified: " & f1.DateLastModified

To find out the same thing in JScript, use this code:

var fso, f1;

fso = new ActiveXObject("Scripting.FileSystemObject");

// Get a File object to query.

f1 = fso.GetFile("c:\\detlog.txt");

// Print information.

Response.Write("File last modified: " + f1.DateLastModified);

Microsoft® Scripting Library - FileSystemObject

Working with Preous
Drives and Folders

With the FileSystemObject (FSO) object model, you can work with drives
and folders programmatically just as you can in the Windows Explorer
interactively. You can copy and move folders, get information about drives
and folders, and so forth.

Getting Information About Drives

The Drive object allows you to gain information about the various drives
attached to a system, either physically or over a network. Its properties
allow you to obtain information about:

e The total size of the drive in bytes (TotalSize property)

e How much space is available on the drive in bytes (AvailableSpace or
FreeSpace properties)

e What letter is assigned to the drive (DriveLetter property)

e What type of drive it is, such as removable, fixed, network, CD-ROM,
or RAM disk (DriveType property)

e The drive's serial number (SerialNumber property)

e The type of file system the drive uses, such as FAT, FAT32, NTFS, and
so forth (FileSystem property)

e Whether a drive is available for use (IsReady property)

e The name of the share and/or volume (ShareName and VolumeName
properties)

o The path or root folder of the drive (Path and RootFolder properties)

View the sample code to see how these properties are used in

FileSystemObject.

Example Usage of the Drive Object

Use the Drive object to gather information about a drive. You won't see a
reference to an actual Drive object in the following code; instead, use the
GetDrive method to get a reference to an existing Drive object (in this
case, drv).

The following example demonstrates how to use the Drive object in VBScript:

Sub ShowDrivelnfo(drvPath)
Dim fso, drv, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set drv = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & drv.VolumeName & "
"
s = s & "Total Space: " & FormatNumber(drv.TotalSize / 1024, 0
s=s & " Kb" & "
"
s = s & "Free Space: " & FormatNumber(drv.FreeSpace / 1024, 0
s=s & " Kb" & "
"
Response.Write s
End Sub

The following code illustrates the same functionality in JScript:

function ShowDrivelnfol(drvPath)
{
var fso, drv, s ="";
fso = new ActiveXObject("Scripting.FileSystemObject");
drv = fso.GetDrive(fso.GetDriveName(drvPath));
s += "Drive " + drvPath.toUpperCase()+ " - ";
s += drv.VolumeName + "
";
s += "Total Space: " + drv.TotalSize / 1024;
s +=" Kb" + "
";
s += "Free Space: " + drv.FreeSpace / 1024;

S +: " Kb" + H
ll;
Response.Write(s);
}

Working with Folders

Common folder tasks and the methods for performing them are described in
the following table.

|Task "Method
|Create a folder. "FileSystemObject.CreateFolder

Folder.Delete or
FileSystemObject.DeleteFolder

Folder.Move or
FileSystemObject.MoveFolder

Folder.Copy or
FileSystemObject.CopyFolder

Delete a folder.

Move a folder.

Copy a folder.

Retrieve the name
of a folder.

Find out if a folder
exists on a drive.

Folder.Name

FileSystemObject.FolderExists

Get an instance of
an existing Folder [FileSystemObject.GetFolder
object.

Find out the name
of a folder's parent [[FileSystemObject.GetParentFolderName
folder.

Find out the path of
system folders.

FileSystemObject.GetSpecialFolder

View the sample code to see how many of these methods and properties are used in
FileSystemObject.

The following example demonstrates how to use the Folder and FileSystemObject objects to
manipulate folders and gain information about them in VBScript:

Sub ShowFolderInfo()
Dim fso, fldr, s
' Get instance of FileSystemObject.
Set fso = CreateObject("Scripting.FileSystemObject")
' Get Drive object.
Set fldr = fso.GetFolder("c:"
' Print parent folder name.
Response.Write "Parent folder name is: " & fldr & "
"
' Print drive name.
Response.Write "Contained on drive " & fldr.Drive & "
"
' Print root file name.
If fldr.IsRootFolder = True Then
Response.Write "This is the root folder." & ""
"
"
Else
Response.Write "This folder isn't a root folder." & "

"
End If
' Create a new folder with the FileSystemObject object.
fso.CreateFolder ("C:\Bogus")
Response.Write "Created folder C:\Bogus" & "
"
' Print the base name of the folder.
Response.Write "Basename = " & fso.GetBaseName("c:\bogus")
' Delete the newly created folder.
fso.DeleteFolder ("C:\Bogus")
Response.Write "Deleted folder C:\Bogus" & "
"
End Sub

This example shows how to use the Folder and FileSystemObject objects
in JScript:

function ShowFolderInfo()
{
var fso, fldr,s ="";
// Get instance of FileSystemObject.
fso = new ActiveXObject("Scripting.FileSystemObject");

// Get Drive object.
fldr = fso.GetFolder("c:");
// Print parent folder name.
Response.Write(""Parent folder name is: " + fldr + "
");
// Print drive name.
Response.Write("Contained on drive " + fldr.Drive + "
");
// Print root file name.
if (fldr.IsRootFolder)
Response.Write(""This is the root folder.");
else
Response.Write(""This folder isn't a root folder.");
Response.Write("'

");
// Create a new folder with the FileSystemObject object.
fso.CreateFolder ("C:\\Bogus");
Response.Write("'Created folder C:\\Bogus" + "
");
// Print the base name of the folder.
Response.Write("Basename = " + fso.GetBaseName("c:\\bogus")
// Delete the newly created folder.
fso.DeleteFolder ("C:\\Bogus");
Response.Write('"Deleted folder C:\\Bogus" + "
");

Microsoft® Scripting Library - FileSystemObject PreViOUS

Working with Files Nex

There are two major categories of file manipulation:

e Creating, adding, or removing data, and reading files

e Moving, copying, and deleting files

Creating Files

There are three ways to create an empty text file (sometimes referred to as a
"text stream").

The first way is to use the CreateTextFile method. The following example demonstrates how to
create a text file using this method in VBScript:

Dim fso, f1
Set fso = CreateObject("Scripting.FileSystemObject")
Set f1 = fso.CreateTextFile("c:\testfile.txt", True)

To use this method in JScript, use this code:

var fso, f1;
fso = new ActiveXObject("Scripting.FileSystemObject");
f1 = fso.CreateTextFile("c:\\testfile.txt", true);

View this sample code to see how the CreateTextFile method is used in
FileSystemObject.

The second way to create a text file is to use the OpenTextFile method of the FileSystemObject
object with the ForWriting flag set. In VBScript, the code looks like this example:

Dim fso, ts

Const ForWriting = 2

Set fso = CreateObject("Scripting. FileSystemObject")
Set ts = fso.OpenTextFile("c:\test.txt", ForWriting, True)

To create a text file using this method in JScript, use this code:

var fso, ts;

var ForWriting= 2;

fso = new ActiveXObject("Scripting.FileSystemObject");
ts = fso.OpenTextFile("c:\\test.txt", ForWriting, true);

A third way to create a text file is to use the OpenAsTextStream method
with the ForWriting flag set. For this method, use the following code in
VBScript:

Dim fso, f1, ts

Const ForWriting = 2

Set fso = CreateObject("Scripting.FileSystemObject")
fso.CreateTextFile ("c:\test1.txt")

Set f1 = fso.GetFile("c:\test1.txt™)

Set ts = f1.0penAsTextStream(ForWriting, True)

In JScript, use the code in the following example:

var fso, f1, ts;

var ForWriting = 2;

fso = new ActiveXObject("Scripting.FileSystemObject");
fso.CreateTextFile ("c:\\test1.txt");

f1 = fso.GetFile("c:\\test1.txt");

ts = f1.0penAsTextStream(ForWriting, true);

Adding Data to the File

Once the text file is created, add data to the file using the following three
steps:

1. Open the text file.
2. Write the data.
3. Close the file.

To open an existing file, use either the OpenTextFile method of the
FileSystemObject object or the OpenAsTextStream method of the File
object.

To write data to the open text file, use the Write, WriteLine, or WriteBlankLines methods of the
TextStream object, according to the tasks outlined in the following table.

|Task "Method |
Write data to an open text file without a .
. . Write
trailing newline character.
Write data to an open text file with a trailin e v
] p 8 WriteLine
newline character.

Write one or more blank lines to an open text

) WriteBlankLines
file.

View this sample code to see how the Write, WriteLine, and WriteBlankLines methods are used in
FileSystemObject.

To close an open file, use the Close method of the TextStream object.

View this sample code to see how the Close method is used in FileSystemObject.

Note The newline character contains a character or characters
(depending on the operating system) to advance the cursor to the
beginning of the next line (carriage return/line feed). Be aware
that the end of some strings may already have such nonprinting
characters.

The following VBScript example demonstrates how to open a file, use all three write methods to add
data to the file, and then close the file:

Sub CreateFile()
Dim fso, tf
Set fso = CreateObject("Scripting.FileSystemObject")
Set tf = fso.CreateTextFile("c:\testfile.txt", True)
' Write a line with a newline character.
tf.WriteLine("Testing 1, 2, 3.")

' Write three newline characters to the file.
tf. WriteBlankLines(3)
' Write a line.
tf.Write ("This is a test.")
tf.Close
End Sub

This example demonstrates how to use the three methods in JScript:

function CreateFile()
{
var fso, tf;
fso = new ActiveXObject("Scripting.FileSystemObject");
tf = fso.CreateTextFile("c:\\testfile.txt", true);
// Write a line with a newline character.
tf. WriteLine("Testing 1, 2, 3.") ;
// Write three newline characters to the file.
tf.WriteBlankLines(3) ;
// Write a line.
tf.Write ("This is a test.");
tf.Close();

}

Reading Files

To read data from a text file, use the Read, ReadLine, or ReadAll method
of the TextStream object. The following table describes which method to
use for various tasks.

Task Method
Read a specified number of characters from a file. [|[Read
Read. an entire line (up to, but not including, the ReadLine
newline character).

|Read the entire contents of a text file. "ReadAll |

View this sample code to see how the ReadAll and ReadLine methods are used in
FileSystemObject.

If you use the Read or ReadLine method and want to skip to a particular portion of data, use the
Skip or SkipLine method. The resulting text of the read methods is stored in a string which can be
displayed in a control, parsed by string functions (such as Left, Right, and Mid), concatenated, and
so forth.

The following VBScript example demonstrates how to open a file, write to it, and then read from it:

Sub ReadFiles
Dim fso, f1, ts, s
Const ForReading = 1
Set fso = CreateObject("Scripting.FileSystemObject")
Set f1 = fso.CreateTextFile("c:\testfile.txt", True)
' Write a line.
Response.Write "Writing file
"
f1.WriteLine "Hello World"
f1.WriteBlankLines(1)
f1.Close
' Read the contents of the file.
Response.Write "Reading file
"
Set ts = fso.OpenTextFile("c:\testfile.txt", ForReading)
s = ts.ReadLine
Response.Write "File contents =" & s & """
ts.Close
End Sub

This code demonstrates the same thing in JScript:

function ReadFiles()
{
var fso, f1, ts, s;
var ForReading = 1;
fso = new ActiveXObject("Scripting.FileSystemObject");
f1 = fso.CreateTextFile("c:\\testfile.txt", true);
// Write a line.

Response.Write(""Writing file
");
f1.WriteLine("Hello World");
f1.WriteBlankLines(1);

f1.Close();

// Read the contents of the file.
Response.Write("Reading file
");

ts = fso.OpenTextFile("c:\\testfile.txt", ForReading);
s = ts.ReadLine();

Response.Write("File contents =" +s + "");
ts.Close();

}

Moving, Copying, and Deleting Files

The FSO object model has two methods each for moving, copying, and
deleting files, as described in the following table.

ITask |
|Move a file |
|
|

|C0py a file [[File.Copy or FileSystemObject.CopyFile |

|
|File.Move or FileSystemObject.MoveFile |
|
|

|De1ete a file [[File.Delete or FileSystemObject.DeleteFile |

View this sample code to see two ways to delete a file in FileSystemObject.

The following VBScript example creates a text file in the root directory of drive C, writes some
information to it, moves it to a directory called \tmp, makes a copy of it in a directory called \temp,
then deletes the copies from both directories.

To run the following example, create directories named \tmp and \temp in the root directory of drive
C:

Sub ManipFiles
Dim fso, f1, 2, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f1 = fso.CreateTextFile("c:\testfile.txt", True)
Response.Write "Writing file
"
' Write a line.

f1.Write ("This is a test.")
' Close the file to writing.
f1.Close
Response.Write "Moving file to c:\tmp
"
' Get a handle to the file in root of C:\.
Set f2 = fso.GetFile("c:\testfile.txt")
' Move the file to \tmp directory.
f2.Move ("c:\tmp\testfile.txt™)
Response.Write "Copying file to c:\temp
"
' Copy the file to \temp.
f2.Copy ("c:\temp\testfile.txt")
Response.Write "Deleting files
"
' Get handles to files' current location.
Set f2 = fso.GetFile("c:\tmp\testfile.txt")
Set £3 = fso.GetFile("c:\temp\testfile.txt")
' Delete the files.
f2.Delete
f3.Delete
Response.Write "All done!"
End Sub

This code shows the same thing in JScript:

function ManipFiles()
{
var fso, f1, {2, s;
fso = new ActiveXObject("Scripting.FileSystemObject");
f1 = fso.CreateTextFile("c:\\testfile.txt", true);
Response.Write(""Writing file
");
// Write a line.
f1.Write("This is a test.");
// Close the file to writing.
f1.Close();

Response.Write("Moving file to c:\\tmp
");
// Get a handle to the file in root of C:\.

f2 = fso.GetFile("c:\\testfile.txt");

// Move the file to \tmp directory.

f2.Move ("c:\\tmp\\testfile.txt");
Response.Write("Copying file to c:\\temp
");
// Copy the file to \temp.

f2.Copy ("c:\\temp\\testfile.txt");
Response.Write('"'Deleting files
");

// Get handles to files' current location.

f2 = fso.GetFile("c:\\tmp\\testfile.txt");

f3 = fso.GetFile("c:\\temp\\testfile.txt");

// Delete the files.

f2.Delete();

f3.Delete();

Response.Write("All done!");

Microsoft® Scripting Library - FileSystemObject

FileSystemObject Previous
Sample Code

The sample code described in this section provides a real-world example
that demonstrates many of the features available in the FileSystemObject
object model. This code shows how all the features of the object model
work together, and how to use those features effectively in your own code.

Note that since this code is fairly generic, some additional code and a little tweaking are needed to
make this code actually run on your machine. These changes are necessary because of the different
ways input and output to the user is handled between Active Server Pages and the Windows Scripting
Host.

To run this code on an Active Server Page, use the following steps:

1. Create a standard Web page with an .asp extension.

2. Copy the following sample code into that file between the <BODY;>...
</BODY> tags.

3. Enclose all the code within <%...%> tags.

4. Move the Option Explicit statement from its current position in the
code to the very top of your HTML page, positioning it even before
the opening <HTML> tag.

5. Place <%...%> tags around the Option Explicit statement to ensure
that it's run on the server side.

6. Add the following code to the end of the sample code:

Sub Print(x)
Response.Write "<PRE><FONT; FACE=""Courier New"" SIZE=""1"">"
Response.Write x
Response.Write "</PRE>"

End Sub

Main

The previous code adds a print procedure that will run on the server side,

but display results on the client side. To run this code on the Windows
Scripting Host, add the following code to the end of the sample code:

Sub Print(x)
WScript.Echo x

End Sub

Main

The code is contained in the following section:

L R T R A AL T AR AL AR ER LA T AL TR]

FileSystemObject Sample Code

Copyright 1998 Microsoft Corporation. All Rights Reserved.

L R R T L R A AL AL AR R AL ALER TR LA AA L]

Option Explicit

L R R T L A AL AL AR R AL ALER TR LA AA T

Regarding code quality:

1) The following code does a lot of string manipulation by concatenating short
strings together with the "&" operator. Since string concatenation
is expensive, this is a very inefficient way to write code. However, it is a very
maintainable way to write code, and is used here because this program performs extensive
disk operations, and because the disk is much slower than the memory operations required to
concatenate the strings. Keep in mind that this is demonstration code, not production code.

2) "Option Explicit" is used, because declared variable access is slightly faster than
undeclared variable access. It also prevents bugs from creeping into your code, such as
when you misspell DriveTypeCDROM as DriveTypeCDORM.

3) Error handling is absent from this code, to make the code more readable. Although
precautions have been taken to ensure that the code will not error in common cases, file
systems can be unpredictable. In production code, use On Error Resume Next and the
Err object to trap possible errors.

L R R T L R A AL AL AR R AL ALER TR LA AA L]

L R A T L R R A AL AL AR R R AL AL ER TR T A AA T

Some handy global variables

L R R T L R A AL AL R R R AL AL ER TR LA AA L]

Dim TabStop
Dim NewLine

Const TestDrive = "C"
Const TestFilePath = "C:\Test"

' Constants returned by Drive.DriveType

L R T L R A AL AL AR R AL AL ER LT AT A AA L]

Const DriveTypeRemovable = 1
Const DriveTypeFixed = 2
Const DriveTypeNetwork = 3
Const DriveTypeCDROM = 4
Const DriveTypeRAMDisk = 5

' Constants returned by File.Attributes

R R A T L A AL AL RN R R AL AL ER LT AT A AA L]

Const FileAttrNormal =0
Const FileAttrReadOnly = 1
Const FileAttrHidden = 2

Const FileAttrSystem = 4

Const FileAttrVolume = 8

Const FileAttrDirectory = 16
Const FileAttrArchive = 32
Const FileAttrAlias = 64

Const FileAttrCompressed = 128

LA AR AR AN RR AR ARNRARRRRAARRRRANRARARNAN]
1

' Constants for opening files

1

L R A T L R A AL AL R R R AL AL ER TR LA AA T

Const OpenFileForReading = 1
Const OpenFileForWriting = 2
Const OpenFileForAppending = 8

L R T L R A AL AL AR R AL AL ER TR LA AA L]

' ShowDriveType

" Purpose:

' Generates a string describing the drive type of a given Drive object.

' Demonstrates the following

" - Drive.DriveType

L R A T L R A AL AL AR R R AL AL ER TR LA AA L]

Function ShowDriveType(Drive)
Dim S

Select Case Drive.DriveType
Case DriveTypeRemovable
S = "Removable"

Case DriveTypeFixed
S = "Fixed"
Case DriveTypeNetwork
S = "Network"
Case DriveTypeCDROM
S ="CD-ROM"
Case DriveTypeRAMDisk
S = "RAM Disk"
Case Else
S = "Unknown"
End Select

ShowDriveType = S

End Function

L R A T L R R A AL AL AR R AL AL ER TR LA AA T
1

' ShowFileAttr

" Purpose:

' Generates a string describing the attributes of a file or folder.

' Demonstrates the following
' - File.Attributes
' - Folder.Attributes

L R A T L R A AL AL AR R AL AL ER TR LA AA L]

Function ShowFileAttr(File) ' File can be a file or folder

Dim S
Dim Attr

Attr = File.Attributes

If Attr = 0 Then
ShowFileAttr = "Normal"
Exit Function

End If

If Attr And FileAttrDirectory Then S = S & "Directory "

If Attr And FileAttrReadOnly Then S = S & "Read-Only "
If Attr And FileAttrHidden Then S =S & "Hidden "

If Attr And FileAttrSystem Then S =S & "System "

If Attr And FileAttrVolume Then S =S & "Volume "

If Attr And FileAttrArchive Then S =S & "Archive "

If Attr And FileAttrAlias Then S =S & "Alias "

If Attr And FileAttrCompressed Then S = S & "Compressed "

ShowFileAttr =S

End Function

L R A T L R A A AL TR R L AL ER TR LA AA T
1

' GenerateDriveInformation

" Purpose:

' Generates a string describing the current state of the available drives.

' Demonstrates the following
' - FileSystemObject.Drives

' - Iterating the Drives collection
" - Drives.Count

' - Drive.AvailableSpace

' - Drive.DriveLetter

" - Drive.DriveType

" - Drive.FileSystem

' - Drive.FreeSpace

' - Drive.IsReady

' - Drive.Path

" - Drive.SerialNumber

' - Drive.ShareName

' - Drive.TotalSize

' - Drive.VolumeName

R R R T L R A AL AL TR R AL AL ER TR LA AA T

Function GenerateDrivelnformation(FSO)

Dim Drives
Dim Drive
Dim S

Set Drives = FSO.Drives
S = "Number of drives:" & TabStop & Drives.Count & NewLine & NewLine

' Construct 1st line of report.

S =S & String(2, TabStop) & "Drive"

S =S & String(3, TabStop) & "File"

S =S & TabStop & "Total"

S =S & TabStop & "Free"

S =S & TabStop & "Available"

S =S & TabStop & "Serial" & NewLine

' Construct 2nd line of report.
S =S & "Letter"

S =S & TabStop & "Path”

S =S & TabStop & "Type"

S =S & TabStop & "Ready?"
S =S & TabStop & "Name"
S =S & TabStop & "System"
S =S & TabStop & "Space"
S =S & TabStop & "Space"
S =S & TabStop & "Space"
S =S & TabStop & "Number" & NewLine

' Separator line.
S =S & String(105, "-") & NewLine

For Each Drive In Drives

S =S & Drive.DriveLetter

S =S & TabStop & Drive.Path

S =S & TabStop & ShowDriveType(Drive)
S =S & TabStop & Drive.IsReady

If Drive.IsReady Then
If DriveTypeNetwork = Drive.DriveType Then
S =S & TabStop & Drive.ShareName
Else
S =S & TabStop & Drive.VolumeName
End If

S =S & TabStop & Drive.FileSystem
S =S & TabStop & Drive.TotalSize

S =S & TabStop & Drive.FreeSpace
S =S & TabStop & Drive.AvailableSpace
S =S & TabStop & Hex(Drive.SerialNumber)

End If

S =S & NewLine
Next
GenerateDriveInformation = S

End Function

L R A T L A AL AL AR R AL ALER TR LA AA L]
1

' GenerateFileInformation

" Purpose:

' Generates a string describing the current state of a file.

' Demonstrates the following
' - File.Path

' - File.Name

'- File.Type

' - File.DateCreated

' - File.DateLastAccessed

' - File.DateLastModified

' - File.Size

L R T L R AL AL AR R AL ALER TR T A AA L]

Function GenerateFileInformation(File)
Dim S

S = NewLine & "Path:" & TabStop & File.Path

S =S & NewLine & "Name:" & TabStop & File.Name

S =S & NewLine & "Type:" & TabStop & File.Type

S =S & NewLine & "Attribs:" & TabStop & ShowFileAttr(File)

S =S & NewLine & "Created:" & TabStop & File.DateCreated

S =S & NewLine & "Accessed:" & TabStop & File.DateLastAccessed
S =S & NewLine & "Modified:" & TabStop & File.DateLastModified
S =S & NewLine & "Size" & TabStop & File.Size & NewLine

GenerateFileInformation = S

End Function

L R A T L A AL AL R R R AL AL ER TR LA AA T
1

' GenerateFolderInformation

" Purpose:

" Generates a string describing the current state of a folder.

' Demonstrates the following
' - Folder.Path

' - Folder.Name

' - Folder.DateCreated

' - Folder.DateLastAccessed
' - Folder.DateLastModified
' - Folder.Size

L R A T L A AL AL R R R AL AL ER TR LA AA T

Function GenerateFolderInformation(Folder)
Dim S

S = "Path:" & TabStop & Folder.Path

S =S & NewLine & "Name:" & TabStop & Folder.Name

S =S & NewLine & "Attribs:" & TabStop & ShowFileAttr(Folder)

S =S & NewLine & "Created:" & TabStop & Folder.DateCreated

S =S & NewLine & "Accessed:" & TabStop & Folder.DateLastAccessed
S =S & NewLine & "Modified:" & TabStop & Folder.DateLastModified
S =S & NewLine & "Size:" & TabStop & Folder.Size & NewLine

GenerateFolderInformation = S

End Function

L R R T L A AL AL RN R AL AL ER TR LA AA L]
1

' GenerateAllFolderInformation

" Purpose:
" Generates a string describing the current state of a
' folder and all files and subfolders.

' Demonstrates the following
' - Folder.Path
' - Folder.SubFolders

' - Folders.Count

R R T L R R A AL AL R R L AL ER TR LA AA L]

Function GenerateAllFolderInformation(Folder)

Dim S

Dim SubFolders
Dim SubFolder
Dim Files

Dim File

S = "Folder:" & TabStop & Folder.Path & NewLine & NewLine
Set Files = Folder.Files

If 1 = Files.Count Then

S =S & "There is 1 file" & NewLine
Else

S =S & "There are " & Files.Count & " files" & NewLine
End If

If Files.Count <> 0 Then

For Each File In Files
S = S & GenerateFileInformation(File)
Next

End If
Set SubFolders = Folder.SubFolders

If 1 = SubFolders.Count Then

S =S & NewLine & "There is 1 sub folder" & NewLine & NewLine
Else

S =S & NewLine & "There are " & SubFolders.Count & " sub folders" & NewLine & NewLin
End If

If SubFolders.Count <> 0 Then
For Each SubFolder In SubFolders
S = S & GenerateFolderInformation(SubFolder)
Next
S =S & NewLine
For Each SubFolder In SubFolders

S = S & GenerateAllFolderInformation(SubFolder)
Next

End If
GenerateAllFolderInformation = S

End Function

R R A T L R A AL AL AR R AL AL ER TR LA AA L]

' GenerateTestInformation

" Purpose:

' Generates a string describing the current state of the C:\Test
' folder and all files and subfolders.

' Demonstrates the following

' - FileSystemObject.DriveExists
' - FileSystemObject.FolderExists
' - FileSystemObject.GetFolder

L R A T L R R A AL AL TR R R R AL AL ER TR LA AA L]

Function GenerateTestInformation(FSO)

Dim TestFolder
Dim S

If Not FSO.DriveExists(TestDrive) Then Exit Function
If Not FSO.FolderExists(TestFilePath) Then Exit Function

Set TestFolder = FSO.GetFolder(TestFilePath)
GenerateTestInformation = Generate AllFolderInformation(TestFolder)

End Function

L R R T L R AL AL TR RN R AL AL ER AT AT A AA L]

' DeleteTestDirectory

" Purpose:

' Cleans up the test directory.

' Demonstrates the following

' - FileSystemObject.GetFolder
' - FileSystemObject.DeleteFile

' - FileSystemObject.DeleteFolder
' - Folder.Delete
' - File.Delete

L R T L R A AL AL TR R R R AL AL ER TR LA AA L]

Sub DeleteTestDirectory(FSO)

Dim TestFolder
Dim SubFolder
Dim File

' Two ways to delete a file:
FSO.DeleteFile(TestFilePath & "\Beatles\OctopusGarden.txt")

Set File = FSO.GetFile(TestFilePath & "\Beatles\BathroomWindow.txt")
File.Delete

' Two ways to delete a folder:
FSO.DeleteFolder(TestFilePath & "\Beatles")
FSO.DeleteFile(TestFilePath & "\ReadMe.txt")

Set TestFolder = FSO.GetFolder(TestFilePath)
TestFolder.Delete

End Sub

L R R T L R A AL AL AR R AL ALER AT AT A AA L]
1

' CreateLyrics

" Purpose:

' Builds a couple of text files in a folder.
' Demonstrates the following

' - FileSystemObject.CreateTextFile

' - TextStream.WriteLine

' - TextStream.Write

' - TextStream.WriteBlankLines

' - TextStream.Close

R R R T L R A AL AL AR R AL AL ER TR T RAAA L]

Sub CreateLyrics(Folder)
Dim TextStream
Set TextStream = Folder.CreateTextFile("OctopusGarden.txt")

TextStream.Write("Octopus' Garden ") ' Note that this does not add a line feed to the file.
TextStream.WriteLine("(by Ringo Starr)")

TextStream.WriteBlankLines(1)

TextStream.WriteLine("I'd like to be under the sea in an octopus' garden in the shade,")
TextStream.WriteLine("He'd let us in, knows where we've been -- in his octopus' garden in the shads
TextStream.WriteBlankLines(2)

TextStream.Close

Set TextStream = Folder.CreateTextFile("BathroomWindow.txt")

TextStream.WriteLine("She Came In Through The Bathroom Window (by Lennon/McCartney)")
TextStream.WriteLine("")

TextStream.WriteLine("She came in through the bathroom window protected by a silver spoon")
TextStream.WriteLine("But now she sucks her thumb and wanders by the banks of her own lagoon"
TextStream.WriteBlankLines(2)

TextStream.Close

End Sub

L R T L R AL AL TR R R AL AL ER TR LA AA L]

' GetLyrics

" Purpose:

' Displays the contents of the lyrics files.
' Demonstrates the following

' - FileSystemObject.OpenTextFile

' - FileSystemObject.GetFile

' - TextStream.ReadAll

' - TextStream.Close

' - File.OpenAsTextStream

' - TextStream.AtEndOfStream

' - TextStream.ReadLine

L R T L R A AL AL AR R AL AL ER TR T A AA L]

Function GetLyrics(FSO)

Dim TextStream

Dim S
Dim File

' There are several ways to open a text file, and several ways to read the
" data out of a file. Here's two ways to do each:

Set TextStream = FSO.OpenTextFile(TestFilePath & "\Beatles\OctopusGarden.txt", OpenFileForRe.

S = TextStream.ReadAll & NewLine & NewLine
TextStream.Close

Set File = FSO.GetFile(TestFilePath & "\Beatles\BathroomWindow.txt")
Set TextStream = File.OpenAsTextStream(OpenFileForReading)
Do While Not TextStream.AtEndOfStream
S =S & TextStream.ReadLine & NewLine
Loop
TextStream.Close

GetLyrics = S

End Function

L R N T L R A AL AL TR RN R AL AL ER TR LA AA L]

' BuildTestDirectory

" Purpose:

' Builds a directory hierarchy to demonstrate the FileSystemObject.

" We'll build a hierarchy in this order:

' C:\Test

' C:\Test\ReadMe.txt

' C:\Test\Beatles

' C:\Test\Beatles\OctopusGarden.txt

' C:\Test\Beatles\BathroomWindow.txt

' Demonstrates the following

' - FileSystemObject.DriveExists

' - FileSystemObject.FolderExists

' - FileSystemObject.CreateFolder

' - FileSystemObject.CreateTextFile
' - Folders.Add

' - Folder.CreateTextFile

' - TextStream.WriteLine

" - TextStream.Close

L R A T L A AL AL TR RN R AL AL ER TR LA AA L]

Function BuildTestDirectory(FSO)

Dim TestFolder
Dim SubFolders
Dim SubFolder
Dim TextStream

' Bail out if (a) the drive does not exist, or if (b) the directory being built
"already exists.

If Not FSO.DriveExists(TestDrive) Then
BuildTestDirectory = False
Exit Function

End If

If FSO.FolderExists(TestFilePath) Then
BuildTestDirectory = False
Exit Function
End If
Set TestFolder = FSO.CreateFolder(TestFilePath)
Set TextStream = FSO.CreateTextFile(TestFilePath & "\ReadMe.txt")
TextStream.WriteLine("My song lyrics collection™)
TextStream.Close
Set SubFolders = TestFolder.SubFolders
Set SubFolder = SubFolders.Add("Beatles")
CreateLyrics SubFolder

BuildTestDirectory = True

End Function

L R A T L A AL AL TR RN R AL AL ER TR LA AA L]

' The main routine

" First, it creates a test directory, along with some subfolders and files.
' Then, it dumps some information about the available disk drives and
"about the test directory, and then cleans everything up again.

L R A T L R A AL AL AR R AL AL ER TR LA AA L]

Sub Main

Dim FSO

' Set up global data.

TabStop = Chr(9)

NewLine = Chr(10)

Set FSO = CreateObject("Scripting.FileSystemObject")

If Not BuildTestDirectory(FSO) Then
Print "Test directory already exists or cannot be created. Cannot continue."
Exit Sub

End If

Print GenerateDriveInformation(FSO) & NewLine & NewLine

Print GenerateTestInformation(FSO) & NewLine & NewLine

Print GetLyrics(FSO) & NewLine & NewLine

DeleteTestDirectory(FSO)

End Sub

Microsoft® Visual Basic® Scripting Edition

VBScript Features

Language Reference

Category

Keywords

Array handling

Array
Dim, Private, Public, ReDim

IsArray
Erase
LBound, UBound

IAssignrnents

Set

IComments

IComments using ' or Rem

Constants/Literals

Empty

Nothing
Null

True, False

Control flow

Do...L.oop
For...Next

For Each...Next
If...Then...Else
Select Case
While...Wend
With

Abs

Asc, AscB, AscW
Chr, ChrB, ChrtW
CBool, CByte

[CCur, CDate

CDbl, Clnt

CLng, CSng, CStr
DateSerial, DateValue
Hex, Oct

Fix, Int

Sgn

TimeSerial, TimeValue

Dates/Times

Conversions

Date, Time

DateAdd, DateDiff, DatePart
DateSerial, DateValue

Day, Month, MonthName

‘Weekday, WeekdayName, Year

Hour, Minute, Second
Now
TimeSerial, TimeValue

Class
Const

Declarations

Dim, Private, Public, ReDim
Function, Sub
Property Get, Property Let, Property Set

Error Handling

On Error
Err

Expressions

Eval
Execute

RegExp

Replace
Test

Formatting Strings

FormatDateTime
FormatNumber
FormatPercent

Input/Output

InputBox
LoadPicture

MsgBox

Literals

Empty
False

Nothing
Null

|FormatCurrency
|True

Atn, Cos, Sin, Tan

Exp, Log, Sar
Randomize, Rnd

Miscellaneous

Eval Function
Execute Statement
RGB Function

Objects

CreateObject
Err Object
GetObject
RegExp

Operators

Addition (+), Subtraction (-)
Exponentiation (/)

Modulus arithmetic (Mod)
Multiplication (*), Division (/)
Integer Division (\)

Negation (-)

String concatenation (&)
Equality (=), Inequality (<>)
Less Than (<), Less Than or Equal To (<=)
Greater Than (>)

Greater Than or Equal To (>=)
Is

And, Or, Xor

Eqv, Imp

IOptions

IOption Explicit

Call
Function, Sub

Procedures Property Get, Property Let, Property Set

Abs
Int, Fix, Round

Sgn

Rounding

ScriptEngine

ScriptEngineBuild Version
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Script Engine ID

(Chr, ChrB, ChrwW
Filter, InStr, InStrB
InStrRev

Join

Len, LenB

LCase, UCase
Left, LeftB

Mid, MidB

Right, RightB
Replace

Space

Split

StrComp

String

StrReverse

LTrim, RTrim, Trim

IsArray
IsDate

IsEmpty
IsNull
IsNumeric

IsObject
TypeName
VarType

Variants

Strings

Asc, AscB, AscW

Microsoft® Visual Basic® Scripting Edition Visu al
Basic for
Applications Language Reference

Features not in
VBScript

ICategory "Omitted Feature/Keyword
. Option Base
Array Handling Declaring arrays with lower bound <> 0

Add, Count, Item, Remove

Collection Access to collections using ! character (e.g.,
MyCollection!Foo)

Conditional #Const

Compilation #1f...Then.. #Else
GoSub...Return, GoTo

Control Flow On Error GoTo

On...GoSub, On...GoTo
Line numbers, Line labels

|D0Events

Conversion CVar, CVDate
Str, Val
All intrinsic data types except Variant
bata Types Type...End Type
Date/Time Date statement, Time statement
LinkExecute, LinkPoke, LinkRequest,
DDE .
LinkSend

| "Debug.Print

Debugging End, Stop

Declare (for declaring DLLs)
Optional

ParamArray

Static

Declaration

Erl
Error Handling |[Error
Resume, Resume Next

|File Input/Output "All traditional Basic file I/O

|Financia1 |A11 financial functions

Object
Manipulation TypeOt
. Clipboard
|ObJ ects Collection
Operators Like
Deftype
Options Option Base

Option Compare
Option Private Module

comparison operators
Select Case P p

the To keyword.

