
Microsoft®	JScript®	

Feature	Information
	JScript	Language	Reference	

	Version	Information	

	
JScript	Features	-	ECMA
JScript	Features	-	Non-ECMA
Microsoft	Scripting	Run-Time	Features

Microsoft®	JScript®	

Alphabetic	Keyword	List
	JScript	Language	Reference	

	Version	Information	

	
$1...$9	Properties
abs	Method
acos	Method
ActiveXObject	Object
Addition	Operator	(+)
anchor	Method
arguments	Property
Array	Object
asin	Method
Assignment	Operator	(=)
atan	Method
atan2	Method
atEnd	Method
big	Method
Bitwise	AND	Operator	(&)
Bitwise	Left	Shift	Operator	(<<)
Bitwise	NOT	Operator	(~)
Bitwise	OR	Operator	(|)
Bitwise	Right	Shift	Operator	(>>)
Bitwise	XOR	Operator	(^)
blink	Method
bold	Method
Boolean	Object
break	Statement
caller	Property
catch	Statement
@cc_on	Statement
ceil	Method

charAt	Method
charCodeAt	Method
Comma	Operator	(,)
//	(Single-line	Comment	Statement)
/*..*/	(Multiline	Comment	Statement)
Comparison	Operators
compile	Method
Compound	Assignment	Operators
concat	Method	(Array)
concat	Method	(String)
Conditional	Compilation
Conditional	Compilation	Variables
Conditional	(trinary)	Operator	(?:)
constructor	Property
continue	Statement
cos	Method
Data	Type	Conversion
Date	Object
Decrement	Operator	(--)	
delete	Operator
description	Property
Dictionary	Object
dimensions	Method
Division	Operator	(/)
do...while	Statement
E	Property
Enumerator	Object
Equality	Operator	(==)
Error	Object
escape	Method
eval	Method
exec	Method
exp	Method

FileSystemObject	Object
fixed	Method
floor	Method
fontcolor	Method
fontsize	Method
for	Statement
for...in	Statement
fromCharCode	Method
Function	Object
function	Statement
getDate	Method
getDay	Method
getFullYear	Method
getHours	Method
getItem	Method
getMilliseconds	Method
getMinutes	Method
getMonth	Method
GetObject	Function
getSeconds	Method
getTime	Method
getTimezoneOffset	Method
getUTCDate	Method
getUTCDay	Method
getUTCFullYear	Method
getUTCHours	Method
getUTCMilliseconds	Method
getUTCMinutes	Method
getUTCMonth	Method
getUTCSeconds	Method
getVarDate	Method
getYear	Method
Global	Object

Greater	than	Operator	(>)
Greater	than	or	equal	to	Operator	(>=)
Identity	Operator	(===)
@if	Statement
if...else	Statement
Increment	Operator	(++)
index	Property
indexOf	Method
Inequality	Operator	(!=)
Infinity	Property
input	Property
instanceof	Operator
isFinite	Method
isNaN	Method
italics	Method
item	Method
join	Method
Labeled	Statement
lastIndex	Property
lastIndexOf	Method
lbound	Method
length	Property	(Array)
length	Property	(Function)
length	Property	(String)
Less	than	Operator	(<)
Less	than	or	equal	to	Operator	(<=)
link	Method
LN2	Property
LN10	Property
log	Method
LOG2E	Property
LOG10E	Property
Logical	AND	Operator	(&&)

Logical	NOT	Operator	(!)
Logical	OR	Operator	(||)
match	Method
Math	Object
max	Method
MAX_VALUE	Property
min	Method
MIN_VALUE	Property
Modulus	Operator	(%)
moveFirst	Method
moveNext	Method
Multiplication	Operator	(*)
NaN	Property	(Global)
NaN	Property	(Number)
NEGATIVE_INFINITY	Property
new	Operator
Nonidentity	Operator	(!==)
Number	Object
number	Property
Object	Object
Operator	Precedence
parse	Method
parseFloat	Method
parseInt	Method
PI	Property
POSITIVE_INFINITY	Property
pow	Method
prototype	Property
random	Method
RegExp	Object
Regular	Expression	Object
Regular	Expression	Syntax
replace	Method

return	Statement
reverse	Method
round	Method
ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function
search	Method
@set	Statement
setDate	Method
setFullYear	Method
setHours	Method
setMilliseconds	Method
setMinutes	Method
setMonth	Method
setSeconds	Method
setTime	Method
setUTCDate	Method
setUTCFullYear	Method
setUTCHours	Method
setUTCMilliseconds	Method
setUTCMinutes	Method
setUTCMonth	Method
setUTCSeconds	Method
setYear	Method
sin	Method
slice	Method	(Array)
slice	Method	(String)
small	Method
sort	Method
source	Property
split	Method
sqrt	Method

SQRT1_2	Property
SQRT2	Property
strike	Method
String	Object
sub	Method
substr	Method
substring	Method
Subtraction	Operator	(-)
sup	Method
switch	Statement
tan	Method
test	Method
this	Statement
throw	Statement
toArray	Method
toGMTString	Method
toLocaleString	Method
toLowerCase	Method
toString	Method
toUpperCase	Method
toUTCString	Method
try	Statement
typeof	Operator
ubound	Method
Unary	Negation	Operator	(-)
unescape	Method
Unsigned	Right	Shift	Operator	>>>)
UTC	Method
valueOf	Method
var	Statement
VBArray	Object
void	Operator
while	Statement

with	Statement

Microsoft®	JScript®	

JScript	Errors
	JScript	Language	Reference	

	Version	Information	

	
Run-Time	Errors
Syntax	Errors

Microsoft®	JScript®	

Functions
	JScript	Language	Reference	

	Version	Information	

	
GetObject	Function
ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	JScript®	

Methods
	JScript	Language	Reference	

	Version	Information	

	
abs	Method
acos	Method
anchor	Method
asin	Method
atan	Method
atan2	Method
AtEnd	Method
big	Method
blink	Method
bold	Method
ceil	Method
charAt	Method
charCodeAt	Method
compile	Method
concat	Method	(Array)
concat	Method	(String)
cos	Method
dimensions	Method
escape	Method
eval	Method
exec	Method
exp	Method
fixed	Method
floor	Method
fontcolor	Method
fontsize	Method
fromCharCode	Method
getDate	Method

getDay	Method
getFullYear	Method
getHours	Method
getItem	Method
getMilliseconds	Method
getMinutes	Method
getMonth	Method
getSeconds	Method
getTime	Method
getTimezoneOffset	Method
getUTCDate	Method
getUTCDay	Method
getUTCFullYear	Method
getUTCHours	Method
getUTCMilliseconds	Method
getUTCMinutes	Method
getUTCMonth	Method
getUTCSeconds	Method
getVarDate	Method
getYear	Method
indexOf	Method
isFinite	Method
isNaN	Method
italics	Method
item	Method
join	Method
lastIndexOf	Method
lbound	Method
link	Method
log	Method
match	Method
max	Method
min	Method

moveFirst	Method
moveNext	Method
parse	Method
parseFloat	Method
parseInt	Method
pow	Method
random	Method
replace	Method
reverse	Method
round	Method
search	Method
setDate	Method
setFullYear	Method
setHours	Method
setMilliseconds	Method
setMinutes	Method
setMonth	Method
setSeconds	Method
setTime	Method
setUTCDate	Method
setUTCFullYear	Method
setUTCHours	Method
setUTCMilliseconds	Method
setUTCMinutes	Method
setUTCMonth	Method
setUTCSeconds	Method
setYear	Method
sin	Method
slice	Method	(Array)
slice	Method	(String)
small	Method
sort	Method
split	Method

sqrt	Method
strike	Method
sub	Method
substr	Method
substring	Method
sup	Method
tan	Method
test	Method
toArray	Method
toGMTString	Method
toLocaleString	Method
toLowerCase	Method
toString	Method
toUpperCase	Method
toUTCString	Method
ubound	Method
unescape	Method
UTC	Method
valueOf	Method

Microsoft®	JScript®	

Objects
	JScript	Language	Reference	

	Version	Information	

	
ActiveXObject	Object
Array	Object
Boolean	Object
Date	Object
Dictionary	Object
Enumerator	Object
Error	Object
FileSystemObject	Object
Function	Object
Global	Object
Math	Object
Number	Object
Object	Object
RegExp	Object
Regular	Expression	Object
String	Object
VBArray	Object

Microsoft®	JScript®	

Operators
	JScript	Language	Reference	

	Version	Information	

	
Addition	Operator	(+)
Assignment	Operator	(=)
Bitwise	AND	Operator	(&)
Bitwise	Left	Shift	Operator	(<<)	
Bitwise	NOT	Operator	(~)	
Bitwise	OR	Operator	(|)
Bitwise	Right	Shift	Operator	(>>)
Bitwise	XOR	Operator	(^)
Comma	Operator	(,)
Comparison	Operators	
Compound	Assignment	Operators
Conditional	(trinary)	Operator	(?:)
Decrement	Operator	(--)
delete	Operator
Division	Operator	(/)
Equality	Operator	(==)
Greater	than	Operator	(>)
Greater	than	or	equal	to	Operator	(>=)
Identity	Operator	(===)
Increment	Operator	(++)
Inequality	Operator	(!=)
instanceof	Operator
Less	than	Operator(<)
Less	than	or	equal	to	Operator	(<=)
Logical	AND	Operator	(&&)
Logical	NOT	Operator	(!)
Logical	OR	Operator	(||)
Modulus	Operator	(%)

Multiplication	Operator	(*)
new	Operator
Nonidentity	Operator	(!==)
Operator	Precedence
Subtraction	Operator	(-)	
typeof	Operator
Unary	Negation	Operator	(-)
Unsigned	Right	Shift	Operator	(>>>)
void	Operator	

Microsoft®	JScript®	

Properties
	JScript	Language	Reference	

	Version	Information	

	
$1...$9	Properties
arguments	Property
caller	Property
constructor	Property
description	Property
E	Property
index	Property
Infinity	Property
input	Property
lastIndex	Property	(RegExp)
length	Property	(Array)
length	Property	(Function)
length	Property	(String)
LN2	Property
LN10	Property
LOG2E	Property
LOG10E	Property
MAX_VALUE	Property
MIN_VALUE	Property
Nan	Property	(Global)
NaN	Property	(Number)
NEGATIVE_INFINITY	Property
number	Property
PI	Property
POSITIVE_INFINITY	Property
prototype	Property
source	Property
SQRT1_2	Property

SQRT2	Property

Microsoft®	JScript®	

Statements
	JScript	Language	Reference	

	Version	Information	

	
break	Statement
catch	Statement
@cc_on	Statement
Comment	Statements
continue	Statement
do...while	Statement
for	Statement
for...in	Statement
function	Statement
@if	Statement
if...else	Statement
Labeled	Statement
return	Statement
@set	Statement
switch	Statement
this	Statement
throw	Statement
try	Statement
var	Statement
while	Statement
with	Statement

Microsoft®	JScript®	What	Is	JScript?
	JScript	Tutorial;	

	Next	

JScript	is	the	Microsoft	implementation	of	the	ECMA	262
language	specification.	It	is	a	full	implementation,	plus	some
enhancements	that	take	advantage	of	capabilities	of	Microsoft
Internet	Explorer.	This	tutorial	is	intended	to	help	you	get	started
with	JScript.

Easy	to	Use,	Easy	to	Learn

JScript	is	an	interpreted,	object-based	scripting	language.
Although	it	has	fewer	capabilities	than	full-fledged	object-
oriented	languages	like	C++	and	Java,	JScript	is	more	than
sufficiently	powerful	for	its	intended	purposes.

JScript	is	not	a	cut-down	version	of	any	other	language	(it	is	only	distantly
and	indirectly	related	to	Java,	for	example),	and	it	is	not	a	simplification	of
anything.	It	is,	however,	limited.	You	cannot	write	standalone	applications
in	it,	for	example,	and	it	has	little	capability	for	reading	or	writing	files.
Moreover,	JScript	scripts	can	run	only	in	the	presence	of	an	interpreter,
either	in	a	Web	server	or	a	Web	browser.

JScript	is	a	loosely	typed	language.	That	means	you	do	not	have	to	declare
the	data	types	of	variables	explicitly.	In	fact,	you	cannot	explicitly	declare
data	types	in	JScript.	Moreover,	in	many	cases	JScript	performs
conversions	automatically	when	they	are	needed.	For	instance,	if	you	try	to
add	a	number	to	an	item	that	consists	of	text	(a	string),	the	number	is
converted	to	text.

The	rest	of	this	tutorial	is	an	overview	of	JScript	features.	For	full	details	of
the	language	implementation,	consult	the	language	reference.

Note		The	code	in	many	of	this	tutorial's	examples	is	somewhat
more	explicit	and	less	dense	than	code	you'll	find	in	actual	Web
pages.	Most	of	it	is	also	fairly	simple.	The	intent	here	is	to
clarify	the	concepts,	not	to	express	optimal	coding	conciseness
and	style.	There	is,	in	any	case,	no	shame	in	writing	code	that
you	can	read	and	easily	understand,	six	months	after	you	write
it.

Microsoft®	JScript®	Writing	JScript
Code

	JScript	Tutorial;
Previous

Next

Like	many	other	programming	languages,	Microsoft	JScript	is
written	in	text	format,	and	is	organized	into	statements,	blocks
consisting	of	related	sets	of	statements,	and	comments.	Within	a
statement	you	can	use	variables,	immediate	data	such	as	strings
and	numbers,	and	expressions.

Statements

A	JScript	code	statement	consists	of	one	or	more	items	and
symbols	on	a	line.	A	new	line	begins	a	new	statement,	but	it	is	a
good	idea	to	terminate	your	statements	explicitly.	You	can	do	this
with	the	semicolon	(;),	which	is	the	JScript	termination	character.

aBird	=	"Robin";
var	today	=	new	Date();

A	group	of	JScript	statements	that	is	surrounded	by	braces	({})	is
called	a	block.	Blocks	of	statements	are	used,	for	example,	in
functions	and	conditionals.

In	the	following	example,	the	first	statement	begins	the	definition	of	a
function,	which	consists	of	a	block	of	five	statements.	The	last	three
statements,	which	are	not	surrounded	by	braces,	are	not	a	block	and	are	not
part	of	the	function	definition.

function	convert(inches)		{
				feet	=	inches	/	12;		//		These	five	statements	are	in	a	block.

				miles	=	feet	/	5280;
				nauticalMiles	=	feet	/	6080;
				cm	=	inches	*	2.54;
				meters	=	inches	/	39.37;
}
km	=	meters	/	1000;		//		These	three	statements	are	not	in	a	block.
kradius	=	km;
mradius	=	miles;

Comments

A	single-line	JScript	comment	begins	with	a	pair	of	forward
slashes	(//).	A	multiline	comment	begins	with	a	forward	slash	and
asterisk	in	combination	(/*),	and	ends	with	the	reverse	(*/).

aGoodIdea	=	"Comment	your	code	thoroughly.";		//		This	is	a	single-line	comment.

/*
This	is	a	multiline	comment	that	explains	the	preceding	code	statement.

The	statement	assigns	a	value	to	the	aGoodIdea	variable.	The	value,	which	
is	contained	between	the	quote	marks,	is	called	a	literal.	A	literal	explicitly	
and	directly	contains	information;	it	does	not	refer	to	the	information	indirectly.	
(The	quote	marks	are	not	part	of	the	literal.)
*/

//		This	is	another	multiline	comment,	written	as	a	series	of	single-line	comments.
//		After	the	statement	is	executed,	you	can	refer	to	the	content	of	the	aGoodIdea

//		variable	by	using	its	name,	as	in	the	next	statement,	in	which	a	string	literal	is
//		appended	to	the	aGoodIdea	variable	by	concatenation	to	create	a	new	variable.

var	extendedIdea	=	aGoodIdea	+	"	You	never	know	when	you'll	have	to	figure	out	what	it	does.";

Assignments	and	Equality

The	equal	sign	(=)	is	used	in	JScript	to	indicate	the	action	of
assigning	a	value.	That	is,	a	JScript	code	statement	could	say

anInteger	=	3;

It	means	"Assign	the	value	3	to	the	variable	anInteger,"	or
"anInteger	takes	the	value	3."	When	you	want	to	compare	two
values	to	find	out	whether	they	are	equal,	use	a	pair	of	equal
signs	(==).	This	is	discussed	in	detail	in	Controlling	Program
Flow.

Expressions

A	JScript	expression	is	something	that	a	person	can	read	as	a
Boolean	or	numeric	expression.	Expressions	contain	symbol
characters	like	"+"	rather	than	words	like	"added	to".	Any	valid
combination	of	values,	variables,	operators,	and	expressions
constitutes	an	expression.

var	anExpression	=	"3	*	(4	/	5)";
var	aSecondExpression	=	"Math.PI	*	radius	*	2";
var	aThirdExpression	=	aSecondExpression	+	"%"	+	anExpression;
var	aFourthExpression	=	"("	+	aSecondExpression	+	")	%	("	+	anExpression	+	")";

Microsoft®	JScript®	JScript	Variables	
	JScript	Tutorial;

Previous
Next

Variables	are	used	in	Microsoft	JScript	to	store	values	in	your
scripts.	They	are	a	way	to	retrieve	and	manipulate	values	using
names.	When	used	effectively	then	can	help	in	understanding
what	a	script	does.

Declaring	Variables

Although	not	required,	it	is	considered	good	practice	to	declare
variables	before	using	them.	You	do	this	using	the	var	statement.
The	only	time	you	must	use	the	var	statement	is	when	declaring
variables	that	are	local	to	a	function.	Local	variables	are	those
that	are	only	within	the	function.	At	all	other	times,	using	the	var
statement	to	declare	variables	before	their	use	is	a	recommended
practice.

The	following	code	examples	are	of	variable	declaration:

var	mim	=	"A	man,	a	plan,	a	canal,	Panama!";		//	The	value	stored	in	mim	is	of	string	type.
//	The	sentence	in	quotes,	the	value	of	which	is	assigned	to	mim,	is	a	string	literal.

var	ror	=	3;								//	The	value	stored	in	ror	has	numeric	type.
var	nen	=	true;								//	The	value	stored	in	nen	has	Boolean	type.
var	fif	=	2.718281828								//	The	value	stored	in	fif	has	numeric	type.

Naming	Variables

JScript	is	a	case-sensitive	language,	so	naming	a	variable
myCounter	is	different	from	naming	it	MYCounter.	In	addition,
variable	names,	which	can	be	of	any	length,	must	follow	certain
rules:

The	first	character	must	be	a	letter	(either	uppercase	or
lowercase)	or	an	underscore	(_),	or	a	dollar	sign	($).

Subsequent	characters	can	be	letters,	numbers,	underscores,
or	dollar	signs.

The	variable	name	can't	be	a	reserved	word.

Some	examples	of	valid	variable	names:

_pagecount

Part9

Number_Items

Some	invalid	variable	names:

99Balloons	//	Starts	with	a	number.

Smith&Wesson;	//	Ampersand	(&)	is	not	a	valid	character
for	variable	names.

In	instances	in	which	you	want	to	declare	a	variable	and	initialize
it,	but	without	giving	it	any	particular	value,	you	may	assign	it	a
special	value,	null.

var	zaz	=	null;
var	notalot	=	3	*	zaz;								//	At	this	point,	notalot	becomes	0.

If	you	declare	a	variable	without	assigning	any	value	to	it,	it

exists	but	is	undefined.

var	godot;
var	waitingFor	=	1	*	godot;		//	Places	the	value	NaN	in	waitingFor	as	godot	is	undefined.

You	can	declare	a	variable	implicitly	(without	using	var)	by
assigning	a	value	to	it.	You	cannot,	however,	use	a	variable	that
has	never	been	declared	at	all.	To	do	so	generates	an	error	at
runtime.

lel	=	"";		//	The	variable	lel	is	declared	implicitly.

var	aMess	=	vyv	+	zez;		//	Generates	an	error	because	vyv	and	zez	don't	exist.

Coercion

As	JScript	is	a	loosely-typed	language,	variables	in	JScript
technically	have	no	fixed	type.	Instead,	they	have	a	type
equivalent	to	the	type	of	the	value	they	contain.	It	is	possible,
under	some	circumstances,	to	force	the	automatic	conversion	(or
coercion)	of	a	variable	or	a	piece	of	data	into	a	different	type.
Numbers	can	easily	be	included	in	strings,	but	strings	cannot	be
included	directly	in	numbers,	so	explicit	conversion	functions,
parseInt()	and	parseFloat(),	are	provided.

var	theFrom	=	1;
var	theTo	=	10;
var	doWhat	=	"Count	from	";
doWhat	+=	theFrom	+	"	to	"	+	theTo	+	".";								

After	this	code	is	executed,	the	doWhat	variable	contains	"Count

from	1	to	10."	The	number	data	have	been	coerced	into	string
form.

var	nowWhat	=	0;
nowWhat	+=	1	+	"10";		//	In	this	case,	because	"10"	is	a	string,
	 	 	 //	the	"+="	operator	concatenates.

After	this	code	is	executed,	the	nowWhat	variable	contains
"0110".	The	following	steps	are	followed	to	arrive	at	this	result:

1.	 Look	at	the	types	of	1	and	"10".	The	"10"	is	a	string,	the	1	is
a	number,	so	the	number	is	coerced	into	a	string.

2.	 As	the	values	on	either	side	of	the	+	operator	are	both
strings,	do	a	string	concatenation.	This	results	in	"110"

3.	 Look	at	the	types	of	the	values	on	either	side	of	the	+=.
nowWhat	contains	a	number,	and	"110"	is	a	string,	so	convert
the	number	to	a	string.

4.	 As	there	are	now	strings	on	either	side	of	the	+=	operator,	do
a	string	concatentation.	This	results	in	"0110".

5.	 Store	this	result	in	nowWhat.

var	nowThen	=	0;
nowThen	+=	1	+	parseInt("10");								//	In	this	case,	"+="	performs	addition.

After	this	code	is	executed,	the	nowThen	variable	contains	the
integer	11.

Microsoft®	JScript®	JScript	Data
Types

	JScript	Tutorial;
Previous

Next

What	Are	the	JScript	Data	Types?

Microsoft	JScript	has	six	types	of	data.	The	main	types	are
numbers,	strings,	objects,	and	Booleans.	The	other	two	are	null
and	undefined.

.

String	Data	Type

Strings	are	delineated	by	single	or	double	quotation	marks.	(Use
single	quotes	to	type	strings	that	contain	quotation	marks.)	A
string	is	also	an	object	in	JScript,	but	it	is	a	special	case,	with
special	properties.	The	following	are	examples	of	strings:

"The	cow	jumped	over	the	moon."	
'"Avast,	ye	lubbers!"	roared	the	technician.'	
"42"

A	string	can	contain	zero	or	more	unicode	characters.	When	it
contains	zero,	it	is	called	a	zero-length	string	("").

Number	Data	Type

JScript	supports	both	integer	and	floating-point	numbers.
Integers	can	be	positive,	0,	or	negative;	a	floating-point	number

can	contain	either	a	decimal	point,	an	"e"	(uppercase	or
lowercase),	which	is	used	to	represent	"ten	to	the	power	of"	in
scientific	notation,	or	both.	These	numbers	follow	the	IEEE	754
standard	for	numerical	representation.	Last,	there	are	certain
number	values	that	are	special:

NaN,	or	not	a	Number

Positive	Infinity

Negative	Infinity

Positive	0

Negative	0

Integers	can	be	represented	in	base	10	(decimal),	base	8	(octal),
and	base	16	(hexadecimal).

Octal	integers	are	specified	by	a	leading	"0",	and	can	contain	digits	0
through	7.	If	a	number	has	a	leading	"0"	but	contains	the	digits	"8"	and/or
"9",	it	is	a	decimal	number.	A	number	that	would	otherwise	be	an	octal
number	but	contains	the	letter	"e"	(or	"E")	generates	an	error.

Hexadecimal	("hex")	integers	are	specified	by	a	leading	"0x"	(the	"X"	can
be	uppercase	or	lowercase)	and	can	contain	digits	0	through	9	and	letters	A
through	F	(either	uppercase	or	lowercase).	The	letter	"e"	is	a	permissible
digit	in	hexadecimal	notation	and	does	not	signify	an	exponential	number.
The	letters	A	through	F	are	used	to	represent,	as	single	digits,	the	numbers
that	are	10	through	15	in	base	10.	That	is,	0xF	is	equivalent	to	15,	and	0x10
is	equivalent	to	16.

Octal	and	hexadecimal	numbers	can	be	negative,	but	cannot	be	fractional.
A	number	that	begins	with	a	single	"0"	and	contains	a	decimal	point	is	a
decimal	floating-point	number;	if	a	number	that	begins	with	"0x"	or	"00"
contains	a	decimal	point,	anything	to	the	right	of	the	decimal	point	is
ignored.

Some	example	numbers:

.0001,	0.0001,	1e-4,	1.0e-4		//	Four	floating-point	numbers,	equivalent	to	each	other.
3.45e2																							//	A	floating-point	number,	equivalent	to	345.
42																											//	An	integer	number.
0377																									//	An	octal	integer,	equivalent	to	255.
00.0001																						//	As	octal	numbers	cannot	have	decimal	parts,	this	is	equivalent	to	0.
0378																									//	An	integer,	equivalent	to	378.
0Xff																									//	A	hexadecimal	integer,	equivalent	to	255.
0x37CF																							//	A	hexadecimal	integer,	equivalent	to	14287.
0x3e7																								//	A	hexadecimal	integer,	equivalent	to	999.
0x3.45e2																					//	As	hexadecimal	numbers	cannot	have	decimal	parts,	this	is	equivalent	to	3.

Booleans

The	possible	Boolean	values	are	true	and	false.	These	are	special
values,	and	are	not	usable	as	1	and	0.

Note		In	a	comparison,	any	expression	that	evaluates	to	0	is	taken	to	be	false,	and	any
statement	that	evaluates	to	a	number	other	than	0	is	taken	to	be	true.	Thus	the
following	expression	evaluates	to	true:

(false	==	0)

For	more	information	on	comparisons,	see	Controlling	Program	Flow.

Undefined	Data	Type

A	value	that	is	undefined	is	simply	a	value	given	to	a	variable
after	it	has	been	created,	but	before	a	value	has	been	assigned	to
it.

Null	Data	Type

A	null	value	is	one	that	has	no	value	and	means	nothing.

Microsoft®	JScript®	JScript
Operators

	JScript	Tutorial;
Previous

Next

JScript	has	a	full	range	of	operators,	including	arithmetic,	logical,
bitwise,	and	assignment	operators.	There	are	also	a	few
miscellaneous	operators.

Computational Logical Bitwise Assignment
Description Symbol Description Symbol Description Symbol Description
Unary
negation - Logical

NOT ! Bitwise
NOT ~ Assignment

Increment ++ Less	than < Bitwise
Left	Shift << Compound

Assignment

Decrement -- Greater
than > Bitwise

Right	Shift >> 	

Multiplication * Less	than	or
equal	to <= Unsigned

Right	Shift >>> 	

Division /
Greater
than	or
equal	to

>= Bitwise
AND & 	

Modulus
arithmetic % Equality == Bitwise

XOR ^ 	

Addition + Inequality != Bitwise	OR | 	

Subtraction - Logical
AND && 	 	 	

	 	 Logical	OR || 	 	 	

	 	 Conditional
(trinary) ?: 	 	 	

	 	 Comma , 	 	 	
	 	 Identity === 	 	 	

	 	 Nonidentity !== 	 	 	

Operator	Precedence

Operators	in	JScript	are	evaluated	in	a	particular	order.	This	order	is	known
as	the	operator	precedence.	The	following	table	lists	the	operators	in	highest
to	lowest	precedence	order.	Operators	in	the	same	row	are	evaluated	in	left
to	right	order.

Operator Description

.	[]	() Field	access,	array	indexing,	and	function
calls

++	--	-	~	!	typeof
new	void	delete

Unary	operators,	return	data	type,	object
creation,	undefined	values

*	/	% Multiplication,	division,	modulo	division
+	-	+ Addition,	subtraction,	string	concatenation
<<	>>	>>> Bit	shifting

<	<=	>	>= Less	than,	less	than	or	equal	to,	greater
than,	greater	than	or	equal	to

==	!=	===	!== Equality,	inequality,	identity,	nonidentity
& Bitwise	AND
^ Bitwise	XOR
| Bitwise	OR
&& Logical	AND
|| Logical	OR
?: Conditional
=	OP= Assignment,	assignment	with	operation
, Multiple	evaluation

Parentheses	are	used	to	alter	the	order	of	evaluation.	The	expression	within
parentheses	is	fully	evaluated	before	its	value	is	used	in	the	remainder	of
the	statement.

An	operator	with	higher	precedence	is	evaluated	before	one	with	lower
precedence.	For	example:

z	=	78	*	(96	+	3	+	45)

There	are	five	operators	in	this	expression:	=,	*,	(),	+,	and	+.	According	to
precedence,	they	are	evaluated	in	the	following	order:	(),	*,	+,	+,	=.

1.	 Evaluation	of	the	expression	within	the	parentheses	is	first:	There	are
two	addition	operators,	and	they	have	the	same	precedence:	96	and	3
are	added	together	and	45	is	added	to	that	total,	resulting	in	a	value	of
144.

2.	 Multiplication	is	next:	78	and	144	are	multiplied,	resulting	in	a	value
of	11232.

3.	 Assignment	is	last:	11232	is	assigned	into	z.

Microsoft®	JScript®	Controlling
Program	Flow	

	JScript	Tutorial;
Previous

Next

Why	Control	the	Flow	of	Execution?

Fairly	often,	you	need	a	script	to	do	different	things	under
different	conditions.	For	example,	you	might	write	a	script	that
checks	the	time	every	hour,	and	changes	some	parameter
appropriately	during	the	course	of	the	day.	You	might	write	a
script	that	can	accept	some	sort	of	input,	and	act	accordingly.	Or
you	might	write	a	script	that	repeats	a	specified	action.

