
Show	All



New	Objects
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Publisher,	including	product
news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	objects	added	to	the	Publisher	object	model.

Object Description

AdvancedPrintOptions Represents	the	advanced	print	settings	for	a
publication.

BorderArt Represents	an	available	BorderArt.

BorderArtFormat Represents	the	formatting	of	the	BorderArt
applied	to	the	specified	shape.

BorderArts A	collection	of	all	BorderArt	available	for	use
in	the	specified	publication.

CatalogMergeShapes Represents	the	shapes	contained	in	the	catalog
merge	area	of	the	specified	publication.

ColorsInUse
A	collection	of	ColorFormat	objects	that
represent	the	colors	present	in	the	specified
publication.

Documents A	collection	that	represents	all	open
publications.

FindReplace Represents	the	criteria	for	a	find	operation.

HeaderFooter Represents	the	header	or	footer	of	a	master
page.

InlineShapes
A	collection	of	Shape	objects,	which	represent
objects	in	the	drawing	layer,	where
Shape.IsInline	is	True.

Label Represents	a	single	unique	label	design
available	on	the	system.

Labels
A	collection	of	Label	objects,	which	represent
the	unique	label	designs	available	on	the
system.



PageBackground Represents	the	background	of	a	page.

PrintablePlate Represents	a	single	plate	to	be	printed	for	the
publication.

PrintablePlates A	collection	of	the	PrintablePlate	objects	in	a
publication.

PrintableRect Represents	the	sheet	area	within	which	the
specified	printer	will	print.

Section Represents	a	Section	of	a	publication	or
document.

Sections A	collection	of	all	the	Section	objects	in	the
document.

WebNavigationBarHyperlinksA	collection	of	all	the	Hyperlink	objects	of	thespecified	WebNavigationBarSet	object.

WebNavigationBarSet Represents	a	Web	navigation	bar	set	for	the
current	document.

WebNavigationBarSets A	collection	of	all	the	WebNavigationBarSet
objects	in	the	current	document.

WebOptions

Represents	the	properties	of	a	Web	publication,
including	options	for	saving	and	encoding	the
publication,	and	enabling	Web-safe	fonts	and
font	schemes.

WebPageOptions

Represents	the	properties	of	a	single	Web	page
within	a	Web	publication,	including	options	for
adding	the	title	and	description	of	the	page,
background	sounds,	in	addition	to	other
options.



New	Properties	(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Publisher,	including	product
news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Publisher	object	model	(sorted
alphabetically).

New	Property Object(s)
AddHebDoubleQuote Options
AdvancedPrintOptions Document
AllowBleeds AdvancedPrintOptions
AlwaysSaveInDefaultEncoding WebOptions
AutoUpdate WebNavigationBarSet
AvailableLabels PageSetup
Background Page
BackgroundSound WebPageOptions
BackgroundSoundLoopCount WebPageOptions
BackgroundSoundLoopForever WebPageOptions
BorderArt Shape
BorderArts Document
ButtonStyle WebNavigationBarSet
CatalogMergeItems Shape
CharBasedFirstLineIndent ParagraphFormat
ColorModel PictureFormat
ColorsInPalette PictureFormat
ColorsInUse Document
ColumnGutterWidth LayoutGuides
ContinueNumbersFromPreviousSection Section
Design WebNavigationBarSet
Documents Application



EffectiveResolution PictureFormat
EmailAsImg WebOptions
EnableIncrementalUpload WebOptions
Encoding WebOptions

Exists BorderArtFormat,
PageBackground

FieldType MailMergeDataField
Filename PictureFormat
FileSize PictureFormat
Find Document,	TextRange
FindText FindReplace
Footer Page
Forward FindReplace
FoundTextRange FindReplace
GraphicsResolution AdvancedPrintOptions
GutterCenterlines LayoutGuides
HasAlphaChannel PictureFormat
HasTransparencyColor PictureFormat
Header Page
HorizontalAlignment WebNavigationBarSet
HorizontalBaseLineOffset LayoutGuides
HorizontalBaseLineSpacing LayoutGuides
HorizontalButtonCount WebNavigationBarSet
HorizontalRepeat CatalogMergeShapes
HorizontalScale PictureFormat
ImageFormat PictureFormat
IncludePageOnNewWebNavigationBars WebPageOptions
InkName Plate,	PrintablePlate
InksToPrint AdvancedPrintOptions
InlineAlignment Shape,	ShapeRange
InlineShapes TextRange
InlineTextRange Shape,	ShapeRange
InUse Plate



IsDataSourceConnected Document
IsEmpty PictureFormat
IsGreyScale PictureFormat
IsHeader HeaderFooter
IsHorizontal WebNavigationBarSet
IsInline Shape,	ShapeRange
IsLeading Page
IsLinked PictureFormat
IsPostscriptPrinter AdvancedPrintOptions
IsTrailing Page
IsTrueColor PictureFormat
IsTwoPageMaster Page
IsWizard Document
IsWizardPage Page
KeepLinesTogether ParagraphFormat
KeepWithNext ParagraphFormat
Keywords WebPageOptions
Label PageSetup
LinkedFileStatus PictureFormat
Links WebNavigationBarSet
ListBulletFontName ParagraphFormat
ListBulletFontSize ParagraphFormat
ListBulletText ParagraphFormat
ListIndent ParagraphFormat
ListNumberSeparator ParagraphFormat
ListNumberStart ParagraphFormat
ListType ParagraphFormat
LockToBaseLine ParagraphFormat
MatchAlefHamza FindReplace
MatchCase FindReplace
MatchDiacritics FindReplace
MatchKashida FindReplace
MatchWholeWord FindReplace



MatchWidth FindReplace
NegativeImage AdvancedPrintOptions

OrganizeInFolder WebOptions
OriginalColorsInPalette PictureFormat
OriginalFileSize PictureFormat
OriginalHasAlphaChannel PictureFormat
OriginalHeight PictureFormat
OriginalIsTrueColor PictureFormat
OriginalResolution PictureFormat
OriginalWidth PictureFormat
PageNumberFormat Section
PageNumberStart Section
PrintablePlates AdvancedPrintOptions
PrintableRect AdvancedPrintOptions
PrintBlankPlates AdvancedPrintOptions
PrintBleedMarks AdvancedPrintOptions
PrintColorBars AdvancedPrintOptions
PrintCropMarks AdvancedPrintOptions
PrintDensityBars AdvancedPrintOptions
PrintJobInformation AdvancedPrintOptions
PrintMode AdvancedPrintOptions
PrintPageBackgrounds Document
PrintPlate PrintablePlate
PrintRegistrationMarks AdvancedPrintOptions
PublicationLayout PageSetup
PublicationType Document
RedoActionsAvailable Document
RelyOnVML WebOptions
RemovePersonalInformation Document
ReplaceScope FindReplace
ReplaceWithText FindReplace
Resolution AdvancedPrintOptions



RowGutterWidth LayoutGuides
Sections Document
ShowHeaderFooterOnFirstPage Section
ShowOnlyWebFonts WebOptions
ShowSelected WebNavigationBarSet
StartInNextTextBox ParagraphFormat
StartPageIndex Section
StretchPictures BorderArtFormat
UndoActionsAvailable Document
UseCharBasedFirstLineIndent ParagraphFormat
UseCustomHalftone AdvancedPrintOptions
UseOnlyPublicationFonts AdvancedPrintOptions
VerticalBaseLineOffset LayoutGuides
VerticalBaseLineSpacing LayoutGuides
VerticalRepeat CatalogMergeShapes
VerticalScale PictureFormat
ViewHorizontalBaseLineGuides Document
ViewVerticalBaseLineGuides Document
WebNavigationBarSetName Shape
WebNavigationBarSets Document
WebOptions Application
WebPageOptions Page
WidowControl ParagraphFormat



New	Properties	(by	Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Publisher,	including	product
news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	properties	added	to	the	Publisher	object	model	(sorted
by	object	name).

Object New	Properties

AdvancedPrintOptions

AllowBleeds,	GraphicsResolution,	InksToPrint,
IsPostscriptPrinter,	NegativeImage,
PrintablePlates,	PrintableRect,	PrintBlankPlates,
PrintBleedMarks,	PrintColorBars,
PrintCropMarks,	PrintDensityBars,
PrintJobInformation,	PrintMode,
PrintRegistrationMarks,	Resolution,
UseCustomHalftone,	UseOnlyPublicationFonts

Application Documents,	WebOptions
BorderArtFormat Exists,	StretchPictures
CatalogMergeShapes HorizontalRepeat,	VerticalRepeat

Document

AdvancedPrintOptions,	BorderArts,	ColorsInUse,
Find,	IsDataSourceConnected,	IsWizard,
PrintPageBackgrounds,	PublicationType,
RedoActionsAvailable,
RemovePersonalInformation,	Sections,
UndoActionsAvailable,
ViewHorizontalBaseLineGuides,
ViewVerticalBaseLineGuides,
WebNavigationBarSets

FindReplace

FindText,	Forward,	FoundTextRange,
MatchAlefHamza,	MatchCase,	MatchDiacritics,
MatchKashida,	MatchWholeWord,	MatchWidth,
ReplaceScope,	ReplaceWithText

HeaderFooter IsHeader



LayoutGuides
ColumnGutterWidth,	GutterCenterlines,
HorizontalBaseLineOffset,
HorizontalBaseLineSpacing,	RowGutterWidth,
VerticalBaseLineOffset,	VerticalBaseLineSpacing

MailMergeDataField FieldType
Options AddHebDoubleQuote

Page
Background,	Footer,	Header,	IsLeading,	IsTrailing,
IsTwoPageMaster,	IsWizardPage,
WebPageOptions

PageBackground Exists
PageSetup AvailableLabels,	Label,	PublicationLayout

ParagraphFormat

CharBasedFirstLineIndent,	KeepLinesTogether,
KeepWithNext,	ListBulletFontName,
ListBulletFontSize,	ListBulletText,	ListIndent,
ListNumberSeparator,	ListNumberStart,	ListType,
LockToBaseLine,	StartInNextTextBox,
UseCharBasedFirstLineIndent,	WidowControl

PictureFormat

ColorModel,	ColorsInPalette,	EffectiveResolution,
Filename,	FileSize,	HasAlphaChannel,
HasTransparencyColor,	HorizontalScale,
ImageFormat,	IsEmpty,	IsGreyScale,	IsLinked,
IsTrueColor,	LinkedFileStatus,
OriginalColorsInPalette,	OriginalFileSize,
OriginalHasAlphaChannel,	OriginalHeight,
OriginalIsTrueColor,	OriginalResolution,
OriginalWidth,	VerticalScale

Plate InkName,	InUse
PrintablePlate InkName,	PrintPlate

Section
ContinueNumbersFromPreviousSection,
PageNumberFormat,	PageNumberStart,
ShowHeaderFooterOnFirstPage,	StartPageIndex

Shape
BorderArt,	CatalogMergeItems,	InlineAlignment,
InlineTextRange,	IsInline,
WebNavigationBarSetName

ShapeRange InlineAlignment,	InlineTextRange,	IsInline
TextRange Find,	InlineShapes



WebNavigationBarSet
AutoUpdate,	ButtonStyle,	Design,
HorizontalAlignment,	HorizontalButtonCount,
IsHorizontal,	Links,	ShowSelected

WebOptions

AlwaysSaveInDefaultEncoding,	EmailAsImg,
EnableIncrementalUpload,	Encoding,
OrganizeInFolder,	RelyOnVML,
ShowOnlyWebFonts

WebPageOptions

BackgroundSound,	BackgroundSoundLoopCount,
BackgroundSoundLoopForever,
IncludePageOnNewWebNavigationBars,
IncludePageOnWebNavigationBar,	Keywords



New	Methods	(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Publisher,	including	product
news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Publisher	object	model	(sorted
alphabetically).

New	Method Object
AddCatalogMergeArea Shapes
AddEmptyPictureFrame Shapes
AddSet WebNavigationBarSets
AddToCatalogMergeArea Shape,	ShapeRange
AddToEveryPage WebNavigationBarSet
AddWebNavigationBar Shapes
BeginCustomUndoAction Document
ChangeOrientation WebNavigationBarSet
ConvertPublicationType Document
ConvertToProcess Plate
Create PageBackground
DeleteSetAndInstances WebNavigationBarSet
EndCustomUndoAction Document
ExportEmailHTML Page
FindPlateByInkName Plates,	PrintablePlates
MoveIntoTextFlow Shape,	ShapeRange
MoveOutOfTextFlow Shape,	ShapeRange
Redo Document
RemoveCatalogMergeArea Shape
RemoveFromCatalogMergeArea Shape,	ShapeRange
Replace PictureFormat
RevertToDefaultWeight BorderArtFormat



RevertToOriginalColor BorderArtFormat
Set BorderArtFormat
SetBackgroundSoundRepeat WebPageOptions
SetListType ParagraphFormat
Undo Document
WebPagePreview Document



New	Methods	(by	Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Publisher,	including	product
news,	technical	articles,	downloads,	and	samples.

The	following	table	lists	methods	added	to	the	Publisher	object	model	(sorted	by
object	name).

New	Method Object

BorderArtFormat RevertToDefaultWeight,	RevertToOriginalColor,
Set

Document
BeginCustomUndoAction,
ConvertPublicationType,	EndCustomUndoAction,
Redo,	Undo,	WebPagePreview

PageBackground Create
Page ExportEmailHTML
ParagraphFormat SetListType
PictureFormat Replace
Plate ConvertToProcess
Plates FindPlateByInkName
PrintablePlates FindPlateByInkName

Shape
AddToCatalogMergeArea,	MoveIntoTextFlow,
MoveOutOfTextFlow,	RemoveCatalogMergeArea,
RemoveFromCatalogMergeArea

ShapeRange
AddToCatalogMergeArea,	MoveIntoTextFlow,
MoveOutOfTextFlow,
RemoveFromCatalogMergeArea

Shapes AddCatalogMergeArea,	AddEmptyPictureFrame,
AddWebNavigationBar

WebNavigationBarSet AddToEveryPage,	ChangeOrientation,
DeleteSetAndInstances

WebNavigationBarSets AddSet



WebPageOptions SetBackgroundSoundRepeat



Adjustments	Object

Multiple	objects Adjustments

Contains	a	collection	of	adjustment	values	for	the	specified	AutoShape	or
WordArt	object.	Each	adjustment	value	represents	one	way	an	adjustment	handle
can	be	adjusted.	Because	some	adjustment	handles	can	be	adjusted	in	two	ways
—	for	instance,	some	handles	can	be	adjusted	both	horizontally	and	vertically
—	a	shape	can	have	more	adjustment	values	than	it	has	adjustment	handles.	A
shape	can	have	up	to	eight	adjustments.



Using	the	Adjustments	Object

Use	the	Adjustments	property	to	return	an	Adjustments	object.	Use
Adjustments(index),	where	index	is	the	adjustment	value's	index	number,	to
return	a	single	adjustment	value.

Different	shapes	have	different	numbers	of	adjustment	values,	different	kinds	of
adjustments	change	the	geometry	of	a	shape	in	different	ways,	and	different
kinds	of	adjustments	have	different	ranges	of	valid	values.

The	following	table	summarizes	the	ranges	of	valid	adjustment	values	for
different	types	of	adjustments.	In	most	cases,	if	you	specify	a	value	that's	beyond
the	range	of	valid	values,	the	closest	valid	value	will	be	assigned	to	the
adjustment.

Type	of
adjustment Valid	values

Linear
(horizontal
or	vertical)

Generally	the	value	0.0	represents	the	left	or	top	edge	of	the	shape
and	the	value	1.0	represents	the	right	or	bottom	edge	of	the	shape.
Valid	values	correspond	to	valid	adjustments	you	can	make	to	the
shape	manually.	For	example,	if	you	can	only	pull	an	adjustment
handle	half	way	across	the	shape	manually,	the	maximum	value	for
the	corresponding	adjustment	will	be	0.5.	For	shapes	such	as
callouts,	where	the	values	0.0	and	1.0	represent	the	limits	of	the
rectangle	defined	by	the	starting	and	ending	points	of	the	callout
line,	negative	numbers	and	numbers	greater	than	1.0	are	valid
values.

Radial An	adjustment	value	of	1.0	corresponds	to	the	width	of	the	shape.
The	maximum	value	is	0.5,	or	halfway	across	the	shape.

Angle Values	are	expressed	in	degrees.	If	you	specify	a	value	outside	the
range	–	180	to	180,	it	will	be	normalized	to	be	within	that	range.

The	following	example	adds	a	right-arrow	callout	to	the	active	document	and
sets	adjustment	values	for	the	callout.	Note	that	although	the	shape	has	only
three	adjustment	handles,	it	has	four	adjustments.	Adjustments	three	and	four
both	correspond	to	the	handle	between	the	head	and	neck	of	the	arrow.



Sub	AdjustRightArrowCallout()

				With	ActiveDocument.Pages(1).Shapes.AddShape(	_

												Type:=msoShapeRightArrowCallout,	Left:=72,	Top:=72,	_

												Width:=250,	Height:=190).Adjustments

								.Item(1)	=	0.75		'Adjusts	width	of	text	box

								.Item(2)	=	-0.5		'Adjusts	width	of	arrowhead

								.Item(3)	=	0.8			'Adjusts	length	of	arrowhead

								.Item(4)	=	-0.75	'Adjusts	width	of	arrow	neck

				End	With

End	Sub



BorderArts	Collection
Document BorderArts

BorderArt

A	collection	of	all	BorderArt	available	for	use	in	the	specified	publication.
BorderArt	is	predefined	picture	borders	that	can	be	applied	to	text	boxes,	picture
frames,	or	rectangles.



Using	the	BorderArts	Object

Use	the	Item	property	of	a	BorderArts	collection	to	return	a	specific
BorderArt	object.	The	Index	argument	of	the	Item	property	can	be	the	number
or	name	of	the	BorderArt	object.

This	example	returns	the	BorderArt	"Apples"	from	the	active	publication.

Dim	bdaTemp	As	BorderArt

Set	bdaTemp	=	ActiveDocument.BorderArts.Item	(Index:="Apples")	

Use	the	Count	property	to	return	the	number	of	BorderArt	types	available	in	the
specified	document.	The	following	example	displays	the	number	of	BorderArt
types	in	the	active	document.

Sub	CountBorderArts()

	 MsgBox	ActiveDocument.BorderArts.Count

End	Sub



Remarks

The	BorderArts	collection	includes	any	custom	BorderArt	types	created	by	the
user	for	the	specified	publication.



Show	All



CatalogMergeShapes	Collection
Shape CatalogMergeShapes

Shape
Multiple	objects

Represents	the	shapes	contained	in	the	catalog	merge	area	of	the	specified
publication.



Using	the	CatalogMergeShapes	Collection

Use	the	CatalogMergeItems	property	of	the	Shape	or	ShapeRange	objects	to
return	the	contents	of	the	catalog	merge	area.	The	following	example	tests
whether	the	specified	publication	contains	a	catalog	merge	area.	If	it	does,	it
returns	a	list	of	the	shapes	it	contains.

Sub	ListCatalogMergeAreaContents()

	

				Dim	pgPage	As	Page

				Dim	mmLoop	As	Shape

				Dim	intCount	As	Integer

				For	Each	pgPage	In	ThisDocument.Pages

								For	Each	mmLoop	In	pgPage.Shapes

												If	mmLoop.Type	=	pbCatalogMergeArea	Then

																With	mmLoop.CatalogMergeItems

																				For	intCount	=	1	To	.Count

																								Debug.Print	"Shape	ID:	"	&	_

																												mmLoop.CatalogMergeItems.Item(intCount).ID

																								Debug.Print	"Shape	Name:	"	&	_

																												mmLoop.CatalogMergeItems.Item(intCount).Name

																				Next

																End	With

												End	If

								Next	mmLoop

				Next	pgPage

End	Sub

Use	the	AddToCatalogMergeArea	method	of	the	Shape	or	ShapeRange
objects	to	add	shapes	to	a	catalog	merge	area.	The	following	example	adds	a
rectangle	to	the	catalog	merge	area	in	the	specified	publication.	This	example
assumes	a	catalog	merge	area	has	been	added	to	the	first	page	of	the	publication.

ThisDocument.Pages(1).Shapes.AddShape(1,	80,	75,	450,	125).AddToCatalogMergeArea

Use	CatalogMergeItems(index),	where	index	is	index	number,	to	return	a	single
catalog	merge	area	shape.	The	following	example	removes	the	first	shape	from
the	catalog	merge	area.



ThisDocument.Pages(1).Shapes(1).CatalogMergeItems(1).RemoveFromCatalogMergeArea

Use	the	RemoveFromCatalogMergeArea	method	of	the	Shape	or
ShapeRange	objects	to	remove	shapes	from	a	catalog	merge	area.	Removed
shapes	are	not	deleted,	but	are	instead	placed	on	the	publication	page	containing
the	catalog	merge	area.	The	following	example	tests	whether	the	specified
publication	contains	a	catalog	merge	area.	If	it	does,	all	the	shapes	are	removed
from	the	catalog	merge	area	and	deleted,	and	the	catalog	merge	area	is	then
removed	from	the	publication.

Sub	DeleteCatalogMergeAreaAndAllShapesWithin()

				Dim	pgPage	As	Page

				Dim	mmLoop	As	Shape

				Dim	intCount	As	Integer

				Dim	strName	As	String

				

								For	Each	pgPage	In	ThisDocument.Pages

												For	Each	mmLoop	In	pgPage.Shapes

												

																If	mmLoop.Type	=	pbCatalogMergeArea	Then

																				With	mmLoop.CatalogMergeItems

																								For	intCount	=	.Count	To	1	Step	-1

																												strName	=	mmLoop.CatalogMergeItems.Item(intCount).Name

																												.Item(intCount).RemoveFromCatalogMergeArea

																												pgPage.Shapes(strName).Delete

																								Next

																				End	With

																mmLoop.RemoveCatalogMergeArea

																End	If

																

												Next	mmLoop

								Next	pgPage

							

	End	Sub



Remarks

The	catalog	merge	area	is	automatically	resized	to	accommodate	objects	that	are
larger	then	the	merge	area,	or	that	are	positioned	outside	the	catalog	merge	area
when	they	are	added.

Shapes	inside	the	catalog	merge	area	are	automatically	resized	or	repositioned	if
the	catalog	merge	area	is	decreased	in	size	or	moved.

The	catalog	merge	area	can	contain	picture	and	text	data	fields	you	have
inserted,	as	well	as	other	design	elements	you	choose.



CellRange	Collection
Multiple	objects CellRange

Cell
Multiple	objects

A	collection	of	Cell	objects	in	a	table	column	or	row.	The	CellRange	collection
represents	all	the	cells	in	the	specified	column	or	row.



Using	the	CellRange	Collection

Use	the	Cells	property	to	return	the	CellRange	collection.	This	example	merges
the	cells	in	first	column	of	the	table.

Sub	MergeCellsInFirstColumn()

				With	ActiveDocument.Pages(1).Shapes(1).Table

								.Cells(StartRow:=1,	StartColumn:=1,	_

								EndRow:=.Rows.Count,	EndColumn:=1).Select

				End	With

				Selection.TableCellRange.Merge

End	Sub

	 	

Use	the	Count	property	to	return	the	number	of	cells	in	a	row,	column,	table	or
selection.	This	example	displays	a	message	with	the	number	of	cells	the
specified	table.

Sub	NumberOfTableCells()

				MsgBox	ActiveDocument.Pages(1).Shapes(1).Table	_

								.Cells.Count

End	Sub

	 	



Remarks

Although	the	collection	object	is	named	CellRange	and	is	shown	in	the	Object
Browser,	this	keyword	is	not	used	in	programming	the	Microsoft	Publisher
object	model.	The	keyword	Cells	is	used	instead.

You	cannot	programmatically	add	to	or	delete	individual	cells	from	a	Publisher
table.	Use	the	AddTable	method	with	the	Shapes	collection	to	add	a	new	table
to	a	publication.	Use	the	Add	method	of	the	Columns	or	Rows	collections	to
add	a	column	or	row	to	a	table.	Use	the	Delete	method	of	the	Columns	or	Rows
collections	to	delete	a	column	or	row	from	a	table.



ColorSchemes	Collection
Application ColorSchemes

ColorScheme
ColorFormat

A	collection	of	all	the	ColorScheme	objects	in	Microsoft	Publisher.	Each
ColorScheme	object	represents	a	color	scheme,	which	is	a	set	of	colors	that	are
used	in	a	publication.



Using	the	ColorSchemes	collection

Use	the	Count	property	to	return	the	number	of	color	schemes	available	to
Microsoft	Publisher.	The	following	example	displays	the	number	of	color
schemes.

Sub	CountColorSchemes()

				MsgBox	Application.ColorSchemes.Count

End	Sub

	 	

Use	the	Item	property	to	return	a	specific	color	scheme	from	the	ColorSchemes
collection.	The	Index	argument	of	the	Item	property	can	be	the	number	or	name
of	the	color	scheme,	or	a	PbColorScheme	constant.	The	follow	example	sets	the
color	scheme	of	the	active	publication	to	Wildflower.

Sub	SetColorScheme()

				ActiveDocument.ColorScheme	_

								=	ColorSchemes.Item(pbColorSchemeWildflower)

End	Sub

	 	

Use	the	Name	property	to	return	a	color	scheme	name.	The	following	example
lists	in	a	text	box	all	the	color	schemes	available	to	Publisher.

Sub	ListColorShemes()

				Dim	clrScheme	As	ColorScheme

				Dim	strSchemes	As	String

				For	Each	clrScheme	In	Application.ColorSchemes

								strSchemes	=	strSchemes	&	clrScheme.Name	&	vbLf

				Next

				ActiveDocument.Pages(1).Shapes.AddTextbox(	_

								Orientation:=pbTextOrientationHorizontal,	_

								Left:=72,	Top:=72,	Width:=400,	Height:=500).TextFrame	_

								.TextRange.Text	=	strSchemes

End	Sub

	 	





Show	All



ColorsInUse	Collection
Document ColorsInUse

ColorFormat
ColorCMYK

A	collection	of	ColorFormat	objects	that	represent	the	colors	present	in	the
specified	publication.



Using	the	ColorsInUse	Object

Use	the	ColorsInUse	property	of	the	Document	object	to	return	the
ColorsInUse	collection.

The	following	example	lists	properties	of	each	color	in	the	active	publication
that	is	based	on	the	specified	ink.	This	example	assumes	the	publication's	color
mode	has	been	defined	as	spot	color	or	process	and	spot	color.

Sub	ListColorsBasedOnInk()

Dim	cfLoop	As	ColorFormat

For	Each	cfLoop	In	ActiveDocument.ColorsInUse

				

				With	cfLoop

								If	.Ink	=	"2"	Then

												Debug.Print	"BaseRGB:	"	&	.BaseRGB

												Debug.Print	"RGB:	"	&	.RGB

												Debug.Print	"TintShade:	"	&	.TintAndShade

												Debug.Print	"Type:	"	&	.Type

								End	If

				End	With

Next	cfLoop

End	Sub

Use	ColorsInUse(index),	where	index	is	the	color	index	number,	to	return	a
single	ColorFormat	object.	The	following	example	returns	properties	for	the
second	color	in	the	publication.

Sub	ColorProperties()

				With	ActiveDocument.ColorsInUse(2)

								Debug.Print	"Color	RBG:	"	&	.RGB

								Debug.Print	"Ink	RBG:	"	&	.BaseRGB

								Debug.Print	"Tint:	"	&	.TintAndShade

				

				End	With

End	Sub



Remarks

The	ColorsInUse	collection	supports	all	the	publication	color	models:	RGB,
process	colors,	and	spot	color.

For	process	color	and	spot	color	publications,	colors	are	based	on	inks.	For	a
given	ink,	a	publication	may	contain	several	colors	that	are	different	tints	or
shades	of	that	ink.	Use	the	Plates	collection	to	access	the	plates	that	represent
the	inks	defined	for	a	publication.



Columns	Collection
Table Columns

column
CellRange

A	collection	of	Column	objects	that	represent	the	columns	in	a	table.



Using	the	Columns	collection

Use	the	Columns	property	of	the	Table	object	to	return	the	Columns	collection.
The	following	example	displays	the	number	of	Column	objects	in	the	Columns
collection	for	the	first	table	in	the	active	document.

Sub	CountColumns()

				MsgBox	"The	number	of	columns	in	the	table	is	"	&	_

								ActiveDocument.Pages(2).Shapes(1).Table.Columns.Count

End	Sub

	 	

This	example	enters	a	bold	number	into	each	cell	in	the	specified	table.	This
example	assumes	the	specified	shape	is	a	table	and	not	another	type	of	shape.

Sub	CountCellsByColumn()

				Dim	shpTable	As	Shape

				Dim	colTable	As	Column

				Dim	celTable	As	Cell

				Dim	intCount	As	Integer

				intCount	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	colTable	In	shpTable.Table.Columns

								For	Each	celTable	In	colTable.Cells

												With	celTable.Text

																.Text	=	intCount

																.ParagraphFormat.Alignment	=	_

																				pbParagraphAlignmentCenter

																.Font.Bold	=	msoTrue

																intCount	=	intCount	+	1

												End	With

								Next	celTable

				Next	colTable

End	Sub

	 	

Use	Columns(index),	where	index	is	the	index	number,	to	return	a	single
Column	object.	The	index	number	represents	the	position	of	the	column	in	the
Columns	collection	(counting	from	left	to	right).	The	following	example	selects
the	third	column	in	the	specified	table.



Sub	SelectColumns()

				ActiveDocument.Pages(2).Shapes(1).Table.Columns(3).Cells.Select

End	Sub

	 	

Use	the	Add	method	to	add	a	column	to	a	table.	This	example	adds	a	column	to
the	specified	table	on	the	second	page	of	the	active	publication,	and	then	adjusts
the	width,	merges	the	cells,	and	sets	the	fill	color.	This	example	assumes	the	first
shape	is	a	table	and	not	another	type	of	shape.

Sub	NewColumn()

				Dim	colNew	As	Column

				Set	colNew	=	ActiveDocument.Pages(2).Shapes(1).Table.Columns	_

								.Add(BeforeColumn:=3)

				With	colNew

								.Width	=	2

								.Cells.Merge

								.Cells(1).Fill.ForeColor.RGB	=	RGB(Red:=202,	Green:=202,	Blue:=202)

				End	With

End	Sub

	 	



Documents	Collection
Application Documents

Document
Multiple	objects

Represents	all	open	publications.	The	Documents	collection	contains	all
Document	objects	that	are	open	in	Publisher.



Using	the	Documents	Collection

Use	the	Documents	property	to	return	the	Documents	collection.	The	following
example	lists	all	of	the	open	publications.

Dim	objDocument	As	Document

Dim	strMsg	As	String

For	Each	objDocument	In	Documents

				strMsg	=	strMsg	&	objDocument.Name	&	vbCrLf

Next	objDocument

MsgBox	Prompt:=strMsg,	Title:="Current	Documents	Open",	Buttons:=vbOKOnly

Use	the	Add	method	to	add	a	new	document	to	the	collection.	A	new	and	visible
instance	of	Publisher	is	created	when	the	Add	method	is	called.	The	following
example	adds	a	new	document	to	the	Documents	collection.

Dim	objDocument	As	Document

Set	objDocument	=	Documents.Add

With	objDocument

				.LayoutGuides.Columns	=	4

				.LayoutGuides.Rows	=	9

				.ActiveView.Zoom	=	pbZoomWholePage

End	With

Use	the	Item(index)	property,	where	index	is	the	index	number	or	document
name	as	a	String,	to	return	a	specific	document	object.	The	following	example
displays	the	name	of	the	first	open	publication.

If	Documents.Count	>=	1	Then

				MsgBox	Documents.Item(1).Name

End	If

The	following	example	checks	the	name	of	each	document	in	the	Documents
collection.	If	the	name	of	a	document	is	"sales.doc",	an	object	variable
objSalesDoc	is	set	to	that	document	in	the	Documents	collection.

Dim	objDocument	As	Document

Dim	objSalesDoc	As	Document

For	Each	objDocument	In	Documents

				If	objDocument.Name	=	"sales.pub"	Then

								Set	objSalesDoc	=	objDocument

				End	If

Next	objDocument





Fields	Collection
TextRange Fields

Field
Multiple	objects

A	collection	of	Field	objects	that	represent	all	the	fields	in	a	text	range.



Using	the	Fields	Collection

Use	the	Fields	property	to	return	the	Fields	collection.	Use	Fields(index),	where
index	is	the	index	number,	to	return	a	single	Field	object.	The	index	number
represents	the	position	of	the	field	in	the	selection,	range,	or	publication.	The
following	example	displays	the	field	code	and	the	result	of	the	first	field	in	each
text	box	in	the	active	publication.

Sub	ShowFieldCodes()

				Dim	pagPage	As	Page

				Dim	shpShape	As	Shape

				For	Each	pagPage	In	ActiveDocument.Pages

								For	Each	shpShape	In	pagPage.Shapes

												If	shpShape.Type	=	pbTextFrame	Then

																With	shpShape.TextFrame.TextRange

																				If	.Fields.Count	>	0	Then

																								MsgBox	"Code	=		"	&	.Fields(1).Code	&	vbLf	_

																												&	"Result	=		"	&	.Fields(1).Result	&	vbLf

																				End	If

																End	With

												End	If

								Next

				Next

End	Sub

	 	

The	Count	property	for	this	collection	in	a	publication	returns	the	number	of
items	in	a	specified	shape	or	selection.



GroupShapes	Collection
Multiple	objects GroupShapes

Shape
Multiple	objects

Represents	the	individual	shapes	within	a	grouped	shape.	Each	shape	is
represented	by	a	Shape	object.	Using	the	Item	method	with	this	object,	you	can
work	with	single	shapes	within	a	group	without	having	to	ungroup	them.



Using	The	Groupshapes	Collection

Use	the	GroupItems	property	to	return	a	GroupShapes	collection.	Use
GroupItems(index),	where	index	is	the	number	of	the	individual	shape	within
the	grouped	shape,	to	return	a	single	shape	from	the	GroupShapes	collection.
The	following	example	adds	three	triangles	to	the	active	document,	groups	them,
sets	a	color	for	the	entire	group,	and	then	changes	the	color	for	the	third	triangle
only.

Sub	WorkWithGroupShapes()

				With	ActiveDocument.Pages.Add(Count:=1,	After:=1).Shapes

								.AddShape(msoShapeIsoscelesTriangle,	_

												50,	50,	100,	100).Name	=	"shpOne"

								.AddShape(msoShapeIsoscelesTriangle,	_

												200,	50,	100,	100).Name	=	"shpTwo"

								.AddShape(msoShapeIsoscelesTriangle,	_

												350,	50,	100,	100).Name	=	"shpThree"

								With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

												.Fill.PresetTextured	PresetTexture:=msoTextureBlueTissuePaper

												.GroupItems(3).Fill.PresetTextured	_

																PresetTexture:=msoTextureGreenMarble

								End	With

				End	With

End	Sub

	 	



Hyperlinks	Collection
TextRange Hyperlinks

Hyperlink
Multiple	objects

Represents	the	collection	of	Hyperlink	objects	in	a	text	range.



Using	the	Hyperlinks	Collection

Use	the	Hyperlinks	property	to	return	the	Hyperlinks	collection.	The	following
example	deletes	all	text	hyperlinks	in	the	active	publication	that	contain	the	word
"Tailspin"	in	the	address.

Sub	DeleteMSHyperlinks()

				Dim	pgsPage	As	Page

				Dim	shpShape	As	Shape

				Dim	hprLink	As	Hyperlink

				For	Each	pgsPage	In	ActiveDocument.Pages

								For	Each	shpShape	In	pgsPage.Shapes

												If	shpShape.HasTextFrame	=	msoTrue	Then

																If	shpShape.TextFrame.HasText	=	msoTrue	Then

																				For	Each	hprLink	In	shpShape.TextFrame.TextRange.Hyperlinks

																								If	InStr(hprLink.Address,	"tailspin")	<>	0	Then

																												hprLink.Delete

																												Exit	For

																								End	If

																				Next

																Else

																				shpShape.Hyperlink.Delete

																End	If

												End	If

								Next

				Next

End	Sub

	 	

Use	the	Add	method	to	create	a	hyperlink	and	add	it	to	the	Hyperlinks
collection.	The	following	example	creates	a	new	hyperlink	to	the	specified	Web
site.

Sub	AddHyperlink()

				Selection.TextRange.Hyperlinks.Add	Text:=Selection.TextRange,	_

				Address:="http://www.tailspintoys.com/"

End	Sub

	 	

Use	Hyperlinks(index),	where	index	is	the	index	number,	to	return	a	single
Hyperlink	object	in	a	publication,	range,	or	selection.	This	example	displays	the
address	for	the	first	hyperlink	if	the	specified	selection	contains	hyperlinks.

Sub	DisplayHyperlinkAddress()



				With	Selection.TextRange.Hyperlinks

								If	.Count	>	0	Then	_

												MsgBox	.Item(1).Address

				End	With

End	Sub

	 	

The	Count	property	for	this	collection	returns	the	number	of	hyperlinks	in	the
specified	shape	or	selection	only.



InlineShapes	Collection
TextRange InlineShapes

ShapeRange

Contains	a	collection	of	Shape	objects,	which	represent	objects	in	the	drawing
layer,	where	Shape.IsInline	is	True.	The	collection	of	shapes	is	limited	to
shapes	within	a	given	text	range.



Using	the	InlineShapes	Collection

Use	the	InlineShapes	property	on	the	TextRange	object	to	return	an
InlineShapes	collection.	The	following	example	finds	the	first	shape,	a	text	box,
on	page	one	of	the	publication,	and	appends	text	to	the	end	of	the	text	range	in
the	text	box	if	there	is	more	than	one	inline	shape	within	the	text	range.

Dim	theShape	As	Shape

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

With	theShape.TextFrame.TextRange

				If	.InlineShapes.Count	>	1	Then

								.InsertAfter	("	There	is	more	than	one	inline	shape	in	this	text	box.")

				End	If

End	With

	 	

Use	the	InlineShapes(index)	property	to	return	a	single	inline	shape.	The
following	example	finds	the	third	inline	shape	within	a	text	box	and	flips	it
vertically.

Dim	theShape	As	Shape

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

With	theShape.TextFrame.Story.TextRange

				With	.InlineShapes(3)

								.Flip	(msoFlipVertical)

				End	With

End	With

	 	

Use	the	Range	property	to	return	a	ShapeRange	object	that	contains	all
members	of	the	InlineShapes	collection.	An	array	of	indexes	or	strings	or	a
single	index	or	string	can	be	passed	as	a	parameter	of	the	Range	property	to
select	particular	shapes	or	a	shape	within	the	range.	The	following	example	sets
a	ShapeRange	variable	equal	to	the	collection	of	inline	shapes	that	exist	within
a	text	box.	Each	inline	shape	within	the	range	is	then	modified	in	some	way.	This
example	assumes	that	the	first	shape	on	the	page	is	a	text	box	that	contains	three
inline	shapes.



Dim	theRange	As	ShapeRange

Set	theRange	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.Story.TextRange.InlineShapes.Range

With	theRange

				.Item(1).Flip	msoFlipVertical

				.Item(2).MoveOutOfTextFlow

				.Item(3).Delete

End	With

	 	



Remarks

The	InlineShapes	collection	is	available	only	on	the	TextRange	object.	Using
TextFrame.Story.TextRange.InlineShapes	will	return	all	inline	shapes	in	a	text
frame,	including	those	that	are	in	overflow.	Using
TextFrame.TextRange.InlineShapes	will	return	only	visible	inline	shapes	in	a
text	frame,	and	not	those	that	are	in	overflow.

The	InlineShapes	collection	can	also	be	accessed	from
Document.Stories(i).TextRange,	where	i	is	the	index	to	the	active	page	of	the
publication.

The	InlineShapes	collection	is	not	available	in	the	Page.Shapes	collection,
including	its	contained	ShapeRange.



Labels	Collection
PageSetup Labels

Label

Contains	a	collection	of	Label	objects,	which	represent	the	unique	label	designs
available	on	the	system.



Using	the	Labels	collection

Each	label	design	available	on	the	system	resides	in	the	AvailableLabels
collection.	Use	the	AvailableLabels	property	on	the	PageSetup	object	to	return
the	collection	of	Label	objects	that	are	available	on	the	system.

The	following	example	uses	the	AvailableLabels	property	to	populate	the
Labels	collection	with	the	lables	that	are	available	in	the	active	document.	A	test
is	then	run	on	each	label	in	the	collection,	and	the	name	of	the	label	is	displayed
if	the	label's	height	is	greater	than	4	inches.

Dim	theLabel	As	Label

Dim	theLabels	As	Labels

Set	theLabels	=	ActiveDocument.PageSetup.AvailableLabels

For	Each	theLabel	In	theLabels

				If	theLabel.Height	>	InchesToPoints(4)	Then

								MsgBox	theLabel.Name

				End	If

Next	theLabel



Show	All



MailMergeDataFields	Collection
MailMergeDataSource MailMergeDataFields

MailMergeDataField

A	collection	of	MailMergeDataField	objects	that	represent	the	data	fields	in	a
mail	merge	or	catalog	merge	data	source.



Using	the	MailMergeDataFields	Collection

Use	the	DataFields	property	to	return	the	MailMergeDataFields	collection.

The	following	example	displays	the	field	names	in	the	data	source	attached	to
the	active	publication.

Sub	ShowFieldNames()

				Dim	intCount	As	Integer

				With	ActiveDocument.MailMerge.DataSource.DataFields

								For	intCount	=	1	To	.Count

												MsgBox	.Item(intCount).Name

								Next

				End	With

End	Sub

	 	

Use	DataFields(index),	where	index	is	the	data	field	name	or	the	index	number,
to	return	a	single	MailMergeDataField	object.	The	index	number	represents	the
position	of	the	data	field	in	the	mail	merge	data	source.	This	example	retrieves
the	name	of	the	first	field	and	value	of	the	first	record	of	the	FirstName	field	in
the	data	source	attached	to	the	active	publication.

Sub	GetDataFromSource()

				With	ActiveDocument.MailMerge.DataSource.DataFields

								MsgBox	"First	field	name:	"	&	.Item(1).Name	&	vbLf	&	_

												"Value	of	the	first	record	of	the	FirstName	field:	"	&	_

												.Item("FirstName").Value

				End	With

End	Sub

	 	



Remarks

You	cannot	add	fields	to	the	MailMergeDataFields	collection.	When	a	data
field	is	added	to	a	data	source,	the	field	is	automatically	included	in	the
MailMergeDataFields	collection.



Show	All



MailMergeFilters	Collection
MailMergeDataSource MailMergeFilters

Represents	all	the	filters	to	apply	to	the	data	source	attached	to	the	mail	merge	or
catalog	merge	publication.	The	MailMergeFilters	object	is	comprised	of
MailMergeFilterCriterion	objects.



Using	the	MailMergeFilters	object

Use	the	Add	method	of	the	MailMergeFilters	object	to	add	a	new	filter
criterion	to	the	query.	This	example	adds	a	new	line	to	the	query	string	and	then
applies	the	combined	filter	to	the	data	source.	This	example	assumes	that	a	data
source	is	attached	to	the	active	publication.

Sub	FilterDataSource()

				With	ActiveDocument.MailMerge.DataSource

								.Filters.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

	 	

Use	the	Item	method	to	access	an	individual	filter	criterion.	This	example	loops
through	all	the	filter	criterion	and	if	it	finds	one	with	a	value	of	"Region",
changes	it	to	remove	from	the	mail	merge	all	records	that	are	not	equal	to	"WA".
This	example	assumes	that	a	data	source	is	attached	to	the	active	publication.

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next

				End	With

End	Sub

	 	





MailMergeMappedDataFields
Collection
MailMergeDataSource MailMergeMappedDataFields

MailMergeMappedDataField

A	collection	of	MailMergeMappedDataField	objects	that	represents	the
mapped	data	fields	available	in	Publisher.



Using	the	MailMergeMappedDataFields	collection

Use	the	MappedDataFields	property	of	the	MailMergeDataSource	object	to
return	the	MailMergeMappedDataFields	collection.	This	example	creates	a
table	on	a	new	page	of	the	current	publication	and	lists	the	mapped	data	fields
available	in	Publisher	and	the	fields	in	the	data	source	to	which	they	are	mapped.
This	example	assumes	that	the	current	publication	is	a	mail	merge	publication
and	that	the	data	source	fields	have	corresponding	mapped	data	fields.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	intRows	As	Integer

				Dim	docPub	As	Document

				Dim	pagNew	As	Page

				Dim	shpTable	As	Shape

				Dim	tblTable	As	Table

				Dim	rowTable	As	Row

				On	Error	Resume	Next

				Set	docPub	=	ThisDocument

				Set	pagNew	=	ThisDocument.Pages.Add(Count:=1,	After:=1)

				intRows	=	docPub.MailMerge.DataSource.MappedDataFields.Count	+	1

				'Creates	new	table	with	a	heading	row

				Set	shpTable	=	pagNew.Shapes.AddTable(NumRows:=intRows,	_

								numColumns:=2,	Left:=100,	Top:=100,	Width:=400,	Height:=12)

				Set	tblTable	=	shpTable.Table

				With	tblTable.Rows(1)

								With	.Cells(1).Text

												.Text	=	"Mapped	Data	Field"

												.Font.Bold	=	msoTrue

								End	With

								With	.Cells(2).Text

												.Text	=	"Data	Source	Field"

												.Font.Bold	=	msoTrue

								End	With

				End	With

				With	docPub.MailMerge.DataSource

								For	intCount	=	2	To	intRows	-	1

												'Inserts	mapped	data	field	name	and	the

												'corresponding	data	source	field	name

												tblTable.Rows(intCount	-	1).Cells(1).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).Name



												tblTable.Rows(intCount	-	1).Cells(2).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).DataFieldName

								Next

				End	With

End	Sub

	 	



MasterPages	Collection
Document MasterPages

Page
Multiple	objects

Represents	the	page	master	for	a	publication	after	which	all	pages	in	the
publication	will	be	designed.	The	MasterPages	object	is	a	collection	of	Page
objects.



Using	the	MasterPages	collection

Use	the	MasterPages	property	to	return	a	MasterPages	object.	The	following
example	adds	two	ruler	guides	to	the	master	page	so	that	each	page	in	the	active
publication	is	divided	into	quarters.

Sub	ChangeMasterPage()

								Dim	intWidth	As	Integer

				Dim	intHeight	As	Integer

				With	ActiveDocument

								intWidth	=	.PageSetup.PageWidth

								intWidth	=	intWidth	/	2

								intHeight	=	.PageSetup.PageHeight

								intHeight	=	intHeight	/	2

								With	.MasterPages(1).RulerGuides

												.Add	Position:=intWidth,	_

																Type:=pbRulerGuideTypeVertical

												.Add	Position:=intHeight,	_

																Type:=pbRulerGuideTypeHorizontal

								End	With

				End	With

End	Sub

	 	

Use	the	Shapes	property	to	work	with	AutoShapes	and	text	boxes	on	the	master
page.	This	example	adds	a	small	red	heart	shape	to	the	upper	left	corner	of	the
master	page	that	will	appear	on	each	page	in	the	active	publication.

Sub	AddShapeToMasterPage()

				ActiveDocument.MasterPages(1).Shapes.AddShape(Type:=msoShapeHeart,	_

								Left:=36,	Top:=36,	Width:=36,	Height:=36).Fill	_

								.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

End	Sub

	 	



ObjectVerbs	Collection
OLEFormat ObjectVerbs

Represents	the	collection	of	OLE	verbs	for	the	specified	OLE	object.	OLE	verbs
are	the	operations	supported	by	an	OLE	object.	Commonly	used	OLE	verbs	are
play	and	edit.



Using	the	ObjectVerbs	object

Use	the	ObjectVerbs	property	to	return	an	ObjectVerbs	object.	The	following
example	displays	all	the	available	verbs	for	the	OLE	object	contained	in	the	first
shape	on	first	page	in	the	active	publication.	For	this	example	to	work,	the
specified	shape	must	contain	an	OLE	object.

Sub	GetVerbs()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes(1).OLEFormat

								For	intCount	=	1	To	.ObjectVerbs.Count

												MsgBox	.ObjectVerbs(intCount)

								Next

				End	With

End	Sub

	 	



Pages	Collection
Document Pages

Page
Multiple	objects

Represents	all	the	pages	in	a	publication.	The	Pages	collection	contains	all	the
Page	objects	in	a	publication.



Using	the	Pages	collection

Use	the	Add	method	to	add	a	new	page	to	a	publication.	The	following	example
adds	a	new	page	and	a	shape	to	the	active	publication.

Sub	AddPageAndShape()

				With	ActiveDocument.Pages.Add(Count:=1,	After:=1)

								With	.Shapes.AddShape(Type:=msoShape5pointStar,	_

																Left:=72,	Top:=72,	Width:=50,	Height:=50)

												.Fill.ForeColor.RGB	=	RGB(Red:=128,	Green:=50,	Blue:=255)

												.Line.ForeColor.RGB	=	RGB(Red:=75,	Green:=50,	Blue:=255)

								End	With

				End	With

End	Sub

	 	



Plates	Collection
Document Plates

Plate
ColorFormat

A	collection	of	Plate	objects	in	a	publication.



Using	the	Plates	collection

The	Plates	collection	is	made	up	of	Plate	objects	for	the	various	publication
color	modes.	Each	publication	can	only	use	one	color	mode.	For	example,	you
can't	specify	the	spot-color	mode	in	a	procedure	and	then	later	specify	the
process-color	mode.	Use	the	CreatePlateCollection	method	of	the	Document
object	to	specify	which	color	mode	to	use	in	a	publication's	plate	collection.	Use
the	Add	method	of	the	Plates	collection	to	add	a	new	plate	to	the	Plates
collection.	This	example	creates	a	new	spot-color	plate	collection	and	adds	a
plate	to	it.

Sub	AddNewPlates()

				Dim	plts	As	Plates

				Set	plts	=	ActiveDocument.CreatePlateCollection(Mode:=pbColorModeSpot)

				plts.Add

				With	plts(1)

								.Color.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.Luminance	=	4

				End	With

End	Sub

	 	

Use	the	EnterColorMode	method	of	the	Document	object	to	the	specify	the
color	mode	and	the	Plates	collection	to	use	with	the	color	mode.	Use	the
ColorMode	property	to	determine	which	color	mode	is	in	use	in	a	publication.
This	example	creates	a	spot-color	plate	collection,	adds	two	plates	to	it,	and	then
enters	those	plates	into	the	spot-color	mode.

Sub	CreateSpotColorMode()

				Dim	plArray	As	Plates

				With	ThisDocument

								'Creates	a	color	plate	collection,

								'which	contains	one	black	plate	by	default

								Set	plArray	=	.CreatePlateCollection(Mode:=pbColorModeSpot)

								'Sets	the	plate	color	to	red

								plArray(1).Color.RGB	=	RGB(255,	0,	0)

								'Adds	another	plate,	black	by	default	and

								'sets	the	plate	color	to	green

								plArray.Add

								plArray(2).Color.RGB	=	RGB(0,	255,	0)



								'Enters	spot-color	mode	with	above

								'two	plates	in	the	plates	array

								.EnterColorMode	Mode:=pbColorModeSpot,	Plates:=plArray

				End	With

End	Sub

	 	



PrintablePlates	Collection
AdvancedPrintOptions PrintablePlates

PrintablePlate

A	collection	of	the	PrintablePlate	objects	in	a	publication.



Using	the	PrintablePlates	collection

Use	the	PrintablePlates	property	of	the	AdvancedPrintOptions	object	to
return	the	PrintablePlates	collection.	The	following	example	returns	a	list	of	the
printable	plates	currently	in	the	collection	for	the	active	document.	The	example
assumes	that	separations	have	been	specified	as	the	active	publication's	print
mode.

Sub	ListPrintablePlates()

				Dim	pplTemp	As	PrintablePlates

				Dim	pplLoop	As	PrintablePlate

				

				Set	pplTemp	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				Debug.Print	"There	are	"	&	pplTemp.Count	&	"	printable	plates	in	this	publication."

				

				For	Each	pplLoop	In	pplTemp

								With	pplLoop

												Debug.Print	"Printable	Plate	Name:	"	&	.Name

												Debug.Print	"Index:	"	&	.Index

												Debug.Print	"Ink	Name:	"	&	.InkName

												Debug.Print	"Plate	Angle:	"	&	.Angle

												Debug.Print	"Plate	Frequency:	"	&	.Frequency

												Debug.Print	"Print	Plate?:	"	&	.PrintPlate

								End	With

				Next	pplLoop

End	Sub

	 	

Use	the	FindPlateByInkName	method	to	return	a	specific	plate	by	referencing
its	ink	name.	The	following	example	returns	a	spot	color	plate	and	sets	several	of
its	properties.	The	example	assumes	that	separations	have	been	specified	as	the
active	publication's	print	mode.

Sub	SetPlatePropertiesByInkName()

Dim	pplPlate	As	PrintablePlate

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

				Set	pplPlate	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates.

				

				With	pplPlate

								.Angle	=	75

								.Frequency	=	133



								.PrintPlate	=	True

				End	With

End	Sub



Remarks

The	PrintablePlates	collection	is	generated	when	a	publication's	print	mode	is
set	to	separations.	Returns	"Permission	Denied"	when	any	other	print	mode	is
specified.

The	PrintablePlates	collection	represents	the	plates	that	will	actually	be	printed
for	the	publication,	based	on:

The	plates	(if	any)	you	have	defined	for	the	publication
The	advanced	print	options	specified

You	cannot	programmatically	create	a	printable	plates	collection,	or	add	a
printable	plate	to	the	collection.

Use	the	following	properties	of	the	AdvancedPrintOptions	object	to	specify
which	plates	are	included	in	the	PrintablePlates	collection:

Use	the	PrintMode	property	to	set	the	publication	to	print	as	separations.
Use	the	InksToPrint	property	to	select	which	types	of	plates	to	print.
Use	the	PrintPlate	property	to	select	individual	plates	to	print.
Use	the	PrintBlankPlates	to	determine	whether	to	print	plates	for	any
pages	where	an	ink	is	not	used.

This	collection	corresponds	to	the	plates	listed	on	the	Separations	tab	of	the
Advanced	Print	Settings	dialog	box.



Rows	Collection
Table Rows

Row
CellRange

A	collection	of	Row	objects	that	represent	the	rows	in	a	table.



Using	the	Rows	collection

Use	the	Rows	property	of	the	Table	object	to	return	the	Rows	collection.	The
following	example	displays	the	number	of	Row	objects	in	the	Rows	collection
for	the	first	table	in	the	active	document.

Sub	CountRows()

				MsgBox	ActiveDocument.Pages(2).Shapes(1).Table.Rows.Count

End	Sub

	 	

This	example	sets	the	fill	for	all	even-numbered	rows	and	clears	the	fill	for	all
odd-numbered	rows	in	the	specified	table.	This	example	assumes	the	specified
shape	is	a	table	and	not	another	type	of	shape.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Row	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	

Use	Rows(index),	where	index	is	the	index	number,	to	return	a	single	Row
object.	The	index	number	represents	the	position	of	the	row	in	the	Rows
collection	(counting	from	left	to	right).	The	following	example	selects	the	third
row	in	the	specified	table.

Sub	SelectRows()

				ActiveDocument.Pages(2).Shapes(1).Table.Rows(3).Cells.Select

End	Sub



	 	



RulerGuides	Collection
Page RulerGuides

RulerGuide

A	collection	of	RulerGuide	objects	that	represents	a	grid	line	used	to	align
objects	on	a	page.



Using	the	RulerGuides	collection

Use	the	Add	method	of	the	RulerGuides	collection	to	add	ruler	grid	lines	to	the
RulerGuides	collection.	This	example	creates	horizontal	and	vertical	ruler
guides	every	half	inch	on	the	first	page	of	the	active	publication.

Sub	SetRulerGuides()

				Dim	intCount	As	Integer

				Dim	intPos	As	Integer

				With	ActiveDocument.Pages(1).RulerGuides

								For	intCount	=	1	To	16

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeVertical

								Next	intCount

								intPos	=	0

								For	intCount	=	1	To	21

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeHorizontal

								Next	intCount

				End	With

End	Sub

	 	

Use	the	Count	property	to	return	the	total	number	of	ruler	guides,	horizontal	and
vertical,	in	the	collection.	The	following	example	uses	the	Count	property	to
create	a	loop	that	deletes	each	of	the	ruler	guides	in	the	collection.

Sub	RemoveAllGuides()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).RulerGuides

								For	intCount	=	1	To	.Count

												.Item(1).Delete

								Next	intCount

				End	With

End	Sub

	 	



Sections	Collection
Document Sections

Section

A	collection	of	all	the	Section	objects	in	the	document.



Using	the	Sections	collection

Use	Sections.Item(index)	where	index	is	the	index	number,	to	return	a	single
Section	object.	The	following	example	sets	the	number	format	and	the	starting
number	for	the	first	section	of	the	active	document.

With	ActiveDocument.Sections.Item(1)

				.PageNumberFormat	=	pbPageNumberFormatArabic

				.PageNumberStart	=	1

End	With

Using	Sections(index)	where	index	is	the	index	number,	will	also	return	a	single
Section	object.	The	following	example	sets	continues	the	numbering	from	the
previous	section	for	the	second	section	in	the	active	document.

ActiveDocument.Sections(2).ContinueNumbersFromPreviousSection=True

Use	Sections.Count	to	return	the	number	of	sections	in	the	publication.	The
following	example	display	the	number	of	sections	in	the	first	open	document.

MsgBox	Documents(1).Sections.Count

Use	Sections.Add(StartPageIndex)	where	StartPageIndex	is	the	index	number
of	the	page,	to	reutrn	a	new	section	added	to	a	document.	A	"Permission	denied."
error	will	be	returned	if	the	page	already	contains	a	section	head.	The	following
example	adds	a	new	section	to	the	second	page	of	the	active	document.

Dim	objSection	As	Section

Set	objSection	=	ActiveDocument.Sections.Add(StartPageIndex:=2)

Use	Sections(index).Delete	where	index	is	the	index	number,	to	delete	the
specified	section	from	the	document.	A	"Permission	denied"	error	will	be
returned	if	an	attempt	is	made	to	delete	the	first	section.	The	following	example
deletes	all	of	the	sections	of	the	active	document	except	the	first	one.

Note		The	iteration	is	from	the	last	to	the	first	to	avoid	a	"Subscript	out	of
range."	error	when	accessing	a	deleted	section	in	the	Sections	collection.

Dim	i	As	Long

For	i	=	ActiveDocument.Sections.Count	To	1	Step	-1

				If	i	=	1	Then	Exit	For



				ActiveDocument.Sections(i).Delete

Next	i



ShapeNodes	Collection
Multiple	objects ShapeNodes

ShapeNode

A	collection	of	all	the	ShapeNode	objects	in	the	specified	freeform.	Each
ShapeNode	object	represents	either	a	node	between	segments	in	a	freeform	or	a
control	point	for	a	curved	segment	of	a	freeform.	You	can	create	a	freeform
manually	or	by	using	the	BuildFreeform	and	ConvertToShape	methods.



Using	the	ShapeNodes	Collection

Use	the	Nodes	property	to	return	a	ShapeNodes	collection.	The	following
example	deletes	node	four	in	shape	three	on	the	active	document.	For	this
example	to	work,	shape	three	must	be	a	freeform	with	at	least	four	nodes.

Sub	DeleteShapeNode()

				ActiveDocument.Pages(1).Shapes(3).Nodes.Delete	Index:=4

End	Sub

	 	

Use	the	Insert	method	to	create	a	new	node	and	add	it	to	the	ShapeNodes
collection.	The	following	example	adds	a	smooth	node	with	a	curved	segment
after	node	four	in	shape	three	on	the	active	document.	For	this	example	to	work,
shape	three	must	e	a	freeform	with	at	least	four	nodes.

Sub	AddCurvedSmoothSegment()

				ActiveDocument.Pages(1).Shapes(3).Nodes.Insert	_

								Index:=4,	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingSmooth,	X1:=210,	Y1:=100

End	Sub

	 	

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	the	active	document	is	a	corner
point,	the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,
shape	three	must	be	a	freeform.

Sub	SetPointType()

				With	ActiveDocument.Pages(1).Shapes(3)

								If	.Nodes(1).EditingType	=	msoEditingCorner	Then

												.Nodes.SetEditingType	Index:=1,	EditingType:=msoEditingSmooth

								End	If

				End	With

End	Sub

	 	





ShapeRange	Collection
Multiple	objects ShapeRange

Multiple	objects

Represents	a	shape	range,	which	is	a	set	of	shapes	on	a	document.	A	shape	range
can	contain	as	few	as	one	shape	or	as	many	as	all	the	shapes	in	the	document.
You	can	include	whichever	shapes	you	want—	chosen	from	among	all	the
shapes	in	the	document	or	all	the	shapes	in	the	selection—	to	construct	a	shape
range.	For	example,	you	could	construct	a	ShapeRange	collection	that	contains
the	first	three	shapes	in	a	document,	all	the	selected	shapes	in	a	document,	or	all
the	freeform	shapes	in	a	document.

Note		Most	operations	that	you	can	do	with	a	Shape	object,	you	can	also	do	with
a	ShapeRange	object	that	contains	only	one	shape.	Some	operations,	when
performed	on	a	ShapeRange	object	that	contains	more	than	one	shape,	will
cause	an	error.



Using	the	ShapeRange	Collection

This	section	describes	how	to:

Return	a	set	of	shapes.
Return	a	ShapeRange	object	within	a	selection	or	range.
Align,	distribute,	and	group	shapes	in	a	ShapeRange	object.



Return	a	set	of	shapes

Use	Shapes.Range(index),	where	index	is	the	index	number	of	the	shape	or	an
array	that	contains	index	numbers	of	shapes,	to	return	a	ShapeRange	collection
that	represents	a	set	of	shapes	in	a	publication.	You	can	use	Visual	Basic's	Array
function	to	construct	an	array	of	index	numbers.	The	following	example	sets	the
fill	pattern	for	shapes	one	through	three	on	the	active	publication.

Sub	ChangeFillPattern()

				ActiveDocument.Pages(1).Shapes.Range(Array(1,	2,	3))	_

								.Fill.PresetGradient	Style:=msoGradientDiagonalDown,	_

								Variant:=1,	PresetGradientType:=msoGradientHorizon

End	Sub

	 	

Although	you	can	use	the	Range	method	to	return	any	number	of	shapes,	it's
simpler	to	use	the	Item	method	if	you	want	to	return	only	a	single	member	of	the
collection.	For	example,	Shapes(1)	is	simpler	than	Shapes.Range(1).



Return	a	ShapeRange	object	within	a	selection	or
range

Use	Selection.ShapeRange(index),	where	index	is	the	index	number	of	the
shape,	to	return	a	Shape	object	that	represents	a	shape	within	a	selection.	The
following	example	selects	the	first	two	shapes	on	the	first	page	of	the	active
publication	and	then	sets	the	fill	for	the	first	shape	in	the	selection.

Sub	ChangeFillForShapeRange()

				ActiveDocument.Pages(1).Shapes.Range(Array(1,	2)).Select

				Selection.ShapeRange(1).Fill.ForeColor.RGB	=	RGB(255,	0,	0)

End	Sub

	 	

This	example	selects	all	the	shapes	on	the	first	page	of	the	active	publication,
then	adds	and	formats	text	in	the	second	shape	in	the	range.

Sub	SelectShapesOnPageOne()

				ActiveDocument.Pages(1).Shapes.Range.Select

				With	Selection.ShapeRange(2).TextFrame.TextRange

								.Text	=	"Shape	Number	2"

								.ParagraphFormat.Alignment	=	pbParagraphAlignmentCenter

								.Font.Size	=	25

				End	With

End	Sub

	 	



Align,	distribute,	and	group	shapes	in	a	ShapeRange
object

Use	the	Align,	Distribute,	or	ZOrder	method	to	position	a	set	of	shapes	relative
to	each	other	or	relative	to	the	document.	This	example	specifies	a	shape	range
and	left-aligns	and	vertically	distributes	the	shapes	on	the	page.

Sub	AlignDistibuteShapes()

				Dim	rngShapes	As	ShapeRange

				Set	rngShapes	=	ActiveDocument.Pages(1).Shapes.Range

				With	rngShapes

								.Align	AlignCmd:=msoAlignLefts,	RelativeTo:=msoFalse

								.Distribute	DistributeCmd:=msoDistributeVertically,	RelativeTo:=msoTrue

				End	With

End	Sub

	 	

Use	the	Group,	Regroup,	or	Ungroup	method	to	create	and	work	with	a	single
shape	formed	from	a	shape	range.	The	GroupItems	property	for	a	Shape	object
returns	the	GroupShapes	object,	which	represents	all	the	shapes	that	were
grouped	to	form	one	shape.	This	example	specifies	a	shape	range	and	left-aligns
and	vertically	distributes	the	shapes	on	the	page.

Sub	GroupShapes()

				Dim	rngShapes	As	ShapeRange

				Set	rngShapes	=	ActiveDocument.Pages(1).Shapes.Range

				rngShapes.Group

				rngShapes(1).Fill.OneColorGradient	_

								Style:=msoGradientFromCenter,	_

								Variant:=2,	Degree:=1

End	Sub

	 	



Shapes	Collection
Multiple	objects Shapes

Shape
Multiple	objects

A	collection	of	Shape	objects	that	represent	all	the	shapes	on	a	page	of	a
publication.	Each	Shape	object	represents	an	object	in	the	drawing	layer,	such	as
an	AutoShape,	freeform,	OLE	object,	or	picture.

Note		If	you	want	to	work	with	a	subset	of	the	shapes	on	a	document—	for
example,	to	do	something	to	only	the	AutoShapes	on	the	document	or	to	only	the
selected	shapes—	you	must	construct	a	ShapeRange	collection	that	contains	the
shapes	with	which	you	want	to	work.



Using	the	Shapes	Collection

Use	the	Shapes	property	to	return	the	Shapes	collection.	The	following	example
selects	all	the	shapes	on	the	first	page	of	the	active	publication.

Sub	SelectAllShapes()

				ActiveDocument.Pages(1).Shapes.SelectAll

End	Sub

	 	

Note		If	you	want	to	do	something	(like	delete	or	set	a	property)	to	all	the	shapes
in	a	publication	at	the	same	time,	use	the	Range	method	to	create	a	ShapeRange
object	that	contains	all	the	shapes	in	the	Shapes	collection,	and	then	apply	the
appropriate	property	or	method	to	the	ShapeRange	object.

Use	one	of	the	following	methods	of	the	Shapes	collection:	AddCallout,
AddConnector,	AddCurve,	AddLabel,	AddLine,	AddOLEObject,
AddPolyline,	AddShape,	AddTextbox,	or	AddTextEffect	to	add	a	shape	to	a
publication	and	return	a	Shape	object	that	represents	the	newly	created	shape.
The	following	example	adds	a	new	shape	to	the	active	publication.

Sub	AddNewShape()

				ActiveDocument.Pages(1).Shapes.AddShape	Type:=msoShapeFoldedCorner,	_

								Left:=50,	Top:=50,	Width:=100,	Height:=200

End	Sub

	 	

Use	Shapes(index),	where	index	is	the	index	number,	to	return	a	single	Shape
object.	The	following	example	horizontally	flips	shape	one	on	the	first	page	of
the	active	publication.

Sub	FlipShape()

				ActiveDocument.Pages(1).Shapes(1).Flip	FlipCmd:=msoFlipHorizontal

End	Sub

	 	





Stories	Collection
Document Stories

Story
Multiple	objects

Represents	all	the	text	in	a	publication.



Using	the	Stories	collection

Use	the	Stories	property	of	a	Document	object	to	return	a	Stories	collection.
Use	the	Item	method	of	the	Stories	collection	to	access	individual	Story
objects.

The	Stories	collection	enables	efficient	access	to	text	in	a	publication.	A	simple
loop	through	the	Stories	collection	can	scan	all	text	in	text	frames	or	tables
without	the	need	to	search	each	shape	on	every	page	of	a	publication.

The	Stories	collection	contains	one	Story	object	for	each	unlinked	text	frame,
each	chain	of	linked	text	frames,	and	each	table	in	a	publication.	Text	in
WordArt	frames,	OLE	objects,	and	pictures	are	not	included	in	the	Stories
collection.

This	example	assigns	the	first	story	in	the	active	publication	to	an	object
variable.

Dim	stFirst	As	Story

stFirst	=	Application.ActiveDocument.Stories(1)

	 	



TabStops	Collection
ParagraphFormat TabStops

TabStop

A	collection	of	TabStop	objects	that	represent	the	custom	and	default	tabs	for	a
paragraph	or	group	of	paragraphs.



Using	the	TabStops	Collection

Use	the	Tabs	property	to	return	the	TabStops	collection.	The	following	example
clears	all	the	custom	tab	stops	from	the	first	paragraph	in	the	active	publication.

Sub	ClearAllTabStops()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.ParagraphFormat.Tabs.ClearAll

End	Sub

	 	

The	following	example	adds	a	tab	stop	positioned	at	2.5	inches	to	the	selected
paragraphs	and	then	displays	the	position	of	each	item	in	the	TabStops
collection.

Sub	Tabs()

				Dim	intTab	As	Integer

				Selection.TextRange.ParagraphFormat.Tabs	_

								.Add	Position:=InchesToPoints(2.5),	_

								Alignment:=pbTabAlignmentLeading,	Leader:=pbTabLeaderNone

				With	Selection.TextRange.ParagraphFormat

								For	intTab	=	1	To	.Tabs.Count

												MsgBox	"Position	=	"	&	PointsToInches	_

															(.Tabs(intTab).Position)	&	"	inches"

												intTab	=	intTab	+	1

								Next	intTab

				End	With

End	Sub

	 	

Use	the	Add	method	to	add	a	tab	stop.	The	following	example	adds	two	tab
stops	to	the	selected	paragraphs.	The	first	tab	stop	is	a	left-aligned	tab	with	a
dotted	tab	leader	positioned	at	1	inch	(72	points).	The	second	tab	stop	is	centered
and	is	positioned	at	2	inches.

Sub	AddNewTabs()

				With	Selection.TextRange.ParagraphFormat.Tabs

								.Add	Position:=InchesToPoints(1),	_

												Leader:=pbTabLeaderDot,	Alignment:=pbTabAlignmentLeading

								.Add	Position:=InchesToPoints(2),	_

												Leader:=pbTabLeaderNone,	Alignment:=pbTabAlignmentCenter

				End	With

End	Sub

	 	



Use	Tabs	(index),	where	index	is	the	location	of	the	tab	stop	(in	points)	or	the
index	number,	to	return	a	single	TabStop	object.	Tab	stops	are	indexed
numerically	from	left	to	right	along	the	ruler.	The	following	example	removes
the	first	custom	tab	stop	from	the	first	paragraph	in	the	active	publication.

Sub	ClearTabStop()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.ParagraphFormat.Tabs(1).Clear

End	Sub

	 	

The	following	example	changes	the	second	tab	in	the	selection	to	a	right-aligned
tab	stop.

Sub	ChangeTabStop()

				Selection.TextRange.ParagraphFormat.Tabs(2)	_

								.Alignment	=	pbTabAlignmentTrailing

End	Sub

	 	



Tags	Collection
Multiple	objects Tags

Tag

A	collection	of	Tag	objects	that	represents	tags	or	custom	properties	applied	to	a
shape,	shape	range,	page,	or	publication.



Using	the	Tags	Object

Use	the	Tags	property	to	access	the	Tags	collection.	Use	the	Add	method	of	the
Tags	collection	to	add	a	Tag	object	to	a	shape,	shape	range,	page,	or	publication.
This	example	adds	a	tag	to	each	oval	shape	on	the	first	page	of	the	active
publication.

Sub	AddNewTag()

				Dim	shp	As	Shape

				With	ActiveDocument.Pages(1)

								For	Each	shp	In	.Shapes

												If	InStr(1,	shp.Name,	"Oval")	>	0	Then

																shp.Tags.Add	Name:="Shape",	Value:="Oval"

												End	If

								Next	shp

				End	With

End	Sub

	 	

Use	the	Count	property	to	determine	if	a	shape,	shape	range,	page,	or
publication	contains	one	or	more	Tag	objects.	This	example	fills	all	shapes	on
the	first	page	of	the	active	publication	if	the	shape's	first	tag	has	a	value	of	Oval.

Sub	FormatTaggedShapes()

				Dim	shp	As	Shape

				With	ActiveDocument.Pages(1)

								For	Each	shp	In	.Shapes

												If	shp.Tags.Count	>	0	Then

																If	shp.Tags(1).Value	=	"Oval"	Then

																				shp.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

																End	If

												End	If

								Next	shp

				End	With

End	Sub

	 	





TextStyles	Collection
Document TextStyles

TextStyle
Multiple	objects

A	collection	of	TextStyle	objects	that	represent	both	the	built-in	and	user-
defined	styles	in	a	document.



Using	the	TextStyles	Collection

Use	the	TextStyles	property	to	return	the	TextStyles	collection.	The	following
example	creates	a	table	and	lists	all	the	styles	in	the	active	publication.

Sub	ListTextStyles()

				Dim	sty	As	TextStyle

				Dim	tbl	As	Table

				Dim	intRow	As	Integer

				With	ActiveDocument

								Set	tbl	=	.Pages(1).Shapes.AddTable(NumRows:=.TextStyles.Count,	_

												NumColumns:=2,	Left:=72,	Top:=72,	Width:=488,	Height:=12).Table

								For	Each	sty	In	.TextStyles

												intRow	=	intRow	+	1

												With	tbl.Rows(intRow)

																.Cells(1).text	=	sty.Name

																.Cells(2).text	=	sty.BaseStyle

												End	With

								Next	sty

				End	With

End	Sub

	 	

Use	the	Add	method	to	create	a	new	user-defined	style	and	add	it	to	the
TextStyles	collection.	The	following	example	creates	a	new	style	and	applies	it
to	the	paragraph	at	the	insertion	point	position.

Sub	ApplyTextStyle()

				Dim	styNew	As	TextStyle

				Dim	fntStyle	As	Font

				'Create	a	new	style

				Set	styNew	=	ActiveDocument.TextStyles.Add(StyleName:="NewStyle")

				Set	fntStyle	=	styNew.Font

				'Format	the	Font	object

				With	fntStyle

								.Name	=	"Tahoma"

								.Size	=	20

								.Bold	=	msoTrue

				End	With

				'Apply	the	Font	object	formatting	to	the	new	style

				styNew.Font	=	fntStyle



				'Apply	the	new	style	to	the	selected	paragraph

				Selection.TextRange.ParagraphFormat.TextStyle	=	"NewStyle"

End	Sub

	 	



WebHiddenFields	Collection
WebCommandButton WebHiddenFields

Represents	hidden	Web	fields	that	allow	a	Web	page	to	pass	non-visible	data	to
the	Web	server	when	a	Web	page	is	submitted.	The	WebHiddenFields	object
enables	control	of	all	the	hidden	fields	attached	to	a	Submit	command	button.



Using	the	WebHiddenFields	object

Use	the	HiddenFields	property	to	access	hidden	Web	fields.	This	example	adds
a	new	hidden	Web	field	to	a	new	Submit	command	button.

Sub	CreateActionWebButton()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl	_

																(Type:=pbWebControlCommandButton,	Left:=150,	_

																Top:=150,	Width:=75,	Height:=36).WebCommandButton

												.ButtonText	=	"Submit"

												.ButtonType	=	pbCommandButtonSubmit

												.HiddenFields.Add	Name:="User",	Value:="PowerUser"

								End	With

				End	With

End	Sub

	 	



WebListBoxItems	Object
WebListBox WebListBoxItems

Represents	the	items	in	a	Web	list	box	control.



Using	the	WebListBoxItems	object

Use	the	ListBoxItems	property	to	access	the	items	in	a	Web	list	box.	Use	the
AddItem	method	of	the	WebListBoxItems	object	to	add	items	to	a	Web	list
box.	This	example	creates	a	new	Web	list	box	and	adds	several	items	to	it.	Note
that	when	initially	created,	a	Web	list	box	control	contains	three	default	items.
This	example	includes	a	routine	that	deletes	the	default	list	box	items	before
adding	new	items.

Sub	CreateWebListBox()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl(Type:=pbWebControlListBox,	Left:=100,	_

																Top:=150,	Width:=300,	Height:=72).WebListBox

												.MultiSelect	=	msoFalse

												With	.ListBoxItems

																For	intCount	=	1	To	.Count

																				.Delete	(1)

																Next

																.AddItem	Item:="Green"

																.AddItem	Item:="Purple"

																.AddItem	Item:="Red"

																.AddItem	Item:="Black"

												End	With

								End	With

				End	With

End	Sub

	 	



WebNavigationBarHyperlinks	Object
WebNavigationBarSet WebNavigationBarHyperlinks

Hyperlink
Multiple	objects

The	WebNavigationBarHyperlinks	represents	a	collection	of	all	the	Hyperlink
objects	of	the	specified	WebNavigationBarSet	object.



Using	the	WebNavigationBarHyperlinks	Object

Use	the	Links	property	of	the	WebNavigationBarSets	object	to	return	a
WebNavigationBarHyperlinks	object.	The	following	example	adds	a	hyperlink
to	the	first	WebNavigationBarSet	of	the	active	document.

Dim	objWebNavLinks	As	WebNavigationBarHyperlinks

Set	objWebNavLinks	=	ActiveDocument.WebNavigationBarSets(1).Links

objWebNavLinks.Add	Address:="www.microsoft.com",		_

				TextToDisplay:="Microsoft"

Use	WebNavigationBarHyperlinks.Count	to	return	a	Long	representing	the
number	of	hyperlinks	in	the	WebNavigationBarHyperlinks	collection	of	the
specified	WebNavigationBarSet	object.	The	following	example	displays	the
number	of	hyperlinks	in	the	first	WebNavigationBarSet	of	the	active	document.

MsgBox	ActiveDocument.WebNavigationBarSets(1).Links.Count

Use	WebNavigationBarHyperlinks.Item(index),	where	index	is	the	index
number,	to	return	a	specific	Hyperlink	object	from	the	collection.	This	example
displays	the	displayed	text	of	the	first	item	in	the
WebNavigationBarHyperlinks	collection	of	the	first	WebNavigationBarSet	of
the	active	document.

MsgBox	ActiveDocument.WebNavigationBarSets(1).Links.Item(1).TextToDisplay



WebNavigationBarSets	Collection
Document WebNavigationBarSets

WebNavigationBarSet
WebNavigationBarHyperlinks

A	collection	of	all	the	WebNavigationBarSet	objects	in	the	current	document.
Each	WebNavigationBarSet	represents	a	Web	navigation	bar	set	consisting	of
hyperlinks.



Remarks

By	default	there	are	two	WebNavigationBarSet	objects	on	each	Web	wizard
page;	one	is	text-only	and	the	other	is	vertical.	These	objects	correspond	to	the
design	of	the	wizard	regardless	of	whether	or	not	a	navigation	bar	is	used	on	the
page.



Using	the	WebNavigationBarSets	Collection

Use	the	WebNavigationBarSets	property	of	the	current	document	to	return	a
WebNavigationBarSet	object.	The	following	example	sets	an	object	variable	to
the	WebNavigationBarSets	collection	of	the	active	document.

Dim	objWebNavBarSets	As	WebNavigationBarSets

Set	objWebNavBarSets	=	ActiveDocument.WebNavigationBarSets

Use	WebNavigationBarSets.Item(index),	where	index	is	the	index	number,	to
return	a	WebNavigationBarSet	object	from	the	collection.	The	following
example	returns	the	first	Web	navigation	bar	set	from	the
WebNavigationBarSets	collection.

Dim	objWebNavBarSet	As	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets.Item(1)

The	previous	example	can	also	be	accomplished	using
WebNavigationBarSets(index),	where	index	is	the	index	number,	to	return	a
WebNavigationBarSet	object.

Dim	objWebNavBarSet	As	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets(1)

The	previous	example	can	also	be	accomplished	using
WebNavigationBarSets(index)	where	index	is	a	string	indicating	the	name	of
the	Web	navigation	bar	set	to	return.

Dim	objWebNavBarSet	As	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets("WebNavBarSet1")

Use	WebNavigationBarSets.Count	to	return	the	number	of	Web	navigation	bar
sets	in	the	collection.	This	example	displays	the	number	of	Web	navigation	bar
sets	in	the	current	document.

MsgBox	ActiveDocument.WebNavigationBarSets.Count

Use	WebNavigationBarSets.AddToEveryPage(Left,	Top,	[Width]),	where	Left
is	the	distance	from	the	left	of	the	page	to	the	left	edge	of	the	navigation	bar,	Top
is	the	distance	form	the	top	of	the	page	to	the	top	edge	of	the	navigation	bar,	and



Width	is	the	width	of	the	navigaion	bar,	to	add	the	specified	navigation	bar	to
every	page.	The	following	example	adds	the	navigation	bar	named
"WebNavBar1"	to	every	page	in	the	current	publication.

ActiveDocument.WebNavigationBarSets.Item	_

				("WebNavBarSet1").AddToEveryPage	_

				Left:=50,	Top:=25



WizardProperties	Collection
Wizard WizardProperties

WizardProperty
WizardValues

Represents	the	settings	available	in	a	publication	design	or	in	a	Design	Gallery
object's	wizard.



Using	the	WizardProperties	collection

Use	the	Properties	property	with	a	Wizard	object	to	return	a	WizardProperties
collection.	The	following	example	reports	on	the	publication	design	associated
with	the	active	publication,	displaying	its	name	and	current	settings.

Dim	wizTemp	As	Wizard

Dim	wizproTemp	As	WizardProperty

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp

				Set	wizproAll	=	.Properties

				MsgBox	"Publication	Design	associated	with	"	_

								&	"current	publication:	"	.Name

				For	Each	wizproTemp	In	wizproAll

								With	wizproTemp

												Debug.Print	"			Wizard	property:	"	_

																&	.Name	&	"	=	"	&	.CurrentValueId

								End	With

				Next	wizproTemp

End	With

	 	

Note		Depending	on	the	language	version	of	Publisher	that	you	are	using,	you
may	receive	an	error	when	using	the	above	code.	If	this	occurs,	you	will	need	to
build	in	error	handlers	to	circumvent	the	errors.	For	more	information,	see
Wizard	Object.



WizardValues	Collection
WizardProperty WizardValues

WizardValue

Represents	the	complete	set	of	valid	values	for	a	wizard	property.



Using	the	WizardValues	collection

Use	the	Values	property	of	the	WizardProperty	object	to	return	a
WizardValues	collection.	The	following	example	displays	the	current	value	for
the	first	wizard	property	in	the	active	publication	and	then	lists	all	the	other
possible	values.

Dim	valAll	As	WizardValues

Dim	valLoop	As	WizardValue

With	ActiveDocument.Wizard

				Set	valAll	=	.Properties(1).Values

				MsgBox	"Wizard:	"	&	.Name	&	vbLf	&	_

								"Property:	"	&	.Properties(1).Name	&	vbLf	&	_

								"Current	value:	"	&	.Properties(1).CurrentValueId

				For	Each	valLoop	In	valAll

								MsgBox	"Possible	value:	"	&	valLoop.ID	&	"	("	&	valLoop.Name	&	")"

				Next	valLoop

End	With

	 	



AdvancedPrintOptions	Object
Document AdvancedPrintOptions

Multiple	objects

Represents	the	advanced	print	settings	for	a	publication.



Using	the	AdvancedPrintOptions	object

Use	the	AdvancedPrintOptions	property	of	the	Document	object	to	return	an
AdvancedPrintOptions	object.	The	following	example	tests	to	determine	if	the
active	publication	has	been	set	to	print	as	separations.	If	it	has,	it	is	set	to	print
only	plates	for	the	inks	actually	used	in	the	publication,	and	to	not	print	plates
for	any	pages	where	a	color	is	not	used.

Sub	PrintOnlyInksUsed

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.PrintMode	=	pbPrintModeSeparations	Then

	 	 	 .InksToPrint	=	pbInksToPrintUsed

	 	 	 .PrintBlankPlates	=	False

	 	 End	If

	 End	With

End	Sub



Remarks

The	properties	of	the	AdvancedPrintOptions	object	correspond	to	the	options
available	on	the	tabs	of	the	Advanced	Print	Settings	dialog	box.



Application	Object
Application Multiple	objects

Represents	the	Microsoft	Publisher	application.	The	Application	object	includes
properties	and	methods	that	return	top-level	objects.	For	example,	the
ActiveDocument	property	returns	a	Document	object.



Using	the	Application	object

Use	the	Application	property	to	return	the	Application	object.	The	following
example	displays	the	application	name.

Sub	ShowAppName()

				MsgBox	Application.Name

End	Sub

	 	



Remarks

When	using	Visual	Basic	for	Applications	in	Microsoft	Publisher,	all	of	the
properties	and	methods	of	the	Application	object	can	be	used	without	the
Application	object	qualifier.	For	example,	instead	of	typing
Application.ActiveDocument.PrintOut,	you	can	type
ActiveDocument.PrintOut.	Properties	and	methods	that	can	be	used	without	the
Application	object	qualifier	are	considered	"global."	To	view	the	global
properties	and	methods	in	the	Object	Browser,	click	<globals>	at	the	top	of	the
list	in	the	Classes	box.	When	accessing	the	Publisher	object	model	from	a	non-
Publisher	project,	all	properties	and	methods	must	be	fully	qualified.



BorderArt	Object
BorderArts BorderArt

Represents	an	available	type	of	BorderArt.	BorderArt	is	picture	borders	that	can
be	applied	to	text	boxes,	picture	frames,	or	rectangles.	The	BorderArt	object	is
a	member	of	the	BorderArts	collection.	The	BorderArts	collection	contains	all
BorderArt	available	for	use	in	the	specified	publication.



Using	the	BorderArt	Object

Use	the	Item	property	of	a	BorderArts	collection	to	return	a	specific	BorderArt
object.	The	Index	argument	of	the	Item	property	can	be	the	number	or	name	of
the	BorderArt	object.

This	example	returns	the	BorderArt	"Apples"	from	the	active	publication.

Dim	bdaTemp	As	BorderArt

Set	bdaTemp	=	ActiveDocument.BorderArts.Item	(Index:="Apples")	

Use	the	Name	property	to	specify	which	type	of	BorderArt	you	want	applied	to
a	picture.	The	following	example	sets	all	the	BorderArt	in	a	document	to	the
same	type	using	the	Name	property.

Sub	SetBorderArtByName()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

Dim	strBorderArtName	As	String

strBorderArtName	=	Document.BorderArts(1).Name

	 For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Name	=	strBorderArtName

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub

Note		Because	Name	is	the	default	property	of	both	the	BorderArt	object	and
the	BorderArtFormat	object,	you	do	not	need	to	state	it	explicitly	when	setting
the	BorderArt	type.	The	statement	Shape.BorderArtFormat	=
Document.BorderArts(1)	is	equivalent	to	Shape.BorderArtFormat.Name	=
Document.BorderArts(1).Name.



Remarks

The	BorderArts	collection	includes	any	custom	BorderArt	types	created	by	the
user	for	the	specified	publication.



BorderArtFormat	Object
Shape BorderArtFormat

ColorFormat

Represents	the	formatting	of	the	BorderArt	applied	to	the	specified	shape.



Using	the	BorderArtFormat	Object

Use	the	BorderArt	property	of	a	shape	to	return	a	BorderArtFormat	object.

The	following	example	returns	the	BorderArt	of	the	first	shape	on	the	first	page
of	the	active	publication,	and	displays	the	name	of	the	BorderArt	in	a	message
box.

Dim	bdaTemp	As	BorderArtFormat

Set	bdaTemp	=	ActiveDocument.Pages(1).Shapes(1).BorderArt

MsgBox	"BorderArt	name	is:	"	&bdaTemp.Name

Use	the	Set	method	to	specify	which	type	of	BorderArt	you	want	applied	to	a
picture.	The	following	example	tests	for	the	existence	of	BorderArt	on	each
shape	for	each	page	of	the	active	document.	Any	BorderArt	found	is	set	to	the
same	type.

Sub	SetBorderArt()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

Dim	strBorderArtName	As	String

strBorderArtName	=	Document.BorderArts(1).Name

	 For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Set(strBorderArtName)

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub

You	can	also	use	the	Name	property	to	specify	which	type	of	BorderArt	you
want	applied	to	a	picture.	The	following	example	sets	all	the	BorderArt	in	a
document	to	the	same	type	using	the	Name	property.

Sub	SetBorderArtByName()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape



Dim	strBorderArtName	As	String

	 strBorderArtName	=	Document.BorderArts(1).Name

	 For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Name	=	strBorderArtName

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub

Note		Because	Name	is	the	default	property	of	both	the	BorderArt	and
BorderArtFormat	objects,	you	do	not	need	to	state	it	explicitly	when	setting
the	BorderArt	type.	The	statement	Shape.BorderArtFormat	=
Document.BorderArts(1)	is	equivalent	to	Shape.BorderArtFormat.Name	=
Document.BorderArts(1).Name.

Use	the	Delete	method	to	remove	BorderArt	from	a	picture.	The	following
example	tests	for	the	existence	of	border	art	on	each	shape	for	each	page	of	the
active	document.	If	border	art	exists,	it	is	deleted.

Sub	DeleteBorderArt()

	 Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Delete

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub



Remarks

BorderArt	are	picture	borders	that	can	be	applied	to	text	boxes,	picture	frames,
or	rectangles.



CalloutFormat	Object
Multiple	objects CalloutFormat

Contains	properties	and	methods	that	apply	to	line	callouts.



Using	the	CalloutFormat	object

Use	the	Callout	property	to	return	a	CalloutFormat	object.	The	following
example	adds	a	callout	to	the	active	publication,	adds	text	to	the	callout,	then
specifies	the	following	attributes	for	the	callout:

a	vertical	accent	bar	that	separates	the	text	from	the	callout	line	(Accent
property)
the	angle	between	the	callout	line	and	the	side	of	the	callout	text	box	will	be
30	degrees	(Angle	property)
there	will	be	no	border	around	the	callout	text	(Border	property)
the	callout	line	will	be	attached	to	the	top	of	the	callout	text	box
(PresetDrop	method)
the	callout	line	will	contain	three	segments	(Type	property)

Sub	AddFormatCallout()

				With	ActiveDocument.Pages(1).Shapes.AddCallout(Type:=msoCalloutOne,	_

												Left:=150,	Top:=150,	Width:=200,	Height:=100)

								With	.TextFrame.TextRange

												.Text	=	"This	is	a	callout."

												With	.Font

																.Name	=	"Stencil"

																.Bold	=	msoTrue

																.Size	=	30

												End	With

								End	With

								With	.Callout

												.Accent	=	MsoTrue

												.Angle	=	msoCalloutAngle30

												.Border	=	MsoFalse

												.PresetDrop	msoCalloutDropTop

												.Type	=	msoCalloutThree

								End	With

				End	With

End	Sub

	 	





Cell	Object
CellRange Cell

Multiple	objects

Represents	a	single	table	cell.	The	Cell	object	is	a	member	of	the	CellRange
collection.	The	CellRange	collection	represents	all	the	cells	in	the	specified
object.



Using	the	Cell	object

Use	Cells(index),	where	index	is	the	cell	number,	to	return	a	Cell	object.	This
example	merges	the	first	two	cells	of	the	first	column	of	the	specified	table.

Sub	MergeCell()

				With	ActiveDocument.Pages(1).Shapes(2).Table.Columns(1)

								.Cells(1).Merge	MergeTo:=.Cells(2)

				End	With

End	Sub

	 	

This	example	applies	a	thick	border	around	the	first	cell	in	the	second	column	of
the	specified	table.

Sub	OutlineBorderCell()

				With	ActiveDocument.Pages(1).Shapes(2).Table.Columns(2).Cells(1)

								.BorderLeft.Weight	=	5

								.BorderRight.Weight	=	5

								.BorderTop.Weight	=	5

								.BorderBottom.Weight	=	5

				End	With

End	Sub

	 	



CellBorder	Object
Cell CellBorder

ColorFormat

Represents	the	color	and	weight	settings	for	cell	borders.



Using	the	CellBorder	object

Use	the	various	border	properties	of	the	Cell	object	to	return	the	different
borders	of	a	cell	(left,	right,	top,	bottom,	and	diagonal).	The	following	example
retrieves	the	top	border	of	the	first	cell	in	a	table.

Dim	cbTemp	As	CellBorder

Set	cbTemp	=	ActiveDocument.Pages(1)	_

				.Shapes(1).Table.Cells.Item(1).BorderTop

	 	

Use	the	Color	and	Weight	properties	of	the	CellBorder	object	to	format	the
appearance	of	a	cell	border.	The	following	example	makes	the	left	border	of	the
first	cell	in	a	table	red	and	two	points	thick.

Dim	cbTemp	As	CellBorder

Set	cbTemp	=	ActiveDocument.Pages(1)	_

				.Shapes(1).Table.Cells.Item(1).BorderLeft

cbTemp.Color.RGB	=	RGB(255,	0,	0)

cbTemp.Weight	=	2

	 	



Show	All



ColorCMYK	Object
ColorFormat ColorCMYK

Represents	a	cyan-magenta-yellow-black	(CMYK)	color	value.



Using	the	ColorCMYK	object

Use	the	CMYK	property	of	a	ColorFormat	object	to	return	a	ColorCMYK
object.	Use	the	Cyan,	Magenta,	Yellow,	and	Black	properties	of	the
ColorCMYK	object	to	individually	set	each	of	the	four	colors	in	the	CMYK
color	value.	Use	the	SetCMYK	method	on	a	ColorCMYK	object	to	set	all	four
colors	at	once.

The	following	example	retrieves	the	CMYK	color	value	of	shape	one's	fill	and
changes	it	to	another	CMYK	color	value.

Dim	cmykColor	As	ColorCMYK

Set	cmykColor	=

ActiveDocument.Pages(1).Shapes(1).Fill.ForeColor.CMYK

cmykColor.SetCMYK	Cyan:=0,	Magenta:=255,	Yellow:=255,	Black:=50



ColorFormat	Object

Multiple	objects ColorFormat
ColorCMYK

Represents	the	color	of	a	one-color	object	or	the	foreground	or	background	color
of	an	object	with	a	gradient	or	patterned	fill.	You	can	set	colors	to	an	explicit
red-green-blue	value	by	using	the	RGB	property.



Using	the	ColorFormat	object

Use	one	of	the	properties	listed	in	the	following	table	to	return	a	ColorFormat
object.

Use	this
property

With	this
object

To	return	a	ColorFormat	object	that
represents	this

BackColor FillFormat Background	fill	color	(used	in	a	shaded	or
patterned	fill)

ForeColor FillFormat Foreground	fill	color	(or	simply	the	fill	color
for	a	solid	fill)

BackColor LineFormat Background	line	color	(used	in	a	patterned
line)

ForeColor LineFormat Foreground	line	color	(or	just	the	line	color
for	a	solid	line)

ForeColor ShadowFormat Shadow	color
ExtrusionColor ThreeDFormat Color	of	the	sides	of	an	extruded	object

Use	the	RGB	property	to	set	a	color	to	an	explicit	red-green-blue	value.	The
following	example	adds	a	rectangle	to	the	active	publication	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

Sub	GradientFill()

				With	ActiveDocument.Pages(1).Shapes	_

												.AddShape(Type:=msoShapeRectangle,	_

												Left:=90,	Top:=90,	Width:=90,	Height:=50).Fill

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.BackColor.RGB	=	RGB(170,	170,	170)

								.TwoColorGradient	msoGradientHorizontal,	1

				End	With

End	Sub

	 	





ColorScheme	Object
Multiple	objects ColorScheme

ColorFormat

Represents	a	color	scheme,	which	is	a	set	of	eight	colors	used	for	the	different
elements	of	a	publication.	Each	color	is	represented	by	a	ColorFormat	object.
The	ColorScheme	object	is	a	member	of	the	ColorSchemes	collection.	The
ColorSchemes	collection	contains	all	the	color	schemes	available	to	Microsoft
Publisher.



Using	the	ColorScheme	Object

Use	the	ColorScheme	property	of	a	Document	object	to	return	the	color	scheme
for	the	current	publication.	The	following	example	sets	the	fill	value	of	three
shapes	on	the	first	page	to	the	return	value	(in	RGB	format)	of	three	of	the	eight
ColorScheme	colors.

Sub	ReturnColorsAndApplyToShapes()

				Dim	lngAccent1	As	Long

				Dim	lngAccent2	As	Long

				Dim	lngAccent3	As	Long

				With	ActiveDocument

								With	.ColorScheme

												lngAccent1	=	.Colors(pbSchemeColorAccent1).RGB

												lngAccent2	=	.Colors(pbSchemeColorAccent2).RGB

												lngAccent3	=	.Colors(pbSchemeColorAccent3).RGB

								End	With

								With	.Pages(1)

												.Shapes(1).Fill.ForeColor.RGB	=	lngAccent1

												.Shapes(2).Fill.ForeColor.RGB	=	lngAccent2

												.Shapes(3).Fill.ForeColor.RGB	=	lngAccent3

								End	With

				End	With

End	Sub

	 	

Use	the	Name	property	to	return	a	color	scheme	name.	The	following	example
lists	in	a	text	box	all	the	color	schemes	available	to	Publisher.

Sub	ListColorShemes()

				Dim	clrScheme	As	ColorScheme

				Dim	strSchemes	As	String

				For	Each	clrScheme	In	Application.ColorSchemes

								strSchemes	=	strSchemes	&	clrScheme.Name	&	vbLf

				Next

				ActiveDocument.Pages(1).Shapes.AddTextbox(	_

								Orientation:=pbTextOrientationHorizontal,	_

								Left:=72,	Top:=72,	Width:=400,	Height:=500).TextFrame	_

								.TextRange.Text	=	strSchemes

End	Sub



	 	



Column	Object
Columns column

CellRange

Represents	a	single	table	column.	The	Column	object	is	a	member	of	the
Columns	collection.	The	Columns	collection	includes	all	the	columns	in	a	table,
selection,	or	range.



Using	the	Column	object

Use	Columns(index),	where	index	is	the	column	number,	to	return	a	single
Column	object.	The	index	number	represents	the	position	of	the	column	in	the
Columns	collection	(counting	from	left	to	right).	This	example	selects	column
three	in	the	first	shape	in	the	active	publication.	This	example	assumes	the	first
shape	is	a	table	and	not	another	type	of	shape.

Sub	SelectColumn()

				ActiveDocument.Pages(2).Shapes(1).Table.Columns(3).Cells.Select

End	Sub

	 	

Use	the	Item	method	of	a	Columns	collection	to	return	a	Column	object.	This
example	enters	text	into	the	first	cell	of	the	third	column	of	the	specified	table
and	formats	the	text	with	a	bold,	15-point	font.	This	example	assumes	the	first
shape	is	a	table	and	not	another	type	of	shape.

Sub	ColumnHeading()

				With	ActiveDocument.Pages(2).Shapes(1).Table.Columns(3)	_

												.Cells(1).Text

								.Text	=	"Sales"

								.Font.Bold	=	msoTrue

								.Font.Size	=	15

				End	With

End	Sub

	 	

Use	the	Delete	method	to	delete	a	column	from	a	table.	This	example	deletes	the
column	added	in	the	above	example.

Sub	DeleteColumn()

				ActiveDocument.Pages(2).Shapes(1).Table.Columns(3).Delete

End	Sub

	 	





ConnectorFormat	Object
Multiple	objects ConnectorFormat

Shape

Contains	properties	and	methods	that	apply	to	connectors.	A	connector	is	a	line
that	attaches	two	other	shapes	at	points	called	connection	sites.	If	you	rearrange
shapes	that	are	connected,	the	geometry	of	the	connector	will	be	automatically
adjusted	so	that	the	shapes	remain	connected.



Using	the	ConnectorFormat	object

Use	the	ConnectorFormat	property	of	the	Shape	object	or	the	ShapeRange
collection	to	return	a	ConnectorFormat	object.	Use	the	BeginConnect	and
EndConnect	methods	of	the	ConnectorFormat	object	to	attach	the	ends	of	the
connector	to	other	shapes	in	the	publication.	Use	the	RerouteConnections
method	of	the	Shape	object	and	ShapeRange	collection	to	automatically	find
the	shortest	path	between	the	two	shapes	connected	by	the	connector.	Use	the
Connector	property	to	see	whether	a	shape	is	a	connector.

Note	that	you	assign	a	size	and	a	position	when	you	add	a	connector	to	the
Shapes	collection,	but	the	size	and	position	are	automatically	adjusted	when	you
attach	the	beginning	and	end	of	the	connector	to	other	shapes	in	the	collection.
Therefore,	if	you	intend	to	attach	a	connector	to	other	shapes,	the	initial	size	and
position	you	specify	are	irrelevant.	Likewise,	you	specify	which	connection	sites
on	a	shape	to	attach	the	connector	to	when	you	attach	the	connector,	but	using
the	RerouteConnections	method	after	the	connector	is	attached	may	change
which	connection	sites	the	connector	attaches	to,	making	your	original	choice	of
connection	sites	irrelevant.

The	following	example	adds	two	rectangles	to	the	active	publication	and
connects	them	with	a	curved	connector.

Dim	shpAll	As	Shapes

Dim	firstRect	As	Shape

Dim	secondRect	As	Shape

Set	shpAll	=	ActiveDocument.Pages(1).Shapes

Set	firstRect	=	shpAll.AddShape(Type:=msoShapeRectangle,	_

				Left:=100,	Top:=50,	Width:=200,	Height:=100)

Set	secondRect	=	shpAll.AddShape(Type:=msoShapeRectangle,	_

				Left:=300,	Top:=300,	Width:=200,	Height:=100)

	 	

With	shpAll.AddConnector(Type:=msoConnectorCurve,	BeginX:=0,	_

				BeginY:=0,	EndX:=0,	EndY:=0).ConnectorFormat

				.BeginConnect	ConnectedShape:=firstRect,	ConnectionSite:=1

				.EndConnect	ConnectedShape:=secondRect,	ConnectionSite:=1

				.Parent.RerouteConnections

End	With

	 	





Document	Object
Multiple	objects Document

Multiple	objects

Represents	a	publication.



Using	ActiveDocument

Use	the	ActiveDocument	property	to	refer	to	the	current	publication.	This
example	adds	a	table	to	the	first	page	of	the	active	publication.

Sub	NewTable()

				With	ActiveDocument.Pages(1).Shapes

								.AddTable	NumRows:=3,	NumColumns:=3,	Left:=72,	Top:=300,	_

												Width:=488,	Height:=36

								With	.Item(1).Table.Rows(1)

												.Cells(1).TextRange.Text	=	"Column1"

												.Cells(2).TextRange.Text	=	"Column2"

												.Cells(3).TextRange.Text	=	"Column3"

								End	With

				End	With

End	Sub

	 	

You	can	also	write	the	above	routine	by	using	a	reference	to	the	ThisDocument
module.	This	example	uses	a	ThisDocument	reference	instead	of
ActiveDocument.

Sub	PrintPublication()

				With	ThisDocument.Pages(1).Shapes

								.AddTable	NumRows:=3,	NumColumns:=3,	Left:=72,	Top:=300,	_

												Width:=488,	Height:=36

								With	.Item(1).Table.Rows(1)

												.Cells(1).TextRange.Text	=	"Column1"

												.Cells(2).TextRange.Text	=	"Column2"

												.Cells(3).TextRange.Text	=	"Column3"

								End	With

				End	With

End	Sub

	 	



DropCap	Object
TextRange DropCap

ColorFormat

Represents	a	dropped	capital	letter	at	the	beginning	of	a	paragraph.



Using	the	DropCap	Object

Use	the	DropCap	property	to	return	a	DropCap	object.	The	following	example
sets	a	dropped	capital	letter	for	the	first	letter	of	each	paragraph	in	the	first	shape
on	the	first	page	of	the	active	publication.	This	example	assumes	that	the
specified	shape	is	a	text	box	and	not	another	type	of	shape.

Sub	ApplyDropCap()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.DropCap.ApplyCustomDropCap	Size:=3,	Span:=3,	Bold:=True

End	Sub

	 	



Field	Object
TextRange Fields

Field
Multiple	objects

Represents	a	field.	The	Field	object	is	a	member	of	the	Fields	collection.	The
Fields	collection	represents	the	fields	in	a	selection,	range,	or	publication.



Using	the	Field	Object

Use	Fields	(index),	where	index	is	the	index	number,	to	return	a	single	Field
object.	The	index	number	represents	the	position	of	the	field	in	the	selection,
range,	or	publication.	The	following	counts	the	number	of	fields	in	the	active
publication	and	displays	the	count	in	a	message.

Sub	CountFields()

				Dim	pagPage	As	Page

				Dim	shpShape	As	Shape

				Dim	fldField	As	Field

				Dim	intFields	As	Integer

				Dim	intCount	As	Integer

				For	Each	pagPage	In	ActiveDocument.Pages

								For	Each	shpShape	In	pagPage.Shapes

												If	shpShape.Type	=	pbTextFrame	Then

																intCount	=	intCount	+	shpShape.TextFrame.TextRange.Fields.Count

												End	If

								Next

				Next

				If	intCount	>	0	Then

								MsgBox	"You	have	"	&	intCount	&	"	fields	in	your	publication."

				Else

								MsgBox	"You	have	no	fields	in	your	publication."

				End	If

End	Sub

	 	

The	pbFieldPageNumber	constant	is	a	member	of	the	PbFieldType	group	of
constants,	which	includes	all	the	various	field	types.



FillFormat	Object
Multiple	objects FillFormat

ColorFormat

Represents	fill	formatting	for	a	shape.	A	shape	can	have	a	solid,	gradient,
texture,	pattern,	picture,	or	semitransparent	fill.



Using	the	FillFormat	object

Use	the	Fill	property	to	return	a	FillFormat	object.	The	following	example	adds
a	shape	to	the	active	document	and	then	sets	the	gradient	and	color	for	the
shape's	fill.

Sub	AddShapeAndSetFill()

				With	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeHeart,	_

												Left:=90,	Top:=90,	Width:=90,	Height:=80).Fill

								.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.OneColorGradient	Style:=msoGradientHorizontal,	_

												Variant:=1,	Degree:=1

				End	With

End	Sub

	 	



Remarks

Many	of	the	properties	of	the	FillFormat	object	are	read-only.	To	set	one	of
these	properties,	you	have	to	apply	the	corresponding	method.



FindReplace	Object
Multiple	objects FindReplace

TextRange

Represents	the	criteria	for	a	find	operation.	The	properties	and	methods	of	the
FindReplace	object	correspond	to	the	options	in	the	Find	and	Replace	dialog
box.



Using	the	FindReplace	Object

Use	the	Find	property	to	return	a	FindReplace	object.	The	following	example
selects	the	next	occurrence	of	the	word	"factory".

With	ActiveDocument.Find

				.Clear

				.FindText	=	"factory"

				.Execute

End	With

Set	the	ReplaceScope	property	to	determine	the	extent	of	the	search.	The
following	example	replaces	the	first	occurrence	of	the	name	"Visual	Basic
Scripting	Edition"	with	"VBScript".

With	ActiveDocument.Find

				.Clear

				.FindText	=	"Visual	Basic	Scripting	Edition"

				.ReplaceWithText	=	"VBScript"

				.ReplaceScope	=	pbReplaceScopeOne

				.Execute

End	With



Remarks

When	the	ReplaceScope	property	is	set	to	pbReplaceScopeOne	or
pbReplaceScopeAll,	the	ReplaceWithText	property	must	be	set	to	avoid	the
text	from	being	replaced	with	the	default	value	of	an	empty	String	for	that
property.



Examples

The	following	example	illustrates	how	the	font	attributes	of	the	FoundTextRange
can	be	accessed	when	ReplaceScope	is	set	to	pbReplaceScopeNone.

Dim	objFindReplace	As	FindReplace

Set	objFindReplace	=	ActiveDocument.Find

With	objFindReplace

				.Clear

				.FindText	=	"important"

				.ReplaceScope	=	pbReplaceScopeNone

				Do	While	.Execute	=	True

								If	.FoundTextRange.Font.Italic	=	msoFalse	Then

												.FoundTextRange.Font.Italic	=	msoTrue

								End	If

				Loop

End	With



Font	Object
Multiple	objects Font

ColorFormat

Contains	font	attributes	(font	name,	font	size,	color,	and	so	on)	for	an	object.



Using	the	Font	Object

Use	the	Font	property	to	return	the	Font	object.	The	following	instruction
applies	bold	formatting	to	the	selection.

Sub	BoldText()

				Selection.TextRange.Font.Bold	=	True

End	Sub

	 	

The	following	example	formats	the	first	paragraph	in	the	active	publication	as
24-point	Arial	and	italic.

Sub	FormatText()

				Dim	txtRange	As	TextRange

				Set	txtRange	=	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

				With	txtRange.Font

								.Bold	=	True

								.Name	=	"Arial"

								.Size	=	24

				End	With

End	Sub

	 	

The	following	example	changes	the	formatting	of	the	Heading	2	style	in	the
active	publication	to	Arial	and	bold.

Sub	FormatStyle()

				With	ActiveDocument.TextStyles("Normal").Font

								.Name	=	"Tahoma"

								.Italic	=	True

								.Size	=	15

				End	With

End	Sub

	 	

You	can	also	duplicate	a	Font	object	by	using	the	Duplicate	property.	The
following	example	creates	a	new	character	style	with	the	character	formatting
from	the	selection	as	well	as	italic	formatting.	The	formatting	of	the	selection
isn't	changed.

Sub	DuplicateFont()

				Dim	fntNew	As	Font



				Set	fntNew	=	Selection.TextRange.Font.Duplicate

				fntNew.Italic	=	True

				ActiveDocument.TextStyles.Add(StyleName:="Italics").Font	=	fntNew

End	Sub

	 	



FreeformBuilder	Object
FreeformBuilder

Represents	the	geometry	of	a	freeform	while	it's	being	built.



Using	the	FreeformBuilder	Object

Use	the	BuildFreeform	method	of	the	Shapes	collection	to	return	a
FreeformBuilder	object.	Use	the	AddNodes	method	to	add	nodes	to	the
freeform.	Use	the	ConvertToShape	method	to	create	the	shape	defined	in	the
FreeformBuilder	object	and	add	it	to	the	Shapes	collection.	The	following
example	adds	a	freeform	with	four	segments	to	the	active	document.

Sub	CreateNewFreeFormShape()

				With	ActiveDocument.Pages(1).Shapes.BuildFreeform(	_

												EditingType:=msoEditingCorner,	X1:=360,	Y1:=200)

								.AddNodes	SegmentType:=msoSegmentCurve,	_

												EditingType:=msoEditingCorner,	X1:=380,	Y1:=230,	_

												X2:=400,	Y2:=250,	X3:=450,	Y3:=300

								.AddNodes	SegmentType:=msoSegmentCurve,	_

												EditingType:=msoEditingAuto,	X1:=480,	Y1:=200

								.AddNodes	SegmentType:=msoSegmentLine,	_

												EditingType:=msoEditingAuto,	X1:=480,	Y1:=400

								.AddNodes	SegmentType:=msoSegmentLine,	_

												EditingType:=msoEditingAuto,	X1:=360,	Y1:=200

								.ConvertToShape

				End	With

End	Sub

	 	



HeaderFooter	Object
Page HeaderFooter

TextRange

Represents	the	header	or	footer	of	a	master	page.



Using	the	HeaderFooter	Object

Use	MasterPages.Header	or	MasterPages.Footer	to	return	a	HeaderFooter
object.	The	following	example	adds	text	to	the	header	of	the	first	master	page	of
the	active	document.

Dim	objHeader	As	HeaderFooter

Set	objHeader	=	ActiveDocument.MasterPages(1).Header

objHeader.TextRange.Text	=	"Master	Page	1	Header"

Use	HeaderFooter.Delete	to	delete	any	existing	content	from	a	header	or	footer.
Calling	this	method	does	not	delete	the	text	frame,	just	the	contents	of	it.	The
following	example	deletes	all	of	the	header	and	footer	content	of	all	the	master
pages	in	a	publication.

Dim	objMasterPage	As	page

For	Each	objMasterPage	In	ActiveDocument.masterPages

				objMasterPage.Header.Delete

				objMasterPage.Footer.Delete

Next

Use	HeaderFooter.TextRange	to	return	a	TextRange	object	representing	the
header	or	footer	of	a	master	page.	Any	header	or	footer	content	manipulation	is
done	with	through	this	property	of	the	HeaderFooter	object.	The	following
example	first	deletes	any	existing	content	and	then	adds	some	boilerplate	text	to
the	header	of	a	master	page.

Dim	objHeader	As	HeaderFooter

Set	objHeader	=	ActiveDocument.MasterPages(1).Header

With	objHeader

				.Delete

				.TextRange.Text	=	"<Insert	Address	Here>"

End	With



Hyperlink	Object
Multiple	objects Hyperlink

Multiple	objects

Represents	a	hyperlink.	The	Hyperlink	object	is	a	member	of	the	Hyperlinks
collection	and	the	Shape	and	ShapeRange	objects.



Using	the	Hyperlink	Object

Use	the	Hyperlink	property	to	return	a	Hyperlink	object	associated	with	a
shape	(a	shape	can	have	only	one	hyperlink).	The	following	example	deletes	the
hyperlink	associated	with	the	first	shape	in	the	active	document.

Sub	DeleteHyperlink()

				ActiveDocument.Pages(1).Shapes(1).Hyperlink.Delete

End	Sub

	 	

Use	Hyperlinks(index),	where	index	is	the	index	number,	to	return	a	single
Hyperlink	object	from	a	document,	range,	or	selection.	The	following	example
deletes	the	first	hyperlink	in	the	selection.

Sub	DeleteSelectedHyperlink()

				If	Selection.TextRange.Hyperlinks.Count	>=	1	Then

								Selection.TextRange.Hyperlinks(1).Delete

				End	If

End	Sub

	 	

Use	the	Add	method	to	add	a	hyperlink.	The	following	example	adds	a
hyperlink	to	the	selected	text.

Sub	AddHyperlinkToSelectedText()

				Selection.TextRange.Hyperlinks.Add	Text:=Selection.TextRange,	_

								Address:="http://www.tailspintoys.com/"

End	Sub

	 	

Use	the	Address	property	to	add	or	change	the	address	to	a	hyperlink.	The
following	example	adds	a	shape	to	the	active	publication	and	then	adds	a
hyperlink	to	the	shape.

Sub	AddHyperlinkToShape()

				With	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=200,	Width:=300,	Height:=300)

								.Hyperlink.Address	=	"http://www.tailspintoys.com/"

				End	With

End	Sub

	 	





Label	Object
Multiple	objects Label

Represents	a	single	unique	label	design	available	on	the	system.



Using	the	Label	object

Use	the	Label	property	to	return	the	Label	object.

Each	label	design	available	on	the	system	resides	in	the	AvailableLabels
collection,	which	is	accessed	by	using	the	AvailableLabels	property	on	the
PageSetup	object.

The	following	properties	of	the	Label	object	are	read/write	when	the	Label
object	is	returned	using	.PageSetup.Label.	These	properties	are	read-only	if	the
Label	object	is	returned	using	any	other	method.

TopMargin
LeftMargin
HorizontalGap
VerticalGap

The	following	example	uses	the	Label	property	to	return	the	fifth	label	available
on	the	system,	and	then	some	of	the	label's	properties	are	set.

With	ActiveDocument.PageSetup

				.Label	=	.AvailableLabels(5)		'	Label	5	is	Avery	5164

				Set	theLabel	=	.Label

				With	theLabel

								.LeftMargin	=	InchesToPoints(0.15)

								.TopMargin	=	InchesToPoints(0.15)

								.HorizontalGap	=	InchesToPoints(0.1)

								.VerticalGap	=	InchesToPoints(0.1)

				End	With

End	With

	 	



LayoutGuides	Object
Multiple	objects LayoutGuides

Represents	the	measurement	grid	that	appears	superimposed	on	publication
pages	as	an	aid	to	laying	out	design	elements.



Using	the	LayoutGuides	object

Use	the	LayoutGuides	property	of	the	Document	object	to	return	a
LayoutGuides	object.	Use	the	LayoutGuide	object's	margin	properties	and
Rows	and	Columns	properties	to	set	how	many	rows	and	columns	are	displayed
in	the	layout	guides	and	where	they	appear	on	a	page.

This	example	sets	the	margins	of	the	active	presentation	to	two	inches.

With	ActiveDocument.LayoutGuides

				.MarginTop	=	Application.InchesToPoints(Value:=2)

				.MarginBottom	=	Application.InchesToPoints(Value:=2)

				.MarginLeft	=	Application.InchesToPoints(Value:=2)

				.MarginRight	=	Application.InchesToPoints(Value:=2)

End	With

	 	



LineFormat	Object
Multiple	objects LineFormat

ColorFormat

Represents	line	and	arrowhead	formatting.	For	a	line,	the	LineFormat	object
contains	formatting	information	for	the	line	itself;	for	a	shape	with	a	border,	this
object	contains	formatting	information	for	the	shape's	border.



Using	the	LineFormat	Object

Use	the	Line	property	to	return	a	LineFormat	object.	The	following	example
adds	a	blue,	dashed	line	to	the	active	document.	There's	a	short,	narrow	oval	at
the	line's	starting	point	and	a	long,	wide	triangle	at	its	end	point.

Sub	FormatLine()

				With	ActiveDocument.Pages(1).Shapes.AddLine(BeginX:=100,	_

												BeginY:=100,	EndX:=200,	EndY:=300).Line

									.DashStyle	=	msoLineDashDotDot

									.ForeColor.RGB	=	RGB(50,	0,	128)

									.BeginArrowheadLength	=	msoArrowheadShort

									.BeginArrowheadStyle	=	msoArrowheadOval

									.BeginArrowheadWidth	=	msoArrowheadNarrow

									.EndArrowheadLength	=	msoArrowheadLong

									.EndArrowheadStyle	=	msoArrowheadTriangle

									.EndArrowheadWidth	=	msoArrowheadWide

				End	With

End	Sub

	 	



LinkFormat	Object
Multiple	objects LinkFormat

Represents	the	linking	characteristics	for	an	OLE	object	or	picture.



Using	the	LinkFormat	Object

Use	the	LinkFormat	property	for	a	shape	or	field	to	return	a	LinkFormat
object.	The	following	example	updates	the	links	to	all	linked	OLE	objects	on	the
first	page	of	the	active	publication.

Sub	FindOLEObjects()

				Dim	shpShape	As	Shape

				For	Each	shpShape	In	ActiveDocument.Pages(1).Shapes

								If	shpShape.Type	=	pbLinkedOLEObject	Then

												shpShape.LinkFormat.Update

								End	If

				Next	shpShape

End	Sub



Remarks

Not	all	types	of	shapes	and	fields	can	be	linked	to	a	source.	Use	the	Type
property	for	the	Shape	object	to	determine	whether	a	particular	shape	can	be
linked.

Use	the	Update	method	to	update	links.	To	return	or	set	the	full	path	for	a
particular	link's	source	file,	use	the	SourceFullName	property.



Show	All



MailMerge	Object
Document MailMerge

MailMergeDataSource

Represents	the	mail	merge	and	catalog	merge	functionality	in	Publisher.



Using	the	MailMerge	Object

Use	the	MailMerge	property	to	return	the	MailMerge	object.	The	MailMerge
object	is	always	available	regardless	of	whether	the	mail	merge	or	catalog	merge
operation	has	begun.	The	following	example	merges	and	prints	the	main
publication	with	the	first	three	data	records	in	the	attached	data	source.

Sub	SelectiveMerge()

				Dim	mrgMain	As	MailMerge

				Set	mrgMain	=	ActiveDocument.MailMerge

				With	mrgMain.DataSource

								.FirstRecord	=	1

								.LastRecord	=	3

				End	With

				mrgMain.Execute	True

End	Sub

	 	



Show	All



MailMergeDataField	Object
MailMergeDataFields MailMergeDataField

Represents	a	single	merge	field	in	a	data	source.	The	MailMergeDataField
object	is	a	member	of	the	MailMergeDataFields	collection.	The
MailMergeDataFields	collection	includes	all	the	data	fields	in	a	mail	merge	or
catalog	merge	data	source	(for	example,	Name,	Address,	and	City).



Using	the	MailMergeDataField	Object

Use	DataFields	(index),	where	index	is	the	data	field	name	or	index	number,	to
return	a	single	MailMergeDataField	object.	The	index	number	represents	the
position	of	the	data	field	in	the	mail	merge	data	source.	This	example	retrieves
the	name	of	the	first	field	and	value	of	the	first	record	of	the	FirstName	field	in
the	data	source	attached	to	the	active	publication.

Sub	GetDataFromSource()

				With	ActiveDocument.MailMerge.DataSource

								MsgBox	"Field	Name:	"	&	.DataFields.Item(1).Name	&	_

												"Value:	"	&	.DataFields.Item("FirstName").Value

				End	With

End	Sub

	 	



Remarks

You	cannot	add	fields	to	the	MailMergeDataFields	collection.	All	data	fields	in
a	data	source	are	automatically	included	in	the	MailMergeDataFields
collection.



Show	All



MailMergeDataSource	Object
MailMerge MailMergeDataSource

Multiple	objects

Represents	the	data	source	in	a	mail	merge	or	catalog	merge	operation.



Using	the	MailMergeDataSource	Object

Use	the	DataSource	property	to	return	the	MailMergeDataSource	object.	The
following	example	displays	the	name	of	the	data	source	associated	with	the
active	publication.

Sub	ShowDataSourceName()

				If	ActiveDocument.MailMerge.DataSource.Name	<>	""	Then	_

								MsgBox	ActiveDocument.MailMerge.DataSource.Name

End	Sub

	 	

The	following	example	tests	the	open	data	source	associated	with	the	active
publication	to	determine	whether	the	LastName	field	includes	the	name	Fuller.

Sub	FindSelectedRecord()

				With	ActiveDocument.MailMerge

								If	.DataSource.FindRecord(FindText:="Fuller",	_

																Field:="LastName")	=	True	Then

												MsgBox	"Data	was	found"

								End	If

				End	With

End	Sub

	 	



Show	All



MailMergeFilterCriterion	Object
MailMergeFilterCriterion

Represents	a	filter	to	be	applied	to	an	attached	mail	merge	or	catalog	merge	data
source.	The	MailMergeFilterCriterion	object	is	a	member	of	the
MailMergeFilters	object.



Using	the	MailMergeFilterCriterion	object

Each	filter	is	a	line	in	a	query	string.	Use	the	Column,	Comparison,
CompareTo,	and	Conjunction	properties	to	return	or	set	the	data	source	query
criterion.	The	following	example	changes	an	existing	filter	to	remove	from	the
mail	merge	all	records	that	do	not	have	a	Region	field	equal	to	"WA".	This
example	assumes	that	a	data	source	is	attached	to	the	active	publication.

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next

				End	With

End	Sub

	 	

Use	the	Add	method	of	the	MailMergeFilters	object	to	add	a	new	filter
criterion	to	the	query.	This	example	adds	a	new	line	to	the	query	string	and	then
applies	the	combined	filter	to	the	data	source.	This	example	assumes	that	a	data
source	is	attached	to	the	active	publication.

Sub	FilterDataSource()

				With	ActiveDocument.MailMerge.DataSource

								.Filters.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

	 	





MailMergeMappedDataField	Object
MailMergeMappedDataFields MailMergeMappedDataField

Represents	a	single	mapped	data	field.	The	MailMergeMappedDataField
object	is	a	member	of	the	MailMergeMappedDataFields	collection.

A	mapped	data	field	is	a	field	contained	within	Publisher	that	represents
commonly	used	name	or	address	information,	such	as	First	Name.	If	a	data
source	contains	a	First	Name	field	or	a	variation	(such	as	First_Name,
FirstName,	First,	or	FName),	the	field	in	the	data	source	will	automatically	map
to	the	corresponding	mapped	data	field.	If	a	publication	is	to	be	merged	with
more	than	one	data	source,	mapped	data	fields	make	it	unnecessary	to	reenter	the
fields	into	the	publication	to	agree	with	the	field	names	in	the	database.



Using	the	MailMergeMappedDataField	object

Use	MappedDataFields(index)	to	return	a	MailMergeMappedDataField
object.	This	example	returns	the	data	source	field	name	for	the	pbFirstName
mapped	data	field.	This	example	assumes	the	current	publication	is	a	mail	merge
publication.	A	blank	string	value	returned	for	the	DataFieldName	property
indicates	that	the	mapped	data	field	is	not	mapped	to	a	field	in	the	data	source.

Sub	MappedFieldName()

				Dim	strMappedDataField	As	String

				With	ActiveDocument.MailMerge.DataSource

								strMappedDataField	=	.MappedDataFields(pbFirstName).DataFieldName

								If	strMappedDataField	<>	""	Then

												MsgBox	"The	mapped	data	field	'FirstName'	is	mapped	to	"	_

												&	.MappedDataFields(pbFirstName).DataFieldName	&	"."

								Else

												MsgBox	"The	mapped	data	field	'FirstName'	is	not	"	&	_

																"mapped	to	any	of	the	data	fields	in	your	"	&	_

																"data	source."

								End	If

				End	With

End	Sub

	 	



OLEFormat	Object
Multiple	objects OLEFormat

ObjectVerbs

Represents	the	OLE	characteristics,	other	than	linking	(see	the	LinkFormat
object),	for	an	OLE	object,	ActiveX	control,	or	field.



Using	the	OLEFormat	Object

Use	the	OLEFormat	property	for	a	shape	or	field	to	return	an	OLEFormat
object.	The	following	example	activates	all	OLE	objects	in	the	active
publication.

Sub	ActivateOLEObjects()

				Dim	shpShape	As	Shape

				For	Each	shpShape	In	ActiveDocument.Pages(1).Shapes

								If	shpShape.Type	=	pbLinkedOLEObject	Then

												shpShape.OLEFormat.Activate

								End	If

				Next

End	Sub

	 	



Remarks

Not	all	types	of	shapes	and	fields	have	OLE	capabilities.	Use	the	Type	property
for	the	Shape	object	to	determine	into	which	category	the	specified	shape	falls.

Use	the	Activate	and	DoVerb	methods	to	automate	an	OLE	object.



Options	Object
Application Options

Represents	application	and	publication	options	in	Microsoft	Publisher.	Many	of
the	properties	for	the	Options	object	correspond	to	items	in	the	Options	dialog
box	(Tools	menu).



Using	the	Options	Object

Use	the	Options	property	to	return	the	Options	object.	The	following	example
sets	four	application	options	for	Publisher.

Sub	SetSpecialOptions()

				With	Options

								.AllowBackgroundSave	=	True

								.DragAndDropText	=	True

								.AutoHyphenate	=	True

								.MeasurementUnit	=	pbUnitInch

				End	With

End	Sub

	 	



Page	Object
Multiple	objects Page

Multiple	objects

Represents	a	page	in	a	publication.	The	Pages	collection	contains	all	the	Page
objects	in	a	publication.



Using	the	Page	object

Use	Pages(index)	to	return	a	single	Page	object.	The	following	example	adds
new	text	to	the	first	shape	on	the	first	page	in	the	active	publication.

Sub	AddPageNumberField()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

								.InsertAfter	"	This	text	is	added	after	the	existing	text."

								.Font.Size	=	15

				End	With

End	Sub

	 	

Use	the	FindBypageID	property	to	locate	a	Page	object	using	the	application
assigned	page	ID.	Use	the	Add	method	to	create	a	new	page	and	add	it	to	the
publication.	The	following	example	adds	a	new	page	to	the	active	publication
and	then	looks	for	that	page	using	the	page	ID.

Sub	FindPage()

				Dim	lngPageID	As	Long

				'Get	page	ID

				lngPageID	=	ActiveDocument.Pages.Add(Count:=1,	After:=1).PageID

				'Use	page	ID	to	add	a	new	shape	to	the	page

				ActiveDocument.Pages.FindByPageID(PageID:=lngPageID)	_

								.Shapes.AddShape	Type:=msoShape5pointStar,	_

								Left:=200,	Top:=72,	Width:=50,	Height:=50

End	Sub

	 	



PageBackground	Object
Page PageBackground

FillFormat

Represents	the	background	of	a	page.



Using	the	PageBackground	Object

Use	the	Background	property	of	a	Page	object	to	return	a	PageBackground
object.	The	following	example	creates	a	PageBackground	object	and	sets	it	to
the	background	of	the	first	page	of	the	active	document.

Dim	objPageBackground	As	PageBackground

Set	objPageBackground	=	ActiveDocument.Pages(1).Background

	

Use	PageBackground.Exists	to	determine	if	a	background	already	exists	for	the
specified	Page	object.	The	following	example	builds	upon	the	previous	example.
First	a	PageBackground	object	is	created	and	set	to	the	background	of	the	first
page	of	the	active	document.	Then	a	test	is	made	to	check	if	a	background	exists
for	the	page	already.	If	not	then	one	is	created	by	calling	the	Create	method	of
the	PageBackground	object.

Dim	objPageBackground	As	PageBackground

Set	objPageBackground	=	ActiveDocument.Pages(1).Background

If	objPageBackground.Exists	=	False	Then

				objPageBackground.Create

End	If

	

Use	PageBackground.Fill	to	return	a	FillFormat	object.	The	following
example	builds	upon	the	previous	example.	First	a	PageBackground	object	is
created	and	set	to	the	background	of	the	first	page	of	the	active	document.	Then
a	test	is	made	to	check	if	a	background	exists	for	the	page	already.	If	not	then
one	is	created	by	calling	the	Create	method	of	the	PageBackground	object.	A
FillFormat	object	is	returned	by	using	the	Fill	property	of	the	PageBackground
object.	A	few	of	the	available	properties	of	the	FillFormat	object	are	then	set.

Dim	objPageBackground	As	PageBackground

Dim	objFillFormat	As	FillFormat

Set	objPageBackground	=	ActiveDocument.Pages(1).Background

If	objPageBackground.Exists	=	False	Then

				objPageBackground.Create

End	If

Set	objFillFormat	=	objPageBackground.Fill

With	objFillFormat



				.BackColor.RGB	=	RGB(Red:=0,	GReen:=155,	Blue:=99)

				.ForeColor.RGB	=	RGB(Red:=155,	GReen:=234,	Blue:=0)

				.TwoColorGradient	msoGradientDiagonalDown,	4

End	With

	

Use	PageBackground.Delete	to	delete	a	background	for	the	specified	page.	The
following	example	deletes	the	background	of	the	first	page	in	the	active
document.

ActiveDocument.Pages(1).Background.Delete



PageSetup	Object
Document PageSetup

Multiple	objects

Contains	information	about	the	page	setup	for	the	pages	in	a	publication.



Using	the	PageSetup	object

Use	the	PageSetup	property	to	return	the	PageSetup	object.	The	following
example	sets	all	pages	in	the	active	publication	to	be	8.5	inches	wide	and	11
inches	high.

Sub	SetPageSetupOptions()

				With	ActiveDocument.PageSetup

								.PageHeight	=	11	*	72

								.PageWidth	=	8.5	*	72

				End	With

End	Sub

	 	



ParagraphFormat	Object
Multiple	objects ParagraphFormat

TabStops

Represents	all	the	formatting	for	a	paragraph.



Using	the	ParagraphFormat	Object

Use	the	ParagraphFormat	property	to	return	the	ParagraphFormat	object	for
a	paragraph	or	paragraphs.	The	ParagraphFormat	property	returns	the
ParagraphFormat	object	for	a	selection,	range,	or	style.	The	following	example
centers	the	paragraph	at	the	cursor	position.	This	example	assumes	that	the	first
shape	is	a	text	box	and	not	another	type	of	shape.

Sub	CenterParagraph()

				Selection.TextRange.ParagraphFormat	_

								.Alignment	=	pbParagraphAlignmentCenter

End	Sub

	 	

Use	the	Duplicate	property	to	copy	an	existing	ParagraphFormat	object.	The
following	example	duplicates	the	paragraph	formatting	of	the	first	paragraph	in
the	active	publication	and	stores	the	formatting	in	a	variable.	This	example
duplicates	an	existing	ParagraphFormat	object	and	then	changes	the	left	indent
to	one	inch,	creates	a	new	textbox,	inserts	text	into	it,	and	applies	the	paragraph
formatting	of	the	duplicated	paragraph	format	to	the	text.

Sub	DuplicateParagraphFormating()

				Dim	pfmtDup	As	ParagraphFormat

				Set	pfmtDup	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.ParagraphFormat.Duplicate

				pfmtDup.LeftIndent	=	Application.InchesToPoints(1)

				With	ActiveDocument.Pages.Add(Count:=1,	After:=1)

								With	.Shapes.AddTextbox(pbTextOrientationHorizontal,	_

												Left:=72,	Top:=72,	Width:=200,	Height:=100)

												With	.TextFrame.TextRange

																.Text	=	"This	is	a	test	of	how	to	use	"	&	_

																				"the	ParagraphFormat	object."

																.ParagraphFormat	=	pfmtDup

												End	With

								End	With

				End	With

End	Sub

	 	





PhoneticGuide	Object
Field PhoneticGuide

Represents	base	text	with	supplementary	text	appearing	above	it	as	a	guide	to
pronunciation.



Using	the	PhoneticGuide	object

Use	the	PhoneticGuide	property	of	a	Field	object	to	return	an	existing
PhoneticGuide	object.	Use	the	AddPhoneticGuide	method	of	a	Fields
collection	to	create	a	new	PhoneticGuide	object.

The	following	example	adds	a	new	PhoneticGuide	object	to	the	active
publication.

Selection.TextRange.Fields.AddPhoneticGuide	_	

					Range:=Selection.TextRange,	Text:="ver-E	nIs",	_

					Alignment:=pbPhoneticGuideAlignmentCenter,	_

					Raise:=11,	FontSize:=7



PictureFormat	Object
Multiple	objects PictureFormat

Contains	properties	and	methods	that	apply	to	pictures.



Using	the	PictureFormat	Object

Use	the	PictureFormat	property	to	return	a	PictureFormat	object.	The
following	example	sets	the	brightness,	contrast,	and	color	transformation	for
shape	one	on	the	active	document	and	crops	18	points	off	the	bottom	of	the
shape.	For	this	example	to	work,	shape	one	must	be	either	a	picture	or	an	OLE
object.

Sub	FormatPicture()

				With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

								.Brightness	=	0.6

								.Contrast	=	0.7

								.ColorType	=	msoPictureGrayscale

								.CropBottom	=	18

				End	With

End	Sub

	 	



Plate	Object
Document Plates

Plate
ColorFormat

Represents	a	single	printer's	plate.	The	Plate	object	is	a	member	of	the	Plates
collection.



Using	the	Plate	object

Use	the	Add	method	of	the	Plates	collection	to	create	a	new	plate.	This	example
creates	a	new	spot-color	plate	collection	and	adds	a	plate	to	it.

Sub	AddNewPlates()

				Dim	plts	As	Plates

				Set	plts	=	ActiveDocument.CreatePlateCollection(Mode:=pbColorModeSpot)

				plts.Add

				With	plts(1)

								.Color.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.Luminance	=	4

				End	With

End	Sub

	 	



PrintablePlate	Object
AdvancedPrintOptions PrintablePlates

PrintablePlate

Represents	a	single	plate	to	be	printed	for	the	publication.	The	PrintablePlate
object	is	a	member	of	the	PrintablePlates	collection.



Using	the	PrintablePlate	object

Use	the	FindPlateByInkName	method	of	the	PrintablePlates	collection	to
return	a	specific	plate	by	referencing	its	ink	name.	The	following	example
returns	a	spot	color	plate	and	sets	several	of	its	properties.	The	example	assumes
that	separations	have	been	specified	as	the	active	publication's	print	mode.

Sub	SetPlatePropertiesByInkName()

Dim	pplPlate	As	PrintablePlate

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

				Set	pplPlate	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates.

				

				With	pplPlate

								.Angle	=	75

								.Frequency	=	133

								.PrintPlate	=	True

				End	With

End	Sub

The	following	example	returns	a	list	of	the	printable	plates	currently	in	the
collection	for	the	active	publication.	The	example	assumes	that	separations	have
been	specified	as	the	active	publication's	print	mode.

Sub	ListPrintablePlates()

				Dim	pplTemp	As	PrintablePlates

				Dim	pplLoop	As	PrintablePlate

				

				Set	pplTemp	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				Debug.Print	"There	are	"	&	pplTemp.Count	&	"	printable	plates	in	this	publication."

				

				For	Each	pplLoop	In	pplTemp

								With	pplLoop

												Debug.Print	"Printable	Plate	Name:	"	&	.Name

												Debug.Print	"Index:	"	&	.Index

												Debug.Print	"Ink	Name:	"	&	.InkName

												Debug.Print	"Plate	Angle:	"	&	.Angle

												Debug.Print	"Plate	Frequency:	"	&	.Frequency

												Debug.Print	"Print	Plate?:	"	&	.PrintPlate

								End	With

				Next	pplLoop

End	Sub



	 	



Remarks

To	specify	custom	frequency	or	angle	settings	for	a	printable	plate,	the
UseCustomHalftone	of	the	AdvancedPrintOptions	object	must	be	set	to	True.

The	PrintablePlates	collection	is	generated	when	a	publication's	print	mode	is
set	to	separations.	Returns	"Permission	Denied"	when	any	other	print	mode	is
specified.

The	PrintablePlates	collection	represents	the	plates	that	will	actually	be	printed
for	the	publication,	based	on:

The	plates	(if	any)	you	have	defined	for	the	publication
The	advanced	print	options	specified

You	cannot	programmatically	create	a	printable	plates	collection,	or	add	a
printable	plate	to	the	collection.

Use	the	PrintMode	property	of	the	AdvancedPrintOptions	object	to	set	the
publication	to	print	as	separations.

Each	PrintablePlate	object	corresponds	to	a	plate	listed	on	the	Separations	tab
of	the	Advanced	Print	Settings	dialog	box.



PrintableRect	Object
AdvancedPrintOptions PrintableRect

Represents	the	sheet	area	within	which	the	specified	printer	will	print.	The
printable	rectangle	is	determined	by	the	printer	based	on	the	sheet	size	specified.
The	printable	rectangle	of	the	printer	sheet	should	not	be	confused	with	the	area
within	the	margins	of	the	publication	page;	it	may	be	larger	or	smaller	than	the
publication	page.



Using	the	PrintableRect	object

Use	the	PrintableRect	property	of	the	AdvancedPrintOptions	object	to	return
a	PrintableRect	object.	The	following	example	returns	printable	rectangle
boundaries	for	the	printer	sheet	of	the	active	publication.

Sub	ListPrintableRectBoundaries()

With	ActiveDocument.AdvancedPrintOptions.PrintableRect

				Debug.Print	"Printable	area	is	"	&	_

												PointsToInches(.Width)	&	_

												"	by	"	&	PointsToInches(.Height)	&	"	inches."

				Debug.Print	"Left	Boundary:	"	&	PointsToInches(.Left)	&	_

																				"	inches	(from	left)."

				Debug.Print	"Right	Boundary:	"	&	PointsToInches(.Left	+	.Width)	&	_

																				"	inches	(from	left)."

				Debug.Print	"Top	Boundary:	"	&	PointsToInches(.Top)	&	_

																				"	inches(from	top)."

				Debug.Print	"Bottom	Boundary:	"	&	PointsToInches(.Top	+	.Height)	&	_

																				"	inches(from	top)."

				

End	With

End	Sub



Remarks

In	cases	in	which	the	printer	sheet	and	the	publication	page	size	are	identical,	the
publication	page	is	centered	on	the	printer	sheet	and	none	of	the	printer's	marks
print,	even	if	they	are	selected.



ReaderSpread	Object
Page ReaderSpread

Page

Represents	the	reader	spread	(not	the	printer	spread)	for	the	page.	A	reader
spread	generally	contains	one	or	two	pages.	The	ReaderSpread	object
properties	provide	information	about	whether	pages	are	facing	and	how	those
pages	are	laid	out.	For	example,	in	facing	page	view,	pages	two	and	three	can	be
side-by-side	or	one	on	top	of	the	other.



Using	the	ReaderSpread	object

Use	the	ReaderSpread	property	to	access	the	ReaderSpread	object	for	a	page.
Use	the	PageCount	property	to	determine	if	the	reader	spread	includes	one	page
or	two	facing	pages.	This	example	checks	to	see	if	the	reader	spread	includes
less	than	two	pages.	If	it	does,	it	changes	the	reader	spread	to	include	two	pages.

Sub	SetFacingPages()

				With	ActiveDocument

								If	.Pages.Count	>=	2	Then

												If	.Pages(2).ReaderSpread.PageCount	<	2	Then	_

																.ViewTwoPageSpread	=	True

								End	If

				End	With

End	Sub

	 	



Row	Object
Rows Row

CellRange

Represents	a	row	in	a	table.	The	Row	object	is	a	member	of	the	Rows	collection.
The	Rows	collection	includes	all	the	rows	in	a	specified	table.



Using	the	Row	object

Use	Rows(index),	where	index	is	the	row	number,	to	return	a	single	Row	object.
The	index	number	represents	the	position	of	the	row	in	the	Rows	collection
(counting	from	left	to	right).	This	example	selects	the	first	row	in	the	first	shape
on	the	second	of	the	active	publication.	This	example	assumes	the	specified
shape	is	a	table	and	not	another	type	of	shape.

Sub	SelectRow()

				ActiveDocument.Pages(2).Shapes(1).Table.Rows(1).Cells.Select

End	Sub

	 	

Use	the	Item	method	of	a	Rows	collection	to	return	a	Row	object.	This	example
sets	the	fill	for	all	even	numbered	rows	and	clears	the	fill	for	all	odd	numbered
rows	in	the	specified	table.	This	example	assumes	the	specified	shape	is	a	table
and	not	another	type	of	shape.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Row	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	

Use	the	Add	method	to	add	a	row	to	a	table.	This	example	adds	a	row	to	the
specified	table	on	the	second	page	of	the	active	publication,	and	then	adjusts	the
width,	merges	the	cells,	and	sets	the	fill	color.	This	example	assumes	the	first
shape	is	a	table	and	not	another	type	of	shape.



Sub	NewRow()

				Dim	rowNew	As	Row

				Set	rowNew	=	ActiveDocument.Pages(2).Shapes(1).Table.Rows	_

								.Add(BeforeRow:=3)

				With	rowNew

								.Height	=	2

								.Cells.Merge

								.Cells(1).Fill.ForeColor.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

				End	With

End	Sub

	 	

Use	the	Delete	method	to	delete	a	row	from	a	table.	This	example	deletes	the
row	added	in	the	above	example.

Sub	DeleteRow()

				ActiveDocument.Pages(2).Shapes(1).Table.Rows(3).Delete

End	Sub

	 	



RulerGuide	Object
Page RulerGuides

RulerGuide

Represents	a	grid	line	used	to	align	objects	on	a	page.	The	RulerGuide	object	is
a	member	of	the	RulerGuides	collection.



Using	the	RulerGuide	object

Use	the	Add	method	of	the	RulerGuides	collection	to	create	a	new	ruler	grid
line.	Use	the	Item	property	to	reference	a	ruler	guide.	Use	the	Position	property
to	change	the	position	of	a	grid	line,	and	use	the	Delete	method	to	remove	a	grid
line.	This	example	creates	a	new	ruler	guide,	moves	it,	and	then	deletes	it.