Expressions containing Is keyword or any

Expressions containing a range of values using

Fixed-length strings
LSet, RSet

Mid Statement
StrConv

Strings

Using Objects Collection access using !

Microsoft® Visual Basic® Scripting Edition

VBScript Features
not in Visual Basic
for Applications

Language Reference

|Category "Feature/Keyword
|Declarations "Class
Miscellaneous Eval

Execute
IObjects "RegEXp

ScriptEngine
Script Engine ScriptEngineBuild Version
Identification ScriptEngineMajorVersion

criptEngineMinorVersion

E

Microsoft® Visual Basic® Scripting Edition

Microsoft

Scripting

Run-Time Library
Reference

Features

Language Reference

|Category "

Feature/Keyword

Collections

IData Storage

Dictionary

Exists

[tems, Keys
Remove, RemoveAll
Count

[tem, Key
Drive
File

FileSystemObject
Folder

TextStream

BuildPath

CopyFile, CopyFolder
CreateFolder,CreateTextFile

DeleteFile,DeleteFolder

DriveExists, FileExists, FolderExists
GetAbsolutePathName, GetBaseName

File System ||

FileSystemObject [GetDrive, GetDriveName
GetFile, GetExtensionName GetFileName
GetFolder, GetParentFolderName
GetSpecialFolder
GetTempName
MoveFile, MoveFolder
OpenTextFile
Drives

AvailableSpace
Count

DrivelL etter

DriveType
FileSystem

FreeSpace
Drive, Drives IsReady

Item
RootFolder
SerialNumber
ShareName
TotalSize
VolumeName

Add

Attributes

Copy, Delete, Move
Count
OpenAsTextStream
DateCreated, Datel.astAccessed,
Datel.astModified
Drive

Item

ParentFolder

Name, Path
ShortName, ShortPath
Size

File, Files
Folder, Folders

Close
Read, ReadAll, ReadLine

TextStream Skip, SkipLine
Write, WriteBlankI ines, Writel.ine
AtEndOfLine, AtEndOfStream

Column, Line

Microsoft® Visual Basic® Scripting Edition Ab S Lan uage REference

Version 1
Function

See Also

Description
Returns the absolute value of a number.
Syntax

Abs(number)

The number argument can be any valid numeric expression. If number
contains Null, Null is returned; if it is an uninitialized variable, zero is

returned.
Remarks

The absolute value of a number is its unsigned magnitude. For example,
Abs(-1) and Abs(1) both return 1.

The following example uses the Abs function to compute the absolute value
of a number:

Dim MyNumber
MyNumber = Abs(50.3) ' Returns 50.3.
MyNumber = Abs(-50.3) ' Returns 50.3.

+ Scripting Run-Time Reference
Version 1

Microsoft® Visual Basic® Scripting Edition

Operator

See Also

Description
Sums two numbers.
Syntax

result = expressionl + expression2

The + operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

Although you can also use the + operator to concatenate two character
strings, you should use the & operator for concatenation to eliminate
ambiguity and provide self-documenting code.

When you use the + operator, you may not be able to determine whether addition or string
concatenation will occur.

The underlying subtype of the expressions determines the behavior of the + operator in the following

way:
IIf "Then |
|B0th expressions are numeric ||Add. |
IBoth expressions are strings "Concatenate.l

| ||Add.

||One expression is numeric and the other is a string " "

If one or both expressions are Null expressions, result is Null. If both expressions are Empty, result

is an Integer subtype. However, if only one expression is Empty, the other expression is returned
unchanged as result.

Microsoft® Visual Basic® Scripting Edition And Lan uage REference

Version 1
Operator

See Also

Description

Performs a logical conjunction on two expressions.

Syntax

result = expression1 And expression2

The And operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

If, and only if, both expressions evaluate to True, result is True. If either
expression evaluates to False, result is False. The following table illustrates
how result is determined:

IIf expressionl is

| || |
|True ||True "True |
True False False
True OM 0Null {
False True False
False }False }False
False "Null "False

I I

[Null | True |Nun |
|Null "False "False |
[Nul [Nun [Nun |

The And operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

|If bit in expressionl is "And bit in expression2 is "The result is

|
o lo lo |
o I lo |
[lo lo |
i I I |

Microsoft® Visual Basic® Scripting Edition Ar r a.y @g&%rence
. Version 2
Function

See Also

Description
Returns a Variant containing an array.
Syntax

Array(arglist)

The required arglist argument is a comma-delimited list of values that are
assigned to the elements of an array contained with the Variant. If no
arguments are specified, an array of zero length is created.

Remarks

The notation used to refer to an element of an array consists of the variable
name followed by parentheses containing an index number indicating the
desired element. In the following example, the first statement creates a
variable named A. The second statement assigns an array to variable A. The
last statement assigns the value contained in the second array element to

another variable.
Dim A
A = Array(10,20,30)
B =A(2) 'B is now 30.

NoteVersion Version A variable that is not declared as an array
can still contain an array. Although a Variant variable
containing an array is conceptually different from an array
variable containing Variant elements, the array elements are
accessed in the same way.

Microsoft® Visual Basic® Scripting Edition ASC Lan uage Reference

Version 1
Function

See Also

Description
Returns the ANSI character code corresponding to the first letter in a string.
Syntax

Asc(string)

The string argument is any valid string expression. If the string contains no
characters, a run-time error occurs.

Remarks

In the following example, Asc returns the ANSI character code of the first
letter of each string:

Dim MyNumber

MyNumber = Asc("A") ' Returns 65.
MyNumber = Asc("a") ' Returns 97.
MyNumber = Asc("Apple") ' Returns 65.

Note The AscB function is used with byte data contained in a
string. Instead of returning the character code for the first
character, AscB returns the first byte. AscW is provided for 32-

bit platforms that use Unicode characters. It returns the Unicode
(wide) character code, thereby avoiding the conversion from
Unicode to ANSI.

— Language Reference

Microsoft® Visual Basic® Scripting Edition
Version 1

Operator

See Also

Description
Assigns a value to a variable or property.
Syntax

variable = value

The = operator syntax has these parts:

Part Description
variable||Any variable or any writable property.
value [JAny numeric or string literal, constant, or expression.

Remarks

The name on the left side of the equal sign can be a simple scalar variable
or an element of an array. Properties on the left side of the equal sign can
only be those properties that are writable at run time.

Microsoft® Visual Basic® Scripting Edition Atn Lan uage Reference

Version 1
Function

See Also

Description
Returns the arctangent of a number.
Syntax

Atn(number)

The number argument can be any valid numeric expression.
Remarks

The Atn function takes the ratio of two sides of a right triangle (number)
and returns the corresponding angle in radians. The ratio is the length of the
side opposite the angle divided by the length of the side adjacent to the
angle. The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert
radians to degrees, multiply radians by 180/pi.

The following example uses Atn to calculate the value of pi:

Dim pi
pi =4 * Atn(1) ' Calculate the value of pi.

Note Atn is the inverse trigonometric function of Tan, which

takes an angle as its argument and returns the ratio of two sides
of a right triangle. Do not confuse Atn with the cotangent, which
is the simple inverse of a tangent (1/tangent).

Microsoft® Visual Basic® Scripting Edition C all Language Reference
Version 1
Statement

Description

Transfers control to a Sub or Function procedure.

Syntax

[Call] name [argumentlist]

The Call statement syntax has these parts:

IPartl Description

Optional keyword. If specified, you must enclose

argumentlist in parentheses. For example:
Call

Call MyProc(0)

name Required. Name of the procedure to call. argumentlist Optional. Comma-
delimited list of variables, arrays, or expressions to pass to the procedure.

Remarks

You are not required to use the Call keyword when calling a procedure.
However, if you use the Call keyword to call a procedure that requires
arguments, argumentlist must be enclosed in parentheses. If you omit the
Call keyword, you also must omit the parentheses around argumentlist. If
you use either Call syntax to call any intrinsic or user-defined function, the
function's return value is discarded.

Call MyFunction("Hello World")

Function MyFunction(text)
MsgBox text
End Function

Microsoft® Visual Basic® Scripting Edition C B 0 Ol @gﬁg%rence
o Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Boolean.

Syntax

CBool(expression)

The expression argument is any valid expression.

Remarks

If expression is zero, False is returned; otherwise, True is returned. If
expression can't be interpreted as a numeric value, a run-time error occurs.

The following example uses the CBool function to convert an expression to a Boolean. If the
expression evaluates to a nonzero value, CBool returns True; otherwise, it returns False.

Dim A, B, Check

A=5:B=5 ' Initialize variables.

Check = CBool(A =B) 'Check contains True.
A=0 ' Define variable.

Check = CBool(A) ' Check contains False.

Microsoft® Visual Basic® Scripting Edition C Byte _g_g—]—‘ danguage Reference

Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Byte.

Syntax

CByte(expression)

The expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use
CByte to force byte arithmetic in cases where currency, single-precision,
double-precision, or integer arithmetic normally would occur.

Use the CByte function to provide internationally aware conversions from any other data type to a
Byte subtype. For example, different decimal separators are properly recognized depending on the

locale setting of your system, as are different thousand separators.

If expression lies outside the acceptable range for the Byte subtype, an error occurs. The following
example uses the CByte function to convert an expression to a byte:

Dim MyDouble, MyByte
MyDouble = 125.5678 ' MyDouble is a Doub
MyByte = CByte(MyDouble) 'MyByte contains

Microsoft® Visual Basic® Scripting Edition C C ur @g&%rence
. Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Currency.

Syntax

CCur(expression)

The expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use
CCur to force currency arithmetic in cases where integer arithmetic
normally would occur.

You should use the CCur function to provide internationally aware conversions from any other data

type to a Currency subtype. For example, different decimal separators and thousands separators are
properly recognized depending on the locale setting of your system.

The following example uses the CCur function to convert an expression to a Currency:

Dim MyDouble, MyCurr

MyDouble = 543.214588 ' MyDouble is a Dc

MyCurr = CCur(MyDouble * 2) ' Convert result
' to a Currency (1086.4292).

Microsoft® Visual Basic® Scripting Edition C D ate @g&%rence
. Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Date.

Syntax

CDate(date)

The date argument is any valid date expression.
Remarks

Use the IsDate function to determine if date can be converted to a date or
time. CDate recognizes date literals and time literals as well as some
numbers that fall within the range of acceptable dates. When converting a
number to a date, the whole number portion is converted to a date. Any
fractional part of the number is converted to a time of day, starting at
midnight.

CDate recognizes date formats according to the locale setting of your
system. The correct order of day, month, and year may not be determined if
it is provided in a format other than one of the recognized date settings. In
addition, a long date format is not recognized if it also contains the day-of-
the-week string.

The following example uses the CDate function to convert a string to a

date. In general, hard coding dates and times as strings (as shown in this
example) is not recommended. Use date and time literals (such as
#10/19/1962#, #4:45:23 PM#) instead.

MyDate = "October 19, 1962" ' Define date.
MyShortDate = CDate(MyDate) ' Convert to Dat
MyTime = "4:35:47 PM" ' Define time.

MyShortTime = CDate(MyTime) ' Convert to Dat

Microsoft® Visual Basic® Scripting Edition C D bl @gﬁg%rence
. Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Double.

Syntax

CDbl(expression)

The expression argument is any valid expression.
Remarks

In general, you can document your code using the subtype conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use
CDDbl or CSng to force double-precision or single-precision arithmetic in
cases where currency or integer arithmetic normally would occur.

Use the CDbl function to provide internationally aware conversions from
any other data type to a Double subtype. For example, different decimal
separators and thousands separators are properly recognized depending on
the locale setting of your system.

This example uses the CDbl function to convert an expression to a Double.

Dim MyCurr, MyDouble

MyCurr = CCur(234.456784) ' MyCurr is
MyDouble = CDbl(MyCurr * 8.2 * 0.01) ' Conve

Microsoft® Visual Basic® Scripting Edition C hr Lan uage REference

Version 1
Function

See Also

Description
Returns the character associated with the specified ANSI character code.
Syntax

Chr(charcode)

The charcode argument is a number that identifies a character.
Remarks

Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes.
For example, Chr(10) returns a linefeed character.

The following example uses the Chr function to return the character
associated with the specified character code:

Dim MyChar

MyChar = Chr(65) 'Returns A.
MyChar = Chr(97) 'Returns a.

MyChar = Chr(62) 'Returns >.

MyChar = Chr(37) 'Returns %.

Note The ChrB function is used with byte data contained in a
string. Instead of returning a character, which may be one or two
bytes, ChrB always returns a single byte. ChrW is provided for
32-bit platforms that use Unicode characters. Its argument is a
Unicode (wide) character code, thereby avoiding the conversion
from ANSI to Unicode.

Microsoft® Visual Basic® Scripting Edition C Int _g_g_L anguage REference

Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Integer.

Syntax

ClInt(expression)

The expression argument is any valid expression.
Remarks

In general, you can document your code using the subtype conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use CInt
or CLng to force integer arithmetic in cases where currency, single-
precision, or double-precision arithmetic normally would occur.

Use the CInt function to provide internationally aware conversions from
any other data type to an Integer subtype. For example, different decimal
separators are properly recognized depending on the locale setting of your
system, as are different thousand separators.

If expression lies outside the acceptable range for the Integer subtype, an
error OCcurs.

The following example uses the CInt function to convert a value to an

Integer:

Dim MyDouble, MyInt
MyDouble = 2345.5678 ' MyDouble is a Doubl
Mylnt = CInt(MyDouble) 'Mylnt contains 2346.

Note ClInt differs from the Fix and Int functions, which
truncate, rather than round, the fractional part of a number.
When the fractional part is exactly 0.5, the CInt function always
rounds it to the nearest even number. For example, 0.5 rounds to
0, and 1.5 rounds to 2.

Microsoft® Visual Basic® Scripting Edition C lass Language REference

. Version 5
Object

See Also Events

Description

The object created using the Class statement. Provides access to
the events of the class.

Remarks

You cannot explicitly declare a variable to be of type Class. In
the VBScript context, the term "class object" refers to any object
defined using the VBScript Class statement.

Once you have created a class definition using the Class
statement, you can create an instance of the class using the
following form:

Dim X
Set X = New classname

Because VBScript is a late-bound language, you cannot do any of
the following:

Dim X as New classname
or

Dim X

X = New classname
or

Set X = New Scripting.FileSystemObject

Microsoft® Visual Basic® Scripting Edition C las S Language Reference
Version 5
Statement

See Also

Description

Declares the name of a class, as well as a definition of the
variables, properties, and methods that comprise the class.

Syntax

Class name
statements
End Class

The Class statement syntax has these parts:

IPart "Description |

Iname "Required. Name of the Class; follows standard variable naming conventions. |

Required. One or more statements that define the variables, properties, and methods of

statements
the Class.

Remarks

Within a Class block, members are declared as either Private or
Public using the appropriate declaration statements. Anything
declared as Private is visible only within the Class block.
Anything declared as Public is visible within the Class block, as
well as by code outside the Class block. Anything not explicitly
declared as either Private or Public is Public by default.

Procedures (either Sub or Function) declared Public within the
class block become methods of the class. Public variables serve
as properties of the class, as do properties explicitly declared
using Property Get, Property Let, and Property Set. Default
properties and methods for the class are specified in their
declarations using the Default keyword. See the individual
declaration statement topics for information on how this keyword
is used.

Microsoft® Visual Basic® Scripting Edition C le ar _g_g_LaD uage REference

Version 1
Method

See Also Applies to

Description
Clears all property settings of the Err object.

Syntax

object.Clear

The object is always the Err object.

Remarks

Use Clear to explicitly clear the Err object after an error has been handled.
This is necessary, for example, when you use deferred error handling with
On Error Resume Next. VBScript calls the Clear method automatically
whenever any of the following statements is executed:

e On Error Resume Next
¢ Exit Sub

e Exit Function

The following example illustrates use of the Clear method:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear 'Clear the error.

Microsoft® Visual Basic® Scripting Edition C L ng @gﬁg%rence
. Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Long.

Syntax

CLng(expression)

The expression argument is any valid expression.
Remarks

In general, you can document your code using the subtype conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use CInt
or CLng to force integer arithmetic in cases where currency, single-
precision, or double-precision arithmetic normally would occur.

Use the CLng function to provide internationally aware conversions from
any other data type to a Long subtype. For example, different decimal
separators are properly recognized depending on the locale setting of your
system, as are different thousand separators.

If expression lies outside the acceptable range for the Long subtype, an
error OCcurs.

The following example uses the CLng function to convert a value to a

Long:

Dim MyVall, MyVal2, MyLong1, MyLong2

MyVall = 25427.45: MyVal2 = 25427.55 ' MyV.
MyLongl = CLng(MyVall) ' MyLong1
MyLong2 = CL.ng(MyVal2) ' MyLong?2

Note CLng differs from the Fix and Int functions, which
truncate, rather than round, the fractional part of a number.
When the fractional part is exactly 0.5, the CLng function
always rounds it to the nearest even number. For example, 0.5
rounds to 0, and 1.5 rounds to 2.

Microsoft® Visual Basic® Scripting Edition

Comparison Language Relerence
Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values
shown for each.

IConstant "Value"Description |
|VbBinaryCompare|| 0 "Perform a binary comparison. |
[1

"Perform a textual comparison. |

|VbTextC ompare

Microsoft® Visual Basic® Scripting Edition & _g_gLan uage REference

Version 1
Operator

See Also

Description
Forces string concatenation of two expressions.
Syntax

result = expression1 & expression2

The & operator syntax has these parts:

Part Description

result Any variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

Whenever an expression is not a string, it is converted to a String subtype.
If both expressions are Null, result is also Null. However, if only one
expression is Null, that expression is treated as a zero-length string ("")
when concatenated with the other expression. Any expression that is
Empty is also treated as a zero-length string.

Microsoft® Visual Basic® Scripting Edition C 0 nSt Language Reference
Version 2
Statement

See Also

Description
Declares constants for use in place of literal values.
Syntax

[Public | Private] Const constname = expression

The Const statement syntax has these parts:

Part Description

Optional. Keyword used at script level to declare
Public constants that are available to all procedures in all
scripts. Not allowed in procedures.

Optional. Keyword used at script level to declare
constants that are available only within the script

Private L. ;
where the declaration is made. Not allowed in
procedures.

Required. Name of the constant; follows standard
constname k))
variable naming conventions.

Required. Literal or other constant, or any
expressionflcombination that includes all arithmetic or logical
operators except Is.

Remarks

Constants are public by default. Within procedures, constants are always
private; their visibility can't be changed. Within a script, the default
visibility of a script-level constant can be changed using the Private

keyword.

To combine several constant declarations on the same line, separate each constant assignment with a
comma. When constant declarations are combined in this way, the Public or Private keyword, if
used, applies to all of them.

You can't use variables, user-defined functions, or intrinsic VBScript functions (such as Chr) in
constant declarations. By definition, they can't be constants. You also can't create a constant from any
expression that involves an operator, that is, only simple constants are allowed. Constants declared in
a Sub or Function procedure are local to that procedure. A constant declared outside a procedure is
defined throughout the script in which it is declared. You can use constants anywhere you can use an
expression. The following code illustrates the use of the Const statement:

Const MyVar = 459 ' Cons
Private Const MyString = "HELP" ' Decl
Const MyStr = "Hello", MyNumber = 3.4567 '

Note Constants can make your scripts self-documenting and
easy to modify. Unlike variables, constants can't be inadvertently
changed while your script is running.

Microsoft® Visual Basic® Scripting Edition C OS Lan uage REference

Version 1
Function

See Also

Description
Returns the cosine of an angle.

Syntax

Cos(number)

The number argument can be any valid numeric expression that expresses an angle in radians.

Remarks

The Cos function takes an angle and returns the ratio of two sides of a right
triangle. The ratio is the length of the side adjacent to the angle divided by
the length of the hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

The following example uses the Cos function to return the cosine of an angle:

Dim MyAngle, MySecant
MyAngle = 1.3 ' Define angle in radians.
MySecant = 1/ Cos(MyAngle) ' Calculate secant.

Microsoft® Visual Basic® Scripting Edition

CreateObject Language Reference
Function

See Also

Description

Creates and returns a reference to an Automation object.

Syntax

CreateObject(servername.typename [, location])

The CreateObject function syntax has these parts:

IPart Description |
Required. The name of the application providing the
servername object

|lypename Required.The type or class of the object to create. |

Optional. The name of the network server where the
location [object is to be created. This feature is available in
version 5.1 or later.

Remarks

Automation servers provide at least one type of object. For example, a
word-processing application may provide an application object, a document
object, and a toolbar object.

To create an Automation object, assign the object returned by CreateObject to an object variable:

Dim ExcelSheet
Set ExcelSheet = CreateObject("Excel.Sheet")

This code starts the application that creates the object (in this case, a
Microsoft Excel spreadsheet). Once an object is created, refer to it in code
using the object variable you defined. As shown in the following example,
you can access properties and methods of the new object using the object
variable, ExcelSheet, and other Excel objects, including the Application
object and the ActiveSheet.Cells collection:

' Make Excel visible through the Application objec
ExcelSheet.Application.Visible = True

' Place some text in the first cell of the sheet.
ExcelSheet.ActiveSheet.Cells(1,1).Value = "This it
' Save the sheet.

ExcelSheet.SaveAs "C:\DOCS\TEST.XLS"

' Close Excel with the Quit method on the Applicat
ExcelSheet. Application.Quit

' Release the object variable.

Set ExcelSheet = Nothing

Creating an object on a remote server can only be accomplished when
Internet security is turned off. You can create an object on a remote
networked computer by passing the name of the computer to the
servername argument of CreateObject. That name is the same as the
machine name portion of a sharename. For a network share named
"\\myserver\public", the servername is "myserver". In addition, you can
specify servername using DNS format or an IP address.

The following code returns the version number of an instance of Excel running on a remote network
computer named "myserver":

Function GetVersion
Dim XLApp

Set XLApp = CreateObject("Excel. Application",

GetVersion = XLApp.Version
End Function

An error occurs if the specified remote server does not exist or cannot be
found.

Microsoft® Visual Basic® Scripting Edition C S ng @gﬁg%rence
. Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
Single.

Syntax

CSng(expression)

The expression argument is any valid expression.
Remarks

In general, you can document your code using the data type conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use
CDDbl or CSng to force double-precision or single-precision arithmetic in
cases where currency or integer arithmetic normally would occur.

Use the CSng function to provide internationally aware conversions from
any other data type to a Single subtype. For example, different decimal
separators are properly recognized depending on the locale setting of your
system, as are different thousand separators.

If expression lies outside the acceptable range for the Single subtype, an
error OCcurs.

The following example uses the CSng function to convert a value to a

Single:

Dim MyDoublel, MyDouble2, MySinglel, MySin
MyDoublel = 75.3421115: MyDouble2 = 75.3421.
MySinglel = CSng(MyDoublel) '
MySingle2 = CSng(MyDouble2) '

Microsoft® Visual Basic® Scripting Edition C Str _g_g_L anguage Reference

Version 1
Function

See Also

Description

Returns an expression that has been converted to a Variant of subtype
String.

Syntax

CStr(expression)

The expression argument is any valid expression.
Remarks

In general, you can document your code using the data type conversion
functions to show that the result of some operation should be expressed as a
particular data type rather than the default data type. For example, use CStr
to force the result to be expressed as a String.

You should use the CStr function instead of Str to provide internationally
aware conversions from any other data type to a String subtype. For
example, different decimal separators are properly recognized depending on
the locale setting of your system.

The data in expression determines what is returned according to the
following table:

[|

expression
is

CStr returns ‘

IBoolean "A String containing True or False.

Date A String containing a date in the short-date format
of your system.

|Null "A run-time error. |
|Empty "A zero-length String (""). |

A String containing the word Error followed by the
Error
error number.
Other . .
: “A String containing the number. ‘
numeric

The following example uses the CStr function to convert a numeric value
to a String:

Dim MyDouble, MyString
MyDouble = 437.324 ' MyDouble is a Double
MyString = CStr(MyDouble) ' MyString contains

Microsoft® Visual Basic® Scripting Edition D ate
. Language Reference
and Time Version 2

Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values
shown for each.

|Constant "Value"Description |
|VbSunday " 1 "Sunday |
IVbMonday " 2 "Monday |
IVlelesday " 3 "Tuesday |
|VbWednesday " 4 "Wednesday |
|VbThursday " 5 |Thursday |
|VbFriday " 6 [[Friday |
IVbSaturday " 7 |Saturday |
Use the date format contained
vbUseSystem “ 0 [fin the regional settings for

||

||

“your computer.

||Use the day of the week

specified in your system
settings for the first day of the
week.

vbUseSystemDayOfWeek| 0

Use the week in which

year.

vbFirstJani 1 January 1 occurs (default).
Use the first week that has at
vbFirstFourDays 2 |fleast four days in the new
]

Use the first full week of the

vbFirstFull Week “ 3
year.

Microsoft® Visual Basic® Scripting Edition D ate _g_g—L danguage Reference

Version 2
Format Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values
shown for each.

Constant "Value Description

Display a date and/or time. For real
numbers, display a date and time. If
there is no fractional part, display only a
date. If there is no integer part, display
time only. Date and time display is
determined by your system settings.

vbGeneralDate| O

Display a date using the long date
vbLongDate 1 [format specified in your computer's
regional settings.

Display a date using the short date
vbShortDate 2 |[format specified in your computer's
regional settings.

Display a time using the long time
vbLongTime 3 |[format specified in your computer's
regional settings.

Display a time using the short time
vbShortTime 4 [format specified in your computer's
regional settings.

Microsoft® Visual Basic® Scripting Edition D ate _g_g—Lan uage REference

Version 1
Function

See Also

Description
Returns the current system date.

Syntax

Date
Remarks

The following example uses the Date function to return the current system
date:

Dim MyDate
MyDate = Date ' MyDate contains the current system date.

Microsoft® Visual Basic® Scripting Edition L an gu a g e R ef erence

DateAdd Function Version 2

See Also

Description
Returns a date to which a specified time interval has been added.
Syntax

DateAdd(interval, number, date)

The DateAdd function syntax has these parts:

|Part "Description |

Required. String expression that is the interval you want
to add. See Settings section for values.

Required. Numeric expression that is the number of
interval you want to add. The numeric expression can
either be positive, for dates in the future, or negative,
for dates in the past.

Required. Variant or literal representing the date to ‘

interval

number

date which interval is added.

Settings

The interval argument can have the following values:

Setting ([[Description {

Lyyy Year

|q "Quarter |

Im "Month |

Iy "Day of year |
P |

|d

Iw ||Weekday |

|ww "Week of year |

|h "Hour |

|n "Minute |

|s "Second |
Remarks

You can use the DateAdd function to add or subtract a specified time
interval from a date. For example, you can use DateAdd to calculate a date
30 days from today or a time 45 minutes from now. To add days to date,
you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one month to
January 31:

NewDate = DateAdd("m", 1, "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-
96, it returns 29-Feb-96 because 1996 is a leap year.

If the calculated date would precede the year 100, an error occurs.

If number isn't a Long value, it is rounded to the nearest whole number before being evaluated.

Microsoft® Visual Basic® S.cripting Edition . w
DateDiff Function Version 2

See Also

Description
Returns the number of intervals between two dates.

Syntax

DateDiff(interval, datel, date? [,firstdayofweek|, firstweekofyear]])

The DateDiff function syntax has these parts:

|Part "Description
Required. String expression that is the interval
. you want to use to calculate the differences
interval . :
between datel and date2. See Settings section

for values.

Required. Date expressions. Two dates you want
to use in the calculation.

Optional. Constant that specifies the day of the
firstdayofweek |week. If not specified, Sunday is assumed. See
Settings section for values.

Optional. Constant that specifies the first week
of the year. If not specified, the first week is
assumed to be the week in which January 1
occurs. See Settings section for values.

datel, date2

firstweekofyear

Settings

The interval argument can have the following values:

Setting
Yy

Description

Year

Iq ||Quarter |
|m "Month |
Iy "Day of year |
i Ipay |
|w "Weekday |
|ww "Week of year |
|h "Hour |
|n "Minute |
|s "Second |

The firstdayofweek argument can have the following values:

|Constant |Value |Description |
vbUseSystem || 0 X;el I;itigrgl.ell Language Support (NLS) ‘
IVbSunday " 1 "Sunday (default) |
IVbMonday " 2 "Monday |
|Vlelesday " 3 "Tuesday |
|VbWednesday|| 4 "Wednesday |
vbThursday 5 [[Thursday

vbFriday 6 [|[Friday

IVbSaturday | 7 | Saturday |

The firstweekofyear argument can have the following values:

|Constant "Value"Description

Use National Language Support
(NLS) API setting.

Start with the week in which January 1
occurs (default).

Start with the week that has at least
four days in the new year.

Start with the first full weekof the new

vbUseSystem “ 0

vbFirstJanl 1

vbFirstFourDays| 2

vbFirstFullWeek|| 3

year. M

Remarks

You can use the DateDiff function to determine how many specified time
intervals exist between two dates. For example, you might use DateDiff to
calculate the number of days between two dates, or the number of weeks
between today and the end of the year.

To calculate the number of days between datel and date2, you can use either Day of year ("y") or
Day ("d"). When interval is Weekday ("w"), DateDiff returns the number of weeks between the two
dates. If datel falls on a Monday, DateDiff counts the number of Mondays until date2. It counts
date2 but not datel. If interval is Week ("ww"), however, the DateDiff function returns the number
of calendar weeks between the two dates. It counts the number of Sundays between datel and date2.
DateDiff counts date? if it falls on a Sunday; but it doesn't count datel, even if it does fall on a
Sunday.

If datel refers to a later point in time than date2, the DateDiff function returns a negative number.
The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If datel or date2 is a date literal, the specified year becomes a permanent part of that date. However,
if datel or date? is enclosed in quotation marks (" ") and you omit the year, the current year is
inserted in your code each time the datel or date2 expression is evaluated. This makes it possible to
write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year
("yyyy") returns 1 even though only a day has elapsed.

The following example uses the DateDiff function to display the number of days between a given
date and today:

Function Diff ADate(theDate)
DiffADate = "Days from today: " & DateDiff("d", Now, theDate
End Function

Microsoft® Visual Basic® Scripting Edition . w
DatePart Function Version 2

See Also

Description
Returns the specified part of a given date.

Syntax

DatePart(interval, datel, firstdayofweek|, firstweekofyear]])

The DatePart function syntax has these parts:

|Part "Description |

Required. String expression that is the interval
interval of time you want to return. See Settings section
for values.
|date "Required. Date expression you want to evaluate.

Optional. Constant that specifies the day of the
firstdayof week|week. If not specified, Sunday is assumed. See

Settings section for values.

Optional. Constant that specifies the first week

firstweekofyear of the year. If not specified, the first week is
assumed to be the week in which January 1

occurs. See Settings section for values.

Settings

The interval argument can have the following values:

Setting ([[Description
yyy Year
Quarter

’q

Im "Month |
ly "Day of year |
i oo |
|w "Weekday |
|ww "Week of year |
|h "Hour |
|n "Minute |
|s "Second |

The firstdayofweek argument can have the following values:

|Constant "Value"Description |
vbUseSystem || 0 X;el I;itigrgl.ell Language Support (NLS)
vbSunday 1 [|Sunday (default)

IVbMonday " 2 "Monday |
IVlelesday " 3 "Tuesday |
|VbWednesday|| 4 "Wednesday |
|VbThursday " 5 "Thursday |
vbFriday 6 [|[Friday

vbSaturday 7 |Saturday

The firstweekofyear argument can have the following values:

IConstant "Value"Description |
Use National Language Support
vbUseSystem “ O l(NLS) API setting,
VbFirstJanl Start with the week in which January 1
occurs (default).
VbFirstFourDavsll 2 Start with the week that has at least
y four days in the new year.
VbFirstFullweekl 3 ;zlrrt with the first full weekof the new

Remarks

You can use the DatePart function to evaluate a date and return a specific
interval of time. For example, you might use DatePart to calculate the day
of the week or the current hour.

The firstdayofweek argument affects calculations that use the "w" and "ww"
interval symbols.