There	are	several	kinds	of	conditions	that	you	can	test.	All	conditional	tests
in	Microsoft	JScript	are	Boolean,	so	the	result	of	any	test	is	either	true	or
false.	You	can	freely	test	values	that	are	of	Boolean,	numeric,	or	string
type.

JScript	provides	control	structures	for	a	range	of	possibilities.	The	simplest
control	structures	are	the	conditional	statements.

Using	Conditional	Statements

JScript	supports	if	and	if...else	conditional	statements.	In	if
statements	a	condition	is	tested,	and	if	the	condition	meets	the
test,	some	JScript	code	you've	written	is	executed.	(In	the	if...else
statement,	different	code	is	executed	if	the	condition	fails	the
test.)	The	simplest	form	of	an	if	statement	can	be	written	entirely
on	one	line,	but	multiline	if	and	if...else	statements	are	much
more	common.

The	following	examples	demonstrate	syntaxes	you	can	use	with	if	and

if...else	statements.	The	first	example	shows	the	simplest	kind	of	Boolean
test.	If	(and	only	if)	the	item	between	the	parentheses	evaluates	to	true,	the
statement	or	block	of	statements	after	the	if	is	executed.

//	The	smash()	function	is	defined	elsewhere	in	the	code.
if	(newShip)
			smash(champagneBottle,bow);		//	Boolean	test	of	whether	newShip	is	true.

//	In	this	example,	the	test	fails	unless	both	conditions	are	true.
if	(rind.color	==	"deep	yellow	"	&&	rind.texture	==	"large	and	small	wrinkles")
{
								theResponse	=	("Is	it	a	Crenshaw	melon?	
	");
}

//	In	this	example,	the	test	succeeds	if	either	condition	is	true.
var	theReaction	=	"";
if	((lbsWeight	>	15)	||	(lbsWeight	>	45))
{
				theReaction	=	("Oh,	what	a	cute	kitty!	
");
}
else
				theReaction	=	("That's	one	huge	cat	you've	got	there!	
");

Conditional	Operator

JScript	also	supports	an	implicit	conditional	form.	It	uses	a
question	mark	after	the	condition	to	be	tested	(rather	than	the
word	if	before	the	condition),	and	specifies	two	alternatives,	one
to	be	used	if	the	condition	is	met	and	one	if	it	is	not.	The

alternatives	are	separated	by	a	colon.

var	hours	=	"";

//	Code	specifying	that	hours	contains	either	the	contents	of
//	theHour,	or	theHour	-	12.

hours	+=	(theHour	>=	12)	?	"	PM"	:	"	AM";

Tip			If	you	have	several	conditions	to	be	tested	together,	and	you	know
that	one	is	more	likely	to	pass	or	fail	than	any	of	the	others,	depending
on	whether	the	tests	are	connected	with	OR	(||)	or	AND	(&&),	you	can
speed	execution	of	your	script	by	putting	that	condition	first	in	the
conditional	statement.	For	example,	if	three	conditions	must	all	be	true
(using	&&	operators)	and	the	second	test	fails,	the	third	condition	is	not
tested.

Similarly,	if	only	one	of	several	conditions	must	be	true	(using	||	operators),	testing	stops	as	soon	as
any	one	condition	passes	the	test.	This	is	particularly	effective	if	the	conditions	to	be	tested	involve
execution	of	function	calls	or	other	code.

An	example	of	the	side	effect	of	short-circuiting	is	that	runsecond	will	not	be	executed	in	the
following	example	if	runfirst()	returns	0	or	false.

if	((runfirst()	==	0)	||	(runsecond()	==	0))
//	some	code		

Using	Repetition,	or	Loops

There	are	several	ways	to	execute	a	statement	or	block	of
statements	repeatedly.	In	general,	repetitive	execution	is	called
looping.	It	is	typically	controlled	by	a	test	of	some	variable,	the
value	of	which	is	changed	each	time	the	loop	is	executed.

Microsoft	JScript	supports	many	types	of	loops:	for	loops,
for...in	loops,	while	loops,	do...while	loops,	and	switch	loops.

Using	for	Loops

The	for	statement	specifies	a	counter	variable,	a	test	condition,
and	an	action	that	updates	the	counter.	Just	before	each	time	the
loop	is	executed	(this	is	called	one	pass	or	one	iteration	of	the
loop),	the	condition	is	tested.	After	the	loop	is	executed,	the
counter	variable	is	updated	before	the	next	iteration	begins.

If	the	condition	for	looping	is	never	met,	the	loop	is	never	executed	at	all.
If	the	test	condition	is	always	met,	an	infinite	loop	results.	While	the
former	may	be	desirable	in	certain	cases,	the	latter	rarely	is,	so	take	care
when	writing	your	loop	conditions.

/*
The	update	expression	("icount++"	in	the	following	examples)
is	executed	at	the	end	of	the	loop,	after	the	block	of	statements	that	forms	the
body	of	the	loop	is	executed,	and	before	the	condition	is	tested.
*/

var	howFar	=	11;		//	Sets	a	limit	of	11	on	the	loop.

var	sum	=	new	Array(howFar);		//	Creates	an	array	called	sum	with	11	members,	0	through	10.
var	theSum	=	0;
sum[0]	=	0;

for(var	icount	=	1;	icount	<	howFar;	icount++)		{								//	Counts	from	1	through	10	in	this	case.
theSum	+=	icount;

sum[icount]	=	theSum;
}

var	newSum	=	0;
for(var	icount	=	1;	icount	>	howFar;	icount++)		{								//	This	isn't	executed	at	all.
newSum	+=	icount;
}

var	sum	=	0;
for(var	icount	=	1;	icount	>	0;	icount++)		{								//	This	is	an	infinite	loop.
sum	+=	icount;
}

Using	for...in	Loops

JScript	provides	a	special	kind	of	loop	for	stepping	through	all
the	properties	of	an	object.	The	loop	counter	in	a	for...in	loop
steps	through	all	indexes	in	the	array.	It	is	a	string,	not	a	number.

for	(j	in	tagliatelleVerde)		//	tagliatelleVerde	is	an	object	with	several	properties
{
//	Various	JScript	code	statements.
}

Using	while	Loops

The	while	loop	is	very	similar	to	a	for	loop.	The	difference	is
that	a	while	loop	does	not	have	a	built-in	counter	variable	or
update	expression.	If	you	already	have	some	changing	condition

that	is	reflected	in	the	value	assigned	to	a	variable,	and	you	want
to	use	it	to	control	repetitive	execution	of	a	statement	or	block	of
statements,	use	a	while	loop.

var	theMoments	=	"";
var	theCount	=	42;								//	Initialize	the	counter	variable.
while	(theCount	>=	1)		{
				if	(theCount	>	1)		{
								theMoments	=	"Only	"	+	theCount	+	"	moments	left!";
}
				else		{
								theMoments	=	"Only	one	moment	left!";
				}
theCount--;								//	Update	the	counter	variable.
}
theMoments	=	"BLASTOFF!";

Note		Because	while	loops	do	not	have	explicit	built-in	counter
variables,	they	are	even	more	vulnerable	to	infinite	looping	than	the
other	types.	Moreover,	partly	because	it	is	not	necessarily	easy	to
discover	where	or	when	the	loop	condition	is	updated,	it	is	only	too
easy	to	write	a	while	loop	in	which	the	condition,	in	fact,	never	does
get	updated.	You	should	be	extremely	careful	when	you	design	while
loops.

Using	break	and	continue	Statements

Microsoft	JScript	provides	a	statement	to	stop	the	execution	of	a

loop.	The	break	statement	can	be	used	to	stop	execution	if	some
(presumably	special)	condition	is	met.	The	continue	statement
can	be	used	to	jump	immediately	to	the	next	iteration,	skipping
the	rest	of	the	code	block	but	updating	the	counter	variable	as
usual	if	the	loop	is	a	for	or	for...in	loop.

var	theComment	=	"";
var	theRemainder	=	0;
var	theEscape	=	3;
var	checkMe	=	27;
for	(kcount	=	1;	kcount	<=	10;	kcount++)	
{
				theRemainder	=	checkMe	%	kcount;
				if	(theRemainder	==	theEscape)
						{
												break;		//	Exits	from	the	loop	at	the	first	encounter	with	a	remainder	that	equals	the	escape.
}
theComment	=	checkMe	+	"	divided	by	"	+	kcount	+	"	leaves	a	remainder	of		"	+	theRemainder;
}

for	(kcount	=	1;	kcount	<=	10;	kcount++)	
{
			theRemainder	=	checkMe	%	kcount;
			if	(theRemainder	!=	theEscape)	

			{
						continue;		//	Selects	only	those	remainders	that	equal	the	escape,	ignoring	all	others.
}

//	JScript	code	that	uses	the	selected	remainders.
}

var	theMoments	=	"";
var	theCount	=	42;		//	The	counter	is	initialized.
while	(theCount	>=	1)		{
//	if	(theCount	<	10)		{		//	Warning!
//	This	use	of	continue	creates	an	infinite	loop!
//	continue;
//	}
				if	(theCount	>	1)		{
								theMoments	=	"Only	"	+	theCount	+	"	moments	left!";
}
				else		{
								theMoments	=	"Only	one	moment	left!";
				}
theCount--;		//	The	counter	is	updated.
}
theCount	=	"BLASTOFF!";

Microsoft®	JScript®	JScript	Functions
	JScript	Tutorial;

Previous
Next

What	Is	a	Function?

Microsoft	JScript	functions	perform	actions.	They	can	also	return
results.	Sometimes	these	are	the	results	of	calculations	or
comparisons.

Functions	combine	several	operations	under	one	name.	This	lets	you
streamline	your	code.	You	can	write	out	a	set	of	statements,	name	it,	and
then	execute	the	entire	set	any	time	you	want	to,	just	by	calling	it	and
passing	to	it	any	information	it	needs.

You	pass	information	to	a	function	by	enclosing	the	information	in
parentheses	after	the	name	of	the	function.	Pieces	of	information	that	are
being	passed	to	a	function	are	called	arguments	or	parameters.	Some
functions	don't	take	any	arguments	at	all;	some	functions	take	one
argument;	some	take	several.	There	are	even	functions	for	which	the
number	of	arguments	depends	on	how	you	are	using	the	function.

JScript	supports	two	kinds	of	functions:	those	that	are	built	into	the
language,	and	those	you	create	yourself.

Special	Built-in	Functions

The	JScript	language	includes	several	built-in	functions.	Some	of
them	let	you	handle	expressions	and	special	characters,	and
convert	strings	to	numeric	values.

For	example,	escape()	and	unescape()	are	used	to	convert	characters	that
have	special	meanings	in	HTML	code,	characters	that	you	cannot	just	put
directly	into	text.	For	example,	the	angle	brackets,	"<"	and	">",	delineate

HTML	tags.

The	escape	function	takes	as	its	argument	any	of	these	special	characters,
and	returns	the	escape	code	for	the	character.	Each	escape	code	consists	of
a	percent	sign	(%)	followed	by	a	two-digit	number.	The	unescape	function
is	the	exact	inverse.	It	takes	as	its	argument	a	string	consisting	of	a	percent
sign	and	a	two-digit	number,	and	returns	a	character.

Another	useful	built-in	function	is	eval(),	which	evaluates	any	valid
mathematical	expression	that	is	presented	in	string	form.	The	eval()
function	takes	one	argument,	the	expression	to	be	evaluated.

var	anExpression	=	"6	*	9	%	7";
var	total	=	eval(anExpression);								//	Assigns	the	value	5	to	the	variable	total.
var	yetAnotherExpression	=	"6	*	(9	%	7)";
total	=	eval(yetAnotherExpression)								//	Assigns	the	value	12	to	the	variable	total.

var	totality	=	eval("...surrounded	by	acres	of	clams.");								//	Generates	an	error.

Consult	the	language	reference	for	more	information	about	these
and	other	built-in	functions.

Creating	Your	Own	Functions

You	can	create	your	own	functions	and	use	them	where	you	need
them.	A	function	definition	consists	of	a	function	statement	and	a
block	of	JScript	statements.

The	checkTriplet	function	in	the	following	example	takes	as	its	arguments
the	lengths	of	the	sides	of	a	triangle,	and	calculates	from	them	whether	the
triangle	is	a	right	triangle	by	checking	whether	the	three	numbers	constitute
a	Pythagorean	triplet.	(The	square	of	the	length	of	the	hypotenuse	of	a	right
triangle	is	equal	to	the	sum	of	the	squares	of	the	lengths	of	the	other	two
sides.)	The	checkTriplet	function	calls	one	of	two	other	functions	to	make

the	actual	test.

Notice	the	use	of	a	very	small	number	("epsilon")	as	a	testing	variable	in
the	floating-point	version	of	the	test.	Because	of	uncertainties	and	roundoff
errors	in	floating-point	calculations,	it	is	not	practical	to	make	a	direct	test
of	whether	the	square	of	the	hypotenuse	is	equal	to	the	sum	of	the	squares
of	the	other	two	sides	unless	all	three	values	in	question	are	known	to	be
integers.	Because	a	direct	test	is	more	accurate,	the	code	in	this	example
determines	whether	it	is	appropriate	and,	if	it	is,	uses	it.

var	epsilon	=	0.0000000000001;		//	Some	very	small	number	to	test	against.
var	triplet	=	false;

function	integerCheck(a,	b,	c)		{		//	The	test	function	for	integers.
				if	((a*a)	==	((b*b)	+	(c*c)))		{		//	The	test	itself.
				triplet	=	true;
				}
}		//	End	of	the	integer	checking	function.

function	floatCheck(a,	b,	c)		{		//	The	test	function	for	floating-point	numbers.
var	theCheck	=	((a*a)	-	((b*b)	+	(c*c)))		//	Make	the	test	number.
				if	(theCheck	<	0)		{		//	The	test	requires	the	absolute	value,	so	invert	theCheck	if	it's	negative.
				theCheck	*=	-1;
				}
				if	(epsilon	>	theCheck)		{		//	If	it's	as	close	as	that,	it's	pretty	darn	close!
				triplet	=	true;
				}
}		//	End	of	the	floating-poing	check	function.

function	checkTriplet(a,	b,	c)		{		//	The	triplet	checker.	First,	move	the	longest	side	to	position	"a".

var	d	=	0;		//	Create	a	temporary	holding	bin.
				if	(c	>	b)		{		//	If	c	>	b,	swap	them.
				d	=	c;
				c	=	b;
				b	=	d;
				}		//	If	not,	ignore	them.
				if	(b	>	a)		{		//	If	b	>	a,	swap	them.
				d	=	b;
				b	=	a;
				a	=	d;
				}		//	If	not,	ignore	them.

//	Side	"a"	is	now	the	hypotenuse,	if	there	is	one.

				if	(((a%1)	==	0)	&&	((b%1)	==	0)	&&	((c%1)	==	0))		{		//	Test	all	3	values.	Are	they	integers?
				integerCheck(a,	b,	c);		//	If	so,	use	the	precise	check.
				}
				else
								floatCheck(a,	b,	c);		//	If	not,	get	as	close	as	is	reasonably	possible.
}		//	End	of	the	triplet	check	function.

//	The	next	three	statements	assign	sample	values	for	testing	purposes.
var	sideA	=	5;
var	sideB	=	5;
var	sideC	=	Math.sqrt(50);

checkTriplet(sideA,	sideB,	sideC);		//	Call	the	function.	After	the	call,	triplet	contains	the	result.

Microsoft®	JScript®	JScript	Objects
	JScript	Tutorial;

Previous
Next

What	Are	Objects?

In	Microsoft	JScript,	objects	are,	essentially,	collections	of
properties	and	methods.	A	method	is	a	function	that	is	a	member
of	an	object,	and	a	property	is	a	value	or	set	of	values	(in	the
form	of	an	array	or	object)	that	is	a	member	of	an	object.	JScript
supports	three	kinds	of	objects:	intrinsic	objects,	objects	you
create,	and	browser	objects,	which	are	covered	elsewhere.

Objects	as	Arrays

In	JScript,	objects	and	arrays	are	handled	identically.	You	can
refer	to	any	of	the	members	of	an	object	(its	properties	and
methods)	either	by	name	(using	the	name	of	the	object,	followed
by	a	period,	followed	by	the	name	of	the	property)	or	by	its	array
subscript	index.	Subscript	numbering	in	JScript	begins	with	0.
For	convenience,	the	subscript	can	also	be	referred	to	by	its
name.

Thus,	a	property	can	be	referred	to	in	several	ways.	All	of	the	following
statements	are	equivalent.

theWidth	=	spaghetti.width;
theWidth	=	spaghetti[3];		//	[3]	is	the	"width"	index.
theWidth	=	spaghetti["width"];

While	it	is	possible	to	use	brackets	to	refer	to	a	property	by	its

numeric	index,	it	is	not	possible	to	use	the	dot	(.)	convention	with
index	numbers.	The	following	statement	generates	an	error.

theWidth	=	spaghetti.3;

When	an	object	has	another	object	as	a	property,	the	naming
convention	extends	in	a	straightforward	way.

var	init4	=	toDoToday.shoppingList[3].substring(0,1);		//	shoppingList,	an	array,	is	a	property	of	toDoToday.

The	fact	that	objects	can	have	other	objects	as	properties	lets	you
generate	arrays	with	more	than	one	subscript,	which	are	not
directly	supported.	The	following	code	creates	a	multiplication
table	for	values	from	0	times	0	through	16	times	16.

var	multTable	=	new	Array(17);		//	Make	the	shell	that	will	become	the	table.
for	(var	j	=	0;	j	<	multTable.length;	j++)		{		//	Prepare	to	fill	it	with	rows.
				var	aRow	=	new	Array(17);		//	Create	a	row.
				for	(var	i	=	0;	i	<	aRow.length;	i++)		{		//	Prepare	to	fill	the	row.
				aRow[i]	=	(i	+	"	times	"	+	j	+	"	=	"	+	i*j);		//	Make	and	place	one	value.
				}
multTable[j]	=	aRow;		//	Put	the	filled	row	into	the	table.
}

To	refer	to	one	of	the	elements	of	an	array	of	this	kind,	use
multiple	sets	of	brackets.

var	multiply3x7	=	multTable[3][7];

The	following	statement	generates	an	error.

var	multiply3x7	=	multTable[3,	7];

Microsoft®	JScript®	JScript	Reserved
Keywords

	JScript	Tutorial;
Previous

Next

JScript	has	a	number	of	reserved	keywords.	These	words	come	in
three	types:	JScript	reserved	keywords,	future	reserved	words,
and	words	to	avoid.

JScript	Keywords
break false in this void
continue for new true while
delete function null typeof with
else if return var 	

	
JScript	Future	Keywords

case debugger export super
catch default extends switch
class do finally throw
const enum import try

The	words	to	avoid	are	any	that	are	already	the	names	of	intrinsic	JScript
objects	or	functions.	Words	like	String	or	parseInt	are	included	in	this.

Using	any	of	the	keywords	from	the	first	two	categories	causes	a
compilation	error	when	your	script	is	first	loaded.	Using	a	reserved	word
from	the	third	set	can	cause	odd	behavior	problems	if	you	attempt	to	use
both	your	variable	and	the	original	entity	of	the	same	name	in	the	same
script.	For	example,	the	following	script	does	not	do	quite	what	you	think	it
should:

var	String;

var	text	=	new	String("This	is	a	string	object");

In	this	case,	you	get	an	error	saying	that	String	is	not	an	object.
Many	cases	of	using	a	pre-existing	identifier	aren't	this	obvious.

Microsoft®	JScript®	Recursion
	JScript	Tutorial;

Previous
Next

Recursion	is	an	important	programming	technique.	It's	used	to
have	a	function	call	itself	from	within	itself.	One	handy	example
is	the	calculation	of	factorials.	The	factorials	of	0	and	1	are	both
defined	specifically	to	be	1.	The	factorials	of	larger	numbers	are
calculated	by	multiplying	1	*	2	*	...,	incrementing	by	1	until	you
reach	the	number	for	which	you're	calculating	the	factorial.

The	following	paragraph	is	a	function,	defined	in	words,	that	calculates	a
factorial.

"If	the	number	is	less	than	zero,	reject	it.	If	it	isn't	an	integer,	round	it	down
to	the	next	integer.	If	the	number	is	zero	or	one,	its	factorial	is	one.	If	the
number	is	larger	than	one,	multiply	it	by	the	factorial	of	the	next	smaller
number."

To	calculate	the	factorial	of	any	number	that	is	larger	than	1,	you	need	to
calculate	the	factorial	of	at	least	one	other	number.	The	function	you	use	to
do	that	is	the	function	you're	in	the	middle	of	already;	the	function	must
call	itself	for	the	next	smaller	number,	before	it	can	execute	on	the	current
number.	This	is	an	example	of	recursion.

Clearly,	there	is	a	way	to	get	in	trouble	here.	You	can	easily	create	a
recursive	function	that	doesn't	ever	get	to	a	definite	result,	and	cannot	reach
an	endpoint.	Such	a	recursion	causes	the	computer	to	execute	a	so-called
"infinite"	loop.	Here's	an	example:	omit	the	first	rule	(the	one	about
negative	numbers)	from	the	verbal	description	of	calculating	a	factorial,
and	try	to	calculate	the	factorial	of	any	negative	number.	This	fails,
because	in	order	to	calculate	the	factorial	of,	say,	-24	you	first	have	to
calculate	the	factorial	of	-25;	but	in	order	to	do	that	you	first	have	to
calculate	the	factorial	of	-26;	and	so	on.	Obviously,	this	never	reaches	a
stopping	place.

Thus,	it	is	extremely	important	to	design	recursive	functions	with	great
care.	If	you	even	suspect	that	there's	any	chance	of	an	infinite	recursion,
you	can	have	the	function	count	the	number	of	times	it	calls	itself.	If	the
function	calls	itself	too	many	times,	however	many	you	decide	that	should
be,	it	automatically	quits.

Here's	the	factorial	function	again,	this	time	written	in	JScript	code.

function	factorial(aNumber)		{
aNumber	=	Math.floor(aNumber);		//	If	the	number	is	not	an	integer,	round	it	down.
if	(aNumber	<	0)		{		//	If	the	number	is	less	than	zero,	reject	it.
				return	"not	a	defined	quantity";
				}
						if	((anumber	==	0)	||	(anumber	==	1))		{		//	If	the	number	is	0	or	1,	its	factorial	is	1.
						return	1;
						}
								else	return	(anumber	*	factorial(anumber	-	1));		//	Otherwise,	recurse	until	done.
}

Microsoft®	JScript®	Variable	Scope
	JScript	Tutorial;

Previous
Next

Microsoft	JScript	has	two	scopes:	global	and	local.	If	you	declare	a
variable	outside	of	any	function	definition,	it	is	a	global	variable,	and	its
value	is	accessible	and	modifiable	throughout	your	program.	If	you	declare
a	variable	inside	of	a	function	definition,	that	variable	is	local.	It	is	created
and	destroyed	every	time	the	function	is	executed;	it	cannot	be	accessed	by
anything	outside	the	function.

A	local	variable	can	have	the	same	name	as	a	global	variable,	but	it	is
entirely	distinct	and	separate.	Consequently,	changing	the	value	of	one
variable	has	no	effect	on	the	other.	Inside	the	function	in	which	the	local
variable	is	declared,	only	the	local	version	has	meaning.

var	aCentaur	=	"a	horse	with	rider,";		//	Global	definition	of	aCentaur.

//	JScript	code,	omitted	for	brevity.
function	antiquities()		//	A	local	aCentaur	variable	is	declared	in	this	function.
{

//	JScript	code,	omitted	for	brevity.
var	aCentaur	=	"A	centaur	is	probably	a	mounted	Scythian	warrior";

//	JScript	code,	omitted	for	brevity.
		aCentaur	+=	",	misreported;	that	is,	";		//	Adds	to	the	local	variable.

//	JScript	code,	omitted	for	brevity.
}		//	End	of	the	function.

var	nothinginparticular	=	antiquities();
aCentaur	+=	"	as	seen	from	a	distance	by	a	naive	innocent.";

/*
Within	the	function,	the	variable	contains	"A	centaur	is	probably	a	mounted	Scythian	warrior,
misreported;	that	is,	";	outside	the	function,	the	variable	contains	the	rest	of	the	sentence:
"a	horse	with	rider,	as	seen	from	a	distance	by	a	naive	innocent."
*/		

It's	important	to	note	that	variables	act	as	if	they	were	declared	at
the	beginning	of	whatever	scope	they	exist	in.	Sometimes	this
results	in	unexpected	behaviors.

var	aNumber	=	100;
var	withAdditive	=	0;

withAdditive	+=	aNumber;		//	withAdditive	is	now	100.
tweak();
withAdditive	+=	aNumber;		//	withAdditive	is	now	200.

function	tweak()		{
var	newThing	=	0;		//	Explicit	declaration	of	the	newThing	variable.
//	The	next	statement,	if	it	were	not	commented	out,	would	generate	an	error.
//	newThing	=	aNumber;
//	The	next	statement	assigns	the	value	42	to	the	local	aNumber,	implicitly	declaring	it.
aNumber	=	42;
if	(false)		{

				var	aNumber;		//	This	statement	is	never	executed.
				aNumber	=	"Hello!";		//	This	statement	is	never	executed.
				}		//	End	of	the	conditional.
}		//	End	of	the	function	definition.

The	statement	that	is	commented	out	attempts	to	assign	the	value
of	the	local	variable	aNumber	to	the	local	variable	newThing.	It
fails,	despite	the	fact	that	a	local	aNumber	variable	is	defined
elsewhere	in	the	function,	and	therefore	exists	throughout.	The
aNumber	variable	does	not	have	any	assigned	value	at	the	point
where	this	statement	occurs	in	the	code,	and	is	thus	undefined.

Microsoft®	JScript®	Copying,	Passing,
and	Comparing	Data

	JScript	Tutorial
Previous

Next

In	Microsoft	JScript,	how	data	is	handled	depends	on	its	data	type.

By	Value	vs.	By	Reference

Numbers	and	Boolean	values	(true	and	false)	are	copied,	passed,
and	compared	by	value.	When	you	copy	or	pass	by	value,	you
allocate	a	space	in	computer	memory	and	put	the	value	of	the
original	into	it.	If	you	then	change	the	original,	the	copy	is	not
affected	(and	vice	versa),	because	the	two	are	separate	entities.

Objects,	arrays,	and	functions	are	copied,	passed,	and	compared	by	reference	under	most
circumstances.	When	you	copy	or	pass	by	reference,	you	essentially	create	a	pointer	to
the	original	item,	and	use	the	pointer	as	if	it	were	a	copy.	If	you	then	change	the	original,
you	change	both	the	original	and	the	copy	(and	vice	versa).	There	is	really	only	one
entity;	the	"copy"	is	not	actually	a	copy,	it's	just	another	reference	to	the	data.

Note		You	can	change	this	behavior	for	objects
and	arrays	by	specifying	the	assign()	method
for	them.

Last,	strings	are	copied	and	passed	by	reference,	but	are	compared	by	value.

Note		Because	of	the	way	the	ASCII	and	ANSI
character	sets	are	constructed,	capital	letters
precede	lowercase	ones	in	sequence	order.	For
example,	"Zoo"	compares	as	less	than

"aardvark."

Passing	Parameters	to	Functions

When	you	pass	a	parameter	to	a	function	by	value,	you	are
making	a	separate	copy	of	that	parameter,	a	copy	that	exists	only
inside	the	function.	If,	on	the	other	hand,	you	pass	a	parameter	by
reference,	and	the	function	changes	the	value	of	that	parameter,	it
is	changed	everywhere	in	the	script.

Testing	Data

When	you	perform	a	test	by	value,	you	compare	two	distinct
items	to	see	whether	they	are	equal	to	each	other.	Usually,	this
comparison	is	performed	on	a	byte-by-byte	basis.	When	you	test
by	reference,	you	are	checking	to	see	whether	two	items	are
pointers	to	a	single	original	item.	If	they	are,	then	they	compare
as	equal;	if	not,	even	if	they	contain	the	exact	same	values,	byte-
for-byte,	they	compare	as	unequal.

Copying	and	passing	strings	by	reference	saves	memory;	but	because	you	cannot	change
strings	once	they	are	created,	it	becomes	possible	to	compare	them	by	value.	This	lets
you	test	whether	two	strings	have	the	same	content	even	if	one	was	generated	entirely
separately	from	the	other.

Microsoft®	JScript®	Using	Arrays
	JScript	Tutorial

Previous
Next

Array	Indexing

Arrays	in	JScript	are	sparse.	That	is,	if	you	have	an	array	with
three	elements	that	are	numbered	0,	1,	and	2,	you	can	create
element	50	without	worrying	about	elements	3	through	49.	If	the
array	has	an	automatic	length	variable	(see	Intrinsic	Objects	for
an	explanation	of	automatic	monitoring	of	array	length),	the
length	variable	is	set	to	51,	rather	than	to	4.	You	can	certainly
create	arrays	in	which	there	are	no	gaps	in	the	numbering	of
elements,	but	you	aren't	required	to.	In	fact,	in	JScript,	your
arrays	don't	have	to	have	numbered	subscripts	at	all.

In	JScript,	objects	and	arrays	are	essentially	identical	to	each	other.	The	real	difference	is
not	in	the	data,	but	rather	in	the	way	you	address	the	members	of	an	array	or	the
properties	and	methods	of	an	object.

Addressing	Arrays

There	are	two	main	ways	to	address	the	members	of	an	array.
Ordinarily,	you	address	arrays	by	using	brackets.	The	brackets
enclose	either	a	numeric	value	or	an	expression	that	evaluates	to
a	nonnegative	integer.	The	following	example	assumes	that	the
entryNum	variable	is	defined	and	assigned	a	value	elsewhere	in
the	script.

theListing	=	addressBook[entryNum];
theFirstLine	=	theListing[1];

This	method	of	addressing	is	equivalent	to	the	method	for

addressing	objects,	though	in	object	addressing,	what	follows	the
period	must	be	the	name	of	an	actual	property.	If	there	is	no	such
property,	your	code	generates	an	error.