Sub	AddChangeDeleteGuide()

				Dim	rgLine	As	RulerGuide

				With	ActiveDocument.Pages(1).RulerGuides

								.Add	Position:=InchesToPoints(1),	_

												Type:=pbRulerGuideTypeVertical

								MsgBox	"The	ruler	guide	position	is	at	one	inch."

								.Item(1).Position	=	InchesToPoints(3)

								MsgBox	"The	ruler	guide	is	now	at	three	inches."

								.Item(1).Delete

								MsgBox	"The	ruler	guide	has	been	deleted."

				End	With

End	Sub

	 	



ScratchArea	Object
Document ScratchArea

Shapes

Represents	the	area	outside	the	boundaries	of	publication	pages	where	layout
elements	may	be	stored	with	no	effect	on	publication	output.



Using	the	ScratchArea	object

Use	the	ScratchArea	property	of	the	Document	object	to	return	a	scratch	area.
Use	the	Shapes	property	of	the	ScratchArea	object	to	return	the	collection	of
shapes	that	are	currently	on	a	scratch	area.

This	example	assigns	the	first	shape	on	the	scratch	area	of	the	active	document
to	a	variable.

Dim	saPage	As	ScratchArea

Dim	objFirst	As	Object

saPage	=	Application.ActiveDocument.ScratchArea

objFirst	=	saPage.Shapes(1)

	 	



Section	Object
Document Sections

Section

Represents	a	Section	of	a	publication	or	document.



Using	the	Section	Object

Use	Sections.Item(index)	where	index	is	the	index	number,	to	return	a	single
Section	object.	The	following	example	sets	a	Section	object	to	the	first	section
in	the	Sections	collection	of	the	active	document.

Dim	objSection	As	Section

Set	objSection	=	ActiveDocument.Sections.Item(1)

Use	Sections.Add(StartPageIndex)	where	StartPageIndex	is	the	index	number
of	the	page,	to	return	a	new	section	added	to	a	document.	A	"Permission	denied."
error	will	be	returned	if	the	page	already	contains	a	section	head.	The	following
example	adds	a	Section	object	to	the	second	page	of	the	active	document.

Dim	objSection	As	Section

Set	objSection	=	ActiveDocument.Sections.Add(StartPageIndex:=2)



Selection	Object
Multiple	objects Selection

Multiple	objects

Represents	the	current	selection	in	a	window	or	pane.	A	selection	represents
either	a	selected	(or	highlighted)	area	in	the	publication,	or	it	represents	the
insertion	point	if	nothing	in	the	publication	is	selected.	There	can	only	be	one
Selection	object	per	publication	window	pane,	and	only	one	Selection	object	in
the	entire	application	can	be	active.



Using	the	Selection	Object

Use	the	Selection	property	to	return	the	Selection	object.	If	no	object	qualifier	is
used	with	the	Selection	property,	Publisher	returns	the	selection	from	the	active
pane	of	the	active	publication	window.	The	following	example	copies	the	current
selection	from	the	active	publication.

Sub	CopySelection()

				Selection.ShapeRange.Copy

End	Sub

	 	

The	following	example	determines	what	type	of	item	is	selected	and	if	it	is	an
autoshape,	fills	the	first	shape	in	the	selection	with	color.	This	example	assumes
there	is	at	least	one	item	selected	in	the	active	pubication.

Sub	SelectedShape()

				If	Selection.Type	=	pbSelectionShape	Then

								Selection.ShapeRange.Item(1).Fill.ForeColor	_

												.RGB	=	RGB(Red:=200,	Green:=20,	Blue:=255)

				End	If

End	Sub

	 	

The	following	example	copies	the	selection	and	pastes	it	into	the	first	shape	on
the	second	page	of	the	active	publication.

Sub	CopyPasteSelection()

				Selection.TextRange.Copy

				With	ActiveDocument.Pages(2).Shapes(1).TextFrame.TextRange

								.Collapse	Direction:=pbCollapseEnd

								.InsertAfter	NewText:=vbLf

								.Paste

				End	With

End	Sub

	 	





ShadowFormat	Object
Multiple	objects ShadowFormat

ColorFormat

Represents	shadow	formatting	for	a	shape.



Using	the	ShadowFormat	Object

Use	the	Shadow	property	to	return	a	ShadowFormat	object.	The	following
example	adds	a	shadowed	rectangle	to	the	active	document.	The	pink	shadow	is
offset	7	points	to	the	right	of	the	rectangle	and	7	points	above	it.

Sub	FormatShadow()

				With	ActiveDocument.Pages(1).Shapes.AddShape(	_

												Type:=msoShapeRectangle,	Left:=72,	Top:=72,	_

												Width:=100,	Height:=200).Shadow

								.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=150)

								.Obscured	=	msoTrue

								.OffsetX	=	7

								.OffsetY	=	-7

								.Visible	=	True

				End	With

End	Sub

	 	



Shape	Object
Multiple	objects Shape

Multiple	objects

Represents	an	object	in	the	drawing	layer,	such	as	an	AutoShape,	freeform,	OLE
object,	ActiveX	control,	or	picture.	The	Shape	object	is	a	member	of	the	Shapes
collection,	which	includes	all	the	shapes	on	a	page	or	in	a	selection.

Note		There	are	three	objects	that	represent	shapes:	the	Shapes	collection,	which
represents	all	the	shapes	on	a	document;	the	ShapeRange	collection,	which
represents	a	specified	subset	of	the	shapes	on	a	document	(for	example,	a
ShapeRange	object	could	represent	shapes	one	and	four	on	the	document,	or	it
could	represent	all	the	selected	shapes	on	the	document);	the	Shape	object,
which	represents	a	single	shape	on	a	document.	If	you	want	to	work	with	several
shape	at	the	same	time	or	with	shapes	within	the	selection,	use	a	ShapeRange
collection.



Using	the	Shape	Object

This	section	describes	how	to:

Return	an	existing	shape	on	a	document.
Return	a	shape	or	shapes	within	a	selection.
Return	a	newly	created	shape.
Work	with	a	group	of	shapes.
Format	a	shape.
Use	other	important	shape	properties.



Return	an	existing	shape	on	a	document

Use	Shapes	(index),	where	index	is	the	name	or	the	index	number,	to	return	a
single	Shape	object.	The	following	example	horizontally	flips	shape	one	on	the
active	document.

Sub	FlipShape()

				ActiveDocument.Pages(1).Shapes(1).Flip	FlipCmd:=msoFlipHorizontal

End	Sub

	 	

The	following	example	horizontally	flips	the	shape	named	"Rectangle	1"	on	the
active	document.

Sub	FlipShapeByName()

				ActiveDocument.Pages(1).Shapes("Rectangle	1")	_

								.Flip	FlipCmd:=msoFlipHorizontal

End	Sub

	 	

Each	shape	is	assigned	a	default	name	when	it	is	created.	For	example,	if	you
add	three	different	shapes	to	a	document,	they	might	be	named	"Rectangle	2,"
"TextBox	3,"	and	"Oval	4."	To	give	a	shape	a	more	meaningful	name,	set	the
Name	property	of	the	shape.



Return	a	shape	or	shapes	within	a	selection

Use	Selection.ShapeRange(index),	where	index	is	the	name	or	the	index
number,	to	return	a	Shape	object	that	represents	a	shape	within	a	selection.	The
following	example	sets	the	fill	for	the	first	shape	in	the	selection,	assuming	that
the	selection	contains	at	least	one	shape.

Sub	FillSelectedShape()

				Selection.ShapeRange(1).Fill.ForeColor.RGB	=	RGB(255,	0,	0)

End	Sub

	 	

The	following	example	sets	the	fill	for	all	the	shapes	in	the	selection,	assuming
that	the	selection	contains	at	least	one	shape.

Sub	FillAllSelectedShapes()

				Dim	shpShape	As	Shape

				For	Each

shpShape	In	Selection.ShapeRange

							

shpShape.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

				Next	shpShape

End	Sub

	 	



Return	a	newly	created	shape

To	add	a	Shape	object	to	the	collection	of	shapes	for	the	specified	document	and
return	a	Shape	object	that	represents	the	newly	created	shape,	use	one	of	the
following	methods	of	the	Shapes	collection:	AddCallout,	AddConnector,
AddCurve,	AddLabel,	AddLine,	AddOLEObject,	AddPolyline,	AddShape,
AddTextBox	or	AddTextEffect.	The	following	example	adds	a	rectangle	to	the
active	document.

Sub	AddNewShape()

				ActiveDocument.Pages(1).Shapes.AddShape	Type:=msoShapeRectangle,	_

								Left:=400,	Top:=72,	Width:=100,	Height:=200

End	Sub

	 	



Work	with	a	group	of	shapes

Use	GroupItems	(index),	where	index	is	the	shape	name	or	the	index	number
within	the	group,	to	return	a	Shape	object	that	represents	a	single	shape	in	a
grouped	shape.	Use	the	Group	or	Regroup	method	to	group	a	range	of	shapes
and	return	a	single	Shape	object	that	represents	the	newly	formed	group.	After	a
group	has	been	formed,	you	can	work	with	the	group	the	same	way	you	work
with	any	other	shape.	This	example	adds	three	shapes	to	the	active	publication,
groups	the	shapes,	and	sets	the	fill	color	for	each	of	the	shapes	in	the	group

Sub	WorkWithGroupShapes()

				With	ActiveDocument.Pages(1).Shapes

								.AddShape	Type:=msoShapeIsoscelesTriangle,	Left:=100,	_

												Top:=72,	Width:=100,	Height:=100

								.AddShape	Type:=msoShapeIsoscelesTriangle,	Left:=250,	_

												Top:=72,	Width:=100,	Height:=100

								.AddShape	Type:=msoShapeIsoscelesTriangle,	Left:=400,	_

												Top:=72,	Width:=100,	Height:=100

								.SelectAll

								With	Selection.ShapeRange

												.Group

												.GroupItems(1).Fill.ForeColor	_

																.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

												.GroupItems(2).Fill.ForeColor	_

																.RGB	=	RGB(Red:=0,	Green:=255,	Blue:=0)

												.GroupItems(3).Fill.ForeColor	_

																.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=255)

								End	With

				End	With

End	Sub

	 	



Format	a	shape

Use	the	Fill	property	to	return	the	FillFormat	object,	which	contains	all	the
properties	and	methods	for	formatting	the	fill	of	a	closed	shape.	The	Shadow
property	returns	the	ShadowFormat	object,	which	you	use	to	format	a	shadow.
Use	the	Line	property	to	return	a	LineFormat	object,	which	contains	properties
and	methods	for	formatting	lines	and	arrows.	The	TextEffect	property	returns
the	TextEffectFormat	object,	which	you	use	to	format	WordArt.	The	Callout
property	returns	the	CalloutFormat	object,	which	you	use	to	format	line
callouts.	The	TextWrap	property	returns	the	WrapFormat	object,	which	you
use	to	define	how	text	wraps	around	shapes.	The	ThreeD	property	returns	the
ThreeDFormat	object,	which	you	use	to	create	3-D	shapes.	You	can	use	the
PickUp	and	Apply	methods	to	transfer	formatting	from	one	shape	to	another.

Use	the	SetShapesDefaultProperties	method	for	a	Shape	object	to	set	the
formatting	for	the	default	shape	for	the	document.	New	shapes	inherit	many	of
their	attributes	from	the	default	shape.



Use	other	important	shape	properties

Use	the	Type	property	to	specify	the	type	of	shape:	freeform,	AutoShape,	OLE
object,	callout,	or	linked	picture,	for	instance.	Use	the	AutoShapeType	property
to	specify	the	type	of	AutoShape:	oval,	rectangle,	or	balloon,	for	instance.

Use	the	Width	and	Height	properties	to	specify	the	size	of	the	shape.

Use	TextFrame	and	TextRange	properties	to	return	the	TextFrame	and
TextRange	objects,	respectively,	which	contain	all	the	properties	and	methods
for	inserting	and	formatting	text	within	shapes	and	publications	and	linking	the
text	frames	together.	The	following	example	adds	a	text	box	to	the	first	page	of
the	active	publication,	then	adds	text	to	it	and	formats	the	text.

Sub	CreateNewTextBox()

				With	ActiveDocument.Pages(1).Shapes.AddTextbox(	_

								Orientation:=pbTextOrientationHorizontal,	Left:=100,	_

								Top:=100,	Width:=200,	Height:=100).TextFrame.TextRange

								.Text	=	"This	is	a	textbox."

								With	.Font

												.Name	=	"Stencil"

												.Bold	=	msoTrue

												.Size	=	30

								End	With

				End	With

End	Sub

	 	



ShapeNode	Object
ShapeNodes ShapeNode

Represents	the	geometry	and	the	geometry-editing	properties	of	the	nodes	in	a
user-defined	freeform.	Nodes	include	the	vertices	between	the	segments	of	the
freeform	and	the	control	points	for	curved	segments.	The	ShapeNode	object	is	a
member	of	the	ShapeNodes	collection.	The	ShapeNodes	collection	contains	all
the	nodes	in	a	freeform.



Using	the	ShapeNode	Object

Use	Nodes(index),	where	index	is	the	node	index	number,	to	return	a	single
ShapeNode	object.	If	node	one	in	shape	three	on	the	active	document	is	a	corner
point,	the	following	example	makes	it	a	smooth	point.	For	this	example	to	work,
shape	one	must	be	a	freeform.

Sub	ChangeNodeType()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Nodes(1).EditingType	=	msoEditingCorner	Then

												.Nodes.SetEditingType	Index:=1,	EditingType:=msoEditingSmooth

								End	If

				End	With

End	Sub

	 	



Story	Object
Multiple	objects Story

Multiple	objects

Represents	the	text	in	an	unlinked	text	frame,	text	flowing	between	linked	text
frames,	or	text	in	a	table	cell.	The	Story	object	is	a	member	of	the	TextFrame
and	TextRange	objects	and	the	Stories	collection.



Using	the	Story	object

Use	the	Story	property	to	return	the	Story	object	in	a	text	range	or	text	frame.
This	example	returns	the	story	in	the	selected	text	range	and,	if	it	is	in	a	text
frame,	inserts	text	into	the	text	range.

Sub	AddTextToStory()

				With	Selection.TextRange.Story

								If	.HasTextFrame	Then	.TextRange	_

												.InsertAfter	NewText:=vbLf	&	"This	is	a	test."

				End	With

End	Sub

	 	

Use	Stories(index),	where	index	is	the	number	of	the	story,	to	return	an
individual	Story	object.	This	example	determines	if	the	first	story	in	the	active
publication	has	a	text	frame	and,	if	it	does,	formats	the	paragraphs	in	the	story
with	a	half	inch	first	line	indent	and	a	six-point	spacing	before	each	paragraph.

Sub	StoryParagraphFirstLineIndent()

				With	ActiveDocument.Stories(1)

								If	.HasTextFrame	Then

												With	.TextFrame.TextRange.ParagraphFormat

																.FirstLineIndent	=	InchesToPoints(0.5)

																.SpaceBefore	=	6

												End	With

								End	If

				End	With

End	Sub

	 	



Table	Object
Multiple	objects Table

Multiple	objects

Represents	a	single	table.



Using	the	Table	Object

Use	the	Table	property	to	return	a	Table	object.	The	following	example	selects
the	specified	table	in	the	active	publication.

Sub	SelectTable()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Type	=	pbTable	Then	_

												.Table.Cells.Select

				End	With

End	Sub

	 	

Use	the	AddTable	method	to	add	a	Shape	object	representing	a	table	at	the
specified	range.	The	following	example	adds	a	5x5	table	on	the	first	page	of	the
active	publication,	and	then	selects	the	first	column	of	the	new	table.

Sub	NewTable()

				With	ActiveDocument.Pages(1).Shapes.AddTable(NumRows:=5,	NumColumns:=5,	_

								Left:=72,	Top:=300,	Width:=400,	Height:=100)

								.Table.Columns(1).Cells.Select

				End	With

End	Sub

	 	



TabStop	Object
TabStops TabStop

Represents	a	single	tab	stop.	The	TabStop	object	is	a	member	of	the	TabStops
collection.	The	TabStops	collection	represents	all	the	custom	and	default	tab
stops	in	a	paragraph	or	group	of	paragraphs.



Using	the	TabStop	object

Use	Tabs	(index),	where	index	is	the	location	of	the	tab	stop	(in	points)	or	the
index	number,	to	return	a	single	TabStop	object.	Tab	stops	are	indexed
numerically	from	left	to	right	along	the	ruler.	The	following	example
removes	the	first	custom	tab	stop	from	the	selected	paragraphs.

Sub	ClearTabStop()

				Selection.TextRange.ParagraphFormat.Tabs(1).Clear

End	Sub

	 	

The	following	example	adds	a	right-aligned	tab	stop	positioned	at	2	inches	to	the
selected	paragraphs.

Sub	ChangeTabStop()

				Selection.TextRange.ParagraphFormat.Tabs(2)	_

								.Alignment	=	pbTabAlignmentTrailing

End	Sub

	 	

Use	the	Add	method	to	add	a	tab	stop.	The	following	example	adds	two	tab
stops	to	the	selected	paragraphs.	The	first	tab	stop	is	a	left-aligned	tab	with	a
dotted	tab	leader	positioned	at	1	inch	(72	points).	The	second	tab	stop	is	centered
and	is	positioned	at	2	inches.

Sub	AddNewTabs()

				With	Selection.TextRange.ParagraphFormat.Tabs

								.Add	Position:=InchesToPoints(1),	_

												Leader:=pbTabLeaderDot,	Alignment:=pbTabAlignmentLeading

								.Add	Position:=InchesToPoints(2),	_

												Leader:=pbTabLeaderNone,	Alignment:=pbTabAlignmentCenter

				End	With

End	Sub

	 	



Remarks

Set	the	DefaultTabStop	property	to	adjust	the	spacing	of	default	tab	stops.



Tag	Object
Tags Tag

Represents	a	tag	or	a	custom	property	that	you	can	create	for	a	shape,	shape
range,	page,	or	publication.	Each	Tag	object	contains	the	name	of	a	custom
property	and	a	value	for	that	property.	Tag	objects	are	members	of	the	Tags
collection.

Create	a	tag	when	you	want	to	be	able	to	selectively	work	with	specific	members
of	a	collection,	based	on	an	attribute	that	isn't	already	represented	by	a	built-in
property.



Using	the	Tag	object

Use	the	Item	method	of	the	Tags	collection	to	return	a	Tag	object.	This	example
fills	all	shapes	on	the	first	page	of	the	active	publication	if	the	shape's	first	tag
has	a	value	of	Oval.

Sub	FormatTaggedShapes()

				Dim	shp	As	Shape

				With	ActiveDocument.Pages(1)

								For	Each	shp	In	.Shapes

												If	shp.Tags.Count	>	0	Then

																If	shp.Tags.Item(1).Value	=	"Oval"	Then

																				shp.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

																End	If

												End	If

								Next

				End	With

End	Sub

	 	

Use	the	Add	method	to	add	a	Tag	object.	This	example	adds	a	tag	to	all	oval
shapes	in	the	active	publication.

Sub	TagShapes()

				Dim	shp	As	Shape

				With	ActiveDocument.Pages(1)

								For	Each	shp	In	.Shapes

												If	InStr(1,	shp.Name,	"Oval")	>	0	Then

																shp.Tags.Add	Name:="Oval",	Value:="This	is	an	oval	shape."

												End	If

								Next	shp

				End	With

End	Sub

	 	



TextEffectFormat	Object
Multiple	objects TextEffectFormat

Contains	properties	and	methods	that	apply	to	WordArt	objects.



Using	the	TextEffectFormat	Object

Use	the	TextEffect	property	to	return	a	TextEffectFormat	object.	The	following
example	sets	the	font	name	and	formatting	for	shape	one	on	the	first	page	of	the
active	publication.	For	this	example	to	work,	shape	one	must	be	a	WordArt
object.

Sub	FormatWordArt()

				With	ActiveDocument.Pages(1).Shapes(1).TextEffect

								.FontName	=	"Courier	New"

								.FontBold	=	MsoTrue

								.FontItalic	=	MsoTrue

				End	With

End	Sub

	 	



Show	All



TextFrame	Object
Multiple	objects TextFrame

Multiple	objects

Represents	the	text	frame	in	a	Shape	object.	Contains	the	text	in	the	text	frame
as	well	as	the	properties	that	control	the	margins	and	orientation	of	the	text
frame.



Using	the	TextFrame	Object

Use	the	TextFrame	property	to	return	the	TextFrame	object	for	a	shape.	The
TextRange	property	returns	a	TextRange	object	that	represents	the	range	of	text
inside	the	specified	text	frame.	The	following	example	adds	text	to	the	text
frame	of	shape	one	in	the	active	publication,	and	then	formats	the	new	text.

Sub	AddTextToTextFrame()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

								.Text	=	"My	Text"

								With	.Font

												.Bold	=	msoTrue

												.Size	=	25

												.Name	=	"Arial"

								End	With

				End	With

End	Sub

	 	

Note		Some	shapes	don't	support	attached	text	(lines,	freeforms,	pictures,	and
OLE	objects,	for	example).	If	you	attempt	to	return	or	set	properties	that	control
text	in	a	text	frame	for	those	objects,	an	error	occurs.

Use	the	HasTextFrame	property	to	determine	whether	the	shape	has	a	text
frame	and	the	HasText	property	to	determine	whether	the	text	frame	contains
text	as	shown	in	the	following	example.

Sub	GetTextFromTextFrame()

				Dim	shpText	As	Shape

				For	Each	shpText	In	ActiveDocument.Pages(1).Shapes

								If	shpText.HasTextFrame	=	msoTrue	Then

												With	shpText.TextFrame

																If	.HasText	Then	MsgBox	.TextRange.Text

												End	With

								End	If

				Next

End	Sub

	 	

Text	frames	can	be	linked	together	so	that	the	text	flows	from	the	text	frame	of
one	shape	into	the	text	frame	of	another	shape.	Use	the	NextLinkedTextFrame
and	PreviousLinkedTextFrame	properties	to	link	text	frames.	The	following



example	creates	a	text	box	(a	rectangle	with	a	text	frame)	and	adds	some	text	to
it.	It	then	creates	another	text	box	and	links	the	two	text	frames	together	so	that
the	text	flows	from	the	first	text	frame	into	the	second	one.

Sub	LinkTextBoxes()

				Dim	shpTextBox1	As	Shape

				Dim	shpTextBox2	As	Shape

				Set	shpTextBox1	=	ActiveDocument.Pages(1).Shapes.AddTextbox	_

								(msoTextOrientationHorizontal,	72,	72,	72,	36)

				shpTextBox1.TextFrame.TextRange.Text	=	_

								"This	is	some	text.	This	is	some	more	text."

				Set	shpTextBox2	=	ActiveDocument.Pages(1).Shapes.AddTextbox	_

								(msoTextOrientationHorizontal,	72,	144,	72,	36)

				shpTextBox1.TextFrame.NextLinkedTextFrame	=	shpTextBox2	_

								.TextFrame

End	Sub

	 	



TextRange	Object
Multiple	objects TextRange

Multiple	objects

Contains	the	text	that's	attached	to	a	shape,	as	well	as	properties	and	methods	for
manipulating	the	text.



Using	the	TextRange	Object

This	topic	describes	how	to:

Return	the	text	range	in	any	shape	you	specify.
Return	a	text	range	from	the	selection.
Return	particular	characters,	words,	lines,	sentences,	or	paragraphs	from	a
text	range.
Insert	text,	the	date	and	time,	or	the	page	number	into	a	text	range.



Return	a	text	range	from	any	shape	you	specify

Use	the	TextRange	property	of	the	TextFrame	object	to	return	a	TextRange
object	for	any	shape	you	specify.	Use	the	Text	property	to	return	the	string	of
text	in	the	TextRange	object.	The	following	example	adds	a	rectangle	to	the
active	publication	and	sets	the	text	it	contains.

Sub	AddTextToShape()

				With	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeRectangle,	_

								Left:=72,	Top:=72,	Width:=250,	Height:=140)

								.TextFrame.TextRange.Text	=	"Here	is	some	test	text"

				End	With

End	Sub

	 	

Because	the	Text	property	is	the	default	property	of	the	TextRange	object,	the
following	two	statements	are	equivalent.

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange.text	=	"Here	is	some	test	text"

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange	=	"Here	is	some	test	text"

	 	

Use	the	HasTextFrame	property	to	determine	whether	a	shape	has	a	text	frame,
and	use	the	HasText	property	to	determine	whether	the	text	frame	contains	text.



Return	a	text	range	from	the	selection

Use	the	TextRange	property	of	the	Selection	object	to	return	the	currently
selected	text.	The	following	example	copies	the	selection	to	the	Clipboard.

Sub	CopyAndPasteText()

				With	ActiveDocument

								.Selection.TextRange.Copy

								.Pages(1).Shapes(1).TextFrame.TextRange.Paste

				End	With

End	Sub

	 	



Return	particular	characters,	words,	lines,	sentences,
or	paragraphs	from	a	text	range

Use	one	of	the	following	methods	to	return	a	portion	of	the	text	of	a	TextRange
object:	Characters,	Lines,	Paragraphs,	or	Words.	The	following	example
formats	the	second	word	in	the	first	shape	on	the	first	page	of	the	active
publication.	For	this	example	to	work,	the	specified	shape	must	contain	text.

Sub	FormatWords()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.Words(2).Font

								.Bold	=	msoTrue

								.Size	=	15

								.Name	=	"Text	Name"

				End	With

End	Sub

	 	



Inserting	text,	the	date	and	time,	or	the	page	number
into	a	text	range

Use	one	of	the	following	methods	to	insert	characters	into	a	TextRange	object:
InsertAfter,	InsertBefore,	InsertDateTime,	InsertPageNumber,	or
InsertSymbol.	This	example	inserts	a	new	line	with	text	after	any	existing	text
in	the	first	shape	on	the	first	page	of	the	active	publication.

Sub	InsertNewText()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange

								For	intCount	=	1	To	3

												.InsertAfter	vbLf	&	"This	is	a	test."

								Next	intCount

				End	With

End	Sub

	 	



TextStyle	Object
TextStyles TextStyle

Multiple	objects

Represents	a	single	built-in	or	user-defined	style.	The	TextStyle	object	includes
style	attributes	(font,	font	style,	paragraph	spacing,	and	so	on)	as	properties	of
the	TextStyle	object.	The	TextStyle	object	is	a	member	of	the	TextStyles
collection.	The	TextStyles	collection	includes	all	the	styles	in	the	specified
document.



Using	the	Style	Object

Use	TextStyles(index),	where	index	is	the	text	style	number	or	name,	to	return	a
single	TextStyle	object.	You	must	exactly	match	the	spelling	and	spacing	of	the
style	name,	but	not	necessarily	its	capitalization.

The	following	example	displays	the	style	name	and	base	style	of	the	first	style	in
the	TextStyles	collection.

Sub	BaseStyleName()

				With	ActiveDocument.TextStyles(1)

								MsgBox	"Style	name=	"	&	.Name	_

												&	vbCr	&	"Base	style=	"	&	.BaseStyle

				End	With

End	Sub

	 	

Use	the	Add	method	to	create	a	new	style.	To	apply	a	style	to	a	range,
paragraph,	or	multiple	paragraphs,	set	the	TextStyle	property	to	a	user-defined
or	built-in	style	name.	The	following	example	creates	a	new	style	and	applies	it
to	the	paragraph	at	the	insertion	point	position.

Sub	ApplyTextStyle()

				Dim	styNew	As	TextStyle

				Dim	fntStyle	As	Font

				'Create	a	new	style

				Set	styNew	=	ActiveDocument.TextStyles.Add(StyleName:="NewStyle")

				Set	fntStyle	=	styNew.Font

				'Format	the	Font	object

				With	fntStyle

								.Name	=	"Tahoma"

								.Size	=	20

								.Bold	=	msoTrue

				End	With

				'Apply	the	Font	object	formatting	to	the	new	style

				styNew.Font	=	fntStyle

				'Apply	the	new	style	to	the	selected	paragraph

				Selection.TextRange.ParagraphFormat.TextStyle	=	"NewStyle"

End	Sub

	 	





ThreeDFormat	Object
Multiple	objects ThreeDFormat

ColorFormat

Represents	a	shape's	three-dimensional	formatting.



Using	The	ThreeDFormat	Object

Use	the	ThreeD	property	to	return	a	ThreeDFormat	object.	This	example	sets
the	depth,	extrusion	color,	extrusion	direction,	and	lighting	direction	for	the	3-D
effects	applied	to	shape	one	in	the	active	publication.

Sub	SetThreeDSettings()

				Dim	tdfTemp	As	ThreeDFormat

				Set	tdfTemp	=	_

								ActiveDocument.Pages(1).Shapes(1).ThreeD

				With	tdfTemp

								.Visible	=	True

								.Depth	=	50

								.ExtrusionColor.RGB	=	RGB(255,	100,	255)

								.SetExtrusionDirection	_

												PresetExtrusionDirection:=msoExtrusionTop

								.PresetLightingDirection	=	msoLightingLeft

				End	With

End	Sub

	 	



Remarks

You	cannot	apply	three-dimensional	formatting	to	some	kinds	of	shapes,	such	as
beveled	shapes.	Most	of	the	properties	and	methods	of	the	ThreeDFormat
object	for	such	a	shape	will	fail.



View	Object
Document View

Page

Contains	the	view	attributes	(show	all,	field	shading,	table	gridlines,	and	so	on)
for	a	window	or	pane.



Using	the	View	Object

Use	the	ActiveView	property	to	return	the	View	object.	The	following	example
specifies	the	zoom	setting.

Sub	ZoomFitSelection()

				ActiveDocument.ActiveView.Zoom	=	pbZoomFitSelection

End	Sub

	 	

The	following	examples	zoom	in	and	out,	respectively,	on	the	active	view.

Sub	ViewZoomIn()

				ActiveDocument.ActiveView.ZoomIn

End	Sub

Sub	ViewZoomOut()

				ActiveDocument.ActiveView.ZoomOut

End	Sub

	 	

The	following	example	scrolls	the	active	view	to	the	specified	shape.

Sub	ScrollToShape()

				Dim	shpOne	As	Shape

				Set	shpOne	=	ActiveDocument.Pages(1).Shapes(1)

				ActiveDocument.ActiveView.ScrollShapeIntoView	Shape:=shpOne

End	Sub

	 	



WebCheckBox	Object
Shape WebCheckBox

Represents	a	Web	check	box	control.	The	WebCheckBox	object	is	a	member	of
the	Shape	object.



Using	the	WebCheckBox	object

Use	the	AddWebControl	method	to	create	new	Web	check	box.	Use	the
WebCheckBox	property	to	access	a	Web	check	box	control	shape.	This	example
creates	a	new	Web	check	box	and	specifies	that	its	default	state	is	checked;	then
it	adds	a	text	box	next	to	it	to	describe	it.

Sub	CreateNewWebCheckBox()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl(Type:=pbWebControlCheckBox,	Left:=100,	_

																Top:=123,	Width:=17,	Height:=12).WebCheckBox

												.Selected	=	msoTrue

								End	With

								With	.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

																Left:=118,	Top:=120,	Width:=70,	Height:=15)

												.TextFrame.TextRange.Text	=	"Power	User?"

								End	With

				End	With

End	Sub

	 	



WebCommandButton	Object
Shape WebCommandButton

WebHiddenFields

Represents	a	Web	command	button	control.	The	WebCommandButton	object
is	a	member	of	the	Shape	object.



Using	the	WebCommandButton	object

Use	the	AddWebControl	method	to	create	new	Web	command	button.	Use	the
WebCommandButton	property	to	access	a	Web	command	button	control	shape.
This	example	creates	a	Web	form	Submit	command	button	and	sets	the	script
path	and	file	name	to	run	when	a	user	clicks	the	button.

Sub	CreateActionWebButton()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlCommandButton,	Left:=150,	_

												Top:=150,	Width:=75,	Height:=36).WebCommandButton

								.ButtonText	=	"Submit"

								.ButtonType	=	pbCommandButtonSubmit

								.ActionURL	=	"http://www.tailspintoys.com/"	_

												&	"scripts/ispscript.cgi"

				End	With

End	Sub

	 	



WebListBox	Object
Shape WebListBox

WebListBoxItems

Represents	a	Web	list	box	control.	The	WebListBox	object	is	a	member	of	the
Shape	object.



Using	the	WebListBox	object

Use	the	AddWebControl	method	to	create	a	new	Web	list	box.	Use	the
WebListBox	property	to	access	a	Web	list	box	control	shape.	Use	the	AddItem
method	of	the	WebListBoxItems	object	to	add	items	to	a	Web	list	box.	This
example	creates	a	new	Web	list	box	and	adds	several	items	to	it.	Note	that	when
initially	created,	a	Web	list	box	control	contains	three	default	items.	This
example	includes	a	routine	that	deletes	the	default	list	box	items	before	adding
new	items.

Note		When	you	create	a	Web	list	box,	its	initial	width	is	300	points.	However,
Microsoft	Publisher	automatically	changes	this	width	based	on	the	width	of	the
items	in	the	list.

Sub	CreateWebListBox()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl(Type:=pbWebControlListBox,	Left:=100,	_

																Top:=150,	Width:=300,	Height:=72).WebListBox

												.MultiSelect	=	msoFalse

												With	.ListBoxItems

																For	intCount	=	1	To	.Count

																				.Delete	(1)

																Next

																.AddItem	Item:="Green"

																.AddItem	Item:="Purple"

																.AddItem	Item:="Red"

																.AddItem	Item:="Black"

												End	With

								End	With

				End	With

End	Sub

	 	



WebNavigationBarSet	Object
WebNavigationBarSets WebNavigationBarSet

WebNavigationBarHyperlinks

Represents	a	Web	navigation	bar	set	for	the	current	document.	The
WebNavigationBarSet	object	is	a	member	of	the	WebNavigationBarSets
collection,	which	includes	all	of	the	Web	navigation	bar	sets	in	the	current
document.



Using	the	WebNavigationBarSet	Object

Use	WebNavigationBarSet.AddToEveryPage(Left,	Top,	[Width]),	where	Left	is
the	position	of	the	left	edge	of	the	shape,	Top	is	the	position	of	the	top	edge	of
the	shape,	and	Width	is	the	width	of	the	shape	representing	the	Web	navigation
bar	set,	to	add	the	specified	Web	navigation	bar	to	every	page	of	a	document.
The	following	example	adds	the	first	Web	navigation	bar	set	to	every	page	that
has	the	AddHyperlinkToWebNavbar	property	set	to	True	when	adding	the
page	or	the	Page.WebPageOptions.IncludePageOnNewWebNavigationBars
property	set	to	True.

Dim	objWebNavBarSet	as	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets(1)

objWebNavBarSet.AddToEveryPage	Left:=50,	Top:=10,	Width:=500

Use	WebNavigationBarSet.DeleteSetAndInstances	to	remove	the	Web
navigation	bar	set	and	every	instance	of	it	from	the	document.	The	following
example	deletes	all	instances	of	each	WebNavigationBarSet	object	in	the
WebNavigationBarSets	collection.

Dim	objWebNavBarSet	As	WebNavigationBarSet

For	Each	objWebNavBarSet	In	ActiveDocument.WebNavigationBarSets

				objWebNavBarSet.DeleteSetAndInstances

Next	objWebNavBarSet

There	are	three	properties	that	concern	horizontally	oriented	Web	navigation
bars.	Use	WebNavigationBarSet.IsHorizontal	to	determine	the	orientation	of
the	navigation	bar	set.	The	ChangeOrientation	method	is	used	to	set	the
orientation	of	the	Web	navigation	bar	set.	If	the	orientation	is	set	to	horizontal,
HorizontalAlignment	and	HorizontalButtonCount	properties	can	then	be	set.
The	following	example	adds	the	first	navigation	bar	in	the
WebNavigationBarSets	collection	of	the	active	document	to	each	page	that	has
the	AddHyperlinkToWebNavbar	property	set	to	True	or	the
Page.WebPageOptions.IncludePageOnNewWebNavigationBars	property	set
to	True,	and	then	sets	the	button	style	to	small.	A	test	is	performed	to	determine
whether	the	navigation	bar	set	is	horizontal	or	not.	If	it	is	not,	the
ChangeOrientation	method	is	called	and	the	orientation	is	set	to	horizontal.
After	the	navigation	bar	is	oriented	horizontally,	the	horizontal	button	count	is
set	to	3	and	the	horizontal	alignment	of	the	buttons	is	set	to	left.



Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets(1)

With	objWebNav

				.AddToEveryPage	Left:=10,	Top:=10

				If	.IsHorizontal	=	False	Then

								.ChangeOrientation	pbNavBarOrientHorizontal

				End	If

				.HorizontalButtonCount	=	3

				.HorizontalAlignment	=	pbnbAlignLeft

End	With



WebOptionButton	Object
Shape WebOptionButton

Represents	a	Web	option	button	control.	The	WebOptionButton	object	is	a
member	of	the	Shape	object.



Using	the	WebOptionButton	object

Use	the	AddWebControl	method	to	create	new	Web	option	button.	Use	the
WebOptionButton	property	to	access	a	Web	option	button	control	shape.	This
example	creates	a	new	Web	option	button	and	specifies	that	its	default	state	is
selected;	then	it	adds	a	text	box	next	to	it	to	describe	it.

Sub	CreateNewWebOptionButton()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl(Type:=pbWebControlOptionButton,	Left:=100,	_

																Top:=123,	Width:=16,	Height:=10).WebOptionButton

												.Selected	=	msoTrue

								End	With

								With	.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

																Left:=120,	Top:=120,	Width:=70,	Height:=15)

												.TextFrame.TextRange.Text	=	"Advanced	User"

								End	With

				End	With

End	Sub

	 	



WebOptions	Object
Application WebOptions

Represents	the	properties	of	a	Web	publication,	including	options	for	saving	and
encoding	the	publication,	and	enabling	Web-safe	fonts	and	font	schemes.	The
WebOptions	object	is	a	member	of	the	Application	object.



Using	the	WebOptions	Object

Use	the	WebOptions	property	on	the	Application	object	to	return	a
WebOptions	object.	The	following	example	sets	an	object	variable	equal	to
Publisher's	WebOptions	object.

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

	 	

The	properties	of	the	WebOptions	object	are	used	to	specify	the	behavior	of
Web	publications.	This	means	that	when	any	of	these	properties	are	modified,
newly	created	Web	publications	will	inherit	the	modified	properties.

Note	that	the	WebOptions	object	is	available	from	print	publications	as	well	as
Web	publications.	However,	the	properties	of	this	object	have	no	effect	on	print
publications.



WebPageOptions	Object
Page WebPageOptions

Represents	the	properties	of	a	single	Web	page	within	a	Web	publication,
including	options	for	adding	the	title	and	description	of	the	page,	background
sounds,	in	addition	to	other	options.	The	WebPageOptions	object	is	a	member
of	the	Page	object.



Using	the	WebPageOptions	Object

Use	the	WebPageOptions	property	on	the	Page	object	to	return	a
WebPageOptions	object.	Use	the	Description	property	to	set	the	description	of
a	specified	Web	page.	The	following	example	sets	the	description	for	the	second
page	of	the	active	Web	publication.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(2).WebPageOptions

With	theWPO

				.Description	=	"Company	Profile"

End	With

	 	

Note	that	the	WebPageOptions	object	is	only	available	when	the	active
publication	is	a	Web	publication.	A	run-time	error	is	returned	if	trying	to	access
this	object	from	a	print	publication.



WebTextBox	Object
Shape WebTextBox

Represents	a	Web	text	box	control.	The	WebTextBox	object	is	a	member	of	the
Shape	object.



Using	the	WebTextBox	object

Use	the	AddWebControl	method	to	create	new	Web	option	button.	Use	the
WebTextBox	property	to	access	a	Web	text	box	control	shape.	This	example
creates	a	new	Web	text	box,	specifies	default	text,	indicates	that	entry	is
required,	and	limits	entry	to	50	characters.

Sub	CreateWebTextBox()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl(Type:=pbWebControlSingleLineTextBox,	_

																Left:=100,	Top:=100,	Width:=150,	Height:=15).WebTextBox

												.DefaultText	=	"Please	Enter	Your	Full	Name"

												.RequiredControl	=	msoTrue

												.Limit	=	50

								End	With

				End	With

End	Sub

	 	



Window	Object
Multiple	objects Window

Represents	a	window.	Many	publication	characteristics,	such	as	scroll	bars	and
rulers,	are	actually	properties	of	the	window.



Using	the	Window	Object

Use	the	ActiveWindow	property	to	return	a	Window	object.	The	following
example	maximizes	the	active	window.

Sub	MaximizeWindow

				ActiveWindow.WindowState	=	pbWindowStateMaximize

End	Sub

	 	

Use	the	Caption	property	to	return	the	file	and	application	names	of	the	active
window.	The	following	example	displays	a	message	with	the	file	name	and
Microsoft	Publisher	application	name.

Sub	ShowFileApNames

				MsgBox	Windows(1).Caption

End	Sub

	 	



Wizard	Object
Multiple	objects Wizard

WizardProperties

Represents	the	publication	design	associated	with	a	publication	or	the	wizard
associated	with	a	Design	Gallery	object.



Using	the	Wizard	object

Use	the	Wizard	property	of	a	Document,	Page,	Shape	or	ShapeRange	object
to	return	a	Wizard	object.	The	following	example	reports	on	the	publication
design	associated	with	the	active	publication,	displaying	its	name	and	current
settings.

Dim	wizTemp	As	Wizard

Dim	wizproTemp	As	WizardProperty

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp

				Set	wizproAll	=	.Properties

				MsgBox	"Publication	Design	associated	with	"	_

								&	"current	publication:	"	_

								&	.Name

				For	Each	wizproTemp	In	wizproAll

								With	wizproTemp

												MsgBox	"			Wizard	property:	"	_

																&	.Name	&	"	=	"	&	.CurrentValueId

								End	With

				Next	wizproTemp

End	With

	 	

Note		Depending	on	the	language	version	of	Publisher	that	you	are	using,	you
may	receive	an	error	when	using	the	above	code.	If	this	occurs,	you	will	need	to
build	in	error	handlers	to	circumvent	the	errors.	The	following	example
functions	as	the	code	above	but	has	error	handlers	built	in	for	this	situation.

Sub	ExampleWithErrorHandlers()

				Dim	wizTemp	As	Wizard

				Dim	wizproTemp	As	WizardProperty

				Dim	wizproAll	As	WizardProperties

				Set	wizTemp	=	ActiveDocument.Wizard

				With	wizTemp

								Set	wizproAll	=	.Properties

								Debug.Print	"Publication	Design	associated	with	"	_

												&	"current	publication:	"	_

												&	.Name



								For	Each	wizproTemp	In	wizproAll

												With	wizproTemp

																If	wizproTemp.Name	=	"Layout"	Or	wizproTemp	_

																								.Name	=	"Layout	(Intl)"	Then

																				On	Error	GoTo	Handler

																				MsgBox	"			Wizard	property:	"	_

																								&	.Name	&	"	=	"	&	.CurrentValueId

Handler:

																				If	Err.Number	=	70	Then	Resume	Next

																Else

																				MsgBox	"			Wizard	property:	"	_

																								&	.Name	&	"	=	"	&	.CurrentValueId

																End	If

												End	With

								Next	wizproTemp

				End	With

End	Sub

	 	



WizardProperty	Object
Wizard WizardProperties

WizardProperty
WizardValues

Represents	a	setting	that	is	part	of	a	specific	publication	design	or	a	Design
Gallery	object's	wizard.



Using	the	WizardProperty	object

Use	the	Item	property	or	the	FindByPropertyID	method	with	the
WizardProperties	collection	to	return	a	single	WizardProperty	object.	The
following	example	reports	on	the	publication	design	associated	with	the	active
publication,	displaying	its	name	and	current	settings.

Dim	wizTemp	As	Wizard

Dim	wizproTemp	As	WizardProperty

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp

				Set	wizproAll	=	.Properties

				Debug.Print	"Publication	Design	associated	with	"	_

								&	"current	publication:	"	_

								&	.Name

				For	Each	wizproTemp	In	wizproAll

								With	wizproTemp

												Debug.Print	"			Wizard	property:	"	_

																&	.Name	&	"	=	"	&	.CurrentValueId

								End	With

				Next	wizproTemp

End	With

	 	

Note		Depending	on	the	language	version	of	Publisher	that	you	are	using,	you
may	receive	an	error	when	using	the	above	code.	If	this	occurs,	you	will	need	to
build	in	error	handlers	to	circumvent	the	errors.	For	more	information,	see
Wizard	Object.



WizardValue	Object
WizardProperty WizardValues

WizardValue

Represents	a	possible	value	for	the	specified	wizard	property.



Using	the	WizardValue	object

Use	the	Item	property	of	the	WizardValues	collection	to	return	a	WizardValue
object.	The	following	example	displays	the	current	value	for	the	first	wizard
property	in	the	active	publication	and	then	lists	all	the	other	possible	values.

Dim	valAll	As	WizardValues

Dim	valLoop	As	WizardValue

With	ActiveDocument.Wizard

				Set	valAll	=	.Properties(1).Values

				MsgBox	"Wizard:	"	&	.Name	&	vbLf	&	_

								"Property:	"	&	.Properties(1).Name	&	vbLf	&	_

								"Current	value:	"	&	.Properties(1).CurrentValueId

				For	Each	valLoop	In	valAll

								MsgBox	"Possible	value:	"	&	valLoop.ID	&	"	("	&	valLoop.Name	&	")"

				Next	valLoop

End	With

	 	



WrapFormat	Object
Multiple	objects WrapFormat

Represents	all	the	properties	for	wrapping	text	around	a	shape	or	shape	range.



Using	the	WrapFormat	Object

Use	the	TextWrap	property	to	return	a	WrapFormat	object.	The	following
example	adds	an	oval	to	the	active	publication	and	specifies	that	publication	text
wrap	around	the	left	and	right	sides	of	the	square	that	circumscribes	the	oval.
There	will	be	a	0.1-inch	margin	between	the	publication	text	and	the	top,	bottom,
left	side,	and	right	side	of	the	square.

Sub	SetTextWrapFormatProperties()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeOval,	_

									Left:=36,	Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



Activate	Method
Activates	a	window	or	OLE	object.

expression.Activate

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Because	Publisher	runs	in	a	single	window,	using	the	Activate	method	with	a
Window	object	makes	Publisher	the	active	application.



Example

The	following	example	makes	Publisher	the	active	application.

Application.ActiveWindow.Activate

	 	

The	following	example	adds	an	Excel	spreadsheet	to	the	first	page	of	the	active
publication	and	activates	the	spreadsheet	for	editing.

Dim	shpSheet	As	Shape

Set	shpSheet	=	ActiveDocument.Pages(1).Shapes.AddOLEObject	_

				(Left:=72,	Top:=72,	ClassName:="Excel.Sheet")

shpSheet.OLEFormat.Activate

	 	



Show	All



Add	Method
Add	method	as	it	applies	to	the	Columns	object.

Adds	a	new	Column	object	to	the	specified	Columns	object	and	returns	the	new
Column	object.

expression.Add(BeforeColumn)

expression				Required.	An	expression	that	returns	a	Columns	object.

BeforeColumn			Optional	Long.	The	number	of	the	column	before	which	to
insert	the	new	column.	If	this	argument	is	omitted,	the	new	column	is	added	after
the	existing	columns.	An	error	occurs	if	the	value	of	this	argument	does	not
correspond	to	an	existing	column	in	the	table.

Add	method	as	it	applies	to	the	Hyperlinks	object.

Adds	a	new	Hyperlink	object	to	the	specified	Hyperlinks	object	and	returns	the
new	Hyperlink	object.

expression.Add(Text,	Address,	RelativePage,	PageID,	TextToDisplay)

expression				Required.	An	expression	that	returns	a	Hyperlinks	object.

Text			Required	TextRange	object.	The	text	range	to	be	converted	into	a
hyperlink.

Address			Optional	String.	The	address	of	the	new	hyperlink.	If	RelativePage	is
pbHlinkTargetTypeURL	(default)	or	pbHlinkTargetTypeEmail,	Address			
must	be	specified	or	an	error	occurs.

RelativePage			Optional	PbHlinkTargetType.	The	type	of	hyperlink	to	add.

PbHlinkTargetType	can	be	one	of	these	PbHlinkTargetType	constants.
pbHlinkTargetTypeEmail
pbHlinkTargetTypeFirstPage



pbHlinkTargetTypeLastPage
pbHlinkTargetTypeNextPage
pbHlinkTargetTypeNone	Not	supported.
pbHlinkTargetTypePageID
pbHlinkTargetTypePreviousPage
pbHlinkTargetTypeURL	default

PageID			Optional	Long.	The	page	ID	of	the	destination	page	for	the	new
hyperlink.	If	RelativePage				is	pbHlinkTargetTypePageID,	PageID				must	be
specified	or	an	error	occurs.	The	page	ID	corresponds	to	the	PageID	property	of
the	destination	page.

TextToDisplay			Optional	String.	The	display	text	of	the	new	hyperlink.	If
specified,	TextToDisplay	replaces	the	text	range	specified	by	the	Text	argument.

Add	method	as	it	applies	to	the	MailMergeFilters	object.

Adds	a	new	filter	criterion	to	the	specified	MailMergeFilters	object.

expression.Add(Column,	Comparison,	Conjunction,	bstrCompareTo,
DeferUpdate)

expression				Required.	An	expression	that	returns	a	MailMergeFilters	object.

Column			Required	String.	The	name	of	the	table	in	the	data	source.

Comparison			Required	MsoFilterComparison.	How	the	data	in	the	table	is
filtered.

MsoFilterComparison	can	be	one	of	these	MsoFilterComparison	constants.
msoFilterComparisonContains
msoFilterComparisonEqual
msoFilterComparisonGreaterThan
msoFilterComparisonGreaterThanEqual
msoFilterComparisonIsBlank
msoFilterComparisonIsNotBlank
msoFilterComparisonLessThan



msoFilterComparisonLessThanEqual
msoFilterComparisonNotContains
msoFilterComparisonNotEqual

Conjunction			Required	MsoFilterConjunction.	Determines	how	this	filter
relates	to	other	filters	in	the	MailMergeFilters	object.

MsoFilterConjunction	can	be	one	of	these	MsoFilterConjunction	constants.
msoFilterConjunctionAnd
msoFilterConjunctionOr

bstrCompareTo			Optional	String.	If	the	Comparison	argument	is	something
other	than	msoFilterComparisonIsBlank	or
msoFilterComparisonIsNotBlank,	a	string	to	which	the	data	in	the	table	is
compared.

DeferUpdate			Optional	Boolean.	True	to	queue	the	filters	and	apply	them	when
the	ApplyFilter	method	is	called.	False	to	apply	the	filter	condition
immediately.	Default	is	False.

Add	method	as	it	applies	to	the	MasterPages	object.

Adds	a	new	Page	object	to	the	specified	MasterPages	object	and	returns	the
new	Page	object.

expression.Add([IsTwoPageMaster],	[Abbreviation],	[Description],)

expression				Required.	An	expression	that	returns	a	MasterPages	object.

IsTwoPageMaster			Optional	Boolean.	True	if	the	master	page	will	be	part	of	a
two	page	spread.

Abbreviation			Optional	String.	The	abbreviation,	or	short	name,	for	the	master
page.	An	error	occurs	if	this	is	not	unique.

Description			Optional	String.	The	description	for	the	master	page.

Add	method	as	it	applies	to	the	Pages	object.



Adds	a	new	Page	object	to	the	specified	Pages	object	and	returns	the	new	Page
object.

expression.Add(Count,	After,	[DuplicateObjectsOnPage],
[AddHyperlinkToWebNavBar])

expression				Required.	An	expression	that	returns	a	Pages	object.

Count			Required	Long.	The	number	of	new	pages	to	add.

After			Required	Long.	The	page	index	of	the	page	after	which	to	add	the	new
pages.	A	zero	for	this	argument	adds	new	pages	at	the	beginning	of	the
publication.

DuplicateObjectsOnPage			Optional	Long.	The	page	index	of	the	page	from
which	objects	should	be	copied	to	the	new	pages.	If	this	argument	is	omitted,	the
new	pages	will	be	blank.

AddHyperlinkToWebNavBar			Optional	Boolean.	Specifies	whether	links	to	the
new	pages	will	be	added	to	the	automatic	navigation	bars	of	existing	pages.	If
True,	links	to	the	new	pages	will	be	added	to	the	automatic	navigation	bars	of
existing	pages	only.	If	False,	links	to	the	new	pages	will	not	be	added	to	the
automatic	navigation	bars	of	existing	pages	or	new	pages	added	in	the	future.
Default	is	False.

Add	method	as	it	applies	to	the	Plates	object.

Adds	a	new	color	plate	to	the	specified	Plates	object.

expression.Add(PlateColor)

expression				Required.	An	expression	that	returns	a	Plates	object.

PlateColor			Optional	ColorFormat	object.	The	color	settings	to	apply	to	the
new	plate.



Remarks

If	the	ColorMode	property	of	the	specified	publication	is	not
pbColorModeSpot	or	pbColorModeSpotAndProcess,	an	error	occurs.

Add	method	as	it	applies	to	the	Rows	object.

Adds	a	new	Row	object	to	the	specified	Rows	object	and	returns	the	new	Row
object.

expression.Add(BeforeRow)

expression				Required.	An	expression	that	returns	a	Rows	object.

BeforeRow			Optional	Long.	The	number	of	the	row	before	which	to	insert	the
new	row.	If	this	argument	is	omitted,	the	new	row	is	added	after	the	existing
rows.	An	error	occurs	if	the	value	of	this	argument	does	not	correspond	to	an
existing	row	in	the	table.

Add	method	as	it	applies	to	the	RulerGuides	object.

Adds	a	new	ruler	guide	to	the	specified	RulerGuides	object.

expression.Add(Position,	Type)

expression				Required.	An	expression	that	returns	a	RulerGuides	object.

Position			Required	Variant.	The	position	relative	to	the	left	edge	or	top	edge	of
the	page	where	the	new	ruler	guide	will	be	added.	Numeric	values	are	evaluated
in	points;	strings	are	evaluated	in	the	units	specified	and	can	be	in	any
measurement	unit	supported	by	Microsoft	Publisher	(for	example,	"2.5	in").

Type			Required	PbRulerGuideType.	The	type	of	ruler	guide	to	add.

PbRulerGuideType	can	be	one	of	these	PbRulerGuideType	constants.
pbRulerGuideTypeHorizontal
pbRulerGuideTypeVertical



Add	method	as	it	applies	to	the	TabStops	object.

Adds	a	new	tab	stop	to	the	specified	TabStops	object.

expression.Add(Position,	Alignment,	Leader)

expression				Required.	An	expression	that	returns	a	TabStops	object.

Position			Required	Variant.	The	horizontal	position	of	the	new	tab	stop	relative
to	the	left	edge	of	the	text	frame.	Numeric	values	are	evaluated	in	points;	strings
are	evaluated	in	the	units	specified	and	can	be	in	any	measurement	unit
supported	by	Microsoft	Publisher	(for	example,	"2.5	in").

Alignment			Required	PbTabAlignmentType.	The	alignment	setting	for	the	tab
stop.

PbTabAlignmentType	can	be	one	of	these	PbTabAlignmentType	constants.
pbTabAlignmentCenter
pbTabAlignmentDecimal
pbTabAlignmentLeading
pbTabAlignmentTrailing

Leader			Required	PbTabLeaderType.	The	type	of	leader	for	the	tab	stop.

PbTabLeaderType	can	be	one	of	these	PbTabLeaderType	constants.
pbTabLeaderBullet
pbTabLeaderDashes
pbTabLeaderDot
pbTabLeaderLine
pbTabLeaderNone

Add	method	as	it	applies	to	the	Tags	object.

Adds	a	new	Tag	object	to	the	specified	Tags	object	and	returns	the	new	Tag
object.

expression.Add(Name,	Value)



expression				Required.	An	expression	that	returns	a	Tags	object.

Name			Required	String.	The	name	of	the	tag	to	add.	If	a	tag	already	exists	with
the	same	name,	an	error	occurs.

Value			Required	Variant.	The	value	to	assign	to	the	tag.

Add	method	as	it	applies	to	the	TextStyles	object.

Adds	a	new	TextStyle	object	to	the	specified	TextStyles	object	and	returns	the
new	TextStyle	object.

expression.Add(Font,	ParagraphFormat,	StyleName,	BasedOn)

expression				Required.	An	expression	that	returns	a	TextStyles	object.

StyleName			Required	String.	The	name	of	the	new	text	style.	If	the	name
matches	an	existing	text	style,	the	existing	text	style	is	overwritten.

BasedOn			Optional	String.	The	name	of	the	text	style	on	which	the	new	text
style	is	based.	If	the	name	does	not	match	an	existing	text	style,	an	error	occurs.

Font			Optional	Font	object.	The	font	settings	to	apply	to	the	new	text	style.

ParagraphFormat			Optional	ParagraphFormat	object.	The	paragraph
formatting	to	apply	to	the	new	text	style.

Add	method	as	it	applies	to	the	WebHiddenFields	object.

Adds	a	new	hidden	field	to	a	Web	form	and	returns	a	Long	indicating	the
number	of	the	new	field	in	the	WebHiddenFields	collection.	New	fields	are
always	placed	at	the	end	of	the	current	field	list.

expression.Add(Name,	Value)

expression				Required.	An	expression	that	returns	a	WebHiddenFields	object.

Name			Required	String.	The	name	of	the	new	field.

Value			Required	String.	The	value	of	the	new	field.



Example

As	it	applies	to	the	Columns	object.

The	following	example	adds	a	column	before	column	three	in	the	specified	table.

Dim	colNew	As	Column

Set	colNew	=	ActiveDocument.Pages(1).Shapes(1)	_

				.Table.Columns.Add(BeforeColumn:=3)

	 	 	 	

As	it	applies	to	the	Hyperlinks	object.

The	following	example	adds	hyperlinks	to	shapes	one	and	two	on	page	one	of
the	active	publication.	The	first	hyperlink	points	to	an	external	website,	and	the
second	link	points	to	the	fourth	page	in	the	publication.	Shapes	one	and	two
must	be	text	boxes	and	there	must	be	at	least	four	pages	in	the	publication	for
this	example	to	work.

Dim	hypNew	As	Hyperlink

Dim	lngPageID	As	Long

Dim	strPage	As	String

With	ActiveDocument.Pages(1).Shapes(1).TextFrame

				Set	hypNew	=	.TextRange.Hyperlinks.Add(Text:=.TextRange,	_

								Address:="http://www.tailspintoys.com/",	_

								TextToDisplay:="Tailspin")

End	With

lngPageID	=	ActiveDocument.Pages(4).PageID

strPage	=	"Go	to	page	"	_

				&	Str(ActiveDocument.Pages(4).PageNumber)

With	ActiveDocument.Pages(1).Shapes(2).TextFrame

				Set	hypNew	=	.TextRange.Hyperlinks.Add(Text:=.TextRange,	_

								RelativePage:=pbHlinkTargetTypePageID,	_

								PageID:=lngPageID,	_

								TextToDisplay:=strPage)

End	With

	 	 	 	

As	it	applies	to	the	MasterPages	object.



The	following	example	adds	a	new	master	page	to	the	active	document.

ActiveDocument.MasterPages.Add	_

				IsTwoPageMaster:=False,	_

				Abbreviation:="X",	_

				Description:="Master	Page	X"

	 	 	 	

As	it	applies	to	the	Pages	object.

The	following	example	adds	four	new	pages	after	the	first	page	in	the
publication	and	copies	all	the	objects	from	the	first	page	to	the	new	pages.

Dim	pgNew	As	Page

Set	pgNew	=	ActiveDocument.Pages	_

				.Add(Count:=4,	After:=1,	DuplicateObjectsOnPage:=1)

	 	 	 	

The	following	example	demonstrates	adding	two	new	pages	to	the	publication
and	setting	the	AddHyperlinkToWebNavBar	parameter	to	True	for	these	two
pages.	This	specifies	that	links	to	these	two	new	pages	be	added	to	the	automatic
navigation	bars	of	existing	pages	and	those	added	in	the	future.

Another	page	is	then	added	to	the	publication,	and	the
AddHyperlinkToWebNavBar	is	omitted.	This	means	that	the
IncludePageOnNewWebNavigationBars	property	is	False	for	the	newly	added
page,	and	links	to	this	page	will	not	be	included	in	the	automatic	navigation	bars
of	existing	pages.

Dim	thePage	As	page

Dim	thePage2	As	page

Set	thePage	=	ActiveDocument.Pages.Add(Count:=2,	_

				After:=4,	AddHyperlinkToWebNavBar:=True)

Set	thePage2	=	ActiveDocument.Pages.Add(Count:=1,	After:=6)

As	it	applies	to	the	Plates	object.

The	following	example	adds	a	color	plate	to	the	active	publication	if	it	is	a	spot-
color	publication.



If	ActiveDocument.ColorMode	=	pbColorModeSpot	Then

				ActiveDocument.Plates.Add

End	If

	 	 	 	

As	it	applies	to	the	Rows	object.

The	following	example	adds	a	row	before	row	three	in	the	specified	table.

Dim	rowNew	As	Row

Set	rowNew	=	ActiveDocument.Pages(1).Shapes(1)	_

				.Table.Rows.Add(BeforeRow:=3)

	 	 	 	

As	it	applies	to	the	RulerGuides	object.

The	following	example	adds	ruler	guides	to	page	one	that	are	0.5	inches	from	the
left	and	top	edges	of	the	page.

With	ActiveDocument.Pages(1).RulerGuides

				.Add	Position:="0.5	in",	Type:=pbRulerGuideTypeHorizontal

				.Add	Position:="0.5	in",	Type:=pbRulerGuideTypeVertical

End	With

	 	 	 	

As	it	applies	to	the	TabStops	object.

The	following	example	adds	a	new	left-aligned	tab	stop	0.5	inches	from	the	left
edge	of	the	specified	text	frame.

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange.ParagraphFormat.Tabs	_

				.Add	Position:="0.5	in",	_

				Alignment:=pbTabAlignmentLeading,	_

				Leader:=pbTabLeaderNone

	 	 	 	

As	it	applies	to	the	Tags	object.

The	following	example	adds	a	tag	to	shape	one	on	page	one	of	the	active
publication.



Dim	tagNew	As	Tag

Set	tagNew	=	ActiveDocument.Pages(1).Shapes(1).Tags	_

				.Add(Name:="required",	Value:="yes")

	 	 	 	

As	it	applies	to	the	TextStyles	object.

The	following	example	adds	a	new	text	style	to	the	active	publication	based	on
the	Normal	text	style.

Dim	tsNew	As	TextStyle

Set	tsNew	=	ActiveDocument.TextStyles	_

				.Add(StyleName:="Title",	BasedOn:="Normal")

	 	 	 	

As	it	applies	to	the	WebHiddenFields	object.

The	following	example	adds	a	new	hidden	field	to	the	specified	Web	command
button	control.	Shape	one	on	page	one	of	the	active	publication	must	be	a	Web
command	button	control	for	this	example	to	work.

ActiveDocument.Pages(1).Shapes(1)	_

				.WebCommandButton.HiddenFields	_

				.Add	Name:="subject",	Value:="service	request"

	 	 	 	



Show	All



AddCallout	Method
Adds	a	new	Shape	object	representing	a	borderless	line	callout	to	the	specified
Shapes	collection.

expression.AddCallout(Type,	Left,	Top,	Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Required	MsoCalloutType.	The	type	of	callout	line.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutOne	A	horizontal	or	vertical	single-segment	callout	line.
msoCalloutTwo	A	freely-rotating	single-segment	callout	line.
msoCalloutThree	A	two-segment	callout	line.
msoCalloutFour	A	three-segment	callout	line.
msoCalloutMixed	Not	used	for	this	method.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	line	callout.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	line	callout.

Width			Required	Variant.	The	width	of	the	shape	representing	the	line	callout.

Height			Required	Variant.	The	height	of	the	shape	representing	the	line	callout.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

The	following	example	adds	a	new	freely-rotating	callout	line	to	the	first	page	of
the	active	publication.

Dim	shpCallout	As	Shape

Set	shpCallout	=	ActiveDocument.Pages(1).Shapes.AddCallout	_

				(Type:=msoCalloutTwo,	_

				Left:=144,	Top:=216,	_

				Width:=36,	Height:=72)

	 	



Show	All



AddCatalogMergeArea	Method
Adds	a	Shape	object	that	represents	the	specified	publication's	catalog	merge
area.

expression.AddCatalogMergeArea

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Only	one	catalog	merge	area	can	be	added	to	a	publication	page.	Typically,	a
publication	will	only	have	one	catalog	merge	area.

Although	you	can	add	one	catalog	merge	area	per	publication	page,	you	can	only
connect	to	a	single	data	source	for	a	publication.	What	data	is	merged	is
determined	by	the	catalog	merge	area	on	the	active	page,	and	the	data	fields	it
contains.

Use	the	AddToCatalogMergeArea	method	of	the	Shape	or	ShapeRange
objects	to	add	shapes	to	a	catalog	merge	area.

Use	the	Insert	method	of	the	MailMergeDataFields	collection	to	add	a	picture
data	field	to	a	publication's	catalog	merge	area.

Use	the	InsertMailMergeField	method	of	the	TextRange	object	to	add	a	text
data	field	to	a	text	box	in	the	publication's	catalog	merge	area.

Use	the	RemoveCatalogMergeArea	method	of	the	Shape	object	to	remove	a
catalog	merge	area	from	a	publication.

This	method	corresponds	to	selecting	a	catalog	merge	in	Step	1:	Select	a	merge
type	of	the	Mail	and	Catalog	Merge	Wizard.



Example

The	following	example	adds	a	catalog	merge	area	to	the	first	page	of	the
specified	publication.

ThisDocument.Pages(1).Shapes.AddCatalogMergeArea



Show	All



AddConnector	Method
Adds	a	new	Shape	object	representing	a	connector	to	the	specified	Shapes
collection.

expression.AddConnector(Type,	BeginX,	BeginY,	EndX,	EndY)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Required	MsoConnectorType.	The	type	of	connector	to	add.

MsoConnectorType	can	be	one	of	these	MsoConnectorType	constants.
msoConnectorCurve	Adds	a	curved	connector.
msoConnectorElbow	Adds	an	elbow-shaped	connector.
msoConnectorStraight	Adds	a	straight-line	connector.
msoConnectorTypeMixed	Not	used	with	this	method.

BeginX			Required	Variant.	The	x-coordinate	of	the	beginning	point	of	the
connector.

BeginY			Required	Variant.	The	y-coordinate	of	the	beginning	point	of	the
connector.

EndX			Required	Variant.	The	x-coordinate	of	the	ending	point	of	the	connector.

EndY			Required	Variant.	The	y-coordinate	of	the	ending	point	of	the	connector.



Remarks

For	the	BeginX,	BeginY,	EndX,	and	EndY	arguments,	numeric	values	are
evaluated	in	points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher
(for	example,	"2.5	in").

The	new	connector	isn't	connected	to	any	other	shape;	use	the	BeginConnect
and	EndConnect	methods	to	connect	the	new	connector	to	another	shape.



Example

The	following	example	adds	a	new	straight-line	connector	to	the	first	page	of	the
active	publication.

Dim	shpConnect	As	Shape

Set	shpConnect	=	ActiveDocument.Pages(1).Shapes.AddC	onnector	_

				(Type:=msoConnectorStraight,	_

				BeginX:=144,	BeginY:=144,	_

				EndX:=180,	EndY:=72)

	 	



AddCurve	Method
Adds	a	new	Shape	object	representing	a	Bézier	curve	to	the	specified	Shapes
collection.

expression.AddCurve(SafeArrayOfPoints)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SafeArrayOfPoints			Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	vertices	and	control	points	of	the	curve.	The	first	point	you	specify
is	the	starting	vertex,	and	the	next	two	points	are	control	points	for	the	first
Bézier	segment.	Then,	for	each	additional	segment	of	the	curve,	you	specify	a
vertex	and	two	control	points.	The	last	point	you	specify	is	the	ending	vertex	for
the	curve.	Note	that	you	must	always	specify	3n				+	1	points,	where	n				is	the
number	of	segments	in	the	curve.



Remarks

For	the	array	elements	in	SafeArrayOfPoints,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

The	following	example	adds	a	two-segment	Bézier	curve	to	the	first	page	of	the
active	publication.

Dim	shpCurve	As	Shape

Dim	arrPoints(1	To	4,	1	To	2)	As	Single

arrPoints(1,	1)	=	0

arrPoints(1,	2)	=	0

arrPoints(2,	1)	=	72

arrPoints(2,	2)	=	72

arrPoints(3,	1)	=	144

arrPoints(3,	2)	=	36

arrPoints(4,	1)	=	216

arrPoints(4,	2)	=	108

Set	shpCurve	=	ActiveDocument.Pages(1).Shapes.AddCurve	_

				(SafeArrayOfPoints:=arrPoints)

	 	



AddEmptyPictureFrame	Method
Returns	a	Shape	object	that	represents	an	empty	picture	frame	inserted	at	the
specified	coordinates.

expression.AddEmptyPictureFrame(Left,	Top,	[Width	=	-1],	[Height	=	-1])

expression				Required.	An	expression	that	returns	a	Shapes	collection.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	picture.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	picture.

Width			Required	Variant.	The	width	of	the	shape	representing	the	picture.
Default	is	-1,	meaning	that	the	width	of	the	shape	is	automatically	set	to	54
points	if	the	parameter	is	left	blank.

Height			Required	Variant.	The	height	of	the	shape	representing	the	picture.
Default	is	-1,	meaning	that	the	height	of	the	shape	is	automatically	set	to	54
points	if	the	parameter	is	left	blank.



Remarks

For	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"1.5	in").

The	blank	picture	frame	has	the	default	ToolTip	"Empty	Picture	Frame".	This	is
changed	to	"Picture"	when	an	image	is	selected	for	the	Shape.



Example

This	example	places	an	empty	picture	frame	in	the	center	of	the	first	page	of	the
publication	and	rotates	it	by	45	degrees.	The	AlternativeText	property	is	set	to
"Picture	Placeholder	1"	for	the	Web.

Dim	shpPlaceholder	As	Shape

Set	shpPlaceholder	=	_

				ActiveDocument.Pages(1).Shapes.AddEmptyPictureFrame(	_

				230,	320,	150,	150)

With	shpPlaceholder

				.AlternativeText	=	"Picture	Placeholder	1"

				.Rotation	=	45

End	With



Show	All



AddGroupWizard	Method
Adds	a	Shape	object	representing	a	Design	Gallery	object	to	the	publication.

expression.AddGroupWizard(Wizard,	Left,	Top,	Width,	Height,	Design)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Wizard			Required	PbWizardGroup.	The	type	of	Design	Gallery	object	to	add
to	the	publication.

PbWizardGroup	can	be	one	of	these	PbWizardGroup	constants.
pbWizardGroupAccentBox
pbWizardGroupAccessoryBar
pbWizardGroupAdvertisements
pbWizardGroupAttentionGetter
pbWizardGroupBarbells
pbWizardGroupBorders
pbWizardGroupBoxes
pbWizardGroupCalendars
pbWizardGroupCheckerboards
pbWizardGroupCoupon
pbWizardGroupDots
pbWizardGroupEastAsiaZipCode
pbWizardGroupJapaneseAccentBox
pbWizardGroupJapaneseAccessoryBar
pbWizardGroupJapaneseAttentionGetters
pbWizardGroupJapaneseBorders
pbWizardGroupJapaneseCalendar
pbWizardGroupJapaneseCoupons
pbWizardGroupJapaneseLinearAccent
pbWizardGroupJapaneseMarquees



pbWizardGroupJapaneseMastheads
pbWizardGroupJapanesePullQuotes
pbWizardGroupJapaneseReplyForms
pbWizardGroupJapaneseSidebars
pbWizardGroupJapaneseTableOfContents
pbWizardGroupJapaneseWebButtonEmail
pbWizardGroupJapaneseWebButtonHome
pbWizardGroupJapaneseWebButtonLink
pbWizardGroupJapaneseWebMastheads
pbWizardGroupJapaneseWebNavigationBars
pbWizardGroupJapaneseWebPullQuotes
pbWizardGroupJapaneseWebSidebars
pbWizardGroupLinearAccent
pbWizardGroupLogo
pbWizardGroupMarquee
pbWizardGroupMastheads
pbWizardGroupPhoneTearoff
pbWizardGroupPictureCaptions
pbWizardGroupPullQuotes
pbWizardGroupPunctuation
pbWizardGroupReplyForms
pbWizardGroupSidebars
pbWizardGroupTableOfContents
pbWizardGroupWebButtonsEmail
pbWizardGroupWebButtonsHome
pbWizardGroupWebButtonsLink
pbWizardGroupWebMastheads
pbWizardGroupWebNavigationBars
pbWizardGroupWebSidebars
pbWizardGroupWellPullQuotes

Left			Required	Variant.	The	position	of	the	Design	Gallery	object's	left	edge
relative	to	the	left	edge	of	the	page,	measured	in	points.



Top			Required	Variant.	The	position	of	the	Design	Gallery	object's	top	edge
relative	to	the	top	edge	of	the	page,	measured	in	points.

Width			Optional	Variant.	The	width	of	the	new	Design	Gallery	object.

Height			Optional	Variant.	The	height	of	the	new	Design	Gallery	object.

Design			Optional	Long.	The	design	of	the	object	to	be	added.



Example

This	example	adds	a	Web	table	of	contents	to	the	active	publication.

ActiveDocument.Pages(1).Shapes	_

				.AddGroupWizard	Wizard:=pbWizardGroupTableOfContents,	_

								Left:=100,	Top:=100

	 	



AddHorizontalInVertical	Method
Inserts	horizontal	text	into	a	stream	of	vertical	text	and	returns	the	new
horizontal	text	as	a	Field	object.

expression.AddHorizontalInVertical(Range,	Text)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Range			Required	TextRange	object.	The	text	range	at	which	to	insert	the
horizontal	text.

Text			Required	String.	The	text	to	be	horizontally	inserted.



Example

This	example	horizontally	inserts	the	text	"horizontal	test"	after	the	existing
vertical	text	in	shape	one	on	page	one	of	the	active	publication.

Dim	rngTemp	As	TextRange

Dim	fldTemp	As	Field

With	ActiveDocument.Pages(1).Shapes(1)

				Set	rngTemp	=	.TextFrame.TextRange.InsertAfter("")

				Set	fldTemp	=	.TextFrame.TextRange.Fields	_

								.AddHorizontalInVertical(Range:=rngTemp,	Text:="horizontal	test")

End	With

	 	



AddItem	Method
Adds	list	items	to	a	Web	list	box	control.

expression.AddItem(Item,	Index,	SelectState,	ItemValue)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Item			Required	String.	The	name	of	the	item	as	it	appears	in	the	list.

Index			Optional	Long.	The	number	of	the	list	item.	If	Index	is	not	specified	or
it	is	out	of	range	of	the	indices	of	existing	list	box	items,	the	new	item	will	be
added	to	the	end	of	the	list	box.	Otherwise	the	new	item	will	be	inserted	at	the
position	specified	by	Index	and	the	index	position	of	all	items	after	it	will	be
increased	by	one.

SelectState			Optional	Boolean.	True	if	the	item	is	selected	when	the	list	box	is
initially	displayed.	Default	value	is	False.

ItemValue			Optional	String.	The	value	of	the	list	box	item.	If	not	specified,	the
new	item’s	value	will	be	the	same	as	the	item	name.



Remarks

When	you	programmatically	create	a	new	Web	list	box,	it	contains	three	items.
Use	the	Delete	method	to	remove	them	from	the	list.



Example

This	example	creates	a	new	list	box	control	in	the	active	publication,	removes
the	three	default	list	items,	and	then	adds	several	items	to	it.

Sub	AddListBoxItems()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlListBox,	Left:=100,	_

												Top:=100,	Width:=150,	Height:=100)

								With	.WebListBox.ListBoxItems

												For	intCount	=	1	To	.Count

																.Delete	(1)

												Next

												.AddItem	Item:="Green"

												.AddItem	Item:="Yellow"

												.AddItem	Item:="Red"

												.AddItem	Item:="Blue"

												.AddItem	Item:="Purple"

												.AddItem	Item:="Chartreuse"

												.AddItem	Item:="Pink"

												.AddItem	Item:="Olive"

								End	With

				End	With

End	Sub

	 	



Show	All



AddLabel	Method
Adds	a	new	Shape	object	representing	a	text	label	to	the	specified	Shapes
collection.

expression.AddLabel(Orientation,	Left,	Top,	Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Orientation			Required	PbTextOrientation.	The	orientation	of	the	label.

PbTextOrientation	can	be	one	of	these	PbTextOrientation	constants.
pbTextOrientationHorizontal	A	horizontal	text	label	for	left-to-right
languages.
pbTextOrientationMixed	Not	used	for	this	method.
pbTextOrientationRightToLeft	A	horizontal	text	label	for	right-to-left
languages.
pbTextOrientationVerticalEastAsia	A	vertical	text	label	for	East	Asian
languages.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	text	label.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	text	label.

Width			Required	Variant.	The	width	of	the	shape	representing	the	text	label.

Height			Required	Variant.	The	height	of	the	shape	representing	the	text	label.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

The	following	example	adds	a	new	horizontal	text	label	to	the	first	page	of	the
active	publication.

Dim	shpLabel	As	Shape

Set	shpLabel	=	ActiveDocument.Pages(1).Shapes.AddLabel	_

				(Orientation:=pbTextOrientationHorizontal,	_

				Left:=144,	Top:=144,	_

				Width:=72,	Height:=18)

	 	



AddLine	Method
Adds	a	new	Shape	object	representing	a	line	to	the	specified	Shapes	collection.

expression.AddLine(BeginX,	BeginY,	EndX,	EndY)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

BeginX			Required	Variant.	The	x-coordinate	of	the	beginning	point	of	the	line.

BeginY			Required	Variant.	The	y-coordinate	of	the	beginning	point	of	the	line.

EndX			Required	Variant.	The	x-coordinate	of	the	ending	point	of	the	line.

EndY			Required	Variant.	The	y-coordinate	of	the	ending	point	of	the	line.



Remarks

For	the	BeginX,	BeginY,	EndX,	and	EndY	arguments,	numeric	values	are
evaluated	in	points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher
(for	example,	"2.5	in").



Example

The	following	example	adds	a	new	line	to	the	first	page	of	the	active	publication.

Dim	shpLine	As	Shape

Set	shpLine	=	ActiveDocument.Pages(1).Shapes.AddLine	_

				(BeginX:=144,	BeginY:=144,	_

				EndX:=180,	EndY:=72)

	 	



Show	All



AddNodes	Method
Inserts	a	new	segment	at	the	end	of	the	freeform	that's	being	created,	and	adds
the	nodes	that	define	the	segment.	You	can	use	this	method	as	many	times	as	you
want	to	add	nodes	to	the	freeform	you're	creating.	When	you	finish	adding
nodes,	use	the	ConvertToShape	method	to	create	the	freeform	you've	just
defined.

expression.AddNodes(SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SegmentType			Required	MsoSegmentType.	The	type	of	segment	to	be	added.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

EditingType			Required	MsoEditingType.	Specifies	the	editing	type	of	the	new
node.	If	SegmentType	is	msoSegmentLine,	EditingType	must	be
msoEditingAuto;	otherwise,	an	error	occurs..

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto	Adds	a	node	type	appropriate	to	the	segments	being
connected.
msoEditingCorner	Adds	a	corner	node.
msoEditingSmooth	Not	used	with	this	method.
msoEditingSymmetric	Not	used	with	this	method.

X1			Required	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	horizontal	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of
the	new	node	is	msoEditingCorner,	this	argument	specifies	the	horizontal
distance	from	the	upper-left	corner	of	the	page	to	the	first	control	point	for	the
new	segment.



Y1			Required	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of
the	new	node	is	msoEditingCorner,	this	argument	specifies	the	vertical	distance
from	the	upper-left	corner	of	the	page	to	the	first	control	point	for	the	new
segment.

X2			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	from	the
upper-left	corner	of	the	page	to	the	second	control	point	for	the	new	segment.	If
the	EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a	value
for	this	argument.

Y2			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	second	control	point	for	the	new	segment.	If	the
EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a	value	for
this	argument.

X3			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	from	the
upper-left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the
EditingType	of	the	new	segment	is	msoEditingAuto,	don't	specify	a	value	for
this	argument.

Y3			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of
the	new	segment	is	msoEditingAuto,	don't	specify	a	value	for	this	argument.



Remarks

For	the	X1,	Y1,	X2,	Y2,	X3,	and	Y3	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").

To	add	nodes	to	a	freeform	after	it's	been	created,	use	the	Insert	method	of	the
ShapeNodes	collection.



Example

This	example	adds	a	freeform	with	four	vertices	to	the	first	page	in	the	active
publication.

'	Add	a	new	freeform	object.

With	ActiveDocument.Pages(1).Shapes	_

								.BuildFreeform(EditingType:=msoEditingCorner,	_

								X1:=100,	Y1:=100)

				'	Add	three	more	nodes	and	close	the	polygon.

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingCorner,	_

								X1:=200,	Y1:=200,	X2:=225,	Y2:=250,	X3:=250,	Y3:=200

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingAuto,	X1:=200,	Y1:=100

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=150,	Y1:=50

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=100,	Y1:=100

				'	Convert	the	polygon	to	a	Shape	object.

				.ConvertToShape

End	With

	 	



Show	All



AddOLEObject	Method
Adds	a	new	Shape	object	representing	an	OLE	object	to	the	specified	Shapes
collection.

expression.AddOLEObject(Left,	Top,	Width,	Height,	ClassName,	FileName,
Link)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	OLE	object.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	OLE	object.

Width			Optional	Variant.	The	width	of	the	shape	representing	the	OLE	object.
Default	is	-1,	meaning	that	the	width	of	the	shape	is	automatically	set	based	on
the	object's	data.

Height			Optional	Variant.	The	height	of	the	shape	representing	the	OLE	object.
Default	is	-1,	meaning	that	the	width	of	the	shape	is	automatically	set	based	on
the	object's	data.

ClassName			Optional	String.	The	class	name	of	the	OLE	object	to	be	added.

FileName			Optional	String.	The	file	name	of	the	OLE	object	to	be	added.	If	the
path	isn't	specified,	the	current	working	folder	is	used.

Link			Optional	MsoTriState.	Determines	whether	the	OLE	object	is	linked	to	or
embedded	in	the	publication.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	method.
msoFalse	The	OLE	object	is	embedded.
msoTriStateMixed	Not	used	for	this	method.



msoTriStateToggle	Not	used	for	this	method.
msoTrue	default	The	OLE	object	is	linked.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").

You	must	specify	either	a	ClassName	or	FileName.	If	neither	argument	is
specified	or	both	are	specified,	an	error	occurs.



Example

The	following	example	adds	an	Excel	worksheet	to	the	first	page	of	the	active
publication	and	activates	the	worksheet	for	editing.

Dim	shpSheet	As	Shape

Set	shpSheet	=	ActiveDocument.Pages(1).Shapes.AddOLEObject	_

				(Left:=72,	Top:=72,	ClassName:="Excel.Sheet")

shpSheet.OLEFormat.Activate

	 	



Show	All



AddPhoneticGuide	Method
Returns	a	Field	object	that	represents	phonetic	text	added	to	the	specified	range.

expression.AddPhoneticGuide(Range,	Text,	Alignment,	Raise,	FontName,
FontSize)

expression				Required.	An	expression	that	returns	a	Fields	object.

Range			Required	TextRange	object.	The	text	in	the	publication	over	which	the
phonetic	text	is	displayed

Text			Required	String.	The	phonetic	text	to	add.

Alignment			Optional	PbPhoneticGuideAlignmentType.	The	alignment	of	the
added	phonetic	text.

PbPhoneticGuideAlignmentType	can	be	one	of	these
PbPhoneticGuideAlignmentType	constants.
pbPhoneticGuideAlignmentCenter	Centers	phonetic	text	over	the	specified
range.
pbPhoneticGuideAlignmentDefault	default	Centers	phonetic	text	over	the
specified	range.
pbPhoneticGuideAlignmentLeft	Left-aligns	phonetic	text	with	the	specified
range.
pbPhoneticGuideAlignmentOneTwoOne	Adjusts	the	inside	and	outside
spacing	of	the	phonetic	text	in	a	1:2:1	ratio.
pbPhoneticGuideAlignmentRight	Right-aligns	phonetic	text	with	the
specified	range.
pbPhoneticGuideAlignmentZeroOneZero	Adjusts	the	inside	and	outside
spacing	of	the	phonetic	text	in	a	0:1:0	ratio.

Raise			Optional	Variant.	The	distance	(in	points)	from	the	top	of	the	text	in	the
specified	range	to	the	top	of	the	phonetic	text.	If	no	value	is	specified,	Publisher
automatically	sets	the	phonetic	text	at	an	optimum	distance	above	the	specified
range.



FontName			Optional	String.	The	name	of	the	font	to	use	for	the	phonetic	text.
If	no	value	is	specified,	Publisher	uses	the	same	font	as	the	text	in	the	specified
range.

FontSize			Optional	Variant.	The	font	size	to	use	for	the	phonetic	text.	Default	is
10	point.



Example

This	example	adds	a	phonetic	guide	to	the	selected	phrase	"very	nice."

Sub	PhoneticGuide()

				Selection.TextRange.Fields.AddPhoneticGuide	_

								Range:=Selection.TextRange,	Text:="ver-E	nIs",	_

								Alignment:=pbPhoneticGuideAlignmentCenter,	_

								Raise:=11,	FontSize:=7

End	Sub

	 	



Show	All



AddPicture	Method
Adds	a	new	Shape	object	representing	a	picture	to	the	specified	Shapes
collection.

expression.AddPicture(FileName,	LinkToFile,	SaveWithDocument,	Left,	Top,
Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName			Required	String.	The	name	of	the	picture	file	to	insert	into	the
shape.	The	path	can	be	absolute	or	relative.

LinkToFile			Required	MsoTriState.	Determines	whether	the	picture	is	linked	to
or	embedded	in	the	publication.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	method.
msoFalse	The	picture	is	to	be	embedded	in	the	publication.
msoTriStateMixed	Not	used	for	this	method.
msoTriStateToggle	Not	used	for	this	method.
msoTrue	The	picture	is	to	be	linked	to	the	publication.

SaveWithDocument			Required	MsoTriState.	Determines	whether	the	picture	is
saved	as	a	separate	file	with	the	publication.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	method.
msoFalse	The	picture	is	embedded	in	the	publication.
msoTriStateMixed	Not	used	for	this	method.
msoTriStateToggle	Not	used	for	this	method.
msoTrue	A	separate	copy	of	the	picture	is	saved	as	a	new	file	in	the	same
directory	as	the	publication.



Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	picture.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	picture.

Width			Optional	Variant.	The	width	of	the	shape	representing	the	picture.
Default	is	-1,	meaning	that	the	width	of	the	shape	is	automatically	set	based	on
the	object's	data.

Height			Optional	Variant.	The	height	of	the	shape	representing	the	picture.
Default	is	-1,	meaning	that	the	width	of	the	shape	is	automatically	set	based	on
the	object's	data.



Remarks

If	the	SaveWithDocument	argument	is	msoTrue,	Publisher	saves	a	new	copy	of
the	picture	file	specified	by	the	FileName	argument	in	the	same	directory	as	the
publication.

The	LinkToFile	and	SaveWithDocument	arguments	cannot	have	the	same	value,
or	else	an	error	occurs.	If	either	argument	is	msoTrue,	the	other	must	be
msoFalse.

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").



Example

The	following	example	adds	a	picture	based	on	an	existing	file	to	the	active
publication;	the	picture	in	the	publication	is	linked	to	a	copy	of	the	original	file.
(Note	that	PathToFile	must	be	replaced	with	a	valid	file	path	for	this	example	to
work.)

Dim	shpPicture	As	Shape

Set	shpPicture	=	ActiveDocument.Pages(1).Shapes.AddPicture	_

				(FileName:="PathToFile",	_

				LinkToFile:=msoTrue,	_

				SaveWithDocument:=msoTrue

				Left:=72,	Top:=72)

	 	



AddPolyline	Method
Adds	a	new	Shape	object	representing	an	open	polyline	or	a	closed	polygon	to
the	specified	Shapes	collection.

expression.AddPolyline(SafeArrayOfPoints)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SafeArrayOfPoints			Required	Variant.	An	array	of	coordinate	pairs	that
specifies	the	polyline's	or	polygon's	vertices.



Remarks

For	the	array	elements	in	SafeArrayOfPoints,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").

To	form	a	closed	polygon,	assign	the	same	coordinates	to	the	first	and	last
vertices	in	the	polyline	drawing.



Example

The	following	example	adds	a	triangle	to	the	first	page	of	the	active	publication.
Because	the	first	and	last	points	have	the	same	coordinates,	the	polygon	is
closed.

Dim	shpPolyline	As	Shape

Dim	arrPoints(1	To	4,	1	To	2)	As	Single

arrPoints(1,	1)	=	25

arrPoints(1,	2)	=	100

arrPoints(2,	1)	=	100

arrPoints(2,	2)	=	150

arrPoints(3,	1)	=	150

arrPoints(3,	2)	=	50

arrPoints(4,	1)	=	25

arrPoints(4,	2)	=	100

Set	shpPolyline	=	ActiveDocument.Pages(1).Shapes.AddPolyline	_

				(SafeArrayOfPoints:=arrPoints)

	 	



AddSet	Method
Adds	a	new	WebNavigationBarSet	object	representing	a	Web	navigation	bar
set	to	the	specified	WebNavigationBarSets	collection.

expression.AddSet(Name,	[Design],	[AutoUpdate]	)

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.

Name			Required	String.	The	name	of	the	Web	navigation	bar	to	be	added.	This
parameter	must	be	unique.

Design			Optional	pbWizardNavBarDesign.	Specifies	the	navigation	bar	design
scheme.

AutoUpdate			Optional	Boolean.	True	if	all	pages	with	the
AddHyperlinkToWebNavBar	property	set	to	True	are	added	as	links	to	the
navigation	bar	and	the	navigation	bar	is	kept	updated.



Remarks

The	Name	parameter	must	be	unique	to	avoid	a	run	time	error.



Example

The	following	example	adds	a	WebNavigationBarSet	object	to	the
WebNavigationBarSets	collection	of	the	active	document	then	sets	some
properties.

Dim	objWebNavBarSet	As	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets.AddSet(	_

				Name:="WebNavBarSet1",	_

				Design:=pbnbDesignAmbient,	_

				AutoUpdate:=True)

With	objWebNavBarSet

				.AddToEveryPage	Left:=50,	Top:=10

				.ButtonStyle	=	pbnbDesignTopLine

				.ChangeOrientation	pbNavBarOrientHorizontal

End	With



AddShape	Method
Adds	a	new	Shape	object	representing	an	AutoShape	to	the	specified	Shapes
collection.

expression.AddShape(Type,	Left,	Top,	Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Required	MsoAutoShapeType.	The	type	of	AutoShape	to	draw.	For	a
complete	list	of	MsoAutoShapeType	constants,	see	the	Object	Browser.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	AutoShape.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	AutoShape.

Width			Required	Variant.	The	width	of	the	shape	representing	the	AutoShape.

Height			Required	Variant.	The	height	of	the	shape	representing	the	AutoShape.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

The	following	example	adds	a	rectangle	to	the	first	page	of	the	active
publication.

Dim	shpShape	As	Shape

Set	shpShape	=	ActiveDocument.Pages(1).Shapes.AddShape	_

				(Type:=msoShapeRectangle,	_

				Left:=144,	Top:=144,	_

				Width:=72,	Height:=144)

	 	



Show	All



AddTable	Method
Adds	a	new	Shape	object	representing	a	table	to	the	specified	Shapes	collection.

expression.AddTable(NumRows,	NumColumns,	Left,	Top,	Width,	Height,
FixedSize,	Direction)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NumRows			Required	Long.	The	number	of	rows	in	the	new	table.	Values
between	1	and	128	are	valid;	any	values	outside	this	range	will	generate	an	error.

NumColumns			Required	Long.	The	number	of	columns	in	the	new	table.
Values	between	1	and	128	are	valid;	any	values	outside	this	range	will	generate
an	error.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	table.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	table.

Width			Required	Variant.	The	width	of	the	shape	representing	the	table.

Height			Required	Variant.	The	height	of	the	shape	representing	the	table.

FixedSize			Optional	Boolean.	True	if	Microsoft	Publisher	reduces	the	number
of	rows	and	columns	of	the	table	to	fit	the	specified	width	and	height.	False	if
Microsoft	Publisher	automatically	increases	the	width	and	height	of	the	table
frame	to	accommodate	the	number	of	rows	and	columns	in	the	table.	Default	is
False.

Direction			Optional	PbTableDirectionType.	The	direction	in	which	table
columns	are	numbered.	The	default	depends	on	the	current	language	setting.

PbTableDirectionType	can	be	one	of	these	PbTableDirectionType	constants.



pbTableDirectionLeftToRight	Table	columns	are	numbered	from	left	to	right.
Default	for	left-to-right	languages.
pbTableDirectionRightToLeft	Table	columns	are	numbered	from	right	to	left.
Default	for	right-to-left	languages.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

This	example	creates	a	new	table	on	the	first	page	of	the	active	publication.

Dim	shpTable	As	Shape

Set	shpTable	=	ActiveDocument.Pages(1).Shapes.AddTable	_

				(NumRows:=3,	NumColumns:=4,	_

				Left:=10,	Top:=10,	_

				Width:=288,	Height:=216)

	 	



Show	All



AddTextbox	Method
Adds	a	new	Shape	object	representing	a	text	box	to	the	specified	Shapes
collection.

expression.AddTextbox(Orientation,	Left,	Top,	Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Orientation			Required	PbTextOrientation.	The	orientation	of	the	text	box.

PbTextOrientation	can	be	one	of	these	PbTextOrientation	constants.
pbTextOrientationHorizontal	A	horizontal	text	box	for	left-to-right	languages.
pbTextOrientationMixed	Not	used	for	this	method.
pbTextOrientationRightToLeft	A	horizontal	text	box	for	right-to-left
languages.	This	value	has	no	effect	if	a	right-to-left	language	is	not	selected.
pbTextOrientationVerticalEastAsia	A	vertical	text	box	for	East	Asian
languages.	If	a	non-East	Asian	language	is	selected,	text	appears	rotated	90
degrees	to	the	right.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	text	box.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	text	box.

Width			Required	Variant.	The	width	of	the	shape	representing	the	text	box.

Height			Required	Variant.	The	height	of	the	shape	representing	the	text	box.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Example

The	following	example	adds	a	new	horizontal	text	box	to	the	first	page	of	the
active	publication.

Dim	shpTextBox	As	Shape

Set	shpTextBox	=	ActiveDocument.Pages(1).Shapes.AddTextBox	_

				(Orientation:=pbTextOrientationHorizontal,	_

				Left:=144,	Top:=144,	_

				Width:=72,	Height:=18)

	 	



Show	All



AddTextEffect	Method
Adds	a	new	Shape	object	representing	a	WordArt	object	to	the	specified	Shapes
collection.

expression.AddTextEffect(PresetTextEffect,	Text,	FontName,	FontSize,
FontBold,	FontItalic,	Left,	Top)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetTextEffect			Required	MsoPresetTextEffect.	The	preset	text	effect	to	use.
The	values	of	the	MsoPresetTextEffect	constants	correspond	to	the	formats
listed	in	the	WordArt	Gallery	dialog	box	(numbered	from	left	to	right	and	from
top	to	bottom).

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect2
msoTextEffect3
msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17



msoTextEffect18
msoTextEffect19
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect30
msoTextEffectMixed	Not	used	for	this	method.

Text			Required	String.	The	text	to	use	for	the	WordArt	object.

FontName			Required	String.	The	name	of	the	font	to	use	for	the	WordArt
object.

FontSize			Required	Variant.	The	font	size	to	use	for	the	WordArt	object.
Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Publisher	(for	example,	"2.5	in").

FontBold			Required	MsoTriState.	Determines	whether	to	format	the	WordArt
text	as	bold.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	method.
msoFalse	Do	not	format	the	WordArt	text	as	bold.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Format	the	WordArt	text	as	bold.

FontItalic			Required	MsoTriState.	Determines	whether	to	format	the	WordArt
text	as	italic.



MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	method.
msoFalse	Do	not	format	the	WordArt	text	as	italic.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Format	the	WordArt	text	as	italic.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	WordArt	object.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	WordArt	object.



Remarks

For	the	Left	and	Top	arguments,	numeric	values	are	evaluated	in	points;	strings
can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").

The	height	and	width	of	the	WordArt	object	is	determined	by	its	text	and
formatting.

Use	the	TextEffect	property	to	return	a	TextEffectFormat	object	whose
properties	can	be	used	to	edit	an	existing	WordArt	object.



Example

The	following	example	adds	a	WordArt	object	to	the	first	page	of	the	active
publication.

Dim	shpWordArt	As	Shape

Set	shpWordArt	=	ActiveDocument.Pages(1).Shapes.AddTextEffect	_

				(PresetTextEffect:=msoTextEffect7,	Text:="Annual	Report",	_

				FontName:="Arial	Black",	FontSize:=24,	_

				FontBold:=msoFalse,	FontItalic:=msoFalse,	_

				Left:=144,	Top:=72)

	 	



Show	All



AddToCatalogMergeArea	Method
Adds	the	specified	shape	or	shapes	to	the	publication	page's	catalog	merge	area.

expression.AddToCatalogMergeArea

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	catalog	merge	area	is	automatically	resized	to	accommodate	objects	that	are
larger	than	the	merge	area,	or	that	are	positioned	outside	the	catalog	merge	area
when	they	are	added.

The	AddToCatalogMergeArea	method	does	not	apply	to	merge	data	fields:

Use	the	Insert	method	of	the	MailMergeDataFields	collection	to	add	a
picture	data	field	to	a	publication	page's	catalog	merge	area.
Use	the	InsertMailMergeField	method	of	the	TextRange	object	to	add	a
text	data	field	to	a	text	box.

Note	that	to	add	a	text	box	that	will	contain	text	data	fields	to	a	catalog	merge
area,	you	use	the	AddToCatalogMergeArea	method.



Example

The	following	example	adds	a	rectangle	to	the	catalog	merge	area	on	the	first
page	of	the	specified	publication.	This	example	assumes	a	catalog	merge	area
has	been	added	to	the	first	page.

ThisDocument.Pages(1).Shapes.AddShape(1,	80,	75,	450,	125).AddToCatalogMergeArea



AddToEveryPage	Method
Adds	a	ShapeRange	of	type	pbWebNavigationBar	to	each	page	of	the	current
document.

expression.AddToEveryPage(Left,	Top,	[Width])

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	Web	navigation	bar	set.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	Web	navigation	bar	set.

Width			Optional	Variant.	The	width	of	the	shape	representing	the	Web
navigation	bar	set.



Remarks

The	specified	Web	navigation	bar	set	must	exist	before	calling	this	method.



Example

The	following	example	adds	a	Web	navigation	bar	set	named	"WebNavBarSet1"
to	the	top	of	every	page	in	the	active	document.

ActiveDocument.WebNavigationBarSets("WebNavBarSet1")	_

				.AddToEveryPage	Left:=10,	Top:=20

The	following	example	adds	a	new	Web	navigation	bar	set	to	the	active
document	and	adds	it	to	every	page	of	the	publication.

Dim	objWebNavBarSet	As	WebNavigationBarSet

Set	objWebNavBarSet	=	ActiveDocument.WebNavigationBarSets.AddSet(	_

				Name:="WebNavBarSet1",	_

				Design:=pbnbDesignTopLine,	_

				AutoUpdate:=True)

objWebNavBarSet.AddToEveryPage	Left:=50,	Top:=10,	Width:=500



Show	All



AddWebControl	Method
Adds	a	new	Shape	object	representing	a	Web	form	control	to	the	specified
Shapes	collection.

expression.AddWebControl(Type,	Left,	Top,	Width,	Height,
LaunchPropertiesWindow)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Required	PbWebControlType.	Specifies	the	type	of	Web	form	control	to
add.	An	error	occurs	if	pbWebControlWebComponent	is	used.

PbWebControlType	can	be	one	of	these	PbWebControlType	constants.
pbWebControlCheckBox	Adds	a	check	box.
pbWebControlCommandButton	Adds	a	command	button.
pbWebControlHotSpot	Adds	a	hot	spot.
pbWebControlHTMLFragment	Adds	an	HTML	fragment.
pbWebControlListBox	Adds	a	list	box.
pbWebControlMultiLineTextBox	Adds	a	multiple-line	text	area.
pbWebControlOptionButton	Adds	an	option	button.
pbWebControlSingleLineTextBox	Adds	a	single-line	text	box.
pbWebControlWebComponent	Not	used	for	this	method.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	Web	form	control.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	Web	form	control.

Width			Required	Variant.	The	width	of	the	shape	representing	the	Web	form
control.	For	command	buttons,	this	parameter	is	ignored.

Height			Required	Variant.	The	height	of	the	shape	representing	the	Web	form



control.	For	command	buttons,	this	parameter	is	ignored.

LaunchPropertiesWindow			Optional	Boolean.	Not	supported.	Default	is	False;
an	error	occurs	if	this	argument	is	set	to	True.



Remarks

For	the	Left,	Top,	Width,	and	Height	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").

When	adding	a	hot	spot	to	a	Web	control	by	using	the	pbWebControlHotSpot
constant,	the	URL	is	specified	by	the	Hyperlink	property.

Note	that	the	Shape.Fill	property,	which	returns	a	FillFormat	object,	and	the
Shape.Line	property,	which	returns	a	LineFormat	object,	cannot	be	accessed
from	a	hot	spot	shape.	A	run-time	error	is	returned	if	attempting	to	access	these
properties	from	a	hot	spot	shape.



Example

The	following	example	adds	a	Web	form	check	box	control	to	the	first	page	of
the	active	publication.

Dim	shpCheckBox	As	Shape

Set	shpCheckBox	=	ActiveDocument.Pages(1).Shapes.AddWebControl	_

				(Type:=pbWebControlCheckBox,	_

				Left:=216,	Top:=216,	_

				Width:=18,	Height:=18)

	 	

The	following	example	adds	hot	spots	to	a	shape	on	page	four	of	the	active	Web
publication.	First,	a	four-point	star	AutoShape	is	added	to	the	page.	Next,	a	hot
spot	is	added	to	each	arm	of	the	star	by	using	the	AddWebControl	method	with
a	Type	of	pbWebControlHotSpot.	Finally,	a	hyperlink	is	added	to	each	hot	spot
by	using	the	Hyperlink	property	of	each	hot	spot	shape.

Dim	theDoc	As	Document

Dim	theStar	As	Shape

Dim	theWC1	As	Shape

Dim	theWC2	As	Shape

Dim	theWC3	As	Shape

Dim	theWC4	As	Shape

Set	theDoc	=	ActiveDocument

Set	theStar	=	theDoc.Pages(4).Shapes.AddShape	_

								(Type:=msoShape4pointStar,	Left:=200,	Top:=25,	_

								Width:=200,	Height:=200)

With	theDoc.Pages(4).Shapes

				

				Set	theWC1	=	.addWebControl(Type:=pbWebControlHotSpot,	_

								Left:=280,	Top:=25,	Width:=40,	Height:=80)

								With	theWC1

												.Hyperlink.Address	=	"http://www.contoso.com/page1.htm"

								End	With

				

				Set	theWC2	=	.addWebControl(Type:=pbWebControlHotSpot,	_

								Left:=320,	Top:=105,	Width:=80,	Height:=40)

								With	theWC2

												.Hyperlink.Address	=	"http://www.contoso.com/page2.htm"

								End	With



				

				Set	theWC3	=	.addWebControl(Type:=pbWebControlHotSpot,	_

								Left:=280,	Top:=145,	Width:=40,	Height:=80)

								With	theWC3

												.Hyperlink.Address	=	"http://www.contoso.com/page3.htm"

								End	With

								

				Set	theWC4	=	.addWebControl(Type:=pbWebControlHotSpot,	_

								Left:=200,	Top:=105,	Width:=80,	Height:=40)

								With	theWC4

												.Hyperlink.Address	=	"http://www.contoso.com/page4.htm"

								End	With

End	With

	 	



AddWebNavigationBar	Method
Adds	a	Shape	object	of	type	pbWebNavigationBar	to	the	current	page	of	a
publication.

expression.AddWebNavigationBar(Name,	Left,	Top,	[Width])

expression				Required.	An	expression	that	returns	a	Shape	object.

Name			Required	String.	The	name	of	the	WebNavigationBarSet	object	to	be
added	to	the	specified	Shape.

Left			Required	Variant.	The	position	of	the	left	edge	of	the	shape	representing
the	Web	navigation	bar	set.

Top			Required	Variant.	The	position	of	the	top	edge	of	the	shape	representing
the	Web	navigation	bar	set.

Width			Optional	Variant.	The	width	of	the	shape	representing	the	Web
navigation	bar	set.



Remarks

The	AddWebNavigationBar	method	does	not	create	a	new	Web	navigation	bar
set.	It	adds	an	existing	set	from	the	WebNavigationBarSets	collection	with	the
name	passed	in	as	the	Name	parameter.



Example

The	following	example	adds	a	WebNavigationBarSet	to	the	active	document.

Dim	shpShape	As	Shape

ActiveDocument.WebNavigationBarSets.AddSet	Name:="NavBar",	AutoUpdate:=True

Set	shpShape	=	ActiveDocument.Pages(1).Shapes.AddWebNavigationBar	_

				(Name:="NavBar",	Left:=10,	Top:=25)



Show	All



AddWizardPage	Method
Adds	the	specified	new	wizard	page	to	a	specified	location	in	a	publication.

expression.AddWizardPage(After,	PageType,	[AddHyperLinkToWebNavBar])

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

After			Required	Long.	The	page	after	which	to	place	the	new	wizard	page.

PageType			Optional	PbWizardPageType.	The	type	of	wizard	page	to	add.

AddHyperLinkToWebNavBar			Optional	Boolean.	Specifies	whether	a	link	to
the	new	page	will	be	added	to	the	automatic	navigation	bars	of	existing	pages.
Default	is	False,	which	means	that	if	this	argument	is	omitted,	links	to	this	page
will	not	be	added	to	the	automatic	navigation	bars	of	existing	pages.

PbWizardPageType	can	be	one	of	these	PbWizardPageType	constants.
pbWizardPageTypeCatalogBlank
pbWizardPageTypeCatalogCalendar
pbWizardPageTypeCatalogEightItemsOneColumn
pbWizardPageTypeCatalogEightItemsTwoColumns
pbWizardPageTypeCatalogFeaturedItem
pbWizardPageTypeCatalogForm
pbWizardPageTypeCatalogFourItemsAlignedPictures
pbWizardPageTypeCatalogFourItemsOffsetPictures
pbWizardPageTypeCatalogFourItemsSquaredPictures
pbWizardPageTypeCatalogOneColumnText
pbWizardPageTypeCatalogOneColumnTextPicture
pbWizardPageTypeCatalogTableOfContents
pbWizardPageTypeCatalogThreeItemsAlignedPictures
pbWizardPageTypeCatalogThreeItemsOffsetPictures
pbWizardPageTypeCatalogThreeItemsStackedPictures



pbWizardPageTypeCatalogTwoColumnsText
pbWizardPageTypeCatalogTwoColumnsTextPicture
pbWizardPageTypeCatalogTwoItemsAlignedPictures
pbWizardPageTypeCatalogTwoItemsOffsetPictures
pbWizardPageTypeNewsletter3Stories
pbWizardPageTypeNewsletterCalendar
pbWizardPageTypeNewsletterOrderForm
pbWizardPageTypeNewsletterResponseForm
pbWizardPageTypeNewsletterSignupForm
pbWizardPageTypeNone	default
pbWizardPageTypeWebCalendar
pbWizardPageTypeWebEvent
pbWizardPageTypeWebPriceList
pbWizardPageTypeWebRelatedLinks
pbWizardPageTypeWebSpecialOffer
pbWizardPageTypeWebStory



Remarks

You	can	only	add	wizard	pages	to	similar	wizard	publications.	For	example,	you
can	add	a	Catalog	Calendar	Wizard	page	to	a	catalog	but	not	to	a	newsletter.	An
error	occurs	if	you	try	to	add	a	wizard	page	to	a	different	type	of	publication.



Example

This	example	creates	a	new	catalog	publication,	adds	the	wizard	calendar	page
after	the	first	page	of	the	catalog,	and	adds	the	page	as	a	link	to	each	Web
navigation	bar	set	of	the	publication.

Sub	AddNewWizardPage()

				Dim	PubApp	As	Publisher.Application

				Dim	PubDoc	As	Publisher.Document

				Set	PubApp	=	New	Publisher.Application

				Set	PubDoc	=	PubApp.NewDocument(Wizard:=pbWizardCatalogs,	_

								Design:=7)

				PubDoc.Pages.AddWizardPage	After:=1,	_

								PageType:=pbWizardPageTypeCatalogCalendar,	_

								AddHyperLinkToWebNavBar:=True

				PubApp.ActiveWindow.Visible	=	True

End	Sub

	 	

This	example	verifies	that	the	active	document	is	a	catalog	and,	if	it	is,	adds	a
catalog	form	after	the	first	page	but	does	not	add	the	page	as	a	link	in	any	Web
navigation	bar	sets.

Sub	InsertCatalogWizardPage()

				With	ActiveDocument

								If	.Wizard.ID	=	161	Then

												.Pages.AddWizardPage	After:=1,	_

																PageType:=pbWizardPageTypeCatalogForm,	_

																AddHyperLinkToWebNavBar:=False

								End	If

				End	With

End	Sub

	 	



Show	All



Align	Method
Aligns	all	the	shapes	in	the	specified	ShapeRange	object.

expression.Align(AlignCmd,	RelativeTo)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AlignCmd			Required	MsoAlignCmd.	Specifies	how	the	shapes	are	to	be
aligned.

MsoAlignCmd	can	be	one	of	these	MsoAlignCmd	constants.
msoAlignBottoms	Aligns	shapes	along	their	bottom	edges.	If	RelativeTo	is
msoFalse,	the	bottommost	shape	determines	the	line	against	which	the	other
shapes	are	aligned.
msoAlignCenters	Aligns	shapes	on	a	vertical	line	through	their	centers.	If
RelativeTo	is	msoFalse,	shapes	are	aligned	on	a	line	halfway	between	the	left-
and	rightmost	shapes.
msoAlignLefts	Aligns	shapes	along	their	left	edges.	If	RelativeTo	is	msoFalse,
the	leftmost	shape	determines	the	line	against	which	the	other	shapes	are
aligned.
msoAlignMiddles	Aligns	shapes	on	a	horizontal	line	through	their	centers.	If
RelativeTo	is	msoFalse,	shapes	are	aligned	on	a	line	halfway	between	the	top-
and	bottommost	shapes.
msoAlignRights	Aligns	shapes	along	their	right	edges.	If	RelativeTo	is
msoFalse,	the	rightmost	shape	determines	the	line	against	which	the	other
shapes	are	aligned.
msoAlignTops	Aligns	shapes	along	their	top	edges.	If	RelativeTo	is	msoFalse,
the	topmost	shape	determines	the	line	against	which	the	other	shapes	are
aligned.

RelativeTo			Required	MsoTriState.	Specifies	whether	shapes	are	aligned
relative	to	the	page	or	to	one	another.

MsoTriState	can	be	one	of	these	MsoTriState	constants.



msoCTrue	Not	used	with	this	method.
msoFalse	Aligns	shapes	relative	to	one	another.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Aligns	shapes	relative	to	the	page.



Remarks

If	the	RelativeTo	argument	is	msoFalse	and	the	shape	range	contains	only	one
shape,	an	error	occurs.



Example

The	following	example	aligns	all	the	shapes	on	the	first	page	of	the	active
publication	on	a	vertical	line	through	their	centers.

ActiveDocument.Pages(1).Shapes.Range.Align	_

				AlignCmd:=msoAlignCenters,	_

				RelativeTo:=msoTrue

	 	



Apply	Method
Applies	formatting	copied	from	another	shape	or	shape	range	using	the	PickUp
method.

expression.Apply

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	you	do	not	first	use	the	PickUp	method	to	copy	the	formatting	from	another
shape,	an	error	occurs.



Example

The	following	example	copies	the	formatting	from	the	first	shape	of	the	active
publication	to	the	second	shape	of	the	active	publication.

With	ActiveDocument.Pages(1)

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With

	 	



Show	All



ApplyAutoFormat	Method
Applies	automatic	built-in	table	formatting	to	a	specified	table.

expression.ApplyAutoFormat(AutoFormat,	TextFormatting,	TextAlignment,
Fill,	Borders)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AutoFormat			Required	PbTableAutoFormatType.	The	type	of	automatic
formatting	to	apply	to	the	specified	table.

PbTableAutoFormatType	can	be	one	of	these	PbTableAutoFormatType
constants.
pbTableAutoFormatCheckbookRegister
pbTableAutoFormatCheckerboard
pbTableAutoFormatDefault
pbTableAutoFormatList1
pbTableAutoFormatList2
pbTableAutoFormatList3
pbTableAutoFormatList4
pbTableAutoFormatList5
pbTableAutoFormatList6
pbTableAutoFormatList7
pbTableAutoFormatListWithTitle1
pbTableAutoFormatListWithTitle2
pbTableAutoFormatListWithTitle3
pbTableAutoFormatMixed
pbTableAutoFormatNone
pbTableAutoFormatNumbers1
pbTableAutoFormatNumbers2
pbTableAutoFormatNumbers3



pbTableAutoFormatNumbers4
pbTableAutoFormatNumbers5
pbTableAutoFormatNumbers6
pbTableAutoFormatTableOfContents1
pbTableAutoFormatTableOfContents2
pbTableAutoFormatTableOfContents3

TextFormatting			Optional	Boolean.	True	to	apply	font	formatting	to	the	text	in
the	table.	Default	value	is	True.

TextAlignment			Optional	Boolean.	True	to	apply	text	alignment	to	the	text	in
the	table.	Default	value	is	True.

Fill			Optional	Boolean.	True	to	apply	fill	formatting	to	cells	in	the	table.
Default	value	is	True.

Borders			Optional	Boolean.	True	to	apply	borders	to	cells	in	the	table.	Default
value	is	True.



Example

This	example	applies	the	checkbook	register	automatic	formatting,	with	fill	and
borders,	to	the	specified	table.

Sub	ApplyAutomaticTableFormatting()

				ActiveDocument.Pages(1).Shapes(1).Table.ApplyAutoFormat	_

								AutoFormat:=pbTableAutoFormatCheckbookRegister,	_

								Borders:=False

End	Sub

	 	



ApplyCustomDropCap	Method
Applies	custom	formatting	to	the	first	letters	of	paragraphs	in	a	text	frame.

expression.ApplyCustomDropCap(LinesUp,	Size,	Span,	FontName,	Bold,
Italic)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LinesUp			Optional	Long.	The	number	of	lines	to	move	up	the	drop	cap.	The
default	is	0.	The	maximum	number	cannot	be	more	than	the	number	entered	for
the	Size	argument	less	one.

Size			Optional	Long.	The	size	of	the	drop	cap	letters	in	number	of	lines	high.
The	default	is	5.

Span			Optional	Long.	The	number	of	letters	included	in	the	drop	cap.	The
default	is	1.

FontName			Optional	String.	The	name	of	the	font	to	format	the	drop	cap.	The
default	is	the	current	font.

Bold			Optional	Boolean.	True	to	bold	the	drop	cap.	The	default	is	False.

Italic			Optional	Boolean.	True	to	italicize	the	drop	cap.	The	default	is	False.



Example

This	example	formats	the	first	three	letters	of	the	paragraphs	in	the	specified	text
box.

Sub	CustDropCap()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange.DropCap	_

								.ApplyCustomDropCap	LinesUp:=1,	Size:=6,	Span:=3,	_

								FontName:="Script	MT	Bold",	Bold:=True,	Italic:=True

End	Sub

	 	



ApplyFilter	Method
Applies	a	filter	to	a	mail	merge	data	source	to	remove	(or	filter	out)	specified
records	containing	(or	not	containing)	specific	data.

expression.ApplyFilter

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	new	filter	that	removes	all	records	with	a	blank	Region
field	and	then	applies	the	filter	to	the	active	publication.	This	example	assumes
that	a	mail	merge	data	source	is	attached	to	the	active	publication.

Sub	FilterDataSource()

				With	ActiveDocument.MailMerge.DataSource

								.Filters.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

	 	



AutomaticLength	Method
Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	be	scaled	automatically	when	the	callout	is	moved.

expression.AutomaticLength

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Calling	this	method	sets	the	AutoLength	property	of	the	specified	object	to
msoTrue.

Use	the	CustomLength	method	to	specify	that	the	first	segment	of	the	callout
line	retain	the	fixed	length	returned	by	the	Length	property	whenever	the	callout
is	moved.	Applies	only	to	callouts	whose	lines	consist	of	more	than	one	segment
(types	msoCalloutThree	and	msoCalloutFour).



Example

This	example	toggles	between	an	automatically-scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	the	first	shape	in	the	active
publication.	For	the	example	to	work,	this	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	Length:=50

				Else

								.AutomaticLength

				End	If

End	With

	 	



BeginConnect	Method
Attaches	the	beginning	of	the	specified	connector	to	a	specified	shape.

expression.BeginConnect(ConnectedShape,	ConnectionSite)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ConnectedShape			Required	Shape	object.	The	shape	to	which	Microsoft
Publisher	attaches	the	beginning	of	the	connector.	The	specified	Shape	object
must	be	in	the	same	Shapes	collection	as	the	connector.

ConnectionSite			Required	Long.	A	connection	site	on	the	shape	specified	by
ConnectedShape.	Must	be	an	integer	between	1	and	the	integer	returned	by	the
ConnectionSiteCount	property	of	the	specified	shape.	Connection	sites	are
numbered	starting	from	the	top	of	the	specified	shape	and	moving
counterclockwise	around	the	shape.	If	you	want	the	connector	to	automatically
find	the	shortest	path	between	the	two	shapes	it	connects,	specify	any	valid
integer	for	this	argument	and	then	use	the	RerouteConnections	method	after	the
connector	is	attached	to	shapes	at	both	ends.



Remarks

If	there's	already	a	connection	between	the	beginning	of	the	connector	and
another	shape,	that	connection	is	broken.	If	the	beginning	of	the	connector	isn't
already	positioned	at	the	specified	connecting	site,	this	method	moves	the
beginning	of	the	connector	to	the	connecting	site	and	adjusts	the	size	and
position	of	the	connector.

When	you	attach	a	connector	to	an	object,	the	size	and	position	of	the	connector
are	automatically	adjusted	if	necessary.

Use	the	EndConnect	method	to	attach	the	end	of	the	connector	to	a	shape.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication	and
connects	them	with	a	curved	connector.	Note	that	the	RerouteConnections
method	overrides	the	values	you	supply	for	the	ConnectionSite	arguments	used
with	the	BeginConnect	and	EndConnect	methods.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	curved	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

				End	With

End	With

	 	



BeginCustomUndoAction	Method
Specifies	the	starting	point	and	label	(textual	description)	of	a	group	of	actions
that	are	wrapped	to	create	a	single	undo	action.	The	EndCustomUndoAction
method	is	used	to	specify	the	end	point	of	the	actions	used	to	create	the	single
undo	action.	The	wrapped	group	of	actions	can	be	undone	with	a	single	undo.

expression.BeginCustomUndoAction(ActionName)

expression				Required.	An	expression	that	returns	a	Document	object.

ActionName			Required	String.	The	label	that	corresponds	to	the	single	undo
action.	This	label	appears	when	you	click	the	arrow	beside	the	Undo	button	on
the	Standard	toolbar.



Remarks

The	following	methods	of	the	Document	object	are	disabled	within	a	custom
undo	action.	A	run-time	error	is	returned	if	any	of	these	methods	are	called
within	a	custom	undo	action:

Document.Close
Document.MailMerge.DataSource.Close
Document.PrintOut
Document.Redo
Document.Save
Document.SaveAs
Document.Undo
Document.UndoClear
Document.UpdateOLEObjects

The	BeginCustomUndoAction	method	must	be	called	before	the
EndCustomUndoAction	method	is	called.	A	run-time	error	is	returned	if
EndCustomUndoAction	is	called	before	BeginCustomUndoAction.

Nesting	a	custom	undo	action	within	another	custom	undo	action	is	allowed,	but
the	nested	custom	undo	action	will	have	no	effect.	Only	the	outermost	custom
undo	action	will	be	active.



Example

The	following	example	contains	two	custom	undo	actions.	The	first	one	is
created	on	the	first	page	of	the	active	publication.	The
BeginCustomUndoAction	method	is	used	to	specify	the	point	at	which	the
custom	undo	action	should	begin.	Six	individual	actions	are	performed,	and	then
they	are	wrapped	into	one	action	with	the	call	to	EndCustomUndoAction.

The	text	in	the	text	frame	that	was	created	within	the	first	custom	undo	action	is
then	tested	to	determine	whether	the	font	is	Verdana.	If	not,	the	Undo	method	is
called	with	UndoActionsAvailable	passed	as	a	parameter.	In	this	case	there	is
only	one	undo	action	available.	So,	the	call	to	Undo	will	only	undo	one	action,
but	this	one	action	has	wrapped	six	actions	into	one.

A	second	undo	action	is	then	created,	and	it	could	also	be	undone	later	with	a
single	undo	operation.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(1)

With	theDoc

				'	The	following	six	actions	are	wrapped	to	create	one

				'	custom	undo	action	named	"Add	Rectangle	and	Courier	Text".

				.BeginCustomUndoAction	("Add	Rectangle	and	Courier	Text")

				With	thePage

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

												75,	75,	190,	30)

								With	theShape.TextFrame.TextRange

													.Font.Size	=	14

													.Font.Bold	=	msoTrue

													.Font.Name	=	"Courier"

													.Text	=	"This	font	is	Courier."

								End	With

					End	With

					.EndCustomUndoAction

				

				If	Not	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Verdana"	Then

								'	This	call	to	Undo	will	undo	all	actions	that	are	available.

								'	In	this	case,	there	is	only	one	action	that	can	be	undone.



								.Undo	(.UndoActionsAvailable)

								'	A	new	custom	undo	action	is	created	with	a	name	of

								'	"Add	Balloon	and	Verdana	Text".

								.BeginCustomUndoAction	("Add	Balloon	and	Verdana	Text")

								With	thePage

												Set	theShape	=	.Shapes.AddShape(msoShapeBalloon,	_

																75,	75,	190,	30)

												With	theShape.TextFrame.TextRange

																.Font.Size	=	11

																.Font.Name	=	"Verdana"

																.Text	=	"This	font	is	Verdana."

												End	With

								End	With

								.EndCustomUndoAction

				End	If

End	With



BeginDisconnect	Method
Detaches	the	beginning	of	the	specified	connector	from	the	shape	to	which	it's
attached.

expression.BeginDisconnect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	method	doesn't	alter	the	size	or	position	of	the	connector:	the	beginning	of
the	connector	remains	positioned	at	a	connection	site	but	is	no	longer	connected.

Use	the	EndDisconnect	method	to	detach	the	end	of	the	connector	from	a	shape.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication,
attaches	them	with	a	connector,	automatically	reroutes	the	connector	along	the
shortest	path,	and	then	detaches	the	connector	from	the	rectangles.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=0,	EndY:=0)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

								'	Disconnect	the	new	connector	from	the	rectangles	but

								'	leave	in	place.

								.BeginDisconnect

								.EndDisconnect

				End	With

End	With

	 	





BreakForwardLink	Method
Breaks	the	forward	link	for	the	specified	text	frame,	if	such	a	link	exists.

expression.BreakForwardLink

expression				Required.	An	expression	that	returns	a	TextFrame	object.



Remarks

Applying	this	method	to	a	shape	in	the	middle	of	a	chain	of	shapes	with	linked
text	frames	will	break	the	chain,	leaving	two	sets	of	linked	shapes.	All	of	the
text,	however,	will	remain	in	the	first	series	of	linked	shapes.



Example

This	example	creates	a	new	publication,	adds	a	chain	of	three	linked	text	boxes
to	it,	and	then	breaks	the	link	after	the	second	text	box.

Sub	BreakTextLink()

				Dim	shpTextbox1	As	Shape

				Dim	shpTextbox2	As	Shape

				Dim	shpTextbox3	As	Shape

				Set	shpTextbox1	=	ActiveDocument.Pages(1).Shapes.AddTextbox	_

								(Orientation:=msoTextOrientationHorizontal,	_

								Left:=72,	Top:=36,	Width:=72,	Height:=36)

				shpTextbox1.TextFrame.TextRange	=	"This	is	some	text.	"	_

								&	"This	is	some	more	text.	This	is	even	more	text.	"	_

								&	"And	this	is	some	more	text	and	even	more	text."

				Set	shpTextbox2	=	ActiveDocument.Pages(1).Shapes.AddTextbox	_

								(Orientation:=msoTextOrientationHorizontal,	_

								Left:=72,	Top:=108,	Width:=72,	Height:=36)

				Set	shpTextbox3	=	ActiveDocument.Pages(1).Shapes.AddTextbox	_

								(Orientation:=msoTextOrientationHorizontal,	_

								Left:=72,	Top:=180,	Width:=72,	Height:=36)

				shpTextbox1.TextFrame.NextLinkedTextFrame	=	shpTextbox2.TextFrame

				shpTextbox2.TextFrame.NextLinkedTextFrame	=	shpTextbox3.TextFrame

				MsgBox	"Textboxes	1,	2,	and	3	are	linked."

				shpTextbox2.TextFrame.BreakForwardLink

End	Sub

	 	



Show	All



BuildFreeform	Method
Builds	a	freeform	object.	Returns	a	FreeformBuilder	object	that	represents	the
freeform	as	it	is	being	built.

expression.BuildFreeform(EditingType,	X1,	Y1)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

EditingType			Required	MsoEditingType.	Specifies	the	editing	type	of	the	first
node.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto	Adds	a	node	type	appropriate	to	the	segments	being
connected.
msoEditingCorner	Adds	a	corner	node.
msoEditingSmooth	Not	used	with	this	method.
msoEditingSymmetric	Not	used	with	this	method.

X1			Required	Variant.	The	horizontal	position	of	the	first	node	in	the	freeform
drawing	relative	to	the	upper-left	corner	of	the	page.

Y1			Required	Variant.	The	vertical	position	of	the	first	node	in	the	freeform
drawing	relative	to	the	upper-left	corner	of	the	page.



Remarks

For	the	X1	and	Y1	arguments,	numeric	values	are	evaluated	in	points;	strings	can
be	in	any	units	supported	by	Microsoft	Publisher	(for	example,	"2.5	in").

Use	the	AddNodes	method	to	add	segments	to	the	freeform.	After	you	have
added	at	least	one	segment	to	the	freeform,	you	can	use	the	ConvertToShape
method	to	convert	the	FreeformBuilder	object	into	a	Shape	object	that	has	the
geometric	description	you've	defined	in	the	FreeformBuilder	object.



Example

This	example	adds	a	freeform	with	four	segments	to	the	first	page	of	the	active
publication.

'	Add	a	new	freeform	object.

With	ActiveDocument.Shapes	_

								.BuildFreeform(EditingType:=msoEditingCorner,	_

								X1:=100,	Y1:=100)

				'	Add	three	more	nodes	and	close	the	polygon.

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingCorner,	_

								X1:=200,	Y1:=200,	X2:=225,	Y2:=250,	X3:=250,	Y3:=200

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingAuto,	X1:=200,	Y1:=100

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=150,	Y1:=50

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=100,	Y1:=100

				'	Convert	the	polygon	to	a	Shape	object.

				.ConvertToShape

End	With

	 	



CentimetersToPoints	Method
Converts	a	measurement	from	centimeters	to	points	(1	cm	=	28.35	points).
Returns	the	converted	measurement	as	a	Single.

expression.CentimetersToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	centimeter	value	to	be	converted	to	points.



Remarks

Use	the	PointsToCentimeters	method	to	convert	measurements	in	points	to
centimeters.



Example

This	example	converts	measurements	in	centimeters	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	centimeters	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	cm	=	"	_

								&	Format(Application	_

								.CentimetersToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



ChangeFileOpenDirectory	Method
Sets	the	folder	in	which	Publisher	searches	for	documents.	The	specified	folder's
contents	are	listed	the	next	time	the	Open	Publication	dialog	box	(File	menu)	is
displayed.

expression.ChangeFileOpenDirectory(Dir)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Dir			Required	String.	The	directory	path.



Remarks

Publisher	searches	the	specified	folder	for	documents	until	the	user	changes	the
folder	in	the	Open	Publication	dialog	box	or	the	current	Publisher	session	ends.
Use	the	PathForPublications	property	of	the	Options	object	to	change	the
default	folder	for	documents	in	every	Publisher	session.



Example

This	example	changes	the	folder	in	which	Publisher	searches	for	documents.
(Note	that	PathToDirectory	must	be	replaced	with	a	valid	file	path	for	this
example	to	work.)

Sub	ChangeOpenPath()

				ChangeFileOpenDirectory	Dir:="PathToDirectory"

End	Sub

	 	



Show	All



ChangeOrientation	Method
Sets	a	PbNavBarOrientation	constant	that	represents	the	alignment	of	the
navigation	bar;	vertical	or	horizontal.

ChangeOrientation	can	be	set	to	one	of	these	PbNavBarOrientation
constants:
pbNavBarOrientHorizontal
pbNavBarOrientVertical

expression.ChangeOrientation

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

The	following	example	sets	an	object	variable	to	the	first	Web	navigation	bar	set
in	the	active	document,	adds	it	every	page,	changes	the	orientation	to	horizontal,
sets	the	horizontal	alignment	to	center,	and	then	sets	the	horizontal	button	count
to	4.

Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets(1)

With	objWebNav

				.AddToEveryPage	Left:=10,	Top:=10

				.ChangeOrientation	pbNavBarOrientHorizontal

				.HorizontalAlignment	=	pbnbAlignCenter

				.HorizontalButtonCount	=	4

End	With



Characters	Method
Returns	a	TextRange	object	that	represents	the	specified	subset	of	text
characters.

expression.Characters(Start,	Length)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Start			Required	Long.	The	first	character	in	the	returned	range.

Length			Optional	Long.	The	number	of	characters	to	be	returned.	Default	is	1.



Remarks

If	Start	is	greater	than	the	number	of	characters	in	the	specified	text,	the	returned
range	starts	with	the	last	character	in	the	specified	range.

If	Length	is	greater	than	the	number	of	characters	from	the	specified	starting
character	to	the	end	of	the	text,	the	returned	range	contains	all	those	characters.



Example

This	example	sets	the	text	for	the	first	shape	on	the	first	page	in	the	active
document,	and	then	sets	the	font	of	the	first	two	characters	to	15	points	and	bold.

Sub	CharRange()

				Dim	rngCharacters	As	TextRange

				Set	rngCharacters	=	Application.ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.InsertBefore(NewText:="Hello	World.")

				With	rngCharacters.Characters(Start:=1,	Length:=2).Font

								.Size	=	15

								.Bold	=	msoTrue

				End	With

End	Sub

	 	



Clear	Method
DropCap	object:	Removes	the	dropped	capital	letter	formatting.

PhoneticGuide	object:	Removes	the	phonetic	information	from	Japanese	text.

TabStop	object:	Removes	the	specified	custom	tab	stop.

FindReplace	object:	Removes	the	specified	search	criteria	in	a	find	or	replace
operation.

expression.Clear

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	removes	the	dropped	capital	letter	formatting	in	the	specified	text
frame.

Sub	ClearDropCap()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.DropCap.Clear

End	Sub

	 	



ClearAll	Method
Clears	all	the	custom	tab	stops	from	the	specified	paragraphs.

expression.ClearAll

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	clear	an	individual	tab	stop,	use	the	Clear	method	of	the	TabStop	object.	The
ClearAll	method	doesn't	clear	the	default	tab	stops.	To	manipulate	the	default
tab	stops,	use	the	DefaultTabStop	property	for	the	document.



Example

This	example	clears	all	the	custom	tab	stops	in	the	first	shape	on	the	first	page	of
the	active	publication.	This	example	assumes	that	the	specified	shape	is	a	text
frame	and	not	another	type	of	shape.

Sub	ClearAllTabStops()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.ParagraphFormat.Tabs.ClearAll

End	Sub

	 	



Show	All



Close	Method
Close	method	as	it	applies	to	the	Document	object.

Closes	the	current	publication	and	creates	a	blank	one	in	its	place.

expression.Close

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

You	can	only	use	the	Close	method	on	an	open	Document	object	in	another
instance	of	Publisher.	Attempting	to	close	the	active	publication	in	the	current
instance	of	Publisher	causes	an	error.

Close	method	as	it	applies	to	the	MailMergeDataSource	object.

Closes	the	specified	mail	merge	data	source,	cancels	the	mail	merge,	and
converts	all	mail	merge	data	fields	to	plain	text.

expression.Close

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

As	it	applies	to	the	Document	object.

This	example	opens	a	publication	in	a	new	instance	of	Publisher	for	modification
and	then	closes	the	publication.	(Note	that	Filename	must	be	replaced	with	a
valid	file	name	for	this	example	to	work.)

Sub	ModifyAnotherPublication()

				'	Create	new	instance	of	Publisher.

				Dim	appPub	As	New	Publisher.Application

				'	Open	publication.

				appPub.Open	FileName:="Filename"

				'	Put	code	here	to	modify	the	publication	as	necessary.

				'	Close	the	publication.

				appPub.ActiveDocument.Close

				'	Release	the	other	instance	of	Publisher.

				Set	appPub	=	Nothing

End	Sub

	 	 	 	

As	it	applies	to	the	MailMergeDataSource	object.

The	following	example	closes	the	data	source	for	the	active	mail	merge
publication.

ActiveDocument.MailMerge.DataSource.Close

	 	 	 	



Show	All



Collapse	Method
Collapses	a	range	or	selection	to	the	starting	or	ending	position.	After	a	range	or
selection	is	collapsed,	the	starting	and	ending	points	are	equal.

expression.Collapse(Direction)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Direction			Required	PbCollapseDirection.	The	direction	in	which	to	collapse
the	range	or	selection.

PbCollapseDirection	can	be	one	of	these	PbCollapseDirection	constants.
pbCollapseEnd
pbCollapseStart



Remarks

If	you	use	pbCollapseEnd	to	collapse	a	range	that	refers	to	an	entire	paragraph,
the	range	will	be	located	after	the	ending	paragraph	mark	(the	beginning	of	the
next	paragraph).	However,	you	can	move	the	range	back	one	character	by	using
the	MoveEnd	method	after	the	range	is	collapsed.



Example

This	example	inserts	text	at	the	beginning	of	the	second	paragraph	in	the	first
shape	on	the	first	page	of	the	active	publication.	This	example	assumes	that	the
specified	shape	is	a	text	frame	and	not	another	type	of	shape.

Sub	CollapseRange()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange

				'Collapses	range	to	the	end	of	the	range	and

				'enters	new	text	and	a	new	paragraph

				With	rngText

								.Paragraphs(Start:=1,	Length:=1).Collapse	Direction:=pbCollapseEnd

								.Text	=	"This	is	a	new	paragraph."	&	vbCrLf

				End	With

End	Sub

	 	

This	example	places	new	text	at	the	end	of	the	first	paragraph	in	the	first	shape
on	the	first	page	of	the	active	publication.	This	example	assumes	that	the
specified	shape	is	a	text	frame	and	not	another	type	of	shape.

Sub	CollapseSelection()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.Paragraphs(Start:=1,	Length:=1).Select

				'Collapses	selection	to	end	and	moves	insertion	point	back

				'one	character,	then	enters	new	text

				With	Selection.TextRange

								.Collapse	Direction:=pbCollapseEnd

								.MoveEnd	Unit:=pbTextUnitCharacter,	Size:=-1

								.Text	=	"		This	is	a	new	test."

				End	With

End	Sub

	 	





Show	All



ConvertPublicationType	Method
Converts	the	specified	publication	to	the	specified	publication	type.

expression.ConvertPublicationType(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value				Required	PbPublicationType.	The	type	of	publication	to	which	you
want	the	publication	converted.

PbPublicationType	can	be	one	of	these	pbPublicationType	constants.
pbTypePrint
pbTypeWeb



Remarks

When	a	publication	is	converted,	any	settings	that	apply	to	its	previous	type
remain,	but	are	ignored.	For	example,	converting	a	print	publication	to	a	Web
publication	results	in	any	advanced	print	settings	being	ignored.	If	the
publication	is	converted	back	to	a	print	publication,	the	settings	take	effect	again.

Use	the	PublicationType	property	of	the	Document	object	to	determine	the
publication	type	of	a	publication.



Example

The	following	example	determines	if	the	active	publication	is	a	print	publication.
If	it	is,	the	publication	is	converted	to	a	Web	publication.

Sub	ChangePublicationType()

				With	ActiveDocument

								If	.PublicationType	=	pbTypePrint	Then

								.ConvertPublicationType	(pbTypeWeb)

								End	If

				End	With

End	Sub



ConvertToProcess	Method
Converts	the	specified	plate	from	spot	color	to	process.

expression.ConvertToProcess

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ConvertToProcess	method	is	only	accessible	if	the	publication's	color	mode
has	been	set	to	process	and	spot	color	inks.	Returns	"Permission	Denied"	for	any
other	color	mode.	Use	the	ColorMode	property	of	the	Document	object	to
specify	a	publication's	color	mode.

Returns	"Permission	Denied"	when	applied	to	a	process	color	plate.	When	the
color	mode	includes	process	color,	the	process	color	inks	(black,	magenta,
yellow	and	cyan)	are	the	first	four	plates	in	the	Plates	collection.

When	a	plate	is	converted	from	spot	to	process	color,	all	colors	in	the	publication
based	on	the	ink	that	the	converted	plate	represents	are	converted	to	process
colors.



Example

The	following	example	converts	the	specified	spot	color	plate	to	process	color.
The	example	assumes	the	publication's	color	mode	has	been	specified	as	spot
and	process	color,	and	that	at	least	six	plates	have	been	defined	for	the
publication.

Sub	ChangePlateToProcess()

				With	ActiveDocument.Plates.Item(6)

								.ConvertToProcess

				End	With

End	Sub



ConvertToShape	Method
Creates	a	shape	that	has	the	geometric	characteristics	of	the	specified
FreeformBuilder	object.	Returns	a	Shape	object	that	represents	the	new	shape.

expression.ConvertToShape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	must	apply	the	AddNodes	method	to	a	FreeformBuilder	object	at	least
once	before	you	use	the	ConvertToShape	method	or	an	error	occurs.



Example

This	example	adds	a	freeform	with	four	vertices	to	the	first	page	in	the	active
publication.

'	Add	a	new	freeform	object.

With	ActiveDocument.Shapes	_

								.BuildFreeform(EditingType:=msoEditingCorner,	_

								X1:=100,	Y1:=100)

				'	Add	three	more	nodes	and	close	the	polygon.

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingCorner,	_

								X1:=200,	Y1:=200,	X2:=225,	Y2:=250,	X3:=250,	Y3:=200

				.AddNodes	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingAuto,	X1:=200,	Y1:=100

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=150,	Y1:=50

				.AddNodes	SegmentType:=msoSegmentLine,	_

								EditingType:=msoEditingAuto,	X1:=100,	Y1:=100

				'	Convert	the	polygon	to	a	Shape	object.

				.ConvertToShape

End	With

	 	



Copy	Method
Copies	the	specified	object	to	the	Clipboard.

expression.Copy

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Paste	method	to	paste	the	contents	of	the	Clipboard.

The	Copy	method	can	be	used	on	Shape	objects,	but	the	Paste	method	cannot.



Example

This	example	copies	shapes	one	and	two	on	page	one	of	the	active	publication	to
the	Clipboard	and	then	pastes	the	copies	onto	page	two.

With	ActiveDocument

				.Pages(1).Shapes.Range(Array(1,	2)).Copy

				.Pages(2).Shapes.Paste

End	With

	 	

This	example	copies	shape	one	on	page	one	of	the	active	publication	to	the
Clipboard.

ActiveDocument.Pages(1).Shapes(1).Copy

	 	

This	example	copies	the	text	in	shape	one	on	page	one	of	the	active	publication
to	the	Clipboard.

ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange.Copy

	 	



Create	Method
Creates	a	new	PageBackground	object	for	the	specified	Page	object.

expression.Create

expression				Required.	An	expression	that	returns	a	PageBackground	object.



Remarks

Use	PageBackground.Exists	to	test	if	a	page	already	has	a	background	before
trying	to	create	a	new	one.	Returns	a	"Permission	denied'	error	if	a	background
already	exists.



Example

The	following	example	tests	for	the	existence	of	a	bckground	on	the	first	page	of
the	active	document.	If	a	background	does	not	exist	then	one	is	created.

If	ActiveDocument.Pages(1).Background.Exists	=	False	Then

				ActiveDocument.Pages(1).Background.Create

End	If



Show	All



CreatePlateCollection	Method
Returns	a	Plates	collection	that	represents	a	new	collection	of	plates	for
commercial	print	separations.

expression.CreatePlateCollection(Mode)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Mode			Required	PbColorMode.	Indicates	the	type	of	plates	to	create.

PbColorMode	can	be	one	of	these	PbColorMode	constants.
pbColorModeBW
pbColorModeDesktop
pbColorModeProcess
pbColorModeSpot
pbColorModeSpotAndProcess



Example

This	example	creates	a	new	spot-color	plate	collection	and	adds	a	plate	to	it.

Sub	AddNewPlates()

				Dim	plts	As	Plates

				Set	plts	=	ActiveDocument.CreatePlateCollection(pbColorModeSpot)

				plts.Add

				With	plts(1)

								.Color.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								.Luminance	=	4

				End	With

End	Sub

	 	



CustomDrop	Method
Sets	the	vertical	distance	from	the	edge	of	the	text	bounding	box	to	the	place
where	the	callout	line	attaches	to	the	text	box.

expression.CustomDrop(Drop)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Drop			Required	Variant.	The	drop	distance.	Numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for
example,	"2.5	in").



Remarks

The	drop	distance	is	normally	measured	from	the	top	of	the	text	box.	However,	if
the	AutoAttach	property	is	set	to	True	and	the	text	box	is	to	the	left	of	the
origin	of	the	callout	line	(the	place	to	which	the	callout	points),	the	drop	distance
is	measured	from	the	bottom	of	the	text	box.



Example

This	example	sets	the	custom	drop	distance	to	14	points,	and	specifies	that	the
drop	distance	always	be	measured	from	the	top.	For	the	example	to	work,	the
third	shape	in	the	active	publication	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(3).Callout

				.CustomDrop	Drop:=14

				.AutoAttach	=	False

End	With

	 	



CustomLength	Method
Specifies	that	the	first	segment	of	the	callout	line	(the	segment	attached	to	the
text	callout	box)	retain	a	fixed	length	whenever	the	callout	is	moved.

expression.CustomLength(Length)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Length			Required	Variant.	The	length	of	the	first	segment	of	the	callout.
Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").