If date is a date literal, the specified year becomes a permanent part of that
date. However, if date is enclosed in quotation marks (" "), and you omit
the year, the current year is inserted in your code each time the date
expression is evaluated. This makes it possible to write code that can be
used in different years.

This example takes a date and, using the DatePart function, displays the
quarter of the year in which it occurs.

Function GetQuarter(TheDate)
GetQuarter = DatePart("q", TheDate)
End Function

Microsoft® Visual Basic® Scripting Edition

DateSerial Language Relerence
Function

See Also

Description
Returns a Variant of subtype Date for a specified year, month, and day.
Syntax

DateSerial(year, month, day)

The DateSerial function syntax has these arguments:

|Part "Description |
Number between 100 and 9999, inclusive, or a numeric

ear .
expression.
Imonth"Any numeric expression.

Iday "Any numeric expression.

Remarks

To specify a date, such as December 31, 1991, the range of numbers for
each DateSerial argument should be in the accepted range for the unit; that
is, 1-31 for days and 1-12 for months. However, you can also specify
relative dates for each argument using any numeric expression that
represents some number of days, months, or years before or after a certain
date.

The following example uses numeric expressions instead of absolute date

numbers. Here the DateSerial function returns a date that is the day before
the first day (1 — 1) of two months before August (8 — 2) of 10 years before
1990 (1990 — 10); in other words, May 31, 1980.

Dim MyDatel, MyDate2
MyDatel = DateSerial(1970, 1, 1) ' Retu
MyDate2 = DateSerial(1990 - 10,8-2,1-1) !

For the year argument, values between 0 and 99, inclusive, are interpreted
as the years 1900-1999. For all other year arguments, use a complete four-
digit year (for example, 1800).

When any argument exceeds the accepted range for that argument, it
increments to the next larger unit as appropriate. For example, if you
specify 35 days, it is evaluated as one month and some number of days,
depending on where in the year it is applied. However, if any single
argument is outside the range -32,768 to 32,767, or if the date specified by
the three arguments, either directly or by expression, falls outside the
acceptable range of dates, an error occurs.

Microsoft® Visual Basic® Scripting Edition

DateValue Language Reference
Function

See Also

Description

Returns a Variant of subtype Date.

Syntax

DateValue(date)

The date argument is normally a string expression representing a date from January 1, 100 through
December 31, 9999. However, date can also be any expression that can represent a date, a time, or
both a date and time, in that range.

Remarks

If the date argument includes time information, DateValue doesn't return it.
However, if date includes invalid time information (such as "89:98"), an
€Iror occurs.

If date is a string that includes only numbers separated by valid date separators, DateValue
recognizes the order for month, day, and year according to the short date format you specified for
your system. DateValue also recognizes unambiguous dates that contain month names, either in long

or abbreviated form. For example, in addition to recognizing 12/30/1991 and 12/30/91, DateValue
also recognizes December 30, 1991 and Dec 30, 1991.

If the year part of date is omitted, DateValue uses the current year from your computer's system date.

The following example uses the DateValue function to convert a string to a date. You can also use
date literals to directly assign a date to a Variant variable, for example, MyDate = #9/11/63#.

Dim MyDate
MyDate = DateValue("September 11, 1963") 'Re

Microsoft® Visual Basic® Scripting Edition D a.y Lan uage REference

Version 1
Function

See Also

Description

Returns a whole number between 1 and 31, inclusive, representing the day
of the month.

Syntax

Day(date)

The date argument is any expression that can represent a date. If date contains Null, Null is returned.

The following example uses the Day function to obtain the day of the month from a specified date:

Dim MyDay
MyDay = Day("October 19, 1962") ' MyDay cont:

Microsoft® Visual Basic® Scripting Edition

Description Language Relerence
Property

See Also Applies to

Description
Returns or sets a descriptive string associated with an error.
Syntax

object.Description [= stringexpression]

The Description property syntax has these parts:

IPart Description |
|object Always the Err object. |
: . _llA string expression containing a description of
stringexpression
the error.
Remarks

The Description property consists of a short description of the error. Use
this property to alert the user to an error that you can't or don't want to
handle. When generating a user-defined error, assign a short description of
your error to this property. If Description isn't filled in, and the value of
Number corresponds to a VBScript run-time error, the descriptive string
associated with the error is returned.

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear 'Clear the error.

[
Microsoft® Visual Basic® Scripting Edition D lm @gﬁg%reﬂce
Version 1
Statement

See Also

Description
Declares variables and allocates storage space.
Syntax

Dim varname[([subscripts])]1[, varname[([subscripts])]1] . . .

The Dim statement syntax has these parts:

IPart Description

Ivamame Name of the variable; follows standard variable naming conventions.

Dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

abscripsflUpperbound [,upperbound] . . .

The lower bound of an array is always zero.

Remarks

Variables declared with Dim at the script level are available to all
procedures within the script. At the procedure level, variables are
available only within the procedure.

You can also use the Dim statement with empty parentheses to

declare a dynamic array. After declaring a dynamic array, use the
ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly
specified in a Dim statement, an error occurs.

Tip When you use the Dim statement in a procedure, you generally put the Dim statement at the
beginning of the procedure.

The following examples illustrate the use of the Dim statement:

Dim Names(9) 'Declare an array with 10 elements.
Dim Names() ' Declare a dynamic array.
Dim MyVar, MyNum ' Declare two variables.

Language Reference

Microsoft® Visual Basic® Scripting Edition /
Version 1

Operator

See Also

Description
Divides two numbers and returns a floating-point result.
Syntax

result = numberl/number?2

The / operator syntax has these parts:

Part Description

result Any numeric variable.

Inumberl "Any numeric expression. |

|number2 "Any numeric expression. |
Remarks

If one or both expressions are Null expressions, result is Null. Any
expression that is Empty is treated as 0.

Microsoft® Visual Basic® Scripting Edition

DO...LOOP @g@g%rence

Version 1

Statement

See Also

Description

Repeats a block of statements while a condition is True or until a condition
becomes True.

Syntax

Do [{While | Until} condition]
[statements]
[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do
[statements]
[Exit Do]
[statements]
Loop [{While | Until} condition]

The Do...Loop statement syntax has these parts:

|Part "Description |

Numeric or string expression that is True or False. If
condition is Null, condition is treated as False.

condition

statements

One or more statements that are repeated while or
until condition is True.

Remarks

The Exit Do can only be used within a Do...L.eop control structure to

provide an alternate way to exit a Do...Loop. Any number of Exit Do
statements may be placed anywhere in the Do...Loop. Often used with the
evaluation of some condition (for example, If...Then), Exit Do transfers
control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is nested
one level above the loop where it occurs.

The following examples illustrate use of the Do...Loop statement:

Do Until DefResp = vbNo
MyNum = Int (6 * Rnd + 1) ' Generate a random integer between
DefResp = MsgBox (MyNum & " Do you want another number?
Loop

Dim Check, Counter

Check = True: Counter = 0 " Initialize variables.
Do ' Outer loop.
Do While Counter < 20 ' Inner loop.
Counter = Counter + 1 ' Increment Counter.
If Counter = 10 Then ' If condition is True...
Check = False ' set value of flag to False.
Exit Do ' Exit inner loop.
End If
Loop

Loop Until Check = False ' Exit outer loop immediately.

Language Reference
Microsoft® Visual Basic® Scripting Edition E mp ty \/ELOH:[

See Also

Description

The Empty keyword is used to indicate an uninitialized variable value. This
is not the same thing as Null.

Microsoft® Visual Basic® Scripting Edition E qV Lan uage REference

Version 1
Operator

See Also

Description
Performs a logical equivalence on two expressions.
Syntax

result = expression1 Eqv expression2

The Eqv operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

If either expression is Null, result is also Null. When neither expression is
Null, result is determined according to the following table:

IIf expressionl is The result is

|| || |
|True "Tr "True |
|True "False "False |
IFalse "True "False |
|False "False "True |

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

" "And bit in expression2 is "The result is ||

=lIR=1E=1IR=

If bit in expression1 is|

0

O || ||

Microsoft® Visual Basic® Scripting Edition E r aS e @g&%rence
Version 1
Statement

See Also

Description

Reinitializes the elements of fixed-size arrays and deallocates dynamic-
array storage space.

Syntax

Erase array

The array argument is the name of the array variable to be erased.

Remarks

It is important to know whether an array is fixed-size (ordinary) or dynamic
because Erase behaves differently depending on the type of array. Erase
recovers no memory for fixed-size arrays. Erase sets the elements of a
fixed array as follows:

IType of array "Effect of Erase on fixed-array elements |

Fixed numeric
array

Sets each element to zero.

|Fixed string array "Sets each element to zero-length (""). |

Sets each element to the special value

Array of objects Nothine.

Erase frees the memory used by dynamic arrays. Before your program can refer to the dynamic array
again, it must redeclare the array variable's dimensions using a ReDim statement.

The following example illustrates the use of the Erase statement:

Dim NumArray(9)

Dim DynamicArray()

ReDim DynamicArray(9) ' Allocate storage space.
Erase NumArray ' Each element is reinitialize
Erase DynamicArray ' Free memory used by arr:

Microsoft® Visual Basic® Scripting Edition E rr Lan uage REference

o Version 1
Object

See Also Properties Methods

Description

Contains information about run-time errors. Accepts the Raise and Clear
methods for generating and clearing run-time errors.

Remarks

The Err object is an intrinsic object with global scope — there is no need to
create an instance of it in your code. The properties of the Err object are set
by the generator of an error — Visual Basic, an Automation object, or the
VBScript programmer.

The default property of the Err object is Number. Exrr.Number contains an integer and can be used
by an Automation object to return an SCODE.

When a run-time error occurs, the properties of the Err object are filled with information that
uniquely identifies the error and information that can be used to handle it. To generate a run-time
error in your code, use the Raise method.

The Err object's properties are reset to zero or zero-length strings ("") after an On Error Resume
Next statement. The Clear method can be used to explicitly reset Err.

The following example illustrates use of the Err object:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear 'Clear the error.

Microsoft® Visual Basic® Scripting Edition Eval _g_g_L anguage Reference

. Version 5
Function

See Also

Description
Evaluates an expression and returns the result.
Syntax

[result = JEval(expression)

The Eval function syntax has these parts:

Part Description

Optional. Variable to which return value assignment
result is made. If result is not specified, consider using the
Execute statement instead.

Required. String containing any legal VBScript

expression :
expression.

Remarks

In VBScript, x = y can be interpreted two ways. The first is as an
assignment statement, where the value of y is assigned to x. The second
interpretation is as an expression that tests if x and y have the same value. If
they do, result is True; if they are not, result is False. The Eval method
always uses the second interpretation, whereas the Execute statement
always uses the first.

Note In Microsoft® JScript, no confusion exists between assignment and comparison, because the
assignment operator (=) is different from the comparison operator (==).

The following example illustrates the use of the Eval function:

Sub GuessANumber
Dim Guess, RndNum
RndNum = Int((100) * Rnd(1) + 1)
Guess = CInt(InputBox("Enter your guess:",,0))
Do
If Eval("Guess = RndNum") Then
MsgBox "Congratulations! You guessed it!"
Exit Sub
Else
Guess = CInt(InputBox("Sorry! Try again.",,0)
End If
Loop Until Guess =0
End Sub

Microsoft® Visual Basic® Scripting Edition L.anguage Reference

Execute Method Version 5

See Also Applies to

Description
Executes a regular expression search against a specified string.
Syntax

object.Execute(string)

The Execute method syntax has these parts:

IPart “Description
Iobject "Required. Always the name of a RegExp object.

Istring "Required. The text string upon which the regular expression is executed.

Remarks

The actual pattern for the regular expression search is set using
the Pattern property of the RegExp object.

The Execute method returns a Matches collection containing a
Match object for each match found in string. Execute returns an
empty Matches collection if no match is found.

The following code illustrates the use of the Execute method:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regEx = New RegExp ' Create a regular expressi
regEx.Pattern = patrn ' Set pattern.
regEx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "

RetStr = RetStr & Match.Value & "'." & vbCRLF
Next

RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 IS3 is4"))

Microsoft® Visual Basic® Scripting Edition E Xe Cute @g&m
Version 5
Statement

See Also

Description

Executes one or more specified statements.

Syntax

Execute statement

The required statement argument is a string expression containing one or more statements for
execution. Include multiple statements in the statement argument, using colons or embedded line
breaks to separate them.

Remarks

In VBScript, x = y can be interpreted two ways. The first is as an
assignment statement, where the value of y is assigned to x. The second
interpretation is as an expression that tests if x and y have the same value. If
they do, result is True; if they are not, result is False. The Execute
statement always uses the first interpretation, whereas the Eval method
always uses the second.

Note In Microsoft® J Script@, no confusion exists between assignment and comparison, because the
assignment operator (=) is different from the comparison operator(==).

The context in which the Execute statement is invoked determines what objects and variables are
available to the code being run. In-scope objects and variables are available to code running in an
Execute statement. However, it is important to understand that if you execute code that creates a
procedure, that procedure does not inherit the scope of the procedure in which it occurred.

Like any procedure, the new procedure's scope is global, and it inherits everything in the global
scope. Unlike any other procedure, its context is not global scope, so it can only be executed in the
context of the procedure where the Execute statement occurred. However, if the same Execute
statement is invoked outside of a procedure (i.e., in global scope), not only does it inherit everything
in global scope, but it can also be called from anywhere, since its context is global. The following
example illustrates this behavior:

Dim X ' Declare X in global scope.

X ="Global" ' Assign global X a value.
Sub Procl ' Declare procedure.
Dim X ' Declare X in local scope.

X ="Local" " Assign local X a value.
' The Execute statement here creates a
' procedure that, when invoked, prints X.
' It print the global X because Proc2
' inherits everything in global scope.
Execute "Sub Proc2: Print X: End Sub"
Print Eval("X") ' Print local X.

Proc2 ' Invoke Proc?2 in Proc1's scope.
End Sub
Proc2 ' This line causes an error since
' Proc?2 is unavailable outside Procl.
Procl ' Invoke Procl.
Execute "Sub Proc2: Print X: End Sub"
Proc2 ' This invocation succeeds because Proc2

'is now available globally.

The following example shows how the Execute statement can be rewritten
so you don't have to enclose the entire procedure in the quotation marks:

S = "Sub Proc2" & vbCrLf
S=S&" Print X" & vbCrLf
S =S & "End Sub"

Execute S

[J
Microsoft® Visual Basic® Scripting Edition E Xlt Language Reference
Version 1
Statement

See Also

Description

Exits a block of Do...Loop, For...Next, Function, or Sub code.

Syntax

Exit Do
Exit For

Exit Function
Exit Property
Exit Sub

The Exit statement syntax has these forms:

IStatement"Description

Provides a way to exit a Do...Loop statement. It can
be used only inside a Do...Loop statement. Exit Do
transfers control to the statement following the Loop
statement. When used within nested Do...Loop
statements, Exit Do transfers control to the loop that
is one nested level above the loop where it occurs.

Exit Do

Provides a way to exit a For loop. It can be used
only in a For...Next or For Each...Next loop. Exit
For transfers control to the statement following the
Next statement. When used within nested For loops,
Exit For transfers control to the loop that is one
nested level above the loop where it occurs.

Exit For

Immediately exits the Function procedure in which

Exit
Function

it appears. Execution continues with the statement
following the statement that called the Function.

Immediately exits the Property procedure in which
Exit it appears. Execution continues with the statement
Property [following the statement that called the Property
procedure.

Immediately exits the Sub procedure in which it
Exit Sub [lappears. Execution continues with the statement
following the statement that called the Sub.

The following example illustrates the use of the Exit statement:

Sub RandomlL.oop
Dim I, MyNum
Do ' Set up infinite loop.

ForI =1 To 1000 ' Loop 1000 times.
MyNum = Int(Rnd * 100) ' Generate random nt
Select Case MyNum ' Evaluate random num

Case 17: MsgBox "Case 17"
Exit For "If 17, exit For...Next.
Case 29: MsgBox "Case 29"
Exit Do 'If 29, exit Do...Loop.
Case 54: MsgBox "Case 54"
Exit Sub ' If 54, exit Sub procedure.
End Select
Next
Loop

End Sub

Microsoft® Visual Basic® Scripting Edition E Xp
Functi

See Also

Language Reference
Version 1

Description

Returns e (the base of natural logarithms) raised to a power.

Syntax

Exp(number)

The number argument can be any valid numeric expression.

Remarks

If the value of number exceeds 709.782712893, an error occurs. The
constant e is approximately 2.718282.

Note The Exp function complements the action of the Log function and is sometimes
referred to as the antilogarithm.

The following example uses the Exp function to return e raised to a power:

Dim MyAngle, MyHSin ' Define angle in radians.
MyAngle = 1.3 ' Calculate hyperbolic sine.
MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle))

Microsoft® Visual Basic® Scripting Edition /\ _Language REference

Version 1
Operator

See Also

Description
Raises a number to the power of an exponent.
Syntax

result = number/exponent

The A operator syntax has these parts:

Part Description

result Any numeric variable.

Inumber "Any numeric expression. |

|exponent "Any numeric expression. |
Remarks

Number can be negative only if exponent is an integer value. When more
than one exponentiation is performed in a single expression, the A operator
is evaluated as it is encountered from left to right.

If either number or exponent is a Null expression, result is also Null.

Language Reference
Microsoft® Visual Basic® Scripting Edition F als e WLOH]‘

See Also

Description

The False keyword has a value equal to 0.

(J
Microsoft® Visual Basic® Scripting Edition F llte r _g_g_L anguage Reference

. Version 2
Function

See Also

Description

Returns a zero-based array containing a subset of a string array based on a
specified filter criteria.

Syntax

Filter(InputStrings, Valuel, Include[, Compare]])

The Filter function syntax has these parts:

|Part "Description
. |IRequired. One-dimensional array of strings to be

InputStrings
searched.

IValue "Required. String to search for. |
Optional. Boolean value indicating whether to
return substrings that include or exclude Value. If
Include is True, Filter returns the subset of the

Include

array that contains Value as a substring. If Include
is False, Filter returns the subset of the array that
does not contain Value as a substring.

Optional. Numeric value indicating the kind of
Compare |string comparison to use. See Settings section for
values.

Settings

The Compare argument can have the following values:

||Constant "Value"Description ||

IVbBinaryCompareH 0 IIPerform a binary comparison. I
[1

|VbTextCompare "Perform a textual comparison. |

Remarks

If no matches of Value are found within InputStrings, Filter returns an
empty array. An error occurs if InputStrings is Null or is not a one-
dimensional array.

The array returned by the Filter function contains only enough elements to
contain the number of matched items.

The following example uses the Filter function to return the array
containing the search criteria "Mon":

Dim MylIndex

Dim MyArray (3)

MyArray(0) = "Sunday"

MyArray(1) = "Monday"

MyArray(2) = "Tuesday"

MylIndex = Filter(MyArray, "Mon") ' MyIndex(0)

Microsoft® Visual Basic® Scripting Edition

FirstIndex Language Reference
Property

See Also Applies To

Description

Returns the position in a search string where a match occurs.

Syntax

object.Firstindex

The object argument is always a Match object.

Remarks

The FirstIndex property uses a zero-based offset from the beginning of the
search string. In other words, the first character in the string is identified as
character zero (0). The following code illustrates the use of the FirstIndex

property:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkx = New RegExp ' Create regular expression
regEx.Pattern = patrn ' Set pattern.

regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match " & I & " found at position "
RetStr = RetStr & Match.FirstIndex & ". Match Value is ™
RetStr = RetStr & Match.Value & "'." & vbCRLF

Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

[]
Microsoft® Visual Basic® Scripting Edition I nt, F lX _g_g—]—‘ danguage Reference

Version 1
Functions

See Also

Description

Returns the integer portion of a number.

Syntax

Int(number)

Fix(number)

The number argument can be any valid numeric expression. If number contains Null, Null is
returned.

Remarks

Both Int and Fix remove the fractional part of number and return the
resulting integer value.

The difference between Int and Fix is that if number is negative, Int returns the first negative integer
less than or equal to number, whereas Fix returns the first negative integer greater than or equal to
number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Fix(number) is equivalent to:

Sgn(number) * Int(Abs(number))

The following examples illustrate how the Int and Fix functions return
integer portions of numbers:

MyNumber = Int(99.8) ' Returns 99.
MyNumber = Fix(99.2) 'Returns 99.
MyNumber = Int(-99.8) ' Returns -100.

MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

Microsoft® Visual Basic® Scripting Edition

F Oro oo NEXt @g&%
Statement

See Also

Description

Repeats a group of statements a specified number of times.

Syntax

For counter = start To end [Step step]
[statements]
[Exit For]
[statements]

Next

The For...Next statement syntax has these parts:

IPart "Description

Numeric variable used as a loop counter. The
counter |fvariable can't be an array element or an element of a
user-defined type.

Istart "Initial value of counter. |
|end "Final value of counter. |
step Amount counter. i§ changed each time through the
loop. If not specified, step defaults to one.
statements One or more statements between For and Next that
are executed the specified number of times.
Remarks

The step argument can be either positive or negative. The value of the step
argument determines loop processing as follows:

|Value "Loop executes if |

|Positive or0 "Counter <= end |

|Negative "Counter >=end |

Once the loop starts and all statements in the loop have executed, step is added to counter. At this
point, either the statements in the loop execute again (based on the same test that caused the loop to
execute initially), or the loop is exited and execution continues with the statement following the Next
statement.

Tip Changing the value of counter while inside a loop can make
it more difficult to read and debug your code.

Exit For can only be used within a For Each...Next or For...Next control structure to provide an
alternate way to exit. Any number of Exit For statements may be placed anywhere in the loop. Exit
For is often used with the evaluation of some condition (for example, If...Then), and transfers
control to the statement immediately following Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each loop a
unique variable name as its counter. The following construction is correct:

ForI=1To 10
ForJ=1To 10
ForK=17To 10
Next
Next
Next

Microsoft® Visual Basic® Scripting Edition F 0 r
Language Reference

EaCh...NEXt Version 2
Statement

See Also

Description
Repeats a group of statements for each element in an array or collection.
Syntax

For Each element In group
[statements]
[Exit For]
[statements]

Next [element]

The For Each...Next statement syntax has these parts:

|Part "Description

Variable used to iterate through the elements of the
collection or array. For collections, element can only

element |[be a Variant variable, a generic Object variable, or
any specific Automation object variable. For arrays,
element can only be a Variant variable.

Igroup "Name of an object collection or array.

One or more statements that are executed on each
item in group.

statements

Remarks

The For Each block is entered if there is at least one element in group.

Once the loop has been entered, all the statements in the loop are executed
for the first element in group. As long as there are more elements in group,
the statements in the loop continue to execute for each element. When there
are no more elements in group, the loop is exited and execution continues
with the statement following the Next statement.

The Exit For can only be used within a For Each...Next or For...Next control structure to provide an
alternate way to exit. Any number of Exit For statements may be placed anywhere in the loop. The
Exit For is often used with the evaluation of some condition (for example, If...Then), and transfers
control to the statement immediately following Next.

You can nest For Each...Next loops by placing one For Each...Next loop within another. However,
each loop element must be unique.

Note If you omit element in a Next statement, execution
continues as if you had included it. If a Next statement is
encountered before its corresponding For statement, an error
occurs.

The following example illustrates use of the For Each...Next statement:

Function ShowFolderList(folderspec)
Dim fso, f, f1, fc, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(folderspec)
Set fc = f.Files
For Each f1 in fc
s =s & fl.name
s =5 & "
"
Next
ShowFolderList = s
End Function

Microsoft® Visual Basic® Scripting Edition

FormatCurrency

Function

See Also

Language Reference
Version 2

Description

Returns an expression formatted as a currency value using the currency
symbol defined in the system control panel.

Syntax

FormatCurrency(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatCurrency function syntax has these parts:

IPart

Description

EXxpression

Required. Expression to be
formatted.

NumDigitsAfterDecimal

Optional. Numeric value
indicating how many places to
the right of the decimal are
displayed. Default value is -1,
which indicates that the
computer's regional settings are
used.

IncludeLeadingDigit

Optional. Tristate constant that
indicates whether or not a
leading zero is displayed for
fractional values. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not to

UseParensForNegativeNumbers||place negative values within
parentheses. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not
numbers are grouped using the
group delimiter specified in the
computer's regional settings.
See Settings section for values.

GroupDigits

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and
GroupDigits arguments have the following settings:

|Constant "Value"Description |
|"I‘ristate”[‘rue " -1 "True |
|TristateFalse " 0 "False |
TristateUseDefaultl -» Use the setting from the computer's
regional settings.
Remarks

When one or more optional arguments are omitted, values for omitted
arguments are provided by the computer's regional settings. The position of
the currency symbol relative to the currency value is determined by the
system's regional settings.

Note All settings information comes from the Regional Settings
Currency tab, except leading zero which comes from the
Number tab.

The following example uses the FormatCurrency function to format the
expression as a currency and assign it to MyCurrency:

Dim MyCurrency
MyCurrency = FormatCurrency(1000) ' MyCurrer

Microsoft® Visual Basic® Scripting Edition

FormatDateTime Language Reference

Function

See Also

Version 2

Description
Returns an expression formatted as a date or time.
Syntax

FormatDateTime(Date[, NamedFormat))

The FormatDateTime function syntax has these parts:

IPart "Description

|Date "Required. Date expression to be formatted.

Optional. Numeric value that indicates the
NamedFormat|/date/time format used. If omitted,
vbGeneralDate is used.

Settings

The NamedFormat argument has the following settings:

Constant Value[Description

vbGeneralDate| O

Display a date and/or time. If there is a
date part, display it as a short date. If
there is a time part, display it as a long
time. If present, both parts are displayed.

Display a date using the long date
vbLongDate 1 [format specified in your computer's
regional settings.

Display a date using the short date

vbShortDate 2 Jlformat specified in your computer's
regional settings.
Display a time using the time format
vbLongTime 3 [lspecified in your computer's regional

settings.

Display a time using the 24-hour format

vbShortTime 4 (hh:mm).

Remarks

The following example uses the FormatDateTime function to format the
expression as a long date and assign it to MyDateTime:

Function GetCurrentDate
' FormatDateTime formats Date in long date.
GetCurrentDate = FormatDateTime(Date, 1)
End Function

Microsoft® Visual Basic® Scripting Edition

FormatNumber Language Reference
Function

See Also

Description

Returns an expression formatted as a number.

Syntax

FormatNumber(Expression [,NumDigitsAfterDecimal
[,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatNumber function syntax has these parts:

IPart "Description |

Required. Expression to be

Expression
P formatted.

Optional. Numeric value
indicating how many places to
the right of the decimal are

NumDigitsAfterDecimal displayed. Default value is -1,
which indicates that the
computer's regional settings are
used.

Optional. Tristate constant that
indicates whether or not a

IncludeLeadingDigit leading zero is displayed for
fractional values. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not to

UseParensForNegativeNumbers|[place negative values within

parentheses. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not
numbers are grouped using the
group delimiter specified in the
control panel. See Settings
section for values.

GroupDigits

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and
GroupDigits arguments have the following settings:

|Constant "Value"Description |
TristateTrue -1 || True
TristateFalse 0 ||False
] Use the setting from the computer's
TristateUseDefault|| -2]) 5 P
regional settings.

Remarks

When one or more of the optional arguments are omitted, the values for
omitted arguments are provided by the computer's regional settings.

Note All settings information comes from the Regional Settings
Number tab.

The following example uses the FormatNumber function to format a
number to have four decimal places:

Function FormatNumberDemo

Dim MyAngle, MySecant, MyNumber

MyAngle = 1.3 ' Define angle in radians

MySecant = 1/ Cos(MyAngle) ' Calculate secant

FormatNumberDemo = FormatNumber(MySecan
End Function

Microsoft® Visual Basic® Scripting Edition

FormatPercent

Function

See Also

Language Reference
Version 2

Description

Returns an expression formatted as a percentage (multiplied by 100) with a

trailing % character.

Syntax

FormatPercent(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatPercent function syntax has these parts:

IPart

Description

EXxpression

Required. Expression to be
formatted.

NumDigitsAfterDecimal

Optional. Numeric value
indicating how many places to
the right of the decimal are
displayed. Default value is -1,
which indicates that the
computer's regional settings are
used.

IncludeLeadingDigit

Optional. Tristate constant that
indicates whether or not a
leading zero is displayed for
fractional values. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not to

UseParensForNegativeNumbers||place negative values within
parentheses. See Settings
section for values.

Optional. Tristate constant that
indicates whether or not
numbers are grouped using the
group delimiter specified in the
control panel. See Settings
section for values.

GroupDigits

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and
GroupDigits arguments have the following settings:

|Constant "Value"Description |

|"I‘ristate”[‘rue " -1 "True |

|TristateFalse " 0 "False |

TristateUseDefault]| -2 isgei(fﬂ:lsse;g?ngggom the computer's
Remarks

When one or more optional arguments are omitted, the values for the
omitted arguments are provided by the computer's regional settings.

Note All settings information comes from the Regional Settings
Number tab.

The following example uses the FormatPercent function to format an
expression as a percent:

Dim MyPercent
MyPercent = FormatPercent(2/32) ' MyPercent cor

Microsoft® Visual Basic® Scripting Edition

Function Language Relerence
Statement

See Also

Description

Declares the name, arguments, and code that form the body of a
Function procedure.

Syntax

[Public [Default] | Private] Function name [(arglist)]
[statements]
[name = expression]
[Exit Function]
[statements]
[name = expression]
End Function

The Function statement syntax has these parts:

IPart "Description |
Public Indicates that the Function procedure is accessible to all other procedures in all
scripts.
Used only with the Public keyword in a Class block to indicate that the Function
Default ||procedure is the default method for the class. An error occurs if more than one Default
procedure is specified in a class.
Indicates that the Function procedure is accessible only to other procedures in the
Private ||script where it is declared or if the function is a member of a class, and that the
Function procedure is accessible only to other procedures in that class.
name Name of the Function; follows standard variable naming conventions.
aralist List of variables representing arguments that are passed to the Function procedure
g when it is called. Multiple variables are separated by commas.

Istatements"Any group of statements to be executed within the body of the Function procedure. |

Iexpression"Return value of the Function. |

The arglist argument has the following syntax and parts:

[ByVal | ByRef] varnamel[()]

IPart "Description |

IByVal “Indicates that the argument is passed by value. |

ByRef [[Indicates that the argument is passed by reference.
Yy

varname,

Name of the variable representing the argument; follows standard variable naming
conventions.

Remarks

If not explicitly specified using either Public or Private,
Function procedures are public by default, that is, they are
visible to all other procedures in your script. The value of local
variables in a Function is not preserved between calls to the

procedure.

You can't define a Function procedure inside any other
procedure (e.g. Sub or Property Get).

The Exit Function statement causes an immediate exit from a
Function procedure. Program execution continues with the
statement that follows the statement that called the Function
procedure. Any number of Exit Function statements can appear
anywhere in a Function procedure.

Like a Sub procedure, a Function procedure is a separate
procedure that can take arguments, perform a series of
statements, and change the values of its arguments. However,
unlike a Sub procedure, you can use a Function procedure on
the right side of an expression in the same way you use any

intrinsic function, such as Sqr, Cos, or Chr, when you want to
use the value returned by the function.

You call a Function procedure using the function name, followed
by the argument list in parentheses, in an expression. See the
Call statement for specific information on how to call Function
procedures.

Caution Function procedures can be recursive, that is, they can call themselves to perform a
given task. However, recursion can lead to stack overflow.

To return a value from a function, assign the value to the function
name. Any number of such assignments can appear anywhere
within the procedure. If no value is assigned to name, the
procedure returns a default value: a numeric function returns 0
and a string function returns a zero-length string (""). A function
that returns an object reference returns Nothing if no object
reference is assigned to name (using Set) within the Function.

The following example shows how to assign a return value to a
function named BinarySearch. In this case, False is assigned to
the name to indicate that some value was not found.

Function BinarySearch(. . .)

' Value not found. Return a value of False.
If lower > upper Then

BinarySearch = False

Exit Function
End If

End Function

Variables used in Function procedures fall into two categories:

those that are explicitly declared within the procedure and those
that are not. Variables that are explicitly declared in a procedure
(using Dim or the equivalent) are always local to the procedure.
Variables that are used but not explicitly declared in a procedure

are also local unless they are explicitly declared at some higher
level outside the procedure.

Caution A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same name. If
your procedure refers to an undeclared variable that has the same name as another procedure,
constant, or variable, it is assumed that your procedure is referring to that script-level name. To
avoid this kind of conflict, use an Option Explicit statement to force explicit declaration of
variables.

Caution VBScript may rearrange arithmetic expressions to increase internal efficiency. Avoid
using a Function procedure in an arithmetic expression when the function changes the value of
variables in the same expression.

Microsoft® Visual Basic® Scripting Edition

GEtObjECt @gﬁg%
Function

See Also

Description

Returns a reference to an Automation object from a file.

Syntax

GetObject([pathname] [, class])

The GetObject function syntax has these parts:

IPart Description

Optional; String. Full path and name of the file
athnamel[containing the object to retrieve. If pathname is
omitted, class is required.

|Class Optional; String. Class of the object.

The class argument uses the syntax appname.objectype and has these parts:

|Part "Description |

Required; String. Name of the application providing
the object.

|objeclype||Required; String. Type or class of object to create.

appname

Remarks

Use the GetObject function to access an Automation object from a file and
assign the object to an object variable. Use the Set statement to assign the
object returned by GetObject to the object variable. For example:

Dim CADODbject
Set CADObject = GetObject("C:\CAD\SCHEMA..

When this code is executed, the application associated with the specified
pathname is started and the object in the specified file is activated. If
pathname is a zero-length string (""), GetObject returns a new object
instance of the specified type. If the pathname argument is omitted,
GetObject returns a currently active object of the specified type. If no
object of the specified type exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation
point (!) to the end of the file name and follow it with a string that identifies
the part of the file you want to activate. For information on how to create
this string, see the documentation for the application that created the object.

For example, in a drawing application you might have multiple layers to a
drawing stored in a file. You could use the following code to activate a
layer within a drawing called SCHEMA.CAD:

Set LayerObject = GetObject("C:\CAD\SCHEMA.