The	second	way	to	address	an	array	is	to	make	an	object/array	that	contains	properties
that	are	numbered,	and	then	generate	the	numbers	in	a	loop.	The	following	example
generates	two	arrays,	one	for	the	name	and	one	for	the	address,	from	a	listing	in
addressBook.	Each	of	these	contains	four	properties.	An	instance	of	theName,	for
example,	built	from	the	[Name1]	through	[Name4]	properties	of	theListing,	might
contain	"G."	"Edward"	"Heatherington"	"IV",	or	"George"	""	"Sand"	"".

theListing	=	addressBook[entryNum];
for	(i	=	1;	i	<	4;	i++)		{
theName[i]	=	theListing["Name"	+	i];
theAddress[i]	=	theListing["Address"	+	i];
}

While	this	particular	instance	is	short,	and	could	easily	have	been
written	in	the	"dot"	style	of	notation,	(that	is,	addressing
theListing,	theName,	and	theAddress	as	objects	rather	than	as
arrays),	that	is	not	always	possible.	Sometimes	the	particular
property	may	not	exist	until	run	time,	or	there	may	be	no	way	to
know	which	one	it	will	be	in	advance.	For	example,	if	the
addressBook	array	were	arranged	by	last	name	instead	of	by
numbered	listings,	the	user	would	probably	be	entering	names
"on	the	fly,"	while	the	script	is	running,	to	look	people	up.	The
following	example	assumes	the	existence	of	appropriate	function
definitions	elsewhere	in	the	script.

theListing	=	addressBook[getName()];

theIndivListing	=	theListing[getFirstName()];
This	is	associative	addressing	of	the	array,	that	is,	addressing	by
means	of	fully	arbitrary	strings.	Objects	in	JScript	are	actually
associative	arrays.	Although	you	can	(and	frequently	do)	use	the
"dot"	style	of	addressing,	you	are	not	by	any	means	required	to.
Because	the	members	of	any	JScript	object	can	be	accessed	using
array	notation,	a	JScript	object	can	be	used	as	an	associative
array.

The	following	code	creates	and	initializes	the	most	familiar	form	of	an	array:

var	myArray	=	new	Array("Athens",	"Belgrade",	"Cairo");
Each	element	of	this	array	is	addressed	using	its	element	number;
in	this	case	0,	1,	or	2.	Using	the	for...in	statement,	the	array	can
be	iterated	starting	at	0	and	ending	at	2.	For	example:

for	(key	in	myArray)
		response.write("Element	value	is	"	+	MyArray[key]	+	"
);

The	following	code	creates	and	initializes	an	associative	array
containing	three	elements:

var	MyArray	=	{"a"	:	"Athens",	"b"	:	"Belgrade",	"c"	:	"Cairo"	};
In	this	array,	elements	are	addressed	using	the	key	strings("a",
"b",	or	"c")	instead	of	an	array	element	number	(0,	1,	or	2).	This

allows	you	to	create	and	use	arrays	with	more	intuitive
addressing	schemes.	The	same	for...in	statement	code	shown
above	can	be	used	to	iterate	this	array	as	well.

Microsoft®	JScript®	Advanced	Object
Creation

	JScript	Tutorial
Previous

Next

Using	Constructors	to	Create	Objects

In	Microsoft	JScript,	you	use	constructors	to	create	and	build	a
class	of	objects.	You	invoke	a	constructor	with	the	new
statement.	It	returns	whatever	it	constructs.

The	special	case	Function	constructor	lets	you	create	functions	that	are	anonymous.	An
anonymous	function	is	one	that	does	not	have	a	name.	You	can	use	the	Function
constructor	to	build	a	function	"on	the	fly",	for	example,	as	one	of	the	instructions	inside
another	function.	Such	a	function,	which	is	only	called	from	the	one	location,	doesn't
need	a	name.

In	the	following	example,	such	an	anonymous	function	generates	one	line	of	a	"name-
and-email-address"	listing.	It	checks	the	value	of	the	firstNameFirst	variable	to	decide
whether	to	put	the	first	name	or	the	last	name	first,	and	the	value	of	the	emailNameFirst
variable	to	decide	whether	to	put	the	name	or	the	email	address	first.	The	example
assumes	that	the	values	of	firstNameFirst	and	emailNameFirst	are	set	elsewhere.

for	(j	=	1;	j	<	addressList[length];	j++)	
{
oneListingLine	=	new	Function(emailNameFirst,	firstNameFirst,	addressList,	j,	theName	=	new	Function(firstNameFirst,	addressList,	j,	var	theName=(addressList[j].firstName	+	addressList[j].lastName);	
if(firstNameFirst)
						{
						theName=(addressList[j].firstName	+	addressList[j].lastName);
						},)	;	

if	(emailNameFirst)	
						{
theListing	=	addressList[j].emailName+	":\t"	+	theName	
						}	else	theListing	=	theName	+	":\t"	+	addressList[j].emailName;	return	theListing;)
document.write(oneListingLine	+	"
");
}

Writing	Constructors

To	write	your	own	constructors,	you	use	the	this	keyword	within
the	constructor	to	refer	to	the	newly-created	object.	The
constructor	initializes	the	object.

Though	the	constructor	in	the	next	example	starts	at	an	index	of	0,	this	is	not	required.
You	can	start	with	a	first	index	of	1	if,	for	example,	you	want	a	parameter	that	indicates
the	actual	number	of	indexes	of	the	array	or	object.	In	the	example,	it's	called	extent	to
distinguish	it	from	the	automatically	maintained	length	parameter	of	the	built-in	Array(
)	object).	If	you	write	code	that	adds	properties	to	the	array,	you	have	to	update	the
extent	parameter	(or	your	equivalent)	because	this	parameter	is	not	maintained	by
JScript.	Notice	that	even	this	extremely	simple	example	uses	both	object	(dot)	and	array
(bracket)	notation	styles	to	refer	to	the	current	object.

function	MakeStringArray(length)	{
this.extent	=	length;
for	(iNum	=	0;	iNum	<	length;	i++)	{
this[iNum]	=	"";

}
}

//	Use	the	constructor	to	create	and	initialize	an	array.
myStringArray	=	new	MakeStringArray(63);

Using	Prototypes	to	Create	Objects

When	you	write	an	object	definition,	you	can	use	prototype
properties	to	create	properties	that	are	held	in	common	by	all
objects	that	are	generated	by	the	definition.	Prototype	properties
are	copied	by	reference	into	each	object	of	a	class,	so	they	have
the	same	value	for	all	objects	in	the	class.	However,	you	can
change	the	value	of	a	prototype	property	in	one	object,	and	the
new	value	overrides	the	default,	but	only	in	that	one	instance.
Other	objects	that	are	members	of	the	class	are	not	affected	by
the	change.

Using	this	principle,	you	can	define	additional	properties	for	objects	that	are	part	of	the
JScript	language,	which	all	have	prototypes.	For	example,	if	you	want	a	special	constant
for	a	calculation,	and	the	constant	is	not	among	those	provided	in	the	Math	and
Number	objects,	you	can	define	it	yourself	and	then	assign	it	their	respective	object
prototypes,	or	the	prototype	property	of	your	object	class.

Math.prototype.Avogadro	=	6.0232E23;
function	howManyMolecules(wtGrams,molWt)	{
return	((wtGrams/molWt)*Math.prototype.Avogadro);

}
document.write("There	are	"	+	howManyMolecules(window.prompt("How	many	grams?",0),window.prompt
("What's	the	molecular	weight?",0))	+
	"	molecules	in	that	amount.");

Perhaps	more	to	the	point,	you	can	define	a	function,	assign	it	to
String.prototype	as	a	method,	and	use	it	on	any	string	anywhere
in	your	script.	The	following	example	assumes	the	existence	of	a
Periodic	Chart	array	called	"theElements",	defined	elsewhere	in
the	script,	which	contains	symbols	for	the	elements,	their	names,
their	atomic	weights,	and	other	relevant	information	about	them.

function	atomName(theSymbol)	{
return(theElements[theSymbol].fullName);
}

String.prototype.atomName	=	atomName;

function	decodeFormula(theFormula)	{
var	theCurrentPiece	=	"";

var	theDecodedFormula	=	"";
for	(i	=	1;	i	=	theFormula.length	;	i++);
if	(theFormtheCurrentPiece	
//	Code	statements	to	separate	the	formula	string	into	an	array	of	symbols	and	numbers.
//	Loop	through	the	formula	array	and	assemble	the	decoded	string.	Each	term	is:
theDecodedFormula	+=	formula[n].number
theDecodedFormula	+=	"	";
theDecodedFormula	+=	formula[n].symbol.prototype.atomName;
theDecodedFormula	+=	"	"
//	End	of	loop.

return	theDecodedFormula;
}

decodeFormula(window.prompt("Formula?","Al2O3"));

Microsoft®	JScript®	Special
Characters

	JScript	Tutorial
Previous

Next

Special	Characters

JScript	provides	special	characters	that	allow	you	to	include	in
strings	some	characters	you	can't	type	directly.	Each	of	these
characters	begins	with	a	backslash.	The	backslash	is	an	escape
character	you	use	to	inform	the	JScript	interpreter	that	the	next
character	is	special.

Escape	Sequence Character
\b Backspace
\f Form	feed
\n Line	feed	(newline)
\r Carriage	return
\t Horizontal	tab	(Ctrl-I)
\' Single	quotation	mark
\" Double	quotation	mark
\\ Backslash

Notice	that	because	the	backslash	itself	is	used	as	the	escape	character,	you	cannot
directly	type	one	in	your	script.	If	you	want	to	write	a	backslash,	you	must	type	two	of
them	together	(\\).

document.write('The	image	path	is	C:\\webstuff\\mypage\\gifs\\garden.gif.');
document.write('The	caption	reads,	"After	the	snow	of	\'97.	Grandma\'s	house	is	covered."');

You	can	use	these	escape	sequences	to	control	formatting	of	text
inside	<PRE>	and	<XMP>	tags	and,	to	some	extent,	inside	alert,
prompt,	and	confirm	message	boxes.

Microsoft®	JScript®	Troubleshooting
Your	Scripts

	JScript	Tutorial
Previous

Next

There	are	places	in	any	programming	language	where	you	can
get	caught	if	you	are	not	careful,	and	every	language	has	specific
surprises	in	it.	Take,	for	example,	the	null	value:	The	one	in
Microsoft	JScript	behaves	differently	than	the	null	value	in	the	C
or	C++	languages.

Here	are	some	of	the	trouble	areas	that	that	you	may	run	into	as	you	write	JScript	scripts.

Syntax	Errors

Because	syntax	is	much	more	rigid	in	programming	languages
than	in	natural	languages,	it	is	important	to	pay	strict	attention	to
detail	when	you	write	scripts.	If,	for	example,	you	mean	for	a
particular	parameter	to	be	a	string,	you	will	run	into	trouble	if
you	forget	to	enclose	it	in	quotation	marks	when	you	type	it.

Order	of	Script	Interpretation

JScript	interpretation	is	part	of	the	your	Web	browser's	HTML
parsing	process.	So,	if	you	place	a	script	inside	the	<HEAD>	tag
in	a	document,	it	is	interpreted	before	any	of	the	<BODY>	tag	is
examined.	If	you	have	objects	that	are	created	in	the	<BODY>
tag,	they	do	not	exist	at	the	time	the	<HEAD>	is	being	parsed,
and	cannot	be	manipulated	by	the	script.

Automatic	Type	Coercion

JScript	is	a	loosely	typed	language	with	automatic	coercion.
Consequently,	despite	the	fact	that	values	having	different	types

are	not	equal,	the	expressions	in	the	following	example	evaluate
to	true.

"100"	==	100
false	==	0

Operator	Precedence

When	a	particular	operation	is	performed	during	the	evaluation
of	an	expression	has	more	to	do	with	operator	precedence	than
with	the	location	of	the	expression.	Thus,	in	the	following
example,	multiplication	is	performed	before	subtraction,	even
though	the	subtraction	appears	first	in	the	expression.

theRadius	=	aPerimeterPoint	-	theCenterpoint	*	theCorrectionFactor;

Using	for...in	Loops	with	Objects

When	you	step	through	the	properties	of	an	object	with	a	for...in
loop,	you	cannot	necessarily	predict	or	control	the	order	in	which
the	fields	of	the	object	are	assigned	to	the	loop	counter	variable.
Moreover,	the	order	may	be	different	in	different
implementations	of	the	language.

with	Keyword

The	with	statement	is	convenient	for	addressing	properties	that
already	exist	in	a	specified	object,	but	cannot	be	used	to	add
properties	to	an	object.	To	create	new	properties	in	an	object,	you
must	refer	to	the	object	specifically.

this	Keyword

Although	you	use	the	this	keyword	inside	the	definition	of	an
object,	to	refer	to	the	object	itself,	you	cannot	ordinarily	use	this
or	similar	keywords	to	refer	to	the	currently	executing	function
when	that	function	is	not	an	object	definition.	You	can,	if	the
function	is	to	be	assigned	to	an	object	as	a	method,	use	the	this
keyword	within	the	function,	to	refer	to	the	object.

Writing	a	Script	That	Writes	a	Script

The	</SCRIPT>	tag	terminates	the	current	script	if	the	interpreter
encounters	it.	To	display	"</SCRIPT>"	itself,	rewrite	this	as	at
least	two	strings,	for	example,	"</SCR"	and	"IPT>",	which	you
can	then	concatenate	together	in	the	statement	that	writes	them
out.

Implicit	Window	References

Because	more	than	one	window	can	be	open	at	a	time,	any
window	reference	that	is	implicit	is	taken	to	point	to	the	current
window.	For	other	windows,	you	must	use	an	explicit	reference.

Microsoft®	JScript®	Displaying
Information	In	the
Browser	

	JScript	Tutorial
Previous

Next

Microsoft	JScript	provides	two	ways	to	display	data	directly	in
your	browser.	You	can	use	the	write()	and	writeln(),	which	are
methods	of	the	document	object.	You	can	also	display
information	in	forms	within	the	browser,	and	in	alert,	prompt,
and	confirm	message	boxes.

Using	document.write()	and	document.writeln()

The	most	common	way	to	display	information	is	the	write()
method	of	the	document	object.	It	takes	one	argument,	a	string,
which	it	displays	in	the	browser.	The	string	can	be	either	plain
text	or	HTML.

Strings	can	be	enclosed	in	either	single	or	double	quotation	marks.	This	lets	you	quote
something	that	contains	quote	marks	or	apostrophes.

document.write("Pi	is	approximately	equal	to	"	+	Math.PI);
document.write();

Tip		The	following	simple	function	is	a	way	around	having	to	type	"document.write"	every	time	you	want
something	to	appear	in	the	browser	window.	This	function	does	not	inform	you	if	something	that	you	attempt	to
write	is	undefined,	but	does	let	you	issue	the	command	"w();",	which	displays	a	blank	line.

function	w(m)		{	 	 //	Write	function.

m	=	""	+	m	+	"";								//		Make	sure	that	the	m	variable	is	a	string.
if	("undefined"	!=	m)		{								//		Test	for	empty	write	or	other	undefined	item.
				document.write(m);
				}
document.write("
");
}

w('');
w();
w("This	is	an	engraving	of	a	horse.");
w();

The	writeln()	method	is	almost	identical	to	the	write()	method,	except	that	it	appends	a
newline	character	to	whatever	string	you	provide.	In	HTML	this	ordinarily	results	only
in	a	space	after	your	item;	but	if	you're	using	<PRE>	and	<XMP>	tags,	the	newline
character	is	interpreted	literally	and	the	browser	displays	it.

When	you	call	the	write()	method,	it	opens	and	clears	the	document	if	the	document	is
not	in	the	process	of	being	opened	and	parsed	when	the	write()	method	is	called,	so	it
can	be	dangerous.	The	example	shows	a	script	that	is	intended	to	display	the	time	once	a
minute,	but	fails	to	do	so	after	the	first	time	because	it	clears	itself	in	the	process.

<HTML>
<HEAD>

<SCRIPT	LANGUAGE="JScript">
function	singOut()		{
var	theMoment	=	new	Date();
var	theHour	=	theMoment.getHours();
var	theMinute	=	theMoment.getMinutes();
var	theDisplacement	=	(theMoment.getTimezoneOffset()	/	60);
theHour	-=	theDisplacement;
if	(theHour	>	23)		{
theHour	-=	24
}
document.write(theHour	+	"	hours,	"	+	theMinute	+	"	minutes,	Coordinated	Universal	Time.");
window.setTimeout("singOut();",	60000);
}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT>

singOut();
</SCRIPT>
</BODY>
</HTML>

If	you	use	the	alert()	method	of	the	window	object	instead	of
document.write(),	the	script	works.

window.alert(theHour	+	"	hours,	"	+	theMinute	+	"	minutes,	Coordinated	Universal	Time.");
window.setTimeout("singOut();",	60000);
}

Clearing	the	Current	Document

The	clear()	method	of	the	document	object	empties	the	current
document.	This	method	also	clears	your	script	(along	with	the
rest	of	the	document),	so	be	very	careful	how	and	when	you	use
it.

document.clear();

Microsoft®	JScript®Scripting	Run-
Time	Library	Reference

	Language	Reference	
Version	Information	

	Feature	Information

	Alphabetic	Keyword
List

	Methods

	Objects

	Properties

	

Welcome	to	the	Scripting	Run-Time
Library	Reference

These	handy	blocks	of	information	will
help	you	explore	the	many	different
parts	of	the	Scripting	Run-Time	Library.

You'll	find	all	the	parts	of	the	Scripting
Run-Time	Library	listed	alphabetically
under	the	Alphabetic	Keyword	List.	But
if	you	want	to	examine	just	one	category,
say,	objects,	each	language	category	has
its	own,	more	compact	section.

How's	it	work?	Click	on	one	of	the
headings	to	the	left	to	display	a	list	of
items	contained	in	that	category.	From
this	list,	select	the	topic	that	you	want	to
view.	Once	you've	opened	that	topic,	you
can	easily	link	to	other	related	sections.

So,	go	ahead	and	take	a	look!	Study
some	statements,	mull	over	the	methods,
or	figure	out	a	few	functions.	You'll	see
just	how	versatile	the	Scripting	Run-
Time	Library	can	be!

Features Description

Microsoft	Scripting
Run-Time	Features

List	of	features	currently	in
Microsoft	Scripting	Run-Time
Library.

©	2000	Microsoft	Corporation.	All	rights	reserved.

Microsoft®	Scripting	Library	-	FileSystemObject	The
FileSystemObject	Object
Model

		Next

When	writing	scripts	for	Active	Server	Pages,	the	Windows
Scripting	Host,	or	other	applications	where	scripting	can	be	used,
it's	often	important	to	add,	move,	change,	create,	or	delete	folders
(directories)	and	files	on	the	Web	server.	It	may	also	be	necessary
to	get	information	about	and	manipulate	drives	attached	to	the
Web	server.

Scripting	allows	you	to	process	drives,	folders,	and	files	using	the	FileSystemObject
(FSO)	object	model,	which	is	explained	in	the	following	sections:

Introduction	to	the	FileSystemObject
and	the	Scripting	Run-Time	Library	Reference

FileSystemObject	Objects

Programming	the	FileSystemObject

Working	with	Drives	and	Folders

Working	with	Files

FileSystemObject	Sample	Code

Microsoft®	Scripting	Library	-	FileSystemObject

Introduction	to	the
FileSystemObject
and	the
Scripting	Run-Time
Library	Reference

		Previous
Next

The	FileSystemObject	(FSO)	object	model	allows	you	to	use	the
familiar	object.method	syntax	with	a	rich	set	of	properties,	methods,
and	events	to	process	folders	and	files.

Use	this	object-based	tool	with:

HTML	to	create	Web	pages

Windows	Scripting	Host	to	create	batch	files	for	Microsoft
Windows

Script	Control	to	provide	a	scripting	capability	to	applications
developed	in	other	languages

Because	use	of	the	FSO	on	the	client	side	raises	serious	security	issues
about	providing	potentially	unwelcome	access	to	a	client's	local	file
system,	this	documentation	assumes	use	of	the	FSO	object	model	to
create	scripts	executed	by	Internet	Web	pages	on	the	server	side.	Since
the	server	side	is	used,	the	Internet	Explorer	default	security	settings
do	not	allow	client-side	use	of	the	FileSystemObject	object.
Overriding	those	defaults	could	subject	a	local	computer	to
unwelcome	access	to	the	file	system,	which	could	result	in	total
destruction	of	the	file	system's	integrity,	causing	loss	of	data,	or
worse.

The	FSO	object	model	gives	your	server-side	applications	the	ability	to	create,
alter,	move,	and	delete	folders,	or	to	detect	if	particular	folders	exist,	and	if	so,
where.	You	can	also	find	out	information	about	folders,	such	as	their	names,	the
date	they	were	created	or	last	modified,	and	so	forth.

The	FSO	object	model	also	makes	it	easy	to	process	files.	When	processing	files,
the	primary	goal	is	to	store	data	in	a	space-	and	resource-efficient,	easy-to-access
format.	You	need	to	be	able	to	create	files,	insert	and	change	the	data,	and	output
(read)	the	data.	Since	storing	data	in	a	database,	such	as	Access	or	SQL	Server,
adds	a	significant	amount	of	overhead	to	your	application,	storing	your	data	in	a
binary	or	text	file	may	be	the	most	efficient	solution.	You	may	prefer	not	to	have
this	overhead,	or	your	data	access	requirements	may	not	require	all	the	extra
features	associated	with	a	full-featured	database.

The	FSO	object	model,	which	is	contained	in	the	Scripting	type	library
(Scrrun.dll),	supports	text	file	creation	and	manipulation	through	the
TextStream	object.	Although	it	does	not	yet	support	the	creation	or
manipulation	of	binary	files,	future	support	of	binary	files	is	planned.

Microsoft®	Scripting	Library	-	FileSystemObject

FileSystemObject
Objects

	Previous
Next

The	FileSystemObject	(FSO)	object	model	contains	the
following	objects	and	collections.

Object/Collection Description

FileSystemObject

Main	object.	Contains
methods	and	properties	that
allow	you	to	create,	delete,
gain	information	about,	and
generally	manipulate
drives,	folders,	and	files.
Many	of	the	methods
associated	with	this	object
duplicate	those	in	other
FSO	objects;	they	are
provided	for	convenience.

Drive

Object.	Contains	methods
and	properties	that	allow
you	to	gather	information
about	a	drive	attached	to	the
system,	such	as	its	share
name	and	how	much	room
is	available.	Note	that	a
"drive"	isn't	necessarily	a

hard	disk,	but	can	be	a	CD-
ROM	drive,	a	RAM	disk,
and	so	forth.	A	drive	doesn't
need	to	be	physically
attached	to	the	system;	it
can	be	also	be	logically
connected	through	a
network.

Drives

Collection.	Provides	a	list
of	the	drives	attached	to	the
system,	either	physically	or
logically.	The	Drives
collection	includes	all
drives,	regardless	of	type.
Removable-media	drives
need	not	have	media
inserted	for	them	to	appear
in	this	collection.

File

Object.	Contains	methods
and	properties	that	allow
you	to	create,	delete,	or
move	a	file.	Also	allows
you	to	query	the	system	for
a	file	name,	path,	and
various	other	properties.

Files
Collection.	Provides	a	list
of	all	files	contained	within

a	folder.

Folder

Object.	Contains	methods
and	properties	that	allow
you	to	create,	delete,	or
move	folders.	Also	allows
you	to	query	the	system	for
folder	names,	paths,	and
various	other	properties.

Folders
Collection.	Provides	a	list
of	all	the	folders	within	a
Folder.

TextStream Object.	Allows	you	to	read
and	write	text	files.

Microsoft®	Scripting	Library	-	FileSystemObject

Programming	the
FileSystemObject

	Previous
Next

To	program	with	the	FileSystemObject	(FSO)	object	model:

Use	the	CreateObject	method	to	create	a	FileSystemObject
object.

Use	the	appropriate	method	on	the	newly	created	object.

Access	the	object's	properties.

The	FSO	object	model	is	contained	in	the	Scripting	type	library,
which	is	located	in	the	Scrrun.dll	file.	Therefore,	you	must	have
Scrrun.dll	in	the	appropriate	system	directory	on	your	Web	server
to	use	the	FSO	object	model.

Creating	a	FileSystemObject	Object

First,	create	a	FileSystemObject	object	by	using	the
CreateObject	method.	In	VBScript,	use	the	following	code	to
create	an	instance	of	the	FileSystemObject:

Dim	fso
Set	fso	=	CreateObject("Scripting.FileSystemObject")

This	sample	code	demonstrates	how	to	create	an	instance	of	the
FileSystemObject.

In	JScript,	use	this	code	to	do	the	same	thing:

var	fso;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

In	both	of	these	examples,	Scripting	is	the	name	of	the	type
library	and	FileSystemObject	is	the	name	of	the	object	that	you
want	to	create.	You	can	create	only	one	instance	of	the
FileSystemObject	object,	regardless	of	how	many	times	you	try
to	create	another.

Using	the	Appropriate	Method

Second,	use	the	appropriate	method	of	the	FileSystemObject
object.	For	example,	to	create	a	new	object,	use	either
CreateTextFile	or	CreateFolder	(the	FSO	object	model	doesn't
support	the	creation	or	deletion	of	drives).

To	delete	objects,	use	the	DeleteFile	and	DeleteFolder	methods	of	the
FileSystemObject	object,	or	the	Delete	method	of	the	File	and	Folder
objects.	You	can	also	copy	and	move	files	and	folders,	by	using	the
appropriate	methods.

Note		Some	functionality	in	the	FileSystemObject	object	model
is	redundant.	For	example,	you	can	copy	a	file	using	either	the
CopyFile	method	of	the	FileSystemObject	object,	or	you	can
use	the	Copy	method	of	the	File	object.	The	methods	work	the
same;	both	exist	to	offer	programming	flexibility.

Accessing	Existing	Drives,	Files,	and	Folders

To	gain	access	to	an	existing	drive,	file,	or	folder,	use	the
appropriate	"get"	method	of	the	FileSystemObject	object:

GetDrive

GetFolder

GetFile

To	gain	access	to	an	existing	file	in	VBScript:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	f1	=	fso.GetFile("c:\test.txt")

To	do	the	same	thing	in	JScript,	use	the	following	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f1	=	fso.GetFile("c:\\test.txt");

Do	not	use	the	"get"	methods	for	newly	created	objects,	since	the
"create"	functions	already	return	a	handle	to	that	object.	For
example,	if	you	create	a	new	folder	using	the	CreateFolder
method,	don't	use	the	GetFolder	method	to	access	its	properties,
such	as	Name,	Path,	Size,	and	so	forth.	Just	set	a	variable	to	the
CreateFolder	function	to	gain	a	handle	to	the	newly	created
folder,	then	access	its	properties,	methods,	and	events.	To	do	this
in	VBScript,	use	the	following	code:

Sub	CreateFolder
		Dim	fso,	fldr
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	fldr	=	fso.CreateFolder("C:\MyTest")
		Response.Write	"Created	folder:	"	&	fldr.Name

End	Sub

To	set	a	variable	to	the	CreateFolder	function	in	JScript,	use	this
syntax:

function	CreateFolder()
{
		var	fso,	fldr;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fldr	=	fso.CreateFolder("C:\\MyTest");
		Response.Write("Created	folder:	"	+	fldr.Name);
}

Accessing	the	Object's	Properties

Once	you	have	a	handle	to	an	object,	you	can	access	its
properties.	For	example,	to	get	the	name	of	a	particular	folder,
first	create	an	instance	of	the	object,	then	get	a	handle	to	it	with
the	appropriate	method	(in	this	case,	the	GetFolder	method,
since	the	folder	already	exists).

Use	this	code	to	get	a	handle	to	the	GetFolder	method	in	VBScript:

Set	fldr	=	fso.GetFolder("c:\")

To	do	the	same	thing	in	JScript,	use	the	following	code:

var	fldr	=	fso.GetFolder("c:\\");

Now	that	you	have	a	handle	to	a	Folder	object,	you	can	check	its
Name	property.	Use	the	following	code	to	check	this	in
VBScript:

Response.Write	"Folder	name	is:	"	&	fldr.Name

To	check	a	Name	property	in	JScript,	use	this	syntax:

Response.Write("Folder	name	is:	"	+	fldr.Name);

To	find	out	the	last	time	a	file	was	modified,	use	the	following
VBScript	syntax:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
'	Get	a	File	object	to	query.
Set	f1	=	fso.GetFile("c:\detlog.txt")		
'	Print	information.
Response.Write	"File	last	modified:	"	&	f1.DateLastModified	

To	find	out	the	same	thing	in	JScript,	use	this	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
//	Get	a	File	object	to	query.
f1	=	fso.GetFile("c:\\detlog.txt");		
//	Print	information.
Response.Write("File	last	modified:	"	+	f1.DateLastModified);	

Microsoft®	Scripting	Library	-	FileSystemObject

Working	with	Drives	and
Folders

	Previous
Next

With	the	FileSystemObject	(FSO)	object	model,	you	can	work
with	drives	and	folders	programmatically	just	as	you	can	in	the
Windows	Explorer	interactively.	You	can	copy	and	move	folders,
get	information	about	drives	and	folders,	and	so	forth.

Getting	Information	About	Drives

The	Drive	object	allows	you	to	gain	information	about	the
various	drives	attached	to	a	system,	either	physically	or	over	a
network.	Its	properties	allow	you	to	obtain	information	about:

The	total	size	of	the	drive	in	bytes	(TotalSize	property)

How	much	space	is	available	on	the	drive	in	bytes
(AvailableSpace	or	FreeSpace	properties)

What	letter	is	assigned	to	the	drive	(DriveLetter	property)

What	type	of	drive	it	is,	such	as	removable,	fixed,	network,
CD-ROM,	or	RAM	disk	(DriveType	property)

The	drive's	serial	number	(SerialNumber	property)

The	type	of	file	system	the	drive	uses,	such	as	FAT,	FAT32,
NTFS,	and	so	forth	(FileSystem	property)

Whether	a	drive	is	available	for	use	(IsReady	property)

The	name	of	the	share	and/or	volume	(ShareName	and
VolumeName	properties)

The	path	or	root	folder	of	the	drive	(Path	and	RootFolder
properties)

View	the	sample	code	to	see	how	these	properties	are	used	in
FileSystemObject.