Remarks

Applying	this	method	sets	the	AutoLength	property	to	False	and	sets	the
Length	property	to	the	value	specified	for	the	Length	argument.

Use	the	AutomaticLength	method	to	specify	that	the	first	segment	of	the	callout
line	be	scaled	automatically	whenever	the	callout	is	moved.	Applies	only	to
callouts	whose	lines	consist	of	more	than	one	segment	(types	msoCalloutThree
and	msoCalloutFour).



Example

This	example	toggles	between	an	automatically-scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	the	first	shape	in	the	active
publication.	For	the	example	to	work,	this	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	Length:=50

				Else

								.AutomaticLength

				End	If

End	With

	 	



Cut	Method
Deletes	the	specified	object	and	places	it	on	the	Clipboard.

expression.Cut

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Paste	method	to	paste	the	contents	of	the	Clipboard.

The	Copy	method	can	be	used	on	Shape	objects,	but	the	Paste	method	cannot.



Example

This	example	deletes	shapes	one	and	two	from	page	one	of	the	active
publication,	places	copies	of	them	on	the	Clipboard,	and	then	pastes	the	copies
onto	page	two.

With	ActiveDocument

				.Pages(1).Shapes.Range(Array(1,	2)).Cut

				.Pages(2).Shapes.Paste

End	With

	 	

This	example	deletes	shape	one	on	page	one	of	the	active	publication	and	places
a	copy	of	it	on	the	Clipboard.

ActiveDocument.Pages(1).Shapes(1).Cut

	 	

This	example	deletes	the	text	in	shape	one	on	page	one	of	the	active	publication
and	places	a	copy	of	it	on	the	Clipboard.

ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange.Cut

	 	



Show	All



Delete	Method
Delete	method	as	it	applies	to	the	Plate	object.

Deletes	the	specified	plate.

expression.Delete(PlateReplaceWith,	ReplaceTint)

expression				Required.	An	expression	that	returns	a	Plate	object.

PlateReplaceWith			Optional	Plate.	The	plate	with	which	to	replace	the	deleted
plate.

ReplaceTint			Optional	pbReplaceTint.

ReplaceTint	can	be	one	of	these	pbReplaceTint	constants.
pbReplaceTintKeepTints	Maintain	the	same	tint	percentage	in	the	ink
represented	by	the	replacement	plate	as	in	the	deleted	plate.	For	example,
replace	a	100%	tint	of	yellow	with	a	100%	tint	of	blue.
pbReplaceTintMaintainLuminosity	Maintain	the	same	lightness	value	in	the
ink	represented	by	the	replacement	plate	as	in	the	deleted	plate.	For	example,
replace	a	100%	tint	of	yellow	with	an	approximately	10%	tint	of	blue.
pbReplaceTintUseDefault	Default



Remarks

Returns	"Permission	Denied"	if	you	attempt	to	delete	the	last	plate	in	the	Plates
collection.

If	the	pbReplaceTintMaintainLuminosity	constant	is	specified,	the	percentage
of	replacment	ink	in	each	color	is	calculated	based	on	the	luminosity	values	of
the	inks	represented	by	the	deleted	and	replacement	plates.	Publisher	performs
the	following	calculation,	where	L1	is	the	deleted	ink	luminosity,	and	L2	is	the
replacement	ink	luminosity:	(100-L1)/(100-L2).

For	example,	red	ink	has	a	luminosity	of	30,	and	black	has	a	luminosity	of	0.
Suppose	you	replaced	the	red	ink	plate	in	a	publication	with	a	black	ink	plate.	If
pbReplaceTintKeepTints	is	specified,	Publisher	performs	the	following
calculation	to	determine	the	percentage	of	black	ink	for	each	red	color:	(100-
30)/(100-0).	A	color	that	was	100%	red	would	now	be	70%	black;	a	color	that
was	50%	red	would	now	be	35%	black,	and	so	on.

If	the	pbReplaceTintKeepTints	constant	is	specified,	the	percentage	of	the
replacement	ink	in	each	color	is	the	same	as	the	deleted	color.	For	example,	if
red	ink	is	replaced	with	black	ink,	100%	tint	of	red	is	replaced	by	100%	tint	of
black,	50%	red	with	50%	black,	and	so	on.

You	cannot	specify	the	pbReplaceTintMaintainLuminosity	or
pbReplaceTintUseDefault	constants	if	the	replacement	plate	represents	an	ink
that	has	a	higher	luminosity	(that	is,	is	lighter)	than	the	deleted	plate.	This	is
because	the	lighter	ink	can	not	be	printed	at	more	than	100%,	so	it	will	not	be
able	to	match	the	luminosity	of	the	darker	ink.

Delete	method	as	it	applies	to	the	ShapeNodes	object.

Deletes	the	specified	shape	node	object.

expression.Delete(Index)

expression				Required.	An	expression	that	returns	a	ShapeNodes	collection.

Index			Required	Long.	The	number	of	the	shape	node	to	delete.



Delete	method	as	it	applies	to	the	WebHiddenFields	and
WebListBoxItems	objects.

Deletes	the	specified	hidden	Web	field	or	Web	list	box	item	object.

expression.Delete(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Long.	The	number	of	the	Web	field	or	list	box	item	to	delete.

Delete	method	as	it	applies	to	all	the	other	objects	in	the	Applies	To	list.

Deletes	the	specified	object.

expression.Delete

expression				Required.	An	expression	that	returns	one	of	the	other	objects	in	the
Applies	To	list.



Remarks

A	run-time	error	occurs	if	the	specified	object	does	not	exist.



Example

As	it	applies	to	the	BorderArtFormat	object.

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	publication.	If	BorderArt	exists,	it	is	deleted.

Sub	DeleteBorderArt()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Delete

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub

As	it	applies	to	the	Plate	object.

The	following	example	loops	through	the	active	publication's	plates	collection,
determines	which	plates	represent	inks	not	used	in	the	publication,	and	deletes
them.	This	example	assumes	that	at	least	one	of	the	plates	is	in	use	(the	Delete
method	returns	"Permission	Denied"	if	you	attempt	to	delete	the	last	plate	in	the
collection.)

Sub	DeleteUnusedInks()

				

Dim	intCount	As	Integer

				

With	ActiveDocument.Plates

				For	intCount	=	.Count	To	1	Step	-1

								With	.Item(intCount)

												If	.InUse	=	False	Then

																Debug.Print	"Name:	"	&	.Name

																.Delete

												End	If

								End	With



				Next

End	With

End	Sub

As	it	applies	to	the	ShapeNodes	object.

This	example	deletes	the	first	node	in	the	first	shape	in	the	active	publication.

Sub	DeleteNode()

				ActiveDocument.Pages(1).Shapes(1).Nodes.Delete	Index:=1

End	Sub

	 	 	 	

As	it	applies	to	the	Shapes	object.

This	example	deletes	the	first	shape	in	the	active	publication.

Sub	DeleteShape()

				ActiveDocument.Pages(1).Shapes(1).Delete

End	Sub

	 	 	 	



DeleteSetAndInstances	Method
Deletes	a	Web	navigation	bar	set	and	all	instances	of	it	in	the	current	document.

expression.DeleteSetAndInstances

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

The	following	example	iterates	through	the	WebNavigationBarSets	collection
and	deletes	each	set	from	the	active	document.

Dim	objWebNavBarSet	As	WebNavigationBarSet

For	Each	objWebNavBarSet	In	ActiveDocument.WebNavigationBarSets

				objWebNavBarSet.DeleteSetAndInstances

Next	objWebNavBarSet



Show	All



Distribute	Method
Evenly	distributes	the	shapes	in	the	specified	shape	range.

expression.Distribute(DistributeCmd,	RelativeTo)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DistributeCmd			Required	MsoDistributeCmd.	Specifies	whether	shapes	are	to
be	distributed	horizontally	or	vertically.

MsoDistributeCmd	can	be	one	of	these	MsoDistributeCmd	constants.
msoDistributeHorizontally
msoDistributeVertically

RelativeTo			Required	MsoTriState.	Specifies	whether	to	distribute	the	shapes
evenly	over	the	entire	horizontal	or	vertical	space	on	the	page	or	within	the
horizontal	or	vertical	space	that	the	range	of	shapes	originally	occupies.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	method.
msoFalse	Distribute	the	shapes	within	the	horizontal	or	vertical	space	that	the
range	of	shapes	originally	occupies.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Distribute	the	shapes	evenly	over	the	entire	horizontal	or	vertical
space	on	the	page.



Remarks

Shapes	are	distributed	so	that	there	is	an	equal	amount	of	space	between	one
shape	and	the	next.	If	the	shapes	are	so	large	that	they	overlap	when	distributed
over	the	available	space,	they	are	distributed	so	that	there	is	an	equal	amount	of
overlap	between	one	shape	and	the	next.

When	RelativeTo	is	msoTrue,	shapes	are	distributed	so	that	the	distance
between	the	two	outer	shapes	and	the	edges	of	the	page	is	the	same	as	the
distance	between	one	shape	and	the	next.	If	the	shapes	must	overlap,	the	two
outer	shapes	are	moved	to	the	edges	of	the	page.

When	RelativeTo	is	msoFalse,	the	two	outer	shapes	are	not	moved;	only	the
positions	of	the	inner	shapes	are	adjusted.

The	z-order	of	shapes	is	unaffected	by	this	method.



Example

This	example	defines	a	shape	range	that	contains	all	the	AutoShapes	on	the	first
page	of	the	active	publication	and	then	horizontally	distributes	the	shapes	in	this
range.

'	Number	of	shapes	on	the	page.

Dim	intShapes	As	Integer

'	Number	of	AutoShapes	on	the	page.

Dim	intAutoShapes	As	Integer

'	An	array	of	the	names	of	the	AutoShapes.

Dim	arrAutoShapes()	As	String

'	A	looping	variable.

Dim	shpLoop	As	Shape

'	A	placeholder	variable	for	the	range	containing	AutoShapes.

Dim	shpRange	As	ShapeRange

With	ActiveDocument.Pages(1).Shapes

				'	Count	all	the	shapes	on	the	page.

				intShapes	=	.Count

				'	Proceed	only	if	there's	at	least	one	shape.

				If	intShapes	>	1	Then

								intAutoShapes	=	0

								ReDim	arrAutoShapes(1	To	intShapes)

								'	Loop	through	the	shapes	on	the	page	and	add	the	names

								'	of	any	AutoShapes	to	an	array.

								For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

												If	shpLoop.Type	=	msoAutoShape	Then

																intAutoShapes	=	intAutoShapes	+	1

																arrAutoShapes(intAutoShapes)	=	shpLoop.Name

												End	If

								Next	shpLoop

								'	Proceed	only	if	there's	at	least	one	AutoShape.

								If	intAutoShapes	>	1	Then

												ReDim	Preserve	arrAutoShapes(1	To	intAutoShapes)

												'	Create	a	shape	range	containing	all	the	AutoShapes.

												Set	shpRange	=	.Range(Index:=arrAutoShapes)

												'	Distribute	the	AutoShapes	horizontally

												'	in	the	space	they	already	occupy.

												shpRange.Distribute	_

																DistributeCmd:=msoDistributeHorizontally,	RelativeTo:=msoFalse



								End	If

				End	If

End	With

	 	



DoVerb	Method
Requests	that	an	OLE	object	perform	one	of	its	verbs.

expression.DoVerb(iVerb)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

iVerb			Required	Long.	The	verb	to	perform.



Remarks

Use	the	ObjectVerbs	property	to	determine	the	available	verbs	for	an	OLE
object.



Example

This	example	performs	the	first	verb	for	the	third	shape	on	the	first	page	of	the
active	publication	if	the	shape	is	a	linked	or	embedded	OLE	object.

With	ActiveDocument.Pages(1).Shapes(3)

				If	.Type	=	pbEmbeddedOLEObject	Or	_

												.Type	=	pbLinkedOLEObject	Then

								.OLEFormat.DoVerb	(1)

				End	If

End	With

	 	

This	example	performs	the	verb	"Open"	for	the	third	shape	on	the	first	page	of
the	active	publication	if	the	shape	is	an	OLE	object	that	supports	the	verb
"Open."

Dim	strVerb	As	String

Dim	intVerb	As	Integer

With	ActiveDocument.Pages(1).Shapes(3)

				'	Verify	that	the	shape	is	an	OLE	object.

				If	.Type	=	pbEmbeddedOLEObject	Or	_

												.Type	=	pbLinkedOLEObject	Then

								'	Loop	through	the	ObjectVerbs	collection

								'	until	the	"Open"	verb	is	found.

								For	Each	strVerb	In	.OLEFormat.ObjectVerbs

												intVerb	=	intVerb	+	1

												If	strVerb	=	"Open"	Then

																'	Perform	the	"Open"	verb.

																.OLEFormat.DoVerb	iVerb:=intVerb

																Exit	For

												End	If

								Next	strVerb

				End	If

End	With

	 	





Show	All



Duplicate	Method
Duplicate	method	as	it	applies	to	the	Font	object.

Creates	a	duplicate	of	the	specified	Font	object	and	then	returns	the	new	Font
object.

expression.Duplicate

expression				Required.	An	expression	that	returns	a	Font	object.

Duplicate	method	as	it	applies	to	the	Page	object.

Creates	a	duplicate	of	the	specified	Page	object	and	then	returns	the	new	Page
object.

expression.Duplicate

expression				Required.	An	expression	that	returns	a	Page	object.

Duplicate	method	as	it	applies	to	the	ParagraphFormat	object.

Creates	a	duplicate	of	the	specified	ParagraphFormat	object	and	then	returns
the	new	ParagraphFormat	object.

expression.Duplicate

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.

Duplicate	method	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Creates	a	duplicate	of	the	specified	Shape	or	ShapeRange	object,	adds	the	new
shape	or	range	of	shapes	to	the	Shapes	collection	immediately	after	the	shape	or
range	of	shapes	specified	originally,	and	then	returns	the	new	Shape	or
ShapeRange	object.

expression.Duplicate



expression				Required.	An	expression	that	returns	a	Shape	or	ShapeRange
object.



Example

As	it	applies	to	the	Font	object.

The	following	example	duplicates	the	character	formatting	information	from	the
text	range	in	shape	one	on	page	one	of	the	active	publication	and	applies	it	to	the
text	range	in	shape	two.

Dim	fntTemp	As	Font

With	ActiveDocument.Pages(1)

				Set	fntTemp	=	_

								.Shapes(1).TextFrame.TextRange.Font.Duplicate

				.Shapes(2).TextFrame.TextRange.Font	=	fntTemp

End	With

	 	 	 	

As	it	applies	to	the	Page	object.

The	following	example	duplicates	the	first	page	in	the	publication	and	then	sets
properties	for	the	duplicate.	A	shape	is	then	added	to	the	new	page	and
properties	are	set	for	the	shape.

Dim	objPage	As	Page

Set	objPage	=	ActiveDocument.Pages(1).Duplicate

With	objPage

				.Background.Fill.ForeColor.SchemeColor	=	pbSchemeColorAccent1

				.Shapes.AddShape	msoShapeRectangle,	150,	250,	310,	275

				With	.Shapes(1)

								.Fill.ForeColor.SchemeColor	=	pbSchemeColorAccent3

				End	With

End	With

	 	 	 	

As	it	applies	to	the	ParagraphFormat	object.

The	following	example	duplicates	the	paragraph	formatting	information	from	the
text	range	in	shape	one	on	page	one	of	the	active	publication	and	applies	it	to	the
text	range	in	shape	two.



Dim	pfTemp	As	ParagraphFormat

With	ActiveDocument.Pages(1)

				Set	pfTemp	=	.Shapes(1).TextFrame	_

								.TextRange.ParagraphFormat.Duplicate

				.Shapes(2).TextFrame	_

								.TextRange.ParagraphFormat	=	pfTemp

End	With

	 	 	 	

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	adds	a	new,	blank	page	at	the	end	of	the	active	publication,	adds	a
diamond	shape	to	the	new	page,	duplicates	the	diamond,	and	then	sets	properties
for	the	duplicate.	The	first	diamond	will	have	the	default	fill	color	for	the	active
color	scheme;	the	second	diamond	will	be	offset	from	the	first	one	and	will	have
the	first	accent	color	for	the	active	color	scheme.

Dim	pgTemp	As	Page

Dim	shpTemp	As	Shape

Set	pgTemp	=	ActiveDocument.Pages.Add(Count:=1,	After:=1)

Set	shpTemp	=	pgTemp.Shapes	_

				.AddShape(Type:=msoShapeDiamond,	_

				Left:=10,	Top:=10,	Width:=250,	Height:=350)

With	shpTemp.Duplicate

				.Left	=	150

				.Fill.ForeColor.SchemeColor	=	pbSchemeColorAccent1

End	With

	 	 	 	



EmusToPoints	Method
Converts	a	measurement	from	emus	to	points	(12700	emus	=	1	point).	Returns
the	converted	measurement	as	a	Single.

expression.EmusToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	emu	value	to	be	converted	to	points.



Remarks

Use	the	PointsToEmus	method	to	convert	measurements	in	points	to	emus.



Example

This	example	converts	measurements	in	emus	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	emus	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	emus	=	"	_

								&	Format(Application	_

								.EmusToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



EndConnect	Method
Attaches	the	end	of	the	specified	connector	to	a	specified	shape.

expression.EndConnect(ConnectedShape,	ConnectionSite)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ConnectedShape			Required	Shape	object.	The	shape	to	which	Microsoft
Publisher	attaches	the	end	of	the	connector.	The	specified	Shape	object	must	be
in	the	same	Shapes	collection	as	the	connector.

ConnectionSite			Required	Long.	A	connection	site	on	the	shape	specified	by
ConnectedShape.	Must	be	an	integer	between	1	and	the	integer	returned	by	the
ConnectionSiteCount	property	of	the	specified	shape.	Connection	sites	are
numbered	starting	from	the	top	of	the	specified	shape	and	moving
counterclockwise	around	the	shape.	If	you	want	the	connector	to	automatically
find	the	shortest	path	between	the	two	shapes	it	connects,	specify	any	valid
integer	for	this	argument	and	then	use	the	RerouteConnections	method	after	the
connector	is	attached	to	shapes	at	both	ends.



Remarks

If	there's	already	a	connection	between	the	end	of	the	connector	and	another
shape,	that	connection	is	broken.	If	the	end	of	the	connector	isn't	already
positioned	at	the	specified	connecting	site,	this	method	moves	the	end	of	the
connector	to	the	connecting	site	and	adjusts	the	size	and	position	of	the
connector.

When	you	attach	a	connector	to	an	object,	the	size	and	position	of	the	connector
are	automatically	adjusted	if	necessary.

Use	the	BeginConnect	method	to	attach	the	beginning	of	the	connector	to	a
shape.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication	and
connects	them	with	a	curved	connector.	Note	that	the	RerouteConnections
method	overrides	the	values	you	supply	for	the	ConnectionSite	arguments	used
with	the	BeginConnect	and	EndConnect	methods.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	curved	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

				End	With

End	With

	 	



EndCustomUndoAction	Method
Specifies	the	end	point	of	a	group	of	actions	that	are	wrapped	to	create	a	single
undo	action.	The	BeginCustomUndoAction	method	is	used	to	specify	the
starting	point	and	label	(textual	description)	of	the	actions	used	to	create	the
single	undo	action.	The	wrapped	group	of	actions	can	be	undone	with	a	single
undo.

expression.EndCustomUndoAction()

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

The	BeginCustomUndoAction	method	must	be	called	before	the
EndCustomUndoAction	method	is	called.	A	run-time	error	is	returned	if
EndCustomUndoAction	is	called	before	BeginCustomUndoAction.



Example

The	following	example	contains	two	custom	undo	actions.	The	first	one	is
created	on	page	four	of	the	active	publication.	The	BeginCustomUndoAction
method	is	used	to	specify	the	point	at	which	the	custom	undo	action	should
begin.	Six	individual	actions	are	performed,	and	then	they	are	wrapped	into	one
action	with	the	call	to	EndCustomUndoAction.

The	text	in	the	text	frame	that	was	created	within	the	first	custom	undo	action	is
then	tested	to	determine	whether	the	font	is	Verdana.	If	not,	the	Undo	method	is
called	with	UndoActionsAvailable	passed	as	a	parameter.	In	this	case	there	is
only	one	undo	action	available.	So,	the	call	to	Undo	will	only	undo	one	action,
but	this	one	action	has	wrapped	six	actions	into	one.

A	second	undo	action	is	then	created,	and	it	could	also	be	undone	later	with	a
single	undo	operation.

This	example	assumes	that	the	active	publication	contains	at	least	four	pages.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(4)

With	theDoc

				'	The	following	six	of	actions	are	wrapped	to	create	one

				'	custom	undo	action	named	"Add	Rectangle	and	Courier	Text".

				.BeginCustomUndoAction	("Add	Rectangle	and	Courier	Text")

				With	thePage

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

												75,	75,	190,	30)

								With	theShape.TextFrame.TextRange

													.Font.Size	=	14

													.Font.Bold	=	msoTrue

													.Font.Name	=	"Courier"

													.Text	=	"This	font	is	Courier."

								End	With

					End	With

					.EndCustomUndoAction

				

				If	Not	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Verdana"	Then



								'	This	call	to	Undo	will	undo	all	actions	that	are	available.

								'	In	this	case,	there	is	only	one	action	that	can	be	undone.

								.Undo	(.UndoActionsAvailable)

								'	A	new	custom	undo	action	is	created	with	a	name	of

								'	"Add	Balloon	and	Verdana	Text".

								.BeginCustomUndoAction	("Add	Balloon	and	Verdana	Text")

								With	thePage

												Set	theShape	=	.Shapes.AddShape(msoShapeBalloon,	_

																75,	75,	190,	30)

												With	theShape.TextFrame.TextRange

																.Font.Size	=	11

																.Font.Name	=	"Verdana"

																.Text	=	"This	font	is	Verdana."

												End	With

								End	With

								.EndCustomUndoAction

				End	If

End	With



EndDisconnect	Method
Detaches	the	end	of	the	specified	connector	from	the	shape	to	which	it's
attached.

expression.EndDisconnect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	method	doesn't	alter	the	size	or	position	of	the	connector;	the	end	of	the
connector	remains	positioned	at	a	connection	site	but	is	no	longer	connected.

Use	the	BeginDisconnect	method	to	detach	the	beginning	of	the	connector	from
a	shape.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication,
attaches	them	with	a	connector,	automatically	reroutes	the	connector	along	the
shortest	path,	and	then	detaches	the	connector	from	the	rectangles.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=0,	EndY:=0)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

								'	Disconnect	the	new	connector	from	the	rectangles	but

								'	leave	in	place.

								.BeginDisconnect

								.EndDisconnect

				End	With

End	With

	 	



Show	All



EnterColorMode	Method
Accesses	the	color	mode	for	the	publication.

expression.EnterColorMode(Mode,	Plates)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Mode			Required	PbColorMode.	The	color	mode.

PbColorMode	can	be	one	of	these	PbColorMode	constants.
pbColorModeBW
pbColorModeDesktop
pbColorModeProcess
pbColorModeSpot
pbColorModeSpotAndProcess

Plates			Optional	Variant.	The	plates	associated	with	the	color	mode.	Plates	are
ignored	if	the	color	mode	is	set	to	pbColorModeDesktop.



Remarks

You	can	only	enter	one	of	the	color	modes	specified	by	the	Mode	argument	for
each	publication.	Therefore,	if	you	write	a	procedure	to	enter	the	spot	color
mode	and	then	write	another	procedure	to	enter	the	black-and-white	color	mode,
only	the	first	procedure	executed	will	run	correctly.



Example

This	example	creates	a	spot-color	plate	collection,	adds	two	plates	to	it,	and	then
enters	those	plates	into	the	spot	color	mode.

Sub	CreateSpotColorMode()

				Dim	plArray	As	Plates

				'Creates	a	color	plate	collection,

				'which	contains	one	black	plate	by	default

				Set	plArray	=	ThisDocument.CreatePlateCollection(Mode:=pbColorModeSpot)

				'Sets	the	plate	color	to	red

				plArray(1).Color.RGB	=	RGB(255,	0,	0)

				'Adds	another	plate,	black	by	default	and

				'sets	the	plate	color	to	green

				plArray.Add

				plArray(2).Color.RGB	=	RGB(0,	255,	0)

				'Enters	spot-color	mode	with	above

				'two	plates	in	the	plates	array

				ThisDocument.EnterColorMode	Mode:=pbColorModeSpot,	Plates:=plArray

End	Sub

	 	



Show	All



Execute	Method
As	it	applies	to	the	FindReplace	object.

Performs	the	specified	Find	or	Replace	operation.

expression.Execute

expression				Required.	An	expression	that	returns	a	FindReplace	object.

Note		Be	sure	to	set	the	FindText	property	before	calling	the	Execute	method	to
avoid	a	run	time	error.

As	it	applies	to	the	MailMerge	object.

Performs	the	specified	mail	merge	or	catalog	merge	operation.	Returns	a
Document	object	that	represents	the	new	or	existing	publication	specified	as	the
destination	of	the	merge	results.	Returns	Nothing	if	the	merge	is	executed	to	a
printer.

expression.Execute(Pause,	Destination,	Filename)

expression				Required.	An	expression	that	returns	a	MailMerge	object.

Pause			Required	Boolean.	True	to	have	Publisher	pause	and	display	a
troubleshooting	dialog	box	if	a	merge	error	is	found.	False	to	ignore	errors
during	mail	merge	or	catalog	merge.

Destination			Optional	PbMailMergeDestination.	The	destination	of	the	mail
merge	or	catalog	merge	results.	Specifying	pbSendToPrinter	for	a	catalog
merge	results	in	a	run-time	error.

PbMailMergeDestination	can	be	one	of	these	PbMailMergeDestination
constants.
pbSendToPrinter	Default
pbMergeToNewPublication



pbMergeToExistingPublication

Filename			Optional	String.	The	file	name	of	the	publication	to	which	you	want
to	append	the	catalog	merge	results.



Example

As	it	applies	to	the	FindReplace	object.

This	example	executes	a	Find	and	Replace	operation	on	the	active	document.

Sub	ExecuteFindReplace()

				Dim	objFindReplace	As	FindReplace

				Set	objFindReplace	=	ActiveDocument.Find

				With	objFindReplace

								.Clear

								.FindText	=	"library"

								.Execute

				End	With

End	Sub

	 	

As	it	applies	to	the	MailMerge	object.

This	example	executes	a	mail	merge	if	the	active	publication	is	a	main	document
with	an	attached	data	source.

Sub	ExecuteMerge()

				Dim	mrgDocument	As	MailMerge

				Set	mrgDocument	=	ActiveDocument.MailMerge

				If	mrgDocument.DataSource.ConnectString	<>	""	Then

								mrgDocument.Execute	Pause:=False

				End	If

End	Sub

	 	



Show	All



Expand	Method
Expands	the	specified	range	or	selection.	Returns	or	sets	a	Long	that	represents
the	number	of	specified	units	added	to	the	range	or	selection.

expression.Expand(Unit)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbTextUnit.	The	unit	by	which	to	expand	the	range.

PbTextUnit	can	be	one	of	these	PbTextUnit	constants.
pbTextUnitCell
pbTextUnitCharacter
pbTextUnitCharFormat
pbTextUnitCodePoint
pbTextUnitColumn
pbTextUnitLine
pbTextUnitObject
pbTextUnitParaFormat
pbTextUnitParagraph
pbTextUnitRow
pbTextUnitScreen
pbTextUnitSection
pbTextUnitSentence
pbTextUnitStory
pbTextUnitTable
pbTextUnitWindow
pbTextUnitWord



Remarks

The	Expand	method	moves	both	endpoints	of	a	range	if	necessary;	to	move	only
one	endpoint	of	a	range,	use	the	MoveStart	or	MoveEnd	method.



Example

This	example	creates	a	range	that	refers	to	the	first	word	in	the	first	shape	of	the
active	publication,	formats	the	font	for	the	word,	and	then	it	expands	the	range	to
reference	the	entire	first	paragraph	and	formats	the	font	for	the	whole	line.

Sub	ExpandRange()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.Words(Start:=1,	Length:=1)

				With	rngText

								With	.Font

												.Size	=	20

												.Italic	=	msoTrue

								End	With

								.Expand	Unit:=pbTextUnitLine

								.Font.Bold	=	msoTrue

				End	With

End	Sub

	 	



ExportEmailHTML	Method
Exports	the	active	page	of	the	publication	as	an	HTML	file.

expression.ExportEmailHTML(Filename)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Filename				Required	String.	The	name	of	the	file	to	which	to	export	the	HTML.



Remarks

If	the	name	of	an	existing	HTML	file	is	specified,	that	file	is	overwritten.

This	method	can	only	be	used	on	the	active	page	of	the	publication.



Example

The	following	example	sets	the	first	page	in	the	document	as	the	active	page,
and	exports	that	page	to	a	file.	(Note	that	PathToFile	must	be	replaced	with	a
valid	file	path	for	this	example	to	work.)

Sub	ExportEmail()

				Dim	strFilePath	As	String

				strFilePath	=	"PathToFile"

				With	ActiveDocument.ActiveView

								.ActivePage	=	ActiveDocument.Pages(1)

								.ActivePage.ExportEmailHTML	(strFilePath)

				End	With

End	Sub



FindByPageID	Method
Returns	a	Page	object	that	represents	the	page	with	the	specified	page	ID
number.	Each	page	is	automatically	assigned	a	unique	ID	number	when	it's
created.	Use	the	PageID	property	to	return	a	page's	ID	number.

expression.FindByPageID(PageID)

expression				Required.	An	expression	that	returns	a	Pages	collection.

PageID			Required	Long.	Specifies	the	ID	number	of	the	page	you	want	to
return.	Publisher	assigns	this	number	when	the	page	is	created.



Remarks

Unlike	the	PageIndex	property,	the	PageID	property	of	a	Page	object	won't
change	when	you	add	pages	to	or	rearrange	pages	in	the	publication.	Therefore,
using	the	FindByPageID	method	with	the	page	ID	number	can	be	a	more
reliable	way	to	return	a	specific	Page	object	from	a	Pages	collection	than	using
the	Item	method	with	the	page's	index	number.



Example

This	example	demonstrates	how	to	retrieve	the	unique	ID	number	for	a	Page
object	and	then	use	this	number	to	return	that	Page	object	from	the	Pages
collection	and	add	a	new	shape	to	the	page.

Sub	FindPage()

				Dim	lngPageID	As	Long

				'Get	page	ID

				lngPageID	=	ActiveDocument.Pages.Add(Count:=1,	After:=1).PageID

				'Use	page	ID	to	add	a	new	shape	to	the	page

				ActiveDocument.Pages.FindByPageID(PageID:=lngPageID)	_

								.Shapes.AddShape	Type:=msoShape5pointStar,	_

								Left:=200,	Top:=72,	Width:=50,	Height:=50

End	Sub

	 	



Show	All



FindPlateByInkName	Method
As	it	applies	to	the	PrintablePlates	object.

Returns	a	PrintablePlate	object	that	represents	the	printable	plate	of	the
specified	ink	name.

expression.FindPlateByInkName(InkName)

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.

InkName				Required	PbInkName.	Specifies	the	printable	plate	to	return.

PbInkName	can	be	one	of	these	pbInkName	constants.
pbInkNameBlack
pbInkNameCyan
pbInkNameMagenta
pbInkNameYellow
pbInkNameSpotColor1
pbInkNameSpotColor2
pbInkNameSpotColor3
pbInkNameSpotColor4
pbInkNameSpotColor5
pbInkNameSpotColor6
pbInkNameSpotColor7
pbInkNameSpotColor8
pbInkNameSpotColor9
pbInkNameSpotColor10
pbInkNameSpotColor11
pbInkNameSpotColor12



Remarks

The	PrintablePlates	collection	is	generated	when	a	publication's	print	mode	is
set	to	separations.	Returns	"Permission	Denied"	when	any	other	print	mode	is
specified.

The	PrintablePlates	collection	represents	the	plates	that	will	actually	be	printed
for	the	publication,	based	on:

The	plates	(if	any)	you	have	defined	for	the	publication.
The	advanced	print	options	specified.

As	it	applies	to	the	Plates	object.

Returns	a	Plate	object	that	represents	the	plate	of	the	specified	ink	name.

expression.FindPlateByInkName(InkName)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

InkName				Required	PbInkName.	Specifies	the	plate	to	return.

PbInkName	can	be	one	of	these	pbInkName	constants.
pbInkNameBlack
pbInkNameCyan
pbInkNameMagenta
pbInkNameYellow
pbInkNameSpotColor1
pbInkNameSpotColor2
pbInkNameSpotColor3
pbInkNameSpotColor4
pbInkNameSpotColor5
pbInkNameSpotColor6
pbInkNameSpotColor7
pbInkNameSpotColor8



pbInkNameSpotColor9
pbInkNameSpotColor10
pbInkNameSpotColor11
pbInkNameSpotColor12



Example

As	it	applies	to	the	PrintablePlates	object.

The	following	example	returns	a	spot	color	plate	and	sets	several	of	its
properties.	The	example	assumes	that	separations	have	been	specified	as	the
active	publication's	print	mode.

Sub	SetPlatePropertiesByInkName()

Dim	pplPlate	As	PrintablePlate

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

				Set	pplPlate	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates.

				

				With	pplPlate

								.Angle	=	75

								.Frequency	=	133

								.PrintPlate	=	True

				End	With

End	Sub

As	it	applies	to	the	Plates	object.

The	following	example	returns	properties	for	the	plate	representing	the	third	spot
color	defined	for	the	active	publication.

Sub	ListPlatePropertiesByInkName()

Dim	pplPlate	As	Plate

				Set	pplPlate	=	ActiveDocument.Plates.FindPlateByInkName(pbInkNameSpot3)

				

				With	pplPlate

												Debug.Print	"Plate	Name:	"	&	.Name

												Debug.Print	"Index:	"	&	.Index

												Debug.Print	"Ink	Name:	"	&	.InkName

												Debug.Print	"Color:	"	&	.Color

												Debug.Print	"Luminance:	"	&	.Luminance

												Debug.Print	"In	Use?:	"	&	.InUse

				End	With

End	Sub





FindPropertyById	Method
Returns	a	WizardProperty	object,	based	on	the	specified	ID,	from	the
collection	of	wizard	properties	associated	with	a	publication	design	or	a	Design
Gallery	object's	wizard.

expression.FindPropertyById(ID)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ID			Required	Long.	The	ID	of	the	the	wizard	property	to	return;	corresponds	to
the	ID	property	of	the	WizardProperty	object.



Example

The	following	example	changes	the	settings	of	the	current	publication	design
(Newsletter	Wizard)	so	that	the	publication	has	a	region	dedicated	to	the
customer's	address	(Customer	Address).

Sub	SetWizardProperties

				Dim	wizTemp	As	Wizard

				Dim	wizproTemp	As	WizardProperty

				Set	wizTemp	=	ActiveDocument.Wizard

				With	wizTemp.Properties

								Set	wizproTemp	=	.FindPropertyById(ID:=901)

								wizproTemp.CurrentValueId	=	1

				End	With

End	Sub

	 	



FindRecord	Method
Searches	the	contents	of	the	specified	mail	merge	data	source	for	text	in	a
particular	field.	Returns	a	Boolean	indicating	whether	the	search	text	is	found;
True	if	the	search	text	is	found.

expression.FindRecord(FindText,	Field)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FindText				Required	String.	The	text	to	look	for.

Field				Optional	String.	The	name	of	the	field	to	be	searched.



Example

This	example	displays	a	merge	publication	for	the	first	data	record	in	which	the
FirstName	field	contains	Joe.	If	the	data	record	is	found,	the	record	number	is
stored	in	a	variable.

Sub	FindDataSourceRecord()

				Dim	dsMain	As	MailMergeDataSource

				Dim	intRecord	As	Integer

				'Makes	the	data	in	the	data	source	records	instead	of	the	field	codes

				ActiveDocument.MailMerge.ViewMailMergeFieldCodes	=	False

				Set	dsMain	=	ActiveDocument.MailMerge.DataSource

				If	dsMain.FindRecord(FindText:="Joe",	_

												Field:="FirstName")	=	True	Then

								intRecord	=	dsMain.ActiveRecord

				End	If

End	Sub

	 	



Show	All



FindShapeByWizardTag	Method
Returns	a	ShapeRange	object	representing	one	or	all	of	the	shapes	placed	in	a
publication	by	a	wizard	and	bearing	the	specified	wizard	tag.

expression.FindShapeByWizardTag(WizardTag,	Instance)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

WizardTag			Required	PbWizardTag.	Specifies	the	wizard	tag	for	which	to
search.

PbWizardTag	can	be	one	of	these	PbWizardTag	constants.
pbWizardTagAddress
pbWizardTagAddressGroup
pbWizardTagBriefDescriptionCaption
pbWizardTagBriefDescriptionGraphic
pbWizardTagBriefDescriptionSummary
pbWizardTagBriefDescriptionSummaryPrimary
pbWizardTagBriefDescriptionTitle
pbWizardTagBusinessDescription
pbWizardTagCustomerMailingAddress
pbWizardTagDate
pbWizardTagEAPostalCodeBox
pbWizardTagEAPostalCodeGroup
pbWizardTagEAPostalCodeLine
pbWizardTagFloatingGraphicCaption
pbWizardTagHourTimeDateInformation
pbWizardTagJobTitle
pbWizardTagLinkedStoryPrimary
pbWizardTagLinkedStorySecondary
pbWizardTagLinkedStoryTertiary



pbWizardTagList
pbWizardTagLocation
pbWizardTagLogoGroup
pbWizardTagMainFloatingGraphic
pbWizardTagMainGraphic
pbWizardTagMainTitle
pbWizardTagMapPicture
pbWizardTagMasthead
pbWizardTagNewsletterTitle
pbWizardTagOrganizationName
pbWizardTagOrganizationNameGroup
pbWizardTagPageNumber
pbWizardTagPersonalName
pbWizardTagPersonalNameGroup
pbWizardTagPhoneFaxEmail
pbWizardTagPhoneFaxEmailGroup
pbWizardTagPhoneNumber
pbWizardTagPhotePlaceholderText
pbWizardTagPhotoPlaceholderFrame
pbWizardTagPublicationDate
pbWizardTagQuickPubContent
pbWizardTagQuickPubHeading
pbWizardTagQuickPubMessage
pbWizardTagQuickPubPicture
pbWizardTagReturnAddressLines
pbWizardTagStampBox
pbWizardTagStampBoxOutline
pbWizardTagStory
pbWizardTagStoryCaptionPrimary
pbWizardTagStoryCaptionSecondary
pbWizardTagStoryGraphicPrimary
pbWizardTagStoryGraphicSecondary
pbWizardTagStoryTitle



pbWizardTagTableOfContents
pbWizardTagTableOfContentsTitle
pbWizardTagTagLine
pbWizardTagTagLineGroup
pbWizardTagTime

Instance			Optional	Long.	Specifies	which	instance	of	a	shape	with	the	specified
wizard	tag	is	returned.	For	Instance	equal	to	n			,	the	n			th	instance	of	a	shape
with	the	specified	wizard	tag	is	returned.	If	no	value	for	Instance				is	specified,
all	the	shapes	with	the	specified	wizard	tag	are	returned.



Example

The	following	example	finds	the	second	instance	of	a	shape	with	the	wizard	tag
pbWizardDate	and	assigns	it	to	a	variable.

Dim	shpWizardTag	As	Shape

Set	shpWizardTag	=	ActiveDocument._

				FindShapeByWizardTag(WizardTag:=pbWizardDate,	Instance:=2)

	 	



FindShapesByTag	Method
Returns	a	ShapeRange	object	that	represents	the	shapes	with	the	specified	tag.

expression.FindShapesByTag(TagName)

expression				Required.	An	expression	that	returns	a	Document	object.

TagName			Required	String.	The	name	of	the	tag.



Example

This	example	adds	two	shapes	to	the	first	page	of	the	active	publication,	assigns
each	a	tag,	and	then	enters	the	name	of	each	tag	into	the	text	frame	of	its
assigned	shape.

Sub	FindShape()

				Dim	strTag1	As	String

				Dim	strTag2	As	String

				With	ActiveDocument.Pages(1).Shapes

								With	.AddShape(Type:=msoShape5pointStar,	Left:=50,	_

																Top:=50,	Width:=75,	Height:=75)

												strTag1	=	.Tags.Add(Name:="Star",	_

																Value:="This	is	a	star.").Name

								End	With

								With	.AddShape(Type:=msoShapeHeart,	Left:=100,	_

																Top:=100,	Width:=75,	Height:=75)

												strTag2	=	.Tags.Add(Name:="Heart",	_

																Value:="This	is	a	heart.").Name

								End	With

				End	With

				With	ActiveDocument

								.FindShapesByTag(TagName:=strTag1).TextFrame	_

												.TextRange.Text	=	strTag1

								.FindShapesByTag(TagName:=strTag2).TextFrame	_

												.TextRange.Text	=	strTag2

				End	With

End	Sub

	 	



Show	All



Flip	Method
Flips	the	specified	shape	around	its	horizontal	or	vertical	axis,	or	flips	all	the
shapes	in	the	specified	shape	range	around	their	horizontal	or	vertical	axes.

expression.Flip(FlipCmd)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FlipCmd			Required	MsoFlipCmd.	Specifies	whether	the	shape	is	flipped
horizontally	or	vertically.

MsoFlipCmd	can	be	one	of	these	MsoFlipCmd	constants.
msoFlipHorizontal
msoFlipVertical



Example

This	example	adds	a	triangle	to	the	first	page	of	the	active	publication,	duplicates
the	triangle,	and	then	flips	the	duplicate	triangle	vertically	and	makes	it	red.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeRightTriangle,	_

								Left:=10,	Top:=10,	Width:=50,	Height:=50)	_

								.Duplicate

				.Fill.ForeColor.RGB	=	RGB(255,	0,	0)

				.Flip	msoFlipVertical

End	With

	 	



Show	All



GetHeight	Method
Returns	the	height	of	the	shape	or	shape	range	as	a	Single	in	the	specified	units.

expression.GetHeight(Unit)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbUnitType.	The	units	in	which	to	return	the	height.

PbUnitType	can	be	one	of	these	PbUnitType	constants.
pbUnitCM
pbUnitEmu
pbUnitFeet
pbUnitHa
pbUnitInch
pbUnitKyu
pbUnitMeter
pbUnitPica
pbUnitPoint
pbUnitTwip



Remarks

Use	the	GetWidth	method	to	return	the	width	of	a	shape	or	shape	range.



Example

The	following	example	displays	the	height	and	width	in	inches	(to	the	nearest
hundredth)	of	the	shape	range	consisting	of	all	the	shapes	on	the	first	page	of	the
active	publication.

With	ActiveDocument.Pages(1).Shapes.Range

				MsgBox	"Height	of	all	shapes:	"	_

								&	Format(.GetHeight(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"	&	vbCr	_

								&	"Width	of	all	shapes:	"	_

								&	Format(.GetWidth(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"

End	With

	 	



Show	All



GetLeft	Method
Returns	the	distance	of	the	shape’s	or	shape	range's	left	edge	from	the	left	edge
of	the	leftmost	page	in	the	current	view	as	a	Single	in	the	specified	units.

expression.GetLeft(Unit)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbUnitType.	The	units	in	which	to	return	the	distance.

PbUnitType	can	be	one	of	these	PbUnitType	constants.
pbUnitCM
pbUnitEmu
pbUnitFeet
pbUnitHa
pbUnitInch
pbUnitKyu
pbUnitMeter
pbUnitPica
pbUnitPoint
pbUnitTwip



Remarks

Use	the	GetTop	method	to	return	the	distance	of	a	shape's	or	shape	range's	top
edge	from	the	top	edge	of	the	leftmost	page	in	the	current	view.



Example

The	following	example	displays	the	distances	from	the	left	and	top	edges	of	the
leftmost	page	to	the	left	and	top	edges	of	shape	range	consisting	of	all	the	shapes
on	the	first	page.	The	distances	are	expressed	in	inches	(to	the	nearest
hundredth).

With	ActiveDocument.Pages(1).Shapes.Range

				MsgBox	"Distance	from	left:	"	_

								&	Format(.GetLeft(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"	&	vbCr	_

								&	"Distance	from	top:	"	_

								&	Format(.GetTop(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"

End	With

	 	



Show	All



GetScriptName	Method
Returns	a	String	that	represents	the	name	of	the	font	script	being	used	in	a	text
range.

expression.GetScriptName(Script)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Script			Required	PbFontScriptType.	The	script	name.

PbFontScriptType	can	be	one	of	these	PbFontScriptType	constants.
pbFontScriptArabic
pbFontScriptArmenian
pbFontScriptAsciiLatin
pbFontScriptAsciiSym
pbFontScriptBengali
pbFontScriptBopomofo
pbFontScriptBraille
pbFontScriptCanadianAbor
pbFontScriptCherokee
pbFontScriptCurrency
pbFontScriptCyrillic
pbFontScriptDefault
pbFontScriptDevanagari
pbFontScriptEthiopic
pbFontScriptEUDC
pbFontScriptGeorgian
pbFontScriptGreek
pbFontScriptGujarati
pbFontScriptGurmukhi
pbFontScriptHalfWidthKana



pbFontScriptHan
pbFontScriptHangul
pbFontScriptHanSurrogate
pbFontScriptHebrew
pbFontScriptKana
pbFontScriptKannada
pbFontScriptKhmer
pbFontScriptLao
pbFontScriptLatin
pbFontScriptMalayalam
pbFontScriptMixed
pbFontScriptMongolian
pbFontScriptMyanmar
pbFontScriptNonHanSurrogate
pbFontScriptOgham
pbFontScriptOriya
pbFontScriptRunic
pbFontScriptSinhala
pbFontScriptSyriac
pbFontScriptTamil
pbFontScriptTelugu
pbFontScriptThaana
pbFontScriptThai
pbFontScriptTibetan
pbFontScriptYi



Example

This	example	verifies	that	the	default	font	script	in	use	for	the	specified	text
range	is	Tahoma	and,	if	not,	sets	it	as	the	default	font	script.

Sub	GetScript()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.Font

								If	.GetScriptName(Script:=pbFontScriptDefault)	<>	"Tahoma"	Then

												.SetScriptName	Script:=pbFontScriptDefault,	_

																FontName:="Tahoma"

								End	If

				End	With

End	Sub

	 	



Show	All



GetTop	Method
Returns	the	distance	of	the	shape’s	or	shape	range's	top	edge	from	the	top	edge
of	the	leftmost	page	in	the	current	view	as	a	Single	in	the	specified	units.

expression.GetTop(Unit)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbUnitType.	The	units	in	which	to	return	the	distance.

PbUnitType	can	be	one	of	these	PbUnitType	constants.
pbUnitCM
pbUnitEmu
pbUnitFeet
pbUnitHa
pbUnitInch
pbUnitKyu
pbUnitMeter
pbUnitPica
pbUnitPoint
pbUnitTwip



Remarks

Use	the	GetLeft	method	to	return	the	distance	of	a	shape's	or	shape	range's	left
edge	from	the	left	edge	of	the	leftmost	page	in	the	current	view.



Example

The	following	example	displays	the	distances	from	the	left	and	top	edges	of	the
leftmost	page	to	the	left	and	top	edges	of	shape	range	consisting	of	all	the	shapes
on	the	first	page.	The	distances	are	expressed	in	inches	(to	the	nearest
hundredth).

With	ActiveDocument.Pages(1).Shapes.Range

				MsgBox	"Distance	from	left:	"	_

								&	Format(.GetLeft(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"	&	vbCr	_

								&	"Distance	from	top:	"	_

								&	Format(.GetTop(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"

End	With

	 	



Show	All



GetWidth	Method
Returns	the	width	of	the	shape	or	shape	range	as	a	Single	in	the	specified	units.

expression.GetWidth(Unit)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbUnitType.	The	units	in	which	to	return	the	width.

PbUnitType	can	be	one	of	these	PbUnitType	constants.
pbUnitCM
pbUnitEmu
pbUnitFeet
pbUnitHa
pbUnitInch
pbUnitKyu
pbUnitMeter
pbUnitPica
pbUnitPoint
pbUnitTwip



Remarks

Use	the	GetHeight	method	to	return	the	width	of	a	shape	or	shape	range.



Example

The	following	example	displays	the	height	and	width	in	inches	(to	the	nearest
hundredth)	of	the	shape	range	consisting	of	all	the	shapes	on	the	first	page	of	the
active	publication.

With	ActiveDocument.Pages(1).Shapes.Range

				MsgBox	"Height	of	all	shapes:	"	_

								&	Format(.GetHeight(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"	&	vbCr	_

								&	"Width	of	all	shapes:	"	_

								&	Format(.GetWidth(Unit:=pbUnitInch),	"0.00")	_

								&	"	in"

End	With

	 	



Group	Method
Groups	the	shapes	in	the	specified	shape	range.	Returns	the	grouped	shapes	as	a
single	Shape	object.

expression.Group

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	specified	range	must	contain	more	than	one	shape,	or	an	error	occurs.

Because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.



Example

This	example	adds	two	shapes	to	the	first	page	of	the	active	publication,	groups
the	two	new	shapes,	sets	the	fill	for	the	group,	rotates	the	group,	and	sends	the
group	to	the	back	of	the	drawing	layer.

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	shapes	to	the	page.

				.AddShape(Type:=msoShapeCan,	_

								Left:=50,	Top:=10,	Width:=100,	Height:=200).Name	=	"shpOne"

				.AddShape(Type:=msoShapeCube,	_

								Left:=150,	Top:=250,	Width:=100,	Height:=200).Name	=	"shpTwo"

				'	Group	the	shapes	and	change	the	formatting	for	the	whole	group.

				With	.Range(Index:=Array("shpOne",	"shpTwo")).Group

								.Fill.PresetTextured	PresetTexture:=msoTextureBlueTissuePaper

								.Rotation	=	45

								.ZOrder	ZOrderCmd:=msoSendToBack

				End	With

End	With

	 	



Grow	Method
Increases	the	font	size	to	the	next	available	size.

expression.Grow

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	selection	or	range	contains	more	than	one	font	size,	each	size	is	increased
to	the	next	available	setting.



Example

This	example	increases	the	font	size	of	the	fourth	word	in	a	new	textbox.

Sub	GrowFont()

				Dim	shpText	As	Shape

				Dim	intResponse	As	Integer

				Set	shpText	=	ActiveDocument.Pages(1).Shapes.AddTextbox(	_

								Orientation:=pbTextOrientationHorizontal,	Left:=100,	_

								Top:=100,	Width:=200,	Height:=100)

				With	shpText.TextFrame.TextRange

								.Text	=	"This	is	a	test	of	the	Grow	method."

								Do	Until	intResponse	=	vbNo

												intResponse	=	MsgBox("Do	you	want	to	increase	the	"	&	_

																"size	of	the	font?",	vbYesNo)

												If	intResponse	=	vbYes	Then

																.Words(4).Font.Grow

												End	If

								Loop

				End	With

End	Sub

	 	

This	example	increases	the	font	size	of	the	selected	text.

Sub	IncreaseFontSizeOfSelectedText()

				If	Selection.Type	=	pbSelectionText	Then

								Selection.TextRange.Font.Grow

				Else

								MsgBox	"You	need	to	select	some	text."

				End	If

End	Sub

	 	



Show	All



Help	Method
Displays	online	Help	information.

expression.Help(HelpType)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

HelpType			Required	PbHelpType.	The	type	of	help	to	display.

PbHelpType	can	be	one	of	these	PbHelpType	constants.
pbHelp	Displays	the	Help	Topics	dialog	box.
pbHelpActiveWindow	Displays	Help	describing	the	command	associated	with
the	active	view	or	pane.
pbHelpPSSHelp	Displays	product	support	information.



Remarks

Some	of	the	constants	listed	above	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.



Example

This	example	displays	a	list	of	topics	for	troubleshooting	printing	problems.

Sub	ShowPrintTroubleshooter()

				Application.Help	(HelpType:=pbHelpPrintTroubleshooter)

End	Sub

	 	



InchesToPoints	Method
Converts	a	measurement	from	inches	to	points	(1	inch	=	72	points).	Returns	the
converted	measurement	as	a	Single.

expression.InchesToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	inches	value	to	be	converted	to	points.



Remarks

Use	the	PointsToInches	method	to	convert	measurements	in	points	to	inches.



Example

This	example	converts	measurements	in	inches	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	inches	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	in	=	"	_

								&	Format(Application	_

								.InchesToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



IncrementBrightness	Method
Changes	the	brightness	of	the	picture	by	the	specified	amount.

expression.IncrementBrightness(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Brightness	property	for	the	picture.	A	positive	value	makes	the	picture	brighter;
a	negative	value	makes	the	picture	darker.	Valid	values	are	between	–	1	and	1.



Remarks

You	cannot	adjust	the	brightness	of	a	picture	past	the	upper	or	lower	limit	for	the
Brightness	property.	For	example,	if	the	Brightness	property	is	initially	set	to
0.9	and	you	specify	0.3	for	the	Increment	argument,	the	resulting	brightness
level	will	be	1.0,	which	is	the	upper	limit	for	the	Brightness	property,	instead	of
1.2.

Use	the	Brightness	property	to	set	the	absolute	brightness	of	the	picture.



Example

This	example	creates	a	duplicate	of	the	first	shape	in	the	active	publication	and
then	moves	and	darkens	the	duplicate.	For	the	example	to	work,	the	shape	must
be	either	a	picture	or	an	OLE	object	representing	a	picture.

With	ActiveDocument.Pages(1).Shapes(1).Duplicate

				.PictureFormat.IncrementBrightness	Increment:=-0.2

				.IncrementLeft	Increment:=50

				.IncrementTop	Increment:=50

End	With

	 	



IncrementContrast	Method
Changes	the	contrast	of	the	picture	by	the	specified	amount.

expression.IncrementContrast(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	how	much	to	change	the	value	of	the
Contrast	property	for	the	picture.	A	positive	value	increases	the	contrast;	a
negative	value	decreases	the	contrast.	Valid	values	are	between	–	1	and	1.



Remarks

You	cannot	adjust	the	contrast	of	a	picture	past	the	upper	or	lower	limit	for	the
Contrast	property.	For	example,	if	the	Contrast	property	is	initially	set	to	0.9
and	you	specify	0.3	for	the	Increment	argument,	the	resulting	contrast	level	will
be	1.0,	which	is	the	upper	limit	for	the	Contrast	property,	instead	of	1.2.

Use	the	Contrast	property	to	set	the	absolute	contrast	for	the	picture.



Example

This	example	increases	the	contrast	for	all	pictures	on	the	first	page	of	the	active
publication	that	aren't	already	set	to	maximum	contrast.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				If	shpLoop.Type	=	msoPicture	Then

								shpLoop.PictureFormat.IncrementContrast	Increment:=0.1

				End	If

Next	shpLoop

	 	



IncrementLeft	Method
Moves	the	specified	shape	or	shape	range	horizontally	by	the	specified	distance.

expression.IncrementLeft(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Variant.	The	horizontal	distance	to	move	the	shape	or
shape	range.	A	positive	value	moves	the	shape	or	shape	range	to	the	right;	a
negative	value	moves	it	to	the	left.	Numeric	values	are	evaluated	in	points;
strings	can	be	in	any	units	supported	by	Microsoft	Publisher	(for	example,	"2.5
in").



Remarks

Use	the	IncrementTop	method	to	move	shapes	or	shape	ranges	vertically.



Example

This	example	duplicates	the	first	shape	on	the	active	publication,	sets	the	fill	for
the	duplicate,	moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30
degrees	clockwise.

With	ActiveDocument.Pages(1).Shapes(1).Duplicate

				.Fill.PresetTextured	PresetTexture:=msoTextureGranite

				.IncrementLeft	Increment:=70

				.IncrementTop	Increment:=-50

				.IncrementRotation	Increment:=30

End	With

	 	



IncrementOffsetX	Method
Incrementally	changes	the	horizontal	offset	of	the	shadow	by	the	specified
distance.

expression.IncrementOffsetX(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Variant.	Specifies	how	far	the	shadow	offset	is	to	be
moved	horizontally.	A	positive	value	moves	the	shadow	to	the	right;	a	negative
value	moves	it	to	the	left.	Numeric	values	are	evaluated	in	points;	strings	can	be
in	any	units	supported	by	Microsoft	Publisher	(for	example,	"2.5	in").



Remarks

Use	the	OffsetX	property	to	set	the	absolute	horizontal	shadow	offset.

Use	the	IncrementOffsetY	method	to	change	a	shadow's	vertical	offset.



Example

This	example	moves	the	shadow	for	the	third	shape	in	the	active	publication	to
the	left	by	3	points.

ActiveDocument.Pages(1).Shapes(3).Shadow	_

				.IncrementOffsetX	Increment:=-3

	 	



IncrementOffsetY	Method
Incrementally	changes	the	vertical	offset	of	the	shadow	by	the	specified	distance.

expression.IncrementOffsetY(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Variant.	Specifies	how	far	the	shadow	offset	is	to	be
moved	vertically.	A	positive	value	moves	the	shadow	down;	a	negative	value
moves	it	up.	Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units
supported	by	Microsoft	Publisher	(for	example,	"2.5	in").



Remarks

Use	the	OffsetY	property	to	set	the	absolute	vertical	shadow	offset.

Use	the	IncrementOffsetX	method	to	change	a	shadow's	horizontal	offset.



Example

This	example	moves	the	shadow	for	the	third	shape	in	the	active	publication	up
by	3	points.

ActiveDocument.Pages(1).Shapes(3).Shadow	_

				.IncrementOffsetY	Increment:=-3

	 	



IncrementRotation	Method
Changes	the	rotation	of	the	specified	shape	around	the	z-axis	(extends	outward
from	the	plane	of	the	publication)	by	the	specified	number	of	degrees.

expression.IncrementRotation(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	how	far	the	shape	is	to	be	rotated	around
the	z-axis,	in	degrees.	A	positive	value	rotates	the	shape	clockwise;	a	negative
value	rotates	it	counterclockwise.	Valid	values	are	between	–	360	and	360.



Remarks

Use	the	Rotation	property	to	set	the	absolute	rotation	of	the	shape.

To	rotate	a	three-dimensional	shape	around	the	x-axis	(horizontal)	or	the	y-axis
(vertical),	use	the	IncrementRotationX	method	or	the	IncrementRotationY
method,	respectively.



Example

This	example	duplicates	the	first	shape	on	the	active	publication,	sets	the	fill	for
the	duplicate,	moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30
degrees	clockwise.

With	ActiveDocument.Pages(1).Shapes(1).Duplicate

				.Fill.PresetTextured	PresetTexture:=msoTextureGranite

				.IncrementLeft	Increment:=70

				.IncrementTop	Increment:=-50

				.IncrementRotation	Increment:=30

End	With

	 	



IncrementRotationX	Method
Changes	the	rotation	of	the	specified	shape	around	the	x-axis	(horizontal)	by	the
specified	number	of	degrees.

expression.IncrementRotationX(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	by	how	many	degrees	to	rotate	the	shape
around	the	x-axis.	Can	be	a	value	from	–	90	through	90.	A	positive	value	tilts	the
shape	up;	a	negative	value	tilts	it	down.



Remarks

Use	the	RotationX	property	to	set	the	absolute	rotation	of	the	shape	around	the
x-axis.

You	cannot	adjust	the	rotation	around	the	x-axis	of	the	specified	shape	past	the
upper	or	lower	limit	for	the	RotationX	property	(90	degrees	to	–	90	degrees).
For	example,	if	the	RotationX	property	is	initially	set	to	80	and	you	specify	40
for	the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for
the	RotationX	property)	instead	of	120.

To	change	the	rotation	of	a	shape	around	the	y-axis	(vertical),	use	the
IncrementRotationY	method.	To	change	the	rotation	around	the	z-axis	(extends
outward	from	the	plane	of	the	publication),	use	the	IncrementRotation	method.



Example

This	example	tilts	the	first	shape	in	the	active	publication	up	10	degrees.	The
shape	must	be	an	extruded	shape	for	you	to	see	the	effect	of	this	code.

ActiveDocument.Pages(1).Shapes(1).ThreeD	_

				.IncrementRotationX	Increment:=10

	 	



IncrementRotationY	Method
Changes	the	rotation	of	the	specified	shape	around	the	y-axis	(vertical)	by	the
specified	number	of	degrees.

expression.IncrementRotationY(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Single.	Specifies	by	how	many	degrees	to	rotate	the	shape
around	the	y-axis.	Can	be	a	value	from	–	90	through	90.	A	positive	value	tilts	the
shape	to	the	left;	a	negative	value	tilts	it	to	the	right.



Remarks

Use	the	RotationY	property	to	set	the	absolute	rotation	of	the	shape	around	the
y-axis.

You	cannot	adjust	the	rotation	around	the	y-axis	of	the	specified	shape	past	the
upper	or	lower	limit	for	the	RotationY	property	(90	degrees	to	–	90	degrees).
For	example,	if	the	RotationY	property	is	initially	set	to	80	and	you	specify	40
for	the	Increment	argument,	the	resulting	rotation	will	be	90	(the	upper	limit	for
the	RotationY	property)	instead	of	120.

To	change	the	rotation	of	a	shape	around	the	x-axis	(horizontal),	use	the
IncrementRotationX	method.	To	change	the	rotation	around	the	z-axis	(extends
outward	from	the	plane	of	the	publication),	use	the	IncrementRotation	method.



Example

This	example	tilts	the	first	shape	in	the	active	publication	10	degrees	to	the	right.
The	shape	must	be	an	extruded	shape	for	you	to	see	the	effect	of	this	code.

ActiveDocument.Pages(1).Shapes(1).ThreeD	_

				.IncrementRotationY	Increment:=-10

	 	



IncrementTop	Method
Moves	the	specified	shape	or	shape	range	vertically	by	the	specified	distance.

expression.IncrementTop(Increment)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Increment			Required	Variant.	The	vertical	distance	to	move	the	shape	or	shape
range.	A	positive	value	moves	the	shape	or	shape	range	down;	a	negative	value
moves	it	up.	Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units
supported	by	Microsoft	Publisher	(for	example,	"2.5	in").



Remarks

Use	the	IncrementLeft	method	to	move	shapes	or	shape	ranges	horizontally.



Example

This	example	duplicates	the	first	shape	on	the	active	publication,	sets	the	fill	for
the	duplicate,	moves	it	70	points	to	the	right	and	50	points	up,	and	rotates	it	30
degrees	clockwise.

With	ActiveDocument.Pages(1).Shapes(1).Duplicate

				.Fill.PresetTextured	PresetTexture:=msoTextureGranite

				.IncrementLeft	Increment:=70

				.IncrementTop	Increment:=-50

				.IncrementRotation	Increment:=30

End	With

	 	



Show	All



Insert	Method
As	it	applies	to	the	MailMergeDataField	object	.

Adds	a	Shape	object	that	represents	a	picture	data	field	inserted	into	the
publication's	catalog	merge	area.

expression.Insert(Range)

expression				Required.	An	expression	that	returns	a	MailMergeDataField
object.

Range			Optional	TextRange.



Remarks

Returns	"Permission	Denied"	for	text	data	fields.	Before	a	data	field	is	inserted
into	a	publication's	catalog	merge	area	using	the	Insert	method,	the	field	must	be
defined	as	a	picture	data	field.	Use	the	FieldType	property	of	the
MailMergeDataField	object	to	specify	a	data	field's	type.

Use	the	InsertMailMergeField	method	of	the	TextRange	object	to	add	a	text
data	field	to	a	text	box	in	the	publication's	catalog	merge	area.

This	method	corresponds	to	inserting	picture	fields	into	the	catalog	merge	area	in
Step	3:	Create	your	catalog	merge	template	of	the	Mail	and	Catalog	Merge
Wizard.

As	it	applies	to	the	ShapeNodes	collection.

Inserts	a	new	segment	after	the	specified	node	of	the	freeform	drawing.

expression.Insert(Index,	SegmentType,	EditingType,	X1,	Y1,	X2,	Y2,	X3,	Y3)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Long.	The	number	of	the	node	after	which	the	new	node	is	to
be	inserted.

SegmentType			Required	MsoSegmentType.	The	type	of	segment	to	be	added.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

EditingType			Required	MsoEditingType.	Specifies	the	editing	type	of	the	new
node.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto	Adds	a	node	type	appropriate	to	the	segments	being
connected.



msoEditingCorner	Adds	a	corner	node.
msoEditingSmooth	Not	used	with	this	method.
msoEditingSymmetric	Not	used	with	this	method.

X1			Required	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	horizontal	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of
the	new	node	is	msoEditingCorner,	this	argument	specifies	the	horizontal
distance	from	the	upper-left	corner	of	the	page	to	the	first	control	point	for	the
new	segment.

Y1			Required	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingAuto,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of
the	new	node	is	msoEditingCorner,	this	argument	specifies	the	vertical	distance
from	the	upper-left	corner	of	the	page	to	the	first	control	point	for	the	new
segment.

X2			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	from	the
upper-left	corner	of	the	page	to	the	second	control	point	for	the	new	segment.	If
the	EditingType	of	the	new	segment	is	msoEditingAuto,	do	not	specify	a	value
for	this	argument.

Y2			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	second	control	point	for	the	new	segment.	If	the
EditingType	of	the	new	segment	is	msoEditingAuto,	do	not	specify	a	value	for
this	argument.

X3			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	horizontal	distance	from	the
upper-left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the
EditingType	of	the	new	segment	is	msoEditingAuto,	do	not	specify	a	value	for
this	argument.

Y3			Optional	Variant.	If	the	EditingType	of	the	new	segment	is
msoEditingCorner,	this	argument	specifies	the	vertical	distance	from	the	upper-
left	corner	of	the	page	to	the	end	point	of	the	new	segment.	If	the	EditingType	of



the	new	segment	is	msoEditingAuto,	do	not	specify	a	value	for	this	argument.



Remarks

For	the	X1,	Y1,	X2,	Y2,	X3,	and	Y3	arguments,	numeric	values	are	evaluated	in
points;	strings	can	be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").



Example

As	it	applies	to	the	MailMergeDataField	object.

This	example	defines	a	data	field	as	a	picture	data	field,	inserts	it	into	the	catalog
merge	area	of	the	specified	publication,	and	sizes	and	positions	the	picture	data
field.	This	example	assumes	the	publication	has	been	connected	to	a	data	source,
and	a	catalog	merge	area	has	been	added	to	the	publication.

Dim	pbPictureField1	As	Shape

				'Define	the	field	as	a	picture	data	type

				With	ThisDocument.MailMerge.DataSource.DataFields

								.Item("Photo:").FieldType	=	pbMailMergeDataFieldPicture

				End	With

				

				'Insert	a	picture	field,	then	size	and	position	it

				Set	pbPictureField1	=	ThisDocument.MailMerge.DataSource.DataFields.Item("Photo:").

								With	pbPictureField1

												.Height	=	100

												.Width	=	100

												.Top	=	85

												.Left	=	375

								End	With

	 	

As	it	applies	to	the	ShapeNodes	collection.

This	example	adds	a	smooth	node	with	a	curved	segment	after	node	four	in	the
third	shape	in	the	active	publication.	The	shape	must	be	a	freeform	drawing	with
at	least	four	nodes.

With	ActiveDocument.Pages(1).Shapes(3).Nodes

				.Insert	Index:=4,	_

								SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingAuto,	_

								X1:=210,	Y1:=100

End	With

	 	





InsertAfter	Method
Returns	a	TextRange	object	that	represents	text	appended	to	the	end	of	a	text
range.

expression.InsertAfter(NewText)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NewText			Required	String.	The	text	to	be	inserted.



Example

This	example	adds	Microsoft	Publisher's	build	number	to	the	end	of	the	first
shape	on	the	first	page	of	the	active	publication.	This	example	assumes	the
specified	shape	is	a	text	frame	and	not	another	type	of	shape.

Sub	AppendText()

				With	ActiveDocument.Pages(1).Shapes(1)

								.TextFrame.TextRange.InsertAfter	_

												NewText:="Microsoft	Publisher	Build	:	"	&	Build

				End	With

End	Sub

	 	



InsertBefore	Method
Returns	a	TextRange	object	that	represents	text	appended	to	the	beginning	of	a
text	range.

expression.InsertBefore(NewText)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

NewText			Required	String.	The	text	to	be	inserted.



Example

This	example	adds	Microsoft	Publisher's	build	number	and	a	paragraph	break	to
the	beginning	of	first	shape	on	the	first	page	of	the	active	publication.	This
example	assumes	the	specified	shape	is	a	text	frame	and	not	another	type	of
shape.

Sub	InsertTextBefore()

				With	ActiveDocument.Pages(1).Shapes(1)

								.TextFrame.TextRange.InsertBefore	_

												NewText:="Microsoft	Publisher	Build	:	"	&	Build	&	vbCrLf

				End	With

End	Sub

	 	



Show	All



InsertDateTime	Method
Returns	a	TextRange	object	that	represents	the	date	and	time	inserted	into	a
specified	text	range.

expression.InsertDateTime(Format,	InsertAsField,	InsertAsFullWidth,
Language,	Calendar)

expression				Required.	An	expression	that	returns	a	TextRange	object.

Format			Required	PbDateTimeFormat.	A	format	for	the	date	and	time.

PbDateTimeFormat	can	be	one	of	these	PbDateTimeFormat	constants.
pbDateEnglish
pbDateISO
pbDateLong
pbDateLongDay
pbDateMon_Yr
pbDateMonthYr
pbDateShort
pbDateShortAbb
pbDateShortAlt
pbDateShortMon
pbDateShortSlash
pbDateTimeEastAsia1
pbDateTimeEastAsia2
pbDateTimeEastAsia3
pbDateTimeEastAsia4
pbDateTimeEastAsia5
pbTime24
pbTimeDatePM
pbTimeDateSecPM
pbTimePM



pbTimeSec24
pbTimeSecPM

InsertAsField			Optional	Boolean.	True	for	Microsoft	Publisher	to	update	date
and	time	whenever	opening	the	publication.	Default	is	False.

InsertAsFullWidth			Optional	Boolean.	True	to	insert	the	specified	information
as	double-byte	digits.	This	argument	may	not	be	available	to	you,	depending	on
the	language	support	(U.S.	English,	for	example)	that	you’ve	selected	or
installed.	Default	is	False.

Language			Optional	MsoLanguageID.	The	language	in	which	to	display	the
date	or	time.

MsoLanguageID	can	be	one	of	these	MsoLanguageID	constants.
msoLanguageIDAfrikaans
msoLanguageIDAlbanian
msoLanguageIDAmharic
msoLanguageIDArabic
msoLanguageIDArabicAlgeria
msoLanguageIDArabicBahrain
msoLanguageIDArabicEgypt
msoLanguageIDArabicIraq
msoLanguageIDArabicJordan
msoLanguageIDArabicKuwait
msoLanguageIDArabicLebanon
msoLanguageIDArabicLibya
msoLanguageIDArabicMorocco
msoLanguageIDArabicOman
msoLanguageIDArabicQatar
msoLanguageIDArabicSyria
msoLanguageIDArabicTunisia
msoLanguageIDArabicUAE
msoLanguageIDArabicYemen
msoLanguageIDArmenian



msoLanguageIDAssamese
msoLanguageIDAzeriCyrillic
msoLanguageIDAzeriLatin
msoLanguageIDBasque
msoLanguageIDBelgianDutch
msoLanguageIDBelgianFrench
msoLanguageIDBengali
msoLanguageIDBrazilianPortuguese
msoLanguageIDBulgarian
msoLanguageIDBurmese
msoLanguageIDByelorussian
msoLanguageIDCatalan
msoLanguageIDCherokee
msoLanguageIDChineseHongKong
msoLanguageIDChineseMacao
msoLanguageIDChineseSingapore
msoLanguageIDCroatian
msoLanguageIDCzech
msoLanguageIDDanish
msoLanguageIDDivehi
msoLanguageIDDutch
msoLanguageIDEdo
msoLanguageIDEnglishAUS
msoLanguageIDEnglishBelize
msoLanguageIDEnglishCanadian
msoLanguageIDEnglishCaribbean
msoLanguageIDEnglishIreland
msoLanguageIDEnglishJamaica
msoLanguageIDEnglishNewZealand
msoLanguageIDEnglishPhilippines
msoLanguageIDEnglishSouthAfrica
msoLanguageIDEnglishTrinidad
msoLanguageIDEnglishUK



msoLanguageIDEnglishUS
msoLanguageIDEnglishZimbabwe
msoLanguageIDEstonian
msoLanguageIDFaeroese
msoLanguageIDFarsi
msoLanguageIDFilipino
msoLanguageIDFinnish
msoLanguageIDFrench
msoLanguageIDFrenchCameroon
msoLanguageIDFrenchCanadian
msoLanguageIDFrenchCotedIvoire
msoLanguageIDFrenchLuxembourg
msoLanguageIDFrenchMali
msoLanguageIDFrenchMonaco
msoLanguageIDFrenchReunion
msoLanguageIDFrenchSenegal
msoLanguageIDFrenchWestIndies
msoLanguageIDFrenchZaire
msoLanguageIDFrisianNetherlands
msoLanguageIDFulfulde
msoLanguageIDGaelicIreland
msoLanguageIDGaelicScotland
msoLanguageIDGalician
msoLanguageIDGeorgian
msoLanguageIDGerman
msoLanguageIDGermanAustria
msoLanguageIDGermanLiechtenstein
msoLanguageIDGermanLuxembourg
msoLanguageIDGreek
msoLanguageIDGuarani
msoLanguageIDGujarati
msoLanguageIDHausa
msoLanguageIDHawaiian



msoLanguageIDHebrew
msoLanguageIDHindi
msoLanguageIDHungarian
msoLanguageIDIbibio
msoLanguageIDIcelandic
msoLanguageIDIgbo
msoLanguageIDIndonesian
msoLanguageIDInuktitut
msoLanguageIDItalian
msoLanguageIDJapanese
msoLanguageIDKannada
msoLanguageIDKanuri
msoLanguageIDKashmiri
msoLanguageIDKazakh
msoLanguageIDKhmer
msoLanguageIDKirghiz
msoLanguageIDKonkani
msoLanguageIDKorean
msoLanguageIDKyrgyz
msoLanguageIDLao
msoLanguageIDLatin
msoLanguageIDLatvian
msoLanguageIDLithuanian
msoLanguageIDMacedonian
msoLanguageIDMalayalam
msoLanguageIDMalayBruneiDarussalam
msoLanguageIDMalaysian
msoLanguageIDMaltese
msoLanguageIDManipuri
msoLanguageIDMarathi
msoLanguageIDMexicanSpanish
msoLanguageIDMixed
msoLanguageIDMongolian



msoLanguageIDNepali
msoLanguageIDNone	default
msoLanguageIDNoProofing
msoLanguageIDNorwegianBokmol
msoLanguageIDNorwegianNynorsk
msoLanguageIDOriya
msoLanguageIDOromo
msoLanguageIDPashto
msoLanguageIDPolish
msoLanguageIDPortuguese
msoLanguageIDPunjabi
msoLanguageIDRhaetoRomanic
msoLanguageIDRomanian
msoLanguageIDRomanianMoldova
msoLanguageIDRussian
msoLanguageIDRussianMoldova
msoLanguageIDSamiLappish
msoLanguageIDSanskrit
msoLanguageIDSerbianCyrillic
msoLanguageIDSerbianLatin
msoLanguageIDSesotho
msoLanguageIDSimplifiedChinese
msoLanguageIDSindhi
msoLanguageIDSindhiPakistan
msoLanguageIDSinhalese
msoLanguageIDSlovak
msoLanguageIDSlovenian
msoLanguageIDSomali
msoLanguageIDSorbian
msoLanguageIDSpanish
msoLanguageIDSpanishArgentina
msoLanguageIDSpanishBolivia
msoLanguageIDSpanishChile



msoLanguageIDSpanishColombia
msoLanguageIDSpanishCostaRica
msoLanguageIDSpanishDominicanRepublic
msoLanguageIDSpanishEcuador
msoLanguageIDSpanishElSalvador
msoLanguageIDSpanishGuatemala
msoLanguageIDSpanishHonduras
msoLanguageIDSpanishModernSort
msoLanguageIDSpanishNicaragua
msoLanguageIDSpanishPanama
msoLanguageIDSpanishParaguay
msoLanguageIDSpanishPeru
msoLanguageIDSpanishPuertoRico
msoLanguageIDSpanishUruguay
msoLanguageIDSpanishVenezuela
msoLanguageIDSutu
msoLanguageIDSwahili
msoLanguageIDSwedish
msoLanguageIDSwedishFinland
msoLanguageIDSwissFrench
msoLanguageIDSwissGerman
msoLanguageIDSwissItalian
msoLanguageIDSyriac
msoLanguageIDTajik
msoLanguageIDTamazight
msoLanguageIDTamazightLatin
msoLanguageIDTamil
msoLanguageIDTatar
msoLanguageIDTelugu
msoLanguageIDThai
msoLanguageIDTibetan
msoLanguageIDTigrignaEritrea
msoLanguageIDTigrignaEthiopic



msoLanguageIDTraditionalChinese
msoLanguageIDTsonga
msoLanguageIDTswana
msoLanguageIDTurkish
msoLanguageIDTurkmen
msoLanguageIDUkrainian
msoLanguageIDUrdu
msoLanguageIDUzbekCyrillic
msoLanguageIDUzbekLatin
msoLanguageIDVenda
msoLanguageIDVietnamese
msoLanguageIDWelsh
msoLanguageIDXhosa
msoLanguageIDYi
msoLanguageIDYiddish
msoLanguageIDYoruba
msoLanguageIDZulu

Calendar			Optional	PbCalendarType.	The	calendar	type	to	use	when
displaying	the	date	or	time.

PbCalendarType	can	be	one	of	these	PbCalendarType	constants.
pbCalendarTypeArabicHijri
pbCalendarTypeChineseNational
pbCalendarTypeHebrewLunar
pbCalendarTypeJapaneseEmperor
pbCalendarTypeKoreanDanki
pbCalendarTypeSakaEra
pbCalendarTypeThaiBuddhist
pbCalendarTypeTranslitEnglish
pbCalendarTypeTranslitFrench
pbCalendarTypeWestern	default



Example

This	example	inserts	a	field	for	the	current	date	at	the	cursor	position.

Sub	InsertDateField()

				Selection.TextRange.InsertDateTime	Format:=pbDateLong,	_

								InsertAsField:=True

End	Sub

	 	



Show	All



InsertMailMergeField	Method
Returns	a	TextRange	object	that	represents	a	text	data	field	for	a	mail	merge	or
catalog	merge.

expression.InsertMailMergeField(varIndex)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

varIndex			Required	Variant.	The	name	or	index	of	the	data	field	in	the
datasource.



Remarks

For	a	publication's	catalog	merge	area	to	contain	text	data	fields,	it	must	first
contain	at	least	one	text	box	to	contain	the	text	data	fields.



Example

This	example	inserts	a	LastName	field	at	the	cursor	position.	This	example
assumes	that	the	active	publication	is	a	mail	merge	publication	and	that	the
insertion	point	is	somewhere	inside	a	text	box.

Sub	InsertMergeField()

				Selection.TextRange.InsertMailMergeField	varIndex:="LastName"

End	Sub

	 	

This	example	adds	a	text	box	to	the	specified	publication's	catalog	merge	area,
and	then	inserts	a	text	data	field	into	the	text	box.	This	example	assumes	that	the
specified	publication	is	connected	to	a	data	source,	and	that	it	contains	a	catalog
merge	area.

Set	pbTextBox1	=	ThisDocument.Pages(1).Shapes.AddTextbox(1,	100,	100,	175,	25)

pbTextBox1.AddToCatalogMergeArea

With	pbTextBox1.TextFrame.TextRange

								.Text	=	"List	Price:	"

								.InsertMailMergeField	"List	Price"

End	With



Show	All



InsertPageNumber	Method
Returns	a	TextRange	object	that	represents	a	page	number	field	in	a	publication.

expression.InsertPageNumber(Type)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Optional	PbPageNumberType.	Specifies	whether	the	page	number	is	the
current	page	number	or	the	next	or	previous	page	number	of	a	linked	text	box.

PbPageNumberType	can	be	one	of	these	PbPageNumberType	constants.
pbPageNumberCurrent	default
pbPageNumberNextInStory	Inserts	the	page	number	of	the	next	linked	text
box.
pbPageNumberPreviousInStory	Inserts	the	page	number	of	the	previous
linked	text	box.



Example

This	example	inserts	a	page	number	field	in	a	shape	on	the	master	page	so	that
the	current	page	number	appears	at	the	top	of	each	page.

Sub	PageNumberShape()

				With	ActiveDocument.MasterPages(1).Shapes	_

												.AddShape(Type:=msoShape5pointStar,	Left:=36,	_

												Top:=36,	Width:=50,	Height:=50)

								With	.TextFrame.TextRange

												.InsertPageNumber

												.ParagraphFormat.Alignment	=	pbParagraphAlignmentCenter

								End	With

								.Fill.ForeColor.RGB	=	RGB(Red:=125,	Green:=125,	Blue:=255)

				End	With

End	Sub

	 	



InsertSymbol	Method
Returns	a	TextRange	object	that	represents	a	symbol	inserted	in	place	of	the
specified	range	or	selection.

expression.InsertSymbol(FontName,	CharIndex)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FontName			Required	String.	The	name	of	the	font	that	contains	the	symbol.

CharIndex			Required	Long.	The	Unicode	character	number	for	the	specified
symbol.



Remarks

If	you	don't	want	to	replace	the	range	or	selection,	use	the	Collapse	method
before	you	use	this	method.



Example

This	example	inserts	a	double-headed	arrow	at	the	insertion	point.

Sub	InsertArrow()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.Paragraphs(Start:=1,	Length:=1).Select

				With	Selection.TextRange

								.Collapse	Direction:=pbCollapseStart

								.InsertSymbol	FontName:="Symbol",	CharIndex:=171

				End	With

End	Sub

	 	



IsValidObject	Method
Determines	whether	the	specified	object	variable	references	a	valid	object	and
returns	a	Boolean	value:	True	if	the	specified	variable	that	references	an	object
is	valid,	False	if	the	object	referenced	by	the	variable	has	been	deleted.

expression.IsValidObject(Object)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Object			Required	Object.	A	variable	that	references	an	object.



Example

This	example	formats	the	line	of	a	valid	object.

Sub	ValidShape(shpObject	As	Shape)

				If	Application.IsValidObject(Object:=shpObject)	=	True	Then

								With	shpObject.Line

												.DashStyle	=	msoLineRoundDot

												.ForeColor.RGB	=	RGB(Red:=158,	Green:=50,	Blue:=208)

												.Weight	=	5

								End	With

				End	If

End	Sub

	 	

Use	the	following	subroutine	to	call	the	above	subroutine.

Sub	CallValidShape()

				Call	ValidShape(shpObject:=ActiveDocument.Pages(1).Shapes(2))

End	Sub

	 	



Show	All



Item	Method
Item	method	as	it	applies	to	the	InlineShapes	collection.

Returns	a	Shape	object	that	represents	an	inline	shape	contained	in	a	text	range.
This	method	is	the	default	member	of	the	InlineShapes	collection.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Variant.	The	index	position	or	name	of	the	object	to	return.	If
Index	is	an	integer,	the	index	into	the	collection	is	1-based.	If	Index	is	a	string,
the	name	of	the	shape	is	used	as	the	index.	An	automation	error	is	returned	if	the
index	or	name	does	not	represent	a	shape	in	the	collection.

Item	method	as	it	applies	to	the	MailMergeDataFields	object.

Returns	a	MailMergeDataField	object	from	the	specified
MailMergeDataFields	object.

expression.Item(varIndex)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

varIndex			Required	Variant.	The	number	or	name	of	the	field	to	return.

Item	method	as	it	applies	to	the	CellRange,	Columns,	Fields,
MailMergeFilters,	ObjectVerbs,	Rows,	Stories,	and	TabStops	objects.

Returns	an	individual	object	in	a	specified	collection.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Long.	The	number	of	the	object	to	return.



Item	method	as	it	applies	to	the	WebHiddenFields	and
WebListBoxItems	objects.

Returns	a	String	corresponding	to	the	value	of	a	hidden	field	in	a	Web	form	or	a
list	item	in	a	Web	list	box	control.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Variant.	The	number	or	name	of	the	field	or	list	box	item	to
return.

Item	method	as	it	applies	to	all	the	other	objects	in	the	Applies	To	list.

Returns	an	individual	object	in	a	specified	collection.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Variant.	The	number	or	name	of	the	field	or	list	box	item	to
return.



Example

As	it	applies	to	the	InlineShapes	collection.

This	example	finds	the	first	inline	shape	in	a	text	range	and	flips	it	vertically.

Dim	theShape	As	Shape

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

With	theShape.TextFrame.Story.TextRange

				With	.InlineShapes.Item(1)

								.Flip	(msoFlipVertical)

				End	With

End	With

	 	 	 	

As	it	applies	to	the	CellRange	object.

This	example	returns	the	first	cell	from	a	CellRange	object.

Dim	cllTemp	As	Cell

Set	cllTemp	=	ActiveDocument.Pages(Index:=1)	_

				.Shapes(1).Table.Cells.Item(Index:=1)

	 	 	 	

As	it	applies	to	the	Columns	object.

This	example	returns	the	first	column	from	a	Columns	object.

Dim	colTemp	As	Column

Set	colTemp	=	ActiveDocument.Pages(Index:=1)	_

				.Shapes(1).Table.Columns.Item(Index:=1)

	 	 	 	

As	it	applies	to	the	Fields	object.

This	example	returns	the	first	field	from	a	Fields	object.

Dim	fldTemp	As	Field



Set	fldTemp	=	ActiveDocument.Pages(Index:=1)	_

				.Shapes(1).TextFrame.TextRange.Fields.Item(Index:=1)

	 	 	 	

As	it	applies	to	the	GroupShapes,	ShapeRange,	and	Shapes	object.

This	example	returns	the	first	shape	inside	a	grouped	shape.

Dim	shpTemp	As	Shape

Set	shpTemp	=	ActiveDocument.Pages(Index:=1)	_

				.Shapes(1).GroupItems.Item(Index:=1)

	 	 	 	

As	it	applies	to	the	MailMergeMappedDataFields	object.

This	example	returns	the	"City"	field	from	a	mapped	data	fields	object.

Dim	mmfTemp	As	MailMergeMappedDataField

Set	mmfTemp	=	ActiveDocument.MailMerge	_

				.DataSource.MappedDataFields.Item(Index:="City")

	 	 	 	

As	it	applies	to	the	TextStyles	object.

This	example	returns	the	"Normal"	text	style	from	the	active	publication.

Dim	txtStyle	As	TextStyle

Set	txtStyle	=	ActiveDocument.TextStyles.Item(Index:="Normal")

	 	 	 	



LaunchWebService	Method
Launches	the	Microsoft	Office	eServices	Portal.

expression.LaunchWebService

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	launches	the	Microsoft	Office	eServices	Portal.

Application.LaunchWebService

	 	



Lines	Method
Returns	a	TextRange	object	that	represents	the	specified	lines.

expression.Lines(Start,	Length)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Start			Required	Long.	The	first	line	in	the	returned	range.

Length			Optional	Long.	The	number	of	lines	to	be	returned.	Default	is	1.



Remarks

If	Start	is	greater	than	the	number	of	lines	in	the	specified	text,	the	returned
range	starts	with	the	last	line	in	the	specified	range.

If	Length	is	greater	than	the	number	of	lines	from	the	specified	starting	line	to
the	end	of	the	text,	the	returned	range	contains	all	those	lines.



Example

This	example	replaces	the	first	three	lines	of	the	first	shape	on	the	first	page	with
the	specified	string.

Sub	ReplaceLines()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.Lines(Start:=1,	Length:=3)

				rngText.Text	=	"This	is	replacement	text."	&	vbCrLf

End	Sub

	 	



LinesToPoints	Method
Converts	a	measurement	from	lines	to	points	(1	line	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.LinesToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	line	value	to	be	converted	to	points.



Remarks

This	method	assumes	a	measurement	in	12-point	lines—	the	actual	size	of	any
text	in	the	publication	has	no	effect	on	the	conversion	factor.

Use	the	PointsToLines	method	to	convert	measurements	in	points	to	lines.



Example

This	example	converts	measurements	in	lines	to	measurements	in	points,
demonstrating	that	the	font	size	in	the	current	selection	has	no	bearing	on	the
conversion	factor.	Some	text	must	be	selected	in	the	active	publication	for	this
example	to	work.

Dim	strOutput	As	String

'	Set	text	size	to	10	points.

Selection.TextRange.Font.Size	=	10

'	Display	result	for	one	line	of	text.

strOutput	=	"1	line	=	"	_

				&	Format(Application	_

				.LinesToPoints(Value:=1),	_

				"0.00")	&	"	points"

	 	



Show	All



Merge	Method
Merge	method	as	it	applies	to	the	Cell	object.

Merges	the	specified	table	cell	with	another	cell.	The	result	is	a	single	table	cell.

expression.Merge(MergeTo)

expression				Required.	An	expression	that	returns	a	Cell	object.

MergeTo			Required	Cell	object.	The	cell	to	be	merged	with;	must	be	adjacent	to
the	specified	cell	or	an	error	occurs.

Merge	method	as	it	applies	to	the	CellRange	object.

Merges	the	specified	table	cells	with	one	another.	The	result	is	a	single	table	cell.

expression.Merge

expression				Required.	An	expression	that	returns	a	CellRange	object;	must	be	a
rectangular	region	of	cells	or	an	error	occurs.



Example

As	it	applies	to	the	Cell	object.

This	example	merges	the	first	two	cells	of	the	first	column	of	the	specified	table.

Sub	MergeCell()

				With	ActiveDocument.Pages(1).Shapes(2).Table

								.Rows(1).Cells(1).Merge	MergeTo:=.Rows(2).Cells(1)

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	CellRange	object.

This	example	merges	the	first	two	cells	in	the	first	two	rows	of	the	specified
table.

Sub	MergeCells()

				ActiveDocument.Pages(1).Shapes(2).Table	_

								.Cells(StartRow:=1,	StartColumn:=1,	_

								EndRow:=2,	EndColumn:=2).Merge

End	Sub

	 	 	 	



MillimetersToPoints	Method
Converts	a	measurement	from	millimeters	to	points	(1	mm	=	2.835	points).
Returns	the	converted	measurement	as	a	Single.

expression.MillimetersToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	millimeter	value	to	be	converted	to	points.



Remarks

Use	the	PointsToMillimeters	method	to	convert	measurements	in	points	to
millimeters.



Example

This	example	converts	measurements	in	millimeters	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	millimeters	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	mm	=	"	_

								&	Format(Application	_

								.Mill	imetersToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



Show	All



Move	Method
Move	method	as	it	applies	to	the	Page	object.

Moves	the	specified	page	to	the	specified	index	in	the	Pages	collection.

expression.Move(Page,	[After])

expression				Required.	An	expression	that	returns	a	Page	object.

Page			Required	Long.	The	index	number	of	the	Pages	collection	where	the
specified	page	will	be	moved.

After			Optional	Boolean.	True	if	the	page	will	be	inserted	after	the	specified
index	number	of	the	Pages	collection	specified	by	the	Page	parameter.	Deafult	is
True.

Move	method	as	it	applies	to	the	TextRange	object.

Collapses	the	specified	range	to	its	start	position	or	end	position	and	then	moves
the	collapsed	object	by	the	specified	number	of	units.	This	method	returns	a
Long	that	represents	the	number	of	units	by	which	the	object	was	actually
moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

expression.Move(Unit,	Size)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Unit			Required	PbTextUnit.	The	unit	by	which	the	collapsed	range	or	selection
is	to	be	moved.

PbTextUnit	can	be	one	of	these	PbTextUnit	constants.
pbTextUnitCell
pbTextUnitCharacter
pbTextUnitCharFormat
pbTextUnitCodePoint



pbTextUnitColumn
pbTextUnitLine
pbTextUnitObject
pbTextUnitParaFormat
pbTextUnitParagraph
pbTextUnitRow
pbTextUnitScreen
pbTextUnitSection
pbTextUnitSentence
pbTextUnitStory
pbTextUnitTable
pbTextUnitWindow
pbTextUnitWord

Size			Required	Long.	The	number	of	units	by	which	the	specified	range	or
selection	is	to	be	moved.	If	Size	is	a	positive	number,	the	object	is	collapsed	to
its	end	position	and	moved	forward	in	the	document	by	the	specified	number	of
units.	If	Size	is	a	negative	number,	the	object	is	collapsed	to	its	start	position	and
moved	backward	by	the	specified	number	of	units.	You	can	also	control	the
collapse	direction	by	using	the	Collapse	method	before	using	the	Move	method.

Move	method	as	it	applies	to	the	Window	object.

Moves	the	active	document	window.

expression.Move(Left,	Top)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Left			Required	Long.	The	horizontal	screen	position	of	the	specified	window.

Top			Required	Long.	The	vertical	screen	position	of	the	specified	window.



Remarks

If	the	application	window	is	either	maximized	or	minimized,	this	method	will
return	an	error.



Example

As	it	applies	to	the	Page	object.

This	example	moves	the	first	page	of	the	publication	before	the	third	page	of	the
publication.	This	example	assumes	that	there	are	at	least	three	pages	in	the
document.

ActiveDocument.Pages(1).Move	page:=3,	After:=False

	 	 	 	

As	it	applies	to	the	TextRange	object.

This	example	collapses	the	specified	range	and	inserts	a	new	sentence	at	the
beginning	of	the	range.

Sub	MoveText()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Words(Start:=1,	Length:=5)

				With	rngText

								.Move	Unit:=pbTextUnitParagraph,	Size:=-1

								.Text	=	"This	adds	new	text	to	the	beginning	of	the	range.		"

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Window	object.

This	example	checks	the	state	of	the	application	window,	and	if	it	is	neither
maximized	nor	minimized,	moves	the	window	to	the	upper	left	corner	of	the
screen.

Sub	MoveWindow()

				With	ActiveWindow

								If	.WindowState	=	pbWindowStateNormal	Then

												.Move	Left:=50,	Top:=50

								End	If

				End	With

End	Sub

	 	 	 	





Show	All



MoveEnd	Method
Moves	the	ending	character	position	of	a	range.	This	method	returns	a	Long	that
represents	the	number	of	units	the	range	or	selection	actually	moved	or	returns	0
(zero)	if	the	move	was	unsuccessful.

expression.MoveEnd(Unit,	Size)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbTextUnit.	The	unit	by	which	the	collapsed	range	or	selection
is	to	be	moved.

PbTextUnit	can	be	one	of	these	PbTextUnit	constants.
pbTextUnitCell
pbTextUnitCharacter
pbTextUnitCharFormat
pbTextUnitCodePoint
pbTextUnitColumn
pbTextUnitLine
pbTextUnitObject
pbTextUnitParaFormat
pbTextUnitParagraph
pbTextUnitRow
pbTextUnitScreen
pbTextUnitSection
pbTextUnitSentence
pbTextUnitStory
pbTextUnitTable
pbTextUnitWindow
pbTextUnitWord

Size			Required	Long.	The	number	of	units	to	move.	If	this	number	is	positive,



the	ending	character	position	is	moved	forward	in	the	document.	If	this	number
is	negative,	the	end	is	moved	backward.	If	the	ending	position	overtakes	the
starting	position,	the	range	collapses	and	both	character	positions	move	together.



Remarks

Use	the	MoveStart	method	to	move	the	starting	character	position	for	a	range.



Example

This	example	sets	a	text	range,	moves	the	range's	starting	and	ending	character
positions,	and	then	formats	the	font	for	the	range.

Sub	MoveStartEnd()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Paragraphs(Start:=3,	Length:=1)

				With	rngText

								.MoveStart	Unit:=pbTextUnitLine,	Size:=-2

								.MoveEnd	Unit:=pbTextUnitLine,	Size:=1

								With	.Font

												.Bold	=	msoTrue

												.Size	=	15

								End	With

				End	With

End	Sub

	 	



MoveIntoTextFlow	Method
Moves	a	given	shape	into	the	text	flow	defined	by	TextRange.	The	shape	will
always	be	inserted	inline	at	the	beginning	of	the	text	flow.

expression.MoveIntoTextFlow(Range)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Range			Required	TextRange.	The	range	of	text	before	which	the	given	shape	is
inserted.



Remarks

The	MoveIntoTextFlow	method	will	fail	if	the	shape	to	be	moved	is	already
inline	or	if	it	is	not	a	valid	inline	shape	type.	Invalid	inline	shape	types	include:

Inline	shapes
Grouped	shapes
HTML	fragments
Smart	objects
Chained	text	boxes



Example

The	following	example	checks	if	the	second	shape	on	the	second	page	of	the
publication	is	inline,	and	if	it	is	not,	inserts	it	inline	at	the	beginning	of	the	text
flow	of	the	given	text	range.

Dim	theShape	As	Shape

Dim	theRange	As	TextRange

Set	theRange	=	ActiveDocument.Pages(2).Shapes(1).TextFrame.TextRange

Set	theShape	=	ActiveDocument.Pages(2).Shapes(2)

If	Not	theShape.IsInline	=	msoTrue	Then

				theShape.MoveIntoTextFlow	Range:=theRange

End	If



MoveOutOfTextFlow	Method
Moves	a	given	inline	shape	out	of	its	containing	text	range,	defined	by
TextRange,	and	makes	the	shape	fixed.

expression.MoveOutOfTextFlow()

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

An	automation	error	is	returned	if	the	shape	to	be	moved	is	not	already	inline.

After	the	MoveOutOfTextFlow	method	is	called	on	an	inline	shape,	the	shape
will	maintain	its	position	on	the	page,	but	it	will	no	longer	be	inline.



Example

The	following	example	moves	the	first	inline	shape	contained	in	a	given	text
range	out	of	the	text	flow.

Dim	theShape	As	Shape

Set	theShape	=	ActiveDocument.Pages(2).Shapes(1)	_

				.TextFrame.TextRange.InlineShapes(1)

theShape.MoveOutOfTextFlow



Show	All



MoveStart	Method
Moves	the	start	position	of	the	specified	range.	This	method	returns	a	Long	that
indicates	the	number	of	units	by	which	the	start	position	or	the	range	or	selection
actually	moved,	or	it	returns	0	(zero)	if	the	move	was	unsuccessful.

expression.MoveStart(Unit,	Size)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Unit			Required	PbTextUnit.	The	unit	by	which	the	collapsed	range	or	selection
is	to	be	moved.

PbTextUnit	can	be	one	of	these	PbTextUnit	constants.
pbTextUnitCell
pbTextUnitCharacter
pbTextUnitCharFormat
pbTextUnitCodePoint
pbTextUnitColumn
pbTextUnitLine
pbTextUnitObject
pbTextUnitParaFormat
pbTextUnitParagraph
pbTextUnitRow
pbTextUnitScreen
pbTextUnitSection
pbTextUnitSentence
pbTextUnitStory
pbTextUnitTable
pbTextUnitWindow
pbTextUnitWord

Size			Required	Long.	The	number	of	units	to	move.	If	this	number	is	positive,



the	ending	character	position	is	moved	forward	in	the	document.	If	this	number
is	negative,	the	end	is	moved	backward.	If	the	ending	position	overtakes	the
starting	position,	the	range	collapses	and	both	character	positions	move	together.



Remarks

Use	the	MoveEnd	method	to	move	the	ending	character	position	for	a	range.



Example

This	example	sets	a	text	range,	moves	the	range's	starting	and	ending	character
positions,	and	then	formats	the	font	for	the	range.

Sub	MoveStartEnd()

				Dim	rngText	As	TextRange

				Set	rngText	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Paragraphs(Start:=3,	Length:=1)

				With	rngText

								.MoveStart	Unit:=pbTextUnitLine,	Size:=-2

								.MoveEnd	Unit:=pbTextUnitLine,	Size:=1

								With	.Font

												.Bold	=	msoTrue

												.Size	=	15

								End	With

				End	With

End	Sub

	 	



Name	Method
Returns	a	String	that	represents	the	name	of	a	hidden	Web	field	for	a	Web
command	button.

expression.Name(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Long.	The	index	number	of	the	hidden	field.



Example

This	example	creates	a	Web	command	button	with	a	hidden	field,	then	displays
the	field's	name.

Sub	GetHiddenWebFieldName()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlCommandButton,	_

												Left:=100,	Top:=100,	Width:=100,	_

												Height:=36).WebCommandButton.HiddenFields

								.Add	Name:="User",	Value:="Power"

								MsgBox	"The	name	of	the	first	hidden	field	is	"	&	.Name(1)

				End	With

End	Sub

	 	



Show	All



NewDocument	Method
Returns	a	Document	object	that	represents	a	new	publication.

expression.NewDocument(Wizard,	Design)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Wizard			Optional	PbWizard.	The	wizard	to	use	to	create	the	new	publication.

PbWizard	can	be	one	of	these	PbWizard	constants.
pbWizardAdvertisements
pbWizardAirplanes
pbWizardBanners
pbWizardBrochures
pbWizardBusinessCards
pbWizardBusinessForms
pbWizardCalendars
pbWizardCatalogs
pbWizardCertificates
pbWizardEnvelopes
pbWizardFlyers
pbWizardGiftCertificates
pbWizardGreetingCards
pbWizardInvitations
pbWizardJapaneseAdvertisements
pbWizardJapaneseAirplanes
pbWizardJapaneseBanners
pbWizardJapaneseBrochures
pbWizardJapaneseBusinessCards
pbWizardJapaneseBusinessForms
pbWizardJapaneseCalendars



pbWizardJapaneseCatalogs
pbWizardJapaneseCertificates
pbWizardJapaneseEnvelopes
pbWizardJapaneseFlyers
pbWizardJapaneseGiftCertificates
pbWizardJapaneseGreetingCards
pbWizardJapaneseInvitations
pbWizardJapaneseLabels
pbWizardJapaneseLetterheads
pbWizardJapaneseMenus
pbWizardJapaneseNewsletters
pbWizardJapaneseOrigami
pbWizardJapanesePostcards
pbWizardJapanesePrograms
pbWizardJapaneseSigns
pbWizardJapaneseWebSites
pbWizardLabels
pbWizardLetterheads
pbWizardMenus
pbWizardNewsletters
pbWizardNone	default
pbWizardOrigami
pbWizardPostcards
pbWizardPrograms
pbWizardQuickPublications
pbWizardResumes
pbWizardSigns
pbWizardWebSites
pbWizardWithComplimentsCards
pbWizardWordDocument

Design			Optional	Long.	The	design	to	apply	to	the	new	publication.



Example

This	example	creates	a	new	publication	and	edits	the	master	page	to	contain	a
page	number	in	a	star	in	the	upper	left	corner	of	the	page.

Sub	CreateNewPublication()

				Dim	AppPub	As	Application

				Dim	DocPub	As	Document

				Set	AppPub	=	New	Publisher.Application

				Set	DocPub	=	AppPub.NewDocument

				AppPub.ActiveWindow.Visible	=	True

				With	DocPub.MasterPages(1).Shapes.AddShape	_

												(Type:=msoShape5pointStar,	Left:=36,	_

												Top:=36,	Width:=50,	Height:=50)

								.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

								With	.TextFrame.TextRange

												.InsertPageNumber

												.ParagraphFormat.Alignment	=	pbParagraphAlignmentCenter

												With	.Font

																.Bold	=	msoTrue

																.Color.RGB	=	RGB(Red:=255,	Green:=255,	Blue:=255)

																.Size	=	12

												End	With

								End	With

				End	With

End	Sub

	 	



Show	All



OneColorGradient	Method
Sets	the	specified	fill	to	a	one-color	gradient.

expression.OneColorGradient(Style,	Variant,	Degree)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Style			Required	MsoGradientStyle.	The	gradient	style.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed	Not	used	with	this	method.
msoGradientVertical

Variant			Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromTitle	or	msoGradientFromCenter,	this
argument	can	be	either	1	or	2.

Degree			Required	Single.	The	gradient	degree.	Can	be	a	value	from	0.0	(dark)
to	1.0	(light).



Example

This	example	adds	a	rectangle	with	a	one-color	gradient	fill	to	the	active
publication.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeRectangle,	_

								Left:=90,	Top:=90,	Width:=90,	Height:=80).Fill

				.ForeColor.RGB	=	RGB(0,	128,	128)

				.OneColorGradient	Style:=msoGradientHorizontal,	_

								Variant:=1,	Degree:=1

End	With

	 	



Show	All



Open	Method
Returns	a	Document	object	that	represents	the	newly	opened	publication.

expression.Open(FileName,	ReadOnly,	AddToRecentFiles,	SaveChanges,
OpenConflictDocument)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName			Required	String.	The	name	of	the	publication	(paths	are	accepted).

ReadOnly			Optional	Boolean.	True	to	open	the	publication	as	read-only.
Default	is	False.

AddToRecentFiles			Optional	Boolean.	True	(default)	to	add	the	file	name	to	the
list	of	recently	used	files	at	the	bottom	of	the	File	menu.

SaveChanges			Optional	PbSaveOptions.	Specifies	what	Publisher	should	do	if
there	is	already	an	open	publication	with	unsaved	changes.

PbSaveOptions	can	be	one	of	these	PbSaveOptions	constants.
pbDoNotSaveChanges	Close	the	open	publication	without	saving	any	changes.
pbPromptToSaveChanges	default	Prompt	the	user	whether	to	save	changes	in
the	open	publication.
pbSaveChanges	Save	the	open	publication	before	closing	it.

OpenConflictDocument			Optional	Boolean.	True	to	open	the	local	conflict
publication	if	there	is	an	offline	conflict.	Default	is	False.



Remarks

Since	Publisher	has	a	single	document	interface,	the	Open	method	only	works
when	you	open	a	new	instance	of	Publisher.	The	code	sample	below	shows	how
to	create	a	new,	visible	instance	of	Publisher.	When	finished	with	the	second
instance,	you	can	set	the	application	window's	Visible	property	to	False,	but	the
process	continues	to	run	in	the	background	even	though	it	isn't	visible.	To	close
the	second	instance,	you	must	set	the	object	equal	to	Nothing.



Example

This	example	creates	a	second	instance	of	Publisher	and	opens	the	specified
publication	as	read-only.	(Note	that	PathToFile	must	be	replaced	with	the	path	to
an	existing	publication	for	this	example	to	work.)

Sub	OpenNewPub()

				Dim	appPub	As	New	Publisher.Application

				appPub.Open	FileName:="PathToFile",	_

								ReadOnly:=True,	AddToRecentFiles:=False,	_

								SaveChanges:=pbPromptToSaveChanges

				appPub.ActiveWindow.Visible	=	True

End	Sub

	 	



OpenDataSource	Method
Attaches	a	data	source	to	the	specified	publication,	which	becomes	a	main
publication	if	it's	not	one	already.

expression.OpenDataSource(bstrDataSource,	bstrConnect,	bstrTable,
fOpenExclusive,	fNeverPrompt)

expression				Required.	An	expression	that	returns	a	MailMerge	object.

bstrDataSource			Optional	String.	The	data	source	path	and	file	name.	You	can
specify	a	Microsoft	Query	(.qry)	file	instead	of	specifying	a	data	source,	a
connection	string,	and	a	table	name	string;	values	in	a	Microsoft	Query	file
override	values	for	bstrConnect	and	bstrTable.

bstrConnect			Optional	String.	A	connection	string.

bstrTable			Optional	String.	The	name	of	the	table	in	the	data	source.

fOpenExclusive			Optional	Long.	True	to	deny	others	access	to	the	database.
False	allows	others	read/write	access	to	the	database.	The	default	value	is	False.

fNeverPrompt			Optional	Long.	True	never	prompts	when	opening	the	data
source.	False	displays	the	Data	Link	Properties	dialog	box.	The	default	value
is	False.



Example

This	example	attaches	a	table	from	a	database	and	denies	everyone	else	write
access	to	the	database	while	it	is	opened.	(Note	that	PathToFile	must	be	replaced
with	a	valid	file	path,	and	TableName	with	a	valid	data	source	table	name,	for
this	example	to	execute	properly.)

Sub	AttachDataSource()

				ActiveDocument.MailMerge.OpenDataSource	_

								bstrDataSource:="PathToFile",		_

								bstrTable:="TableName",	_

								fNeverPrompt:=True,	fOpenExclusive:=True

End	Sub

	 	



OpenRecipientsDialog	Method
Displays	the	Recipients	dialog	box	for	a	mail	merge	publication.

expression.OpenRecipientsDialog

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	displays	the	Mail	Merge	Recipients	dialog	box.

Sub	ShowRecipientsDialog()

				ActiveDocument.MailMerge.DataSource.OpenRecipientsDialog

End	Sub

	 	



Paragraphs	Method
Returns	a	TextRange	object	that	represents	the	specified	paragraphs.

expression.Paragraphs(Start,	Length)

expression				Required.	An	expression	that	returns	a	TextRange	object.

Start			Required	Long.	The	first	paragraph	in	the	returned	range.

Length			Optional	Long.	The	number	of	paragraphs	to	be	returned.	Default	is	1.



Remarks

If	Length	is	omitted,	the	returned	range	contains	one	paragraph.

If	Length	is	greater	than	the	number	of	paragraphs	from	the	specified	starting
paragraph	to	the	end	of	the	text,	the	returned	range	contains	all	those	paragraphs.



Example

This	example	formats	as	indents	the	first	line	of	the	selected	paragraph.

Sub	FormatCurrentParagraph()

				Selection.TextRange.Paragraphs(Start:=1).ParagraphFormat	_

								.FirstLineIndent	=	InchesToPoints(0.5)

End	Sub

	 	



Show	All



Paste	Method
Paste	method	as	it	applies	to	the	Shapes	object.

Pastes	the	shapes	or	text	on	the	Clipboard	into	the	specified	Shapes	collection,	at
the	top	of	the	z-order.	Each	pasted	object	becomes	a	member	of	the	specified
Shapes	collection.	If	the	Clipboard	contains	a	text	range,	the	text	will	be	pasted
into	a	newly	created	TextFrame	shape.	Returns	a	ShapeRange	object	that
represents	the	pasted	objects.

expression.Paste

expression				Required.	An	expression	that	returns	a	Shapes	collection.

Paste	method	as	it	applies	to	the	TextRange	object.

Pastes	the	text	on	the	Clipboard	into	the	specified	text	range,	and	returns	a
TextRange	object	that	represents	the	pasted	text.

expression.Paste

expression				Required.	An	expression	that	returns	a	TextRange	object.



Example

As	it	applies	to	the	Shapes	object.

This	example	copies	shape	one	on	page	one	in	the	active	publication	to	the
Clipboard	and	then	pastes	it	into	page	two.

With	ActiveDocument

				.Pages(1).Shapes(1).Copy

				.Pages(2).Shapes.Paste

End	With

	 	 	 	

As	it	applies	to	the	TextRange	object.

This	example	cuts	the	text	in	shape	one	on	page	one	in	the	active	publication,
places	it	on	the	Clipboard,	and	then	pastes	it	after	the	first	word	in	shape	two	on
the	same	page.	This	example	assumes	that	each	shape	contains	text.

With	ActiveDocument.Pages(1)

				.Shapes(1).TextFrame.TextRange.Cut

				.Shapes(2).TextFrame.TextRange.	_

								Words(1).Paste

End	With



Show	All



Patterned	Method
Sets	the	specified	fill	to	a	pattern.

expression.Patterned(Pattern)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Pattern			Required	MsoPatternType.	The	pattern	to	be	used	for	the	specified
fill.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern5Percent
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical



msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond
msoPatternDottedGrid
msoPatternHorizontalBrick
msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed	Not	used	with	this	method.
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag



Remarks

Use	the	BackColor	and	ForeColor	properties	to	set	the	colors	used	in	the
pattern.



Example

This	example	adds	an	oval	with	a	patterned	fill	to	the	active	publication.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	_

								Left:=60,	Top:=60,	Width:=80,	Height:=40).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(0,	0,	255)

				.Patterned	Pattern:=msoPatternDarkVertical

End	With

	 	



PicasToPoints	Method
Converts	a	measurement	from	picas	to	points	(1	pica	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PicasToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	pica	value	to	be	converted	to	points.



Remarks

Use	the	PointsToPicas	method	to	convert	measurements	in	points	to	picas.



Example

This	example	converts	measurements	in	picas	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	picas	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	picas	=	"	_

								&	Format(Application	_

								.Picas	ToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



PickUp	Method
Copies	formatting	from	a	shape	or	shape	range	so	that	it	can	be	copied	to	another
shape	or	shape	range	using	the	Apply	method.

expression.PickUp

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	must	use	the	PickUp	method	to	copy	the	formatting	from	a	shape	or	shape
range	before	using	the	Apply	method;	otherwise,	an	error	occurs.



Example

The	following	example	copies	the	formatting	from	the	first	shape	of	the	active
publication	to	the	second	shape	of	the	active	publication.

With	ActiveDocument.Pages(1)

				.Shapes(1).PickUp

				.Shapes(2).Apply

End	With

	 	



PixelsToPoints	Method
Converts	a	measurement	from	pixels	to	points	(1	pixel	=	0.75	points).	Returns
the	converted	measurement	as	a	Single.

expression.PixelsToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	pixel	value	to	be	converted	to	points.



Remarks

Use	the	PointsToPixels	method	to	convert	measurements	in	points	to	pixels.



Example

This	example	converts	measurements	in	pixels	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	pixels	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	pixels	=	"	_

								&	Format(Application	_

								.PixelsToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



PointsToCentimeters	Method
Converts	a	measurement	from	points	to	centimeters	(1	cm	=	28.35	points).
Returns	the	converted	measurement	as	a	Single.

expression.PointsToCentimeters(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	centimeters.



Remarks

Use	the	CentimetersToPoints	method	to	convert	measurements	in	centimeters
to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	centimeters.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToCentimeters(Value:=Val(strInput)),	_

								"0.00")	&	"	cm"

				MsgBox	strOutput

Loop

	 	



PointsToEmus	Method
Converts	a	measurement	from	points	to	emus	(12700	emus	=	1	point).	Returns
the	converted	measurement	as	a	Single.

expression.PointsToEmus(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	emus.



Remarks

Use	the	EmusToPoints	method	to	convert	measurements	in	emus	to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	centimeters.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToEmus(Value:=Val(strInput)),	_

								"0.00")	&	"	emus"

				MsgBox	strOutput

Loop

	 	



PointsToInches	Method
Converts	a	measurement	from	points	to	inches	(1	in	=	72	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToInches(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	inches.



Remarks

Use	the	InchesToPoints	method	to	convert	measurements	in	inches	to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	inches.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToInches(Value:=Val(strInput)),	_

								"0.00")	&	"	in"

				MsgBox	strOutput

Loop

	 	



PointsToLines	Method
Converts	a	measurement	from	points	to	lines	(1	line	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToLines(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	lines.



Remarks

This	method	assumes	a	measurement	in	12-point	lines—	the	actual	size	of	any
text	in	the	publication	has	no	effect	on	the	conversion	factor.

Use	the	LinesToPoints	method	to	convert	measurements	in	lines	to	points.



Example

This	example	converts	measurements	in	lines	to	measurements	in	points,
demonstrating	that	the	font	size	in	the	current	selection	has	no	bearing	on	the
conversion	factor.	Some	text	must	be	selected	in	the	active	publication	for	this
example	to	work.

Dim	strOutput	As	String

'	Set	text	size	to	10	points.

Selection.TextRange.Font.Size	=	10

'	Display	result	for	12	points.

strOutput	=	"12	points	=	"	_

				&	Format(Application	_

				.PointsToLines(Value:=12),	_

				"0.00")	&	"	lines"

	 	



PointsToMillimeters	Method
Converts	a	measurement	from	points	to	millimeters	(1	mm	=	2.835	points).
Returns	the	converted	measurement	as	a	Single.

expression.PointsToMillimeters(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	millimeters.



Remarks

Use	the	MillimetersToPoints	method	to	convert	measurements	in	millimeters	to
points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	centimeters.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToMillimeters(Value:=Val(strInput)),	_

								"0.00")	&	"	mm"

				MsgBox	strOutput

Loop

	 	



PointsToPicas	Method
Converts	a	measurement	from	points	to	picas	(1	pica	=	12	points).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToPicas(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	picas.



Remarks

Use	the	PicasToPoints	method	to	convert	measurements	in	picas	to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	picas.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToPicas(Value:=Val(strInput)),	_

								"0.00")	&	"	picas"

				MsgBox	strOutput

Loop

	 	



PointsToPixels	Method
Converts	a	measurement	from	points	to	pixels	(1	pixel	=	0.75	points).	Returns
the	converted	measurement	as	a	Single.

expression.PointsToPixels(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	pixels.



Remarks

Use	the	PixelsToPoints	method	to	convert	measurements	in	pixels	to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	pixels.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToPixels(Value:=Val(strInput)),	_

								"0.00")	&	"	pixels"

				MsgBox	strOutput

Loop

	 	



PointsToTwips	Method
Converts	a	measurement	from	points	to	twips	(20	twips	=	1	point).	Returns	the
converted	measurement	as	a	Single.

expression.PointsToTwips(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	point	value	to	be	converted	to	twips.



Remarks

Use	the	TwipsToPoints	method	to	convert	measurements	in	twips	to	points.



Example

This	example	converts	measurements	in	points	entered	by	the	user	to
measurements	in	centimeters.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	points	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	points	=	"	_

								&	Format(Application	_

								.PointsToTwips(Value:=Val(strInput)),	_

								"0.00")	&	"	twips"

				MsgBox	strOutput

Loop

	 	



Show	All



PresetDrop	Method
Specifies	whether	the	callout	line	attaches	to	the	top,	bottom,	or	center	of	the
callout	text	box	or	whether	it	attaches	at	a	point	that's	a	specified	distance	from
the	top	or	bottom	of	the	text	box.

expression.PresetDrop(DropType)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

DropType			Required	MsoCalloutDropType.	The	starting	position	of	the	callout
line	relative	to	the	text	bounding	box.

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropBottom
msoCalloutDropCenter
msoCalloutDropCustom
msoCalloutDropMixed	Not	used	with	this	method.
msoCalloutDropTop



Example

This	example	specifies	that	the	callout	line	attach	to	the	top	of	the	text	bounding
box	for	the	first	shape	in	the	active	publication.	For	the	example	to	work,	the
shape	must	be	a	callout.

ActiveDocument.Pages(1).Shapes(1).Callout	_

				.PresetDrop	DropType:=msoCalloutDropTop

	 	

This	example	toggles	between	two	preset	drops	for	the	first	shape	one	in	the
active	publication.	For	the	example	to	work,	the	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				Select	Case	.DropType

								Case	msoCalloutDropTop

												.PresetDrop	DropType:=msoCalloutDropBottom

								Case	msoCalloutDropBottom

												.PresetDrop	DropType:=msoCalloutDropTop

				End	Select

End	With

	 	



Show	All



PresetGradient	Method
Sets	the	specified	fill	to	a	preset	gradient.

expression.PresetGradient(Style,	Variant,	PresetGradientType)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Style			Required	MsoGradientStyle.	The	style	of	the	gradient.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed	Not	used	with	this	method.
msoGradientVertical

Variant			Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromTitle	or	msoGradientFromCenter,	this
argument	can	be	either	1	or	2.

PresetGradientType			Required	MsoPresetGradientType.	The	gradient	type.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak



msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset
msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbow
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed	Not	used	with	this	method.



Example

This	example	adds	a	rectangle	with	a	preset	gradient	fill	to	the	active
publication.

ActiveDocument.Pages(1).Shapes	_

				.AddShape(msoShapeRectangle,	90,	90,	140,	80)	_

				.Fill.PresetGradient	Style:=msoGradientHorizontal,	_

				Variant:=1,	PresetGradientType:=msoGradientBrass

	 	



Show	All



PresetTextured	Method
Sets	the	specified	fill	to	a	preset	texture.

expression.PresetTextured(PresetTexture)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetTexture			Required	MsoPresetTexture.	The	preset	texture.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed	Not	used	with	this	method.
msoTextureBlueTissuePaper
msoTextureBouquet
msoTextureBrownMarble
msoTextureCanvas
msoTextureCork
msoTextureDenim
msoTextureFishFossil
msoTextureGranite
msoTextureGreenMarble
msoTextureMediumWood
msoTextureNewsprint
msoTextureOak
msoTexturePaperBag
msoTexturePapyrus
msoTextureParchment
msoTexturePinkTissuePaper
msoTexturePurpleMesh
msoTextureRecycledPaper
msoTextureSand
msoTextureStationery



msoTextureWalnut
msoTextureWaterDroplets
msoTextureWhiteMarble
msoTextureWovenMat



Example

This	example	adds	a	rectangle	with	a	green-marble	textured	fill	to	the	active
publication.

ActiveDocument.Pages(1).Shapes	_

				.AddShape(Type:=msoShapeCan,	_

				Left:=90,	Top:=90,	Width:=40,	Height:=80)	_

				.Fill.PresetTextured	_

				PresetTexture:=msoTextureGreenMarble

	 	



PrintOut	Method
Prints	all	or	part	of	the	specified	publication.

expression.PrintOut(From,	To,	PrintToFile,	Copies,	Collate)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

From			Optional	Long.	The	starting	page	number.

To			Optional	Long.	The	ending	page	number.

PrintToFile			Optional	String.	The	path	and	file	name	of	a	document	to	be
printed	to	a	file.

Copies			Optional	Long.	The	number	of	copies	to	be	printed.

Collate			Optional	Boolean.	When	printing	multiple	copies	of	a	document,	True
to	print	all	pages	of	the	document	before	printing	the	next	copy.



Example

This	example	prints	the	active	publication.

Sub	PrintActivePublication()

				ThisDocument.PrintOut

End	Sub

	 	



Quit	Method
Quits	Microsoft	Publisher.	This	is	equivalent	to	clicking	Exit	on	the	File	menu.

expression.Quit

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	avoid	losing	unsaved	changes,	use	either	the	Save	or	SaveAs	method	to	save
any	open	publication	before	calling	the	Quit	method.



Example

This	example	saves	the	open	publication	if	there	is	one	and	then	quits	Publisher.

If	Not	(ActiveDocument	Is	Nothing)

				ActiveDocument.Save

End	If

Application.Quit

	 	



Range	Method
Returns	a	ShapeRange	object	that	represents	a	subset	of	the	shapes	in	a	Shapes
collection.

expression.Range(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Optional	Variant.	The	individual	shapes	that	are	to	be	included	in	the
range.	Can	be	an	integer	that	specifies	the	index	number	of	the	shape,	a	string
that	specifies	the	name	of	the	shape,	or	an	array	that	contains	either	integers	or
strings.	If	Index	is	omitted,	the	Range	method	returns	all	the	objects	in	the
specified	collection.



Remarks

To	specify	an	array	of	integers	or	strings	for	Index,	you	can	use	the	Array
function.	For	example,	the	following	instruction	returns	two	shapes	specified	by
name.

Dim	arrShapes	As	Variant

Dim	shpRange	As	ShapeRange

Set	arrShapes	=	Array("Oval	4",	"Rectangle	5")

Set	shpRange	=	ActiveDocument.Pages(1)	_

				.Shapes.Range(arrShapes)

	 	



Example

This	example	sets	the	fill	pattern	for	shapes	one	and	three	on	the	active
publication.

ActiveDocument.Pages(1).Shapes.Range(Array(1,	3)).Fill	_

				.Patterned	msoPatternHorizontalBrick

	 	

This	example	sets	the	fill	pattern	for	the	shapes	named	"Oval	4"	and	"Rectangle
5"	on	the	first	page.

Dim	arrShapes	As	Variant

Dim	shpRange	As	ShapeRange

arrShapes	=	Array("Oval	4",	"Rectangle	5")

Set	shpRange	=	ActiveDocument.Pages(1).Shapes.Range(arrShapes)

shpRange.Fill.Patterned	msoPatternHorizontalBrick

	 	

This	example	sets	the	fill	pattern	for	all	shapes	on	the	first	page.

ActiveDocument.Pages(1).Shapes	_

				.Range.Fill.Patterned	msoPatternHorizontalBrick

	 	

This	example	sets	the	fill	pattern	for	shape	one	on	the	first	page.

Dim	shpRange	As	ShapeRange

Set	shpRange	=	ActiveDocument.Pages(1).Shapes.Range(1)

shpRange.Fill.Patterned	msoPatternHorizontalBrick

	 	

This	example	creates	an	array	that	contains	all	the	AutoShapes	on	the	first	page,
uses	that	array	to	define	a	shape	range,	and	then	distributes	all	the	shapes	in	that
range	horizontally.

Dim	numShapes	As	Long

Dim	numAutoShapes	As	Long

Dim	autoShpArray	As	Variant



Dim	intLoop	As	Integer

Dim	shpRange	As	ShapeRange

With	ActiveDocument.Pages(1).Shapes

				numShapes	=	.Count

				If	numShapes	>	1	Then

								numAutoShapes	=	0

								ReDim	autoShpArray(1	To	numShapes)

								For	intLoop	=	1	To	numShapes

												If	.Item(intLoop).Type	=	msoAutoShape	Then

																numAutoShapes	=	numAutoShapes	+	1

																autoShpArray(numAutoShapes)	=	.Item(intLoop).Name

												End	If

								Next

								If	numAutoShapes	>	1	Then

												ReDim	Preserve	autoShpArray(1	To	numAutoShapes)

												Set	shpRange	=	.Range(autoShpArray)

												shpRange.Distribute	_

																DistributeCmd:=msoDistributeHorizontally,	_

																RelativeTo:=False

								End	If

				End	If

End	With

	 	



Redo	Method
Redoes	the	last	action	or	a	specified	number	of	actions.	Corresponds	to	the	list	of
items	that	appears	when	you	click	the	arrow	beside	the	Redo	button	on	the
Standard	toolbar.	Calling	this	method	reverses	the	Undo	method.

expression.Redo([Count	=	1])

expression				Required.	An	expression	that	returns	a	Document	object.

Count			Optional	Long.	Specifies	the	number	of	actions	to	be	redone.	Default	is
1,	meaning	that	if	omitted,	only	the	last	action	will	be	redone.



Remarks

If	called	when	there	are	no	actions	on	the	redo	stack,	or	when	Count	is	greater
than	the	number	of	actions	that	currently	reside	on	the	stack,	the	Redo	method
will	redo	as	many	actions	as	possible	and	ignore	the	rest.

The	maximum	number	of	actions	that	can	be	redone	in	one	call	to	Redo	is	20.



Example

The	following	example	uses	the	Redo	method	to	redo	a	subset	of	the	actions	that
were	undone	using	the	Undo	method.

Part	1	creates	a	rectangle	that	contains	a	text	frame	on	the	fourth	page	of	the
active	publication.	Various	font	properties	are	set,	and	text	is	added	to	the	text
frame.	In	this	case,	the	text	"This	font	is	Courier"	is	set	to	12	point	bold	Courier
font.

Part	2	tests	whether	the	text	in	the	text	frame	is	Verdana	font.	If	not,	then	the
Undo	method	is	used	to	undo	the	last	four	actions	on	the	undo	stack.	The	Redo
method	is	then	used	to	redo	the	the	first	two	of	the	last	four	actions	that	were	just
undone.	In	this	case,	the	third	action	(setting	the	font	size)	and	the	fourth	action
(setting	the	font	to	bold)	are	redone.	The	font	name	is	then	changed	to	Verdana,
and	the	text	is	modified.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(4)

'	Part	1

With	theDoc

				With	thePage

								'	Setting	the	shape	creates	the	first	action

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

												75,	75,	190,	30)

								'	Setting	the	text	range	creates	the	second	action

								With	theShape.TextFrame.TextRange

													'	Setting	the	font	size	creates	the	third	action

													.Font.Size	=	12

													'	Setting	the	font	to	bold	creates	the	fourth	action	

													.Font.Bold	=	msoTrue

													'	Setting	the	font	name	creates	the	fifth	action

													.Font.Name	=	"Courier"

													'	Setting	the	text	creates	the	sixth	action

													.Text	=	"This	font	is	Courier."

								End	With

					End	With



				'	Part	2				

				If	Not	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Verdana"	Then

								.Undo	(4)

								With	thePage

												With	theShape.TextFrame.TextRange

																'	Redo	redoes	the	first	two	of	the	four	actions	that	were	just	undone

																theDoc.Redo	(2)

																.Font.Name	=	"Verdana"

																.Text	=	"This	font	is	Verdana."

												End	With

								End	With

				End	If

End	With



Regroup	Method
Regroups	the	group	that	the	specified	shape	range	belonged	to	previously.
Returns	the	regrouped	shapes	as	a	single	Shape	object.

expression.Regroup

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Regroup	method	only	restores	the	group	for	the	first	previously	grouped
shape	it	finds	in	the	specified	ShapeRange	collection.	Therefore,	if	the	specified
shape	range	contains	shapes	that	previously	belonged	to	different	groups,	only
one	of	the	groups	will	be	restored.

An	error	occurs	if	none	of	the	shapes	in	the	specified	range	were	previously
members	of	a	group.

Because	a	group	of	shapes	is	treated	as	a	single	shape,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.



Example

This	example	regroups	the	selected	shapes	in	the	active	publication.	If	the	shapes
haven't	been	previously	grouped	and	ungrouped,	this	example	will	fail.

ActiveDocument.Selection.ShapeRange.Regroup

	 	 	

	 	



Show	All



RemoveCatalogMergeArea	Method
Deletes	the	catalog	merge	area	from	the	specified	publication	page.	All	shapes
contained	in	the	catalog	merge	area	remain	in	place	on	the	page,	but	are	no
longer	connected	to	the	catalog	merge	data	source.

expression.RemoveCatalogMergeArea

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Removing	a	catalog	merge	area	from	a	publication	page	does	not	disconnect	the
data	source	from	the	publication.	Use	the	IsDataSourceConnected	property	of
the	Document	object	to	determine	if	a	data	source	is	connected	to	a	publication.

Use	the	AddCatalogMergeArea	method	of	the	Shapes	collection	to	add	a
catalog	merge	area	to	a	publication.	A	publication	page	can	contain	only	one
catalog	merge	area.



Example

The	following	example	tests	whether	any	page	in	the	specified	publication
contains	a	catalog	merge	area.	If	any	page	does,	all	the	shapes	are	removed	from
the	catalog	merge	area	and	deleted,	and	the	catalog	merge	area	is	then	removed
from	the	publication.

Sub	DeleteCatalogMergeAreaAndAllShapesWithin()

				Dim	pgPage	As	Page

				Dim	mmLoop	As	Shape

				Dim	intCount	As	Integer

				Dim	strName	As	String

				

								For	Each	pgPage	In	ThisDocument.Pages

												For	Each	mmLoop	In	pgPage.Shapes

												

																If	mmLoop.Type	=	pbCatalogMergeArea	Then

																				With	mmLoop.CatalogMergeItems

																								For	intCount	=	.Count	To	1	Step	-1

																												strName	=	mmLoop.CatalogMergeItems.Item(intCount).Name

																												.Item(intCount).RemoveFromCatalogMergeArea

																												pgPage.Shapes(strName).Delete

																								Next

																				End	With

																mmLoop.RemoveCatalogMergeArea

																End	If

																

												Next	mmLoop

								Next	pgPage

							

	End	Sub



Show	All



RemoveFromCatalogMergeArea
Method
Removes	a	shape	from	the	specified	page's	catalog	merge	area.	Removed	shapes
are	not	deleted,	but	instead	remain	in	place	on	the	page	containing	the	catalog
merge	area.

expression.RemoveFromCatalogMergeArea

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	AddToCatalogMergeArea	method	of	the	Shape	or	ShapeRange
objects	to	add	shapes	to	a	catalog	merge	area.

Use	the	RemoveCatalogMergeArea	method	of	the	Shape	object	to	remove	the
catalog	merge	area	from	a	publication	page,	but	leave	the	shapes	it	contains.



Example

The	following	example	tests	whether	any	page	of	the	specified	publication
contains	a	catalog	merge	area.	If	any	page	does,	all	the	shapes	are	removed	from
the	catalog	merge	area	and	deleted,	and	the	catalog	merge	area	is	then	removed
from	the	publication.

Sub	DeleteCatalogMergeAreaAndAllShapesWithin()

				Dim	pgPage	As	Page

				Dim	mmLoop	As	Shape

				Dim	intCount	As	Integer

				Dim	strName	As	String

				

								For	Each	pgPage	In	ThisDocument.Pages

												For	Each	mmLoop	In	pgPage.Shapes

												

																If	mmLoop.Type	=	pbCatalogMergeArea	Then

																				With	mmLoop.CatalogMergeItems

																								For	intCount	=	.Count	To	1	Step	-1

																												strName	=	mmLoop.CatalogMergeItems.Item(intCount).Name

																												.Item(intCount).RemoveFromCatalogMergeArea

																												pgPage.Shapes(strName).Delete

																								Next

																				End	With

																mmLoop.RemoveCatalogMergeArea

																End	If

																

												Next	mmLoop

								Next	pgPage

							

	End	Sub



Show	All



Replace	Method
Replaces	the	specified	picture.	Returns	Nothing.

expression.Replace(Pathname,	[InsertAs])

expression				Required.	An	expression	that	returns	a	PictureFormat	object.

FileName				Required	String.	The	name	of	the	file	with	which	you	want	to
replace	the	specified	picture.

InsertAs				Optional	PbPictureInsertAs.	The	manner	in	which	you	want	the
picture	file	inserted	into	the	document:	linked	or	embedded.

PbPictureInsertAs	can	be	one	of	these	PbPictureInsertAs	constants.
pbPictureInsertAsEmbedded
pbPictureInsertAsLinked
pbPictureInsertAsOriginalState	default



Remarks

Use	the	Replace	method	to	update	linked	picture	files	that	have	been	modified
since	they	were	inserted	into	the	document.	Use	the	LinkedFileStatus	property
of	the	PictureFormat	object	to	determine	if	a	linked	picture	has	been	modified.



Example

The	following	example	replaces	every	occurrence	of	a	specific	picture	in	the
active	publication	with	another	picture.

Sub	ReplaceLogo()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

Dim	strExistingArtName	As	String

Dim	strReplaceArtName	As	String

strExistingArtName	=	"C:\pathname\folder\logo	1.bmp"

strReplaceArtName	=	"C:\pathname\folder\logo	2.bmp"

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																If	.Filename	=	strExistingArtName	Then

																				.Replace	(strReplaceArtName)

																End	If

												End	With

												

								End	If

				

				Next	shpLoop

Next	pgLoop

									

End	Sub

This	example	tests	each	linked	picture	to	determine	if	the	linked	file	has	been
modified	since	it	was	inserted	into	the	publication.	If	it	has,	the	picture	is
updated	by	replacing	the	file	with	itself.

Sub	UpdateModifiedLinkedPictures()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

Dim	strPictureName	As	String

For	Each	pgLoop	In	ActiveDocument.Pages



				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																If	.LinkedFileStatus	=	pbLinkedFileModified	Then

																				strPictureName	=	.Filename

																				.Replace	(strPictureName)

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop

End	Sub



RerouteConnections	Method
Reroutes	connectors	so	that	they	take	the	shortest	possible	path	between	the
shapes	they	connect.	To	do	this,	the	RerouteConnections	method	may	detach
the	ends	of	a	connector	and	reattach	them	to	different	connecting	sites	on	the
connected	shapes.

expression.RerouteConnections

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	method	reroutes	all	connectors	attached	to	the	specified	shape;	if	the
specified	shape	is	a	connector,	it's	rerouted.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication	and
connects	them	with	a	curved	connector.	Note	that	the	RerouteConnections
method	overrides	the	values	you	supply	for	the	ConnectionSite	arguments	used
with	the	BeginConnect	and	EndConnect	methods.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	curved	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

				End	With

End	With

	 	



Reset	Method
Removes	manual	paragraph	or	text	formatting	from	the	specified	object	and
leaves	only	the	formatting	specified	by	the	current	text	style.

expression.Reset

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	resets	the	character	formatting	of	the	text	in	shape	one
on	page	one	of	the	active	publication	to	the	default	character	formatting	for	the
current	text	style.

ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Font.Reset

	 	

The	following	example	resets	the	paragraph	formatting	of	the	text	in	shape	one
on	page	one	of	the	active	publication	to	the	default	paragraph	formatting	for	the
current	text	style.

ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.ParagraphFormat.Reset

	 	

	 	



ResetRotation	Method
Resets	the	extrusion	rotation	around	the	x-axis	(horizontal)	and	the	y-axis
(vertical)	to	0	(zero)	so	that	the	front	of	the	extrusion	faces	forward.

expression.ResetRotation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	method	doesn't	reset	the	rotation	around	the	z-axis	(extends	outward	from
the	plane	of	the	publication).

To	set	the	extrusion	rotation	around	the	x-axis	and	the	y-axis	to	anything	other
than	0,	use	the	RotationX	and	RotationY	properties	of	the	ThreeDFormat
object.

To	set	the	extrusion	rotation	around	the	z-axis,	use	the	Rotation	property	of	the
Shape	object	that	represents	the	extruded	shape.



Example

This	example	resets	the	rotation	around	the	x-axis	and	the	y-axis	to	zero	for	the
extrusion	of	the	first	shape	in	the	active	publication.

ActiveDocument.Pages(1).Shapes(1).ThreeD	_

				.ResetRotation

	 	



ResetTips	Method
Resets	tippages	so	that	a	user	can	view	them	when	using	features	that	have	been
used	before.

expression.ResetTips

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ResetTips	method	is	equivalent	to	clicking	Reset	Tips	on	the	User
Assistance	tab	of	the	Options	dialog	box	(Tools	menu).



Example

This	example	resets	tip	balloons.

Sub	ResetTippages()

				Options.ResetTips

End	Sub

	 	



ResetWizardSynchronizing	Method
Resets	the	data	that	Microsoft	Publisher	uses	to	automatically	change	similar
objects	to	have	the	same	formatting	or	content.

expression.ResetWizardSynchronizing

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Unexpected	formatting	changes	may	be	a	result	of	Publisher's	object
synchronization.	Resetting	the	synchronization	data	will	stop	these	changes.



Example

The	following	example	resets	the	synchronization	data	that	Publisher	uses	to
give	similar	objects	the	same	formatting.

Options.ResetWizardSynchronizing

	 	



Resize	Method
Sizes	the	Microsoft	Publisher	application	window.

expression.Resize(Width,	Height)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Width			Required	Long.	The	width	of	the	window,	in	points.

Height			Required	Long.	The	height	of	the	window,	in	points.



Remarks

If	the	window	is	maximized	or	minimized,	an	error	occurs.

Use	the	Width	and	Height	properties	to	set	the	window	width	and	height
independently.



Example

This	example	resizes	the	Publisher	application	window	to	7	inches	wide	by	6
inches	high.

With	Application.ActiveWindow

				.WindowState	=	wdWindowStateNormal

				.Resize	Width:=InchesToPoints(7),	Height:=InchesToPoints(6)

End	With

	 	



RevertToDefaultWeight	Method
Sets	the	BorderArt	on	the	specified	shape	back	to	its	default	thickness.

expression.RevertToDefaultWeight()

expression				Required.	An	expression	that	returns	a	BorderArtFormat	object.



Remarks

The	RevertToDefaultWeight	method	has	the	same	effect	as	the	Always	apply
at	default	size	control	on	the	BorderArt	dialog	box.

Use	the	Weight	property	of	the	BorderArtFormat	object	to	set	the	specified
BorderArt	to	a	thickness	other	than	the	default.



Example

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	document.	If	BorderArt	exists,	its	weight	is	set	to	the
default	thickness	and	original	color.

Sub	RestoreBorderArtDefaults()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 For	Each	anyShape	in	anyPage.Shapes

	 	 With	anyShape.BorderArt

	 	 	 If	.Exists	=	True	Then

	 	 	 	 .RevertToDefaultWeight

	 	 	 	 .RevertToOriginalColor

	 	 	 End	If

	 	 End	With

	 Next	anyShape

Next	anyPage

End	Sub



RevertToOriginalColor	Method
Sets	the	BorderArt	on	the	specified	shape	back	to	its	default	color.

expression.RevertToOriginalColor()

expression				Required.	An	expression	that	returns	a	BorderArtFormat	object.



Remarks

The	RevertToOriginalColor	method	has	the	same	effect	as	the	Default
selection	on	the	Color	control	on	the	Format	<Shape>	dialog	box.

Use	the	Color	property	of	the	BorderArtFormat	object	to	set	the	BorderArt	to
a	color	other	than	the	original	color.



Example

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	document.	If	BorderArt	exists,	its	weight	is	set	to	the
default	thickness	and	original	color.

Sub	RestoreBorderArtDefaults()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 For	Each	anyShape	in	anyPage.Shapes

	 	 With	anyShape.BorderArt

	 	 	 If	.Exists	=	True	Then

	 	 	 	 .RevertToDefaultWeight

	 	 	 	 .RevertToOriginalColor

	 	 	 End	If

	 	 End	With

	 Next	anyShape

Next	anyPage

End	Sub



Save	Method
Saves	the	specified	publication.

expression.Save

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	publication	has	not	been	previously	saved,	calling	the	Save	method	is
equivalent	to	calling	the	SaveAs	method	with	the	FileName	argument	set	to	the
value	of	the	publication's	Name	property.	If	the	publication	has	been	previously
saved,	the	Save	method	will	save	the	current	version	of	the	publication	in	the
format	in	which	it	was	opened	and	in	the	location	to	which	it	was	last	saved.

Calling	the	Save	method	always	performs	saves	in	the	foreground	regardless	of
whether	background	saves	are	enabled.



Example

This	example	saves	the	active	publication	if	it	has	changed	since	it	was	last
saved.

If	ActiveDocument.Saved	=	False	Then	ActiveDocument.Save

	 	



Show	All



SaveAs	Method
Saves	the	specified	publication	with	a	new	name	or	format.

expression.SaveAs([FileName],	[Format],	[AddToRecentFiles])

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName			Optional	Variant.	The	name	for	the	publication.	The	default	is	the
current	folder	and	file	name.	If	the	publication	has	never	been	saved,	the	default
name	is	used,	for	example,	Publication1.pub.	If	a	publication	with	the	specified
file	name	already	exists,	the	publication	is	overwritten	without	the	user	being
prompted	first.

Format			Optional	PbFileFormat.	The	format	in	which	the	publication	is	saved.

PbFileFormat	can	be	one	of	these	PbFileFormat	constants.
pbFileHTMLFiltered
pbFilePublication	default
pbFilePublicationHTML
pbFilePublisher2000
pbFilePublisher98
pbFileRTF
pbFileWebArchive

AddToRecentFiles			Optional	Boolean.	True	to	add	the	publication	to	the	list	of
recently	used	files	on	the	File	menu.	Default	is	True.



Remarks

If	there	is	insufficient	memory	or	disk	space	to	save	the	file,	an	error	occurs.

Calling	the	SaveAs	method	always	performs	saves	in	the	foreground	regardless
of	whether	background	saves	are	enabled.



Example

This	example	saves	the	active	publication	as	a	Publisher	2000	file.

ActiveDocument.SaveAs	_

				FileName:="ReportPub2000.pub",	Format:=pbFilePublisher2000

	 	

This	example	saves	the	active	publication	as	Test.rtf	in	Rich	Text	Format	(RTF).