If you don't specify the object's class, Automation determines the
application to start and the object to activate, based on the file name you
provide. Some files, however, may support more than one class of object.
For example, a drawing might support three different types of objects: an
Application object, a Drawing object, and a Toolbar object, all of which are
part of the same file. To specify which object in a file you want to activate,
use the optional class argument. For example:

Dim MyObject
Set MyObject = GetObject("C:\DRAWINGS\SAM

In the preceding example, FIGMENT is the name of a drawing application
and DRAWING is one of the object types it supports. Once an object is
activated, you reference it in code using the object variable you defined. In
the preceding example, you access properties and methods of the new

object using the object variable MyObject. For example:

MyObject.Line 9, 90
MyObject.InsertText 9, 100, "Hello, world."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DR

Note Use the GetObject function when there is a current
instance of the object or if you want to create the object with a
file already loaded. If there is no current instance, and you don't
want the object started with a file loaded, use the CreateObject

function.

If an object has registered itself as a single-instance object, only one
instance of the object is created, no matter how many times CreateObject
is executed. With a single-instance object, GetObject always returns the
same instance when called with the zero-length string ("") syntax, and it
causes an error if the pathname argument is omitted.

Microsoft® Visual Basic® Scripting Edition G EtREf Language Reference
. Version 5
Function

See Also

Description

Returns a reference to a procedure that can be bound to an event.

Syntax

Set object.eventname = GetRef(procname)

The GetRef function syntax has these parts:

Part Description
: Required. Name of the object with which event is

object :

associated.

Required. Name of the event to which the function is
event

to be bound.

Required. String containing the name of the Sub or

rocname . . : .
Function procedure being associated with the event.
Remarks

The GetRef function allows you to connect a VBScript procedure
(Function or Sub) to any available event on your DHTML (Dynamic
HTML) pages. The DHTML object model provides information about what
events are available for its various objects.

In other scripting and programming languages, the functionality provided by GetRef is referred to as
a function pointer, that is, it points to the address of a procedure to be executed when the specified
event occurs.

The following example illustrates the use of the GetRef function:

<SCRIPT LANGUAGE="VBScript">

Function GetRefTest()
Dim Splash
Splash = "GetRefTest Version 1.0" & vbCrLf
Splash = Splash & Chr(169) & " YourCompany 1999 "
MsgBox Splash
End Function

Set Window.Onload = GetRef("GetRefTest")

</SCRIPT>

Microsoft® Visual Basic® Scripting Edition L.anguage Reference

Global Property Version 5

See Also Applies To

Description

Sets or returns a Boolean value that indicates if a pattern should
match all occurrences in an entire search string or just the first
one.

Syntax

object.Global [= True | False]

The object argument is always a RegExp object. The value of the
Global property is True if the search applies to the entire string,
False if it does not. Default is False.

Remarks

The following code illustrates the use of the Global property
(change the value assigned to Global property to see its effect):

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkix = New RegExp ' Create a regular expressi
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regkEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.
RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF
Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition Hex Lan uage REference

Version 1
Function

See Also

Description

Returns a string representing the hexadecimal value of a number.

Syntax

Hex(number)

The number argument is any valid expression.

Remarks

If number is not already a whole number, it is rounded to the nearest whole
number before being evaluated.

|If number is "Hex returns |
i | |
|Empty "Zero (0). |

"Up to eight hexadecimal characters. |

|Any other number

You can represent hexadecimal numbers directly by preceding numbers in the proper range with &H.
For example, &H10 represents decimal 16 in hexadecimal notation.

The following example uses the Hex function to return the hexadecimal value of a number:

Dim MyHex

MyHex = Hex(5) 'Returns 5.
MyHex = Hex(10) 'Returns A.
MyHex = Hex(459) ' Returns 1CB.

Microsoft® Visual Basic® Scripting Edition

HelpContext Language Reference
Property

See Also Applies to

Description
Sets or returns a context ID for a topic in a Help File.
Syntax

object.HelpContext [= contextID]

The HelpContext property syntax has these parts:

IPart Description |

|object Required. Always the Err object. |

[Optional. A valid identifier for a Help topic within the

contextlD Help file.

Remarks

If a Help file is specified in HelpFile, the HelpContext property is used to
automatically display the Help topic identified. If both HelpFile and
HelpContext are empty, the value of the Number property is checked. If it
corresponds to a VBScript run-time error value, then the VBScript Help
context ID for the error is used. If the Number property doesn't correspond
to a VBScript error, the contents screen for the VBScript Help file is
displayed.

The following example illustrates use of the HelpContext property:

On Error Resume Next
Dim Msg
Err.Clear

Err.Raise 6 ' Generate "Overflow" error.
Err.Helpfile = "yourHelp.hlp"
Err.HelpContext = yourContextID
If Err.Number <> 0 Then
Msg = "Press F1 or Help to see " & Err.Helpfile & " topic for" &
" the following HelpContext: " & Err.HelpContext
MsgBox Msg, , "error: " & Err.Description, Err.Helpfile, Err.Hel
End If

Microsoft® Visual Basic® Scripting Edition L an gua ge Reference

HelpFile Property Version 2

See Also Applies to

Description
Sets or returns a fully qualified path to a Help File.
Syntax

object.HelpFile [= contextID]

The HelpFile property syntax has these parts:

|Part "Description |
|object "Required. Always the Err object. |
|ContextID "Optional. Fully qualified path to the Help file. |

Remarks

If a Help file is specified in HelpFile, it is automatically called when the
user clicks the Help button (or presses the F1 key) in the error message
dialog box. If the HelpContext property contains a valid context ID for the
specified file, that topic is automatically displayed. If no HelpFile is
specified, the VBScript Help file is displayed.

On Error Resume Next

Dim Msg

Err.Clear

Err.Raise 6 ' Generate "Overflow" error.
Err.Helpfile = "yourHelp.hlp"
Err.HelpContext = yourContextID

If Err.Number <> 0 Then
Msg = "Press F1 or Help to see " & Err.Helpfile & " topic for" &

" the following HelpContext: " & Err.HelpContext
MsgBox Msg, , "error: " & Err.Description, Err.Helpfile, Err.Hel
End If

Microsoft® Visual Basic® Scripting Edition H 0 u r _g_gL anguage REference

Version 1
Function

See Also

Description

Returns a whole number between 0 and 23, inclusive, representing the hour
of the day.

Syntax

Hour(time)

The time argument is any expression that can represent a time. If time contains Null, Null is returned.

The following example uses the Hour function to obtain the hour from the current time:

Dim MyTime, MyHour

MyTime = Now

MyHour = Hour(MyTime) ' MyHour contains th
' the current hour.

Microsoft® Visual Basic® Scripting Edition

If...Then...Else Language Reference
Statement

Description
Conditionally executes a group of statements, depending on the value of an expression.
Syntax

If condition Then statements [Else elsestatements |
Or, you can use the block form syntax:

If condition Then
[statements]

[Elself condition-n Then
[elseifstatements]] . . .

[Else
[elsestatements]]

End If

The If...Then...Else statement syntax has these parts:

|Part "Description

One or more of the following two types of expressions:

A numeric or string expression that evaluates to True or False. If
condition is Null, condition is treated as False.

condition An expression of the form TypeOf objectname Is objecttype. The

objectname is any object reference and objecttype is any valid object
type. The expression is True if objectname is of the object type
specified by objecttype; otherwise it is False.

statements One or more statements separated by colons; executed if condition is
True. condition-n Same as condition. elseifstatements One or more statements
executed if the associated condition-n is True. elsestatements One or more
statements executed if no previous condition or condition-n expression is True.

Remarks

You can use the single-line form (first syntax) for short, simple tests.
However, the block form (second syntax) provides more structure and
flexibility than the single-line form and is usually easier to read, maintain,
and debug.

Note With the single-line syntax, it is possible to have multiple
statements executed as the result of an If...Then decision, but
they must all be on the same line and separated by colons, as in
the following statement:

IfA>10Then A=A+1:B=B+A:C=C+B

When executing a block If (second syntax), condition is tested. If condition is True, the statements
following Then are executed. If condition is False, each Elself (if any) is evaluated in turn. When a
True condition is found, the statements following the associated Then are executed. If none of the
Elself statements are True (or there are no Elself clauses), the statements following Else are
executed. After executing the statements following Then or Else, execution continues with the
statement following End If.

The Else and Elself clauses are both optional. You can have as many Elself statements as you want
in a block If, but none can appear after the Else clause. Block If statements can be nested; that is,
contained within one another.

What follows the Then keyword is examined to determine whether or not a statement is a block If. If
anything other than a comment appears after Then on the same line, the statement is treated as a
single-line If statement.

A block If statement must be the first statement on a line. The block If must end with an End If
statement.

Microsoft® Visual Basic® Scripting Edition

Language Reference
IgnoreCase suage Reference
Property
See Also Applies To
Description

Sets or returns a Boolean value that indicates if a pattern search
IS case-sensitive or not.

Syntax

object.IgnoreCase [= True | False]

The object argument is always a RegExp object. The value of the
IgnoreCase property is False if the search is case-sensitive, True

if it is not. Default is False.
Remarks

The following code illustrates the use of the IgnoreCase
property (change the value assigned to IgnoreCase property to
see its effect):

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.
Set regkix = New RegExp ' Create a regular expressi
regEx.Pattern = patrn ' Set pattern.

regkx.IgnoreCase = True ' Set case insensitivity.

regkx.Global = True ' Set global applicability.

Set Matches = regEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.
RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.FirstIndex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF

Next

RegExpTest = RetStr

End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition Imp Lan uage REference

Version 1
Operator

See Also

Description
Performs a logical implication on two expressions.
Syntax

result = expression1 Imp expression2

The Imp operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

The following table illustrates how result is determined:

|If expressionl is "And expression2 is Then result is |
|True "True True |
ITrue "False False |
[True [Nun Null |
False |True True {
False | False True

|False "Null True |
INull "True True |
INull IIFalse Null I

[Nun |Nu |Nu |

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expressionl And bit in expression2 is|[Then result is

is

0 0 1

0 1 1

1 lo lo |
1 E E |

Microsoft® Visual Basic® Scripting Edition L anguage Re ferenc e

Initialize Event Version 5
See Also Applies To
Description

Occurs when an instance of the associated class is created.
Syntax

Private Sub Class_Initialize()

statements
End Sub

The statements part consists of zero or more code statements to
be run when the class is initlized.

Remarks

The following example illustrates the use of the Initialize event:

Class TestClass
Private Sub Class_Initialize ' Setup Initialize event.

MsgBox("TestClass started")

End Sub
Private Sub Class_Terminate ' Setup Terminate event.

MsgBox("TestClass terminated")
End Sub
End Class

Set X = New TestClass ' Create an instance of TestClass.

Set X = Nothing ' Destroy the instance.

Microsoft® Visual Basic® Scripting Edition . @g&m
Iﬂp“tBOX FunCtlon Version 1

See Also

Description

Displays a prompt in a dialog box, waits for the user to input text or click a
button, and returns the contents of the text box.

Syntax

InputBox(prompt|, titlel[, default][, xpos][, yposll, helpfile, context])

The InputBox function syntax has these arguments:

IPart "Description |

String expression displayed as the message in the dialog
box. The maximum length of prompt is approximately
1024 characters, depending on the width of the
characters used. If prompt consists of more than one
line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or
carriage return—linefeed character combination
(Chr(13) & Chr(10)) between each line.

String expression displayed in the title bar of the dialog

rompt

title [[box. If you omit title, the application name is placed in
the title bar.

String expression displayed in the text box as the default
default [response if no other input is provided. If you omit
default, the text box is displayed empty.

Numeric expression that specifies, in twips, the
horizontal distance of the left edge of the dialog box
from the left edge of the screen. If xpos is omitted, the
dialog box is horizontally centered.

Xpos

||Numeric expression that specifies, in twips, the vertical

distance of the upper edge of the dialog box from the

pos [ltop of the screen. If ypos is omitted, the dialog box is
vertically positioned approximately one-third of the way
down the screen.

String expression that identifies the Help file to use to
helpfilelprovide context-sensitive Help for the dialog box. If
helpfile is provided, context must also be provided.

Numeric expression that identifies the Help context
number assigned by the Help author to the appropriate
Help topic. If context is provided, helpfile must also be
provided.

context

Remarks

When both helpfile and context are supplied, a Help button is automatically
added to the dialog box.

If the user clicks OK or presses ENTER, the InputBox function returns whatever is in the text box.
If the user clicks Cancel, the function returns a zero-length string ("").

The following example uses the InputBox function to display an input box and assign the string to
the variable Input:

Dim Input
Input = InputBox("Enter your name")
MsgBox ("You entered: " & Input)

Microsoft® Visual Basic® Scripting Edition I n S tr _g_g_L anguage Reference

Version 1
Function

See Also

Description

Returns the position of the first occurrence of one string within another.

Syntax

InStr([start,]string1, string2[, compare])

The InStr function syntax has these arguments:

IPart "Description
Optional. Numeric expression that sets the starting
position for each search. If omitted, search begins at
start the first character position. If start contains Null, an
error occurs. The start argument is required if compare

is specified.
|stringl "Required. String expression being searched.
|strin92 "Required. String expression searched for.

Optional. Numeric value indicating the kind of
comparison to use when evaluating substrings. See
Settings section for values. If omitted, a binary
comparison is performed.

compare

Settings

The compare argument can have the following values:

|Constant "Value"Description

|VbBinaryCompare|| 0 "Perform a binary comparison.

|VbTextCompare " 1 "Perform a textual comparison.

Return Values

The InStr function returns the following values:

|strin92 is found within string1 ||Position at which match is found

IIf "InStr returns |
|stringl is zero-length "0 |
|stringl is Null "Null |
IstringQ is zero-length "start |
Istring2 is Null "Null |
IstringQ is not found "0 |

|| |

|| |

o

|start > Len(string2)

Remarks

The following examples use InStr to search a string;:

Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP"

SearchChar = "P" ' Sear
MyPos = Instr(4, SearchString, SearchChar, 1) '
' position 4
MyPos = Instr(1, SearchString, SearchChar, 0)
' position 1

MyPos = Instr(SearchString, SearchChar) !

' (last argu
' Returns 9
MyPos = Instr(1, SearchString, "W") '

"Returns 0

Note The InStrB function is used with byte data contained in a
string. Instead of returning the character position of the first
occurrence of one string within another, InStrB returns the byte
position.

Microsoft® Visual Basic® Scripting Edition \ _gLaD Uage REference
Version 1

See Also

Description
Divides two numbers and returns an integer result.
Syntax

result = number1\number?2

The \ operator syntax has these parts:

IPart "Description |

|result "Any numeric variable. |

|number1 ||Any numeric expression. |

|number2 ||Any numeric expression. |
Remarks

Before division is performed, numeric expressions are rounded to Byte,
Integer, or Long subtype expressions.

If any expression is Null, result is also Null. Any expression that is Empty
is treated as 0.

Microsoft® Visual Basic® Scripting Edition Is Lan uage REference

Version 1
Operator

See Also

Description
Compares two object reference variables.
Syntax

result = object1 Is object?

The Is operator syntax has these parts:

Part | Description

result |Any numeric variable.

Iobjectl "Any object name. |

|object2 "Any object name. |
Remarks

If object1 and object2 both refer to the same object, result is True; if they
do not, result is False. Two variables can be made to refer to the same

object in several ways.

In the following example, A has been set to refer to the same object as B:

Set A=B

The following example makes A and B refer to the same object as C:

Set A=C

Set B=C

Microsoft® Visual Basic® Scripting Edition I SArr ay @g&%rence
. Version 1
Function

See Also

Description
Returns a Boolean value indicating whether a variable is an array.
Syntax

IsArray(varname)

The varname argument can be any variable.
Remarks

IsArray returns True if the variable is an array; otherwise, it returns False.
IsArray is especially useful with variants containing arrays.

The following example uses the IsArray function to test whether
My Variable is an array:

Dim My Variable

Dim MyArray(3)

MyArray(0) = "Sunday"

MyArray(1) = "Monday"

MyArray(2) = "Tuesday"

My Variable = [sArray(MyArray) ' My Variable con

Microsoft® Visual Basic® Scripting Edition I SD ate _g_g—L dngudge REference

Version 1
Function

See Also

Description

Returns a Boolean value indicating whether an expression can be converted
to a date.

Syntax

IsDate(expression)

The expression argument can be any date expression or string expression recognizable as a date or
time.

Remarks

IsDate returns True if the expression is a date or can be converted to a
valid date; otherwise, it returns False. In Microsoft Windows, the range of
valid dates is January 1, 100 A.D. through December 31, 9999 A.D.; the

ranges vary among operating systems.

The following example uses the IsDate function to determine whether an expression can be
converted to a date:

Dim MyDate, YourDate, NoDate, MyCheck

MyDate = "October 19, 1962": YourDate = #10/19
MyCheck = [sDate(MyDate) ' Returns True.
MyCheck = IsDate(YourDate) ' Returns True
MyCheck = IsDate(NoDate) ' Returns False

Microsoft® Visual Basic® Scripting Edition . L ang uag e Reference
IsEmpty Function vesiond

See Also

Description
Returns a Boolean value indicating whether a variable has been initialized.
Syntax

IsEmpty(expression)

The expression argument can be any expression. However, because
IsEmpty is used to determine if individual variables are initialized, the
expression argument is most often a single variable name.

Remarks

IsEmpty returns True if the variable is uninitialized, or is explicitly set to
Empty; otherwise, it returns False. False is always returned if expression
contains more than one variable.

The following example uses the IsEmpty function to determine whether a
variable has been initialized:

Dim My Var, MyCheck

MyCheck = [sEmpty(MyVar) ' Returns True.
My Var = Null ' Assign Null.
MyCheck = [sEmpty(MyVar) ' Returns False.
MyVar = Empty " Assign Empty.

MyCheck = IsEmpty(MyVar) ' Returns True.

Microsoft® Visual Basic® Scripting Edition I SN“ll _g_g_L anguage REference

Version 1
Function

See Also

Description

Returns a Boolean value that indicates whether an expression contains no
valid data (Null).

Syntax

IsNull(expression)

The expression argument can be any expression.

Remarks

IsNull returns True if expression is Null, that is, it contains no valid data;
otherwise, IsNull returns False. If expression consists of more than one
variable, Null in any constituent variable causes True to be returned for the
entire expression.

The Null value indicates that the variable contains no valid data. Null is not the same as Empty,

which indicates that a variable has not yet been initialized. It is also not the same as a zero-length
string (""), which is sometimes referred to as a null string.

Important Use the IsNull function to determine whether an
expression contains a Null value. Expressions that you might
expect to evaluate to True under some circumstances, such as
If Var = Null and If Var <> Null, are always False. This is
because any expression containing a Null is itself Null, and
therefore, False.

The following example uses the IsNull function to determine whether a variable contains a Null:

Dim MyVar, MyCheck
MyCheck = [sNull(MyVar) ' Returns False.

My Var = Null ' Assign Null.
MyCheck = IsNull(MyVar) ' Returns True.
MyVar = Empty " Assign Empty.

MyCheck = [sNull(MyVar) ' Returns False.

Microsoft® Visual Basic® Scripting Edition

IsNumeric Language Relerence
Function

See Also

Description

Returns a Boolean value indicating whether an expression can be evaluated
as a number.

Syntax

IsNumeric(expression)

The expression argument can be any expression.

Remarks

IsNumeric returns True if the entire expression is recognized as a number;
otherwise, it returns False. IsNumeric returns False if expression is a date

expression.

The following example uses the IsNumeric function to determine whether a variable can be
evaluated as a number:

Dim My Var, MyCheck

My Var = 53 ' Assign a value.
MyCheck = [sNumeric(MyVar) 'Returns True.
My Var = "459.95" ' Assign a value.
MyCheck = [sNumeric(MyVar) 'Returns True.
My Var = "45 Help" ' Assign a value.
MyCheck = [sNumeric(MyVar) 'Returns False.

Microsoft® Visual Bas.ic® Scripting Edition . w
ISOb]ECt FunCtlon Version 1

See Also

Description

Returns a Boolean value indicating whether an expression references a
valid Automation object.

Syntax

IsObject(expression)

The expression argument can be any expression.

Remarks

IsObject returns True if expression is a variable of Object subtype or a
user-defined object; otherwise, it returns False.

The following example uses the IsObject function to determine if an identifier represents an object
variable:

Dim Mylnt, MyCheck, MyObject

Set MyObject = Me

MyCheck = IsObject(MyObject) ' Returns True.
MyCheck = [sObject(Mylnt) ' Returns False.

[]
Microsoft® Visual Basic® Scripting Edition J 0 ln _g_g_L anguage Reference

o Version 2
Function

See Also

Description

Returns a string created by joining a number of substrings contained in an
array.

Syntax

Join(list[, delimiter])

The Join function syntax has these parts:

|Part "Description |
Required. One-dimensional array containing

substrings to be joined.

Optional. String character used to separate the
substrings in the returned string. If omitted, the space

delimiter]jcharacter (" ") is used. If delimiter is a zero-length
string, all items in the list are concatenated with no

delimiters.

list

Remarks

The following example uses the Join function to join the substrings of
MyArray:

Dim MyString

Dim MyArray(4)
MyArray(0) = "Mr."

MyArray(1) = "John "

MyArray(2) = "Doe "

MyArray(3) = "III"

MyString = Join(MyArray) ' MyString contains "

Microsoft® Visual Basic® Scripting Edition L B O u n d @gﬁg%rence
o Version 1
Function

See Also

Description

Returns the smallest available subscript for the indicated dimension of an
array.

Syntax

LBound(arraynamel[, dimension])

The LBound function syntax has these parts:

|Part "Description

Name of the array variable; follows standard
variable naming conventions.

Whole number indicating which dimension's lower

bound is returned. Use 1 for the first dimension, 2
for the second, and so on. If dimension is omitted, 1

is assumed.

arrayname

dimension

Remarks

The LBound function is used with the UBound function to determine the
size of an array. Use the UBound function to find the upper limit of an
array dimension.

The lower bound for any dimension is always 0.

Microsoft® Visual Basic® Scripting Edition L C ase @gﬁg%rence
o Version 1
Function

See Also

Description
Returns a string that has been converted to lowercase.

Syntax

L. Case(string)

The string argument is any valid string expression. If string contains Null, Null is returned.

Remarks

Only uppercase letters are converted to lowercase; all lowercase letters and
nonletter characters remain unchanged.

The following example uses the L.Case function to convert uppercase
letters to lowercase:

Dim MyString

Dim LCaseString

MyString = "VBSCiript"

LCaseString = [.Case(MyString) ' LCaseString contains "vbscript"

Microsoft® Visual Basic® Scripting Edition L Eft _g_gL anguage REference

Version 1
Function

See Also

Description
Returns a specified number of characters from the left side of a string.
Syntax

Left(string, length)

The Left function syntax has these arguments:

Part IDescription

String expression from which the leftmost characters are
returned. If string contains Null, Null is returned.

Numeric expression indicating how many characters to
return. If 0, a zero-length string("") is returned. If greater
than or equal to the number of characters in string, the
entire string is returned.

string

length

Remarks

To determine the number of characters in string, use the Len function.

The following example uses the Left function to return the first three characters of MyString:

Dim MyString, LeftString
MyString = "VBSCript"
LeftString = Left(MyString, 3) ' LeftString contain

Note The LeftB function is used with byte data contained in a
string. Instead of specifying the number of characters to return,
length specifies the number of bytes.

Microsoft® Visual Basic® Scripting Edition L en Lan uage REference

Version 1
Function

See Also

Description

Returns the number of characters in a string or the number of bytes required
to store a variable.

Syntax

Len(string | varname)

The Len function syntax has these parts:

|Part "Description |
Any valid string expression. If string contains Null, ‘

strin .
9 [Null is returned.
Any valid variable name. If varname contains Null,
varname .
Null is returned.
Remarks

The following example uses the Len function to return the number of
characters in a string;:

Dim MyString
MyString = Len("VBSCRIPT") ' MyString contains 8.

Note The LenB function is used with byte data contained in a string. Instead of
returning the number of characters in a string, LenB returns the number of bytes used

to represent that string.

Microsoft® Visual Basic® Scripting Edition L.anguage Reference

Length Property Version 5

See Also Applies To

Description
Returns the length of a match found in a search string.
Syntax

object.Length

The object argument is always a Match object.
Remarks

The following code illustrates the use of the Length property:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkix = New RegExp ' Create regular expressiol
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regkEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match " & I & " found at position "
RetStr = RetStr & Match.FirstIndex & ". Match Length is "
RetStr = RetStr & Match.Length

RetStr = RetStr & " characters." & vbCRLF

Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition

L.oadPicture Language Reference
Function

Description
Returns a picture object. Available only on 32-bit platforms.
Syntax

LoadPicture(picturename)

The picturename argument is a string expression that indicates the name of
the picture file to be loaded.

Remarks

Graphics formats recognized by LoadPicture include bitmap (.bmp) files,
icon (.ico) files, run-length encoded (.rle) files, metafile (.wmf) files,
enhanced metafiles (.emf), GIF (.gif) files, and JPEG (.jpg) files.

Microsoft® Visual Basic® Scripting Edition L 0 g Lan uage REference

Version 1
Function

See Also

Description
Returns the natural logarithm of a number.
Syntax

Log(number)

The number argument can be any valid numeric expression greater than 0.

Remarks

The natural logarithm is the logarithm to the base e. The constant e is
approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by the
natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

The following example illustrates a custom Function that calculates base-
10 logarithms:

Function Log10(X)
Logl10 = Log(X) / Log(10)
End Function

Microsoft® Visual Basic® Scripting Edition LTrim ,
Language Reference
RTrim, and Trim Version 1

Functions

See Also

Description

Returns a copy of a string without leading spaces (LTrim), trailing spaces
(RTrim), or both leading and trailing spaces (Trim).

Syntax

LTrim(string)

RTrim(string)

Trim(string)

The string argument is any valid string expression. If string contains Null,
Null is returned.

Remarks

The following example uses the LTrim, RTrim, and Trim functions to trim
leading spaces, trailing spaces, and both leading and trailing spaces,
respectively:

Dim My Var
MyVar = LTrim(" vbscript ") ' MyVar contains "vl

MyVar = RTrim(" vbscript ") ' MyVar contains "
MyVar = Trim(" vbscript ") ' MyVar contains "vb

Microsoft® Visual Basic® Scripting Edition M atCh Language REference
b o Version 5

See Also Properties

Description

Provides access to the read-only properties of a regular
expression match.

Remarks

A Match object can be only created using the Execute method of
the RegExp object, which actually returns a collection of Match
objects. All Match object properties are read-only.

When a regular expression is executed, zero or more Match
objects can result. Each Match object provides access to the
string found by the regular expression, the length of the string,
and an index to where the match was found.

The following code illustrates the use of the Match object:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkx = New RegExp ' Create regular expressiol
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regEx.Execute(strng) ' Execute search.
For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match " & I & " found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF
Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition M atChe S Language REference

. Version 5
Collection
See Also Properties
Description

Collection of regular expression Match objects.

Remarks

A Matches collection contains individual Match objects, and can
be only created using the Execute method of the RegExp object.
The Matches collection's one property is read-only, as are the
individual Match object properties.

When a regular expression is executed, zero or more Match
objects can result. Each Match object provides access to the
string found by the regular expression, the length of the string,
and an index to where the match was found.

The following code illustrates how to obtain a Matches
collection from a regular expression search and how to iterate the
collection:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkx = New RegExp ' Create regular expressiol
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.

regkx.Global = True ' Set global applicability.

Set Matches = regEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.
RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF

Next

RegExpTest = RetStr

End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

(J
Microsoft® Visual Basic® Scripting Edition Ml d Lan uage Reference

Version 1
Function

See Also

Description
Returns a specified number of characters from a string.
Syntax

Mid(string, start[, length])

The Mid function syntax has these arguments:

Part IDescription

String expression from which characters are returned. If
string contains Null, Null is returned.

string

start |begins. If start is greater than the number of characters in
string, Mid returns a zero-length string ("").

Number of characters to return. If omitted or if there are
fewer than length characters in the text (including the
character at start), all characters from the start position to
the end of the string are returned.

| Character position in string at which the part to be taken
|length

Remarks

To determine the number of characters in string, use the Len function.

The following example uses the Mid function to return six characters,
beginning with the fourth character, in a string:

Dim My Var

MyVar = Mid("VB Script is fun!", 4, 6) ' MyVar cc

Note The MidB function is used with byte data contained in a
string. Instead of specifying the number of characters, the
arguments specify numbers of bytes.

[}
Microsoft® Visual Basic® Scripting Edition M lnute @gﬁg%ren@
o Version 1
Function

See Also

Description

Returns a whole number between 0 and 59, inclusive, representing the
minute of the hour.

Syntax

Minute(time)

The time argument is any expression that can represent a time. If time contains Null, Null is returned.

Remarks

The following example uses the Minute function to return the minute of the
hour:

Dim My Var
MyVar = Minute(Now)

Microsoft® Visual Basic® Scripting Edition

Miscellaneous Language Reference
Constants

See Also

Since this constant is built into VBScript, you don't have to define it before using
it. Use it anywhere in your code to represent the values shown.

Constant " Value |[Description

User-defined error numbers should be greater t/
for example,

vbObjectError|-2147221504
Err.Raise Number = vbObjectE

Microsoft® Visual Basic® Scripting Edition M 0 d Lan uage REference

Version 1
Operator

See Also

Description
Divides two numbers and returns only the remainder.
Syntax

result = number1 Mod number?2

The Mod operator syntax has these parts:

IPart "Description |

|result "Any numeric variable. |

|number1 ||Any numeric expression. |

|number2 ||Any numeric expression. |
Remarks

The modulus, or remainder, operator divides numberl by number2
(rounding floating-point numbers to integers) and returns only the
remainder as result. For example, in the following expression, A (which is
result) equals 5.

A =19 Mod 6.7

If any expression is Null, result is also Null. Any expression that is Empty
is treated as 0.

Microsoft® Visual Basic® Scripting Edition M 0 nth @g&%rence
o Version 1
Function

See Also

Description

Returns a whole number between 1 and 12, inclusive, representing the
month of the year.

Syntax

Month(date)

The date argument is any expression that can represent a date. If date contains Null, Null is returned.

Remarks

The following example uses the Month function to return the current
month:

Dim My Var
MyVar = Month(Now) ' MyVar contains the number correspondin;
' the current month.

Microsoft® Visual Basic® Scripting Edition

MonthName Language Relerence
Function

See Also

Description
Returns a string indicating the specified month.
Syntax

MonthName(month[, abbreviate])

The MonthName function syntax has these parts:

IPart "Description |
month Required. The numeric designation of the month. For
example, January is 1, February is 2, and so on.
Optional. Boolean value that indicates if the month
. |name is to be abbreviated. If omitted, the default is
abbreviate . .
False, which means that the month name is not
abbreviated.
Remarks

The following example uses the MonthName function to return an
abbreviated month name for a date expression:

Dim My Var
MyVar = MonthName(10, True) ' My Var contains "Oct".

Microsoft® Visual Basic® Scripting Edition M S gB OX _g_g—L danguage REference

Version 2
Constants

See Also

The following constants are used with the MsgBox function to identify what
buttons and icons appear on a message box and which button is the default. In
addition, the modality of the MsgBox can be specified. Since these constants are
built into VBScript, you don't have to define them before using them. Use them
anywhere in your code to represent the values shown for each.

vbDefaultButton4 768 ||[Fourth button is the default.

|Constant "Value"Description |
|VbOKOnly " 0 "Display OK button only. |
IVbOKCancel " 1 "Display OK and Cancel buttons. |
vbAbortRetrylgnore|| 2 l]))&ftpol I?Z, Abort, Retry, and Ignore
vbYesNoCancel “ 3 E&ftpol I?z Yes, No, and Cancel ‘
IVbYesNo " 4 "Display Yes and No buttons. |
vbRetryCancel “ 5 E&ftpol I?z Retry and Cancel ‘
vbCritical 16 [|Display Critical Message icon.
vbQuestion 32 [[Display Warning Query icon.
|VbExclamation " 48 "Display Warning Message icon. |
vbInformation i;srllnlay Information Message
vbDefaultButtonl 0 |[[First button is the default.
|VbDefaultButton2 " 256 "Second button is the default. |
IVbDefaultButtonS " 512 "Third button is the default. |

Application modal. The user must

vbApplicationModal 0 [respond to the message box before
continuing work in the current
application.

System modal. On Win16 systems,
all applications are suspended until
the user responds to the message
box. On Win32 systems, this
constant provides an application
modal message box that always
remains on top of any other
programs you may have running.

vbSystemModal 4096

The following constants are used with the MsgBox function to identify
which button a user has selected. These constants are only available when
your project has an explicit reference to the appropriate type library
containing these constant definitions. For VBScript, you must explicitly
declare these constants in your code.

|Constant "Value"Description

|VbYes "
||

|VbN0 No button was clicked.

|
|VbOK 1 "OK button was clicked. |
|VbCancel|| 2 "Cancel button was clicked. |
IVbAbort " 3 "Abort button was clicked. |
IVbRetry " 4 "Retry button was clicked. |
IVbIgnore " 5 "Ignore button was clicked. |
6 "Yes button was clicked. I

A

Microsoft® Visual Basic® Scripting Edition M S gB OX @g&%rence
. Version 1
Function

See Also

Description

Displays a message in a dialog box, waits for the user to click a button, and
returns a value indicating which button the user clicked.

Syntax

MsgBox(prompt|, buttons]|, title][, helpfile, context])

The MsgBox function syntax has these arguments:

|Part "Description

String expression displayed as the message in the dialog
box. The maximum length of prompt is approximately
1024 characters, depending on the width of the
characters used. If prompt consists of more than one
line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or
carriage return—linefeed character combination
(Chr(13) & Chr(10)) between each line.

Numeric expression that is the sum of values specifying
the number and type of buttons to display, the icon style
buttons(lto use, the identity of the default button, and the
modality of the message box. See Settings section for
values. If omitted, the default value for buttons is 0.

String expression displayed in the title bar of the dialog
title [[box. If you omit title, the application name is placed in
the title bar.