Example	Usage	of	the	Drive	Object

Use	the	Drive	object	to	gather	information	about	a	drive.	You
won't	see	a	reference	to	an	actual	Drive	object	in	the	following
code;	instead,	use	the	GetDrive	method	to	get	a	reference	to	an
existing	Drive	object	(in	this	case,	drv).

The	following	example	demonstrates	how	to	use	the	Drive	object	in
VBScript:

Sub	ShowDriveInfo(drvPath)
		Dim	fso,	drv,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	drv	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"
		s	=	s	&	drv.VolumeName	&	"
"
		s	=	s	&	"Total	Space:	"	&	FormatNumber(drv.TotalSize	/	1024,	0)
		s	=	s	&	"	Kb"	&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(drv.FreeSpace	/	1024,	0)
		s	=	s	&	"	Kb"	&	"
"
		Response.Write	s
End	Sub

The	following	code	illustrates	the	same	functionality	in	JScript:

function	ShowDriveInfo1(drvPath)
{
		var	fso,	drv,	s	="";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		drv	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	+=	"Drive	"	+	drvPath.toUpperCase()+	"	-	";
		s	+=	drv.VolumeName	+	"
";
		s	+=	"Total	Space:	"	+	drv.TotalSize	/	1024;
		s	+=	"	Kb"	+	"
";	
		s	+=	"Free	Space:	"	+	drv.FreeSpace	/	1024;
		s	+=	"	Kb"	+	"
";
		Response.Write(s);
}

Working	with	Folders

Common	folder	tasks	and	the	methods	for	performing	them	are
described	in	the	following	table.

Task Method
Create	a	folder. FileSystemObject.CreateFolder

Delete	a	folder. Folder.Delete	or
FileSystemObject.DeleteFolder

Move	a	folder. Folder.Move	or
FileSystemObject.MoveFolder

Copy	a	folder. Folder.Copy	or
FileSystemObject.CopyFolder

Retrieve	the	name
of	a	folder. Folder.Name

Find	out	if	a	folder

exists	on	a	drive. FileSystemObject.FolderExists

Get	an	instance	of
an	existing	Folder
object.

FileSystemObject.GetFolder

Find	out	the	name
of	a	folder's	parent
folder.

FileSystemObject.GetParentFolderName

Find	out	the	path	of
system	folders. FileSystemObject.GetSpecialFolder

View	the	sample	code	to	see	how	many	of	these	methods	and	properties	are
used	in	FileSystemObject.

The	following	example	demonstrates	how	to	use	the	Folder	and
FileSystemObject	objects	to	manipulate	folders	and	gain	information
about	them	in	VBScript:

Sub	ShowFolderInfo()
		Dim	fso,	fldr,	s
		'	Get	instance	of	FileSystemObject.
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		'	Get	Drive	object.
		Set	fldr	=	fso.GetFolder("c:")
		'	Print	parent	folder	name.
		Response.Write	"Parent	folder	name	is:	"	&	fldr	&	"
"
		'	Print	drive	name.
		Response.Write	"Contained	on	drive	"	&	fldr.Drive	&	"
"
		'	Print	root	file	name.
		If	fldr.IsRootFolder	=	True	Then
				Response.Write	"This	is	the	root	folder."	&	""
"
"
		Else

				Response.Write	"This	folder	isn't	a	root	folder."	&	"

"	
		End	If
		'	Create	a	new	folder	with	the	FileSystemObject	object.
		fso.CreateFolder	("C:\Bogus")
		Response.Write	"Created	folder	C:\Bogus"	&	"
"
		'	Print	the	base	name	of	the	folder.
		Response.Write	"Basename	=	"	&	fso.GetBaseName("c:\bogus")	&	"
"
		'	Delete	the	newly	created	folder.
		fso.DeleteFolder	("C:\Bogus")
		Response.Write	"Deleted	folder	C:\Bogus"	&	"
"
End	Sub

This	example	shows	how	to	use	the	Folder	and
FileSystemObject	objects	in	JScript:

function	ShowFolderInfo()
{
		var	fso,	fldr,	s	=	"";
		//	Get	instance	of	FileSystemObject.
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		//	Get	Drive	object.
		fldr	=	fso.GetFolder("c:");
		//	Print	parent	folder	name.
		Response.Write("Parent	folder	name	is:	"	+	fldr	+	"
");
		//	Print	drive	name.
		Response.Write("Contained	on	drive	"	+	fldr.Drive	+	"
");
		//	Print	root	file	name.
		if	(fldr.IsRootFolder)

				Response.Write("This	is	the	root	folder.");
		else
				Response.Write("This	folder	isn't	a	root	folder.");
		Response.Write("

");
		//	Create	a	new	folder	with	the	FileSystemObject	object.
		fso.CreateFolder	("C:\\Bogus");
		Response.Write("Created	folder	C:\\Bogus"	+	"
");
		//	Print	the	base	name	of	the	folder.
		Response.Write("Basename	=	"	+	fso.GetBaseName("c:\\bogus")	+	"
");
		//	Delete	the	newly	created	folder.
		fso.DeleteFolder	("C:\\Bogus");
		Response.Write("Deleted	folder	C:\\Bogus"	+	"
");
}

Microsoft®	Scripting	Library	-	FileSystemObject

Working	with	Files
	Previous

Next

There	are	two	major	categories	of	file	manipulation:

Creating,	adding,	or	removing	data,	and	reading	files

Moving,	copying,	and	deleting	files

Creating	Files

There	are	three	ways	to	create	an	empty	text	file	(sometimes
referred	to	as	a	"text	stream").

The	first	way	is	to	use	the	CreateTextFile	method.	The	following	example
demonstrates	how	to	create	a	text	file	using	this	method	in	VBScript:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)

To	use	this	method	in	JScript,	use	this	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);

View	this	sample	code	to	see	how	the	CreateTextFile	method	is
used	in	FileSystemObject.

The	second	way	to	create	a	text	file	is	to	use	the	OpenTextFile	method	of
the	FileSystemObject	object	with	the	ForWriting	flag	set.	In	VBScript,

the	code	looks	like	this	example:

Dim	fso,	ts
Const	ForWriting	=	2
Set	fso	=	CreateObject("Scripting.	FileSystemObject")
Set	ts	=	fso.OpenTextFile("c:\test.txt",	ForWriting,	True)

To	create	a	text	file	using	this	method	in	JScript,	use	this	code:

var	fso,	ts;
var	ForWriting=	2;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
ts	=	fso.OpenTextFile("c:\\test.txt",	ForWriting,	true);

A	third	way	to	create	a	text	file	is	to	use	the	OpenAsTextStream
method	with	the	ForWriting	flag	set.	For	this	method,	use	the
following	code	in	VBScript:

Dim	fso,	f1,	ts
Const	ForWriting	=	2
Set	fso	=	CreateObject("Scripting.FileSystemObject")
fso.CreateTextFile	("c:\test1.txt")
Set	f1	=	fso.GetFile("c:\test1.txt")
Set	ts	=	f1.OpenAsTextStream(ForWriting,	True)

In	JScript,	use	the	code	in	the	following	example:

var	fso,	f1,	ts;
var	ForWriting	=	2;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

fso.CreateTextFile	("c:\\test1.txt");
f1	=	fso.GetFile("c:\\test1.txt");
ts	=	f1.OpenAsTextStream(ForWriting,	true);

Adding	Data	to	the	File

Once	the	text	file	is	created,	add	data	to	the	file	using	the
following	three	steps:

1.	 Open	the	text	file.

2.	 Write	the	data.

3.	 Close	the	file.

To	open	an	existing	file,	use	either	the	OpenTextFile	method	of
the	FileSystemObject	object	or	the	OpenAsTextStream	method
of	the	File	object.

To	write	data	to	the	open	text	file,	use	the	Write,	WriteLine,	or
WriteBlankLines	methods	of	the	TextStream	object,	according	to	the
tasks	outlined	in	the	following	table.

Task Method
Write	data	to	an	open	text	file	without	a
trailing	newline	character. Write

Write	data	to	an	open	text	file	with	a	trailing
newline	character. WriteLine

Write	one	or	more	blank	lines	to	an	open	text
file. WriteBlankLines

View	this	sample	code	to	see	how	the	Write,	WriteLine,	and
WriteBlankLines	methods	are	used	in	FileSystemObject.

To	close	an	open	file,	use	the	Close	method	of	the	TextStream	object.

View	this	sample	code	to	see	how	the	Close	method	is	used	in
FileSystemObject.

Note		The	newline	character	contains	a	character	or	characters
(depending	on	the	operating	system)	to	advance	the	cursor	to	the
beginning	of	the	next	line	(carriage	return/line	feed).	Be	aware
that	the	end	of	some	strings	may	already	have	such	nonprinting
characters.

The	following	VBScript	example	demonstrates	how	to	open	a	file,	use	all
three	write	methods	to	add	data	to	the	file,	and	then	close	the	file:

Sub	CreateFile()
		Dim	fso,	tf
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	tf	=	fso.CreateTextFile("c:\testfile.txt",	True)
		'	Write	a	line	with	a	newline	character.
		tf.WriteLine("Testing	1,	2,	3.")	
		'	Write	three	newline	characters	to	the	file.						
		tf.WriteBlankLines(3)	
		'	Write	a	line.
		tf.Write	("This	is	a	test.")	
		tf.Close
End	Sub

This	example	demonstrates	how	to	use	the	three	methods	in
JScript:

function	CreateFile()
{
		var	fso,	tf;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		tf	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		//	Write	a	line	with	a	newline	character.
		tf.WriteLine("Testing	1,	2,	3.")	;
		//	Write	three	newline	characters	to	the	file.						
		tf.WriteBlankLines(3)	;
		//	Write	a	line.
		tf.Write	("This	is	a	test.");
		tf.Close();
}

Reading	Files

To	read	data	from	a	text	file,	use	the	Read,	ReadLine,	or
ReadAll	method	of	the	TextStream	object.	The	following	table
describes	which	method	to	use	for	various	tasks.

Task Method
Read	a	specified	number	of	characters	from	a	file. Read
Read	an	entire	line	(up	to,	but	not	including,	the
newline	character). ReadLine

Read	the	entire	contents	of	a	text	file. ReadAll

View	this	sample	code	to	see	how	the	ReadAll	and	ReadLine	methods	are
used	in	FileSystemObject.

If	you	use	the	Read	or	ReadLine	method	and	want	to	skip	to	a	particular

portion	of	data,	use	the	Skip	or	SkipLine	method.	The	resulting	text	of	the
read	methods	is	stored	in	a	string	which	can	be	displayed	in	a	control,
parsed	by	string	functions	(such	as	Left,	Right,	and	Mid),	concatenated,
and	so	forth.

The	following	VBScript	example	demonstrates	how	to	open	a	file,	write	to
it,	and	then	read	from	it:

Sub	ReadFiles
		Dim	fso,	f1,	ts,	s
		Const	ForReading	=	1
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)
		'	Write	a	line.
		Response.Write	"Writing	file	
"
		f1.WriteLine	"Hello	World"
		f1.WriteBlankLines(1)
		f1.Close
		'	Read	the	contents	of	the	file.
		Response.Write	"Reading	file	
"
		Set	ts	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		s	=	ts.ReadLine
		Response.Write	"File	contents	=	'"	&	s	&	"'"
		ts.Close
End	Sub

This	code	demonstrates	the	same	thing	in	JScript:

function	ReadFiles()
{

		var	fso,	f1,	ts,	s;
		var	ForReading	=	1;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		//	Write	a	line.
		Response.Write("Writing	file	
");
		f1.WriteLine("Hello	World");
		f1.WriteBlankLines(1);
		f1.Close();
		//	Read	the	contents	of	the	file.
		Response.Write("Reading	file	
");
		ts	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		s	=	ts.ReadLine();
		Response.Write("File	contents	=	'"	+	s	+	"'");
		ts.Close();
}

Moving,	Copying,	and	Deleting	Files

The	FSO	object	model	has	two	methods	each	for	moving,
copying,	and	deleting	files,	as	described	in	the	following	table.

Task Method
Move	a	file File.Move	or	FileSystemObject.MoveFile
Copy	a	file File.Copy	or	FileSystemObject.CopyFile
Delete	a	file File.Delete	or	FileSystemObject.DeleteFile

View	this	sample	code	to	see	two	ways	to	delete	a	file	in
FileSystemObject.

The	following	VBScript	example	creates	a	text	file	in	the	root	directory	of
drive	C,	writes	some	information	to	it,	moves	it	to	a	directory	called	\tmp,
makes	a	copy	of	it	in	a	directory	called	\temp,	then	deletes	the	copies	from
both	directories.

To	run	the	following	example,	create	directories	named	\tmp	and	\temp	in
the	root	directory	of	drive	C:

Sub	ManipFiles
		Dim	fso,	f1,	f2,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)
		Response.Write	"Writing	file	
"
		'	Write	a	line.
		f1.Write	("This	is	a	test.")
		'	Close	the	file	to	writing.
		f1.Close
		Response.Write	"Moving	file	to	c:\tmp	
"
		'	Get	a	handle	to	the	file	in	root	of	C:\.
		Set	f2	=	fso.GetFile("c:\testfile.txt")
		'	Move	the	file	to	\tmp	directory.
		f2.Move	("c:\tmp\testfile.txt")
		Response.Write	"Copying	file	to	c:\temp	
"
		'	Copy	the	file	to	\temp.
		f2.Copy	("c:\temp\testfile.txt")
		Response.Write	"Deleting	files	
"
		'	Get	handles	to	files'	current	location.
		Set	f2	=	fso.GetFile("c:\tmp\testfile.txt")
		Set	f3	=	fso.GetFile("c:\temp\testfile.txt")

		'	Delete	the	files.
		f2.Delete
		f3.Delete
		Response.Write	"All	done!"
End	Sub

This	code	shows	the	same	thing	in	JScript:

function	ManipFiles()
{
		var	fso,	f1,	f2,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		Response.Write("Writing	file	
");
		//	Write	a	line.
		f1.Write("This	is	a	test.");
		//	Close	the	file	to	writing.
		f1.Close();
		Response.Write("Moving	file	to	c:\\tmp	
");
		//	Get	a	handle	to	the	file	in	root	of	C:\.
		f2	=	fso.GetFile("c:\\testfile.txt");
		//	Move	the	file	to	\tmp	directory.
		f2.Move	("c:\\tmp\\testfile.txt");
		Response.Write("Copying	file	to	c:\\temp	
");
		//	Copy	the	file	to	\temp.
		f2.Copy	("c:\\temp\\testfile.txt");
		Response.Write("Deleting	files	
");
		//	Get	handles	to	files'	current	location.

		f2	=	fso.GetFile("c:\\tmp\\testfile.txt");
		f3	=	fso.GetFile("c:\\temp\\testfile.txt");
		//	Delete	the	files.
		f2.Delete();
		f3.Delete();
		Response.Write("All	done!");
}

Microsoft®	Scripting	Library	-	FileSystemObject

FileSystemObject
Sample	Code

		Previous

The	sample	code	described	in	this	section	provides	a	real-world
example	that	demonstrates	many	of	the	features	available	in	the
FileSystemObject	object	model.	This	code	shows	how	all	the
features	of	the	object	model	work	together,	and	how	to	use	those
features	effectively	in	your	own	code.

Note	that	since	this	code	is	fairly	generic,	some	additional	code	and	a	little
tweaking	are	needed	to	make	this	code	actually	run	on	your	machine.
These	changes	are	necessary	because	of	the	different	ways	input	and	output
to	the	user	is	handled	between	Active	Server	Pages	and	the	Windows
Scripting	Host.

To	run	this	code	on	an	Active	Server	Page,	use	the	following	steps:

1.	 Create	a	standard	Web	page	with	an	.asp	extension.

2.	 Copy	the	following	sample	code	into	that	file	between	the
<BODY;>...</BODY>	tags.

3.	 Enclose	all	the	code	within	<%...%>	tags.

4.	 Move	the	Option	Explicit	statement	from	its	current
position	in	the	code	to	the	very	top	of	your	HTML	page,
positioning	it	even	before	the	opening	<HTML>	tag.

5.	 Place	<%...%>	tags	around	the	Option	Explicit	statement	to
ensure	that	it's	run	on	the	server	side.

6.	 Add	the	following	code	to	the	end	of	the	sample	code:

Sub	Print(x)

		Response.Write	"<PRE><FONT;	FACE=""Courier	New""	SIZE=""1"">"
		Response.Write	x
		Response.Write	"</PRE>"
End	Sub
Main

The	previous	code	adds	a	print	procedure	that	will	run	on	the
server	side,	but	display	results	on	the	client	side.	To	run	this	code
on	the	Windows	Scripting	Host,	add	the	following	code	to	the
end	of	the	sample	code:

Sub	Print(x)
	 WScript.Echo	x
End	Sub
Main

The	code	is	contained	in	the	following	section:

''
'
'	FileSystemObject	Sample	Code
'	
'	Copyright	1998	Microsoft	Corporation.		All	Rights	Reserved.	
'	
''

Option	Explicit

''
'
'	Regarding	code	quality:
'
'	1)	The	following	code	does	a	lot	of	string	manipulation	by	concatenating	short
'				strings	together	with	the	"&"	operator.	Since	string	concatenation
'				is	expensive,	this	is	a	very	inefficient	way	to	write	code.	However,	it	is	a	very									
'				maintainable	way	to	write	code,	and	is	used	here	because	this	program	performs	extensive		

'				disk	operations,	and	because	the	disk	is	much	slower	than	the	memory	operations	required	to	
'				concatenate	the	strings.	Keep	in	mind	that	this	is	demonstration	code,	not	production	code.
'
'	2)	"Option	Explicit"	is	used,	because	declared	variable	access	is	slightly	faster	than					
'				undeclared	variable	access.	It	also	prevents	bugs	from	creeping	into	your	code,	such	as
'				when	you	misspell	DriveTypeCDROM	as	DriveTypeCDORM.
'
'	3)	Error	handling	is	absent	from	this	code,	to	make	the	code	more	readable.	Although	
'				precautions	have	been	taken	to	ensure	that	the	code	will	not	error	in	common	cases,	file	
'				systems	can	be	unpredictable.	In	production	code,	use	On	Error	Resume	Next	and	the	
'				Err	object	to	trap	possible	errors.
'	
''

''
'
'	Some	handy	global	variables
'
''

Dim	TabStop
Dim	NewLine

Const	TestDrive	=	"C"
Const	TestFilePath	=	"C:\Test"

''
'
'	Constants	returned	by	Drive.DriveType
'
''

Const	DriveTypeRemovable	=	1
Const	DriveTypeFixed	=	2
Const	DriveTypeNetwork	=	3
Const	DriveTypeCDROM	=	4
Const	DriveTypeRAMDisk	=	5

''
'
'	Constants	returned	by	File.Attributes
'
''

Const	FileAttrNormal		=	0
Const	FileAttrReadOnly	=	1
Const	FileAttrHidden	=	2
Const	FileAttrSystem	=	4
Const	FileAttrVolume	=	8
Const	FileAttrDirectory	=	16
Const	FileAttrArchive	=	32	
Const	FileAttrAlias	=	64
Const	FileAttrCompressed	=	128

''
'
'	Constants	for	opening	files
'
''

Const	OpenFileForReading	=	1	
Const	OpenFileForWriting	=	2	
Const	OpenFileForAppending	=	8	

''
'
'	ShowDriveType
'
'	Purpose:	
'
'	Generates	a	string	describing	the	drive	type	of	a	given	Drive	object.
'
'	Demonstrates	the	following	

'
'	-	Drive.DriveType
'
''

Function	ShowDriveType(Drive)

	 Dim	S
		
	 Select	Case	Drive.DriveType
	 Case	DriveTypeRemovable
	 	 S	=	"Removable"
	 Case	DriveTypeFixed
	 	 S	=	"Fixed"
	 Case	DriveTypeNetwork
	 	 S	=	"Network"
	 Case	DriveTypeCDROM
	 	 S	=	"CD-ROM"
	 Case	DriveTypeRAMDisk
	 	 S	=	"RAM	Disk"
	 Case	Else
	 	 S	=	"Unknown"
	 End	Select

	 ShowDriveType	=	S

End	Function

''
'
'	ShowFileAttr
'
'	Purpose:	
'
'	Generates	a	string	describing	the	attributes	of	a	file	or	folder.
'
'	Demonstrates	the	following	

'
'	-	File.Attributes
'	-	Folder.Attributes
'
''

Function	ShowFileAttr(File)	'	File	can	be	a	file	or	folder

	 Dim	S
			 Dim	Attr
	
	 Attr	=	File.Attributes

	 If	Attr	=	0	Then
	 	 ShowFileAttr	=	"Normal"
	 	 Exit	Function
	 End	If

	 If	Attr	And	FileAttrDirectory		Then	S	=	S	&	"Directory	"
	 If	Attr	And	FileAttrReadOnly			Then	S	=	S	&	"Read-Only	"
	 If	Attr	And	FileAttrHidden					Then	S	=	S	&	"Hidden	"
	 If	Attr	And	FileAttrSystem					Then	S	=	S	&	"System	"
	 If	Attr	And	FileAttrVolume					Then	S	=	S	&	"Volume	"
	 If	Attr	And	FileAttrArchive				Then	S	=	S	&	"Archive	"
	 If	Attr	And	FileAttrAlias						Then	S	=	S	&	"Alias	"
	 If	Attr	And	FileAttrCompressed	Then	S	=	S	&	"Compressed	"

	 ShowFileAttr	=	S

End	Function

''
'
'	GenerateDriveInformation
'
'	Purpose:	

'
'	Generates	a	string	describing	the	current	state	of	the	available	drives.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.Drives	
'	-	Iterating	the	Drives	collection
'	-	Drives.Count
'	-	Drive.AvailableSpace
'	-	Drive.DriveLetter
'	-	Drive.DriveType
'	-	Drive.FileSystem
'	-	Drive.FreeSpace
'	-	Drive.IsReady
'	-	Drive.Path
'	-	Drive.SerialNumber
'	-	Drive.ShareName
'	-	Drive.TotalSize
'	-	Drive.VolumeName
'
''

Function	GenerateDriveInformation(FSO)

	 Dim	Drives
	 Dim	Drive
	 Dim	S

	 Set	Drives	=	FSO.Drives

	 S	=	"Number	of	drives:"	&	TabStop	&	Drives.Count	&	NewLine	&	NewLine

	 '	Construct	1st	line	of	report.
	 S	=	S	&	String(2,	TabStop)	&	"Drive"	
	 S	=	S	&	String(3,	TabStop)	&	"File"	
	 S	=	S	&	TabStop	&	"Total"
	 S	=	S	&	TabStop	&	"Free"

	 S	=	S	&	TabStop	&	"Available"	
	 S	=	S	&	TabStop	&	"Serial"	&	NewLine

	 '	Construct	2nd	line	of	report.
	 S	=	S	&	"Letter"
	 S	=	S	&	TabStop	&	"Path"
	 S	=	S	&	TabStop	&	"Type"
	 S	=	S	&	TabStop	&	"Ready?"
	 S	=	S	&	TabStop	&	"Name"
	 S	=	S	&	TabStop	&	"System"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Number"	&	NewLine	

	 '	Separator	line.
	 S	=	S	&	String(105,	"-")	&	NewLine

	 For	Each	Drive	In	Drives

	 	 S	=	S	&	Drive.DriveLetter
	 	 S	=	S	&	TabStop	&	Drive.Path
	 	 S	=	S	&	TabStop	&	ShowDriveType(Drive)
	 	 S	=	S	&	TabStop	&	Drive.IsReady

	 	 If	Drive.IsReady	Then
					 	 If	DriveTypeNetwork	=	Drive.DriveType	Then
	 	 	 	 S	=	S	&	TabStop	&	Drive.ShareName	
	 	 	 Else
	 	 	 	 S	=	S	&	TabStop	&	Drive.VolumeName	
	 	 	 End	If				

	 	 	 S	=	S	&	TabStop	&	Drive.FileSystem
	 	 	 S	=	S	&	TabStop	&	Drive.TotalSize
	 	 	 S	=	S	&	TabStop	&	Drive.FreeSpace
	 	 	 S	=	S	&	TabStop	&	Drive.AvailableSpace
	 	 	 S	=	S	&	TabStop	&	Hex(Drive.SerialNumber)

	 	 End	If

	 	 S	=	S	&	NewLine

	 Next		
	
	 GenerateDriveInformation	=	S

End	Function

''
'
'	GenerateFileInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a	file.
'
'	Demonstrates	the	following	
'
'	-	File.Path
'	-	File.Name
'	-	File.Type
'	-	File.DateCreated
'	-	File.DateLastAccessed
'	-	File.DateLastModified
'	-	File.Size
'	
''

Function	GenerateFileInformation(File)

	 Dim	S

	 S	=	NewLine	&	"Path:"	&	TabStop	&	File.Path
	 S	=	S	&	NewLine	&	"Name:"	&	TabStop	&	File.Name

	 S	=	S	&	NewLine	&	"Type:"	&	TabStop	&	File.Type
	 S	=	S	&	NewLine	&	"Attribs:"	&	TabStop	&	ShowFileAttr(File)
	 S	=	S	&	NewLine	&	"Created:"	&	TabStop	&	File.DateCreated
	 S	=	S	&	NewLine	&	"Accessed:"	&	TabStop	&	File.DateLastAccessed
	 S	=	S	&	NewLine	&	"Modified:"	&	TabStop	&	File.DateLastModified
	 S	=	S	&	NewLine	&	"Size"	&	TabStop	&	File.Size	&	NewLine

	 GenerateFileInformation	=	S

End	Function

''
'
'	GenerateFolderInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a	folder.
'
'	Demonstrates	the	following	
'
'	-	Folder.Path
'	-	Folder.Name
'	-	Folder.DateCreated
'	-	Folder.DateLastAccessed
'	-	Folder.DateLastModified
'	-	Folder.Size
'	
''

Function	GenerateFolderInformation(Folder)

	 Dim	S

	 S	=	"Path:"	&	TabStop	&	Folder.Path
	 S	=	S	&	NewLine	&	"Name:"	&	TabStop	&	Folder.Name

	 S	=	S	&	NewLine	&	"Attribs:"	&	TabStop	&	ShowFileAttr(Folder)
	 S	=	S	&	NewLine	&	"Created:"	&	TabStop	&	Folder.DateCreated
	 S	=	S	&	NewLine	&	"Accessed:"	&	TabStop	&	Folder.DateLastAccessed
	 S	=	S	&	NewLine	&	"Modified:"	&	TabStop	&	Folder.DateLastModified
	 S	=	S	&	NewLine	&	"Size:"	&	TabStop	&	Folder.Size	&	NewLine

	 GenerateFolderInformation	=	S

End	Function

''
'
'	GenerateAllFolderInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a
'	folder	and	all	files	and	subfolders.
'
'	Demonstrates	the	following	
'
'	-	Folder.Path
'	-	Folder.SubFolders
'	-	Folders.Count
'	
''

Function	GenerateAllFolderInformation(Folder)

	 Dim	S
	 Dim	SubFolders
	 Dim	SubFolder
	 Dim	Files
	 Dim	File

	 S	=	"Folder:"	&	TabStop	&	Folder.Path	&	NewLine	&	NewLine

	 Set	Files	=	Folder.Files

	 If	1	=	Files.Count	Then
	 	 S	=	S	&	"There	is	1	file"	&	NewLine
	 Else
	 	 S	=	S	&	"There	are	"	&	Files.Count	&	"	files"	&	NewLine
	 End	If

	 If	Files.Count	<>	0	Then

	 	 For	Each	File	In	Files
	 	 	 S	=	S	&	GenerateFileInformation(File)
	 	 Next

	 End	If

	 Set	SubFolders	=	Folder.SubFolders

	 If	1	=	SubFolders.Count	Then
	 	 S	=	S	&	NewLine	&	"There	is	1	sub	folder"	&	NewLine	&	NewLine
	 Else
	 	 S	=	S	&	NewLine	&	"There	are	"	&	SubFolders.Count	&	"	sub	folders"	&	NewLine	&	NewLine
	 End	If

	 If	SubFolders.Count	<>	0	Then

	 	 For	Each	SubFolder	In	SubFolders
	 	 	 S	=	S	&	GenerateFolderInformation(SubFolder)
	 	 Next

	 	 S	=	S	&	NewLine

	 	 For	Each	SubFolder	In	SubFolders
	 	 	 S	=	S	&	GenerateAllFolderInformation(SubFolder)
	 	 Next

	 End	If

	 GenerateAllFolderInformation	=	S

End	Function

''
'
'	GenerateTestInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	the	C:\Test
'	folder	and	all	files	and	subfolders.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.DriveExists
'	-	FileSystemObject.FolderExists
'	-	FileSystemObject.GetFolder
'
''

Function	GenerateTestInformation(FSO)

	 Dim	TestFolder
	 Dim	S

	 If	Not	FSO.DriveExists(TestDrive)	Then	Exit	Function
	 If	Not	FSO.FolderExists(TestFilePath)	Then	Exit	Function

	 Set	TestFolder	=	FSO.GetFolder(TestFilePath)

	 GenerateTestInformation	=	GenerateAllFolderInformation(TestFolder)	

End	Function

''
'
'	DeleteTestDirectory
'
'	Purpose:	
'
'	Cleans	up	the	test	directory.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.GetFolder
'	-	FileSystemObject.DeleteFile
'	-	FileSystemObject.DeleteFolder
'	-	Folder.Delete
'	-	File.Delete
'
''

Sub	DeleteTestDirectory(FSO)

	 Dim	TestFolder
	 Dim	SubFolder
	 Dim	File
	
	 '	Two	ways	to	delete	a	file:

	 FSO.DeleteFile(TestFilePath	&	"\Beatles\OctopusGarden.txt")

	 Set	File	=	FSO.GetFile(TestFilePath	&	"\Beatles\BathroomWindow.txt")
	 File.Delete	

	 '	Two	ways	to	delete	a	folder:

	 FSO.DeleteFolder(TestFilePath	&	"\Beatles")

	 FSO.DeleteFile(TestFilePath	&	"\ReadMe.txt")

	 Set	TestFolder	=	FSO.GetFolder(TestFilePath)
	 TestFolder.Delete

End	Sub

''
'
'	CreateLyrics
'
'	Purpose:	
'
'	Builds	a	couple	of	text	files	in	a	folder.
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.CreateTextFile
'	-	TextStream.WriteLine
'	-	TextStream.Write
'	-	TextStream.WriteBlankLines
'	-	TextStream.Close
'
''

Sub	CreateLyrics(Folder)

	 Dim	TextStream
	
	 Set	TextStream	=	Folder.CreateTextFile("OctopusGarden.txt")
	
	 TextStream.Write("Octopus'	Garden	")	'	Note	that	this	does	not	add	a	line	feed	to	the	file.
	 TextStream.WriteLine("(by	Ringo	Starr)")
	 TextStream.WriteBlankLines(1)
	 TextStream.WriteLine("I'd	like	to	be	under	the	sea	in	an	octopus'	garden	in	the	shade,")
	 TextStream.WriteLine("He'd	let	us	in,	knows	where	we've	been	--	in	his	octopus'	garden	in	the	shade.")