ActiveDocument.SaveAs	_

				FileName:="Test.rtf",	Format:=pbFileRTF

	 	

This	example	saves	the	active	Web	publication	as	a	set	of	filtered	HTML	pages
and	supporting	files.	Note	that	the	.htm	extension	is	automatically	added	to	the
value	of	the	Filename	parameter	if	the	value	of	the	Format	parameter	is
pbFileHTMLFiltered.

With	ActiveDocument

				.SaveAs	Filename:="CompanyContacts",	Format:=pbFileHTMLFiltered

End	With

	 	



SaveAsPicture	Method
Saves	a	page	to	a	picture	file.

expression.SaveAsPicture(FileName)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

FileName			Required	String.	The	path	and	file	name	of	the	new	picture	created.



Example

This	example	saves	the	first	page	in	the	active	publication	as	a	JPEG	picture	file.
(Note	that	PathToFile	must	be	replaced	with	a	valid	file	path	for	this	example	to
execute	properly.)

Sub	SavePageAsPicture()

				ActiveDocument.Pages(1).SaveAsPicture	_

								FileName:="PathToFile"

End	Sub

	 	



Show	All



ScaleHeight	Method
Scales	the	height	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE
objects,	you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the
original	size	or	relative	to	the	current	size.

expression.ScaleHeight(Factor,	RelativeToOriginalSize,	fScale)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor			Required	Single.	Specifies	the	ratio	between	the	height	of	the	shape
after	you	resize	it	and	the	current	or	original	height.	For	example,	to	make	a
rectangle	50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize			Required	MsoTriState.	Specifies	whether	to	scale
relative	to	the	object's	original	or	current	size.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	method.
msoFalse	Scales	the	shape	relative	to	its	current	size.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Scales	the	shape	relative	to	its	original	size.

fScale			Optional	MsoScaleFrom.	The	part	of	the	shape	that	retains	its	position
when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromMiddle
msoScaleFromTopLeft	default



Remarks

Shapes	other	than	pictures	and	OLE	objects	are	always	scaled	relative	to	their
current	height;	specifying	a	RelativeToOriginalSize	value	of	msoTrue	for
shapes	other	than	pictures	or	OLE	objects	causes	an	error.

Use	the	ScaleWidth	method	to	scale	the	width	of	a	shape.



Example

This	example	scales	all	pictures	and	OLE	objects	on	the	first	page	of	the	active
publication	to	175	percent	of	their	original	height	and	width,	and	it	scales	all
other	shapes	to	175	percent	of	their	current	height	and	width.

'	Looping	variable.

Dim	shpLoop	As	Shape

'	Loop	through	all	the	shapes	on	the	first	page.

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop

								Select	Case	.Type

												'	If	the	shape	is	a	picture	or	OLE	object,

												'	scale	relative	to	original	size.

												Case	pbPicture,	pbLinkedPicture,	_

																				pbEmbeddedOLEObject,	pbLinkedOLEObject,	_

																				pbOLEControlObject

																.ScaleHeight	Factor:=1.75,	_

																				RelativeToOriginalSize:=True

																.ScaleWidth	Factor:=1.75,	_

																				RelativeToOriginalSize:=True

												'	If	the	shape	is	not	a	picture	or	OLE	object,

												'	scale	relative	to	the	current	size.

												Case	Else

																.ScaleHeight	Factor:=1.75,	_

																				RelativeToOriginalSize:=False

																.ScaleWidth	Factor:=1.75,	_

																				RelativeToOriginalSize:=False

								End	Select

				End	With

Next	shpLoop

	 	



Show	All



ScaleWidth	Method
Scales	the	width	of	the	shape	by	a	specified	factor.	For	pictures	and	OLE	objects,
you	can	indicate	whether	you	want	to	scale	the	shape	relative	to	the	original	size
or	relative	to	the	current	size.

expression.ScaleWidth(Factor,	RelativeToOriginalSize,	fScale)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Factor			Required	Single.	Specifies	the	ratio	between	the	width	of	the	shape
after	you	resize	it	and	the	current	or	original	width.	For	example,	to	make	a
rectangle	50	percent	larger,	specify	1.5	for	this	argument.

RelativeToOriginalSize			Required	MsoTriState.	Specifies	whether	to	scale
relative	to	the	object's	original	or	current	size.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	method.
msoFalse	Scales	the	shape	relative	to	its	current	size.
msoTriStateMixed	Not	used	with	this	method.
msoTriStateToggle	Not	used	with	this	method.
msoTrue	Scales	the	shape	relative	to	its	original	size.

fScale			Optional	MsoScaleFrom.	The	part	of	the	shape	that	retains	its	position
when	the	shape	is	scaled.

MsoScaleFrom	can	be	one	of	these	MsoScaleFrom	constants.
msoScaleFromBottomRight
msoScaleFromMiddle
msoScaleFromTopLeft	default



Remarks

Shapes	other	than	pictures	and	OLE	objects	are	always	scaled	relative	to	their
current	width;	specifying	a	RelativeToOriginalSize	value	of	msoTrue	for	shapes
other	than	pictures	or	OLE	objects	causes	an	error.

Use	the	ScaleHeight	method	to	scale	the	height	of	a	shape.



Example

This	example	scales	all	pictures	and	OLE	objects	on	the	first	page	of	the	active
publication	to	175	percent	of	their	original	height	and	width,	and	it	scales	all
other	shapes	to	175	percent	of	their	current	height	and	width.

'	Looping	variable.

Dim	shpLoop	As	Shape

'	Loop	through	all	the	shapes	on	the	first	page.

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop

								Select	Case	.Type

												'	If	the	shape	is	a	picture	or	OLE	object,

												'	scale	relative	to	original	size.

												Case	pbPicture,	pbLinkedPicture,	_

																				pbEmbeddedOLEObject,	pbLinkedOLEObject,	_

																				pbOLEControlObject

																.ScaleHeight	Factor:=1.75,	_

																				RelativeToOriginalSize:=True

																.ScaleWidth	Factor:=1.75,	_

																				RelativeToOriginalSize:=True

												'	If	the	shape	is	not	a	picture	or	OLE	object,

												'	scale	relative	to	the	current	size.

												Case	Else

																.ScaleHeight	Factor:=1.75,	_

																				RelativeToOriginalSize:=False

																.ScaleWidth	Factor:=1.75,	_

																				RelativeToOriginalSize:=False

								End	Select

				End	With

Next	shpLoop

	 	



ScrollShapeIntoView	Method
Scrolls	the	publication	window	so	that	the	specified	shape	is	displayed	in	the
publication	window	or	pane.

expression.ScrollShapeIntoView(Shape)

expression				Required.	An	expression	that	returns	a	View	object.

Shape			Required	Shape	object.	The	shape	to	scroll	into	view.



Example

This	example	adds	a	shape	to	a	new	page	and	scrolls	the	current	view	to	the	new
shape.

Sub	ScrollIntoView()

				Dim	shpStar	As	Shape

				Dim	intWidth	As	Integer

				Dim	intHeight	As	Integer

				With	ActiveDocument

								intWidth	=	.PageSetup.PageWidth

								intWidth	=	(intWidth	/	2)	-	75

								intHeight	=	.PageSetup.PageHeight

								intHeight	=	(intHeight	/	2)	-	75

								With	.Pages.Add(Count:=1,	After:=ActiveDocument.Pages.Count)

												Set	shpStar	=	.Shapes.AddShape(Type:=msoShape5pointStar,	_

																Left:=intWidth,	Top:=intHeight,	Width:=150,	Height:=150)

												shpStar.TextFrame.TextRange.Text	=	"New	Star	Shape"

								End	With

				End	With

				ActiveView.ScrollShapeIntoView	Shape:=shpStar

End	Sub

	 	



Show	All



Select	Method
Select	method	as	it	applies	to	the	Cell,	CellRange,	and	TextRange

objects.

Selects	the	specified	object.

expression.Select

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Select	method	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Selects	the	specified	object.

expression.Select(Replace)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Replace			Optional	Variant.	Specifies	whether	the	selection	replaces	any
previous	selection.	True	to	replace	the	previous	selection	with	the	new	selection;
False	to	add	the	new	selection	to	the	previous	selection.	Default	is	True.



Example

As	it	applies	to	the	Cell,	CellRange	and	TextRange	objects.

This	example	selects	the	top	left	cell	from	a	table	that	has	been	added	to	the	first
page	in	the	active	publication.

Dim	shpTable	As	Shape

Dim	cllTemp	As	Cell

With	ActiveDocument.Pages(1).Shapes

				Set	shpTable	=	.AddTable(NumRows:=3,	NumColumns:=3,	_

								Left:=100,	Top:=100,	Width:=150,	Height:=150)

				Set	cllTemp	=	shpTable.Table.Cells.Item(1)

				cllTemp.Select

End	With

	 	 	 	

This	example	selects	the	first	column	from	a	table	that	has	been	added	to	the	first
page	in	the	active	publication.

Dim	shpTable	As	Shape

Dim	crTemp	As	CellRange

With	ActiveDocument.Pages(1).Shapes

				Set	shpTable	=	.AddTable(NumRows:=3,	NumColumns:=3,	_

								Left:=100,	Top:=100,	Width:=150,	Height:=150)

				Set	crTemp	=	shpTable.Table.Cells(StartRow:=1,	_

								StartColumn:=1,	EndRow:=3,	EndColumn:=1)

				crTemp.Select

End	With

	 	 	 	

This	example	selects	the	first	five	characters	in	shape	one	on	page	one	of	the
active	publication.

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange.Characters(1,	5).Select

	 	 	 	

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	selects	shapes	one	and	three	on	page	one	in	the	active	publication.



ActiveDocument.Pages(1).Shapes.Range(Array(1,	3)).Select

	 	 	 	

This	example	adds	shapes	two	and	four	on	page	one	in	the	active	publication	to
the	previous	selection.

ActiveDocument.Pages(1).Shapes.Range(Array(2,	4))	_

				.Select	Replace:=False

	 	 	 	



SelectAll	Method
Selects	all	the	shapes	in	the	specified	Shapes	collection.

expression.SelectAll

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	selects	all	the	shapes	on	page	one	of	the	active	publication.

ActiveDocument.Pages(1).Shapes.SelectAll

	 	



Selected	Method
Selects	or	deselects	an	item	in	a	Web	list	box	control.

expression.Selected(Index,	SelectState)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Long.	The	number	of	the	Web	list	box	item.

SelectState			Required	Boolean.	True	to	select	the	list	item.



Example

This	example	verifies	that	an	existing	Web	list	box	control	allows	selecting
multiple	entries	and	then	selects	two	items	in	the	list.

Sub	SelectListBoxItem()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.WebListBox

								If	.MultiSelect	=	msoTrue	Then

												With	.ListBoxItems

																.Selected	Index:=1,	SelectState:=True

																.Selected	Index:=3,	SelectState:=True

												End	With

								End	If

				End	With

End	Sub

	 	



Set	Method
Sets	the	type	of	BorderArt	applied	to	the	specified	shape.

expression.Set()

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

BorderArtName				Required	String.	The	name	of	the	BorderArt	type	applied	to
the	specified	picture.



Remarks

You	can	also	set	the	type	of	BorderArt	applied	to	a	picture	using	the	Name
property.



Example

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	document.	Any	BorderArt	found	is	set	to	the	same	type.

Sub	SetBorderArt()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

Dim	strBorderArtName	As	String

strBorderArtName	=	Document.BorderArts(1).Name

	

For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Set(strBorderArtName)

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub



SetAllErrorFlags	Method
Marks	all	records	in	a	mail	merge	data	source	as	containing	invalid	data	in	an
address	field.

expression.SetAllErrorFlags(Invalid,	InvalidComment)

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.

Invalid			Required	Boolean.	True	marks	all	records	in	the	data	source	of	a	mail
merge	as	invalid.

InvalidComment			Optional	String.	Text	describing	the	invalid	setting.



Remarks

You	can	individually	mark	records	in	a	data	source	that	contain	invalid	data	in	an
address	field	using	the	InvalidAddress	and	InvalidComments	properties.



Example

This	example	marks	all	records	in	the	data	source	as	containing	an	invalid
address	field,	sets	a	comment	as	to	why	it	is	invalid,	and	excludes	all	records
from	the	mail	merge.

Sub	FlagAllRecords()

				With	ActiveDocument.MailMerge.DataSource

								.SetAllErrorFlags	Invalid:=True,	InvalidComment:=	_

												"All	records	in	the	data	source	have	only	5-"	_

												&	"digit	ZIP	codes.		Need	5+4	digit	ZIP	codes."

								.SetAllIncludedFlags	Included:=False

				End	With

End	Sub

	 	



SetAllIncludedFlags	Method
True	to	include	all	data	source	records	in	a	mail	merge.

expression.SetAllIncludedFlags(Included)

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.

Included			Required	Boolean.	True	to	include	all	data	source	records	in	a	mail
merge.	False	to	exclude	all	data	source	records	from	a	mail	merge.



Remarks

You	can	set	individual	records	in	a	data	source	to	be	included	in	or	excluded
from	a	mail	merge	using	the	Included	property.



Example

This	example	marks	all	records	in	the	data	source	as	containing	an	invalid
address	field,	sets	a	comment	as	to	why	it	is	invalid,	and	excludes	all	records
from	the	mail	merge.

Sub	FlagAllRecords()

				With	ActiveDocument.MailMerge.DataSource

								.SetAllErrorFlags	Invalid:=True,	InvalidComment:=	_

												"All	records	in	the	data	source	have	only	5-"	_

												&	"digit	ZIP	codes.		Need	5+4	digit	ZIP	codes."

								.SetAllIncludedFlags	Included:=False

				End	With

End	Sub

	 	



SetBackgroundSoundRepeat	Method
Specifies	whether	the	background	sound	attached	to	a	Web	page	should	be
played	infinitely	after	the	page	is	loaded	in	a	Web	browser,	and	if	it	should	not,
optionally	specifies	the	number	of	times	the	background	sound	should	be	played.

expression.SetBackgroundSoundRepeat(RepeatForever,	[RepeatTimes])

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.

RepeatForever			Required	Boolean.	Specifies	whether	the	background	sound
should	be	played	infinitely.	The	value	of	this	parameter	is	used	to	populate	the
value	of	the	BackgroundSoundLoopForever	property.

RepeatTimes			Optional	Long.	Specifies	how	many	times	the	background	sound
should	be	played.	The	value	of	this	parameter	is	used	to	populate	the	value	of	the
BackgroundSoundLoopCount	property.



Remarks

If	the	RepeatForever	parameter	is	set	to	True,	the	optional	RepeatTimes
parameter	cannot	be	specified.	Attempting	to	specify	RepeatTimes	if
RepeatForever	is	True	results	in	a	run-time	error.

If	the	RepeatForever	parameter	is	set	to	False,	the	optional	RepeatTimes
parameter	must	be	specified.	Omitting	RepeatTimes	if	RepeatForever	is	False
results	in	a	run-time	error.



Example

The	following	example	sets	the	background	sound	for	page	four	of	the	active
Web	publication	to	a	.wav	file	on	the	local	computer.	If
BackgroundSoundLoopForever	is	False,	the	SetBackgroundSoundRepeat
method	is	used	to	specify	that	the	background	sound	be	repeated	infinitely	(note
the	omission	of	the	RepeatTimes	parameter).	If
BackgroundSoundLoopForever	is	True,	the	SetBackgroundSoundRepeat
method	is	used	to	specify	that	the	background	sound	not	be	repeated	infinitely,
but	that	it	should	be	repeated	twice.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(4).WebPageOptions

With	theWPO

				.BackgroundSound	=	"C:\CompanySounds\corporate_jingle.wav"

				If	.BackgroundSoundLoopForever	=	False	Then

								.SetBackgroundSoundRepeat	RepeatForever:=True

				ElseIf	.BackgroundSoundLoopForever	=	True	Then

								.SetBackgroundSoundRepeat	RepeatForever:=False,	RepeatTimes:=2

				End	If

				

End	With

	 	



Show	All



SetCMYK	Method
Sets	a	cyan-magenta-yellow-black	(CMYK)	color	value.

expression.SetCMYK(Cyan,	Magenta,	Yellow,	Black)

expression				Required.	An	expression	that	returns	a	ColorCMYK	object.

Cyan			Required	Long.	A	number	that	represents	the	cyan	component	of	the
color.	Value	can	be	any	number	between	0	and	255.

Magenta			Required	Long.	A	number	that	represents	the	magenta	component	of
the	color.	Value	can	be	any	number	between	0	and	255.

Yellow			Required	Long.	A	number	that	represents	the	yellow	component	of	the
color.	Value	can	be	any	number	between	0	and	255.

Black			Required	Long.	A	number	that	represents	the	black	component	of	the
color.	Value	can	be	any	number	between	0	and	255.



Example

This	example	sets	the	CMYK	color	for	the	specified	shape.

Sub	SetCMYKColor()

				Dim	shpStar	As	Shape

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShape5pointStar,	Left:=72,	_

								Top:=72,	Width:=150,	Height:=150)

				shpStar.Fill.ForeColor.CMYK.SetCMYK	Cyan:=0,	_

								Magenta:=255,	Yellow:=255,	Black:=50

End	Sub

	 	



Show	All



SetEditingType	Method
Sets	the	editing	type	of	the	specified	node.	If	the	node	is	a	control	point	for	a
curved	segment,	this	method	sets	the	editing	type	of	the	node	adjacent	to	it	that
joins	two	segments.	Depending	on	the	editing	type,	this	method	may	affect	the
position	of	adjacent	nodes.

expression.SetEditingType(Index,	EditingType)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Long.	The	node	whose	editing	type	is	to	be	set.	Must	be	a
number	from	1	to	the	number	of	nodes	in	the	specified	shape;	otherwise,	an	error
occurs.

EditingType			Required	MsoEditingType.	The	editing	property	of	the	node.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto	Changes	the	node	to	a	type	appropriate	to	the	segments	being
connected.
msoEditingCorner	Changes	the	node	to	a	corner	node.
msoEditingSmooth	Changes	the	node	to	a	smooth	curve	node.
msoEditingSymmetric	Changes	the	node	to	a	symmetric	curve	node.



Example

This	example	changes	all	corner	nodes	to	smooth	nodes	in	the	third	shape	of	the
active	publication.	The	shape	must	be	a	freeform	drawing.

Dim	intNode	As	Integer

With	ActiveDocument.Pages(1).Shapes(3).Nodes

				For	intNode	=	1	to	.Count

								If	.Item(intNode).EditingType	=	msoEditingCorner	Then

												.SetEditingType	_

																Index:=intNode,	EditingType:=msoEditingSmooth

								End	If

				Next	intNode

End	With

	 	



Show	All



SetExtrusionDirection	Method
Sets	the	direction	that	the	extrusion's	sweep	path	takes	away	from	the	extruded
shape.

expression.SetExtrusionDirection(PresetExtrusionDirection)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetExtrusionDirection			Required	MsoPresetExtrusionDirection.	Specifies
the	extrusion	direction.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTop
msoExtrusionTopLeft
msoExtrusionTopRight
msoPresetExtrusionDirectionMixed	Not	used	with	this	method.



Remarks

This	method	sets	the	PresetExtrusionDirection	property	to	the	direction
specified	by	the	PresetExtrusionDirection	argument.



Example

This	example	specifies	that	the	extrusion	for	the	first	shape	in	the	active
publication	extend	toward	the	top	of	the	shape	and	that	the	lighting	for	the
extrusion	come	from	the	left.

With	ActiveDocument.Pages(1).Shapes(1).ThreeD

				.Visible	=	True

				.SetExtrusionDirection	_

								PresetExtrusionDirection:=msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With

	 	



Show	All



SetLineSpacing	Method
Formats	the	line	spacing	of	specified	paragraphs.

expression.SetLineSpacing(Rule,	Spacing)

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.

Rule			Required	PbLineSpacingRule.	The	line	spacing	to	use	for	the	specified
paragraphs.

PbLineSpacingRule	can	be	one	of	these	PbLineSpacingRule	constants.
pbLineSpacing1pt5	Sets	the	spacing	for	specified	paragraphs	to	one-and-a-half
lines.
pbLineSpacingDouble	Double-spaces	the	specified	paragraphs.
pbLineSpacingExactly	Sets	the	line	spacing	to	exactly	the	value	specified	in
the	Spacing	argument,	even	if	a	larger	font	is	used	within	the	paragraph.
pbLineSpacingMixed	A	return	value	for	the	LineSpacing	property	that
indicates	that	line	spacing	is	a	combination	of	values	for	the	specified
paragraphs.
pbLineSpacingMultiple	Sets	the	line	spacing	to	the	value	specified	in	the
Spacing	argument.
pbLineSpacingSingle	Single	spaces	the	specified	paragraphs.

Spacing			Required	Variant.	The	spacing	(in	points)	for	the	specified
paragraphs.



Example

This	example	sets	the	line	spacing	to	double.

Sub	SetLineSpacingForSelection()

				Selection.TextRange.ParagraphFormat.SetLineSpacing	_

								Rule:=pbLineSpacingDouble,	Spacing:=12

End	Sub

	 	



Show	All



SetListType	Method
Sets	the	list	type	of	the	specified	ParagraphFormat	object.

expression.SetListType(pbListType,	BulletText)

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.

PbListType	can	be	one	of	these	PbListType	constants.
pbListTypeAiueo
pbListTypeArabic
pbListTypeArabic1
pbListTypeArabic2
pbListTypeArabicLeadingZero
pbListTypeBullet
pbListTypeCardinalText
pbListTypeChiManSty
pbListTypeChinaDbNum1
pbListTypeChinaDbNum2
pbListTypeChinaDbNum3
pbListTypeChinaDbNum4
pbListTypeChosung
pbListTypeCirclenum
pbListTypeDAiueo
pbListTypeDArabic
pbListTypeDbChar
pbListTypeDbNum1
pbListTypeDbNum2
pbListTypeDbNum3
pbListTypeDbNum4
pbListTypeDIroha
pbListTypeGanada



pbListTypeGB1
pbListTypeGB2
pbListTypeGB3
pbListTypeGB4
pbListTypeHebrew1
pbListTypeHebrew2
pbListTypeHex
pbListTypeHindi1
pbListTypeHindi2
pbListTypeHindi3
pbListTypeHindi4
pbListTypeIroha
pbListTypeKoreaDbNum1
pbListTypeKoreaDbNum2
pbListTypeKoreaDbNum3
pbListTypeKoreaDbNum4
pbListTypeLowerCaseLetter
pbListTypeLowerCaseRoman
pbListTypeLowerCaseRussian
pbListTypeNone
pbListTypeOrdinal
pbListTypeOrdinalText
pbListTypeSbChar
pbListTypeTaiwanDbNum1
pbListTypeTaiwanDbNum2
pbListTypeTaiwanDbNum3
pbListTypeTaiwanDbNum4
pbListTypeThai1
pbListTypeThai2
pbListTypeThai3
pbListTypeUpperCaseLetter
pbListTypeUpperCaseRoman
pbListTypeUpperCaseRussian



pbListTypeVietnamese1
pbListTypeZodiac1
pbListTypeZodiac2
pbListTypeZodiac3

pbListType			Required	pbListType	that	represents	the	list	type	of	the	specified
ParagraphFormat	object.

BulletText			Optional	String	that	represents	the	text	of	the	list	bullet.



Remarks

If	the	pbListType	is	a	bulleted	list	and	the	BulletText	is	missing,	the	first	bullet
from	the	Bullets	and	Numbering	dialog	box	is	used.

BulletText	is	limited	to	one	character.

A	run-time	error	occurs	if	the	BulletText	parameter	is	provided	and	the
pbListType	is	not	set	to	pbListTypeBullet.



Example

This	example	tests	to	see	if	the	list	type	is	a	numbered	list,	specifically
pbListTypeArabic.	If	the	ListType	property	is	set	to	pbListTypeArabic,	the
ListSeparator	is	set	to	pbListSeparatorParenthesis.	Otherwise	the
SetListType	method	is	called	and	passed	pbListTypeArabic	as	the	pbListType
parameter	and	then	the	ListNumberSeparator	property	can	be	set.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm		=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeArabic	Then

								.ListNumberSeparator	=	pbListSeparatorParenthesis

				Else

								.SetListType	pbListTypeArabic

								.ListNumberSeparator	=	pbListSeparatorParenthesis

				End	If

End	With

This	example	demonstrates	how	an	organized	document	structure	containing
named	text	frames	with	lists	can	be	configured.	This	example	assumes	that	the
publication	has	a	naming	convention	for	TextFrame	objects	containing	lists	that
use	the	word	"list"	as	a	prefix.	This	example	uses	nested	collection	iterations	to
access	each	of	the	TextFrame	objects	in	each	Shapes	collection	of	each	Page.
The	ParagraphFormat	object	of	each	TextFrame	name	with	the	prefix	"list"
has	the	ListType	and	ListBulletFontSize	set.

Dim	objPage	As	page

Dim	objShp	As	Shape

Dim	objTxtFrm	As	TextFrame

'iterate	through	all	Pages	of	Publication

For	Each	objPage	In	ActiveDocument.Pages

				'iterate	through	the	Shapes	collection	of	objPage

				For	Each	objShp	In	objPage.Shapes

								'find	each	TextFrame	object

								If	objShp.Type	=	pbTextFrame	Then

												'if	the	name	of	the	TextFrame	begins	with	"list"

												If	InStr(1,	objShp.Name,	"list")	<>	0	Then



																Set	objTxtFrm	=	objShp.TextFrame

																With	objTxtFrm

																				With	.TextRange

																								With	.ParagraphFormat

																												.SetListType	pbListTypeBullet,	"*"

																												.ListBulletFontSize	=	24

																								End	With

																				End	With

																End	With

												End	If

								End	If

				Next

Next



Show	All



SetPageRelative	Method
Sets	the	target	type	for	the	specified	hyperlink.

expression.SetPageRelative(RelativePage)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

RelativePage			Required	PbHlinkTargetType.	The	target	type	of	the	hyperlink.

PbHlinkTargetType	can	be	one	of	these	PbHlinkTargetType	constants.
pbHlinkTargetTypeEmail
pbHlinkTargetTypeFirstPage
pbHlinkTargetTypeLastPage
pbHlinkTargetTypeNextPage
pbHlinkTargetTypeNone
pbHlinkTargetTypePageID
pbHlinkTargetTypePreviousPage
pbHlinkTargetTypeURL



Example

The	following	example	adds	four	new	hyperlinks	to	shape	one	on	page	one	of
the	active	publication	and	sets	their	targets	accordingly.

Sub	SetHyperlinkRelativeTarget()

				Dim	hypNew	As	Hyperlink

				Dim	txtRng	As	TextRange

				ActiveDocument.Pages(1).Shapes	_

								.AddTextbox	Orientation:=pbTextOrientationHorizontal,	_

								Left:=10,	Top:=10,	Width:=200,	Height:=200

				Set	txtRng	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange

				txtRng.Text	=	"First	Page"	&	vbCrLf

				Set	txtRng	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange

				Set	hypNew	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Hyperlinks.Add(Text:=txtRng,	_

								Address:="http://www.tailspintoys.com/")

				'Change	hyperlink	to	be	a	Page-relative	link

				hypNew.SetPageRelative	RelativePage:=pbHlinkTargetTypeFirstPage

				txtRng.Collapse	pbCollapseEnd

				txtRng.Text	=	"Previous	Page"	&	vbCrLf

				Set	hypNew	=	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Hyperlinks.Add(Text:=txtRng,	_

								Address:="http://www.tailspintoys.com/")

				hypNew.SetPageRelative	RelativePage:=pbHlinkTargetTypePreviousPage

				txtRng.Collapse	pbCollapseEnd

				txtRng.Text	=	"Next	Page"	&	vbCrLf

				Set	hypNew	=	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.Hyperlinks.Add(Text:=txtRng,	_

								Address:="http://www.tailspintoys.com/")

				hypNew.SetPageRelative	RelativePage:=pbHlinkTargetTypeNextPage

				txtRng.Collapse	pbCollapseEnd

				txtRng.Text	=	"Last	Page"	&	vbCrLf

				Set	hypNew	=	ActiveDocument.Pages(1).Shapes(1)	_



								.TextFrame.TextRange.Hyperlinks.Add(Text:=txtRng,	_

								Address:="http://www.tailspintoys.com/")

				hypNew.SetPageRelative	RelativePage:=pbHlinkTargetTypeLastPage

End	Sub

	 	



SetPosition	Method
Sets	the	position	of	the	specified	node.	Depending	on	the	editing	type	of	the
node,	this	method	may	affect	the	position	of	adjacent	nodes.

expression.SetPosition(Index,	X1,	Y1)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Long.	The	node	whose	position	is	to	be	set.	Must	be	a	number
from	1	to	the	number	of	nodes	in	the	specified	shape;	otherwise,	an	error	occurs.

X1			Required	Variant.	The	horizontal	position	of	the	node	relative	to	the	upper-
left	corner	of	the	page.

Y1			Required	Variant.	The	vertical	position	of	the	node	relative	to	the	upper-left
corner	of	the	page.



Remarks

For	the	X1	and	Y1	arguments,	numeric	values	are	evaluated	in	points;	strings	can
be	in	any	units	supported	by	Publisher	(for	example,	"2.5	in").



Example

This	example	moves	the	second	node	in	the	third	shape	in	the	active	publication
200	points	to	the	right	and	300	points	down.	The	shape	must	be	a	freeform
drawing.

Dim	arrPoints	As	Variant

Dim	intX	As	Integer

Dim	intY	As	Integer

With	ActiveDocument.Pages(1).Shapes(3).Nodes

				arrPoints	=	.Item(2).Points

				intX	=	arrPoints(1,	1)

				intY	=	arrPoints(1,	2)

				.SetPosition	Index:=2,	X1:=intX	+	200,	Y1:=intY	+	300

End	With

	 	



Show	All



SetScriptName	Method
Sets	the	name	of	the	font	script	to	use	in	a	text	range.

expression.SetScriptName(Script,	FontName)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Script			Required	PbFontScriptType.	The	script	name.

PbFontScriptType	can	be	one	of	these	PbFontScriptType	constants.
pbFontScriptArabic
pbFontScriptArmenian
pbFontScriptAsciiLatin
pbFontScriptAsciiSym
pbFontScriptBengali
pbFontScriptBopomofo
pbFontScriptBraille
pbFontScriptCanadianAbor
pbFontScriptCherokee
pbFontScriptCurrency
pbFontScriptCyrillic
pbFontScriptDefault
pbFontScriptDevanagari
pbFontScriptEthiopic
pbFontScriptEUDC
pbFontScriptGeorgian
pbFontScriptGreek
pbFontScriptGujarati
pbFontScriptGurmukhi
pbFontScriptHalfWidthKana
pbFontScriptHan



pbFontScriptHangul
pbFontScriptHanSurrogate
pbFontScriptHebrew
pbFontScriptKana
pbFontScriptKannada
pbFontScriptKhmer
pbFontScriptLao
pbFontScriptLatin
pbFontScriptMalayalam
pbFontScriptMixed
pbFontScriptMongolian
pbFontScriptMyanmar
pbFontScriptNonHanSurrogate
pbFontScriptOgham
pbFontScriptOriya
pbFontScriptRunic
pbFontScriptSinhala
pbFontScriptSyriac
pbFontScriptTamil
pbFontScriptTelugu
pbFontScriptThaana
pbFontScriptThai
pbFontScriptTibetan
pbFontScriptYi

FontName			Required	String.	The	font	name.



Example

This	example	verifies	that	the	default	font	script	in	use	for	the	specified	text
range	is	Tahoma	and,	if	not,	sets	it	as	the	default	font	script.

Sub	GetScript()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.Font

								If	.GetScriptName(Script:=pbFontScriptDefault)	<>	"Tahoma"	Then

												.SetScriptName	Script:=pbFontScriptDefault,	_

																FontName:="Tahoma"

								End	If

				End	With

End	Sub

	 	



Show	All



SetSegmentType	Method
Sets	the	segment	type	of	the	segment	that	follows	the	specified	node.	If	the	node
is	a	control	point	for	a	curved	segment,	this	method	sets	the	segment	type	for
that	curve;	this	may	affect	the	total	number	of	nodes	by	inserting	or	deleting
adjacent	nodes.

expression.SetSegmentType(Index,	SegmentType)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Long.	The	node	whose	segment	type	is	to	be	set.	Must	be	a
number	from	1	to	the	number	of	nodes	in	the	specified	shape;	otherwise,	an	error
occurs.

SegmentType			Required	MsoSegmentType.	Specifies	the	segment	type.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine



Example

This	example	changes	all	straight	segments	to	curved	segments	in	the	third	shape
in	the	active	publication.	The	shape	must	be	a	freeform	drawing.

Dim	intCount	As	Integer

With	ActiveDocument.Pages(1).Shapes(3).Nodes

				intCount	=	1

				Do	While	intCount	<=	.Count

								If	.Item(intCount).SegmentType	=	msoSegmentLine	Then

												.SetSegmentType	_

																Index:=intCount,	SegmentType:=msoSegmentCurve

								End	If

								intCount	=	intCount	+	1

				Loop

End	With

	 	



SetShapesDefaultProperties	Method
Applies	the	formatting	for	the	specified	shape	or	shape	range	to	the	default
shape.	Shapes	created	after	this	method	has	been	used	will	have	this	formatting
applied	to	them	by	default.

expression.SetShapesDefaultProperties

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	SetShapesDefaultProperties	method	stores	two	different	sets	of	default
properties,	one	for	a	Shape	object's	AutoShapeType,	and	another	for	a
TextFrame	object.	In	other	words,	if	this	method	is	called	on	an	AutoShape,	the
default	formatting	of	that	object	will	apply	only	to	new	AutoShapes,	and	will	not
apply	to	new	text	boxes.	If	this	method	is	called	on	a	text	box,	the	default
formatting	of	that	object	will	apply	only	to	new	text	boxes,	and	will	not	apply	to
new	AutoShapes.



Example

This	example	adds	a	rectangle	to	the	active	publication,	formats	the	rectangle's
fill,	applies	the	rectangle's	formatting	to	the	default	shape,	and	then	adds	another
smaller	rectangle	to	the	document.	The	second	rectangle	has	the	same	fill	as	the
first	one.

With	ActiveDocument.Pages(1).Shapes

				With	.AddShape(Type:=msoShapeRectangle,	_

												Left:=5,	Top:=5,	Width:=80,	Height:=60)

								With	.Fill

												.ForeColor.RGB	=	RGB(0,	0,	255)

												.BackColor.RGB	=	RGB(0,	204,	255)

												.Patterned	Pattern:=msoPatternHorizontalBrick

								End	With

								.SetShapesDefaultProperties

				End	With

				.AddShape	Type:=msoShapeRectangle,	_

								Left:=90,	Top:=90,	Width:=40,	Height:=30

End	With

	 	



SetSortOrder	Method
Sets	the	sort	order	for	mail	merge	data.

expression.SetSortOrder(SortField1,	SortAscending1,	SortField2,
SortAscending2,	SortField3,	SortAscending3)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SortField1			Optional	String.	The	first	field	on	which	to	sort	the	mail	merge
data.	Default	is	an	empty	string.

SortAscending1			Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField1			;	False	to	perform	a	descending	sort.

SortField2			Optional	String.	The	second	field	on	which	to	sort	the	mail	merge
data.	Default	is	an	empty	string.

SortAscending2			Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField2			;	False	to	perform	a	descending	sort.

SortField3			Optional	String.	The	third	field	on	which	to	sort	the	mail	merge
data.	Default	is	an	empty	string.

SortAscending3			Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField3			;	False	to	perform	a	descending	sort.



Example

The	following	example	sorts	mail	merge	data	first	on	ZIP	code	in	descending
order,	then	on	last	name	and	first	name	in	ascending	order.

ActiveDocument.MailMerge.DataSource.SetSortOrder	_

				SortField1:="ZIPCode",	SortAscending1:=False,	_

				SortField2:="LastName",	SortField3:="FirstName"

	 	



Show	All



SetThreeDFormat	Method
Sets	the	preset	extrusion	format.	Each	preset	extrusion	format	contains	a	set	of
preset	values	for	the	3-D	properties	of	the	extrusion.

expression.SetThreeDFormat(PresetThreeDFormat)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PresetThreeDFormat			Required	MsoPresetThreeDFormat.	Specifies	a	preset
extrusion	format	that	corresponds	to	one	of	the	options	(numbered	from	left	to
right,	from	top	to	bottom)	displayed	when	you	click	the	3-D	button	on	the
Drawing	toolbar.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.
msoPresetThreeDFormatMixed	Not	used	with	this	method.
msoThreeD1
msoThreeD2
msoThreeD3
msoThreeD4
msoThreeD5
msoThreeD6
msoThreeD7
msoThreeD8
msoThreeD9
msoThreeD10
msoThreeD11
msoThreeD12
msoThreeD13
msoThreeD14
msoThreeD15
msoThreeD16



msoThreeD17
msoThreeD18
msoThreeD19
msoThreeD20



Remarks

This	method	sets	the	PresetThreeDFormat	property	to	the	format	specified	by
the	PresetThreeDFormat	argument.



Example

This	example	adds	an	oval	to	the	active	publication	and	sets	its	extrusion	format
to	one	of	the	preset	3-D	formats.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	_

								Left:=30,	Top:=30,	Width:=50,	Height:=25).ThreeD

				.Visible	=	True

				.SetThreeDFormat	PresetThreeDFormat:=msoThreeD12

End	With

	 	



ShowWizard	Method
Displays	the	Mail	and	Catalog	Merge	Wizard	in	a	document.

expression.ShowWizard(ShowDocumentStep,	ShowTemplateStep,
ShowDataStep,	ShowWriteStep,	ShowPreviewStep,	ShowMergeStep)

expression				Required.	An	expression	that	returns	a	MailMerge	object.

ShowDocumentStep			Optional	Boolean.	True	(default)	displays	the	"Select	a
merge	type"	step.	False	removes	the	step.

ShowTemplateStep			Optional	Boolean.	This	argument	doesn't	apply	to
Publisher.

ShowDataStep			Optional	Boolean.	True	(default)	displays	the	"Select	data
source"	step.	False	removes	the	step.

ShowWriteStep			Optional	Boolean.	True	(default)	displays	the	"Create	your
publication"	step.	False	removes	the	step.

ShowPreviewStep			Optional	Boolean.	True	(default)	displays	the	"Preview
your	publication"	step.	False	removes	the	step.

ShowMergeStep			Optional	Boolean.	True	(default)	displays	the	"Complete	the
merge"	step.	False	removes	the	step.



Example

This	example	checks	if	the	Mail	Merge	Wizard	is	closed,	and	if	it	is,	displays	it.

Sub	ShowMergeWizard()

				With	ActiveDocument.MailMerge

								If	.WizardState	=	0	Then

												.ShowWizard

								End	If

				End	With

End	Sub

	 	



Shrink	Method
Decreases	the	font	size	to	the	next	available	size.	If	the	selection	or	range
contains	more	than	one	font	size,	each	size	is	decreased	to	the	next	available
setting.

expression.Shrink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Applying	the	Shrink	method	to	text	that	is	already	the	smallest	size	allowed	by
Publisher	(0.5	point)	has	no	effect.



Example

This	example	inserts	a	line	of	increasingly	smaller	Z's	in	a	new	document.

Dim	shpText	As	Shape

Dim	trTemp	As	TextRange

Dim	intCount	As	Integer

Set	shpText	=	ActiveDocument.Pages(1).Shapes	_

				.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

				Left:=100,	Top:=100,	Width:=300,	Height:=50)

Set	trTemp	=	shpText.TextFrame.TextRange

With	trTemp

				.Font.Size	=	45

				.InsertAfter	NewText:="ZZZZZZZZZZ"

				For	intCount	=	2	To	10

								.Characters(Start:=intCount,	_

												Length:=11	-	intCount).Font.Shrink

				Next	intCount

End	With

	 	



Solid	Method
Sets	the	specified	fill	to	a	uniform	color.	Use	this	method	to	convert	a	gradient,
textured,	patterned,	or	background	fill	back	to	a	solid	fill.

expression.Solid

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	converts	all	fills	on	the	first	page	of	the	active	publication	to
uniform	red	fills.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop.Fill

								.Solid

								.ForeColor.RGB	=	RGB(255,	0,	0)

				End	With

Next	shpLoop

	 	



Split	Method
Splits	a	merged	table	cell	back	into	its	constituent	cells.	Returns	a	CellRange
object	representing	the	constituent	cells.

expression.Split

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	specified	cell	is	not	a	merged	cell	resulting	from	using	the	Merge	method,
an	error	occurs.



Example

The	following	example	splits	the	first	cell	in	the	table	in	shape	one	on	page	one
of	the	active	publication	into	its	constituent	cells.	Shape	one	must	contain	a
table,	the	first	cell	of	which	is	a	merged	cell,	in	order	for	this	example	to	work.

Dim	cllMerged	As	Cell

Set	cllMerged	=	ActiveDocument.Pages(1)	_

				.Shapes(1).Table.Cells.Item(1)

cllMerged.Split

	 	 	

	 	



ToggleVerticalText	Method
Switches	the	text	flow	in	the	specified	WordArt	from	horizontal	to	vertical,	or
vice	versa.

expression.ToggleVerticalText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Using	the	ToggleVerticalText	method	swaps	the	values	of	the	Left	and	Top
properties	of	the	Shape	object	that	represents	the	WordArt	and	leaves	the	Width
and	Height	properties	unchanged.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	the	direction	of
text	flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to
experiment	to	find	out	how	to	combine	the	effects	of	these	properties	and
methods	to	get	the	result	you	want.



Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	the	active
publication,	and	switches	from	horizontal	text	flow	(the	default	for	the	specified
WordArt	style,	msoTextEffect1)	to	vertical	text	flow.

Dim	shpTextEffect	As	Shape

Set	shpTextEffect	=	ActiveDocument.Pages(1).Shapes.AddTextEffect	_

				(PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

				FontName:="Arial	Black",	FontSize:=36,	_

				FontBold:=False,	FontItalic:=False,	Left:=100,	Top:=100)

shpTextEffect.TextEffect.ToggleVerticalText

	 	



TwipsToPoints	Method
Converts	a	measurement	from	twips	to	points	(20	twips	=	1	point).	Returns	the
converted	measurement	as	a	Single.

expression.TwipsToPoints(Value)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Value			Required	Single.	The	twip	value	to	be	converted	to	points.



Remarks

Use	the	PointsToTwips	method	to	convert	measurements	in	points	to	twips.



Example

This	example	converts	measurements	in	twips	entered	by	the	user	to
measurements	in	points.

Dim	strInput	As	String

Dim	strOutput	As	String

Do	While	True

				'	Get	input	from	user.

				strInput	=	InputBox(	_

								Prompt:="Enter	measurement	in	twips	(0	to	cancel):	",	_

								Default:="0")

				'	Exit	the	loop	if	user	enters	zero.

				If	Val(strInput)	=	0	Then	Exit	Do

				'	Evaluate	and	display	result.

				strOutput	=	Trim(strInput)	&	"	twips	=	"	_

								&	Format(Application	_

								.TwipsToPoints(Value:=Val(strInput)),	_

								"0.00")	&	"	points"

				MsgBox	strOutput

Loop

	 	



Show	All



TwoColorGradient	Method
Sets	the	specified	fill	to	a	two-color	gradient.	The	two	fill	colors	are	specified	by
the	ForeColor	and	BackColor	properties.

expression.TwoColorGradient(Style,	Variant)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Style			Required	MsoGradientStyle.	The	gradient	style.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed	Not	used	with	this	method.
msoGradientVertical

Variant			Required	Long.	The	gradient	variant.	Can	be	a	value	from	1	to	4,
corresponding	to	the	four	variants	on	the	Gradient	tab	in	the	Fill	Effects	dialog
box.	If	Style	is	msoGradientFromTitle	or	msoGradientFromCenter,	this
argument	can	be	either	1	or	2.



Example

This	example	adds	a	rectangle	with	a	two-color	gradient	fill	to	the	active
publication	and	sets	the	background	and	foreground	color	for	the	fill.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeRectangle,	_

								Left:=0,	Top:=0,	Width:=40,	Height:=80).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(0,	170,	170)

				.TwoColorGradient	Style:=msoGradientHorizontal,	Variant:=1

End	With

	 	



Undo	Method
Undoes	the	last	action	or	a	specified	number	of	actions.	Corresponds	to	the	list
of	items	that	appears	when	you	click	the	arrow	beside	the	Undo	button	on	the
Standard	toolbar.

expression.Undo([Count	=	1])

expression				Required.	An	expression	that	returns	a	Document	object.

Count			Optional	Long.	Specifies	the	number	of	actions	to	be	undone.	Default	is
1,	meaning	that	if	omitted,	only	the	last	action	will	be	undone.



Remarks

If	called	when	there	are	no	actions	on	the	undo	stack,	or	when	Count	is	greater
than	the	number	of	actions	that	currently	reside	on	the	stack,	the	Undo	method
will	undo	as	many	actions	as	possible	and	ignore	the	rest.

The	maximum	number	of	actions	that	can	be	undone	in	one	call	to	Undo	is	20.



Example

The	following	example	uses	the	Undo	method	to	undo	actions	that	do	not	meet
specific	criteria.

Part	1	of	the	example	adds	a	rectangular	callout	shape	to	the	fourth	page	of	the
active	publication,	and	text	is	added	to	the	callout.	This	process	creates	three
actions.

Part	2	of	the	example	tests	whether	the	font	of	the	text	added	to	the	callout	is
Verdana.	If	not,	then	the	Undo	method	is	used	to	undo	all	available	actions	(the
value	of	the	UndoActionsAvailable	property	is	used	to	specify	that	all	actions
be	undone).	This	clears	all	actions	from	the	stack.	A	new	rectangle	shape	and
text	frame	are	then	added	and	the	text	frame	is	populated	with	Verdana	text.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(4)

With	theDoc

				'	Part	1

				With	thePage

								'	Setting	the	shape	creates	the	first	action

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangularCallout,	_

																75,	75,	120,	30)

								'	Setting	the	text	range	creates	the	second	action

								With	theShape.TextFrame.TextRange

													'	Setting	the	text	creates	the	third	action

													.Text	=	"This	text	is	not	Verdana."

								End	With

					End	With

				

	 	 	 	 '	Part	2

				If	Not	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Verdana"	Then

								'	UndoActionsAvailable	=	3							

								.Undo	(.UndoActionsAvailable)

								With	thePage

												Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

																				75,	75,	120,	30)

												With	theShape.TextFrame.TextRange

																.Font.Name	=	"Verdana"



																.Text	=	"This	text	is	Verdana."

												End	With

								End	With

				End	If

End	With



UndoClear	Method
Clears	the	list	of	actions	that	can	be	undone	for	the	specified	publication.
Corresponds	to	the	list	of	items	that	appears	when	you	click	the	arrow	beside	the
Undo	button	on	the	Standard	toolbar.

expression.UndoClear

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Include	this	method	at	the	end	of	a	macro	to	keep	Visual	Basic	actions	from
appearing	in	the	Undo	box	(for	example,	"VBA-Selection.InsertAfter").



Example

This	example	clears	the	list	of	actions	that	can	be	undone	for	the	active
publication.

ActiveDocument.UndoClear

	 	



Ungroup	Method
Ungroups	the	specified	group	of	shapes	or	any	groups	of	shapes	in	the	specified
shape	range.	If	the	specified	shape	is	a	picture	or	OLE	object,	Microsoft
Publisher	will	break	it	apart	and	convert	it	to	an	ungrouped	set	of	shapes.	(For
example,	an	embedded	Microsoft	Excel	spreadsheet	is	converted	into	lines	and
text	boxes.)	Returns	the	ungrouped	shapes	as	a	single	ShapeRange	object.

expression.Ungroup

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Using	this	method	on	an	inline	shape	or	a	shape	that	isn't	a	group,	picture,	or
OLE	object	generates	an	error.	Also,	an	error	occurs	if	the	picture	is	a	bitmap,
JPEG,	GIF,	or	PNG	(Portable	Network	Graphics)	file.

Because	a	group	of	shapes	is	treated	as	a	single	object,	grouping	and	ungrouping
shapes	changes	the	number	of	items	in	the	Shapes	collection	and	changes	the
index	numbers	of	items	that	come	after	the	affected	items	in	the	collection.	Also,
newly	ungrouped	shapes	are	added	to	the	Shapes	collection	on	the	current	page
(or	pages)	or	scratch	area.	As	a	result,	they	may	shift	from	one	collection	to
another.



Example

This	example	ungroups	any	grouped	shapes	on	the	first	page	of	the	active
publication.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				If	shpLoop.Type	=	pbGroup	Then	_

								shpLoop.Ungroup

Next	shpLoop

	 	



Unlink	Method
Replaces	the	specified	field	or	Fields	collection	with	with	their	most	recent
results.

expression.Unlink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	you	unlink	a	field,	its	current	result	is	converted	to	text	or	a	graphic	and
can	no	longer	be	updated	automatically.



Example

This	example	unlinks	the	first	field	in	shape	one	on	the	first	page	of	the	active
publication.

ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Fields(1).Unlink

	 	

This	example	updates	and	unlinks	all	the	fields	in	shape	one	on	the	first	page	of
the	active	publication.

With	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.Fields

				.Update

				.Unlink

End	With

	 	



Unselect	Method
Cancels	the	current	selection.

expression.Unselect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	cancels	the	current	selection	in	the	active	publication.

ActiveDocument.Selection.Unselect

	 	



Update	Method
Updates	the	specified	linked	OLE	object.

expression.Update

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	updates	all	linked	OLE	objects	in	the	active	publication.

Dim	pageLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pageLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pageLoop.Shapes

								With	shpLoop

												If	.Type	=	pbLinkedOLEObject	Then

																.LinkFormat.Update

												End	If

								End	With

				Next	shpLoop

Next	pageLoop

	 	



UpdateOLEObjects	Method
Updates	linked	and	embedded	OLE	objects.

expression.UpdateOLEObjects

expression				Required.	An	expression	that	returns	a	Document	object.



Example

This	example	updates	all	OLE	objects	in	the	active	publication.

Sub	SearchAndUpdateOLEObjects()

				ActiveDocument.UpdateOLEObjects

End	Sub

	 	



UserPicture	Method
Fills	the	specified	shape	with	one	large	image.

expression.UserPicture(PictureFile)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PictureFile			Required	String.	The	name	of	the	picture	file.



Remarks

To	fill	the	shape	with	small	tiles	of	an	image,	use	the	UserTextured	method.



Example

This	example	adds	two	rectangles	to	the	active	publication.	The	rectangle	on	the
left	is	filled	with	one	large	image	of	a	picture;	the	rectangle	on	the	right	is	filled
with	many	small	tiles	of	the	same	picture.	(Note	that	PathToFile	must	be
replaced	with	a	valid	file	path	for	this	example	to	work.)

With	ActiveDocument.Pages(1).Shapes

				.AddShape(Type:=msoShapeRectangle,	_

								Left:=0,	Top:=0,	Width:=200,	Height:=100).Fill	_

								.UserPicture	PictureFile:="PathToFile"

				.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=0,	Width:=200,	Height:=100).Fill	_

								.UserTextured	TextureFile:="PathToFile"

End	With

	 	



UserTextured	Method
Fills	the	specified	shape	with	small	tiles	of	an	image.

expression.UserTextured(TextureFile)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TextureFile			Required	String.	The	name	of	the	texture	file.



Remarks

To	fill	the	shape	with	one	large	image,	use	the	UserPicture	method.



Example

This	example	adds	two	rectangles	to	the	active	publication.	The	rectangle	on	the
left	is	filled	with	one	large	image	of	a	picture;	the	rectangle	on	the	right	is	filled
with	many	small	tiles	of	the	same	picture.	(Note	that	PathToFile	must	be
replaced	with	a	valid	file	path	for	this	example	to	work.)

With	ActiveDocument.Pages(1).Shapes

				.AddShape(Type:=msoShapeRectangle,	_

								Left:=0,	Top:=0,	Width:=200,	Height:=100).Fill	_

								.UserPicture	PictureFile:="PathToFile"

				.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=0,	Width:=200,	Height:=100).Fill	_

								.UserTextured	TextureFile:="PathToFile"

End	With

	 	



ValidLinkTarget	Method
Determines	whether	the	text	frame	of	one	shape	can	be	linked	to	the	text	frame
of	another	shape.	Returns	True	if	LinkTarget	is	a	valid	target,	False	if
LinkTarget	already	contains	text	or	is	already	linked,	or	if	the	shape	doesn't
support	attached	text.

expression.ValidLinkTarget(LinkTarget)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

LinkTarget			Required	Shape	object.	The	shape	with	the	target	text	frame	to
which	you	wish	to	link	the	text	frame	returned	by	expression			.



Example

This	example	checks	to	see	whether	the	text	frames	for	the	first	and	second
shapes	on	the	first	page	of	the	active	publication	can	be	linked	to	one	another.	If
so,	the	example	links	the	two	text	frames.

Dim	txtFrame1	As	TextFrame

Dim	txtFrame2	As	TextFrame

With	ActiveDocument.Pages(1)

				Set	txtFrame1	=	.Shapes(1).TextFrame

				Set	txtFrame2	=	.Shapes(2).TextFrame

End	With

If	txtFrame1.ValidLinkTarget(LinkTarget:=txtFrame2.Parent)	=	True	Then

				txtFrame1.NextLinkedTextFrame	=	txtFrame2

End	If

	 	



WebPagePreview	Method
Generates	a	Web	page	preview	of	the	specified	publication	in	Internet	Explorer.

expression.WebPagePreview

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	Web	preview	can	be	generated	for	print	publications.	However,	the	appearance
of	the	Web	preview	may	differ	from	the	printed	publication.

The	Web	preview	opens	with	the	active	page	displayed.	Preview	Web	pages	are
generated	for	each	page	in	the	publication.	However,	if	the	publication	is	a	print
publication	or	otherwise	lacks	a	navigation	bar,	there	may	be	no	way	to	navigate
to	those	pages.

Use	the	PublicationType	property	to	determine	if	a	publication	is	a	print
publication	or	a	Web	publication.

This	method	corresponds	to	the	Web	Page	Preview	command	on	the	File	menu.



Example

The	following	example	sets	the	active	page	of	the	publication	and	generates	a
Web	preview	of	the	publication.

With	ActiveDocument

				.ActiveView.ActivePage	=	.Pages(2)

				.WebPagePreview

End	With



Words	Method
Returns	a	TextRange	object	that	represents	the	specified	subset	of	text	words.

expression.Words(Start,	Length)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Start			Required	Long.	The	first	word	in	the	returned	range.

Length			Optional	Long.	The	number	of	words	to	be	returned.	Default	is	1.



Remarks

If	Length	is	omitted,	the	returned	range	contains	one	word.

If	Start	is	greater	than	the	number	of	words	in	the	specified	text,	the	returned
range	starts	with	the	last	word	in	the	specified	range.

If	Length	is	greater	than	the	number	of	words	from	the	specified	starting	word	to
the	end	of	the	text,	the	returned	range	contains	all	those	words.



Example

This	example	formats	as	bold	the	second,	third,	and	fourth	words	in	shape	two
on	page	one	of	the	active	publication.

Application.ActiveDocument.Pages(1).Shapes(2)	_

				.TextFrame.TextRange.Words(Start:=2,	Length:=3)	_

				.Font.Bold	=	True

	 	



ZoomIn	Method
Increases	the	magnification	of	the	specified	view.

expression.ZoomIn

expression				Required.	An	expression	that	returns	a	View	object.



Example

This	example	increases	the	magnification	of	the	active	view.

Sub	Zoom()

				ActiveView.ZoomIn

End	Sub

	 	



ZoomOut	Method
Decreases	the	magnification	of	the	specified	view.

expression.ZoomOut

expression				Required.	An	expression	that	returns	a	View	object.



Example

This	example	decreases	the	magnification	of	the	active	view.

Sub	Zoom()

				ActiveView.ZoomOut

End	Sub

	 	



Show	All



ZOrder	Method
Moves	the	specified	shape	in	front	of	or	behind	other	shapes	in	the	collection
(that	is,	changes	the	shape's	position	in	the	z-order).

expression.ZOrder(ZOrderCmd)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ZOrderCmd			Required	MsoZOrderCmd.	Specifies	where	to	move	the
specified	shape	relative	to	the	other	shapes.

MsoZOrderCmd	can	be	one	of	these	MsoZOrderCmd	constants.
msoBringForward
msoBringInFrontOfText
msoBringToFront
msoSendBackward
msoSendBehindText
msoSendToBack



Remarks

Use	the	ZOrderPosition	property	to	determine	a	shape's	current	position	in	the
z-order.



Example

This	example	adds	an	oval	to	the	active	publication	and	then	places	the	oval
second	from	the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the
page.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	_

								Left:=100,	Top:=100,	Width:=100,	Height:=300)

				While	.ZOrderPosition	>	2

								.ZOrder	ZOrderCmd:=msoSendBackward

				Wend

End	With

	 	



Show	All



Accent	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	a	vertical	accent	bar
separates	the	callout	text	from	the	callout	line.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	A	vertical	accent	bar	does	not	separate	the	callout	text	from	the
callout	line.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Set	value	only;	toggles	between	msoTrue	and	msoFalse.
msoTrue	A	vertical	accent	bar	separates	the	callout	text	from	the	callout	line.

expression.Accent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	publication	and	a	callout	that	points	to
the	oval.	The	callout	text	won't	have	a	border,	but	it	will	have	a	vertical	accent
bar	that	separates	the	text	from	the	callout	line.

With	ActiveDocument.Pages(1).Shapes

				'	Add	an	oval.

				.AddShape	Type:=msoShapeOval,	_

								Left:=180,	Top:=200,	Width:=280,	Height:=130

				'	Add	a	callout.

				With	.AddCallout(Type:=msoCalloutTwo,	_

												Left:=420,	Top:=170,	Width:=170,	Height:=40)

								'	Add	text	to	the	callout.

								.TextFrame.TextRange.Text	=	"This	is	an	oval"

								'	Add	an	accent	bar	to	the	callout.

								With	.Callout

												.Accent	=	msoTrue

												.Border	=	msoFalse

								End	With

				End	With

End	With

	 	



ActionURL	Property
Returns	or	sets	a	String	that	represents	the	URL	of	the	server-side	script	to
execute	in	response	to	a	Submit	button	click.	Read/write.

expression.ActionURL

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	default	value	for	the	ActionURL	property	is
"http://example.microsoft.com/~user/ispscript.cgi".	This	property	is	ignored	for
Reset	command	buttons.



Example

This	example	creates	a	Web	form	Submit	command	button	and	sets	the	script
path	and	file	name	to	run	when	a	user	clicks	the	button.

Sub	CreateActionWebButton()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlCommandButton,	Left:=150,	_

												Top:=150,	Width:=75,	Height:=36).WebCommandButton

								.ButtonText	=	"Submit"

								.ButtonType	=	pbCommandButtonSubmit

								.ActionURL	=	"http://www.tailspintoys.com/"	&	_

												"scripts/ispscript.cgi"

				End	With

End	Sub

	 	



ActiveDocument	Property
Returns	a	Document	object	that	represents	the	active	publication.	If	there	are	no
documents	open,	an	error	occurs.

expression.ActiveDocument

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	allows	the	user	to	assign	a	file	name	to	the	active	publication	and
save	it	with	the	new	file	name.	The	file	name,	along	with	other	text,	is	then
inserted	after	the	currently	selected	text.	(Note	that	Filename	must	be
replacedvin	with	a	valid	publication	name	for	this	example	to	work.)

Sub	NewsLetterSave()

				Dim	strFileName	As	String

				'	Assign	the	explicit	file	name	to	a	variable.

				strFileName	=	"Filename"

				Publisher.ActiveDocument.SaveAs	strFileName

				'	Insert	the	file	name	and	supporting	text	after	selected	text.

				Selection.TextRange.Collapse	pbCollapseEnd

				Selection.TextRange	=	_

								"	This	publication	has	been	saved	as	"	&	strFileName

End	Sub

	 	



ActivePage	Property
Returns	a	Page	object	that	represents	the	page	currently	displayed	in	the
Publisher	window.

expression.ActivePage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	saves	the	active	page	as	a	JPEG	picture.	(Note	that	PathToFile
must	be	replaced	with	a	valid	file	path	for	this	example	to	work.)

Sub	SavePageAsPicture()

				ActiveView.ActivePage.SaveAsPicture	_

								FileName:="PathToFile"

End	Sub

	 	

This	example	adds	a	horizontal	and	a	vertical	ruler	guide	to	the	active	page	that
intersects	at	the	center	point	of	the	page.

Sub	SetRulerGuidesOnActivePage()

				Dim	intHeight	As	Integer

				Dim	intWidth	As	Integer

				With	ActiveView.ActivePage

								intHeight	=	.Height	/	2

								intWidth	=	.Width	/	2

								With	.RulerGuides

												.Add	Position:=intHeight,	Type:=pbRulerGuideTypeHorizontal

												.Add	Position:=intWidth,	Type:=pbRulerGuideTypeVertical

								End	With

				End	With

End	Sub

	 	



ActivePrinter	Property
Returns	or	sets	a	String	corresponding	to	the	name	of	the	active	printer.	The
ActivePrinter	name	is	the	same	string	name	used	to	represent	the	printer	in	the
user	interface.	Read/write.

expression.ActivePrinter

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	name	of	the	active	printer.

MsgBox	"The	name	of	the	active	printer	is	"	&	_

				Application.ActiveDocument.ActivePrinter

	 	

This	example	makes	a	network	HP	LaserJet	IIISi	printer	the	active	printer.

Application.ActiveDocument.ActivePrinter	=	_

"HP	LaserJet	IIISi	on	\\printers\laser"

	 	

This	example	makes	a	local	HP	LaserJet	4	printer	on	LPT1	the	active	printer.

Application.ActiveDocument.ActivePrinter	=	_

				"HP	LaserJet	4	local	on	LPT1:"

	 	



ActiveRecord	Property
Returns	or	sets	a	Long	that	represents	the	active	mail	merge	data	record.
Read/write.

expression.ActiveRecord

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	active	data	record	number	is	the	position	of	the	record	in	the	query	result
produced	by	the	current	query	options;	as	such,	this	number	isn't	necessarily	the
position	of	the	record	in	the	data	source.



Example

This	example	validates	that	the	value	entered	into	the	PostalCode	field	is	ten
characters	long	(U.S.	ZIP	code	plus	4-digit	locator	code).	If	it	isn't,	it	is	excluded
from	the	mail	merge	and	marked	with	a	comment.

Sub	ValidateZip()

				Dim	intCount	As	Integer

				On	Error	Resume	Next

				With	ActiveDocument.MailMerge.DataSource

								'Set	the	active	record	equal	to	the	first	included

								'record	in	the	data	source

								.ActiveRecord	=	1

								Do

												intCount	=	intCount	+	1

												'Set	the	condition	that	the	PostalCode	field

												'must	be	greater	than	or	equal	to	ten	digits

												If	Len(.DataFields.Item("PostalCode").Value)	<	10	Then

																'Exclude	the	record	if	the	PostalCode	field

																'is	less	than	ten	digits

																.Included	=	False

																'Mark	the	record	as	containing	an	invalid	address	field

																.InvalidAddress	=	True

																'Specify	the	comment	attached	to	the	record	explaining

																'why	the	record	was	excluded	from	the	mail	merge

																.InvalidComments	=	"The	ZIP	code	for	this	record	is	"	_

																				&	"less	than	ten	digits.	It	will	be	removed	"	_

																				&	"from	the	mail	merge	process."

												End	If

												'Move	the	record	to	the	next	record	in	the	data	source

												.ActiveRecord	=	.ActiveRecord	+	1

								'End	the	loop	when	the	counter	variable

								'equals	the	number	of	records	in	the	data	source

								Loop	Until	intCount	=	.RecordCount

				End	With



End	Sub

	 	



ActiveView	Property
Returns	a	View	object	representing	the	view	attributes	for	the	specified
document.	Read-only.

expression.ActiveView

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	the	active	publication	zoom	to	fill	the	screen.

Sub	SetActiveZoom()

				Dim	viewTemp	As	View

				ActiveDocument.Pages(1).Shapes.AddShape	1,	10,	10,	50,	50

				Set	viewTemp	=	ActiveDocument.ActiveView

				ActiveDocument.Pages(1).Shapes(1).Select

				viewTemp.Zoom	=	pbZoomFitSelection

End	Sub

	 	



ActiveWindow	Property
Returns	a	Window	object	that	represents	the	window	with	the	focus.	Because
Microsoft	Publisher	only	has	one	window,	there	is	only	one	Window	object	to
return.

expression.ActiveWindow

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	active	window's	caption.

Sub	CurrentCaption()

				MsgBox	ActiveDocument.ActiveWindow.Caption

End	Sub

	 	



AddHebDoubleQuote	Property
True	for	Publisher	to	display	double	quotes	for	Hebrew	alphabet	numbering.
Default	is	False.	Read/write	Boolean.

expression.AddHebDoubleQuote

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	only	accessible	if	Hebrew	has	been	enabled	for	Microsoft	Office
on	your	computer.

This	property	only	applies	to	Hebrew	alphabetic	numbering.

As	with	all	the	properties	of	the	Options	object,	the	current	value	of	the
AddHebDoubleQuote	property	becomes	the	default	setting	applied	to	all	new
publications.

This	property	corresponds	to	the	Add	double	quotes	for	Hebrew	alphabet
numbering	check	box	on	the	Bullets	and	Numbering	dialog	box.



Example

The	following	example	sets	Publisher	to	display	double	quotes	for	Hebrew
alphabet	numbering.

Publisher.Options.AddHebDoubleQuote	=	True



Address	Property
Returns	or	sets	a	String	that	represents	the	URL	address	for	a	hyperlink.
Read/write.

expression.Address

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	URL	addresses	for	all	hyperlinks	in	the	active
publication.

Sub	ShowHyperlinkAddresses()

				Dim	pgsPage	As	Page

				Dim	shpShape	As	Shape

				Dim	hprLink	As	Hyperlink

				Dim	intCount	As	Integer

				For	Each	pgsPage	In	ActiveDocument.Pages

								For	Each	shpShape	In	pgsPage.Shapes

												If	shpShape.TextFrame.TextRange.Hyperlinks.Count	>	0	Then

																For	Each	hprLink	In	shpShape.TextFrame.TextRange.Hyperlinks

																				MsgBox	"This	hyperlink	goes	to	"	&	hprLink.Address

																				intCount	=	intCount	+	1

																Next	hprLink

												ElseIf	shpShape.Hyperlink.Address	<>	""	Then

																MsgBox	"This	hyperlink	goes	to	"	&	shpShape.Hyperlink.

																intCount	=	intCount	+	1

												End	If

								Next	shpShape

				Next	pgsPage

				If	intCount	<	1	Then

								MsgBox	"You	don't	have	any	hyperlinks	in	your	publication."

				Else

								MsgBox	"You	have	"	&	intCount	&	"	hyperlinks	in	"	&	ThisDocument.Name	&	"."

				End	If

End	Sub

	 	



Adjustments	Property
Returns	an	Adjustments	collection	representing	all	adjustment	handles	for	the
specified	Shape	or	ShapeRange	object.

expression.Adjustments

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Adjustment	handles	correspond	to	Microsoft	Publisher	shape	sliders.



Example

This	example	takes	the	number	of	adjustments	for	a	given	shape	range	and
assigns	it	to	a	variable.

Public	Sub	Counter()

				Dim	intCount	as	Integer

				'	A	Shape	must	be	in	the	active	publication	and	selected.

				intCount	=	Publisher.ActiveDocument.Selection	_

								.ShapeRange(1).Adjustments.Count

End	Sub

	 	



AdvancedPrintOptions	Property
Returns	an	AdvancedPrintOptions	object	that	represents	the	advanced	print
settings	for	a	publication.	Read-only.

expression.AdvancedPrintOptions()

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

The	properties	of	the	AdvancedPrintOptions	object	correspond	to	the	options
in	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	tests	to	determine	if	the	active	publication	has	been	set	to
print	as	separations.	If	it	has,	it	is	set	to	print	only	plates	for	the	inks	actually
used	in	the	publication,	and	to	not	print	plates	for	any	pages	where	a	color	is	not
used.

Sub	PrintOnlyInksUsed

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.PrintMode	=	pbPrintModeSeparations	Then

	 	 	 .InksToPrint	=	pbInksToPrintUsed

	 	 	 .PrintBlankPlates	=	False

	 	 End	If

	 End	With

End	Sub



Show	All



Alignment	Property
Alignment	property	as	it	applies	to	the	TextEffectFormat	object.

Returns	or	sets	a	MsoTextEffectAlignment	constant	that	represents	the
alignment	for	the	specified	text	effect.	Read/write.

MsoTextEffectAlignment	can	be	one	of	these	MsoTextEffectAlignment
constants.
msoTextEffectAlignmentCentered
msoTextEffectAlignmentLeft
msoTextEffectAlignmentLetterJustify
msoTextEffectAlignmentMixed
msoTextEffectAlignmentRight
msoTextEffectAlignmentStretchJustify
msoTextEffectAlignmentWordJustify

expression.Alignment

expression				Required.	An	expression	that	returns	a	TextEffectFormat	object.

Alignment	property	as	it	applies	to	the	ParagraphFormat	object.

Returns	or	sets	a	PbParagraphAlignmentType	constant	that	represents	the
alignment	for	the	specified	paragraphs.	Read/write.

PbParagraphAlignmentType	can	be	one	of	these	PbParagraphAlignmentType
constants.
pbParagraphAlignmentCenter
pbParagraphAlignmentDistribute
pbParagraphAlignmentDistributeAll
pbParagraphAlignmentDistributeCenterLast
pbParagraphAlignmentDistributeEastAsia
pbParagraphAlignmentInterCluster



pbParagraphAlignmentInterIdeograph
pbParagraphAlignmentInterWord
pbParagraphAlignmentJustified
pbParagraphAlignmentKashida
pbParagraphAlignmentLeft
pbParagraphAlignmentMixed
pbParagraphAlignmentRight

expression.Alignment

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.

Alignment	property	as	it	applies	to	the	PhoneticGuide	object.

Returns	a	PbPhoneticGuideAlignmentType	constant	that	represents	the
position	of	phonetic	characters	above	Japanese	text.	Read-only.

PbPhoneticGuideAlignmentType	can	be	one	of	these
PbPhoneticGuideAlignmentType	constants.
pbPhoneticGuideAlignmentCenter
pbPhoneticGuideAlignmentDefault
pbPhoneticGuideAlignmentLeft
pbPhoneticGuideAlignmentOneTwoOne
pbPhoneticGuideAlignmentRight
pbPhoneticGuideAlignmentZeroOneZero

expression.Alignment

expression				Required.	An	expression	that	returns	a	PhoneticGuide	object.

Alignment	property	as	it	applies	to	the	TabStop	object.

Returns	or	sets	a	PbTabAlignmentType	constant	that	represents	the	alignment
for	the	specified	tab	stop.	Read/write.

PbTabAlignmentType	can	be	one	of	these	PbTabAlignmentType	constants.



pbTabAlignmentCenter
pbTabAlignmentDecimal
pbTabAlignmentLeading
pbTabAlignmentTrailing

expression.Alignment

expression				Required.	An	expression	that	returns	a	TabStop	object.



Example

As	it	applies	to	the	ParagraphFormat	object.

This	example	adds	a	new	text	box	to	the	first	page	of	the	active	publication,	and
then	add	text	and	sets	the	paragraph	alignment	and	font	formatting.

Sub	NewTextFrame()

				Dim	shpTextBox	As	Shape

				Set	shpTextBox	=	ActiveDocument.Pages(1).Shapes	_

								.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

								Left:=72,	Top:=72,	Width:=468,	Height:=72)

				With	shpTextBox.TextFrame.TextRange

								.ParagraphFormat.Alignment	=	pbParagraphAlignmentCenter

								.Text	=	"Hello	World"

								With	.Font

												.Name	=	"Snap	ITC"

												.Size	=	30

												.Bold	=	msoTrue

								End	With

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	TabStop	object.

This	example	enters	a	tabbed	list	and	sets	the	alignment	for	two	custom	tab
stops.	This	example	assumes	that	the	specified	shape	is	a	text	frame	and	not
another	type	of	shape	and	that	there	are	at	least	two	custom	tab	stops	already	set.

Sub	CustomDecimalTabStop()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

								.InsertAfter	Newtext:="Pencils"	&	vbTab	&	_

												"Each"	&	vbTab	&	"1.50"	&	vbLf

								.InsertAfter	Newtext:="Pens"	&	vbTab	&	_

												"Each"	&	vbTab	&	"4.95"	&	vbLf

								.InsertAfter	Newtext:="Folders"	&	vbTab	&	_

												"Box"	&	vbTab	&	"35.28"	&	vbLf

								.InsertAfter	Newtext:="Envelopes"	&	vbTab	&	_

												"Case"	&	vbTab	&	"150.69"	&	vbLf

								With	.Paragraphs(Start:=1).ParagraphFormat

												.Tabs(1).Alignment	=	pbTabAlignmentCenter



												.Tabs(2).Alignment	=	pbTabAlignmentDecimal

								End	With

				End	With

End	Sub

	 	 	 	



Show	All



AllCaps	Property
Returns	or	sets	msoTrue	if	the	font	is	formatted	as	all	capital	letters	or	one	of	the
other	MsoTriState	constants	if	it	is	not.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	All	fonts	within	the	range	are	not	formatted	as	all	caps.
msoTriStateMixed	Returned	if	some	fonts	in	the	range	are	formatted	as	all
caps	and	others	not.
msoTriStateToggle	Toggles	between	msoTrue	and	msoFalse.
msoTrue	All	fonts	within	the	range	are	formatted	with	all	caps.

expression.AllCaps

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Setting	the	AllCaps	property	to	msoTrue	sets	the	SmallCaps	property	to
msoFalse,	and	vice	versa.



Example

This	example	checks	the	selected	text	in	the	active	document	for	text	formatted
as	all	capital	letters.	For	this	example	to	work,	there	must	be	be	an	active
publication	with	text	selected.

Public	Sub	Caps()

				If	Publisher.ActiveDocument.Selection	_

								.TextRange.Font.AllCaps	=	msoTrue	Then

								MsgBox	"Text	is	all	caps."

				Else

								MsgBox	"Text	is	not	all	caps."

				End	If

End	Sub

	 	

This	example	formats	the	selected	text	as	all	capital	letters.	For	this	code	to
execute	properly,	an	active	document	must	exist	with	selected	text.

Public	Sub	MakeCaps()

				If	Publisher.ActiveDocument.Selection.TextRange	_

				.Font.AllCaps	=	msoFalse	Then

												Selection.TextRange.Font.AllCaps	=	msoTrue

				Else

								MsgBox	"You	need	to	select	some	text"	&	_

"	or	it	is	already	all	caps."

				End	If

End	Sub

	 	



AllowBackgroundSave	Property
True	(default)	for	Microsoft	Publisher	to	save	publications	in	the	background,
allowing	users	to	perform	other	actions	at	the	same	time.	Read/write	Boolean.

expression.AllowBackgroundSave

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	setting	is	saved	for	each	individual	user	and	persists	from	one	session	to
another.



Example

This	example	turns	off	background	save,	so	publications	do	not	save	in	the
background.

Sub	DoNotSaveInBackground()

				Options.AllowBackgroundSave	=	False

End	Sub

	 	



AllowBleeds	Property
True	to	allow	bleeds	to	print	for	the	specified	publication.	The	default	is	True.
Read/write	Boolean.

expression.AllowBleeds()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

When	bleeds	are	allowed,	objects	that	are	partially	off	the	page	print	to	one
eighth	inch	outside	the	defined	page	size.

If	you	allow	bleeds	in	a	document,	you	can	specify	whether	bleed	marks	are
printed	by	using	the	PrintBleedMarks	property	of	the	AdvancedPrintOptions
object.

This	property	corresponds	to	the	Allow	bleeds	control	on	the	Page	Settings	tab
of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	sets	the	publication	to	allow	bleeds,	and	to	print	bleed
marks.

Sub	AllowBleedsAndPrintMarks()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .AllowBleeds	=	True

	 	 .PrintBleedMarks	=	True

	 End	With

End	Sub



AlternativeText	Property
Returns	or	sets	a	String	representing	the	text	displayed	by	a	Web	browser	in
place	of	the	Shape	object	while	the	Shape	object	is	being	downloaded	or	when
graphics	are	turned	off.	Read/write.

expression.AlternativeText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	maximum	length	of	the	AlternativeText	property	is	254	characters.
Microsoft	Publisher	returns	an	error	if	the	text	length	exceeds	this	number.



Example

This	example	sets	the	alternative	text	for	the	selected	shape	in	the	active
document.	This	example	assumes	that	you	have	a	publication	that	the	selected
shape	is	a	picture	of	a	duck.

Public	Sub	Alternative_Text()

				'	The	picture	of	a	duck	must	be	selected.

				Publisher.ActiveDocument.Selection.ShapeRange	_

								.AlternativeText	=	"This	is	a	mallard	duck."

End	Sub

	 	



AlwaysSaveInDefaultEncoding
Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	Web	pages	within	a	Web
publication	should	always	be	saved	using	default	encoding.	If	True,	Web	pages
within	a	publication	will	always	be	saved	using	the	default	encoding	of	the	client
computer.	If	False,	Web	pages	will	not	be	saved	using	default	encoding.	The
default	value	is	False.	Read/write.

expression.AlwaysSaveInDefaultEncoding

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

If	the	AlwaysSaveInDefaultEncoding	property	is	set	to	True	on	a	given
WebOptions	object,	any	subsequent	attempts	to	set	the	Encoding	property	on
that	object	will	be	ignored.



Example

The	following	example	tests	whether	the	Web	publication	is	currently	set	to	be
saved	using	default	encoding.	If	so,	the	AlwaysSaveInDefaultEncoding
property	is	set	to	False,	and	the	Encoding	property	is	used	to	set	the	encoding	to
Unicode	(UTF-8).

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				If	.AlwaysSaveInDefaultEncoding	=	True	Then

								.AlwaysSaveInDefaultEncoding	=	False

								.Encoding	=	msoEncodingUTF8

				End	If

End	With

	 	



Show	All



Angle	Property
Angle	property	as	it	applies	to	the	CalloutFormat	object.

Returns	or	sets	an	MsoCalloutAngleType	constant	that	represents	the	angle	of
the	callout	line.	If	the	callout	line	contains	more	than	one	line	segment,	this
property	returns	or	sets	the	angle	of	the	segment	that	is	farthest	from	the	callout
text	box.	Read/write.

MsoCalloutAngleType	can	be	one	of	these	MsoCalloutAngleType	constants.
msoCalloutAngle30
msoCalloutAngle45
msoCalloutAngle60
msoCalloutAngle90
msoCalloutAngleAutomatic
msoCalloutAngleMixed

expression.Angle

expression				Required.	An	expression	that	returns	a	CalloutFormat	object.



Remarks

If	you	set	the	value	of	this	property	to	anything	other	than
msoCalloutAngleAutomatic,	the	callout	line	maintains	a	fixed	angle	as	you
drag	the	callout.

Angle	property	as	it	applies	to	the	PrintablePlate	object.

Returns	or	sets	a	Long	that	represents	the	angle	of	a	printer's	color	plate.
Read/write.

expression.Angle

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

The	InkName	property	of	the	specific	PrintablePlate	object	determines	its
default	angle.

InkName: Default	Angle:
pbInkNameBlack 45
pbInkNameCyan 105
pbInkNameMagenta 75
pbInkNameYellow 90
pbInkNameSpot1 45
pbInkNameSpot2 105
pbInkNameSpot3 75
pbInkNameSpot4 30
pbInkNameSpot5 60
pbInkNameSpot6 90
pbInkNameSpot7 135
pbInkNameSpot8 15
pbInkNameSpot9 165
pbInkNameSpot10 120
pbInkNameSpot11 150
pbInkNameSpot12 0

To	specify	a	custom	angle	setting	for	a	printable	plate,	the	UseCustomHalftone
of	the	AdvancedPrintOptions	object	must	be	set	to	True.	Returns	"Permission
Denied"	if	the	UseCustomHalftone	is	set	to	False.



Example

As	it	applies	to	the	CalloutFormat	object.

This	example	sets	the	callout	angle	to	90	degrees	for	the	first	shape	on	the	first
page	of	the	active	publication.	For	this	example	to	work,	the	specified	shape
must	be	a	callout.

Sub	SetCalloutAngle()

				ActiveDocument.Pages(1).Shapes(1).Callout.Angle	=	msoCalloutAngle90

End	Sub

	 	 	 	

As	it	applies	to	the	PrintablePlate	object.

This	example	sets	the	spot	color	plates	(plates	five	and	higher)	of	a	process	and
spot	color	publication	to	the	same	custom	angle	and	frequency.	The	example
assumes	that	the	publication's	color	mode	has	been	specified	as	process	and	spot
colors,	and	the	publication's	print	mode	has	been	specified	as	separations.

Sub	SetSpotColorPlatesProperties()

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

Dim	intCount	As	Integer

With	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				For	intCount	=	5	To	.Count

								With	.Item(intCount)

												.Angle	=	45

												.Frequency	=	150

								End	With

				Next

End	With

End	Sub





Application	Property
Used	without	an	object	qualifier,	this	property	returns	an	Application	object	that
represents	the	current	instance	of	Publisher.	Used	with	an	object	qualifier,	this
property	returns	an	Application	object	that	represents	the	creator	of	the
specified	object.	When	used	with	an	OLE	Automation	object,	it	returns	the
object's	application.	Read-only.

expression.Application

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	version	and	build	information	for	Publisher.

With	Application

				MsgBox	"Current	Publisher:	version	"	_

								&	.Version	&	"	build	"	&	.Build

End	With

	 	

This	example	displays	the	name	of	the	application	that	created	each	linked	OLE
object	on	page	one	of	the	active	publication.

Dim	shpOle	As	Shape

For	Each	shpOle	In	ActiveDocument.Pages(1).Shapes

				If	shpOle.Type	=	pbLinkedOLEObject	Then

								MsgBox	shpOle.OLEFormat.Application.Name

				End	If

Next

	 	



Assistant	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	an	Assistant	object	that	represents	the	Microsoft	Office	Assistant.

expression.Assistant

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof11.chm::/html/ofobjAssistant1.htm


Example

This	example	displays	the	Office	Assistant.

Sub	ShowAssistant()

				Assistant.Visible	=	True

End	Sub

	 	

This	example	moves	the	Office	Assistant	to	the	upper	left	corner	of	the	screen
and	displays	a	custom	message	in	a	balloon.

Sub	ShowAssistantUpperLeft()

				Dim	blnAssistant	As	Balloon

				With	Assistant

								Set	blnAssistant	=	.NewBalloon

								'Moves	the	Office	Assistant

								.Move	xLeft:=100,	yTop:=100

												'Sets	and	displays	a	message	with	the	Office	Assistant

												With	blnAssistant

																.Mode	=	msoModeAutoDown

																.Text	=	"What	may	I	do	for	you	today?"

																.Button	=	msoButtonSetTipsOptionsClose

																.Show

												End	With

				End	With

End	Sub

	 	



AttachedToText	Property
True	if	the	Font	or	ParagraphFormat	object	is	attached	to	a	TextRange	object.
If	the	object	is	attached	to	a	TextRange	object,	the	document	will	be	updated
when	properties	of	the	object	are	changed.	If	the	object	is	not	attached,	nothing
in	the	document	will	be	changed	until	the	object	is	applied	to	a	TextRange	or
Style	object.	Read-only	Boolean.

expression.AttachedToText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	duplicates	the	font	formatting;	then	it	checks	to	see	if	the
duplicated	formatting	is	attached	to	a	text	range	and	if	it	is	not,	it	attaches	the
formatting	to	the	second	shape.

Sub	DuplicateText()

				Dim	fntTemp	As	Font

				With	ActiveDocument.Pages(1)

								Set	fntTemp	=	.Shapes(1).TextFrame.TextRange.Font.Duplicate

								If	fntTemp.AttachedToText	<>	True	Then	_

												ActiveDocument.Pages(1).Shapes(2)	_

												.TextFrame.TextRange.Font	=	fntTemp

				End	With

End	Sub

	 	



Show	All



AutoAttach	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	place	where	the
callout	line	attaches	to	the	callout	text	box	changes	depending	on	whether	the
origin	of	the	callout	line	(where	the	callout	points)	is	to	the	left	or	right	of	the
callout	text	box.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	place	where	the	callout	line	attaches	to	the	callout	text	box	is
fixed.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Set	value	only;	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	place	where	the	callout	line	attaches	to	the	callout	text	box
changes	depending	on	the	location	of	the	origin	of	the	callout	line.

expression.AutoAttach

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	the	value	of	this	property	is	msoTrue,	the	drop	value	(the	vertical	distance
from	the	edge	of	the	callout	text	box	to	the	place	where	the	callout	line	attaches)
is	measured	from	the	top	of	the	text	box	when	the	text	box	is	to	the	right	of	the
origin,	and	it's	measured	from	the	bottom	of	the	text	box	when	the	text	box	is	to
the	left	of	the	origin.	When	the	value	of	this	property	is	msoFalse,	the	drop
value	is	always	measured	from	the	top	of	the	text	box,	regardless	of	the	relative
positions	of	the	text	box	and	the	origin.	Use	the	CustomDrop	method	to	set	the
drop	value,	and	use	the	Drop	property	to	return	the	drop	value.

Setting	this	property	affects	a	callout	only	if	it	has	an	explicitly	set	drop	value
—	that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.
By	default,	callouts	have	explicitly	set	drop	values	when	they're	created.



Example

This	example	adds	two	callouts	to	the	first	page.	One	of	the	callouts	is
automatically	attached	and	the	other	is	not.	If	you	change	the	callout	line	origin
for	the	automatically	attached	callout	to	the	right	of	the	attached	text	box,	the
position	of	the	text	box	changes.	The	callout	that	is	not	automatically	attached
does	not	display	this	behavior.

With	ActivePublication.Pages(1).Shapes

				With	.AddCallout(Type:=msoCalloutTwo,	_

												Left:=420,	Top:=170,	Width:=200,	Height:=50)

								.TextFrame.TextRange.Text	=	"auto-attached"

								.Callout.AutoAttach	=	msoTrue

				End	With

				With	.AddCallout(Type:=msoCalloutTwo,	_

												Left:=420,	Top:=350,	Width:=200,	Height:=50)

								.TextFrame.TextRange.Text	=	"not	auto-attached"

								.Callout.AutoAttach	=	msoFalse

				End	With

End	With

	 	



Show	All



AutoFitText	Property
Sets	or	returns	a	PbTextAutoFitType	constant	that	represents	how	Microsoft
Publisher	automatically	adjusts	the	text	font	size	and	the	TextFrame	objects	size
for	best	viewing.	Read/write.

PbTextAutoFitType	can	be	one	of	these	PbTextAutoFitType	constants.
pbTextAutoFitBestFit	Text	frame	size	adjusts	to	fit	text.
pbTextAutoFitNone	Allows	text	to	overflow	the	text	frame.
pbTextAutoFitShrinkOnOverflow	Text	font	reduces	so	text	fits	within	the	text
frame.

expression.AutoFitText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	tests	to	see	if	the	text	frame	has	text,	and	if	so,	the
AutoFitText	property	is	set	to	best	fit.

Sub	TextFit()

				Dim	tfFrame	As	TextFrame

				tfFrame	=	Application.ActiveDocument.MasterPages.Item(1).Shapes(1).TextFrame

				With	tfFrame

								If	.HasText	=	msoTrue	Then	.AutoFitText	=	pbTextAutoFitBestFit

				End	With

End	Sub

	 	



AutoFormatWord	Property
True	for	Microsoft	Publisher	to	automatically	format	the	entire	word	where	the
insertion	point	exists,	even	when	no	text	is	selected.	Read/write	Boolean.

expression.AutoFormatWord

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	only	one	or	two	characters	in	a	word	is	selected,	only	the	selected	characters
will	be	affected	by	a	formatting	change	not	the	whole	word.



Example

This	example	sets	global	options	for	Microsoft	Publisher,	including	enabling
automatic	formatting	of	the	entire	word.

Sub	SetGlobalOptions()

				With	Options

								.AutoFormatWord	=	True

								.AutoKeyboardSwitching	=	True

								.AutoSelectWord	=	True

								.DragAndDropText	=	True

								.UseCatalogAtStartup	=	False

								.UseHelpfulMousePointers	=	False

				End	With

End	Sub

	 	



AutoHyphenate	Property
True	(default)	for	Microsoft	Publisher	to	automatically	hyphenate	text	in	text
frames.	Read/write	Boolean.

expression.AutoHyphenate

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	turns	on	automatic	hyphenation	for	Publisher	and	sets	the	amount
of	space	from	the	right	margin	to	use	when	hyphenating	words	to	one	inch	(72
points).

Sub	SetHyphenationZone()

				With	Options

								.AutoHyphenate	=	True

								.HyphenationZone	=	72

				End	With

End	Sub

	 	



AutoKeyboardSwitching	Property
True	for	Microsoft	Publisher	to	automatically	switch	the	keyboard	language	to
the	language	used	for	the	text	at	the	insertion	point.	Read/write	Boolean.

expression.AutoKeyboardSwitching

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	automatically	switching	the	keyboard	language	to	the
necessary	language.

Sub	SetGlobalOptions()

				Options.AutoKeyboardSwitching	=	True

End	Sub

	 	



Show	All



AutoLength	Property
Returns	an	MsoTriState	constant	indicating	whether	the	first	segment	of	the
callout	line	is	scaled	when	the	callout	is	moved.	Applies	only	to	callouts	whose
lines	consist	of	more	than	one	segment	(types	msoCalloutThree	and
msoCalloutFour).	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	first	segment	of	the	callout	retains	the	fixed	length	specified	by
the	Length	property	whenever	the	callout	is	moved.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	first	segment	of	the	callout	line	(the	segment	attached	to	the	text
callout	box)	is	scaled	automatically	whenever	the	callout	is	moved.

expression.AutoLength

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	AutomaticLength	method	to	set	this	property	to	mso	True,	and	use	the
CustomLength	method	to	set	this	property	to	msoFalse.



Example

This	example	toggles	between	an	automatically-scaling	first	segment	and	one
with	a	fixed	length	for	the	callout	line	for	the	first	shape	in	the	publication.	For
the	example	to	work,	the	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				If	.AutoLength	Then

								.CustomLength	Length:=50

				Else

								.AutomaticLength

				End	If

End	With

	 	



AutomaticPairKerningThreshold
Property
Returns	or	sets	a	Variant	value	that	represents	the	point	size	above	which
kerning	is	automatically	adjusted	for	characters	in	the	specified	text	range.
Read/write.

expression.AutomaticPairKerningThreshold

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Valid	range	is	0.0	points	to	999.5	points.	Returns	–2	if	the	value	for	characters	in
the	text	range	is	indeterminate.	Setting	this	property	to	0.0	disables	automatic
pair	kerning	on	the	range.



Example

This	example	sets	the	point	size	threshold	to	12	points.	All	text	in	the	second
story	above	the	threshold	will	implement	auto	kerning.

Sub	Threshold()

				Application.ActiveDocument.Stories(2).TextRange	_

								.Font.AutomaticPairKerningThreshold	=	12

End	Sub

	 	



AutoSelectWord	Property
True	for	Microsoft	Publisher	to	automatically	select	the	entire	word	when
selecting	text.	Read/write	Boolean.

expression.AutoSelectWord

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Microsoft	Publisher	global	options,	including	enabling
automatically	selecting	an	entire	word	when	selecting	text.

Sub	SetGlobalOptions()

				With	Options

								.AutoFormatWord	=	True

								.AutoKeyboardSwitching	=	True

								.AutoSelectWord	=	True

								.DragAndDropText	=	True

								.UseCatalogAtStartup	=	False

								.UseHelpfulMousePointers	=	False

				End	With

End	Sub

	 	



Show	All



AutoShapeType	Property
Returns	or	sets	an	MsoAutoShapeType	which	specifies	a	Shape	object's
AutoShape	type.

MsoAutoShapeType	can	be	one	of	these	MsoAutoShapeType	constants.
msoShapeMoon
msoShape16pointStar
msoShape24pointStar
msoShape32pointStar
msoShape4pointStar
msoShape5pointStar
msoShape8pointStar
msoShapeActionButtonBackorPrevious
msoShapeActionButtonBeginning
msoShapeActionButtonCustom
msoShapeActionButtonDocument
msoShapeActionButtonEnd
msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp
msoShapeActionButtonHome
msoShapeActionButtonInformation
msoShapeActionButtonMovie
msoShapeActionButtonReturn
msoShapeActionButtonSound
msoShapeArc
msoShapeBalloon
msoShapeBentArrow
msoShapeBentUpArrow
msoShapeBevel
msoShapeBlockArc
msoShapeCan



msoShapeChevron
msoShapeCircularArrow
msoShapeCloudCallout
msoShapeCross
msoShapeCube
msoShapeCurvedDownArrow
msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeCurvedUpRibbon
msoShapeDiamond
msoShapeDonut
msoShapeDoubleBrace
msoShapeDoubleBracket
msoShapeDoubleWave
msoShapeDownArrow
msoShapeDownArrowCallout
msoShapeDownRibbon
msoShapeExplosion1
msoShapeExplosion2
msoShapeFlowchartAlternateProcess
msoShapeFlowchartCard
msoShapeFlowchartCollate
msoShapeFlowchartConnector
msoShapeFlowchartData
msoShapeFlowchartDecision
msoShapeFlowchartDelay
msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay
msoShapeFlowchartDocument
msoShapeFlowchartExtract
msoShapeFlowchartInternalStorage



msoShapeFlowchartMagneticDisk
msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation
msoShapeFlowchartMerge
msoShapeFlowchartMultidocument
msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr
msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation
msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape
msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort
msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction
msoShapeFlowchartTerminator
msoShapeFoldedCorner
msoShapeHeart
msoShapeHexagon
msoShapeHorizontalScroll
msoShapeIsoscelesTriangle
msoShapeLeftArrow
msoShapeLeftArrowCallout
msoShapeLeftBrace
msoShapeLeftBracket
msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout
msoShapeLeftRightUpArrow
msoShapeLeftUpArrow
msoShapeLightningBolt
msoShapeLineCallout1
msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar



msoShapeLineCallout1NoBorder
msoShapeLineCallout2
msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar
msoShapeLineCallout2NoBorder
msoShapeLineCallout3
msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar
msoShapeLineCallout3NoBorder
msoShapeLineCallout4
msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar
msoShapeLineCallout4NoBorder
msoShapeMixed
msoShapeNoSymbol
msoShapeNotchedRightArrow
msoShapeNotPrimitive
msoShapeOctagon
msoShapeOval
msoShapeOvalCallout
msoShapeParallelogram
msoShapePentagon
msoShapePlaque
msoShapeQuadArrow
msoShapeQuadArrowCallout
msoShapeRectangle
msoShapeRectangularCallout
msoShapeRegularPentagon
msoShapeRightArrow
msoShapeRightArrowCallout
msoShapeRightBrace
msoShapeRightBracket
msoShapeRightTriangle



msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout
msoShapeSmileyFace
msoShapeStripedRightArrow
msoShapeSun
msoShapeTrapezoid
msoShapeUpArrow
msoShapeUpArrowCallout
msoShapeUpDownArrow
msoShapeUpDownArrowCallout
msoShapeUpRibbon
msoShapeUTurnArrow
msoShapeVerticalScroll
msoShapeWave

expression.AutoShapeType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

AutoShapes	correspond	to	Shape	objects,	although	the	AutoShapeType
property	for	non-Publisher	shapes	will	also	return	a	value.	WordArt,	OLE,	Web
Form	control,	table	and	picture	frame	objects	should	return	msoShapeMixed	as
their	AutoShapeType	property	value.	Text	frames	should	return
msoShapeRectangle	as	their	AutoShapeType	property.



Example

This	example	converts	the	selected	AutoShape	object	to	a	lightning	bolt	if	it	is	a
heart	and	to	a	5-point	star	if	it	is	not.	For	this	example	to	execute	properly,	you
must	have	an	AutoShape	object	selected	in	the	active	publication.

Sub	ShapeShift()

				Dim	srShift	As	ShapeRange

				Set	srShift	=	Application.ActiveDocument.Selection.ShapeRange

				If	srShift.AutoShapeType	=	msoShapeHeart	Then

								srShift.AutoShapeType	=	msoShapeLightningBolt

				Else

								srShift.AutoShapeType	=	msoShape5pointStar

				End	If

End	Sub

	 	



AutoUpdate	Property
True	if	all	pages	will	be	added	to	the	specified	Web	navigation	bar	set	and	that
adding	new	pages	will	update	the	navigation	bar	with	a	corresponding	item.
Pages	must	have	the	AddHyperlinkToWebNavbar	set	to	True	or
WebPageOptions.IncludePageOnNewWebNavigationBars	property	set	to
True	to	be	added	or	updated	within	the	specified	WebNavigationBarSet.
Read/write	Boolean.

expression.AutoUpdate()

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Remarks

This	property	determines	whether	or	not	the	existing	pages	in	the	publication
will	be	added	to	the	navigation	bar	and	if	added	pages	will	also	be	updated.
These	pages	must	be	marked	with	the	AddHyperlinkToWebNavbar	set	to	True
or	WebPageOptions.IncludePageOnNewWebNavigationBars	property	set	to
True	to	be	added	or	updated	within	the	specified	WebNavigationBarSet.
Changing	this	setting	does	not	change	the	number	of	items	in	the	bar,	it	just
determines	whether	or	not	new	pages	will	be	added.	By	setting	this	value	to
False	it	is	possible	to	design	specific	navigation	bars	for	specific	content	pages
in	a	Web	site	that	do	not	contain	all	of	the	available	hyperlinks	in	the
publication.

The	default	value	is	True.



Example

The	following	example	adds	a	new	Web	navigation	bar	set	to	the	active
document	with	text	style	buttons	and	auto	update	set	to	False	so	that	page	links
will	not	be	added	or	new	pages	automatically	updated	in	the	navigation	bar,	then
the	Web	navigation	bar	is	added	to	the	first	page	of	the	publication.

Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets.AddSet(Name:="newBar")

With	objWebNav

				.AutoUpdate	=	False

				.ButtonStyle	=	pbnbButtonStyleText

End	With

ActiveDocument.Pages(1).Shapes.AddWebNavigationBar	_

				Name:="newBar",	Left:=10,	Top:=10



AvailableLabels	Property
Returns	the	collection	of	Label	objects	that	represent	each	unique	label	design
available	on	the	system.	Read-only.

expression.AvailableLabels

expression				Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

The	Labels	collection	contains	the	members	returned	by	the	AvailableLabels
property.

Members	of	the	AvailableLabels	collection	are	identical	to	the	list	of	labels
available	from	the	Page	Setup	dialog	box.



Example

The	following	example	returns	the	fifth	label	available	on	the	system	by	using
AvailableLabels(index),	and	then	some	of	the	label's	properties	are	set.

Dim	theLabel	As	Label

With	ActiveDocument.PageSetup

				.Label	=	.AvailableLabels(5)		'	Label	5	is	Avery	5164

				Set	theLabel	=	.Label

				With	theLabel

								.LeftMargin	=	InchesToPoints(0.15)

								.TopMargin	=	InchesToPoints(0.15)

								.HorizontalGap	=	InchesToPoints(0.1)

								.VerticalGap	=	InchesToPoints(0.1)

				End	With

End	With

	 	



BackColor	Property
Returns	or	sets	a	ColorFormat	object	representing	the	background	color	for	the
specified	fill	or	patterned	line.	Read/write.

expression.BackColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	ForeColor	property	to	set	the	foreground	color	for	a	fill	or	line.



Example

This	example	adds	a	rectangle	to	the	active	publication	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

With	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeRectangle,	_

								Left:=90,	Top:=90,	Width:=90,	Height:=50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	_

								Style:=msoGradientHorizontal,	Variant:=1

End	With

	 	

This	example	adds	a	patterned	line	to	the	active	publication.

With	ActiveDocument.Pages(1).Shapes.AddLine	_

								(BeginX:=10,	BeginY:=100,	EndX:=250,	EndY:=0).Line

				.Weight	=	6

				.ForeColor.RGB	=	RGB(0,	0,	255)

				.BackColor.RGB	=	RGB(128,	0,	0)

				.Pattern	=	msoPatternDarkDownwardDiagonal

End	With

	 	



Background	Property
Sets	or	returns	a	PageBackground	object	representing	the	background	of	the
specified	page.

expression.Background

expression				Required.	An	expression	that	returns	a	Page	object.



Remarks

This	proerty	is	for	publication	pages	only.	Any	attempt	to	create	a	background
for	a	master	page	will	return	a	"Permission	denied"	error.



Example

The	following	example	creates	a	PageBackground	object	and	sets	it	to	the
background	of	the	first	page	of	the	active	document.

Dim	objPageBackground	As	PageBackground

Set	objPageBackground	=	ActiveDocument.Pages(1).Background

	



BackgroundSound	Property
Returns	or	sets	a	String	that	specifies	the	path	to	a	sound	file	that	is	played	when
the	Web	page	is	loaded	in	a	Web	browser.	Read/write.

expression.BackgroundSound

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Remarks

The	path	to	the	background	sound	file	must	be	a	network	path	or	a	local	path;	an
http://	address	will	not	work.

If	BackgroundSound	is	specified,	the	background	sound	will	play	once	by
default.	The	SetBackgroundSoundRepeat	method	can	be	used	to	specify
whether	the	background	sound	should	be	played	infinitely,	and	if	it	should	not,
to	specify	the	number	of	times	the	background	sound	file	should	be	played.

The	background	sound	can	be	any	of	the	following	file	types.

*.wav
*.mid
*.midi
*.rmi
*.au
*.aif
*.aiff



Example

The	following	example	sets	the	background	sound	for	page	four	of	the	active
Web	publication	to	a	.wav	file	on	the	local	computer.	This	.wav	file	will	play
once	when	the	page	is	loaded	in	a	Web	browser.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(4).WebPageOptions

With	theWPO

				.BackgroundSound	=	"C:\CompanySounds\corporate_jingle.wav"

End	With

	 	



BackgroundSoundLoopCount
Property
Returns	a	Long	value	that	specifies	the	number	of	times	the	background	sound
attached	to	a	Web	page	is	played	when	the	page	is	loaded	in	a	Web	browser.
Read-only.

expression.BackgroundSoundLoopCount

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Remarks

The	SetBackgroundSoundRepeat	method	can	be	used	to	specify	the	number	of
times	the	background	sound	file	is	played	when	the	page	is	loaded.	If	using	the
SetBackgroundSoundRepeat	method	to	specify	the	number	of	times	the
background	file	is	played,	the	BackgroundSoundLoopCount	property	will	be
equal	to	that	specified	value.	Note	that	valid	values	range	from	1	to	999,
inclusive.	Attempting	to	set	this	value	outside	this	range	will	result	in	a	run-time
error.

Until	the	SetBackgroundSoundRepeat	method	is	used	to	change	the	number	of
times	the	background	sound	file	is	played,	BackgroundSoundLoopCount	is	1.



Example

The	following	example	sets	the	background	sound	for	page	four	of	the	active
Web	publication	to	a	.wav	file	on	the	local	computer.	If
BackgroundSoundLoopCount	is	less	than	three,	the
SetBackgroundSoundRepeat	method	is	used	to	specify	that	the	background
sound	be	repeated	three	times.	The	BackgroundSoundLoopCount	property	will
now	be	three.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(4).WebPageOptions

With	theWPO

				.BackgroundSound	=	"C:\CompanySounds\corporate_jingle.wav"

				If	.BackgroundSoundLoopCount	<	3	Then

								.SetBackgroundSoundRepeat	RepeatForever:=False,	RepeatTimes:=3

				End	If

End	With

	 	



BackgroundSoundLoopForever
Property
Returns	a	Boolean	value	that	specifies	whether	the	background	sound	attached
to	the	Web	page	should	be	repeated	infinitely.	Read-only.

expression.BackgroundSoundLoopForever

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Remarks

The	SetBackgroundSoundRepeat	method	is	used	to	specify	whether	the
background	sound	should	be	repeated	infinitely	after	the	page	is	loaded.	Until
the	SetBackgroundSoundRepeat	method	is	used	to	specify	whether	the
background	sound	should	be	played	infinitely,	BackgroundSoundLoopForever
is	False.



Example

The	following	example	sets	the	background	sound	for	page	four	of	the	active
Web	publication	to	a	.wav	file	on	the	local	computer.	If
BackgroundSoundLoopForever	is	False,	the	SetBackgroundSoundRepeat
method	is	used	to	specify	that	the	background	sound	should	be	repeated
infinitely.	The	BackgroundSoundLoopForever	property	will	now	be	True.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(4).WebPageOptions

With	theWPO

				.BackgroundSound	=	"C:\CompanySounds\corporate_jingle.wav"

				If	.BackgroundSoundLoopForever	=	False	Then

								.SetBackgroundSoundRepeat	RepeatForever:=True

				End	If

End	With

	 	



Show	All



BaseRGB	Property
Returns	or	sets	an	MsoRGBType	constant	that	represents	the	original	RGB
color	format	before	color-changing	properties,	such	as	tinting	and	shading,	are
applied.	Read/write.

expression.BaseRGB

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	shape,	sets	the	fill	color	and	lightens	the	color;	then	it
creates	a	second	shape	and	applies	the	original	RGB	color	of	the	first	shape	to
the	second	shape.

Sub	SetBaseRGB()

				Dim	shpOne	As	Shape

				With	ActiveDocument.Pages(1).Shapes

								Set	shpOne	=	.AddShape(Type:=msoShapeHeart,	_

												Left:=150,	Top:=150,	Width:=300,	Height:=300)

								With	shpOne.Fill.ForeColor

												.RGB	=	RGB(Red:=160,	Green:=0,	Blue:=255)

												.TintAndShade	=	0.9

								End	With

								.AddShape(Type:=msoShapeRectangle,	Left:=62,	_

												Top:=500,	Width:=488,	Height:=100).Fill	_

												.ForeColor.RGB	=	shpOne.Fill.ForeColor.BaseRGB

				End	With

End	Sub

	 	



BaseStyle	Property
Returns	or	sets	a	String	that	represents	the	style	upon	which	the	formatting	of
another	style	is	based.	Read/write.

expression.BaseStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	base	formatting	of	the	style	named	Body	Text	to	the
formatting	of	the	Normal	style.

Sub	SetBaseStyle()

				With	ActiveDocument.TextStyles

								.Add	"Body	Text"

								.Item("Body	Text").BaseStyle	=	"Normal"

				End	With

End	Sub

	 	



BaseText	Property
Returns	a	String	that	represents	the	text	to	which	the	specified	phonetic	text
applies.	Read-only.

expression.BaseText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	phonetic	text	to	the	selection	and	displays	the	text	to	which
the	phonetic	text	applies,	which	is	the	originally-selected	text.	This	example
assumes	text	is	selected.	If	no	text	is	selected,	the	message	box	will	be	blank.

Sub	AddPhoneticText()

				With	Selection.TextRange.Fields.AddPhoneticGuide	_

												(Range:=Selection.TextRange,	Text:="tray	sheek")

								MsgBox	"The	base	text	is	"	&	.PhoneticGuide.BaseText

				End	With

End	Sub

	 	



Show	All



BeginArrowheadLength	Property
Returns	or	sets	an	MsoArrowheadLength	constant	indicating	the	length	of	the
arrowhead	at	the	beginning	of	the	specified	line.	Read/write.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMedium
msoArrowheadLengthMixed	Return	value	only;	indicates	a	combination	of
the	other	states	in	the	specified	shape	range.
msoArrowheadLong
msoArrowheadShort

expression.BeginArrowheadLength

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	EndArrowheadLength	property	to	return	or	set	the	length	of	the
arrowhead	at	the	end	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



BeginArrowheadStyle	Property
Returns	or	sets	an	MsoArrowheadStyle	constant	indicating	the	style	of	the
arrowhead	at	the	beginning	of	the	specified	line.	Read/write.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadDiamond
msoArrowheadNone
msoArrowheadOpen
msoArrowheadOval
msoArrowheadStealth
msoArrowheadStyleMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	shape	range.
msoArrowheadTriangle

expression.BeginArrowheadStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	EndArrowheadStyle	property	to	return	or	set	the	style	of	the	arrowhead
at	the	end	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



BeginArrowheadWidth	Property
Returns	or	sets	an	MsoArrowheadWidth	constant	indicating	the	width	of	the
arrowhead	at	the	beginning	of	the	specified	line.	Read/write.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWide
msoArrowheadWidthMedium
msoArrowheadWidthMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	shape	range.

expression.BeginArrowheadWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	EndArrowheadWidth	property	to	return	or	set	the	width	of	the
arrowhead	at	the	end	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



BeginConnected	Property
Returns	an	MsoTriState	constant	indicating	whether	the	beginning	of	the
specified	connector	is	connected	to	a	shape.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	beginning	of	the	specified	connector	is	not	connected	to	a	shape.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	beginning	of	the	specified	connector	is	connected	to	a	shape.

expression.BeginConnected

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	EndConnected	property	to	determine	if	the	end	of	a	connector	is
connected	to	a	shape.



Example

If	the	third	shape	on	the	first	page	in	the	active	publication	is	a	connector	whose
beginning	is	connected	to	a	shape,	this	example	stores	the	connection	site
number,	stores	a	reference	to	the	connected	shape,	and	then	disconnects	the
beginning	of	the	connector	from	the	shape.

Dim	intSite	As	Integer

Dim	shpConnected	As	Shape

With	ActiveDocument.Pages(1).Shapes(3)

				'	Test	whether	shape	is	a	connector.

				If	.Connector	Then

								With	.ConnectorFormat

												'	Test	whether	connector	is	connected	to	another	shape.

												If	.BeginConnected	Then

																'	Store	connection	site	number.

																intSite	=	.BeginConnectionSite

																'	Set	reference	to	connected	shape.

																Set	shpConnected	=	.BeginConnectedShape

																'	Disconnect	connector	and	shape.

																.BeginDisconnect

												End	If

								End	With

				End	If

End	With

	 	



BeginConnectedShape	Property
Returns	a	Shape	object	that	represents	the	shape	to	which	the	beginning	of	the
specified	connector	is	attached.

expression.BeginConnectedShape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	beginning	of	the	specified	connector	isn't	attached	to	a	shape,	an	error
occurs.

Use	the	EndConnectedShape	property	to	return	the	shape	attached	to	the	end	of
a	connector.



Example

This	example	assumes	that	the	first	page	in	the	active	publication	already
contains	two	shapes	attached	by	a	connector	named	Conn1To2.	The	code	adds	a
rectangle	and	a	connector	to	the	first	page.	The	beginning	of	the	new	connector
will	be	attached	to	the	same	connection	site	as	the	beginning	of	the	connector
named	Conn1To2,	and	the	end	of	the	new	connector	will	be	attached	to
connection	site	one	on	the	new	rectangle.

Dim	shpNew	As	Shape

Dim	intSite	As	Integer

Dim	shpOld	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	new	rectangle.

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=450,	Top:=190,	Width:=200,	Height:=100)

				'	Add	new	connector.

				.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=10,	EndY:=10)	_

								.Name	=	"Conn1To3"

				'	Get	connection	site	number	of	old	shape,	and	set

				'	reference	to	old	shape.

				With	.Item("Conn1To2").ConnectorFormat

								intSite	=	.BeginConnectionSite

								Set	shpOld	=	.BeginConnectedShape

				End	With

				'	Connect	new	connector	to	old	shape	and	new	rectangle.

				With	.Item("Conn1To3").ConnectorFormat

								.BeginConnect	ConnectedShape:=shpOld,	_

												ConnectionSite:=intSite

								.EndConnect	ConnectedShape:=shpNew,	_

												ConnectionSite:=1

				End	With

End	With

	 	





BeginConnectionSite	Property
Returns	a	Long	indicating	the	connection	site	to	which	the	beginning	of	a
connector	is	connected.	Read-only.

expression.BeginConnectionSite

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	beginning	of	the	specified	connector	isn't	attached	to	a	shape,	this	property
generates	an	error.

Use	the	EndConnectionSite	property	to	return	the	site	to	which	the	end	of	a
connector	is	connected.



Example

This	example	assumes	that	the	first	page	in	the	active	publication	already
contains	two	shapes	attached	by	a	connector	named	Conn1To2.	The	code	adds	a
rectangle	and	a	connector	to	the	first	page.	The	beginning	of	the	new	connector
will	be	attached	to	the	same	connection	site	as	the	beginning	of	the	connector
named	Conn1To2,	and	the	end	of	the	new	connector	will	be	attached	to
connection	site	one	on	the	new	rectangle.

Dim	shpNew	As	Shape

Dim	intSite	As	Integer

Dim	shpOld	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	new	rectangle.

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=450,	Top:=190,	Width:=200,	Height:=100)

				'	Add	new	connector.

				.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=10,	EndY:=10)	_

								.Name	=	"Conn1To3"

				'	Get	connection	site	number	of	old	shape,	and	set

				'	reference	to	old	shape.

				With	.Item("Conn1To2").ConnectorFormat

								intSite	=	.BeginConnectionSite

								Set	shpOld	=	.BeginConnectedShape

				End	With

				'	Connect	new	connector	to	old	shape	and	new	rectangle.

				With	.Item("Conn1To3").ConnectorFormat

								.BeginConnect	ConnectedShape:=shpOld,	_

												ConnectionSite:=intSite

								.EndConnect	ConnectedShape:=shpNew,	_

												ConnectionSite:=1

				End	With

End	With

	 	





Show	All



Black	Property
Sets	or	returns	a	Long	that	represents	the	black	component	of	a	CMYK	color.
Value	can	be	any	number	between	0	and	255.	Read/write.

expression.Black

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	new	shapes	and	then	sets	the	CMYK	fill	color	for	one
shape	and	sets	the	CMYK	values	of	the	second	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=100)

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				With	shpHeart.Fill.ForeColor.CMYK

							.SetCMYK	10,	80,	200,	30

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Sets	new	shape	to	current	shape's	CMYK	colors

				shpStar.Fill.ForeColor.CMYK.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub

	 	



Show	All



BlackWhiteMode	Property
Returns	or	sets	an	MsoBlackWhiteMode	constant	indicating	how	the	specified
shape	or	shape	range	appears	when	the	publication	is	viewed	in	black-and-white
mode.	Read/write.

MsoBlackWhiteMode	can	be	one	of	these	MsoBlackWhiteMode	constants.
msoBlackWhiteAutomatic
msoBlackWhiteBlack
msoBlackWhiteBlackTextAndLine
msoBlackWhiteDontShow
msoBlackWhiteGrayOutline
msoBlackWhiteGrayScale
msoBlackWhiteHighContrast
msoBlackWhiteInverseGrayScale
msoBlackWhiteLightGrayScale
msoBlackWhiteMixed	Return	value	only;	indicates	a	combination	of	the	other
states	in	the	specified	shape	range.
msoBlackWhiteWhite

expression.BlackWhiteMode

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	first	shape	in	the	active	publication	to	appear	in	black-and-
white	mode.	When	you	view	the	publication	in	black-and-white	mode,	the	shape
will	appear	black,	regardless	of	what	color	it	is	in	color	mode.

ActiveDocument.Pages(1).Shapes(1)	_

				.BlackWhiteMode	=	msoBlackWhiteBlack

	 	



Show	All



Bold	Property
Returns	or	sets	an	MsoTriState	property	that	represents	the	state	of	the	Bold
property	on	the	characters	in	a	text	range.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	in	the	range	are	formatted	as	bold.
msoTriStateMixed	Return	value	indicating	that	the	range	contains	some	text
formatted	as	bold	and	some	text	not	formatted	as	bold.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	characters	in	the	range	are	formatted	as	bold.

expression.Bold

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	all	the	text	in	the	second	story	of	the	active	publication	and	if
it	has	mixed	bolding,	it	sets	all	the	text	to	bold.	If	the	text	is	all	bold	or	all	not
bold,	a	message	is	displayed	informing	the	user	there	is	no	mixed	bolding.	For
this	code	to	execute	properly,	there	need	to	be	two	or	more	stories	with	text	in
the	active	publication.

Sub	BoldStory()

				Dim	stf	As	Publisher.Font

				Set	stf	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	stf

								If	.Bold	=	msoTriStateMixed	Then

												.Bold	=	msoTrue

								Else

												MsgBox	"Mixed	bolding	is	not	in	this	story."

								End	If

				End	With

End	Sub

	 	



Show	All



BoldBi	Property
Returns	or	sets	an	MsoTriState	constant	indicating	if	the	font	is	bold;	used	with
text	in	a	right-to-left	language.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	in	the	range	are	formatted	as	bold.
msoTriStateMixed	Return	value	indicating	that	the	range	contains	some	text
formatted	as	bold	and	some	text	not	formatted	as	bold.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	characters	in	the	range	are	formatted	as	bold.

expression.BoldBi

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	text	in	the	first	story	and	displays	one	of	two	possible
messages	depending	on	if	the	text	is	right-to-left	formatted	and	if	its	font	is	bold.
For	this	example	to	execute	properly,	there	must	be	at	least	one	story	with	text	in
the	active	publication.

Sub	BoldRtoL()

				Dim	stf	As	Font

				Set	stf	=	Application.ActiveDocument.Stories(1).TextRange.Font

				With	stf

								If	.BoldBi	=	msoTrue	Then

												MsgBox	"This	story	is	right-to-left	and	is	bold."

								Else

												MsgBox	"This	story	is	either	not	right-to-left"	&	_

																"	or	it	is	not	bold."

								End	If

				End	With

End	Sub

	 	



Show	All



Border	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	text	in	the
specified	callout	is	surrounded	by	a	border.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	text	in	the	specified	callout	is	not	surrounded	by	a	border.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Set	value	only;	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	text	in	the	specified	callout	is	surrounded	by	a	border.

expression.Border

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	publication	and	a	callout	that	points	to
the	oval.	The	callout	text	will	have	a	border,	but	not	a	vertical	accent	bar	that
separates	the	text	from	the	callout	line.

With	ActiveDocument.Pages(1).Shapes

				'	Add	an	oval.

				.AddShape	Type:=msoShapeOval,	_

								Left:=180,	Top:=200,	Width:=280,	Height:=130

				'	Add	a	callout.

				With	.AddCallout(Type:=msoCalloutTwo,	_

												Left:=420,	Top:=170,	Width:=170,	Height:=40)

								'	Add	text	to	the	callout.

								.TextFrame.TextRange.Text	=	"This	is	an	oval"

								'	Add	an	accent	bar	to	the	callout.

								With	.Callout

												.Accent	=	msoFalse

												.Border	=	msoTrue

								End	With

				End	With

End	With

	 	



BorderArt	Property
Returns	a	BorderArtFormat	object	that	represents	the	BorderArt	type	applied
to	the	specified	shape.	Returns	"Permission	Denied"	if	BorderArt	has	not	been
applied	to	the	shape.	Read-only.

expression.BorderArt()

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

BorderArt	are	picture	borders	that	can	be	applied	to	text	boxes,	picture	frames,
or	rectangles.

Use	the	BorderArt	property	to	apply,	change,	and	remove	BorderArt	from
shapes	in	publications.



Example

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	publication.	If	BorderArt	exists,	it	is	deleted.

Sub	DeleteBorderArt()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Delete

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub



BorderArts	Property
Returns	a	BorderArts	collection	that	represents	the	BorderArt	types	available
for	use	in	the	specified	publication.	Read-only.

expression.BorderArts()

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

BorderArt	are	picture	borders	that	can	be	applied	to	text	boxes,	picture	frames,
or	rectangles.

The	BorderArts	collection	includes	any	custom	BorderArt	types	created	by	the
user	for	the	specified	publication.



Example

The	following	example	returns	the	BorderArts	collection	and	lists	the	names	of
all	the	BorderArt	types	available	for	use	in	the	active	publication.

Sub	ListBorderArt()

Dim	bdaTemp	As	BorderArts

Dim	bdaLoop	As	BorderArt

Set	bdaTemp	=	ActiveDocument.BorderArts

For	Each	bdaLoop	In	bdaTemp

				Debug.Print	"The	name	of	this	BorderArt	is	"	&	bdaLoop.Name

Next	bdaLoop

End	Sub



BorderBottom	Property
Returns	a	CellBorder	object	that	represents	the	bottom	border	for	a	specified
table	cell.

expression.BorderBottom

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	checkerboard	design	using	borders	and	a	fill	color	with
an	existing	table.	This	assumes	the	first	shape	on	page	two	is	a	table	and	not
another	type	of	shape	and	that	the	table	has	an	uneven	number	of	columns.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Dim	intCell	As	Integer

				intCell	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												With	celTable

																With	.BorderBottom

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderTop

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderLeft

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderRight

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

												End	With

												If	intCell	Mod	2	=	0	Then

															celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

												intCell	=	intCell	+	1

								Next	celTable

				Next	rowTable



End	Sub

	 	



BorderDiagonal	Property
Returns	a	CellBorder	object	that	represents	the	diagonal	border	for	a	specified
table	cell.

expression.BorderDiagonal

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	diagonally	splits	every	other	cell	in	the	specified	table	and	adds	a
diagonal	border.	This	example	assumes	the	first	shape	on	page	two	is	a	table	and
not	another	type	of	shape.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Dim	intCell	As	Integer

				intCell	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												If	intCell	Mod	2	=	0	Then

																With	celTable

																				.Diagonal	=	pbTableCellDiagonalDown

																				With	.BorderDiagonal

																								.Weight	=	1

																								.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																				End	With

																End	With

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

												intCell	=	intCell	+	1

								Next	celTable

				Next	rowTable

End	Sub

	 	



BorderLeft	Property
Returns	a	CellBorder	object	that	represents	the	left	border	for	a	specified	table
cell.

expression.BorderLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	checkerboard	design	using	borders	and	a	fill	color	with
an	existing	table.	This	assumes	the	first	shape	on	page	two	is	a	table	and	not
another	type	of	shape	and	that	the	table	has	an	uneven	number	of	columns.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Dim	intCell	As	Integer

				intCell	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												With	celTable

																With	.BorderBottom

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderTop

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderLeft

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderRight

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

												End	With

												If	intCell	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

												intCell	=	intCell	+	1

								Next	celTable

				Next	rowTable



End	Sub

	 	



BorderRight	Property
Returns	a	CellBorder	object	that	represents	the	right	border	for	a	specified	table
cell.

expression.BorderRight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	checkerboard	design	using	borders	and	a	fill	color	with
an	existing	table.	This	assumes	the	first	shape	on	page	two	is	a	table	and	not
another	type	of	shape	and	that	the	table	has	an	uneven	number	of	columns.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Dim	intCell	As	Integer

				intCell	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												With	celTable

																With	.BorderBottom

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderTop

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderLeft

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderRight

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

												End	With

												If	intCell	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

												intCell	=	intCell	+	1

								Next	celTable

				Next	rowTable



End	Sub

	 	



BorderTop	Property
Returns	a	CellBorder	object	that	represents	the	top	border	for	a	specified	table
cell.

expression.BorderTop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	checkerboard	design	using	borders	and	a	fill	color	with
an	existing	table.	This	assumes	the	first	shape	on	page	two	is	a	table	and	not
another	type	of	shape	and	that	the	table	has	an	uneven	number	of	columns.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Dim	intCell	As	Integer

				intCell	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												With	celTable

																With	.BorderBottom

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderTop

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderLeft

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

																With	.BorderRight

																				.Weight	=	2

																				.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)

																End	With

												End	With

												If	intCell	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

												intCell	=	intCell	+	1

								Next	celTable

				Next	rowTable



End	Sub

	 	



BoundHeight	Property
Returns	a	Single	indicating	the	height,	in	points,	of	the	bounding	box	for	the
specified	text	range.	Read-only.

expression.BoundHeight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	position,	width,	and	height	of	the	bounding
box	surrounding	the	text	in	the	first	shape	on	page	one	of	the	active	publication.

Dim	rngText	As	TextRange

Dim	strMessage	As	String

Set	rngText	=	ActiveDocument.Pages(1)	_

				.Shapes(1).TextFrame.TextRange

With	rngText

				strMessage	=	"Text	frame	information"	&	vbCrLf	_

								&	"				Distance	from	left	edge	of	page:	"	_

								&	.BoundLeft	&	"	points"	&	vbCrLf	_

								&	"				Distance	from	top	edge	of	page:	"	_

								&	.BoundTop	&	"	points"	&	vbCrLf	_

								&	"				Width:	"	&	.BoundWidth	&	"	points"	&	vbCrLf	_

								&	"				Height:	"	&	.BoundHeight	&	"	points"

End	With

MsgBox	strMessage

	 	



BoundLeft	Property
Returns	a	Single	indicating	the	distance,	in	points,	from	the	left	edge	of	the
leftmost	page	to	the	left	edge	of	the	bounding	box	for	the	specified	text	range.
Read-only.

expression.BoundLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	position,	width,	and	height	of	the	bounding
box	surrounding	the	text	in	the	first	shape	on	page	one	of	the	active	publication.

Dim	rngText	As	TextRange

Dim	strMessage	As	String

Set	rngText	=	ActiveDocument.Pages(1)	_

				.Shapes(1).TextFrame.TextRange

With	rngText

				strMessage	=	"Text	frame	information"	&	vbCrLf	_

								&	"				Distance	from	left	edge	of	page:	"	_

								&	.BoundLeft	&	"	points"	&	vbCrLf	_

								&	"				Distance	from	top	edge	of	page:	"	_

								&	.BoundTop	&	"	points"	&	vbCrLf	_

								&	"				Width:	"	&	.BoundWidth	&	"	points"	&	vbCrLf	_

								&	"				Height:	"	&	.BoundHeight	&	"	points"

End	With

MsgBox	strMessage

	 	



BoundTop	Property
Returns	a	Single	indicating	the	distance,	in	points,	from	the	top	edge	of	the
topmost	page	to	the	top	edge	of	the	bounding	box	for	the	specified	text	range.
Read-only.

expression.BoundTop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	position,	width,	and	height	of	the	bounding
box	surrounding	the	text	in	the	first	shape	on	page	one	of	the	active	publication.

Dim	rngText	As	TextRange

Dim	strMessage	As	String

Set	rngText	=	ActiveDocument.Pages(1)	_

				.Shapes(1).TextFrame.TextRange

With	rngText

				strMessage	=	"Text	frame	information"	&	vbCrLf	_

								&	"				Distance	from	left	edge	of	page:	"	_

								&	.BoundLeft	&	"	points"	&	vbCrLf	_

								&	"				Distance	from	top	edge	of	page:	"	_

								&	.BoundTop	&	"	points"	&	vbCrLf	_

								&	"				Width:	"	&	.BoundWidth	&	"	points"	&	vbCrLf	_

								&	"				Height:	"	&	.BoundHeight	&	"	points"

End	With

MsgBox	strMessage

	 	



BoundWidth	Property
Returns	a	Single	indicating	the	width,	in	points,	of	the	bounding	box	for	the
specified	text	range.	Read-only.

expression.BoundWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	position,	width,	and	height	of	the	bounding
box	surrounding	the	text	in	the	first	shape	on	page	one	of	the	active	publication.

Dim	rngText	As	TextRange

Dim	strMessage	As	String

Set	rngText	=	ActiveDocument.Pages(1)	_

				.Shapes(1).TextFrame.TextRange

With	rngText

				strMessage	=	"Text	frame	information"	&	vbCrLf	_

								&	"				Distance	from	left	edge	of	page:	"	_

								&	.BoundLeft	&	"	points"	&	vbCrLf	_

								&	"				Distance	from	top	edge	of	page:	"	_

								&	.BoundTop	&	"	points"	&	vbCrLf	_

								&	"				Width:	"	&	.BoundWidth	&	"	points"	&	vbCrLf	_

								&	"				Height:	"	&	.BoundHeight	&	"	points"

End	With

MsgBox	strMessage

	 	



Brightness	Property
Returns	or	sets	a	Single	indicating	the	brightness	of	the	specified	picture	or	OLE
object.	The	value	for	this	property	must	be	a	number	from	0.0	(dimmest)	to	1.0
(brightest).	Read/write.

expression.Brightness

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	IncrementBrightness	method	to	incrementally	adjust	the	brightness
from	its	current	level.



Example

This	example	sets	the	brightness	for	the	first	shape	in	the	active	publication.	The
shape	must	be	either	a	picture	or	an	OLE	object.

ActiveDocument.Pages(1).Shapes(1).PictureFormat	_

				.Brightness	=	0.3

	 	



Build	Property
Returns	a	Long	that	represents	the	Microsoft	Publisher	build	number.	Read-only.

expression.Build

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	the	build	number	of	Publisher.

Sub	BuildNumber()

				MsgBox	Prompt:="The	current	Microsoft	Publisher	build	number	is	"	&	_

								Application.Build,	Title:="Microsoft	Publisher	Build"

End	Sub

	 	



Show	All



ButtonStyle	Property
Sets	or	returns	a	PbWizardNavBarButtonStyle	constant	that	represents	the
style	of	the	navigation	bar	buttons:	large,	small,	or	text-only.	Read/write.

pbButtonStyleLarge
pbButtonStyleSmall
pbButtonStyleText

expression.ButtonStyle

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

The	following	example	sets	the	button	style	to	pbnbButtonStyleLarge	for	the
first	Web	navigation	bar	set	of	the	active	document.

ActiveDocument.WebNavigationBarSets(1).ButtonStyle	=	pbnbButtonStyleLarge



ButtonText	Property
Returns	or	sets	a	String	that	represents	the	text	that	appears	on	the	face	of	a	Web
command	button.	Read/write.

expression.ButtonText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	command	button,	assigns	text	to	appear	on	its
face,	and	specifies	an	e-mail	address	to	which	to	send	the	form	data.

Sub	NewWebForm()

				With	ActiveDocument.Pages.Add(Count:=1,	After:=1)

								With	.Shapes.AddWebControl(Type:=pbWebControlCommandButton,	_

																Left:=72,	Top:=72,	Width:=72,	Height:=36)

												With	.WebCommandButton

																.ButtonType	=	pbCommandButtonSubmit

																.ButtonText	=	"Send	Form:"

																.EmailAddress	=	"someone@microsoft.com"

												End	With

								End	With

				End	With

End	Sub

	 	



Show	All



ButtonType	Property
Returns	or	sets	a	PbCommandButtonType	constant	that	indicates	whether	a
Web	command	button	will	clear	or	submit	form	data.	Read/write.

PbCommandButtonType	can	be	one	of	these	PbCommandButtonType
constants.
pbCommandButtonReset
pbCommandButtonSubmit

expression.ButtonType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	command	submit	button,	assigns	text	to	appear
on	its	face,	and	specifies	an	e-mail	address	to	which	to	send	the	form	data.

Sub	NewWebForm()

				With	ActiveDocument.Pages.Add(Count:=1,	After:=1)

								With	.Shapes.AddWebControl(Type:=pbWebControlCommandButton,	_

																Left:=72,	Top:=72,	Width:=72,	Height:=36)

												With	.WebCommandButton

																.ButtonType	=	pbCommandButtonSubmit

																.ButtonText	=	"Send	Form:"

																.EmailAddress	=	"someone@example.com"

												End	With

								End	With

				End	With

End	Sub

	 	



Callout	Property
Returns	a	CalloutFormat	object	representing	the	formatting	of	a	line	callout.

expression.Callout

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	publication	and	a	callout	that	points	to
the	oval.	The	callout	text	won't	have	a	border,	but	it	will	have	a	vertical	accent
bar	that	separates	the	text	from	the	callout	line.

Sub	NewShapeItem()

				Dim	shpNew	As	Shapes

				Set	shpNew	=	Application.ActiveDocument.MasterPages(1).Shapes

				With	shpNew

								.AddShape	Type:=msoShapeOval,	Left:=180,	_

												Top:=200,	Width:=280,	Height:=130

								With	.AddCallout(Type:=msoCalloutTwo,	Left:=420,	_

												Top:=170,	Width:=170,	Height:=40)

												.TextFrame.TextRange	=	"Big	Oval"

												With	.Callout

																.Accent	=	msoTrue

																.Border	=	msoFalse

												End	With

								End	With

				End	With

End	Sub

	 	



Caption	Property
Returns	or	sets	a	String	indicating	the	caption	at	the	top	of	the	Microsoft
Publisher	application	window.	Read/write.

expression.Caption

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	demonstrates	how	a	subroutine	could	temporarily	change
the	Publisher	window	caption	and	then	restore	it	afterwards.

Sub	WindowCaption()

				Dim	strCaption	As	String

				strCaption	=	ActiveWindow.Caption

				ActiveWindow.Caption	=	"Custom	process--please	wait..."

				'	Run	custom	code	here.

				ActiveWindow.Caption	=	strCaption

End	Sub

	 	



Show	All



CatalogMergeItems	Property
Returns	a	CatalogMergeShapes	collection	that	represents	the	shapes	included
in	the	catalog	merge	area.	Read-only.

expression.CatalogMergeItems

expression			Required.	An	expression	that	returns	a	Shape	object.



Remarks

The	catalog	merge	area	can	contain	picture	and	text	data	fields	you	have
inserted,	as	well	as	other	design	elements	you	choose.



Example

The	following	example	tests	whether	any	page	in	the	specified	publication
contains	a	catalog	merge	area,	and	if	it	does	it	returns	a	list	of	the	shapes	it
contains.

Sub	ListCatalogMergeAreaContents()

	

				Dim	pgPage	As	Page

				Dim	mmLoop	As	Shape

				Dim	intCount	As	Integer

				For	Each	pgPage	In	ThisDocument.Pages

								For	Each	mmLoop	In	pgPage.Shapes

												If	mmLoop.Type	=	pbCatalogMergeArea	Then

																With	mmLoop.CatalogMergeItems

																				For	intCount	=	1	To	.Count

																								Debug.Print	"Shape	ID:	"	&	_

																												mmLoop.CatalogMergeItems.Item(intCount).ID

																								Debug.Print	"Shape	Name:	"	&	_

																												mmLoop.CatalogMergeItems.Item(intCount).Name

																				Next

																End	With

												End	If

								Next	mmLoop

				Next	pgPage

End	Sub



Show	All



Cells	Property
Cells	property	as	it	applies	to	the	Column	and	Row	objects.

Returns	a	CellRange	object	that	represents	the	cell	or	cells	in	a	column	or	row
of	a	table.

expression.Cells

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Cells	property	as	it	applies	to	the	Table	object.

Returns	a	CellRange	object	that	represents	a	range	of	cells	in	a	table.

expression.Cells(StartRow,	StartColumn,	EndRow,	EndColumn)

expression				Required.	An	expression	that	returns	a	Table	object.

StartRow			Optional	Long.	The	row	in	which	the	starting	cell	exists.	If	this
argument	is	omitted,	all	the	table	rows	are	included	in	the	range.

StartColumn			Optional	Long.	The	column	in	which	the	starting	cell	exists.	If
this	argument	is	omitted,	all	the	table	columns	are	included	in	the	range.

EndRow			Optional	Long.	The	row	in	which	the	ending	cell	exists.	If	this
argument	is	omitted,	only	the	row	specified	by	StartRow	is	included	in	the
range.	If	this	argument	is	specified	but	StartRow	is	omitted,	an	error	occurs.

EndColumn			Optional	Long.	The	column	in	which	the	ending	cell	exists.	If	this
argument	is	omitted,	only	the	column	specified	by	StartColumn	is	included	in
the	range.	If	this	argument	is	specified	but	StartColumn	is	omitted,	an	error
occurs.



Remarks

If	all	arguments	are	omitted,	all	the	cells	in	the	table	are	included	in	the	range.



Example

As	it	applies	to	the	Column	and	Row	objects.

This	example	merges	the	first	and	second	cells	in	the	first	column	of	the
specified	table.

Sub	MergeCell()

				With	ActiveDocument.Pages(1).Shapes(2).Table.Columns(1)

								.Cells(1).Merge	MergeTo:=.Cells(2)

				End	With

End	Sub

	 	 	 	

This	example	applies	a	thick	border	outline	to	the	first	cell	in	the	second	column
of	the	specified	table.

Sub	OutlineBorderCell()

				With	ActiveDocument.Pages(1).Shapes(2).Table.Columns(2).Cells(1)

								.BorderLeft.Weight	=	5

								.BorderRight.Weight	=	5

								.BorderTop.Weight	=	5

								.BorderBottom.Weight	=	5

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Table	object.

This	example	merges	the	first	two	cells	in	the	first	two	rows	of	the	specified
table.

Sub	MergeCells()

				ActiveDocument.Pages(1).Shapes(2).Table	_

								.Cells(StartRow:=1,	StartColumn:=1,	_

								EndRow:=2,	EndColumn:=2).Merge

End	Sub

	 	 	 	





Show	All



CellTextOrientation	Property
Returns	or	sets	a	PbTextOrientation	that	represents	the	flow	of	text	in	a
specified	table	cell.	Read/write.

PbTextOrientation	can	be	one	of	these	PbTextOrientation	constants.
pbTextOrientationHorizontal
pbTextOrientationMixed
pbTextOrientationRightToLeft
pbTextOrientationVerticalEastAsia

expression.CellTextOrientation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	increases	the	height	of	the	cells	in	the	first	row,	and	then	adds
vertically-oriented	heading	text.

Sub	VerticalText()

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				With	ActiveDocument.Pages(2).Shapes(1).Table.Rows(1)

								.Height	=	Application.InchesToPoints(1.5)

								For	Each	celTable	In	.Cells

												With	celTable

																.CellTextOrientation	_

																				=	pbTextOrientationVerticalEastAsia

																.TextRange.ParagraphFormat.Alignment	_

																				=	pbParagraphAlignmentCenter

																.TextRange.Text	=	"Column	Heading	"	_

																				&	celTable.Column

												End	With

								Next

				End	With

End	Sub

	 	



CharBasedFirstLineIndent	Property
Returns	or	sets	the	value	of	the	first	line	indent	(in	East	Asian	character	width).
Read/write	Long.

expression.CharBasedFirstLineIndent

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

The	value	of	CharBasedFirstLineIndent	can	be	returned	or	set	only	after	the
UseCharBasedFirstLineIndent	has	been	set.	A	run-time	"permission	denied"
error	is	returned	if	UseCharBasedFirstLineIndent	is	not	set	first.	Note,
however,	that	UseCharBasedFirstLineIndent	can	be	set	only	if	East	Asian
languages	are	enabled	on	the	client	computer	(the	value	can	be	returned
regardless	of	whether	East	Asian	languages	are	enabled).	This	effectively	means
that	CharBasedFirstLineIndent	cannot	be	used	unless	East	Asian	languages
are	enabled	on	the	client	computer.

The	value	of	CharBasedFirstLineIndent	can	range	from	0	(zero)	to	80.



Example

The	following	example	creates	a	text	box	on	the	fourth	page	of	the	active
publication.	After	the	UseCharBasedFirstLineIndent	property	is	set	to	True,
the	width	of	the	first	line	indent	is	set	to	15	points	by	using	the
CharBasedFirstLineIndent	property.	Font	properties	are	then	set,	and	text	is
inserted	into	the	paragraph.

Dim	theTextBox	As	Shape

Set	theTextBox	=	ActiveDocument.Pages(4).Shapes	_

								.AddShape(msoShapeRectangle,	100,	100,	300,	200)

								

With	theTextBox

				.TextFrame.TextRange.ParagraphFormat	_

								.UseCharBasedFirstLineIndent	=	msoTrue

				.TextFrame.TextRange.ParagraphFormat	_

								.CharBasedFirstLineIndent	=	15

				.TextFrame.TextRange.Font.Name	=	"Verdana"

				.TextFrame.TextRange.Font.Size	=	12

				.TextFrame.TextRange.Text	=	"This	is	a	test	sentence."	_

								&	Chr(13)	&	"This	is	another	test	sentence."

End	With



ChildShapeRange	Property
Returns	a	ShapeRange	object	representing	the	child	shapes	of	a	selection.

expression.ChildShapeRange

expression				Required.	An	expression	that	returns	a	Selection	object.



Example

This	example	creates	a	new	page	in	the	active	publication,	populates	the	page
with	shapes,	and	selects	and	groups	the	shapes.	Then	after	deselecting	two	of	the
group	shapes,	it	changes	the	AutoShape	type	for	one	of	the	shapes.

Sub	ChangeFillToChildShape()

				With	ThisDocument.Pages(1)

								With	.Shapes

												.AddShape	msoShape4pointStar,	10,	10,	175,	175

												.AddShape	msoShapeOval,	100,	100,	175,	75

												.AddShape	msoShapeOval,	150,	150,	175,	75

												.Range.Group

												.SelectAll

								End	With

								.Shapes(1).GroupItems(1).Select	msoFalse

								.Shapes(1).GroupItems(2).Select	msoFalse

				End	With

				Selection.ChildShapeRange(3).AutoShapeType	=	msoShapeDiamond

End	Sub

	 	



Show	All



CMYK	Property
Returns	a	ColorCMYK	object	that	represents	CMYK	color	properties.

expression.CMYK

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	new	shapes	and	then	sets	the	CMYK	fill	color	for	one
shape	and	sets	the	CMYK	values	of	the	second	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=100)

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				With	shpHeart.Fill.ForeColor.CMYK

							.SetCMYK	10,	80,	200,	30

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Sets	new	shape	to	current	shape's	CMYK	colors

				shpStar.Fill.ForeColor.CMYK.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub

	 	



Code	Property
Returns	a	String	that	represents	the	text	displayed	when	the	page	view	is	set	to
show	field	codes.	Read-only.

expression.Code

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	loops	through	all	the	fields	in	the	active	publication,	and	then
displays	a	message	as	to	whether	the	string	"www"	was	found	in	the	code	of	any
of	the	fields.

Sub	FindWWWHyperlinks()

				Dim	intItem	As	Integer

				Dim	intField	As	Integer

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange.Fields

								Do

												intItem	=	intItem	+	1

												If	InStr(1,	.Item(intItem).Code,	"www")	>	0	Then

																intField	=	intField	+	1

												End	If

								Loop	Until	intItem	=	.Count

				End	With

				If	intField	>	0	Then

								MsgBox	"You	have	"	&	intField	&	"	World	Wide	Web	"	&	_

												"hyperlinks	in	your	publication."

				Else

								MsgBox	"You	have	no	hyperlink	fields	in	your	publication."

				End	If

End	Sub

	 	



Color	Property
Returns	a	ColorFormat	object	representing	the	color	information	for	the
specified	object.

expression.Color

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	font	color	of	the	first	story	in	the	active	document	and
tells	the	user	if	the	font	color	is	black	or	not.

Sub	FontColor()

				If	Application.ActiveDocument.Stories(1)	_

								.TextRange.Font.Color.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=0)	Then

								MsgBox	"Your	font	color	is	black"

				Else

								MsgBox	"Your	font	color	is	not	black"

				End	If

End	Sub

	 	



Show	All



ColorMode	Property
Returns	a	PbColorMode	constant	that	represents	the	color	mode	for	the
publication.	Read-only.

PbColorMode	can	be	one	of	these	PbColorMode	constants.
pbColorModeBW
pbColorModeDesktop
pbColorModeProcess
pbColorModeSpot
pbColorModeSpotAndProcess

expression.ColorMode

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	spot-color	plate	collection,	adds	two	plates	to	it,	and	then
enters	those	plates	into	the	spot-color	mode.