String expression that identifies the Help file to use to

helpfilelprovide context-sensitive Help for the dialog box. If
helpfile is provided, context must also be provided. Not
available on 16-bit platforms.

Numeric expression that identifies the Help context
number assigned by the Help author to the appropriate
Help topic. If context is provided, helpfile must also be
provided. Not available on 16-bit platforms.

context

Settings

The buttons argument settings are:

|Constant "Value"Description |
vbOKOnly 0 [[Display OK button only.
vbOKCancel 1 ||Display OK and Cancel buttons.
vbAbortRetrylgnorel| 2 l]))&ftpol I?Z Abort, Retry, and Ignore
vbYesNoCancel “ 3 E&ftl;l I?Z Yes, No, and Cancel ‘
|VbYesNo " 4 "Display Yes and No buttons. |
vbRetryCancel “ 5 E&ftl;l I?Z Retry and Cancel ‘
|VbCritical " 16 "Display Critical Message icon. |
vbQuestion 32 [[Display Warning Query icon.
vbExclamation 48 [[Display Warning Message icon.
vbInformation i:)srllnlay Information Message
vbDefaultButtonl 0 ||First button is default.
|VbDefaultButton2 " 256 "Second button is default. |
vbDefaultButton3 512 |Third button is default.
vbDefaultButton4 768 [[Fourth button is default.

Application modal; the user must
respond to the message box before

vbApplicationModal|| 0 [lcontinuing work in the current
application.

System modal; all applications are
vbSystemModal 4096 |[suspended until the user responds
to the message box.

The first group of values (0-5) describes the number and type of buttons displayed in the dialog box;
the second group (16, 32, 48, 64) describes the icon style; the third group (0, 256, 512, 768)
determines which button is the default; and the fourth group (0, 4096) determines the modality of the
message box. When adding numbers to create a final value for the argument buttons, use only one
number from each group.

Return Values

The MsgBox function has the following return values:

|Constant "Value"Button

|
VbOK 1 [ok {
vbCancel| 2 [Cancel
IVbAbort " 3 "Abort |
IVbRetry " 4 "Retry |
|VbIgnore " 5 "Ignore |
|VbYes " 6 "Yes |
|VbN0 " 7 "No |

Remarks

When both helpfile and context are provided, the user can press F1 to view
the Help topic corresponding to the context.
If the dialog box displays a Cancel button, pressing the ESC key has the same effect as clicking

Cancel. If the dialog box contains a Help button, context-sensitive Help is provided for the dialog
box. However, no value is returned until one of the other buttons is clicked.

When the MsgBox function is used with Microsoft Internet Explorer, the title of any dialog presented
always contains "VBScript:" to differentiate it from standard system dialogs.

The following example uses the MsgBox function to display a message box and return a value
describing which button was clicked:

Dim My Var
My Var = MsgBox ("Hello World!", 65, "MsgBox Example") ' My

" depending on which button is
' clicked.

* Language Reference

Microsoft® Visual Basic® Scripting Edition
Version 1

Operator

See Also

Description
Multiplies two numbers.
Syntax

result = number1*number?2

The * operator syntax has these parts:

Part Description

result Any numeric variable.

Inumberl "Any numeric expression. |

|number2 "Any numeric expression. |
Remarks

If one or both expressions are Null expressions, result is Null. If an
expression is Empty, it is treated as if it were 0.

Microsoft® Visual Basic® Scripting Edition - _Language REference

Version 1
Operator

See Also

Description

Finds the difference between two numbers or indicates the negative value of
a numeric expression.

Syntax 1
result = numberl-number2

Syntax 2

-number

The - operator syntax has these parts:

|Part "Description |

|result "Any numeric variable. |

|number ||Any numeric expression. |

|number1 "Any numeric expression. |

|number2 "Any numeric expression. |
Remarks

In Syntax 1, the - operator is the arithmetic subtraction operator used to find
the difference between two numbers. In Syntax 2, the - operator is used as
the unary negation operator to indicate the negative value of an expression.

If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is treated
as if it were 0.

Microsoft® Visual Basic® Scripting Edition NO t Lan uage REference

Version 1
Operator

See Also

Description
Performs logical negation on an expression.
Syntax

result = Not expression

The Not operator syntax has these parts:

Part Description

result Any numeric variable.

expression "Any expression.
Remarks

The following table illustrates how result is determined:

|If expression is Then result is |
|True False |
|False True |
[Null Null |

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit in
result according to the following table:

Bit in expression Bit in result
0 1
1 o

Microsoft® Visual Basic® Scripting Edition NOW Lan uage REference

Version 1
Function

See Also

Description

Returns the current date and time according to the setting of your
computer's system date and time.

Syntax
Now

Remarks

The following example uses the Now function to return the current date and
time:

Dim My Var
MyVar = Now ' MyVar contains the current date and time.

. Language Reference
Microsoft® Visual Basic® Scripting Edition NO thlng WLOHl

See Also

Description

The Nothing keyword in VBScript is used to disassociate an object variable
from any actual object. Use the Set statement to assign Nothing to an
object variable. For example:

Set MyObject = Nothing

Several object variables can refer to the same actual object. When Nothing
is assigned to an object variable, that variable no longer refers to any actual
object. When several object variables refer to the same object, memory and
system resources associated with the object to which the variables refer are
released only after all of them have been set to Nothing, either explicitly

using Set, or implicitly after the last object variable set to Nothing goes out

of scope.

Language Reference
Microsoft® Visual Basic® Scripting Edition N“ll \/ELOH:[

See Also

Description

The Null keyword is used to indicate that a variable contains no valid data.
This is not the same thing as Empty.

Microsoft® Visual Basic® Scripting Edition Nu mb e r _g_g—L dngudge REference

Version 1
Property

See Also Applies to

Description

Returns or sets a numeric value specifying an error. Number is the Err
object's default property.

Syntax

object.Number [= errornumber]

The Number property syntax has these parts:

|Part "Description |
Iobject "Always the Err object. |
An integer representing a VBScript error number
errornumber
or an SCODE error value.
Remarks

When returning a user-defined error from an Automation object, set
Err.Number by adding the number you selected as an error code to the
constant vbObjectError.

The following code illustrates the use of the Number property

On Error Resume Next

Err.Raise vbObjectError + 1, "SomeObject" ' Raise Object Error #
MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear ' Clear the error.

Microsoft® Visual Basic® Scripting Edition O Ct Lan uage REference

Version 1
Function

See Also

Description

Returns a string representing the octal value of a number.

Syntax

Oct(number)

The number argument is any valid expression.

Remarks

If number is not already a whole number, it is rounded to the nearest whole
number before being evaluated.

|If number is "Oct returns |
[Null [~un. |
|| |
|| |

|Empty

|Any other number Up to 11 octal characters,

You can represent octal numbers directly by preceding numbers in the proper range with &O. For
example, &010 is the octal notation for decimal 8.

The following example uses the Oct function to return the octal value of a number:

Dim MyOct

MyOct = Oct(4) 'Returns 4.
MyOct = Oct(8) ' Returns 10.
MyOct = Oct(459) 'Returns 713.

Microsoft® Visual Basic® Scripting Edition O n Lan uage REference

Version 1
Error Statement

See Also

Description

Enables or disables error-handling.

Syntax

On Error Resume Next
On Error GoTo 0

Remarks

If you don't use an On Error Resume Next statement anywhere in your
code, any run-time error that occurs can cause an error message to be
displayed and code execution stopped. However, the exact behavior is
determined by the host running the code. The host can sometimes opt to
handle such errors differently. In some cases, the script debugger may be
invoked at the point of the error. In still other cases, there may be no
apparent indication that any error occurred because the host does not to
notify the user. Again, this is purely a function of how the host handles any
errors that occur.

Within any particular procedure, an error is not necessarily fatal as long as error-handling is enabled
somewhere along the call stack. If local error-handling is not enabled in a procedure and an error
occurs, control is passed back through the call stack until a procedure with error-handling enabled is
found and the error is handled at that point. If no procedure in the call stack is found to have error-
handling enabled, an error message is displayed at that point and execution stops or the host handles
the error as appropriate.

On Error Resume Next causes execution to continue with the statement immediately following the
statement that caused the run-time error, or with the statement immediately following the most recent
call out of the procedure containing the On Error Resume Next statement. This allows execution to
continue despite a run-time error. You can then build the error-handling routine inline within the
procedure.

An On Error Resume Next statement becomes inactive when another procedure is called, so you
should execute an On Error Resume Next statement in each called routine if you want inline error
handling within that routine. When a procedure is exited, the error-handling capability reverts to
whatever error-handling was in place before entering the exited procedure.

Use On Error GoTo 0 to disable error handling if you have previously enabled it using On Error
Resume Next.

The following example illustrates use of the On Error Resume Next statement:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox "Error # " & CStr(Err.Number) & " " & Err.Description
Err.Clear 'Clear the error.

Microsoft® Visual Basic® Scripting Edition

Operator Language Refetence
Precedence

See Also

Description

When several operations occur in an expression, each part is evaluated and
resolved in a predetermined order called operator precedence. Parentheses
can be used to override the order of precedence and force some parts of an
expression to be evaluated before other parts. Operations within parentheses
are always performed before those outside. Within parentheses, however,
normal operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated
first, comparison operators are evaluated next, and logical operators are evaluated last. Comparison
operators all have equal precedence; that is, they are evaluated in the left-to-right order in which they
appear. Arithmetic and logical operators are evaluated in the following order of precedence:

|Arithmetic "Comparison "Logical
|Exponentiation) "Equality =) "Not
|Negation) "Inequality (<>) "And
i\f}l};iplicaﬁon and division Less than (<) Or

|Modulus arithmetic (Mod) "Less than or equal to (<=)||Eqv

Addition and subtraction (+, [|Greater than or equal to
) (>=)
|String concatenation (&) "Is "&

Imp

|
|
i
IInteger division (\) "Greater than (>) "Xor |
i
|

When multiplication and division occur together in an expression, each operation is evaluated as it
occurs from left to right. Likewise, when addition and subtraction occur together in an expression,
each operation is evaluated in order of appearance from left to right.

The string concatenation operator (&) is not an arithmetic operator, but in precedence it does fall

after all arithmetic operators and before all comparison operators. The Is operator is an object
reference comparison operator. It does not compare objects or their values; it checks only to
determine if two object references refer to the same object.

[]
Microsoft® Visual Basic® Scripting Edition O p tl 0 n _g_g—L dngudge REference

Version 1
Explicit Statement

Description

Forces explicit declaration of all variables in a script.
Syntax

Option Explicit
Remarks

If used, the Option Explicit statement must appear in a script before any
other statements.

When you use the Option Explicit statement, you must explicitly declare
all variables using the Dim, Private, Public, or ReDim statements. If you
attempt to use an undeclared variable name, an error occurs.

Tip Use Option Explicit to avoid incorrectly typing the name
of an existing variable or to avoid confusion in code where the
scope of the variable is not clear.

The following example illustrates use of the Option Explicit statement:

Option Explicit ' Force explicit variable declarati
Dim My Var ' Declare variable.

Mylnt = 10 ' Undeclared variable generates er
My Var = 10 ' Declared variable does not gene

Microsoft® Visual Basic® Scripting Edition O r @g&%rence
Version 1
Operator

See Also

Description
Performs a logical disjunction on two expressions.
Syntax

result = expressionl Or expression2

The Or operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

If either or both expressions evaluate to True, result is True. The following
table illustrates how result is determined:

IIf expressionl is "And expression2 is Then result is |
|True "True True |
|True "False True |
ITrue "M True |
|False "True True |
|False "False False |
[False [Nun Null |
|Null !lTrue True !
| i

[Null |False |Nun |
[Null [~Nun [Nun |

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in result according to the following table:

If bit in expressionl And bit in expression?2 is|[Then result is

is

0 0 0

o I I |
1 Jo ! |
1 I I |

Microsoft® Visual Basic® Scripting Edition P atte rn _g_g—L anguage Re ference

Version 5
Property

See Also Applies to

Description
Sets or returns the regular expression pattern being searched for.
Syntax

object.Pattern [= "searchstring"]

The Pattern property syntax has these parts:

IPart Description |

Iobject Required. Always a RegExp object variable. |

searchstring

Optional. Regular string expression being searched for. May include any of the
regular expression characters defined in the table in the Settings section.

Settings

Special characters and sequences are used in writing patterns for
regular expressions. The following table describes and gives an
example of the characters and sequences that can be used.

ICharacter"Description

|\

i
I/\ "Matches the beginning of input. |
I

Marks the next character as either a special character or a literal. For example, "n"
matches the character "n". "\n" matches a newline character. The sequence "\\"
matches "\" and "\(" matches "(".

|$ "Matches the end of input.

Matches the preceding character zero or more times. For example, "zo*" matches
either "z" or "zoo".

*

i i . X, , 'z Z
+ Matches the preceding character one or more times. For example, "zo+" matches "zoo"
but not "z".
atches the preceding character zero or one time. For example, "a?ve?" matches the
n Matches th d haract t F le, "a?ve?" matches th

"ve" in "never".

I. "Matches any single character except a newline character.

Matches pattern and remembers the match. The matched substring can be retrieved
(pattern) ||from the resulting Matches collection, using Item [0]...[n]. To match parentheses
characters (), use "\(" or "\)".

the first two digits comprise the expression. Allows ASCII codes to be used in regular
expressions.

ly Matches either x or y. For example, "z|[food" matches "z" or "food". "(z|f)oo" matches
"zoo" or "food".

(n} n is a nonnegative integer. Matches exactly n times. For example, "o{2}" does not
match the "0" in "Bob," but matches the first two o's in "foooood".
n is a nonnegative integer. Matches at least n times. For example, "o{2,}" does not

{n,} match the "o" in "Bob" and matches all the o's in "foooood." "0{1,}" is equivalent to
"o+". "0{0,}" is equivalent to "o*".
m and n are nonnegative integers. Matches at least n and at most m times. For

{n,m} example, "0{1,3}" matches the first three o's in "fooooood." "0{0,1}" is equivalent to
l|0?"'

[zl A character set. Matches any one of the enclosed characters. For example, "[abc]"

% matches the "a" in "plain".
[Axyz] A negative character set. Matches any character not enclosed. For example, "[Aabc]"
4 matches the "p" in "plain".

[a-z] A range of characters. Matches any character in the specified range. For example, "[a-
z]" matches any lowercase alphabetic character in the range "a" through "z".

[Am-z] A negative range characters. Matches any character not in the specified range. For
example, "[m-z]" matches any character not in the range "m" through "z".

\b Matches a word boundary, that is, the position between a word and a space. For
example, "er\b" matches the "er" in "never" but not the "er" in "verb".

I\B "Matches a nonword boundary. "ea*r\B" matches the "ear" in "never early". |

I\d "Matches a digit character. Equivalent to [0-9]. |

I\D "Matches a nondigit character. Equivalent to [A0-9]. |

\f Matches a form-feed character.

\n Matches a newline character.

I\r "Matches a carriage return character. |

\s Matches any white space including space, tab, form-feed, etc. Equivalent to "
[\M\n\r\t\v]".

I\S "Matches any nonwhite space character. Equivalent to "[A \f\n\r\t\v]". |

I\t "Matches a tab character. |

I\v "Matches a vertical tab character. |

I\w "Matches any word character including underscore. Equivalent to "[A-Za-z0-9_]". |

I\W "Matches any nonword character. Equivalent to "[AA-Za-z0-9_]". |

\num Matches num, where num is a positive integer. A reference back to remembered
matches. For example, "(.)\1" matches two consecutive identical characters.
digits long. For example, "\11" and "\011" both match a tab character. "\0011" is the
equivalent of "™\001" & "1". Octal escape values must not exceed 256. If they do, only

Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must

\n ‘
I

|Matches n, where n is an octal escape value. Octal escape values must be 1, 2, or 3

\xn be exactly two digits long. For example, "\x41" matches "A". "\x041" is equivalent to

"\x04" & "1". Allows ASCII codes to be used in regular expressions.

Remarks

The following code illustrates the use of the Pattern property:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkix = New RegExp ' Create a regular expressi
regbx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regkEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF
Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

[J
Microsoft® Visual Basic® Scripting Edition P rlvate @gﬁg%reﬂce
Version 2
Statement

See Also

Description

Declares private variables and allocates storage space. Declares,
in a Class block, a private variable.

Syntax

Private varname[([subscripts])][, varname[([subscripts])1] . . .

The Private statement syntax has these parts:

IPart Description |

Ivamame Name of the variable; follows standard variable naming conventions. |

Dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

subscripts upper [’ Upper] oo

The lower bound of an array is always zero.

Remarks

Private statement variables are available only to the script in
which they are declared.

A variable that refers to an object must be assigned an existing

object using the Set statement before it can be used. Until it is
assigned an object, the declared object variable is initialized as

Empty.

You can also use the Private statement with empty parentheses
to declare a dynamic array. After declaring a dynamic array, use
the ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly
specified in a Private, Public, or Dim statement, an error occurs.

Tip When you use the Private statement in a procedure, you generally put the Private statement
at the beginning of the procedure.

The following example illustrates use of the Private statement:

Private MyNumber ' Private Variant variable.
Private MyArray(9)' Private array variable.

' Multiple Private declarations of Variant variables.
Private MyNumber, My Var, YourNumber

Microsoft® Visual Basic® Scripting Edition

anguage Reference
Property Get B
Statement

See Also

Description

Declares, in a Class block, the name, arguments, and code that
form the body of a Property procedure that gets (returns) the
value of a property.

Syntax

[Public [Default]| Private] Property Get name [(arglist)]

[statements]

[[Set] name = expression]

[Exit Property]

[statements]

[[Set] name = expression]
End Property

The Property Get statement syntax has these parts:

IPart "Description |
Public Indicates that the Property Get procedure is accessible to all other procedures in all

scripts.

Used only with the Public keyword to indicate that the property defined in the
Default .

Property Get procedure is the default property for the class.
Pri Indicates that the Property Get procedure is accessible only to other procedures in the

rivate .

Class block where it's declared.

Name of the Property Get procedure; follows standard variable naming conventions,
name except that the name can be the same as a Property Let or Property Set procedure in

the same Class block.

"List of variables representing arguments that are passed to the Property Get procedurel

when it is called. Multiple arguments are separated by commas. The name of each
argument in a Property Get procedure must be the same as the corresponding
argument in a Property Let procedure (if one exists).

arglist

statements
procedure.

Keyword used when assigning an object as the return value of a Property Get

Set
procedure.

Any group of statements to be executed within the body of the Property Get |

Iexpression"Return value of the Property Get procedure.

Remarks

If not explicitly specified using either Public or Private,
Property Get procedures are public by default, that is, they are
visible to all other procedures in your script. The value of local
variables in a Property Get procedure is not preserved between
calls to the procedure.

You can't define a Property Get procedure inside any other
procedure (e.g. Function or Property Let).

The Exit Property statement causes an immediate exit from a
Property Get procedure. Program execution continues with the
statement that follows the statement that called the Property Get
procedure. Any number of Exit Property statements can appear
anywhere in a Property Get procedure.

Like a Sub and Property Let procedure, a Property Get
procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its
arguments. However, unlike a Sub and Property Let, you can
use a Property Get procedure on the right side of an expression
in the same way you use a Function or property name when you
want to return the value of a property.

Microsoft® Visual Basic® Scripting Edition

anguage Reference
Property Let B
Statement

See Also

Description

Declares, in a Class block, the name, arguments, and code that
form the body of a Property procedure that assigns (sets) the
value of a property.

Syntax

[Public | Private] Property Let name ([arglist,] value)
[statements]
[Exit Property]
[statements]

End Property

The Property Let statement syntax has these parts:

IPart "Description

Public Indicates that the Property Let procedure is accessible to all other procedures in all |

scripts.

Indicates that the Property Let procedure is accessible only to other procedures in the

Private Class block where it's declared.

Name of the Property Let procedure; follows standard variable naming conventions,
name except that the name can be the same as a Property Get or Property Set procedure in
the same Class block.

List of variables representing arguments that are passed to the Property Let procedure
when it is called. Multiple arguments are separated by commas. The name of each
argument in a Property Let procedure must be the same as the corresponding
argument in a Property Get procedure. In addition, the Property Let procedure will
always have one more argument than its corresponding Property Get procedure. That
argument is the value being assigned to the property.

arglist

value

Variable to contain the value to be assigned to the property. When the procedure is
called, this argument appears on the right side of the calling expression.

statements
procedure.

Any group of statements to be executed within the body of the Property Let |

NoteVersion Version Every Property Let statement must define at least one argument for the
procedure it defines. That argument (or the last argument if there is more than one) contains the
actual value to be assigned to the property when the procedure defined by the Property Let
statement is invoked. That argument is referred to as value in the preceding syntax.

Remarks

If not explicitly specified using either Public or Private,
Property Let procedures are public by default, that is, they are
visible to all other procedures in your script. The value of local
variables in a Property Let procedure is not preserved between
calls to the procedure.

You can't define a Property Let procedure inside any other
procedure (e.g. Function or Property Get).

The Exit Property statement causes an immediate exit from a
Property Let procedure. Program execution continues with the
statement that follows the statement that called the Property Let
procedure. Any number of Exit Property statements can appear
anywhere in a Property Let procedure.

Like a Function and Property Get procedure, a Property Let
procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its
arguments. However, unlike a Function and Property Get
procedure, both of which return a value, you can only use a
Property Let procedure on the left side of a property assignment

expression.

Microsoft® Visual Basic® Scripting Edition

anguage Reference
Property Set DR
Statement

See Also

Description

Declares, in a Class block, the name, arguments, and code that
form the body of a Property procedure that sets a reference to an
object.

Syntax

[Public | Private] Property Set name([arglist,] reference)
[statements]
[Exit Property]
[statements]

End Property

The Property Set statement syntax has these parts:

IPart "Description |

Public Indicates that the Property Set procedure is accessible to all other procedures in all
scripts.

Private Indicates that the Property Set procedure is accessible only to other procedures in the

Class block where it's declared.

Name of the Property Set procedure; follows standard variable naming conventions,
name except that the name can be the same as a Property Get or Property Let procedure in
the same Class block.

List of variables representing arguments that are passed to the Property Set procedure
when it is called. Multiple arguments are separated by commas. In addition, the
Property Set procedure will always have one more argument than its corresponding
Property Get procedure. That argument is the object being assigned to the property.

arglist

Variable containing the object reference used on the right side of the object reference
reference |lassignment.

Sstatements,

procedure.

Any group of statements to be executed within the body of the Property Set ||

NoteVersion Version Every Property Set statement must define at least one argument for the
procedure it defines. That argument (or the last argument if there is more than one) contains the
actual object reference for the property when the procedure defined by the Property Set statement
is invoked. That argument is referred to as reference in the preceding syntax.

Remarks

If not explicitly specified using either Public or Private,
Property Set procedures are public by default, that is, they are
visible to all other procedures in your script. The value of local
variables in a Property Set procedure is not preserved between
calls to the procedure.

You can't define a Property Set procedure inside any other
procedure (e.g. Function or Property Let).

The Exit Property statement causes an immediate exit from a
Property Set procedure. Program execution continues with the
statement that follows the statement that called the Property Set
procedure. Any number of Exit Property statements can appear
anywhere in a Property Set procedure.

Like a Function and Property Get procedure, a Property Set
procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its
arguments. However, unlike a Function and Property Get
procedure, both of which return a value, you can only use a
Property Set procedure on the left side of an object reference
assignment (Set statement).

[
Microsoft® Visual Basic® Scripting Edition PUb llC @gﬁg%rence
Version 2
Statement

See Also

Description

Declares public variables and allocates storage space. Declares,
in a Class block, a private variable.

Syntax

Public varname[([subscripts])][, varname[([subscripts])]] . . .

The Public statement syntax has these parts:

IPart Description |

Ivamame Name of the variable; follows standard variable naming conventions. |

Dimensions of an array variable; up to 60 multiple dimensions may be declared. The
subscripts argument uses the following syntax:

subscripts upper [’ Upper] oo

The lower bound of an array is always zero.

Remarks

Public statement variables are available to all procedures in all
scripts.

A variable that refers to an object must be assigned an existing

object using the Set statement before it can be used. Until it is
assigned an object, the declared object variable is initialized as

Empty.

You can also use the Public statement with empty parentheses to
declare a dynamic array. After declaring a dynamic array, use the
ReDim statement within a procedure to define the number of
dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly
specified in a Private, Public, or Dim statement, an error occurs.

The following example illustrates the use of the Public
statement:

Public MyNumber ' Public Variant variable.
Public MyArray(9) ' Public array variable.

' Multiple Public declarations of Variant variables.
Public MyNumber, My Var, YourNumber

[]
Microsoft® Visual Basic® Scripting Edition Rals e _g_g_L anguage Reference

Method

See Also

Version 1

Applies to

Description

Generates a run-time error.

Syntax

object.Raise(number, source, description, helpfile, helpcontext)

The Raise method has these parts:

Part

Description

object

Always the Err object.

number

A Long integer subtype that identifies the nature of
the error. VBScript errors (both VBScript-defined
and user-defined errors) are in the range 0—65535.

source

A string expression naming the object or application
that originally generated the error. When setting this
property for an Automation object, use the form
[[project.class. 1f nothing is specified, the
programmatic ID of the current VBScript project is
used.

description

A string expression describing the error. If
unspecified, the value in number is examined. If it
can be mapped to a VBScript run-time error code, a
string provided by VBScript is used as description.
If there is no VBScript error corresponding to
number, a generic error message is used.

The fully qualified path to the Help file in which
help on this error can be found. If unspecified,

helpfile VBScript uses the fully qualified drive, path, and
file name of the VBScript Help file.

The context ID identifying a topic within helpfile
that provides help for the error. If omitted, the

helpcontext||VBScript Help file context ID for the error
corresponding to the number property is used, if it
exists.

Remarks

All the arguments are optional except number. If you use Raise, however,
without specifying some arguments, and the property settings of the Err
object contain values that have not been cleared, those values become the
values for your error.

When setting the number property to your own error code in an Automation object, you add your
error code number to the constant vbObjectError. For example, to generate the error number 1050,
assign vbObjectError + 1050 to the number property.

The following example illustrates use of the Raise method:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear 'Clear the error.

Microsoft® Visual Basic® Scripting Edition

Randomize Language Relerence
Statement

See Also

Description

Initializes the random-number generator.

Syntax

Randomize [number]

The number argument can be any valid numeric expression.

Remarks

Randomize uses number to initialize the Rnd function's random-number
generator, giving it a new seed value. If you omit number, the value
returned by the system timer is used as the new seed value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed the
first time it is called, and thereafter uses the last generated number as a seed value.

Note To repeat sequences of random numbers, call Rnd with a
negative argument immediately before using Randomize with a
numeric argument. Using Randomize with the same value for
number does not repeat the previous sequence.

The following example illustrates use of the Randomize statement:

Dim MyValue, Response
Randomize ' Initialize random-numbe

Do Until Response = vbNo
MyValue = Int((6 * Rnd) + 1) ' Generate randc
MsgBox My Value
Response = MsgBox ("Roll again? ", vbYesNo)
Loop

[J
Microsoft® Visual Basic® Scripting Edition RED lm Language Reference
Version 1
Statement

See Also

Description

Declares dynamic-array variables, and allocates or reallocates storage space
at procedure level.

Syntax

ReDim [Preserve] varname(subscripts) [, varname(subscripts)] . . .

The ReDim statement syntax has these parts:

|Part Description

Preserves the data in an existing array when you

Preserve . . .
change the size of the last dimension.

Name of the variable; follows standard variable

varname . .
naming conventions.

dimensions may be declared. The subscripts

argument uses the following syntax:
subscripts

upper [,upper] ...

The lower bound of an array is always zero.

Dimensions of an array variable; up to 60 multiple

Remarks

The ReDim statement is used to size or resize a dynamic array that has
already been formally declared using a Private, Public, or Dim statement
with empty parentheses (without dimension subscripts). You can use the
ReDim statement repeatedly to change the number of elements and

dimensions in an array.

If you use the Preserve keyword, you can resize only the last array dimension, and you can't change
the number of dimensions at all. For example, if your array has only one dimension, you can resize
that dimension because it is the last and only dimension. However, if your array has two or more
dimensions, you can change the size of only the last dimension and still preserve the contents of the
array.

The following example shows how you can increase the size of the last dimension of a dynamic array
without erasing any existing data contained in the array.

ReDim X(10, 10, 10)

ReDim Preserve X(10, 10, 15)

Caution If you make an array smaller than it was originally,
data in the eliminated elements is lost.

When variables are initialized, a numeric variable is initialized to 0 and a string variable is initialized
to a zero-length string (""). A variable that refers to an object must be assigned an existing object
using the Set statement before it can be used. Until it is assigned an object, the declared object
variable has the special value Nothing.

Microsoft® Visual Basic® Scripting Edition Re gE Xp Language REference
Version 5
[
Object

See Also Methods Properties

Description
Provides simple regular expression support.
Remarks

The following code illustrates the use of the RegExp object:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkix = New RegExp ' Create a regular expressi
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regkEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match found at position "
RetStr = RetStr & Match.Firstindex & ". Match Value is "
RetStr = RetStr & Match.Value & "'." & vbCRLF
Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition Re m @gﬁg%rence
Version 1
Statement

Description
Includes explanatory remarks in a program.
Syntax

Rem comment
or
' comment

The comment argument is the text of any comment you want to include. After the Rem keyword, a
space is required before comment.

Remarks

As shown in the syntax section, you can use an apostrophe (') instead of the Rem keyword. If the Rem
keyword follows other statements on a line, it must be separated from the statements by a colon.
However, when you use an apostrophe, the colon is not required after other statements.

The following example illustrates the use of the Rem statement:

Dim MyStrl, MyStr2

MyStrl = "Hello" : Rem Comment after a statement separated by a
MyStr2 = "Goodbye" ' This is also a comment; no colon is neede
Rem Comment on a line with no code; no colon is needed.

Microsoft® Visual Basic® Scripting Edition Rep la C e Language Reference
[
Function

See Also

Version 2

Description

Returns a string in which a specified substring has been replaced with
another substring a specified number of times.

Syntax

Replace(expression, find, replacewithl, start[, count[, compare]]])

The Replace function syntax has these parts:

|Part Description |
. Required. String expression containing substring to
expression
replace.
Ifind Required. Substring being searched for.
Ireplacewith Required. Replacement substring.
Optional. Position within expression where
start substring search is to begin. If omitted, 1 is
assumed. Must be used in conjunction with count.
Optional. Number of substring substitutions to
perform. If omitted, the default value is -1, which
count . N
means make all possible substitutions. Must be used
in conjunction with start.
Optional. Numeric value indicating the kind of
comparison to use when evaluating substrings. See
compare ||Settings section for values. If omitted, the default

value is 0, which means perform a binary
comparison.

Settings

The compare argument can have the following values:

|Constant Value"Description |

||
|VbBinaryCompare|| 0 "Perform a binary comparison. |
||

|VbTextCompare 1 "Perform a textual comparison. |

Return Values

Replace returns the following values:

|If "Replace returns
expression is zero- N
length Zero-length string ("").

expression is Null [|An error.

find is zero-length [|Copy of expression.

replacewith is zero- [[Copy of expression with all occurences of

length find removed.
start > .
: Zero-length string.
Len(expression)
|Count is0 "Copy of expression. |
Remarks

The return value of the Replace function is a string, with substitutions
made, that begins at the position specified by start and and concludes at the
end of the expression string. It is not a copy of the original string from start
to finish.

The following example uses the Replace function to return a string:
Dim MyString

MyString = Replace("XXpXXPXXp", "p", "Y") '
' of the string. R

MyString = Replace("XXpXXPXXp", "p", "Y", '
' Returns "Y XX

Microsoft® Visual Basic® Scripting Edition L angu a g e Re f erence

Replace Method Version 5

See Also

Applies to

Description

Replaces text found in a regular expression search.

Syntax

object.Replace(string1, string2)

The Replace method syntax has these parts:

IPart

Description

Required. Always the name of a RegExp object.

Iobject

Istringl

Required. String1 is the text string in which the text replacement is to occur.

Istring2

Required. String?2 is the replacement text string.

Remarks

The actual pattern for the text being replaced is set using the
Pattern property of the RegExp object.

The Replace method returns a copy of stringl with the text of
RegExp.Pattern replaced with string2. If no match is found, a
copy of string1 is returned unchanged.

The following code illustrates use of the Replace method:

Function ReplaceTest(patrn, replStr)

Dim regEXx, strl ' Create variables.
strl = "The quick brown fox jumped over the lazy dog."

Set regkx = New RegExp ' Create regular expr
regEx.Pattern = patrn ' Set pattern.
regEx.IgnoreCase = True ' Make case insensiti

ReplaceTest = regEx.Replace(strl, replStr) ' Make replacement.
End Function

MsgBox(ReplaceTest("fox", "cat")) ' Replace 'fox' with 'c

In addition, the Replace method can replace subexpressions in
the pattern. The following call to the function shown in the
previous example swaps each pair of words in the original string:

MsgBox(ReplaceText("(\S+)(\s+)(\S+)", "$3$2$1")) ' Swap pair

Microsoft® Visual Basic® Scripting Edition RGB @g&%rence
. Version 2
Function

Description

Returns a whole number representing an RGB color value.

Syntax

RGB(red, green, blue)

The RGB function has these parts:

IPart "Description |

red Required. Number in the range 0-255 representing the red
component of the color.
Required. Number in the range 0-255 representing the
green
green component of the color.
Required. Number in the range 0-255 representing the
blue
blue component of the color.
Remarks

Application methods and properties that accept a color specification expect
that specification to be a number representing an RGB color value. An
RGB color value specifies the relative intensity of red, green, and blue to
cause a specific color to be displayed.

The low-order byte contains the value for red, the middle byte contains the
value for green, and the high-order byte contains the value for blue.

For applications that require the byte order to be reversed, the following
function will provide the same information with the bytes reversed:

Function RevRGB(red, green, blue)

RevRGB= CLng(blue + (green * 256) + (red * 6
End Function

The value for any argument to RGB that exceeds 255 is assumed to be 255.