	 TextStream.WriteBlankLines(2)
	
	 TextStream.Close

	 Set	TextStream	=	Folder.CreateTextFile("BathroomWindow.txt")
	 TextStream.WriteLine("She	Came	In	Through	The	Bathroom	Window	(by	Lennon/McCartney)")
	 TextStream.WriteLine("")
	 TextStream.WriteLine("She	came	in	through	the	bathroom	window	protected	by	a	silver	spoon")
	 TextStream.WriteLine("But	now	she	sucks	her	thumb	and	wanders	by	the	banks	of	her	own	lagoon")
	 TextStream.WriteBlankLines(2)
	 TextStream.Close

End	Sub

''
'
'	GetLyrics
'
'	Purpose:	
'
'	Displays	the	contents	of	the	lyrics	files.
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.OpenTextFile
'	-	FileSystemObject.GetFile
'	-	TextStream.ReadAll
'	-	TextStream.Close
'	-	File.OpenAsTextStream
'	-	TextStream.AtEndOfStream
'	-	TextStream.ReadLine
'
''

Function	GetLyrics(FSO)

	 Dim	TextStream
	 Dim	S
	 Dim	File

	 '	There	are	several	ways	to	open	a	text	file,	and	several	ways	to	read	the	
	 '	data	out	of	a	file.		Here's	two	ways	to	do	each:

	 Set	TextStream	=	FSO.OpenTextFile(TestFilePath	&	"\Beatles\OctopusGarden.txt",	OpenFileForReading)
	
	 S	=	TextStream.ReadAll	&	NewLine	&	NewLine
	 TextStream.Close

	 Set	File	=	FSO.GetFile(TestFilePath	&	"\Beatles\BathroomWindow.txt")
	 Set	TextStream	=	File.OpenAsTextStream(OpenFileForReading)
	 Do		 While	Not	TextStream.AtEndOfStream
	 	 S	=	S	&	TextStream.ReadLine	&	NewLine
	 Loop
	 TextStream.Close

	 GetLyrics	=	S
	
End	Function

''
'
'	BuildTestDirectory
'
'	Purpose:	
'
'	Builds	a	directory	hierarchy	to	demonstrate	the	FileSystemObject.
'
'	We'll	build	a	hierarchy	in	this	order:
'
'	C:\Test
'	C:\Test\ReadMe.txt
'	C:\Test\Beatles

'	C:\Test\Beatles\OctopusGarden.txt
'	C:\Test\Beatles\BathroomWindow.txt
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.DriveExists
'	-	FileSystemObject.FolderExists
'	-	FileSystemObject.CreateFolder
'	-	FileSystemObject.CreateTextFile
'	-	Folders.Add
'	-	Folder.CreateTextFile
'	-	TextStream.WriteLine
'	-	TextStream.Close
'
''

Function	BuildTestDirectory(FSO)
	
	 Dim	TestFolder
	 Dim	SubFolders
	 Dim	SubFolder
	 Dim	TextStream

	 '	Bail	out	if	(a)	the	drive	does	not	exist,	or	if	(b)	the	directory	being	built	
	 '	already	exists.

	 If	Not	FSO.DriveExists(TestDrive)	Then
	 	 BuildTestDirectory	=	False
	 	 Exit	Function
	 End	If

	 If	FSO.FolderExists(TestFilePath)	Then
	 	 BuildTestDirectory	=	False
	 	 Exit	Function
	 End	If

	 Set	TestFolder	=	FSO.CreateFolder(TestFilePath)

	 Set	TextStream	=	FSO.CreateTextFile(TestFilePath	&	"\ReadMe.txt")
	 TextStream.WriteLine("My	song	lyrics	collection")
	 TextStream.Close

	 Set	SubFolders	=	TestFolder.SubFolders

	 Set	SubFolder	=	SubFolders.Add("Beatles")

	 CreateLyrics	SubFolder	

	 BuildTestDirectory	=	True

End	Function

''
'
'	The	main	routine
'
'	First,	it	creates	a	test	directory,	along	with	some	subfolders	and	files.		
'	Then,	it	dumps	some	information	about	the	available	disk	drives	and	
'	about	the	test	directory,	and	then	cleans	everything	up	again.
'
''

Sub	Main

	 Dim	FSO

	 '	Set	up	global	data.
	 TabStop	=	Chr(9)
	 NewLine	=	Chr(10)
	
	 Set	FSO	=	CreateObject("Scripting.FileSystemObject")

	 If	Not	BuildTestDirectory(FSO)	Then	
	 	 Print	"Test	directory	already	exists	or	cannot	be	created.		Cannot	continue."
	 	 Exit	Sub
	 End	If
	
	 Print	GenerateDriveInformation(FSO)	&	NewLine	&	NewLine

	 Print	GenerateTestInformation(FSO)	&	NewLine	&	NewLine

	 Print	GetLyrics(FSO)	&	NewLine	&	NewLine

	 DeleteTestDirectory(FSO)
	
End	Sub

Microsoft®	JScript®	Microsoft	JScript
Features
ECMA

	Language	Reference	

Category Feature/Keyword

Array	Handling Array
join,	length,	reverse,	sort

Assignments Assign	(=)
Compound	Assign	(OP=)

Booleans Boolean
Comments /*...*/	or	//

Constants/Literals

NaN
null
true,	false
Infinity
undefined

Control	flow

break
continue
for
for...in
if...else
return
while

Dates	and	Time

Date
getDate,	getDay,	getFullYear,	getHours,
getMilliseconds,	getMinutes,	getMonth,
getSeconds,	getTime,	getTimezoneOffset,
getYear,
getUTCDate,	getUTCDay,	getUTCFullYear,
getUTCHours,	getUTCMilliseconds,
getUTCMinutes,	getUTCMonth,
getUTCSeconds,
setDate,	setFullYear,	setHours,	setMilliseconds,
setMinutes,	setMonth,	setSeconds,	setTime,
setYear,
setUTCDate,	setUTCFullYear,	setUTCHours,

setUTCMilliseconds,	setUTCMinutes,
setUTCMonth,	setUTCSeconds,
toGMTString,	toLocaleString,	toUTCString,
parse,	UTC

Declarations

function
new
this
var
with

Function	Creation Function
arguments,	length

Global	Methods

Global
escape,	unescape
eval
isFinite,	isNaN
parseInt,	parseFloat

Math

Math
abs,	acos,	asin,	atan,	atan2,	ceil,	cos,	exp,	floor,
log,	max,	min,	pow,	random,	round,	sin,	sqrt,	tan,
E,	LN2,	LN10,	LOG2E,	LOG10E,	PI,	SQRT1_2,
SQRT2

Numbers

Number
MAX_VALUE,	MIN_VALUE
NaN
NEGATIVE_INFINITY,	POSITIVE_INFINITY

Object	Creation
Object
new
constructor,	prototype,	toString,	valueOf

Operators

Addition	(+),	Subtraction	(-)
Modulus	arithmetic	(%)
Multiplication	(*),	Division	(/)
Negation	(-)
Equality	(==),	Inequality	(!=)
Less	Than	(<),	Less	Than	or	Equal	To	(<=)
Greater	Than	(>)
Greater	Than	or	Equal	To	(>=)
Logical	And(&&),	Or	(||),	Not	(!)
Bitwise	And	(&),	Or	(|),	Not	(~),	Xor	(^)
Bitwise	Left	Shift	(<<),	Shift	Right	(>>)
Unsigned	Shift	Right	(>>>)

Conditional	(?:)
Comma	(,)
delete,	typeof,	void
Decrement	(--),	Increment	(++)

Objects

Array
Boolean
Date
Function
Global
Math
Number
Object
String

Strings

String
charAt,	charCodeAt,	fromCharCode
indexOf,	lastIndexOf
split
toLowerCase,	toUpperCase
length

Microsoft®	JScript®	Microsoft	JScript
Features
Non-ECMA

	Language	Reference	

Category Feature/Keyword

Array	Handling

concat,	slice
VBArray
dimensions,	getItem,	lbound,	toArray,
ubound

Conditional
Compilation

@cc_on
@if	Statement
@set	Statement
Conditional	Compilation	Variables

Control	flow
do...while
Labeled
switch

Dates	and	Time getVarDate

Enumeration Enumerator
atEnd,	item,	moveFirst,	moveNext	

Error	Handling
Error
description,	number
throw,	try...catch

Function	Creation caller
Operators Identity	(===),	Nonidentity	(!==)

Objects

Enumerator
RegExp
Regular	Expression
VBArray
ActiveXObject
GetObject

Regular
RegExp

Expressions	and
Pattern	Matching

index,	input,	lastIndex,	$1...$9,	source,
compile,	exec,	test
Regular	Expression	Syntax

Script	Engine
Indentification

ScriptEngine
ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Strings

concat,	slice
match,	replace,	search
anchor,	big,	blink,	bold,	fixed,	fontcolor,
fontsize,	italics,	link,	small,	strike,	sub,	sup

Microsoft®	JScript®	Microsoft
Scripting
Run-Time	Features

	Language	Reference	

Category Feature/Keyword

Collections
Drives
Files
Folders

Data	Storage Dictionary

Dictionary

Add
Exists
Items,	Keys
Remove,	RemoveAll
Count
Item,	Key

File	System

Drive
File
FileSystemObject
Folder
TextStream

FileSystemObject

BuildPath
CopyFile,	CopyFolder
CreateFolder,	CreateTextFile
DeleteFile,	DeleteFolder	
DriveExists,	FileExists,	FolderExists
GetAbsolutePathName,	GetBaseName
GetDrive,	GetDriveName
GetFile,	GetExtensionName	GetFileName
GetFolder,	GetParentFolderName
GetSpecialFolder
GetTempName
MoveFile,	MoveFolder
OpenTextFile

Drives

Drive,	Drives

AvailableSpace
Count
DriveLetter
DriveType
FileSystem
FreeSpace
IsReady
Item
RootFolder
SerialNumber
ShareName
TotalSize
VolumeName

File,	Files
Folder,	Folders

Add
Attributes
Copy,	Delete,	Move
Count
OpenAsTextStream
DateCreated,	DateLastAccessed,
DateLastModified
Drive
Item
ParentFolder
Name,	Path
ShortName,	ShortPath
Size

TextStream

Close
Read,	ReadAll,	ReadLine
Skip,	SkipLine
Write,	WriteBlankLines,	WriteLine
AtEndOfLine,	AtEndOfStream
Column,	Line

Microsoft®	JScript®	abs	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	absolute	value	of	a	number.

Syntax

Math.abs(number)

The	number	argument	is	a	numeric	expression	for	which	the	absolute	value	is	sought.

Remarks

The	return	value	is	the	absolute	value	of	the	number	argument.

The	following	example	illustrates	the	use	of	the	abs	method:

function	ComparePosNegVal(n)
{
		var	s;
		var	v1	=	Math.abs(n);		
		var	v2	=	Math.abs(-n);
		if	(v1	==	v2)
				s	=	"The	absolute	values	of	"	+	n	+	"	and	"

				s	+=	-n	+	"	are	identical.";
		return(s);
}

Microsoft®	JScript®	acos	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	arccosine	of	a	number.

Syntax

Math.acos(number)

The	number	argument	is	a	numeric	expression	for	which	the	arccosine	is	sought.

Remarks

The	return	value	is	the	arccosine	of	the	number	argument.

Microsoft®	JScript®	

ActiveXObject	Object
	Language	Reference	

Version	3	

See	Also

Description

Enables	and	returns	a	reference	to	an	Automation	object.

Syntax

var	newObject	=	new	ActiveXObject("servername.typename"[,
"location"])

The	ActiveXObject	object	syntax	and	has	these	parts:

Part Description

servername Required.	The	name	of	the	application	providingthe	object.
typename Required.	The	type	or	class	of	the	object	to	create.

location Optional.	The	name	of	the	network	server	where
the	object	is	to	be	created.

Remarks

Automation	servers	provide	at	least	one	type	of	object.	For
example,	a	word-processing	application	may	provide	an
application	object,	a	document	object,	and	a	toolbar	object.

To	create	an	Automation	object,	assign	the	new	ActiveXObject	to	an
object	variable:

var	ExcelSheet;
ExcelSheet	=	new	ActiveXObject("Excel.Sheet"

This	code	starts	the	application	creating	the	object	(in	this	case,	a
Microsoft	Excel	worksheet).	Once	an	object	is	created,	you	refer
to	it	in	code	using	the	object	variable	you	defined.	In	the
following	example,	you	access	properties	and	methods	of	the
new	object	using	the	object	variable	ExcelSheet	and	other	Excel
objects,	including	the	Application	object	and	the
ActiveSheet.Cells	collection.	For	example:

//	Make	Excel	visible	through	the	Application	object.
ExcelSheet.Application.Visible	=	true;	
//	Place	some	text	in	the	first	cell	of	the	sheet.	 	 	 	 	
ExcelSheet.ActiveSheet.Cells(1,1).Value	=	"This	is	column	A,	row	1";	
//	Save	the	sheet.
ExcelSheet.SaveAs("C:\\TEST.XLS");	
//	Close	Excel	with	the	Quit	method	on	the	Application	object.	 	 	 	 	
ExcelSheet.Application.Quit();	
//	Release	the	object	variable.		 	 	 	 	
ExcelSheet	=	"";	 	 	 	 	 	 	 	 	

Creating	an	object	on	a	remote	server	can	only	be	accomplished
when	Internet	security	is	turned	off.	You	can	create	an	object	on	a
remote	networked	computer	by	passing	the	name	of	the	computer
to	the	servername	argument	of	ActiveXObject.	That	name	is	the
same	as	the	machine	name	portion	of	a	sharename.	For	a	network

share	named	"\\myserver\public",	the	servername	is	"myserver".
In	addition,	you	can	specify	servername	using	DNS	format	or	an
IP	address.

The	following	code	returns	the	version	number	of	an	instance	of	Excel
running	on	a	remote	network	computer	named	"myserver":

Function	GetVersion	{
		var	XLApp	=	CreateObject("Excel.Application",	"MyServer");
		return(XLApp.Version);
}

An	error	occurs	if	the	specified	remote	server	does	not	exist	or
cannot	be	found.

Microsoft®	JScript®	+	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	sum	two	numbers	or	perform	string	concatenation.

Syntax

result	=	expression1	+	expression2

The	+	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	underlying	subtype	of	the	expressions	determines	the
behavior	of	the	+	operator.

If Then
Both	expressions	are	numeric	or
Boolean Add.

Both	expressions	are	strings Concatenate.
One	expression	is	numeric	and

the	other	is	a	string Concatenate.

For	information	on	when	a	run-time	error	is	generated	by	the	+	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	anchor	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	an	HTML	anchor	with	a	NAME	attribute	around	specified
text	in	the	object.

Syntax

strVariable.anchor(anchorstring)
"String	Literal".anchor(anchorstring)

The	anchorstring	argument	is	text	you	want	to	place	in	the	NAME	attribute	of	an	HTML
anchor.

Remarks

Call	the	anchor	method	to	create	a	named	anchor	out	of	a	String
object.	The	following	example	demonstrates	how	the	anchor
method	accomplishes	this:

var	strVariable	=	"This	is	an	anchor"	;
strVariable	=	strVariable.anchor("Anchor1");

The	value	of	strVariable	after	the	last	statement	is:

This	is	an	anchor

No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	Array	Object
	Language	Reference	

Version	2	

See	Also																				Methods																				Properties

Description

Provides	support	for	creation	of	arrays	of	any	data	type.

Syntax

new	Array()
new	Array(size)
new	Array(element0,	element1,	...,	elementn)

The	Array	object	creation	syntax	has	these	parts:

Part Description

size

The	size	of	the	array.	As
arrays	are	zero-based,
created	elements	will
have	indexes	from	zero	to
size	-1.

element0,...,elementn

The	elements	to	place	in
the	array.	This	creates	an
array	with	n	+	1
elements,	and	a	length	of
n.

Remarks

After	an	array	is	created,	the	individual	elements	of	the	array	can
be	accessed	using	[]	notation,	for	example:

var	my_array	=	new	Array();
for	(i	=	0;	i	<	10;	i++)
				{
				my_array[i]	=	i;
				}
x	=	my_array[4];

Since	arrays	in	Microsoft	JScript	are	zero-based,	the	last
statement	in	the	preceding	example	accesses	the	fifth	element	of
the	array.	That	element	contains	the	value	4.

If	only	one	argument	is	passed	to	the	Array	constructor,	and	the	argument	is	a	number,
it	is	coerced	into	an	unsigned	integer,	and	the	value	is	used	as	the	size	of	the	array.
Otherwise,	the	parameter	passed	in	is	used	as	the	only	element	of	the	array.

Microsoft®	JScript®	asin	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	arcsine	of	a	number.

Syntax

Math.asin(number)

The	number	argument	is	a	numeric	expression	for	which	the	arcsine	is	sought.

Remarks

The	return	value	is	the	arcsine	of	its	numeric	argument.

Microsoft®	JScript®	=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Assigns	a	value	to	a	variable.

Syntax

result	=	expression

The	=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	numeric	expression.

Remarks

As	the	=	operator	behaves	like	other	operators,	expressions	using
it	have	a	value	in	addition	to	assigning	that	value	into	variable.
This	means	that	you	can	chain	assignment	operators	as	follows:

j	=	k	=	l	=	0;

j,	k,	and	l	equal	zero	after	the	example	statement	is	executed.

Microsoft®	JScript®	atan	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	arctangent	of	a	number.

Syntax

Math.atan(number)

The	number	argument	is	a	numeric	expression	for	which	the	arctangent	is	sought.

Remarks

The	return	value	is	the	arctangent	of	its	numeric	argument.

Microsoft®	JScript®	atan2	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	the	angle	(in	radians)	from	the	X	axis	to	a	point	(y,x).

Syntax

Math.atan2(y,	x)

The	atan2	method	syntax	has	these	parts:

Part Description
Math Required.	Invokes	the	intrinsic	Math	object.

x Required.	A	numeric	expression	representing	the
cartesian	x-coordinate.

y Required.	A	numeric	expression	representing	the
cartesian	y-coordinate.

Remarks

The	return	value	is	between	-pi	and	pi,	representing	the	angle	of
the	supplied	(y,x)	point.

Microsoft®	JScript®	atEnd	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Boolean	value	indicating	if	the	enumerator	is	at	the	end
of	the	collection.

Syntax

myEnum.atEnd()

The	myEnum	argument	is	any	Enumerator	object.

Return	Value

The	atEnd	method	returns	true	if	the	current	item	is	the	last	one
in	the	collection,	the	collection	is	empty,	or	the	current	item	is
undefined.	Otherwise,	it	returns	false.

Remarks

In	following	code,	the	atEnd	method	is	used	to	determine	if	the
end	of	a	list	of	drives	has	been	reached:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;

		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		s	=	"";
		for	(;	!e.atEnd();	e.moveNext())
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;
				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
		}
		return(s);
}

Microsoft®	JScript®	big	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<BIG>	tags	around	text	in	a	String	object.

Syntax

strVariable.big()
"String	Literal".big()

Remarks

The	example	that	follows	shows	how	the	big	method	works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.big();

The	value	of	strVariable	after	the	last	statement	is:

<BIG>This	is	a	string	object</BIG>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	&	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	a	bitwise	AND	on	two	expressions.

Syntax

result	=	expression1	&	expression2

The	&	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	&	operator	looks	at	the	binary	representation	of	the	values	of
two	expressions	and	does	a	bitwise	AND	operation	on	them.	The
result	of	this	operation	behaves	as	follows:

0101				(expression1)
1100				(expression2)

0100				(result)

Any	time	both	of	the	expressions	have	a	1	in	a	digit,	the	result
has	a	1	in	that	digit.	Otherwise,	the	result	has	a	0	in	that	digit.

For	information	on	when	a	run-time	error	is	generated	by	the	&	operator,
see	the	Operator	Behavior	table.

Microsoft®	JScript®	<<	Operator
	Language	Reference	

Version	1	

See	Also

Description

Shifts	the	bits	of	an	expression	to	the	left.

Syntax

result	=	expression1	<<	expression2

The	<<	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	<<	operator	shifts	the	bits	of	expression1	left	by	the	number
of	bits	specified	in	expression2.	For	example:

var	temp
temp	=	14	<<	2

The	variable	temp	has	a	value	of	56	because	14	(00001110	in
binary)	shifted	left	two	bits	equals	56	(00111000	in	binary).

For	information	on	when	a	run-time	error	is	generated	by	the	<<	operator,	see	the

Operator	Behavior	table.

Microsoft®	JScript®	~	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	a	bitwise	NOT	(negation)	on	an	expression.

Syntax

result	=	~	expression

The	~	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

All	unary	operators,	such	as	the	~	operator,	evaluate	expressions
as	follows:

If	applied	to	undefined	or	null	expressions,	a	run-time	error
is	raised.

Objects	are	converted	to	strings.

Strings	are	converted	to	numbers	if	possible.	If	not,	a	run-
time	error	is	raised.

Boolean	values	are	treated	as	numbers	(0	if	false,	1	if	true).

The	operator	is	applied	to	the	resulting	number.

The	~	operator	looks	at	the	binary	representation	of	the	values	of	the	expression	and
does	a	bitwise	negation	operation	on	it.	The	result	of	this	operation	behaves	as	follows:

0101				(expression)

1010				(result)

Any	digit	that	is	a	1	in	the	expression	becomes	a	0	in	the	result.
Any	digit	that	is	a	0	in	the	expression	becomes	a	1	in	the	result.

Microsoft®	JScript®	|	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	a	bitwise	OR	on	two	expressions.

Syntax

result	=	expression1	|	expression2

The	|	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	|	operator	looks	at	the	binary	representation	of	the	values	of
two	expressions	and	does	a	bitwise	OR	operation	on	them.	The
result	of	this	operation	behaves	as	follows:

0101				(expression1)
1100				(expression2)

1101				(result)

Any	time	either	of	the	expressions	has	a	1	in	a	digit,	the	result
will	have	a	1	in	that	digit.	Otherwise,	the	result	will	have	a	0	in
that	digit.

For	information	on	when	a	run-time	error	is	generated	by	the	|	operator,	see	the	Operator
Behavior	table.

Microsoft®	JScript®	>>	Operator
	Language	Reference	

Version	1	

See	Also

Description

Shifts	the	bits	of	an	expression	to	the	right,	maintaining	sign.

Syntax

result	=	expression1	>>	expression2

The	>>	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	>>	operator	shifts	the	bits	of	expression1	right	by	the
number	of	bits	specified	in	expression2.	The	sign	bit	of
expression1	is	used	to	fill	the	digits	from	the	left.	Digits	shifted
off	the	right	are	discarded.	For	example,	after	the	following	code
is	evaluated,	temp	has	a	value	of	-4:	14	(11110010	in	binary)
shifted	right	two	bits	equals	-4	(11111100	in	binary).

var	temp
temp	=	-14	>>	2

For	information	on	when	a	run-time	error	is	generated	by	the	>>
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	blink	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<BLINK>	tags	around	text	in	a	String	object.

Syntax

strVariable.blink()
"String	Literal".blink()

Remarks

The	following	example	demonstrates	how	the	blink	method
works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.blink();

The	value	of	strVariable	after	the	last	statement	is:

<BLINK>This	is	a	string	object</BLINK>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

The	<BLINK>	tag	is	not	supported	in	Microsoft	Internet	Explorer.

Microsoft®	JScript®	bold	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML		tags	around	text	in	a	String	object.

Syntax

strVariable.bold()
"String	Literal".bold()

Remarks

The	following	example	demonstrates	how	the	bold	method
works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.bold();

The	value	of	strVariable	after	the	last	statement	is:

This	is	a	string	object
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	Boolean	Object
	Language	Reference	

Version	2	

See	Also																				Methods																				Properties

Description

Creates	a	new	Boolean	value.

Syntax

var	variablename	=	new	Boolean(boolvalue)

The	optional	boolvalue	argument	is	the	initital	Boolean	value	for	the	new
object.	If	this	value	is	omitted,	or	is	false,	0,	null,	NaN,	or	an	empty	string,
the	initial	value	of	the	Boolean	object	is	false.	Otherwise,	the	initial	value
is	true.

Remarks

The	Boolean	object	is	a	wrapper	for	the	Boolean	data	type.
JScript	implicitly	uses	the	Boolean	object	whenever	a	Boolean
data	type	is	converted	to	a	Boolean	object.

You	rarely	call	the	Boolean	object	explicitly.

Microsoft®	JScript®	break	Statement
	Language	Reference	

Version	1	

See	Also

Description

Terminates	the	current	loop,	or	if	in	conjunction	with	a	label,
terminates	the	associated	statement.

Syntax

break	[label];

The	optional	label	argument	specifies	the	label	of	the	statement	you	are	breaking	from.

Remarks

You	typically	use	the	break	statement	in	switch	statements	and
while,	for,	for...in,	or	do...while	loops.	You	most	commonly	use
the	label	argument	in	switch	statements,	but	it	can	be	used	in	any
statement,	whether	simple	or	compound.

Executing	the	break	statement	exits	from	the	current	loop	or	statement,	and	begins
script	execution	with	the	statement	immediately	following.

The	following	example	illustrates	the	use	of	the	break	statement:

function	BreakTest(breakpoint)
{
			var	i	=	0;

			while	(i	<	100)
			{
			if	(i	==	breakpoint)
					break;
					i++;
			}
			return(i);
}

Microsoft®	JScript®	try...catch
Statement

	Language	Reference	
Version	5	

See	Also

Description

Implements	error	handling	for	JScript.

Syntax

try
		tryStatement
catch(exception)
		catchStatement

The	try...catch	statement	syntax	has	these	parts:

Part Description

tryStatement
Statement	where	an	error	can
occur.	Can	be	a	compound
statement.

exception
Any	variable	name.	The	initial
value	of	exception	is	the	value
of	the	thrown	error.

catchStatement

Statement	to	handle	errors
occurring	in	the	associated
tryStatement.	Can	be	a
compound	statement.

Remarks

The	try...catch	statement	provides	a	way	to	handle	some	or	all	of
the	possible	errors	that	may	occur	in	a	given	block	of	code,	while
still	running	code.	If	errors	occur	that	the	programmer	has	not
handled,	JScript	simply	provides	its	normal	error	message	to	a
user,	as	if	there	was	no	error	handling.

The	tryStatement	argument	contains	code	where	an	error	can	occur,	while
catchStatement	contains	the	code	to	handle	any	error	that	does	occur.	If	an	error	occurs
in	the	tryStatement,	program	control	is	passed	to	catchStatement	for	disposition.	The
initial	value	of	exception	is	the	value	of	the	error	that	occurred	in	tryStatement.

If	the	error	cannot	be	handled	in	the	catchStatement	associated	with	the	tryStatement
where	the	error	occurred,	use	the	throw	statement	to	propagate,	or	rethrow,	the	error	to	a
higher-level	error	handler.

The	following	example	throws	an	error	based	on	a	passed-in	value.	It	then	illustrates
how	that	error	is	handled	in	a	hierarchy	of	try...catch	statements:

function	TryCatchDemo(x)
{
		try	{
				try	{
				if	(x	==	0)	 	 	 	 	 //	Evalute	argument.
						throw	"x	equals	zero";	 	 	 //	Throw	an	error.
				else
						throw	"x	does	not	equal	zero";		 //	Throw	a	different	error.
				}

				catch(e)	{	 	 	 	 	 //	Handle	"x	=	0"	errors	here.
						if	(e	==	"x	equals	zero")	 	 	 //	Check	for	an	error	handled	here.
								return(e	+	"	handled	locally.");	 //	Return	object	error	message.
						else	 	 	 	 	 //	Can't	handle	error	here.
								throw	e;	 	 	 	 	 //	Rethrow	the	error	for	next
				}	 	 	 	 	 	 	 //	error	handler.
		}
		catch(e)	{	 	 	 	 	 	 //	Handle	other	errors	here.
				return(e	+	"	handled	higher	up.");	 	 //	Return	error	message.
		}
}
document.write(TryCatchDemo(0));
document.write(TryCatchDemo(1));

Microsoft®	JScript®	@cc_on
Statement

	Language	Reference	
Version	3	

See	Also

Description

Activates	conditional	compilation	support.

Syntax

@cc_on

Remarks

The	@cc_on	statement	activates	conditional	compilation	in	the
scripting	engine.

It	is	strongly	recommended	that	you	use	the	@cc_on	statement	in	a
comment,	so	that	browsers	that	do	not	support	conditional	compilation	will
accept	your	script	as	valid	syntax:

/*@cc_on*/
...
(remainder	of	script)

Alternatively,	an	@if	or	@set	statement	outside	of	a	comment
also	activates	conditional	compilation.