Sub	CreateSpotColorMode()

				Dim	plArray	As	Plates

				With	ThisDocument

								'Creates	a	color	plate	collection,

								'which	contains	one	black	plate	by	default

								Set	plArray	=	.CreatePlateCollection(Mode:=pbColorModeSpot)

								'Sets	the	plate	color	to	red

								plArray(1).Color.RGB	=	RGB(255,	0,	0)

								'Adds	another	plate,	black	by	default	and

								'sets	the	plate	color	to	green

								plArray.Add

								plArray(2).Color.RGB	=	RGB(0,	255,	0)

								'Enters	spot	color	mode	with	above

								'two	plates	in	the	plates	array

								If	.ColorMode	=	pbColorModeSpot	Then

												.EnterColorMode	pbColorModeSpot,	plArray

								End	If

				End	With

End	Sub

	 	



Show	All



ColorModel	Property
Returns	a	PbColorModel	constant	that	represents	the	color	model	of	the	picture.
Read-only.

PbColorModel	can	be	one	of	these	PbColorModel	constants.
PbColorModelCMYK
PbColorModelGreyScale
PbColorModelRGB
PbColorModelUnknown

expression.ColorModel()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Example

The	following	example	returns	a	list	of	the	pictures	with	RGB	color	mode	in	the
active	publication.

Sub	ListRGBPictures()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

				For	Each	pgLoop	In	ActiveDocument.Pages

								For	Each	shpLoop	In	pgLoop.Shapes

				

												If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

												

																With	shpLoop.PictureFormat

																				If	.IsEmpty	=	msoFalse	Then

																								If	.ColorModel	=	pbColorModelRGB	Then

																												Debug.Print	.Filename

																								End	If

																				End	If

																End	With

												

												End	If

								

								Next	shpLoop

				Next	pgLoop

End	Sub



Show	All



Colors	Property
Returns	a	ColorFormat	object	representing	a	color	from	the	specified	color
scheme.

expression.Colors(ColorIndex)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ColorIndex			Required	PbSchemeColorIndex.	The	color	from	the	scheme	to
return	based	on	its	function	in	the	scheme.

PbSchemeColorIndex	can	be	one	of	these	PbSchemeColorIndex	constants.
pbSchemeColorAccent1
pbSchemeColorAccent2
pbSchemeColorAccent3
pbSchemeColorAccent4
pbSchemeColorAccent5
pbSchemeColorFollowedHyperlink
pbSchemeColorHyperlink
pbSchemeColorMain
pbSchemeColorNone



Example

The	following	example	loops	through	the	ColorSchemes	collection	and	looks
for	color	schemes	where	the	followed	hyperlink	color	matches	the	color	with	the
RGB	value	of	128.

Dim	cscLoop	As	ColorScheme

Dim	colTemp	As	ColorFormat

For	Each	cscLoop	In	Application.ColorSchemes

				With	cscLoop

								Set	colTemp	=	.Colors(ColorIndex:=pbSchemeColorFollowedHyperlink)

								If	colTemp.RGB	=	RGB(128,	0,	0)	Then

												Debug.Print	"Color	scheme	'"	&	.Name	_

																&	"'	has	a	followed	hyperlink	"	_

																&	"color	matching	RGB(128,	0,	0)"

								End	If

				End	With

Next	cscLoop

	 	



ColorScheme	Property
Returns	or	sets	the	ColorScheme	object	that	represents	the	scheme	colors	for	the
specified	publication.	Read/write.

expression.ColorScheme

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	name	of	the	current	color	scheme	for	the	active
publication.

With	ActiveDocument.ColorScheme

				MsgBox	"The	current	color	scheme	is	"	&	.Name	&	"."

End	With

	 	

This	example	sets	the	color	scheme	of	the	active	publication	to	"Alpine."

ActiveDocument.ColorScheme	_

				=	Application.ColorSchemes("Alpine")

	 	



ColorSchemes	Property
Returns	a	ColorSchemes	collection	that	represents	the	color	schemes	available.

expression.ColorSchemes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	loops	through	the	ColorSchemes	collection	and	displays
the	name	of	each	color	scheme	and	the	RGB	value	of	the	color	for	followed
hyperlinks	in	each	scheme.

Dim	cscLoop	As	ColorScheme

Dim	cscAll	As	ColorSchemes

Set	cscAll	=	Application.ColorSchemes

For	Each	cscLoop	In	cscAll

				With	cscLoop

								Debug.Print	"Color	scheme:	"	&	.Name	_

												&	"	/	Followed	hyperlink	color:	"	_

												&	.Colors(ColorIndex:=pbSchemeColorFollowedHyperlink).RGB

				End	With

Next	cscLoop

	 	



ColorsInPalette	Property
Returns	a	Long	that	represents	the	number	of	colors	in	the	picture's	palette.
Read-only.

expression.ColorsInPalette()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	pictures	that	are	not	TrueColor	(that	is,	pictures	that
contain	color	data	of	less	than	24	bits	per	channel.)	Returns	"Permission	Denied"
for	shapes	representing	pictures	that	are	TrueColor.

Use	the	IsTrueColor	property	of	the	PictureFormat	object	to	determine
whether	a	picture	contains	color	data	of	24	bits	per	channel	or	greater.



Example

The	following	example	tests	each	picture	in	the	active	document,	and	prints	out
whether	the	picture	is	TrueColor,	and	if	not,	how	many	colors	are	in	the	picture's
palette.

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Or	shpLoop.Type	=	pbPicture	Then

												

												With	shpLoop.PictureFormat

																If	.IsEmpty	=	msoFalse	Then

																				Debug.Print	.Filename

																				If	.IsTrueColor	=	msoTrue	Then

																								Debug.Print	"This	picture	is	TrueColor"

																				Else

																								Debug.Print	"This	picture	contains	"	&	.ColorsInPalette

																				End	If

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



ColorsInUse	Property
Returns	a	ColorsInUse	collection	that	represents	the	colors	present	in	the
current	publication.	Read-only.

expression.ColorsInUse

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ColorsInUse	collection	supports	all	the	publication	color	models:	RGB,
process	colors,	and	spot	color.

For	process	color	and	spot	color	publications,	colors	are	based	on	inks.	For	a
given	ink,	a	publication	may	contain	several	colors	that	are	different	tints	or
shades	of	that	ink.	Use	the	Plates	collection	to	access	the	plates	that	represent
the	inks	defined	for	a	publication.

This	property	corresponds	to	the	Colors	tab	of	the	Color	Printing	dialog	box.



Example

The	following	example	lists	properties	of	each	color	in	the	active	publication
that	is	based	on	the	specified	ink.	This	example	assumes	the	publication's	color
mode	has	been	defined	as	spot	color	or	process	and	spot	color.

Sub	ListColorsBasedOnInk()

Dim	cfLoop	As	ColorFormat

For	Each	cfLoop	In	ActiveDocument.ColorsInUse

				

				With	cfLoop

								If	.Ink	=	"2"	Then

												Debug.Print	"BaseRGB:	"	&	.BaseRGB

												Debug.Print	"RGB:	"	&	.RGB

												Debug.Print	"TintShade:	"	&	.TintAndShade

												Debug.Print	"Type:	"	&	.Type

								End	If

				End	With

Next	cfLoop

End	Sub



Show	All



ColorType	Property
Returns	or	sets	an	MsoPictureColorType	constant	indicating	the	type	of	color
transformation	applied	to	the	specified	picture	or	OLE	object.	Read/write.

MsoPictureColorType	can	be	one	of	these	MsoPictureColorType	constants.
msoPictureAutomatic
msoPictureBlackAndWhite
msoPictureGrayscale
msoPictureMixed	Return	value	only;	indicates	a	combination	of	the	other
states	in	the	specified	shape	range.
msoPictureWatermark

expression.ColorType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	color	transformation	to	grayscale	for	the	first	shape	in	the
active	publication.	The	shape	must	be	either	a	picture	or	an	OLE	object.

ActiveDocument.Pages(1).Shapes(1).PictureFormat	_

				.ColorType	=	msoPictureGrayScale

	 	



Show	All



Column	Property
Column	property	as	it	applies	to	the	Cell	and	CellRange	objects.

Returns	a	Long	that	represents	the	table	column	containing	the	specified	cell.
Read-only.

expression.Column

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Column	property	as	it	applies	to	the	MailMergeFilterCriterion	object.

Returns	a	String	that	represents	the	name	of	the	field	in	the	mail	merge	data
source	to	use	in	the	filter.	Read/write.

expression.Column

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

Example	as	it	applies	to	the	Cell	and	CellRange	objects.

This	example	adds	a	page	to	the	active	publication,	creates	a	table	on	that	new
page,	and	diagonally	splits	all	cells	in	even-numbered	columns.

Sub	CreateNewTable()

				Dim	pgeNew	As	Page

				Dim	shpTable	As	Shape

				Dim	tblNew	As	Table

				Dim	celTable	As	Cell

				Dim	rowTable	As	Row

				'Creates	a	new	document	with	a	five-row	by	five-column	table

				Set	pgeNew	=	ActiveDocument.Pages.Add(Count:=1,	After:=1)

				Set	shpTable	=	pgeNew.Shapes.AddTable(NumRows:=5,	NumColumns:=5,	_

								Left:=72,	Top:=72,	Width:=468,	Height:=100)

				Set	tblNew	=	shpTable.Table

				'Inserts	a	diagonal	split	into	all	cells	in	even-numbered	columns

				For	Each	rowTable	In	tblNew.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Column	Mod	2	=	0	Then

																celTable.Diagonal	=	pbTableCellDiagonalUp

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	 	 	

Example	as	it	applies	to	the	MailMergeFilterCriterion	object.

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then



																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

	 	 	 	



ColumnGutterWidth	Property
Returns	or	sets	the	width	of	the	column	gutters	that	are	used	by	the
LayoutGuides	object	to	aid	in	the	process	of	laying	out	design	elements.
Read/write	Single.

expression.ColumnGutterWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	default	width	of	column	gutters	is	0.4	inches.



Example

The	following	example	modifies	the	second	master	page	of	the	active
publication	so	that	it	has	four	rows	and	four	columns,	row	gutter	width	of	0.75
inches,	column	gutter	width	of	0.5	inches,	and	center	lines	in	the	gutters.	Any
new	pages	added	to	the	publication	that	use	the	second	master	page	as	a	template
will	have	these	properties.

Dim	theMasterPage	As	page

Dim	theLayoutGuides	As	LayoutGuides

Set	theMasterPage	=	ActiveDocument.MasterPages(2)

Set	theLayoutGuides	=	theMasterPage.LayoutGuides

With	theLayoutGuides

				.Rows	=	4

				.Columns	=	4

				.RowGutterWidth	=	Application.InchesToPoints(0.75)

				.ColumnGutterWidth	=	Application.InchesToPoints(0.5)

				.GutterCenterlines	=	True

End	With



Show	All



Columns	Property
Columns	property	as	it	applies	to	the	LayoutGuides	and	TextFrame

objects.

Returns	or	sets	a	Long	that	represents	the	number	of	guide	columns	on	a	page	or
the	number	of	columns	in	a	text	frame.	Read/write.

expression.Columns

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Columns	property	as	it	applies	to	the	Table	object.

Returns	a	Columns	collection	that	represents	all	the	columns	of	the	specified
table.

expression.Columns

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	LayoutGuide	objects.

This	example	adds	a	new	page	with	a	text	box	and	formats	the	active	publication
with	two	guide	columns	and	the	new	text	box	with	two	newspaper-type	columns.

Sub	LayoutTwoColumnPage()

				Dim	shpTextBox	As	Shape

				With	ActiveDocument

								.Pages.Add	Count:=1,	After:=1

								Set	shpTextBox	=	.Pages(2).Shapes.AddTextbox	_

												(Orientation:=pbTextOrientationHorizontal,	_

												Left:=72,	Top:=72,	Width:=468,	Height:=318)

								With	.LayoutGuides

												.Columns	=	2

												.Rows	=	2

								End	With

								With	shpTextBox.TextFrame

												.Columns	=	2

								End	With

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Table	object.

This	example	enters	a	bold	number	into	each	cell	in	the	specified	table.	This
example	assumes	the	specified	shape	is	a	table	and	not	another	type	of	shape.

Sub	CountCellsByColumn()

				Dim	shpTable	As	Shape

				Dim	colTable	As	Column

				Dim	celTable	As	Cell

				Dim	intCount	As	Integer

				intCount	=	1

				Set	shpTable	=	ActiveDocument.Pages(2).Shapes(1)

				'Loops	through	each	column	in	the	table

				For	Each	colTable	In	shpTable.Table.Columns

								'Loops	through	each	cell	in	the	column



								For	Each	celTable	In	colTable.Cells

												With	celTable.Text

																.Text	=	intCount

																.ParagraphFormat.Alignment	=	_

																				pbParagraphAlignmentCenter

																.Font.Bold	=	msoTrue

																intCount	=	intCount	+	1

												End	With

								Next	celTable

				Next	colTable

End	Sub

	 	 	 	



ColumnSpacing	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	between	text
columns.	Read/write.

expression.ColumnSpacing

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Spacing	measures	from	the	end	of	the	text	to	the	end	of	the	column	and	again
from	the	beginning	of	the	column	to	the	beginning	of	the	text.	Thus,	if	you	enter
a	ColumnSpacing	amount	of	0.5,	the	total	spacing	between	columns	will	be	one
inch:	half	an	inch	measuring	from	the	end	of	the	text	to	the	end	of	the	column	in
one	column,	and	half	an	inch	measuring	from	the	beginning	of	the	column	to	the
beginning	of	the	text	in	a	neighboring	column.



Example

This	example	formats	the	first	text	box	in	the	active	publication	with	three
columns	and	a	total	of	half	an	inch	spacing	between	columns.

Sub	SetColumnsAndSpacing()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame

								.Columns	=	3

								.ColumnSpacing	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Show	All



COMAddIns	Property
Returns	a	COMAddIns	collection	that	represents	a	reference	to	the	Component
Object	Model	(COM)	add-ins	currently	loaded	in	Publisher.

expression.COMAddIns

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjCOMAddIns.htm


Remarks

These	are	listed	in	the	COM	Add-Ins	dialog	box.	You	can	add	the	Add-Ins
command	to	your	Tools	menu	by	using	the	Customize	dialog	box.



CommandBars	Property
Sets	or	returns	a	CommandBars	collection	that	represents	the	menu	bar	and	all
the	toolbars	in	Microsoft	Publisher.

expression.CommandBars

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof11.chm::/html/ofobjCommandBars1.htm


Example

This	example	enlarges	all	command	bar	buttons,	enables	ToolTips,	and	shows	all
menu	items	when	displaying	menus.

Sub	CmdBars()

				With	CommandBars

								.LargeButtons	=	False

								.DisplayTooltips	=	True

								.AdaptiveMenus	=	False

				End	With

End	Sub

	 	

This	example	displays	the	Objects	toolbar	at	the	bottom	of	the	application
window.

Sub	ShowObjectsToolbar

				With	CommandBars("Objects")

								.Visible	=	True

								.Position	=	msoBarBottom

				End	With

End	Sub

	 	



CompareTo	Property
Returns	or	sets	a	String	that	represents	the	text	to	compare	in	the	query	filter
criterion.	Read/write.

expression.CompareTo

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".	This	example	assumes
that	a	mail	merge	data	source	is	attached	to	the	active	publication.

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

	 	



Show	All



Comparison	Property
Returns	or	sets	an	MsoFilterComparison	constant	that	represents	how	to
compare	the	Column	and	CompareTo	properties.	Read/write.

MsoFilterComparison	can	be	one	of	these	MsoFilterComparison	constants.
msoFilterComparisonContains
msoFilterComparisonEqual
msoFilterComparisonGreaterThan
msoFilterComparisonGreaterThanEqual
msoFilterComparisonIsBlank
msoFilterComparisonIsNotBlank
msoFilterComparisonLessThan
msoFilterComparisonLessThanEqual
msoFilterComparisonNotContains
msoFilterComparisonNotEqual

expression.Comparison

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".	This	example	assumes
that	a	mail	merge	data	source	is	attached	to	the	active	publication.

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

	 	



Show	All



Conjunction	Property
Returns	or	sets	an	MsoFilterConjunction	constant	that	represents	how	a	filter
criterion	relates	to	other	filter	criteria	in	the	MailMergeFilters	object.
Read/write.

MsoFilterConjunction	can	be	one	of	these	MsoFilterConjunction	constants.
msoFilterConjunctionAnd
msoFilterConjunctionOr

expression.Conjunction

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA",	and	then	adds	the	filter
to	the	following	filter,	so	that	the	the	filter	criteria	must	match	both	filters
combined	and	not	just	one	or	the	other.

Sub	SetQueryCriterion()

				Dim	intItem	As	Integer

				With	ActiveDocument.MailMerge.DataSource.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next

				End	With

End	Sub

	 	



ConnectionSiteCount	Property
Returns	a	Long	indicating	the	count	of	connection	sites	on	the	current	Shape
object.	Read-only.

expression.ConnectionSiteCount

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	number	of	connection	sites	varies	depending	on	the	shape	geometry.
Rectangular	objects	including	tables	and	Web	controls	will	most	likely	have	four
connection	sites,	one	centered	on	each	edge	of	the	shape.



Example

This	example	adds	two	rectangles	to	the	active	publication	and	joins	them	with
two	connectors.	The	beginnings	of	both	connectors	attach	to	connection	site	one
on	the	first	rectangle;	the	ends	of	the	connectors	attach	to	the	first	and	last
connection	sites	of	the	second	rectangle.	Then	it	counts	the	number	of
connections	on	the	first	rectangle.

Sub	Connections()

				Dim	shpNew	As	Shapes

				Dim	shpFirstRect	As	Shape

				Dim	shpSecondRect	As	Shape

				Dim	intLastSite	As	Integer

				Dim	intCount	As	Integer

				Set	shpNew	=	Application.ActiveDocument	_

								.MasterPages(Item:=1).Shapes

				Set	shpFirstRect	=	shpNew.AddShape(Type:=msoShapeRectangle,	_

							Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpSecondRect	=	shpNew.AddShape(msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				varLastSite	=	shpSecondRect.ConnectionSiteCount

				'	Add	the	first	connector	from	rectangle	1,

				'	site	1	to	rectangle	2,	site	1.

				With	shpNew.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

								.ConnectorFormat

								.BeginConnect	ConnectedShape:=shpFirstRect,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpSecondRect,	ConnectionSite:=1

				End	With

				'	Add	the	second	connector	from	rectangle	1,

				'	site	1	to	rectangle	2,	site	2.

				With	shpNew.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

								.ConnectorFormat

								.BeginConnect	ConnectedShape:=shpFirstRect,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpSecondRect,	_

											ConnectionSite:=intLastSite

				End	With

				intCount	=	shpFirstRect.ConnectionSiteCount

End	Sub



	 	



Show	All



Connector	Property
Returns	an	MsoTriState	value	indicating	whether	the	specified	shape	is	a
connector.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shape	is	not	a	connector.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	shape	is	a	connector.

expression.Connector

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	deletes	all	connectors	on	page	one	of	the	active	publication.

Dim	i	As	Integer

With	ActiveDocument.Pages(1).Shapes

				For	i	=	.Count	To	1	Step	-1

								With	.Item(i)

												If	.Connector	Then	.Delete

								End	With

				Next

End	With

	 	



ConnectorFormat	Property
Returns	a	ConnectorFormat	object	that	contains	connector	formatting
properties.	Applies	to	Shape	or	ShapeRange	objects	that	represent	connectors.

expression.ConnectorFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	two	rectangles	to	the	first	page	in	the	active	publication	and
connects	them	with	a	curved	connector.

Dim	shpRect1	As	Shape

Dim	shpRect2	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	two	new	rectangles.

				Set	shpRect1	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=100,	Top:=50,	Width:=200,	Height:=100)

				Set	shpRect2	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=300,	Top:=300,	Width:=200,	Height:=100)

				'	Add	a	new	curved	connector.

				With	.AddConnector(Type:=msoConnectorCurve,	_

												BeginX:=0,	BeginY:=0,	EndX:=100,	EndY:=100)	_

												.ConnectorFormat

								'	Connect	the	new	connector	to	the	two	rectangles.

								.BeginConnect	ConnectedShape:=shpRect1,	ConnectionSite:=1

								.EndConnect	ConnectedShape:=shpRect2,	ConnectionSite:=1

								'	Reroute	the	connector	to	create	the	shortest	path.

								.Parent.RerouteConnections

				End	With

End	With

	 	



ConnectString	Property
Returns	a	String	that	represents	the	connection	to	the	specified	mail	merge	data
source.	Read-only.

expression.ConnectString

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	checks	if	the	connection	string	contains	the	characters	OLEDB
and	displays	a	message	accordingly.

Sub	VerifyCorrectDataSource()

				With	ActiveDocument.MailMerge.DataSource

								If	InStr(.ConnectString,	"OLEDB")	>	0	Then

												MsgBox	"OLE	DB	is	used	to	connect	to	the	data	source."

								Else

												MsgBox	"OLE	DB	is	not	used	to	connect	to	the	data	source."

								End	If

				End	With

End	Sub

	 	



ContainingObject	Property
Returns	an	Object	that	represents	the	object	that	contains	the	text	range.	Read-
only.

expression.ContainingObject

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	returns	the	name	of	the	object	containing	the	specified	text	range.

Sub	NameOfContainingObject()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.ContainingObject

								MsgBox	The	name	of	the	object	containing	the	text	is	"	&	.Name

				End	With

End	Sub

	 	



ContinueNumbersFromPreviousSection
Property
True	if	the	specified	section	continues	the	numbering	from	the	prvious	section.
Read/write	Boolean.

expression.ContinueNumbersFromPreviousSection

expression				Required.	An	expression	that	returns	a	Section	object.



Example

The	following	example	adds	three	pages	to	the	publication,	adds	a	new	section
after	the	first	page,	and	then	sets	the	ContinueNumbersFromPreviousSection
to	False	for	the	new	section.

Dim	objSection	As	Section

ActiveDocument.Pages.Add	Count:=3,	After:=1

Set	objSection	=	ActiveDocument.Sections.Add(StartPageIndex:=2)

objSection.ContinueNumbersFromPreviousSection	=	False



Contrast	Property
Returns	or	sets	a	Single	indicating	the	contrast	for	the	specified	picture	or	OLE
object.	The	value	for	this	property	must	be	a	number	from	0.0	(the	least	contrast)
to	1.0	(the	greatest	contrast).	Read/write.

expression.Contrast

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	IncrementContrast	method	to	incrementally	adjust	the	contrast	from	its
current	level.



Example

This	example	sets	the	contrast	for	the	first	shape	in	the	active	publication.	The
shape	must	be	either	a	picture	or	an	OLE	object.

ActiveDocument.Pages(1).Shapes(1).PictureFormat	_

				.Contrast	=	0.8

	 	



Count	Property
Returns	a	Long	that	represents	the	number	of	items	in	the	specified	collection.
Read-only.

expression.Count

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	displays	the	number	of	pages	in	the	active	document.

Sub	CountNumberOfPages()

				MsgBox	"Your	publication	contains	"	&	_

								ActiveDocument.Pages.Count	&	"	page(s)."

End	Sub

	 	

This	example	displays	the	number	of	shapes	in	the	active	document.

Sub	CountNumberOfShapes()

				Dim	intShapes	As	Integer

				Dim	pg	As	Page

				For	Each	pg	In	ActiveDocument.Pages

								intShapes	=	intShapes	+	pg.Shapes.Count

				Next

				MsgBox	"Your	publication	contains	"	&	intShapes	&	"	shape(s)."

End	Sub

	 	



Creator	Property
Returns	a	Long	that	represents	the	application	in	which	the	specified	object	was
created.	For	example,	if	the	object	was	created	in	Microsoft	Publisher,	this
property	returns	the	hexadecimal	number	4D505542,	which	represents	the	string
"MSPB."	This	value	can	also	be	represented	by	the	constant	wdCreatorCode.
Read-only.

expression.Creator

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



CropBottom	Property
Returns	or	sets	a	Variant	indicating	the	amount	by	which	the	bottom	edge	of	a
picture	or	OLE	object	is	cropped.	Read/write.

expression.CropBottom

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Negative	values	crop	the	bottom	edge	away	from	the	center	of	the	frame	and
positive	values	crop	toward	the	top	edge	of	the	frame.

The	valid	range	of	crop	values	depends	on	the	frame’s	position	and	size.	For	an
unrotated	frame,	the	lowest	negative	value	allowed	is	the	distance	between	the
bottom	edge	of	frame	and	the	bottom	edge	of	the	scratch	area.	The	highest
positive	value	allowed	is	the	current	frame	height.

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so	that	it's	200
points	high,	and	then	set	the	CropBottom	property	to	50,	100	points	(not	50)
will	be	cropped	off	the	bottom	of	your	picture.

Use	the	CropLeft	,	CropRight	,	and	CropTop	properties	to	crop	other	edges	of
a	picture	or	OLE	object.



Example

This	example	crops	20	points	off	the	bottom	of	the	third	shape	in	the	active
publication.	For	the	example	to	work,	the	shape	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Pages(1).Shapes(3).PictureFormat	_

				.CropBottom	=	20

	 	

This	example	crops	the	percentage	specified	by	the	user	off	the	bottom	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	sngPercent	As	Single

Dim	shpCrop	As	Shape

Dim	sngPoints	As	Single

Dim	sngHeight	As	Single

sngPercent	=	InputBox("What	percentage	do	you	"	&	_

				"want	to	crop	off	the	bottom	of	this	picture?")

Set	shpCrop	=	Selection.ShapeRange(1)

With	shpCrop.Duplicate

				.ScaleHeight	Factor:=1,	_

								RelativeToOriginalSize:=True

				sngHeight	=	.Height

				.Delete

End	With

sngPoints	=	sngHeight	*	sngPercent	/	100

shpCrop.PictureFormat.CropBottom	=	sngPoints

	 	



CropLeft	Property
Returns	or	sets	a	Variant	indicating	the	amount	by	which	the	left	edge	of	a
picture	or	OLE	object	is	cropped.	Read/write.

expression.CropLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Negative	values	crop	the	bottom	edge	away	from	the	center	of	the	frame	and
positive	values	crop	toward	the	right	edge	of	the	frame.

The	valid	range	of	crop	values	depends	on	the	frame’s	position	and	size.	For	an
unrotated	frame,	the	lowest	negative	value	allowed	is	the	distance	between	the
left	edge	of	frame	and	the	left	edge	of	the	scratch	area.	The	highest	positive
value	allowed	is	the	current	frame	width.

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so	that	it's	200
points	wide,	and	then	set	the	CropLeft	property	to	50,	100	points	(not	50)	will
be	cropped	off	the	left	of	your	picture.

Use	the	CropRight	,	CropTop	,	and	CropBottom	properties	to	crop	other	edges
of	a	picture	or	OLE	object.



Example

This	example	crops	20	points	off	the	left	of	the	third	shape	in	the	active
publication.	For	the	example	to	work,	the	shape	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Pages(1).Shapes(3).PictureFormat	_

				.CropLeft	=	20

	 	

This	example	crops	the	percentage	specified	by	the	user	off	the	left	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	sngPercent	As	Single

Dim	shpCrop	As	Shape

Dim	sngPoints	As	Single

Dim	sngWidth	As	Single

sngPercent	=	InputBox("What	percentage	do	you	"	&	_

				"want	to	crop	off	the	left	of	this	picture?")

Set	shpCrop	=	Selection.ShapeRange(1)

With	shpCrop.Duplicate

				.ScaleWidth	Factor:=1,	_

								RelativeToOriginalSize:=True

				sngWidth	=	.Width

				.Delete

End	With

sngPoints	=	sngWidth	*	sngPercent	/	100

shpCrop.PictureFormat.CropLeft	=	sngPoints

	 	



CropRight	Property
Returns	or	sets	a	Variant	indicating	the	amount	by	which	the	right	edge	of	a
picture	or	OLE	object	is	cropped.	Read/write.

expression.CropRight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Negative	values	crop	the	bottom	edge	away	from	the	center	of	the	frame	and
positive	values	crop	toward	the	left	edge	of	the	frame.

The	valid	range	of	crop	values	depends	on	the	frame’s	position	and	size.	For	an
unrotated	frame,	the	lowest	negative	value	allowed	is	the	distance	between	the
right	edge	of	frame	and	the	right	edge	of	the	scratch	area.	The	highest	positive
value	allowed	is	the	current	frame	width.

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	wide,	rescale	it	so	that	it's	200
points	wide,	and	then	set	the	CropRight	property	to	50,	100	points	(not	50)	will
be	cropped	off	the	right	of	your	picture.

Use	the	CropLeft	,	CropTop	,	and	CropBottom	properties	to	crop	other	edges
of	a	picture	or	OLE	object.



Example

This	example	crops	20	points	off	the	right	of	the	third	shape	in	the	active
publication.	For	the	example	to	work,	the	shape	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Pages(1).Shapes(3).PictureFormat	_

				.CropRight	=	20

	 	

This	example	crops	the	percentage	specified	by	the	user	off	the	right	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	sngPercent	As	Single

Dim	shpCrop	As	Shape

Dim	sngPoints	As	Single

Dim	sngWidth	As	Single

sngPercent	=	InputBox("What	percentage	do	you	"	&	_

				"want	to	crop	off	the	right	of	this	picture?")

Set	shpCrop	=	Selection.ShapeRange(1)

With	shpCrop.Duplicate

				.ScaleWidth	Factor:=1,	_

								RelativeToOriginalSize:=True

				sngWidth	=	.Width

				.Delete

End	With

sngPoints	=	sngWidth	*	sngPercent	/	100

shpCrop.PictureFormat.CropRight	=	sngPoints

	 	



CropTop	Property
Returns	or	sets	a	Variant	indicating	the	amount	by	which	the	top	edge	of	a
picture	or	OLE	object	is	cropped.	Read/write.

expression.CropTop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Negative	values	crop	the	top	edge	away	from	the	center	of	the	frame	and
positive	values	crop	toward	the	bottom	edge	of	the	frame.

The	valid	range	of	crop	values	depends	on	the	frame’s	position	and	size.	For	an
unrotated	frame,	the	lowest	negative	value	allowed	is	the	distance	between	the
top	edge	of	frame	and	the	top	edge	of	the	scratch	area.	The	highest	positive	value
allowed	is	the	current	frame	height.

Cropping	is	calculated	relative	to	the	original	size	of	the	picture.	For	example,	if
you	insert	a	picture	that	is	originally	100	points	high,	rescale	it	so	that	it's	200
points	high,	and	then	set	the	CropTop	property	to	50,	100	points	(not	50)	will	be
cropped	off	the	top	of	your	picture.

Use	the	CropLeft	,	CropRight	,	and	CropBottom	properties	to	crop	other
edges	of	a	picture	or	OLE	object.



Example

This	example	crops	20	points	off	the	top	of	the	third	shape	in	the	active
publication.	For	the	example	to	work,	the	shape	must	be	either	a	picture	or	an
OLE	object.

ActiveDocument.Pages(1).Shapes(3).PictureFormat	_

				.CropTop	=	20

	 	

This	example	crops	the	percentage	specified	by	the	user	off	the	top	of	the
selected	shape,	regardless	of	whether	the	shape	has	been	scaled.	For	the	example
to	work,	the	selected	shape	must	be	either	a	picture	or	an	OLE	object.

Dim	sngPercent	As	Single

Dim	shpCrop	As	Shape

Dim	sngPoints	As	Single

Dim	sngHeight	As	Single

sngPercent	=	InputBox("What	percentage	do	you	"	&	_

				"want	to	crop	off	the	top	of	this	picture?")

Set	shpCrop	=	Selection.ShapeRange(1)

With	shpCrop.Duplicate

				.ScaleHeight	Factor:=1,	_

								RelativeToOriginalSize:=True

				sngHeight	=	.Height

				.Delete

End	With

sngPoints	=	sngHeight	*	sngPercent	/	100

shpCrop.PictureFormat.CropTop	=	sngPoints

	 	



CurrentValueId	Property
Returns	or	sets	a	Long	indicating	the	value	of	a	setting	in	the	specified
publication	design	or	Design	Gallery	object's	wizard.	Read/write.

expression.CurrentValueId

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Accessing	this	property	for	a	publication	design	setting	whose	Enabled	property
is	False	causes	an	error.



Example

The	following	example	changes	the	settings	of	the	current	publication	design
(Newsletter	Wizard)	so	that	the	publication	has	a	region	dedicated	to	the
customer's	address.

Dim	wizTemp	As	Wizard

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp.Properties

				.FindPropertyById(ID:=901).CurrentValueId	=	1

End	With

	 	



Show	All



Cyan	Property
Sets	or	returns	a	Long	that	represents	the	cyan	component	of	a	CMYK	color.
Value	can	be	any	number	between	0	and	255.	Read/write.

expression.Cyan

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	new	shapes	and	then	sets	the	CMYK	fill	color	for	one
shape	and	sets	the	CMYK	values	of	the	second	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=100)

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				With	shpHeart.Fill.ForeColor.CMYK

							.SetCMYK	10,	80,	200,	30

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Sets	new	shape	to	current	shape's	CMYK	colors

				shpStar.Fill.ForeColor.CMYK.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub

	 	



Show	All



DashStyle	Property
Returns	or	sets	an	MsoLineDashStyle	constant	indicating	the	dash	style	for	the
specified	line.	Read/write.

MsoLineDashStyle	can	be	one	of	these	MsoLineDashStyle	constants.
msoLineDash
msoLineDashDot
msoLineDashDotDot
msoLineDashStyleMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	shape	range.
msoLineLongDash
msoLineLongDashDot
msoLineRoundDot
msoLineSolid
msoLineSquareDot

expression.DashStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	blue	dashed	line	to	the	active	publication.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=10,	BeginY:=10,	_

								EndX:=250,	EndY:=250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

	 	



Show	All



DataFieldName	Property
Returns	or	sets	a	String	which	represents	the	name	of	the	field	in	the	mail	merge
data	source	to	which	a	mapped	data	field	maps.	An	empty	string	is	returned	if
the	specified	data	field	is	not	mapped	to	a	mapped	data	field.	Read/write.

expression.DataFieldName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	table	on	a	new	page	of	the	current	publication	and	lists
the	mapped	data	fields	available	and	the	fields	in	the	data	source	to	which	they
are	mapped.	This	example	assumes	that	the	current	publication	is	a	mail	merge
publication	and	that	the	data	source	fields	have	corresponding	mapped	data
fields.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	intRows	As	Integer

				Dim	docPub	As	Document

				Dim	pagNew	As	Page

				Dim	shpTable	As	Shape

				Dim	tblTable	As	Table

				Dim	rowTable	As	Row

				On	Error	Resume	Next

				Set	docPub	=	ThisDocument

				Set	pagNew	=	ThisDocument.Pages.Add(Count:=1,	After:=1)

				intRows	=	docPub.MailMerge.DataSource.MappedDataFields.Count	+	1

				'Creates	new	table	with	a	heading	row

				Set	shpTable	=	pagNew.Shapes.AddTable(NumRows:=intRows,	_

								numColumns:=2,	Left:=100,	Top:=100,	Width:=400,	Height:=12)

				Set	tblTable	=	shpTable.Table

				With	tblTable.Rows(1)

								With	.Cells(1).Text

												.Text	=	"Mapped	Data	Field"

												.Font.Bold	=	msoTrue

								End	With

								With	.Cells(2).Text

												.Text	=	"Data	Source	Field"

												.Font.Bold	=	msoTrue

								End	With

				End	With

				With	docPub.MailMerge.DataSource

								For	intCount	=	2	To	intRows	-	1

												'Inserts	mapped	data	field	name	and	the

												'corresponding	data	source	field	name

												tblTable.Rows(intCount	-	1).Cells(1).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).Name

												tblTable.Rows(intCount	-	1).Cells(2).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).DataFieldName



								Next

				End	With

End	Sub

	 	



DataFields	Property
Returns	a	MailMergeDataFields	collection	that	represents	the	fields	in	the
specified	data	source.

expression.DataFields

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	value	of	the	value	of	the	FirstName	and	LastName
fields	from	the	active	record	in	the	data	source	attached	to	the	active	publication.

Sub	ShowNameForActiveRecord()

				Dim	mdfFirst	As	MailMergeDataField

				Dim	mdfLast	As	MailMergeDataField

				With	ActiveDocument.MailMerge.DataSource

								Set	mdfFirst	=	.DataFields.Item("FirstName")

								Set	mdfLast	=	.DataFields.Item("LastName")

								MsgBox	"The	active	record	in	the	attached	"	&	_

												vbLf	&	"data	source	is	:	"	&	_

												mdfFirst.Value	&	"	"	&	_

												mdfLast.Value

				End	With

End	Sub



Show	All



DataFileFormat	Property
Sets	or	returns	a	PbSubmitDataFormatType	constant	that	represents	the	format
to	use	when	saving	Web	form	data	to	a	file.	Read/write.

PbSubmitDataFormatType	can	be	one	of	these	PbSubmitDataFormatType
constants.
pbSubmitDataFormatCSV	Saves	Web	form	data	to	a	comma-delimited	text
file.
pbSubmitDataFormatHTML	Saves	Web	form	data	to	an	HTML	file.
pbSubmitDataFormatRichText	Saves	Web	form	data	to	a	formatted	file.
pbSubmitDataFormatTab	Saves	Web	form	data	to	a	tab-delimited	text	file.

expression.DataFileFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	Publisher	to	process	Web	form	data	by	saving	it	to	a	comma-
delimited	text	file	on	the	same	Web	server	as	the	form	is	stored.	(Note	that
Filename	must	be	replaced	with	a	valid	file	name	for	this	example	to	work.)

Sub	WebDataFile()

				With	ThisDocument.Pages(1).Shapes(1).WebCommandButton

								.DataRetrievalMethod	=	pbSubmitDataRetrievalSaveOnServer

								.DataFileFormat	=	pbSubmitDataFormatCSV

								.DataFileName	=	"Filename"

				End	With

End	Sub

	 	



DataFileName	Property
Returns	or	sets	a	String	that	represents	the	name	of	the	file	in	which	to	save	data
from	a	Web	form.	Read/write.

expression.DataFileName

expression				Required.	An	expression	that	returns	a	WebCommandButton
object.



Example

This	example	sets	Publisher	to	process	Web	form	data	by	saving	it	to	a	comma-
delimited	text	file	on	the	same	Web	server	as	the	form	is	stored.

Sub	WebDataFile()

				With	ThisDocument.Pages(1).Shapes(1).WebCommandButton

								.DataRetrievalMethod	=	pbSubmitDataRetrievalSaveOnServer

								.DataFileFormat	=	pbSubmitDataFormatCSV

								.DataFileName	=	"WebFormData.txt"

				End	With

End	Sub

	 	



Show	All



DataRetrievalMethod	Property
Sets	or	returns	a	PbSubmitDataRetrievalMethodType	that	represents	the	way
data	from	a	Web	form	is	processed.	Read/write.

PbSubmitDataRetrievalMethodType	can	be	one	of	these
PbSubmitDataRetrievalMethodType	constants.
pbSubmitDataRetrievalEmail	Processes	form	data	by	sending	an	e-mail
message	to	a	specified	e-mail	address.
pbSubmitDataRetrievalProgram	Processes	form	data	using	a	script	program
provided	by	your	Internet	Service	Provider.
pbSubmitDataRetrievalSaveOnServer	Saves	form	data	to	a	file	stored	on
your	Web	server.

expression.DataRetrievalMethod

expression				Required.	An	expression	that	returns	a	WebCommandButton
object.



Example

This	example	sets	Publisher	to	process	data	on	the	Web	form	in	the	current
publication	by	sending	an	e-mail	message	to	a	specified	e-mail	address.

Sub	WebFormData()

				With	ThisDocument.Pages(1).Shapes(1).WebCommandButton

								.DataRetrievalMethod	=	pbSubmitDataRetrievalEmail

								.EmailAddress	=	"someone@example.com"

								.EmailSubject	=	"Web	form	data"

				End	With

End	Sub

	 	



Show	All



DataSource	Property
Returns	a	MailMergeDataSource	object	that	refers	to	the	data	source	attached
to	a	mail	merge	or	catalog	merge	main	publication.

expression.DataSource

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	path	and	file	name	of	the	data	source	attached	to	the
active	publication.

Sub	DataSourceName()

				With	ActiveDocument.MailMerge.DataSource

								If	.Name	<>	""	Then	_

												MsgBox	"The	path	and	filename	of	the	"	&	_

												"attached	data	source	is	:	"	&	vbCr	&	.Name

				End	With

End	Sub

	 	



Show	All



DefaultPubDirection	Property
Returns	or	sets	a	PbDirectionType	constant	that	represents	the	default	direction
in	which	text	flows	when	a	new	publication	is	created.	Read/write.

PbDirectionType	can	be	one	of	these	PbDirectionType	constants.
pbDirectionLeftToRight
pbDirectionRightToLeft

expression.DefaultPubDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	generates	an	error	if	you	are	not	running	a	bi-directional-enabled
version	of	Microsoft	Publisher	(for	example,	Arabic).



Example

This	example	sets	the	default	direction	for	new	publications	and	text	flow	in	a
bi-directional-enabled	version	of	Publisher.

Sub	SetDefaultDirection()

				With	Options

								.DefaultPubDirection	=	pbDirectionRightToLeft

								.DefaultTextFlowDirection	=	pbDirectionRightToLeft

				End	With

End	Sub

	 	



DefaultTabStop	Property
Returns	or	sets	a	Variant	corresponding	to	the	default	tab	stop	for	all	text	in	the
active	publication.	Valid	range	is	1	to	1584	points	(0.014"	to	22").	Once	set,
numeric	values	are	considered	to	be	in	points.	String	values	may	be	in	any	unit
supported	by	Microsoft	Publisher.	Point	values	are	always	returned.	If	values	are
outside	the	valid	range,	an	error	is	returned.	Read/write.

expression.DefaultTabStop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	InchesToPoints	method	to	convert	inches	to	points.



Example

This	example	sets	the	DefaultTabStop	property	to	72	points	for	all	text	in	the
active	publication.

Sub	SetTab()

				Application.ActiveDocument.DefaultTabStop	=	72

				

End	Sub	

	 	



DefaultText	Property
Returns	or	sets	a	String	that	represents	the	default	text	in	a	Web	text	box	control.
Read/write.

expression.DefaultText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	text	box	control	in	the	active	publication,	sets
the	default	text	and	the	character	limit	for	the	text	box,	and	specifies	that	it	is	a
required	control.

Sub	AddWebTextBoxControl()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlMultiLineTextBox,	Left:=72,	_

												Top:=72,	Width:=300,	Height:=100).WebTextBox

								.DefaultText	=	"Please	enter	text	here."

								.Limit	=	200

								.RequiredControl	=	msoTrue

				End	With

End	Sub

	 	



Show	All



DefaultTextFlowDirection	Property
Returns	or	sets	a	PbDirectionType	constant	that	represents	a	global	Microsoft
Publisher	option,	indicating	whether	text	flows	from	left	to	right	or	from	right	to
left	in	a	publication.	Read/write.

PbDirectionType	can	be	one	of	these	PbDirectionType	constants.
pbDirectionLeftToRight
pbDirectionRightToLeft

expression.DefaultTextFlowDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	generates	an	error	if	you	are	not	running	a	bi-directional-enabled
version	of	Publisher	(for	example,	Arabic).



Example

This	example	sets	the	default	direction	for	new	publications	and	text	flow	in	a
bi-directional-enabled	version	of	Publisher.

Sub	SetDefaultDirection()

				With	Options

								.DefaultPubDirection	=	pbDirectionRightToLeft

								.DefaultTextFlowDirection	=	pbDirectionRightToLeft

				End	With

End	Sub

	 	



Depth	Property
Returns	or	sets	a	Variant	indicating	the	depth	of	the	shape's	extrusion.
Read/write.

expression.Depth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Positive	values	produce	an	extrusion	whose	front	face	is	the	original	shape;
negative	values	produce	an	extrusion	whose	back	face	is	the	original	shape.	The
valid	range	is	–	600	through	9600	points,	or	the	equivalent	distance	in	all	other
units.



Example

This	example	adds	an	oval	to	the	active	publication,	and	then	specifies	that	the
oval	be	extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Dim	shpNew	As	Shape

Set	shpNew	=	ActiveDocument.Pages(1).Shapes	_

				.AddShape(Type:=msoShapeOval,	_

				Left:=90,	Top:=90,	Width:=90,	Height:=40)

With	shpNew.ThreeD

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With

	 	



Show	All



Description	Property
Description	property	as	it	applies	to	the	TextStyle	object.

Returns	a	String	that	represents	the	description	of	the	specified	style.	For
example,	a	typical	description	for	the	Normal	style	might	be	"(Default)	Times
New	Roman,	(Asian)	MS	Mincho,	10	pt,	Main	(Black),	Kerning	14	pt,	Left,
Line	spacing	1	sp."	Read-only.

expression.Description

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Description	property	as	it	applies	to	the	WebPageOptions	object.

Returns	or	sets	a	String	that	represents	the	description	of	a	Web	page	within	a
Web	publication.	Read/write.

expression.Description

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Example

As	it	applies	to	the	TextStyle	object.

This	example	displays	the	description	for	the	Normal	style.

Sub	ShowStyleDescription()

				MsgBox	"The	Normal	style	has	the	following	formatting	attributes:	"	&	_

								vbLf	&	ActiveDocument.TextStyles("Normal").Description

End	Sub

	 	

As	it	applies	to	the	WebPageOptions	object.

This	example	sets	the	description	for	page	two	of	the	active	Web	publication.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(2).WebPageOptions

With	theWPO

				.Description	=	"Company	Profile"

End	With



Show	All



Design	Property
Sets	or	returns	a	PbWizardNavBarDesign	constant	representing	the	design	of
the	specified	Web	navigation	bar	set.	Read/write.

The	Design	property	can	be	any	of	these	PbWizardNavBarDesign	constants:
pbnbDesignAmbient
pbnbDesignBaseline
pbnbDesignBracket
pbnbDesignBulletStaff
pbnbDesignCapsule
pbnbDesignCornice
pbnbDesignCounter
pbnbDesignDimension
pbnbDesignDottedArrow
pbnbDesignEdge
pbnbDesignEnclosedArrow
pbnbDesignEndCap
pbnbDesignHollowArrow
pbnbDesignKeyPunch
pbnbDesignOffset
pbnbDesignOutline
pbnbDesignRadius
pbnbDesignRectangle
pbnbDesignRoundBullet
pbnbDesignSquareBullet
pbnbDesignStaff
pbnbDesignTopBar
pbnbDesignTopDrawer
pbnbDesignTopLine
pbnbDesignUnderscore
pbnbDesignWatermark



expression.Design

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

This	example	adds	a	new	Web	navigation	bar	set	to	every	page	in	the	active
document,	sets	the	button	style	to	large,	and	then	sets	the	design	property	to
pbnbDesignCapsule.

Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets.AddSet(Name:="newNavBar")

With	objWebNav

				.AddToEveryPage	Left:=10,	Top:=10

				.ButtonStyle	=	pbnbButtonStyleLarge

				.Design	=	pbnbDesignCapsule

End	With



DiacriticColor	Property
Returns	a	ColorFormat	object	representing	the	24-bit	color	used	for	diacritics	in
a	right-to-left	language	publication.

expression.DiacriticColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	text	in	the	first	story	of	the	current	publication	to	see	if	its
color	is	red	and	it	is	formatted	right-to-left.

Sub	FontDiColor()

				Dim	fntDiColor	As	Font

				Set	fntDiColor	=	Application.ActiveDocument.	_

								Stories(1).TextRange.Font

				If	fntDiColor.UseDiacriticColor	=	msoTrue	And	_

												fntDiColor.DiacriticColor.RGB	=	RGB(255,	0,	0)	Then

								MsgBox	"Your	text	is	red"

				Else

								MsgBox	"This	is	not	a	right-to-left	language"	_

								&	"	or	your	color	is	not	red"

				End	If

End	Sub

	 	



Show	All



Diagonal	Property
Sets	or	returns	a	PbCellDiagonalType	constant	that	represents	a	cell	that	is
diagonally	split.	Read/write.

PbCellDiagonalType	can	be	one	of	these	PbCellDiagonalType	constants.
pbTableCellDiagonalDown
pbTableCellDiagonalMixed
pbTableCellDiagonalNone
pbTableCellDiagonalUp

expression.Diagonal

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	page	to	the	active	publication,	creates	a	table	on	that	new
page,	and	diagonally	splits	all	cells	in	even-numbered	columns.

Sub	CreateNewTable()

				Dim	pgeNew	As	Page

				Dim	shpTable	As	Shape

				Dim	tblNew	As	Table

				Dim	celTable	As	Cell

				Dim	rowTable	As	Row

				'Creates	a	new	document	with	a	five-row	by	five-column	table

				Set	pgeNew	=	ActiveDocument.Pages.Add(Count:=1,	After:=1)

				Set	shpTable	=	pgeNew.Shapes.AddTable(NumRows:=5,	NumColumns:=5,	_

								Left:=72,	Top:=72,	Width:=468,	Height:=100)

				Set	tblNew	=	shpTable.Table

				'Inserts	a	diagonal	split	into	all	cells	in	even-numbered	columns

				For	Each	rowTable	In	tblNew.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Column	Mod	2	=	0	Then

																celTable.Diagonal	=	pbTableCellDiagonalUp

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	



DisplayPrintTroubleshooter	Property
True	to	automatically	display	a	Help	topic	to	troubleshoot	printing	problems
when	printing	publications.	Read/write	Boolean.

expression.DisplayPrintTroubleshooter

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	displaying	the	Print	Troubleshooting	Help	topic	when
printing	publications.

Sub	ShowPrinterHelp()

				Application.Options.DisplayPrintTroubleshooter	=	True

End	Sub

	 	



DisplayStatusBar	Property
True	for	Microsoft	Publisher	to	show	the	status	bar	at	the	bottom	of	the
Publisher	window.	Read/write	Boolean.

expression.DisplayStatusBar

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	hides	the	status	bar	from	view.

Sub	HideStatusBar()

				Options.DisplayStatusBar	=	False

End	Sub

	 	



Show	All



DistanceAuto	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	an	appropriate
distance	between	an	inline	shape	and	any	surrounding	text	is	automatically
calculated.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shape's	edges	are	not	adjusted	depending	on	the	margins	of	the
text	box	it	overlaps.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Set	value	that	toggles	the	property	value	between	msoTrue
and	msoFalse.
msoTrue	default	The	shape's	edges	are	automatically	adjusted	depending	on	the
margins	of	the	text	box	it	overlaps.

expression.DistanceAuto

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	shape	one	on	page	one	of	the	active	publication	so
that	its	edges	are	not	automatically	adjusted	based	on	its	distance	from
surrounding	text.

Sub	SetDistanceAutoProperty()

				With	ActiveDocument.Pages(1).Shapes(1).TextWrap

								.Type	=	pbWrapTypeSquare

								.DistanceAuto	=	msoFalse

				End	With

End	Sub

	 	



DistanceBottom	Property
When	the	Type	property	of	the	WrapFormat	object	is	set	to
pbWrapTypeSquare,	returns	or	sets	a	Variant	that	represents	the	distance	(in
points)	between	the	document	text	and	the	bottom	edge	of	the	specified	shape.
Read/write.

expression.DistanceBottom

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Sub	AddNewShape()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	Left:=36,	_

								Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



DistanceLeft	Property
When	the	Type	property	of	the	WrapFormat	object	is	set	to
pbWrapTypeSquare,	returns	or	sets	a	Variant	that	represents	the	distance	(in
points)	between	the	document	text	and	the	left	edge	of	the	specified	shape.
Read/write.

expression.DistanceLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Sub	AddNewShape()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	Left:=36,	_

								Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



DistanceRight	Property
When	the	Type	property	of	the	WrapFormat	object	is	set	to
pbWrapTypeSquare,	returns	or	sets	a	Variant	that	represents	the	distance	(in
points)	between	the	document	text	and	the	right	edge	of	the	specified	shape.
Read/write.

expression.DistanceRight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Sub	AddNewShape()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	Left:=36,	_

								Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



DistanceTop	Property
When	the	Type	property	of	the	WrapFormat	object	is	set	to
pbWrapTypeSquare,	returns	or	sets	a	Variant	that	represents	the	distance	(in
points)	between	the	document	text	and	the	top	edge	of	the	specified	shape.
Read/write.

expression.DistanceTop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	document	and	specifies	that	the
document	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	The	example	sets	a	0.1-inch	margin	between	the
document	text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Sub	AddNewShape()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	Left:=36,	_

								Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



Show	All



DocumentDirection	Property
Returns	or	sets	a	PbDirectionType	constant	that	indicates	whether	text	in	the
document	is	read	from	left	to	right	or	from	right	to	left.	Read/write.

PbDirectionType	can	be	one	of	these	PbDirectionType	constants.
pbDirectionLeftToRight
pbDirectionRightToLeft

expression.DocumentDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	DocumentDirection	property	affects	the	way	the	document	is	read	but	not
the	flow	of	text	in	the	document.	For	example,	if	the	document	has	a	binding
edge	and	is	printed	on	both	sides	of	the	page,	the	binding	edge	for	a	left-to-right
document	would	be	different	from	the	binding	edge	of	a	right-to-left	document.

To	format	the	direction	of	text	flow,	use	the	DefaultTextFlowDirection	property
to	specify	the	default	text	flow	for	the	entire	document,	or	use	the	Orientation
property	for	an	individual	text	frame	to	specify	a	text	flow	direction	other	than
the	default	for	the	specified	text	frame	only.



Example

This	example	sets	the	active	publication	to	read	from	left	to	right.

Sub	SetBiDiText()

				ActiveDocument.DocumentDirection	=	pbDirectionRightToLeft

End	Sub

	 	



Documents	Property
Returns	a	Documents	collection	that	represents	all	open	publications.	Read-only.

expression.Documents

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	lists	all	of	the	open	publications.

Dim	objDocument	As	Document

Dim	strMsg	As	String

For	Each	objDocument	In	Documents

				strMsg	=	strMsg	&	objDocument.Name	&	vbCrLf

Next	objDocument

MsgBox	Prompt:=strMsg,	Title:="Current	Documents	Open",	Buttons:=vbOKOnly



DocumentUpdating	Property
Returns	or	sets	a	Boolean	indicating	whether	the	screen	is	updated	while	mail
merge	code	is	running.	Default	is	True	(the	screen	is	updated).	Read/write.

expression.DocumentUpdating

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Turning	document	updating	off	during	run	time	can	speed	execution	of	Visual
Basic	code.	However,	it	is	recommended	to	provide	some	indication	of	status	so
that	the	user	is	aware	that	the	program	is	functioning	correctly.



Example

The	following	example	turns	off	document	updating	at	the	beginning	of	a	mail
merge	subroutine	and	turns	it	back	on	at	the	end	of	the	subroutine.

Sub	MailMergeProcedure()

				ActiveDocument.MailMerge.DocumentUpdating

=	False

				'	Mail	merge	code.

			

ActiveDocument.MailMerge.DocumentUpdating

=	True

End	Sub

	 	



DragAndDropText	Property
True	to	enable	dragging	and	dropping	of	text.	Read/write	Boolean.

expression.DragAndDropText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	global	options	for	Microsoft	Publisher,	including	enabling
dragging	and	dropping	to	reposition	text.

Sub	SetGlobalOptions()

				With	Options

								.AutoFormatWord	=	True

								.AutoKeyboardSwitching	=	True

								.AutoSelectWord	=	True

								.DragAndDropText	=	True

								.UseCatalogAtStartup	=	False

								.UseHelpfulMousePointers	=	False

				End	With

End	Sub

	 	



Drop	Property
For	callouts	with	an	explicitly	set	drop	value,	this	property	returns	the	vertical
distance	from	the	edge	of	the	text	bounding	box	to	the	place	where	the	callout
line	attaches	to	the	text	box.	This	distance	is	measured	from	the	top	of	the	text
box	unless	the	AutoAttach	property	is	set	to	True	and	the	text	box	is	to	the	left
of	the	origin	of	the	callout	line	(where	the	callout	points).	In	this	case,	the	drop
distance	is	measured	from	the	bottom	of	the	text	box.	Read-only	Variant.

expression.Drop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

Use	the	CustomDrop	method	to	set	the	value	of	this	property.

The	value	of	this	property	accurately	reflects	the	position	of	the	callout	line
attachment	to	the	text	box	only	if	the	callout	has	an	explicitly	set	drop	value
—	that	is,	if	the	value	of	the	DropType	property	is	msoCalloutDropCustom.



Example

This	example	replaces	the	custom	drop	for	the	first	shape	in	the	active
publication	with	one	of	two	preset	drops,	depending	on	whether	the	custom	drop
value	is	greater	than	or	less	than	half	the	height	of	the	callout	text	box.	For	the
example	to	work,	the	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				If	.DropType	=	msoCalloutDropCustom	Then

								If	.Drop	<	.Parent.Height	/	2	Then

												.PresetDrop	DropType:=msoCalloutDropTop

								Else

												.PresetDrop	DropType:=msoCalloutDropBottom

								End	If

				End	If

End	With

	 	



DropCap	Property
Returns	a	DropCap	object	that	represents	a	dropped	capital	letter	for	the
paragraphs	in	the	specified	text	frame.

expression.DropCap

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	a	custom	dropped	capital	that	is	three	lines	high	and	spans
the	first	three	characters	of	each	paragraph	in	the	specified	text	frame.

Sub	SetDropCap()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

								.DropCap.ApplyCustomDropCap	FontName:="Snap	ITC",	_

												Bold:=True,	Size:=3,	Span:=3

								With	.ParagraphFormat

												.SpaceBefore	=	6

												.SpaceAfter	=	6

								End	With

				End	With

End	Sub

	 	



Show	All



DropType	Property
Returns	an	MsoCalloutDropType	constant	indicating	where	the	callout	line
attaches	to	the	callout	text	box.	Read-only.

MsoCalloutDropType	can	be	one	of	these	MsoCalloutDropType	constants.
msoCalloutDropBottom
msoCalloutDropCenter
msoCalloutDropCustom
msoCalloutDropMixed	Indicates	a	combination	of	the	other	states	in	the
specified	shape	range.
msoCalloutDropTop

expression.DropType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	callout	drop	type	is	msoCalloutDropCustom,	the	values	of	the	Drop	and
AutoAttach	properties	and	the	relative	positions	of	the	callout	text	box	and
callout	line	origin	(where	the	callout	points)	are	used	to	determine	where	the
callout	line	attaches	to	the	text	box.

Use	the	PresetDrop	method	to	set	the	value	of	this	property.



Example

This	example	replaces	the	custom	drop	for	the	first	shape	in	the	active
publication	with	one	of	two	preset	drops,	depending	on	whether	the	custom	drop
value	is	greater	than	or	less	than	half	the	height	of	the	callout	text	box.	For	the
example	to	work,	the	shape	must	be	a	callout.

With	ActiveDocument.Pages(1).Shapes(1).Callout

				If	.DropType	=	msoCalloutDropCustom	Then

								If	.Drop	<	.Parent.Height	/	2	Then

												.PresetDrop	DropType:=msoCalloutDropTop

								Else

												.PresetDrop	DropType:=msoCalloutDropBottom

								End	If

				End	If

End	With

	 	



Duplicate	Property
Returns	a	TextRange	object	that	represents	a	duplicate	of	the	specified	text
range.

expression.Duplicate

expression				Required.	An	expression	that	returns	a	TextRange	object.



Example

This	example	sets	the	value	of	a	string	variable	to	the	contents	of	the	specified
text	box	on	the	first	page	of	the	active	publication.	Then	it	creates	a	new	page
with	a	text	box	and	sets	the	contents	of	the	new	text	box	equal	to	the	value	of	the
string	variable.

Sub	DuplicateTextBoxContents()

				Dim	strDuplicate	As	String

				Dim	pagNew	As	Page

				With	ThisDocument.Pages(1).Shapes(1).TextFrame.TextRange

								strDuplicate	=	.Duplicate

				End	With

				Set	pagNew	=	ThisDocument.Pages.Add(Count:=1,	After:=1)

				pagNew.Shapes.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=72,	Top:=72,	Width:=200,	Height:=200).TextFrame	_

												.TextRange.Text	=	strDuplicate

End	Sub

	 	



Show	All



EchoAsterisks	Property
MsoTrue	if	asterisks	should	be	displayed	in	place	of	text	that	is	entered	into	a
Web	text	box	control.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Displays	the	text	entered	into	a	Web	text	box	control.
msoTriStateMixed
msoTriStateToggle
msoTrue	Displays	asterisks	in	place	of	text	entered	into	a	Web	text	box	control.

expression.EchoAsterisks

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	Web	text	box	control,	sets	the	maximum	limit	as	ten
characters,	specifies	that	entry	is	required,	and	masks	the	entry	with	asterisks
when	a	user	enters	into	the	control.

Sub	AddPasswordTextBox()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlSingleLineTextBox,	Left:=100,	_

												Top:=100,	Width:=72,	Height:=15)

								.Name	=	"Password"

								With	.WebTextBox

												.Limit	=	10

												.EchoAsterisks	=	msoTrue

												.RequiredControl	=	msoTrue

								End	With

				End	With

End	Sub

	 	



Show	All



EditingType	Property
If	the	specified	node	is	a	vertex,	this	property	returns	an	MsoEditingType
constant	indicating	how	changes	made	to	the	node	affect	the	two	segments
connected	to	the	node.	If	the	node	is	a	control	point	for	a	curved	segment,	this
property	returns	the	editing	type	of	the	adjacent	vertex.	Read-only.

MsoEditingType	can	be	one	of	these	MsoEditingType	constants.
msoEditingAuto	An	automatically	adjusted	node.
msoEditingCorner	A	corner	node.
msoEditingSmooth	A	smooth	curve	node.
msoEditingSymmetric	A	symmetric	curve	node.

expression.EditingType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetEditingType	method	to	set	the	value	of	this	property.



Example

This	example	changes	all	corner	nodes	to	smooth	curve	nodes	in	the	third	shape
in	the	active	publication.	The	shape	must	be	a	freeform	drawing.

Dim	intNode	As	Integer

With	ActiveDocument.Pages(1).Shapes(3).Nodes

				For	intNode	=	1	to	.Count

								If	.Item(intNode).EditingType	=	msoEditingCorner	Then

												.SetEditingType	Index:=intNode,	_

																EditingType:=msoEditingSmooth

								End	If

				Next

End	With

	 	



EffectiveResolution	Property
Returns	a	Long	that	represents,	in	dots	per	inch	(dpi),	the	effective	resolution	of
the	picture.	Read-only.

expression.EffectiveResolution()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

The	effective	resolution	of	a	picture	is	inversely	proportional	to	the	scaling	at
which	the	picture	is	printed.	The	larger	the	scaling,	the	lower	the	effective
resolution.	For	example,	suppose	a	picture	measuring	4	inches	by	4	inches	was
originally	scanned	at	300	dpi.	If	that	picture	is	scaled	to	2	inches	by	2	inches,	its
effective	resolution	is	600	dpi.

Use	the	OriginalResolution	property	of	the	PictureFormat	object	to	determine
the	resolution	of	linked	pictures	or	OLE	objects.	Use	the	HorizontalScale	and
VerticalScale	properties	to	determine	the	scaling	of	a	picture.



Example

The	following	example	returns	a	list	of	pictures	whose	effective	resolution	falls
below	a	specified	threshold	(100	dpi)	in	the	active	publication.

Sub	ListLowResolutionPictures()

	 Dim	pgLoop	As	Page

	 Dim	shpLoop	As	Shape

				For	Each	pgLoop	In	ActiveDocument.Pages

								For	Each	shpLoop	In	pgLoop.Shapes

				

												If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

												

																With	shpLoop.PictureFormat

																				If	.IsEmpty	=	msoFalse	Then

																								If	.EffectiveResolution	<	100	Then

																												Debug.Print	.Filename

																												Debug.Print	"Page	"	&	pgLoop.PageNumber

																												Debug.Print	"Resolution	in	publication:	"	&	.

																								End	If

																				End	If

																End	With

												

												End	If

								

								Next	shpLoop

				Next	pgLoop

End	Sub



EmailAddress	Property
Sets	or	returns	a	String	representing	the	e-mail	address	to	use	when	processing
Web	form	data.	Read/write.

expression.EmailAddress

expression				Required.	An	expression	that	returns	a	WebCommandButton
object.



Example

This	example	sets	Publisher	to	process	data	on	the	Web	form	in	the	current
publication	by	sending	an	e-mail	message	to	a	specified	e-mail	address.

Sub	WebFormData()

				With	ThisDocument.Pages(1).Shapes(1).WebCommandButton

								.DataRetrievalMethod	=	pbSubmitDataRetrievalEmail

								.EmailAddress	=	"someone@example.com"

								.EmailSubject	=	"Web	form	data"

				End	With

End	Sub

	 	



EmailAsImg	Property
True	to	send	the	entire	publication	page	as	a	single	JPEG	image.	Read/write
Boolean.

expression.EmailAsImg

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	increase	your	message's	compatibility	with	older	e-mail	clients,
but	may	result	in	larger	file	size.

This	property	is	accessible	for	print	publications	in	addition	to	Web	publications.

The	properties	of	the	WebOptions	object	are	used	to	specify	the	behavior	of
Web	publications.	This	means	that	when	any	of	these	properties	are	modified,
newly	created	Web	publications	will	inherit	the	modified	properties.

This	property	corresponds	to	the	check	box	in	the	E-Mail	Options	section	of	the
Web	tab	of	the	Options	dialog	box.



Example

The	following	example	sets	Publisher	to	e-mail	publication	pages	as	JPEG
images.

Application.WebOptions.EmailAsImg	=	True



EmailSubject	Property
Sets	or	returns	a	String	that	represents	the	subject	for	e-mail	messages	generated
to	process	Web	form	data.	Read/write.

expression.EmailSubject

expression				Required.	An	expression	that	returns	a	WebCommandButton
object.



Example

This	example	sets	Publisher	to	process	data	on	the	Web	form	in	the	current
publication	by	sending	an	e-mail	message	with	a	subject	line	to	a	specified	e-
mail	address.

Sub	WebFormData()

				With	ThisDocument.Pages(1).Shapes(1).WebCommandButton

								.DataRetrievalMethod	=	pbSubmitDataRetrievalEmail

								.EmailAddress	=	"someone@example.com"

								.EmailSubject	=	"Web	form	data"

				End	With

End	Sub

	 	



Show	All



Emboss	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	text	is
formatted	as	embossed.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	The	specified	text	is	not	formatted	as	embossed.
msoTriStateMixed	Return	value	which	indicates	a	combination	of	msoTrue
and	msoFalse	for	the	specified	text	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	specified	text	is	formatted	as	embossed.

expression.Emboss

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	Emboss	to	msoTrue	sets	Engrave	to	msoFalse	and	vice	versa.



Example

This	example	embosses	all	the	text	in	the	first	story.

Sub	FontEmb()

				Dim	fntEmb	As	Font

				Set	fntEmb	=	Application.ActiveDocument.	_

								Stories(1).TextRange.Font

				If	fntEmb.Emboss	=	msoFalse	Or	msoTriStateMixed	Then

								fntEmb.Emboss	=	msoTrue

				End	If

End	Sub

	 	



Enabled	Property
True	if	a	wizard	property	is	enabled.	Read-only	Boolean.

expression.Enabled

expression				Required.	An	expression	that	returns	a	WizardProperty	object.



Example

This	example	displays	the	name	of	each	enabled	wizard	property	in	the	active
publication.

Sub	SetEnabledProperty()

				Dim	wizProperty	As	WizardProperty

				For	Each	wizProperty	In	ActiveDocument.Wizard.Properties

								If	wizProperty.Enabled	=	True	Then

												MsgBox	"The	name	of	the	wizard	property	is	"	&	wizProperty.Name

								End	If

				Next

End	Sub

	 	



EnableIncrementalUpload	Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	changes	made	to	a	Web
publication	can	be	uploaded	to	a	Web	server	independent	of	the	entire
publication.	If	True,	only	changes	made	to	a	publication	will	be	uploaded	to	the
Web	server	when	published.	If	False,	the	entire	publication	will	be	uploaded	to
the	Web	server.	The	default	value	is	True.	Read/write.

expression.EnableIncrementalUpload

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

The	EnableIncrementalUpload	property	applies	only	to	Web	publications	that
have	already	been	published	to	a	Web	server.	If	a	Web	publication	has	not
already	been	published	to	a	Web	server,	the	entire	publication	will	be	published
to	the	server	during	the	initial	publishing	process,	regardless	of	whether	the
EnableIncrementalUpload	property	is	set	to	True.	If	a	Web	publication	has
already	been	published	to	a	Web	server	and	the	EnableIncrementalUpload
property	is	then	set	to	True,	only	changes	made	to	the	Web	publication,	and	not
the	entire	publication,	after	this	point	will	be	published	to	the	server.



Example

The	following	example	tests	whether	the	Web	publication	is	set	to	upload	only
changes	made	to	the	publication.	If	not,	the	EnableIncrementalUpload	property
is	set	to	True	to	specify	that	only	changes	to	the	publication	be	uploaded	to	the
Web	server.

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				If	.EnableIncrementalUpload	=	False	Then

								.EnableIncrementalUpload	=	True

				End	If

End	With

	 	



Show	All



Encoding	Property
Returns	an	MsoEncoding	constant	that	specifies	the	encoding	of	the	Web
publication.	Read/write.

MsoEncoding	can	be	one	of	these	MsoEncoding	constants.
msoEncodingArabic
msoEncodingArabicASMO
msoEncodingArabicAutoDetect
msoEncodingArabicTransparentASMO
msoEncodingAutoDetect
msoEncodingBaltic
msoEncodingCentralEuropean
msoEncodingCyrillic
msoEncodingCyrillicAutoDetect
msoEncodingEBCDICArabic
msoEncodingEBCDICDenmarkNorway
msoEncodingEBCDICFinlandSweden
msoEncodingEBCDICFrance
msoEncodingEBCDICGermany
msoEncodingEBCDICGreek
msoEncodingEBCDICGreekModern
msoEncodingEBCDICHebrew
msoEncodingEBCDICIcelandic
msoEncodingEBCDICInternational
msoEncodingEBCDICItaly
msoEncodingEBCDICJapaneseKatakanaExtended
msoEncodingEBCDICKatakanaExtendedAndJapanese
msoEncodingEBCDICKoreanExtended
msoEncodingEBCDICKoreanExtendedAndKorean
msoEncodingEBCDICLatinAmericaSpain
msoEncodingEBCDICMultilingualROECELatin2



msoEncodingEBCDICRussian
msoEncodingEBCDICSerbianBulgarian
msoEncodingEBCDICSimplifiedChineseExtendedAndSimplifiedChinese
msoEncodingEBCDICThai
msoEncodingEBCDICTurkish
msoEncodingEBCDICTurkishLatin5
msoEncodingEBCDICUnitedKingdom
msoEncodingEBCDICUSCanada
msoEncodingEBCDICUSCanadaAndJapanese
msoEncodingEBCDICUSCanadaAndTraditionalChinese
msoEncodingEUCChineseSimplifiedChinese
msoEncodingEUCJapanese
msoEncodingEUCKorean
msoEncodingEUCTaiwaneseTraditionalChinese
msoEncodingEuropa3
msoEncodingExtAlphaLowercase
msoEncodingGreek
msoEncodingGreekAutoDetect
msoEncodingHebrew
msoEncodingHZGBSimplifiedChinese
msoEncodingIA5German
msoEncodingIA5IRV
msoEncodingIA5Norwegian
msoEncodingIA5Swedish
msoEncodingISCIIAssamese
msoEncodingISCIIBengali
msoEncodingISCIIDevanagari
msoEncodingISCIIGujarati
msoEncodingISCIIKannada
msoEncodingISCIIMalayalam
msoEncodingISCIIOriya
msoEncodingISCIIPunjabi
msoEncodingISCIITamil



msoEncodingISCIITelugu
msoEncodingISO2022CNSimplifiedChinese
msoEncodingISO2022CNTraditionalChinese
msoEncodingISO2022JPJISX02011989
msoEncodingISO2022JPJISX02021984
msoEncodingISO2022JPNoHalfwidthKatakana
msoEncodingISO2022KR
msoEncodingISO6937NonSpacingAccent
msoEncodingISO885915Latin9
msoEncodingISO88591Latin1
msoEncodingISO88592CentralEurope
msoEncodingISO88593Latin3
msoEncodingISO88594Baltic
msoEncodingISO88595Cyrillic
msoEncodingISO88596Arabic
msoEncodingISO88597Greek
msoEncodingISO88598Hebrew
msoEncodingISO88599Turkish
msoEncodingJapaneseAutoDetect
msoEncodingJapaneseShiftJIS
msoEncodingKOI8R
msoEncodingKOI8U
msoEncodingKorean
msoEncodingKoreanAutoDetect
msoEncodingKoreanJohab
msoEncodingMacArabic
msoEncodingMacCroatia
msoEncodingMacCyrillic
msoEncodingMacGreek1
msoEncodingMacHebrew
msoEncodingMacIcelandic
msoEncodingMacJapanese
msoEncodingMacKorean



msoEncodingMacLatin2
msoEncodingMacRoman
msoEncodingMacRomania
msoEncodingMacSimplifiedChineseGB2312
msoEncodingMacTraditionalChineseBig5
msoEncodingMacTurkish
msoEncodingMacUkraine
msoEncodingOEMArabic
msoEncodingOEMBaltic
msoEncodingOEMCanadianFrench
msoEncodingOEMCyrillic
msoEncodingOEMCyrillicII
msoEncodingOEMGreek437G
msoEncodingOEMHebrew
msoEncodingOEMIcelandic
msoEncodingOEMModernGreek
msoEncodingOEMMultilingualLatinI
msoEncodingOEMMultilingualLatinII
msoEncodingOEMNordic
msoEncodingOEMPortuguese
msoEncodingOEMTurkish
msoEncodingOEMUnitedStates
msoEncodingSimplifiedChineseAutoDetect
msoEncodingSimplifiedChineseGBK
msoEncodingT61
msoEncodingTaiwanCNS
msoEncodingTaiwanEten
msoEncodingTaiwanIBM5550
msoEncodingTaiwanTCA
msoEncodingTaiwanTeleText
msoEncodingTaiwanWang
msoEncodingThai
msoEncodingTraditionalChineseAutoDetect



msoEncodingTraditionalChineseBig5
msoEncodingTurkish
msoEncodingUnicodeBigEndian
msoEncodingUnicodeLittleEndian
msoEncodingUSASCII
msoEncodingUTF7
msoEncodingUTF8
msoEncodingVietnamese
msoEncodingWestern

expression.Encoding

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

If	the	AlwaysSaveInDefaultEncoding	property	is	set	to	True	on	a	given
WebOptions	object,	any	subsequent	attempts	to	set	the	Encoding	property	on
that	object	will	be	ignored.

Attempting	to	set	the	Encoding	property	to	an	MsoEncoding	constant	that	is	not
available	on	the	client	computer	results	in	a	run-time	error.



Example

The	following	example	tests	whether	the	Web	publication	is	currently	set	to	be
saved	using	default	encoding.	If	so,	the	AlwaysSaveInDefaultEncoding
property	is	set	to	False,	and	the	Encoding	property	is	used	to	set	the	encoding	to
Unicode	(UTF-8).

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				If	.AlwaysSaveInDefaultEncoding	=	True	Then

								.AlwaysSaveInDefaultEncoding	=	False

								.Encoding	=	msoEncodingUTF8

				End	If

End	With

	 	



End	Property
Sets	or	returns	a	Long	that	represents	the	ending	character	position	of	a	selection
or	text	range.	Read/write.

expression.End

expression				Required.	An	expression	that	returns	a	TextRange	object.



Example

This	example	starts	the	selection	on	the	50th	character	of	the	current	text	box
shape	and	ends	on	the	150th	character,	then	bolds	the	text.

Sub	test2()

				With	Selection.TextRange

								.Start	=	50

								.End	=	150

								.Font.Bold	=	msoTrue

				End	With

End	Sub

	 	



Show	All



EndArrowheadLength	Property
Returns	or	sets	an	MsoArrowheadLength	indicating	the	length	of	the
arrowhead	at	the	end	of	the	specified	line.	Read/write.

MsoArrowheadLength	can	be	one	of	these	MsoArrowheadLength	constants.
msoArrowheadLengthMedium
msoArrowheadLengthMixed	Return	value	only;	indicates	a	combination	of
the	other	states	in	the	specified	shape	range.
msoArrowheadLong
msoArrowheadShort

expression.EndArrowheadLength

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	BeginArrowheadLength	property	to	return	or	set	the	length	of	the
arrowhead	at	the	beginning	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



EndArrowheadStyle	Property
Returns	or	sets	an	MsoArrowheadStyle	constant	indicating	the	style	of	the
arrowhead	at	the	end	of	the	specified	line.	Read/write.

MsoArrowheadStyle	can	be	one	of	these	MsoArrowheadStyle	constants.
msoArrowheadDiamond
msoArrowheadNone
msoArrowheadOpen
msoArrowheadOval
msoArrowheadStealth
msoArrowheadStyleMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	shape	range.
msoArrowheadTriangle

expression.EndArrowheadStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	BeginArrowheadStyle	property	to	return	or	set	the	style	of	the
arrowhead	at	the	beginning	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



EndArrowheadWidth	Property
Returns	or	sets	an	MsoArrowheadWidth	constant	indicating	the	width	of	the
arrowhead	at	the	end	of	the	specified	line.	Read/write.

MsoArrowheadWidth	can	be	one	of	these	MsoArrowheadWidth	constants.
msoArrowheadNarrow
msoArrowheadWide
msoArrowheadWidthMedium
msoArrowheadWidthMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	shape	range.

expression.EndArrowheadWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	BeginArrowheadWidth	property	to	return	or	set	the	width	of	the
arrowhead	at	the	beginning	of	the	line.



Example

This	example	adds	a	line	to	the	active	publication.	There's	a	short,	narrow	oval
on	the	line's	starting	point	and	a	long,	wide	triangle	on	its	end	point.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=100,	BeginY:=100,	_

								EndX:=200,	EndY:=300).Line

				.BeginArrowheadLength	=	msoArrowheadShort

				.BeginArrowheadStyle	=	msoArrowheadOval

				.BeginArrowheadWidth	=	msoArrowheadNarrow

				.EndArrowheadLength	=	msoArrowheadLong

				.EndArrowheadStyle	=	msoArrowheadTriangle

				.EndArrowheadWidth	=	msoArrowheadWide

End	With

	 	



Show	All



EndConnected	Property
Returns	an	MsoTriState	constant	indicating	whether	the	end	of	the	specified
connector	is	connected	to	a	shape.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	end	of	the	specified	connector	is	not	connected	to	a	shape.
msoTriStateMixed	Return	value	only;	indicates	a	combination	of	msoTrue	and
msoFalse	in	the	specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	end	of	the	specified	connector	is	connected	to	a	shape.

expression.EndConnected

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	BeginConnected	property	to	determine	if	the	beginning	of	a	connector
is	connected	to	a	shape.



Example

If	the	third	shape	on	the	first	page	in	the	active	publication	is	a	connector	whose
end	is	connected	to	a	shape,	this	example	stores	the	connection	site	number,
stores	a	reference	to	the	connected	shape,	and	then	disconnects	the	end	of	the
connector	from	the	shape.

Dim	intSite	As	Integer

Dim	shpConnected	As	Shape

With	ActiveDocument.Pages(1).Shapes(3)

				'	Test	whether	shape	is	a	connector.

				If	.Connector	Then

								With	.ConnectorFormat

												'	Test	whether	connector	is	connected	to	another	shape.

												If	.End	Connected	Then

																'	Store	connection	site	number.

																intSite	=	.EndConnectionSite

																'	Set	reference	to	connected	shape.

																Set	shpConnected	=	.EndConnectedShape

																'	Disconnect	connector	and	shape.

																.EndDisconnect

												End	If

								End	With

				End	If

End	With

	 	



EndConnectedShape	Property
Returns	a	Shape	object	that	represents	the	shape	to	which	the	end	of	the
specified	connector	is	attached.

expression.EndConnectedShape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	end	of	the	specified	connector	isn't	attached	to	a	shape,	an	error	occurs.

Use	the	BeginConnectedShape	property	to	return	the	shape	attached	to	the
beginning	of	a	connector.



Example

This	example	assumes	that	the	first	page	in	the	active	publication	already
contains	two	shapes	attached	by	a	connector	named	Conn1To2.	The	code	adds	a
rectangle	and	a	connector	to	the	first	page.	The	end	of	the	new	connector	will	be
attached	to	the	same	connection	site	as	the	end	of	the	connector	named
Conn1To2,	and	the	beginning	of	the	new	connector	will	be	attached	to
connection	site	one	on	the	new	rectangle.

Dim	shpNew	As	Shape

Dim	intSite	As	Integer

Dim	shpOld	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	new	rectangle.

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=450,	Top:=190,	Width:=200,	Height:=100)

				'	Add	new	connector.

				.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=10,	EndY:=10)	_

								.Name	=	"Conn1To3"

				'	Get	connection	site	number	of	old	shape,	and	set

				'	reference	to	old	shape.

				With	.Item("Conn1To2").ConnectorFormat

								intSite	=	.EndConnectionSite

								Set	shpOld	=	.EndConnectedShape

				End	With

				'	Connect	new	connector	to	old	shape	and	new	rectangle.

				With	.Item("Conn1To3").ConnectorFormat

								.EndConnect	ConnectedShape:=shpOld,	_

												ConnectionSite:=intSite

								.BeginConnect	ConnectedShape:=shpNew,	_

												ConnectionSite:=1

				End	With

End	With

	 	





EndConnectionSite	Property
Returns	a	Long	indicating	the	connection	site	to	which	the	end	of	a	connector	is
connected.	Read-only.

expression.EndConnectionSite

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	end	of	the	specified	connector	isn't	attached	to	a	shape,	this	property
generates	an	error.

Use	the	BeginConnectionSite	property	to	return	the	site	to	which	the	beginning
of	a	connector	is	connected.



Example

This	example	assumes	that	the	first	page	in	the	active	publication	already
contains	two	shapes	attached	by	a	connector	named	Conn1To2.	The	code	adds	a
rectangle	and	a	connector	to	the	first	page.	The	end	of	the	new	connector	will	be
attached	to	the	same	connection	site	as	the	end	of	the	connector	named
Conn1To2,	and	the	beginning	of	the	new	connector	will	be	attached	to
connection	site	one	on	the	new	rectangle.

Dim	shpNew	As	Shape

Dim	intSite	As	Integer

Dim	shpOld	As	Shape

With	ActiveDocument.Pages(1).Shapes

				'	Add	new	rectangle.

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=450,	Top:=190,	Width:=200,	Height:=100)

				'	Add	new	connector.

				.AddConnector(Type:=msoConnectorCurve,	_

								BeginX:=0,	BeginY:=0,	EndX:=10,	EndY:=10)	_

								.Name	=	"Conn1To3"

				'	Get	connection	site	number	of	old	shape,	and	set

				'	reference	to	old	shape.

				With	.Item("Conn1To2").ConnectorFormat

								intSite	=	.EndConnectionSite

								Set	shpOld	=	.EndConnectedShape

				End	With

				'	Connect	new	connector	to	old	shape	and	new	rectangle.

				With	.Item("Conn1To3").ConnectorFormat

								.EndConnect	ConnectedShape:=shpOld,	_

												ConnectionSite:=intSite

								.BeginConnect	ConnectedShape:=shpNew,	_

												ConnectionSite:=1

				End	With

End	With

	 	





Show	All



Engrave	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	text	is
formatted	as	engraved.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	for	this	property.
msoFalse	The	specified	text	is	not	formatted	as	engraved.
msoTriStateMixed	Return	value	which	indicates	a	combination	of	msoTrue
and	msoFalse	for	the	specified	text	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	specified	text	is	formatted	as	engraved.

expression.Engrave

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	Engrave	to	msoTrue	sets	Emboss	to	msoFalse,	and	vice	versa.



Example

This	example	engraves	all	the	fonts	in	the	first	story.

Sub	FontEng()

				Dim	fntEng	As	Font

				Set	fntEng	=	Application.ActiveDocument.	_

								Stories(1).TextRange.Font

				If	fntEng.Engrave	=	msoFalse	Or	msoTriStateMixed	Then

								fntEng.Engrave	=	msoTrue

				End	If

End	Sub

	 	



Show	All



EnvelopePrintOrientation	Property
Returns	or	sets	a	PbOrientationType	constant	that	represents	the	orientation
used	to	print	envelopes.	Read/write.

PbOrientationType	can	be	one	of	these	PbOrientationType	constants.
pbOrientationLandscape
pbOrientationPortrait

expression.EnvelopePrintOrientation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Returns	'Permission	Denied'	for	publications	that	are	not	envelopes.



Example

This	example	sets	envelope	printing	options,	including	the	orientation	of
envelopes.	This	example	assumes	the	publication	is	an	envelope.

Sub	SetEnvelopeOptions()

				With	Options

								.UseEnvelopePrintOptions	=	True

								.UseEnvelopePaperSizes	=	True

								.EnvelopePrintOrientation	=	pbOrientationLandscape

								.EnvelopePrintPlacement	=	pbPlacementLeft

				End	With

End	Sub

	 	



Show	All



EnvelopePrintPlacement	Property
Returns	or	sets	a	PbPlacementType	constant	that	represents	the	placement	of
envelopes	in	the	printer	tray.	Read/write.

PbPlacementType	can	be	one	of	these	PbPlacementType	constants.
pbPlacementCenter
pbPlacementLeft
pbPlacementRight

expression.EnvelopePrintPlacement

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Returns	'Permission	Denied'	for	publications	that	are	not	envelopes.



Example

This	example	sets	envelope	printing	options,	including	specifying	how
envelopes	are	placed	in	the	printer	tray.	This	example	assumes	the	publication	is
an	envelope.

Sub	SetEnvelopeOptions()

				With	Options

								.UseEnvelopePrintOptions	=	True

								.UseEnvelopePaperSizes	=	True

								.EnvelopePrintOrientation	=	pbOrientationLandscape

								.EnvelopePrintPlacement	=	pbPlacementLeft

				End	With

End	Sub

	 	



EnvelopeVisible	Property
Returns	or	sets	a	Boolean	indicating	whether	the	e-mail	message	header	is
visible	in	the	publication	window.	Read/write.

expression.EnvelopeVisible

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	e-mail	message	header	for	the	active	publication.

ActiveDocument.EnvelopeVisible	=	True

	 	



Show	All



Exists	Property
As	it	applies	to	the	BorderArtFormat	object.

True	if	the	specified	BorderArtFormat	object	exists.	Read-only	Boolean.

expression.Exists()

expression				Required.	An	expression	that	returns	a	BorderArtFormat	object.

As	it	applies	to	the	PageBackground	object.

True	if	the	specified	PageBackground	object	exists.	Read/write	Boolean.

expression.Exists

expression				Required.	An	expression	that	returns	a	PageBackground	object.



Example

As	it	applies	to	the	BorderArtFormat	object.

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	publication.	If	BorderArt	exists,	it	is	deleted.

Sub	DeleteBorderArt()

Dim	anyPage	As	Page

Dim	anyShape	As	Shape

For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .Delete

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub

As	it	applies	to	the	PageBackground	object.

The	following	example	tests	for	the	existence	of	a	background	on	the	first	page
of	the	active	document.	If	a	background	does	not	exist,	one	is	created.

If	ActiveDocument.Pages(1).Background.Exists	=	False	Then

				ActiveDocument.Pages(1).Background.Create

End	If



Show	All



ExpandUsingKashida	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	to	apply	kashida
rules	while	applying	tracking	to	Arabic	text.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	Microsoft	Publisher	does	not	apply	kashida	rules	while	applying
tracking	to	Arabic	text.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Set	value	that	toggles	the	property	value	between	msoTrue
and	msoFalse.
msoTrue	Publisher	does	apply	kashida	rules	while	applying	tracking	to	Arabic
text.

expression.ExpandUsingKashida

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	Microsoft	Publisher	to	apply	kashida	rules	while
applying	tracking	to	Arabic	text	for	all	text	ranges	on	page	one	of	the	active
publication.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				If	shpLoop.HasTextFrame	Then

								shpLoop.TextFrame.TextRange	_

												.Font.ExpandUsingKashida	=	msoTrue

				End	If

Next	shpLoop

	 	



ExtrusionColor	Property
Returns	a	ColorFormat	object	representing	the	color	of	the	shape's	extrusion.

expression.ExtrusionColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	active	publication,	and	then	specifies	that	the
oval	be	extruded	to	a	depth	of	50	points	and	that	the	extrusion	be	purple.

Dim	shpNew	As	Shape

'	Set	a	reference	to	a	new	oval.

Set	shpNew	=	ActiveDocument.Pages(1).Shapes	_

				.AddShape(Type:=msoShapeOval,	_

				Left:=90,	Top:=90,	Width:=90,	Height:=40)

'	Format	the	3-D	properties	of	the	oval.

With	shpNew.ThreeD

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

End	With

	 	



Show	All



ExtrusionColorType	Property
Returns	or	sets	an	MsoExtrusionColorType	constant	indicating	whether	the
extrusion	color	is	based	on	the	extruded	shape's	fill	(the	front	face	of	the
extrusion)	and	automatically	changes	when	the	shape's	fill	changes,	or	whether
the	extrusion	color	is	independent	of	the	shape's	fill.	Read/write.

MsoExtrusionColorType	can	be	one	of	these	MsoExtrusionColorType
constants.
msoExtrusionColorAutomatic	Extrusion	color	is	based	on	shape	fill.
msoExtrusionColorCustom	Extrusion	color	is	independent	of	shape	fill.
msoExtrusionColorTypeMixed	Return	value	only;	indicates	a	combination	of
the	other	states	in	the	specified	shape	range.

expression.ExtrusionColorType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

If	the	first	shape	in	the	active	publication	has	an	automatic	extrusion	color,	this
example	gives	the	extrusion	a	custom	yellow	color.

With	ActiveDocument.Pages(1).Shapes(1).ThreeD

				If	.ExtrusionColorType	=	msoExtrusionColorAutomatic	Then

								.ExtrusionColor.RGB	=	RGB(240,	235,	16)

				End	If

End	With

	 	



Fields	Property
Returns	a	Fields	object	that	represents	all	the	fields	in	the	specified	text	range.

expression.Fields

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	bolds	the	first	field	in	the	first	shape	on	the	first	page	of	the	active
publication.

Sub	CountFields()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Fields(1).TextRange.Font.Bold	=	msoTrue

End	Sub

	 	



Show	All



FieldType	Property
Returns	a	pbMailMergeDataFieldType	constant	that	represents	the	type	of	data
contained	in	the	data	field.

PbMailMergeDataFieldType	can	be	one	of	these	pbMailMergeDataFieldType
constants.
pbMailMergeDataFieldPicture
pbMailMergeDataFieldString

expression.FieldType

expression				Required.	An	expression	that	returns	a	MailMergeDataField
object.



Remarks

Use	the	Insert	method	of	the	MailMergeDataFields	collection	to	add	a	picture
data	field	to	a	publication's	catalog	merge	area.

Use	the	InsertMailMergeField	method	of	the	TextRange	object	to	add	a	text
data	field	to	a	text	box	in	the	publication's	catalog	merge	area.



Example

This	example	defines	a	data	field	as	a	picture	data	field,	inserts	it	into	the	catalog
merge	area	of	the	specified	publication,	and	sizes	and	positions	the	picture	data
field.	This	example	assumes	that	the	publication	has	been	connected	to	a	data
source,	and	that	a	catalog	merge	area	has	been	added	to	the	publication.

Dim	pbPictureField1	As	Shape

				'Define	the	Photo	field	as	a	picture	data	type

				With	ThisDocument.MailMerge.DataSource.DataFields

								.Item("Photo:").FieldType	=	pbMailMergeDataFieldPicture

				End	With

				

				'Insert	a	picture	field,	then	size	and	position	it

				Set	pbPictureField1	=	ThisDocument.MailMerge.DataSource.DataFields.Item("Photo:").Insert

								With	pbPictureField1

												.Height	=	100

												.Width	=	100

												.Top	=	85

												.Left	=	375

								End	With

	 	



Show	All



FileDialog	Property
Returns	a	FileDialog	object	which	represents	a	single	instance	of	a	file	dialog
box.

expression.FileDialog(Type)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type			Required	MsoFileDialogType.	The	type	of	dialog.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

mk:@MSITStore:vbaof11.chm::/html/ofobjFileDialog.htm


Example

This	example	displays	the	Save	As	dialog	box	and	stores	the	file	name	specified
by	the	user.

Sub	ShowSaveAsDialog()

				Dim	dlgSaveAs	As	FileDialog

				Dim	strFile	As	String

				Set	dlgSaveAs	=	Application.FileDialog(	_

								Type:=msoFileDialogSaveAs)

				dlgSaveAs.Show

				strFile	=	dlgSaveAs.SelectedItems(1)

End	Sub

	 	



Filename	Property
Returns	a	String	that	represents	the	file	name	of	the	specified	picture	or	OLE
object.	Read-only.

expression.Filename()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

For	linked	pictures	and	OLE	objects,	the	returned	string	represents	the	full	path
and	file	name	of	the	picture.	For	embedded	pictures	and	OLE	objects,	the
returned	string	represents	the	file	name	only.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.



Example

The	following	example	returns	selected	image	properties	for	each	picture	in	the
active	publication.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			If	.IsEmpty	=	msoFalse	Then

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Horizontal	Scaling:	"	&	.HorizontalScale	&	"%"

																								Debug.Print	"Vertical	Scaling:	"	&	.VerticalScale	&	"%"

																								Debug.Print	"File	size	in	publication:	"	&	.FileSize	&	"	bytes"

																			End	If

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



FileSearch	Property
Returns	a	FileSearch	object	that	can	be	used	to	search	for	files	using	either	an
absolute	or	relative	path.

expression.FileSearch

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof11.chm::/html/ofobjFileSearch1.htm


Example

This	example	displays,	in	a	series	of	message	boxes,	the	file	names	of	all
Publisher	files	in	the	specified	folder.	(Note	that	PathToFolder	must	be	replaced
with	a	valid	folder	path	for	this	example	to	work.)

Sub	SearchForFiles()

				Dim	intCount	As	Integer

				With	Application.FileSearch

								.FileName	=	"*.pub"

								.LookIn	=	"PathToFolder"

								.Execute

								For	intCount	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(intCount)

								Next	intCount

				End	With

End	Sub

	 	



FileSize	Property
Returns	a	Long	that	represents,	in	bytes,	the	size	of	the	picture	or	OLE	object	as
it	appears	in	the	specified	publication.	Read-only.

expression.FileSize()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

If	the	picture	or	OLE	object	is	linked,	use	the	OriginalFileSize	property	to
determine	the	size	of	the	linked	file.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	prints
selected	image	properties	for	pictures	that	are	linked.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Original	File	Size:	"	&	.OriginalFileSize	&	"	bytes"

																								Debug.Print	"File	size	in	publication:	"	&	.

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Fill	Property
Returns	a	FillFormat	object	representing	the	fill	for	the	specified	shape	or	table
cell.

expression.Fill

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	AutoShape	object	and	fills	the	shape	with	green.

Sub	NewShapeItem()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ThisDocument.MasterPages.Item(1).Shapes	_

								.AddShape(Type:=msoShapeHeart,	Left:=40,	Top:=80,	_

								Width:=50,	Height:=50)

				shpHeart.Fill.ForeColor.RGB	=	RGB(Red:=0,	Green:=255,	Blue:=0)

End	Sub

	 	



Show	All



Filters	Property
Returns	a	MailMergeFilters	object	that	represents	filters	applied	to	the	mail
merge	or	catalog	merge	data	source.

expression.Filters

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	new	filter	that	removes	all	records	with	a	blank	Region
field	and	then	applies	the	filter	to	the	active	publication.	This	example	assumes
that	a	mail	merge	data	source	is	attached	to	the	active	publication.

Sub	FilterDataSource()

				With	ActiveDocument.MailMerge.DataSource

								.Filters.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

	 	



Show	All



Find	Property
As	it	applies	to	the	Document	object.

Returns	a	FindReplace	object.	The	FindReplace	object	is	used	to	perform	a	text
search	and	replace	in	the	specified	document.

expression.Find

expression				Required.	An	expression	that	returns	a	Document	object.

As	it	applies	to	the	TextRange	object.

Returns	a	FindReplace	object	from	the	specified	TextRange	object.	The
FindReplace	object	is	used	to	perform	a	text	search	and	replace	in	the	specified
text	range.

expression.Find

expression				Required.	An	expression	that	returns	a	TextRange	object.



Example

As	it	applies	to	the	Document	object.

The	following	example	sets	an	object	variable	to	the	FindReplace	object	of	the
active	document.	A	search	operation	is	executed	that	applies	bold	formatting	to
every	occurrence	of	the	word	"important".

	 Dim	objFind	as	FindReplace

Dim	fFound	as	Boolean

Set	objFind	=	ActiveDocument.Find

fFound	=	True

With	objFind

				.Clear

				.FindText	=	"important"

				Do	While	fFound	=	True	

								fFound	=	.Execute

								If	Not	.FoundTextRange	Is	Nothing	Then

												.FoundTextRange.Font.Bold	=	True

								End	If	

				Loop

End	With	

	 	 	

As	it	applies	to	the	TextRange	object.

The	following	example	sets	an	object	variable	to	the	FindReplace	object	of	the
text	range	of	the	first	shape	in	the	active	document.	A	search	operation	is
executed	that	applies	bold	formatting	to	every	occurrence	of	the	word	"urgent"	in
the	text	range.

	 Dim	objFind	as	FindReplace

Dim	fFound	as	Boolean

Set	objFind	=	ActiveDocument.Pages(1)	_

				.Shapes(1).TextFrame.TextRange.Find

fFound	=	True

With	objFind

				.Clear

				.FindText	=	"urgent"

				Do	While	fFound	=	True	



								fFound	=	.Execute

								If	Not	.FoundTextRange	Is	Nothing	Then

												.FoundTextRange.Font.Bold	=	True

								End	If	

				Loop

End	With

	 	 	



FindText	Property
Sets	or	retrieves	a	String	representing	the	text	to	find	in	the	specified	range	or
selection.	Read/write.

expression.FindText

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	FindText	property	returns	the	plain,	unformatted	text	of	the	selection.	When
you	set	this	property,	the	search	text	is	specified.	You	can	search	for	special
characters	by	specifying	appropriate	character	codes.	For	example,	"^p"
corresponds	to	a	paragraph	mark	and	"^t"	corresponds	to	a	tab	character.

The	default	value	for	the	FindText	property	is	an	empty	string.	Because	only
text	searching	is	supported,	FindText	must	be	explicitly	set	to	avoid	a	runtime
error.



Examples

This	example	replaces	all	occurrences	of	the	word	"This"	in	the	selection	with
"That"	in	each	open	publication.

Dim	objDocument	As	Document

For	Each	objDocument	In	Documents

				With	objDocument.Find

								.Clear

								.MatchCase	=	True

								.FindText	=	"This"

								.ReplaceWithText	=	"That"

								.ReplaceScope	=	pbReplaceScopeAll

								.Forward	=	True

								.Execute

				End	With

Next	objDocument

This	example	replaces	all	tab	characters	with	paragraph	marks.

Dim	objDocument	As	Document

For	Each	objDocument	In	Documents

				With	objDocument.Find

								.Clear

								.MatchCase	=	True

								.FindText	=	"^t"

								.ReplaceWithText	=	"^p"

								.ReplaceScope	=	pbReplaceScopeAll

								.Execute

				End	With

Next	objDocument



FirstLineIndent	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	(measured	in
points)	to	indent	the	first	line	in	a	paragraph.	Read/write.

expression.FirstLineIndent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	text	box,	fills	it	with	text,	and	indents	the	first	line	of
every	paragraph	a	half	inch.

Sub	IndentFirstLines()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes	_

												.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=100,	Top:=100,	Width:=100,	Height:=100)	_

												.TextFrame.TextRange

								For	intCount	=	1	To	10

												.InsertAfter	NewText:="This	is	a	test.	"

								Next	intCount

								.ParagraphFormat.FirstLineIndent	=	InchesToPoints(0.5)

				End	With

End	Sub

	 	



Show	All



FirstRecord	Property
Returns	or	sets	a	Long	that	represents	the	number	of	the	first	data	record	to	be
merged	in	a	mail	merge	or	catalog	merge	operation.	Read/write.

expression.FirstRecord

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	active	record	as	the	first	record	to	be	merged,	and	then
merges	three	records	ending	with	the	record	two	records	forward	in	the	data
source.	This	example	assumes	that	the	active	publication	is	a	mail	merge
document.

Sub	RecordOne()

				With	ActiveDocument.MailMerge

								.DataSource.FirstRecord	=	.DataSource.ActiveRecord

								.DataSource.LastRecord	=	.DataSource.ActiveRecord	+	2

								.Execute	Pause:=True

				End	With

End	Sub

	 	



Font	Property
Sets	or	returns	a	Font	object	that	represents	character	formatting	attributes
applied	to	the	specified	object.	Read/write.

expression.Font

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	selects	text	and	formats	the	font	as	bold.

Sub	test2()

				With	Selection.TextRange

								.Start	=	50

								.End	=	150

								.Font.Bold	=	msoTrue

				End	With

End	Sub

	 	



Show	All



FontBold	Property
Sets	or	returns	an	MsoTriState	constant	that	represents	whether	the	font	for	a
dropped	capital	letter	or	WordArt	text	effect	is	bold.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.FontBold

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	bold	formatting	to	the	dropped	capital	letter	in	the
specified	text	frame.	This	example	assumes	that	the	specified	text	frame	is
formatted	with	a	dropped	capital	letter.

Sub	BoldDropCap()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.DropCap

								.FontBold	=	msoTrue

								.FontColor.RGB	=	RGB(Red:=150,	Green:=50,	Blue:=180)

								.FontItalic	=	msoTrue

								.FontName	=	"Script	MT	Bold"

				End	With

End	Sub

	 	



FontColor	Property
Returns	or	sets	a	ColorFormat	object	that	represents	the	color	applied	to	a
specified	dropped	capital	letter.

expression.FontColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	an	RGB	color	to	the	dropped	capital	letter	in	the	specified
text	frame.	This	example	assumes	that	the	specified	text	frame	is	formatted	with
a	dropped	capital	letter.

Sub	BoldDropCap()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.DropCap

								.FontBold	=	msoTrue

								.FontColor.RGB	=	RGB(Red:=150,	Green:=50,	Blue:=180)

								.FontItalic	=	msoTrue

								.FontName	=	"Script	MT	Bold"

				End	With

End	Sub

	 	



Show	All



FontItalic	Property
Sets	or	returns	an	MsoTriState	constant	that	represents	whether	the	font	for	a
dropped	capital	letter	or	WordArt	text	effect	is	italicized.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.FontItalic

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	italicizes	the	dropped	capital	letter	in	the	specified	text	frame.	This
example	assumes	that	the	specified	text	frame	is	formatted	with	a	dropped
capital	letter.

Sub	BoldDropCap()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.DropCap

								.FontBold	=	msoTrue

								.FontColor.RGB	=	RGB(Red:=150,	Green:=50,	Blue:=180)

								.FontItalic	=	msoTrue

								.FontName	=	"Script	MT	Bold"

				End	With

End	Sub

	 	



Show	All



FontName	Property
FontName	property	as	it	applies	to	the	DropCap	and	TextEffectFormat

objects.

Sets	or	returns	a	String	that	represents	the	name	of	the	font	applied	to	a	dropped
capital	letter	or	WordArt	text	effect.	Read/write.

expression.FontName

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

FontName	property	as	it	applies	to	the	PhoneticGuide	object.

Returns	a	String	that	represents	the	name	of	the	font	applied	to	phonetic
information	displayed	above	Japanese	text.	Read-only.

expression.FontName

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	applies	the	Script	MT	Bold	font	to	the	dropped	capital	letter	in	the
specified	text	frame.	This	example	assumes	that	the	specified	text	frame	is
formatted	with	a	dropped	capital	letter.

Sub	BoldDropCap()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.DropCap

								.FontBold	=	msoTrue

								.FontColor.RGB	=	RGB(Red:=150,	Green:=50,	Blue:=180)

								.FontItalic	=	msoTrue

								.FontName	=	"Script	MT	Bold"

				End	With

End	Sub

	 	



Show	All



FontSize	Property
FontSize	property	as	it	applies	to	the	TextEffectFormat	object.

Returns	or	sets	a	Variant	that	represents	the	font	size	for	the	specified	WordArt,
in	points.	Read/write.

expression.FontSize

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

FontSize	property	as	it	applies	to	the	PhoneticGuide	object.

Returns	a	Variant	that	represents	the	font	size	of	phonetic	characters.	Read-only.

expression.FontSize

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	sets	the	font	size,	name,	and	bold	setting	for	the	specified	WordArt
shape.	This	example	assume	the	first	shape	on	the	first	page	of	the	active
publication	is	a	WordArt	object.

Sub	SetWordArtFontSize()

				With	ActiveDocument.Pages(1).Shapes(1).TextEffect

								.FontSize	=	54

								.FontBold	=	msoTrue

								.FontName	=	"Snap	ITC"

				End	With

End	Sub

	 	



Footer	Property
Returns	a	HeaderFooter	object	representing	the	footer	of	the	specified	Page
object.	Read	only.

expression.Footer

expression				Required.	An	expression	that	returns	a	Page	object	from	the
MasterPages	collection.



Remarks

This	property	is	for	master	pages	only.	A	"This	feature	is	only	for	master	pages"
error	is	returned	if	the	Footer	property	is	accessed	from	a	Page	object	that	is
returned	form	the	Pages	collection.	A	new	HeaderFooter	object	is	created	for
the	specified	master	page	by	accessing	this	property.



Example

The	following	example	creates	a	HeaderFooter	object	and	sets	it	to	the	footer	of
the	first	master	page.

Dim	objFooter	As	HeaderFooter

Set	objFooter	=	ActiveDocument.MasterPages(1).Footer

	 	 	 	

The	HeaderFooter	object	returned	by	the	Footer	property	can	be	used	to
manipulate	the	footer	content.	The	following	example	sets	some	properties	of	the
HeaderFooter	object	of	the	first	master	page,

With	ActiveDocument.masterPages(1)

				With	.Header

								.TextRange.Text	=	"Windows"	&	Chr(13)	&	"Office"	&	Chr(13)	&	"Internet	Explorer"

								With	.TextRange.ParagraphFormat

												.SetListType	Value:=pbListTypeBullet,	BulletText:="*"

												.Alignment	=	pbParagraphAlignmentLeft

								End	With

				End	With

				With	.Footer

								.TextRange.Hyperlinks.Add	Text:=.TextRange,	_

												Address:="http://www.tailspintoys.com",	_

												TextToDisplay:="Tailspin"

				End	With

End	With



ForeColor	Property
Returns	or	sets	a	ColorFormat	object	representing	the	foreground	color	for	the
fill,	line,	or	shadow.	Read/write.

expression.ForeColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	BackColor	property	to	set	the	background	color	for	a	fill	or	line.



Example

This	example	adds	a	rectangle	to	the	active	publication	and	then	sets	the
foreground	color,	background	color,	and	gradient	for	the	rectangle's	fill.

With	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeRectangle,	_

								Left:=90,	Top:=90,	Width:=90,	Height:=50).Fill

				.ForeColor.RGB	=	RGB(128,	0,	0)

				.BackColor.RGB	=	RGB(170,	170,	170)

				.TwoColorGradient	msoGradientHorizontal,	1

End	With

	 	

This	example	adds	a	patterned	line	to	the	active	publication.

With	ActiveDocument.Pages(1).Shapes.AddLine	_

								(BeginX:=10,	BeginY:=100,	EndX:=250,	EndY:=0).Line

				.Weight	=	6

				.ForeColor.RGB	=	RGB(0,	0,	255)

				.BackColor.RGB	=	RGB(128,	0,	0)

				.Pattern	=	msoPatternDarkDownwardDiagonal

End	With

	 	



Forward	Property
Sets	or	retrieves	a	Boolean	representing	the	direction	of	the	text	search.	True	if
the	find	operation	searches	forward	through	the	document.	False	if	it	searches
backward	through	the	document.	Read/write.

expression.Forward

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

Forward	must	be	set	to	True	when	replacing	text.



Example

This	example	replaces	all	occurrences	of	the	word	"This"	in	the	selection	with
"That"	in	each	open	publication.

Dim	objDocument	As	Document

For	Each	objDocument	In	Documents

				With	objDocument.Find

								.Clear

								.MatchCase	=	True

								.FindText	=	"This"

								.ReplaceWithText	=	"That"

								.ReplaceScope	=	pbReplaceScopeAll

								.Forward	=	True

								.Execute

				End	With

Next	objDocument



FoundTextRange	Property
Returns	a	TextRange	object	that	represents	the	found	text	or	replaced	text	of	a
find	operation.	Read-only.

expression.FoundTextRange

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	actual	TextRange	returned	by	the	FoundTextRange	property	is	determined
by	the	value	of	the	pbReplaceScope	property.	The	following	table	lists	the
corresponding	values	of	these	properties.

for	pbReplaceScopeAll			 FoundTextRange	=	Empty
for	pbReplaceScopeNone FoundTextRange	=	Find	text	range
for	pbReplaceScopeOne FoundTextRange	=	Replace	text	range

When	ReplaceScope	is	set	to	pbReplaceScopeAll	the	FoundTextRange	is
empty.	Any	attempt	to	access	it	will	return	Access	denied.	The	way	to
manipulate	the	text	range	of	the	searched	text	is	to	set	the	ReplaceScope	to
pbReplaceScopeNone	or	pbReplaceScopeOne	and	access	the	text	range	of	the
searched	or	replaced	text	for	each	occurrence	found.

When	ReplaceScope	is	set	to	pbReplaceScopeNone,	FoundTextRange	returns
the	text	range	of	the	searched	text.	The	following	example	illustrates	how	the
font	attributes	of	the	find	text	range	can	be	accessed	when	ReplaceScope	is	set
to	pbReplaceScopeNone.

With	TextRange.Find

				.Clear

				.FindText	=	"important"

				.ReplaceScope	=	pbReplaceScopeNone

				Do	While	.Execute	=	True

								'The	FoundTextRange	contains	the	word	"important".

								If	.FoundTextRange.Font.Italic	=	msoFalse	Then

												.FoundTextRange.Font.Italic	=	msoTrue

								End	If

				Loop

End	With

When	ReplaceScope	is	set	to	pbReplaceScopeOne	the	text	range	of	the
searched	text	is	replaced.	Therefore	the	FoundTextRange	returns	the	text	range
of	the	replacement	text.	The	following	example	demonstrates	how	the	font
attributes	of	the	replaced	text	range	can	be	accessed	when	ReplaceScope	is	set
to	pbReplaceScopeOne.

With	Document.Find



				.Clear

				.FindText	=	"important"

				.ReplaceWithText	=	"urgent"

				.ReplaceScope	=	pbReplaceScopeOne

				Do	While	.Execute	=	True

								'The	FoundTextRange	contains	the	word	"urgent".

								If	.FoundTextRange.Font.Bold	=	msoFalse	Then

												.FoundTextRange.Font.Bold	=	msoTrue

								End	If

				Loop

End	With



Examples

This	example	replaces	each	example	of	the	word	"bizarre"	with	the	word
"strange"	and	applies	italics	and	bold	formatting	to	the	replaced	text.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"bizarre"

				.ReplaceWithText	=	"strange"

				.ReplaceScope	=	pbReplaceScopeOne

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Italic	=	msoTrue

								.FoundTextRange.Font.Bold	=	msoTrue

				Loop

End	With

This	example	finds	all	occurrences	of	the	word	"important"	and	applies	italics
formatting	to	it.

Dim	objTextRange	As	TextRange

Set	objTextRange	=	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

With	objTextRange.Find

				.Clear

				.FindText	=	"important"

				.ReplaceScope	=	pbReplaceScopeNone

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Italic	=	msoTrue

				Loop

End	With



Frequency	Property
Returns	or	sets	a	Long	indicating	the	number	of	lines	per	inch	that	the	plate	will
print.	The	default	is	133.	Read/write.

expression.Frequency

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	specify	a	custom	frequency	setting	for	a	printable	plate,	the
UseCustomHalftone	of	the	AdvancedPrintOptions	object	must	be	set	to	True.
Returns	"Permission	Denied"	if	the	UseCustomHalftone	is	set	to	False.



Example

This	example	sets	the	spot	color	plates	(plates	five	and	higher)	of	a	process	and
spot	color	publication	to	the	same	custom	angle	and	frequency.	The	example
assumes	that	the	publication's	color	mode	has	been	specified	as	process	and	spot
colors,	and	the	publication's	print	mode	has	been	specified	as	separations.

Sub	SetSpotColorPlatesProperties()

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

Dim	intCount	As	Integer

With	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				For	intCount	=	5	To	.Count

								With	.Item(intCount)

												.Angle	=	45

												.Frequency	=	150

								End	With

				Next

End	With

End	Sub



FullName	Property
Returns	a	String	representing	the	full	file	name	of	the	saved	active	publication,
including	its	path	and	file	name.	Read-only.

expression.FullName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	FullName	property	can	be	used	to	return	both	path	and	file	name	as
returned	by	the	Path	and	Name	properties.



Example

The	following	example	demonstrates	the	differences	between	the	Path,	Name,
and	FullName	properties.	This	example	is	best	illustrated	if	the	publication	is
saved	in	a	folder	other	than	the	default.

Sub	PathNames()

				Dim	strPath	As	String

				Dim	strName	As	String

				Dim	strFullName	As	String

				strPath	=	Application.ActiveDocument.Path

				strName	=	Application.ActiveDocument.Name

				strFullName	=	Application.ActiveDocument.FullName

				'	Note	the	file	name	&	path	differences

				'	while	executing.

				MsgBox	"The	path	is:	"	&	strPath

				MsgBox	"The	file	name	is:	"	&	strName

				MsgBox	"The	path	&	file	name	are:	"	&	strFullName

End	Sub

	 	



Gap	Property
Returns	or	sets	a	Variant	indicating	the	horizontal	distance	between	the	end	of
the	callout	line	and	the	text	bounding	box.	Read/write.

expression.Gap

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").



Example

This	example	sets	the	distance	between	the	callout	line	and	the	text	bounding
box	to	3	points	for	the	first	shape	in	the	active	publication.	For	the	example	to
work,	the	shape	must	be	a	callout.

ActiveDocument.Pages(1).Shapes(1).Callout.Gap	=	3

	 	



Show	All



GradientColorType	Property
Returns	an	MsoGradientColorType	constant	indicating	the	gradient	color	type
for	the	specified	fill.	Read-only.

MsoGradientColorType	can	be	one	of	these	MsoGradientColorType	constants.
msoGradientColorMixed	Return	value	only;	indicates	a	combination	of	the
other	states	in	the	specified	range.
msoGradientOneColor
msoGradientPresetColors
msoGradientTwoColors

expression.GradientColorType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	OneColorGradient,	PresetGradient,	or	TwoColorGradient	method	to
set	the	gradient	type	for	the	fill.



Example

This	example	changes	the	fill	for	all	shapes	on	the	first	page	of	the	active
publication	that	have	a	two-color	gradient	fill	to	a	preset	gradient	fill.

Dim	shpLoop	As	Shape

'	Loop	through	collection	of	shapes.

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop.Fill

								'	Test	for	two-color	gradient.

								If	.GradientColorType	=	msoGradientTwoColors	Then

												'	Apply	a	preset	gradient.

												.PresetGradient	Style:=msoGradientHorizontal,	_

																Variant:=1,	PresetGradientType:=msoGradientBrass

								End	If

				End	With

Next	shpLoop

	 	



GradientDegree	Property
Returns	a	Single	indicating	how	dark	or	light	a	one-color	gradient	fill	is.	A	value
of	0	(zero)	means	that	black	is	mixed	in	with	the	shape's	foreground	color	to
form	the	gradient;	a	value	of	1	means	that	white	is	mixed	in;	and	values	between
0	and	1	mean	that	a	darker	or	lighter	shade	of	the	foreground	color	is	mixed	in.
Read-only.

expression.GradientDegree

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	OneColorGradient	method	to	set	the	gradient	degree	for	the	fill.



Example

This	example	adds	a	rectangle	to	the	active	publication	and	sets	the	degree	of	its
fill	gradient	to	match	that	of	the	shape	named	Rectangle	2.	If	Rectangle	2	doesn't
have	a	one-color	gradient	fill,	this	example	generates	an	error.

Dim	sngDegree	As	Single

With	ActiveDocument.Pages(1).Shapes

				'	Store	degree	of	one-color	gradient.

				sngDegree	=	.Item("Rectangle	2").Fill.GradientDegree

				'	Add	new	rectangle.

				With	.AddShape(msoShapeRectangle,	0,	0,	40,	80).Fill

								'	Set	color	and	gradient	for	new	rectangle.

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.OneColorGradient	Style:=msoGradientHorizontal,	_

												Variant:=1,	Degree:=sngDegree

				End	With

End	With

	 	



Show	All



GradientStyle	Property
Returns	an	MsoGradientStyle	constant	indicating	the	gradient	style	for	the
specified	fill.	Read-only.

MsoGradientStyle	can	be	one	of	these	MsoGradientStyle	constants.
msoGradientDiagonalDown
msoGradientDiagonalUp
msoGradientFromCenter
msoGradientFromCorner
msoGradientFromTitle
msoGradientHorizontal
msoGradientMixed	Return	value	only;	indicates	a	combination	of	the	other
states	in	the	specified	shape	range.
msoGradientVertical

expression.GradientStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	OneColorGradient,	PresetGradient,	or	TwoColorGradient	method	to
set	the	gradient	style	for	the	fill.

Attempting	to	return	this	property	for	a	fill	that	doesn't	have	a	gradient	generates
an	error.	Use	the	Type	property	to	determine	whether	the	fill	has	a	gradient.



Example

This	example	adds	a	rectangle	to	the	active	publication	and	sets	its	fill	gradient
style	to	match	that	of	the	shape	named	rect1.	For	the	example	to	work,	rect1
must	have	a	gradient	fill.

Dim	intStyle	As	Integer

With	ActiveDocument.Pages(1).Shapes

				'	Store	gradient	style	of	rect1.

				intStyle	=	.Item("rect1").Fill.GradientStyle

				'	Add	new	rectangle.

				With	.AddShape(Type:=msoShapeRectangle,	_

												Left:=0,	Top:=0,	Width:=40,	Height:=80).Fill

								'	Set	color	and	gradient	of	new	rectangle.

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.OneColorGradient	Style:=intStyle,	_

												Variant:=1,	Degree:=1

				End	With

End	With

	 	



GradientVariant	Property
Returns	a	Long	indicating	the	gradient	variant	for	the	specified	fill.	Generally,
values	are	integers	from	1	to	4	for	most	gradient	fills.	If	the	gradient	style	is
msoGradientFromTitle	or	msoGradientFromCenter,	this	property	returns
either	1	or	2.	The	values	for	this	property	correspond	to	the	gradient	variants
(numbered	from	left	to	right	and	from	top	to	bottom)	on	the	Gradient	tab	in	the
Fill	Effects	dialog	box.	Read-only.

expression.GradientVariant

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	OneColorGradient,	PresetGradient,	or	TwoColorGradient	method	to
set	the	gradient	variant	for	the	fill.



Example

This	example	adds	a	rectangle	to	the	active	publication	and	sets	its	fill	gradient
variant	to	match	that	of	the	shape	named	rect1.	For	the	example	to	work,	rect1
must	have	a	gradient	fill.

Dim	intVariant	As	Integer

With	ActiveDocument.Pages(1).Shapes

				'	Store	gradient	variant	of	rect1.

				intVariant	=	.Item("rect1").Fill.GradientVariant

				'	Add	new	rectangle.

				With	.AddShape(Type:=msoShapeRectangle,	_

												Left:=0,	Top:=0,	Width:=40,	Height:=80).Fill

								'	Set	color	and	gradient	of	new	rectangle.

								.ForeColor.RGB	=	RGB(128,	0,	0)

								.OneColorGradient	Style:=msoGradientHorizontal,	_

												Variant:=intVariant,	Degree:=1

				End	With

End	With

	 	



Show	All



GraphicsResolution	Property
Returns	or	sets	a	PbPrintGraphics	constant	representing	the	resolution	at	which
the	inserted	graphics	are	to	be	printed	in	the	specified	publication.	Read/write.

PbPrintGraphics	can	be	one	of	these	PbPrintGraphics	constants.
pbPrintHighResolution	Default.	Print	linked	graphics	using	the	full-resolution
linked	version.
pbPrintLowResolution	Print	linked	graphics	using	the	low-resolution
placeholder	version	that	is	stored	in	the	publication.
pbPrintGraphicsNoGraphics	Print	a	box	in	place	of	linked	graphics.

expression.GraphicsResolution()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Setting	this	property	only	affects	inserted	pictures	(whether	linked	or	embedded),
and	clip	art.	Autoshapes	and	border	art	will	always	print.

Printing	boxes	in	place	of	graphics	is	useful	when	printing	a	quick	proof	of	the
layout	that	only	shows	the	positioning	of	pictures.

This	property	corresponds	to	the	Graphics	controls	on	the	Graphics	and	Fonts
tab	of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	sets	the	graphics	to	print	as	boxes	in	the	active
publication.

Sub	PrintGraphicAsBoxes

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.GraphicsResolution	<>	pbPrintNoGraphics	Then

	 	 .GraphicsResolution	=	pbPrintNoGraphics

	 	 End	If

	 End	With

End	Sub



GroupItems	Property
Returns	a	GroupShapes	collection	if	the	specified	shape	is	a	group.

expression.GroupItems

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

All	smart	objects	will	be	treated	as	grouped	shapes.



Example

This	example	adds	three	triangles	to	a	publication,	groups	them,	sets	a	color	for
the	entire	group,	and	then	changes	the	color	for	the	second	triangle	only.

Sub	Grouper()

				Dim	docSheet	As	Document

				Set	docSheet	=	ActiveDocument

				With	docSheet.MasterPages.Item(1).Shapes

								'	Add	the	3	triangles

								.AddShape(Type:=msoShapeIsoscelesTriangle,	_

												Left:=10,	Top:=10,	Width:=100,	Height:=100).Name	=	"shpOne"

								.AddShape(Type:=msoShapeIsoscelesTriangle,	_

												Left:=150,	Top:=10,	Width:=100,	Height:=100).Name	=	"shpTwo"

								.AddShape(Type:=msoShapeIsoscelesTriangle,	_

												Left:=300,	Top:=10,	Width:=100,	Height:=100).Name	=	"shpThree"

								'	Group	and	fill	the	3	triangles

								With	.Range(Array("shpOne",	"shpTwo",	"shpThree")).Group

												.Fill.PresetTextured	msoTextureBlueTissuePaper

												.GroupItems(2).Fill.PresetTextured	msoTextureGreenMarble

								End	With

				End	With

End	Sub

	 	



GrowToFitText	Property
True	for	cells	in	a	table	to	increase	vertically	to	fit	text.	Read/write	Boolean.

expression.GrowToFitText

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	each	row	of	the	specified	table	to	12	points,	and	the	row
height	doesn't	increase	as	text	is	added	to	the	cells	in	the	rows.

Sub	DontEnlargeTableCells()

				Dim	rowTable	As	Row

				With	ActiveDocument.Pages(1).Shapes(1).Table

								.GrowToFitText	=	False

								For	Each	rowTable	In	.Rows

												rowTable.Height	=	12

								Next

				End	With

End	Sub

	 	



GutterCenterlines	Property
Returns	or	sets	a	value	that	specifies	whether	to	add	a	center	line	between	the
columns	and	rows	of	the	gutter	guides	in	a	master	page.	Read/write	Boolean.

expression.GutterCenterlines

expression				Required.	An	expression	that	returns	a	LayoutGuides	object.



Remarks

The	GutterCenterlines	property	can	only	be	used	if	the	LayoutGuides.Rows
property	or	the	LayoutGuides.Columns	property	is	greater	than	1.

If	True,	a	red	line	appears	in	the	center	of	the	gutter	guides.	If	False,	no	line
appears	in	the	center	of	the	gutter	guides.	The	default	value	is	False.



Example

The	following	example	modifies	the	first	master	page	of	the	active	publication	to
have	three	rows,	three	columns,	and	red	center	lines	drawn	in	the	gutter	guides.
Any	pages	added	to	the	publication	after	this	point	will	have	red	center	lines
drawn	in	the	gutter	guides.

Dim	theMasterPage	As	page

Dim	theLayoutGuides	As	LayoutGuides

Set	theMasterPage	=	ActiveDocument.MasterPages(1)

Set	theLayoutGuides	=	theMasterPage.LayoutGuides

With	theLayoutGuides

				.Rows	=	3

				.Columns	=	3

				.GutterCenterlines	=	True

End	With



Show	All



HasAlphaChannel	Property
Returns	an	MsoTriState	constant	indicating	whether	the	specified	picture
contains	an	alpha	channel.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	picture	does	not	contain	an	alpha	channel.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	picture	contains	an	alpha	channel.

expression.HasAlphaChannel()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

An	alpha	channel	is	a	special	8-bit	channel	used	by	some	image	processing
software	to	contain	additional	data,	such	as	masking	or	transparency
information.



Example

The	following	example	returns	whether	the	first	shape	on	the	first	page	of	the
active	publication	contains	an	alpha	channel.	If	the	picture	is	linked,	and	the
original	picture	contains	an	alpha	channel,	that	is	also	returned.	This	example
assumes	the	shape	is	a	picture.

With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

				If	.HasAlphaChannel	=	msoTrue	Then

								Debug.Print	.Filename

								Debug.Print	"This	picture	contains	an	alpha	channel."

								

								If	.IsLinked	=	msoTrue	Then

												If	.OriginalHasAlphaChannel	=	msoTrue	Then

																Debug.Print	"The	linked	picture	"	&	_

																"also	contains	an	alpha	channel."

												End	If

								End	If

				End	If

End	With



Show	All



HasNextLink	Property
MsoTrue	if	the	text	frame	has	a	valid	forward	text	box	link.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Indicates	the	specified	text	box	does	not	have	a	forward	text	box	link.
msoTriStateMixed
msoTriStateToggle
msoTrue	Indicates	the	specified	text	box	has	a	forward	text	box	link.

expression.HasNextLink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	breaks	all	links	in	the	document	to	the	first	specified	text	frame	if
links	exist.	This	example	assumes	that	there	is	at	least	one	shape	on	the	first	page
of	the	active	publication.

Sub	AddPreviousNextLinkPages()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame

								If	.HasNextLink	Then	.BreakForwardLink

								If	.HasPreviousLink	Then	.PreviousLinkedTextFrame	_

												.BreakForwardLink

				End	With

End	Sub

	 	



Show	All



HasPreviousLink	Property
MsoTrue	if	the	text	frame	has	a	valid	link	to	a	backward	text	box.	Read-only
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Indicates	the	specified	text	box	does	not	have	a	backward	text	box
link.
msoTriStateMixed
msoTriStateToggle
msoTrue	Indicates	the	specified	text	box	has	a	backward	text	box	link.

expression.HasPreviousLink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	breaks	all	links	in	the	document	to	the	first	specified	text	frame	if
links	exist.	This	example	assumes	that	there	is	at	least	one	shape	on	the	first	page
of	the	active	publication.

Sub	AddPreviousNextLinkPages()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame

								If	.HasNextLink	Then	.BreakForwardLink

								If	.HasPreviousLink	Then	.PreviousLinkedTextFrame	_

												.BreakForwardLink

				End	With

End	Sub

	 	



Show	All



HasTable	Property
Returns	msoTrue	if	the	shape	represents	a	TableFrame	object	or	msoFalse	if
the	shape	represents	any	other	object	type.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shapes	in	the	range	do	not	represent	a	TableFrame	object.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	shapes	in	the	range	represent	a	TableFrame	object.

expression.HasTable

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	the	currently	selected	shape	to	see	if	it	is	a	table.	If	it	is,	the
code	sets	the	width	of	column	one	to	one	inch	(72	points).

Sub	IsTable()

				With	Application.Selection.ShapeRange

								If	.HasTable	=	msoTrue	Then

												.Table.Columns(1).Width	=	72

								End	If

				End	With

End	Sub

	 	



Show	All



HasText	Property
HasText	property	as	it	applies	to	the	Cell	object.

Returns	a	Boolean	value	indicating	whether	the	specified	cell	contains	any	text.
True	if	the	specified	cell	contains	text.	Read-only.

expression.HasText

expression				Required.	An	expression	that	returns	a	Cell	object.

HasText	property	as	it	applies	to	the	TextFrame	object.

Returns	an	MsoTriState	constant	indicating	whether	the	specified	shape	has	text
associated	with	it.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	shape	does	not	have	text	associated	with	it.
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	shape	has	text	associated	with	it.

expression.HasText

expression				Required.	An	expression	that	returns	a	TextFrame	object.



Example

As	it	applies	to	the	Cell	object.

If	shape	one	on	page	one	contains	a	table	and	the	first	cell	of	the	table	contains
text,	this	example	displays	the	text	in	a	message	box.

With	ActiveDocument.Pages(1).Shapes(1)

				'	Check	for	table.

				If	.HasTable	Then

								With	.Table.Cells(StartRow:=1,	StartColumn:=1,	_

																EndRow:=1,	EndColumn:=1).Item(1)

												'	Check	for	text	in	first	cell.

												If	.HasText	Then

																MsgBox	"Text	from	first	cell	of	table:	"	_

																				&	vbCr	&	.Text

												Else

																MsgBox	"No	text	in	first	cell."

												End	If

								End	With

				Else

								MsgBox	"No	table	in	shape	one."

				End	If

End	With

	 	 	 	

As	it	applies	to	the	TextFrame	object.

If	shape	two	on	the	first	page	of	the	active	publication	contains	text,	this
example	resizes	the	shape	to	fit	the	text.

With	ActiveDocument.Pages(1).Shapes(2).TextFrame

				If	.HasText	Then	.AutoFitText	=	pbTextAutoFitBestFit

End	With

	 	 	 	





Show	All



HasTextFrame	Property
Returns	an	MsoTriState	constant	if	the	specified	shape	has	a	TextFrame	object
associated	with	it.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	shape	does	not	have	a	TextFrame	object	associated
with	it.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	shape	has	a	TextFrame	object	associated	with	it.

expression.HasTextFrame

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	HasTextFrame	property	is	true,	clients	must	check	the	value	of	the
HasText	property	of	the	TextFrame	object	to	determine	if	there	is	any	text	on
the	shape.



Example

This	example	tests	all	the	shapes	in	the	selection	and	if	none	have	text	frames
associated	with	them,	they	are	left	aligned.

Sub	MoveLeft()

				Dim	shpAll	As	ShapeRange

				Set	shpAll	=	Application.ActiveDocument.Selection.ShapeRange

				If	shpAll.HasTextFrame	=	msoFalse	Then

								shpAll.Align	msoAlignLefts,	msoTrue

				End	If

End	Sub

	 	



HasTransparencyColor	Property
Returns	a	Boolean	that	indicates	whether	a	transparency	color	has	been	applied
to	the	specified	picture.	Read-only.

expression.HasTransparencyColor()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Example

The	following	example	returns	a	list	of	the	pictures	with	transparency	colors	in
the	active	publication.

Sub	ListPicturesWithTransColors()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

				For	Each	pgLoop	In	ActiveDocument.Pages

								For	Each	shpLoop	In	pgLoop.Shapes

				

												If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

												

																With	shpLoop.PictureFormat

																				If	.IsEmpty	=	msoFalse	Then

																								If	.HasTransparencyColor	=	True	Then

																												Debug.Print	.Filename

																								End	If

																				End	If

																End	With

												

												End	If

								

								Next	shpLoop

				Next	pgLoop

End	Sub



Header	Property
Returns	a	HeaderFooter	object	representing	the	header	of	the	specified	Page
object.	Read	only.

expression.Header

expression				Required.	An	expression	that	returns	a	Page	object	from	the
MasterPages	collection.



Remarks

This	property	is	for	master	pages	only.	A	"This	feature	is	only	for	master	pages"
error	is	returned	if	the	header	property	is	accessed	from	a	Page	object	that	is
returned	form	the	Pages	collection.	A	new	HeaderFooter	object	is	created	for
the	specified	master	page	by	accessing	this	property.



Example

The	following	example	creates	a	HeaderFooter	object	and	sets	it	to	the	header
of	the	first	master	page.

Dim	objHeader	As	HeaderFooter

Set	objHeader	=	ActiveDocument.MasterPages(1).Header

	 	 	 	

The	HeaderFooter	object	returned	by	the	Header	Property	can	be	used	to
manipulate	the	header	content.	The	following	example	sets	some	properties	of
the	HeaderFooter	object	of	the	first	master	page,

With	ActiveDocument.masterPages(1)

				With	.Header

								.TextRange.Text	=	"Windows"	&	Chr(13)	&	"Office"	&	Chr(13)	&	"Internet	Explorer"

								With	.TextRange.ParagraphFormat

												.SetListType	Value:=pbListTypeBullet,	BulletText:="*"

												.Alignment	=	pbParagraphAlignmentLeft

								End	With

				End	With

				With	.Footer

								.TextRange.Hyperlinks.Add	Text:=.TextRange,	_

												Address:="http://www.tailspintoys.com",	_

												TextToDisplay:="Tailspin"

				End	With

End	With



Show	All



Height	Property
Height	property	as	it	applies	to	the	ReaderSpread	and	PrintableRect

objects.

Returns	a	Single	that	represents	the	height,	in	points,	of	the	page	(for	the
ReaderSpread	object)	or	the	printable	rectangle	(for	the	PrintablePect	object).
Read-only.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Label	object.

Returns	a	Variant	that	represents	the	height	(in	points)	of	the	label.	Read-only.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Window	object.

Returns	or	sets	a	Long	that	represents	the	height	(in	points)	of	the	window.
Read/write.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Cell,	CellRange,	and	Page	objects.

Returns	a	Long	that	represent	the	height	(in	points)	of	a	cell,	range	of	cells,	or
page.	Read-only.

expression.Height



expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	Row	and	Shape	objects.

Returns	or	sets	a	Variant	that	represents	the	height	(in	points)	of	a	specified
table	row	or	shape.	Read/write.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	ShapeRange	object.

Returns	a	Variant	that	represents	the	height	(in	points)	of	a	specified	range	of
shapes.	Read-only.

expression.Height

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Height	property	as	it	applies	to	the	PictureFormat	object.

Returns	a	Variant	that	represents	the	height,	in	points,	of	the	specified	picture	or
OLE	object.	Read-only.

expression.Height

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

The	valid	range	for	the	Height	property	depends	on	the	size	of	the	application
workspace	and	the	position	of	the	object	within	the	workspace.	For	centered
objects	on	non-banner	page	sizes,	the	Height	property	may	be	0.0	to	50.0	inches.
For	centered	objects	on	banner	page	sizes,	the	Height	property	may	be	0.0	to
241.0	inches.



Example

As	it	applies	to	the	Window	object.

This	example	sets	the	height	and	width	of	the	active	window	if	the	window	is
neither	maximized	nor	minimized.

Sub	SetWindowHeight()

				With	ActiveWindow

								If	.WindowState	<>	pbWindowStateNormal	Then

												.WindowState	=	pbWindowStateNormal

												.Height	=	InchesToPoints(5)

												.Width	=	InchesToPoints(5)

								End	If

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Row	object.

This	example	creates	a	new	table	and	sets	the	height	and	width	of	the	second
row	and	column,	respectively.

Sub	SetRowHeightColumnWidth()

				With	ActiveDocument.Pages(1).Shapes.AddTable(NumRows:=3,	_

												NumColumns:=3,	Left:=80,	Top:=80,	Width:=400,	Height:=12).Table

												.Rows(2).Height	=	72

												.Columns(2).Width	=	72

				End	With

End	Sub

	 	 	 	



HiddenFields	Property
Returns	a	WebHiddenFields	object	that	represents	hidden	Web	fields	attached
to	a	Submit	command	button.

expression.HiddenFields

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	new	hidden	Web	field	to	a	new	Submit	command	button.

Sub	CreateActionWebButton()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddWebControl	_

																(Type:=pbWebControlCommandButton,	Left:=150,	_

																Top:=150,	Width:=75,	Height:=36).WebCommandButton

												.ButtonText	=	"Submit"

												.ButtonType	=	pbCommandButtonSubmit

								End	With

								.Item(1).WebCommandButton.HiddenFields.Add	_

												Name:="User",	Value:="PowerUser"

				End	With

End	Sub

	 	



Show	All



HorizontalAlignment	Property
Sets	or	returns	a	PbWizardNavBarAlignment	constant	that	represents	the
horizontal	alignment	of	the	buttons	in	a	Web	navigation	bar	set.	Read/write.

HorizontalAlignment	property	can	be	set	to	any	of	these
PbWizardNavBarAlignment	constants:
pbnbAlignCenter
pbnbAlignLeft
pbnbAlignRight

expression.HorizontalAlignment

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Remarks

This	property	is	used	to	set	the	way	that	buttons	are	displayed	in	a	horizontally
oriented	Web	navigation	bar	set.	For	example,	a	WebNavigationBarSet
containing	5	links	with	the	HorizontalButtonCount	property	set	to	3	and	the
HorizontalAlignment	property	set	to	right	will	align	the	buttons	in	a	grid	of	3
columns	and	1	row.	The	first	3	buttons	will	be	in	the	first	row	and	the	remaining
2	buttons	will	be	in	the	rightmost	columns	of	the	second	row.

Returns	"Access	denied"	if	IsHorizontal	=	False	for	the	specified
WebNavigationBarSet	object.	Use	the	ChangeOrientation	method	to	set	the
orientation	of	the	Web	navigation	bar	set	to	horizontal	first	before	setting	the
HorizontalAlignment	property.



Example

The	following	example	returns	the	first	Web	navigation	bar	set	from	the	active
document,	changes	the	orientation	to	horizontal	if	necessary,	sets	the
HorizontalButtonCount	property	to	3,	and	then	sets	the	HorizontalAlignment
property	to	pbnbAlignRight.

With	ActiveDocument.WebNavigationBarSets(1)

				If	.IsHorizontal	=	False	Then

								.ChangeOrientation	pbNavBarOrientHorizontal

				End	If

				.HorizontalButtonCount	=	3

				.HorizontalAlignment	=	pbnbAlignRight

End	With



HorizontalBaseLineOffset	Property
Returns	a	Single	that	represents	the	horizontal	baseline	offset	of	the	specified
LayoutGuides	object.	Read/Write.

expression.HorizontalBaseLineOffset

expression				Required.	An	expression	that	returns	a	LayoutGuides	object.



Remarks

When	setting	the	layout	guide	properties	of	a	Page	object	it	must	be	returned
from	the	MasterPages	collection.



Example

This	example	sets	the	horizontal	baseline	offset	of	the	layout	guides	object	to	12
for	the	second	master	page	in	the	active	document.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.MasterPages(2).LayoutGuides

objLayout.HorizontalBaseLineSpacing	=	12	

Setting	the	layout	guide	properties	for	the	active	document	will	only	affect	the
first	master	page.	This	example	sets	the	horizontal	baseline	offset	of	the	active
document's	layout	guides	to	12,	affecting	only	the	first	master	page	.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.LayoutGuides

objLayout.HorizontalBaseLineOffset	=	12

	 	 	 	



HorizontalBaseLineSpacing	Property
Returns	a	Single	that	represents	the	horizontal	baseline	spacing	of	the	specified
LayoutGuides	object.	Read/write.

expression.HorizontalBaseLineSpacing

expression				Required.	An	expression	that	returns	a	LayoutGuides	object.



Remarks

When	setting	the	layout	guide	properties	of	a	Page	object	it	must	be	returned
from	the	MasterPages	collection.



Example

This	example	sets	the	horizontal	baseline	spacing	of	the	layout	guides	object	to
20	for	the	second	master	page	in	the	active	document.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.MasterPages(2).LayoutGuides

objLayout.HorizontalBaseLineSpacing	=	20	

Setting	the	layout	guide	properties	for	the	active	document	will	only	affect	the
first	master	page.	This	example	sets	the	horizontal	baseline	spacing	of	the	active
document's	layout	guides	to	20,	affecting	only	the	first	master	page	.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.LayoutGuides

objLayout.HorizontalBaseLineSpacing	=	20

	 	 	 	



HorizontalButtonCount	Property
Sets	or	returns	a	Long	representing	the	number	of	buttons	in	each	row	of	buttons
for	a	Web	navigation	bar	set.	Read/write.	Long.

expression.HorizontalButtonCount

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Remarks

Returns	"Access	denied"	if	IsHorizontal	=	False	for	the	specified
WebNavigationBarSet	object.	Use	the	ChangeOrientation	method	to	set	the
orientation	of	the	Web	navigation	bar	set	to	horizontal	first	before	setting	the
HorizontalButtonCount	property.



Example

The	following	example	returns	the	first	Web	navigation	bar	set	from	the	active
document,	changes	the	orientation	to	horizontal	if	necessary,	sets	the
HorizontalButtonCount	property	to	3,	and	then	sets	the	HorizontalAlignment
property	to	pbnbAlignLeft.

With	ActiveDocument.WebNavigationBarSets(1)

				If	.IsHorizontal	=	False	Then

								.ChangeOrientation	pbNavBarOrientHorizontal

				End	If

				.HorizontalButtonCount	=	3

				.HorizontalAlignment	=	pbnbAlignRight

End	With



Show	All



HorizontalFlip	Property
HorizontalFlip	property	as	it	applies	to	the	Shape	and	ShapeRange

objects.

Returns	msoTrue	if	the	specified	shape	has	been	flipped	around	its	horizontal
axis.	Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shape	has	not	been	flipped	around	its	horizontal	axis.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	shape	has	been	flipped	around	its	horizontal	axis.

expression.HorizontalFlip

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

HorizontalFlip	property	as	it	applies	to	the	AdvancedPrintOptions
object.

True	to	print	a	horizontally	mirrored	image	of	the	specified	publication.	The
default	is	False.	Read/write	boolean.

expression.HorizontalFlip

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	is	only	accessible	if	the	active	printer	is	a	PostScript	printer.
Returns	a	run-time	error	if	a	non-PostScript	printer	is	specified.	Use	the
IsPostscriptPrinter	property	of	the	AdvancedPrintOptions	object	to	determine
if	the	specified	printer	is	a	PostScript	printer.

This	property	is	saved	as	an	application	setting	and	applied	to	future	instances	of
Publisher.

This	property	corresponds	to	the	Flip	horizontally	control	on	the	Page	Settings
tab	of	the	Advanced	Print	Settings	dialog	box.

This	property	is	mostly	used	when	printing	to	film	on	an	imagesetter	so	that	the
image	reads	correctly	when	the	emulsion	side	of	the	film	is	down	(as	when
burning	a	press	plate).



Example

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	restores	each	shape	on	the	active	publication	to	its	original	state	if
it	has	been	flipped	horizontally	or	vertically.