[]
Microsoft® Visual Basic® Scripting Edition Rl ght _g_g_L anguage Reference

Version 1
Function

See Also

Description
Returns a specified number of characters from the right side of a string.

Syntax

Right(string, length)

The Right function syntax has these arguments:

Part IDescription

String expression from which the rightmost characters are

strin . . .
Ilreturned. 1f string contains Null, Null is returned.

Numeric expression indicating how many characters to
return. If 0, a zero-length string is returned. If greater
than or equal to the number of characters in string, the
entire string is returned.

length

Remarks

To determine the number of characters in string, use the Len function.

The following example uses the Right function to return a specified number of characters from the
right side of a string:

Dim AnyString, MyStr

AnyString = "Hello World" ' Define string.
MyStr = Right(AnyString, 1) ' Returns "d".
MyStr = Right(AnyString, 6) ' Returns " World".

MyStr = Right(AnyString, 20) ' Returns "Hello W

Note The RightB function is used with byte data contained in a
string. Instead of specifying the number of characters to return,
length specifies the number of bytes.

Microsoft® Visual Basic® Scripting Edition Rnd Lan uage REference

Version 1
Function

See Also

Description

Returns a random number.

Syntax

Rnd[(number)]

The number argument can be any valid numeric expression.

Remarks

The Rnd function returns a value less than 1 but greater than or equal to 0.
The value of number determines how Rnd generates a random number:

If number is [[Rnd generates

The same number every time, using number as

Less than zero
the seed.

Greater than

2610 The next random number in the sequence.

Equal to zero [The most recently generated number.

Not supplied [The next random number in the sequence.

For any given initial seed, the same number sequence is generated because each successive call to the
Rnd function uses the previous number as a seed for the next number in the sequence.

Before calling Rnd, use the Randomize statement without an argument to initialize the random-
number generator with a seed based on the system timer.

To produce random integers in a given range, use this formula:

Int((upperbound - lowerbound + 1) * Rnd + lowerl

Here, upperbound is the highest number in the range, and lowerbound is the
lowest number in the range.

Note To repeat sequences of random numbers, call Rnd with a
negative argument immediately before using Randomize with a
numeric argument. Using Randomize with the same value for
number does not repeat the previous sequence.

Microsoft® Visual Basic® Scripting Edition RO u n d @gﬁg%rence
o Version 2
Function

See Also

Description
Returns a number rounded to a specified number of decimal places.
Syntax

Round(expression[, numdecimalplaces])

The Round function syntax has these parts:

Part Description
. Required. Numeric expression being
expression :
rounded.

Optional. Number indicating how many
numdecimalplaces places to the right of the decimal are
p included in the rounding. If omitted, integers

are returned by the Round function.

Remarks

The following example uses the Round function to round a number to two
decimal places:

Dim My Var, pi
pi = 3.14159
MyVar = Round(pi, 2) ' MyVar contains 3.14.

Microsoft® Visual Basic® Scripting Edition

o < anguage Reference
ScriptEngine hanguage [elerence
Function

See Also

Description

Returns a string representing the scripting language in use.
Syntax

ScriptEngine
Return Values

The ScriptEngine function can return any of the following strings:

|String "Description |
Indicates that Microsoft® Visual Basic® Scripting ‘

VBScript(| L .
| Pl qition is the current scripting engine.
. Indicates that Microsoft JScript® is the current
JScript . .
scripting engine.
VBA Indicates that Microsoft Visual Basic for Applications
is the current scripting engine.
Remarks

The following example uses the ScriptEngine function to return a string
describing the scripting language in use:

Function GetScriptEnginelnfo
Dim s
s="" ' Build string with necessary info.

s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEnginelnfo = s ' Return the results.
End Function

Microsoft® Visual Basic® Scripting Edition

ScriptEngineBuildVersion Lemeusee Referer
Function

See Also

Description

Returns the build version number of the scripting engine in use.

Syntax

ScriptEngineBuildVersion

Remarks

The return value corresponds directly to the version information contained
in the DLL for the scripting language in use.

The following example uses the ScriptEngineBuildVersion function to return the build version
number of the scripting engine:

Function GetScriptEnginelnfo

Dim s

s="" ' Build string with necessary info.
s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEnginelnfo = s ' Return the results.
End Function

Microsoft® Visual Basic® Scripting Edition

ScriptEngineMajorVersion Lesuege Refe
Function

See Also

Description

Returns the major version number of the scripting engine in use.

Syntax

ScriptEngineMajorVersion

Remarks

The return value corresponds directly to the version information contained
in the DLL for the scripting language in use.

The following example uses the ScriptEngineMajorVersion function to return the version number
of the scripting engine:

Function GetScriptEnginelnfo

Dim s

s="" ' Build string with necessary info.

s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEnginelnfo = s ' Return the results.
End Function

Microsoft® Visual Basic® Scripting Edition

ScriptEngineMinorVersion Lesuege Refe
Function

See Also

Description

Returns the minor version number of the scripting engine in use.

Syntax

ScriptEngineMinorVersion

Remarks

The return value corresponds directly to the version information contained
in the DLL for the scripting language in use.

The following example uses the ScriptEngineMinorVersion function to return the minor version
number of the scripting engine:

Function GetScriptEnginelnfo

Dim s

s="" ' Build string with necessary info.

s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEnginelnfo = s ' Return the results.
End Function

Microsoft® Visual Basic® Scripting Edition S e C 0 n d @g&%rence
o Version 1
Function

See Also

Description

Returns a whole number between 0 and 59, inclusive, representing the
second of the minute.

Syntax

Second(time)

The time argument is any expression that can represent a time. If time contains Null, Null is returned.

Remarks

The following example uses the Second function to return the current
second:

Dim MySec
MySec = Second(Now) 'MySec contains the number representing
' the current second.

Microsoft® Visual Basic® Scripting Edition S ele Ct _g_g—L dngudge REference

Version 1
Case Statement

See Also

Description

Executes one of several groups of statements, depending on the value of an
expression.

Syntax

Select Case testexpression
[Case expressionlist-n
[statements-n]] ...
[Case Else expressionlist-n
[elsestatements-n]]
End Select

The Select Case statement syntax has these parts:

|Part "Description

|testexpression "Any numeric or string expression.

expressionlist- [[Required if Case appears. Delimited list of one
n Or more expressions.

One or more statements executed if
statements-n [testexpression matches any part of
expressionlist-n.

One or more statements executed if
elsestatements-

" testexpression doesn't match any of the Case
clauses.

Remarks

If testexpression matches any Case expressionlist expression, the statements
following that Case clause are executed up to the next Case clause, or for
the last clause, up to End Select. Control then passes to the statement
following End Select. If testexpression matches an expressionlist
expression in more than one Case clause, only the statements following the
first match are executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found
between the testexpression and an expressionlist in any of the other Case selections. Although not
required, it is a good idea to have a Case Else statement in your Select Case block to handle
unforeseen testexpression values. If no Case expressionlist matches testexpression and there is no
Case Else statement, execution continues at the statement following End Select.

Select Case statements can be nested. Each nested Select Case statement must have a matching End
Select statement.

The following example illustrates the use of the Select Case statement:

Dim Color, My Var
Sub ChangeBackground (Color)
My Var = Icase (Color)
Select Case My Var
Case "red" document.bgColor = "red"
Case "green" document.bgColor = "green'
Case "blue" document.bgColor = "blue"
Case Else MsgBox "pick another color"
End Select
End Sub

1

Microsoft® Visual Basic® Scripting Edition S et @gﬁg%reﬂce
Version 1
Statement

See Also

Description

Assigns an object reference to a variable or property, or
associates a procedure reference with an event.

Syntax 1
Set objectvar = {objectexpression | New classname | Nothing }
Syntax 2

Set object.eventname = GetRef(procname)

The Set statement syntax has these parts:

IPart "Description |
obiectvar Required. Name of the variable or property; follows standard variable naming
J conventions.

Optional. Expression consisting of the name of an object, another declared
objectexpression||variable of the same object type, or a function or method that returns an object of
the same object type.

Kevword used to create a new instance of a class. If objectvar contained a

associated with the previously referenced object when no other variable refers to
it.

object Required. Name of the object with which event is associated.

New reference to an object, that reference is released when the new one is assigned.

The New keyword can only be used to create an instance of a class.

Optional. Name of the class being created. A class and its members are defined
classname -

using the Class statement.

Optional. Discontinues association of objectvar with any specific object or class.
Nothing Assigning objectvar to Nothing releases all the system and memory resources

Required. String containing the name of the Sub or Function being associated
with the event.

Ievent "Required. Name of the event to which the function is to be bound. 1

Iprocname

Remarks

To be valid, objectvar must be an object type consistent with the
object being assigned to it.

The Dim, Private, Public, or ReDim statements only declare a
variable that refers to an object. No actual object is referred to
until you use the Set statement to assign a specific object.

Generally, when you use Set to assign an object reference to a
variable, no copy of the object is created for that variable.
Instead, a reference to the object is created. More than one object
variable can refer to the same object. Because these variables are
references to (rather than copies of) the object, any change in the
object is reflected in all variables that refer to it.

Function ShowFreeSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & "
"
s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
ShowFreeSpace = s
End Function

Using the New keyword allows you to concurrently create an
instance of a class and assign it to an object reference variable.
The variable to which the instance of the class is being assigned

must already have been declared with the Dim (or equivalent)
statement.

Refer to the documentation for the GetRef function for
information on using Set to associate a procedure with an event.

Microsoft® Visual Basic® Scripting Edition S gn Lan uage REference

Version 1
Function

See Also

Description
Returns an integer indicating the sign of a number.
Syntax

Sgn(number)

The number argument can be any valid numeric expression.

Return Values

The Sgn function has the following return values:

|If number is Sgn returns

|| |
|Greater than zero " 1 |
|Equa1 to zero " 0 |
ILess than zero "—1 |

Remarks

The sign of the number argument determines the return value of the Sgn
function.

The following example uses the Sgn function to determine the sign of a number:

Dim MyVarl, MyVar2, MyVar3, MySign
MyVarl = 12: MyVar2 = -2.4: MyVar3 = (
MySign = Sgn(MyVarl) 'Returns 1.

MySign = Sgn(MyVar2) 'Returns -1.
MySign = Sgn(MyVar3) 'Returns 0.

[]
Microsoft® Visual Basic® Scripting Edition S ln Lan uage REference

Version 1
Function

See Also

Description
Returns the sine of an angle.
Syntax

Sin(number)

The number argument can be any valid numeric expression that expresses an angle in radians.

Remarks

The Sin function takes an angle and returns the ratio of two sides of a right
triangle. The ratio is the length of the side opposite the angle divided by the
length of the hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

The following example uses the Sin function to return the sine of an angle:

Dim MyAngle, MyCosecant
MyAngle = 1.3 ' Define angle in radian:
MyCosecant = 1/ Sin(MyAngle) ' Calculate cose

Microsoft® Visual Basic® Scripting Edition S Ou rC e _g_g—L danguage REference

Version 1
Property

See Also Applies to

Description

Returns or sets the name of the object or application that originally
generated the error.

Syntax

object.Source [= stringexpression]

The Source property syntax has these parts:

|Part Description |
Iobject Always the Err object. |

A string expression representing the application

stringexpression
gexp that generated the error.

Remarks

The Source property specifies a string expression that is usually the class
name or programmatic ID of the object that caused the error. Use Source to
provide your users with information when your code is unable to handle an
error generated in an accessed object. For example, if you access Microsoft
Excel and it generates a Division by zero error, Microsoft Excel sets
Err.Number to its error code for that error and sets Source to
Excel.Application. Note that if the error is generated in another object
called by Microsoft Excel, Excel intercepts the error and sets Err.Number
to its own code for Division by zero. However, it leaves the other Err object
(including Source) as set by the object that generated the error.

Source always contains the name of the object that originally generated the error — your code can
try to handle the error according to the error documentation of the object you accessed. If your error

handler fails, you can use the Err object information to describe the error to your user, using Source
and the other Err to inform the user which object originally caused the error, its description of the
error, and so forth.

When generating an error from code, Source is your application's programmatic ID.

The following code illustrates use of the Source property:

On Error Resume Next

Err.Raise 6 ' Raise an overflow error.

MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description
Err.Clear 'Clear the error.

Microsoft® Visual Basic® Scripting Edition S p aC e @g&%rence
o Version 1
Function

See Also

Description
Returns a string consisting of the specified number of spaces.
Syntax

Space(number)

The number argument is the number of spaces you want in the string.

Remarks

The following example uses the Space function to return a string consisting
of a specified number of spaces:

Dim MyString
MyString = Space(10) ' Returns a string with 10 space
MyString = "Hello" & Space(10) & "World" ' Insert 10 spaces bet’

[]
Microsoft® Visual Basic® Scripting Edition S p llt _g_g_]—‘ anguage Reference

o Version 2
Function

See Also

Description

Returns a zero-based, one-dimensional array containing a specified number
of substrings.

Syntax

Split(expression[, delimiter[, count[, compare]]])

The Split function syntax has these parts:

|Part "Description

Required. String expression containing substrings
and delimiters. If expression is a zero-length string,
Split returns an empty array, that is, an array with no
elements and no data.

Optional. String character used to identify substring
limits. If omitted, the space character (" ") is assumed

delimiter [to be the delimiter. If delimiter is a zero-length
string, a single-element array containing the entire
expression string is returned.

Optional. Number of substrings to be returned; -1
indicates that all substrings are returned.

Optional. Numeric value indicating the kind of
compare |lcomparison to use when evaluating substrings. See
Settings section for values.

expression

count

Settings

The compare argument can have the following values:

|Constant "Value"Description |

|VbBinaryCompare|| 0 "Perform a binary comparison. |

|VbTextCompare " 1 "Perform a textual comparison. |

Remarks

The following example uses the Split function to return an array from a
string. The function performs a textual comparison of the delimiter, and
returns all of the substrings.

Dim MyString, MyArray, Msg
MyString = "VBScriptXisXfun!"
MyArray = Split(MyString, "x", -1, 1)

' MyArray(0) contains "VBScript".

' MyArray(1) contains "is".

' MyArray(2) contains "fun!".

Msg = MyArray(0) & " " & MyArray(1)
Msg = Msg & " " & MyArray(2)
MsgBox Msg

Description
Returns the square root of a number.
Syntax

Sqr(number)

The number argument can be any valid numeric expression greater than or
equal to 0.

Remarks

The following example uses the Sqr function to calculate the square root of a
number:

Dim MySqr

MySqr = Sqr(4) ' Returns 2.

MySqr = Sqr(23) 'Returns 4.79583152331272.
MySqgr = Sqr(0) ' Returns 0.

MySqr = Sqr(-4) ' Generates a run-time error.

Microsoft® Visual Basic® Scripting Edition S qr Lan uage REference

Version 1
Function

Microsoft® Visual Basic® Scripting Edition

Language Reference

Stl“C Omp FunCtion Version 1

Description

Returns a value indicating the result of a string comparison.

Syntax

StrComp(string1, string2[, compare])

The StrComp function syntax has these arguments:

|Part "Description |

|stringl "Required. Any valid string expression.

string2 |[Required. Any valid string expression.

Optional. Numeric value indicating the kind of
comparison to use when evaluating strings. If omitted,

a binary comparison is performed. See Settings section
for values.

compare

Settings

The compare argument can have the following values:

|Constant "Value"Description
0
1

vbBinaryCompare Perform a binary comparison.

vbTextCompare Perform a textual comparison.

Return Values

The StrComp function has the following return values:

|If ||StrComp returns |
Istringl is less than string2 "—1 |
|stringl is equal to string2 " 0 |
|stringl is greater than string2 " 1 |
|stringl or string2 is Null "Null |

Remarks

The following example uses the StrComp function to return the results of a
string comparison. If the third argument is 1, a textual comparison is
performed; if the third argument is O or omitted, a binary comparison is
performed.

Dim MyStrl, MyStr2, MyComp

MyStrl = "ABCD": MyStr2 = "abcd" ' Define
MyComp = StrComp(MyStrl, MyStr2, 1) ' Retur
MyComp = StrComp(MyStrl, MyStr2, 0) 'Retur
MyComp = StrComp(MyStr2, MyStrl) ' Returl

[]
Microsoft® Visual Basic® Scripting Edition S tr ln g

Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values

shown for each.

IConstant “Value Description
IVbCr ||Chr(13) Carriage return.

Chr(13) & . BT S
vbCrLf Chr(10) Carriage return—linefeed combination.
IvaormFeed ||Chr(12) Form feed; not useful in Microsoft Windows.
Ivaf “Chr(lO) Line feed.

. Chr(13) & Platform-specific newline character; whatever is

vbNewLine {|Chr(10) or iate for the platf

Chr(10) appropriate for the platform.

vbNullChar _[[Chr(0)

Character having the value 0.

VbNullString String having Not‘ the same as a zero-length string (""); used for
value 0 calling external procedures.
IvbTab ||Chr(9) Horizontal tab.

IvaerticalTab"Chr(ll)

Vertical tab; not useful in Microsoft Windows.

Language Reference
Version 2

[]
Microsoft® Visual Basic® Scripting Edition S trlng @g&%rence
. Version 1
Function

See Also

Description
Returns a repeating character string of the length specified.
Syntax

String(number, character)

The String function syntax has these arguments:

Part | Description

Length of the returned string. If number contains
Null, Null is returned.

Character code specifying the character or string
expression whose first character is used to build the
return string. If character contains Null, Null is
returned.

number

character

Remarks

If you specify a number for character greater than 255, String converts the
number to a valid character code using the formula:

character Mod 256

The following example uses the String function to return repeating
character strings of the length specified:

Dim MyString

MyString = String(5, "*") ' Returns "##FHFE"
MyString = String(5, 42) ' Returns "##FAFE"
MyString = String(10, "ABC") 'Returns "AAAA

Microsoft® Visual Basic® Scripting Edition

StrReverse Language Reference
Function

Description

Returns a string in which the character order of a specified string is
reversed.

Syntax

StrReverse(string1)

The string1 argument is the string whose characters are to be reversed. If string1 is a zero-length
string (""), a zero-length string is returned. If string1 is Null, an error occurs.

Remarks

The following example uses the StrReverse function to return a string in
reverse order:

Dim MyStr
MyStr = StrReverse("VBScript") ' MyStr contains "tpircSBV".

Microsoft® Visual Basic® Scripting Edition S Ub @gﬁg%reﬂce
Version 1
Statement

See Also

Description

Declares the name, arguments, and code that form the body of a
Sub procedure.

Syntax

[Public [Default]| Private] Sub name [(arglist)]
[statements]
[Exit Sub]
[statements]

End Sub

The Sub statement syntax has these parts:

IPart "Description

Public Indicates that the Sub procedure is accessible to all other procedures in all scripts.

Used only with the Public keyword in a Class block to indicate that the Sub procedure
Default ||is the default method for the class. An error occurs if more than one Default procedure
is specified in a class.

. Indicates that the Sub procedure is accessible only to other procedures in the script
Private L
where it is declared.
Iname “Narne of the Sub; follows standard variable naming conventions. |
aralist List of variables representing arguments that are passed to the Sub procedure when it
g is called. Multiple variables are separated by commas.

Istatements“Any group of statements to be executed within the body of the Sub procedure.

The arglist argument has the following syntax and parts:

[ByVal | ByRef] varname[()]

IPart "Description

IByVal "Indicates that the argument is passed by value.

IByRef "Indicates that the argument is passed by reference.

Name of the variable representing the argument; follows standard variable naming

varname, .
conventions.

Remarks

If not explicitly specified using either Public or Private, Sub
procedures are public by default, that is, they are visible to all
other procedures in your script. The value of local variables in a
Sub procedure is not preserved between calls to the procedure.

You can't define a Sub procedure inside any other procedure (e.g.
Function or Property Get).

The Exit Sub statement causes an immediate exit from a Sub
procedure. Program execution continues with the statement that
follows the statement that called the Sub procedure. Any number
of Exit Sub statements can appear anywhere in a Sub procedure.

Like a Function procedure, a Sub procedure is a separate
procedure that can take arguments, perform a series of
statements, and change the value of its arguments. However,
unlike a Function procedure, which returns a value, a Sub
procedure can't be used in an expression.

You call a Sub procedure using the procedure name followed by
the argument list. See the Call statement for specific information
on how to call Sub procedures.

Caution Sub procedures can be recursive, that is, they can call themselves to perform a given

task. However, recursion can lead to stack overflow.

Variables used in Sub procedures fall into two categories: those
that are explicitly declared within the procedure and those that
are not. Variables that are explicitly declared in a procedure
(using Dim or the equivalent) are always local to the procedure.
Variables that are used but not explicitly declared in a procedure

are also local, unless they are explicitly declared at some higher
level outside the procedure.

Caution A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same name. If
your procedure refers to an undeclared variable that has the same name as another procedure,
constant or variable, it is assumed that your procedure is referring to that script-level name. To
avoid this kind of conflict, use an Option Explicit statement to force explicit declaration of
variables.

Microsoft® Visual Basic® Scripting Edition Tan Lan uage REference

Version 1
Function

See Also

Description
Returns the tangent of an angle.
Syntax

Tan(number)

The number argument can be any valid numeric expression that expresses an angle in radians.

Remarks

Tan takes an angle and returns the ratio of two sides of a right triangle. The
ratio is the length of the side opposite the angle divided by the length of the
side adjacent to the angle.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply
radians by 180/pi.

The following example uses the Tan function to return the tangent of an angle:

Dim MyAngle, MyCotangent
MyAngle = 1.3 ' Define angle in radia
MyCotangent = 1 / Tan(MyAngle) ' Calculate cof

Microsoft® Visual Basic® Scripting Edition L anguage Re ferenc e

Terminate Event Version 5
See Also Applies To
Description

Occurs when an instance of the associated class is terminated.

Syntax

Private Sub Class_Terminate()

statements
End Sub

The statements part consists of zero or more code statements to
be run when the class is initialized.

Remarks

The following example illustrates the use of the Terminate
event:

Class TestClass
Private Sub Class_Initialize ' Setup Initialize event.
MsgBox("TestClass started")

End Sub
Private Sub Class_Terminate ' Setup Terminate event.

MsgBox("TestClass terminated")
End Sub
End Class

Set X = New TestClass ' Create an instance of TestClass.
Set X = Nothing ' Destroy the instance.

Microsoft® Visual Basic® Scripting Edition Language Reference
Test Method s

See Also Applies to

Description
Executes a regular expression search against a specified string
and returns a Boolean value that indicates if a pattern match was
found.

Syntax

object.Test(string)

The Execute method syntax has these parts:

IPart “Description
Iobject "Required. Always the name of a RegExp object.

Istring "Required. The text string upon which the regular expression is executed.

Remarks

The actual pattern for the regular expression search is set using
the Pattern property of the RegExp object. The RegExp.Global
property has no effect on the Test method.

The Test method returns True if a pattern match is found; False
if no match is found.

The following code illustrates the use of the Test method:

Function RegExpTest(patrn, strng)

Dim regEx, retVal ' Create variable.

Set regkix = New RegExp ' Create regular expressiol
regkx.Pattern = patrn ' Set pattern.
regEx.IgnoreCase = False ' Set case sensitivity.

retVal = regEx.Test(strng) ' Execute the search test.

If retVal Then

RegExpTest = "One or more matches were found."
Else
RegExpTest = "No match was found."”
End If
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

(J
Microsoft® Visual Basic® Scripting Edition Tlme _g_g_LaD uage REference

Version 1
Function

See Also

Description
Returns a Variant of subtype Date indicating the current system time.

Syntax
Time
Remarks

The following example uses the Time function to return the current system
time:

Dim MyTime
MyTime = Time 'Return current system time.

([]
Microsoft® Visual Basic® Scripting Edition Tlm er @gﬁg%reﬂce
. Version 5
Function

See Also

Description

Returns the number of seconds that have elapsed since 12:00 AM
(midnight).

Syntax
Timer

Remarks

The following example uses the Timer function to determine the
time it takes to iterate a For...Next loop N times:

Function Timelt(IN)
Dim StartTime, EndTime
StartTime = Timer
ForI=1To N
Next
EndTime = Timer
Timelt = EndTime - StartTime
End Function

Microsoft® Visual Basic® Scripting Edition

TimeSerial Language Reference
Function

See Also

Description

Returns a Variant of subtype Date containing the time for a specific hour,
minute, and second.

Syntax

TimeSerial(hour, minute, second)

The TimeSerial function syntax has these arguments:

IPart Description |
Number between 0 (12:00 A.M.) and 23 (11:00 P.M.),

inclusive, or a numeric expression.
|minute Any numeric expression. |

hour

|second Any numeric expression. |

Remarks

To specify a time, such as 11:59:59, the range of numbers for each
TimeSerial argument should be in the accepted range for the unit; that is,
0-23 for hours and 0-59 for minutes and seconds. However, you can also
specify relative times for each argument using any numeric expression that
represents some number of hours, minutes, or seconds before or after a
certain time.

The following example uses expressions instead of absolute time numbers. The TimeSerial function
returns a time for 15 minutes before (-15) six hours before noon (12 - 6), or 5:45:00 A.M.

Dim MyTimel

MyTimel = TimeSerial(12 - 6, -15, 0) ' Returns 5:¢

When any argument exceeds the accepted range for that argument, it
increments to the next larger unit as appropriate. For example, if you
specify 75 minutes, it is evaluated as one hour and 15 minutes. However, if
any single argument is outside the range -32,768 to 32,767, or if the time
specified by the three arguments, either directly or by expression, causes the
date to fall outside the acceptable range of dates, an error occurs.

Microsoft® Visual Basic® Scripting Edition

TimeValue Language Reference
Function

See Also

Description

Returns a Variant of subtype Date containing the time.

Syntax

TimeValue(time)

The time argument is usually a string expression representing a time from 0:00:00 (12:00:00 A.M.) to
23:59:59 (11:59:59 P.M.), inclusive. However, time can also be any expression that represents a time
in that range. If time contains Null, Null is returned.

Remarks

You can enter valid times using a 12-hour or 24-hour clock. For example,
"2:24PM" and "14:24" are both valid time arguments. If the time argument
contains date information, TimeValue doesn't return the date information.
However, if time includes invalid date information, an error occurs.

The following example uses the TimeValue function to convert a string to a time. You can also use
date literals to directly assign a time to a Variant (for example, MyTime = #4:35:17 PM#).

Dim MyTime
MyTime = TimeValue("4:35:17 PM") 'MyTime

Language Reference
Microsoft® Visual Basic® Scripting Edition Tru e WLOH]‘

See Also

Description

The True keyword has a value equal to -1.

Microsoft® Visual Basic® Scripting Edition

TypeName
Function

See Also

Language Reference

Version 2

Description

Returns a string that provides Variant subtype information about a variable.

Syntax

TypeName(varname)

The required varname argument can be any variable.

Return Values

The TypeName function has the following return values:

IValue Description
IByte Byte value
IInteger Integer value
|Long Long integer value
|Single Single-precision floating-point value
IDouble Double-precision floating-point value
|Currency Currency value
|Decimal Decimal value
IDate Date or time value
|String Character string value
|Boolean Boolean value; True or False
IEmpty Unitialized
No valid data

[Nul
I

<object; A ctual type name of an object

|
IObject "Generic object |
|Unknown "Unknown object type |
Nothing iject variable that doesn't yet refer to an object
instance
|Error "Error |
Remarks

The following example uses the TypeName function to return information
about a variable:

Dim ArrayVar(4), MyType
NullVar = Null " Assign Null value.

MyType = TypeName("VBScript") 'Returns "String".
MyType = TypeName(4) ' Returns "Integer".
MyType = TypeName(37.50) ' Returns "Double".
MyType = TypeName(NullVar) ' Returns "Null".
MyType = TypeName(ArrayVar) 'Returns "Variant()".

Microsoft® Visual Basic® Scripting Edition UB 0 u n d @g&%rence
. Version 1
Function

See Also

Description

Returns the largest available subscript for the indicated dimension of an
array.

Syntax

UBound(arrayname[, dimension])

The UBound function syntax has these parts:

|Part "Description

Required. Name of the array variable; follows
standard variable naming conventions.

Optional. Whole number indicating which
dimension's upper bound is returned. Use 1 for the
first dimension, 2 for the second, and so on. If
dimension is omitted, 1 is assumed.

arrayname

dimension

Remarks

The UBound function is used with the LBound function to determine the
size of an array. Use the LBound function to find the lower limit of an

array dimension.

The lower bound for any dimension is always 0. As a result, UBound returns the following values
for an array with these dimensions:

Dim A(100,3,4)

IStatement ||Return Value
[UBound(A, 1) 100
|UBound(A, 2) "3
[UBound(A, 3) [+

Microsoft® Visual Basic® Scripting Edition U C aS e @g&%rence
o Version 1
Function

See Also

Description
Returns a string that has been converted to uppercase.

Syntax

UCase(string)

The string argument is any valid string expression. If string contains Null, Null is returned.

Remarks

Only lowercase letters are converted to uppercase; all uppercase letters and
nonletter characters remain unchanged.

The following example uses the UCase function to return an uppercase version of a string:

Dim MyWord
MyWord = UCase("Hello World") 'Returns "HE

Microsoft® Visual Basic® Scripting Edition Valu e Language REfeFEIlCe
Version 5
Property

See Also Applies To

Description
Returns the value or text of a match found in a search string.
Syntax

object.Value

The object argument is always a Match object.
Remarks

The following code illustrates the use of the Value property:

Function RegExpTest(patrn, strng)

Dim regEx, Match, Matches ' Create variable.

Set regkix = New RegExp ' Create regular expressiol
regEx.Pattern = patrn ' Set pattern.
regkx.IgnoreCase = True ' Set case insensitivity.
regkx.Global = True ' Set global applicability.

Set Matches = regkEx.Execute(strng) ' Execute search.

For Each Match in Matches ' Iterate Matches collection.

RetStr = RetStr & "Match " & I & " found at position "
RetStr = RetStr & Match.FirstIndex & ". Match Value is ™
RetStr = RetStr & Match.Value & "'." & vbCRLF

Next
RegExpTest = RetStr
End Function

MsgBox(RegExpTest("is.", "IS1 is2 1S3 is4"))

Microsoft® Visual Basic® Scripting Edition

Varlype
Constants

See Also

Language Reference
Version 2

These constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript,
you must explicitly declare these constants in your code.

IConstant Value"Description |
|VbEmpty 0 "Uninitialized (default) |
|vbNull 1 "Contains no valid data |
|VbInteger 2 "Integer subtype |
|VbL0ng 3 "Long subtype |
IVbSingle 4 "Single subtype |
IVbSingle 5 "Double subtype |
|VbCurrency 6 "Currency subtype |
|VbDate 7 "Date subtype |
|VbStr1ng 8 "String subtype |
IVbObject 9 "Object |
vbError 10 [|[Error subtype

vbBoolean 11 [|Boolean subtype {
|VbVariant 12 "Variant (used only for arrays of variants) |
vbDataObject| 13 [[Data access object

vbDecimal 14 [|[Decimal subtype {
|VbByte 17 "Byte subtype |
|VbArray 8192 "Array |

Microsoft® Visual Basic® Scripting Edition . Languag e Reference
VarTlype Function version]

See Also

Description

Returns a value indicating the subtype of a variable.

Syntax

VarType(varname)

The varname argument can be any variable.

Return Values

The VarType function returns the following values:

IConstant Value"Description |
IVbEmpty 0 "E_mp_ty (uninitialized) |
IvbNull 1 "M (no valid data) |
|VbInteger 2 "Integer |
|VbL0ng 3 "Long integer |
vbSingle 4 |Single-precision floating-point number
vbDouble 5 ||Double-precision floating-point number
|VbCurrency 6 "Currency |
IVbDate 7 "Date |
|VbString 8 "String |
IVbObject 9 "Automation object |
|VbError 10 "Error |
|VbBoolean 11 "Boolean |
vbVariant 12 ngzﬁts()used only with arrays of

i i i

IVbDataObject“ 13 ||A data-access object
|VbByte " 17 "Byte
|VbArray " 8192 "Array

Note These constants are specified by VBScript. As a result, the
names can be used anywhere in your code in place of the actual
values.

Remarks

The VarType function never returns the value for Array by itself. It is
always added to some other value to indicate an array of a particular type.
The value for Variant is only returned when it has been added to the value
for Array to indicate that the argument to the VarType function is an array.
For example, the value returned for an array of integers is calculated as 2 +
8192, or 8194. If an object has a default property, VarType (object) returns
the type of its default property.

The following example uses the VarType function to determine the subtype of a variable.

Dim MyCheck

MyCheck = VarType(300) ' Returns 2.
MyCheck = VarType(#10/19/62#) ' Returns 7.
MyCheck = VarType("VBScript") 'Returns 8.

Microsoft® Visual Basic® Scripting Edition

VBSC]."ipt @gﬁg%
Constants

See Also

A number of useful constants you can use in your code are built into VBScript.
Constants provide a convenient way to use specific values without actually
having to remember the value itself. Using constants also makes your code more
maintainable should the value of any constant ever change. Because these
constants are already defined in VBScript, you don't need to explicitly declare
them in your code. Simply use them in place of the values they represent.

Here are the various categories of constants provided in VBScript and a brief description of each:

Color Constants
Defines eight basic colors that can be used in scripting.

Date and Time Constants
Defines date and time constants used by various date and time functions.

Date Format Constants
Defines constants used to format dates and times.

Miscellaneous Constants
Defines constants that don't conveniently fit into any other category.

MsgBox Constants

Defines constants used in the MsgBox function to describe button visibility, labeling, behavior, and return
values.

String Constants

Defines a variety of non-printable characters used in string manipulation.

Tristate Constants
Defines constants used with functions that format numbers.

VarType Constants
Defines the various Variant subtypes.

Microsoft® Visual Basic® Scripting Edition L an gu a g e Refer ence

Weekday Function Version 1

See Also

Description
Returns a whole number representing the day of the week.
Syntax

Weekday(date, [firstdayofweek])

The Weekday function syntax has these arguments:

|Part "Description |
Any expression that can represent a date. If date

date . .
contains Null, Null is returned.