Microsoft®	JScript®	ceil	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	smallest	integer	greater	than	or	equal	to	its	numeric
argument.

Syntax

Math.ceil(number)

The	number	argument	is	a	numeric	expression.

Remarks

The	return	value	is	an	integer	value	equal	to	the	smallest	integer
greater	than	or	equal	to	its	numeric	argument.

Microsoft®	JScript®	charAt	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	character	at	the	specified	index.

Syntax

strVariable.charAt(index)
"String	Literal".charAt(index)

The	index	argument	is	the	zero-based	index	of	the	desired	character.	Valid	values	are
between	0	and	the	length	of	the	string	minus	1.

Remarks

The	charAt	method	returns	a	character	value	equal	to	the
character	at	the	specified	index.	The	first	character	in	a	string	is
at	index	0,	the	second	is	at	index	1,	and	so	forth.	Values	of	index
out	of	valid	range	return	undefined.

The	following	example	illustrates	the	use	of	the	charAt	method:

function	charAtTest(n)
{
		var	str	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
		var	s;

		s	=	str.charAt(n	-	1);
		return(s);
}

Microsoft®	JScript®	charCodeAt
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	Unicode	encoding	of	the	specified	character.

Syntax

stringObj.charCodeAt(index)	

The	charCodeAt	method	syntax	has	these	parts:

Part Description
stringObj Required.	A	String	object	or	literal.

index Required.	The	zero-based	index	of	the	specified
character.

Remarks

If	there	is	no	character	at	the	specified	index,	NaN	is	returned.

The	following	example	illustrates	the	use	of	the	charCodeAt	method:

function	charCodeAtTest(n)
{
		var	str	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

		var	s;
		s	=	str.charCodeAt(n	-	1);
		//	Return	Unicode	character	code.
		return(s);
}

Microsoft®	JScript®	,	Operator
	Language	Reference	

Version	1	

See	Also

Description

Causes	two	expressions	to	be	executed	sequentially.

Syntax

expression1,	expression2

The	,	operator	syntax	has	these	parts:

Part Description
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	,	operator	causes	the	expressions	on	either	side	of	it	to	be
executed	in	left-to-right	order,	and	obtains	the	value	of	the
expression	on	the	right.	The	most	common	use	for	the	,	operator
is	in	the	increment	expression	of	a	for	loop.	For	example:

for	(i	=	0;	i	<	10;	i++,	j++)
{
		k	=	i	+	j;
}

The	for	statement	only	allows	a	single	expression	to	be	executed
at	the	end	of	every	pass	through	a	loop.	The	,	operator	is	used	to
allow	multiple	expressions	to	be	treated	as	a	single	expression,
thereby	getting	around	the	restriction.

Microsoft®	JScript®	Comment
Statements

	Language	Reference	
Version	1	

Description

Causes	comments	to	be	ignored	by	the	JScript	parser.

Syntax	1

Single-line	Comment:
//	comment

Syntax	2

Multiline	Comment:
/*
comment
*/

The	comment	argument	is	the	text	of	any	comment	you	want	to	include	in	your	script.

Syntax	3

//@CondStatement

Syntax	4

/*@
CondStatement
@*/
The	CondStatement	argument	is	conditional	compilation	code	to	be	used	if	conditional
compilation	is	activated.	If	Syntax	3	is	used,	there	can	be	no	space	between	the	"//"	and
"@"	characters.

Remarks

Use	comments	to	keep	parts	of	a	script	from	being	read	by	the
JScript	parser.	You	can	use	comments	to	include	explanatory
remarks	in	a	program.

If	Syntax	1	is	used,	the	parser	ignores	any	text	between	the	comment	marker	and	the	end
of	the	line.	If	Syntax	2	is	used,	it	ignores	any	text	between	the	beginning	and	end
markers.

Syntaxes	3	and	4	are	used	to	support	conditional	compilation	while	retaining
compatibility	with	browsers	that	do	not	support	that	feature.	These	browsers	treat	those
forms	of	comments	as	syntaxes	1	and	2	respectively.

The	following	example	illustrates	the	most	common	uses	of	the	comment	statement:

function	myfunction(arg1,	arg2)
{
		/*	This	is	a	multiline	comment	that
					can	span	as	many	lines	as	necessary.	
		var	r;
		//	This	is	a	single	line	comment.
		r	=	arg1	+	arg2;	//	Sum	the	two	arguments.
		return(r);
}

Microsoft®	JScript®	Comparison
Operators

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	the	result	of	the	comparison.

Syntax

expression1	comparisonoperator	expression2

The	Comparison	operator	syntax	has	these	parts:

Part Description
expression1 Any	expression.

comparisonoperator Any	comparisonoperator.
expression2 Any	expression.

Remarks

When	comparing	strings,	JScript	uses	the	Unicode	character
value	of	the	string	expression.

The	following	describes	how	the	different	groups	of	operators	behave	depending	on	the
types	and	values	of	expression1	and	expression2:

Relational	(<,	>,	<=,	>=)

Attempt	to	convert	both	expression1	and	expression2	into

numbers.

If	both	expressions	are	strings,	do	a	lexicographical	string
comparison.

If	either	expression	is	NaN,	return	false.

Negative	zero	equals	Positive	zero.

Negative	Infinity	is	less	than	everything	including	itself.

Positive	Infinity	is	greater	than	everything	including	itself.

Equality	(==,	!=)

If	the	types	of	the	two	expressions	are	different,	attempt	to
convert	them	to	string,	number,	or	Boolean.

NaN	is	not	equal	to	anything	including	itself.

Negative	zero	equals	positive	zero.

null	equals	both	null	and	undefined.

Values	are	considered	equal	if	they	are	identical	strings,
numerically	equivalent	numbers,	the	same	object,	identical
Boolean	values,	or	(if	different	types)	they	can	be	coerced
into	one	of	these	situations.

Every	other	comparison	is	considered	unequal.

Identity	(===.	!==)

These	operators	behave	identically	to	the	equality	operators
except	no	type	conversion	is	done,	and	the	types	must	be	the
same	to	be	considered	equal.

Microsoft®	JScript®	compile	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Compiles	a	regular	expression	into	an	internal	format.

Syntax

rgexp.compile(pattern)

The	compile	method	syntax	has	these	parts:

Part Description

rgexp Required.	A	Regular	Expression	object.	Can	be	a
variable	name	or	a	literal.

pattern Required.	A	string	expression	containing	a	regularexpression	pattern	to	be	compiled.

Remarks

The	compile	method	converts	pattern	into	an	internal	format	for
faster	execution.	This	allows	for	more	efficient	use	of	regular
expressions	in	loops,	for	example.

The	following	example	illustrates	the	use	of	the	compile	method:

function	CompileDemo()
{

		var	s	=	"AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPp"
			 	 	 	 //	Create	regular	expression	for	uppercase	only.
		var	r	=	new	RegExp("[A-Z]",	"g");
		var	a	=	s.match(r)	 //	Find	matches.
		document.write(a);
			 	 	 	 //	Compile	regular	expression	for	lowercase	only.
		r.compile("[a-z]",	"g");
		var	a	=	s.match(r)	 //	Find	matches.
		document.write(a);
}

Microsoft®	JScript®	Compound
Assignment	Operators

	Language	Reference	

Addition	(+=)
Bitwise	AND	(&=)
Bitwise	OR	(|=)
Bitwise	XOr	(^=)
Division	(/=)
Left	Shift	(<<=)
Modulus	(%=)
Multiplication	(*=)
Right	Shift	(>>=)
Subtraction	(-=)
Unsigned	Right	Shift	(>>>=)

Microsoft®	JScript®	concat	Method
(Array)

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	an	new	array	consisting	of	a	combination	of	two	arrays.

Syntax

array1.concat(array2)

The	concat	method	syntax	has	these	parts:

Part Description
array1 Required.	An	Array	object	to	concatenate	with	array2.

array2 Required.	An	Array	object	to	concatenate	to	the	end	of
array1.

Remarks

The	concat	method	returns	an	Array	object	containing	the
concatenation	of	array1	and	array2.

If	an	object	reference	is	copied	from	either	array1	or	array2	to	the	result,
the	object	reference	in	the	result	still	points	to	the	same	object.	Changes	to
that	object	are	reflected	in	both	arrays.

The	following	example	illustrates	the	use	of	the	concat	method:

function	ConcatArrayDemo()
{
		var	a,	b,	c;
		a	=	new	Array(0,1,2,3,4);
		b	=	new	Array(5,6,7,8,9);
		c	=	a.concat(b);
		return(c);
}

Microsoft®	JScript®	concat	Method
(String)

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	String	object	containing	the	concatenation	of	two
supplied	strings.

Syntax

string1.concat(string2)

The	concat	method	syntax	has	these	parts:

Part Description

string1 Required.	The	String	object	or	literal	to	concatenatewith	string2.

string2 Required.	A	String	object	or	literal	to	concatenate	to	theend	of	string1.

Remarks

The	result	of	the	concat	method	is	equivalent	to:	result	=	string1
+	string2.

The	following	example	illustrates	the	use	of	the	concat	method:

function	concatDemo()

{
		var	str1	=	"ABCDEFGHIJKLM"
		var	str2	=	"NOPQRSTUVWXYZ";
		var	s	=	str1.concat(str2);
		//	Return	concatenated	string.
		return(s);
}

Microsoft®	JScript®	Conditional
Compilation

	Language	Reference	
Version	3	

See	Also

Description

Allows	the	use	of	new	JScript	language	features	without
sacrificing	compatibility	with	browsers	that	don't	support	the
features.

Remarks

Conditional	compilation	is	activated	by	using	the	@cc_on
statement,	or	using	an	@if	or	@set	statement	outside	of	a
comment.	Some	typical	uses	for	conditional	compilation	are
using	new	features	in	JScript,	embedding	debugging	support	into
a	script,	and	tracing	code	execution.

It	is	strongly	recommended	that	conditional	compilation	code	be	placed	in
comments:

/*@cc_on	@*/
/*@if	(@_jscript_version	==	4)
			alert("JScript	version	4");
			@else	@*/
			alert("You	need	a	more	recent	script	engine.");
/*@end	@*/

This	example	uses	special	comment	delimiters	that	are	only	used
if	conditional	compilation	is	activated	by	the	@cc_on	statement.
Scripting	engines	that	do	not	understand	conditional	compilation
only	see	the	message	informing	of	the	need	for	a	new	scripting
engine.

Microsoft®	JScript®	Conditional
Compilation	Variables

	Language	Reference	
Version	3	

See	Also

The	following	predefined	variables	are	available	for	conditional
compilation.	If	a	variable	is	not	true,	it	is	not	defined	and
behaves	as	NaN	when	accessed.

Variable Description
@_win32 true	if	running	on	a	Win32	system.
@_win16 true	if	running	on	a	Win16	system.

@_mac true	if	running	on	a	Apple	Macintosh
system.

@_alpha true	if	running	on	a	DEC	Alpha	processor.
@_x86 true	if	running	on	an	Intel	processor.

@_mc680x0 true	if	running	on	a	Motorola	680x0
processor.

@_PowerPC true	if	running	on	a	Motorola	PowerPC
processor.

@_jscript Always	true.

@_jscript_build Contains	the	build	number	of	the	JScript
scripting	engine.

@_jscript_version Contains	the	JScript	version	number	in
major.minor	format.

Microsoft®	JScript®	?:	Operator
	Language	Reference	

Version	1	

See	Also

Description

Executes	one	of	two	expressions	depending	on	a	condition.

Syntax

test	?	expression1	:	expression2

The	?:	operator	syntax	has	these	parts:

Part Description
test Any	Boolean	expression.

expression1 An	expression	executed	if	test	istrue.

expression2 An	expression	executed	if	test	isfalse.

Remarks

The	?:	operator	is	a	shortcut	for	an	if...else	statement.	It	is
typically	used	as	part	of	a	larger	expression	where	an	if...else
statement	would	be	awkward.	For	example:

var	now	=	new	Date();
var	greeting	=	"Good"	+	((now.getHours()	>	17)	

The	example	creates	a	string	containing	"Good	evening."	if	it	is
after	6pm.	The	equivalent	code	using	an	if...else	statement	would
look	as	follows:

var	now	=	new	Date();
var	greeting	=	"Good";
if	(now.getHours()	>	17)
			greeting	+=	"	evening.";
else
			greeting	+=	"	day.";

Microsoft®	JScript®	constructor
Property

	Language	Reference	
Version	2	

See	Also																		Applies	To

Description

Specifies	the	function	that	creates	an	object.

Syntax

object.constructor

The	required	object	argument	is	the	name	of	an	object	or	function.

Remarks

The	constructor	property	is	a	member	of	the	prototype	of	every
object	that	has	a	prototype.	This	includes	all	intrinsic	JScript
objects	except	the	Global	and	Math	objects.	The	constructor
property	contains	a	reference	to	the	function	that	constructs
instances	of	that	particular	object.	For	example:

x	=	new	String("Hi");
if	(x.constructor	==	String)
				 //	Do	something	(the	condition	will	be	true).

or

function	MyFunc	{
	 //	Body	of	function.

}

y	=	new	MyFunc;
if	(y.constructor	==	MyFunc)
				 //	Do	something	(the	condition	will	be	true).

Microsoft®	JScript®	continue
Statement

	Language	Reference	
Version	1	

See	Also

Description

Stops	the	current	iteration	of	a	loop,	and	starts	a	new	iteration.

Syntax

continue	[label];

The	optional	label	argument	specifies	the	statement	to	which	continue	applies.

Remarks

You	can	use	the	continue	statement	only	inside	a	while,
do...while,	for,	or	for...in	loop.	Executing	the	continue	statement
stops	the	current	iteration	of	the	loop	and	continues	program	flow
with	the	beginning	of	the	loop.	This	has	the	following	effects	on
the	different	types	of	loops:

while	and	do...while	loops	test	their	condition,	and	if	true,
execute	the	loop	again.

for	loops	execute	their	increment	expression,	and	if	the	test
expression	is	true,	execute	the	loop	again.

for...in	loops	proceed	to	the	next	field	of	the	specified
variable	and	execute	the	loop	again.

The	following	example	illustrates	the	use	of	the	continue	statement:

function	skip5()
{
		var	s	=	"",	i=0;
		while	(i	<	10)	
		{
				i++;
				//	Skip	5
				if	(i==5)
				{
						continue;
				}
			s	+=	i;
		}
		return(s);
}

Microsoft®	JScript®	cos	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	cosine	of	a	number.

Syntax

Math.cos(number)

The	number	argument	is	a	numeric	expression	for	which	the	cosine	is	sought.

Remarks

The	return	value	is	the	cosine	of	its	numeric	argument.

Microsoft®	JScript®	Date	Object
	Language	Reference	

Version	1	

See	Also																		Methods																		Properties

Description

Enables	basic	storage	and	retrieval	of	dates	and	times.

Syntax

var	newDateObj	=	new	Date()
var	newDateObj	=	new	Date(dateVal)
var	newDateObj	=	new	Date(year,	month,	date[,	hours[,
minutes[,	seconds[,ms]]]])

The	Date	object	constructor	syntax	has	these	parts:

Part Description

dateVal

If	a	numeric	value,	dateVal	represents
the	number	of	milliseconds	in
Universal	Coordinated	Time	between
the	specified	date	and	midnight
January	1,	1970.	If	a	string,	dateVal	is
parsed	according	to	the	rules	in	the
parse	method.	The	dateVal	argument
can	also	be	a	VT_DATE	value	as
returned	from	some	ActiveX®	objects.

year
Required.	The	full	year,	for	example,
1976	(and	not	76).

month
Required.	The	month	as	an	integer
between	0	and	11	(January	to
December).

date Required.	The	date	as	an	integer
between	1	and	31.

hours

Optional.	Must	be	supplied	if	minutes
is	supplied.	An	integer	from	0	to	23
(midnight	to	11pm)	that	specifies	the
hour.

minutes
Optional.	Must	be	supplied	if	seconds
is	supplied.	An	integer	from	0	to	59
that	specifies	the	minutes.

seconds
Optional.	Must	be	supplied	if
milliseconds	is	supplied.	An	integer
from	0	to	59	that	specifies	the	seconds.

ms Optional.	An	integer	from	0	to	999
that	specifies	the	milliseconds.

Remarks

A	Date	object	contains	a	number	representing	a	particular	instant
in	time	to	within	a	millisecond.	If	the	value	of	an	argument	is
greater	than	its	range	or	is	a	negative	number,	other	stored	values
are	modified	accordingly.	For	example,	if	you	specify	150
seconds,	JScript	redefines	that	number	as	two	minutes	and	30
seconds.

If	the	number	is	NaN,	that	indicates	that	the	object	does	not	represent	a	specific	instant
of	time.	If	you	pass	no	parameters	to	the	Date	object,	it	is	initialized	to	the	current	time

(UTC).	A	value	must	be	given	to	the	object	before	you	can	use	it.

The	range	of	dates	that	can	be	represented	in	a	Date	object	is	approximately	285,616
years	on	either	side	of	January	1,	1970.

The	Date	object	has	two	static	methods	that	are	called	without	creating	a	Date	object.
They	are	parse	and	UTC.

Microsoft®	JScript®	++	and	--
Operators

	Language	Reference	
Version	1	

See	Also

Description

Used	to	increment	or	decrement	a	variable	by	one.

Syntax	1

result	=	++variable
result	=	--variable
result	=	variable++
result	=	variable--

Syntax	2

++variable
--variable
variable++
variable--

The	syntax	of	the	++	and	--	operators	has	these	parts:

Part Description
result Any	variable.
variable Any	variable.

Remarks

The	increment	and	decrement	operators	are	used	as	a	shortcut	to

modify	the	value	stored	in	a	variable.	The	value	of	an	expression
containing	one	of	these	operators	depends	on	whether	the
operator	comes	before	or	after	the	variable:

var	j,	k;
k	=	2;
j	=	++k;

j	is	assigned	the	value	3,	as	the	increment	occurs	before	the
expression	is	evaluated.

Contrast	the	following	example:

var	j,	k;
k	=	2;
j	=	k++;

Here,	j	is	assigned	the	value	2,	as	the	increment	occurs	after	the
expression	is	evaluated.

Microsoft®	JScript®	description
Property

	Language	Reference	
Version	5	

See	Also																		Applies	to

Description

Returns	or	sets	the	descriptive	string	associated	with	a	specific
error.

Syntax

object.description	[=	stringexpression]

The	description	property	syntax	has	these	parts:

Part Description
object Any	instance	of	an	Error	object.

stringexpression A	string	expression	containing	a	description	ofthe	error.

Remarks

The	description	property	contains	the	error	message	string
associated	with	a	specific	error.	Use	the	value	contained	in	this
property	to	alert	a	user	to	an	error	that	you	can't	or	don't	want	to
handle.

The	following	example	illustrates	the	use	of	the	description	property:

try	{

		x	=	y																														//	Cause	an	error.
}
catch(var	e	{																								//	Create	local	variable	e.
		document.write(e)																		//	Prints	"[object	Error]".;
		document.write((e.number	&	0xFFFF))//	Prints	5009.
		document.write(e.description)						//	Prints	"'y'	is	undefined".
}

Microsoft®	JScript®	dimensions
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	number	of	dimensions	in	a	VBArray.

Syntax

array.dimensions()

The	array	argument	is	a	VBArray	object.

Remarks

The	dimensions	method	provides	a	way	to	retrieve	the	number
of	dimensions	in	a	specified	VBArray.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	determines	the	the	number	of	dimensions	in	the	safe	array	and	the
upper	bound	of	each	dimension.	Both	of	these	parts	go	into	the	<HEAD>
section	of	an	HTML	page.	The	third	part	is	the	JScript	code	that	goes	in	the
<BODY>	section	to	run	the	other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--

Function	CreateVBArray()
		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(j,	i)	=	k
						k	=	k	+	1
				Next
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>

<SCRIPT	LANGUAGE="JScript">
<!--
function	VBArrayTest(vba)
{
		var	i,	s;
		var	a	=	new	VBArray(vba);
		for	(i	=	1;	i	<=	a.dimensions();	i++)
		{
				s	=	"The	upper	bound	of	dimension	";
				s	+=	i	+	"	is	";
				s	+=	a.ubound(i)+	".
";
		}
		return(s);
}
-->
</SCRIPT>

</HEAD>

<BODY>
<SCRIPT	language="jscript">
		document.write(VBArrayTest(CreateVBArray()));
</SCRIPT>
</BODY>

Microsoft®	JScript®	do...while
Statement

	Language	Reference	
Version	3	

See	Also

Description

Executes	a	statement	block	once,	and	then	repeats	execution	of
the	loop	until	a	condition	expression	evaluates	to	false.

Syntax

do
			statement
while	(expression)	;

The	do...while	statement	syntax	has	these	parts:

Part Description

statement The	statement	to	be	executed	if	expression	is	true.
Can	be	a	compound	statement.

expression
An	expression	that	can	be	coerced	to	Boolean	true
or	false.	If	expression	is	true,	the	loop	is	executed
again.	If	expression	is	false,	the	loop	is	terminated.

Remarks

The	value	of	expression	is	not	checked	until	after	the	first
iteration	of	the	loop,	guaranteeing	that	the	the	loop	is	executed	at
least	once.	Thereafter,	it	is	checked	after	each	succeeding
iteration	of	the	loop.

The	following	code	uses	the	do...while	statement	to	iterate	the	Drives
collection:

function	GetDriveList()
{
		var	fso,	s,	n,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		s	=	"";
		do
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;
				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
				e.moveNext();
		}
		while	(!e.atEnd());

		return(s);
}

Microsoft®	JScript®	E	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	Euler's	constant,	the	base	of	natural	logarithms.	The	E
property	is	approximately	equal	to	2.718.

Syntax

var	numVar
numVar	=	Math.E

Microsoft®	JScript®	Enumerator
Object

	Language	Reference	
Version	3	

See	Also																			Methods																			Properties

Description

Enables	enumeration	of	items	in	a	collection.

Syntax

new	Enumerator(collection)

The	collection	argument	is	any	collection	object.

Remarks

Collections	differ	from	arrays	in	that	the	members	of	a	collection
are	not	directly	accessible.	Instead	of	using	indexes,	as	you
would	with	arrays,	you	can	only	move	the	current	item	pointer	to
the	first	or	next	element	of	a	collection.

The	Enumerator	object	provides	a	way	to	access	any	member	of	a
collection	and	behaves	similarly	to	the	For...Each	statement	in	VBScript.

The	following	code	shows	the	usage	of	the	Enumerator	object:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;

		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		s	=	"";
		for	(;!e.atEnd();e.moveNext())
				{
						x	=	e.item();
						s	=	s	+	x.DriveLetter;
						s	+=	"	-	";
						if	(x.DriveType	==	3)
								n	=	x.ShareName;
						else	if	(x.IsReady)
								n	=	x.VolumeName;
						else
								n	=	"[Drive	not	ready]";
						s	+=		n	+	"
";
				}
		return(s);
}

Microsoft®	JScript®	Error	Object
	Language	Reference	

Version	5	

See	Also																		Properties

Description

Contains	information	about	errors.

Syntax

var	newErrorObj	=	new	Error()
var	newErrorObj	=	new	Error(number)
var	newErrorObj	=	new	Error(number,	description)

The	Error	object	constructor	syntax	has	these	parts:

Part Description
number Numeric	value	assigned	to	an	error.	Zero	if	omitted.

description Brief	string	that	describes	an	error.	Empty	string	ifomitted.

Remarks

Whenever	a	run-time	error	occurs,	an	instance	of	the	Error
object	is	created	to	describe	the	error.	This	instance	has	two
intrinsic	properties	that	contain	the	description	of	the	error
(description	property)	and	the	error	number	(number	property).

An	error	number	is	a	32-bit	value.	The	upper	16-bit	word	is	the	facility
code,	while	the	lower	word	is	the	actual	error	code.

Error	objects	can	also	be	explicitly	created,	using	the	syntax	shown	above,
or	thrown	using	the	throw	statement.	In	both	cases,	you	can	add	any
properties	you	choose,	to	expand	the	capability	of	the	Error	object.

Typically,	the	local	variable	that's	created	in	a	try...catch	statement	refers
to	the	implicitly	created	Error	object.	As	a	result,	you	can	use	the	error
number	and	description	in	any	way	you	choose.

The	following	example	illustrates	the	use	of	the	implicitly	created	Error
object:

try	{
		x	=	y																	 	 					//	Cause	an	error.
}
catch(e)	{															 	 					//	Create	local	variable	e.
		response.write(e)																		//	Prints	"[object	Error]".
		response.write(e.number	&	0xFFFF)		//	Prints	5009.
		response.write(e.description)						//	Prints	"'y'	is	undefined".
}

Microsoft®	JScript®	escape	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Encodes	String	objects	so	they	can	be	read	on	all	computers.

Syntax

escape(charstring)

The	charstring	argument	is	a	String	object	to	be	encoded.

Remarks

The	escape	method	returns	a	new	String	object	(in	Unicode
format)	that	contains	the	contents	of	charstring.	All	spaces,
punctuation,	accented	characters,	and	any	other	non-ASCII
characters	are	replaced	with	%xx	encoding,	where	xx	is
equivalent	to	the	hexadecimal	number	representing	the	character.
For	example,	a	space	is	returned	as	"%20."

Characters	with	a	value	greater	than	255	are	stored	using	the	%uxxxx	format.

Microsoft®	JScript®	eval	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Evaluates	JScript	code	and	executes	it.

Syntax

eval(codestring)

The	codestring	argument	is	a	String	object	that	contains	valid	JScript	code.	This	string
is	parsed	by	the	JScript	parser	and	executed.

Remarks

The	eval	function	allows	dynamic	execution	of	JScript	source
code.	For	example,	the	following	code	creates	a	new	variable
mydate	that	contains	a	Date	object:

eval("var	mydate	=	new	Date();");

The	code	passed	to	the	eval	method	is	executed	in	the	same
context	as	the	call	to	the	eval	method.

Microsoft®	JScript®	exec	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Executes	a	search	for	a	match	in	a	specified	string.

Syntax

rgexp.exec(str)

The	exec	method	syntax	has	these	parts:

Part Description

rgexp Required.	A	Regular	Expression	object.	Can	be	avariable	name	or	a	literal.
str Required.	The	string	to	perform	a	search	on.

Remarks

The	results	of	an	exec	method	search	are	placed	into	an	array.

If	the	exec	method	does	not	find	a	match,	it	returns	null.	If	it	finds	one	or
more	matches,	the	exec	method	returns	an	array,	and	the	RegExp	object	is
updated	to	reflect	the	results	of	the	search.

The	following	example	illustrates	the	use	of	the	exec	method:

function	ExecDemo()

{
		var	s	=	"AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPp"
		var	r	=	new	RegExp("g",	"i");
		var	a	=	r.exec(s);
		document.write(a);
		r.compile("g");
		var	a	=	r.exec(s);
		document.write(a);
}

Microsoft®	JScript®	exp	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	e	(the	base	of	natural	logarithms)	raised	to	a	power.

Syntax

Math.exp(number)

The	number	argument	is	a	numeric	expression	representing	the	power	of	e.

Remarks

The	return	value	is	enumber.	The	constant	e	is	Euler's	constant,
approximately	equal	to	2.178	and	number	is	the	supplied
argument.

Microsoft®	JScript®	fixed	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<TT>	tags	around	text	in	a	String	object.

Syntax

strVariable.fixed()
"String	Literal".fixed()

Remarks

The	following	example	demonstrates	how	the	fixed	method
works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.fixed();

The	value	of	strVariable	after	the	last	statement	is:

<TT>This	is	a	string	object</TT>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	floor	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	greatest	integer	less	than	or	equal	to	its	numeric
argument.

Syntax

Math.floor(number)

The	number	argument	is	a	numeric	expression.

Remarks

The	return	value	is	an	integer	value	equal	to	the	greatest	integer
less	than	or	equal	to	its	numeric	argument.

Microsoft®	JScript®	fontcolor	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	an	HTML		tag	with	the	COLOR	attribute	around
the	text	in	a	String	object.

Syntax

strVariable.fontcolor(colorval)
"String	Literal".fontcolor(colorval)

The	colorval	argument	is	a	string	containing	a	color	value.	This	can	either	be	the
hexadecimal	value	for	a	color,	or	the	predefined	name	for	a	color.

Remarks

The	following	example	demonstrates	the	fontcolor	method:

var	strVariable	=	"This	is	a	string";
strVariable	=	strVariable.fontcolor("red");

The	value	of	strVariable	after	the	last	statement	is:

This	is	a	string

Valid	predefined	color	names	depend	on	your	JScript	host
(browser,	server,	and	so	forth).	They	may	also	vary	from	version
to	version	of	your	host.	Check	your	host	documentation	for	more
information.

No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to	the	string.

Microsoft®	JScript®	fontsize	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	an	HTML		tag	with	the	SIZE	attribute	around	the
text	in	a	String	object.

Syntax

strVariable.fontsize(intSize)
"String	Literal".fontsize(intSize)

The	intSize	argument	is	an	integer	value	that	determines	the	size	of	the	text.

Remarks

The	following	example	demonstrates	the	fontsize	method:

var	strVariable	=	"This	is	a	string";
strVariable	=	strVariable.fontsize(-1);

The	value	of	strVariable	after	the	last	statement	is:

This	is	a	string

Valid	integer	values	depend	on	your	Microsoft	JScript	host.	See
your	host	documentation	for	more	information.

No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to	the	string.

Microsoft®	JScript®	for	Statement
	Language	Reference	

Version	1	

See	Also

Description

Executes	a	block	of	statements	for	as	long	as	a	specified
condition	is	true.

Syntax

for	(initialization;	test;	increment)
				statement

The	for	statement	syntax	has	these	parts:

Part Description

initialization
An	expression.	This	expression	is
executed	only	once,	before	the
loop	is	executed.

test
A	Boolean	expression.	If	test	is
true,	statement	is	executed.	If	test
if	false,	the	loop	is	terminated.

increment
An	expression.	The	increment
expression	is	executed	at	the	end
of	every	pass	through	the	loop.

statement
The	statement	to	be	executed	if
test	is	true.	Can	be	a	compound
statement.