Sub	Flipper()

				Dim	shpS	As	Shape

				For	Each	shpS	In	ActiveDocument.MasterPages.Item(1).Shapes

								If	shpS.HorizontalFlip	=	msoTrue	Then	shpS.Flip	msoFlipHorizontal

								If	shpS.VerticalFlip	=	msoTrue	Then	shpS.Flip	msoFlipVertical

				Next

End	Sub

	 	

As	it	applies	to	the	AdvancedPrintOptions	object.

The	following	example	determines	if	the	active	printer	is	a	PostScript	printer.	If
it	is,	the	active	publication	is	set	to	print	as	a	horizontally	and	vertically
mirrored,	negative	image	of	itself.

Sub	PrepToPrintToFilmOnImagesetter()

With	ActiveDocument.AdvancedPrintOptions

				If	.IsPostscriptPrinter	=	True	Then

								.HorizontalFlip	=	True

								.VerticalFlip	=	True

								.NegativeImage	=	True

				End	If

End	With

End	Sub





HorizontalGap	Property
Returns	or	sets	a	Variant	indicating	the	distance	between	the	right	edge	of	the
publication	page	and	left	edge	of	the	next	publication	page	in	the	same	row.
Numeric	values	are	evaluated	as	points;	string	values	may	be	in	any	unit
supported	by	Publisher	(for	example,	"2.5	in").	Valid	range	is	zero	to	the
difference	between	the	sheet	width	and	the	page	width.	Read/write.

expression.HorizontalGap

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	applies	only	to	publications	where	multiple	pages	will	be	printed
on	each	printer	sheet.	Using	this	property	for	any	other	publication	will	generate
an	error.

When	used	with	the	Label	object,	the	HorizontalGap	property	is	read/write
only	when	accessed	from	.PageSetup.Label.	Otherwise,	it	is	read-only.



Example

The	following	example	sets	the	horizontal	distance	between	publication	pages
that	will	be	printed	on	the	same	sheet	to	96	points.

Sub	SetHorizontalGap()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(8)

								.PageWidth	=	InchesToPoints(4)

								.MultiplePagesPerSheet	=	True

								.HorizontalGap	=	InchesToPoints(0.5)

				End	With

End	Sub

	 	



Show	All



HorizontalPictureLocking	Property
Returns	or	sets	a	PbHorizontalPictureLocking	constant	indicating	where	newly
inserted	pictures	appear	in	relation	to	the	specified	frame.	Read/write.

PbHorizontalPictureLocking	can	be	one	of	these	PbHorizontalPictureLocking
constants.
pbHorizontalLockingLeft	New	pictures	are	inserted	along	the	left	edge	of	the
frame.
pbHorizontalLockingNone	New	pictures	are	inserted	in	the	middle	between
the	left	and	right	edges	of	the	frame.
pbHorizontalLockingRight	New	pictures	are	inserted	along	the	right	edge	of
the	frame.
pbHorizontalLockingStretch	New	pictures	are	horizontally	stretched	to	the
full	width	of	the	frame.

expression.HorizontalPictureLocking

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	locks	the	specified	picture	to	the	top	left	corner	of	the
picture	frame.	Shape	one	on	page	one	of	the	active	publication	must	be	a	picture
frame	for	this	example	to	work.

With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

				.HorizontalPictureLocking	=	pbHorizontalLockingLeft

				.VerticalPictureLocking	=	pbVerticalLockingTop

End	With

	 	



Show	All



HorizontalRepeat	Property
Returns	a	Long	that	represents	the	number	of	times	the	catalog	merge	area	will
repeat	across	the	target	publication	page	when	the	catalog	merge	is	executed.
Read-only.

expression.HorizontalRepeat

expression				Required.	An	expression	that	returns	a	CatalogMergeShapes
object.



Remarks

When	the	catalog	merge	is	executed,	the	catalog	merge	area	repeats	once	for
each	selected	record	in	the	specified	data	source.

The	number	of	times	the	catalog	merge	area	repeats	across	the	page	is
determined	by	the	width	of	the	area.	Use	the	Width	property	of	the	Shape	object
to	return	or	set	the	horizontal	size	of	the	catalog	merge	area.

The	VerticalRepeat	property	of	the	CatalogMergeShapes	object	represents	the
number	of	times	the	catalog	merge	area	repeats	vertically	down	the	target
publication	page.



Example

The	following	example	returns	the	number	of	times	the	catalog	merge	area	will
repeat	horizontally	and	vertically	on	the	target	publication	page	when	the	catalog
merge	is	performed.	This	example	assumes	the	catalog	merge	area	is	the	first
shape	on	the	first	page	of	the	specified	publication.

Sub	CatalogMergeDimensions()

							

				With	ThisDocument.Pages(1).Shapes(1)

								Debug.Print	.Width

								Debug.Print	.CatalogMergeItems.HorizontalRepeat

								Debug.Print	.Height

								Debug.Print	.CatalogMergeItems.VerticalRepeat

				End	With

End	Sub



HorizontalScale	Property
Returns	a	Long	that	represents	the	scaling	of	the	picture	along	its	horizontal
axis.	The	scaling	is	expressed	as	a	percentage	(for	example,	200	equals	200%
scaling).	Read-only.

expression.HorizontalScale()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

The	effective	resolution	of	a	picture	is	inversely	proportional	to	the	scaling	at
which	the	picture	is	printed.	The	larger	the	scaling,	the	lower	the	effective
resolution.	For	example,	suppose	a	picture	measuring	4	inches	by	4	inches	was
originally	scanned	at	300	dpi.	If	that	picture	is	scaled	to	2	inches	by	2	inches,	its
effective	resolution	is	600	dpi.

Use	the	EffectiveResolution	property	of	the	PictureFormat	object	to	determine
the	resolution	at	which	the	picture	or	OLE	object	will	print	in	the	specified
document.



Example

The	following	example	prints	selected	image	properties	for	each	picture	in	the
active	publication.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			If	.IsEmpty	=	msoFalse	Then

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Resolution	in	Publication:	"	&	.

																								Debug.Print	"Horizontal	Scaling:	"	&	.HorizontalScale	&	"%"

																								Debug.Print	"Height	in	publication:	"	&	.Height	&	"	points"

																								Debug.Print	"Vertical	Scaling:	"	&	.VerticalScale	&	"%"

																								Debug.Print	"Width	in	publication:	"	&	.Width	&	"	points"

																			End	If

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Hwnd	Property
Returns	a	Long	indicating	the	handle	to	the	Publisher	application	window.	Read-
only.

expression.Hwnd

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	handle	to	the	Publisher	application	window.

MsgBox	"The	handle	to	the	Publisher	application	window	is	"	&	_

				Application.ActiveWindow.Hwnd

	 	



Hyperlink	Property
Returns	a	Hyperlink	object	representing	the	hyperlink	associated	with	the
specified	shape.

expression.Hyperlink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	shape	one	on	page	one	in	the	active	publication	to	jump	to	the
specified	Web	site	when	the	shape	is	clicked.

Dim	hypTemp	As	Hyperlink

Set	hypTemp	=	ActiveDocument.Pages(1).Shapes(1).Hyperlink

hypTemp.Address	=	"http://www.tailspintoys.com/"

	 	



Hyperlinks	Property
Returns	a	Hyperlinks	collection	representing	all	the	hyperlinks	in	the	specified
text	range.

expression.Hyperlinks

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	looks	for	all	the	shapes	on	page	one	of	the	active
publication	that	have	text	frames	and	reports	how	many	hyperlinks	each	shape
has.

Dim	hypAll	As	Hyperlinks

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				If	shpLoop.HasTextFrame	=	msoTrue	Then

								Set	hypAll	=	shpLoop.TextFrame.TextRange.Hyperlinks

								Debug.Print	"Shape	"	&	shpLoop.Name	_

												&	"	has	"	&	hypAll.Count	&	"	hyperlinks."

				End	If

Next	shpLoop

	 	



HyphenationZone	Property
Returns	or	sets	a	Variant	that	represents	the	maximum	amount	of	space	that
Microsoft	Publisher	leaves	between	the	end	of	the	last	word	in	a	line	and	the
right	margin.	Read/write.

expression.HyphenationZone

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	turns	on	automatic	hyphenation	and	specifies	the	maximum
amount	of	space	between	the	end	of	the	last	word	and	the	right	margin	equal	to
one	inch	(72	points).

Sub	SetHyphenationZone()

				With	Options

								.AutoHyphenate	=	True

								.HyphenationZone	=	72

				End	With

End	Sub

	 	



ID	Property
Returns	a	Long	that	represents	the	type	of	a	shape,	range	of	shapes,	or	property,
type,	or	value	of	a	wizard.	Read-only.

expression.ID

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	displays	the	type	for	each	shape	on	the	first	page	of	the	active
publication.

Sub	ShapeID()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								MsgBox	shp.ID

				Next	shp

End	Sub

	 	



IgnoreMaster	Property
True	for	Publisher	to	ignore	the	master	page	formatting	for	the	specified	page.
Read/write	Boolean.

expression.IgnoreMaster

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	red	star	in	the	upper	left	corner	of	the	master	page	so	that	it
shows	up	on	each	page;	then	it	adds	a	couple	of	new	pages	and	sets	one	of	the
pages	to	ignore	the	master	page	so	that	the	shape	doesn't	show	on	it.

Sub	AddNewPageIgnoreMaster()

				Dim	pgNew	As	Page

				With	ActiveDocument

								.MasterPages(1).Shapes.AddShape(Type:=msoShape5pointStar,	_

												Left:=50,	Top:=50,	Width:=50,	Height:=50).Fill.ForeColor	_

												.CMYK.SetCMYK	Cyan:=0,	Magenta:=255,	Yellow:=255,	Black:=0

								.Pages.Add	Count:=1,	After:=1

								Set	pgNew	=	.Pages.Add(Count:=1,	After:=1)

								pgNew.IgnoreMaster	=	True

				End	With

End	Sub

	 	



Show	All



ImageFormat	Property
Returns	a	PbImageFormat	constant	that	represents	the	image	format	of	a
picture	as	determined	by	Microsoft®	Windows®	Graphics	Device	Interface
(GDI+).	Read-only.

PbImageFormat	can	be	one	of	these	PbImageFormat	constants.
pbImageFormatCMYKJPEG	(See	Remarks.)
pbImageFormatDIB	(See	Remarks.)
pbImageFormatEMF	(See	Remarks.)
pbImageFormatGIF	(See	Remarks.)
pbImageFormatJPEG
pbImageFormatPICT	(See	Remarks.)
pbImageFormatPNG
pbImageFormatTIFF
pbImageFormatUNKNOWN
pbImageFormatWMF

expression.ImageFormat()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

The	ImageFormat	property	applies	to	the	original	picture,	rather	than	the
placeholder	picture,	if	there	is	one.

The	ImageFormat	property	indicates	the	format	of	the	picture	after	it	has	been
imported	into	the	Windows	environment,	rather	than	its	original	file	format.	If
the	picture's	file	format	is	not	natively	supported	by	the	Windows	operating
system,	the	picture	is	converted	to	an	analogous	format	that	is	natively
supported.	As	a	result,	the	pbImageFormatCMYKJPEG,
pbImageFormatDIB,	pbImageFormatEMF,	pbImageFormatGIF,	and
pbImageFormatPICT	constants	will	rarely,	if	ever,	be	returned.	Consult	the
table	below	for	specific	file	format	conversions.

File	format Constant	returned
.bmp,	.dib,	.gif,	.pict pbImageFormatPNG
.emf,	.eps,	.epfs pbImageFormatWMF
CMYK	.jfif,	.jpeg,	.jpg pbImageFormatJPEG

Windows	GDI+	is	the	portion	of	the	Windows	XP	operating	system	and	the
Windows	Server	2003	operating	system	that	provides	two-dimensional	vector
graphics,	imaging,	and	typography.



Example

The	following	example	prints	a	list	of	the	.jpg	and	.jpeg	images	present	in	the
active	publication.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

				

								If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

												

												With	shpLoop.PictureFormat

																If	.IsEmpty	=	msoFalse	Then

																

																				If	.ImageFormat	=	pbImageFormatJPEG	Then

																								Debug.Print	.Filename

																				End	If

																

																End	If

												End	With

												

								End	If

								

				Next	shpLoop

Next	pgLoop



Included	Property
True	if	a	record	is	included	in	a	mail	merge.	Read/write	Boolean.

expression.Included

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetAllIncludedFlags	method	to	set	the	included	status	for	all	mail
merge	records.



Example

This	example	searches	the	records	to	verify	that	the	length	of	the	PostalCode
field	for	each	record	is	at	least	five	digits	long.	If	it	is	not,	the	record	is	excluded
from	the	mail	merge	and	flagged	as	invalid.

Sub	ExcludeRecords()

				Dim	intRecord	As	Integer

				With	ActiveDocument.MailMerge

								For	intRecord	=	1	To	.DataSource.RecordCount

												.DataSource.ActiveRecord	=	intRecord

												If	Len(.DataSource.DataFields("PostalCode").Value)	<	5	Then

																With	.DataSource

																				.Included	=	False

																				.InvalidAddress	=	True

																				.InvalidComments	=	"This	record	is	removed	"	&	_

																								"from	the	mail	merge	because	its	postal	code"	&	_

																								"has	less	than	five	digits."

																End	With

												End	If

								Next

				End	With

End	Sub

	 	



IncludePageOnNewWebNavigationBars
Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	a	link	to	a	Web	page	will
be	added	to	the	automatic	navigation	bars	of	new	pages.	Read/write.

expression.IncludePageOnNewWebNavigationBars

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Remarks

The	default	value	of	the	IncludePageOnNewWebNavigationBars	property	is
False,	which	means	that	links	to	the	specified	page	will	not	be	added	to	the
automatic	navigation	bars	of	new	pages.

Setting	this	property	to	False	does	not	remove	links	to	the	specified	page	from
any	automatic	navigation	bars	that	already	include	them,	but	it	does	prevent
links	to	the	page	from	being	added	to	automatic	navigation	bars	of	new	pages.

Setting	this	property	to	True	applies	only	to	automatic	navigation	bars	of	new
pages,	and	does	not	update	existing	automatic	navigation	bars	within	the	Web
publication.

When	adding	a	new	page	to	the	Web	publication	by	using	the	Pages.Add
method,	the	optional	AddHyperlinkToWebNavBar	parameter	can	be	used	to
specify	whether	links	to	the	new	page	will	be	added	to	existing	automatic
navigation	bars.	The	value	of	this	parameter	is	used	to	populate	the	value	of	the
IncludePageOnNewWebNavigationBars	property.



Example

The	following	example	specifies	that	links	to	page	two	of	the	active	Web
publication	should	be	added	to	the	automatic	navigation	bars	of	new	pages.	Note
that	if	a	new	page	is	added	to	the	publication	after	this	point,	the
IncludePageOnNewWebNavigationBars	property	will	be	False.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(2).WebPageOptions

With	theWPO

				.IncludePageOnNewWebNavigationBars	=	True

End	With

	 	

The	following	example	demonstrates	adding	two	new	pages	to	the	publication
by	using	the	Pages.Add	method.	The	AddHyperlinkToWebNavBar	parameter	is
set	to	True,	which	specifies	that	links	to	these	two	new	pages	be	added	to	the
automatic	navigation	bars	of	existing	pages.

Another	page	is	then	added	to	the	publication,	and	the
AddHyperlinkToWebNavBar	is	omitted.	This	means	that	the
IncludePageOnNewWebNavigationBars	property	is	False	for	the	newly	added
page,	and	links	to	this	page	will	not	be	included	in	the	automatic	navigation	bars
of	existing	pages.

Dim	thePage	As	page

Dim	thePage2	As	page

Set	thePage	=	ActiveDocument.Pages.Add(Count:=2,	_

				After:=4,	AddHyperlinkToWebNavBar:=True)

Set	thePage2	=	ActiveDocument.Pages.Add(Count:=1,	After:=6)

	 	



Index	Property
Returns	a	Long	that	represents	the	position	of	a	particular	item	in	a	specified
collection.	Read-only.

expression.Index

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	loops	through	the	MailMergeDataFields	collection	and
displays	the	Index	and	Name	properties	for	each	field.

Dim	mmfLoop	As	MailMergeDataField

With	ActiveDocument.MailMerge.DataSource

				If	.DataFields.Count	>	0	Then

								For	Each	mmfLoop	In	.DataFields

												Debug.Print	"Field	"	&	mmfLoop.Name	_

																&	"	/	Index	"	&	mmfLoop.Index

								Next	mmfLoop

				Else

								Debug.Print	"No	fields	to	report."

				End	If

End	With

	 	

The	following	example	loops	through	the	Plates	collection	and	displays	the
Index	and	Name	properties	for	each	plate.

Dim	plaLoop	As	Plate

If	ActiveDocument.Plates.Count	>	0	Then

				For	Each	plaLoop	In	ActiveDocument.Plates

								Debug.Print	"Plate	"	&	plaLoop.Name	_

												&	"	/	Index	"	&	plaLoop.Index

				Next	plaLoop

Else

				Debug.Print	"No	plates	to	report."

End	If

	 	



Ink	Property
Returns	or	sets	a	Long	indicating	whether	the	specified	color	is	a	spot	color,	and
if	so,	the	spot	plate	to	which	it	belongs.	Valid	values	are	pbInkNone	(default;
meaning	that	the	color	is	not	a	spot	color)	or	a	number	between	1	and	n	where	n
is	the	number	of	spot	plates.	Read/write.

expression.Ink

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	specifies	that	the	color	of	the	first	text	range	on	page	one
of	the	active	publication	should	be	assigned	to	spot	plate	two.

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange.Font.Color.Ink	=	2

	 	



Show	All



InkName	Property
Returns	a	PbInkName	constant	that	represents	the	name	of	the	ink	to	be	printed
using	this	plate.	Read-only.

expression.InkName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

PbInkName	can	be	one	of	these	pbInkName	constants.
pbInkNameBlack
pbInkNameCyan
pbInkNameMagenta
pbInkNameYellow
pbInkNameSpotColor1
pbInkNameSpotColor2
pbInkNameSpotColor3
pbInkNameSpotColor4
pbInkNameSpotColor5
pbInkNameSpotColor6
pbInkNameSpotColor7
pbInkNameSpotColor8
pbInkNameSpotColor9
pbInkNameSpotColor10
pbInkNameSpotColor11
pbInkNameSpotColor12



Remarks

Use	the	FindPlateByInkName	method	of	the	PrintablePlates	collection	to
return	a	specific	plate	by	referencing	its	ink	name.



Example

The	following	example	returns	a	list	of	the	printable	plates	currently	in	the
collection	for	the	active	publication.	The	example	assumes	that	separations	have
been	specified	as	the	active	publication's	print	mode.

Sub	ListPrintablePlates()

				Dim	pplTemp	As	PrintablePlates

				Dim	pplLoop	As	PrintablePlate

				

				Set	pplTemp	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				Debug.Print	"There	are	"	&	pplTemp.Count	&	"	printable	plates	in	this	publication."

				

				For	Each	pplLoop	In	pplTemp

								With	pplLoop

												Debug.Print	"Printable	Plate	Name:	"	&	.Name

												Debug.Print	"Index:	"	&	.Index

												Debug.Print	"Ink	Name:	"	&	.InkName

												Debug.Print	"Plate	Angle:	"	&	.Angle

												Debug.Print	"Plate	Frequency:	"	&	.Frequency

												Debug.Print	"Print	Plate?:	"	&	.PrintPlate

								End	With

				Next	pplLoop

End	Sub



Show	All



InksToPrint	Property
Returns	or	sets	a	PbInksToPrint	constant	that	represents	which	inks	to	print	as
separate	plates.	Read/write.

PbInksToPrint	can	be	one	of	these	PbInksToPrint	constants.
pbInksToPrintAll	Default.	Print	a	separate	plate	for	every	ink	defined	for	the
publication,	whether	or	not	it	is	used.
pbInksToPrintConvertSpotToProcess	Convert	any	spot	color	used	in	the
publication	to	their	equivalent	CMYK	values	and	print	these	objects	as	part	of
the	process	color	separations.
pbInksToPrintused	Print	separate	plates	for	only	those	inks	used	in	the
publication.

expression.InksToPrint()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	is	only	accessible	if	separations	are	being	printed.	Use	the
PrintMode	property	of	the	AdvancedPrintOptions	object	to	specifiy	that
separations	are	to	be	printed.	Returns	"Permission	Denied"	if	any	other	print
mode	is	specified.

The	InksToPrint	property	is	equivalent	to	the	These	Plates	control	on	the
Separations	tab	of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	tests	to	determine	if	the	active	publication	has	been	set	to
print	as	separations.	If	it	has,	it	is	set	to	print	only	plates	for	the	inks	actually
used	in	the	publication,	and	to	not	print	plates	for	any	pages	where	a	color	is	not
used.

Sub	PrintOnlyInksUsed

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.PrintMode	=	pbPrintModeSeparations	Then

	 	 	 .InksToPrint	=	pbInksToPrintUsed

	 	 	 .PrintBlankPlates	=	False

	 	 End	If

	 End	With

End	Sub



Show	All



InlineAlignment	Property
Returns	or	sets	a	PbInlineAlignment	constant	that	indicates	whether	an	inline
shape	has	left,	right,	or	in-text	alignment.	Read/write.

PbInlineAlignment	can	be	one	of	these	PbInlineAlignment	constants.
pbInlineAlignmentCharacter
pbInlineAlignmentLeft
pbInlineAlignmentMixed
pbInlineAlignmentRight

expression.InlineAlignment

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

An	automation	error	is	returned	if	the	shape	is	not	already	inline.



Example

The	following	example	moves	the	second	shape	on	the	second	page	of	the
publication	into	the	text	flow	by	using	the	MoveIntoTextFlow	method.	The
InlineAlignment	property	is	then	used	to	align	the	shape	to	the	right.

Dim	theShape	As	Shape

Dim	theRange	As	TextRange

Set	theRange	=	ActiveDocument.Pages(2).Shapes(1).TextFrame.TextRange

Set	theShape	=	ActiveDocument.Pages(2).Shapes(2)

If	Not	theShape.IsInline	=	msoTrue	Then

				theShape.MoveIntoTextFlow	Range:=theRange

				theShape.InlineAlignment	=	pbInlineAlignmentRight

End	If



InlineShapes	Property
Returns	an	InlineShapes	collection,	which	represents	the	inline	shapes
contained	within	a	text	range.	Read-only.

expression.InlineShapes

expression				Required.	An	expression	that	returns	a	TextRange	object.



Remarks

Using	TextFrame.Story.TextRange.InlineShapes	will	return	all	inline	shapes
in	a	text	frame,	including	those	that	are	in	overflow.	Using
TextFrame.TextRange.InlineShapes	will	return	only	visible	inline	shapes	in	a
text	frame,	and	not	those	that	are	in	overflow.



Example

The	following	example	finds	the	first	shape	(a	text	box)	on	page	one	of	the
active	publication.	The	InlineShapes	property	is	then	used	to	determine	whether
any	inline	shapes	exist	in	the	text	box.	If	any	are	found,	each	inline	shape	is
flipped	vertically,	and	its	fore	color	is	set	to	red.

Note	that	by	using	TextFrame.Story.TextRange.InlineShapes,	any	inline
shapes	that	are	in	overflow	will	also	be	found.

Dim	theShape	As	Shape

Dim	i	As	Integer

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

With	theShape.TextFrame.Story.TextRange

				If	.InlineShapes.Count	>	0	Then

								For	i	=	1	To	.InlineShapes.Count

												.InlineShapes(i).Flip	(msoFlipVertical)

												.InlineShapes(i).Fill.ForeColor.RGB	=	vbRed

								Next

				End	If

End	With



InlineTextRange	Property
Returns	a	TextRange	object	that	reflects	the	position	of	the	inline	shape	in	its
containing	text	range.	Read-only.

expression.InlineTextRange

expression				Required.	An	expression	that	returns	a	Shape	object.	Note	that	the
shape	must	be	an	inline	shape	contained	within	the	InlineShapes	collection.



Remarks

The	returned	text	range	will	contain	a	single	object	representing	the	inline	shape.
An	automation	error	is	returned	if	the	shape	is	not	inline.



Example

The	following	example	finds	the	first	shape	(a	text	box)	on	the	first	page	of	the
publication,	and	determines	if	the	text	range	within	the	text	box	contains	inline
shapes.	If	inline	shapes	are	found,	the	InlineTextRange	property	is	used	to
represent	the	inline	shape	after	a	block	of	text	is	inserted.

Dim	theShape	As	Shape

Dim	theTextRange	As	TextRange

Dim	i	As	Integer

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

If	Not	theShape.IsInline	=	True	Then

				With	theShape.TextFrame.Story.TextRange

								If	.InlineShapes.Count	>	0	Then

												Set	theTextRange	=	theShape.TextFrame.Story.TextRange

												For	i	=	1	To	.InlineShapes.Count

																With	.InlineShapes(i)

																				.InlineTextRange.InsertAfter	("	(Figure	"	&	i	&	")	")

																End	With

												Next

								End	If

				End	With

End	If



Show	All



InsetPen	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	a	specified	shape's
lines	are	drawn	inside	its	boundaries.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	supported.
msoFalse	Lines	are	drawn	directly	on	the	specified	shape's	boundaries.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	default	Lines	are	drawn	inside	the	specified	shape's	boundaries.

expression.InsetPen

expression				Required.	An	expression	that	returns	a	LineFormat	object.



Remarks

An	error	occurs	if	you	attempt	to	set	this	property	to	msoTrue	for	any	Office
AutoShape	which	does	not	support	inset	pen	drawing.

The	value	of	the	InsetPen	property	for	tables	is	always	msoTrue;	attempting	to
set	the	property	to	any	other	value	results	in	an	error.



Example

The	following	example	adds	two	rectangles	to	page	one	of	the	active
publication,	the	first	with	its	lines	drawn	inside	its	boundaries,	and	the	second
with	its	lines	drawn	on	its	boundaries.

Dim	shpNew	As	Shape

With	ActiveDocument.Pages(1).Shapes

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=200,	Top:=150,	Width:=150,	Height:=100)

				With	shpNew.Line

								.Weight	=	24

								.InsetPen	=	msoTrue

				End	With

				Set	shpNew	=	.AddShape(Type:=msoShapeRectangle,	_

								Left:=200,	Top:=300,	Width:=150,	Height:=100)

				With	shpNew.Line

								.Weight	=	24

								.InsetPen	=	msoFalse

				End	With

End	With

	 	



InUse	Property
Returns	True	if	the	specified	ink	(represented	by	the	plate)	is	used	in	the
publication.	Read-only	Boolean.

expression.InUse

expression				Required.	An	expression	that	returns	a	Plate	object.



Remarks

This	property	corresponds	to	the	In	Use	or	Not	In	Use	notation	listed	by	each
ink	on	the	Ink	tab	of	the	Color	Printing	dialog	box.



Example

The	following	example	loops	through	the	active	publication's	plates	collection,
determines	which	plates	represent	inks	that	are	not	used	in	the	publication,	and
deletes	them.

Sub	DeleteUnusedInks()

				

Dim	intCount	As	Integer

				

With	ActiveDocument.Plates

				For	intCount	=	.Count	To	1	Step	-1

								With	.Item(intCount)

												If	.InUse	=	False	Then

																Debug.Print	"Name:	"	&	.Name

																.Delete

												End	If

								End	With

				Next

End	With

End	Sub



InvalidAddress	Property
True	to	mark	a	record	in	a	mail	merge	data	source	if	it	contains	invalid	data.
Read/write	Boolean.

expression.InvalidAddress

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetAllErrorFlags	method	to	set	both	the	InvalidAddress	and
InvalidComments	properties	for	all	records	in	a	data	source.



Example

This	example	searches	the	records	to	verify	that	the	length	of	the	PostalCode
field	for	each	record	is	at	least	five	digits	long.	If	it	is	not,	the	record	is	excluded
from	the	mail	merge	and	flagged	as	invalid.

Sub	ExcludeRecords()

				Dim	intRecord	As	Integer

				With	ActiveDocument.MailMerge

								For	intRecord	=	1	To	.DataSource.RecordCount

												.DataSource.ActiveRecord	=	intRecord

												If	Len(.DataSource.DataFields("PostalCode").Value)	<	5	Then

																With	.DataSource

																				.Included	=	False

																				.InvalidAddress	=	True

																				.InvalidComments	=	"This	record	is	removed	"	&	_

																								"from	the	mail	merge	because	its	postal	code"	&	_

																								"has	less	than	five	digits."

																End	With

												End	If

								Next

				End	With

End	Sub

	 	



InvalidComments	Property
If	the	InvalidAddress	property	is	True,	this	property	returns	or	sets	a	String
that	describes	invalid	data	in	a	mail	merge	record.	Read/write.

expression.InvalidComments

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SetAllErrorFlags	method	to	set	both	the	InvalidAddress	and
InvalidComments	properties	for	all	records	in	a	data	source.



Example

This	example	searches	the	records	to	verify	that	the	length	of	the	PostalCode
field	for	each	record	is	at	least	five	digits	long.	If	it	is	not,	the	record	is	excluded
from	the	mail	merge	and	flagged	as	invalid.

Sub	ExcludeRecords()

				Dim	intRecord	As	Integer

				With	ActiveDocument.MailMerge

								For	intRecord	=	1	To	.DataSource.RecordCount

												.DataSource.ActiveRecord	=	intRecord

												If	Len(.DataSource.DataFields("PostalCode").Value)	<	5	Then

																With	.DataSource

																				.Included	=	False

																				.InvalidAddress	=	True

																				.InvalidComments	=	"This	record	is	removed	"	&	_

																								"from	the	mail	merge	because	its	postal	code"	&	_

																								"has	less	than	five	digits."

																End	With

												End	If

								Next

				End	With

End	Sub

	 	



Show	All



IsDataSourceConnected	Property
True	if	the	specified	publication	is	connected	to	a	data	source.	Read-only.

expression.IsDataSourceConnected

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	publication	must	be	connected	to	a	valid	data	source	to	perform	a	mail	merge
or	catalog	merge.



Example

The	following	example	tests	whether	the	publication	is	connected	to	a	data
source	and,	if	it	is	not,	specifies	and	connects	a	data	source	to	the	publication.
(Note	that	PathToFile	must	be	replaced	with	a	valid	file	path,	and	TableName
with	a	valid	data	source	table	name,	for	this	example	to	execute	properly.)

Dim	strDataSource	As	String

Dim	strDataSourceTable	As	String

				'Specify	data	source	and	table	name

				

				strDataSource	=	"PathToFile"

				strDataSourceTable	=	"TableName"

				

				'Connect	to	a	datasource

				If	Not	(ThisDocument.IsDataSourceConnected)	Then

								ThisDocument.MailMerge.OpenDataSource	strDataSource,	,	strDataSourceTable

				End	If



Show	All



IsEmpty	Property
Returns	a	MsoTriState	constant	that	represents	whether	the	specified	shape	is	an
empty	picture	frame.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shape	is	not	a	empty	picture	frame.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	shape	is	an	empty	picture	frame.

expression.IsEmpty()

expression				Required.	An	expression	that	returns	a	PictureFrame	object.



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	if	it	is	not
an	empty	picture	frame,	prints	selected	image	properties	for	the	picture.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			If	.IsEmpty	=	msoFalse	Then

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Horizontal	Scaling:	"	&	.HorizontalScale	&	"%"

																								Debug.Print	"Vertical	Scaling:	"	&	.VerticalScale	&	"%"

																								Debug.Print	"File	size	in	publication:	"	&	.FileSize	&	"	bytes"

																			End	If

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



IsGreyScale	Property
Returns	a	MsoTriState	constant	that	indicates	whether	the	picture	is	a	greyscale
image.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	picture	is	not	a	greyscale	image.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	picture	is	a	greyscale	image.

expression.IsGreyScale()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Example

The	following	example	returns	a	list	of	the	greyscale	pictures	contained	in	the
active	publication.

Sub	ListGreyScalePictures()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

				For	Each	pgLoop	In	ActiveDocument.Pages

								For	Each	shpLoop	In	pgLoop.Shapes

				

												If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

												

																With	shpLoop.PictureFormat

																				If	.IsEmpty	=	msoFalse	And	.IsGreyScale	=	msoCTrue	Then

																								

																								Debug.Print	.Filename

																								Debug.Print	"Page	"	&	pgLoop.PageNumber

																								

																				End	If

																End	With

												

												End	If

								

								Next	shpLoop

				Next	pgLoop

End	Sub



IsGroupMember	Property
Returns	True	if	the	specified	shape	is	a	member	of	a	group,	False	otherwise.
Read-only	Boolean.

expression.IsGroupMember

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	object	returned	by	the	ParentGroupShape	property	can	be	used	to
determine	the	parent	shape	for	the	group.



Example

The	following	statement	can	be	used	to	return	a	True	value	if	the	first	shape	of
the	active	publication	is	a	group	member.

blnGrouped	=	Application.ActiveDocument.MasterPages	_

				.Item.Shapes(1).IsGroupMember

	 	



IsHeader	Property
True	if	the	specified	HeaderFooter	object	is	a	header,	False	if	it	is	a	footer.
Read	only	Boolean.

expression.IsHeader

expression				Required.	An	expression	that	returns	a	HeaderFooter	object.



Example

The	following	example	creates	a	new	collection	and	fills	it	with	the	headers	and
footer	from	each	master	page.	The	collection	is	then	iterated	and	a	test	is	made	to
determine	if	the	HeaderFooter	object	is	a	header	or	a	footer,	then	appropriate
text	is	written	to	the	header	or	footer.

Dim	objHeadersFooters	As	Collection

Dim	objMasterPage	As	page

Dim	objHeadFoot	As	HeaderFooter

Set	objHeadersFooters	=	New	Collection

For	Each	objMasterPage	In	ActiveDocument.masterPages

				objHeadersFooters.Add	objMasterPage.Header

				objHeadersFooters.Add	objMasterPage.Footer

Next	objMasterPage

For	Each	objHeadFoot	In	objHeadersFooters

				If	objHeadFoot.IsHeader	=	True	Then

								objHeadFoot.TextRange.Text	=	"Header	Text"

				ElseIf	objHeadFoot.IsHeader	=	False	Then

								objHeadFoot.TextRange.Text	=	"Footer	Text"

				End	If

Next



IsHorizontal	Property
True	if	the	specified	WebNavigationBarSet	has	a	horizontal	orientation.	Read-
only	Boolean.

expression.IsHorizontal

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Remarks

This	property	is	used	to	determine	the	orientation	of	the	navigation	bar	set	prior
to	setting	certain	properties	that	assume	a	horizontal	orientation	such	as	the
HorizontalAlignment	property.



Example

This	example	adds	the	first	navigation	bar	in	the	WebNavigationBarSets
collection	of	the	active	document	to	each	page,	and	then	sets	the	button	style	to
small.	A	test	is	performed	to	determine	whether	the	navigation	bar	set	is
horizontal	or	not.	If	it	is	not,	the	ChangeOrientation	method	is	called	and	the
orientation	is	set	to	horizontal.	After	the	navigation	bar	is	oriented	horizontally,
the	horizontal	button	count	is	set	to	3	and	the	horizontal	alignment	of	the	buttons
is	set	to	left.

Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets(1)

With	objWebNav

				.AddToEveryPage	Left:=10,	Top:=10

				.ButtonStyle	=	pbnbButtonStyleSmall

				If	.IsHorizontal	=	False	Then

								.ChangeOrientation	pbNavBarOrientHorizontal

				End	If

				.HorizontalButtonCount	=	3

				.HorizontalAlignment	=	pbnbAlignLeft

End	With



Show	All



IsInline	Property
Returns	an	MsoTriState	constant	that	specifies	whether	a	shape	is	inline.	Read-
only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	if	a	shape	is	not	contained	in	a	text	run.
msoTriStateMixed
msoTriStateToggle
msoTrue	if	a	shape	is	contained	in	a	text	run.

expression.IsInline

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	first	shape	(a	text	frame)	on	the	first	page	of	the
publication	to	see	if	it	is	inline.	If	it	is	not,	a	search	is	done	within	that	shape	to
find	any	inline	shapes	within	the	text	frame.	Any	inline	shapes	that	are	found
have	the	ForeColor	property	set	to	red.

Dim	theShape	As	Shape

Dim	i	As	Integer

Set	theShape	=	ActiveDocument.Pages(1).Shapes(1)

If	Not	theShape.IsInline	=	True	Then

				With	theShape.TextFrame.Story.TextRange

								If	.InlineShapes.Count	>	0	Then

												For	i	=	1	To	.InlineShapes.Count

																.InlineShapes(i).Select

																.InlineShapes(i).Fill.ForeColor.RGB	=	vbRed

												Next

								End	If

				End	With

End	If

	 	



IsLeading	Property
True	if	the	specified	Page	object	is	a	leading	page	of	a	two	page	spread.	Read
only	Boolean.

expression.IsLeading

expression				Required.	An	expression	that	returns	a	Page	object.



Example

The	following	example	diplays	for	each	page	whether	the	page	is	a	trailing	or
leading	page	in	the	publication.

Dim	objPage	As	Page

Dim	strPageInfo	As	String

For	Each	objPage	In	ActiveDocument.Pages

				strPageInfo	=	"Page	number	"	&	objPage.PageNumber

				If	objPage.IsLeading	Then

								strPageInfo	=	strPageInfo	&	"	is	a	leading	page."	&	Chr(13)

				ElseIf	objPage.IsTrailing	Then

								strPageInfo	=	strPageInfo	&	"	is	a	trailing	page."	&	Chr(13)

				End	If

				MsgBox	strPageInfo

Next	objPage



Show	All



IsLinked	Property
Returns	a	MsoTriState	constant	indicating	whether	the	specified	picture	is	a
linked	picture	or	OLE	object.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	picture	is	not	a	linked	picture.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	picture	is	a	linked	picture.

expression.IsLinked()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

Returns	msoFalse	for	pasted	or	embedded	pictures	and	OLE	objects.

If	a	picture	or	OLE	object	is	linked,	several	additional	properties	of	the
PictureFormat	object	dealing	with	the	original	picture	(such	as
OriginalFileSize)	are	accessible.



Example

The	following	example	returns	whether	the	first	shape	on	the	first	page	of	the
active	publication	contains	an	alpha	channel.	If	the	picture	is	linked,	and	the
original	picture	contains	an	alpha	channel,	that	is	also	returned.	This	example
assumes	the	shape	is	a	picture.

With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

				If	.HasAlphaChannel	=	msoTrue	Then

								Debug.Print	.Filename

								Debug.Print	"This	picture	contains	an	alpha	channel."

								

								If	.IsLinked	=	msoTrue	Then

												If	.OriginalHasAlphaChannel	=	msoTrue	Then

																Debug.Print	"The	linked	picture	"	&	_

																"also	contains	an	alpha	channel."

												End	If

								End	If

				End	If

End	With



IsPostscriptPrinter	Property
Returns	True	if	the	active	printer	is	a	PostScript	printer.	Read-only	Boolean.

expression.IsPostscriptPrinter

expression				Required.	An	expression	that	returns	a	AdvancedPrintOptions
object.



Remarks

The	following	properties	of	the	AdvancedPrintOptions	object	are	only
accessible	if	the	active	printer	is	a	Postscript	printer:	HorizontalFlip,
VerticalFlip,	and	NegativeImage.

Use	the	ActivePrinter	property	to	specify	the	active	printer	for	a	publication.



Example

The	following	example	determines	if	the	active	printer	is	a	PostScript	printer.	If
it	is,	the	active	publication	is	set	to	print	as	a	horizontally	and	vertically
mirrored,	negative	image	of	itself.

Sub	PrepToPrintToFilmOnImagesetter()

With	ActiveDocument.AdvancedPrintOptions

				If	.IsPostscriptPrinter	=	True	Then

								.HorizontalFlip	=	True

								.VerticalFlip	=	True

								.NegativeImage	=	True

				End	If

End	With

End	Sub



IsTrailing	Property
True	if	the	specified	Page	object	is	a	trailing	page	of	a	two	page	spread.	Read
only	Boolean.

expression.IsTrailing

expression				Required.	An	expression	that	returns	a	Page	object.



Example

The	following	example	diplays	for	each	page	whether	the	page	is	a	trailing	or
leading	page	in	the	publication.

Dim	objPage	As	Page

Dim	strPageInfo	As	String

For	Each	objPage	In	ActiveDocument.Pages

				strPageInfo	=	"Page	number	"	&	objPage.PageNumber

				If	objPage.IsLeading	Then

								strPageInfo	=	strPageInfo	&	"	is	a	leading	page."	&	Chr(13)

				ElseIf	objPage.IsTrailing	Then

								strPageInfo	=	strPageInfo	&	"	is	a	trailing	page."	&	Chr(13)

				End	If

				MsgBox	strPageInfo

Next	objPage



Show	All



IsTrueColor	Property
Returns	an	MsoTriState	constant	indicating	whether	the	specified	picture	or
OLE	object	contains	color	data	of	24	bits	per	channel	or	greater.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	picture	does	not	contain	color	data	of	24	bits	per
channel	or	greater.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	picture	contains	color	data	of	24	bits	per	channel	or
greater.

expression.IsTrueColor()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

For	pictures	that	are	not	TrueColor,	use	the	ColorsInPalette	property	of	the
PictureFormat	object	to	determine	the	number	of	colors	in	the	picture's	palette.



Example

The	following	example	tests	each	picture	in	the	active	document	and	prints	out
whether	the	picture	is	TrueColor,	and	if	not	prints	how	many	colors	are	in	the
picture's	palette.

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Or	shpLoop.Type	=	pbPicture	Then

												

												With	shpLoop.PictureFormat

																If	.IsEmpty	=	msoFalse	Then

																				Debug.Print	.Filename

																				If	.IsTrueColor	=	msoTrue	Then

																								Debug.Print	"This	picture	is	TrueColor"

																				Else

																								Debug.Print	"This	picture	contains	"	&	.ColorsInPalette	&	"	colors."

																				End	If

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop



IsTwoPageMaster	Property
True	if	the	specified	Page	object	is	a	two-page	master.	Read/write	Boolean.

expression.IsTwoPageMaster

expression				Required.	An	expression	that	returns	a	Page	object	from	the
MasterPages	collection.



Remarks

This	method	works	for	master	pages	only.	Returns	a	This	feature	is	only	for
master	pages	error	when	attempting	to	access	this	property	from	a	publication
page	object.



Example

The	following	example	adds	text	to	each	header	of	a	two-page	master	page
specifying	the	master	page	PageNumber	and	its	place	in	the	spread:	1	or	2.

Dim	objMasterPage	As	Page

Dim	pageCount	As	Long

Dim	i	As	Long

pageCount	=	ActiveDocument.MasterPages.Count

For	i	=	1	To	pageCount

				Set	objMasterPage	=	ActiveDocument.MasterPages(i)

				If	objMasterPage.IsTwoPageMaster	Then

								objMasterPage.Header.TextRange.Text	=	"MasterPage	"	&	_

												objMasterPage.PageNumber	&	",	Page	1	of	2"

								i	=	i	+	1

								Set	objMasterPage	=	ActiveDocument.MasterPages(i)

								objMasterPage.Header.TextRange.Text	=	"MasterPage	"	&	_

												objMasterPage.PageNumber	&	",	Page	2	of	2"

				End	If

Next	i



IsWizard	Property
Returns	True	if	the	specified	publication	is	a	publication	generated	by	a
Publisher	wizard.	Read-only	Boolean.

expression.IsWizard

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	Wizard	property	of	the	Document	object	to	access	the	wizard	for	the
specified	publication.



Example

The	following	example	tests	to	determine	whether	the	active	document	is	a
wizard	publication.	If	it	is,	certain	wizard	properties	are	returned.

With	ActiveDocument

								If	.IsWizard	=	True	Then

												Debug.Print	.Wizard.Name

												Debug.Print	.Wizard.ID

								End	If

End	With



IsWizardPage	Property
Returns	True	if	the	specified	page	is	a	Publisher	wizard	page.	Read-only
Boolean.

expression.IsWizardPage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Wizard	pages	are	special	page	types	for	certain	types	of	Publisher	wizards	(such
as	Newsletters,	Catalogs,	and	Web	Wizards)	that	can	be	inserted	into	a
publication.

Use	the	Wizard	property	of	the	Page	object	to	access	the	wizard	for	the
specified	page.



Example

The	following	example	tests	to	determine	whether	the	specified	page	is	a	wizard
page.	If	it	is,	certain	wizard	properties	are	returned.

				With	ActiveDocument.Pages(1)

								If	.IsWizardPage	=	True	Then

												

												With	.Wizard

																Debug.Print	.Name

																Debug.Print	.Properties(1).Name

																Debug.Print	.Properties(1).CurrentValueId

												End	With

												

								End	If

				End	With



Show	All



Italic	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	text	is
formatted	as	italic.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	in	the	range	are	formatted	as	italic.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	text.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	of	the	characters	in	the	range	are	formatted	as	italic.

expression.Italic

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	all	the	text	in	the	second	story	of	the	active	publication	and	if
it	has	mixed	italics,	it	sets	all	the	text	to	italic.	If	the	text	is	all	italic	or	not	italic,
a	message	is	dispalyed	informing	the	user	there	are	no	mixed	italics.

Sub	ItalicStory()

				Dim	stf	As	Font

				Set	stf	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	stf

								If	.Italic	=	msoTriStateMixed	Then

												.Italic	=	msoTrue

								Else

												MsgBox	"There	are	no	mixed	italics	in	this	story."

								End	If

				End	With

End	Sub

	 	



Show	All



ItalicBi	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	text	is
formatted	as	italic;	applies	to	text	in	a	right-to-left	language.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	in	the	range	are	formatted	as	italic.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	text.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	of	the	characters	in	the	range	are	formatted	as	italic.

expression.ItalicBi

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	text	in	the	first	story	and	displays	one	of	two	possible	text
boxes	depending	on	if	the	text	is	right-to-left	formatted	and	if	its	font	is
italicized.

Sub	ItalicRtoL()

				Dim	stf	As	Font

				Set	stf	=	Application.ActiveDocument.Stories(1).TextRange.Font

				With	stf

								If	.ItalicBi	=	msoTrue	Then

												MsgBox	"This	story	is	right-to-left	and	is	italicized."

								Else

												MsgBox	"This	story	is	either	not	right-to-left"	&	_

																"	or	it	is	not	italicized"

								End	If

				End	With

End	Sub

	 	



Show	All



Item	Property
Item	property	as	it	applies	to	the	Adjustments	object.

Returns	or	sets	a	Variant	indicating	the	adjustment	value	specified	by	the	Index
argument.	Read/write.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Integer.	The	index	number	of	the	adjustment.



Remarks

AutoShapes,	connectors,	and	WordArt	objects	can	have	up	to	eight	adjustments.

For	linear	adjustments,	an	adjustment	value	of	0.0	generally	corresponds	to	the
left	or	top	edge	of	the	shape,	and	a	value	of	1.0	generally	corresponds	to	the	right
or	bottom	edge	of	the	shape.	However,	adjustments	can	pass	beyond	shape
boundaries	for	some	shapes.	For	radial	adjustments,	an	adjustment	value	of	1.0
corresponds	to	the	width	of	the	shape.	For	angular	adjustments,	the	adjustment
value	is	specified	in	degrees.

The	Item	property	applies	only	to	shapes	that	have	adjustments.

Item	property	as	it	applies	to	the	ColorSchemes	object.

Returns	the	specified	ColorScheme	object	from	a	ColorSchemes	collection.
Read-only.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Variant.	The	color	scheme	to	return.	Can	be	either	the	name	of
the	color	scheme	as	a	string	or	the	corresponding	PbColorScheme	constant.

PbColorScheme	can	be	one	of	these	PbColorScheme	constants.
pbColorSchemeAlpine
pbColorSchemeAqua
pbColorSchemeBerry
pbColorSchemeBlackGray
pbColorSchemeBlackWhite
pbColorSchemeBrown
pbColorSchemeBurgundy
pbColorSchemeCavern
pbColorSchemeCelebration
pbColorSchemeCherry



pbColorSchemeCitrus
pbColorSchemeClay
pbColorSchemeCranberry
pbColorSchemeCrocus
pbColorSchemeCustom
pbColorSchemeDarkBlue
pbColorSchemeDesert
pbColorSchemeField
pbColorSchemeFirstUserDefined
pbColorSchemeFjord
pbColorSchemeFloral
pbColorSchemeGarnet
pbColorSchemeGlacier
pbColorSchemeGreen
pbColorSchemeHeather
pbColorSchemeIris
pbColorSchemeIsland
pbColorSchemeIvy
pbColorSchemeLagoon
pbColorSchemeLilac
pbColorSchemeMahogany
pbColorSchemeMarine
pbColorSchemeMaroon
pbColorSchemeMeadow
pbColorSchemeMist
pbColorSchemeMistletoe
pbColorSchemeMonarch
pbColorSchemeMoss
pbColorSchemeMountain
pbColorSchemeMulberry
pbColorSchemeNavy
pbColorSchemeNutmeg
pbColorSchemeOcean



pbColorSchemeOlive
pbColorSchemeOrange
pbColorSchemeOrchid
pbColorSchemeParrot
pbColorSchemePeach
pbColorSchemePebbles
pbColorSchemePrairie
pbColorSchemePurple
pbColorSchemeRainForest
pbColorSchemeRed
pbColorSchemeRedwood
pbColorSchemeReef
pbColorSchemeSagebrush
pbColorSchemeSapphire
pbColorSchemeShamrock
pbColorSchemeSienna
pbColorSchemeSpice
pbColorSchemeSunrise
pbColorSchemeSunset
pbColorSchemeTeal
pbColorSchemeTidepool
pbColorSchemeTropics
pbColorSchemeTrout
pbColorSchemeVineyard
pbColorSchemeWaterfall
pbColorSchemeWildflower

Item	property	as	it	applies	to	the	MasterPages	and	Pages	objects.

Returns	the	specified	Page	object	from	a	Pages	or	MasterPages	collection.
Read-only.

expression.Item(Item)



expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Item			Required	Long.	The	number	of	the	page	to	return.	For	MasterPages
collections,	Item				can	either	be	1	or	2	for	the	left	and	right	master	pages,
respectively.	For	Pages	collections,	Item				corresponds	to	a	Page	object's
PageIndex	property.

Item	property	as	it	applies	to	all	the	other	objects	in	the	Applies	to	list.

Returns	an	individual	object	from	a	specified	collection.	Read-only.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Index			Required	Long.	The	number	of	the	object	to	return.



Example

As	it	applies	to	the	Adjustments	object.

This	example	adds	two	crosses	to	the	active	publication	and	then	sets	the	value
for	adjustment	one	(the	only	one	for	this	type	of	AutoShape)	on	each	cross.

With	ActiveDocument.Pages(1).Shapes

				.AddShape(Type:=msoShapeCross,	Left:=10,	Top:=10,	Width:=100,	_

								Height:=100).Adjustments.Item(1)	=	0.4

				.AddShape(Type:=msoShapeCross,	Left:=150,	Top:=10,	Width:=100,	_

								Height:=100).Adjustments.Item(1)	=	0.2

End	With

	 	 	 	

This	example	has	the	same	result	as	the	previous	example	even	though	it	doesn't
explicitly	use	the	Item	property.

With	ActiveDocument.Pages(1).Shapes

				.AddShape(Type:=msoShapeCross,	Left:=10,	Top:=10,	Width:=100,	_

								Height:=100).Adjustments(1)	=	0.4

				.AddShape(Type:=msoShapeCross,	Left:=150,	Top:=10,	Width:=100,	_

								Height:=100).Adjustments(1)	=	0.2

End	With

	 	 	 	

As	it	applies	to	the	ColorSchemes	object.

This	example	sets	the	color	scheme	of	the	active	publication	to	the	Aqua	color
scheme.

ActiveDocument.ColorScheme	=	ColorSchemes.Item(Index:=pbColorSchemeAqua)

	 	 	 	

As	it	applies	to	the	Hyperlinks	object.

This	example	displays	the	address	of	the	first	hyperlink	in	shape	one	of	the
active	publication.

MsgBox	"Address	of	first	hyperlink:	"	_

				&	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Hyperlinks.Item(1).Address



	 	 	 	

As	it	applies	to	the	MasterPages	and	Pages	object.

This	example	displays	the	page	number,	page	index,	and	page	ID	of	the	first
page	in	the	active	publication.

With	ActiveDocument.Pages.Item(1)

				Debug.Print	"Page	number	=	"	&	.PageNumber

				Debug.Print	"Page	index	=	"	&	.PageIndex

				Debug.Print	"Page	ID	=	"	&	.PageID

End	With

	 	 	 	

As	it	applies	to	the	Plates	object.

This	example	displays	the	name	of	the	first	color	plate	in	the	active	publication.

MsgBox	"Name	of	first	color	plate:	"	_

				&	ActiveDocument.Plates.Item(1).Name

	 	 	 	

As	it	applies	to	the	RulerGuides	object.

This	example	sets	the	position	of	the	first	ruler	guide	to	3	inches	from	the	edge
of	the	publication.

ActiveDocument.Pages(1).RulerGuides	_

				.Item(1).Position	=	InchesToPoints(3)

	 	 	 	



KashidaPercentage	Property
Returns	or	sets	a	Long	indicating	the	percentage	by	which	kashidas	are	to	be
lengthened	for	the	specified	paragraphs.	Valid	values	are	from	0	to	100.
Read/write.

expression.KashidaPercentage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Alignment	property	of	the	specified	paragraphs	must	be	set	to
pbParagraphAlignmentKashida	or	the	KashidaPercentage	property	is
ignored.



Example

The	following	example	sets	the	paragraphs	in	shape	one	on	page	one	of	the
active	publication	to	kashida	alignment	and	specifies	that	kashidas	are	to	be
lengthened	by	20	percent.

With	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.ParagraphFormat

				.Alignment	=	pbParagraphAlignmentKashida

				.KashidaPercentage	=	20

End	With

	 	



Show	All



KeepLinesTogether	Property
Sets	or	returns	an	msoTriState	that	represents	whether	or	not	all	lines	in	the
specified	paragraph	will	remain	in	the	same	text	box.	Read/write.

msoCTrue
msoFalse	All	lines	will	remain	in	the	same	text	box.
msoTriStateMixed
msoTriStateToggle
msoTrue	All	lines	may	not	remain	in	the	same	text	box.

expression.KeepLinesTogether

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

This	option	ensures	that	there	is	not	a	text	frame	or	column	break	between	the
lines	of	the	specified	paragraph.	If	the	paragraphs	are	too	large	for	the	text	frame
or	column,	the	first	line	will	start	at	the	top	of	the	next	text	frame	or	column.

The	default	setting	for	this	property	is	msoFalse.



Example

This	example	sets	the	KeepLinesTogether	property	to	msoTrue	for	the
specified	ParagraphFormat	object.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Paragraphs(1).ParagraphFormat

objParaForm.KeepLinesTogether	=	msoTrue



Show	All



KeepWithNext	Property
Sets	or	returns	an	msoTriState	that	represents	whether	or	not	the	following
paragraph	will	remain	in	the	same	text	box	as	the	specified	paragraph.
Read/write.

msoCTrue
msoFalse	Next	paragraph	will	remain	in	the	same	text	box.
msoTriStateMixed
msoTriStateToggle
msoTrue	Next	paragraph	may	not	remain	in	the	same	text	box.

expression.KeepWithNext

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

The	purpose	of	keep	with	next	is	to	prevent	hanging	headings	in	a	document.	To
do	this	a	user	may	set	this	property	to	msoTrue	for	all	headings.

The	default	setting	for	this	property	is	msoFalse.



Example

This	example	sets	the	KeepWithNext	property	to	msoTrue	for	the	specified
ParagraphFormat	object.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Paragraphs(1).ParagraphFormat

objParaForm.KeepWithNext	=	msoTrue



Show	All



KernedPairs	Property
Sets	or	returns	an	MsoTriState	constant	that	indicates	that	character	pairs	in	a
WordArt	object	have	been	kerned.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	Character	pairs	in	the	specified	WordArt	object	have	not	been	kerned.
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Toggles	between	msoTrue	and	msoFalse.
msoTrue	Character	pairs	in	the	specified	WordArt	object	have	been	kerned.

expression.KernedPairs

expression				Required.	An	expression	that	returns	a	TextEffectFormat	object.



Example

This	example	turns	on	character	pair	kerning	for	all	WordArt	objects	in	the
active	publication.

Sub	KernedWordArt()

				Dim	pagPage	As	Page

				Dim	shpShape	As	Shape

				For	Each	pagPage	In	ActiveDocument.Pages

								For	Each	shpShape	In	pagPage.Shapes

												If	shpShape.Type	=	msoTextEffect	Then

																shpShape.TextEffect.KernedPairs	=	msoTrue

												End	If

								Next

				Next

End	Sub

	 	



Kerning	Property
Returns	or	sets	a	Variant	indicating	the	amount	of	horizontal	spacing	Microsoft
Publisher	applies	to	the	characters	in	the	text	range.	Read/write.

expression.Kerning

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	setting	this	property,	numeric	values	are	considered	to	be	in	points,	and
String	values	may	be	in	any	unit	supported	by	Publisher.	Return	values	are	of
type	Single	and	in	points.	Negative	values	bring	characters	closer	together	than
normal,	and	positive	values	spread	characters	farther	apart	than	normal.	The
valid	range	is	-600.0	to	600.0	points.

Use	the	InchesToPoints	method	to	convert	inches	to	points.



Example

This	example	adjusts	the	kerning	of	all	text	in	the	first	story	to	6	point.

Application.ActiveDocument.Stories(1).TextRange.Font.Kerning	=	6

	 	



Keywords	Property
Returns	or	sets	a	String	that	represents	the	keywords	for	a	Web	page	within	a
Web	publication.	Read/write.

expression.Keywords

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Example

The	following	example	sets	the	keywords	for	page	four	of	the	active	publication.

Dim	theWPO	As	WebPageOptions

Set	theWPO	=	ActiveDocument.Pages(4).WebPageOptions

With	theWPO

				.Keywords	=	"software,	hardware,	computers"

End	With

	 	



Label	Property
Returns	or	sets	a	Label	object	that	represents	a	single	unique	label	design
available	on	the	system.	Read/write.

expression.Label

expression				Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

The	returned	Label	object	is	contained	within	the	AvailableLabels	collection,
which	is	accessed	by	using	the	AvailableLabels	property.

Only	labels	that	are	relevant	in	the	current	language/locale	are	available
programmatically.



Example

The	following	example	demonstrates	using	the	Label	property	to	return	the	fifth
label	available	on	the	system	and	modify	its	properties	to	create	a	custom	label.
Various	label	properties	are	set	for	this	label,	and	then	a	text	box	and	some	text
are	added	to	the	label.	All	pages	that	contain	this	custom	label	will	have	the
properties	that	are	set	in	this	example.

Dim	theLabel	As	Label

With	ActiveDocument.PageSetup

				.Label	=	.AvailableLabels(5)		'	Label	5	is	Avery	5164

				Set	theLabel	=	.Label

				With	theLabel

								.LeftMargin	=	InchesToPoints(0.15)

								.TopMargin	=	InchesToPoints(0.15)

								.HorizontalGap	=	InchesToPoints(0.1)

								.VerticalGap	=	InchesToPoints(0.1)

				End	With

End	With

With	ActiveDocument.Pages(4).Shapes.AddShape(msoShapeRectangle,	_

								5,	5,	(theLabel.Width	-	10),	(theLabel.Height	-	10))

				With	.TextFrame.TextRange

								.Font.Name	=	"Verdana"

								.Font.Size	=	12

								.Text	=	"Here	is	some	label	text."

				End	With

End	With

	 	

The	following	example	demonstrates	that	certain	properties	of	the	Label	object
are	read-only	if	accessed	without	using	.PageSetup.Label.

Dim	theLabel	As	Label

Set	theLabel	=	ActiveDocument.PageSetup.AvailableLabels(5)

With	theLabel

				'	Trying	to	set	any	of	the	following	four	properties	will	return	an	error.

				'	All	of	these	properties	are	read-only	if	accessed	without	using

				'	.PageSetup.Label.

				.LeftMargin	=	InchesToPoints(0.15)

				.TopMargin	=	InchesToPoints(0.15)

				.HorizontalGap	=	InchesToPoints(0.1)



				.VerticalGap	=	InchesToPoints(0.1)

End	With



Show	All



Language	Property
Returns	a	Long	that	represents	the	language	selected	for	the	Microsoft	Publisher
user	interface.	Read-only.

expression.Language

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	Language	property	can	return	any	MsoLanguageID	constant.

MsoLanguageID	can	be	one	of	these	MsoLanguageID	constants.
msoLanguageIDAfrikaans
msoLanguageIDAlbanian
msoLanguageIDAmharic
msoLanguageIDArabic
msoLanguageIDArabicAlgeria
msoLanguageIDArabicBahrain
msoLanguageIDArabicEgypt
msoLanguageIDArabicIraq
msoLanguageIDArabicJordan
msoLanguageIDArabicKuwait
msoLanguageIDArabicLebanon
msoLanguageIDArabicLibya
msoLanguageIDArabicMorocco
msoLanguageIDArabicOman
msoLanguageIDArabicQatar
msoLanguageIDArabicSyria
msoLanguageIDArabicTunisia
msoLanguageIDArabicUAE
msoLanguageIDArabicYemen
msoLanguageIDArmenian
msoLanguageIDAssamese
msoLanguageIDAzeriCyrillic
msoLanguageIDAzeriLatin
msoLanguageIDBasque
msoLanguageIDBelgianDutch
msoLanguageIDBelgianFrench
msoLanguageIDBengali



msoLanguageIDBrazilianPortuguese
msoLanguageIDBulgarian
msoLanguageIDBurmese
msoLanguageIDByelorussian
msoLanguageIDCatalan
msoLanguageIDCherokee
msoLanguageIDChineseHongKong
msoLanguageIDChineseMacao
msoLanguageIDChineseSingapore
msoLanguageIDCroatian
msoLanguageIDCzech
msoLanguageIDDanish
msoLanguageIDDutch
msoLanguageIDEnglishAUS
msoLanguageIDEnglishBelize
msoLanguageIDEnglishCanadian
msoLanguageIDEnglishCaribbean
msoLanguageIDEnglishIreland
msoLanguageIDEnglishJamaica
msoLanguageIDEnglishNewZealand
msoLanguageIDEnglishPhilippines
msoLanguageIDEnglishSouthAfrica
msoLanguageIDEnglishTrinidad
msoLanguageIDEnglishUK
msoLanguageIDEnglishUS
msoLanguageIDEnglishZimbabwe
msoLanguageIDEstonian
msoLanguageIDFaeroese
msoLanguageIDFarsi
msoLanguageIDFinnish
msoLanguageIDFrench
msoLanguageIDFrenchCameroon
msoLanguageIDFrenchCanadian



msoLanguageIDFrenchCotedIvoire
msoLanguageIDFrenchLuxembourg
msoLanguageIDFrenchMali
msoLanguageIDFrenchMonaco
msoLanguageIDFrenchReunion
msoLanguageIDFrenchSenegal
msoLanguageIDFrenchWestIndies
msoLanguageIDFrenchZaire
msoLanguageIDFrisianNetherlands
msoLanguageIDGaelicIreland
msoLanguageIDGaelicScotland
msoLanguageIDGalician
msoLanguageIDGeorgian
msoLanguageIDGerman
msoLanguageIDGermanAustria
msoLanguageIDGermanLiechtenstein
msoLanguageIDGermanLuxembourg
msoLanguageIDGreek
msoLanguageIDGujarati
msoLanguageIDHebrew
msoLanguageIDHindi
msoLanguageIDHungarian
msoLanguageIDIcelandic
msoLanguageIDIndonesian
msoLanguageIDInuktitut
msoLanguageIDItalian
msoLanguageIDJapanese
msoLanguageIDKannada
msoLanguageIDKashmiri
msoLanguageIDKazakh
msoLanguageIDKhmer
msoLanguageIDKirghiz
msoLanguageIDKonkani



msoLanguageIDKorean
msoLanguageIDLao
msoLanguageIDLatvian
msoLanguageIDLithuanian
msoLanguageIDMacedonian
msoLanguageIDMalayalam
msoLanguageIDMalayBruneiDarussalam
msoLanguageIDMalaysian
msoLanguageIDMaltese
msoLanguageIDManipuri
msoLanguageIDMarathi
msoLanguageIDMexicanSpanish
msoLanguageIDMixed
msoLanguageIDMongolian
msoLanguageIDNepali
msoLanguageIDNone
msoLanguageIDNoProofing
msoLanguageIDNorwegianBokmol
msoLanguageIDNorwegianNynorsk
msoLanguageIDOriya
msoLanguageIDOromo
msoLanguageIDPolish
msoLanguageIDPortuguese
msoLanguageIDPunjabi
msoLanguageIDRhaetoRomanic
msoLanguageIDRomanian
msoLanguageIDRomanianMoldova
msoLanguageIDRussian
msoLanguageIDRussianMoldova
msoLanguageIDSamiLappish
msoLanguageIDSanskrit
msoLanguageIDSerbianCyrillic
msoLanguageIDSerbianLatin



msoLanguageIDSesotho
msoLanguageIDSimplifiedChinese
msoLanguageIDSindhi
msoLanguageIDSlovak
msoLanguageIDSlovenian
msoLanguageIDSorbian
msoLanguageIDSpanish
msoLanguageIDSpanishArgentina
msoLanguageIDSpanishBolivia
msoLanguageIDSpanishChile
msoLanguageIDSpanishColombia
msoLanguageIDSpanishCostaRica
msoLanguageIDSpanishDominicanRepublic
msoLanguageIDSpanishEcuador
msoLanguageIDSpanishElSalvador
msoLanguageIDSpanishGuatemala
msoLanguageIDSpanishHonduras
msoLanguageIDSpanishModernSort
msoLanguageIDSpanishNicaragua
msoLanguageIDSpanishPanama
msoLanguageIDSpanishParaguay
msoLanguageIDSpanishPeru
msoLanguageIDSpanishPuertoRico
msoLanguageIDSpanishUruguay
msoLanguageIDSpanishVenezuela
msoLanguageIDSutu
msoLanguageIDSwahili
msoLanguageIDSwedish
msoLanguageIDSwedishFinland
msoLanguageIDSwissFrench
msoLanguageIDSwissGerman
msoLanguageIDSwissItalian
msoLanguageIDTajik



msoLanguageIDTamil
msoLanguageIDTatar
msoLanguageIDTelugu
msoLanguageIDThai
msoLanguageIDTibetan
msoLanguageIDTigrignaEritrea
msoLanguageIDTigrignaEthiopic
msoLanguageIDTraditionalChinese
msoLanguageIDTsonga
msoLanguageIDTswana
msoLanguageIDTurkish
msoLanguageIDTurkmen
msoLanguageIDUkrainian
msoLanguageIDUrdu
msoLanguageIDUzbekCyrillic
msoLanguageIDUzbekLatin
msoLanguageIDVenda
msoLanguageIDVietnamese
msoLanguageIDWelsh
msoLanguageIDXhosa
msoLanguageIDZulu



Example

This	example	displays	a	message	stating	whether	the	language	selected	for	the
Microsoft	Publisher	user	interface	is	U.S.	English.

Sub	LangSetting()

				If	Application.Language	=	msoLanguageIDEnglishUS	Then

								MsgBox	"The	user	interface	language	is	U.S.	English."

				Else

								MsgBox	"The	user	interface	language	is	not	U.S.	English."

				End	If

End	Sub

	 	



Show	All



LanguageID	Property
Returns	or	sets	a	MsoLanguageID	constant	that	represents	the	language	for	the
specified	object.	Read/write.

MsoLanguageID	can	be	one	of	these	MsoLanguageID	constants.
msoLanguageIDAfrikaans
msoLanguageIDAlbanian
msoLanguageIDAmharic
msoLanguageIDArabic
msoLanguageIDArabicAlgeria
msoLanguageIDArabicBahrain
msoLanguageIDArabicEgypt
msoLanguageIDArabicIraq
msoLanguageIDArabicJordan
msoLanguageIDArabicKuwait
msoLanguageIDArabicLebanon
msoLanguageIDArabicLibya
msoLanguageIDArabicMorocco
msoLanguageIDArabicOman
msoLanguageIDArabicQatar
msoLanguageIDArabicSyria
msoLanguageIDArabicTunisia
msoLanguageIDArabicUAE
msoLanguageIDArabicYemen
msoLanguageIDArmenian
msoLanguageIDAssamese
msoLanguageIDAzeriCyrillic
msoLanguageIDAzeriLatin
msoLanguageIDBasque
msoLanguageIDBelgianDutch
msoLanguageIDBelgianFrench



msoLanguageIDBengali
msoLanguageIDBrazilianPortuguese
msoLanguageIDBulgarian
msoLanguageIDBurmese
msoLanguageIDByelorussian
msoLanguageIDCatalan
msoLanguageIDCherokee
msoLanguageIDChineseHongKong
msoLanguageIDChineseMacao
msoLanguageIDChineseSingapore
msoLanguageIDCroatian
msoLanguageIDCzech
msoLanguageIDDanish
msoLanguageIDDivehi
msoLanguageIDDutch
msoLanguageIDEdo
msoLanguageIDEnglishAUS
msoLanguageIDEnglishBelize
msoLanguageIDEnglishCanadian
msoLanguageIDEnglishCaribbean
msoLanguageIDEnglishIreland
msoLanguageIDEnglishJamaica
msoLanguageIDEnglishNewZealand
msoLanguageIDEnglishPhilippines
msoLanguageIDEnglishSouthAfrica
msoLanguageIDEnglishTrinidad
msoLanguageIDEnglishUK
msoLanguageIDEnglishUS
msoLanguageIDEnglishZimbabwe
msoLanguageIDEstonian
msoLanguageIDFaeroese
msoLanguageIDFarsi
msoLanguageIDFilipino



msoLanguageIDFinnish
msoLanguageIDFrench
msoLanguageIDFrenchCameroon
msoLanguageIDFrenchCanadian
msoLanguageIDFrenchCotedIvoire
msoLanguageIDFrenchLuxembourg
msoLanguageIDFrenchMali
msoLanguageIDFrenchMonaco
msoLanguageIDFrenchReunion
msoLanguageIDFrenchSenegal
msoLanguageIDFrenchWestIndies
msoLanguageIDFrenchZaire
msoLanguageIDFrisianNetherlands
msoLanguageIDFulfulde
msoLanguageIDGaelicIreland
msoLanguageIDGaelicScotland
msoLanguageIDGalician
msoLanguageIDGeorgian
msoLanguageIDGerman
msoLanguageIDGermanAustria
msoLanguageIDGermanLiechtenstein
msoLanguageIDGermanLuxembourg
msoLanguageIDGreek
msoLanguageIDGuarani
msoLanguageIDGujarati
msoLanguageIDHausa
msoLanguageIDHawaiian
msoLanguageIDHebrew
msoLanguageIDHindi
msoLanguageIDHungarian
msoLanguageIDIbibio
msoLanguageIDIcelandic
msoLanguageIDIgbo



msoLanguageIDIndonesian
msoLanguageIDInuktitut
msoLanguageIDItalian
msoLanguageIDJapanese
msoLanguageIDKannada
msoLanguageIDKanuri
msoLanguageIDKashmiri
msoLanguageIDKazakh
msoLanguageIDKhmer
msoLanguageIDKirghiz
msoLanguageIDKonkani
msoLanguageIDKorean
msoLanguageIDKyrgyz
msoLanguageIDLao
msoLanguageIDLatin
msoLanguageIDLatvian
msoLanguageIDLithuanian
msoLanguageIDMacedonian
msoLanguageIDMalayalam
msoLanguageIDMalayBruneiDarussalam
msoLanguageIDMalaysian
msoLanguageIDMaltese
msoLanguageIDManipuri
msoLanguageIDMarathi
msoLanguageIDMexicanSpanish
msoLanguageIDMixed
msoLanguageIDMongolian
msoLanguageIDNepali
msoLanguageIDNone
msoLanguageIDNoProofing
msoLanguageIDNorwegianBokmol
msoLanguageIDNorwegianNynorsk
msoLanguageIDOriya



msoLanguageIDOromo
msoLanguageIDPashto
msoLanguageIDPolish
msoLanguageIDPortuguese
msoLanguageIDPunjabi
msoLanguageIDRhaetoRomanic
msoLanguageIDRomanian
msoLanguageIDRomanianMoldova
msoLanguageIDRussian
msoLanguageIDRussianMoldova
msoLanguageIDSamiLappish
msoLanguageIDSanskrit
msoLanguageIDSerbianCyrillic
msoLanguageIDSerbianLatin
msoLanguageIDSesotho
msoLanguageIDSimplifiedChinese
msoLanguageIDSindhi
msoLanguageIDSindhiPakistan
msoLanguageIDSinhalese
msoLanguageIDSlovak
msoLanguageIDSlovenian
msoLanguageIDSomali
msoLanguageIDSorbian
msoLanguageIDSpanish
msoLanguageIDSpanishArgentina
msoLanguageIDSpanishBolivia
msoLanguageIDSpanishChile
msoLanguageIDSpanishColombia
msoLanguageIDSpanishCostaRica
msoLanguageIDSpanishDominicanRepublic
msoLanguageIDSpanishEcuador
msoLanguageIDSpanishElSalvador
msoLanguageIDSpanishGuatemala



msoLanguageIDSpanishHonduras
msoLanguageIDSpanishModernSort
msoLanguageIDSpanishNicaragua
msoLanguageIDSpanishPanama
msoLanguageIDSpanishParaguay
msoLanguageIDSpanishPeru
msoLanguageIDSpanishPuertoRico
msoLanguageIDSpanishUruguay
msoLanguageIDSpanishVenezuela
msoLanguageIDSutu
msoLanguageIDSwahili
msoLanguageIDSwedish
msoLanguageIDSwedishFinland
msoLanguageIDSwissFrench
msoLanguageIDSwissGerman
msoLanguageIDSwissItalian
msoLanguageIDSyriac
msoLanguageIDTajik
msoLanguageIDTamazight
msoLanguageIDTamazightLatin
msoLanguageIDTamil
msoLanguageIDTatar
msoLanguageIDTelugu
msoLanguageIDThai
msoLanguageIDTibetan
msoLanguageIDTigrignaEritrea
msoLanguageIDTigrignaEthiopic
msoLanguageIDTraditionalChinese
msoLanguageIDTsonga
msoLanguageIDTswana
msoLanguageIDTurkish
msoLanguageIDTurkmen
msoLanguageIDUkrainian



msoLanguageIDUrdu
msoLanguageIDUzbekCyrillic
msoLanguageIDUzbekLatin
msoLanguageIDVenda
msoLanguageIDVietnamese
msoLanguageIDWelsh
msoLanguageIDXhosa
msoLanguageIDYi
msoLanguageIDYiddish
msoLanguageIDYoruba
msoLanguageIDZulu

expression.LanguageID

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	as	French	the	specified	selection.	This	example	assumes
that	the	insertion	point	is	in	a	text	box.

Sub	SetLanguage()

				Selection.TextRange.LanguageID	=	msoLanguageIDFrench

End	Sub

	 	



Show	All



LastRecord	Property
Returns	or	sets	a	Long	that	represents	the	number	of	the	last	data	record	to	be
merged	in	a	mail	merge	or	catalog	merge	operation.	Read/write.

expression.LastRecord

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	sets	the	active	record	as	the	first	record	to	be	merged	and	then	sets
the	last	record	as	the	record	two	records	forward	in	the	data	source.	This
example	assumes	that	the	active	publication	is	a	mail	merge	publication.

Sub	RecordOne()

				With	ActiveDocument.MailMerge

								.DataSource.FirstRecord	=	.DataSource.ActiveRecord

								.DataSource.LastRecord	=	.DataSource.ActiveRecord	+	2

								.Execute	Pause:=True

				End	With

End	Sub

	 	



LayoutGuides	Property
Returns	a	LayoutGuides	object	consisting	of	the	margin	and	grid	layout	guides
for	all	pages	including	master	pages	in	the	publication.

expression.LayoutGuides

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	changes	the	grid	layout	guides	so	that	there	are	three
columns	and	five	rows.

Dim	layTemp	As	LayoutGuides

Set	layTemp	=	ActiveDocument.LayoutGuides

With	layTemp

				.Rows	=	5

				.Columns	=	3

End	With

	 	



Show	All



Leader	Property
Sets	or	returns	a	PbTabLeaderType	constant	that	represents	the	leader	character
for	a	tab	stop.	Read/write.

PbTabLeaderType	can	be	one	of	these	PbTabLeaderType	constants.
pbTabLeaderBullet
pbTabLeaderDashes
pbTabLeaderDot
pbTabLeaderLine
pbTabLeaderNone

expression.Leader

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	changes	the	leader	tab	character	of	the	selected	paragraphs	to
dashes.	This	example	assumes	that	the	selected	paragraph	contains	at	least	one
tab	stop.

Sub	SetLeaderTab()

			Selection.TextRange.ParagraphFormat	_

				.Tabs(1).Leader	=	pbTabLeaderDashes

End	Sub

	 	

This	example	changes	the	leader	tab	character	of	the	first	paragraph	in	the
specified	text	range	to	an	underline.	This	example	assumes	that	the	specified
paragraph	contains	at	least	one	tab	stop.

Sub	SetNewTabLeader()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange.Paragraphs(1)	_

								.ParagraphFormat.Tabs(1).Leader	=	pbTabLeaderLine

End	Sub

	 	



Show	All



Left	Property
Left	property	as	it	applies	to	the	ReaderSpread	object.

Returns	a	Single	indicating	the	position	(in	points)	of	the	left	edge	of	the	reader
spread	from	the	workspace.	Read-only.

expression.Left

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Left	property	as	it	applies	to	the	PrintableRect	object.

Returns	a	Single	indicating	the	distance	(in	points)	from	the	left	edge	of	the
printer	sheet	to	the	left	edge	of	the	printable	rectangle.	Read-only.

expression.Left

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Left	property	as	it	applies	to	the	Shape	object.

Returns	or	sets	a	Variant	indicating	the	distance	from	the	left	edge	of	the	page	to
the	leftmost	edge	of	the	specified	shape.	Numeric	values	are	in	points;	all	other
values	are	in	any	measurement	supported	by	Publisher	(for	example,	"2.5	in").
Read/write.

expression.Left

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Left	property	as	it	applies	to	the	ShapeRange	object.

Returns	a	Variant	indicating	the	distance	from	the	left	edge	of	the	page	to	the
leftmost	edge	of	all	the	shapes	in	the	specified	shape	range.	Numeric	values	are
in	points;	all	other	values	are	in	any	measurement	supported	by	Publisher	(for
example,	"2.5	in").	Read-only.



expression.Left

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Left	property	as	it	applies	to	the	Window	object.

Returns	or	sets	a	Long	indicating	the	position	(in	points)	of	the	left	edge	of	the
application	window	relative	to	the	left	edge	of	the	screen.	Read/write.

expression.Left

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Shape	object.

This	example	sets	the	horizontal	position	of	the	first	shape	in	the	active
publication	to	1	inch	from	the	left	edge	of	the	page.

With	ActiveDocument.Pages(1).Shapes(1)

				.Left	=	InchesToPoints(1)

End	With

	 	 	 	

As	it	applies	to	the	Window	object.

This	example	sets	the	horizontal	position	of	the	active	window	to	100	points.

With	ActiveDocument.ActiveWindow

				.WindowState	=	pbWindowStateNormal

				.Left	=	100

				.Top	=	0

End	With

	 	 	 	



LeftIndent	Property
Returns	or	sets	a	Variant	that	represents	the	left	indent	value	(in	points)	for	the
specified	paragraphs.	Read/write.

expression.LeftIndent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	indents	one-half	inch	the	paragraph	at	the	cursor	position.	This
example	assumes	the	insertion	point	is	in	a	text	box.

Sub	IndentParagraph()

				Selection.TextRange.ParagraphFormat.LeftIndent	=	36

End	Sub

	 	



LeftMargin	Property
Returns	or	sets	a	Variant	that	represents	the	distance	(in	points)	between	the	left
edge	of	the	printer	sheet	and	the	left	edge	of	the	publication	pages.	Read/write.

expression.LeftMargin

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	only	use	the	LeftMargin	property	when	printing	multiple	pages	on	a
single	sheet	of	printer	paper.

When	used	with	the	Label	object,	the	LeftMargin	property	is	read/write	only
when	accessed	from	.PageSetup.Label.	Otherwise,	it	is	read-only.



Example

This	example	specifies	a	width	of	a	quarter	of	an	inch	for	the	area	between	the
edge	of	the	printer	paper	and	the	left	edge	of	the	pages	in	the	active	publication.

Sub	SetLeftMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Show	All



Length	Property
Length	property	as	it	applies	to	the	CalloutFormat	object.

Returns	a	Variant	indicating	the	length	(in	points)	of	the	first	segment	of	the
callout	line	(the	segment	attached	to	the	text	callout	box)	if	the	AutoLength
property	of	the	specified	callout	is	set	to	False.	Otherwise,	an	error	occurs.
Read-only.

expression.Length

expression				Required.	An	expression	that	returns	a	CalloutFormat	object.



Remarks

This	property	applies	only	to	callouts	whose	lines	consist	of	more	than	one
segment	(types	msoCalloutThree	and	msoCalloutFour).

Use	the	CustomLength	method	to	set	the	value	of	this	property.

Length	property	as	it	applies	to	the	TextRange	object.

Returns	a	Long	value	indicating	the	length	of	the	specified	text	range,	in
characters.	Read-only.

expression.Length

expression				Required.	An	expression	that	returns	a	TextRange	object.



Example

As	it	applies	to	the	CalloutFormat	object.

If	the	first	line	segment	in	the	callout	named	co1	has	a	fixed	length,	this	example
specifies	that	the	length	of	the	first	line	segment	in	the	callout	named	co2	will
also	be	fixed	at	that	length.	For	the	example	to	work,	both	callouts	must	have
multiple-segment	lines.

Dim	len1	As	Single

With	ActiveDocument.Pages(1).Shapes

				With	.Item("co1").Callout

								If	Not	.AutoLength	Then	len1	=	.Length

				End	With

				If	len1	Then	.Item("co2").Callout	_

								.CustomLength	Length:=len1

End	With

	 	 	 	

As	it	applies	to	the	TextRange	object.

This	example	sets	the	font	size	of	a	text	frame	on	page	two	to	48	points	if	the
text	frame	contains	more	than	five	characters,	or	it	sets	the	font	size	to	72	points
if	the	text	frame	has	five	or	fewer	characters.

With	ActiveDocument.Pages(2).Shapes(1)	_

								.TextFrame.TextRange

				If	.Length	>	5	Then

								.Font.Size	=	48

				Else

								.Font.Size	=	72

				End	If

End	With

	 	 	 	





Limit	Property
Returns	or	sets	a	Long	that	represents	the	maximum	number	of	characters	that
can	be	entered	into	a	Web	text	box	control.	Read/write.

expression.Limit

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Text	box	limits	can	be	any	number	from	1	to	255	characters.	Numbers	higher
than	255	will	generate	an	error.



Example

This	example	creates	a	new	Web	text	box	control	in	the	active	publication,	sets
the	default	text	and	the	character	limit	for	the	text	box,	and	specifies	that	it	is	a
required	control.

Sub	AddWebTextBoxControl()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlMultiLineTextBox,	Left:=72,	_

												Top:=72,	Width:=300,	Height:=100).WebTextBox

								.DefaultText	=	"Please	enter	text	here."

								.Limit	=	200

								.RequiredControl	=	msoTrue

				End	With

End	Sub

	 	



Line	Property
Returns	a	LineFormat	object	that	contains	line	formatting	properties	for	the
specified	shape.	(For	a	line,	the	LineFormat	object	represents	the	line	itself;	for
a	shape	with	a	border,	the	LineFormat	object	represents	the	border.)

expression.Line

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	blue	dashed	line	to	the	active	publication.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=10,	BeginY:=10,	_

								EndX:=250,	EndY:=250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(50,	0,	128)

End	With

	 	

This	example	adds	a	cross	to	the	first	page	and	then	sets	its	border	to	be	8	points
thick	and	red.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeCross,	_

								Left:=10,	Top:=10,	Width:=50,	Height:=70).Line

				.Weight	=	8

				.ForeColor.RGB	=	RGB(255,	0,	0)

End	With

	 	



LineSpacing	Property
Returns	or	sets	a	Variant	that	represents	the	line	spacing	(in	number	of	lines)	for
the	specified	paragraphs.	Read/write.

expression.LineSpacing

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	use	the	LineSpacingRule	property	to	set	the	line	spacing	to	a	preset
value.



Example

This	example	sets	the	line	spacing	of	the	paragraph	at	the	cursor	position	to	three
lines.	This	example	assumes	the	insertion	point	is	in	a	text	box.

Sub	SetLineSpacing()

				Selection.TextRange.ParagraphFormat.LineSpacing	=	3

End	Sub

	 	



Show	All



LineSpacingRule	Property
Returns	or	sets	a	PbLineSpacingRule	that	represents	the	line	spacing	for	the
specified	paragraphs.	Read/write.

PbLineSpacingRule	can	be	one	of	these	PbLineSpacingRule	constants.
pbLineSpacing1pt5	Sets	paragraph	line	spacing	to	a	line	and	a	half.
pbLineSpacingDouble	Sets	paragraph	line	spacing	to	two	lines.
pbLineSpacingExactly	Sets	paragraph	line	spacing	to	exactly	the	value	of	the
LineSpacing	property,	even	if	a	larger	font	is	used	within	the	paragraph.
pbLineSpacingMixed	A	return	value	for	a	paragraph	that	has	line	spacing	of
varying	values.
pbLineSpacingMultiple	A	LineSpacing	property	value	must	be	specified,	in
number	of	lines.
pbLineSpacingSingle	Sets	paragraph	line	spacing	to	one	space.

expression.LineSpacingRule

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	paragraph	at	the	cursor	position	to	double	spacing.

Sub	SetLineSpacing()

				Selection.TextRange.ParagraphFormat

								.LineSpacingRule	=	pbLineSpacingDouble

End	Sub

	 	



LinesUp	Property
Returns	or	sets	a	Long	that	represents	the	number	of	lines	an	initial	dropped
capital	letter	is	raised	above	the	line	of	text	on	which	it	exists.	Read/write.

expression.LinesUp

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	custom	dropped	capital	letter	that	is	five	lines	high	and
raises	it	two	lines	above	the	line	on	which	it	exists.

Sub	RaisedDropCap()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes	_

												.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=100,	Top:=100,	Width:=100,	Height:=100)	_

												.TextFrame.TextRange

								For	intCount	=	1	To	10

												.InsertAfter	NewText:="This	is	a	test.	"

								Next	intCount

								With	.DropCap

												.Size	=	5

												.LinesUp	=	2

								End	With

				End	With

End	Sub

	 	



Show	All



LinkedFileStatus	Property
Returns	a	PbLinkedFileStatus	constant	that	indicates	the	status	of	the	file
linked	to	the	specified	picture.	Read-only.

PbLinkedFileStatus	can	be	one	of	these	PbLinkedFileStatus	constants.
pbLinkedFileMissing	The	file	can	no	longer	be	found	at	the	specified	path.
pbLinkedFileModified	The	linked	file	has	been	modified	since	it	was	linked	to
the	picture.
pbLinkedFileOK	The	file	resides	at	the	specified	path,	and	has	not	been
modified	since	it	was	linked	to	the	picture.

expression.LinkedFileStatus()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	picture	files.	Returns	"Permission	Denied"
for	shapes	representing	embedded	or	pasted	pictures.

Use	either	of	the	following	properties	to	determine	whether	a	shape	represents	a
linked	picture:

The	Type	property	of	the	Shape	object
The	IsLinked	property	of	the	PictureFormat	object



Example

The	following	example	generates	a	list	of	the	linked	pictures	in	the	active
publication	for	which	the	linked	files	cannot	be	found.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																If	.LinkedFileStatus	=	pbLinkedFileMissing	Then

																Debug.Print	.Filename

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop



LinkFormat	Property
Returns	a	LinkFormat	object	that	contains	the	properties	that	are	unique	to
linked	OLE	objects.	Read-only.

expression.LinkFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	updates	the	links	between	any	OLE	objects	on	page	one	in	the
active	publication	and	their	source	files.

Dim	sh	As	Shape

For	Each	sh	In	ActiveDocument.Pages(1).Shapes

				If	sh.Type	=	pbLinkedOLEObject	Then

								With	sh.LinkFormat

												.Update

								End	With

				End	If

Next

	 	



Links	Property
Returns	a	WebNavigationBarHyperlinks	collection	containing	all	of	the
hyperlinks	in	the	specified	Web	navigation	bar	set.	Read/write.

expression.Links

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

Use	the	Links	property	to	return	a	WebNavigationBarHyperlinks	property.
This	example	returns	the	Web	navigation	bar	hyperlinks	of	the	first	Web
navigation	bar	set	of	the	active	document.

ActiveDocument.WebNavigationBarSets(1).Links

The	following	example	adds	a	new	Web	navigation	bar	set	to	the	active
document,	adds	a	hyperlink	to	the	navigation	bar,	and	then	adds	the	navigation
bar	to	every	page	of	the	publication	that	has	the	AddHyperlinkToWebNavbar
property	set	to	True	or	the
Page.WebPageOptions.IncludePageOnNewWebNavigationBars	property	set
to	True.

With	ActiveDocument.WebNavigationBarSets.AddSet(Name:="WebNavigationBarSet1")

				With	.Links

								.Add	Address:="www.microsoft.com",	TextToDisplay:="Microsoft",	Index:=1

				End	With

				.AddToEveryPage	Left:=10,	Top:=10

End	With



ListBoxItems	Property
Returns	a	WebListBoxItems	object	that	represents	the	items	in	a	Web	list	box
control.

expression.ListBoxItems

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	list	box	control	and	adds	five	new	list	items	to
it.

Sub	NewListBoxItems()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlListBox,	Left:=100,	_

												Top:=100,	Width:=150,	Height:=100).WebListBox

								.MultiSelect	=	msoTrue

								With	.ListBoxItems

												For	intCount	=	1	To	.Count

																.Delete	(1)

												Next

												.AddItem	Item:="Yellow"

												.AddItem	Item:="Red"

												.AddItem	Item:="Blue"

												.AddItem	Item:="Green"

												.AddItem	Item:="Black"

								End	With

				End	With

End	Sub

	 	



ListBulletFontName	Property
Sets	or	retrieves	a	String	representing	the	list	bullet	font	name	from	the
specified	paragraphs.	Read/write.

expression.ListBulletFontName

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

Returns	an	"Access	Denied"	message	if	the	list	is	not	a	bulleted	list.



Example

This	example	tests	to	see	if	the	list	type	is	a	bulleted	list.	If	it	is,	the
ListBulletFontName	is	set	to	"Verdana"	and	the	ListFontSize	is	set	to	24.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeBullet	Then

								.ListBulletFontName	=	"Verdana"

								.ListBulletFontSize	=	24

				End	If

End	With



ListBulletFontSize	Property
Sets	or	retrieves	a	Single	that	represents	the	list	bullet	font	size	from	the
specified	paragraphs.	Read/write.

expression.ListBulletFontSize

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

Returns	an	"Access	Denied"	message	if	the	list	is	not	a	bulleted	list.



Example

This	example	tests	to	see	if	the	list	type	is	a	bulleted	list.	If	it	is,	the
ListFontSize	is	set	to	24	and	the	ListBulletFontName	is	set	to	"Verdana".

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeBullet	Then

								.ListBulletFontSize	=	24

								.ListBulletFontName	=	"Verdana"

				End	If

End	With



ListBulletText	Property
Returns	a	String	representing	the	list	bullet	text	from	the	specified	paragraphs.
Read-only.

expression.ListBulletText

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

The	ListBulletText	property	is	limited	to	one	character.

This	property	is	read-only.	To	set	the	ListBulletText	property	of	a	bulleted	list,
use	the	SetListType	method.

Returns	an	"Access	Denied"	message	if	the	list	is	not	a	bulleted	list.



Example

This	example	tests	to	see	if	the	list	type	is	a	bulleted	list.	If	it	is,	a	test	is	made	to
see	that	the	list	bullet	text	is	set	to	"*".	If	it	is	not,	the	SetListType	method	is
called	and	passed	pbListTypeBullet	as	the	pbListType	parameter	and	"*"	as	the
BulletText	parameter.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeBullet	Then

								If	Not	.ListBulletText	=	"*"	Then

												.SetListType	pbListTypeBullet,	"*"

								End	If

				End	If

End	With



ListIndent	Property
Returns	or	sets	a	Single	that	represents	the	list	indent	value	(in	points)	for	the
specified	ParagraphFormat	object.	Read/write.

expression.ListIndent

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Example

This	example	sets	the	ListIndent	property	of	a	ParagraphFormat	object	to
0.25	inches.	The	InchesToPoints	method	is	used	to	convert	inches	to	points.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				.ListIndent	=	InchesToPoints(0.25)

End	With



Show	All



ListNumberSeparator	Property
Sets	or	retrieves	a	PbListNumberSeparator	constant	that	represents	the	list
separator	of	the	specified	paragraphs.	Read/write.

PbListNumberSeparator	can	be	one	of	these	PbListNumberSeparator
constants.
pbListSeparatorColon
pbListSeparatorDoubleHyphen
pbListSeparatorDoubleParen
pbListSeparatorDoubleSquare
pbListSeparatorParenthesis
pbListSeparatorPeriod
pbListSeparatorPlain
pbListSeparatorSquare
pbListSeparatorWideComma

expression.ListNumberSeparator

expression			Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

The	ListType	property	must	be	set	to	a	numbered	list	type	before	setting	the
ListNumberSeparator	property.	Returns	an	"Access	Denied"	message	if	the	list
is	not	a	numbered	list.



Example

This	example	tests	to	see	if	the	list	type	is	a	numbered	list,	specifically
pbListTypeArabic.	If	the	ListType	property	is	set	to	pbListTypeArabic	the
ListNumberSeparator	is	set	to	pbListSeparatorParenthesis.	Otherwise,	the
SetListType	method	is	called	and	passed	pbListTypeArabic	as	the	pbListType
parameter	and	then	the	ListNumberSeparator	property	can	be	set.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm		=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeArabic	Then

								.ListNumberSeparator	=	pbListSeparatorParenthesis

				Else

								.SetListType	pbListTypeArabic

								.ListNumberSeparator	=	pbListSeparatorParenthesis

				End	If

End	With



ListNumberStart	Property
Sets	or	retrieves	a	Long	that	represents	the	starting	number	of	a	list.	Read/write.

expression.ListNumberStart

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

Returns	an	"Access	Denied"	message	if	the	list	is	not	a	numbered	list.



Example

This	example	sets	the	list	type	of	a	ParagraphFormat	object	to
pbListTypeArabic	and	sets	the	ListNumber	property	to	4.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

				With	objParaForm

								.SetListType	pbListTypeArabic

								.ListNumberStart	=	4

				End	With

End	Sub



Show	All



ListType	Property
Returns	a	pbListType	constant	from	the	specified	ParagraphFormat	object.
Read-only.

PbListType	can	be	one	of	these	PbListType	constants.
pbListTypeAiueo
pbListTypeArabic
pbListTypeArabic1
pbListTypeArabic2
pbListTypeArabicLeadingZero
pbListTypeBullet
pbListTypeCardinalText
pbListTypeChiManSty
pbListTypeChinaDbNum1
pbListTypeChinaDbNum2
pbListTypeChinaDbNum3
pbListTypeChinaDbNum4
pbListTypeChosung
pbListTypeCirclenum
pbListTypeDAiueo
pbListTypeDArabic
pbListTypeDbChar
pbListTypeDbNum1
pbListTypeDbNum2
pbListTypeDbNum3
pbListTypeDbNum4
pbListTypeDIroha
pbListTypeGanada
pbListTypeGB1
pbListTypeGB2
pbListTypeGB3



pbListTypeGB4
pbListTypeHebrew1
pbListTypeHebrew2
pbListTypeHex
pbListTypeHindi1
pbListTypeHindi2
pbListTypeHindi3
pbListTypeHindi4
pbListTypeIroha
pbListTypeKoreaDbNum1
pbListTypeKoreaDbNum2
pbListTypeKoreaDbNum3
pbListTypeKoreaDbNum4
pbListTypeLowerCaseLetter
pbListTypeLowerCaseRoman
pbListTypeLowerCaseRussian
pbListTypeNone
pbListTypeOrdinal
pbListTypeOrdinalText
pbListTypeSbChar
pbListTypeTaiwanDbNum1
pbListTypeTaiwanDbNum2
pbListTypeTaiwanDbNum3
pbListTypeTaiwanDbNum4
pbListTypeThai1
pbListTypeThai2
pbListTypeThai3
pbListTypeUpperCaseLetter
pbListTypeUpperCaseRoman
pbListTypeUpperCaseRussian
pbListTypeVietnamese1
pbListTypeZodiac1
pbListTypeZodiac2



pbListTypeZodiac3

expression.ListType

expression			Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

This	property	is	read-only.	To	set	the	ListType	property	of	a	ParagraphFormat
object,	use	the	SetListType	method.



Example

This	example	tests	to	see	if	the	list	type	is	a	numbered	list,	specifically
pbListTypeArabic.	If	the	ListType	property	is	set	to	pbListTypeArabic,	the
ListNumberSeparator	is	set	to	pbListSeparatorParenthesis.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

.TextFrame.TextRange.ParagraphFormat

With	objParaForm

				If	.ListType	=	pbListTypeArabic	Then

								.ListNumberSeparator	=	pbListSeparatorParenthesis

				End	If

End	With



Show	All



LockAspectRatio	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	shape
retains	its	original	proportions	when	you	resize	it.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	height	and	width	of	the	shape	change	independently	of	one
another	when	you	resize	it.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	specified	shape	retains	its	original	proportions	when	you	resize	it.

expression.LockAspectRatio

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	cube	to	the	active	publication.	The	cube	can	be	moved	and
resized,	but	not	reproportioned.

Dim	shp	As	Shape

Set	shp	=	ActiveDocument.Pages(1).Shapes	_

				.AddShape(Type:=msoShapeCube,	_

				Left:=50,	Top:=50,	Width:=100,	Height:=200)	_

shp.LockAspectRatio	=	msoTrue

	 	



Show	All



LockToBaseLine	Property
Returns	an	MsoTristate	that	represents	whether	or	not	text	will	be	positioned
along	baseline	guides.	Read/write.

msoCTrue
msoFalse	The	text	is	not	aligned	to	baselines.
msoTriStateMixed	The	specified	paragraphs	contain	both	text	that	is	aligned	to
baselines	and	text	that	is	not	aligned	to	baselines.
msoTriStateToggle
msoTrue	The	text	is	aligned	to	baselines.

expression.LockToBaseLine

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Example

The	following	example	sets	the	LockToBaseLine	property	to	True.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.ParagraphFormat

objParaForm.LockToBaseLine	=	msoTrue



Luminance	Property
Returns	or	sets	a	Long	indicating	a	calculated	luminance	value	for	the	specified
plate;	used	for	spot-color	trapping.	Valid	values	are	from	0	to	100.	Read/write.

expression.Luminance

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	valid	only	for	publications	with	a	ColorMode	property	value	of
pbColorModeSpot	or	for	spot	plates	in	a	publication	with	a	ColorMode
property	value	of	pbColorModeSpotAndProcess.



Example

The	following	example	loops	through	all	the	spot-color	plates	in	a	publication
and	reports	their	luminance	values.

Dim	plaTemp	As	Plates

Dim	plaLoop	As	Plate

Set	plaTemp	=	ActiveDocument.Plates

If	ActiveDocument.ColorMode	<>	pbColorModeSpot	And	_

								ActiveDocument.ColorMode	<>	pbColorModeSpotAndProcess	Then

				Debug.Print	"No	spot	colors	in	this	publication."

Else

				For	Each	plaLoop	In	plaTemp

								With	plaLoop

												Debug.Print	"Plate	"	&	.Name	_

																&	"	has	a	luminance	of	"	&	.Luminance

								End	With

				Next	plaLoop

End	If

	 	



Show	All



Magenta	Property
Sets	or	returns	a	Long	that	represents	the	magenta	component	of	a	CMYK	color.
Value	can	be	any	number	between	0	and	255.	Read/write.

expression.Magenta

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	new	shapes	and	then	sets	the	CMYK	fill	color	for	one
shape	and	sets	the	CMYK	values	of	the	second	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=100)

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				With	shpHeart.Fill.ForeColor.CMYK

							.SetCMYK	Cyan:=10,	Magenta:=80,	Yellow:=200,	Black:=30

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Sets	new	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.CMYK.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub

	 	



MailEnvelope	Property
Returns	an	MsoEnvelope	object	that	represents	an	e-mail	header	for	a
publication.

expression.MailEnvelope

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof11.chm::/html/ofobjMsoEnvelope.htm


Remarks

The	MailEnvelope	property	is	only	accessible	if	the	EnvelopeVisible	property
has	been	set	to	True.



Example

This	example	sets	the	comments	for	the	e-mail	header	of	the	active	publication.
This	example	assumes	that	the	EnvelopeVisible	property	has	been	set	to	True.

Sub	HeaderComments()

				ActiveDocument.MailEnvelope.Introduction	=	_

								"Please	review	this	publication	and	let	me	know	"	&	_

								"what	you	think.		I	need	your	input	by	Friday."	&	_

								"		Thanks."

End	Sub

	 	



MailMerge	Property
Returns	a	MailMerge	object	that	represents	the	mail	merge	functionality	for	the
specified	publication.

expression.MailMerge

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	information	from	the	current	data	record	in	the	data
source.

Sub	ViewMergeData()

				ActiveDocument.MailMerge.ViewMailMergeFieldCodes	=	False

End	Sub

	 	

This	example	displays	the	Mail	Merge	Recipients	dialog	box,	which	contains
the	records	from	the	data	source.

Sub	ExecuteMergeField()

				ActiveDocument.MailMerge.DataSource.OpenRecipientsDialog

End	Sub

	 	



MajorityFont	Property
Returns	a	Font	object	that	represents	the	font	name	most	in	use	in	a	text	range.

expression.MajorityFont

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	text	box,	fills	it	with	text,	checks	if	the	font	most	in
use	is	Tahoma,	and	if	it	isn't,	changes	the	font	to	Tahoma.

Sub	SetFontName()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes	_

												.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=100,	Top:=100,	Width:=100,	Height:=100)	_

												.TextFrame.TextRange

								For	intCount	=	1	To	10

												.InsertAfter	NewText:="This	is	a	test.	"

								Next	intCount

								If	.MajorityFont	<>	"Tahoma"	Then	_

												.Font.Name	=	"Tahoma"

				End	With

End	Sub

	 	



MajorityParagraphFormat	Property
Returns	a	ParagraphFormat	object	that	represents	the	paragraph	formatting
applied	to	most	of	the	paragraphs	in	a	text	range.

expression.MajorityParagraphFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	the	paragraph	formatting	applied	to	a	majority	of	the
paragraphs	in	the	first	shape	to	the	paragraphs	in	the	second	shape	on	the	first
page	of	the	active	document.	This	example	assumes	that	there	are	at	least	two
shapes	on	page	one	of	the	active	publication.

Sub	SetFontName()

				Dim	fmt	As	ParagraphFormat

				With	ActiveDocument.Pages(1)

								Set	fmt	=	.Shapes(1).TextFrame.TextRange	_

																.MajorityParagraphFormat

								.Shapes(2).TextFrame.TextRange.ParagraphFormat	=	fmt

				End	With

End	Sub

	 	



Show	All



MappedDataFields	Property
Returns	a	MailMergeMappedDataFields	object	that	represents	the	mapped
data	fields	available	in	Publisher.

expression.MappedDataFields

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	creates	a	table	on	a	new	page	of	the	current	publication	and	lists
the	mapped	data	fields	available	in	Publisher	and	the	fields	in	the	data	source	to
which	they	are	mapped.	This	example	assumes	that	the	current	publication	is	a
mail	merge	publication	and	that	the	data	source	fields	have	corresponding
mapped	data	fields.

Sub	MappedFields()

				Dim	intCount	As	Integer

				Dim	intRows	As	Integer

				Dim	docPub	As	Document

				Dim	pagNew	As	Page

				Dim	shpTable	As	Shape

				Dim	tblTable	As	Table

				Dim	rowTable	As	Row

				On	Error	Resume	Next

				Set	docPub	=	ThisDocument

				Set	pagNew	=	ThisDocument.Pages.Add(Count:=1,	After:=1)

				intRows	=	docPub.MailMerge.DataSource.MappedDataFields.Count	+	1

				'Creates	new	table	with	a	heading	row

				Set	shpTable	=	pagNew.Shapes.AddTable(NumRows:=intRows,	_

								numColumns:=2,	Left:=100,	Top:=100,	Width:=400,	Height:=12)

				Set	tblTable	=	shpTable.Table

				With	tblTable.Rows(1)

								With	.Cells(1).Text

												.Text	=	"Mapped	Data	Field"

												.Font.Bold	=	msoTrue

								End	With

								With	.Cells(2).Text

												.Text	=	"Data	Source	Field"

												.Font.Bold	=	msoTrue

								End	With

				End	With

				With	docPub.MailMerge.DataSource

								For	intCount	=	2	To	intRows	-	1

												'Inserts	mapped	data	field	name	and	the

												'corresponding	data	source	field	name

												tblTable.Rows(intCount	-	1).Cells(1).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).Name

												tblTable.Rows(intCount	-	1).Cells(2).Text	_

																.Text	=	.MappedDataFields(Index:=intCount).DataFieldName



								Next

				End	With

End	Sub

	 	



MarginBottom	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	(in	points)	between
the	text	and	the	bottom	edge	of	a	cell,	text	frame,	or	page.	Read/write.

expression.MarginBottom

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	margins	of	the	active	publication	to	two	inches.

Sub	SetPageMargins()

				With	ActiveDocument.LayoutGuides

								.MarginTop	=	Application.InchesToPoints(Value:=2)

								.MarginBottom	=	Application.InchesToPoints(Value:=2)

								.MarginLeft	=	Application.InchesToPoints(Value:=2)

								.MarginRight	=	Application.InchesToPoints(Value:=2)

				End	With

End	Sub

	 	



MarginLeft	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	(in	points)	between
the	text	and	the	left	edge	of	a	cell,	text	frame,	or	page.	Read/write.

expression.MarginLeft

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	margins	of	the	active	publication	to	two	inches.

Sub	SetPageMargins()

				With	ActiveDocument.LayoutGuides

								.MarginTop	=	Application.InchesToPoints(Value:=2)

								.MarginBottom	=	Application.InchesToPoints(Value:=2)

								.MarginLeft	=	Application.InchesToPoints(Value:=2)

								.MarginRight	=	Application.InchesToPoints(Value:=2)

				End	With

End	Sub

	 	



MarginRight	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	(in	points)	between
the	text	and	the	right	edge	of	a	cell,	text	frame,	or	page.	Read/write.

expression.MarginRight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	margins	of	the	active	publication	to	two	inches.

Sub	SetPageMargins()

				With	ActiveDocument.LayoutGuides

								.MarginTop	=	Application.InchesToPoints(Value:=2)

								.MarginBottom	=	Application.InchesToPoints(Value:=2)

								.MarginLeft	=	Application.InchesToPoints(Value:=2)

								.MarginRight	=	Application.InchesToPoints(Value:=2)

				End	With

End	Sub

	 	



MarginTop	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	space	(in	points)	between
the	text	and	the	top	edge	of	a	cell,	text	frame,	or	page.	Read/write.

expression.MarginTop

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	margins	of	the	active	publication	to	two	inches.

Sub	SetPageMargins()

				With	ActiveDocument.LayoutGuides

								.MarginTop	=	Application.InchesToPoints(Value:=2)

								.MarginBottom	=	Application.InchesToPoints(Value:=2)

								.MarginLeft	=	Application.InchesToPoints(Value:=2)

								.MarginRight	=	Application.InchesToPoints(Value:=2)

				End	With

End	Sub

	 	



Master	Property
Sets	or	returns	a	Page	object	that	represents	the	master	page	properties	for	the
specified	page.

expression.Master

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Master	pages	do	not	have	a	Master	property.	Any	attempt	to	access	the	Master
property	of	a	master	page	will	result	in	a	run-time	error.



Example

This	example	adds	a	shape	to	the	master	page	for	the	first	page	in	the	active
publication.

Sub	AddNewMasterPageShape()

				With	ActiveDocument.Pages(1).Master.Shapes.AddShape	_

												(Type:=msoShape5pointStar,	Left:=512,	_

												Top:=50,	Width:=50,	Height:=50)

								.Fill.ForeColor.CMYK.SetCMYK	Cyan:=255,	_

												Magenta:=255,	Yellow:=0,	Black:=0

				End	With

End	Sub

	 	

The	Master	property	can	also	be	used	to	apply	a	master	page	to	a	page	in	a
publication.	The	following	example	sets	the	master	page	of	the	first	page	of	a
publication	to	the	master	page	of	the	second	page	in	the	publication.	This
example	assumes	that	there	are	at	least	two	pages	and	two	master	pages	in	the
document.

ActiveDocument.Pages(1).Master	=	_

				ActiveDocument.Pages(2).Master



MasterPages	Property
Returns	the	MasterPages	collection	for	the	specified	publication.

expression.MasterPages

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	the	text	in	the	first	text	frame	on	the	master	page	to
Second	Quarter.

Dim	mp	As	MasterPages

Set	mp	=	ActiveDocument.MasterPages

With	mp.Item(1)

				.Shapes(1).TextFrame.TextRange.Text	=	"Second	Quarter"

End	With

	 	



MatchAlefHamza	Property
Sets	or	returns	a	Boolean	representing	whether	or	not	a	search	operation	will
match	alefs	and	hamzas.	Read/write.

expression.MatchAlefHamza

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

This	property	may	not	be	available	depending	on	the	language	enabled	on	your
operating	system.	The	default	value	is	False.

Returns	Access	denied	if	Arabic	is	not	enabled.



Examples

This	example	finds	the	first	occurrence	of	the	word	" إنجرخإ "	in	an	Arabic
document	matching	alefs	and	hamzas.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	" إنجرخإ "

				.MatchAlefHamza	=	True

				.Execute

End	With

This	example	follows	from	the	previous	one	except	that	alef	hamzas	will	not	be
matched.	Therefore	the	words	" إنجرخإ "	or	" نجرخ "	will	both	be	found	because
alefs	and	hamzas	will	be	ignored.

" إنجرخإ ".

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	" إنجرخإ "

				.MatchAlefHamza	=	False

				.Execute

End	With



MatchCase	Property
Sets	or	returns	a	Boolean	that	represents	the	case	sensitivity	of	the	search
operation.	Read/write.

expression.MatchCase

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	default	value	for	MatchCase	is	False.



Example

This	example	will	select	the	first	occurrence	of	the	word	"factory"	regardless	of
case.

With	ActiveDocument.Find

				.Clear

				.MatchCase	=	False

				.FindText	=	"factory"

				.Execute

End	With



MatchDiacritics	Property
Sets	or	returns	a	Boolean	representing	whether	or	not	a	search	operation	will
match	diacritics.	Read/write.

expression.MatchDiacritics

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

This	property	may	not	be	available	depending	on	the	languages	enabled	on	your
operating	system.	The	default	value	is	False.

Returns	Access	denied	if	a	proper	language,	such	as	Arabic,	is	not	enabled.



Example

This	example	finds	the	first	occurrence	of	the	word	"gegenüber"	in	a	German
document.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"gegenüber"

				.MatchDiacritics	=	True

				.Execute

End	With



MatchKashida	Property
Sets	or	returns	a	Boolean	representing	whether	or	not	a	search	operation	will
match	kashidas.	Read/write.

expression.MatchKashida

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

This	property	may	not	be	available	depending	on	the	language	enabled	on	your
operating	system.	The	default	value	is	False.

Returns	Access	denied	if	Arabic	is	not	enabled.



Examples

This	example	finds	the	first	occurrence	of	the	word	"د ـــــ م ـــ ح ــــ an	in	"م
Arabic	document	matching	kashidas.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"د ـــــ م ـــ ح ــــ "م
				.MatchKashida	=	True

				.Execute

End	With

This	example	follows	from	the	previous	one	except	that	kashidas	will	not	be
matched.	Therefore	the	words	" دمحم "	or	"د ـــــ م ـــ ح ــــ found	be	both	will	"م
because	kashidas	will	be	ignored.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"د ـــــ م ـــ ح ــــ "م
				.MatchKashida	=	False

				.Execute

End	With



MatchWholeWord	Property
Sets	or	returns	a	Boolean	that	represents	whether	the	whole	word	will	be
matched	in	the	search	operation.	Read/write.	Boolean.

expression.MatchWholeWord

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	default	value	for	MatchWholeWord	is	False.



Example

This	example	will	select	each	occurrence	of	the	word	"fact"	and	apply	bold
formatting.

With	ActiveDocument.Find

				.Clear

				.MatchWholeWord	=	True

				.FindText	=	"fact"

				.ReplaceScope	=	pbReplaceScopeNone

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Bold	=	msoTrue

				Loop

End	With

This	example	follows	the	previous	example	except	that	whole	words	will	not	be
matched.	Therefore	the	word	"fact"	within	the	word	"factory"	or	"factoid"	will
also	have	bold	formatting	applied.

With	ActiveDocument.Find

				.Clear

				.MatchWholeWord	=	False

				.FindText	=	"fact"

				.ReplaceScope	=	pbReplaceScopeNone

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Bold	=	msoTrue

				Loop

End	With



MatchWidth	Property
Sets	or	returns	a	Boolean	representing	whether	or	not	a	search	operation	will
match	the	character	width	of	the	searched	text.	Read/Write.

expression.MatchWidth

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

This	property	may	not	be	available	depending	on	the	language	enabled	on	your
operating	system.	The	default	value	is	False.

Return	"Access	denied"	if	an	East	Asian	language	is	not	enabled.



Example

The	following	example	finds	each	occurance	of	the	word	"width"	in	the	active
document	and	applies	bold	formatting.	The	MatchWidth	property	is	set	to	False
so	that	full	or	half	width	characters	will	both	be	found.	For	example,	this	search
will	apply	bold	formatting	to	the	word	"width"	(half-width	characters)	and	the
word	"	"	(full-width	characters).

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"width"

				.MatchWidth	=	False

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Bold	=	msoTrue

				Loop

End	With

The	following	example	finds	each	occurance	of	the	word	"width"	in	the	active
document	and	applies	bold	formatting.	The	MatchWidth	property	is	set	to	True
so	that	either	full	or	half	width	characters	will	be	found.	For	example,	this	search
will	apply	bold	formatting	to	"width".	It	will	not	apply	formatting	to	the	word	"
".

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

With	objDocument.Find

				.Clear

				.FindText	=	"width"

				.MatchWidth	=	True

				Do	While	.Execute	=	True

								.FoundTextRange.Font.Bold	=	msoTrue

				Loop

End	With





Show	All



MeasurementUnit	Property
Returns	or	sets	a	PbUnitType	constant	representing	the	standard	measurement
unit	for	Microsoft	Publisher.	Read/write.

PbUnitType	can	be	one	of	these	PbUnitType	constants.
pbUnitCM	Sets	the	unit	of	measurement	to	centimeters.
pbUnitEmu	Doesn't	apply	to	this	property;	returns	an	error	if	used.
pbUnitFeet	Doesn't	apply	to	this	property;	returns	an	error	if	used.
pbUnitHa	Doesn't	apply	to	this	property;	returns	an	error	if	used.
pbUnitInch	Sets	the	unit	of	measurement	to	inches.
pbUnitKyu	Doesn't	apply	to	this	property;	returns	an	error	if	used.
pbUnitMeter	Doesn't	apply	to	this	property;	returns	an	error	if	used.
pbUnitPica	Sets	the	unit	of	measurement	to	picas.
pbUnitPoint	Sets	the	unit	of	measurement	to	points.
pbUnitTwip	Doesn't	apply	to	this	property;	returns	an	error	if	used.

expression.MeasurementUnit

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	standard	measurement	unit	for	Publisher	to	points.

Sub	SetUnitOfMeasurement()

				Options.MeasurementUnit	=	pbUnitPoint

End	Sub

	 	

This	example	displays	the	current	unit	of	measurement.

Sub	GetUnitOfMeasurement()

				Dim	measUnit	As	PbUnitType

				Dim	strUnit	As	String

				measUnit	=	Options.MeasurementUnit

				Select	Case	measUnit

								Case	0

												strUnit	=	"inches"

								Case	1

												strUnit	=	"centimeters"

								Case	2

												strUnit	=	"picas"

								Case	3

												strUnit	=	"points"

				End	Select

				MsgBox	"The	current	unit	of	measurement	is	"	&	strUnit

End	Sub

	 	



MirrorGuides	Property
Returns	or	sets	a	Boolean	indicating	whether	Microsoft	Publisher	creates	mirror
guide	positions	for	a	book	fold	publication.	True	if	Publisher	creates	mirror
guide	positions	for	separate	left	and	right	pages	in	a	book	fold	publication;	False
if	the	same	margin,	row,	and	column	guides	are	applied	to	all	pages	in	the
publication.	Read/write.

expression.MirrorGuides

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	the	MirrorGuides	property	is	True,	margin	settings	apply	to	right-facing
pages	and	are	mirrored	for	left-facing	pages.	In	addition,	when	set	to	True,	the
MirrorGuides	property	sets	the	publication	to	use	two	master	pages	instead	of
the	default	of	one.	The	first	master	page	is	for	all	left-facing	pages	and	the
second	is	for	all	right-facing	pages	in	the	publication.	For	more	information,	see
MasterPages	object.



Example

The	following	example	sets	Publisher	to	create	mirror	guides	for	a	book	fold
publication	and	sets	the	inside	and	outside	margins	of	each	two-page	spread.	The
example	sets	the	left	and	right	margin	values	for	right-facing	pages,	and
Publisher	mirrors	these	values	for	left-facing	pages.

With	ActiveDocument.LayoutGuides

				.MirrorGuides	=	True

				.MarginLeft	=	48

				.MarginRight	=	96

End	With

	 	



MultiplePagesPerSheet	Property
True	for	Microsoft	Publisher	to	print	multiple	pages	onto	a	single	sheet.
Read/write	Boolean.

expression.MultiplePagesPerSheet

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	page	size	is	greater	than	half	the	paper	size,	Publisher	will	display	an	error.



Example

This	example	sets	the	active	publication	to	print	multiple	pages	on	a	single	sheet
when	printing	the	publication.

Sub	SetLeftMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Show	All



MultiSelect	Property
MsoTrue	if	a	user	may	select	more	than	one	item	in	a	Web	list	box	control.
Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Indicates	a	user	may	only	select	one	item	in	a	Web	list	box	control.
msoTriStateMixed
msoTriStateToggle
msoTrue	Indicates	a	user	may	select	more	than	one	item	in	a	Web	list	box
control.

expression.MultiSelect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	add	a	Web	list	box	control	to	the	active	publication,	add	items	to	it,
and	specifies	that	a	user	may	select	more	than	one	item.

Sub	NewListBoxItems()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlListBox,	Left:=100,	_

												Top:=100,	Width:=150,	Height:=100).WebListBox

								.MultiSelect	=	msoTrue

								With	.ListBoxItems

												For	intCount	=	1	To	.Count

																.Delete	(1)

												Next

												.AddItem	Item:="Yellow"

												.AddItem	Item:="Red"

												.AddItem	Item:="Blue"

												.AddItem	Item:="Green"

												.AddItem	Item:="Black"

								End	With

				End	With

End	Sub

	 	



Show	All



Name	Property
Name	property	as	it	applies	to	the	Application,	BorderArt,

ColorScheme,	Document,	Label,	MailMergeDataSource,
MailMergeMappedDataField,	Plate,	Tag,	TextStyle,	Wizard,
WizardProperty,	and	WizardValue	objects.

Returns	a	String	value	indicating	the	name	of	the	specified	object.	Read-only.

expression.Name

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Name	property	as	it	applies	to	the	BorderArtFormat,	Font,	Page,	Shape,
and	ShapeRange	objects.

Returns	or	sets	a	String	value	indicating	the	name	of	the	specified	object.
Read/write.

expression.Name

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

You	can	use	an	object's	name	in	conjunction	with	the	Item	method	or	Item
property	to	return	a	reference	to	the	object	if	the	Item	method	or	property	for	the
collection	that	contains	the	object	takes	a	Variant	argument.	For	example,	if	the
value	of	the	Name	property	for	a	shape	is	Rectangle	2,	then
.Shapes("Rectangle	2")	will	return	a	reference	to	that	shape.

The	Name	property	is	the	default	property	for	the	BorderArt,
BorderArtFormat,	and	Label	objects.



Example

As	it	applies	to	the	ColorScheme	object.

This	example	reports	the	name	of	the	color	scheme	for	the	active	publication.

MsgBox	"The	current	color	scheme	is	"	_

				&	ActiveDocument.ColorScheme.Name	&	"."

	 	 	 	

As	it	applies	to	the	Font	object.

This	example	formats	a	text	frame	on	page	one	as	Arial	bold.

With	ActiveDocument.Pages(1).Shapes(1)	_

								.TextFrame.TextRange.Font

				.Name	=	"Arial"

				.Bold	=	True

End	With

	 	 	 	



NegativeImage	Property
True	to	print	a	negative	image	of	the	specified	publication.	The	default	is	False.
Read/write	Boolean.

expression.NegativeImage

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	is	only	accessible	if	the	active	printer	is	a	PostScript	printer.
Returns	a	run-time	error	if	a	non-PostScript	printer	is	specified.	Use	the
IsPostscriptPrinter	property	of	the	AdvancedPrintOptions	object	to	determine
if	the	specified	printer	is	a	PostScript	printer.

This	property	is	saved	as	an	application	setting	and	applied	to	future	instances	of
Publisher.

This	property	corresponds	to	the	Negative	image	control	on	the	Page	Settings
tab	of	the	Advanced	Print	Settings	dialog	box.

This	property	is	mostly	used	when	printing	to	film	on	an	imagesetter,	so	that	the
image	reads	positive	when	burned	onto	a	press	plate.



Example

The	following	example	determines	if	the	active	printer	is	a	PostScript	printer.	If
it	is,	the	active	publication	is	set	to	print	as	a	horizontally	and	vertically
mirrored,	negative	image	of	itself.

Sub	PrepToPrintToFilmOnImagesetter()

With	ActiveDocument.AdvancedPrintOptions

				If	.IsPostscriptPrinter	=	True	Then

								.HorizontalFlip	=	True

								.VerticalFlip	=	True

								.NegativeImage	=	True

				End	If

End	With

End	Sub



Next	Property
Returns	a	Field	object	that	represents	the	next	field	in	a	text	range.

expression.Next

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	bolds	the	field	next	to	the	first	field	in	the	specified	text	range.
This	assumes	that	there	are	at	least	two	fields	in	the	specified	text	range.

Sub	GoToNextField()

				ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

								.Fields(1).Next.TextRange.Font.Bold	=	msoTrue

End	Sub

	 	



NextLinkedTextFrame	Property
Returns	or	sets	a	TextFrame	object	representing	the	text	frame	to	which	text
flows	from	the	specified	text	frame.	Read/write.

expression.NextLinkedTextFrame

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	specified	text	frame	is	not	part	of	a	chain	of	linked	frames	or	is	the	last	in	a
chain	of	linked	frames,	this	property	returns	nothing.



Example

The	following	example	returns	the	next	linked	text	frame	of	shape	three	on	page
one	of	the	active	publication	and	sets	its	font	to	Times	New	Roman.

Dim	txtFrame	As	TextFrame

Set	txtFrame	=	ActiveDocument.Pages(1)	_

				.Shapes(3).TextFrame.NextLinkedTextFrame

txtFrame.TextRange.Font	=	"Times	New	Roman"

	 	



NextParagraphStyle	Property
Returns	or	sets	a	String	that	represents	the	paragraph	style	that	follows	the
specified	text	style	when	a	user	presses	ENTER.	Read/write.

expression.NextParagraphStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	text	style	and	specifies	that	the	text	style	following
the	new	text	style	is	the	Normal	style.

Sub	CreateNewTextStyle()

				Dim	styNew	As	TextStyle

				Dim	fntStyle	As	Font

				Set	styNew	=	ActiveDocument.TextStyles.Add(StyleName:="Heading	1")

				Set	fntStyle	=	styNew.Font

				With	fntStyle

								.Name	=	"Tahoma"

								.Bold	=	msoTrue

								.Size	=	15

				End	With

				With	styNew

								.Font	=	fntStyle

								.NextParagraphStyle	=	"Normal"

				End	With

End	Sub

	 	



Nodes	Property
Returns	a	ShapeNodes	collection	that	represents	the	geometric	description	of	the
specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent
freeform	drawings.

expression.Nodes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	smooth	node	with	a	curved	segment	after	node	four	in
shape	three	on	page	one.	Shape	three	must	be	a	freeform	drawing	with	at	least
four	nodes.

With	ActiveDocument.Pages(1)	_

								.Shapes(3).Nodes

				.Insert	Index:=4,	SegmentType:=msoSegmentCurve,	_

								EditingType:=msoEditingSmooth,	X1:=210,	Y1:=100

End	With

	 	



Show	All



NormalizedHeight	Property
Returns	or	sets	MsoTrue	if	all	characters	(both	uppercase	and	lowercase)	in	the
specified	WordArt	are	the	same	height.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	Characters	in	the	specified	WordArt	object	are	not	all	the	same
height.
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	Characters	in	the	specified	WordArt	object	are	all	the	same	height.

expression.NormalizedHeight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	WordArt	shape	on	the	first	page	of	the	active
publication	and	then	sets	each	character	in	the	shape	to	be	the	same	height.

Sub	SetNormalHeight()

				With	ActiveDocument.Pages(1).Shapes.AddTextEffect	_

												(PresetTextEffect:=msoTextEffect10,	_

												text:="Test	WordArt	Shape",	FontName:="Snap	ITC",	_

												FontSize:=30,	FontBold:=msoFalse,	FontItalic:=msoFalse,	_

												Left:=36,	Top:=36).TextEffect

								.NormalizedHeight	=	msoTrue

				End	With

End	Sub

	 	



Object	Property
Returns	an	Object	that	represents	the	specified	OLE	object's	top-level	interface.
This	property	allows	you	to	access	the	properties	and	methods	of	an	ActiveX
control	or	the	application	in	which	an	OLE	object	was	created.	The	OLE	object
must	support	OLE	Automation	for	this	property	to	work.	Read-only.

expression.Object

expression				Required.	An	expression	that	returns	an	OLEFormat	object.



Example

This	example	sets	the	value	of	the	first	shape	in	the	active	publication.	For	the
example	to	work,	this	first	shape	must	be	an	ActiveX	control	(for	example,	a
check	box	or	an	option	button).

Dim	myObj	As	Object

With	ActiveDocument.Pages(1).Shapes(1).OLEFormat

				.Activate

				Set	myObj	=	.Object

End	With

myObj.Value	=	True

	 	



Show	All



ObjectVerbs	Property
Returns	an	ObjectVerbs	collection	that	contains	all	the	OLE	verbs	for	the
specified	OLE	object.	Read-only.

expression.ObjectVerbs

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	all	the	available	verbs	for	the	OLE	object	contained	in
shape	one	on	page	two	in	the	active	publication.	For	this	example	to	work,	shape
one	must	be	a	shape	that	represents	an	OLE	object.

Dim	v	As	String

With	ActiveDocument.Pages(2).Shapes(1).OLEFormat

				For	Each	v	In	.ObjectVerbs

								MsgBox	v

				Next

End	With

	 	



Show	All



Obscured	Property
Returns	or	sets	an	MsoTriState	value	indicating	whether	the	shadow	of	the
specified	shape	appears	filled	in	and	is	obscured	by	the	shape.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shadow	of	the	specified	shape	does	not	appear	filled	in	and	is	not
obscured	by	the	shape	if	the	shape	has	no	fill.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	shape	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	shadow	of	the	specified	shape	appears	filled	in	and	is	obscured
by	the	shape.

expression.Obscured

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	horizontal	and	vertical	offsets	of	the	shadow	for	shape
three	on	page	one	of	the	active	publication.	The	shadow	is	offset	5	points	to	the
right	of	the	shape	and	3	points	above	it.	If	the	shape	doesn't	already	have	a
shadow,	this	example	adds	one	to	it.	The	shadow	will	be	filled	in	and	obscured
by	the	shape,	even	if	the	shape	has	no	fill.

With	ActiveDocument.Pages(1).Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

				.Obscured	=	msoTrue

End	With

	 	



Show	All



OfficeDataSourceObject	Property
Returns	an	OfficeDataSourceObject	object	representing	the	data	source	in	a
mail	merge	or	catalog	merge	operation.	Read-only.

expression.OfficeDataSourceObject

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:vbaof11.chm::/html/ofobjOfficeDataSourceObject.htm


Example

The	following	example	displays	information	about	the	current	mail	merge	data
source.

Dim	odsoTemp	As	Office.OfficeDataSourceObject

Set	odsoTemp	=	Application.OfficeDataSourceObject

With	odsoTemp

				Debug.Print	"Connection	string:	"	&	.ConnectString

				Debug.Print	"Data	source:	"	&	.DataSource

				Debug.Print	"Table:	"	&	.Table

End	With

	 	



OffsetX	Property
Returns	or	sets	a	Variant	value	indicating	the	vertical	offset	of	the	shadow	from
the	specified	shape.	A	positive	value	offsets	the	shadow	below	the	shape;	a
negative	value	offsets	it	above	the	shape.	Read/write.

expression.OffsetX

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX
method	or	the	IncrementOffsetY	method.



Example

This	example	sets	the	horizontal	and	vertical	offsets	of	the	shadow	for	shape
three	on	page	one	of	the	active	publication.	The	shadow	is	offset	5	points	to	the
right	of	the	shape	and	3	points	above	it.	If	the	shape	doesn't	already	have	a
shadow,	this	example	adds	one	to	it.

With	ActiveDocument.Pages(1).Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With

	 	



OffsetY	Property
Returns	or	sets	a	Variant	value	indicating	the	horizontal	offset	of	the	shadow
from	the	specified	shape.	A	positive	value	offsets	the	shadow	to	the	right	of	the
shape;	a	negative	value	offsets	it	to	the	left.	Read/write.

expression.OffsetY

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	strings	can	be	in	any	units	supported	by
Microsoft	Publisher	(for	example,	"2.5	in").

If	you	want	to	nudge	a	shadow	horizontally	or	vertically	from	its	current	position
without	having	to	specify	an	absolute	position,	use	the	IncrementOffsetX
method	or	the	IncrementOffsetY	method.



Example

This	example	sets	the	horizontal	and	vertical	offsets	of	the	shadow	for	shape
three	on	page	one	of	the	active	publication.	The	shadow	is	offset	5	points	to	the
right	of	the	shape	and	3	points	above	it.	If	the	shape	doesn't	already	have	a
shadow,	this	example	adds	one	to	it.

With	ActiveDocument.Pages(1).Shapes(3).Shadow

				.Visible	=	True

				.OffsetX	=	5

				.OffsetY	=	-3

End	With

	 	



OLEFormat	Property
Returns	an	OLEFormat	object	that	contains	OLE	formatting	properties	for	the
specified	shape.	Applies	to	Shape	or	ShapeRange	objects	that	represent	OLE
objects.

expression.OLEFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	loops	through	all	the	shapes	on	the	first	page	of	the	active
document	and	automatically	updates	all	linked	Excel	worksheets.

Sub	UpdateLinkedExcelSpreadsheets()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								If	shp.Type	=	msoLinkedOLEObject	Then

												If	shp.OLEFormat.ProgId	=	"Excel.Sheet"	Then

																shp.LinkFormat.Update

												End	If

								End	If

				Next	shp

End	Sub

	 	



Options	Property
Returns	an	Options	object	that	represents	application	settings	you	can	set	in
Publisher.

expression.Options

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	background	saves	and	then	saves	the	active	publication.

Sub	SetGlobalSaveOptions()

				With	Options

								.AllowBackgroundSave	=	False

				End	With

				ActiveDocument.Save

End	Sub

	 	



OrganizeInFolder	Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	a	Web	publication	will	be
saved	in	a	flat	structure	or	hierarchical	structure.	If	False,	all	files	in	the	Web
publication	will	be	saved	in	a	flat	structure	within	the	root	folder.	If	True,	the
files	will	be	saved	in	a	hierarchical	structure	within	the	root	folder.	The	default
value	is	True.	Read/write.

expression.OrganizeInFolder

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Example

The	following	example	specifies	that	all	files	in	the	Web	publication	should	be
saved	in	a	flat	structure	within	the	root	folder.

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				.OrganizeInFolder	=	False

End	With

	 	



Show	All



Orientation	Property
Orientation	property	as	it	applies	to	the	TextFrame	object.

Returns	or	sets	a	PbTextOrientation	constant	that	represents	how	text	flows	in	a
text	box.	Read/write.

PbTextOrientation	can	be	one	of	these	PbTextOrientation	constants.
pbTextOrientationHorizontal
pbTextOrientationMixed
pbTextOrientationRightToLeft
pbTextOrientationVerticalEastAsia

expression.Orientation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Orientation	property	as	it	applies	to	the	PageSetup	object.

Returns	or	sets	a	PbOrientationType	constant	that	specifies	whether	the	page	is
in	landscape	or	portrait	orientation.	Read/write.

PbOrientationType	can	be	one	of	these	PbOrientationType	constants.
pbOrientationLandscape
pbOrientationPortrait

expression.Orientation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

As	it	applies	to	the	TextFrame	object.

This	example	sets	the	text	orientation	in	the	specified	text	box	to	vertical	so	that
text	flows	from	top	to	bottom.	This	assumes	there	is	at	least	one	shape	on	page
one	of	the	active	publication.

Sub	SetVerticalTextBox()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.Orientation	=	pbTextOrientationVerticalEastAsia

End	Sub

	 	

As	it	applies	to	the	PageSetup	object.

The	following	example	sets	the	orientation	of	the	pages	in	the	active	document
to	landscape.

With	ActiveDocument.PageSetup

				.Orientation	=	pbOrientationLandscape

End	With



OriginalColorsInPalette	Property
Returns	a	Long	that	represents	the	number	of	colors	in	the	specified	linked
picture's	palette.	Read-only.

expression.OriginalColorsInPalette()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures	or	OLE	objects	that	are	not
TrueColor	(that	is,	they	contain	color	data	of	less	than	24	bits	per	channel.)
Returns	"Permission	Denied"	for	shapes	representing	embedded	or	pasted
pictures	and	OLE	objects,	or	linked	pictures	that	are	TrueColor.

Use	either	of	the	following	properties	to	determine	whether	a	shape	represents	a
linked	picture:

The	Type	property	of	the	Shape	object
The	IsLinked	property	of	the	PictureFormat	object

Use	the	OriginalIsTrueColor	property	to	determine	whether	a	linked	picture
contains	color	data	of	24	bits	per	channel	or	greater.



Example

The	following	example	returns	a	list	of	all	pictures	in	the	active	publication	that
are	not	TrueColor.	The	number	of	colors	in	each	picture's	palette	is	returned,	and
if	the	picture	is	linked	and	the	linked	picture	is	not	TrueColor,	the	number	of
colors	in	its	palette	is	also	returned.

Sub	PictureColorInformation()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Or	shpLoop.Type	=	pbPicture	Then

												

												With	shpLoop.PictureFormat

																If	.IsEmpty	=	msoFalse	Then

													

																				If	.IsTrueColor	=	msoFalse	Then

																								Debug.Print	.Filename

																								Debug.Print	"This	picture	has	"	&	.ColorsInPalette	&	"	colors."

																								If	.IsLinked	=	msoTrue	Then

																												If	.OriginalIsTrueColor	=	msoFalse	Then

																																Debug.Print	"The	linked	picture	has	"	&	_

																																.OriginalColorsInPalette	&	"	colors."

																												End	If

																								End	If

																				End	If

																

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop

End	Sub





OriginalFileSize	Property
Returns	a	Long	representing	the	size,	in	bytes,	of	the	linked	picture	or	OLE
object.	Read-only.

expression.OriginalFileSize()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures.	Returns	"Permission	Denied"	for
shapes	representing	embedded	or	pasted	pictures.

Use	either	of	the	following	properties	to	determine	whether	a	shape	represents	a
linked	picture:

The	Type	property	of	the	Shape	object
The	IsLinked	property	of	the	PictureFormat	object



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	prints
selected	image	properties	for	pictures	that	are	linked.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Original	File	Size:	"	&	.OriginalFileSize

																								

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



OriginalHasAlphaChannel	Property
Returns	an	MsoTriState	constant	depending	on	whether	the	original,	linked
picture	contains	an	alpha	channel.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	original,	linked	picture	does	not	contain	an	alpha	channel.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	original,	linked	picture	contains	an	alpha	channel.

expression.OriginalHasAlphaChannel()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures.	Returns	"Permission	Denied"	for
shapes	representing	embedded	or	pasted	pictures.

Use	either	of	the	following	properties	to	determine	whether	a	shape	represents	a
linked	picture:

The	Type	property	of	the	Shape	object
The	IsLinked	property	of	the	PictureFormat	object

An	alpha	channel	is	a	special	8-bit	channel	used	by	some	image	processing
software	to	contain	additional	data,	such	as	masking	or	transparency
information.



Example

The	following	example	returns	whether	the	first	shape	on	the	first	page	of	the
active	publication	contains	an	alpha	channel.	If	the	picture	is	linked,	and	the
original	picture	contains	an	alpha	channel,	that	is	also	returned.	This	example
assumes	the	shape	is	a	picture.

With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

				If	.HasAlphaChannel	=	msoTrue	Then

								Debug.Print	.Filename

								Debug.Print	"This	picture	contains	an	alpha	channel."

								

								If	.IsLinked	=	msoTrue	Then

												If	.OriginalHasAlphaChannel	=	msoTrue	Then

																Debug.Print	"The	linked	picture	"	&	_

																"also	contains	an	alpha	channel."

												End	If

								End	If

				End	If

End	With



OriginalHeight	Property
Returns	a	Variant	representing	the	height,	in	points,	of	the	specified	linked
picture	or	OLE	object.	Read-only.

expression.OriginalHeight()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures	or	OLE	objects.	Returns
"Permission	Denied"	for	shapes	representing	embedded	or	pasted	pictures.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	returns
selected	image	properties	for	pictures	that	are	linked.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Horizontal	Scaling:	"	&	.HorizontalScale	&	"%"

																								Debug.Print	"Original	Image	Height:	"	&	.OriginalHeight

																								Debug.Print	"Height	in	publication:	"	&	.Height	&	"	points"

																								

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



OriginalIsTrueColor	Property
Returns	an	MsoTriState	constant	indicating	whether	the	specified	linked	picture
or	OLE	object	contains	color	data	of	24	bits	per	channel	or	greater.	Read-only.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	linked	picture	does	not	contain	color	data	of	24	bits	per
channel	or	greater.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	specified	linked	picture	contains	color	data	of	24	bits	per	channel
or	greater.

expression.OriginalIsTrueColor()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures	or	OLE	objects.	Returns
"Permission	Denied"	for	shapes	representing	embedded	or	pasted	pictures	and
OLE	objects.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.



Example

The	following	example	returns	a	list	of	pictures	in	the	active	document	that	are
TrueColor.	If	a	picture	is	linked,	and	the	linked	picture	is	also	TrueColor,	that
information	is	also	returned.

Sub	PictureColorInformation()

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Or	shpLoop.Type	=	pbPicture	Then

												

												With	shpLoop.PictureFormat

																If	.IsEmpty	=	msoFalse	Then

																				

																				If	.IsTrueColor	=	msoTrue	Then

																								Debug.Print	.Filename

																								Debug.Print	"This	picture	is	TrueColor"

																								If	.IsLinked	=	msoTrue	Then

																												If	.OriginalIsTrueColor	=	msoTrue	Then

																																Debug.Print	"The	linked	picture	is	also	TrueColor."

																												End	If

																								End	If

																				End	If

																																																	

																End	If

												End	With

												

								End	If

				Next	shpLoop

Next	pgLoop

End	Sub



OriginalResolution	Property
Returns	a	Long	that	represents,	in	dots	per	inch	(dpi),	the	resolution	at	which	the
linked	picture	was	originally	scanned.	Read-only.

expression.OriginalResolution()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures.	Returns	"Permission	Denied"	for
shapes	representing	embedded	or	pasted	pictures.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.

Use	the	EffectiveResolution	property	to	determine	the	resolution	at	which	the
picture	or	OLE	object	will	print	in	the	specified	document.



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	returns
selected	image	properties	for	pictures	that	are	linked.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Resolution	in	Publication:	"	&	.EffectiveResolution	&	"	dpi"

																								Debug.Print	"Original	Resolution:	"	&	.OriginalResolution

																								

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



OriginalWidth	Property
Returns	a	Variant	that	represents,	in	points,	the	width	of	the	specified	linked
picture	or	OLE	object.	Read-only.

expression.OriginalWidth()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

This	property	only	applies	to	linked	pictures.	Returns	"Permission	Denied"	for
shapes	representing	embedded	or	pasted	pictures.

To	determine	whether	a	shape	represents	a	linked	picture,	use	either	the	Type
property	of	the	Shape	object,	or	the	IsLinked	property	of	the	PictureFormat
object.



Example

The	following	example	tests	each	picture	in	the	active	publication,	and	returns
selected	image	properties	for	pictures	that	are	linked.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Vertical	Scaling:	"	&	.VerticalScale	&	"%"

																								Debug.Print	"Original	Image	Width:	"	&	.OriginalWidth

																								Debug.Print	"Width	in	publication:	"	&	.Width	&	"	points"

																						

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



Outline	Property
Returns	or	sets	an	MsoTriState	constant	that	represents	the	state	of	the	outline
formatting	property	on	the	characters	in	the	specified	text	range.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	have	outline	formatting.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	characters	in	the	range	have	outline	formatting.

expression.Outline

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	all	the	text	in	the	second	story	of	the	active	publication,	and	if
it	has	mixed	outline	formatting,	it	removes	all	outline	formatting.	If	all	or	none
of	the	text	is	formatted	as	outline,	a	message	box	is	displayed	telling	the	user	that
outlining	is	not	mixed.

Sub	OutlineStory()

				Dim	stf	As	Font

				Set	stf	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	stf

								If	.Outline	=	msoTriStateMixed	Then

												.Outline	=	msoFalse

								Else

												MsgBox	"Outlining	is	not	mixed	in	this	story."

								End	If

				End	With

End	Sub

	 	



Show	All



Overflowing	Property
MsoTrue	if	the	text	frame	contains	more	text	than	can	fit	into	the	text	frame.
Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Not	used	with	this	property.
msoTrue

expression.Overflowing

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	increases	the	height	of	the	selected	text	frame	if	it	contains
overflowing	text.

Sub	IncreaseTextBoxHeight()

				With	Selection.ShapeRange.TextFrame

								If	.Overflowing	=	msoTrue	Then

												Do

																.Parent.Height	=	.Parent.Height	+	36

												Loop	Until	.Overflowing	=	msoFalse

								End	If

				End	With

End	Sub

	 	



PageCount	Property
Returns	a	Long	indicating	the	number	of	pages	in	the	specified	reader	spread.
Read-only.

expression.PageCount

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	reader	spread	can	contain	no	more	than	two	pages.