: A constant that specifies the first day of the

firstdayofweek natsp . y

week. If omitted, vbSunday is assumed.
Settings

The firstdayofweek argument has these settings:

IConstant "Value"Description |
vbUseSystem “ 0 X;el I;itigrgl.ell Language Support (NLS) ‘
|VbSunday || 1 "Sunday |
|VbMonday " 2 "Monday |
IVlelesday " 3 "Tuesday |
|VbWednesday || 4 "Wednesday |
IVbThursday " 5 "Thursday |
vbFriday I 6 |[Friday

vbSaturday I 7 [[Saturday

Return Values

The Weekday function can return any of these values:

|Constant "Value"Description |
|VbSunday | 1 "Sunday |
|VbMonday " 2 "Monday |
|Vlelesday " 3 "Tuesday |
|VbWednesday " 4 "Wednesday |
|VbThursday " 5 "Thursday |
|VbFriday " 6 "Friday |
IVbSaturday " 7 "Saturday |
Remarks

The following example uses the Weekday function to obtain the day of the
week from a specified date:

Dim MyDate, MyWeekDay

MyDate = #October 19, 1962# ' Assign a date.

MyWeekDay = Weekday(MyDate) 'MyWeekDay contains 6 bec
' MyDate represents a Friday.

Microsoft® Visual Basic® Scripting Edition

While...Wend Language Reference
Statement

See Also

Description
Executes a series of statements as long as a given condition is True.
Syntax

While condition
Version [statements]
Wend

The While...Wend statement syntax has these parts:

IPart "Description

Numeric or string expression that evaluates to True
condition |or False. If condition is Null, condition is treated as

False.
One or more statements executed while condition is
statements
True.
Remarks

If condition is True, all statements in statements are executed until the
Wend statement is encountered. Control then returns to the While
statement and condition is again checked. If condition is still True, the
process is repeated. If it is not True, execution resumes with the statement
following the Wend statement.

While...Wend loops can be nested to any level. Each Wend matches the most recent While.

Tip The Do...Loop statement provides a more structured and
flexible way to perform looping.

The following example illustrates use of the While...Wend statement:

Dim Counter

Counter = 0 ' Initialize variable.

While Counter < 20 ' Test value of Counter.
Counter = Counter + 1 ' Increment Counter.
Alert Counter

Wend ' End While loop when Counte

[]
Microsoft® Visual Basic® Scripting Edition Wlth Language REfEFEDCG
Version 5
Statement

See Also

Description
Executes a series of statements on a single object.
Syntax

With object
statements
End With

The With statement syntax has these parts:

IPart “Description

Iobject “Required. Name of an object or a function that returns an object.

Istatements "Required. One or more statements to be executed on object.

Remarks

The With statement allows you to perform a series of statements
on a specified object without requalifying the name of the object.
For example, to change a number of different properties on a
single object, place the property assignment statements within the
With control structure, referring to the object once instead of
referring to it with each property assignment. The following
example illustrates use of the With statement to assign values to
several properties of the same object.

With MyLabel
.Height = 2000

.Width = 2000
.Caption = "This is MyLabel"
End With

While property manipulation is an important aspect of With
functionality, it is not the only use. Any legal code can be used
within a With block.

Note Once a With block is entered, object can't be changed. As a result, you can't use a single
With statement to affect a number of different objects.

You can nest With statements by placing one With block within
another. However, because members of outer With blocks are
masked within the inner With blocks, you must provide a fully
qualified object reference in an inner With block to any member
of an object in an outer With block.

Important Do not jump into or out of With blocks. If statements in a With block are executed,
but either the With or End With statement is not executed, you may get errors or unpredictable
behavior.

Microsoft® Visual Basic® Scripting Edition XO r Lan uage REference

Version 1
Operator

See Also

Description

Performs a logical exclusion on two expressions.

Syntax

result = expression1 Xor expression2

The Xor operator syntax has these parts:

Part Description

result Any numeric variable.

Iexpressionl "Any expression. |

|expression2 "Any expression. |
Remarks

If one, and only one, of the expressions evaluates to True, result is True.
However, if either expression is Null, result is also Null. When neither
expression is Null, result is determined according to the following table:

IIf expressionl is "And expression2 is Then result is |
|True "True False |
ITrue "False True |
|False "True True |
|False "False False |

The Xor operator also performs a bitwise comparison of identically

positioned bits in two numeric expressions and sets the corresponding bit in
result according to the following table:

If bit in expressionl

And bit in expressionZ2 is[[Then result is

is

o g g |
o I I |
i I I |
b I | |

Microsoft® Visual Basic® Scripting Edition Ye ar _g_g_Lan uage REference

Version 1
Function

See Also

Description
Returns a whole number representing the year.

Syntax

Year(date)

The date argument is any expression that can represent a date. If date contains Null, Null is returned.

Remarks

The following example uses the Year function to obtain the year from a
specified date:

Dim MyDate, My Year
MyDate = #October 19, 1962# ' Assign a date.
MyYear = Year(MyDate) ' MyYear contains 1962.

Microsoft® Visual Basic® Scripting Edition C Olo r _g_g—Lan uage REference

Version 2
Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values
shown for each.

IConstant " Value "Description |
IvbBlack " &hOO;"Black |
[bRed || &hFF||Red |
IVbGreen “ &hFFOO;"Green |
IvbYellow “ &hFFFF;"Yellow |
[vbBlue || &nFF0000;|[Blue |
vbMagenta || &hFFOOFF;||Magenta

vbCyan &hFFFF00;|[Cyan

[vbWhite "&hFFFFFF;"White

[]
Microsoft® Visual Basic® Scripting Edition Tr 1 S t at e @g&%rence
Version 2
Constants

See Also

Since these constants are built into VBScript, you don't have to define them
before using them. Use them anywhere in your code to represent the values
shown for each.

IConstant "Value Description |

vbUseDefauldl -2 Usg default from computer's regional
settings.

IVle‘ue " -1 [True |

|VbFalse " 0 [False |

Microsoft® Visual Basic® Scripting Edition

VBScript Run- Language Relerence
time Errors

VBScript Syntax Errors

Error Number "Description

91 IObject variable not set

I 5 "Invalid procedure call or argument I
I 6 "Overﬂow |
I 7 "Out of memory |
I 9 "Subscript out of range |
I 10 "This array is fixed or temporarily locked |
| 11 [[Division by zero |
I 13 “Type mismatch |
I 14 "Out of string space |
I 17 "Can‘t perform requested operation |
I 28 “Out of stack space |
I 35 "Sub or Function not defined |
I 48 "Error in loading DLL |
I 51 "Internal error |
I 52 "Bad file name or number |
I 53 "File not found |
I 54 "Bad file mode |
I 55 "File already open |
I 57 “Device I/O error |
I 58 “File already exists |
| 61 [[Disk full |
I 62 "Input past end of file |
67 IToo many files
} 68 IDeVice unavailable |
I 70 "Perrnission denied |
I 71 "Disk not ready |
I 74 "Can‘t rename with different drive |
I 75 "Path/File access error |
} 76 IPath not found |
I I

92 "For loop not initialized

94 "Invalid use of Null

322 "Can‘t create necessary temporary file

424 "Object required

429 "ActiveX component can't create object

430 "Class doesn't support Automation

432 "File name or class name not found during Automation operation
438 Object doesn't support this property or method

440 Automation error

445 “Object doesn't support this action

446 “Object doesn't support named arguments

447 “Object doesn't support current locale setting

448 Named argument not found

449 Argument not optional

450 "Wrong number of arguments or invalid property assignment
451 "Object not a collection

453 "Speciﬁed DLL function not found

455 "Code resource lock error

458 "Variable uses an Automation type not supported in VBScript
462 "The remote server machine does not exist or is unavailable
481 “Invalid picture

500 "Variable is undefined

501 "Illegal assignment

502 “Object not safe for scripting

503 "Object not safe for initializing

504 "Object not safe for creating

505 "Invalid or unqualified reference

506 "Class not defined

507 "An exception occurred
5016 Regular Expression object expected
5017 Syntax error in regular expression
5018 "Unexpected quantifier
5019 "Expected ']" in regular expression
5020 "Expected ') in regular expression
5021 Invalid range in character set

32811

Element not found

Microsoft® Visual Basic® Scripting Edition

VBScript Syntax
Errors

VBScript Run-time Errors

Language Reference
Version 1

Error Number "Description

1001 "Out of memory

1002 "Syntax error

1003 "Expected "

1005 "Expected '

1006 "Expected §)

1007 "Expected T

1010 "Expected identifier

1011 "Expected =

1012 [[Expected 'Tf

1013 “Expected "To'

1014 |[Expected End

1015 “Expected 'Function'

1016 "Expected 'Sub’

1017 “Expected "Then'

1019 "Expected 'Loop'

1020 "Expected ‘Next'

1021 "Expected 'Case’

1022 “Expected 'Select’

1023 "Expected expression

1024 "Expected statement
1025 IExpected end of statement
1026 IExpected integer constant

1027 “Expected 'While' or 'Until'

1028 "Expected 'While', 'Until' or end of statement

1029 [[Expected ‘With'

1030 "Identiﬁer too long

1031 IInvalid number

1032 IInvalid character

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I 1018 "Expected "Wend'
|
|
|
|
|
;
|
|
|
;
I

1033 "Unterminated string constant

1034 "Unterminated comment

1037 "Invalid use of 'Me' keyword

1038 "‘loop' without 'do’

1039 "Invalid 'exit' statement

1040 "Invalid 'for' loop control variable

1041 "Name redefined

1042 Must be first statement on the line

1043 Cannot assign to non-ByVal argument

1044 "Cannot use parentheses when calling a Sub

1045 “Expected literal constant

1046 “Expected 'In’

1047 Expected 'Class'

1048 Must be defined inside a Class

1049 "Expected Let or Set or Get in property declaration

1050 "Expected 'Property’

1051 Number of arguments must be consistent across properties
specification

1052 "Cannot have multiple default property/method in a Class

1053 Class initialize or terminate do not have arguments

1054 Property set or let must have at least one argument

1055 "Unexpected 'Next'

1056 "‘Default' can be specified only on 'Property’ or 'Function' or 'Sub'

1057 "‘Default' specification must also specify "Public'™)

1058 "‘Default' specification can only be on Property Get

< operator'> operator'> <= operator"> = operator"> operator"> < operator; less
than operator; > operator; greater than operator; <= operator; less than or equal
to operator; >= operator; greater than or equal to operator; = operator; equal

operator; operator; not equal operator; string comparison; Empty">
Microsoft® Visual Basic® Scripting Edition

Comparison Language Relerence
Operators

See Also

Description

Used to compare expressions.

Syntax

result = expression1 comparisonoperator expression2
result = object1 Is object2

Comparison operators have these parts:

|Part "Description |

|result "Any numeric variable. |

|expression "Any expression. |

|Comparisonoperator "Any comparison operator. |

|object "Any object name. |
Remarks

The Is operator has specific comparison functionality that differs from the
operators in the following table. The following table contains a list of the
comparison operators and the conditions that determine whether result is
True, False, or Null:

HOperator“Description“TTue if "False if "Null if "

expressionl [lexpressionl |lexpressionl or
Less than [[< >= expression2 =
expression2 |lexpression2 [Null

expressionl [lexpressionl1 |lexpressionl or

Less than or .
<= <= > expression2 =
equal to . .
expression2 |lexpression2 [Null

expressionl [lexpressionl1 |lexpressionl or

Greater)
> > <= expression2 =
than . .
expression2 |lexpression2 [Null
Greater expressionl [lexpressionl |lexpressionl or
>= [ithan or >= < expression2 =
equal to expression?2 |lexpression2 ||[Null
expressionl [lexpressionl1 |lexpressionl or
= Equal to = <> expression2 =
expression2 |lexpression2 [Null
expressionl [lexpressionl1 |lexpressionl or
<> [[Not equal toff<> = expression2 =

expression2 |lexpression2 [Null

When comparing two expressions, you may not be able to easily determine whether the expressions
are being compared as numbers or as strings.

The following table shows how expressions are compared or what results from the comparison,
depending on the underlying subtype:

If "Then

Both expressions are
numeric

Perform a numeric comparison.

Both expressions are

i Perform a string comparison.
strings

One expression is
numeric and the other
is a string

The numeric expression is less than the
string expression.

One expression is
Empty and the other is
numeric

Perform a numeric comparison, using 0
as the Empty expression.

One expression is Perform a string comparison, using a
Empty and the other is [[zero-length string ("") as the Empty
a string expression.

Both expressions are

Empty The expressions are equal.

Microsoft® Visual Basic® Scripting Edition

VBScript -

VBSCrlpt Tutogal
L angu age Version Information
Reference

Welcome to the VBScript Language Reference

These handy blocks of information will help
you explore the many different parts of the
¥ Feature Information Visual Basic Scripting language.

% Alphabetic Keyword You'll find all the parts of the VBScript

List language listed alphabetically under the
Alphabetic Keyword List. But if you want to

% Constants examine just one category, say, objects, each
language category has its own, more compact

< Errors section.

£ Events How's it work? Click on one of the headings to
the left to display a list of items contained in

< Functions that category. From this list, select the topic that
you want to view. Once you've opened that

£ Methods topic, you can easily link to other related
sections.

% Objects

So, go ahead and take a look! Study some

¢ Operators statements, mull over the methods, or figure out

¢ Properties a few functions. You'll see just how versatile the
VBScript language can be!

4 Statements

© 1999 Microsoft Corporation. All rights reserved.

Microsoft® Visual Basic® Scripting Edition Ad d
Scripting Run-Time Reference

Method Version 2
(Dictionary)

See Also Applies to

Description
Adds a key and item pair to a Dictionary object.
Syntax

object.Add key, item

The Add method has the following parts:

Part IDescription

object

IRequired. Always the name of a Dictionary object.

Ikey "Required. The key associated with the item being added. |

|item ||Required. The item associated with the key being added. |

Remarks

An error occurs if the key already exists.

The following example illustrates the use of the Add method:

Dim d ' Create a variable.

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"
d.Add "c", "Cairo"

Microsoft® Visual Basic® Scripting Edition Ad d Scri Un Run'Time REference

Method (Folders) e

See Also Applies To

Description
Adds a new Folder to a Folders collection.

Syntax

object.Add(folderName)

The Add method has the following parts:

Part Description
object Required. Always the name of a Folders collection.
folderName Required. The name of the new Folder being
added.
Remarks

The following example illustrates the use of the Add method to add a new
folder:

Sub AddNewFolder(path, folderName)
Dim fso, {, fc, nf
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(path)
Set fc = f.SubFolders
If folderName <> "" Then
Set nf = fc.Add(folderName)
Else
Set nf = fc.Add("New Folder")

End If
End Sub

An error occurs if folderName already exists.

Microsoft® Visual Basic® Scripting Edition

AtEndOfLine Scripting Run-Time Refetence
Property

See Also Applies to

Description

Returns True if the file pointer immediately precedes the end-of-line
marker in a TextStream file; False if it is not. Read-only.

Syntax

object. AtEndOfLine

The object is always the name of a TextStream object.

Remarks

The AtEndOfLine property applies only to TextStream files that are open
for reading; otherwise, an error occurs.

The following code illustrates the use of the AtEndOfLine property:

Function ReadEntireFile(filespec)
Const ForReading = 1
Dim fso, theFile, retstring
Set fso = CreateObject("Scripting.FileSystemObj;
Set theFile = fso.OpenTextFile(filespec, ForRead:
Do While theFile. AtEndOfLine <> True
retstring = theFile.Read(1)
Loop

theFile.Close
ReadEntireFile = retstring
End Function

Microsoft® Visual Basic® Scripting Edition

AtEndOfStream Scripting Run-Time Referenc
Property

See Also Applies to

Description

Returns True if the file pointer is at the end of a TextStream file; False if it
is not. Read-only.

Syntax

object. AtEndOfStream

The object is always the name of a TextStream object.

Remarks

The AtEndOfStream property applies only to TextStream files that are
open for reading, otherwise, an error occurs.

The following code illustrates the use of the AtEndOfStream property:

Function ReadEntireFile(filespec)
Const ForReading = 1
Dim fso, theFile, retstring
Set fso = CreateObject("Scripting.FileSystemObj;
Set theFile = fso.OpenTextFile(filespec, ForRead:
Do While theFile. AtEndOfStream <> True

retstring = theFile.ReadLine

Loop

theFile.Close
ReadEntireFile = retstring
End Function

Microsoft® Visual Basic® Scripting Edition

Attributes gz B e Bz
Property

See Also Applies To

Description

Sets or returns the attributes of files or folders. Read/write or read-only,
depending on the attribute.

Syntax

object.Attributes [= newattributes]

The Attributes property has these parts:

IPart "Description |
: Required. Always the name of a File or Folder ‘

object .

object.

: Optional. If provided, newattributes is the new

newattributes : o :

value for the attributes of the specified object.

Settings

The newattributes argument can have any of the following values or any
logical combination of the following values:

|Constant Value"Description

|N0rmal 0 "Normal file. No attributes are set.
IReadOnly 1 "Read—only file. Attribute is read/write.
Hidden 2 |[Hidden file. Attribute is read/write.
System 4 ||System file. Attribute is read/write.

IDirectory 16 "Folder or directory. Attribute is read-only.
I I

Archive 32 |[[File has changed since last backup.
Attribute is read/write.

IAlias " 1024 "Link or shortcut. Attribute is read-only. |

|C0mpressed|| 2048 "Compressed file. Attribute is read-only. |

Remarks

Attempts to change any of the read-only attributes (Alias, Compressed, or
Directory) are ignored.

When setting attributes, it is generally a good idea to first read the current attributes, then change the
individual attributes as desired, and finally write the attributes back.

The following code illustrates the use of the Attributes property with a file:

Function ToggleArchiveBit(filespec)
Dim fso, f
Set fso = CreateObject("Scripting.FileSystemObj;
Set f = fso.GetFile(filespec)
If f.attributes and 32 Then
f.attributes = f.attributes - 32
ToggleArchiveBit = "Archive bit is cleared."
Else
f.attributes = f.attributes + 32
ToggleArchiveBit = "Archive bit is set."
End If
End Function

Microsoft® Visual Basic® Scripting Edition

AvailableSpace Scripting Run-Time Referenc
Property

See Also Applies To

Description

Returns the amount of space available to a user on the specified drive or
network share.

Syntax

object.AvailableSpace

The object is always a Drive object.

Remarks

The value returned by the AvailableSpace property is typically the same as
that returned by the FreeSpace property. Differences may occur between
the two for computer systems that support quotas.

The following code illustrates the use of the AvailableSpace property:

Function ShowAuvailableSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & "
"
s =s & "Available Space: " & FormatNumber(d. AvailableSpace/
s = s & " Kbytes"
ShowAvailableSpace = s
End Function

Microsoft® Visual Basic® Scripting Edition SCI‘ip tln g Run'Time Reference

BuildPath Method Version 3

See Also Applies To

Description
Appends a name to an existing path.

Syntax

object.BuildPath(path, name)

The BuildPath method syntax has these parts:

|Part "Description
|object||Required. Always the name of a FileSystemObject.

Required. Existing path to which name is appended. Path
ath |can be absolute or relative and need not specify an
existing folder.

|name "Required. Name being appended to the existing path. |

Remarks

The BuildPath method inserts an additional path separator between the
existing path and the name, only if necessary.

The following example illustrates use of the BuildPath method:

Function GetBuildPath(path)
Dim fso, newpath
Set fso = CreateObject("Scripting.FileSystemObj;
newpath = fso.BuildPath(path, "Sub Folder")

GetBuildPath = newpath

End Function

Microsoft® Visual Basic® Scripting Edition C lo S e Scri tln Run'Time REference

Version 2
Method

See Also Applies to

Description

Closes an open TextStream file.

Syntax

object.Close

The object is always the name of a TextStream object.

Remarks

The following example illustrates use of the Close method to close an open
TextStream file:

Sub CreateAFile
Dim fso, MyFile
Set fso = CreateObject("Scripting.FileSystemObject")
Set MyFile = fso.CreateTextFile("c:\testfile.txt", True)
MyFile.WriteLine("This is a test.")
MygFile.Close

End Sub

Microsoft® Visual Basic® Scripting Edition C 0 lumn Scri tln Run_Time REference

Version 2
Property

See Also Applies to

Description

Read-only property that returns the column number of the current character
position in a TextStream file.

Syntax

object.Column

The object is always the name of a TextStream object.

Remarks

After a newline character has been written, but before any other character is
written, Column is equal to 1.

The following example illustrates use of the Column property:

Function GetColumn
Const ForReading = 1, ForWriting = 2
Dim fso, f, m
Set fso = CreateObject("Scripting.FileSystemObj;
Set f = fso.OpenTextFile("c:\testfile.txt", ForWrit:
f.Write "Hello world!"
f.Close
Set f = fso.OpenTextFile("c:\testfile.txt", ForReac
m = f.ReadLine

GetColumn = f.Column
End Function

Microsoft® Visual Basic® Scripting Edition

C Omp arEMOde Scripting Run-Time lileefresriirrllcg
Property

See Also Applies to

Description

Sets and returns the comparison mode for comparing string keys in a
Dictionary object.

Syntax

object.CompareMode[= compare]

The CompareMode property has the following parts:

IPart "Description |
|object "Required. Always the name of a Dictionary object. |

Optional. If provided, compare is a value representing
compare|the comparison mode used by functions such as
StrComp.

Settings

The compare argument has the following settings:

Constant "Value"Description
Perform a Perform a
vbBinaryCompare|| O [[binary vbTextComparel|1ftextual
comparison. comparison.
Remarks

Values greater than 2 can be used to refer to comparisons using specific

Locale IDs (LCID). An error occurs if you try to change the comparison
mode of a Dictionary object that already contains data.

The CompareMode property uses the same values as the compare argument for the StrComp
function.

The following example illustrates use of the CompareMode property:

Dim d

Set d = CreateObject("Scripting.Dictionary")

d.CompareMode = vbTextCompare

d.Add "a", "Athens" ' Add some keys and items

d.Add "b", "Belgrade"

d.Add "c", "Cairo"

d.Add "B", "Baltimore" ' Add method fails on thi
' letter b already exists in the Dictic

Microsoft® Visual Basic® Scripting Edition C Opy Scri tln Run'Time REference

Version 3
Method

See Also Applies To

Description
Copies a specified file or folder from one location to another.
Syntax

object.Copy destination[, overwrite]

The Copy method syntax has these parts:

Part Description
: Required. Always the name of a File or Folder
object .
object.
destination Required. Destination where the file or folder is to
be copied. Wildcard characters are not allowed.

Optional. Boolean value that is True (default) if
overwrite |existing files or folders are to be overwritten; False
if they are not.

Remarks

The results of the Copy method on a File or Folder are identical to
operations performed using FileSystemObject.CopyFile or
FileSystemObject.CopyFolder where the file or folder referred to by
object is passed as an argument. You should note, however, that the
alternative methods are capable of copying multiple files or folders.

The following example illustrates use of the Copy method:

Dim fso, MyFile

Set fso = CreateObject("Scripting.FileSystemObje«
Set MyFile = fso.CreateTextFile("c:\testfile.txt", T
MyFile.WriteLine("This is a test.")

MyFile.Close

Set MyFile = fso.GetFile("c:\testfile.txt")
MyFile.Copy ("c:\windows\desktop\test2.txt")

Microsoft® Visual Basic® Scripting Edition S Cl‘ip tln g Run'Time Reference

CopyFile Method Version 3

See Also Applies To

Description
Copies one or more files from one location to another.
Syntax

object.CopyFile source, destination[, overwrite]

The CopyFile method syntax has these parts:

|Part "Description |
: Required. The object is always the name of a
object . .
FileSystemObject.
Required. Character string file specification, which
source can include wildcard characters, for one or more

files to be copied.

Required. Character string destination where the file
destination|lor files from source are to be copied. Wildcard
characters are not allowed.

Optional. Boolean value that indicates if existing
files are to be overwritten. If True, files are
overwritten; if False, they are not. The default is

overwrite . et s .
True. Note that CopyFile will fail if destination has
the read-only attribute set, regardless of the value of
overwrite.
Remarks

Wildcard characters can only be used in the last path component of the
source argument. For example, you can use:

FileSystemObject.CopyFile "c:\mydocuments\letters*.doc", "c:\te
But you can't use:
FileSystemObject.CopyFile "c:\mydocuments*\R1???97.xls", "c:'

If source contains wildcard characters or destination ends with a path
separator (\), it is assumed that destination is an existing folder in which to
copy matching files. Otherwise, destination is assumed to be the name of a
file to create. In either case, three things can happen when an individual file
is copied.

e If destination does not exist, source gets copied. This is the usual case.

e If destination is an existing file, an error occurs if overwrite is False.
Otherwise, an attempt is made to copy source over the existing file.

e If destination is a directory, an error occurs.

An error also occurs if a source using wildcard characters doesn't match any
files. The CopyFile method stops on the first error it encounters. No
attempt is made to roll back or undo any changes made before an error
occurs.

Microsoft® Visual Basic® Scripting Edition

Scripting Run-Time Reference
C OpyFOIder Seripling fun-t 1ifersion 3
Method

See Also Applies To

Description
Recursively copies a folder from one location to another.
Syntax

object.CopyFolder source, destination[, overwrite]

The CopyFolder method syntax has these parts:

IPart "Description |
|object "Required. Always the name of a FileSystemObject. |

Required. Character string folder specification,
source which can include wildcard characters, for one or
more folders to be copied.

Required. Character string destination where the
destination||folder and subfolders from source are to be copied.
Wildcard characters are not allowed.

Optional. Boolean value that indicates if existing
folders are to be overwritten. If True, files are
overwritten; if False, they are not. The default is
True.

overwrite

Remarks

Wildcard characters can only be used in the last path component of the
source argument. For example, you can use:

FileSystemObject.CopyFolder "c:\mydocuments\letters*", "c:\terr

But you can't use:
FileSystemObject.CopyFolder "c:\mydocuments**", "c:\tempfol;

If source contains wildcard characters or destination ends with a path
separator (\), it is assumed that destination is an existing folder in which to
copy matching folders and subfolders. Otherwise, destination is assumed to
be the name of a folder to create. In either case, four things can happen
when an individual folder is copied.

o If destination does not exist, the source folder and all its contents gets
copied. This is the usual case.

e If destination is an existing file, an error occurs.

e If destination is a directory, an attempt is made to copy the folder and
all its contents. If a file contained in source already exists in
destination, an error occurs if overwrite is False. Otherwise, it will
attempt to copy the file over the existing file.

e If destination is a read-only directory, an error occurs if an attempt is
made to copy an existing read-only file into that directory and
overwrite is False.

An error also occurs if a source using wildcard characters doesn't match any
folders.

The CopyFolder method stops on the first error it encounters. No attempt is made to roll back any
changes made before an error occurs.

Microsoft® Visual Basic® Scripting Edition C Ount Scri tln Run'Time REference

Version 2
Property

See Also Applies To

Description

Returns the number of items in a collection or Dictionary object. Read-
only.

Syntax

object.Count

The object is always the name of one of the items in the Applies To list.

Remarks
The following code illustrates use of the Count property:

Function ShowKeys
Dima, d,1i, s ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"
d.Add "c", "Cairo"
a = d.Keys ' Get the keys.
Fori =0 To d.Count -1 ' Iterate the array.

s =s & a(i) & "
"" Create return string.

Next
ShowKeys = s

End Function

Microsoft® Visual Basic® Scripting Edition

CreateFolder Scripting Ru-Time Refetence
Method

See Also Applies To

Description

Creates a folder.

Syntax

object.CreateFolder(foldername)

The CreateFolder method has these parts:

IPart Description |
|object Required. Always the name of a FileSystemObject. |
Required. String expression that identifies the folder
foldername
to create.
Remarks

An error occurs if the specified folder already exists.

The following example illustrates use of the CreateFolder method:

Function CreateFolderDemo
Dim fso, f
Set fso = CreateObject("Scripting.FileSystemODbj
Set f = fso.CreateFolder("c:\New Folder")
CreateFolderDemo = f.Path

End Function

Microsoft® Visual Basic® Scripting Edition

CreateTextFile Seripting Run-Time Referencs
Method

See Also Applies to

Description

Creates a specified file name and returns a TextStream object that can be
used to read from or write to the file.

Syntax

object.CreateTextFile(filenamel[, overwrite[, unicode]])

The CreateTextFile method has these parts:

IPart "Description |
: Required. Always the name of a FileSystemObject or
object .
Folder object.
: Required. String expression that identifies the file to
filename create

Optional. Boolean value that indicates if an existing
file can be overwritten. The value is True if the file
can be overwritten; False if it can't be overwritten. If
omitted, existing files are not overwritten.

overwrite

Optional. Boolean value that indicates whether the file

is created as a Unicode or ASCII file. The value is
unicode |[True if the file is created as a Unicode file; False if

it's created as an ASCII file. If omitted, an ASCII file

is assumed.

Remarks

The following code illustrates how to use the CreateTextFile method to

create and open a text file:

Sub CreateAfile
Dim fso, MyFile
Set fso = CreateObject("Scripting.FileSystemObject")
Set MyFile = fso.CreateTextFile("c:\testfile.txt", True)
MyFile.WriteLine("This is a test.")
MyFile.Close

End Sub

If the overwrite argument is False, or is not provided, for a filename that
already exists, an error occurs.

Microsoft® Visual Basic® Scripting Edition

D ate C reate d Scripting Run-Time Reference
Version 3

Property

See Also Applies To

Description

Returns the date and time that the specified file or folder was created. Read-
only.

Syntax

object.DateCreated

The object is always a File or Folder object.

Remarks

The following code illustrates the use of the DateCreated property with a
file:

Function ShowFilelnfo(filespec)
Dim fso, f
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFile(filespec)
ShowFileInfo = "Created: " & f.DateCreated
End Function

Microsoft® Visual Basic® Scripting Edition

DateLastAccessed - scripting Run-Time Reference
Property

See Also Applies To

Description

Returns the date and time that the specified file or folder was last accessed.
Read-only.

Syntax

object.DateLastAccessed

The object is always a File or Folder object.

Remarks

The following code illustrates the use of the DateLastAccessed property
with a file:

Function ShowFileAccessInfo(filespec)
Dim fso, f, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFile(filespec)
s = UCase(filespec) & "
"
s = s & "Created: " & f.DateCreated & "
"
s =s & "Last Accessed: " & f.DateL.astAccessed & "
"
s = s & "Last Modified: " & f.DateLastModified
ShowFileAccessInfo = s
End Function

Important This method depends on the underlying operating system for its behavior.

If the operating system does not support providing time information, none will be
returned.

Microsoft® Visual Basic® Scripting Edition

DateLastModified scipticg RunTime Reference
Property

See Also Applies To

Description

Returns the date and time that the specified file or folder was last modified.
Read-only.

Syntax

object.DateLastModified

The object is always a File or Folder object.

Remarks

The following code illustrates the use of the DateLastModified property
with a file:

Function ShowFileAccessInfo(filespec)
Dim fso, f, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFile(filespec)
s = UCase(filespec) & "
"
s = s & "Created: " & f.DateCreated & "
"
s =s & "Last Accessed: " & f.DateLastAccessed & "
"
s = s & "Last Modified: " & f.DateLastModified
ShowFileAccessInfo = s
End Function

Microsoft® Visual Basic® Scripting Edition D e1ete Scri tln Run_Time REference

Version 3
Method

See Also Applies To

Description

Deletes a specified file or folder.

Syntax

object.Delete force

The Delete method syntax has these parts:

Part
objec
Optional. Boolean value that is True if files or folders
force [fwith the read-only attribute set are to be deleted; False
(default) if they are not.

Description

Required. Always the name of a File or Folder object.

Remarks

An error occurs if the specified file or folder does not exist. The Delete
method does not distinguish between folders that have contents and those
that do not. The specified folder is deleted regardless of whether or not it
has contents.

The results of the Delete method on a File or Folder are identical to operations performed using
FileSystemObject.DeleteFile or FileSystemObject.DeleteFolder.

The following example illustrates use of the Delete method:

Dim fso, MyFile
Set fso = CreateObject("Scripting.FileSystemObje

Set MyFile = fso.CreateTextFile("c:\testfile.txt", T
MyFile.WriteLine("This is a test.")

MyFile.Close

Set MyFile = fso.GetFile("c:\testfile.txt")
MyFile.Delete

Microsoft® Visual Basic® Scripting Edition SCI‘ip tln g Run'Time Reference

DeleteFile Method Version 3

See Also Applies To

Description
Deletes a specified file.
Syntax

object.DeleteFile filespecl, force]

The DeleteFile method syntax has these parts:

|Part ||Description |
|object "Required. Always the name of a FileSystemObject. |
Required. The name of the file to delete. The filespec
filespec|lcan contain wildcard characters in the last path
component.
Optional. Boolean value that is True if files with the
force [read-only attribute set are to be deleted; False (default)
if they are not.

Remarks

An error occurs if no matching files are found. The DeleteFile method
stops on the first error it encounters. No attempt is made to roll back or
undo any changes that were made before an error occurred.

The following example illustrates use of the DeleteFile method:

Sub DeleteAFile(filespec)

Dim fso
Set fso = CreateObject("Scripting.FileSystemODbj

fso.DeleteFile(filespec)
End Sub

Microsoft® Visual Basic® Scripting Edition

DeleteFolder Sciptng Fun-Time Refoence
Method

See Also Applies To

Description
Deletes a specified folder and its contents.
Syntax

object.DeleteFolder folderspec|, force]

The DeleteFolder method syntax has these parts:

IPart "Description |

|object "Required. Always the name of a FileSystemObject. |

Required. The name of the folder to delete. The
folderspecllfolderspec can contain wildcard characters in the last
path component.

Optional. Boolean value that is True if folders with
force the read-only attribute set are to be deleted; False
(default) if they are not.

Remarks

The DeleteFolder method does not distinguish between folders that have
contents and those that do not. The specified folder is deleted regardless of
whether or not it has contents.