Remarks

You	usually	use	a	for	loop	when	the	loop	is	to	be	executed	a
specific	number	of	times.	The	following	example	demonstrates	a
for	loop.

/*	i	is	set	to	0	at	start,	and	is	incremented	by	1	at	the	end	
of	each	iteration.	Loop	terminates	when	i	is	not	less	
than	10	before	a	loop	iteration.	*/
var	myarray	=	new	Array();
for	(i	=	0;	i	<	10;	i++)	
{																								
		myarray[i]	=	i;																
}

Microsoft®	JScript®	for...in	Statement
	Language	Reference	

Version	5	

See	Also

Description

Executes	one	or	more	statements	for	each	property	of	an	object,
or	each	element	of	an	array.

Syntax

for	(variable	in	[object	|	array])
				statement

The	for	statement	syntax	has	these	parts:

Part Description

variable A	variable	that	can	be	any	property	of	object	or	any
element	of	array.

object,
array An	object	or	array	over	which	to	iterate.

statement
The	statement	or	statements	to	be	executed	for	each
property	of	object	or	each	element	of	array.	Can	be	a
compound	statement.

Remarks

Before	each	iteration	of	a	loop,	variable	is	assigned	the	next
property	of	object	or	the	next	element	of	array.	You	can	then	use
it	in	any	of	the	statements	inside	the	loop,	exactly	as	if	you	were

using	the	property	of	object	or	the	element	of	array.

When	iterating	over	an	object,	there	is	no	way	to	determine	or	control	the
order	in	which	the	members	of	the	object	are	assigned	to	variable.	Iterating
through	an	array	will	be	performed	in	element	order,	that	is,	0,	1,	2,	...

The	following	example	illustrates	the	use	of	the	for	...	in	statement	with	an
object	used	as	an	associative	array:

function	ForInDemo()
{
		//	Create	some	variables.
		var	a,	key,	s	=	"";
		//	Initialize	object.
		a	=	{"a"	:	"Athens"	,	"b"	:	"Belgrade",	"c"	:	"Cairo"}
		//	Iterate	the	properties.
		for	(key	in	a)
		{
					s	+=	a[key]	+	"<BR;>";
		}
		return(s);
}

Note		Use	the	enumerator	object	to	iterate	members	of	a	collection.

Microsoft®	JScript®	fromCharCode
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	string	from	a	number	of	Unicode	character	values.

Syntax

String.fromCharCode(code1,	code2,	...,	coden)

The	code	argument	is	the	series	of	Unicode	character	values	to	convert	into
a	string.

Remarks

A	String	object	need	not	be	created	before	calling
fromCharCode.

In	the	following	example,	test	contains	the	string	"plain":

var	test	=	String.fromCharCode(112,	108,	97,	105,	110

Microsoft®	JScript®	Function	Object
	Language	Reference	

Version	2	

See	Also																				Methods																				Properties

Description

Creates	a	new	function.

Syntax	1

function	functionname([argname1	[,	...	argnameN]])
{
				body
}

Syntax	2

var	functionname	=	new	Function([argname1,	[...	argnameN,]]
body);

The	Function	object	syntax	has	these	parts:

Part Description
functionname The	name	of	the	newly	created	function

argname1...argnameN An	optional	list	of	arguments	that	the
function	accepts.

body
A	string	that	contains	the	block	of
JScript	code	to	be	executed	when	the
function	is	called.

Remarks

The	function	is	a	basic	data	type	in	JScript.	Syntax	1	creates	a
function	value	that	JScript	converts	into	a	Function	object	when
necessary.	JScript	converts	Function	objects	created	by	Syntax	2
into	function	values	at	the	time	the	function	is	called.

Syntax	1	is	the	standard	way	to	create	new	functions	in	JScript.	Syntax	2	is
an	alternative	form	used	to	create	function	objects	explicitly.

For	example,	to	create	a	function	that	adds	the	two	arguments	passed	to	it,
you	can	do	it	in	either	of	two	ways:

Example	1

function	add(x,	y)
{
			return(x	+	y);
}

Example	2

var	add	=	new	Function("x",	"y",	"return(x+y)"

In	either	case,	you	call	the	function	with	a	line	of	code	similar	to
the	following:

add(2,	3);

Note		When	calling	a	function,	ensure	that	you	always	include
the	parentheses	and	any	required	arguments.	Calling	a	function

without	parentheses	causes	the	text	of	the	function	to	be
returned	instead	of	the	results	of	the	function.

Microsoft®	JScript®	getItem	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	item	at	the	specified	location.

Syntax

safeArray.getItem(dimension1[,	dimension2,	...],	dimensionn)

The	getItem	method	syntax	has	these	parts:

Part Description
safeArray Required.	A	VBArray	object.
dimension1,
...,
dimensionn

Specifies	the	exact	location	of	the	desired	element
of	the	VBArray.	n	equals	the	number	of
dimensions	in	the	VBArray.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	iterates	the	VB	safe	array	and	prints	out	the	contents	of	each	element.
Both	of	these	parts	go	into	the	<HEAD>	section	of	an	HTML	page.	The
third	part	is	the	JScript	code	that	goes	in	the	<BODY>	section	to	run	the
other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--
Function	CreateVBArray()

		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(i,	j)	=	k
						document.writeln(k)
						k	=	k	+	1
				Next
				document.writeln("
")
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>
<SCRIPT	LANGUAGE="JScript">
<!--
function	GetItemTest(vbarray)
{
		var	i,	j;
		var	a	=	new	VBArray(vbarray);
		for	(i	=	0;	i	<=	2;	i++)
		{
				for	(j	=0;	j	<=	2;	j++)
				{
						document.writeln(a.getItem(i,	j));
				}

		}
}-->
</SCRIPT>
</HEAD>
<BODY;>
<SCRIPT	LANGUAGE="JScript">
<!--
		GetItemTest(CreateVBArray());
-->
</SCRIPT>
</BODY>

Microsoft®	JScript®	GetObject
Function

	Language	Reference	
Version	3	

See	Also

Description

Returns	a	reference	to	an	Automation	object	from	a	file.

Syntax

GetObject([pathname]	[,	class])

The	GetObject	function	syntax	has	these	parts:

Part Description

pathname
Optional.	Full	path	and	name	of	the	file	containing
the	object	to	retrieve.	If	pathname	is	omitted,	class	is
required.

class Optional.	Class	of	the	object.

The	class	argument	uses	the	syntax	appname.objectype	and	has	these	parts:

Part Description

appname Required.	Name	of	the	application	providing	the
object.

objectype Required.	Type	or	class	of	object	to	create.

Remarks

Use	the	GetObject	function	to	access	an	Automation	object	from

a	file.	Assign	the	object	returned	by	GetObject	to	the	object
variable.	For	example:

var	CADObject;
CADObject	=	GetObject("C:\\CAD\\SCHEMA.CAD"

When	this	code	is	executed,	the	application	associated	with	the
specified	pathname	is	started,	and	the	object	in	the	specified	file
is	activated.	If	pathname	is	a	zero-length	string	(""),	GetObject
returns	a	new	object	instance	of	the	specified	type.	If	the
pathname	argument	is	omitted,	GetObject	returns	a	currently
active	object	of	the	specified	type.	If	no	object	of	the	specified
type	exists,	an	error	occurs.

Some	applications	allow	you	to	activate	part	of	a	file.	Add	an	exclamation
point	(!)	to	the	end	of	the	file	name	and	follow	it	with	a	string	that
identifies	the	part	of	the	file	you	want	to	activate.	For	information	on	how
to	create	this	string,	see	the	documentation	for	the	application	that	created
the	object.

For	example,	in	a	drawing	application	you	might	have	multiple	layers	to	a
drawing	stored	in	a	file.	You	could	use	the	following	code	to	activate	a
layer	within	a	drawing	called	SCHEMA.CAD:

var	LayerObject	=	GetObject("C:\\CAD\\SCHEMA
If	you	don't	specify	the	object's	class,	Automation	determines	the
application	to	start	and	the	object	to	activate,	based	on	the	file
name	you	provide.	Some	files,	however,	may	support	more	than
one	class	of	object.	For	example,	a	drawing	might	support	three
different	types	of	objects:	an	Application	object,	a	Drawing
object,	and	a	Toolbar	object,	all	of	which	are	part	of	the	same
file.	To	specify	which	object	in	a	file	you	want	to	activate,	use
the	optional	class	argument.	For	example:

var	MyObject;
MyObject	=	GetObject("C:\\DRAWINGS\\SAMPLE.DRW",	"FIGMENT.DRAWING"

In	the	preceding	example,	FIGMENT	is	the	name	of	a
drawing	application	and	DRAWING	is	one	of	the	object
types	it	supports.	Once	an	object	is	activated,	you	reference	it	in
code	using	the	object	variable	you	defined.	In	the	preceding
example,	you	access	properties	and	methods	of	the	new	object
using	the	object	variable	MyObject.	For	example:

MyObject.Line(9,	90);
MyObject.InsertText(9,	100,	"Hello,	world.");
MyObject.SaveAs("C:\\DRAWINGS\\SAMPLE.DRW");

Note		Use	the	GetObject	function	when	there	is	a	current
instance	of	the	object,	or	if	you	want	to	create	the	object	with	a
file	already	loaded.	If	there	is	no	current	instance,	and	you	don't
want	the	object	started	with	a	file	loaded,	use	the
ActiveXObject	object.

If	an	object	has	registered	itself	as	a	single-instance	object,	only
one	instance	of	the	object	is	created,	no	matter	how	many	times
ActiveXObject	is	executed.	With	a	single-instance	object,
GetObject	always	returns	the	same	instance	when	called	with
the	zero-length	string	("")	syntax,	and	it	causes	an	error	if	the
pathname	argument	is	omitted.

Microsoft®	JScript®	@if	Statement
	Language	Reference	

Version	3	

See	Also

Description

Conditionally	executes	a	group	of	statements,	depending	on	the
value	of	an	expression.

Syntax

@if	(condition1)
					text1
[@elif	(condition2)
					text2]
[@else
					text3]
@end

The	@if	statement	syntax	has	these	parts:

Part Description
condition1,
condition2

An	expression	that	can	be	coerced
into	a	Boolean	expression.

text1 Text	to	be	parsed	if	condition1	is
true.

text2 Text	to	be	parsed	if	condition1	is
false	and	condition2	is	true.
Text	to	be	parsed	if	both

text3 condition1	and	condition2	are
false.

Remarks

When	you	write	an	@if	statement,	you	don't	have	to	place	each
clause	on	a	separate	line.	You	can	use	multiple	@elif	clauses,
however,	all	@elif	clauses	must	come	before	an	@else	clause.

You	commonly	use	the	@if	statement	to	determine	which	text	among	several	options
should	be	used	for	text	output.	For	example:

alert(@if	(@_win32)	"using	Windows	NT	or	Windows	95"	

Microsoft®	JScript®	if...else	Statement
	Language	Reference	

Version	1	

See	Also

Description

Conditionally	executes	a	group	of	statements,	depending	on	the
value	of	an	expression.

Syntax

if	(condition)
					statement1
[else
					statement2]

The	if...else	statement	syntax	has	these	parts:

Part Description

condition
A	Boolean	expression.	If	condition
is	null	or	undefined,	condition	is
treated	as	false.

statement1
The	statement	to	be	executed	if
condition	is	true.	Can	be	a
compound	statement.

statement2
The	statement	to	be	executed	if
condition	is	false.	Can	be	a
compound	statement.

Remarks

It	is	generally	good	practice	to	enclose	statement1	and	statement2
in	braces	({})	for	clarity	and	to	avoid	inadvertent	errors.	In	the
following	example,	you	may	intend	that	the	else	be	used	with	the
first	if	statement,	but	it	is	used	with	the	second	one.

if	(x	==	5)
		if	(y	==	6)
					z	=	17;
else
		z	=	20;

Changing	the	code	in	the	following	manner	eliminates	any
ambiguities:

if	(x	==	5)
		{
		if	(y	==	6)
					z	=	17;
		}
else
		z	=	20;

Similarly,	if	you	want	to	add	a	statement	to	statement1,	and	you
don't	use	braces,	you	can	accidentally	create	an	error:

if	(x	==	5)

		z	=	7;
		q	=	42;
else
		z	=	19;

In	this	case,	there	is	a	syntax	error,	because	there	is	more	than
one	statement	between	the	if	and	else	statements.	Braces	are
required	around	the	statements	between	if	and	else.

Microsoft®	JScript®	indexOf	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	character	position	where	the	first	occurrence	a
substring	occurs	within	a	String	object.

Syntax

strVariable.indexOf(substring,	startindex)
"String	Literal".indexOf(substring,	startindex)

The	indexOf	method	syntax	has	these	arguments:

Part Description

substring The	substring	to	search	for	within
the	String	object.

startindex

An	optional	integer	value	specifying
the	index	to	begin	searching	within
the	String	object.	If	omitted,
searching	begins	at	the	beginning	of
the	string.

Remarks

The	indexOf	method	returns	an	integer	value	indicating	the
beginning	of	the	substring	within	the	String	object.	If	the
substring	is	not	found,	a	-1	is	returned.

If	startindex	is	negative,	startindex	is	treated	as	zero.	If	it	is	larger	than	the	greatest
character	position	index,	it	is	treated	as	the	largest	possible	index.

Searching	is	performed	from	left	to	right.	Otherwise,	this	method	is	identical	to
lastIndexOf.

The	following	example	illustrates	the	use	of	the	indexOf	method:

function	IndexDemo(str2)
{
		var	str1	=	"BABEBIBOBUBABEBIBOBU"
		var	s	=	str1.indexOf(str2);
		return(s);
}

Microsoft®	JScript®	isNaN	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	a	Boolean	value	that	indicates	whether	a	value	is	the
reserved	value	NaN	(not	a	number).

Syntax

isNaN(numvalue)

The	numvalue	argument	is	the	value	to	be	tested	against	NaN.

Remarks

The	isNaN	function	returns	true	if	the	value	is	NaN,	and	false
otherwise.	You	typically	use	this	function	to	test	return	values
from	the	parseInt	and	parseFloat	methods.

Alternatively,	a	variable	could	be	compared	to	itself.	If	it	compares	as	unequal,	it	is
NaN.	This	is	because	NaN	is	the	only	value	that	is	not	equal	to	itself.

Microsoft®	JScript®	italics	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<I>	tags	around	text	in	a	String	object.

Syntax

strVariable.italics()
"String	Literal".italics()

Remarks

The	following	example	demonstrates	how	the	italics	method
works:

var	strVariable	=	"This	is	a	string";
strVariable	=	strVariable.italics();

The	value	of	strVariable	after	the	last	statement	is:

<I>This	is	a	string</I>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	item	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	current	item	in	the	collection.

Syntax

myEnum.item()

The	myEnum	argument	is	any	Enumerator	object.

Return	Value

The	item	method	returns	the	current	item.	If	the	collection	is
empty	or	the	current	item	is	undefined,	it	returns	undefined.

Remarks

In	following	code,	the	item	method	is	used	to	return	a	member	of	the
Drives	collection:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		e	=	new	Enumerator(fso.Drives);
		s	=	"";
		for	(;	!e.atEnd();	e.moveNext())
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;
				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
		}
		return(s);
}

Microsoft®	JScript®	join	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	a	String	object	consisting	of	all	the	elements	of	an	array
concatenated	together.

Syntax

arrayobj.join(separator)

The	separator	argument	is	a	String	object	that	is	used	to	separate	one	element	of	an
array	from	the	next	in	the	resulting	String	object.	If	omitted,	the	array	elements	are
separated	with	an	empty	string.

Remarks

The	join	method	returns	a	String	object	that	contains	each
element	converted	to	a	string	and	concatenated	together.

The	following	example	illustrates	the	use	of	the	join	method:

function	JoinDemo()
{
		var	a,	b;
		a	=	new	Array(0,1,2,3,4);
		b	=	a.join("-");

		return(b);
}

Microsoft®	JScript®	Labeled
Statement

	Language	Reference	
Version	3	

See	Also

Description

Provides	an	identifier	for	a	statement.

Syntax

label	:
				statement

Labeled	statement	syntax	has	these	parts:

Part Description

label A	unique	identifier	used	when	referring	to	the	labeled
statement.

statement The	statement	associated	with	label.	May	be	a
compound	statement.

Remarks

Labels	are	used	by	the	break	and	continue	statements	to	specify
the	statement	to	which	the	break	and	continue	apply.

In	the	following	statement	the	continue	statement	uses	a	labeled	statement
to	create	an	array	in	which	the	third	column	of	each	row	contains	and
undefined	value:

function	labelDemo()
{
				var	a	=	new	Array();
				var	i,	j,	s	=	"",	s1	=	"";
		Outer:
				for	(i	=	0;	i	<	5;	i++)
				{
						Inner:
								for	(j	=	0;	j	<	5;	j++)
								{		
										if	(j	==	2)
												continue	Inner;
										else
												a[i,j]	=	j	+	1;
								}
				}

				for	(i	=	0;i	<	5;	i++)
				{
						s	=	""
						for	(j	=	0;	j	<	5;	j++)
						{
								s	+=	a[i,j];

						}
						s1	+=	s	+	"\n";
				}
				return(s1)
}

Microsoft®	JScript®	lastIndexOf
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	last	occurrence	of	a	substring	within	a	String	object.

Syntax

strVariable.lastIndexOf(substring,	startindex)
"String	Literal".lastIndexOf(substring,	startindex)

The	lastIndexOf	method	syntax	has	these	arguments:

Part Description

substring The	substring	to	search	for	within
the	String	object.

startindex

An	optional	integer	value	specifying
the	index	to	begin	searching	within
the	String	object.	If	omitted,
searching	begins	at	the	end	of	the
string.

Remarks

The	lastIndexOf	method	returns	an	integer	value	indicating	the
beginning	of	the	substring	within	the	String	object.	If	the
substring	is	not	found,	a	-1	is	returned.

If	startindex	is	negative,	startindex	is	treated	as	zero.	If	it	is	larger	than	the	greatest
character	position	index,	it	is	treated	as	the	largest	possible	index.

Searching	is	performed	right	to	left.	Otherwise,	this	method	is	identical	to	indexOf.

The	following	example	illustrates	the	use	of	the	lastIndexOf	method:

function	lastIndexDemo(str2)
{
		var	str1	=	"BABEBIBOBUBABEBIBOBU"
		var	s	=	str1.lastIndexOf(str2);
		return(s);
}

Microsoft®	JScript®	lbound	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	lowest	index	value	used	in	the	specified	dimension	of
a	VBArray.

Syntax

safeArray.lbound(dimension)

The	lbound	method	syntax	has	these	parts:

Part Description
safeArray Required.	A	VBArray	object.

dimension
Optional.	The	dimension	of	the	VBArray	for	which
the	lower	bound	index	is	wanted.	If	omitted,	lbound
behaves	as	if	a	1	was	passed.

Remarks

If	the	VBArray	is	empty,	the	lbound	method	returns	undefined.
If	dimension	is	greater	than	the	number	of	dimensions	in	the
VBArray,	or	is	negative,	the	method	generates	a	"Subscript	out	of
range"	error.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	determines	the	number	of	dimensions	in	the	safe	array	and	the	lower

bound	of	each	dimension.	Since	the	safe	array	is	created	in	VBScript	rather
than	Visual	Basic,	the	lower	bound	will	always	be	zero.	Both	of	these	parts
go	into	the	<HEAD>	section	of	an	HTML	page.	The	third	part	is	the
JScript	code	that	goes	in	the	<BODY>	section	to	run	the	other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--
Function	CreateVBArray()
		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(j,	i)	=	k
						k	=	k	+	1
				Next
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>

<SCRIPT	LANGUAGE="JScript">
<!--
function	VBArrayTest(vba)
{

		var	i,	s;
		var	a	=	new	VBArray(vba);
		for	(i	=	1;	i	<=	a.dimensions();	i++)
		{
				s	=	"The	lower	bound	of	dimension	";
				s	+=	i	+	"	is	";
				s	+=	a.lbound(i)+	".
";
				return(s);
		}
}
-->
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT	language="jscript">
		document.write(VBArrayTest(CreateVBArray()));
</SCRIPT>
</BODY>

Microsoft®	JScript®	length	Property
(Array)

	Language	Reference	
Version	2	

See	Also																	Applies	To

Description

Returns	an	integer	value	one	higher	than	the	highest	element
defined	in	an	array.

Syntax

numVar	=	arrayObj.length

Remarks

As	the	elements	in	an	array	do	not	have	to	be	contiguous,	the
length	property	is	not	necessarily	the	number	of	elements	in	the
array.	For	example,	in	the	following	array	definition,
my_array.length	contains	7,	not	2:

var	my_array	=	new	Array();
my_array[0]	=	"Test";
my_array[6]	=	"Another	Test";

If	a	value	smaller	than	its	previous	value	is	assigned	to	the	length
property,	the	array	is	truncated,	and	any	elements	with	array
indexes	equal	to	or	greater	than	the	new	value	of	the	length
property	are	lost.

If	a	value	larger	than	its	previous	value	is	assigned	to	the	length	property,	the	array	is
expanded,	and	any	new	elements	created	have	the	value	undefined.

The	following	example	illustrates	the	use	of	the	length	property:

function	LengthDemo()
{
		var	a,	l;
		a	=	new	Array(0,1,2,3,4);
		l	=	a.length;
		return(l);
}

Microsoft®	JScript®	length	Property
(Function)

	Language	Reference	
Version	2	

See	Also																		Applies	To

Description

Returns	the	number	of	arguments	defined	for	a	function.

Syntax

functionname.length

The	functionname	argument	is	required	and	is	the	name	of	the	function	in
question.

Remarks

The	length	property	of	a	function	is	initialized	by	the	scripting
engine	to	the	number	of	arguments	in	the	function's	definition
when	an	instance	of	the	function	is	created.

What	happens	when	a	function	is	called	with	a	number	of	arguments
different	from	the	value	of	its	length	property	depends	on	the	function.

The	following	example	illustrates	the	use	of	the	length	property:

function	ArgTest(a,	b)
{
			var	i,	s	=	"The	ArgTest	function	expected	";

			var	numargs	=	ArgTest.arguments.length;
			var	expargs	=	ArgTest.length;
			if	(expargs	<	2)
					s	+=	expargs	+	"	argument.	";
			else
					s	+=	expargs	+	"	arguments.	";
			if	(numargs	<	2)
					s	+=	numargs	+	"	was	passed.";
			else
					s	+=	numargs	+	"	were	passed.";
			return(s);
}

Microsoft®	JScript®	length	Property
(String)

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	length	of	a	String	object.

Syntax

strVariable.length
"String	Literal".length

Remarks

The	length	property	contains	an	integer	that	indicates	the	number
of	characters	in	the	String	object.	The	last	character	in	the	String
object	has	an	index	of	length	-	1.

Microsoft®	JScript®	link	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	an	HTML	anchor	with	an	HREF	attribute	around	the	text
in	a	String	object.

Syntax

strVariable.link(linkstring)
"String	Literal".link(linkstring)

The	linkstring	argument	is	the	text	that	you	want	to	place	in	the	HREF	attribute	of	the
HTML	anchor.

Remarks

Call	the	link	method	to	create	a	hyperlink	out	of	a	String	object.
The	following	is	an	example	of	how	the	method	accomplishes
this:

var	strVariable	=	"This	is	a	hyperlink";
strVariable	=	strVariable.link("http://www.microsoft.com"

The	value	of	strVariable	after	the	last	statement	is:

This	is	a	hyperlink

No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	LN2	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	natural	logarithm	of	2.

Syntax

var	numVar
numVar	=	Math.LN2

Syntax

The	LN2	property	is	approximately	equal	to	0.693.

Microsoft®	JScript®	LN10	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	natural	logarithm	of	10.

Syntax

var	numVar
numVar	=	Math.LN10

Remarks

The	LN10	property	is	approximately	equal	to	2.302.

Microsoft®	JScript®	log	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	natural	logarithm	of	a	number.

Syntax

Math.log(number)

The	number	argument	is	a	numeric	expression	for	which	the	natural	logarithm	is	sought.

Return	Value

The	return	value	is	the	natural	logarithm	of	number.	The	base	is
e.

Microsoft®	JScript®	LOG2E	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	base-2	logarithm	of	e,	Euler's	constant.

Syntax

var	varName
varName	=	objName.LOG2E

Remarks

The	LOG2E	property,	a	constant,	is	approximately	equal	to
1.442.

Microsoft®	JScript®	LOG10E
Property

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	base-10	logarithm	of	e,	Euler's	constant.

Syntax

var	varName
varName	=	objName.LOG10E

Remarks

The	LOG10E	property,	a	constant,	is	approximately	equal	to
0.434.

Microsoft®	JScript®	&&	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	a	logical	conjunction	on	two	expressions.

Syntax

result	=	expression1	&&	expression2

The	&&	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If,	and	only	if,	both	expressions	evaluate	to	True,	result	is	True.
If	either	expression	evaluates	to	False,	result	is	False.

For	information	on	when	a	run-time	error	is	generated	by	the	&&	operator,
see	the	Operator	Behavior	table.

JScript	uses	the	following	rules	for	converting	non-Boolean	values	to
Boolean	values:

All	objects	are	considered	true.

Strings	are	considered	false	if,	and	only	if,	they	are	empty.

null	and	undefined	are	considered	false.

Numbers	are	false	if,	and	only	if,	they	are	zero.

Microsoft®	JScript®	!	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	logical	negation	on	an	expression.

Syntax

result	=	!expression

The	!	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

The	following	table	illustrates	how	result	is	determined.

If	expression	is Then	result	is
True False
False True

All	unary	operators,	such	as	the	!	operator,	evaluate	expressions	as	follows:

If	applied	to	undefined	or	null	expressions,	a	run-time	error
is	raised.

Objects	are	converted	to	strings.

Strings	are	converted	to	numbers	if	possible.	If	not,	a	run-
time	error	is	raised.

Boolean	values	are	treated	as	numbers	(0	if	false,	1	if	true).

The	operator	is	applied	to	the	resulting	number.

For	the	!	operator,	if	expression	is	nonzero,	result	is	zero.	If	expression	is	zero,	result	is
1.

Microsoft®	JScript®	||	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	a	logical	disjunction	on	two	expressions.

Syntax

result	=	expression1	||	expression2

The	||	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If	either	or	both	expressions	evaluate	to	True,	result	is	True.	The
following	table	illustrates	how	result	is	determined:

If	expression1	is And	expression2	is The	result	is
True True True
True False True
False True True
False False False

For	information	on	when	a	run-time	error	is	generated	by	the	&&	operator,
see	the	Operator	Behavior	table.

JScript	uses	the	following	rules	for	converting	non-Boolean	values	to
Boolean	values:

All	objects	are	considered	true.

Strings	are	considered	false	if	and	only	if	they	are	empty.

null	and	undefined	are	considered	false.

Numbers	are	false	if,	and	only	if,	they	are	0.

Microsoft®	JScript®	Math	Object
	Language	Reference	

Version	1	

See	Also																				Methods																			Properties

Description

An	intrinisic	object	that	provides	basic	mathematics	functionality
and	constants.

Syntax

Math[.{property	|	method}]

Remarks

The	Math	object	cannot	be	created	using	the	new	operator,	and
gives	an	error	if	you	attempt	to	do	so.	It	is	created	by	the
scripting	engine	when	the	engine	is	loaded.	All	of	its	methods
and	properties	are	available	to	your	script	at	all	times.

Microsoft®	JScript®	max	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	greater	of	two	supplied	numeric	expressions.

Syntax

retVal	=	Math.max(number1,	number2)

The	max	method	syntax	has	these	parts:

Part Description
retVal The	greater	of	number1	or	number2.

number1 A	numeric	expression	to	be	comparedto	number2.

number2 A	numeric	value	to	be	compared	tonumber1.

Microsoft®	JScript®	min	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	lesser	of	two	supplied	numbers.

Syntax

retVal	=	Math.min(number1,	number2)

The	min	method	syntax	has	these	parts:

Part Description
retVal The	lesser	of	number1	or	number2.

number1 A	numeric	expression	to	be	comparedto	number2.

number2 A	numeric	value	to	be	compared	tonumber1.

Microsoft®	JScript®	moveFirst
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Resets	the	current	item	in	the	collection	to	the	first	item.

Syntax

myEnum.moveFirst()

The	myEnum	argument	is	any	Enumerator	object.

Remarks

If	there	are	no	items	in	the	collection,	the	current	item	is	set	to
undefined.

In	following	example,	the	moveFirst	method	is	used	to	begin	evaluating
members	of	the	Drives	collection	from	the	beginning	of	the	list:

function	ShowFirstAvailableDrive()
{
		var	fso,	s,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		e.moveFirst();

		s	=	"";
		do	
		{
					x	=	e.item();
					if	(x.IsReady)
					{
							s	=	x.DriveLetter	+	":";
							break;
					}
					else
							if	(e.atEnd())
							{
									s	=	"No	drives	are	available";
									break;
							}
					e.moveNext();
		}
		while	(!e.atEnd());
		return(s);	
}

Microsoft®	JScript®	moveNext
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Moves	the	current	item	to	the	next	item	in	the	collection.

Syntax

myEnum.moveNext()

The	myEnum	argument	is	any	Enumerator	object.

Remarks

If	the	enumerator	is	at	the	end	of	the	collection	or	the	collection
is	empty,	the	current	item	is	set	to	undefined.

In	following	example,	the	moveNext	method	is	used	to	move	to	the	next
drive	in	the	Drives	collection:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		s	=	"";

		for	(;	!e.atEnd();	e.moveNext())
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;
				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
		}
		return(s);
}

Microsoft®	JScript®	NaN	Property
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

A	special	value	that	indicates	an	arithmetic	expression	returned	a
value	that	was	not	a	number.

Syntax

Number.NaN

The	number	argument	is	the	Number	object.

Remarks

The	Number	object	does	not	have	to	be	created	before	the	NaN
property	can	be	accessed.