Example

The	following	example	checks	the	reader	spread	of	the	third	page	in	the	active
publication	to	see	if	it	contains	more	than	one	page,	then	displays	the	total
number	of	pages	in	the	spread.

Sub	NumberOfPagesInSpread()

				If	ActiveDocument.Pages(3).ReaderSpread.PageCount	>	1	Then

								MsgBox	"The	spread	has	two	pages."

				Else

								MsgBox	"The	spread	has	only	one	page."

				End	If

End	Sub

	 	



PageHeight	Property
Returns	or	sets	a	Variant	that	represents	the	height	of	the	pages	in	a	publication.
Read/write.

expression.PageHeight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	specifies	a	height	of	five	inches	for	the	pages	in	the	active
publication.

Sub	SetLeftMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Show	All



PageID	Property
PageID	property	as	it	applies	to	the	Hyperlink	object.

Returns	or	sets	a	Long	indicating	the	page	in	the	publication	that	is	the
destination	for	the	specified	hyperlink.	Read/write.

expression.PageID

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

PageID	property	as	it	applies	to	the	Page	object.

Returns	a	Long	indicating	the	unique	identifier	for	a	page	in	a	publication.	Read-
only.

expression.PageID

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

PageID	values	are	random	numbers	assigned	to	pages	when	they	are	added.
These	unique	numbers	do	not	change	when	pages	are	added	or	deleted.	Also,
these	numbers	do	not	start	with	1,	nor	are	they	contiguous.



Example

As	it	applies	to	the	Hyperlink	object.

The	following	example	looks	at	the	first	hyperlink	in	the	active	publication	and
reports	what	page	it	is	linked	to.

Dim	hypTemp	As	Hyperlink

Dim	lngID	As	Long

Dim	strPage	As	String

Set	hypTemp	=	ActiveDocument.Pages(1).Shapes(1).Hyperlink

lngID	=	hypTemp.PageID

strPage	=	ActiveDocument.Pages.FindByPageID(PageID:=lngID).PageNumber

MsgBox	"This	hyperlink	goes	to	the	page	"	&	strPage	&	"."

	 	 	 	

As	it	applies	to	the	Page	object.

The	following	example	displays	the	PageIndex,	PageNumber,	and	PageID
properties	for	all	the	pages	in	the	active	publication.

Dim	lngLoop	As	Long

With	ActiveDocument.Pages

				For	lngLoop	=	1	To	.Count

								With	.Item(lngLoop)

												Debug.Print	"PageIndex	=	"	&	.PageIndex	_

																&	"	/	PageNumber	=	"	&	.PageNumber	_

																&	"	/	PageID	=	"	&	.PageID

								End	With

				Next	lngLoop

End	With

	 	 	 	





PageIndex	Property
Returns	a	Long	indicating	the	ordinal	number	of	a	page	within	its	publication.
Read-only.

expression.PageIndex

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	PageIndex	property	value	is	assigned	to	each	page	when	it	is	added,	and	the
value	is	incremented	for	each	additional	page.	When	pages	are	added	or	deleted,
page	index	numbers	are	reassigned	such	that	the	first	page	is	always	1	and	the
page	index	numbers	always	increment	by	1.	For	example,	in	a	publication	with
five	pages,	the	page	index	numbers	will	be	1	through	5,	regardless	of	the	page
number	displayed	on	the	pages	themselves.



Example

The	following	example	displays	the	PageIndex,	PageNumber,	and	PageID
properties	for	all	the	pages	in	the	active	publication.

Dim	lngLoop	As	Long

With	ActiveDocument.Pages

For	lngLoop	=	1	To	.Count

With	.Item(lngLoop)

Debug.Print	"PageIndex	=	"	&	.PageIndex	_

&	"	/	PageNumber	=	"	&	.PageNumber	_

&	"	/	PageID	=	"	&	.PageID

End	With

Next	lngLoop

End	With



PageNumber	Property
Returns	a	String	that	represents	the	current	page	number.	Read-only.

expression.PageNumber

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	text	box,	gets	the	current	page	number,	and	inserts	it	with
new	text	into	the	new	shape.

Sub	GetPageNumber()

				Dim	strPageNumber	As	String

				With	ActiveDocument.Pages(1)

								strPageNumber	=	.PageNumber

								.Shapes.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=100,	Top:=100,	Width:=100,	Height:=100)	_

												.TextFrame.TextRange.InsertAfter	NewText:="This	is	page	"	_

												&	strPageNumber	&	"	of	"	&	.Parent.Count	&	"."

				End	With

End	Sub

	 	



Show	All



PageNumberFormat	Property
Sets	or	returns	a	pbPageNumberFormat	constant	that	reperesents	the
formatting	of	the	page	numbering.	Read/write.

pbPageNumberFormat	can	be	one	of	these	pbPageNumberFormat
constants.
pbPageNumberFormatAiueo
pbPageNumberFormatArabic
pbPageNumberFormatArabic1
pbPageNumberFormatArabic2
pbPageNumberFormatArabicLZ
pbPageNumberFormatCardtext
pbPageNumberFormatChnDbNum2
pbPageNumberFormatChnDbNum3
pbPageNumberFormatChosung
pbPageNumberFormatCirclenum
pbPageNumberFormatDAiueo
pbPageNumberFormatDbChar
pbPageNumberFormatDbNum1
pbPageNumberFormatDbNum2
pbPageNumberFormatDbNum3
pbPageNumberFormatDIroha
pbPageNumberFormatGanada
pbPageNumberFormatHebrew1
pbPageNumberFormatHebrew2
pbPageNumberFormatHindi1
pbPageNumberFormatHindi2
pbPageNumberFormatHindi3
pbPageNumberFormatHindi4
pbPageNumberFormatIroha
pbPageNumberFormatKorDbNum1



pbPageNumberFormatKorDbNum2
pbPageNumberFormatKorDbNum3
pbPageNumberFormatKorDbNum4
pbPageNumberFormatLCLetter
pbPageNumberFormatLCRoman
pbPageNumberFormatLCRus
pbPageNumberFormatOrdinal
pbPageNumberFormatOrdtext
pbPageNumberFormatThai1
pbPageNumberFormatThai2
pbPageNumberFormatThai3
pbPageNumberFormatTpeDbNum2
pbPageNumberFormatTpeDbNum3
pbPageNumberFormatTpeDbNum3
pbPageNumberFormatUCLetter
pbPageNumberFormatUCRoman
pbPageNumberFormatUCRus
pbPageNumberFormatViet1
pbPageNumberFormatZodiac1
pbPageNumberFormatZodiac2

expression.PageNumberFormat

expression				Required.	An	expression	that	returns	a	Section	object.



Remarks

Not	all	of	the	pbPageNumberFormat	constants	will	be	available	depending	on
the	languages	that	are	enabled	or	installed.



Example

This	example	adds	a	new	section	to	the	active	document,	sets	the	page	number
format	to	lower	case	roman,	and	then	sets	the	starting	page	number	to	1.

Dim	objSection	As	Section

Set	objSection	=	ActiveDocument.Sections.Add(2)

With	objSection

				.PageNumberFormat	=	pbPageNumberFormatLCRoman

				.PageNumberStart	=	1

End	With



PageNumberStart	Property
Sets	or	returns	the	page	number	that	the	specified	section	starts	with.	Read/write
Long.

expression.PageNumberStart

expression				Required.	An	expression	that	returns	a	Section	object.



Example

The	following	example	sets	the	starting	page	number	for	the	first	section	of	the
active	document	to	45.

ActiveDocument.Sections(1).PageNumberStart	=	45



Show	All



Pages	Property
Pages	property	as	it	applies	to	the	Document	object.

Returns	a	Pages	collection	representing	all	the	pages	in	the	specified	publication.

expression.Pages

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Pages	property	as	it	applies	to	the	ReaderSpread	object.

Returns	a	Page	object	representing	one	of	the	pages	that	comprise	the	specified
reader	spread.

expression.Pages(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Long.	The	page	from	the	reader	spread	to	return.	Can	be	either
1	or	2.



Remarks

A	reader	spread	will	consist	of	only	one	or	two	pages,	hence	the	valid	values	for
the	Index	argument.



Example

As	it	applies	to	the	Document	object.

The	following	example	returns	the	Pages	collection	of	the	active	publication	and
reports	how	many	pages	there	are.

Dim	pgsTemp	As	Pages

Set	pgsTemp	=	ActiveDocument.Pages

With	pgsTemp

				MsgBox	"There	are	"	&	.Count	_

								&	"	page(s)	in	the	active	publication."

End	With

	 	 	 	

As	it	applies	to	the	ReaderSpread	object.

The	following	example	checks	the	reader	spread	of	the	fifth	page	in	the	active
publication	to	see	if	it	contains	more	than	one	page.	If	it	does,	the	example
reports	the	page	number	of	the	second	page	in	the	spread.

Dim	pageTemp	As	Page

With	ActiveDocument.Pages(5).ReaderSpread

				If	.PageCount	>	1	Then

								Set	pageTemp	=	.Pages(Index:=2)

								MsgBox	"The	page	number	of	the	second	page	"	_

												&	"in	the	spread	is	"	&	pageTemp.PageNumber

				Else

								MsgBox	"The	spread	has	only	one	page."

				End	If

End	With

	 	 	 	





PageSetup	Property
Returns	a	PageSetup	object	representing	a	publication’s	page	size,	page	layout
and	paper	settings.	Read-only.

expression.PageSetup

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	only	use	the	PageSetup	property	when	printing	multiple	pages	on	a
single	sheet	of	printer	paper.	If	the	page	size	is	greater	than	half	the	paper	size,
Publisher	will	display	an	error.



Example

This	example	specifies	page	setup	options	for	a	publication	with	multiple
publication	pages	printed	on	each	sheet	of	printer	paper.

Sub	SetTopMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.TopMargin	=	InchesToPoints(0.25)

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Show	All



PageType	Property
Returns	a	PbPageType	constant	that	represents	the	page	type.	Read-only.

PbPageType	can	be	one	of	these	PbPageType	constants.
pbPageLeftPage
pbPageMasterPage
pbPageRightPage
pbPageScratchPage

expression.PageType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	shape	on	alternating	corners	of	each	page	in	the	active
publication.

Sub	GetPageType()

				Dim	pgCount	As	Page

				For	Each	pgCount	In	ActiveDocument.Pages

								If	pgCount.PageType	=	pbPageLeftPage	Then

												pgCount.Shapes.AddShape	Type:=msoShapeOval,	_

																Left:=50,	Top:=50,	Width:=50,	Height:=50

								ElseIf	pgCount.PageType	=	pbPageRightPage	Then

												pgCount.Shapes.AddShape	Type:=msoShapeOval,	_

																Left:=512,	Top:=50,	Width:=50,	Height:=50

								End	If

				Next

End	Sub

	 	



PageWidth	Property
Returns	or	sets	a	Variant	that	represents	the	width	of	the	pages	in	a	publication.
Read/write.

expression.PageWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	specifies	a	width	of	eight	inches	for	the	pages	in	the	active
publication.

Sub	SetLeftMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



ParagraphFormat	Property
Returns	a	ParagraphFormat	object	representing	the	paragraph	formatting	for
the	specified	text	range	or	text	style.

expression.ParagraphFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	removes	all	the	tab	stops	from	the	text	in	the	first	shape
on	page	one	of	the	active	publication.

Dim	pfTemp	As	ParagraphFormat

Set	pfTemp	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.ParagraphFormat

pfTemp.Tabs.ClearAll

	 	



Parent	Property
Returns	an	object	that	represents	the	parent	object	of	the	specified	object.	For
example,	for	a	TextFrame	object,	returns	a	Shape	object	representing	the	parent
shape	of	the	text	frame.	Read-only.

expression.Parent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	accesses	the	parent	object	of	the	selected	shape,	and	then	adds	a
new	shape	to	it	and	sets	the	fill	for	the	new	shape.

Sub	ParentObject()

				Dim	shp	As	Shape

				Dim	pg	As	Page

				Set	pg	=	Selection.ShapeRange(1).Parent

				Set	shp	=	pg.Shapes.AddShape(Type:=msoShape5pointStar,	_

								Left:=72,	Top:=72,	Width:=72,	Height:=72)

				shp.Fill.ForeColor.RGB	=	RGB(Red:=180,	Green:=180,	Blue:=180)

End	Sub

	 	

This	example	returns	the	parent	object	of	a	text	frame,	which	is	the	first	shape	in
the	active	publication,	and	then	fills	the	shape	with	a	pattern.

Sub	ParentShape()

				Dim	shpParent	As	Shape

				Set	shpParent	=	ActiveDocument.Pages(1).Shapes(1).TextFrame.Parent

				shpParent.Fill.Patterned	Pattern:=msoPatternSphere

End	Sub

	 	



ParentGroupShape	Property
Returns	a	Shape	object	that	represents	the	common	parent	shape	of	a	child	shape
or	a	range	of	child	shapes.

expression.ParentGroupShape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	shapes	in	the	active	document	and	groups	those
shapes.	Then	using	one	shape	in	the	group,	it	accesses	the	parent	group	and	fills
all	shapes	in	the	parent	group	with	the	same	fill	pattern.	This	example	assumes
that	the	active	document	does	not	currently	contain	any	shapes.	If	it	does,	an
error	may	occur.

Sub	ParentGroupShape()

				Dim	shpGroup	As	Shape

				With	ActiveDocument.Pages(1).Shapes

								.AddShape	Type:=msoShapeOval,	Left:=72,	_

												Top:=72,	Width:=100,	Height:=100

								.AddShape	Type:=msoShapeHeart,	Left:=110,	_

												Top:=120,	Width:=100,	Height:=100

								.Range(Array(1,	2)).Group

				End	With

				Set	shpGroup	=	ActiveDocument.Pages(1).Shapes(1)	_

								.GroupItems(1).ParentGroupShape

				shpGroup.Fill.Patterned	Pattern:=msoPattern25Percent

End	Sub

	 	



Path	Property
Returns	a	String	indicating	the	full	path	to	the	file	of	the	saved	active
publication,	not	including	the	last	separator	or	file	name.	Read-only.

expression.Path

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	FullName	property	can	be	used	to	return	both	the	path	and	file	name.



Example

The	following	example	demonstrates	the	differences	between	the	Path,	Name,
and	FullName	properties.	This	example	is	best	illustrated	if	the	publication	is
saved	in	a	folder	other	than	the	default.

Sub	PathNames()

				Dim	strPath	As	String

				Dim	strName	As	String

				Dim	strFullName	As	String

				strPath	=	Application.ActiveDocument.Path

				strName	=	Application.ActiveDocument.Name

				strFullName	=	Application.ActiveDocument.FullName

				'	Note	the	file	name	&	path	differences

				'	while	executing.

				MsgBox	"The	path	is:	"	&	strPath

				MsgBox	"The	file	name	is:	"	&	strName

				MsgBox	"The	path	&	file	name	are:	"	&	strFullName

End	Sub

	 	



PathForPictures	Property
Returns	or	sets	a	String	that	represents	the	default	path	for	picture	files.
Read/write.

expression.PathForPictures

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	path	for	picture	files.	(Note	that	PathToFolder	must	be
replaced	with	a	valid	folder	path	for	this	example	to	work.)

Sub	SetPicturePath()

				Options.PathForPictures	=	"PathToFolder"

End	Sub

	 	

This	example	places	the	default	path	for	picture	files	in	a	string	and	then	uses	the
path	string	to	add	the	specified	file	to	the	active	publication.	(Note	that	Filename
must	be	replaced	with	a	valid	file	name	for	this	example	to	work.)

Sub	InsertNewPicture()

				Dim	strPicPath	As	String

				strPicPath	=	Options.PathForPictures

				ActiveDocument.Pages(1).Shapes.AddPicture	FileName:=strPicPath	_

								&	"Filename",	LinktoFile:=msoFalse,	_

								SaveWithDocument:=msoTrue,	Left:=50,	Top:=50,	Height:=200

End	Sub

	 	



PathForPublications	Property
Returns	or	sets	a	String	that	represents	the	default	folder	for	publications.
Read/write.

expression.PathForPublications

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	new	setting	takes	effect	immediately.



Example

This	example	sets	the	default	folder	for	Publisher	documents.	(Note	that
PathToFolder	must	be	replaced	with	a	valid	folder	path	for	this	example	to
work.)

Sub	ChangeDefaultPath()

				Options.PathForPublications	=	"PathToFolder"

End	Sub

	 	

This	example	returns	the	current	default	path	for	publications	(corresponds	to	the
default	path	setting	on	the	General	tab	in	the	Options	dialog	box,	Tools	menu).

Sub	PubPath()

				Dim	strPubPath

				strPubPath	=	Options.PathForPublications

				MsgBox	strPubPath

End	Sub

	 	



PathSeparator	Property
Returns	a	String	that	represents	the	character	used	to	separate	folder	names.
Read-only.

expression.PathSeparator

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	use	PathSeparator	to	build	Web	addresses	even	though	they	contain
forward	slashes	(/).

The	FullName	property	returns	the	path	and	file	name	as	a	single	string.

For	worldwide	compatibility,	it	is	recommended	to	use	this	property	when
building	paths	rather	than	referring	explicitly	to	path	separator	characters	in	code
(for	example,	"/").



Example

This	example	displays	the	path	and	file	name	of	the	active	document.

Sub	PathFileName()

				With	Application

								MsgBox	"The	name	of	the	active	document:	"	&	vbLf	&	_

												.Path	&	.PathSeparator	&	ActiveDocument.Name

				End	With

End	Sub

	 	



Show	All



Pattern	Property
Returns	or	sets	an	MsoPatternType	constant	that	represents	the	pattern	applied
to	the	specified	fill	or	line.	Read-only	for	the	FillFormat	object;	read/write	for
the	LineFormat	object.

MsoPatternType	can	be	one	of	these	MsoPatternType	constants.
msoPattern10Percent
msoPattern20Percent
msoPattern25Percent
msoPattern30Percent
msoPattern40Percent
msoPattern50Percent
msoPattern5Percent
msoPattern60Percent
msoPattern70Percent
msoPattern75Percent
msoPattern80Percent
msoPattern90Percent
msoPatternDarkDownwardDiagonal
msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal
msoPatternDarkVertical
msoPatternDashedDownwardDiagonal
msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal
msoPatternDashedVertical
msoPatternDiagonalBrick
msoPatternDivot
msoPatternDottedDiamond
msoPatternDottedGrid
msoPatternHorizontalBrick



msoPatternLargeCheckerBoard
msoPatternLargeConfetti
msoPatternLargeGrid
msoPatternLightDownwardDiagonal
msoPatternLightHorizontal
msoPatternLightUpwardDiagonal
msoPatternLightVertical
msoPatternMixed
msoPatternNarrowHorizontal
msoPatternNarrowVertical
msoPatternOutlinedDiamond
msoPatternPlaid
msoPatternShingle
msoPatternSmallCheckerBoard
msoPatternSmallConfetti
msoPatternSmallGrid
msoPatternSolidDiamond
msoPatternSphere
msoPatternTrellis
msoPatternWave
msoPatternWeave
msoPatternWideDownwardDiagonal
msoPatternWideUpwardDiagonal
msoPatternZigZag

expression.Pattern

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

This	example	sets	the	pattern	for	the	specified	shape	if	the	shape	currently
doesn't	have	a	fill	pattern.	This	example	assumes	that	at	least	one	shape	exists	on
the	first	page	of	the	active	publication.

Sub	ChangeFillPattern()

				With	ActiveDocument.Pages(1).Shapes(1).Fill

								If	.Pattern	<	msoPattern10Percent	Then

												.Patterned	Pattern:=msoPattern25Percent

								End	If

				End	With

End	Sub

	 	



Show	All



PersonalInformationSet	Property
Returns	or	sets	a	PbPersonalInfoSet	constant	indicating	the	current	identity	set.
Read/write.

PbPersonalInfoSet	can	be	one	of	these	PbPersonalInfoSet	constants.
pbPersonalInfoHome
pbPersonalInfoOtherOrganization
pbPersonalInfoPrimaryBusiness
pbPersonalInfoSecondaryBusiness

expression.PersonalInformationSet

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	this	property	will	change	all	the	identity	information	in	the	publication.

Caution		Use	this	property	with	caution.	Sensitive	or	confidental	information
could	be	revealed	to	other	users.



Example

The	following	statement	sets	the	current	publication's	identity	information	to
home	information.

Application.ActiveDocument.PersonalInformationSet	=	pbPersonalInfoHome

	 	



Show	All



Perspective	Property
MsoTrue	if	the	extrusion	appears	in	perspective—	that	is,	if	the	walls	of	the
extrusion	narrow	toward	a	vanishing	point.	MsoFalse	if	the	extrusion	is	a
parallel,	or	orthographic,	projection—	that	is,	if	the	walls	don't	narrow	toward	a
vanishing	point.	Read/write	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Perspective

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	extrusion	depth	for	shape	one	on	the	first	page	to	100
points	and	specifies	that	the	extrusion	be	parallel,	or	orthographic.	For	this
example	to	work,	the	specified	shape	must	be	a	3-D	shape.

Sub	ChangePerspective()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								.Visible	=	True

								.Depth	=	100

								.Perspective	=	msoFalse

				End	With

End	Sub

	 	



PhoneticGuide	Property
Returns	a	PhoneticGuide	object	that	represents	the	properties	of	phonetic	text
applied	to	a	text	range.

expression.PhoneticGuide

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	phonetic	text	to	the	selection	and	displays	the	text	to	which
the	phonetic	text	applies,	which	is	the	originally	selected	text.	This	example
assumes	text	is	selected.	If	no	text	is	selected,	the	message	box	will	be	blank.

Sub	AddPhoneticText()

				With	Selection.TextRange.Fields.AddPhoneticGuide	_

												(Range:=Selection.TextRange,	Text:="ver-E	nIs")

								MsgBox	"The	base	text	is	"	&	.PhoneticGuide.BaseText

				End	With

End	Sub

	 	



PictureFormat	Property
Returns	a	PictureFormat	object	that	contains	picture	formatting	properties	for
the	specified	object.	Applies	to	Shape	or	ShapeRange	objects	that	represent
pictures	or	OLE	objects.

expression.PictureFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	brightness	and	contrast	for	all	pictures	on	the	first	page	of
the	active	publication.

Sub	FixPictureContrastBrightness()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								If	shp.Type	=	pbPicture	Then

												With	shp.PictureFormat

																.Brightness	=	0.6

																.Contrast	=	0.6

												End	With

								End	If

				Next	shp

End	Sub

	 	



Plates	Property
Returns	a	Plates	collection	representing	the	color	plates	for	the	specified
publication.

expression.Plates

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	returns	the	plates	collection	for	the	active	publication
and	lists	the	names	of	all	the	color	plates.

Dim	plaTemp	As	Plates

Dim	plaLoop	As	Plate

Set	plaTemp	=	ActiveDocument.Plates

If	ActiveDocument.ColorMode	=	pbColorModeDesktop	Then

				Debug.Print	"Desktop	color	mode:	No	color	plates!"

Else

				For	Each	plaLoop	In	plaTemp

								Debug.Print	"The	name	of	this	plate	is	"	&	plaLoop.Name

				Next	plaLoop

End	If

	 	



Show	All



Points	Property
Returns	a	Variant	that	represents	the	position	of	the	specified	node	as	a
coordinate	pair.	Each	coordinate	is	expressed	in	points.	Read-only.

expression.Points

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	read-only.	Use	the	SetPosition	method	to	set	the	location	of	the
node.



Example

This	example	moves	node	two	in	shape	one	on	the	first	page	of	the	active
publication	to	the	right	200	points	and	down	300	points.	For	this	example	to
work,	shape	one	must	be	a	freeform	drawing.

Sub	SetPointsPosition()

				Dim	varArray	As	Variant

				Dim	intX	As	Integer

				Dim	intY	As	Integer

				With	ActiveDocument.Pages(1).Shapes(1).Nodes

								varArray	=	.Item(2).Points

								intX	=	varArray(1,	1)

								intY	=	varArray(1,	2)

								.SetPosition	Index:=2,	X1:=intX	+	200,	Y1:=intY	+	300

				End	With

End	Sub

	 	



Position	Property
Returns	or	sets	a	Variant	representing	the	font	position	relative	to	the	baseline	of
the	text	in	the	specified	range.	Positive	values	move	the	text	above	the	normal
baseline,	negative	values	move	the	text	below	the	baseline.	Indeterminate	values
are	returned	as	-9999.0.	Read/write.

expression.Position

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	values	are	evaluated	in	points;	string	values	can	be	in	any	measurement
units	supported	by	Microsoft	Publisher	(for	example,	"0.25	in").



Example

This	example	adjusts	the	text	in	the	second	story	to	5	points	below	the	baseline.

Sub	Position()

				Application.ActiveDocument.Stories(2).TextRange.Font.Position	=	-5

End	Sub

	 	



Show	All



PostFormData	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	Web
command	button	control	uses	the	Get	or	Post	method	when	submitting	form
data	to	a	Web	server.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	control	uses	the	Visual	Basic	Get	method	to	submit	form	data.
msoTriStateMixed	Not	used	with	this	property.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	default	The	control	uses	the	Visual	Basic	Post	method	to	submit	form
data.

expression.PostFormData

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	ignored	for	Reset	command	buttons.



Example

This	example	creates	a	Web	form	Submit	command	button	and	sets	the	script
path	and	file	name	to	run	when	a	user	clicks	the	button.	The	example	also
specifies	that	the	Web	form	should	use	the	Visual	Basic	Get	method	to	submit
form	data.

Dim	shpNew	As	Shape

Set	shpNew	=	ActiveDocument.Pages(1).Shapes.AddWebControl	_

				(Type:=pbWebControlCommandButton,	Left:=150,	_

				Top:=150,	Width:=75,	Height:=36)

With	shpNew.WebCommandButton

				.ButtonText	=	"Submit"

				.ButtonType	=	pbCommandButtonSubmit

				.ActionURL	=	"http://www.tailspintoys.com/"	_

								&	"scripts/ispscript.cgi"

				.PostFormData	=	msoFalse

End	With

	 	



Show	All



PresetExtrusionDirection	Property
Returns	an	MsoPresetExtrusionDirection	constant	that	represents	the	direction
taken	by	the	extrusion's	sweep	path	leading	away	from	the	extruded	shape	(the
front	face	of	the	extrusion).	Read-only.

MsoPresetExtrusionDirection	can	be	one	of	these	MsoPresetExtrusionDirection
constants.
msoExtrusionBottom
msoExtrusionBottomLeft
msoExtrusionBottomRight
msoExtrusionLeft
msoExtrusionNone
msoExtrusionRight
msoExtrusionTop
msoExtrusionTopLeft
msoExtrusionTopRight
msoPresetExtrusionDirectionMixed

expression.PresetExtrusionDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	read-only.	To	set	the	value	of	this	property,	use	the
SetExtrusionDirection	method.



Example

This	example	changes	the	extrusion	for	the	first	shape	on	the	first	page	of	the
active	publication	if	the	extrusion	extends	toward	the	upper-left	corner	of	the
extrusion's	front	face.	For	this	example	to	work,	the	specified	shape	must	be	a	3-
D	shape.

Sub	SetExtrusion()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								If	.PresetExtrusionDirection	=	msoExtrusionTopLeft	Then

											.SetExtrusionDirection	msoExtrusionBottomRight

								End	If

				End	With

End	Sub

	 	



Show	All



PresetGradientType	Property
Returns	an	MsoPresetGradientType	that	represents	the	preset	gradient	type	for
the	specified	fill.	Read-only.

MsoPresetGradientType	can	be	one	of	these	MsoPresetGradientType	constants.
msoGradientBrass
msoGradientCalmWater
msoGradientChrome
msoGradientChromeII
msoGradientDaybreak
msoGradientDesert
msoGradientEarlySunset
msoGradientFire
msoGradientFog
msoGradientGold
msoGradientGoldII
msoGradientHorizon
msoGradientLateSunset
msoGradientMahogany
msoGradientMoss
msoGradientNightfall
msoGradientOcean
msoGradientParchment
msoGradientPeacock
msoGradientRainbow
msoGradientRainbowII
msoGradientSapphire
msoGradientSilver
msoGradientWheat
msoPresetGradientMixed



expression.PresetGradientType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	PresetGradient	method	to	set	the	preset	gradient	type	for	the	fill.



Example

This	example	changes	the	fill	for	the	first	shape	on	the	first	page	of	the	active
publication	to	the	Fog	preset	gradient	fill	if	it	is	not	already	set	to	the	Fog	preset
gradient.	This	example	assumes	that	there	is	at	least	one	shape	on	the	first	page
of	the	active	publication.

Sub	SetGradient()

				With	ActiveDocument.Pages(1).Shapes(1).Fill

								If	.PresetGradientType	<>	msoGradientFog	Then

												.PresetGradient	Style:=msoGradientHorizontal,	_

																Variant:=1,	PresetGradientType:=msoGradientFog

								End	If

				End	With

End	Sub

	 	



Show	All



PresetLightingDirection	Property
Returns	or	sets	an	MsoPresetLightingDirection	constant	that	represents	the
position	of	the	light	source	relative	to	the	extrusion.	Read/write.

MsoPresetLightingDirection	can	be	one	of	these	MsoPresetLightingDirection
constants.
msoLightingBottom
msoLightingBottomLeft
msoLightingBottomRight
msoLightingLeft
msoLightingNone
msoLightingRight
msoLightingTop
msoLightingTopLeft
msoLightingTopRight
msoPresetLightingDirectionMixed

expression.PresetLightingDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	lighting	effects	you	set	won't	be	apparent	if	the	extrusion	has	a	wire	frame
surface.



Example

This	example	sets	the	extrusion	for	the	first	shape	on	the	first	page	of	the	active
publication	to	extend	toward	the	top	of	the	shape	and	that	the	lighting	for	the
extrusion	come	from	the	left.	For	this	example	to	work,	the	specified	shape	must
be	a	3-D	shape.

Sub	ExtrusionLighting()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								.Visible	=	True

								.SetExtrusionDirection	msoExtrusionTop

								.PresetLightingDirection	=	msoLightingLeft

				End	With

End	Sub

	 	



Show	All



PresetLightingSoftness	Property
Returns	or	sets	a	MsoPresetLightingSoftness	constant	that	represents	the
intensity	of	the	extrusion	lighting.	Read/write.

MsoPresetLightingSoftness	can	be	one	of	these	MsoPresetLightingSoftness
constants.
msoLightingBright
msoLightingDim
msoLightingNormal
msoPresetLightingSoftnessMixed

expression.PresetLightingSoftness

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	extrusion	for	the	first	shape	on	the	first	page	of	the	active
publication	to	be	lit	brightly	from	the	left.	For	this	example	to	work,	the
specified	shape	must	be	a	3-D	shape.

Sub	SetExtrusionLightingBrighness()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								.Visible	=	True

								.PresetLightingSoftness	=	msoLightingBright

								.PresetLightingDirection	=	msoLightingLeft

				End	With

End	Sub

	 	



Show	All



PresetMaterial	Property
Returns	or	sets	an	MsoPresetMaterial	constant	that	represents	the	extrusion
surface	material.	Read/write.

MsoPresetMaterial	can	be	one	of	these	MsoPresetMaterial	constants.
msoMaterialMatte
msoMaterialMetal
msoMaterialPlastic
msoMaterialWireFrame
msoPresetMaterialMixed

expression.PresetMaterial

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	specifies	that	the	extrusion	surface	for	shape	one	in	the	active
publication	be	a	wire	frame.	For	this	example	to	work,	the	specified	shape	must
be	a	3-D	shape.

Sub	SetExtrusionMaterial()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								.Visible	=	True

								.PresetMaterial	=	msoMaterialWireFrame

				End	With

End	Sub

	 	



Show	All



PresetShape	Property
Returns	or	sets	an	MsoPresetTextEffectShape	constant	that	represents	the
shape	of	the	specified	WordArt.	Read/write.

MsoPresetTextEffectShape	can	be	one	of	these	MsoPresetTextEffectShape
constants.
msoTextEffectShapeArchDownCurve
msoTextEffectShapeArchDownPour
msoTextEffectShapeArchUpCurve
msoTextEffectShapeArchUpPour
msoTextEffectShapeButtonCurve
msoTextEffectShapeButtonPour
msoTextEffectShapeCanDown
msoTextEffectShapeCanUp
msoTextEffectShapeCascadeDown
msoTextEffectShapeCascadeUp
msoTextEffectShapeChevronDown
msoTextEffectShapeChevronUp
msoTextEffectShapeCircleCurve
msoTextEffectShapeCirclePour
msoTextEffectShapeCurveDown
msoTextEffectShapeCurveUp
msoTextEffectShapeDeflate
msoTextEffectShapeDeflateBottom
msoTextEffectShapeDeflateInflate
msoTextEffectShapeDeflateInflateDeflate
msoTextEffectShapeDeflateTop
msoTextEffectShapeDoubleWave1
msoTextEffectShapeDoubleWave2
msoTextEffectShapeFadeDown
msoTextEffectShapeFadeLeft



msoTextEffectShapeFadeRight
msoTextEffectShapeFadeUp
msoTextEffectShapeInflate
msoTextEffectShapeInflateBottom
msoTextEffectShapeInflateTop
msoTextEffectShapeMixed
msoTextEffectShapePlainText
msoTextEffectShapeRingInside
msoTextEffectShapeRingOutside
msoTextEffectShapeSlantDown
msoTextEffectShapeSlantUp
msoTextEffectShapeStop
msoTextEffectShapeTriangleDown
msoTextEffectShapeTriangleUp
msoTextEffectShapeWave1
msoTextEffectShapeWave2

expression.PresetShape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	shape	of	the	first	shape	on	the	first	page	of	the	active
publication	to	a	chevron	whose	center	points	down.	For	this	example	to	work	the
first	shape	must	be	a	WordArt	shape.

Sub	ChangeTextEffect()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Type	=	msoTextEffect	Then

												.TextEffect.PresetShape	=	msoTextEffectShapeChevronDown

								End	If

				End	With

End	Sub

	 	



Show	All



PresetTextEffect	Property
Returns	or	sets	an	MsoPresetTextEffect	constant	that	represents	the	style	of	the
specified	WordArt.	The	values	for	this	property	correspond	to	the	formats	in	the
WordArt	Gallery	dialog	box,	numbered	from	left	to	right,	top	to	bottom.
Read/write.

MsoPresetTextEffect	can	be	one	of	these	MsoPresetTextEffect	constants.
msoTextEffect1
msoTextEffect10
msoTextEffect11
msoTextEffect12
msoTextEffect13
msoTextEffect14
msoTextEffect15
msoTextEffect16
msoTextEffect17
msoTextEffect18
msoTextEffect19
msoTextEffect2
msoTextEffect20
msoTextEffect21
msoTextEffect22
msoTextEffect23
msoTextEffect24
msoTextEffect25
msoTextEffect26
msoTextEffect27
msoTextEffect28
msoTextEffect29
msoTextEffect3
msoTextEffect30



msoTextEffect4
msoTextEffect5
msoTextEffect6
msoTextEffect7
msoTextEffect8
msoTextEffect9
msoTextEffectMixed

expression.PresetTextEffect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	text	effect	style	for	the	first	shape	on	the	first	page	of	the
active	publication.	This	example	assumes	that	there	is	at	least	one	shape	on	the
first	page	of	the	active	publication.

Sub	ChangeTextEffect()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Type	=	msoTextEffect	Then

												.TextEffect.PresetTextEffect	=	msoTextEffect1

								End	If

				End	With

End	Sub

	 	



Show	All



PresetTexture	Property
Returns	an	MsoPresetTexture	constant	that	represents	the	preset	texture	for	the
specified	fill.	Read-only.

MsoPresetTexture	can	be	one	of	these	MsoPresetTexture	constants.
msoPresetTextureMixed
msoTextureBlueTissuePaper
msoTextureBouquet
msoTextureBrownMarble
msoTextureCanvas
msoTextureCork
msoTextureDenim
msoTextureFishFossil
msoTextureGranite
msoTextureGreenMarble
msoTextureMediumWood
msoTextureNewsprint
msoTextureOak
msoTexturePaperBag
msoTexturePapyrus
msoTextureParchment
msoTexturePinkTissuePaper
msoTexturePurpleMesh
msoTextureRecycledPaper
msoTextureSand
msoTextureStationery
msoTextureWalnut
msoTextureWaterDroplets
msoTextureWhiteMarble
msoTextureWovenMat



expression.PresetTexture

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	PresetTextured	method	to	specify	the	preset	texture	for	the	fill.



Example

This	example	adds	a	rectangle	to	the	first	page	in	the	active	publication	and	sets
its	preset	texture	to	match	that	of	the	first	shape	on	the	page.	For	the	example	to
work,	the	first	shape	must	have	a	preset	textured	fill.

Sub	SetTexture()

				Dim	texture	As	MsoPresetTexture

				With	ActiveDocument.Pages(1).Shapes

												texture	=	.Item(1).Fill.PresetTexture

								With	.AddShape(Type:=msoShapeRectangle,	Left:=250,	Top:=72,	_

																Width:=40,	Height:=80)

												.Fill.PresetTextured	PresetTexture:=texture

								End	With

				End	With

End	Sub

	 	



Show	All



PresetThreeDFormat	Property
Returns	an	MsoPresetThreeDFormat	constant	that	represents	the	preset
extrusion	format.	Each	preset	extrusion	format	contains	a	set	of	preset	values	for
the	various	properties	of	the	extrusion.	If	the	extrusion	has	a	custom	format
rather	than	a	preset	format,	this	property	returns
msoPresetThreeDFormatMixed.	Read-only.

MsoPresetThreeDFormat	can	be	one	of	these	MsoPresetThreeDFormat
constants.
msoPresetThreeDFormatMixed
msoThreeD1
msoThreeD10
msoThreeD11
msoThreeD12
msoThreeD13
msoThreeD14
msoThreeD15
msoThreeD16
msoThreeD17
msoThreeD18
msoThreeD19
msoThreeD2
msoThreeD20
msoThreeD3
msoThreeD4
msoThreeD5
msoThreeD6
msoThreeD7
msoThreeD8
msoThreeD9

expression.PresetThreeDFormat



expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	values	for	this	property	correspond	to	the	options	(numbered	from	left	to
right,	top	to	bottom)	displayed	when	you	click	the	3-D	Style	button	on	the
Formatting	toolbar.

Use	the	SetThreeDFormat	method	to	set	the	preset	extrusion	format.



Example

This	example	sets	the	extrusion	format	for	the	first	shape	on	the	first	page	of	the
active	publication	to	3-D	Style	12	if	the	shape	initially	has	a	custom	extrusion
format.	For	this	example	to	work,	the	specified	shape	must	be	a	3-D	shape.

Sub	SetPreset3D()

				With	ActiveDocument.Pages(1).Shapes(1).ThreeD

								If	.PresetThreeDFormat	=	msoPresetThreeDFormatMixed	Then

												.SetThreeDFormat	msoThreeD12

								End	If

				End	With

End	Sub

	 	



PreviousLinkedTextFrame	Property
Returns	a	TextFrame	object	representing	the	text	frame	from	which	text	flows
to	the	specified	text	frame.

expression.PreviousLinkedTextFrame

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	specified	text	frame	is	not	part	of	a	chain	of	linked	frames	or	is	the	first	in
a	chain	of	linked	frames,	this	property	returns	nothing.



Example

The	following	example	returns	the	previously	linked	text	frame	of	shape	three	on
page	one	of	the	active	publication	and	sets	its	font	to	Times	New	Roman.

Dim	txtFrame	As	TextFrame

Set	txtFrame	=	ActiveDocument.Pages(1)	_

				.Shapes(3).TextFrame.PreviousLinkedTextFrame

txtFrame.TextRange.Font	=	"Times	New	Roman"

	 	



PrintablePlates	Property
Returns	a	PrintablePlates	collection.	Read-only.

expression.PrintablePlates()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

The	PrintablePlates	property	is	only	accessible	if	the	publication	is	set	to	print
as	separations.	Returns	"Permission	Denied"	if	any	other	print	mode	is	specified.

The	PrintablePlates	collection	is	generated	when	a	publication's	print	mode	is
set	to	separations.	The	PrintablePlates	collection	represents	the	plates	that	will
actually	be	printed	for	the	publication,	based	on:

The	plates	(if	any)	you	have	defined	for	the	publication
The	advanced	print	options	specified



Example

The	following	example	returns	all	the	printable	plates	currently	defined	for	the
active	publication,	and	lists	selected	properties	of	each.	This	example	assumes
that	the	print	mode	of	the	active	publication	is	set	to	print	separations.

Sub	ListPrintablePlates()

				Dim	pplTemp	As	PrintablePlates

				Dim	pplLoop	As	PrintablePlate

				

				Set	pplTemp	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				Debug.Print	"There	are	"	&	pplTemp.Count	&	"	printable	plates	in	this	publication."

				

				For	Each	pplLoop	In	pplTemp

								With	pplLoop

												Debug.Print	"Printable	Plate	Name:	"	&	.Name

												Debug.Print	"Index:	"	&	.Index

												Debug.Print	"Ink	Name:	"	&	.InkName

												Debug.Print	"Plate	Angle:	"	&	.Angle

												Debug.Print	"Plate	Frequency:	"	&	.Frequency

												Debug.Print	"Print	Plate?:	"	&	.PrintPlate

								End	With

				Next	pplLoop

End	Sub



PrintableRect	Property
Returns	a	PrintableRect	object	that	represents	the	printer	sheet	area	within
which	the	specified	printer	will	print.	Read-only.

expression.PrintableRect()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

The	printable	rectangle	is	determined	by	the	printer	based	on	the	sheet	size
specified.	The	printable	rectangle	of	the	printer	sheet	should	not	be	confused
with	the	area	within	the	margins	of	the	publication	page;	it	may	be	larger	or
smaller	than	the	publication	page.

Note		In	cases	in	which	the	printer	sheet	and	the	publication	page	size	are
identical,	the	publication	page	is	centered	on	the	printer	sheet	and	none	of	the
printer's	marks	print,	even	if	they	are	selected.



Example

The	following	example	returns	printable	rectangle	boundaries	for	the	printer
sheet	of	the	active	publication.

Sub	ListPrintableRectBoundaries()

With	ActiveDocument.AdvancedPrintOptions.PrintableRect

				Debug.Print	"Printable	area	is	"	&	_

												PointsToInches(.Width)	&	_

												"	by	"	&	PointsToInches(.Height)	&	"	inches."

				Debug.Print	"Left	Boundary:	"	&	PointsToInches(.Left)	&	_

																				"	inches	(from	left)."

				Debug.Print	"Right	Boundary:	"	&	PointsToInches(.Left	+	.Width)	&	_

																				"	inches	(from	left)."

				Debug.Print	"Top	Boundary:	"	&	PointsToInches(.Top)	&	_

																				"	inches(from	top)."

				Debug.Print	"Bottom	Boundary:	"	&	PointsToInches(.Top	+	.Height)	&	_

																				"	inches(from	top)."

				

End	With

End	Sub



PrintBlankPlates	Property
False	to	prevent	printing	plates	when	an	ink	is	used	within	a	document,	but	not
on	a	specific	page.	For	example,	suppose	a	document	contains	red	and	black	spot
colors	on	first	page,	but	the	rest	of	the	pages	contain	black	only.	If
PrintBlankPlates	is	set	to	False,	a	red	plate	will	be	printed	for	the	first	page,
but	not	for	any	of	the	following	pages	because	they	do	not	contain	red.	The
default	is	True.	Read/write	Boolean.

expression.PrintBlankPlates()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	is	only	accessible	if	separations	are	being	printed.	Use	the
PrintMode	property	of	the	AdvancedPrintOptions	object	to	specifiy	that
separations	are	to	be	printed.	Returns	"Permission	Denied"	if	any	other	print
mode	is	specified.

This	property	corresponds	to	the	Don't	print	blank	plates	control	on	the
Separations	tab	of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	tests	to	determine	if	the	active	publication	has	been	set	to
print	as	separations.	If	it	has,	it	is	set	to	print	only	plates	for	the	inks	actually
used	in	the	publication,	and	to	not	print	plates	for	any	pages	where	a	color	is	not
used.

Sub	PrintOnlyInksUsed

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.PrintMode	=	pbPrintModeSeparations	Then

	 	 	 .InksToPrint	=	pbInksToPrintUsed

	 	 	 .PrintBlankPlates	=	False

	 	 End	If

	 End	With

End	Sub



PrintBleedMarks	Property
True	to	print	bleed	marks	in	the	specified	publication.	The	default	is	False.
Read/write	Boolean.

expression.PrintBleedMarks()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Bleed	marks	show	the	extent	of	a	bleed,	and	print	an	eighth	inch	outside	the	crop
marks.

This	property	is	only	accessible	if	bleeds	are	allowed	in	the	specified
publication.	Use	the	AllowBleeds	property	of	the	AdvancedPrintOptions
object	to	specify	bleeds	are	allowed.	Returns	"Permission	Denied"	if	bleeds	are
not	allowed	in	the	publication.

This	property	corresponds	to	the	Bleed	marks	control	on	the	Page	Settings	tab
of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	sets	the	publication	to	allow	bleeds,	and	to	print	bleed
marks.

Sub	AllowBleedsAndPrintMarks()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .AllowBleeds	=	True

	 	 .PrintBleedMarks	=	True

	 End	With

End	Sub



PrintCMYKByDefault	Property
True	to	use	composite	CMYK	as	the	default	print	mode	for	future	Publisher
instances,	rather	than	composite	RGB.	Read/write	boolean.

expression.PrintCMYKByDefault

expression				Required.	An	expression	that	returns	a	AdvancedPrintOptions
object.



Remarks

Setting	this	property	to	True	sets	the	default	value	of	the	PrintMode	property
for	future	instances	of	Publisher	to	pbPrintModeCompositCMYK.	Setting	this
property	does	not	apply	to	the	current	application	of	Publisher,	or	any	open
instances.

Use	the	PrintMode	property	of	the	AdvancedPrintOptions	object	to	specify	a
publication's	print	mode.	The	default	print	mode	value	is
pbPrintModeCompositeRGB.

This	property	corresponds	to	the	Print	Composite	CMYK	by	default	check
box	on	the	Separations	tab	of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	sets	the	default	print	mode	of	future	instances	of
Publisher	to	composite	CMYK.

ActiveDocument.AdvancedPrintOptions.PrintCMYKByDefault	=	True



PrintColorBars	Property
True	to	print	a	color	bar	for	the	specified	publication.	The	default	is	True.
Read/write	Boolean.

expression.PrintColorBars()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Returns	"Permission	Denied"	if	any	print	mode	other	than	separations	is	selected
for	the	specified	publication.	Use	the	PrintMode	property	of	the
AdvancedPrintOptions	object	to	specifiy	the	print	mode	for	a	publication.

Color	bars	are	used	by	commercial	printers	to	determine	how	a	solid	patch	of	ink
prints	on	the	page.

This	property	corresponds	to	the	Color	bars	control	on	the	Page	Settings	tab	of
the	Advanced	Print	Settings	dialog	box.

These	printer's	marks	print	outside	of	the	publication	and	can	only	be	printed	if
the	size	of	the	paper	being	printed	to	is	larger	than	the	publication	page	size.



Example

The	following	example	sets	crop	marks	and	job	information	to	print	with	the
publication.	If	the	publication	is	printed	as	separations,	the	additional	types	of
printer's	marks	are	also	set	to	print.	This	example	assumes	that	the	size	of	the
paper	being	printed	to	is	larger	than	the	publication	page	size.

Sub	SetPrintersMarksToPrint()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .PrintCropMarks	=	True

	 	 .PrintJobInformation	=	True

	 	 	 If	PrintMode	=	pbPrintModeSeparations	Then

	 	 	 	 .PrintRegistrationMarks	=	True

	 	 	 	 .PrintDensityBars	=	True

	 	 	 	 .PrintColorBars	=	True

	 	 	 End	If

	 	 End	With

End	Sub



PrintCropMarks	Property
True	to	print	crop	marks	for	the	specified	publication.	The	default	is	True.
Read/write	Boolean.

expression.PrintCropMarks()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	corresponds	to	the	Crop	marks	control	on	the	Page	Settings	tab
of	the	Advanced	Print	Settings	dialog	box.

Crop	marks	are	used	as	guides	when	a	printed	publication	is	trimmed	to	its
intended	size.

These	printer's	marks	print	outside	of	the	publication	and	can	only	be	printed	if
the	size	of	the	sheet	being	printed	to	is	larger	than	the	publication	page	size.



Example

The	following	example	sets	crop	marks	and	job	information	to	print	with	the
publication.	If	the	publication	is	printed	as	separations,	the	additional	types	of
printer's	marks	are	also	set	to	print.	This	example	assumes	that	the	size	of	the
paper	being	printed	to	is	larger	than	the	publication	page	size.

Sub	SetPrintersMarksToPrint()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .PrintCropMarks	=	True

	 	 .PrintJobInformation	=	True

	 	 	 If	PrintMode	=	pbPrintModeSeparations	Then

	 	 	 	 .PrintRegistrationMarks	=	True

	 	 	 	 .PrintDensityBars	=	True

	 	 	 	 .PrintColorBars	=	True

	 	 	 End	If

	 	 End	With

End	Sub



PrintDensityBars	Property
True	to	print	a	density	bar	for	the	specified	publication.	The	default	is	True.
Read/write	Boolean.

expression.PrintDensityBars()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Returns	"Permission	Denied"	if	any	print	mode	other	than	separations	is	selected
for	the	specified	publication.	Use	the	PrintMode	property	of	the
AdvancedPrintOptions	object	to	specifiy	the	print	mode	for	a	publication.

The	density	bar	printed	is	graded	from	a	10	percent	screen	to	a	100	percent	fill.
A	commercial	printer	can	use	this	bar	to	determine	proper	exposure	time	for
plate	burning,	and	to	test	dot	gain	in	the	printed	pages.

This	property	corresponds	to	the	Density	bars	control	on	the	Page	Settings	tab
of	the	Advanced	Print	Settings	dialog	box.

These	printer's	marks	print	outside	of	the	publication	and	can	only	be	printed	if
the	size	of	the	paper	being	printed	on	is	larger	than	the	publication	page	size.



Example

The	following	example	sets	crop	marks	and	job	information	to	print	with	the
publication.	If	the	publication	is	printed	as	separations,	the	additional	types	of
printer's	marks	are	also	set	to	print.	This	example	assumes	that	the	size	of	the
paper	being	printed	to	is	larger	than	the	publication	page	size.

Sub	SetPrintersMarksToPrint()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .PrintCropMarks	=	True

	 	 .PrintJobInformation	=	True

	 	 	 If	PrintMode	=	pbPrintModeSeparations	Then

	 	 	 	 .PrintRegistrationMarks	=	True

	 	 	 	 .PrintDensityBars	=	True

	 	 	 	 .PrintColorBars	=	True

	 	 	 End	If

	 	 End	With

End	Sub



PrintJobInformation	Property
True	to	print	information	about	the	print	job	on	each	plate.	The	default	is	True.
Read/write	Boolean.

expression.PrintJobInformation()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

The	PrintJobInformation	property	can	be	set	regardless	of	the	print	mode
selected	for	the	publication.	However,	it	is	ignored	(and	no	job	information	is
printed)	when	the	print	mode	is	set	as	composite	RGB.	Use	the	PrintMode
property	of	the	AdvancedPrintOptions	object	to	specifiy	the	print	mode	for	a
publication.

Job	information	comprises	the	file	name	of	the	printed	publication,	the	date	it
was	printed,	the	page	number,	and	which	color	ink	the	plate	is	for	(cyan,
magenta,	yellow,	black,	or	a	spot	color).

This	property	corresponds	to	the	Job	information	control	on	the	Page	Settings
tab	of	the	Advanced	Print	Settings	dialog	box.

These	printer's	marks	print	outside	of	the	publication	and	can	only	be	printed	if
the	size	of	the	paper	being	printed	to	is	larger	than	the	publication	page	size.



Example

The	following	example	sets	crop	marks	and	job	information	to	print	with	the
publication.	If	the	publication	is	printed	as	separations,	the	additional	types	of
printer's	marks	are	also	set	to	print.	This	example	assumes	that	the	size	of	the
paper	being	printed	to	is	larger	than	the	publication	page	size.

Sub	SetPrintersMarksToPrint()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .PrintCropMarks	=	True

	 	 .PrintJobInformation	=	True

	 	 	 If	PrintMode	=	pbPrintModeSeparations	Then

	 	 	 	 .PrintRegistrationMarks	=	True

	 	 	 	 .PrintDensityBars	=	True

	 	 	 	 .PrintColorBars	=	True

	 	 	 End	If

	 	 End	With

End	Sub



PrintLineByLine	Property
Returns	or	sets	a	Boolean	indicating	whether	to	print	documents	line	by	line
(applies	to	inkjet	printers	only);	True	to	print	line	by	line.	Read/write.

expression.PrintLineByLine

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	Publisher	to	print	line	by	line	on	an	inkjet	printer.

Options.PrintLineByLine	=	True

	 	



Show	All



PrintMode	Property
Returns	or	sets	a	PbPrintMode	constant	that	represents	whether	the	specified
publication	is	printed	as	a	composite	or	separations.	Read/write.

PbPrintMode	can	be	one	of	these	PbPrintMode	constants.
pbPrintModeCompositeCMYK	Print	a	composite	whose	colors	are	defined
by	the	CMYK	color	model.
pbPrintModeGrayscale	Print	a	composite	whose	colors	are	defined	as	shades
of	gray.
pbPrintModeCompositeRGB	Print	a	composite	whose	colors	are	defined	by
the	RGB	color	model.
pbPrintModeSeparations	Print	a	separate	plate	for	each	ink	used	in	the
publication.

expression.PrintMode()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

The	PrintMode	property	applies	to	the	publication	only	as	it	is	currently	being
printed.	This	property	is	not	saved	with	the	publication,	nor	as	an	application
setting.

The	default	value	for	the	PrintMode	property	is	pbPrintModeCompositeRGB.
To	specify	pbPrintModeCompositeCMYK	as	the	default	value	for	future
instances	of	Publisher,	use	the	PrintCMYKByDefault	property.

This	property	corresponds	to	the	Output	control	on	the	Separations	tab	of	the
Advanced	Print	Settings	dialog	box.

The	PrintablePlates	collection	is	generated	when	a	publication's	print	mode	is
set	to	separations.	The	PrintablePlates	collection	represents	the	plates	that	will
actually	be	printed	for	the	publication,	based	on:

The	plates	(if	any)	you	have	defined	for	the	publication
The	advanced	print	options	specified

If	you	specify	separations	as	the	print	mode,	you	can	specify	which	plates	to
print	by	using	the	InksToPrint	property	of	the	AdvancedPrintOptions	object.
You	can	also	prevent	printing	plates	for	any	pages	where	a	color	is	not	used	by
setting	the	PrintBlankPlates	property.



Example

The	following	example	tests	to	determine	if	the	active	publication	has	been	set	to
print	as	separations.	If	it	has,	it	is	set	to	print	only	plates	for	the	inks	actually
used	in	the	publication,	and	to	not	print	plates	for	any	pages	where	a	color	is	not
used.

Sub	PrintOnlyInksUsed

	 With	ActiveDocument.AdvancedPrintOptions

	 	 If	.PrintMode	=	pbPrintModeSeparations	Then

	 	 	 .InksToPrint	=	pbInksToPrintUsed

	 	 	 .PrintBlankPlates	=	False

	 	 End	If

	 End	With

End	Sub



PrintPageBackgrounds	Property
Returns	or	sets	True	to	include	page	backgrounds	when	printing	pages	from	the
specified	publication.	Default	is	True.	Read/write	Boolean.

expression.PrintPageBackgrounds()

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

Use	the	PageBackground	object	to	create,	alter,	or	delete	the	background	of	a
specified	page.



Example

The	following	example	sets	page	backgrounds	to	print	for	the	active	publication.

ActiveDocument.PrintPageBackgrounds	=	True



PrintPreview	Property
True	to	display	in	Print	Preview	the	publication	in	the	current	view.	Read/write
Boolean.

expression.PrintPreview

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	switches	the	view	to	Print	Preview.

Sub	GoToPrintPreview()

				PrintPreview	=	True

End	Sub

	 	



PrintRegistrationMarks	Property
True	to	print	registration	marks	for	the	specified	publication.	The	default	is
True.	Read/write	Boolean.

expression.PrintRegistrationMarks()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Returns	"Permission	Denied"	if	any	print	mode	other	than	separations	is	selected
for	the	specified	publication.	Use	the	PrintMode	property	of	the
AdvancedPrintOptions	object	to	specify	the	print	mode	for	a	publication.

This	property	corresponds	to	the	Registration	marks	control	on	the	Page
Settings	tab	of	the	Advanced	Print	Settings	dialog	box.

Registration	marks	are	used	to	align	(register)	the	printing	of	two	or	more	press
plates	on	a	single	page.

These	printer's	marks	print	outside	of	the	publication	and	can	only	be	printed	if
the	size	of	the	paper	being	printed	to	is	larger	than	the	publication	page	size.



Example

The	following	example	sets	crop	marks	and	job	information	to	print	with	the
publication.	If	the	publication	is	printed	as	separations,	the	additional	types	of
printer's	marks	are	also	set	to	print.	This	example	assumes	that	the	size	of	the
paper	being	printed	to	is	larger	than	the	publication	page	size.

Sub	SetPrintersMarksToPrint()

	 With	ActiveDocument.AdvancedPrintOptions

	 	 .PrintCropMarks	=	True

	 	 .PrintJobInformation	=	True

	 	 	 If	PrintMode	=	pbPrintModeSeparations	Then

	 	 	 	 .PrintRegistrationMarks	=	True

	 	 	 	 .PrintDensityBars	=	True

	 	 	 	 .PrintColorBars	=	True

	 	 	 End	If

	 	 End	With

End	Sub



ProductCode	Property
Returns	a	String	indicating	the	Microsoft	Publisher	globally	unique	identifier
(GUID).	Read-only.

expression.ProductCode

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	product	code	for	Microsoft	Publisher.

MsgBox	"The	product	code	for	Microsoft	Publisher	is	"	_

				&	ProductCode

	 	



Show	All



ProgId	Property
Returns	a	String	that	represents	the	programmatic	identifier	(ProgID)	for	the
specified	OLE	object.	Read-only.

expression.ProgId

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	loops	through	all	the	linked	OLE	object	shapes	on	the	first	page	of
the	active	document	and	updates	all	linked	Excel	worksheets.	This	example
assumes	there	is	at	least	one	shape	on	the	first	page	of	the	active	publication.

Sub	UpdateLinkedOLEObject()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								If	shp.Type	=	msoLinkedOLEObject	Then

												If	shp.OLEFormat.ProgId	=	"Excel.Sheet"	Then

																shp.LinkFormat.Update

												End	If

								End	If

				Next

End	Sub

	 	



Properties	Property
Returns	a	WizardProperties	collection	representing	all	the	settings	that	are	part
of	the	specified	publication	design	or	Design	Gallery	object's	wizard.

expression.Properties

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	reports	on	the	publication	design	associated	with	the
active	publication,	displaying	its	name	and	current	settings.

Dim	wizTemp	As	Wizard

Dim	wizproTemp	As	WizardProperty

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp

				Set	wizproAll	=	.Properties

				Debug.Print	"Publication	Design	associated	with	"	_

								&	"current	publication:	"	_

								&	.Name

				For	Each	wizproTemp	In	wizproAll

								With	wizproTemp

												Debug.Print	"			Wizard	property:	"	_

																&	.Name	&	"	=	"	&	.CurrentValueId

								End	With

				Next	wizproTemp

End	With

	 	

Note		Depending	on	the	language	version	of	Publisher	that	you	are	using,	you
may	receive	an	error	when	using	the	above	code.	If	this	occurs,	you	will	need	to
build	in	error	handlers	to	circumvent	the	errors.	For	more	information,	see
Wizard	Object.



Show	All



PublicationLayout	Property
Returns	or	sets	a	PbPublicationLayout	constant	that	indicates	the	layout	of	a
publication.	Read/write.

PbPublicationLayout	can	be	one	of	these	PbPublicationLayout	constants.
pbLayout4x6BaePan
pbLayout4x6BanPan
pbLayout4x6Pan
pbLayoutBannerCustom
pbLayoutBannerLarge
pbLayoutBannerMedium
pbLayoutBannerSmall
pbLayoutBook
pbLayoutBusinessCardEurope
pbLayoutBusinessCardFE
pbLayoutBusinessCardLocal
pbLayoutBusinessCardUS
pbLayoutCrownPan
pbLayoutCustom
pbLayoutEnvelope
pbLayoutFoldCard
pbLayoutFullPage
pbLayoutGreetingCardL
pbLayoutGreetingCardT
pbLayoutIndexCard
pbLayoutJang4x6Pan
pbLayoutKookBaePan
pbLayoutKookBanPan
pbLayoutKookPan
pbLayoutLabel
pbLayoutPostcardA4



pbLayoutPostcardHalfLetter
pbLayoutPostcardJapan
pbLayoutPostcardUS
pbLayoutPosterLarge
pbLayoutPosterSmall
pbLayoutShinKookPan
pbLayoutShinSeoPan
pbLayoutWebPageLarge
pbLayoutWebPageSmall

expression.PublicationLayout

expression				Required.	An	expression	that	returns	a	PageSetup	object.



Remarks

Using	the	PublicationLayout	property	to	set	the	layout	of	a	publication	is
identical	to	setting	the	layout	from	the	listbox	in	the	Page	Setup	dialog.



Example

The	following	example	sets	the	layout	of	the	active	publication	to
pbLayoutBusinessCardUS,	which	by	default	specifies	a	page	width	of	3.5
inches	and	a	page	height	of	2	inches.

With	ActiveDocument.PageSetup

				.PublicationLayout	=	pbLayoutBusinessCardUS

End	With



Show	All



PublicationType	Property
Returns	a	PbPublicationType	constant	that	represents	the	type	of	the	specified
publication.	Read-only.

PbPublicationType	can	be	one	of	these	pbPublicationType	constants.
pbTypePrint
pbTypeWeb

expression.PublicationType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	determines	if	the	active	publication	is	a	print	publication.
If	it	is,	the	publication	is	converted	to	a	Web	publication.

Sub	ChangePublicationType()

				With	ActiveDocument

								If	.PublicationType	=	pbTypePrint	Then

								.ConvertPublicationType	(pbTypeWeb)

								End	If

				End	With

End	Sub



PublishFileName	Property
Returns	or	sets	a	String	that	represents	the	file	name	of	a	Web	page	(within	a
Web	publication)	that	is	being	saved	as	filtered	HTML.

expression.PublishFileName

expression				Required.	An	expression	that	returns	a	WebPageOptions	object.



Remarks

Specifying	a	file	name	for	a	Web	page	is	optional.	When	a	publication	is	saved
as	filtered	html,	Publisher	automatically	generates	file	names	for	any	Web	page
that	does	not	have	a	file	name	specified.	Use	the	SaveAs	method	of	the
Document	object	to	save	a	publication	as	filtered	html.

User	defined	file	names	are	only	used	when	a	publication	is	saved	as	filtered
html.

File	names	must	be	specified	without	a	file	extension.

Including	invalid	characters	(such	as	characters	that	are	not	universally	allowed
in	file	names	that	are	part	of	URLs)	in	the	file	name	will	generate	a	run-time
error.	Invalid	characters	include:

characters	with	a	code	point	value	of	below	(decimal)	48
any	double-byte	characters
the	following	symbols:	\,	?,	>,	<,	|,	:	,	and	.

This	property	corresponds	to	the	File	name	text	box	in	the	Publish	to	the	Web
section	of	the	Web	Page	Options	dialog	box.



Example

The	following	example	sets	the	file	name	and	description	of	the	second	page	in
the	active	publication.	The	example	assumes	the	active	publication	is	a	web
publication	with	at	least	two	pages.

With	ActiveDocument.Pages(2).WebPageOptions

				.PublishFileName	=	"CompanyProfile"

				.Description	=	"Tailspin	Toys	Company	Profile"

End	With



Raise	Property
Returns	a	Variant	indicating	the	distance	between	the	top	of	the	base	text	and
the	bottom	of	the	guide	text.	Read-only.

expression.Raise

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Numeric	set	values	are	in	points;	strings	can	be	any	measurement	unit	supported
by	Microsoft	Publisher.	Return	values	are	always	in	points.



Example

The	following	example	places	the	phonetic	guide	for	shape	one	in	the	active
publication	five	points	above	the	base	text.

Dim	phoGuide	As	PhoneticGuide

Set	phoGuide	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Fields(1).PhoneticGuide

With	phoGuide

				.Raise	=	5

End	With

	 	



Show	All



Range	Property
Range	property	as	it	applies	to	the	InlineShapes	collection.

Returns	a	ShapeRange	collection	representing	the	same	set	of	inline	shapes	as
the	InlineShapes	collection	whose	method	was	called.	This	allows	for
miscellaneous	formatting	of	the	contained	shapes.	Read-only.

expression.Range(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Optional	Long.	The	index	position	of	the	inline	shape	within	the
ShapeRange.

Range	property	as	it	applies	to	the	Hyperlink	object.

Returns	a	TextRange	object	representing	the	base	text	to	which	the	specified
hyperlink	has	been	applied.

expression.Range

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	Type	property	of	the	specified	Hyperlink	object	is	a	value	other	than
msoHyperlinkRange,	the	Range	property	returns	nothing.



Example

As	it	applies	to	the	InlineShapes	collection.

The	following	example	searches	through	each	shape	on	the	first	page	of	the
publication,	and	for	all	inline	shapes	within	each	shape,	finds	the	first	inline
shape	within	the	range	of	inline	shapes	and	flips	it	vertically.

Dim	theShape	As	Shape

Dim	theShapes	As	Shapes

Set	theShapes	=	ActiveDocument.Pages(1).Shapes

For	Each	theShape	In	theShapes

				With	theShape.TextFrame.TextRange

								.InlineShapes.Range(1).Flip	(msoFlipVertical)

				End	With

Next

	 	 	 	

As	it	applies	to	the	Hyperlink	object.

The	following	example	returns	the	text	range	associated	with	the	first	hyperlink
on	page	one	of	the	active	publication	and	changes	the	base	text	to	"Go	here."

Dim	txtHyperlink	As	TextRange

txtHyperlink	=	ActiveDocument.Pages(1)	_

				.Shapes(1).Hyperlink.Range

txtHyperlink.Text	=	"Go	here"

	 	 	 	



ReaderSpread	Property
Returns	a	ReaderSpread	object	that	represents	the	reader	spread	of	the	specified
page.

expression.ReaderSpread

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	checks	to	see	if	the	reader	spread	for	the	specified	page	includes
less	than	two	pages.	If	it	does,	it	changes	the	reader	spread	to	include	two	pages.

Sub	SetFacingPages()

				With	ActiveDocument.Pages(2).ReaderSpread

								If	.PageCount	<	2	Then	_

												ActiveDocument.ViewTwoPageSpread	=	True

				End	With

End	Sub

	 	



ReadOnly	Property
Returns	True	if	the	publication	is	read-only;	False	if	it	is	read-write.	Read-only
Boolean.

expression.ReadOnly

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	saves	the	active	publication	and	notifies	the	user	that	the	file	is
saved	and	if	it	is	read-only	or	not.

Sub	SaveAndStatus()

				Dim	bStatus	As	Boolean

				Application.ActiveDocument.SaveAs	"c:\testfile.pub"

				bStatus	=	Application.ActiveDocument.ReadOnly

				MsgBox	"File	Saved	and	Read-only	Status	=	"	&	bStatus

End	Sub

	 	



RecordCount	Property
Returns	a	Long	that	represents	the	number	of	records	in	the	data	source.	Read-
only.

expression.RecordCount

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	validates	ZIP	codes	in	the	attached	data	source	for	five	digits.	If
the	length	of	the	ZIP	code	is	less	than	five,	the	record	is	excluded	from	the	mail
merge	process.	This	example	assumes	the	postal	codes	are	U.S.	ZIP	codes.	You
could	modify	this	example	to	search	for	ZIP	codes	that	have	a	4-digit	locator
code	appended	to	the	ZIP	code,	and	then	exclude	all	records	that	don't	contain
the	locator	code.

Sub	Validate

				Dim	intCount	As	Integer

				With	ActiveDocument.MailMerge.DataSource

								'Set	the	active	record	equal	to	the	first	included	record	in	the

								'data	source

								.ActiveRecord	=	1

								Do

												intCount	=	intCount	+	1

												'Set	the	condition	that	field	six	must	be	greater	than	or

												'equal	to	five	digits	in	length

												If	Len(.DataFields.Item(6).Value)	<	5	Then

																'Exclude	the	record	if	field	six	is	less	than	five	digits

																.Included	=	False

																'Mark	the	record	as	containing	an	invalid	address	field

																.InvalidAddress	=	True

																'Specify	the	comment	attached	to	the	record	explaining

																'why	the	record	was	excluded	from	the	mail	merge

																.InvalidComments	=	"The	ZIP	code	for	this	record	is	"	_

																				&	"less	than	five	digits.	It	will	be	removed	"	_

																				&	"from	the	mail	merge	process."

												End	If

												'Move	the	record	to	the	next	record	in	the	data	source

												.ActiveRecord	=	.ActiveRecord	+	1

								'End	the	loop	when	the	counter	variable

								'equals	the	number	of	records	in	the	data	source

								Loop	Until	intCount	=	.RecordCount

				End	With



	 	



RedoActionsAvailable	Property
Returns	the	number	of	actions	available	on	the	redo	stack.	Read-only	Long.

expression.RedoActionsAvailable

expression				Required.	An	expression	that	returns	a	Document	object.



Example

The	following	example	adds	a	rectangle	that	contains	a	text	frame	to	the	fourth
page	of	the	active	publication.	Some	font	properties	and	the	text	of	the	text
frame	are	set.	A	test	is	then	run	to	determine	whether	the	font	in	the	text	frame	is
Courier.	If	so,	the	Undo	method	is	used	with	the	value	of	the
UndoActionsAvailable	property	passed	as	a	parameter	to	specify	that	all
previous	actions	be	undone.

The	Redo	method	is	then	used	with	the	value	of	the	RedoActionsAvailable
property	minus	2	passed	as	a	parameter	to	redo	all	actions	except	for	the	last
two.	A	new	font	is	specified	for	the	text	in	the	text	frame,	in	addition	to	new	text.

This	example	assumes	the	active	document	contains	at	least	four	pages.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(4)

With	theDoc

				With	thePage

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

												75,	75,	190,	30)

								With	theShape.TextFrame.TextRange

													.Font.Size	=	12

													.Font.Name	=	"Courier"

													.Text	=	"This	font	is	Courier."

								End	With

					End	With

				If	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Courier"	Then

								'	The	Undo	method	specifies	that	all	undoable	actions	be	undone.

								.Undo	(.UndoActionsAvailable)

								'	The	Redo	method	uses	RedoActionsAvailable	-	2	to	specify	that	

								'	all	redoable	actions	be	redone	except	for	the	last	two	actions.

								'	The	last	two	actions	that	are	not	redone	are	setting

								'	.Font.Name	and	.Text.

								.Redo	(.RedoActionsAvailable	-	2)

								With	theShape.TextFrame.TextRange

												.Font.Name	=	"Verdana"

												.Text	=	"This	font	is	Verdana."



								End	With

				End	If

End	With



RelyOnVML	Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	or	not	image	files	are
generated	from	drawing	objects	when	a	Web	publication	is	saved.	If	True,	image
files	are	not	generated.	If	False,	images	are	generated.	The	default	value	is
False.	Read/write.

expression.RelyOnVML

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

File	sizes	can	be	reduced	by	not	generating	images	for	drawing	objects.	Note
that	a	Web	browser	must	support	Vector	Markup	Language	(VML)	in	order	to
render	drawing	objects.	Microsoft	Internet	Explorer	versions	5.0	and	later
support	VML,	so	the	RelyOnVML	property	could	be	set	to	True	if	targeting
those	browsers.	For	browsers	that	do	not	support	VML,	a	drawing	object	will	not
appear	when	a	Web	publication	is	saved	with	this	property	enabled.

If	unsure	about	which	browsers	will	be	used	to	view	the	Web	site,	this	property
should	be	set	to	False.



Example

The	following	example	assumes	that	end	users	have	Microsoft	Internet	Explorer
version	5.0,	and	therefore	specifies	that	images	should	not	be	generated	from
drawing	objects	when	the	Web	publication	is	saved.

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				.RelyOnVML	=	True

End	With

	 	



RemovePersonalInformation
Property
Returns	or	sets	a	Boolean	that	represents	whether	to	save	personal	information
when	the	file	is	saved.	Read/write.

expression.RemovePersonalInformation

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

The	information	removed	from	the	document	is	the	Author,	Manager,	Company,
and	the	GUID	of	the	computer	on	which	the	document	was	created.

The	default	setting	for	this	property	is	False.



Example

This	example	removes	the	personal	information	from	the	active	document.

ActiveDocument.RemovePersonalInformation	=	True



Show	All



ReplaceScope	Property
Sets	or	returns	a	PbReplaceScope	constant	that	specifies	how	many
replacements	are	to	be	made:	one,	all,	or	none.	Read/write	PbReplaceScope.

PbReplaceScope	can	be	one	of	these	PbReplaceScope	constants.
pbReplaceScopeAll
pbReplaceScopeNone
pbReplaceScopeOne

expression.ReplaceScope

expression			Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	default	setting	of	the	ReplaceScope	property	is	pbReplaceScopeNone.



Example

The	following	example	replaces	all	occurrences	of	the	word	"hi"	with	"hello"	in
the	active	document.

With	ActiveDocument.Find

				.Clear

				.FindText	=	"hi"

				.ReplaceWithText	=	"hello"

				.MatchWholeWord	=	True

				.ReplaceScope	=	pbReplaceScopeAll

				.Execute

End	With



ReplaceWithText	Property
Sets	or	retrieves	a	String	representing	the	replacement	text	in	the	specified	range
or	selection.	Read/write.

expression.ReplaceWithText

expression				Required.	An	expression	that	returns	a	FindReplace	object.



Remarks

The	default	setting	of	the	ReplaceWithText	property	is	an	empty	String.

If	the	ReplaceScope	property	is	set	to	either	pbReplaceScopeOne	or
pbReplaceScopeAll	and	the	ReplaceWithText	property	is	not	set,	the	text
found	will	be	replaced	with	the	default	empty	string,	thus	removing	the	text.



Example

The	following	example	replaces	all	occurrences	of	the	word	"hello"	with
"goodbye"	in	the	active	document.

With	ActiveDocument.Find

				.Clear

				.FindText	=	"hello"

				.ReplaceWithText	=	"goodbye"

				.MatchWholeWord	=	True

				.ReplaceScope	=	pbReplaceScopeAll

				.Execute

End	With



Show	All



RequiredControl	Property
MsoTrue	if	an	entry	into	a	Web	text	box	control	is	required.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse	Indicates	entry	into	the	specified	Web	text	box	control	is	not	required.
msoTriStateMixed
msoTriStateToggle
msoTrue	Indicates	entry	into	the	specified	Web	text	box	control	is	required.

expression.RequiredControl

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	text	box	control	in	the	active	publication,	sets
the	default	text	and	the	character	limit	for	the	text	box,	and	specifies	that	an
entry	is	required.

Sub	AddWebTextBoxControl()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlMultiLineTextBox,	Left:=72,	_

												Top:=72,	Width:=300,	Height:=100).WebTextBox

								.DefaultText	=	"Please	enter	text	here."

								.Limit	=	200

								.RequiredControl	=	msoTrue

				End	With

End	Sub

	 	



Resolution	Property
Returns	or	sets	a	String	that	represents	the	resolution,	in	dots	per	inch	(dpi),	at
which	to	print	the	specified	publication.	Default	is	dependent	on	the	printer
driver,	but	is	usually	"(default)".	Read/write.

expression.Resolution()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Valid	values	for	the	Resolution	property	depend	on	the	printer	driver	being	used.
Printers	have	preset	resolutions	that	cannot	be	customized.	Values	must	be
formatted	in	the	following	manner,	including	spacing:

"HorizontalDotsPerInch	x	VerticalDotsPerInch"

HorizontalDotsPerInch	and	VerticalDotsPerInch	are	numerical	values,	separated
by	one	space,	a	lowercase	x,	and	another	space.

For	example,	to	set	the	resolution	of	a	printer	to	600	horizontal	dpi	by	600
vertical	dpi,	a	valid	string	would	read	"600	x	600".

The	Resolution	property	also	accepts	the	string	"(default)"	to	specify	the
printer's	default	resolution	setting.	If	the	printer	driver	presents	a	language	other
than	English,	the	Resolution	property	accepts	the	string	that	denotes	the	default
setting	in	that	language	as	well.

If	the	Resolution	property	is	set	to	the	default	printer	driver	setting,	using	a	Get
statement	returns	the	English	string	"(default)",	regardless	of	whether	the
resolution	was	set	to	default	using	a	non-English	string.

This	property	corresponds	to	the	Resolution	control	on	the	Separations	tab	of
the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	sets	the	resolution	of	the	active	publication	at	300	dpi	by
300	dpi.	The	example	assumes	that	"300	x	300"	is	a	valid	string	for	the	printer
driver	used.

ActiveDocument.AdvancedPrintOptions.Resolution	=	"300	x	300"



Result	Property
Returns	a	String	that	represents	the	result	of	the	specified	field.	Read-only.

expression.Result

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	applies	bold	formatting	to	the	first	field	in	the	selection.	This
example	assumes	that	either	text	or	a	shape	with	text	is	selected	in	the	active
publication.

Sub	GetFieldResults()

				If	Selection.TextRange.Fields.Count	>	0	Then

								MsgBox	"The	result	of	the	first	field	is	"	&	_

												Selection.TextRange.Fields(1).Result	&	"."

				End	If

End	Sub

	 	



ReturnDataLabel	Property
Returns	or	sets	a	String	that	represents	the	text	used	by	the	Web	page	to	label
the	specified	Web	object	when	the	page	is	submitted.	Read/write.

expression.ReturnDataLabel

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	text	box	and	specifies	the	label	for	the	text	in
the	text	box	when	the	page	is	submitted.

Sub	LabelWebTextBoxControl()

				With	ActiveDocument.Pages(1).Shapes	_

												.AddWebControl(Type:=pbWebControlSingleLineTextBox,	_

												Left:=100,	Top:=100,	Width:=300,	Height:=15).WebTextBox

								.DefaultText	=	"Please	enter	your	name	here"

								.Limit	=	70

								.RequiredControl	=	msoTrue

								.ReturnDataLabel	=	"Full_Name"

				End	With

End	Sub

	 	



Show	All



RGB	Property
Returns	or	sets	an	MsoRGBType	that	represents	the	red-green-blue	(RGB)
value	of	the	specified	color.	Read/write.

expression.RGB

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	shape	to	the	first	page	of	the	active	publication	and
sets	the	fill	color	to	red.

Sub	SetFill()

				ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShape5pointStar,	_

								Left:=100,	Top:=100,	Width:=100,	Height:=100).Fill.ForeColor	_

								.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

End	Sub

	 	

This	example	returns	the	value	of	the	foreground	color	of	the	first	shape	on	the
first	page	of	the	active	document.	This	example	assumes	that	there	is	at	least	one
shape	on	the	first	page	of	the	active	publication.

Sub	ShowFillColor()

				MsgBox	"The	RGB	fill	value	of	this	shape	is	"	&	_

								ActiveDocument.Pages(1).Shapes(1).Fill.ForeColor.RGB	&	"."

End	Sub

	 	



RightIndent	Property
Returns	or	sets	a	Variant	that	represents	the	right	indent	(in	points)	for	the
specified	paragraphs.	Read/write.

expression.RightIndent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	right	indent	for	all	paragraphs	in	the	active	document	to
one	inch	from	the	right	margin.	The	InchesToPoints	method	is	used	to	convert
inches	to	points.	This	example	assumes	that	there	is	at	least	one	shape	on	the
first	page	of	the	active	publication.

Sub	SetRightIndent()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.TextRange.Paragraphs(1).ParagraphFormat	_

								.RightIndent	=	InchesToPoints(1)

End	Sub

	 	



Show	All



RotatedChars	Property
MsoTrue	if	characters	in	the	specified	WordArt	are	rotated	90	degrees	relative	to
the	WordArt's	bounding	shape.	MsoFalse	if	characters	in	the	specified	WordArt
retain	their	original	orientation	relative	to	the	bounding	shape.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.RotatedChars

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	WordArt	has	horizontal	text,	setting	the	RotatedChars	property	to	True
rotates	the	characters	90	degrees	counterclockwise.	If	the	WordArt	has	vertical
text,	setting	the	RotatedChars	property	to	False	rotates	the	characters	90
degrees	clockwise.	Use	the	ToggleVerticalText	method	to	switch	between
horizontal	and	vertical	text	flow.

The	Flip	method	and	Rotation	property	of	the	Shape	object	and	the
RotatedChars	property	and	ToggleVerticalText	method	of	the
TextEffectFormat	object	all	affect	the	character	orientation	and	direction	of	text
flow	in	a	Shape	object	that	represents	WordArt.	You	may	have	to	experiment	to
find	out	how	to	combine	the	effects	of	these	properties	and	methods	to	get	the
result	you	want.



Example

This	example	adds	WordArt	that	contains	the	text	"Test"	to	the	active	publication
and	rotates	the	characters	90	degrees	counterclockwise.

Sub	CreateFormatWordArt()

				With	ActiveDocument.Pages(1).Shapes	_

												.AddTextEffect(PresetTextEffect:=msoTextEffect1,	_

												Text:="Test",	FontName:="Arial	Black",	FontSize:=36,	_

												FontBold:=False,	FontItalic:=False,	Left:=10,	Top:=10)

								.TextEffect.RotatedChars	=	msoTrue

				End	With

End	Sub

	 	



Rotation	Property
Returns	or	sets	a	Single	that	represents	the	number	of	degrees	the	specified
shape	is	rotated	around	the	z-axis.	A	positive	value	indicates	clockwise	rotation;
a	negative	value	indicates	counterclockwise	rotation.	Read/write.

expression.Rotation

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	set	the	rotation	of	a	three-dimensional	shape	around	the	x-axis	or	the	y-axis,
use	the	RotationX	property	or	the	RotationY	property	of	the	ThreeDFormat
object.



Example

This	example	matches	the	rotation	of	all	shapes	on	the	first	page	of	the	active
publication	to	the	rotation	of	the	first	shape.	This	example	assumes	there	are	at
least	two	shapes	on	the	first	page	of	the	active	publication.

Sub	SetShapeRotation()

				Dim	sngRotation	As	Single

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes

								sngRotation	=	.Item(1).Rotation

								For	intCount	=	1	To	.Count

												.Item(intCount).Rotation	=	sngRotation

								Next	intCount

				End	With

End	Sub

	 	



RotationX	Property
Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	x-axis	in	degrees.
Can	be	a	value	from	–	90	through	90.	A	positive	value	indicates	upward	rotation;
a	negative	value	indicates	downward	rotation.	Read/write	Single.

expression.RotationX

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	y-axis,	use	the	RotationY
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion's	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.



Example

This	example	adds	three	identical	extruded	ovals	to	the	active	document	and	sets
their	rotation	around	the	x-axis	to	–	30,	0,	and	30	degrees,	respectively.

Sub	SetRotationX()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddShape(Type:=msoShapeOval,	Left:=30,	_

																Top:=60,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationX	=	-30

								End	With

								With	.AddShape(Type:=msoShapeOval,	Left:=90,	_

																Top:=60,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationX	=	0

								End	With

								With	.AddShape(Type:=msoShapeOval,	Left:=150,	_

																Top:=60,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationX	=	30

								End	With

				End	With

End	Sub

	 	



RotationY	Property
Returns	or	sets	the	rotation	of	the	extruded	shape	around	the	y-axis,	in	degrees.
Can	be	a	value	from	–	90	through	90.	A	positive	value	indicates	rotation	to	the
left;	a	negative	value	indicates	rotation	to	the	right.	Read/write	Single.

expression.RotationY

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

To	set	the	rotation	of	the	extruded	shape	around	the	x-axis,	use	the	RotationX
property	of	the	ThreeDFormat	object.	To	set	the	rotation	of	the	extruded	shape
around	the	z-axis,	use	the	Rotation	property	of	the	Shape	object.	To	change	the
direction	of	the	extrusion's	sweep	path	without	rotating	the	front	face	of	the
extrusion,	use	the	SetExtrusionDirection	method.



Example

This	example	adds	three	identical	extruded	ovals	to	the	active	document	and	sets
their	rotation	around	the	y-axis	to	–	30,	0,	and	30	degrees,	respectively.

Sub	SetRotationY()

				With	ActiveDocument.Pages(1).Shapes

								With	.AddShape(Type:=msoShapeOval,	Left:=30,	_

																Top:=120,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationY	=	-30

								End	With

								With	.AddShape(Type:=msoShapeOval,	Left:=90,	_

																Top:=120,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationY	=	0

								End	With

								With	.AddShape(Type:=msoShapeOval,	Left:=150,	_

																Top:=120,	Width:=50,	Height:=25).ThreeD

												.Visible	=	True

												.RotationY	=	30

								End	With

				End	With

End	Sub

	 	



Row	Property
Returns	a	Long	that	represents	the	row	number	containing	the	specified	cell.
Read-only.

expression.Row

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enters	the	fill	for	all	even-numbered	rows	and	clears	the	fill	for	all
odd-numbered	rows	in	the	specified	table.	This	example	assumes	the	specified
shape	is	a	table	and	not	another	type	of	shape.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Set	shpTable	=	ActiveDocument.Pages(1).Shapes	_

								.AddTable(NumRows:=5,	NumColumns:=5,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=12)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Row	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	



RowGutterWidth	Property
Returns	or	sets	the	width	of	the	row	gutters	that	are	used	by	the	LayoutGuides
object	to	aid	in	the	process	of	laying	out	design	elements.	Read/write	Single.

expression.RowGutterWidth

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	default	width	of	row	gutters	is	0.4	inches.



Example

The	following	example	modifies	the	second	master	page	of	the	active
publication	so	that	it	has	four	rows	and	four	columns,	row	gutter	width	of	0.75
inches,	column	gutter	width	of	0.5	inches,	and	center	lines	in	the	gutters.	Any
new	pages	added	to	the	publication	that	use	the	second	master	page	as	a	template
will	have	these	properties.

Dim	theMasterPage	As	page

Dim	theLayoutGuides	As	LayoutGuides

Set	theMasterPage	=	ActiveDocument.MasterPages(2)

Set	theLayoutGuides	=	theMasterPage.LayoutGuides

With	theLayoutGuides

				.Rows	=	4

				.Columns	=	4

				.RowGutterWidth	=	Application.InchesToPoints(0.75)

				.ColumnGutterWidth	=	Application.InchesToPoints(0.5)

				.GutterCenterlines	=	True

End	With



Show	All



Rows	Property
Rows	property	as	it	applies	to	the	LayoutGuides	object.

Sets	or	returns	a	Long	that	represents	the	number	of	rows	in	a	layout	guide.
Read/write.

expression.Rows

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Rows	property	as	it	applies	to	the	Table	object.

Returns	a	Rows	collection	that	represents	all	the	table	rows	in	a	range,	selection,
or	table.

expression.Rows

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

As	it	applies	to	the	LayoutGuides	object.

This	example	sets	the	columns	and	rows	for	the	layout	guides.

Sub	SetLayoutGuides()

				With	ActiveDocument.LayoutGuides

								.Columns

								.Rows

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Table	object.

This	example	enters	the	fill	for	all	even-numbered	rows	and	clears	the	fill	for	all
odd-numbered	rows	in	the	specified	table.	This	example	assumes	the	specified
shape	is	a	table	and	not	another	type	of	shape.

Sub	FillCellsByRow()

				Dim	shpTable	As	Shape

				Dim	rowTable	As	Row

				Dim	celTable	As	Cell

				Set	shpTable	=	ActiveDocument.Pages(1).Shapes	_

								.AddTable(NumRows:=5,	NumColumns:=5,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=12)

				For	Each	rowTable	In	shpTable.Table.Rows

								For	Each	celTable	In	rowTable.Cells

												If	celTable.Row	Mod	2	=	0	Then

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=180,	Green:=180,	Blue:=180)

												Else

																celTable.Fill.ForeColor.RGB	=	RGB	_

																				(Red:=255,	Green:=255,	Blue:=255)

												End	If

								Next	celTable

				Next	rowTable

End	Sub

	 	 	 	





RulerGuides	Property
Returns	a	RulerGuides	collection	that	represents	grid	lines	used	to	align	objects
on	a	page.

expression.RulerGuides

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	horizontal	and	vertical	ruler	guides	every	half	inch	on	the
first	page	of	the	active	publication.

Sub	SetRulerGuides()

				Dim	intCount	As	Integer

				Dim	intPos	As	Integer

				With	ActiveDocument.Pages(1).RulerGuides

								For	intCount	=	1	To	16

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeVertical

								Next	intCount

								intPos	=	0

								For	intCount	=	1	To	21

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeHorizontal

								Next	intCount

				End	With

End	Sub

	 	



SaveAutoRecoverInfo	Property
True	if	Publisher	automatically	saves	publications	for	recovery	if	the	application
is	unexpectedly	shut	down.	Read/write	Boolean.

expression.SaveAutoRecoverInfo

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	SaveAutoRecoverInfoInterval	property	to	specify	how	often	auto
recovery	saves	occur.



Example

This	example	enables	the	global	auto	recovery	option	and	sets	the	save	interval
to	every	five	minutes.

Sub	SetAutoRecoverInfo()

				With	Options

								.SaveAutoRecoverInfo	=	True

								.SaveAutoRecoverInfoInterval	=	5

				End	With

End	Sub

	 	



SaveAutoRecoverInfoInterval
Property
Returns	or	sets	a	Long	that	represents	the	time	interval	in	minutes	for
automatically	saving	a	publication	for	recovery	if	the	application	is	unexpectedly
shut	down.	Read/write.

expression.SaveAutoRecoverInfoInterval

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	the	global	auto	recovery	option	and	sets	the	save	interval
to	every	five	minutes.

Sub	SetAutoRecoverInfo()

				With	Options

								.SaveAutoRecoverInfo	=	True

								.SaveAutoRecoverInfoInterval	=	5

				End	With

End	Sub

	 	



Saved	Property
Returns	True	if	no	changes	have	been	made	to	a	publication	since	it	was	last
saved.	Read-only	Boolean.

expression.Saved

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	Saved	property	of	a	modified	publication	returns	True,	the	user	won't	be
prompted	to	save	changes	when	closing	the	publication,	and	all	changes	made	to
it	since	it	was	last	saved	will	be	lost.



Example

This	example	saves	the	active	publication	if	it's	been	changed	since	the	last	time
it	was	saved.

Sub	Saver()

				With	Application.ActiveDocument

								If	Not	.Saved	And	.Path	<>	""	Then	.Save

				End	With

End	Sub

	 	



Show	All



SaveFormat	Property
Returns	a	PbFileFormat	constant	indicating	the	file	format	of	the	specified
document.	Read-only.

PbFileFormat	can	be	one	of	these	PbFileFormat	constants.
pbFilePublication	The	file	was	saved	with	the	current	version	of	Publisher.
pbFilePublicationHTML	The	file	was	saved	in	an	HTML	format.
pbFilePublisher2000	The	file	was	saved	in	a	Publisher	2000	file	format.
pbFilePublisher98	The	file	was	saved	in	a	Publisher	98	file	format.
pbFileRTF	The	file	was	saved	in	Rich	Text	Format.
pbFileWebArchive	The	file	was	saved	in	the	MHTML	format	that	allows	users
to	save	a	Web	page	and	all	its	related	files	as	a	single	file.

expression.SaveFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

If	the	active	publication	is	in	the	Publisher	2000	format,	this	example	saves	it	in
Rich	Text	Format	(RTF).

Sub	SaveAsRTF()

				If	Application.ActiveDocument.SaveFormat	=	pbFilePublisher2000	Then

								ActiveDocument.SaveAs	"Flyer3",	pbFileRTF

				End	If

End	Sub

	 	



Scaling	Property
Returns	or	sets	a	Variant	value	used	to	scale	the	width	of	the	characters	in	the
text	range	as	a	percentage	of	the	current	font	size.	Read/write.

expression.Scaling

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Valid	range	is	0.1	to	600.0	where	the	number	represents	the	percentage	of
current	font	size.	Indeterminate	values	are	returned	as	–2.



Example

This	example	scales	the	width	of	the	text	in	the	second	story	by	200%.	For	this
example	to	work,	a	second	story	with	text	must	exist	in	the	active	document.

Sub	ScaleUp()

				Application.ActiveDocument.Stories(2).TextRange.Font.Scaling	=	200

End	Sub

	 	



Show	All



SchemeColor	Property
Returns	or	sets	a	PbSchemeColorIndex	constant	that	represents	the	specified
color	of	the	current	color	scheme.	Read/write.

PbSchemeColorIndex	can	be	one	of	these	PbSchemeColorIndex	constants.
pbSchemeColorAccent1
pbSchemeColorAccent2
pbSchemeColorAccent3
pbSchemeColorAccent4
pbSchemeColorAccent5
pbSchemeColorFollowedHyperlink
pbSchemeColorHyperlink
pbSchemeColorMain
pbSchemeColorNone

expression.SchemeColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	the	color	of	the	text	in	shape	one	on	page	one	of	the
active	publication	to	accent	color	five	in	the	current	color	scheme.

ActiveDocument.Pages(1).Shapes(1).TextFrame	_

				.TextRange.Font.Color.SchemeColor	=

pbSchemeColorAccent5

	 	



ScratchArea	Property
Returns	a	ScratchArea	object	for	an	a	given	document.

expression.ScratchArea

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	ScratchArea	object	is	a	collection	of	objects	on	the	scratch	page.	The
ScratchArea	object	is	not	in	the	Pages	collection	because	it	is	fundamentally
not	a	page;	its	only	similarity	to	a	page	is	that	it	can	contain	objects.



Example

This	example	sets	the	variable	object	as	the	first	shape	on	the	scratch	area	of	the
active	document.

Sub	ScratchPad()

				Dim	saPage	As	ScratchArea

				Dim	objFirst	As	Object

				saPage	=	Application.ActiveDocument.ScratchArea

				objFirst	=	saPage.Shapes(1)

End	Sub

	 	



ScreenUpdating	Property
Returns	or	sets	a	Boolean	indicating	whether	Microsoft	Publisher	refreshes	the
screen	display	during	run	time;	True	to	refresh	the	screen	display.	Read/write.

expression.ScreenUpdating

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Turning	screen	updating	off	during	run	time	can	speed	execution	of	Visual	Basic
code.	However,	it	is	recommended	to	provide	some	indication	of	status	so	that
the	user	is	aware	that	the	program	is	functioning	correctly.



Example

The	following	example	turns	off	screen	updating	at	the	beginning	of	a	subroutine
and	turns	it	back	on	at	the	end	of	the	subroutine.

Sub	TurnOffScreenUpdating()

				ScreenUpdating	=	False

				'	Execute	code	here.

				ScreenUpdating	=	True

End	Sub

	 	



Show	All



Script	Property
Returns	a	PbFontScriptType	constant	that	represents	the	font	script	for	a	text
range.	Read-only.

PbFontScriptType	can	be	one	of	these	PbFontScriptType	constants.
pbFontScriptArabic
pbFontScriptArmenian
pbFontScriptAsciiLatin
pbFontScriptAsciiSym
pbFontScriptBengali
pbFontScriptBopomofo
pbFontScriptBraille
pbFontScriptCanadianAbor
pbFontScriptCherokee
pbFontScriptCurrency
pbFontScriptCyrillic
pbFontScriptDefault
pbFontScriptDevanagari
pbFontScriptEthiopic
pbFontScriptEUDC
pbFontScriptGeorgian
pbFontScriptGreek
pbFontScriptGujarati
pbFontScriptGurmukhi
pbFontScriptHalfWidthKana
pbFontScriptHan
pbFontScriptHangul
pbFontScriptHanSurrogate
pbFontScriptHebrew
pbFontScriptKana
pbFontScriptKannada



pbFontScriptKhmer
pbFontScriptLao
pbFontScriptLatin
pbFontScriptMalayalam
pbFontScriptMixed
pbFontScriptMongolian
pbFontScriptMyanmar
pbFontScriptNonHanSurrogate
pbFontScriptOgham
pbFontScriptOriya
pbFontScriptRunic
pbFontScriptSinhala
pbFontScriptSyriac
pbFontScriptTamil
pbFontScriptTelugu
pbFontScriptThaana
pbFontScriptThai
pbFontScriptTibetan
pbFontScriptYi

expression.Script

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	a	message	if	the	font	script	used	in	the	specified	text
range	is	ASCII	Latin.	This	example	assumes	that	there	is	at	least	one	shape	on
the	first	page	of	the	active	publication.

Sub	DisplayScriptType()

				If	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

												.Script	=	pbFontScriptAsciiLatin	Then

								MsgBox	"The	font	script	you	are	using	is	ASCII	Latin."

				End	If

End	Sub

	 	



Sections	Property
Returns	a	Sections	object	representing	a	collection	of	Section	objects	in	the
specified	document.	Read-only	Sections.

expression.Sections

expression				Required.	An	expression	that	returns	a	Document	object.



Example

This	example	sets	an	object	variable	to	the	Sections	object	of	the	active
document	and	adds	a	new	section	starting	at	the	second	page	of	the	publication.
This	example	assumes	that	there	are	at	least	two	pages	in	the	publication.

Dim	objSections	As	Sections

Set	objSections	=	ActiveDocument.Sections

objSections.Add	StartPageIndex:=2



Show	All



SegmentType	Property
Returns	an	MsoSegmentType	constant	that	indicates	whether	the	segment
associated	with	the	specified	node	is	straight	or	curved.	Read-only.

MsoSegmentType	can	be	one	of	these	MsoSegmentType	constants.
msoSegmentCurve
msoSegmentLine

expression.SegmentType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	specified	node	is	a	control	point	for	a	curved	segment,	this	property	returns
msoSegmentCurve.

Use	the	SetSegmentType	method	to	set	the	value	of	this	property.



Example

This	example	changes	all	straight	segments	to	curved	segments	in	the	first	shape
on	the	first	page	of	the	active	publication.	For	this	example	to	work,	the
specified	shape	must	be	a	freeform	drawing.

Sub	ChangeSegmentTypes()

				Dim	intNode	As	Integer

				With	ActiveDocument.Pages(1).Shapes(1).Nodes

								intNode	=	1

								Do	While	intNode	<=	.Count

												If	.Item(intNode).SegmentType	=	msoSegmentLine	Then

																.SetSegmentType	Index:=intNode,	_

																				SegmentType:=msoSegmentCurve

												End	If

												intNode	=	intNode	+	1

								Loop

				End	With

End	Sub

	 	



Show	All



Selected	Property
Selected	property	as	it	applies	to	the	WebCheckBox	and

WebOptionButton	objects.

Returns	or	sets	an	MsoTriState	constant	that	represents	whether	a	Web	check
box	or	option	button	is	selected.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Selected

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Selected	property	as	it	applies	to	the	Cell	object.

True	if	a	cell	is	selected.	Read-only	Boolean.

expression.Selected

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	WebCheckBox	object.

This	example	adds	a	new	Web	check	box	to	the	first	page	of	the	active
publication	and	then	selects	it.

Sub	AddNewWebCheckBox()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlCheckBox,	Left:=100,	_

												Top:=100,	Width:=100,	Height:=12)

								.WebCheckBox.Selected	=	msoTrue

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Cell	object.

This	example	determines	if	a	cell	in	the	specified	table	is	selected	and	if	it	is,
enters	text	into	the	cell.

Sub	IsCellSelected()

				Dim	cel	As	Cell

				With	ActiveDocument.Pages(1).Shapes(1).Table

								For	Each	cel	In	.Cells

												If	cel.Selected	Then

																cel.TextRange.Text	=	"This	cell	is	selected."

												End	If

								Next	cel

				End	With

End	Sub

	 	 	 	



Selection	Property
Returns	a	Selection	object	that	represents	a	selected	range	or	the	insertion	point.

expression.Selection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	whether	the	current	selection	is	text.	If	it	is	text,	the	selected
text	is	then	displayed	in	a	message	box.

Sub	Selectable()

				If	Selection.Type	=	pbSelectionText	Then	MsgBox	Selection.TextRange

End	Sub

	 	



SequenceCheck	Property
True	to	check	the	sequence	of	independent	characters	for	Asian	text.	Read/write
Boolean.

expression.SequenceCheck

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enables	sequence	checking,	allowing	the	user	to	input	a	valid
sequence	of	independent	characters	to	form	valid	character	cells	in	South	Asian
text.

Sub	CheckSequence()

				Options.SequenceCheck	=	True

End	Sub

	 	



Show	All



Shadow	Property
Shadow	property	as	it	applies	to	the	Font	object.

MsoTrue	if	the	specified	font	is	formatted	as	shadowed.	Read/write
MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.Shadow

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Shadow	property	as	it	applies	to	the	Shape	and	ShapeRange	objects.

Returns	a	ShadowFormat	object	that	represents	the	shadow	formatting	for	the
specified	shape.

expression.Shadow

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Font	object.

This	example	applies	shadow	and	bold	formatting	to	the	selection.	This	example
assumes	text	is	selected	in	the	active	publication.

Sub	SetFontShadow()

				If	Selection.Type	=	pbSelectionText	Then

								With	Selection.TextRange.Font

												.Shadow	=	msoTrue

												.Bold	=	msoTrue

								End	With

				Else

								MsgBox	"You	need	to	select	some	text."

				End	If

End	Sub

	 	 	 	

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	adds	an	arrow	with	shadow	formatting	and	fill	color	to	the	first
page	in	the	active	document.

Sub	SetShapeShadow()

				With	ActiveDocument.Pages(1).Shapes.AddShape(	_

												Type:=msoShapeRightArrow,	Left:=72,	_

												Top:=72,	Width:=64,	Height:=43)

								.Shadow.Type	=	msoShadow5

								.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=255)

				End	With

End	Sub

	 	 	 	



Shape	Property
Returns	a	Shape	object	that	represents	the	shape	associated	with	a	hyperlink.

expression.Shape

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	hyperlink	to	the	first	shape	on	the	first	page	of	the	active
publication	and	then	vertically	flips	the	shape.	This	example	assumes	there	is	at
least	one	shape	on	the	first	page	of	the	active	publication.

Sub	FormatHyperlinkShape()

				With	ActiveDocument.Pages(1).Shapes(1).Hyperlink

								.Address	=	"http://www.tailspintoys.com/"

								.Shape.Flip	FlipCmd:=msoFlipVertical

				End	With

End	Sub

	 	



ShapeRange	Property
Returns	a	ShapeRange	collection	that	represents	all	the	Shape	objects	in	the
specified	range	or	selection.	The	shape	range	can	contain	drawings,	shapes,
pictures,	OLE	objects,	ActiveX	controls,	text	objects,	and	callouts.

expression.ShapeRange

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	the	fill	pattern	for	all	the	shapes	in	the	selection.
This	example	assumes	one	or	more	shapes	are	selected	in	the	active	publication.

Sub	ChangeFillForShapeRange()

				Selection.ShapeRange.Fill.Patterned	Pattern:=msoPattern20Percent

End	Sub

	 	

The	following	example	applies	shadow	and	fill	formatting	to	all	the	shapes	in	the
selection.	This	example	assumes	one	or	more	shapes	are	selected	in	the	active
publication.

Sub	SetShadowForSelectedShapes()

				With	Selection.ShapeRange

								.Shadow.Type	=	msoShadow6

								.Fill.Patterned	Pattern:=msoPatternDottedDiamond

				End	With

End	Sub

	 	



Shapes	Property
Returns	a	Shapes	collection	that	represents	all	the	Shape	objects	in	the	specified
publication.	This	collection	can	contain	drawings,	shapes,	pictures,	OLE	objects,
ActiveX	controls,	text	objects,	and	callouts.

expression.Shapes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.



Example

This	example	adds	a	rectangle	to	the	first	page	in	the	active	publication.

Sub	AddNewRectangle()

				ActiveDocument.Pages(1).Shapes.AddShape	Type:=msoShapeRectangle,	_

								Left:=5,	Top:=25,	Width:=100,	Height:=50

End	Sub

	 	

This	example	sets	the	fill	texture	for	all	the	shapes	in	the	active	publication.	This
example	assumes	there	is	at	least	one	shape	in	the	active	publication.

Sub	SetNewTextureForAllShapes()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								shp.Fill.PresetTextured	PresetTexture:=msoTextureOak

				Next	shp

End	Sub

	 	

This	example	adds	a	shadow	to	the	first	shape	in	the	active	publication.	This
example	assumes	there	is	at	least	one	shape	in	the	active	publication.

Sub	SetShadowForFirstShape()

				ActiveDocument.Pages(1).Shapes(1).Shadow.Type	=	msoShadow6

End	Sub

	 	

This	example	displays	a	count	of	all	shapes	on	the	first	page	of	the	active
publication.	This	example	assumes	there	is	at	least	one	shape	in	the	active
publication.

Sub	CountShapesOnFirstPage()

				MsgBox	"You	have	"	&	ActiveDocument.Pages(1)	_

								.Shapes.Count	&	"	shapes	on	the	first	page."

End	Sub

	 	





ShowBasicColors	Property
Returns	or	sets	a	Boolean	indicating	whether	Microsoft	Publisher	shows	basic
colors	in	the	color	palette;	True	to	show	basic	colors	in	the	palette.	Read/write.

expression.ShowBasicColors

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	Publisher	to	not	show	basic	colors	in	the	color
palette.

Options.ShowBasicColors	=	False

	 	



ShowHeaderFooterOnFirstPage
Property
True	if	the	header	and	footer	of	the	specified	section	will	be	visible.	Read/write
Boolean.

expression.ShowHeaderFooterOnFirstPage()

expression				Required.	An	expression	that	returns	a	Section	object.



Example

The	fiollowing	example	adds	a	new	section	starting	on	the	second	page	of	the
activedocument,	adds	header	and	footer	text	to	the	master	page,	and	then	sets	the
ShowHeaderFooterOnFirstPage	property	to	True.

Dim	objSection	As	Section

Set	objSection	=	ActiveDocument.Sections.Add(StartPageIndex:=2)

With	ActiveDocument.Pages(2).Master

				.Header.TextRange.Text	=	"Page	"	&	.PageNumber	&	"	header."

				.Footer.TextRange.Text	=	"Page	"	&	.PageNumber	&	"	footer."

End	With

objSection.ShowHeaderFooterOnFirstPage	=	True



ShowOnlyWebFonts	Property
Returns	or	sets	a	Boolean	value	that	specifies	whether	only	Web-safe	fonts	and
font	schemes	should	be	used	when	the	Web	site	is	viewed	in	a	browser.	If	True,
only	Web-safe	fonts	and	font	schemes	are	used.	If	False,	display	is	not	limited	to
Web-safe	fonts	and	font	schemes.	The	default	value	is	False.	Read/write.

expression.ShowOnlyWebFonts

expression				Required.	An	expression	that	returns	a	WebOptions	object.



Remarks

This	property	applies	to	Latin-based	fonts	only.



Example

The	following	example	specifies	that	only	Web-safe	fonts	and	font	schemes
should	be	used	when	the	Web	site	is	viewed	in	a	browser.

Dim	theWO	As	WebOptions

Set	theWO	=	Application.WebOptions

With	theWO

				.ShowOnlyWebFonts	=	True

End	With

	 	



ShowScreenTipsOnObjects	Property
True	for	Microsoft	Publisher	to	display	ScreenTips	when	the	mouse	cursor
hovers	over	a	text	box,	shape	or	other	object.	Read/write	Boolean.

expression.ShowScreenTipsOnObjects

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	displaying	ScreenTips	on	objects.

Sub	DisableScreenTips()

				Options.ShowScreenTipsOnObjects	=	False

End	Sub

	 	



ShowSelected	Property
True	if	the	selected	button	is	highlighted	for	the	specified
WebNavigationBarSet	object.	Read/write	Boolean.

expression.ShowSelected

expression				Required.	An	expression	that	returns	a	WebNavigationBarSet
object.



Example

The	following	example	adds	a	new	Web	navigation	bar	to	the	active	document,
adds	it	to	every	page,	and	then	sets	the	ShowSelected	property	to	False	so	that
the	selected	button	will	not	be	highlighted	in	the	navigation	bar.

Dim	objWebNav	As	WebNavigationBarSet

Set	objWebNav	=	ActiveDocument.WebNavigationBarSets.AddSet(Name:="newNavBar")

With	objWebNav

				.AddToEveryPage	Left:=10,	Top:=10

				.ButtonStyle	=	pbnbButtonStyleSmall

				.ShowSelected	=	False

End	With



ShowTipPages	Property
True	for	Microsoft	Publisher	to	display	tippages	in	balloons.	Read/write
Boolean.

expression.ShowTipPages

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	disables	displaying	tippages	in	balloons.

Sub	DontShowTipPages()

				Options.ShowTipPages	=	False

End	Sub

	 	



Show	All



Side	Property
Returns	or	sets	a	PbWrapSideType	constant	that	indicates	whether	text	should
wrap	around	a	shape.	Read/write.

PbWrapSideType	can	be	one	of	these	PbWrapSideType	constants.
pbWrapSideBoth
pbWrapSideLarger
pbWrapSideLeft
pbWrapSideMixed
pbWrapSideNeither
pbWrapSideRight

expression.Side

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	an	oval	to	the	first	page	of	the	active	publication	and
specifies	that	text	wrap	around	both	the	left	and	right	sides	of	the	oval.

Sub	SetTextWrapFormatProperties()

				With	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeOval,	_

												Left:=36,	Top:=36,	Width:=100,	Height:=35)

								With	.TextWrap

												.Type	=	pbWrapTypeSquare

												.Side	=	pbWrapSideBoth

								End	With

				End	With

End	Sub

	 	



Show	All



Size	Property
Size	property	as	it	applies	to	the	DropCap	object.

Returns	or	sets	a	Long	that	represents	the	number	of	lines	high	to	format	a
dropped	capital	letter.	Read/write.

expression.Size

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Size	property	as	it	applies	to	the	Font	object.

Returns	or	sets	a	Variant	that	represents	the	size	of	the	characters	in	the	text
range	in	points.	Read/write.

expression.Size

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Remarks

The	valid	range	for	the	Size	property	is	0.5	points	to	999.5	points.	The	Size
property	returns	–2	if	the	size	of	characters	is	indeterminate.



Example

As	it	applies	to	the	DropCap	object.

This	example	formats	a	drop	cap	for	the	specified	text	range	that	is	five	lines
high.

Sub	RaisedDropCap()

				Dim	intCount	As	Integer

				With	ActiveDocument.Pages(1).Shapes	_

												.AddTextbox(Orientation:=pbTextOrientationHorizontal,	_

												Left:=100,	Top:=100,	Width:=100,	Height:=100)	_

												.TextFrame.TextRange

								For	intCount	=	1	To	10

												.InsertAfter	NewText:="This	is	a	test.	"

								Next	intCount

								With	.DropCap

												.Size	=	5

												.LinesUp	=	2

								End	With

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Font	object.

This	example	inserts	text	and	then	sets	the	font	size	of	the	seventh	word	of	the
inserted	text	to	20	points.

Sub	IncreaseFontSizeOfSelection()

				With	Selection.TextRange

								.InsertBefore	vbLf	&	"This	is	a	demonstration	of	font	size."

								.Words(7).Font.Size	=	20

				End	With

End	Sub

	 	 	 	





SizeBi	Property
Returns	or	sets	a	Variant	value	representing	the	size,	in	points,	of	the	Font
object	for	text	in	a	right-to-left	language.	Valid	range	is	0.5	points	to	999.5
points.	Read/write.

expression.SizeBi

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	tests	the	text	in	the	second	story.	If	it	is	in	a	right-to-left	language,
larger	than	12	point,	and	italicized,	the	text	is	set	to	bold.

Sub	SizeBiIfBig()

				Dim	fntSize	As	Font

				Set	fntSize	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	fntSize

								If	.SizeBi	>	12	And	.ItalicBi	=	msoTrue	Then

												.BoldBi	=	msoTrue

								Else

												MsgBox	"The	font	size	is	12	points	or	less	"	&	_

												",	not	bold,	or	this	is	not	in	a	right-to-left	language."

								End	If

				End	With

End	Sub

	 	



Show	All



SmallCaps	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	text	is
formatted	as	small	caps.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	None	of	the	characters	in	the	range	are	formatted	as	small	caps.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	text	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	to	msoFalse.
msoTrue	All	of	the	characters	in	the	range	are	formatted	as	small	caps.

expression.SmallCaps

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	SmallCaps	to	msoTrue	will	remove	all	caps	formatting	from	the	text
range.



Example

This	example	tests	the	text	in	the	second	story	and	if	it	has	mixed	small	caps
formatting,	it	formats	all	the	text	as	small	caps.

Sub	SmallCap()

				Dim	fntSC	As	Font

				Set	fntSC	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	fntSC

								If	.SmallCaps	=	msoTriStateMixed	Then

												.SmallCaps	=	msoTrue

								Else

												MsgBox	"Mixed	small	caps	are	not	in	this	story."

								End	If

				End	With

End	Sub

	 	



SnapToGuides	Property
True	for	Publisher	to	use	the	guides	to	align	objects	on	a	page	in	a	publication.
Read/write	Boolean.

expression.SnapToGuides

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	horizontal	and	vertical	ruler	guides	every	half	inch	on	the
first	page	and	then	sets	the	options	to	align	objects	on	the	page	to	the	guides.

Sub	SetSnapOptions()

				Dim	intCount	As	Integer

				Dim	intPos	As	Integer

				With	ActiveDocument.Pages(1).RulerGuides

								For	intCount	=	1	To	16

												intPos	=	intPos	+	36

												.Add	Position:=intPos,	Type:=pbRulerGuideTypeVertical

								Next

								intPos	=	0

								For	intCount	=	1	To	21

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeHorizontal

								Next

				End	With

				With	Application

								.SnapToGuides	=	True

								.SnapToObjects	=	True

				End	With

End	Sub

	 	



SnapToObjects	Property
True	for	Microsoft	Publisher	to	use	objects	on	a	page	to	line	up	other	objects.
Read/write	Boolean.

expression.SnapToObjects

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	horizontal	and	vertical	ruler	guides	every	half	inch	on	the
first	page	and	sets	the	options	to	align	objects	on	the	page	to	the	guides.

Sub	SetSnapOptions()

				Dim	intCount	As	Integer

				Dim	intPos	As	Integer

				With	ActiveDocument.Pages(1).RulerGuides

								For	intCount	=	1	To	16

												intPos	=	intPos	+	36

												.Add	Position:=intPos,	Type:=pbRulerGuideTypeVertical

								Next

								intPos	=	0

								For	intCount	=	1	To	21

												intPos	=	intPos	+	36

													.Add	Position:=intPos,	Type:=pbRulerGuideTypeHorizontal

								Next

				End	With

				With	Application

								.SnapToGuides	=	True

								.SnapToObjects	=	True

				End	With

End	Sub

	 	



SourceFullName	Property
Returns	a	String	that	represents	the	path	and	name	of	the	source	file	for	the
specified	linked	OLE	object,	picture,	or	field.	Read-only.

expression.SourceFullName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	displays	the	path	and	file	name	of	the	source	file	for	all	embedded
OLE	shapes	on	the	first	page	of	the	active	publication.

Sub	DisplaySourceName()

				Dim	shp	As	Shape

				For	Each	shp	In	ActiveDocument.Pages(1).Shapes

								If	shp.Type	=	pbEmbeddedOLEObject	Then

												With	shp.LinkFormat

																MsgBox	.SourceFullName

												End	With

								End	If

				Next

End	Sub

	 	



SpaceAfter	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	spacing	(in	points)	after
one	or	more	paragraphs.	Read/write.

expression.SpaceAfter

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	spacing	before	and	after	the	third	paragraph	in	the	first
shape	on	the	first	page	of	the	active	publication	to	6	points.

Sub	SetSpacingBeforeAfterParagraph()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.Paragraphs(3).ParagraphFormat

								.SpaceBefore	=	6

								.SpaceAfter	=	6

				End	With

End	Sub

	 	

This	example	sets	spacing	before	and	after	all	paragraphs	in	the	first	shape	on
the	first	page	of	the	active	publication	to	6	points.

Sub	SetSpacingBeforeAfterAllParagraph()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.ParagraphFormat

								.SpaceBefore	=	12

								.SpaceAfter	=	6

				End	With

End	Sub

	 	



SpaceBefore	Property
Returns	or	sets	a	Variant	that	represents	the	amount	of	spacing	(in	points)	before
one	or	more	paragraphs.	Read/write.

expression.SpaceBefore

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	spacing	before	and	after	the	third	paragraph	in	the	first
shape	on	the	first	page	of	the	active	publication	to	6	points.	This	example
assumes	there	is	at	least	one	shape	on	the	first	page	of	the	active	publication.

Sub	SetSpacingBeforeAfterParagraph()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.Paragraphs(3).ParagraphFormat

								.SpaceBefore	=	6

								.SpaceAfter	=	6

				End	With

End	Sub

	 	

This	example	sets	spacing	before	and	after	all	paragraphs	in	the	first	shape	on
the	first	page	of	the	active	publication	to	6	points.	This	example	assumes	there	is
at	least	one	shape	on	the	first	page	of	the	active	publication.

Sub	SetSpacingBeforeAfterAllParagraph()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame	_

												.TextRange.ParagraphFormat

								.SpaceBefore	=	12

								.SpaceAfter	=	6

				End	With

End	Sub

	 	



Span	Property
Returns	or	sets	a	Long	that	represents	the	number	of	letters	included	in	the
specified	dropped	capital	letter.	Read/write.

expression.Span

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	custom	dropped	capital	letter	that	is	five	lines	high,	spans
the	first	three	characters	of	the	paragraphs	in	the	text	range,	and	is	raised	one	line
above	the	first	line.

Sub	SetDropCapSpan()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.DropCap

								.Size	=	5

								.Span	=	3

								.LinesUp	=	1

				End	With

End	Sub

	 	



Start	Property
Returns	or	sets	a	Long	that	represents	the	starting	character	position	of	a	text
range.	Read/write.

expression.Start

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	this	property	is	set	to	a	value	larger	than	that	of	the	End	property,	the	End
property	is	set	to	the	same	value	as	that	of	Start	property.



Example

This	example	bolds	the	first	fifteen	characters	of	the	selected	text	range.	This
example	assumes	that	text	is	selected	in	the	active	publication.

Sub	SetSelectionRange()

				With	Selection

								With	.TextRange

												.Start	=	0

												.End	=	15

												.Font.Bold	=	msoTrue

								End	With

				End	With

End	Sub

	 	



Show	All



StartInNextTextBox	Property
Returns	or	sets	an	MSOTriState	constant	that	represents	whether	to	always	start
the	selected	paragraph	in	the	next	linked	text	box.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.StartInNextTextBox

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	text	is	added	to	the	previous	text	box,	causing	text	to	overflow	into	the	text
box	containing	the	specified	text,	the	specified	text	(and	any	text	following	it)	is
moved	to	the	top	of	the	next	available	text	box.	If	no	linked	text	box	is	available,
the	specified	text	(and	any	text	following	it)	is	placed	into	the	text	overflow
buffer.	It	will	remain	in	the	buffer	until	either	another	linked	text	box	is	added	to
the	publication,	or	the	StartInNextTextBox	property	is	changed.

This	property	corresponds	to	the	Start	in	next	text	box	control	on	the
Paragraph	dialog	box.



StartPageIndex	Property
Returns	the	page	number	of	the	page	that	the	specified	Section	object	begins	on.
Read/write	Long.

expression.StartPageIndex

expression				Required.	An	expression	that	returns	a	Section	object.



Example

The	following	example	adds	two	pages	to	the	active	document,	then	sets	the	start
page	index	of	the	first	section	to	3.	This	effectively	adds	a	new	section	starting
on	the	third	page	of	the	publication.

ActiveDocument.Pages.Add	Count:=2,	After:=1

ActiveDocument.Sections(1).StartPageIndex	=	3



Stories	Property
Returns	a	Stories	collection	containing	all	stories	in	the	publication.

expression.Stories

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	assigns	the	first	story	in	the	Stories	collection	to	a	variable.

Sub	FirstStory()

				Dim	stFirst	As	Story

				stFirst	=	Application.ActiveDocument.Stories(1)

End	Sub

	 	



Story	Property
Returns	a	Story	object	that	represents	the	story	properties	in	a	text	range.

expression.Story

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	returns	the	story	in	the	selected	text	range	and,	if	it	is	in	a	text
frame,	inserts	text	into	the	text	range.

Sub	AddTextToStory()

				With	Selection.TextRange.Story

								If	.HasTextFrame	Then

												.TextRange.InsertAfter	NewText:=vbLf	&	"This	is	a	test."

								End	If

				End	With

End	Sub

	 	



StretchPictures	Property
True	to	stretch	the	picture	art	making	up	the	specified	BorderArt	to	fit	the	shape
to	which	it	is	applied.	Read/write	Boolean.

expression.StretchPictures()

expression				Required.	An	expression	that	returns	a	BorderArtFormat	object.



Remarks

Returns	"Permission	Denied"	if	BorderArt	has	not	been	applied	to	the	specified
object.

Corresponds	to	the	Don't	stretch	pictures	and	Stretch	pictures	to	fit	controls
on	the	BorderArt	dialog	box.



Example

The	following	example	tests	for	the	existence	of	BorderArt	on	each	shape	for
each	page	of	the	active	document.	If	BorderArt	exists,	it	is	set	so	that	it	can	be
stretched.

Sub	StretchBorderArt()

	 Dim	anyPage	As	Page

	 Dim	anyShape	As	Shape

	 For	Each	anyPage	in	ActiveDocument.Pages

	 	 For	Each	anyShape	in	anyPage.Shapes

	 	 	 With	anyShape.BorderArt

	 	 	 	 If	.Exists	=	True	Then

	 	 	 	 	 .StretchPictures	=	True

	 	 	 	 End	If

	 	 	 End	With

	 	 Next	anyShape

	 Next	anyPage

End	Sub



Show	All



Style	Property
Returns	or	sets	an	MsoLineStyle	constant	that	represents	the	style	of	line	to
apply	to	a	shape	or	border.	Read/write.

MsoLineStyle	can	be	one	of	these	MsoLineStyle	constants.
msoLineSingle
msoLineStyleMixed
msoLineThickBetweenThin
msoLineThickThin
msoLineThinThick
msoLineThinThin

expression.Style

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	new	shape	and	sets	the	line	properties	for	the	shape.

Sub	SetLineStyle()

				With	ActiveDocument.Pages(1).Shapes.AddShape(msoShapeRectangle,	_

												Left:=72,	Top:=140,	Width:=200,	Height:=100)

								.Rotation	=	120

								With	.Line

												.Weight	=	5

												.DashStyle	=	msoLineDashDotDot

												.Style	=	msoLineThickBetweenThin

								End	With

				End	With

End	Sub

	 	



Show	All



SubScript	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	characters	are
formatted	as	subscript	in	the	specified	text	range.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	No	characters	in	the	range	are	formatted	as	subscript.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	characters	in	the	range	are	formatted	as	subscript.

expression.SubScript

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	the	SubScript	property	to	msoTrue	will	remove	superscript	formatting
from	the	text	range.



Example

This	example	tests	the	text	in	the	second	story,	and	if	it	has	mixed	subscripting,	it
formats	all	the	text	as	subscript.

Sub	SubScript()

				Dim	fntSS	As	Font

				Set	fntSS	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	fntSS

								If	.SubScript	=	msoTriStateMixed	Then

												.SubScript	=	msoTrue

								Else

												MsgBox	"Mixed	subscript	not	in	this	story."

								End	If

				End	With

End	Sub

	 	



Show	All



SuperScript	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	characters	are
formatted	as	superscript	in	the	specified	text	range.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Does	not	apply	to	this	property.
msoFalse	No	characters	in	the	range	are	formatted	as	superscript.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	All	characters	in	the	range	are	formatted	as	superscript.

expression.SuperScript

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Setting	SuperScript	property	to	msoTrue	will	remove	subscript	formatting	from
the	text	range.



Example

This	example	tests	the	text	in	the	second	story,	and	if	it	has	mixed	superscripting,
it	formats	all	the	text	as	superscript.

Sub	SuperScript()

				Dim	fntSuper	As	Font

				Set	fntSuper	=	Application.ActiveDocument.Stories(2).TextRange.Font

				With	fntSuper

								If	.SuperScript	=	msoTriStateMixed	Then

												.SuperScript	=	msoTrue

								Else

												MsgBox	"Mixed	superscript	not	in	this	story."

								End	If

				End	With

End	Sub

	 	



SuppressBlankLines	Property
True	to	suppress	blank	lines	when	mail	merge	fields	in	a	mail	merge	main
document	are	empty.	Read/write	Boolean.

expression.SuppressBlankLines

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	suppresses	blank	lines	in	the	active	publication	when	mail	merge
fields	are	blank.	This	example	assumes	that	a	mail	merge	data	source	is	attached
to	the	active	publication.

Sub	SuppressBlankLines()

				ActiveDocument.MailMerge.SuppressBlankLines	=	True

End	Sub

	 	



Table	Property
Returns	a	Table	object	that	represents	a	table	in	Microsoft	Publisher.

expression.Table

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	adds	a	5x5	table	on	the	first	page	of	the	active
publication,	and	then	selects	the	first	column	of	the	new	table.

Sub	NewTable()

				With	ActiveDocument.Pages(1).Shapes.AddTable(NumRows:=5,	_

								NumColumns:=5,	Left:=72,	Top:=300,	Width:=400,	Height:=100)

								.Table.Columns(3).Cells(3).Fill.ForeColor.RGB	=	RGB	_

								(Red:=255,	Green:=0,	Blue:=0)

				End	With

End	Sub

	 	

The	following	example	selects	the	specified	table	in	the	active	publication.	This
example	assumes	that	there	is	at	least	one	shape	on	the	first	page	of	the	active
publication.

Sub	SelectTable()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Type	=	pbTable	Then

												.Table.Rows(3).Cells(3).Fill.ForeColor	_

																.RGB	=	RGB(Red:=150,	Green:=150,	Blue:=150)

								End	If

				End	With

End	Sub

	 	



TableCellRange	Property
Returns	a	CellRange	object	that	represents	the	cells	in	a	table	selection.

expression.TableCellRange

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	fills	the	table	cells	in	a	selection.

Sub	FillTableCellRange()

				Dim	intCount	As	Integer

				With	Selection

								If	.Type	=	pbSelectionTableCells	Then

												With	.TableCellRange

																For	intCount	=	1	To	.Count

																				.Item(intCount).Fill.ForeColor.RGB	=	RGB	_

																								(Red:=0,	Green:=255,	Blue:=255)

																Next	intCount

												End	With

								End	If

				End	With

End	Sub

	 	



Show	All



TableDirection	Property
Returns	or	sets	a	PbTableDirectionType	constant	that	represents	whether	text	in
a	table	is	read	from	left	to	right	or	from	right	to	left.	Read/write.

PbTableDirectionType	can	be	one	of	these	PbTableDirectionType	constants.
pbTableDirectionLeftToRight
pbTableDirectionRightToLeft

expression.TableDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	enters	a	bold	number	into	each	cell	in	the	specified	table,	and	then
sets	the	direction	of	the	table	so	that	the	cells	number	from	right	to	left.	For	this
example	to	work,	the	specified	shape	must	be	a	table.

Sub	CountCellsByColumn()

				Dim	tblTable	As	Table

				Dim	rowTable	As	row

				Dim	celTable	As	Cell

				Dim	intCount	As	Integer

				Set	tblTable	=	ActiveDocument.Pages(1).Shapes(1).Table

				'Loops	through	each	row	in	the	table

				For	Each	rowTable	In	tblTable.Rows

								'Loops	through	each	cell	in	the	row

								For	Each	celTable	In	rowTable.Cells

												With	celTable.TextRange

																intCount	=	intCount	+	1

																.Text	=	intCount

																.ParagraphFormat.Alignment	=	_

																				pbParagraphAlignmentCenter

																.Font.Bold	=	msoTrue

												End	With

								Next	celTable

				Next	rowTable

				tblTable.TableDirection	=	pbTableDirectionRightToLeft

End	Sub

	 	



TableName	Property
Returns	a	String	that	represents	the	name	of	the	table	within	the	data	source	file
that	contains	the	mail	merge	records.	The	returned	value	may	be	blank	if	the
table	name	is	unknown	or	not	applicable	to	the	current	data	source.	Read-only.

expression.TableName

expression				Required.	An	expression	that	returns	a	MailMergeDataSource
object.



Example

This	example	displays	a	message	with	the	name	of	the	mail	merge	data	source
table	name.

Sub	EmployeeTable()

				With	ActiveDocument.MailMerge.DataSource

								Select	Case	.TableName

												Case	"Employees"

																MsgBox	"This	is	an	Employee	mail	merge	publication."

												Case	"Customers"

																MsgBox	"This	is	a	Customers	mail	merge	publication."

												Case	"Suppliers"

																MsgBox	"This	is	a	Suppliers	mail	merge	publication."

												Case	"Shippers"

																MsgBox	"This	is	a	Shippers	mail	merge	publication."

												Case	Else

																MsgBox	"This	is	a	"	&	.TableName	&	"	mail	merge	publication."

								End	Select

				End	With

End	Sub

	 	



Tabs	Property
Returns	a	TabStops	object	representing	the	custom	and	default	tabs	for	a
paragraph	or	group	of	paragraphs.

expression.Tabs

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	adds	two	tab	stops	to	the	selected	paragraphs.	The	first
tab	stop	is	a	left-aligned	tab	with	a	dotted	tab	leader	positioned	at	1	inch	(72
points).	The	second	tab	stop	is	centered	and	is	positioned	at	2	inches.

Dim	tabsAll	As	TabStops

Set	tabsAll	=	Selection.TextRange.ParagraphFormat.Tabs

With	tabsAll

				.Add	Position:=InchesToPoints(1),	_

								Leader:=pbTabLeaderDot,	Alignment:=pbTabAlignmentLeading

				.Add	Position:=InchesToPoints(2),	_

								Leader:=pbTabLeaderNone,	Alignment:=pbTabAlignmentCenter

End	With

	 	



Tags	Property
Returns	a	Tags	collection	representing	tags	or	custom	properties	applied	to	a
shape,	shape	range,	page,	or	publication.

expression.Tags

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	tag	to	each	oval	shape	on	the	first	page	of	the	active
publication.

Dim	shp	As	Shape

Dim	tagsAll	As	Tags

Dim	tagLoop	As	Tag

Dim	blnTag	As	Boolean

With	ActiveDocument.Pages(1)

				For	Each	shp	In	.Shapes

								If	shp.AutoShapeType	=	msoShapeOval	Then

								Set	tagsAll	=	shp.Tags

												blnTag	=	False

												For	Each	tagLoop	In	tagsAll

																If	tagLoop.Name	=	"Shape"	Then

																				blnTag	=	True

																				Exit	For

																End	If

												Next	tagLoop

												If	blnTag	=	False	Then

																tagsAll.Add	Name:="Shape",	Value:="Oval"

												End	If

								End	If

				Next	shp

End	With

	 	



Show	All



TargetType	Property
Returns	a	PbHlinkTargetType	constant	that	represents	the	type	of	hyperlink.
Read-only.

PbHlinkTargetType	can	be	one	of	these	PbHlinkTargetType	constants.
pbHlinkTargetTypeEmail
pbHlinkTargetTypeFirstPage
pbHlinkTargetTypeLastPage
pbHlinkTargetTypeNextPage
pbHlinkTargetTypeNone
pbHlinkTargetTypePageID
pbHlinkTargetTypePreviousPage
pbHlinkTargetTypeURL

expression.TargetType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	verifies	that	the	specified	hyperlink	is	a	URL	and	if	it	is,	sets	the
hyperlink	display	text	and	address.	This	example	assumes	there	is	at	least	one
shape	on	the	first	page	of	the	active	publication.

Sub	SetHyperlinkTextToDisplay()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.Hyperlinks.Item(1)

								If	.TargetType	=	pbHlinkTargetTypeURL	Then

												.TextToDisplay	=	"Tailspin	Toys	Web	Site"

												.Address	=	"http://www.tailspintoys.com/"

								End	If

				End	With

End	Sub

	 	



TemplateFolderPath	Property
Returns	a	String	that	represents	the	location	where	Publisher	templates	are
stored.	Read-only.

expression.TemplateFolderPath

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	publication	and	edits	the	master	page	to	contain	a
page	number	in	a	star	in	the	upper	left	corner	of	the	page;	then	it	saves	the	new
publication	to	the	template	folder	location	so	it	can	be	used	as	a	template.

Sub	CreateNewPubTemplate()

				Dim	AppPub	As	Application

				Dim	DocPub	As	Document

				Dim	strFolder	As	String

				Set	AppPub	=	New	Publisher.Application

				Set	DocPub	=	AppPub.NewDocument

				AppPub.ActiveWindow.Visible	=	True

				strFolder	=	AppPub.TemplateFolderPath

				With	DocPub

								With	.MasterPages(1).Shapes.AddShape	_

																(Type:=msoShape5pointStar,	Left:=36,	_

																Top:=36,	Width:=50,	Height:=50)

												.Fill.ForeColor.RGB	=	RGB(Red:=255,	Green:=0,	Blue:=0)

												With	.TextFrame.TextRange

																.InsertPageNumber

																.ParagraphFormat.Alignment	=	pbParagraphAlignmentCenter

																With	.Font

																				.Bold	=	msoTrue

																				.Color.RGB	=	RGB(Red:=255,	Green:=255,	Blue:=255)

																				.Size	=	12

																End	With

												End	With

								End	With

								.SaveAs	FileName:=strFolder	&	"\NewPubTemplt.pub"

				End	With

End	Sub

	 	



Show	All



Text	Property
Text	property	as	it	applies	to	the	TextEffectFormat	and	TextRange

objects.

Returns	or	sets	a	String	that	represents	the	text	in	a	text	range	or	WordArt	shape.
Read/write.

expression.Text

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Text	property	as	it	applies	to	the	PhoneticGuide	object.

Returns	a	String	that	represents	the	contents	of	phonetic	text.	Read-only.

expression.Text

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	TextRange	object.

The	following	example	adds	a	rectangle	to	the	active	publication	and	adds	text	to
it.

Sub	AddTextToShape()

				With	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeRectangle,	_

								Left:=72,	Top:=72,	Width:=250,	Height:=140)

								.TextFrame.TextRange.Text	=	"Here	is	some	test	text"

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	TextEffectFormat	object.

The	following	example	changes	the	text	and	sets	the	font	name	and	formatting
properties	for	shape	one	on	the	first	page	of	the	active	publication.	For	this
example	to	work,	shape	one	must	be	a	WordArt	object.

Sub	FormatWordArt()

				With	ActiveDocument.Pages(1).Shapes(1).TextEffect

								.Text	=	"This	is	a	test."

								.FontName	=	"Courier	New"

								.FontBold	=	True

								.FontItalic	=	True

				End	With

End	Sub

	 	 	 	



Show	All



TextDirection	Property
Returns	or	sets	a	PbTextDirection	constant	indicating	the	direction	in	which	text
flows	in	the	specified	paragraph.	Read/write.

PbTextDirection	can	be	one	of	these	PbTextDirection	constants.
pbTextDirectionLeftToRight	Text	flows	from	left	to	right.
pbTextDirectionMixed	Return	value	indicating	a	range	containing	some	left-
to-right	text	and	some	right-to-left	text.
pbTextDirectionRightToLeft	Text	flows	from	right	to	left.

expression.TextDirection

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	meant	to	be	used	in	conjunction	with	documents	that	have	text
in	both	left-to-right	and	right-to-left	languages.	Setting	the	property	to	a	value
that	is	not	in	accordance	with	the	text	direction	dictated	by	the	language	in	use
may	have	unpredictable	results.



Example

The	following	example	changes	the	text	direction	of	the	first	shape	on	page	one
so	that	it	flows	from	right-to-left.

ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange	_

				.ParagraphFormat.TextDirection	=	pbTextDirectionRightToLeft

	 	



TextEffect	Property
Returns	a	TextEffectFormat	object	that	represents	the	text	formatting	properties
of	a	WordArt	object.

expression.TextEffect

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	adds	a	WordArt	object	to	the	active	publication	and	formats	and
inserts	additional	into	it.

Sub	AddFormatNewWordArt()

				With	ActiveDocument.Pages(1).Shapes.AddTextEffect(	_

												PresetTextEffect:=msoTextEffect1,	Text:="Test",	_

												FontName:="Snap	ITC",	FontSize:=30,	FontBold:=msoTrue,	_

												FontItalic:=msoFalse,	Left:=150,	Top:=130)

								.Rotation	=	90

								With	.TextEffect

												.RotatedChars	=	msoTrue

												.Text	=	"This	is	a	"	&	.Text

								End	With

								.Width	=	250

				End	With

End	Sub

	 	



TextFrame	Property
Returns	a	TextFrame	object	that	represents	the	text	in	a	shape	as	well	as	the
properties	that	control	the	margins	and	orientation	of	the	text.

expression.TextFrame

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	adds	text	to	the	text	frame	of	shape	one	in	the	active
publication,	and	then	formats	the	new	text.	This	example	assumes	there	is	at
least	one	shape	on	the	first	page	of	the	active	publication.

Sub	AddTextToTextFrame()

				With	ActiveDocument.Pages(1).Shapes(1).TextFrame.TextRange

								.Text	=	"My	Text"

								With	.Font

												.Bold	=	msoTrue

												.Size	=	25

												.Name	=	"Arial"

								End	With

				End	With

End	Sub

	 	



TextRange	Property
Returns	a	TextRange	object	that	represents	the	text	that's	attached	to	a	shape,	as
well	as	properties	and	methods	for	manipulating	the	text.

expression.TextRange

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	adds	text	to	the	text	frame	of	shape	one	in	the	active
publication,	and	then	formats	the	new	text.	This	example	assumes	there	is	at
least	one	shape	on	the	first	page	of	the	active	publication.

Sub	AddTextToTextFrame()

				With	ActiveDocument.Pages(1).TextFrame.TextRange

								.Text	=	"My	Text"

								With	.Font

												.Bold	=	msoTrue

												.Size	=	25

												.Name	=	"Arial"

								End	With

				End	With

End	Sub

	 	

The	following	example	adds	a	rectangle	to	the	active	publication	and	adds	text	to
it.

Sub	AddTextToShape()

				With	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeRectangle,	_

								Left:=72,	Top:=72,	Width:=250,	Height:=140)

								.TextFrame.TextRange.Text	=	"Here	is	some	test	text"

				End	With

End	Sub

	 	



TextStyle	Property
Returns	or	sets	a	Variant	that	represents	the	text	style	applied	to	a	paragraph.
Read/write.

expression.TextStyle

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	changes	the	text	style	of	the	selection	if	the	selection	isn't
formatted	with	the	Normal	text	style.	This	example	assumes	text	is	selected	in
the	active	publication.

Sub	SetTextStyle()

				With	Selection.TextRange.ParagraphFormat

								If	.TextStyle	<>	"Normal"	Then	_

												.TextStyle	=	"Normal"

				End	With

End	Sub

	 	



TextStyles	Property
Returns	a	TextStyles	collection	that	contains	a	publication's	text	styles.

expression.TextStyles

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	style	name	and	base	style	of	the	first	style	in
the	TextStyles	collection.

Sub	BaseStyleName()

				With	ActiveDocument.TextStyles(1)

								MsgBox	"Style	name=	"	&	.Name	_

												&	vbCr	&	"Base	style=	"	&	.BaseStyle

				End	With

End	Sub

	 	



TextToDisplay	Property
Returns	or	sets	a	String	that	represents	the	text	displayed	for	a	hyperlink.
Read/write.

expression.TextToDisplay

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	the	hyperlink	display	text	and	address	of	the	first	hyperlink	on
the	first	page.	This	example	assumes	the	first	page	of	the	active	publication
contains	at	least	one	shape	with	at	least	one	text	hyperlink.

Sub	SetHyperlinkTextToDisplay()

				With	ActiveDocument.Pages(1).Shapes(1)	_

												.TextFrame.TextRange.Hyperlinks.Item(1)

								.TextToDisplay	=	"Tailspin	Toys	Web	Site"

								.Address	=	"http://www.tailspintoys.com/"

				End	With

End	Sub

	 	



TextureName	Property
Returns	a	String	indicating	the	name	of	the	custom	texture	file	for	the	specified
fill.	Read-only.

expression.TextureName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	UserTextured	method	to	set	the	texture	file	for	the	fill.



Example

This	example	adds	an	oval	to	the	active	publication.	If	shape	one	on	the	active
publication	has	a	fill	with	a	user-defined	texture,	the	new	oval	will	have	the	same
fill	as	shape	one.	If	shape	one	has	any	other	type	of	fill,	the	new	oval	will	have	a
green	marble	fill.

Dim	ffNew	As	FillFormat

With	ActiveDocument.Pages(1).Shapes

				Set	ffNew	=	.AddShape(Type:=msoShapeOval,	_

								Left:=0,	Top:=0,	Width:=200,	Height:=90).Fill

				With	.Item(1).Fill

								If	.Type	=	msoFillTextured	And	_

																.TextureType	=	msoTextureUserDefined	Then

												ffNew.UserTextured	_

																TextureFile:=.TextureName

								Else

												ffNew.PresetTextured	_

																PresetTexture:=msoTextureGreenMarble

								End	If

				End	With

End	With

	 	



Show	All



TextureType	Property
Returns	an	MsoTextureType	constant	indicating	the	texture	type	for	the
specified	fill.	Read-only.

MsoTextureType	can	be	one	of	these	MsoTextureType	constants.
msoTexturePreset	The	fill	uses	a	preset	texture	type.
msoTextureTypeMixed	Indicates	a	combination	of	texture	types	for	the
specified	shape	range.
msoTextureUserDefined	The	fill	uses	a	user-defined	texture	type.

expression.TextureType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	read-only.	Use	the	PresetTextured	or	UserTextured	method	to
set	the	texture	type	for	the	fill.



Example

This	example	applies	a	canvas	texture	to	the	fill	for	all	shapes	on	the	first	page	of
the	active	publication	that	currently	have	fills	with	a	user-defined	texture.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop.Fill

								If	.TextureType	=	msoTextureUserDefined	Then

												.PresetTextured	_

																PresetTexture:=msoTextureCanvas

								End	If

				End	With

Next	shpLoop

	 	



TextWrap	Property
Returns	a	WrapFormat	object	that	represents	the	properties	for	wrapping	text
around	a	shape	or	shape	range.

expression.TextWrap

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	adds	an	oval	to	the	active	publication	and	specifies	that
publication	text	wrap	around	the	left	and	right	sides	of	the	square	that
circumscribes	the	oval.	There	will	be	a	0.1-inch	margin	between	the	publication
text	and	the	top,	bottom,	left	side,	and	right	side	of	the	square.