An error occurs if no matching folders are found. The DeleteFolder method stops on the first error it

encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

The following example illustrates use of the DeleteFolder method:

Sub DeleteAFolder(filespec)
Dim fso
Set fso = CreateObject("Scripting.FileSystemObj;
fso.DeleteFolder(filespec)

End Sub

Microsoft® Visual Basic® Scripting Edition S Crip tln g Run—Tim e R ef erence

Dictionary Object Version 2

See Also Properties Methods

Description

Object that stores data key, item pairs.

Remarks

A Dictionary object is the equivalent of a PERL associative array. Items,
which can be any form of data, are stored in the array. Each item is
associated with a unique key. The key is used to retrieve an individual item
and is usually a integer or a string, but can be anything except an array.

The following code illustrates how to create a Dictionary object:

Dim d ' Create a variable.

Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"

d.Add "c", "Cairo"

[]
Microsoft® Visual Basic® Scripting Edition D rlve Scri tln Run'Time REference

. Version 3
Object

See Also Properties Methods

Description

Provides access to the properties of a particular disk drive or network share.

Remarks

The following code illustrates the use of the Drive object to access drive
properties:

Function ShowFreeSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & "
"
s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
ShowFreeSpace = s
End Function

[]
Microsoft® Visual Basic® Scripting Edition D rlve Scri Un Run'Time REference

Version 3
Property

See Also Applies To

Description

Returns the drive letter of the drive on which the specified file or folder
resides. Read-only.

Syntax

object.Drive

The object is always a File or Folder object.

Remarks
The following code illustrates the use of the Drive property:

Function ShowFileAccessInfo(filespec)
Dim fso, f, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFile(filespec)
s = f.Name & " on Drive " & UCase(f.Drive) & "
"
s = s & "Created: " & f.DateCreated & "
"
s =s & "Last Accessed: " & f.DateLastAccessed & "
"
s = s & "Last Modified: " & f.DateLastModified
ShowFileAccessInfo = s
End Function

Microsoft® Visual Basic® Scripting Edition

Dl‘iVEEXiStS Scripting Run-Time lifeefresriirrllcg
Method

See Also Applies To

Description
Returns True if the specified drive exists; False if it does not.
Syntax

object.DriveExists(drivespec)

The DriveExists method syntax has these parts:

IPart "Description |
|object "Required. Always the name of a FileSystemObject. |

Required. A drive letter or a complete path
specification.

drivespec

Remarks

For drives with removable media, the DriveExists method returns True
even if there are no media present. Use the IsReady property of the Drive
object to determine if a drive is ready.

The following example illustrates use of the DriveExists method:

Function ReportDriveStatus(drv)
Dim fso, msg
Set fso = CreateObject("Scripting.FileSystemObject")
If fso.DriveExists(drv) Then
msg = ("Drive " & UCase(drv) & " exists.")
Else

msg = ("Drive " & UCase(drv) & " doesn't exist.")
End If
ReportDriveStatus = msg
End Function

Microsoft® Visual Basic® Scripting Edition

D riVEL etter Scripting Run-Time Reference
Version 3

Property

See Also Applies To

Description

Returns the drive letter of a physical local drive or a network share. Read-
only.

Syntax

object.DriveLetter

The object is always a Drive object.

Remarks

mn

The DriveLetter property returns a zero-length string ("") if the specified
drive is not associated with a drive letter, for example, a network share that
has not been mapped to a drive letter.

The following code illustrates the use of the DriveLetter property:

Function ShowDriveLetter(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & d.DriveLetter & ": - "
s = s & d.VolumeName & "
"
s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
ShowDriveLetter = s
End Function

Microsoft® Visual Basic® Scripting Edition Scrlptlng Run-Time Reference

Drives Collection Version 3

See Also Properties Methods

Description

Read-only collection of all available drives.

Remarks

Removable-media drives need not have media inserted for them to appear
in the Drives collection.

The following code illustrates how to get the Drives collection and iterate the collection using the
For Each...Next statement:

Function ShowDriveList
Dim fso, d, dc, s, n
Set fso = CreateObject("Scripting.FileSystemObject")
Set dc = fso.Drives
For Each d in dc
p="m
s =s & d.DriveLetter & " - "
If d.DriveType = Remote Then
n = d.ShareName
Elself d.IsReady Then
n = d.VolumeName
End If
s=s&n & "
"
Next
ShowDriveList = s
End Function

[]
Microsoft® Visual Basic® Scripting Edition D rlve S Scri tln Run_Time REference

Version 3
Property

See Also Applies To

Description

Returns a Drives collection consisting of all Drive objects available on the
local machine.

Syntax

object.Drives

The object is always a FileSystemObject.

Remarks

Removable-media drives need not have media inserted for them to appear
in the Drives collection.

You can iterate the members of the Drives collection using a For Each...Next construct as illustrated
in the following code:

Function ShowDriveList
Dim fso, d, dc, s, n
Set fso = CreateObject("Scripting.FileSystemObject")
Set dc = fso.Drives
For Each d in dc
n="m
s =s & d.DriveLetter & " - "
If d.DriveType = 3 Then
n = d.ShareName
Elself d.IsReady Then
n = d.VolumeName

End If
s=s&n & "
"
Next
ShowDriveList = s
End Function

Microsoft® Visual Basic® Scripting Edition

1 Scripting Run-Time Reference
DerEType t Version 3
Constants

See Also

These constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript,
you must explicitly declare these constants in your code.

IConstant "Value"Description

|
|Unknown " 0 "Drive type can't be determined. |

Drive has removable media. This includes all
Removable| 1 [[floppy drives and many other varieties of
storage devices.

Drive has fixed (nonremovable) media. This
includes all hard drives, including hard
drives that are removable.

Network drives. This includes drives shared
anywhere on a network.

Drive is a CD-ROM. No distinction is made
between read-only and read/write CD-ROM
drives.

e
s
m
="
N

Drive is a block of Random Access Memory
(RAM) on the local computer that behaves
like a disk drive.

RAMDisk

Ul

0
S
=
@)
<
NN

Microsoft® Visual Basic® Scripting Edition

y Scripting Run-Time Reference
D erETyp e Version 3
Property
See Also Applies To
Description

Returns a value indicating the type of a specified drive.

Syntax

object.DriveType

The object is always a Drive object.

Remarks

The following code illustrates the use of the DriveType property:

Function ShowDriveType(drvpath)
Dim fso, d, t
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(drvpath)
Select Case d.DriveType
Case 0: t = "Unknown"
Case 1: t = "Removable"
Case 2: t = "Fixed"
Case 3: t = "Network"
Case 4: t = "CD-ROM"
Case 5: t = "RAM Disk"
End Select
ShowDriveType = "Drive " & d.DriveLetter & ": - " & t
End Function

[
Microsoft® Visual Basic® Scripting Edition E XlStS Scri Un Run_Time REference

Version 2
Method

See Also Applies to

Description

Returns True if a specified key exists in the Dictionary object, False if it
does not.

Syntax

object.Exists(key)

The Exists method syntax has these parts:

|Part "Description |
Iobject"Required. Always the name of a Dictionary object. |

Required. Key value being searched for in the Dictionary
object.

|key

Remarks
The following example illustrates use of the Exists method:

Function KeyExistsDemo
Dim d, msg ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"
d.Add "c", "Cairo"
If d.Exists("c") Then
msg = "Specified key exists."
Else

msg = "Specified key doesn't exist."
End If
KeyExistsDemo = msg
End Function

[
Microsoft® Visual Basic® Scripting Edition F ll e
Scripting Run-Time Reference

Att]."ibllte Version 3
Constants

See Also

These constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript,
you must explicitly declare these constants in your code.

|Constant Value"Description

|
|Normal 0 "Normal file. No attributes are set. |
IReadOnly 1 "Read—only file. |
[Hidden 2 |Hidden file. |
|System 4 "System file. |
|Directory 16 "Folder or directory. |
|Archive 32 "File has changed since last backup. |
IAlias 1024 "Link or shortcut. I

ICompressed 2048 "Compressed file.

[
Microsoft® Visual Basic® Scripting Edition F ll e
Scripting Run-Time Reference

IHP“UO UtPUt Version 2
Constants

See Also

These constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript,
you must explicitly declare these constants in your code.

Constant "Value"Description

Open a file for reading only. You can't

write to this file.

Open a file for writing. If a file with the

ForWriting 2 [lsame name exists, its previous contents
are overwritten.

Open a file and write to the end of the
file.

ForReading | 1

ForAppending|| 8

Microsoft® Visual Basic® Scripting Edition SCI‘ip tln g Run'Time Reference

FileExists Method Version 3

See Also Applies To

Description
Returns True if a specified file exists; False if it does not.
Syntax

object.FileExists(filespec)

The FileExists method syntax has these parts:

|Part ||Description |
|object "Required. Always the name of a FileSystemObject.
Required. The name of the file whose existence is to be
determined. A complete path specification (either

absolute or relative) must be provided if the file isn't
expected to exist in the current folder.

filespec

Remarks
The following example illustrates use of the FileExists method:

Function ReportFileStatus(filespec)
Dim fso, msg
Set fso = CreateObject("Scripting.FileSystemObject")
If (fso.FileExists(filespec)) Then
msg = filespec & " exists."
Else
msg = filespec & " doesn't exist."
End If
ReportFileStatus = msg

End Function

(J
Microsoft® Visual Basic® Scripting Edition F ll e Scri tln Run'Time REference

. Version 3
Object

See Also Properties Methods

Description
Provides access to all the properties of a file.

Remarks

The following code illustrates how to obtain a File object and how to view
one of its properties.

Function ShowDateCreated(filespec)

Dim fso, f
Set fso = CreateObject("Scripting.FileSystemObject")

Set f = fso.GetFile(filespec)
ShowDateCreated = f.DateCreated

End Function

(J
Microsoft® Visual Basic® Scripting Edition F ll e S Scri tln Run'Time REference

. Version 3
Collection
See Also Properties Methods
Description

Collection of all File objects within a folder.

Remarks

The following code illustrates how to get a Files collection and iterate the
collection using the For Each...Next statement:

Function ShowFolderList(folderspec)
Dim fso, f, f1, fc, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(folderspec)
Set fc = f.Files
For Each f1 in fc
s =s & fl.name
s =5 & "
"
Next
ShowFolderList = s
End Function

(J
Microsoft® Visual Basic® Scripting Edition F ll e S Scri tln Run'Time REference

Version 3
Property

See Also Applies To

Description

Returns a Files collection consisting of all File objects contained in the
specified folder, including those with hidden and system file attributes set.

Syntax

object.Files

The object is always a Folder object.

Remarks
The following code illustrates the use of the Files property:

Function ShowFileList(folderspec)
Dim fso, f, f1, fc, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(folderspec)
Set fc = f.Files
For Each f1 in fc
s =s & fl.name
s=s & "
"
Next
ShowFileList = s
End Function

Microsoft® Visual Basic® Scripting Edition

FileSystemObject scripting Run-Time Reference
Object

See Also Properties Methods

Description

Provides access to a computer's file system.

Remarks

The following code illustrates how the FileSystemObject is used to return
a TextStream object that can be read from or written to:

Dim fso, MyFile

Set fso = CreateObject("Scripting.FileSystemObject")
Set MyFile = fso.CreateTextFile("c:\testfile.txt", True)
MyFile.WriteLine("This is a test.")

MygFile.Close

In the preceding code, the CreateObject function returns the
FileSystemODbject (fso). The CreateTextFile method then creates the file as
a TextStream object (a) and the WriteLine method writes a line of text to
the created text file. The Close method flushes the buffer and closes the file.

Microsoft® Visual Basic® Scripting Edition

FileSystemObject scripting Run-Time Reference
Constants

See Also

FileSystemObject has a number of useful constants that you can use in your
code. Constants provide a convenient way to use specific values without actually
having to remember the value itself. They also makes your code more
maintainable, should the value of any constant ever change.

Depending on your scripting host, these constants may be already defined. If so, simply use the constants
anywhere in your code in place of the values they represent. In cases where SCRRUN.DLL is not explicitly
referenced by your scripting host, you'll have to define these constants in your code before you can use
them. Examples of this case include Microsoft Internet Explorer and Microsoft Internet Information
Services (IIS).

The following list describes the various categories of constants provided for the FileSystemObject, along
with a brief description:

DriveType Constants
Defines the various drive types available on the host computer, such as Fixed, Removable, CD-ROM, etc.

File Attribute Constants
Defines various file attributes such as Hidden, Read-Only, etc.

File Input/Output Constants
Defines constants used with file input and output.

SpecialFolder Constants
Defines special folders available in your operating system.

Microsoft® Visual Basic® Scripting Edition

F ile SYStem Scripting Run-Time Reference
Version 3

Property

See Also Applies To

Description

Returns the type of file system in use for the specified drive.

Syntax

object.FileSystem

The object is always a Drive object.

Remarks

Available return types include FAT, NTFS, and CDFS.

The following code illustrates the use of the FileSystem property:

Function ShowFileSystemType(drvspec)
Dim fso,d
Set fso = CreateObject("Scripting.FileSystemObj;
Set d = fso.GetDrive(drvspec)
ShowFileSystemType = d.FileSystem

End Function

Microsoft® Visual Basic® Scripting Edition F 0 l de r Scri tln Run_Time REference

. Version 3
Object

See Also Properties Methods

Description
Provides access to all the properties of a folder.

Remarks

The following code illustrates how to obtain a Folder object and how to
return one of its properties:

Function ShowDateCreated(folderspec)

Dim fso, f
Set fso = CreateObject("Scripting.FileSystemObject")

Set f = fso.GetFolder(folderspec)
ShowDateCreated = f.DateCreated

End Function

Microsoft® Visual Basic® Scripting Edition F 0 l de r S Scri tln Run_Time REference

. Version 3
Collection
See Also Properties Methods
Description

Collection of all Folder objects contained within a Folder object.

Remarks

The following code illustrates how to get a Folders collection and how to
iterate the collection using the For Each...Next statement:

Function ShowFolderList(folderspec)
Dim fso, f, f1, fc, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(folderspec)
Set fc = f.SubFolders
For Each f1 in fc
s =s & fl.name
s=s & "
"
Next
ShowFolderList = s
End Function

Microsoft® Visual Basic® Scripting Edition

FolderExists Sciptng Fun-Time Refoence
Method

See Also Applies To

Description
Returns True if a specified folder exists; False if it does not.
Syntax

object.FolderExists(folderspec)

The FolderExists method syntax has these parts:

IPart "Description |
|object "Required. Always the name of a FileSystemObject. |

Required. The name of the folder whose existence is
to be determined. A complete path specification
(either absolute or relative) must be provided if the
folder isn't expected to exist in the current folder.

folderspec

Remarks
The following example illustrates use of the FolderExists method:

Function ReportFolderStatus(fldr)
Dim fso, msg
Set fso = CreateObject("Scripting.FileSystemObject")
If (fso.FolderExists(fldr)) Then
msg = fldr & " exists."
Else
msg = fldr & " doesn't exist."

End If
ReportFolderStatus = msg
End Function

Microsoft® Visual Basic® Scripting Edition

F ree Sp dCe Scripting Run-Time Reference
Version 3

Property

See Also Applies To

Description

Returns the amount of free space available to a user on the specified drive
or network share. Read-only.

Syntax

object.FreeSpace

The object is always a Drive object.

Remarks

The value returned by the FreeSpace property is typically the same as that
returned by the AvailableSpace property. Differences may occur between
the two for computer systems that support quotas.

The following code illustrates the use of the FreeSpace property:

Function ShowFreeSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & "
"
s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
ShowFreeSpace = s
End Function

Microsoft® Visual Basic® Scripting Edition

GetAbsolutePathName S -
Version 3
Method

See Also Applies To

Description

Returns a complete and unambiguous path from a provided path
specification.

Syntax

object.GetAbsolutePathName(pathspec)

The GetAbsolutePathName method syntax has these parts:

IPart "Description |
|object "Required. Always the name of a FileSystemObject. |

Ipathspec

Remarks

Required. Path specification to change to a complete
and unambiguous path.

A path is complete and unambiguous if it provides a complete reference
from the root of the specified drive. A complete path can only end with a
path separator character (\) if it specifies the root folder of a mapped drive.

Assuming the current directory is c:\mydocuments\reports, the following table illustrates the
behavior of the GetAbsolutePathName method.

Ipathspec "Returned path |
"c:" "c:\mydocuments\reports" {
"cil "c:\mydocuments"

"e\W "ex\"

I"c ¥ ¥\may97" ||c :\mydocuments\reports*.*\may97"

|
|"re gionl" "c :\mydocuments\reports\region1" |
|

|"c:\..\..\mydocuments" ""c:\mydocuments"

Microsoft® Visual Basic® Scripting Edition

GetBaseName Seriping RunTime Reference
Method

See Also Applies To

Description

Returns a string containing the base name of the file (less any file
extension), or folder in a provided path specification.

Syntax

object.GetBaseName(path)

The GetBaseName method syntax has these parts:

IPart "Description |
|object||Required. Always the name of a FileSystemObject. |

Ipath

Remarks

Required. The path specification for the file or folder
whose base name is to be returned.

The GetBaseName method returns a zero-length string ("") if no file or
folder matches the path argument.

The following example illustrates use of the GetBaseName method:

Function GetTheBase(filespec)
Dim fso
Set fso = CreateObject("Scripting.FileSystemObj;
GetTheBase = fso.GetBaseName(filespec)

End Function

Note The GetBaseName method works only on the provided
path string. It does not attempt to resolve the path, nor does it
check for the existence of the specified path.

Microsoft® Visual Basic® Scripting Edition SCI‘ip tln g Run'Time Reference

GetDrive Method Version 3

See Also Applies To

Description
Returns a Drive object corresponding to the drive in a specified path.
Syntax

object.GetDrive drivespec

The GetDrive method syntax has these parts:

|Part "Description |
|object "Required. Always the name of a FileSystemObject.

Required. The drivespec argument can be a drive
letter (c), a drive letter with a colon appended (c:), a

drivespec||drive letter with a colon and path separator appended
(c:\), or any network share specification
(\computer2\sharel).

Remarks

For network shares, a check is made to ensure that the share exists.

An error occurs if drivespec does not conform to one of the accepted forms or does not exist. To call
the GetDrive method on a normal path string, use the following sequence to get a string that is
suitable for use as drivespec:

DriveSpec = GetDriveName(GetAbsolutePathName(Path))
The following example illustrates use of the GetDrive method:

Function ShowFreeSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting.FileSystemObject")

Set d = fso.GetDrive(fso.GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s =s & d.VolumeName & "
"
s =s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
s = s & " Kbytes"
ShowFreeSpace = s
End Function

Microsoft® Visual Basic® Scripting Edition

GetDriveName Scripting Run-Time Referenc
Method

See Also Applies To

Description
Returns a string containing the name of the drive for a specified path.
Syntax

object.GetDriveName(path)

The GetDriveName method syntax has these parts:

IPart "Description |
|object||Required. Always the name of a FileSystemObject. |

Ipath

Remarks

Required. The path specification for the component
whose drive name is to be returned.

The GetDriveName method returns a zero-length string ("") if the drive
can't be determined.

The following example illustrates use of the GetDriveName method:

Function GetAName(DriveSpec)
Dim fso
Set fso = CreateObject("Scripting.FileSystemObj;
GetAName = fso.GetDriveName(Drivespec)

End Function

Note The GetDriveName method works only on the provided
path string. It does not attempt to resolve the path, nor does it
check for the existence of the specified path.

Microsoft® Visual Basic® Scripting Edition

GetExtensionName sciping Run-Time Reference
Method

See Also Applies To

Description

Returns a string containing the extension name for the last component in a
path.

Syntax

object.GetExtensionName(path)

The GetExtensionName method syntax has these parts:

IPart "Description |
|object||Required. Always the name of a FileSystemObject. |

ath Required. The path specification for the component
whose extension name is to be returned.
Remarks

For network drives, the root directory (\) is considered to be a component.

The GetExtensionName method returns a zero-length string ("") if no component matches the path
argument.

The following example illustrates use of the GetExtensionName method:

Function GetAnExtension(DriveSpec)

Dim fso
Set fso = CreateObject("Scripting.FileSystemODbj
GetAnExtension = fso.GetExtensionName(Drives

End Function

([]
Microsoft® Visual Basic® Scripting Edition G etF ll e Scri tln Run_Time REference

Version 3
Method

See Also Applies To

Description
Returns a File object corresponding to the file in a specified path.
Syntax

object.GetFile(filespec)

The GetFile method syntax has these parts:

Part

IDescription {

object IRequired. Always the name of a FileSystemObject.

Required. The filespec is the path (absolute or relative)

filespec to a specific file.

Remarks

An error occurs if the specified file does not exist.

The following example illustrates use of the GetFile method:

Function ShowFileAccessInfo(filespec)
Dim fso, f, s
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFile(filespec)
s = f.Path & "
"
s = s & "Created: " & f.DateCreated & "
"
s =s & "Last Accessed: " & f.DateLastAccessed & "
"
s = s & "Last Modified: " & f.DateLastModified
ShowFileAccessInfo = s

End Function

Microsoft® Visual Basic® Scripting Edition

GetFileName Sciptng Fun-Time Refoence
Method

See Also Applies To

Description

Returns the last file name or folder of a specified path that is not part of the
drive specification.

Syntax

object.GetFileName(pathspec)

The GetFileName method syntax has these parts:

IPart "Description |

|object "Required. Always the name of a FileSystemObject. |

Ipathspec

Remarks

Required. The path (absolute or relative) to a specific
file.

The GetFileName method returns a zero-length string ("") if pathspec does
not end with the named file or folder.

The following example illustrates use of the GetFileName method:

Function GetAName(DriveSpec)
Dim fso
Set fso = CreateObject("Scripting.FileSystemObj;
GetAName = fso.GetFileName(DriveSpec)

End Function

Note The GetFileName method works only on the provided
path string. It does not attempt to resolve the path, nor does it
check for the existence of the specified path.

Microsoft® Visual Basic® Scripting Edition

GetFileVersion Scripting Run-Time Referenc
Method

See Also Applies To

Description
Returns the version number of a specified file.
Syntax

object.GetFileVersion(pathspec)

The GetVersion method syntax has these parts:

IPart "Description |

|object "Required. Always the name of a FileSystemObject. |

Ipathspec

Remarks

Required. The path (absolute or relative) to a specific
file.

mn

The GetFileVersion method returns a zero-length string ("") if pathspec
does not end with the named file or if the file does not contain version
information.

The following example illustrates use of the GetFileVersion method:

Function GetVersion(PathSpec)
Dim fso, temp
Set fso = CreateObject("Scripting.FileSystemObj;
temp = fso.GetFileVersion(PathSpec)
If Len(temp) Then

GetVersion = temp
Else
GetVersion = "No version information available.

End If
End Function

Note The GetFileVersion method works only on the provided
path string. It does not attempt to resolve the path, nor does it
check for the existence of the specified path.

Microsoft® Visual Basic® Scripting Edition

Scripting Run-Time Reference

GetFolder Method Version 3

See Also Applies To

Description

Returns a Folder object corresponding to the folder in a specified path.

Syntax

object.GetFolder(folderspec)

The GetFolder method syntax has these parts:

|Part "Description |

|object "Required. Always the name of a FileSystemObject. |

Required. The folderspec is the path (absolute or

folderspec relative) to a specific folder.

Remarks

An error occurs if the specified folder does not exist.

The following example illustrates the use of the GetFolder method to return a folder object:

Sub AddNewFolder(path, folderName)
Dim fso, {, fc, nf
Set fso = CreateObject("Scripting.FileSystemODbj
Set f = fso.GetFolder(path)
Set fc = f.SubFolders
If folderName <> "" Then
Set nf = fc. Add(folderName)

Else
Set nf = fc.Add("New Folder")
End If
End Sub

Microsoft® Visual Basic® Scripting Edition

GetParentFolderName S -
Version 3
Method

See Also Applies To

Description

Returns a string containing the name of the parent folder of the last file or
folder in a specified path.

Syntax

object.GetParentFolderName(path)

The GetParentFolderName method syntax has these parts:

IPart "Description |
|object||Required. Always the name of a FileSystemObject. |

Ipath

Remarks

Required. The path specification for the file or folder
whose parent folder name is to be returned.

The GetParentFolderName method returns a zero-length string ("") if
there is no parent folder for the file or folder specified in the path argument.

The following example illustrates use of the GetParentFolderName method:

Function GetTheParent(DriveSpec)
Dim fso
Set fso = CreateObject("Scripting.FileSystemObj;
GetTheParent = fso.GetParentFolderName(Drive:
End Function

Note The GetParentFolderName method works only on the
provided path string. It does not attempt to resolve the path, nor
does it check for the existence of the specified path.

Microsoft® Visual Basic® Scripting Edition

GetSpecialFolder scipingRun-Time Reference
Method

See Also Applies To

Description
Returns the special folder specified.
Syntax

object.GetSpecialFolder(folderspec)

The GetSpecialFolder method syntax has these parts:

IPart "Description |

|object "Required. Always the name of a FileSystemObject. |

Required. The name of the special folder to be
folderspec|returned. Can be any of the constants shown in the
Settings section.

Settings

The folderspec argument can have any of the following values:

Constant Value[Description

The Windows folder contains files
WindowsFolder 0 [installed by the Windows operating
system.

| 1 The System folder contains libraries,

SystemFolder ‘ fonts, and device drivers.

The Temp folder is used to store
TemporaryFolder|| 2 [temporary files. Its path is found in
the TMP environment variable.

Remarks

The following example illustrates use of the GetSpecialFolder method:

Dim fso, tempfile
Set fso = CreateObject("Scripting.FileSystemObject")

Function CreateTempFile
Dim tfolder, tname, tfile
Const TemporaryFolder = 2
Set tfolder = fso.GetSpecialFolder(TemporaryFolder)
tname = fso.GetTempName
Set tfile = tfolder.CreateTextFile(tname)
Set CreateTempFile = tfile
End Function

Set tempfile = CreateTempFile
tempfile.WriteLine "Hello World"
tempfile.Close

Microsoft® Visual Basic® Scripting Edition

GEtTempName Scripting Run-Time lifeefresriirrllcg
Method

See Also Applies To

Description

Returns a randomly generated temporary file or folder name that is useful
for performing operations that require a temporary file or folder.

Syntax

object.GetTempName

The optional object is always the name of a FileSystemObject.

Remarks

The GetTempName method does not create a file. It provides only a
temporary file name that can be used with CreateTextFile to create a file.

The following example illustrates use of the GetTempName method:

Dim fso, tempfile
Set fso = CreateObject("Scripting.FileSystemObje«

Function CreateTempFile
Dim tfolder, thame, tfile
Const TemporaryFolder = 2
Set tfolder = fso.GetSpecialFolder(TemporaryFo
tname = fso.GetTempName

Set tfile = tfolder.CreateTextFile(tname)
Set CreateTempFile = tfile
End Function

Set tempfile = CreateTempFile
tempfile.WriteLine "Hello World"
tempfile.Close

Microsoft® Visual Basic® Scripting Edition I SRe a dy Scri tln Run_Time REference

Version 3
Property

See Also Applies To

Description

Returns True if the specified drive is ready; False if it is not.

Syntax

object.IsReady

The object is always a Drive object.

Remarks

For removable-media drives and CD-ROM drives, IsReady returns True
only when the appropriate media is inserted and ready for access.

The following code illustrates the use of the IsReady property:

Function ShowDrivelnfo(drvpath)
Dim fso, d, s, t
Set fso = CreateObject("Scripting.FileSystemObject")
Set d = fso.GetDrive(drvpath)
Select Case d.DriveType
Case 0: t = "Unknown"
Case 1: t = "Removable"
Case 2: t = "Fixed"
Case 3: t = "Network"
Case 4: t = "CD-ROM"
Case 5: t = "RAM Disk"
End Select
s = "Drive " & d.DriveLetter & ": - " & t

If d.IsReady Then
s = s & "
" & "Drive is Ready."
Else
s = s & "
" & "Drive is not Ready."
End If
ShowDrivelnfo = s
End Function

Microsoft® Visual Basic® Scripting Edition

I SRO OtF 0 l der Scripting Run-Time lileefresriirrllcg
Property

See Also Applies To

Description

Returns True if the specified folder is the root folder; False if it is not.

Syntax

object.IsRootFolder

The object is always a Folder object.

Remarks
The following code illustrates the use of the IsRootFolder property:

Function DisplayLevelDepth(pathspec)
Dim fso, f, n
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.GetFolder(pathspec)
If f.IsRootFolder Then
DisplayLevelDepth = "The specified folder is the root folder."
Else
Do Until f.IsRootFolder
Set f = f.ParentFolder
n=n+1
Loop
DisplayLevelDepth = "The specified folder is nested " & n & " .
End If
End Function

Microsoft® Visual Basic® Scripting Edition Item Scri tln Run'Time Reference

Version 2
Property

See Also Applies To

Description

Sets or returns an item for a specified key in a Dictionary object. For
collections, returns an item based on the specified key. Read/write.

Syntax

object.Item(key) [= newitem]

The Item property has the following parts:

|Part Description

Required. Always the name of a collection or ‘

object Dictionary object.

Required. Key associated with the item being retrieved
key

or added.

Optional. Used for Dictionary object only; no
newitem|fapplication for collections. If provided, newitem is the
new value associated with the specified key.

Remarks

If key is not found when changing an item, a new key is created with the
specified newitem. If key is not found when attempting to return an existing
item, a new key is created and its corresponding item is left empty.

The following example illustrates the use of the Item property:

Function ItemDemo

Dim d ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and item:
d.Add "b", "Belgrade"
d.Add "c", "Cairo"
ItemDemo = d.Item("c") ' Get the item.

End Function

Microsoft® Visual Basic® Scripting Edition I tems Scri tln Run'Time REference

Version 2
Method

See Also Applies to

Description

Returns an array containing all the items in a Dictionary object.

Syntax

object.Items

The object is always the name of a Dictionary object.

Remarks
The following code illustrates use of the Items method:

Function DicDemo
Dima, d,1i, s ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"
d.Add "c", "Cairo"
a = d.Items ' Get the items.
Fori =0 To d.Count -1 ' Iterate the array.

s =s & a(i) & "
"" Create return string.

Next
DicDemo = s

End Function

Microsoft® Visual Basic® Scripting Edition Key Scri tln Run'Time REference

Version 2
Property

See Also Applies to

Description
Sets a key in a Dictionary object.
Syntax

object.Key(key) = newkey

The Key property has the following parts:

Part [[Description

Required. Always the name of a Dictionary object.

object
Ikey "Required. Key value being changed.
|newkey "Required. New value that replaces the specified key. |

Remarks

If key is not found when changing a key, a run-time error will occur.

The following example illustrates the use of the Key property:

Function DicDemo
Dim d ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and item:
d.Add "b", "Belgrade"
d.Add "c", "Cairo"

d.Key("c") ="d" ' Set key for "c" to "d".
DicDemo = d.Item("d") ' Return associate item.
End Function

Microsoft® Visual Basic® Scripting Edition Keys Scri tln Run'Time REference

Version 2
Method

See Also Applies to

Description

Returns an array containing all existing keys in a Dictionary object.

Syntax

object.Keys

The object is always the name of a Dictionary object.

Remarks
The following code illustrates use of the Keys method:

Function DicDemo
Dima, d, i ' Create some variables.
Set d = CreateObject("Scripting.Dictionary")
d.Add "a", "Athens" ' Add some keys and items.
d.Add "b", "Belgrade"
d.Add "c", "Cairo"
a = d.Keys ' Get the keys.
Fori =0 To d.Count -1 ' Iterate the array.

s =s & a(i) & "
""Return results.

Next
DicDemo = s

End Function

[]
Microsoft® Visual Basic® Scripting Edition L ln e Scri Un Run'Time REference

Version 2
Property

See Also Applies to

Description

Read-only property that returns the current line number in a TextStream
file.

Syntax

object.Line

The object is always the name of a TextStream object.

Remarks

After a file is initially opened and before anything is written, Line is equal
to 1.

The following example illustrates use of the Line property:

Function GetLine
Const ForReading = 1, ForWriting = 2
Dim fso, f, ra
Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.OpenTextFile("c:\testfile.txt", ForWriting, True)
f.Write "Hello world!" & vbCrLf & "VB Script is fun!" & vbCrL
Set f = fso.OpenTextFile("c:\testfile.txt", ForReading)
ra = f.ReadAll
GetLine = f.Line
End Function

Microsoft® Visual Basic® Scripting Edition M Ove Scri tln Run'Time Reference

Version 3
Method

See Also Applies To

Description
Moves a specified file or folder from one location to another.
Syntax

object.Move destination

The Move method syntax has these parts:

Part Description

Required. Always the name of a File or Folder

object object.

Required. Destination where the file or folder is to

destination)
be moved. Wildcard characters are not allowed.

Remarks

The results of the Move method on a File or Folder are identical to
operations performed using FileSystemObject.MoveFile or
FileSystemObject.MoveFolder. You should note, however, that the
alternative methods are capable of moving multiple files or folders.

The following example illustrates use of the Move method:

Dim fso, MyFile

Set fso = CreateObject("Scripting.FileSystemObje
Set MyFile = fso.CreateTextFile("c:\testfile.txt", Ti
MyFile.WriteLine("This is a test.")

MyFile.Close
Set MyFile = fso.GetFile("c:\testfile.txt")
MyFile.Move "c:\windows\desktop\"

Microsoft® Visual Basic® Scripting Edition S Cl‘ip tln g Run'Time Reference

MoveFile Method Version 3

See Also Applies To

Description
Moves one or more files from one location to another.
Syntax

object.MoveFile source, destination

The MoveFile method syntax has these parts:

|Part "Description |
|object "Required. Always the name of a FileSystemObject. |

Required. The path to the file or files to be moved.
source The source argument string can contain wildcard

characters in the last path component only.

Required. The path where the file or files are to be
destination|moved. The destination argument can't contain
wildcard characters.

Remarks

If source contains wildcards or destination ends with a path separator (\), it
is assumed that destination specifies an existing folder in which to move the
matching files. Otherwise, destination is assumed to be the name of a
destination file to create. In either case, three things can happen when an

individual file is moved:
o If destination does not exist, the file gets moved. This is the usual case.
o If destination is an existing file, an error occurs.

o If destination is a directory, an error occurs.

An error also occurs if a wildcard char