Sub	SetTextWrapFormatProperties()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes.AddShape(Type:=msoShapeOval,	_

									Left:=36,	Top:=36,	Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

								.DistanceAuto	=	msoFalse

								.DistanceTop	=	InchesToPoints(0.1)

								.DistanceBottom	=	InchesToPoints(0.1)

								.DistanceLeft	=	InchesToPoints(0.1)

								.DistanceRight	=	InchesToPoints(0.1)

				End	With

End	Sub

	 	



ThreeD	Property
Returns	a	ThreeDFormat	object.

expression.ThreeD

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	ThreeD	property	to	return	a	ThreeDFormat	object	whose	properties	are
used	to	format	the	3-D	appearance	of	the	specified	shape.



Example

This	example	sets	the	depth,	extrusion	color,	extrusion	direction,	and	lighting
direction	for	the	3-D	effects	applied	to	shape	one	in	the	active	publication.

Dim	tdfTemp	As	ThreeDFormat

Set	tdfTemp	=	_

				ActiveDocument.Pages(1).Shapes(1).ThreeD

With	tdfTemp

				.Visible	=	True

				.Depth	=	50

				.ExtrusionColor.RGB	=	RGB(255,	100,	255)

				.SetExtrusionDirection	_

								PresetExtrusionDirection:=msoExtrusionTop

				.PresetLightingDirection	=	msoLightingLeft

End	With

	 	



TintAndShade	Property
Returns	or	sets	a	Single	that	represents	the	lightening	or	darkening	of	a	specified
shape's	color.	Read/write.

expression.TintAndShade

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	enter	a	number	from	-1	(darkest)	to	1	(lightest)	for	the	TintAndShade
property,	0	(zero)	being	neutral.



Example

This	example	creates	a	new	shape	in	the	active	document,	sets	the	fill	color,	and
lightens	the	color	shade.

Sub	NewTintedShape()

				Dim	shpHeart	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeHeart,	Left:=150,	_

								Top:=150,	Width:=250,	Height:=250)

				With	shpHeart.Fill.ForeColor

								.CMYK.SetCMYK	Cyan:=255,	Magenta:=28,	Yellow:=0,	Black:=0

								.TintAndShade	=	0.3

				End	With

End	Sub

	 	



Show	All



Top	Property
Top	property	as	it	applies	to	the	ReaderSpread	object.

Returns	the	a	Single	that	represents	the	distance	(in	points)	from	the	top	edge	of
the	workspace	to	the	top	edge	of	the	page.	Read-only.

expression.Top

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	PrintableRect	object.

Returns	the	a	Single	that	represents	the	distance	(in	points)	from	the	top	edge	of
the	printer	sheet	to	the	top	edge	of	the	printable	rectangle.	Read-only.

expression.Top

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	Window	object.

Returns	or	sets	a	Long	that	represents	the	distance	between	the	top	edge	of	the
screen	and	the	application	window.	Read/write.

expression.Top

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	Shape	object.

Returns	or	sets	a	Variant	that	represents	the	distance	between	the	top	of	the	page
and	the	top	of	a	shape.	Read/write.

expression.Top

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Top	property	as	it	applies	to	the	ShapeRange	object.

Returns	a	Variant	that	represents	the	distance	between	the	top	of	the	page	and
the	top	shape	in	a	range	of	shapes.	Read-only.

expression.Top

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Window	object.

This	example	verifies	that	the	state	of	application	window	is	neither	maximized
nor	minimized	and	then	resizes	the	window	and	moves	it	to	150	points	from	the
top	of	the	screen.

Sub	MoveWindow()

				With	ActiveWindow

								If	.WindowState	=	pbWindowStateNormal	Then

												.Top	=	150

												.Resize	Width:=500,	Height:=500

								End	If

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Shape	object.

This	example	changes	the	position,	size,	and	type	of	shape	of	the	first	shape	on
the	first	page	of	the	active	publication.	This	example	assumes	there	is	at	least
one	shape	on	the	first	page	of	the	active	publication.

Sub	MoveSizeChangeShape()

				With	ActiveDocument.Pages(1).Shapes(1)

								.Top	=	72

								.Left	=	72

								.Width	=	150

								.Height	=	150

								.AutoShapeType	=	msoShape5pointStar

				End	With

End	Sub

	 	 	 	



TopMargin	Property
Returns	or	sets	a	Variant	that	represents	the	distance	(in	points)	between	the	top
edge	of	the	printer	sheet	and	the	top	edge	of	the	publication	pages.	Read/write.

expression.TopMargin

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	only	use	the	TopMargin	property	when	printing	multiple	pages	on	a
single	sheet	of	printer	paper.

When	used	with	the	Label	object,	the	TopMargin	property	is	read/write	only
when	accessed	from	.PageSetup.Label.	Otherwise,	it	is	read-only.



Example

This	example	specifies	margins	of	a	quarter	of	an	inch	between	the	top	and	left
edges	of	the	printer	paper	and	the	top	and	left	edges	of	the	pages	in	the	active
publication.

Sub	SetTopMargin()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(5)

								.PageWidth	=	InchesToPoints(8)

								.MultiplePagesPerSheet	=	True

								.TopMargin	=	InchesToPoints(0.25)

								.LeftMargin	=	InchesToPoints(0.25)

				End	With

End	Sub

	 	



Tracking	Property
Returns	or	sets	a	Variant	indicating	the	tracking	value	used	to	display	space
between	the	characters	in	the	specified	text	range.	Read/write.

expression.Tracking

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Valid	range	is	0.0	to	600.0	points.	Setting	the	property	to	0.0	disables	tracking.
Indeterminate	values	are	returned	as	-2.



Example

This	example	disables	tracking	in	the	second	story	by	setting	the	Tracking
property	to	zero.

Sub	DisableTracking()

				Application.ActiveDocument.Stories(2).TextRange.Font.Tracking	=	0.0

End	Sub

	 	



Show	All



TrackingPreset	Property
Returns	or	sets	a	PbTrackingPresetType	constant	representing	the	preset
tracking	type	for	characters	in	the	specified	font	in	a	text	range.	Read/write.

PbTrackingPresetType	can	be	one	of	these	PbTrackingPresetType	constants.
pbTrackingCustom
pbTrackingLoose
pbTrackingMixed
pbTrackingNormal
pbTrackingTight
pbTrackingVeryLoose
pbTrackingVeryTight

expression.TrackingPreset

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Loose	and	very	loose	tracking	leaves	ample	space	between	characters,	whereas
tight	and	very	tight	tracking	can	produce	character	overlap.



Example

This	example	specifies	tight	tracking	as	the	preset	for	the	characters	in	the
second	story.

Sub	TrackingType()

				Application.ActiveDocument.Stories(2).TextRange	_

								.Font.TrackingPreset	=	pbTrackingTight

				

End	Sub

	 	



Transparency	Property
Returns	or	sets	a	Single	indicating	the	degree	of	transparency	of	the	specified
fill,	shadow,	or	line	as	a	value	between	0.0	(opaque)	and	1.0	(clear).	Read/write.

expression.Transparency

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	value	of	this	property	affects	the	appearance	of	solid-colored	fills	and	lines
only;	it	has	no	effect	on	the	appearance	of	patterned	lines	or	patterned,	gradient,
picture,	or	textured	fills.



Example

This	example	sets	the	shadow	for	shape	three	in	the	active	publication	to
semitransparent	red.	If	the	shape	doesn't	already	have	a	shadow,	this	example
adds	one	to	it.

With	ActiveDocument.Pages(1).Shapes(3).Shadow

				.Visible	=	True

				.ForeColor.RGB	=	RGB(255,	0,	0)

				.Transparency	=	0.5

End	With

	 	



TransparencyColor	Property
Returns	or	sets	an	MsoRGBType	constant	that	represents	the	transparency	color.
Read/write.

expression.TransparencyColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	picture	on	the	first	page	and	sets	the	transparency	color	to
black.

Sub	SetTransparentColor()

				With	ActiveDocument.Pages(1).Shapes.AddPicture(	_

												FileName:="C:\My	Pictures\Sample.gif",	LinkToFile:=msoFalse,	_

												SaveWithDocument:=msoTrue,	Left:=36,	Top:=36)

								.PictureFormat.TransparencyColor	=	RGB(Red:=255,	Green:=255,	Blue:=255)

				End	With

End	Sub

	 	



Show	All



TransparentBackground	Property
Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	parts	of	the
specified	picture	that	are	defined	as	the	transparent	color	appear	transparent.
Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	Parts	of	the	picture	whose	color	is	the	transparency	color	do	not
appear	transparent.
msoTriStateMixed	Return	value	only.	Indicates	a	combination	of	msoTrue	and
msoFalse	for	the	specified	objects.
msoTriStateToggle	Set	value	only.	Toggles	between	msoTrue	and	msoFalse.
msoTrue	Parts	of	the	picture	whose	color	is	the	transparency	color	appear
transparent.

expression.TransparentBackground

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	TransparencyColor	property	to	set	the	transparent	color.

This	property	applies	to	bitmaps	only.

If	you	want	to	be	able	to	see	through	the	transparent	parts	of	the	picture	all	the
way	to	the	objects	behind	the	picture,	you	must	set	the	Visible	property	of	the
picture's	FillFormat	object	to	mso	False.	If	your	picture	has	a	transparent	color
and	the	Visible	property	of	the	picture's	FillFormat	object	is	set	to	msoTrue,	the
picture's	fill	will	be	visible	through	the	transparent	color,	but	objects	behind	the
picture	will	be	obscured.



Example

This	example	sets	the	color	blue	as	the	transparent	color	for	shape	one	in	the
active	publication.	For	the	example	to	work,	shape	one	must	be	a	bitmap.

With	ActiveDocument.Pages(1).Shapes(1)

				With	.PictureFormat

								.TransparentBackground	=	msoTrue

								'	RGB(0,	0,	255)	is	the	color	blue.

								.TransparencyColor	=	RGB(0,	0,	255)

				End	With

				.Fill.Visible	=	False

End	With

	 	



Show	All



Type	Property
Type	property	as	it	applies	to	the	CalloutFormat	object.

Returns	or	sets	an	MsoCalloutType	constant	that	represents	the	callout	type.
Read/write.

MsoCalloutType	can	be	one	of	these	MsoCalloutType	constants.
msoCalloutFour
msoCalloutMixed
msoCalloutOne
msoCalloutThree
msoCalloutTwo

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ColorFormat	object.

Returns	or	sets	a	PbColorType	constant	that	represents	the	shape	color	type.
Read-only.

PbColorType	can	be	one	of	these	PbColorType	constants.
pbColorTypeCMYK
pbColorTypeInk
pbColorTypeRGB
pbColorTypeScheme

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ConnectorFormat	object.



Returns	or	sets	an	MsoConnectorType	constant	that	represents	the	connector
type.	Read/write.

MsoConnectorType	can	be	one	of	these	MsoConnectorType	constants.
msoConnectorCurve
msoConnectorElbow
msoConnectorStraight
msoConnectorTypeMixed

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Field	object.

Returns	a	PbFieldType	constant	that	represents	the	field	type.	Read-only.

PbFieldType	can	be	one	of	these	PbFieldType	constants.
pbFieldDateTime
pbFieldHyperlinkAbsolutePage
pbFieldHyperlinkEmail
pbFieldHyperlinkFile
pbFieldHyperlinkRelativePage
pbFieldHyperlinkURL
pbFieldIHIV
pbFieldMailMerge
pbFieldNone
pbFieldPageNumber
pbFieldPageNumberNext
pbFieldPageNumberPrev
pbFieldPhoneticGuide
pbFieldWizardSampleText

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Type	property	as	it	applies	to	the	FillFormat	object.

Returns	an	MsoFillType	constant	that	represents	the	fill	format	type	of	a	shape.
Read-only.

MsoFillType	can	be	one	of	these	MsoFillType	constants.
msoFillBackground
msoFillGradient
msoFillMixed
msoFillPatterned
msoFillPicture
msoFillSolid
msoFillTextured

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Hyperlink	object.

Returns	an	MsoHyperlinkType	constant	that	represents	the	hyperlink	type.
Read-only.

MsoHyperlinkType	can	be	one	of	these	MsoHyperlinkType	constants.
msoHyperlinkInlineShape
msoHyperlinkRange
msoHyperlinkShape

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	MailMergeDataSource	object.

Returns	a	Long	that	represents	the	type	of	mail	merge	or	catalog	merge	data
source.	Read-only.



expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	RulerGuide	object.

Returns	or	sets	a	PbRulerGuideType	constant	that	represents	the	ruler	guide
type.	Read/write.

PbRulerGuideType	can	be	one	of	these	PbRulerGuideType	constants.
pbRulerGuideTypeHorizontal
pbRulerGuideTypeVertical

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Selection	object.

Returns	a	PbSelectionType	constant	that	represents	the	selection	type.	Read-
only.

PbSelectionType	can	be	one	of	these	PbSelectionType	constants.
pbSelectionNone
pbSelectionShape
pbSelectionShapeSubSelection
pbSelectionTableCells
pbSelectionText

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	ShadowFormat	object.

Returns	or	sets	an	MsoShadowType	constant	that	represents	the	shadow	type	of
a	shape.	Read/write.



MsoShadowType	can	be	one	of	these	MsoShadowType	constants.
msoShadow1
msoShadow10
msoShadow11
msoShadow12
msoShadow13
msoShadow14
msoShadow15
msoShadow16
msoShadow17
msoShadow18
msoShadow19
msoShadow2
msoShadow20
msoShadow3
msoShadow4
msoShadow5
msoShadow6
msoShadow7
msoShadow8
msoShadow9
msoShadowMixed

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Shape	object	and	the	ShapeRange
object.

Returns	a	PbShapeType	constant	that	represents	the	shape	type.	Read-only.

PbShapeType	can	be	one	of	these	PbShapeType	constants.
pbAutoShape
pbCallout



pbCatalogMergeArea
pbChart
pbComment
pbEmbeddedOLEObject
pbFormControl
pbFreeform
pbGroup
pbGroupWizard
pbLine
pbLinkedOLEObject
pbLinkedPicture
pbMedia
pbOLEControlObject
pbPicture
pbPlaceholder
pbShapeTypeMixed
pbTable
pbTextEffect
pbTextFrame
pbWebCheckBox
pbWebCommandButton
pbWebHTMLFragment
pbWebListBox
pbWebNavigationBar
pbWebMultiLineTextBox
pbWebOptionButton
pbWebSingleLineTextBox
pbWebWebComponent
pbWebWebNavigationBar

Note		There	can	be	only	one	shape	of	type	pbCatalogMergeArea	for	a	given
publication	page.	If	a	shape	is	a	catalog	merge	area,	the	following	methods
return	"Permission	Denied":	Apply,	Copy,	Cut,	Duplicate,	Flip,
IncrementLeft,	IncrementRotation,	IncrementTop,	PickUp,



RerouteConnections,	SetShapesDefaultProperties,	and	Ungroup.

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	Story	object.

Returns	a	PbStoryType	constant	that	represents	the	type	of	story.	Read-only.

PbStoryType	can	be	one	of	these	PbStoryType	constants.
pbStoryContinuedFrom
pbStoryContinuedOn
pbStoryTable
pbStoryTextFrame

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	WrapFormat	object.

Returns	a	PbWrapType	constant	that	represents	how	text	wraps	around	the
specified	shape.	Read/write.

PbWrapType	can	be	one	of	these	PbWrapType	constants.
pbWrapTypeMixed
pbWrapTypeNone
pbWrapTypeSquare
pbWrapTypeThrough
pbWrapTypeTight

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	Callout	and	Shape	objects.

This	example	formats	the	callout	type	of	the	specified	shape	if	the	shape	is	a
callout.	This	example	assumes	there	is	at	least	one	shape	on	the	first	page	of	the
active	publication.

Sub	SetCalloutType()

				With	ActiveDocument.Pages(1).Shapes(1)

								If	.Type	=	pbCallout	Then

												With	.Callout

																.Border	=	msoTrue

																.Type	=	msoCalloutThree

												End	With

								End	If

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	WrapFormat	object.

The	following	example	adds	an	oval	to	the	active	publication	and	specifies	that
the	publication	text	wrap	around	both	the	left	and	right	sides	of	the	square	that
surrounds	the	oval.

Sub	SetTextWrapType()

				Dim	shpOval	As	Shape

				Set	shpOval	=	ActiveDocument.Pages(1).Shapes.AddShape(	_

								Type:=msoShapeOval,	Left:=36,	Top:=36,	_

								Width:=100,	Height:=35)

				With	shpOval.TextWrap

								.Type	=	pbWrapTypeSquare

								.Side	=	pbWrapSideBoth

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Selection	object.



This	example	checks	to	see	if	the	selection	is	text	and	if	it	is,	makes	the	selected
text	bold.

Sub	IfCellData()

				Dim	rowTable	As	Row

				If	Selection.Type	=	pbSelectionText	Then

								Selection.TextRange.Font.Bold	=	msoTrue

				End	If

End	Sub

	 	 	 	



TypeNReplace	Property
True	for	Publisher	to	replace	unreadable	Asian	character	clusters	resulting	from
invalid	keyboard	sequences.	Read/write	Boolean.

expression.TypeNReplace

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	instructs	Publisher	to	replace	unreadable	Asian	character	clusters
resulting	from	invalid	keyboard	sequences.

Sub	TypeReplace()

				Options.TypeNReplace	=	True

End	Sub

	 	



Show	All



Underline	Property
Returns	or	sets	an	PbUnderlineType	constant	that	indicates	the	type	of
underline	for	the	selected	characters	in	the	specified	font	in	a	text	range.
Read/write.

PbUnderlineType	can	be	one	of	these	PbUnderlineType	constants.
pbUnderlineDash
pbUnderlineDashHeavy
pbUnderlineDashLong
pbUnderlineDashLongHeavy
pbUnderlineDotDash
pbUnderlineDotDashHeavy
pbUnderlineDotDotDash
pbUnderlineDotDotDashHeavy
pbUnderlineDotHeavy
pbUnderlineDotted
pbUnderlineDouble
pbUnderlineMixed
pbUnderlineNone
pbUnderlineSingle
pbUnderlineThick
pbUnderlineWavy
pbUnderlineWavyDouble
pbUnderlineWavyHeavy
pbUnderlineWordsOnly

expression.Underline

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	formats	the	characters	of	the	first	story	with	a	dashed	and	heavy
underline.

Sub	DashHeavy()

				Application.ActiveDocument.Stories(1).TextRange	_

								.Font.Underline	=	pbUnderlineDashHeavy

								

End	Sub

	 	



UndoActionsAvailable	Property
Returns	the	number	of	actions	available	on	the	undo	stack.	Read-only	Long.

expression.UndoActionsAvailable

expression				Required.	An	expression	that	returns	a	Document	object.



Example

The	following	example	adds	a	rectangle	that	contains	a	text	frame	to	the	fourth
page	of	the	active	publication.	Some	font	properties	and	the	text	of	the	text
frame	are	set.	A	test	is	then	run	to	determine	whether	the	font	in	the	text	frame	is
Courier.	If	so,	the	Undo	method	is	used	with	the	value	of	the
UndoActionsAvailable	property	passed	as	a	parameter	to	specify	that	all
previous	actions	be	undone.

The	Redo	method	is	then	used	with	the	value	of	the	RedoActionsAvailable
property	minus	2	passed	as	a	parameter	to	redo	all	actions	except	for	the	last
two.	A	new	font	is	specified	for	the	text	in	the	text	frame,	in	addition	to	new	text.

This	example	assumes	the	active	document	contains	at	least	four	pages.

Dim	thePage	As	page

Dim	theShape	As	Shape

Dim	theDoc	As	Publisher.Document

Set	theDoc	=	ActiveDocument

Set	thePage	=	theDoc.Pages(4)

With	theDoc

				With	thePage

								Set	theShape	=	.Shapes.AddShape(msoShapeRectangle,	_

												75,	75,	190,	30)

								With	theShape.TextFrame.TextRange

													.Font.Size	=	12

													.Font.Name	=	"Courier"

													.Text	=	"This	font	is	Courier."

								End	With

					End	With

				If	thePage.Shapes(1).TextFrame.TextRange.Font.Name	=	"Courier"	Then

								.Undo	(.UndoActionsAvailable)

								.Redo	(.RedoActionsAvailable	-	2)

								With	theShape.TextFrame.TextRange

												.Font.Name	=	"Verdana"

												.Text	=	"This	font	is	Verdana."

								End	With

				End	If

End	With





UpdatePersonalInfoOnSave	Property
Returns	or	sets	a	Boolean	indicating	whether	to	update	personal	information
stored	with	a	publication	when	it	is	saved.	Read/write.

expression.UpdatePersonalInfoOnSave

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Caution		Use	this	property	with	caution.	Sensitive	or	confidental	information
could	be	revealed	to	other	users.

Use	the	RemovePersonalInformation	property	to	remove	personal	information
from	a	publication	when	it	is	saved.



Example

The	following	example	sets	Publisher	to	update	personal	information	in	all
publications	when	they	are	saved.

Options.UpdatePersonalInfoOnSave	=	True

	 	



UseCatalogAtStartup	Property
True	for	Microsoft	Publisher	to	show	the	catalog	when	starting	up.	Read/write
Boolean.

expression.UseCatalogAtStartup

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	global	options	for	Microsoft	Publisher,	including	not
displaying	the	catalog	upon	startup.

Sub	SetGlobalOptions()

				With	Options

								.AutoFormatWord	=	True

								.AutoKeyboardSwitching	=	True

								.AutoSelectWord	=	True

								.DragAndDropText	=	True

								.UseCatalogAtStartup	=	False

								.UseHelpfulMousePointers	=	False

				End	With

End	Sub

	 	



Show	All



UseCharBasedFirstLineIndent
Property
Returns	or	sets	an	MsoTriState	constant	that	specifies	whether	a	paragraph	is
indented	using	East	Asian	character	width.	Read/write.

MSOTriState	can	be	one	of	these	MSOTriState	constants.
msoCTrue
msoFalse
msoTriStateMixed
msoTriStateToggle
msoTrue

expression.UseCharBasedFirstLineIndent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	value	of	UseCharBasedFirstLineIndent	can	be	set	only	if	East	Asian
languages	are	enabled	on	the	client	computer,	whereas	the	value	can	be	returned
regardless	of	whether	East	Asian	languages	are	enabled.	Note	that
UseCharBasedFirstLineIndent	must	be	set	before	the
CharBasedFirstLineIndent	property	can	be	returned	or	set.	A	run-time
"permission	denied"	error	is	returned	if	UseCharBasedFirstLineIndent	is	not
set	first.

If	UseCharBasedFirstLineIndent	is	True,	the	paragraph	is	indented	using	East
Asian	character	width,	and	if	it	is	False	it	is	not.	The	default	value	is	False.



Example

The	following	example	creates	a	text	box	on	the	fourth	page	of	the	active
publication.	After	the	UseCharBasedFirstLineIndent	property	is	set	to	True,
the	width	of	the	first	line	indent	is	set	to	15	points	by	using	the
CharBasedFirstLineIndent	property.	Font	properties	are	then	set,	and	text	is
inserted	into	the	paragraph.

Dim	theTextBox	As	Shape

Set	theTextBox	=	ActiveDocument.Pages(4).Shapes	_

								.AddShape(msoShapeRectangle,	100,	100,	300,	200)

								

With	theTextBox

				.TextFrame.TextRange.ParagraphFormat	_

								.UseCharBasedFirstLineIndent	=	msoTrue

				.TextFrame.TextRange.ParagraphFormat	_

								.CharBasedFirstLineIndent	=	15

				.TextFrame.TextRange.Font.Name	=	"Verdana"

				.TextFrame.TextRange.Font.Size	=	12

				.TextFrame.TextRange.Text	=	"This	is	a	test	sentence."	_

								&	Chr(13)	&	"This	is	another	test	sentence."

End	With



UseCustomHalftone	Property
Returns	or	sets	a	Boolean	that	represents	whether	to	use	custom	halftone
settings.	True	to	be	able	to	specify	custom	halftone	settings	for	any	printable
plate.	False	to	use	Publisher's	default	settings	for	all	printable	plates.	Read/write.

expression.UseCustomHalftone

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	UseCustomHalftone	property	to	be	able	to	set	the	Angle	and
Frequency	properties	of	any	PrintablePlate	object	in	a	publication's
PrintablePlates	collection.

The	property	corresponds	to	the	Use	Publisher	defaults	and	Use	custom
settings	options	on	the	Separations	tab	of	the	Advanced	Print	Settings	dialog
box.



Example

This	example	sets	the	spot	color	plates	(plates	five	and	higher)	of	a	process	and
spot	color	publication	to	the	same	custom	angle	and	frequency.	The	example
assumes	that	the	publication's	color	mode	has	been	specified	as	process	and	spot
colors,	and	the	publication's	print	mode	has	been	specified	as	separations.

Sub	SetSpotColorPlatesProperties()

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

Dim	intCount	As	Integer

With	ActiveDocument.AdvancedPrintOptions.PrintablePlates

				For	intCount	=	5	To	.Count

								With	.Item(intCount)

												.Angle	=	45

												.Frequency	=	150

								End	With

				Next

End	With

End	Sub



Show	All



UseDiacriticColor	Property
Returns	or	sets	MsoTriState	constant	indicating	whether	you	can	set	the	color	of
diacritics	in	the	specified	text	range.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	color	of	diacritics	cannot	be	set	in	the	specified	text	range.
msoTriStateMixed	Return	value	indicating	a	combination	of	msoTrue	and
msoFalse	for	the	specified	text	range.
msoTriStateToggle	Set	value	which	toggles	between	msoTrue	and	msoFalse.
msoTrue	The	color	of	diacritics	can	be	set	in	the	specified	text	range.

expression.UseDiacriticColor

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	test	the	text	in	the	first	story	of	the	publication	for	the	state	of	the
UseDiacriticColor	property.	If	it	is	msoTrue,	then	the	DiacriticColor	is	set	to
blue	otherwise,	a	message	box	is	displayed.

Sub	UseDiaColor()

				Dim	fntDC	As	Font

				Set	fntDC	=	Application.ActiveDocument.Stories(1).TextRange.Font

				If	fntDC.UseDiacriticColor	=	msoTrue	Then

								fntDC.DiacriticColor.RGB	=	RGB(Red:=0,	Green:=0,	Blue:=255)

				Else

								MsgBox	"The	UseDiacriticColor	property	is	set	to	False"

				End	If

End	Sub

	 	



UseEnvelopePaperSizes	Property
True	to	print	envelopes	using	the	envelope	paper	size.	Read/write	Boolean.

expression.UseEnvelopePaperSizes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Returns	"Permission	Denied"	for	publications	that	are	not	envelopes.



Example

This	example	sets	Publisher's	envelope	printing	options.	This	example	assumes
the	publication	is	an	envelope.

Sub	SetEnvelopeOptions()

				With	Options

								.UseEnvelopePrintOptions	=	True

								.UseEnvelopePaperSizes	=	True

				End	With

End	Sub

	 	



UseEnvelopePrintOptions	Property
True	to	print	envelopes	using	the	envelope	printing	options.	Read/write
Boolean.

expression.UseEnvelopePrintOptions

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Returns	"Permission	Denied"	for	publications	that	are	not	envelopes.



Example

This	example	sets	Publisher's	envelope	printing	options.	This	example	assumes
the	publication	is	an	envelope.

Sub	SetEnvelopeOptions()

				With	Options

								.UseEnvelopePrintOptions	=	True

								.UseEnvelopePaperSizes	=	True

				End	With

End	Sub

	 	



UseHelpfulMousePointers	Property
True	for	Microsoft	Publisher	to	display	helpful	mouse	pointers.	Read/write
Boolean.

expression.UseHelpfulMousePointers

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	sets	global	options	for	Microsoft	Publisher,	including	disabling	the
display	of	helpful	mouse	pointers.

Sub	SetGlobalOptions()

				With	Options

								.AutoFormatWord	=	True

								.AutoKeyboardSwitching	=	True

								.AutoSelectWord	=	True

								.DragAndDropText	=	True

								.UseCatalogAtStartup	=	False

								.UseHelpfulMousePointers	=	False

				End	With

End	Sub

	 	



UseOnlyPublicationFonts	Property
Returns	or	sets	a	Boolean	that	represents	whether	to	only	use	publication	fonts
for	printing	the	specified	publication.	True	to	print	the	specified	publication
using	only	fonts	downloaded	from	your	computer.	Read/write.	The	default	is
True.

expression.UseOnlyPublicationFonts()

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

Publication	fonts	are	fonts	that	are	downloaded	from	your	computer,	as	opposed
to	fonts	residing	at	the	printer	or	imagesetter.

Set	this	property	to	False	to	enable	the	printer	to	print	the	specified	publication
using	its	resident	fonts	(stored	in	ROM,	RAM,	or	on	a	hard	disk	drive)	that	have
the	same	name	as	the	fonts	downloaded	from	your	computer.

Note		This	may	result	in	the	printer	substituting	resident	printer	for	fonts
downloaded	from	your	computer.	This	results	in	a	slightly	faster	print	time.
However,	if	the	resident	fonts	are	not	exactly	identical	to	your	computer	fonts
(even	if	they	have	the	same	name),	this	may	cause	your	printed	publication	to
look	different	than	expected.

Setting	this	property	to	True	ensures	that	the	fonts	used	to	print	the	publication
are	the	same	ones	used	to	create	it.

This	property	corresponds	to	the	Fonts	controls	on	the	Graphics	and	Fonts	tab
of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	tests	to	determine	if	the	active	publication	will	be	printed
using	only	publication	fonts.	If	it	will	not,	it	is	set	to	use	only	publication	fonts.

Sub	PrintWithPublicationFontsOnly()

			With	ActiveDocument.AdvancedPrintOptions

						.UseOnlyPublicationFonts	=	True

			End	With

End	Sub



Show	All



Value	Property
Value	property	as	it	applies	to	the	WebCheckBox	and	WebOptionButton

objects.

Returns	or	sets	a	String	that	represents	the	value	of	a	Web	check	box	or	option
button.	Read/write.

expression.Value

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	MailMergeDataField	and
MailMergeMappedDataField	objects.

Returns	a	String	that	represents	the	value	of	a	mail	merge	data	field	record	or	a
mapped	data	field.	Read-only.

expression.Value

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Value	property	as	it	applies	to	the	Tag	object.

Returns	or	sets	a	Variant	that	represents	the	value	of	a	tag	of	a	shape,	page,	or
publication.	Read/write.

expression.Value

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	WebCheckBox	object.

This	example	creates	a	new	Web	check	box	control,	assigns	a	name	and	value	to
it,	and	indicates	its	initial	state	is	checked.

Sub	CreateWebButton()

				With	ActiveDocument.Pages(1).Shapes.AddWebControl	_

												(Type:=pbWebControlCheckBox,	Left:=72,	_

												Top:=72,	Width:=100,	Height:=50)

								.Name	=	"ControlBox"

								With	.WebCheckBox

												.Value	=	"This	is	a	check	box."

												.Selected	=	msoTrue

								End	With

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Tag	object.

This	example	creates	a	new	tag	for	the	active	publication	and	then	displays	the
value	of	the	tag.

Sub	CreatePublicationTag()

				With	ActiveDocument

								.Tags.Add	Name:="ActivePub",	Value:="This	is	the	active	publication."

								MsgBox	.Tags(1).Value

				End	With

End	Sub

	 	 	 	



Values	Property
Returns	a	WizardValues	collection	representing	all	the	valid	values	for	a	wizard
property.

expression.Values

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	current	value	for	the	first	wizard	property	in
the	active	publication	and	then	lists	all	the	other	possible	values.

Dim	valAll	As	WizardValues

Dim	valLoop	As	WizardValue

With	ActiveDocument.Wizard

				Set	valAll	=	.Properties(1).Values

				MsgBox	"Wizard:	"	&	.Name	&	vbLf	&	_

								"Property:	"	&	.Properties(1).Name	&	vbLf	&	_

								"Current	value:	"	&	.Properties(1).CurrentValueId

				For	Each	valLoop	In	valAll

								MsgBox	"Possible	value:	"	&	valLoop.ID	&	"	("	&	valLoop.Name	&	")"

				Next	valLoop

End	With

	 	



Version	Property
Returns	a	String	indicating	the	version	number	of	the	currently-installed	copy	of
Microsoft	Publisher.	Read-only.

expression.Version

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	displays	the	version	and	build	number	of	the	currently-
installed	copy	of	Microsoft	Publisher.

MsgBox	"You	are	currently	running	Microsoft	Publisher,	"	_

				&	"	version	"	&	Application.Version	&	",	build	"	_

				&	Application.Build	&	"."

	 	



VerticalBaseLineOffset	Property
Returns	a	Single	that	represents	the	vertical	baseline	offset	of	the	specified
LayoutGuides	object.	Read/write.

expression.VerticalBaseLineOffset

expression				Required.	An	expression	that	returns	a	LayoutGuides	object.



Remarks

When	setting	the	layout	guide	properties	of	a	Page	object	it	must	be	returned
from	the	MasterPages	collection.



Example

This	example	sets	the	vertical	baseline	offset	of	the	layout	guides	object	to	12	for
the	second	master	page	in	the	active	document.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.MasterPages(2).LayoutGuides

objLayout.VerticalBaseLineOffset	=	12	

Setting	the	layout	guide	properties	for	the	active	document	will	only	affect	the
first	master	page.	This	example	sets	the	vertical	baseline	offset	of	the	active
document's	layout	guides	to	12,	affecting	only	the	first	master	page.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.Pages(1).LayoutGuides

objLayout.VerticalBaseLineOffset	=	12

	 	 	 	



VerticalBaseLineSpacing	Property
Returns	a	Single	that	represents	the	vertical	baseline	spacing	of	the	specified
LayoutGuides	object.	Read/write.

expression.VerticalBaseLineSpacing

expression				Required.	An	expression	that	returns	a	LayoutGuides	object.



Remarks

When	setting	the	layout	guide	properties	of	a	Page	object	it	must	be	returned
from	the	MasterPages	collection.



Example

This	example	sets	the	vertical	baseline	spacing	of	the	LayoutGuides	object	to
12	for	the	second	master	page	in	the	active	document.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.MasterPages(2).LayoutGuides

objLayout.VerticalBaseLineSpacing	=	12	

This	example	sets	the	vertical	baseline	spacing	of	the	active	document's	layout
guides	to	20,	affecting	only	the	first	master	page.

Dim	objLayout	As	LayoutGuides

Set	objLayout	=	ActiveDocument.LayoutGuides

objLayout.VerticalBaseLineSpacing	=	20	

	 	 	 	



Show	All



VerticalFlip	Property
VerticalFlip	as	it	applies	to	the	Shape	object	and	the	ShapeRange	object.

Returns	msoTrue	if	the	specified	shape	has	been	flipped	around	its	vertical	axis.
Read-only	MsoTriState.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	shape	has	not	been	flipped	around	its	vertical	axis.
msoTriStateMixed	Indicates	a	combination	of	msoTrue	and	msoFalse	for	the
specified	shape	range.
msoTriStateToggle	Not	used	with	this	property.
msoTrue	The	shape	has	been	flipped	around	its	vertical	axis.

expression.VerticalFlip

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

VerticalFlip	property	as	it	applies	to	the	AdvancedPrintOptions	object.

True	to	print	a	vertically	mirrored	image	of	the	specified	publication.	The
default	is	False.	Read/write	boolean.

expression.VerticalFlip

expression				Required.	An	expression	that	returns	an	AdvancedPrintOptions
object.



Remarks

This	property	is	only	accessible	if	the	active	printer	is	a	PostScript	printer.
Returns	a	run-time	error	if	a	non-PostScript	printer	is	specified.	Use	the
IsPostscriptPrinter	property	of	the	AdvancedPrintOptions	object	to	determine
if	the	specified	printer	is	a	PostScript	printer.

This	property	is	saved	as	an	application	setting	and	applied	to	future	instances	of
Publisher.

This	property	corresponds	to	the	Flip	vertically	control	on	the	Page	Settings	tab
of	the	Advanced	Print	Settings	dialog	box.

This	property	is	mostly	used	when	printing	to	film	on	an	imagesetter	so	that	the
image	reads	correctly	when	the	emulsion	side	of	the	film	is	down	(as	when
burning	a	press	plate).



Example

As	it	applies	to	the	Shape	and	ShapeRange	objects.

This	example	restores	each	shape	on	the	active	publication	to	its	original	state	if
it	has	been	flipped	horizontally	or	vertically.

Sub	Flipper()

				Dim	shpBall	As	Shape

				For	Each	shpBall	In	ActiveDocument.MasterPages.Item(1).Shapes

								If	shpBall.HorizontalFlip	=	msoTrue	Then	shpBall.Flip	msoFlipHorizontal

								If	shpBall.VerticalFlip	=	msoTrue	Then	shpBall.Flip	msoFlipVertical

				Next

End	Sub

	 	

As	it	applies	to	the	AdvancedPrintOptions	object.

The	following	example	determines	if	the	active	printer	is	a	PostScript	printer.	If
it	is,	the	active	publication	is	set	to	print	as	a	horizontally	and	vertically
mirrored,	negative	image	of	itself.

Sub	PrepToPrintToFilmOnImagesetter()

With	ActiveDocument.AdvancedPrintOptions

				If	.IsPostscriptPrinter	=	True	Then

								.HorizontalFlip	=	True

								.VerticalFlip	=	True

								.NegativeImage	=	True

				End	If

End	With

End	Sub





VerticalGap	Property
When	multiple	pages	are	printed	on	one	sheet	of	printer	paper,	returns	or	sets	a
Variant	that	represents	the	distance	(in	points)	between	the	bottom	edge	of	the
publication	page	and	top	edge	of	the	publication	page	in	the	row	immediately
below.	Read/write.

expression.VerticalGap

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Use	the	VerticalGap	property	when	printing	multiple	pages	on	a	single	sheet	of
printer	paper.	If	the	page	size,	including	the	values	for	the	VerticalGap	and
HorizontalGap	properties,	is	greater	than	half	the	paper	size,	Publisher	will
display	an	error.

When	used	with	the	Label	object,	the	VerticalGap	property	is	read/write	only
when	accessed	from	.PageSetup.Label.	Otherwise,	it	is	read-only.



Example

This	example	sets	the	page	height	and	width	of	the	active	document,	specifies
that	it	be	printed	with	multiple	pages	on	each	sheet	of	printer	paper,	and	sets	the
vertical	gap	between	those	two	pages	at	half	an	inch.	This	example	assumes	the
page	orientation	is	set	to	landscape.

Sub	SetVerticalGap()

				With	ActiveDocument.PageSetup

								.PageHeight	=	InchesToPoints(8)

								.PageWidth	=	InchesToPoints(4)

								.MultiplePagesPerSheet	=	True

								.VerticalGap	=	InchesToPoints(0.5)

				End	With

End	Sub

	 	



Show	All



VerticalPictureLocking	Property
Returns	or	sets	a	PbVerticalPictureLocking	constant	indicating	where	newly
inserted	pictures	appear	in	relation	to	the	specified	frame.	Read/write.

PbVerticalPictureLocking	can	be	one	of	these	PbVerticalPictureLocking
constants.
pbVerticalLockingBottom	New	pictures	are	inserted	along	the	bottom	edge	of
the	frame.
pbVerticalLockingNone	New	pictures	are	inserted	in	the	center	between	the
top	and	bottom	edges	of	the	frame.
pbVerticalLockingStretch	New	pictures	are	vertically	stretched	to	the	full
height	of	the	frame.
pbVerticalLockingTop	New	pictures	are	inserted	along	the	top	edge	of	the
frame.

expression.VerticalPictureLocking

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	locks	the	specified	picture	to	the	top	left	corner	of	the
picture	frame.	Shape	one	on	page	one	of	the	active	publication	must	be	a	picture
frame	for	this	example	to	work.

With	ActiveDocument.Pages(1).Shapes(1).PictureFormat

				.HorizontalPictureLocking	=	pbHorizontalLockingLeft

				.VerticalPictureLocking	=	pbVerticalLockingTop

End	With

	 	



Show	All



VerticalRepeat	Property
Returns	a	Long	that	represents	the	number	of	times	the	catalog	merge	area	will
repeat	down	the	target	publication	page	when	the	catalog	merge	is	executed.
Read-only.

expression.VerticalRepeat

expression				Required.	An	expression	that	returns	a	CatalogMergeShapes
object.



Remarks

When	the	catalog	merge	is	executed,	the	catalog	merge	area	repeats	once	for
each	selected	record	in	the	specified	data	source.

The	number	of	times	the	catalog	merge	area	repeats	down	the	page	is	determined
by	the	height	of	the	area.	Use	the	Height	property	of	the	Shape	object	to	return
or	set	the	vertical	size	of	the	catalog	merge	area.

The	HorizontalRepeat	property	of	the	CatalogMergeShapes	object	represents
the	number	of	times	the	catalog	merge	area	repeats	horizontally	across	the	target
publication	page.



Example

The	following	example	returns	the	number	of	times	the	catalog	merge	area	will
repeat	horizontally	and	vertically	on	the	target	publication	page	when	the	catalog
merge	is	performed.	This	example	assumes	the	catalog	merge	area	is	the	first
shape	on	the	first	page	of	the	specified	publication.

Sub	CatalogMergeDimensions()

							

				With	ThisDocument.Pages(1).Shapes(1)

								Debug.Print	.Width

								Debug.Print	.CatalogMergeItems.HorizontalRepeat

								Debug.Print	.Height

								Debug.Print	.CatalogMergeItems.VerticalRepeat

				End	With

End	Sub



VerticalScale	Property
Returns	a	Long	that	represents	the	scaling	of	the	picture	along	its	vertical	axis.
The	scaling	is	expressed	as	a	percentage	(for	example,	200	equals	200%
scaling).	Read-only.

expression.VerticalScale()

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Remarks

The	effective	resolution	of	a	picture	is	inversely	proportional	to	the	scaling	at
which	the	picture	is	printed.	The	larger	the	scaling,	the	lower	the	effective
resolution.	For	example,	suppose	a	picture	measuring	4	inches	by	4	inches	was
originally	scanned	at	300	dpi.	If	that	picture	is	scaled	to	2	inches	by	2	inches,	its
effective	resolution	is	600	dpi.

Use	the	EffectiveResolution	property	of	the	PictureFormat	object	to	determine
the	resolution	at	which	the	picture	or	OLE	object	will	print	in	the	specified
document.



Example

The	following	example	prints	selected	image	properties	for	each	picture	in	the
active	publication.

Dim	pgLoop	As	Page

Dim	shpLoop	As	Shape

For	Each	pgLoop	In	ActiveDocument.Pages

				For	Each	shpLoop	In	pgLoop.Shapes

								If	shpLoop.Type	=	pbPicture	Or	shpLoop.Type	=	pbLinkedPicture	Then

								

												With	shpLoop.PictureFormat

																			If	.IsEmpty	=	msoFalse	Then

																								Debug.Print	"File	Name:	"	&	.Filename

																								Debug.Print	"Resolution	in	Publication:	"	&	.EffectiveResolution	&	"	dpi"

																								Debug.Print	"Horizontal	Scaling:	"	&	.HorizontalScale	&	"%"

																								Debug.Print	"Height	in	publication:	"	&	.Height	&	"	points"

																								Debug.Print	"Vertical	Scaling:	"	&	.VerticalScale

																								Debug.Print	"Width	in	publication:	"	&	.Width	&	"	points"

																			End	If

												End	With

								End	If

				Next	shpLoop

Next	pgLoop



Show	All



VerticalTextAlignment	Property
Returns	or	sets	a	PbVerticalTextAlignmentType	constant	that	represents	the
vertical	alignment	of	text	in	a	text	box.	Read/write.

PbVerticalTextAlignmentType	can	be	one	of	these
PbVerticalTextAlignmentType	constants.
pbVerticalTextAlignmentBottom
pbVerticalTextAlignmentCenter
pbVerticalTextAlignmentTop

expression.VerticalTextAlignment

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	vertically	centers	the	text	in	the	specified	text	frame.	This	example
assumes	there	is	at	least	one	shape	on	the	first	page	of	the	active	publication.

Sub	SetVerticalAlignment()

				ActiveDocument.Pages(1).Shapes(1).TextFrame	_

								.VerticalTextAlignment	=	pbVerticalTextAlignmentCenter

End	Sub

	 	



Vertices	Property
Returns	the	coordinates	of	the	specified	freeform	drawing's	vertices	(and	control
points	for	Bézier	curves)	as	a	series	of	coordinate	pairs.	Read-only	Variant.

expression.Vertices

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

You	can	use	the	array	returned	by	this	property	as	an	argument	to	the	AddCurve
or	AddPolyline	methods.

The	following	table	shows	how	the	Vertices	property	associates	the	values	in	the
array	vertArray()	with	the	coordinates	of	a	triangle's	vertices.

vertArray
element Contains

vertArray(1,

1)

The	horizontal	distance	from	the	first	vertex	to	the	left	side	of
the	page.

vertArray(1,

2)

The	vertical	distance	from	the	first	vertex	to	the	top	of	the
page.

vertArray(2,

1)

The	horizontal	distance	from	the	second	vertex	to	the	left	side
of	the	page.

vertArray(2,

2)

The	vertical	distance	from	the	second	vertex	to	the	top	of	the
page.

vertArray(3,

1)

The	horizontal	distance	from	the	third	vertex	to	the	left	side	of
the	page.

vertArray(3,

2)

The	vertical	distance	from	the	third	vertex	to	the	top	of	the
page.



Example

This	example	assigns	the	vertex	coordinates	for	shape	one	in	the	active
publication	to	the	array	variable	vertArray()	and	displays	the	coordinates	for
the	first	vertex.

Dim	vertArray	As	Variant

Dim	sngX1	As	Single

Dim	sngY1	As	Single

With	ActiveDocument.Pages(1).Shapes(1)

				vertArray	=	.Vertices

				sngX1	=	vertArray(1,	1)

				sngY1	=	vertArray(1,	2)

				MsgBox	"First	vertex	coordinates:	"	&	sngX1	&	",	"	&	sngY1

End	With

	 	

This	example	creates	a	curve	that	has	the	same	geometric	description	as	shape
one	in	the	active	publication.	Shape	one	must	contain	3n+1	vertices	for	this
example	to	work,	where	n	is	an	integer	greater	than	or	equal	to	1.

With	ActiveDocument.Pages(1).Shapes

				.AddCurve	SafeArrayOfPoints:=.Item(1).Vertices

End	With

	 	



ViewBoundariesAndGuides	Property
Returns	True	if	boundaries	and	guides	are	visible	in	the	specified	publication.
Read/write	Boolean.

expression.ViewBoundariesAndGuides

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	opens	a	message	box	and	displays	if	the	current	publication	shows
boundaries	and	guides.

Sub	ViewBandG()

				MsgBox	"Boundaries	&	Guides	=	"	&	_

				Application.ActiveDocument.ViewBoundariesAndGuides

End	Sub

	 	



ViewHorizontalBaseLineGuides
Property
Sets	or	returns	a	Boolean	that	represents	whether	or	not	the	horizontal	baseline
guides	are	visible	in	the	specified	Document	object.	True	if	they	are	visible.
False	if	they	are	not	visible.	Read/write.

expression.

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

The	default	setting	for	this	property	is	False.



Example

The	following	example	makes	the	horizontal	baseline	guides	visible	in	the	active
document.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

objDocument.ViewHorizontalBaseLineGuides	=	True



ViewMailMergeFieldCodes	Property
True	if	merge	field	names	are	displayed	in	a	mail	merge	publication;	False	if
information	from	the	current	data	record	is	displayed.	Read/write	Boolean.

expression.ViewMailMergeFieldCodes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

If	the	active	publication	isn't	a	mail	merge	publication,	using	this	property	has	no
effect.



Example

This	example	hides	the	mail	merge	field	codes	in	the	active	publication.

ActiveDocument.MailMerge.ViewMailMergeFieldCodes	=	False

	 	



ViewTwoPageSpread	Property
Returns	True	if	the	specified	publication	should	be	viewed	as	a	two-page	spread.
Read/write	Boolean.

expression.ViewTwoPageSpread

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	opens	a	message	box	and	displays	if	the	current	publication	should
be	viewed	in	the	in	the	two	page	spread	mode.

Sub	ViewTwoPage()

				MsgBox	"View	Two	Page	Spread	=	"	&	_

								Application.ActiveDocument.ViewTwoPageSpread

End	Sub

	 	



ViewVerticalBaseLineGuides
Property
Sets	or	returns	a	Boolean	that	represents	whether	or	not	the	vertical	baseline
guides	are	visible	in	the	specified	Document	object.	True	if	they	are	visible.
False	if	they	are	not	visible.	Read/write.

expression.ViewVerticalBaseLineGuides

expression				Required.	An	expression	that	returns	a	Document	object.



Remarks

The	default	setting	for	this	property	is	False.



Example

The	following	example	makes	the	vertical	baseline	guides	visible	in	the	active
document.

Dim	objDocument	As	Document

Set	objDocument	=	ActiveDocument

objDocument.ViewVerticalBaseLineGuides	=	True



Show	All



Visible	Property
Visible	property	as	it	applies	to	the	FillFormat,	LineFormat,

ShadowFormat,	and	ThreeDFormat	objects.

Returns	or	sets	an	MsoTriState	constant	indicating	whether	the	specified	object
or	the	formatting	applied	to	the	specified	object	is	visible.	Read/write.

MsoTriState	can	be	one	of	these	MsoTriState	constants.
msoCTrue	Not	used	with	this	property.
msoFalse	The	specified	object	or	formatting	is	not	visible.
msoTriStateMixed	Return	value	only.	The	specified	shape	range	contains	both
objects	with	visible	formatting	and	objects	with	invisible	formatting.
msoTriStateToggle	Set	value	only.	Toggles	the	specified	object	between	visible
and	invisble.
msoTrue	The	specified	object	or	formatting	is	visible.

expression.Visible

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Visible	property	as	it	applies	to	the	Window	object.

True	if	the	window	is	visible.	Read/write	Boolean.

expression.Visible

expression				Required.	An	expression	that	returns	one	of	the	above	objects.



Example

As	it	applies	to	the	FillFormat,	LineFormat,	ShadowFormat,	and
ThreeDFormat	objects.

This	example	sets	the	horizontal	and	vertical	offsets	for	the	shadow	of	shape
three	on	the	first	page	in	the	active	publication.	The	shadow	is	offset	5	points	to
the	right	of	the	shape	and	3	points	above	it.	If	the	shape	doesn't	already	have	a
shadow,	this	example	adds	one	to	it.

With	ActiveDocument.Pages(1).Shapes(3).Shadow

				.Visible	=	msoTrue

				.OffsetX	=	5

				.OffsetY	=	-3

End	With

	 	 	 	

As	it	applies	to	the	Window	object.

This	example	hides	the	Publisher	window.

ActiveWindow.Visible	=	False

	 	 	 	



WebCheckBox	Property
Returns	the	WebCheckBox	object	associated	with	the	specified	shape.

expression.WebCheckBox

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	check	box	and	specifies	that	its	default	state	is
checked.

Dim	shpNew	As	Shape

Dim	wcbTemp	As	WebCheckBox

Set	shpNew	=	ActiveDocument.Pages(1).Shapes	_

				.AddWebControl(Type:=pbWebControlCheckBox,	Left:=100,	_

				Top:=123,	Width:=17,	Height:=12)

Set	wcbTemp	=	shpNew.WebCheckBox

wcbTemp.Selected	=	msoTrue

	 	



WebCommandButton	Property
Returns	the	WebCommandButton	object	associated	with	the	specified	shape.

expression.WebCommandButton

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	Web	form	Submit	command	button	and	sets	the	script
path	and	file	name	to	run	when	a	user	clicks	the	button.

Dim	shpNew	As	Shape

Dim	wcbTemp	As	WebCommandButton

Set	shpNew	=	ActiveDocument.Pages(1).Shapes.AddWebControl	_

				(Type:=pbWebControlCommandButton,	Left:=150,	_

				Top:=150,	Width:=75,	Height:=36)

Set	wcbTemp	=	shpNew.WebCommandButton

With	wcbTemp

				.ButtonText	=	"Submit"

				.ButtonType	=	pbCommandButtonSubmit

				.ActionURL	=	"http://www.tailspintoys.com/"	_

								&	"scripts/ispscript.cgi"

End	With

	 	



WebComponentFormat	Property
Returns	the	WebComponentFormat	object	associated	with	the	specified	shape.

expression.WebComponentFormat

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	WebComponentFormat	object's	functionality	is	not	accessible	through
Microsoft	Visual	Basic.	It	is	not	recommended	to	access	the	object	using	this
property.



Example

The	following	example	assigns	an	object	variable	to	the
WebComponentFormat	object	associated	with	the	first	shape	on	page	one	of
the	active	publication.

Dim	wcfTemp	As	Object

Set	wcfTemp	=	ActiveDocument.Pages(1)	_

				.Shapes(1).WebComponentFormat

	 	



WebListBox	Property
Returns	the	WebListBox	object	associated	with	the	specified	shape.

expression.WebListBox

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	list	box	and	adds	several	items	to	it.	Note	that
when	initially	created,	a	Web	list	box	control	contains	three	default	items.	This
example	includes	a	loop	that	deletes	the	default	list	box	items	before	adding	new
items.

Dim	shpNew	As	Shape

Dim	wlbTemp	As	WebListBox

Dim	intCount	As	Integer

Set	shpNew	=	ActiveDocument.Pages(1).Shapes	_

				.AddWebControl(Type:=pbWebControlListBox,	Left:=100,	_

				Top:=150,	Width:=300,	Height:=72)

Set	wlbTemp	=	shpNew.Web	ListBox

With	wlbTemp

				.MultiSelect	=	msoFalse

				With	.ListBoxItems

								For	intCount	=	1	To	.Count

												.Delete	(1)

								Next	intCount

								.AddItem	Item:="Green"

								.AddItem	Item:="Purple"

								.AddItem	Item:="Red"

								.AddItem	Item:="Black"

				End	With

End	With

	 	



WebNavigationBarSetName	Property
Returns	a	String	that	represents	the	name	of	the	Web	navigation	bar	set	the
specified	shape	is	an	instance	of.	Read-only.

expression.WebNavigationBarSetName

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

This	property	is	only	accessible	for	shapes	that	represent	an	instance	of	a	Web
navigation	bar	set.	Use	the	Type	property	of	the	Shape	object	to	determine	if	a
shape	represents	an	instance	of	a	Web	navigation	bar	set.

Use	the	WebNavigationBarSetName	property	to	return	the	name	of	a
WebNavigationBarSet	object.	Multiple	pages	in	a	Web	publication	can	each
have	a	shape	representing	an	instance	of	the	same	Web	navigation	bar	set.
Changes	made	to	a	WebNavigationBarSet	object	are	reflected	in	all	the	shapes
representing	instances	of	that	Web	navigation	bar	set.



Example

The	following	example	tests	to	determine	which	shapes	on	the	first	page	of	the
active	document	represent	instances	of	Web	navigation	bars.	For	each	such
shape	found,	the	Web	navigation	bar	it	represents	an	instance	of	is	set	to	auto
update.

Sub	SetWebBarsToAutoUpdate()

Dim	shpLoop	As	Shape

Dim	strWebNavBarName	As	String

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				If	shpLoop.Type	=	pbWebNavigationBar	Then

								

								strWebNavBarName	=	shpLoop.WebNavigationBarSetName

												With	ActiveDocument.WebNavigationBarSets(strWebNavBarName)

																.AutoUpdate	=	True

												End	With

								

				End	If

Next

				

End	Sub



WebNavigationBarSets	Property
Returns	a	WebNavigationBarSets	object	representing	a	collection	of	all
WebNavigationBarSet	objects	in	the	specified	document.	Read-only.

expression.WebNavigationBarSets

expression				Required.	An	expression	that	returns	a	Document	object.



Example

The	following	example	sets	an	object	variable	to	the	collection	of	Web
navigation	bar	sets	in	the	active	document	and	adds	a	new	navigation	bar	set	to
it.

Dim	objWebNavBarSets	As	WebNavigationBarSets

Set	objWebNavBarSets	=	ActiveDocument.WebNavigationBarSets

objWebNavBarSets.AddSet	_

				Name:="WebNavBarSet1",	_

				Design:=pbnbDesignBracket,	_

				AutoUpdate:=True

	 	



WebOptionButton	Property
Returns	the	WebOptionButton	object	associated	with	the	specified	shape.

expression.WebOptionButton

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	option	button	and	specifies	that	its	default	state
is	selected.

Dim	shpNew	As	Shape

Dim	wobTemp	As	WebOptionButton

Set	shpNew	=	ActiveDocument.Pages(1).Shapes.AddWebControl	_

				(Type:=pbWebControlOptionButton,	Left:=100,	_

				Top:=123,	Width:=16,	Height:=10)

Set	wobTemp	=	shpNew.WebOptionButton

wobTemp.Selected	=	msoTrue

	 	



WebOptions	Property
Returns	a	WebOptions	object,	which	represents	the	properties	of	Web
publications.	Read-only.

expression.WebOptions

expression				Required.	An	expression	that	returns	an	Application	object.



Example

The	following	example	specifies	that	Web	publications	should	not	always	be
saved	in	default	encoding,	and	that	the	encoding	should	be	Unicode	(UTF-8).

With	Application.WebOptions

				.AlwaysSaveInDefaultEncoding	=	False

				.Encoding	=	msoEncodingUTF8

End	With

	 	



WebPageOptions	Property
Returns	a	WebPageOptions	object,	which	represents	the	properties	of	a	single
Web	page	within	a	Web	publication.	Read-only.

expression.WebPageOptions

expression				Required.	An	expression	that	returns	a	Page	object.



Example

The	following	example	sets	the	description	and	the	background	sound	for	the
fourth	page	of	the	active	Web	publication.

With	ActiveDocument.Pages(4).WebPageOptions

				.Description	=	"Company	Profile"

				.BackgroundSound	=	"C:\CompanySounds\corporate_jingle.wav"

End	With

	 	



WebTextBox	Property
Returns	the	WebTextBox	object	associated	with	the	specified	shape.

expression.WebTextBox

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	new	Web	text	box,	specifies	default	text,	indicates	that
entry	is	required,	and	limits	entry	to	50	characters.

Dim	shpNew	As	Shape

Dim	wtbTemp	As	WebTextBox

Set	shpNew	=	ActiveDocument.Pages(1).Shapes	_

				.AddWebControl(Type:=pbWebControlSingleLineTextBox,	_

				Left:=100,	Top:=100,	Width:=150,	Height:=15)

Set	wtbTemp	=	shpNew.WebTextBox

With	wtbTemp

	 	 	

.DefaultText	=	"Please	Enter	Your	Full	Name"

				.RequiredControl	=	msoTrue

				.Limit	=	50

End	With

	 	



Weight	Property
Returns	or	sets	a	Variant	indicating	the	thickness	of	the	specified	line	or	cell
border.	Read/write.

expression.Weight

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

Return	values	are	in	points.	When	setting	the	property,	numeric	values	are
evaluated	in	points,	and	strings	can	be	in	any	units	supported	by	Publisher	(for
example,	"2.5	in").



Example

This	example	adds	a	green	dashed	line,	two	points	thick,	to	the	active
publication.

With	ActiveDocument.Pages(1).Shapes	_

								.AddLine(BeginX:=10,	BeginY:=10,	_

								EndX:=250,	EndY:=250).Line

				.DashStyle	=	msoLineDashDotDot

				.ForeColor.RGB	=	RGB(0,	255,	255)

				.Weight	=	2

End	With

	 	



Show	All



WidowControl	Property
Sets	or	returns	an	msoTriState	that	represents	whether	or	not	the	first	or	last	line
of	the	specified	paragraph	can	appear	by	itself	in	a	text	box.	Read/write.

msoCTrue
msoFalse	The	first	or	last	line	may	appear	by	itself	in	a	text	box.
msoTriStateMixed
msoTriStateToggle
msoTrue	The	first	or	last	line	will	not	appear	by	itself	in	a	text	box.

expression.WidowControl

expression				Required.	An	expression	that	returns	a	ParagraphFormat	object.



Remarks

This	option	ensures	that	the	first	or	last	line	of	the	specified	paragraph	will	not
appear	by	itself	in	a	text	frame.	For	example,	if	the	last	line	in	a	specified
paragraph	is	the	first	line	of	a	widow	controlled	paragraph,	a	second	line	will	be
moved	to	the	next	text	frame	with	it.

The	default	setting	for	this	property	is	msoFalse.



Example

This	example	sets	the	WidowControl	property	to	msoTrue	for	the	specified
ParagraphFormat	object.

Dim	objParaForm	As	ParagraphFormat

Set	objParaForm	=	ActiveDocument.Pages(1).Shapes(1)	_

				.TextFrame.TextRange.Paragraphs(1).ParagraphFormat

objParaForm.WidowControl	=	msoTrue



Show	All



Width	Property
Width	property	as	it	applies	to	the	ReaderSpread	object	and	the

PrintableRect	object.

Returns	a	Single	that	represents	the	width,	in	points,	of	the	page	(for	the
ReaderSpread	object)	or	the	printable	rectangle	(for	the	PrintableRect	object).
Read-only.

expression.Width

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Label	object.

Returns	or	sets	a	Variant	that	represents	the	width	(in	points)	of	the	label.	Read-
only.

expression.Width

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Window	object.

Returns	or	sets	a	Long	that	represents	the	width	(in	points)	of	the	window.
Read/write.

expression.Width

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Cell,	CellRange,	and	Page	objects.

Returns	a	Long	that	represent	the	width	(in	points)	of	a	cell,	range	of	cells,	or
page.	Read-only.

expression.Width



expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	Column	and	Shape	objects.

Returns	or	sets	a	Variant	that	represents	the	width	(in	points)	of	a	specified	table
column	or	shape.	Read/write.

expression.Width

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	ShapeRange	object.

Returns	a	Variant	that	represents	the	width	(in	points)	of	a	specified	range	of
shapes.	Read-only.

expression.Width

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Width	property	as	it	applies	to	the	PictureFormat	object.

Returns	a	Variant	that	represents	the	width,	in	points,	of	the	specified	picture.
Read-only.

expression.Width

expression				Required.	An	expression	that	returns	a	PictureFormat	object.



Example

As	it	applies	to	the	Window	object.

This	example	sets	the	height	and	width	of	the	active	window	if	the	window	is
neither	maximized	nor	minimized.

Sub	SetWindowHeight()

				With	ActiveWindow

								If	.WindowState	=	pbWindowStateNormal	Then

												.Height	=	InchesToPoints(5)

												.Width	=	InchesToPoints(5)

								End	If

				End	With

End	Sub

	 	 	 	

As	it	applies	to	the	Column	object.

This	example	creates	a	new	table	and	sets	the	height	and	width	of	the	second
row	and	column,	respectively.

Sub	SetRowHeightColumnWidth()

				With	ActiveDocument.Pages(1).Shapes.AddTable(NumRows:=3,	_

												NumColumns:=3,	Left:=80,	Top:=80,	Width:=400,	Height:=12).Table

												.Rows(2).Height	=	72

												.Columns(2).Width	=	72

				End	With

End	Sub

	 	 	 	



Show	All



WindowState	Property
Returns	or	sets	a	PbWindowState	constant	indicating	the	state	of	the	Microsoft
Publisher	window.	Read/write.

PbWindowState	can	be	one	of	these	PbWindowState	constants.
pbWindowStateMaximize
pbWindowStateMinimize
pbWindowStateNormal

expression.WindowState

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	the	state	of	the	window	is	pbWindowStateNormal,	the	window	is	neither
maximized	nor	minimized.



Example

This	example	maximizes	the	Publisher	window.

ActiveWindow.WindowState	=	pbWindowStateMaximized

	 	



Wizard	Property
Returns	a	Wizard	object	representing	the	publication	design	associated	with	the
specified	publication	or	the	wizard	associated	with	the	specified	Design	Gallery
object.

expression.Wizard

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

When	accessing	the	Wizard	property	from	the	Document	or	Page	object,	if	the
specified	publication	is	not	associated	with	any	publication	design,	an	error
occurs.

When	accessing	the	Wizard	property	from	the	Shape	or	ShapeRange	object,	if
the	specified	object	is	not	a	Design	Gallery	object,	an	error	occurs.



Example

The	following	example	reports	on	the	publication	design	associated	with	the
active	publication,	displaying	its	name	and	current	settings.

Dim	wizTemp	As	Wizard

Dim	wizproTemp	As	WizardProperty

Dim	wizproAll	As	WizardProperties

Set	wizTemp	=	ActiveDocument.Wizard

With	wizTemp

				Set	wizproAll	=	.Properties

				Debug.Print	"Publication	design	associated	with	"	_

								&	"current	publication:	"	_

								&	.Name

				For	Each	wizproTemp	In	wizproAll

								With	wizproTemp

												Debug.Print	"			Setting:	"	_

																&	.Name	&	"	=	"	&	.CurrentValueId

								End	With

				Next	wizproTemp

End	With

	 	

Note		Depending	on	the	language	version	of	Publisher	that	you	are	using,	you
may	receive	an	error	when	using	the	above	code.	If	this	occurs,	you	will	need	to
build	in	error	handlers	to	circumvent	the	errors.	For	more	information,	see
Wizard	Object.



WizardCatalogVisible	Property
Returns	or	sets	a	Boolean	indicating	whether	the	Wizard	Catalog	is	visible.
Read/write.

expression.WizardCatalogVisible

expression				Required.	An	expression	that	returns	the	Application	object.



Example

The	following	example	stores	the	current	state	of	the	Wizard	Catalog	in	order	to
restore	it	later.

Sub	WizardCatalogExample()

				Dim	blnWizardCatalog	As	Boolean

				'	Store	current	state	of	Wizard	Catalog.

				blnWizardCatalog	=	Application.WizardCatalogVisible

				'	Code	can	run	here	that	shows	or	hides	the	Wizard

				'	Catalog	as	necessary;	the	original	setting

				'	will	be	restored	at	the	end	of	the	procedure.

				'	Restore	original	state	of	Wizard	Catalog.

				Application.WizardCatalogVisible	=	blnWizardCatalog

End	Sub

	 	



WizardState	Property
Returns	or	sets	a	Long	indicating	the	current	Mail	Merge	wizard	step	for	a
publication.	The	WizardState	property	returns	a	number	that	equates	to	the
current	Mail	Merge	wizard	step;	a	zero	(0)	means	the	Mail	Merge	wizard	is
closed.	Read/write.

expression.WizardState

expression				Required.	An	expression	that	returns	a	MailMerge	object.



Example

This	example	displays	the	Mail	Merge	wizard	if	it	is	closed.

Sub	ShowMergeWizard()

				With	ActiveDocument.MailMerge

								If	.WizardState	=	0	Then

												.ShowWizard

								End	If

				End	With

End	Sub

	 	



Show	All



WizardTag	Property
Returns	or	sets	a	PbWizardTag	constant	indicating	the	function	of	a	specified
shape	with	respect	to	its	publication	design.	Read/write.

PbWizardTag	can	be	one	of	these	PbWizardTag	constants.
pbWizardTagAddress
pbWizardTagAddressGroup
pbWizardTagBriefDescriptionCaption
pbWizardTagBriefDescriptionGraphic
pbWizardTagBriefDescriptionSummary
pbWizardTagBriefDescriptionSummaryPrimary
pbWizardTagBriefDescriptionTitle
pbWizardTagBusinessDescription
pbWizardTagCustomerMailingAddress
pbWizardTagDate
pbWizardTagEAPostalCodeBox
pbWizardTagEAPostalCodeGroup
pbWizardTagEAPostalCodeLine
pbWizardTagFloatingGraphicCaption
pbWizardTagHourTimeDateInformation
pbWizardTagJobTitle
pbWizardTagLinkedStoryPrimary
pbWizardTagLinkedStorySecondary
pbWizardTagLinkedStoryTertiary
pbWizardTagList
pbWizardTagLocation
pbWizardTagLogoGroup
pbWizardTagMainFloatingGraphic
pbWizardTagMainGraphic
pbWizardTagMainTitle
pbWizardTagMapPicture



pbWizardTagMasthead
pbWizardTagNewsletterTitle
pbWizardTagOrganizationName
pbWizardTagOrganizationNameGroup
pbWizardTagPageNumber
pbWizardTagPersonalName
pbWizardTagPersonalNameGroup
pbWizardTagPhoneFaxEmail
pbWizardTagPhoneFaxEmailGroup
pbWizardTagPhoneNumber
pbWizardTagPhotePlaceholderText
pbWizardTagPhotoPlaceholderFrame
pbWizardTagPublicationDate
pbWizardTagQuickPubContent
pbWizardTagQuickPubHeading
pbWizardTagQuickPubMessage
pbWizardTagQuickPubPicture
pbWizardTagReturnAddressLines
pbWizardTagStampBox
pbWizardTagStampBoxOutline
pbWizardTagStory
pbWizardTagStoryCaptionPrimary
pbWizardTagStoryCaptionSecondary
pbWizardTagStoryGraphicPrimary
pbWizardTagStoryGraphicSecondary
pbWizardTagStoryTitle
pbWizardTagTableOfContents
pbWizardTagTableOfContentsTitle
pbWizardTagTagLine
pbWizardTagTagLineGroup
pbWizardTagTime

expression.WizardTag



expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	combination	of	the	WizardTagInstance	property	and	the	WizardTag
property	uniquely	defines	every	shape	in	a	publication.



Example

The	following	example	displays	the	wizard	tag	and	wizard	tag	instance
information	for	all	the	shapes	on	page	one	of	the	active	publication.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop

								Debug.Print	"Shape:	"	&	.Name

								Debug.Print	"				Wizard	tag:	"	&	.WizardTag

								Debug.Print	"				Wizard	tag	instance:	"	_

												&	.WizardTagInstance

				End	With

Next	shpLoop

	 	



WizardTagInstance	Property
Returns	or	sets	a	Long	indicating	the	instance	of	the	specified	shape	compared
with	other	shapes	having	the	same	wizard	tag.	Read/write.

expression.WizardTagInstance

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

The	combination	of	the	WizardTagInstance	property	and	the	WizardTag
property	uniquely	defines	every	shape	in	a	publication.



Example

The	following	example	displays	the	wizard	tag	and	wizard	tag	instance
information	for	all	the	shapes	on	page	one	of	the	active	publication.

Dim	shpLoop	As	Shape

For	Each	shpLoop	In	ActiveDocument.Pages(1).Shapes

				With	shpLoop

								Debug.Print	"Shape:	"	&	.Name

								Debug.Print	"				Wizard	tag:	"	&	.WizardTag

								Debug.Print	"				Wizard	tag	instance:	"	_

												&	.WizardTagInstance

				End	With

Next	shpLoop

	 	



XOffsetWithinReaderSpread
Property
Returns	a	Single	that	represents	the	distance	(in	points)	from	the	left	edge	of	the
reader	spread	to	the	left	edge	of	the	page.	Read-only.

expression.XOffsetWithinReaderSpread

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	shape	on	the	second	and	third	pages	of	the	active
publication	and	then	sets	the	position	of	the	shape	on	the	third	page	to	the
diagonally	opposite	corner	of	the	page	from	the	shape	on	the	second	page.	For
this	example	to	work,	the	active	publication	must	have	at	least	three	pages.

Sub	OffsetShapePositions()

				Dim	shpOne	As	Shape

				Dim	intLeft	As	Integer

				Dim	intTop	As	Integer

				Dim	intWidth	As	Integer

				Dim	intHeight	As	Integer

				With	ActiveDocument

								.ViewTwoPageSpread	=	True

								With	.Pages

												intWidth	=	150

												intHeight	=	150

												intLeft	=	(.Item(2).Width	/	2)	-	intWidth

												intTop	=	InchesToPoints(7)

												Set	shpOne	=	.Item(2).Shapes.AddShape	_

																(Type:=msoShape5pointStar,	Left:=intLeft,	_

																Top:=intTop,	Width:=intWidth,	Height:=intHeight)

												intLeft	=	(.Item(3).XOffsetWithinReaderSpread	-	_

																.Item(2).XOffsetWithinReaderSpread)	+	(.Item(2)	_

																.Width	-	shpOne.Left	-	shpOne.Width)

												intTop	=	(.Item(3).YOffsetWithinReaderSpread	-	_

																.Item(2).YOffsetWithinReaderSpread)	+	(.Item(2)	_

																.Height	-	shpOne.Top	-	shpOne.Height)

												.Item(2).Shapes.AddShape	Type:=msoShape5pointStar,	_

																Left:=intLeft,	Top:=intTop,	Width:=intWidth,	_

																Height:=intHeight

								End	With

				End	With

End	Sub

	 	





Show	All



Yellow	Property
Sets	or	returns	a	Long	that	represents	the	yellow	component	of	a	CMYK	color.
Value	can	be	any	number	between	0	and	255.	Read/write.

expression.Yellow

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	two	new	shapes	and	then	sets	the	CMYK	fill	color	for	one
shape	and	sets	the	CMYK	values	of	the	second	shape	to	the	same	CMYK	values.

Sub	ReturnAndSetCMYK()

				Dim	lngCyan	As	Long

				Dim	lngMagenta	As	Long

				Dim	lngYellow	As	Long

				Dim	lngBlack	As	Long

				Dim	shpHeart	As	Shape

				Dim	shpStar	As	Shape

				Set	shpHeart	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShapeHeart,	Left:=100,	_

								Top:=100,	Width:=100,	Height:=100)

				Set	shpStar	=	ActiveDocument.Pages(1).Shapes.AddShape	_

								(Type:=msoShape5pointStar,	Left:=200,	_

								Top:=100,	Width:=150,	Height:=150)

				With	shpHeart.Fill.ForeColor.CMYK

							.SetCMYK	10,	80,	200,	30

								lngCyan	=	.Cyan

								lngMagenta	=	.Magenta

								lngYellow	=	.Yellow

								lngBlack	=	.Black

				End	With

				'Sets	new	shape	to	current	shapes	CMYK	colors

				shpStar.Fill.ForeColor.CMYK.SetCMYK	_

								Cyan:=lngCyan,	Magenta:=lngMagenta,	_

								Yellow:=lngYellow,	Black:=lngBlack

End	Sub

	 	



YOffsetWithinReaderSpread
Property
Returns	a	Single	that	represents	the	distance	(in	points)	from	the	top	edge	of	the
reader	spread	to	the	top	edge	of	the	page.	Read-only.

expression.YOffsetWithinReaderSpread

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

This	example	creates	a	shape	on	the	second	and	third	pages	of	the	active
publication	and	then	sets	the	position	of	the	shape	on	the	third	page	to	the
diagonally	opposite	corner	of	the	page	from	the	shape	on	the	second	page.	For
this	example	to	work,	the	active	publication	must	have	at	least	three	pages.

Sub	OffsetShapePositions()

				Dim	shpOne	As	Shape

				Dim	intLeft	As	Integer

				Dim	intTop	As	Integer

				Dim	intWidth	As	Integer

				Dim	intHeight	As	Integer

				With	ActiveDocument

								.ViewTwoPageSpread	=	True

								With	.Pages

												intWidth	=	150

												intHeight	=	150

												intLeft	=	(.Item(2).Width	/	2)	-	intWidth

												intTop	=	InchesToPoints(7)

												Set	shpOne	=	.Item(2).Shapes.AddShape	_

																(Type:=msoShape5pointStar,	Left:=intLeft,	_

																Top:=intTop,	Width:=intWidth,	Height:=intHeight)

												intLeft	=	(.Item(3).XOffsetWithinReaderSpread	-	_

																.Item(2).XOffsetWithinReaderSpread)	+	(.Item(2)	_

																.Width	-	shpOne.Left	-	shpOne.Width)

												intTop	=	(.Item(3).YOffsetWithinReaderSpread	-	_

																.Item(2).YOffsetWithinReaderSpread)	+	(.Item(2)	_

																.Height	-	shpOne.Top	-	shpOne.Height)

												.Item(2).Shapes.AddShape	Type:=msoShape5pointStar,	_

																Left:=intLeft,	Top:=intTop,	Width:=intWidth,	_

																Height:=intHeight

								End	With

				End	With

End	Sub

	 	





Show	All



Zoom	Property
Returns	or	sets	a	PbZoom	constant	or	a	value	between	10	and	400	indicating	the
zoom	setting	of	the	specified	view.	Read/write.

PbZoom	can	be	one	of	these	PbZoom	constants.
pbZoomFitSelection	Resizes	the	page	view	to	the	size	of	the	current	selection.
pbZoomPageWidth	Resizes	the	page	view	to	the	width	of	the	publication.
pbZoomWholePage	Resizes	the	page	view	to	the	size	of	a	whole	page.

expression.Zoom

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Example

The	following	example	sets	the	zoom	for	the	active	publication	so	that	the	entire
page	fits	on	the	screen.

ActiveDocument.ActiveView.Zoom	=	pbZoomWholePage

	 	



ZOrderPosition	Property
Returns	a	Long	indicating	the	position	of	the	specified	shape	or	shape	range	in
the	z-order.	Read-only.

expression.ZOrderPosition

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.



Remarks

A	shape's	position	in	the	z-order	corresponds	to	the	shape's	index	number	in	the
Shapes	collection.	For	example,	if	there	are	four	shapes	on	the	page,	the
expression	ActiveDocument.Pages(1).Shapes(1)	returns	the	shape	at	the	back
of	the	z-order,	and	the	expression	ActiveDocument.Pages(1).Shapes(4)	returns
the	shape	at	the	front	of	the	z-order.

Whenever	you	add	a	new	shape	to	a	collection,	it's	added	to	the	front	of	the	z-
order	by	default.

To	set	the	shape's	position	in	the	z-order,	use	the	ZOrder	method.



Example

This	example	adds	an	oval	to	the	active	publication,	and	then	places	the	oval
second	from	the	back	in	the	z-order	if	there	is	at	least	one	other	shape	on	the
page.

With	ActiveDocument.Pages(1).Shapes	_

								.AddShape(Type:=msoShapeOval,	_

								Left:=100,	Top:=100,	Width:=100,	Height:=300)

				Do	While	.ZOrderPosition	>	2

								.ZOrder	msoSendBackward

				Loop

End	With

	 	



BeforeClose	Event
Occurs	immediately	before	any	open	document	closes.

Private	Sub	Document_BeforeClose(Cancel	As	Boolean)

Cancel	False	when	the	event	occurs.	If	the	event	procedure	sets	this	argument	to
True,	the	document	doesn't	close	when	the	procedure	is	finished.



Remarks

For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Document	Object.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	closing	a
document.	For	this	example	to	work,	you	must	place	this	code	into	the
ThisDocument	module.

Private	Sub	Document_BeforeClose(Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Do	you	really	want	to	close	"	_

								&	"the	document?",	vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub

	 	



DocumentBeforeClose	Event
Occurs	immediately	before	any	open	document	closes.

Private	Sub	object_DocumentBeforeClose(ByVal	Doc	As	Document,	Cancel
As	Boolean)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	document	that's	being	closed.

Cancel	Optional.	False	when	the	event	occurs.	If	the	event	procedure	sets	this
argument	to	True,	the	document	doesn't	close	when	the	procedure	is	finished.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Microsoft	Publisher	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	prompts	the	user	for	a	yes	or	no	response	before	closing	a
document.	This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the
class	must	be	correctly	initialized,	using	an	example	similar	to	the	SetPubApp
routine	below,	in	order	to	see	this	example	work.

Private	WithEvents	PubApp	As	Application

Sub	SetPubApp()

				Set	PubApp	=	Publisher.Application

End	Sub

Private	Sub	PubApp_DocumentBeforeClose(ByVal	Doc	As	Document,	Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Do	you	really	want	to	close	"	_

								&	"the	document?",	vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub

	 	



DocumentOpen	Event
Occurs	when	opening	a	document.

Private	Sub	object_DocumentOpen(ByVal	Doc	As	Document)

object				An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Application	Object.

Doc				Document.	The	document	that's	being	opened.



Example

This	example	displays	a	message	with	the	document's	name	when	opening	a
document.

Private	Sub	appPub_DocumentOpen(ByVal	Doc	As	Document)

				MsgBox	"Please	wait.	"	&	Doc.Name	&	"	is	opening."

End	Sub

	 	



MailMergeAfterMerge	Event
Occurs	after	all	records	in	a	mail	merge	have	merged	successfully.

Private	Sub	object_MailMergeAfterMerge(ByVal	Doc	As	Document)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	displays	a	message	stating	that	all	records	in	the	specified
document	are	finished	merging.

Private	Sub	MailMergeApp_MailMergeAfterMerge(ByVal	Doc	As	Document)

				MsgBox	"Your	mail	merge	on	"	&	_

								ActiveDocument.Name	&	"	is	now	finished."

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	General
Declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	



MailMergeAfterRecordMerge	Event
Occurs	after	each	record	in	the	data	source	successfully	merges	in	a	mail	merge.

Private	Sub	object_MailMergeAfterRecordMerge(ByVal	Doc	As	Document)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.



Remarks

If	you	maintain	a	customer	management	database,	you	can	use	the
MailMergeAfterRecordMerge	event	to	update	the	database	for	each	merged
record.

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	displays	a	message	with	the	value	of	the	first	and	second	fields	in
the	record	that	has	just	finished	merging.

Private	Sub	MailMergeApp_MailMergeAfterRecordMerge(ByVal	Doc	As	Document)

				With	ActiveDocument.MailMerge.DataSource

								MsgBox	.DataFields.Item(3).Value	&	"	"	&	_

												.DataFields.Item(2).Value	&	"	is	finished	merging."

				End	With

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	General
Declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	



MailMergeBeforeMerge	Event
Occurs	when	a	merge	is	executed	before	any	records	in	a	mail	merge	have
merged.

Private	Sub	object_MailMergeBeforeMerge(ByVal	Doc	As	Document,	ByVal
StartRecord	As	Long,	ByVal	EndRecord	As	Long,	Cancel	As	Boolean)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.

StartRecord	Required.	The	first	record	in	the	data	source	to	include	in	the	mail
merge.

EndRecord	Required.	The	last	record	in	the	data	source	to	include	in	the	mail
merge.

Cancel	Optional.	True	stops	the	mail	merge	process	before	it	starts.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	displays	a	message	before	the	mail	merge	process	begins,	asking
the	user	if	they	want	to	continue.	If	the	user	clicks	No,	the	merge	process	is
cancelled.

Private	Sub	MailMergeApp_MailMergeBeforeMerge(ByVal	Doc	As	Document,	_

				ByVal	StartRecord	As	Long,	ByVal	EndRecord	As	Long,	_

				Cancel	As	Boolean)

				Dim	intVBAnswer	As	Integer

				Set	Doc	=	ActiveDocument

				'Request	whether	the	user	wants	to	continue	with	the	merge

				intVBAnswer	=	MsgBox("Mail	Merge	for	"	&	Doc.Name	&	_

								"	is	now	starting.		Do	you	want	to	continue?",	_

								vbYesNo,	"Event!")

				'If	user's	response	to	question	was	No,	then	cancel	merge	process

				'and	deliver	a	message	to	the	user	stating	the	merge	is	cancelled

				If	intVBAnswer	=	vbNo	Then

								Cancel	=	True

								MsgBox	"You	have	cancelled	mail	merge	for	"	&	_

												Doc.Name	&	"."

				End	If

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	General
Declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	





MailMergeBeforeRecordMerge	Event
Occurs	as	a	merge	is	executed	for	the	individual	records	in	a	merge.

Private	Sub	object_MailMergeBeforeRecordMerge(ByVal	Doc	As
Document,	Cancel	As	Boolean)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.

Cancel	Optional.	True	stops	the	mail	merge	process	for	the	current	record	only
before	it	starts.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	verifies	that	the	length	of	the	ZIP	code	(which	in	this	example	is
field	number	six)	is	less	than	five	and	if	it	is,	cancels	the	merge	for	that	record
only.

Private	Sub	MailMergeApp_MailMergeBeforeRecordMerge(ByVal	_

				Doc	As	Document,	Cancel	As	Boolean)

								Dim	intZipLength	As	Integer

								intZipLength	=	Len(ActiveDocument.MailMerge	_

												.DataSource.DataFields(6).Value)

								'Cancel	merge	of	this	record	only	if

								'the	ZIP	code	is	less	than	five	digits

								If	intZipLength	<	5	Then

												Cancel	=	True

								End	If

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	global
declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	



MailMergeDataSourceLoad	Event
Occurs	when	the	data	source	is	loaded	for	a	mail	merge.

Private	Sub	object_MailMergeDataSourceLoad(ByVal	Doc	As	Document)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	displays	a	message	with	the	data	source	file	name	when	the	data
source	starts	loading.

Private	Sub	MailMergeApp_MailMergeDataSourceLoad(ByVal	Doc	As	Document)

				Dim	strDSName	As	String

				Dim	intDSLength	As	Integer

				Dim	intDSStart	As	Integer

				'Pull	out	of	the	Name	property	(which	includes	path	and	filename)

				'only	the	filename	using	VB	commands	Len,	InStrRev,	and	Right

				intDSLength	=	Len(ActiveDocument.MailMerge.DataSource.Name)

				intDSStart	=	InStrRev(ActiveDocument.MailMerge.DataSource.Name,	"\")

				intDSStart	=	intDSLength	-	intDSStart

				strDSName	=	Right(ActiveDocument.MailMerge.DataSource.Name,	intDSStart)

				'Deliver	a	message	to	user	when	data	source	is	loading

				MsgBox	"Your	data	source,	"	&	strDSName	&	",	is	now	loading."

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	General
Declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	



MailMergeDataSourceValidate	Event
Occurs	when	a	user	performs	address	verification	by	clicking	Validate	in	the
Mail	Merge	Recipients	dialog	box.

Private	Sub	object_MailMergeDataSourceValidate(ByVal	Doc	As
Document,	Handled	As	Boolean)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.

Handled	Optional.	True	runs	the	accompanying	validation	code	against	the	mail
merge	data	source.	False	cancels	the	data	source	validation.



Remarks

If	you	don't	have	address	verification	software	installed	on	your	computer,	use
the	MailMergeDataSourceValidate	event	to	create	simple	filtering	routines,
such	as	looping	through	records	to	check	the	postal	codes	and	remove	any	that
are	non-U.S.	Non-U.S.	users	can	filter	out	all	U.S.	postal	codes	by	modifying	the
code	sample	below	and	using	Visual	Basic	commands	to	search	for	text	or
special	characters.

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	validates	ZIP	codes	in	the	attached	data	source	for	five	digits.	If
the	length	of	the	ZIP	code	is	less	than	five,	the	record	is	excluded	from	the	mail
merge	process.	This	example	assumes	the	postal	codes	are	U.S.	ZIP	codes.	You
could	modify	this	example	to	search	for	ZIP	codes	that	have	a	4-digit	locator
code	appended	to	the	ZIP	code,	and	then	exclude	all	records	that	don't	contain
the	locator	code.

Private	Sub	MailMergeApp_MailMergeDataSourceValidate(	_

								ByVal	Doc	As	Document,	_

								Handled	As	Boolean)

				Dim	intCount	As	Integer

				Handled	=	True

				On	Error	Resume	Next

				With	ActiveDocument.MailMerge.DataSource

								'Set	the	active	record	equal	to	the	first	included	record	in	the

								'data	source

								.ActiveRecord	=	1

								Do

												intCount	=	intCount	+	1

												'Set	the	condition	that	field	six	must	be	greater	than	or

												'equal	to	five

												If	Len(.DataFields.Item(6).Value)	<	5	Then

																'Exclude	the	record	if	field	six	is	less	than	five	digits

																.Included	=	False

																'Mark	the	record	as	containing	an	invalid	address	field

																.InvalidAddress	=	True

																'Specify	the	comment	attached	to	the	record	explaining

																'why	the	record	was	excluded	from	the	mail	merge

																.InvalidComments	=	"The	ZIP	code	for	this	record	is	"	_

																				&	"less	than	five	digits.	It	will	be	removed	"	_

																				&	"from	the	mail	merge	process."

												End	If



												'Move	the	record	to	the	next	record	in	the	data	source

												.ActiveRecord	=	.ActiveRecord	+	1

								'End	the	loop	when	the	counter	variable

								'equals	the	number	of	records	in	the	data	source

								Loop	Until	intCount	=	.RecordCount

				End	With

End	Sub

	 	

For	this	event	to	occur,	you	must	place	the	following	line	of	code	in	the	General
Declarations	section	of	your	module	and	run	the	following	initialization	routine.

Private	WithEvents	MailMergeApp	As	Application

Sub	InitializeMailMergeApp()

				Set	MailMergeApp	=	Publisher.Application

End	Sub

	 	



MailMergeWizardStateChange	Event
Occurs	when	a	user	changes	from	a	specified	step	to	a	specified	step	in	the	Mail
Merge	Wizard.

Private	Sub	object_MailMergeWizardStateChange(ByVal	Doc	As
Document,	FromState	As	Long)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Doc	Required.	The	mail	merge	main	document.

FromState					Optional.	The	Mail	Merge	Wizard	step	from	which	a	user	is
moving.



Remarks

To	access	the	Application	object	events,	declare	an	Application	object	variable
in	the	General	Declarations	section	of	a	code	module.	Then	set	the	variable	equal
to	the	Application	object	for	which	you	want	to	access	events.	For	information
about	using	events	with	the	Publisher	Application	object,	see	Using	Events	with
the	Application	Object.



Example

This	example	displays	a	message	when	a	users	moves	from	step	three	of	the
Mail	Merge	Wizard	to	step	four.	Based	on	the	user's	answer	to	the	message,	the
user	will	either	continue	on	to	step	four	or	return	to	step	three.

Private	Sub	MailMergeApp_MailMergeWizardStateChange(ByVal	Doc	As	Document,	_

								ByVal	FromState	As	Long)

			Select	Case	FromState

								Case	1

												MsgBox	"Now	you	will	build	your	publication	merge	"	&	_

																"by	adding	fields	to	your	publication."

								Case	2

												MsgBox	"Now	you	will	see	your	publication	"	&	_

																"merged	with	the	records	in	the	data	source."

								Case	3

												MsgBox	"Now	you	will	complete	the	mail	merge	process."

				End	Select

End	Sub

	 	



NewDocument	Event
Occurs	when	a	new	publication	is	created.

Private	Sub	object_NewDocument(ByVal	Doc	As	Document)

object				An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

Doc	The	new	document.



Example

This	example	displays	a	message	when	a	new	publication	is	created.

Private	Sub	appPub_NewDocument(ByVal	Doc	As	Document)

				MsgBox	"This	is	a	new	publication."

End	Sub

	 	



Open	Event
Occurs	when	a	publication	is	opening.

Private	Sub	object_Open(	)

object				A	variable	which	references	an	object	of	type	Document	declared	with
events	in	a	class	module.



Remarks

To	access	the	Document	object	events,	declare	a	Document	object	variable	in
the	General	Declarations	section	of	a	class	module,	then	set	the	variable	equal	to
the	Document	object	for	which	you	want	to	access	events.

For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Document	Object.



Example

This	example	displays	a	message	when	a	publication	is	opened.	(The	procedure
can	be	stored	in	the	ThisDocument	module	of	a	publication.)

Private	Sub	Document_Open()

				MsgBox	"This	publication	is	copyrighted."

End	Sub

	 	



Quit	Event
Occurs	when	the	user	quits	Microsoft	Publisher.

Private	Sub	object_Quit(	)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.



Remarks

For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	ensures	that	the	Standard	and	Formatting	toolbars	are	visible
before	the	user	quits	Publisher.	As	a	result,	when	Publisher	is	started	again,	the
Standard	and	Formatting	toolbars	will	be	visible.

This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the	class	must	be
correctly	initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appPublisher	as	Publisher.Application

Private	Sub	appPublisher_Quit()

				CommandBars("Standard").Visible	=	True

				CommandBars("Formatting").Visible	=	True

End	Sub

	 	



Redo	Event
Occurs	when	reversing	the	last	action	that	was	undone.

Private	Sub	object_Redo(	)

object				Required.	A	variable	which	references	an	object	of	type	Document
declared	with	events	in	a	class	module.



Remarks

The	Redo	event	occurs	immediately	after	the	action	is	redone.

If	multiple	actions	are	redone,	the	Redo	event	only	occurs	once	after	all	the
actions	are	complete.

For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Document	Object.



Example

This	example	displays	a	message	when	a	user	clicks	the	Redo	button	on	the
Standard	toolbar	or	selects	Redo	from	the	Edit	menu.	For	this	routine	to	work
with	the	current	publication,	you	must	put	it	in	the	ThisDocument	module.

Private	Sub	DocPub_Redo()

				MsgBox	"Your	last	undo	has	been	reversed."

End	Sub

	 	

To	trap	this	event	from	a	non-Publisher	project,	you	must	place	the	following
code	in	the	General	Declarations	section	of	your	module	and	run	the
InitiatePubApp	routine.

Private	WithEvents	DocPub	As	Publisher.Document

Sub	InitiatePubApp()

				Set	DocPub	=	Publisher.ActiveDocument

End	Sub

	 	



ShapesAdded	Event
Occurs	when	one	or	more	new	shapes	are	added	to	a	publication.	This	event
occurs	whether	shapes	are	added	manually	or	programmatically.

Private	Sub	Document_ShapesAdded()



Example

This	example	displays	a	message	whenever	a	new	shape	is	added	to	the	active
publication.	For	this	example	to	work,	you	must	place	this	code	into	the
ThisDocument	module.

Private	Sub	PubDoc_ShapesAdded()

				MsgBox	"You	just	added	a	new	shape."

End	Sub

	 	



ShapesRemoved	Event
Occurs	when	a	shape	is	deleted	from	a	publication.

Private	Sub	Document_ShapesRemoved()



Example

This	example	displays	a	message	whenever	a	shape	is	removed	from	the	active
publication.	For	this	example	to	work,	you	must	place	this	code	into	the
ThisDocument	module.

Private	Sub	Document_ShapesRemoved()

				MsgBox	"You	just	deleted	one	or	more	shapes."

End	Sub

	 	



Undo	Event
Occurs	when	a	user	undoes	the	last	action	performed.

Private	Sub	object_Undo(	)

object				Required.	A	variable	which	references	an	object	of	type	Document
declared	with	events	in	a	class	module.



Remarks

The	Undo	event	occurs	immediately	after	the	action	is	undone.

If	multiple	actions	are	undone,	the	Undo	event	only	occurs	once	after	all	the
actions	are	undone.

For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Document	Object.



Example

This	example	displays	a	message	when	the	user	clicks	on	the	Undo	button	on	the
Standard	toolbar	or	selects	Undo	from	the	Edit	menu.	For	this	routine	to	work
with	the	current	publication,	you	must	put	it	in	the	ThisDocument	module.

Private	Sub	DocPub_Undo()

				MsgBox	"Your	last	action	has	been	reversed."

End	Sub

	 	

To	trap	this	event	from	a	non-Publisher	project,	you	must	place	the	following
code	in	the	General	Declarations	section	of	your	module	and	run	the
InitiatePubApp	routine.

Private	WithEvents	DocPub	As	Publisher.Document

Sub	InitiatePubApp()

				Set	DocPub	=	Publisher.ActiveDocument

End	Sub

	 	



WindowActivate	Event
Occurs	when	the	application	window	is	activated.

Private	Sub	object_WindowActivate(ByVal	Wn	As	Window)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Wn				Required.	The	window	that's	being	activated.



Remarks

For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	maximizes	the	Microsoft	Publisher	window	when	it's	activated.
This	code	must	be	placed	in	a	class	module,	and	an	instance	of	the	class	must	be
correctly	initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appPublisher	as	Publisher.Application

Private	Sub	appPublisher_WindowActivate	_

								(ByVal	Wn	As	Window)

				Wn.WindowState	=	pbWindowStateMaximize

End	Sub

	 	



WindowDeactivate	Event
Occurs	when	the	application	window	is	deactivated.

Private	Sub	object_WindowDeactivate(ByVal	Wn	As	Window)

object				A	variable	which	references	an	object	of	type	Application	declared	with
events	in	a	class	module.

Wn				Required.	The	window	that's	being	deactivated.



Remarks

For	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.



Example

This	example	minimizes	the	window	when	it's	deactivated.	This	code	must	be
placed	in	a	class	module,	and	an	instance	of	the	class	must	be	correctly
initialized	in	order	to	see	this	example	work;	see	Using	Events	with	the
Application	Object	for	directions	on	how	to	accomplish	this.

Public	WithEvents	appPublisher	as	Publisher.Application

Private	Sub	appPublisher_WindowDeactivate	_

								(ByVal	Wn	As	Window)

				Wn.WindowState	=	pbWindowStateMinimize

End	Sub

	 	



WindowPageChange	Event
Occurs	when	switching	the	view	from	one	page	to	another	page	in	a	publication.

Private	Sub	object_WindowPageChange(ByVal	Vw	As	View)

object				An	object	of	type	Application	declared	with	events	in	a	class	module.
For	more	information	about	using	events	with	the	Application	object,	see	Using
Events	with	the	Application	Object.

vw				The	new	view	that	includes	the	page	to	which	the	view	has	been	switched.



Example

This	example	changes	the	view	to	display	the	whole	page	when	switching	to	a
new	page	in	a	publication.	For	this	example	to	work,	you	must	place	the
WithEvents	declaration	in	the	General	Declarations	section	of	a	class	module
and	run	the	InitializeEvents	routine.

Private	WithEvents	PubApp	As	Publisher.Application

Sub	InitializeEvents()

				Set	PubApp	=	Publisher.Application

End	Sub

Private	Sub	PubApp_WindowPageChange(ByVal	Vw	As	View)

				Vw.Zoom	=	pbZoomWholePage

End	Sub

	 	



WizardAfterChange	Event
Occurs	after	the	user	chooses	an	option	in	the	wizard	pane	that	changes	any	of
the	following	settings	in	the	publication:	page	layout	(page	size,	fold	type,
orientation,	label	product),	print	setup	(paper	size,	print	tiling),	adding	or
deleting	objects,	adding	or	deleting	pages,	or	object	or	page	formatting	(size,
position,	fill,	border,	background,	default	text,	text	formatting).

Private	Sub	object_WizardAfterChange(	)

object				A	variable	which	references	an	object	of	type	Document	declared	with
events	in	a	class	module.



Remarks

The	WizardAfterChange	event	only	occurs	once	regardless	of	the	scope	or
number	of	individual	modifications	made	to	the	publication.

To	access	the	Document	object	events,	declare	a	Document	object	variable	in
the	General	Declarations	section	of	a	class	module,	then	set	the	variable	equal	to
the	Document	object	for	which	you	want	to	access	events.

For	more	information	about	using	events	with	the	Document	object,	see	Using
Events	with	the	Document	Object.



Example

This	example	displays	a	message	when	a	publication	is	altered	using	the	wizard
pane.	(The	procedure	can	be	stored	in	the	ThisDocument	module	of	a
publication.)

Private	Sub	Document_WizardAfterChange()

				MsgBox	"Remember	to	save	changes	made	"	_

								&	"through	the	wizard	pane!"

End	Sub

	 	



Show	All



Publisher	Constants
This	topic	provides	a	list	of	all	enumerated	constants	in	the	Publisher	object
model.

PbCalendarType

Constant Value
pbCalendarTypeArabicHijri 1
pbCalendarTypeChineseNational 3
pbCalendarTypeHebrewLunar 2
pbCalendarTypeJapaneseEmperor 4
pbCalendarTypeKoreanDanki 6
pbCalendarTypeSakaEra 7
pbCalendarTypeThaiBuddhist 5
pbCalendarTypeTranslitEnglish 8
pbCalendarTypeTranslitFrench 9
pbCalendarTypeWestern 0

PbCellDiagonalType

Constant Value
pbTableCellDiagonalDown 2
pbTableCellDiagonalMixed -2
pbTableCellDiagonalNone 0
pbTableCellDiagonalUp 1

PbCollapseDirection

Constant Value
pbCollapseEnd 2
pbCollapseStart 1



PbColorMode

Constant Value
pbColorModeBW 3
pbColorModeDesktop 0
pbColorModeProcess 1
pbColorModeSpot 2
pbColorModeSpotAndProcess 4

PbColorModel

Constant Value
pbColorModelCMYK 2
pbColorModelGreyScale 3
pbColorModelRGB 1
pbColorModelUnknown 4

PbColorScheme

Constant Value
pbColorSchemeAlpine -1
pbColorSchemeAqua -2
pbColorSchemeBerry -3
pbColorSchemeBlackGray -4
pbColorSchemeBlackWhite -58
pbColorSchemeBrown -5
pbColorSchemeBurgundy -6
pbColorSchemeCavern -7
pbColorSchemeCelebration -1004
pbColorSchemeCherry -1002
pbColorSchemeCitrus -8
pbColorSchemeClay -9
pbColorSchemeCranberry -10
pbColorSchemeCrocus -11



pbColorSchemeCustom 1
pbColorSchemeDarkBlue -61
pbColorSchemeDesert -12
pbColorSchemeField -13
pbColorSchemeFirstUserDefined 2000
pbColorSchemeFjord -14
pbColorSchemeFloral -15
pbColorSchemeGarnet -16
pbColorSchemeGlacier -17
pbColorSchemeGreen -59
pbColorSchemeHeather -18
pbColorSchemeIris -19
pbColorSchemeIsland -20
pbColorSchemeIvy -21
pbColorSchemeLagoon -22
pbColorSchemeLilac -23
pbColorSchemeMahogany -24
pbColorSchemeMarine -25
pbColorSchemeMaroon -26
pbColorSchemeMeadow -27
pbColorSchemeMist -28
pbColorSchemeMistletoe -29
pbColorSchemeMonarch -41
pbColorSchemeMoss -30
pbColorSchemeMountain -31
pbColorSchemeMulberry -32
pbColorSchemeNavy -33
pbColorSchemeNutmeg -34
pbColorSchemeOcean -1000
pbColorSchemeOlive -35
pbColorSchemeOrange -1003
pbColorSchemeOrchid -36
pbColorSchemeParrot -37



pbColorSchemePeach -1005
pbColorSchemePebbles -38
pbColorSchemePrairie -39
pbColorSchemePurple -1001
pbColorSchemeRainForest -40
pbColorSchemeRed -60
pbColorSchemeRedwood -42
pbColorSchemeReef -43
pbColorSchemeSagebrush -44
pbColorSchemeSapphire -45
pbColorSchemeShamrock -46
pbColorSchemeSienna -47
pbColorSchemeSpice -48
pbColorSchemeSunrise -49
pbColorSchemeSunset -50
pbColorSchemeTeal -51
pbColorSchemeTidepool -52
pbColorSchemeTropics -53
pbColorSchemeTrout -54
pbColorSchemeVineyard -55
pbColorSchemeWaterfall -56
pbColorSchemeWildflower -57

PbColorType

Constant Value
pbColorTypeCMS 4
pbColorTypeCMYK 3
pbColorTypeInk 5
pbColorTypeMixed -2
pbColorTypeRGB 1
pbColorTypeScheme 2



PbCommandButtonType

Constant Value
pbCommandButtonReset 2
pbCommandButtonSubmit 1

PbDateTimeFormat

Constant Value
pbDateEnglish 8
pbDateISO 4
pbDateLong 2
pbDateLongDay 1
pbDateMon_Yr 10
pbDateMonthYr 9
pbDateShort 0
pbDateShortAbb 7
pbDateShortAlt 3
pbDateShortMon 5
pbDateShortSlash 6
pbDateTimeEastAsia1 17
pbDateTimeEastAsia2 18
pbDateTimeEastAsia3 19
pbDateTimeEastAsia4 20
pbDateTimeEastAsia5 21
pbTime24 15
pbTimeDatePM 11
pbTimeDateSecPM 12
pbTimePM 13
pbTimeSec24 16
pbTimeSecPM 14

PbDirectionType



Constant Value
pbDirectionLeftToRight 1
pbDirectionRightToLeft 2

PbFieldType

Constant Value
pbFieldDateTime 4
pbFieldHyperlinkAbsolutePage 11
pbFieldHyperlinkEmail 12
pbFieldHyperlinkFile 13
pbFieldHyperlinkRelativePage 10
pbFieldHyperlinkURL 9
pbFieldIHIV 6
pbFieldMailMerge 5
pbFieldNone 0
pbFieldPageNumber 1
pbFieldPageNumberNext 2
pbFieldPageNumberPrev 3
pbFieldPhoneticGuide 7
pbFieldWizardSampleText 8

PbFileFormat

Constant Value
pbFileHTMLFiltered 7
pbFilePublication 1
pbFilePublicationHTML 4
pbFilePublisher2000 3
pbFilePublisher98 2
pbFileRTF 6
pbFileWebArchive 5

PbFilterComparison



Constant Value
pbComparisonEqual 0
pbComparisonGreaterThan 3
pbComparisonGreaterThanEqual 5
pbComparisonIsBlank 6
pbComparisonIsNotBlank 7
pbComparisonLessThan 2
pbComparisonLessThanEqual 4
pbComparisonNotEqual 1

PbFilterConjunction

Constant Value
pbConjunctionAnd 0
pbConjunctionOr 1

PbFontLicenseLimitations

Constant Value
pbFontEmbeddable 1
pbFontNotEmbeddable 3
pbFontPrintPreviewEmbeddable 2

PbFontScriptType

Constant Value
pbFontScriptArabic 7
pbFontScriptArmenian 5
pbFontScriptAsciiLatin 1
pbFontScriptAsciiSym 43
pbFontScriptBengali 9
pbFontScriptBopomofo 23
pbFontScriptBraille 41



pbFontScriptCanadianAbor 36
pbFontScriptCherokee 35
pbFontScriptCurrency 42
pbFontScriptCyrillic 4
pbFontScriptDefault 0
pbFontScriptDevanagari 8
pbFontScriptEthiopic 34
pbFontScriptEUDC 26
pbFontScriptGeorgian 20
pbFontScriptGreek 3
pbFontScriptGujarati 11
pbFontScriptGurmukhi 10
pbFontScriptHalfWidthKana 25
pbFontScriptHan 24
pbFontScriptHangul 21
pbFontScriptHanSurrogate 28
pbFontScriptHebrew 6
pbFontScriptKana 22
pbFontScriptKannada 15
pbFontScriptKhmer 39
pbFontScriptLao 18
pbFontScriptLatin 2
pbFontScriptMalayalam 16
pbFontScriptMixed -2
pbFontScriptMongolian 40
pbFontScriptMyanmar 32
pbFontScriptNonHanSurrogate 29
pbFontScriptOgham 37
pbFontScriptOriya 12
pbFontScriptRunic 38
pbFontScriptSinhala 33
pbFontScriptSyriac 30
pbFontScriptTamil 13



pbFontScriptTelugu 14
pbFontScriptThaana 31
pbFontScriptThai 17
pbFontScriptTibetan 19
pbFontScriptYi 27

PbFontSource

Constant Value
pbFontDocument 2
pbFontMissing 3
pbFontSystem 1

PbFontType

Constant Value
pbFontPrinter 2
pbFontRaster 3
pbFontTrueType 1
pbFontUnknown 4

PbHelpType

Constant Value
pbHelp 1
pbHelpActiveWindow 2
pbHelpPSSHelp 3

PbHlinkTargetType

Constant Value
pbHlinkTargetTypeEmail 2
pbHlinkTargetTypeFirstPage 3
pbHlinkTargetTypeLastPage 4



pbHlinkTargetTypeNextPage 5
pbHlinkTargetTypeNone 0
pbHlinkTargetTypePageID 7
pbHlinkTargetTypePreviousPage 6
pbHlinkTargetTypeURL 1

PbHorizontalPictureLocking

Constant Value
pbHorizontalLockingLeft 1
pbHorizontalLockingNone 0
pbHorizontalLockingRight 2
pbHorizontalLockingStretch 3

PbImageFormat

Constant Value
pbImageFormatCMYKJPEG 10
pbImageFormatDIB 7
pbImageFormatEMF 2
pbImageFormatGIF 8
pbImageFormatJPEG 5
pbImageFormatPICT 4
pbImageFormatPNG 6
pbImageFormatTIFF 9
pbImageFormatUNKNOWN 1
pbImageFormatWMF 3

PbInkName

Constant Value
pbInkNameBlack 4
pbInkNameCyan 1
pbInkNameMagenta 2



pbInkNameSpot1 257
pbInkNameSpot10 266
pbInkNameSpot11 267
pbInkNameSpot12 268
pbInkNameSpot2 258
pbInkNameSpot3 259
pbInkNameSpot4 260
pbInkNameSpot5 261
pbInkNameSpot6 262
pbInkNameSpot7 263
pbInkNameSpot8 264
pbInkNameSpot9 265
pbInkNameYellow 3

PbInksToPrint

Constant Value
pbInksToPrintAll 1
pbInksToPrintConvertSpotToProcess 3
pbInkstoPrintUsed 2

PbInlineAlignment

Constant Value
pbInlineAlignmentCharacter 0
pbInlineAlignmentLeft 1
pbInlineAlignmentMixed -2
pbInlineAlignmentRight 2

PbLineSpacingRule

Constant Value
pbLineSpacing1pt5 1
pbLineSpacingDouble 2



pbLineSpacingExactly 4
pbLineSpacingMixed -9999999
pbLineSpacingMultiple 5
pbLineSpacingSingle 0

PbLinkedFileStatus

Constant Value
pbLinkedFileMissing 2
pbLinkedFileModified 3
pbLinkedFileOK 1

PbListSeparator

Constant Value
pbListSeparatorColon 327680
pbListSeparatorDoubleHyphen 458752
pbListSeparatorDoubleParen 65536
pbListSeparatorDoubleSquare 393216
pbListSeparatorParenthesis 0
pbListSeparatorPeriod 131072
pbListSeparatorPlain 196608
pbListSeparatorSquare 262144
pbListSeparatorWideComma 524288

PbListType

Constant Value
pbListTypeAiueo 12
pbListTypeArabic 0
pbListTypeArabic1 46
pbListTypeArabic2 48
pbListTypeArabicLeadingZero 22
pbListTypeBullet 23



pbListTypeCardinalText 6
pbListTypeChnDbNum2 38
pbListTypeChnDbNum3 39
pbListTypeChosung 25
pbListTypeCirclenum 18
pbListTypeDAiueo 20
pbListTypeDbChar 14
pbListTypeDbNum1 10
pbListTypeDbNum2 11
pbListTypeDbNum3 16
pbListTypeDbNum4 17
pbListTypeDIroha 21
pbListTypeGanada 24
pbListTypeHebrew1 45
pbListTypeHebrew2 47
pbListTypeHindi1 49
pbListTypeHindi2 50
pbListTypeHindi3 51
pbListTypeHindi4 52
pbListTypeIroha 13
pbListTypeKorDbNum1 41
pbListTypeKorDbNum2 42
pbListTypeKorDbNum3 43
pbListTypeKorDbNum4 44
pbListTypeLowerCaseLetter 4
pbListTypeLowerCaseRoman 2
pbListTypeLowerCaseRussian 58
pbListTypeNone 255
pbListTypeOrdinal 5
pbListTypeOrdinalText 7
pbListTypeThai1 53
pbListTypeThai2 54
pbListTypeThai3 55



pbListTypeTpeDbNum2 34
pbListTypeTpeDbNum3 35
pbListTypeUpperCaseLetter 3
pbListTypeUpperCaseRoman 1
pbListTypeUpperCaseRussian 59
pbListTypeVietnamese1 56
pbListTypeZodiac1 30
pbListTypeZodiac2 31

PbMailMergeDataFieldType

Constant Value
pbMailMergeDataFieldPicture 1
pbMailMergeDataFieldString 0

PbMailMergeDataSource

Constant Value
pbMergeInfoFromODSO 5

PbMailMergeDestination

Constant Value
pbMergeToExistingPublication 3
pbMergeToNewPublication 2
pbSendToPrinter 1

PbMappedDataFields

Constant Value
pbAddress1 10
pbAddress2 11
pbAddress3 29
pbBusinessFax 17



pbBusinessPhone 16
pbCity 12
pbCompany 9
pbCountryRegion 15
pbCourtesyTitle 2
pbDepartment 30
pbEmailAddress 20
pbFirstName 3
pbHomeFax 19
pbHomePhone 18
pbJobTitle 8
pbLastName 5
pbMiddleName 4
pbNickname 7
pbPostalCode 14
pbRubyFirstName 27
pbRubyLastName 28
pbSpouseCourtesyTitle 22
pbSpouseFirstName 23
pbSpouseLastName 25
pbSpouseMiddleName 24
pbSpouseNickname 26
pbState 13
pbSuffix 6
pbUniqueIdentifier 1
pbWebPageURL 21

PbMasterPageType

Constant Value
pbMasterPageLeftPage 1
pbMasterPageRightPage 2



PbNavBarOrientation

Constant Value
pbNavBarOrientHorizontal 1
pbNavBarOrientVertical 2

PbOrientationType

Constant Value
pbOrientationLandscape 2
pbOrientationPortrait 1

PbOriginalFormat

Constant Value
pbOriginalPublicationFormat 1
pbPublisherFile 2

PbPageNumberFormat

Constant Value
pbPageNumberFormatAiueo 12
pbPageNumberFormatArabic 0
pbPageNumberFormatArabic1 46
pbPageNumberFormatArabic2 48
pbPageNumberFormatArabicLZ 22
pbPageNumberFormatCardtext 6
pbPageNumberFormatChnDbNum2 38
pbPageNumberFormatChnDbNum3 39
pbPageNumberFormatChosung 25
pbPageNumberFormatCirclenum 18
pbPageNumberFormatDAiueo 20
pbPageNumberFormatDbChar 14
pbPageNumberFormatDbNum1 10



pbPageNumberFormatDbNum2 11
pbPageNumberFormatDbNum3 16
pbPageNumberFormatDIroha 21
pbPageNumberFormatGanada 24
pbPageNumberFormatHebrew1 45
pbPageNumberFormatHebrew2 47
pbPageNumberFormatHindi1 49
pbPageNumberFormatHindi2 50
pbPageNumberFormatHindi3 51
pbPageNumberFormatHindi4 52
pbPageNumberFormatIroha 13
pbPageNumberFormatKorDbNum1 41
pbPageNumberFormatKorDbNum2 42
pbPageNumberFormatKorDbNum3 43
pbPageNumberFormatKorDbNum4 44
pbPageNumberFormatLCLetter 4
pbPageNumberFormatLCRoman 2
pbPageNumberFormatLCRus 58
pbPageNumberFormatOrdinal 5
pbPageNumberFormatOrdtext 7
pbPageNumberFormatThai1 53
pbPageNumberFormatThai2 54
pbPageNumberFormatThai3 55
pbPageNumberFormatTpeDbNum2 34
pbPageNumberFormatTpeDbNum3 35
pbPageNumberFormatUCLetter 3
pbPageNumberFormatUCRoman 1
pbPageNumberFormatUCRus 59
pbPageNumberFormatViet1 56
pbPageNumberFormatZodiac1 30
pbPageNumberFormatZodiac2 31

PbPageNumberType



Constant Value
pbPageNumberCurrent 1
pbPageNumberNextInStory 2
pbPageNumberPreviousInStory 3

PbPageType

Constant Value
pbPageLeftPage 1
pbPageMasterPage 4
pbPageRightPage 2
pbPageScratchPage 3

PbParagraphAlignmentType

Constant Value
pbParagraphAlignmentCenter 1
pbParagraphAlignmentDistribute 4
pbParagraphAlignmentDistributeAll 9
pbParagraphAlignmentDistributeCenterLast 10
pbParagraphAlignmentDistributeEastAsia 5
pbParagraphAlignmentInterCluster 8
pbParagraphAlignmentInterIdeograph 7
pbParagraphAlignmentInterWord 3
pbParagraphAlignmentJustified 6
pbParagraphAlignmentKashida 11
pbParagraphAlignmentLeft 0
pbParagraphAlignmentMixed -9999999
pbParagraphAlignmentRight 2

PbPersonalInfoSet

Constant Value
pbPersonalInfoHome 4



pbPersonalInfoOtherOrganization 3
pbPersonalInfoPrimaryBusiness 1
pbPersonalInfoSecondaryBusiness 2

PbPhoneticGuideAlignmentType

Constant Value
pbPhoneticGuideAlignmentCenter 3
pbPhoneticGuideAlignmentDefault 0
pbPhoneticGuideAlignmentLeft 4
pbPhoneticGuideAlignmentOneTwoOne 2
pbPhoneticGuideAlignmentRight 5
pbPhoneticGuideAlignmentZeroOneZero 1

PbPictureInsertAs

Constant Value
pbPictureInsertAsEmbedded 1
pbPictureInsertAsLinked 2
pbPictureInsertAsOriginalState 3

PbPictureResolution

Constant Value
pbPictureResolutionCommercialPrint_300dpi 3
pbPictureResolutionDefault 0
pbPictureResolutionDesktopPrint_150dpi 2
pbPictureResolutionWeb_96dpi 1

PbPlacementType

Constant Value
pbPlacementCenter 3
pbPlacementLeft 1



pbPlacementRight 2

PbPrintGraphics

Constant Value
pbPrintHighResolution 1
pbPrintLowResolution 2
pbPrintNoGraphics 3

PbPrintMode

Constant Value
pbPrintModeCompositeCMYK 3
pbPrintModeCompositeGrayscale 4
pbPrintModeCompositeRGB 1
pbPrintModeSeparations 2

PbPublicationLayout

Constant Value
pbLayout4x6BaePan 10
pbLayout4x6BanPan 12
pbLayout4x6Pan 11
pbLayoutBannerCustom 27
pbLayoutBannerLarge 26
pbLayoutBannerMedium 25
pbLayoutBannerSmall 24
pbLayoutBook 2
pbLayoutBusinessCardEurope 18
pbLayoutBusinessCardFE 19
pbLayoutBusinessCardLocal 20
pbLayoutBusinessCardUS 17
pbLayoutCrownPan 13
pbLayoutCustom 23



pbLayoutEnvelope 33
pbLayoutFoldCard 3
pbLayoutFullPage 1
pbLayoutGreetingCardL 4
pbLayoutGreetingCardT 5
pbLayoutIndexCard 16
pbLayoutJang4x6Pan 15
pbLayoutKookBaePan 6
pbLayoutKookBanPan 9
pbLayoutKookPan 7
pbLayoutLabel 32
pbLayoutPostcardA4 30
pbLayoutPostcardHalfLetter 29
pbLayoutPostcardJapan 31
pbLayoutPostcardUS 28
pbLayoutPosterLarge 22
pbLayoutPosterSmall 21
pbLayoutShinKookPan 8
pbLayoutShinSeoPan 14
pbLayoutWebPageLarge 35
pbLayoutWebPageSmall 34

PbPublicationType

Constant Value
pbTypePrint 1
pbTypeWeb 2

PbReplaceScope

Constant Value
pbReplaceScopeAll 2
pbReplaceScopeNone 0
pbReplaceScopeOne 1



PbReplaceTint

Constant Value
pbReplaceTintKeepTints 1
pbReplaceTintMaintainLuminosity 2
pbReplaceTintUseDefault 0

PbRulerGuideType

Constant Value
pbRulerGuideTypeHorizontal 2
pbRulerGuideTypeVertical 1

PbSaveOptions

Constant Value
pbDoNotSaveChanges 3
pbPromptToSaveChanges 1
pbSaveChanges 2

PbSchemeColorIndex

Constant Value
pbSchemeColorAccent1 2
pbSchemeColorAccent2 3
pbSchemeColorAccent3 4
pbSchemeColorAccent4 5
pbSchemeColorAccent5 8
pbSchemeColorFollowedHyperlink 7
pbSchemeColorHyperlink 6
pbSchemeColorMain 1
pbSchemeColorNone 0



PbSelectionType

Constant Value
pbSelectionNone 0
pbSelectionShape 1
pbSelectionShapeSubSelection 4
pbSelectionTableCells 3
pbSelectionText 2

PbShapeType

Constant Value
pbAutoShape 1
pbCallout 2
pbCatalogMergeArea 111
pbChart 3
pbComment 4
pbEmbeddedOLEObject 7
pbFormControl 8
pbFreeform 5
pbGroup 6
pbGroupWizard 108
pbLine 9
pbLinkedOLEObject 10
pbLinkedPicture 11
pbMedia 16
pbOLEControlObject 12
pbPicture 13
pbPlaceholder 14
pbShapeTypeMixed -2
pbTable 18
pbTextEffect 15
pbTextFrame 17



pbWebCheckBox 100
pbWebCommandButton 101
pbWebHotSpot 110
pbWebHTMLFragment 107
pbWebListBox 102
pbWebMultiLineTextBox 103
pbWebNavigationBar 112
pbWebOptionButton 104
pbWebSingleLineTextBox 105
pbWebWebComponent 106

PbShowDialog

Constant Value
pbDefaultBehavior 1
PbShowDialog 2
pbSuppressDialog 3

PbSpotColor

Constant Value
pbInkNone 0

PbStoryType

Constant Value
pbStoryContinuedFrom 2
pbStoryContinuedOn 3
pbStoryTable 0
pbStoryTextFrame 1

PbSubmitDataFormatType

Constant Value



pbSubmitDataFormatCSV 3
pbSubmitDataFormatHTML 1
pbSubmitDataFormatRichText 2
pbSubmitDataFormatTab 4

PbSubmitDataRetrievalMethodType

Constant Value
pbSubmitDataRetrievalEmail 2
pbSubmitDataRetrievalProgram 3
pbSubmitDataRetrievalSaveOnServer 1

PbTabAlignmentType

Constant Value
pbTabAlignmentCenter 1
pbTabAlignmentDecimal 3
pbTabAlignmentLeading 0
pbTabAlignmentTrailing 2

PbTabLeaderType

Constant Value
pbTabLeaderBullet 5
pbTabLeaderDashes 2
pbTabLeaderDot 1
pbTabLeaderLine 3
pbTabLeaderNone 0

PbTableAutoFormatType

Constant Value
pbTableAutoFormatCheckbookRegister 0
pbTableAutoFormatCheckerboard 20



pbTableAutoFormatDefault -3
pbTableAutoFormatList1 1
pbTableAutoFormatList2 2
pbTableAutoFormatList3 3
pbTableAutoFormatList4 4
pbTableAutoFormatList5 5
pbTableAutoFormatList6 6
pbTableAutoFormatList7 7
pbTableAutoFormatListWithTitle1 8
pbTableAutoFormatListWithTitle2 9
pbTableAutoFormatListWithTitle3 10
pbTableAutoFormatMixed -1
pbTableAutoFormatNone -2
pbTableAutoFormatNumbers1 11
pbTableAutoFormatNumbers2 12
pbTableAutoFormatNumbers3 13
pbTableAutoFormatNumbers4 14
pbTableAutoFormatNumbers5 15
pbTableAutoFormatNumbers6 16
pbTableAutoFormatTableOfContents1 17
pbTableAutoFormatTableOfContents2 18
pbTableAutoFormatTableOfContents3 19

PbTableDirectionType

Constant Value
pbTableDirectionLeftToRight 1
pbTableDirectionRightToLeft 2

PbTextAutoFitType

Constant Value
pbTextAutoFitBestFit 2
pbTextAutoFitNone 0



pbTextAutoFitShrinkOnOverflow 1

PbTextDirection

Constant Value
pbTextDirectionLeftToRight 1
pbTextDirectionMixed -9999999
pbTextDirectionRightToLeft 2

PbTextOrientation

Constant Value
pbTextOrientationHorizontal 1
pbTextOrientationMixed -2
pbTextOrientationRightToLeft 256
pbTextOrientationVerticalEastAsia 2

PbTextUnit

Constant Value
pbTextUnitCell 12
pbTextUnitCharacter 1
pbTextUnitCharFormat 13
pbTextUnitCodePoint 17
pbTextUnitColumn 9
pbTextUnitLine 5
pbTextUnitObject 16
pbTextUnitParaFormat 14
pbTextUnitParagraph 4
pbTextUnitRow 10
pbTextUnitScreen 7
pbTextUnitSection 8
pbTextUnitSentence 3
pbTextUnitStory 6



pbTextUnitTable 15
pbTextUnitWindow 11
pbTextUnitWord 2

PbTrackingPresetType

Constant Value
pbTrackingCustom -1
pbTrackingLoose 1
pbTrackingMixed -2
pbTrackingNormal 2
pbTrackingTight 3
pbTrackingVeryLoose 0
pbTrackingVeryTight 4

PbUnderlineType

Constant Value
pbUnderlineDash 6
pbUnderlineDashHeavy 12
pbUnderlineDashLong 15
pbUnderlineDashLongHeavy 16
pbUnderlineDotDash 7
pbUnderlineDotDashHeavy 13
pbUnderlineDotDotDash 8
pbUnderlineDotDotDashHeavy 14
pbUnderlineDotHeavy 11
pbUnderlineDotted 4
pbUnderlineDouble 3
pbUnderlineMixed -1
pbUnderlineNone 0
pbUnderlineSingle 1
pbUnderlineThick 5
pbUnderlineWavy 9



pbUnderlineWavyDouble 17
pbUnderlineWavyHeavy 10
pbUnderlineWordsOnly 2

PbUnitType

Constant Value
pbUnitCM 1
pbUnitEmu 4
pbUnitFeet 6
pbUnitHa 9
pbUnitInch 0
pbUnitKyu 8
pbUnitMeter 7
pbUnitPica 2
pbUnitPixel 10
pbUnitPoint 3
pbUnitTwip 5

PbVerticalPictureLocking

Constant Value
pbVerticalLockingBottom 2
pbVerticalLockingNone 0
pbVerticalLockingStretch 3
pbVerticalLockingTop 1

PbVerticalTextAlignmentType

Constant Value
pbVerticalTextAlignmentBottom 2
pbVerticalTextAlignmentCenter 1
pbVerticalTextAlignmentTop 0



PbWebControlType

Constant Value
pbWebControlCheckBox 100
pbWebControlCommandButton 101
pbWebControlHotSpot 110
pbWebControlHTMLFragment 107
pbWebControlListBox 102
pbWebControlMultiLineTextBox 103
pbWebControlOptionButton 104
pbWebControlSingleLineTextBox 105
pbWebControlWebComponent 106

PbWindowState

Constant Value
pbWindowStateMaximize 0
pbWindowStateMinimize 1
pbWindowStateNormal 2

PbWizard

Constant Value
pbWizardAdvertisements 12
pbWizardAirplanes 23
pbWizardBanners 21
pbWizardBrochures 8
pbWizardBusinessCards 3
pbWizardBusinessForms 20
pbWizardCalendars 13
pbWizardCatalogs 161
pbWizardCertificates 62
pbWizardEmailActivityEvent 302
pbWizardEmailFeaturedProduct 304



pbWizardEmailLetter 300
pbWizardEmailNewsletter 39
pbWizardEmailProductList 303
pbWizardEmailSpeakerEvent 301
pbWizardEnvelopes 7
pbWizardFlyers 16
pbWizardGiftCertificates 63
pbWizardGreetingCard 40
pbWizardInvitation 41
pbWizardJapaneseAdvertisements 165
pbWizardJapaneseAirplanes 164
pbWizardJapaneseBanners 121
pbWizardJapaneseBrochures 92
pbWizardJapaneseBusinessCards 91
pbWizardJapaneseBusinessForms 123
pbWizardJapaneseCalendars 82
pbWizardJapaneseCatalogs 177
pbWizardJapaneseCertificates 119
pbWizardJapaneseEnvelopes 93
pbWizardJapaneseFlyers 94
pbWizardJapaneseGiftCertificates 122
pbWizardJapaneseGreetingCards 80
pbWizardJapaneseInvitations 81
pbWizardJapaneseLabels 118
pbWizardJapaneseLetterheads 95
pbWizardJapaneseMenus 116
pbWizardJapaneseNewsletters 117
pbWizardJapaneseOrigami 163
pbWizardJapanesePostcards 78
pbWizardJapanesePrograms 115
pbWizardJapaneseSigns 149
pbWizardJapaneseWebSites 120
pbWizardLabels 19



pbWizardLetterheads 6
pbWizardMenus 59
pbWizardNewsletters 9
pbWizardNone 0
pbWizardOrigami 22
pbWizardPostcards 10
pbWizardPrograms 76
pbWizardQuickPublications 179
pbWizardResumes 18
pbWizardSigns 17
pbWizardWebSiteBlank 203
pbWizardWebSiteHomePage 5
pbWizardWebSiteProductSales 201
pbWizardWebSiteServices 202
pbWizardWebSiteThreePage 200
pbWizardWithComplimentsCards 73
pbWizardWordDocument 189

PbWizardGroup

Constant Value
pbWizardGroupAccentBox 151
pbWizardGroupAccessoryBar 154
pbWizardGroupAdvertisements 68
pbWizardGroupAttentionGetter 61
pbWizardGroupBarbells 52
pbWizardGroupBorders 155
pbWizardGroupBoxes 50
pbWizardGroupCalendars 77
pbWizardGroupCheckerboards 53
pbWizardGroupCoupon 60
pbWizardGroupDots 49
pbWizardGroupEastAsiaZipCode 181



pbWizardGroupJapaneseAccentBox 168
pbWizardGroupJapaneseAccessoryBar 171
pbWizardGroupJapaneseAttentionGetters 97
pbWizardGroupJapaneseBorders 172
pbWizardGroupJapaneseCalendar 83
pbWizardGroupJapaneseCoupons 99
pbWizardGroupJapaneseLinearAccent 170
pbWizardGroupJapaneseMarquees 167
pbWizardGroupJapaneseMastheads 141
pbWizardGroupJapanesePullQuotes 144
pbWizardGroupJapaneseReplyForms 137
pbWizardGroupJapaneseSidebars 143
pbWizardGroupJapaneseTableOfContents 142
pbWizardGroupJapaneseWebButtonEmail 182
pbWizardGroupJapaneseWebButtonHome 183
pbWizardGroupJapaneseWebButtonLink 184
pbWizardGroupJapaneseWebMastheads 138
pbWizardGroupJapaneseWebNavigationBars 148
pbWizardGroupJapaneseWebPullQuotes 139
pbWizardGroupJapaneseWebSidebars 140
pbWizardGroupLinearAccent 153
pbWizardGroupLogo 4
pbWizardGroupMarquee 150
pbWizardGroupMastheads 105
pbWizardGroupPhoneTearoff 66
pbWizardGroupPictureCaptions 109
pbWizardGroupPullQuotes 108
pbWizardGroupPunctuation 152
pbWizardGroupReplyForms 79
pbWizardGroupSidebars 107
pbWizardGroupTableOfContents 106
pbWizardGroupWebButtonsEmail 133
pbWizardGroupWebButtonsHome 134



pbWizardGroupWebButtonsLink 136
pbWizardGroupWebCalendars 35
pbWizardGroupWebMastheads 102
pbWizardGroupWebNavigationBars 75
pbWizardGroupWebSidebars 104
pbWizardGroupWellPullQuotes 103

PbWizardNavBarAlignment

Constant Value
pbnbAlignCenter 2
pbnbAlignLeft 1
pbnbAlignRight 3

PbWizardNavBarButtonStyle

Constant Value
pbnbButtonStyleLarge 2
pbnbButtonStyleSmall 1
pbnbButtonStyleText 3

PbWizardNavBarDesign

Constant Value
pbnbDesignAmbient 2
pbnbDesignBaseline 26
pbnbDesignBracket 11
pbnbDesignBulletStaff 20
pbnbDesignCapsule 3
pbnbDesignCornice 15
pbnbDesignCounter 13
pbnbDesignDimension 8
pbnbDesignDottedArrow 9
pbnbDesignEdge 17



pbnbDesignEnclosedArrow 12
pbnbDesignEndCap 14
pbnbDesignHollowArrow 10
pbnbDesignKeyPunch 22
pbnbDesignOffset 7
pbnbDesignOutline 5
pbnbDesignRadius 6
pbnbDesignRectangle 1
pbnbDesignRoundBullet 23
pbnbDesignSquareBullet 24
pbnbDesignStaff 16
pbnbDesignTopBar 21
pbnbDesignTopDrawer 4
pbnbDesignTopLine 18
pbnbDesignUnderscore 19
pbnbDesignWatermark 25

PbWizardPageType

Constant Value
pbWizardPageTypeCatalogBlank 35
pbWizardPageTypeCatalogCalendar 22
pbWizardPageTypeCatalogEightItemsOneColumn 33
pbWizardPageTypeCatalogEightItemsTwoColumns 34
pbWizardPageTypeCatalogFeaturedItem 24
pbWizardPageTypeCatalogForm 36
pbWizardPageTypeCatalogFourItemsAlignedPictures 30
pbWizardPageTypeCatalogFourItemsOffsetPictures 31
pbWizardPageTypeCatalogFourItemsSquaredPictures 32
pbWizardPageTypeCatalogOneColumnText 18
pbWizardPageTypeCatalogOneColumnTextPicture 19
pbWizardPageTypeCatalogTableOfContents 23
pbWizardPageTypeCatalogThreeItemsAlignedPictures 27



pbWizardPageTypeCatalogThreeItemsOffsetPictures 28
pbWizardPageTypeCatalogThreeItemsStackedPictures 29
pbWizardPageTypeCatalogTwoColumnsText 20
pbWizardPageTypeCatalogTwoColumnsTextPicture 21
pbWizardPageTypeCatalogTwoItemsAlignedPictures 25
pbWizardPageTypeCatalogTwoItemsOffsetPictures 26
pbWizardPageTypeNewsletter3Stories 1
pbWizardPageTypeNewsletterCalendar 2
pbWizardPageTypeNewsletterOrderForm 15
pbWizardPageTypeNewsletterResponseForm 16
pbWizardPageTypeNewsletterSignupForm 17
pbWizardPageTypeNone -1
pbWizardPageTypeWebAboutUs 501
pbWizardPageTypeWebArticle 512
pbWizardPageTypeWebBlank 524
pbWizardPageTypeWebCalendarPage 504
pbWizardPageTypeWebCalendarWithLinks 800
pbWizardPageTypeWebContactUs 505
pbWizardPageTypeWebEmployee 507
pbWizardPageTypeWebEmployeeList 506
pbWizardPageTypeWebEmployeesWithLinks 802
pbWizardPageTypeWebFAQ 508
pbWizardPageTypeWebHome 509
pbWizardPageTypeWebInformational 502
pbWizardPageTypeWebJobs 510
pbWizardPageTypeWebLegal 511
pbWizardPageTypeWebLinks 518
pbWizardPageTypeWebList 503
pbWizardPageTypeWebOrderForm 525
pbWizardPageTypeWebPhoto 513
pbWizardPageTypeWebPhotoGallery 514
pbWizardPageTypeWebPhotosWithLinks 805
pbWizardPageTypeWebProduct 515



pbWizardPageTypeWebProductList 516
pbWizardPageTypeWebProductsWithLinks 801
pbWizardPageTypeWebProjectList 517
pbWizardPageTypeWebProjectsWithLinks 804
pbWizardPageTypeWebResponseForm 526
pbWizardPageTypeWebSeminar 519
pbWizardPageTypeWebService 521
pbWizardPageTypeWebServiceList 520
pbWizardPageTypeWebServicesWithLinks 803
pbWizardPageTypeWebSignupForm 527
pbWizardPageTypeWebSpecial 522

PbWizardTag

Constant Value
pbWizardTagAddress 10
pbWizardTagAddressGroup 117
pbWizardTagBriefDescriptionCaption 1361
pbWizardTagBriefDescriptionGraphic 1359
pbWizardTagBriefDescriptionSummary 1353
pbWizardTagBriefDescriptionSummaryPrimary 1365
pbWizardTagBriefDescriptionTitle 1364
pbWizardTagBusinessDescription 685
pbWizardTagCustomerMailingAddress 560
pbWizardTagDate 1835
pbWizardTagEAPostalCodeBox 2151
pbWizardTagEAPostalCodeGroup 2150
pbWizardTagEAPostalCodeLine 2152
pbWizardTagFloatingGraphicCaption 1362
pbWizardTagHourTimeDateInformation 684
pbWizardTagJobTitle 115
pbWizardTagLinkedStoryPrimary 1354
pbWizardTagLinkedStorySecondary 1355



pbWizardTagLinkedStoryTertiary 1356
pbWizardTagList 1837
pbWizardTagLocation 488
pbWizardTagLogoGroup 5
pbWizardTagMainFloatingGraphic 1357
pbWizardTagMainGraphic 1833
pbWizardTagMainTitle 1832
pbWizardTagMapPicture 489
pbWizardTagMasthead 1831
pbWizardTagNewsletterTitle 1344
pbWizardTagOrganizationName 7
pbWizardTagOrganizationNameGroup 118
pbWizardTagPageNumber 1346
pbWizardTagPersonalName 8
pbWizardTagPersonalNameGroup 116
pbWizardTagPhoneFaxEmail 113
pbWizardTagPhoneFaxEmailGroup 120
pbWizardTagPhoneNumber 114
pbWizardTagPhotePlaceholderText 1135
pbWizardTagPhotoPlaceholderFrame 1134
pbWizardTagPublicationDate 1341
pbWizardTagQuickPubContent 2143
pbWizardTagQuickPubHeading 2140
pbWizardTagQuickPubMessage 2141
pbWizardTagQuickPubPicture 2142
pbWizardTagReturnAddressLines 793
pbWizardTagStampBox 887
pbWizardTagStampBoxOutline 794
pbWizardTagStory 1349
pbWizardTagStoryCaptionPrimary 1351
pbWizardTagStoryCaptionSecondary 1373
pbWizardTagStoryGraphicPrimary 1350
pbWizardTagStoryGraphicSecondary 1360



pbWizardTagStoryTitle 1348
pbWizardTagTableOfContents 1343
pbWizardTagTableOfContentsTitle 1342
pbWizardTagTagLine 112
pbWizardTagTagLineGroup 119
pbWizardTagTime 1836

PbWrapSideType

Constant Value
pbWrapSideBoth 0
pbWrapSideLarger 3
pbWrapSideLeft 1
pbWrapSideMixed -1
pbWrapSideNeither 4
pbWrapSideRight 2

PbWrapType

Constant Value
pbWrapTypeMixed -1
pbWrapTypeNone 0
pbWrapTypeSquare 1
pbWrapTypeThrough 3
pbWrapTypeTight 2
pbWrapTypeTopAndBottom 4

PbZoom

Constant Value
pbZoomFitSelection -3
pbZoomPageWidth -1
pbZoomWholePage -2



PrintPlate	Property
Returns	or	sets	True	if	the	printable	plate	is	set	to	print.	The	default	is	True.
Read/write	Boolean.

expression.PrintPlate

expression				Required.	An	expression	that	returns	a	PrintablePlate	object.



Remarks

This	property	corresponds	to	the	Print	plate	check	boxes	on	the	Separations	tab
of	the	Advanced	Print	Settings	dialog	box.



Example

The	following	example	returns	a	spot	color	plate	and	sets	several	of	its
properties.	The	example	assumes	that	separations	have	been	specified	as	the
active	publication's	print	mode.

Sub	SetPlatePropertiesByInkName()

Dim	pplPlate	As	PrintablePlate

ActiveDocument.AdvancedPrintOptions.UseCustomHalftone	=	True

				Set	pplPlate	=	ActiveDocument.AdvancedPrintOptions.PrintablePlates.FindPlateByInkName(pbInkNameSpot3)

				

				With	pplPlate

								.Angle	=	75

								.Frequency	=	133

								.PrintPlate	=	True

				End	With

End	Sub



Returning	an	Object	from	a
Collection
The	Item	method	returns	a	single	object	from	a	collection.	The	following
example	sets	a	variable	to	a	Page	object	that	represents	the	first	page	in	the
Pages	collection.

Sub	SetFirstPage()

				Dim	pgFirst	As	Page

				Set	pgFirst	=	ActiveDocument.Pages.Item(1)

End	Sub

	 	

The	Item	method	is	the	default	method	for	most	collections,	so	you	can	write	the
same	statement	more	concisely	by	omitting	the	Item	keyword.

Sub	SetFirstPage()

				Dim	pgFirst	As	Page

				Set	pgFirst	=	ActiveDocument.Pages(1)

End	Sub

	 	



Using	Events	with	the	Document
Object
The	Document	object	supports	seven	events:	BeforeClose,	Open,	Redo,
ShapesAdded,	ShapesRemoved,	Undo,	and	WizardAfterChange.	You	write
procedures	to	respond	to	these	events	in	the	class	module	named
"ThisDocument."	Use	the	following	steps	to	create	an	event	procedure.

1.	 Under	your	publication	project	in	the	Project	Explorer	window,	double-
click	ThisDocument.	(In	Folder	view,	ThisDocument	is	located	in	the
Microsoft	Publisher	Objects	folder.)

2.	 Select	Document	from	the	Object	drop-down	list	box.
3.	 Select	an	event	from	the	Procedure	drop-down	list	box.

An	empty	subroutine	is	added	to	the	class	module.

4.	 Add	the	Visual	Basic	instructions	you	want	to	run	when	the	event	occurs.



Example

This	example	shows	an	Open	event	procedure	that	displays	a	message	when	a
publication	is	opened.

Private	Sub	Document_Open()

				MsgBox	"This	publication	is	copyrighted."

End	Sub

	 	

The	following	example	shows	a	BeforeClose	event	procedure	that	prompts	the
user	for	a	yes	or	no	response	before	closing	a	document.

Private	Sub	Document_BeforeClose(Cancel	As	Boolean)

				Dim	intResponse	As	Integer

				intResponse	=	MsgBox("Do	you	really	want	to	close	"	_

								&	"the	document?",	vbYesNo)

				If	intResponse	=	vbNo	Then	Cancel	=	True

End	Sub

	 	

Note		For	information	on	creating	event	procedures	for	the	Application	object,
see	Using	Events	with	the	Application	Object.



Using	Events	with	the	Application
Object
To	create	an	event	handler	for	an	event	of	the	Application	object,	you	need	to
complete	the	following	three	steps:

1.	 Declare	an	object	variable	in	a	class	module	to	respond	to	the	events.
2.	 Write	the	specific	event	procedures.
3.	 Initialize	the	declared	object	from	another	module.



Declare	the	Object	Variable

Before	you	can	write	procedures	for	the	events	of	the	Application	object,	you
must	create	a	new	class	module	and	declare	an	object	of	type	Application	with
events.	For	example,	assume	that	a	new	class	module	is	created	and	called
EventClassModule.	The	new	class	module	contains	the	following	code.

Public	WithEvents	App	As	Publisher.Application

	 	



Write	the	Event	Procedures

After	the	new	object	has	been	declared	with	events,	it	appears	in	the	Object
drop-down	list	box	in	the	class	module,	and	you	can	write	event	procedures	for
the	new	object.	(When	you	select	the	new	object	in	the	Object	box,	the	valid
events	for	that	object	are	listed	in	the	Procedure	drop-down	list	box.)	Select	an
event	from	the	Procedure	drop-down	list	box;	an	empty	procedure	is	added	to
the	class	module.

Private	Sub	App_DocumentOpen()

End	Sub

	 	



Initialize	the	Declared	Object

Before	the	procedure	will	run,	you	must	connect	the	declared	object	in	the	class
module	(App	in	this	example)	with	the	Application	object.	You	can	do	this	with
the	following	code	from	any	module.

Dim	X	As	New	EventClassModule

Sub	Register_Event_Handler()

				Set	X.App	=	Publisher.Application

End	Sub

	 	

Run	the	Register_Event_Handler	procedure.	After	the	running	procedure,	the
App	object	in	the	class	module	points	to	the	Microsoft	Publisher	Application
object,	and	the	event	procedures	in	the	class	module	will	run	when	the	events
occur.

Note		For	information	on	creating	event	procedures	for	the	Document	object,
see	Using	Events	with	the	Document	Object.