NaN	does	not	compare	equal	to	any	value,	including	itself.	To	test	if	a
value	is	equivalent	to	NaN,	use	the	isNaN	function.

Microsoft®	JScript®	new	Operator
	Language	Reference	

Version	1	

See	Also

Description

Creates	a	new	object.

Syntax

new	constructor[(arguments)]

The	constructor	argument	calls	object's	constructor.	The	parentheses	can	be	omitted	if
the	constructor	takes	no	arguments.

Remarks

The	new	operator	performs	the	following	tasks:

1.	 It	creates	an	object	with	no	members.

2.	 It	calls	the	constructor	for	that	object,	passing	a	pointer	to	the
newly	created	object	as	the	this	pointer.

The	constructor	then	initializes	the	object	according	to	the
arguments	passed	to	the	constructor.

These	are	examples	of	valid	uses	of	the	new	operator:

my_object	=	new	Object;
my_array	=	new	Array();

my_date	=	new	Date("Jan	5	1996");

Microsoft®	JScript®	number	Property
	Language	Reference	

Version	5	

See	Also																					Applies	to

Description

Returns	or	sets	the	numeric	value	associated	with	a	specific	error.
The	Error	object's	default	property	is	number.

Syntax

object.number	[=	errornumber]

The	number	property	syntax	has	these	parts:

Part Description
object Any	instance	of	the	Error	object.
errornumber An	integer	representing	an	error.

Remarks

An	error	number	is	a	32-bit	value.	The	upper	16-bit	word	is	the
facility	code,	while	the	lower	word	is	the	actual	error	code.

The	following	example	illustrates	the	use	of	the	number	property:

try	{
		x	=	y										 	 													//	Cause	an	error.
}

catch(var	e)	{																									//	Create	local	variable	e.
		document.write(e)																				//	Prints	"[object	Error]".
		document.write(e.number>>16	&	0x1FFF)//	Prints	10,	the	facility	code.
		document.write(e.number	&	0xFFFF)				//	Prints	5009,	the	error	code.
		document.write(e.description)								//	Prints	"'y'	is	undefined".
}

Microsoft®	JScript®	Object	Object
	Language	Reference	

Version	3	

See	Also																		Methods																		Properties

Description

Provides	functionality	common	to	all	JScript	objects.

Syntax

new	Object([value])

The	optional	value	argument	is	used	to	convert	a	primitive	data	type
(number,	Boolean,	string,	or	function)	into	an	object.	If	omitted,	an	object
with	no	contents	is	created.

Remarks

The	Object	object	is	contained	in	all	other	JScript	objects--all	of
its	methods	and	properties	are	available	in	all	other	objects.	The
methods	can	be	redefined	in	user-defined	objects,	and	are	called
by	JScript	at	appropriate	times.	The	toString	method	is	an
example	of	a	frequently	redefined	Object	method.

In	this	language	reference,	the	description	of	each	Object	method	includes
both	default	and	object-specific	implementation	information	for	the
intrinsic	JScript	objects.

Microsoft®	JScript®	Operator
Precedence

	Language	Reference	
Version	1	

Operators	in	JScript	are	evaluated	in	a	particular	order.	This	order
is	known	as	the	operator	precedence.	The	following	table	lists	the
operators	in	highest	to	lowest	precedence	order.	Operators	with
the	same	precedence	are	evaluated	in	left	to	right	order	in	the
expression.

Operator Description

.	[]	() Field	access,	array	indexing,	and	function
calls

++	--	-	~	!	delete
new	typeof	void

Unary	operators,	return	data	type,	object
creation,	undefined	values

*	/	% Multiplication,	division,	modulo	division
+	-	+ Addition,	subtraction,	string	concatenation
<<	>>	>>> Bit	shifting
<	<=	>	>=
instanceof

Less	than,	less	than	or	equal,	greater	than,
greater	than	or	equal,	instanceof

==	!=	===	!== Equality,	inequality,	identity,	nonidentity
& Bitwise	AND
^ Bitwise	XOR
| Bitwise	OR
&& Logical	AND
|| Logical	OR
?: Conditional
=	OP= Assignment,	assignment	with	operation
, Multiple	evaluation

Parentheses	are	used	to	alter	the	order	of	evaluation.	The	expression	within

parentheses	is	fully	evaluated	before	its	value	is	used	in	the	remainder	of
the	statement.

An	operator	with	higher	precedence	is	evaluated	before	one	with	lower
precedence.	For	example:

z	=	78	*	(96	+	3	+	45)

There	are	five	operators	in	this	expression:	=,	*,	(),	+,	and	+.	According	to
precedence,	they	are	evaluated	in	the	following	order:	(),	*,	+,	+,	=.

1.	 Evaluation	of	the	expression	within	the	parentheses	is	first:
There	are	two	addition	operators,	and	they	have	the	same
precedence:	96	and	3	are	added	together	and	45	is	added	to
that	total,	resulting	in	a	value	of	144.

2.	 Multiplication	is	next:	78	and	144	are	multiplied,	resulting	in
a	value	of	10998.

3.	 Assignment	is	last:	11232	is	assigned	into	z.

Microsoft®	JScript®	PI	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	ratio	of	the	circumference	of	a	circle	to	its	diameter,
approximately	3.141592653589793.

Syntax

var	numVar
numVar	=	Math.PI

Syntax

The	PI	property,	a	constant,	is	approximately	equal	to	3.14159.

Microsoft®	JScript®	pow	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	value	of	a	base	expression	taken	to	a	specified	power.

Syntax

Math.pow(base,	exponent)

The	pow	method	syntax	has	these	parts:

Part Description
base The	base	value	of	the	expression.
exponent The	exponent	value	of	the	expression.

Remarks

In	the	following	example,	a	numeric	expression	equal	to
baseexponent	returns	1000.

Math.pow(10,3);

Microsoft®	JScript®	prototype
Property

	Language	Reference	
Version	2	

See	Also																		Applies	To

Description

Returns	a	reference	to	the	prototype	for	a	class	of	objects.

Syntax

objectname.prototype

The	objectname	argument	is	the	name	of	an	object.

Remarks

Use	the	prototype	property	to	provide	a	base	set	of	functionality
to	a	class	of	objects.	New	instances	of	an	object	"inherit"	the
behavior	of	the	prototype	assigned	to	that	object.

For	example,	say	you	want	to	add	a	method	to	the	Array	object	that
returns	the	value	of	the	largest	element	of	the	array.	To	do	this,	declare	the
function,	add	it	to	Array.prototype,	and	then	use	it.

function	array_max()
{
		var	i,	max	=	this[0];
		for	(i	=	1;	i	<	this.length;	i++)

		{
					if	(max	<	this[i])
	 					max	=	this[i];
		}
		return	max;
}
Array.prototype.max	=	array_max;
var	x	=	new	Array(1,	2,	3,	4,	5,	6);
var	y	=	x.max();

After	this	code	is	executed,	y	contains	the	largest	value	in	the
array	x,	or	6.

All	intrinsic	JScript	objects	have	a	prototype	property	that	is	read-only.
Functionality	may	be	added	to	the	prototype,	as	in	the	example,	but	the
object	may	not	be	assigned	a	different	prototype.	However,	user-defined
objects	may	be	assigned	a	new	prototype.

The	method	and	property	lists	for	each	intrinsic	object	in	this	language
reference	indicate	which	ones	are	part	of	the	object's	prototype,	and	which
are	not.

Microsoft®	JScript®	random	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	a	pseudorandom	number	between	0	and	1.

Syntax

Math.random()

Remarks

The	pseudorandom	number	generated	is	between	0	and	1
inclusive.	The	random	number	generator	is	seeded	automatically
when	JScript	is	first	loaded.

Microsoft®	JScript®	RegExp	Object
	Language	Reference	

Version	3	

See	Also																			Methods																			Properties

Description

Stores	information	on	regular	expression	pattern	searches.

Syntax

RegExp.propertyname

The	propertyname	argument	is	one	of	the	RegExp	object	properties.

Remarks

The	RegExp	object	cannot	be	created	directly,	but	is	always
available	for	use.	Its	properties	have	undefined	as	their	value
until	a	successful	regular	expression	search	has	been	completed.

The	following	example	illustrates	the	use	of	the	RegExp	object:

function	matchDemo()
{
		var	s;
		var	re	=	new	RegExp("d(b+)(d)","ig");
		var	str	=	"cdbBdbsbdbdz";
		var	arr	=	re.exec(str);

		s	=	"$1	contains:	"	+	RegExp.$1	+	"
";
		s	+=	"$2	contains:	"	+	RegExp.$2	+	"
";
		s	+=	"$3	contains:	"	+	RegExp.$3;
		return(s);
}

Microsoft®	JScript®	Regular
Expression	Object

	Language	Reference	
Version	3	

See	Also																			Methods																			Properties

Description

Contains	a	regular	expression	pattern.

Syntax	1

var	regularexpression	=	/pattern/[switch]

Syntax	2

var	regularexpression	=	new	RegExp("pattern",["switch"])

The	regular	expression	object	syntax	has	these	parts:

Part Description

pattern

Required.	The	regular	expression	pattern	to	use.	If	you
use	Syntax	1,	delimit	the	pattern	by	"/"	characters.	If
you	use	Syntax	2,	enclose	the	pattern	in	quotation
marks.

switch

Optional.	Enclose	switch	in	quotation	marks	if	you	use
Syntax	2.	Available	switches	are:

i	(ignore	case)

g	(global	search	for	all	occurrences	of	pattern)

gi	(global	search,	ignore	case)

Remarks

Regular	Expression	objects	store	patterns	used	when	searching
strings	for	character	combinations.	After	the	Regular
Expression	object	is	created,	it	is	either	passed	to	a	string
method,	or	a	string	is	passed	to	one	of	the	regular	expression
methods.	Information	about	the	most	recent	search	performed	is
stored	in	the	RegExp	object.

Use	Syntax	1	when	you	know	the	search	string	ahead	of	time.	Use	Syntax
2	when	the	search	string	is	changing	frequently,	or	is	unknown,	such	as
strings	taken	from	user	input.

The	pattern	argument	is	compiled	into	an	internal	format	before	use.	For
Syntax	1,	pattern	is	compiled	as	the	script	is	loaded.	For	Syntax	2,	pattern
is	compiled	just	before	use,	or	when	the	compile	method	is	called.

Microsoft®	JScript®	Regular
Expression	Syntax

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Special	characters	and	sequences	are	used	in	writing	patterns	for
regular	expressions.	The	following	table	describes	these
characters	and	includes	short	examples	showing	how	the
characters	are	used.

Character Description

\

Marks	the	next	character	as	either	a	special
character	or	a	literal.	For	example,	"n"	matches	the
character	"n".	"\n"	matches	a	newline	character.	The
sequence	"\\"	matches	"\"	and	"\("	matches	"(".

^ Matches	the	beginning	of	input.
$ Matches	the	end	of	input.

* Matches	the	preceding	character	zero	or	more	times.
For	example,	"zo*"	matches	either	"z"	or	"zoo".

+ Matches	the	preceding	character	one	or	more	times.
For	example,	"zo+"	matches	"zoo"	but	not	"z".

? Matches	the	preceding	character	zero	or	one	time.
For	example,	"a?ve?"	matches	the	"ve"	in	"never".

. Matches	any	single	character	except	a	newline
character.

(pattern)

Matches	pattern	and	remembers	the	match.	The
matched	substring	can	be	retrieved	from	the
resulting	Matches	collection,	using	Item	[0]...[n].
To	match	parentheses	characters	(),	use	"\("	or	"\)".

x|y
Matches	either	x	or	y.	For	example,	"z|food"
matches	"z"	or	"food".	"(z|f)ood"	matches	"zoo"	or
"food".

{n}
n	is	a	nonnegative	integer.	Matches	exactly	n	times.
For	example,	"o{2}"	does	not	match	the	"o"	in
"Bob,"	but	matches	the	first	two	o's	in	"foooood".

{n,}

n	is	a	nonnegative	integer.	Matches	at	least	n	times.
For	example,	"o{2,}"	does	not	match	the	"o"	in
"Bob"	and	matches	all	the	o's	in	"foooood".	"o{1,}"
is	equivalent	to	"o+".	"o{0,}"	is	equivalent	to	"o*".

{n,m}

m	and	n	are	nonnegative	integers.	Matches	at	least	n
and	at	most	m	times.	For	example,	"o{1,3}"	matches
the	first	three	o's	in	"fooooood".	"o{0,1}"	is
equivalent	to	"o?".

[xyz]
A	character	set.	Matches	any	one	of	the	enclosed
characters.	For	example,	"[abc]"	matches	the	"a"	in
"plain".

[^xyz]
A	negative	character	set.	Matches	any	character	not
enclosed.	For	example,	"[^abc]"	matches	the	"p"	in
"plain".

[a-z]

A	range	of	characters.	Matches	any	character	in	the
specified	range.	For	example,	"[a-z]"	matches	any
lowercase	alphabetic	character	in	the	range	"a"
through	"z".

[^m-z]

A	negative	range	characters.	Matches	any	character
not	in	the	specified	range.	For	example,	"[m-z]"
matches	any	character	not	in	the	range	"m"	through
"z".

\b

Matches	a	word	boundary,	that	is,	the	position
between	a	word	and	a	space.	For	example,	"er\b"
matches	the	"er"	in	"never"	but	not	the	"er"	in
"verb".

\B Matches	a	nonword	boundary.	"ea*r\B"	matches	the
"ear"	in	"never	early".

\d Matches	a	digit	character.	Equivalent	to	[0-9].
\D Matches	a	nondigit	character.	Equivalent	to	[^0-9].
\f Matches	a	form-feed	character.
\n Matches	a	newline	character.
\r Matches	a	carriage	return	character.

\s Matches	any	white	space	including	space,	tab,	form-
feed,	etc.	Equivalent	to	"[\f\n\r\t\v]".

\S Matches	any	nonwhite	space	character.	Equivalent
to	"[^	\f\n\r\t\v]".

\t Matches	a	tab	character.
\v Matches	a	vertical	tab	character.

\w Matches	any	word	character	including	underscore.
Equivalent	to	"[A-Za-z0-9_]".

\W Matches	any	nonword	character.	Equivalent	to	"
[^A-Za-z0-9_]".

\num

Matches	num,	where	num	is	a	positive	integer.	A
reference	back	to	remembered	matches.	For
example,	"(.)\1"	matches	two	consecutive	identical
characters.

\n

Matches	n,	where	n	is	an	octal	escape	value.	Octal
escape	values	must	be	1,	2,	or	3	digits	long.	For
example,	"\11"	and	"\011"	both	match	a	tab
character.	"\0011"	is	the	equivalent	of	"\001"	&	"1".
Octal	escape	values	must	not	exceed	256.	If	they	do,
only	the	first	two	digits	comprise	the	expression.
Allows	ASCII	codes	to	be	used	in	regular
expressions.

\xn

Matches	n,	where	n	is	a	hexadecimal	escape	value.
Hexadecimal	escape	values	must	be	exactly	two
digits	long.	For	example,	"\x41"	matches	"A".
"\x041"	is	equivalent	to	"\x04"	&	"1".	Allows
ASCII	codes	to	be	used	in	regular	expressions.

Microsoft®	JScript®	return	Statement
	Language	Reference	

Version	1	

See	Also

Description

Exits	from	the	current	function	and	returns	a	value	from	that
function.

Syntax

return	[expression];

The	expression	argument	is	the	value	to	be	returned	from	the	function.	If	omitted,	the
function	does	not	return	a	value.

Remarks

You	use	the	return	statement	to	stop	execution	of	a	function	and
return	the	value	of	expression.	If	expression	is	omitted,	or	no
return	statement	is	executed	from	within	the	function,	the
expression	that	called	the	current	function	is	assigned	the	value
undefined.

The	following	example	illustrates	the	use	of	the	return	statement:

function	myfunction(arg1,	arg2)
{
		var	r;
		r	=	arg1	*	arg2;

		return(r);
}

Microsoft®	JScript®	reverse	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	an	Array	object	with	the	elements	reversed.

Syntax

arrayobj.reverse()

Remarks

The	reverse	method	reverses	the	elements	of	an	Array	object	in
place.	It	does	not	create	a	new	Array	object	during	execution.

If	the	array	is	not	contiguous,	the	reverse	method	creates	elements	in	the	array	that	fill
the	gaps	in	the	array.	Each	of	these	created	elements	has	the	value	undefined.

The	following	example	illustrates	the	use	of	the	reverse	method:

function	ReverseDemo()
{
		var	a,	l;
		a	=	new	Array(0,1,2,3,4);
		l	=	a.reverse();
		return(l);

}

Microsoft®	JScript®	round	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	a	supplied	numeric	expression	rounded	to	the	nearest
integer.

Syntax

Math.round(number)

The	number	argument	is	the	value	to	be	rounded	to	the	nearest	integer.

Remarks

If	the	decimal	portion	of	number	is	0.5	or	greater,	the	return
value	is	equal	to	the	smallest	integer	greater	than	number.
Otherwise,	round	returns	the	largest	integer	less	than	or	equal	to
number.

Microsoft®	JScript®	ScriptEngine
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	representing	the	scripting	language	in	use.

Syntax

ScriptEngine()

Return	Values

The	ScriptEngine	function	can	return	any	of	the	following
strings:

String Description

JScript Indicates	that	Microsoft	JScript	is	the
current	scripting	engine.

VBA
Indicates	that	Microsoft	Visual
Basic®	for	Applications	is	the
current	scripting	engine.

VBScript
Indicates	that	Microsoft	Visual	Basic
Scripting	Edition	is	the	current
scripting	engine.

Remarks

The	following	code	illustrates	the	use	of	the	ScriptEngine
function:

function	GetScriptEngineInfo()
{
				var	s;
				s	=	"";	//	Build	string	with	necessary	info.
				s	+=	ScriptEngine()	+	"	Version	";
				s	+=	ScriptEngineMajorVersion()	+	".";
				s	+=	ScriptEngineMinorVersion()	+	".";
				s	+=	ScriptEngineBuildVersion();
				return(s);
}

Microsoft®	JScript®

ScriptEngineBuildVersion
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	the	build	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineBuildVersion()

Return	Values

The	return	value	corresponds	directly	to	the	version	information
contained	in	the	dynamic-link	library	(DLL)	for	the	scripting
language	in	use.

Remarks

The	following	code	illustrates	the	use	of	the
ScriptEngineBuildVersion	function:

function	GetScriptEngineInfo()
{
				var	s;
				s	=	"";	//	Build	string	with	necessary	info.
				s	+=	ScriptEngine()	+	"	Version	";
				s	+=	ScriptEngineMajorVersion()	+	".";
				s	+=	ScriptEngineMinorVersion()	+	".";
				s	+=	ScriptEngineBuildVersion();

				return(s);
}

Microsoft®	JScript®

ScriptEngineMajorVersion
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	the	major	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineMajorVersion()

Return	Values

The	return	value	corresponds	directly	to	the	version	information
contained	in	the	dynamic-link	library(DLL)	for	the	scripting
language	in	use.

Remarks

The	following	code	illustrates	the	use	of	the
ScriptEngineMajorVersion	function:

function	GetScriptEngineInfo()
{
				var	s;
				s	=	"";	//	Build	string	with	necessary	info.
				s	+=	ScriptEngine()	+	"	Version	";

				s	+=	ScriptEngineMajorVersion()	+	".";
				s	+=	ScriptEngineMinorVersion()	+	".";
				s	+=	ScriptEngineBuildVersion();
				return(s);
}

Microsoft®	JScript®

ScriptEngineMinorVersion
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	the	minor	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineMinorVersion()

Return	Values

The	return	value	corresponds	directly	to	the	version	information
contained	in	the	dynamic-link	library	(DLL)	for	the	scripting
language	in	use.

Remarks

The	following	code	illustrates	the	use	of	the
ScriptEngineMinorVersion	function:

function	GetScriptEngineInfo()
{
				var	s;
				s	=	"";	//	Build	string	with	necessary	info.
				s	+=	ScriptEngine()	+	"	Version	";

				s	+=	ScriptEngineMajorVersion()	+	".";
				s	+=	ScriptEngineMinorVersion()	+	".";
				s	+=	ScriptEngineBuildVersion();
				return(s);
}

Microsoft®	JScript®	@set	Statement
	Language	Reference	

Version	3	

See	Also

Description

Creates	variables	used	with	conditional	compilation	statements.

Syntax

@set	@varname	=	term

The	@set	statement	syntax	has	these	parts:

Part Description

varname Valid	JScript	variable	name.	Must	be	preceded	by	an
"@"	character	at	all	times.

term
Zero	or	more	unary	operators	followed	by	a	constant,
conditional	compilation	variable,	or	parenthesized
expression.

Remarks

Numeric	and	Boolean	variables	are	supported	for	conditional
compilation.	Strings	are	not.	Variables	created	using	@set	are
generally	used	in	conditional	compilation	statements,	but	can	be
used	anywhere	in	JScript	code.

Examples	of	variable	declarations	look	like	this:

@set	@myvar1	=	12

@set	@myvar2	=	(@myvar1	*	20)
@set	@myvar3	=	@_jscript_version

The	following	operators	are	supported	in	parenthesized
expressions:

!	~

*	/	%

+	-

<<	>>	>>>

<	<=	>	>=

==	!=	===	!==

&	^	|

&&	||

If	a	variable	is	used	before	it	has	been	defined,	its	value	is	NaN.
NaN	can	be	checked	for	using	the	@if	statement:

@if	(@newVar	!=	@newVar)
		...

This	works	because	NaN	is	the	only	value	not	equal	to	itself.

Microsoft®	JScript®	sin	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	sine	of	a	number.

Syntax

Math.sin(number)

The	number	argument	is	a	numeric	expression	for	which	the	sine	is	sought.

Remarks

The	return	value	is	the	sine	of	its	numeric	argument.

Microsoft®	JScript®	slice	Method
(Array)

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	section	of	an	array.

Syntax

arrayObj.slice(start,	[end])

The	slice	method	syntax	has	these	parts:

Part Description
arrayObj Required.	An	Array	object.

start Required.	The	zero-based	index	of	the	beginning	of
the	specified	portion	of	arrayObj.

end Optional.	The	zero-based	index	of	the	end	of	the
specified	portion	of	arrayObj.

Remarks

The	slice	method	returns	an	Array	object	containing	the
specified	portion	of	arrayObj.

The	slice	method	copies	up	to,	but	not	including,	the	element	indicated	by
end.	If	negative,	end	indicates	an	offset	from	the	end	of	arrayObj.	In
addition,	it	is	not	zero-based.	If	omitted,	extraction	continues	to	the	end	of
arrayObj.

In	the	following	example,	all	but	the	last	element	of	myArray	is	copied	into
newArray:

newArray	=	myArray.slice(0,	-1)
If	an	object	reference	is	copied	from	arrayObj	to	the	result,	the
object	reference	in	the	result	still	points	to	the	same	object.
Changes	to	that	object	are	reflected	in	both	arrays.

Microsoft®	JScript®	slice	Method
(String)

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	section	of	a	string.

Syntax

stringObj.slice(start,	[end])

The	slice	method	syntax	has	these	parts:

Part Description
stringObj Required.	A	String	object	or	literal.

start Required.	The	zero-based	index	of	the	beginning	of
the	specified	portion	of	stringObj.

end Optional.	The	zero-based	index	of	the	end	of	the
specified	portion	of	stringObj.

Remarks

The	slice	method	returns	a	String	object	containing	the	specified
portion	of	stringObj.

If	negative,	end	indicates	an	offset	from	the	end	of	stringObj.	In	addition,	it
is	not	zero-based.	If	omitted,	extraction	continues	to	the	end	of	stringObj.

In	the	example	that	follows,	the	two	uses	of	the	slice	method	return	the

same	thing.	Negative	one	in	the	second	example	points	to	the	last	character
in	str1	as	the	ending	point:

str1.slice(0)
str2.slice(0,-1)

Microsoft®	JScript®	small	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<SMALL>	tags	around	text	in	a	String	object.

Syntax

strVariable.small()
"String	Literal".small()

Remarks

The	example	that	follows	demonstrates	how	the	small	method
works:

var	strVariable	=	"This	is	a	string";
strVariable	=	strVariable.small();

The	value	of	strVariable	after	the	last	statement	is:

<SMALL>This	is	a	string</SMALL>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	sort	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	an	Array	objec	with	the	elements	sorted.

Syntax

arrayobj.sort(sortfunction)

The	sortfunction	argument	is	the	name	of	the	function	used	to	determine	the	order	of	the
elements.	If	omitted,	the	elements	are	sorted	in	ascending,	ASCII	character	order.

Remarks

The	sort	method	sorts	the	Array	object	in	place;	no	new	Array
object	is	created	during	execution.

If	you	supply	a	function	in	the	sortfunction	argument,	it	must	return	one	of	the	following
values:

A	negative	value	if	the	first	argument	passed	is	less	than	the
second	argument.

Zero	if	the	two	arguments	are	equivalent.

A	positive	value	if	the	first	argument	is	greater	than	the
second	argument.

The	following	example	illustrates	the	use	of	the	sort	method:

function	SortDemo()

{
		var	a,	l;
		a	=	new	Array("X"	,"y"	,"d",	"Z",	"v","m","r");
		l	=	a.sort();
		return(l);
}

Microsoft®	JScript®	source	Property
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	copy	of	the	text	of	the	regular	expression	pattern.
Read-only.

Syntax

rgexp.source

The	rgexp	argument	is	a	Regular	expression	object.	It	can	be	a	variable
name	or	a	literal.

The	following	example	illustrates	the	use	of	the	source	property:

function	SourceDemo(re,	s)
{
		var	s1;
		//	Test	string	for	existence	of	regular	expression.
		if	(re.test(s))
				s1	=	"	contains	";
		else
				s1	=	"	does	not	contain	";
		//	Get	the	text	of	the	regular	expression	itself.

		return(s	+	s1	+	re.source);
}

Microsoft®	JScript®	sqrt	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	square	root	of	a	number.

Syntax

Math.sqrt(number)

The	number	argument	is	a	numeric	expression.

Remarks

If	number	is	negative,	the	return	value	is	zero.

Microsoft®	JScript®	SQRT1_2
Property

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	he	square	root	of	0.5,	or	one	divided	by	the	square	root
of	2.

Syntax

var	numVar
numVar	=	Math.SQRT1_2

Remarks

The	SQRT1_2	property,	a	constant,	is	approximately	equal	to
0.707.

Microsoft®	JScript®	SQRT2	Property
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	square	root	of	2.

Syntax

var	numVar
numVar	=	Math.SQRT2

Syntax

The	SQRT2	property,	a	constant,	is	approximately	equal	to
1.414.

Microsoft®	JScript®	strike	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<STRIKE>	tags	around	text	in	a	String	object.

Syntax

strVariable.strike()
"String	Literal".strike()

Remarks

The	following	example	demonstrates	how	the	strike	method
works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.strike();

The	value	of	strVariable	after	the	last	statement	is:

<STRIKE>This	is	a	string	object</STRIKE>
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	String	Object
	Language	Reference	

Version	1	

See	Also																			Methods																				Properties

Description

Allows	manipulation	and	formatting	of	text	strings	and
determination	and	location	of	substrings	within	strings.

Syntax

StringObj[.method]
"String	Literal"[.method]

Remarks

String	objects	can	be	created	implicitly	using	string	literals.
String	objects	created	in	this	fashion	(referred	to	as	standard
strings)	are	treated	differently	than	String	objects	created	using
the	new	operator.	All	string	literals	share	a	common,	global
string	object.	So,	if	a	property	is	added	to	a	string	literal,	it	is
available	to	all	standard	string	objects:

var	alpha,	beta;
alpha	=	"This	is	a	string";
beta	=	"This	is	also	a	string";

alpha.test	=	10;
In	this	example,	test	is	now	defined	for	beta	and	all	future	string	literals.	In	the	following

example,	however,	added	properties	are	treated	differently:

var	gamma,	delta;
gamma	=	new	String("This	is	a	string");
delta	=	new	String("This	is	also	a	string");

gamma.test	=	10;
In	this	case,	test	is	not	defined	for	delta.	Each	String	object
declared	as	a	new	String	object	has	its	own	set	of	members.	This
is	the	only	case	where	String	objects	and	string	literals	are
handled	differently.

Microsoft®	JScript®	sub	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<SUB>	tags	around	text	in	a	String	object.

Syntax

strVariable.sub()
"String	Literal".sub()

Remarks

The	following	example	demonstrates	how	the	sub	method	works:

var	strVariable	=	"This	is	a	string	object"
strVariable	=	strVariable.sub();

The	value	of	strVariable	after	the	last	statement	is:

_{This	is	a	string	object}
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	substr	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	substring	beginning	at	a	specified	location	and	having
a	specified	length.

Syntax

stringvar.substr(start	[,	length])

The	substr	method	syntax	has	these	parts:

Part Description

stringvar Required.	A	string	literal	or	String	object	from	whichthe	substring	is	extracted.

start
Required.	The	starting	position	of	the	desired
substring.	The	index	of	the	first	character	in	the	string
is	zero.

length Optional.	The	number	of	characters	to	include	in	the
returned	substring.

Remarks

If	length	is	zero	or	negative,	an	empty	string	is	returned.	If	not
specified,	the	substring	continues	to	the	end	of	stringvar.

The	following	example	illustrates	the	use	of	the	substr	method:

function	SubstrDemo()
{
		var	s,	ss;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		ss	=	s.substr(16,	3);
		//	Returns	"fox".
		return(ss);
}

Microsoft®	JScript®	substring	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	substring	at	the	specified	location	within	a	String
object.

Syntax

strVariable.substring(start,	end)
"String	Literal".substring(start,	end)

The	substring	method	syntax	has	these	arguments:

Part Description

start The	zero-based	index	indicating	thebeginning	of	the	substring.

end The	zero-based	index	indicating	the	end
of	the	substring.

Remarks

The	substring	method	returns	a	String	object	containing	the
substring	derived	from	the	original	object.

The	substring	method	uses	the	lower	of	start	and	end	as	the	beginning	point	of	the
substring.	For	example,	strvar.substring(0,	3)	and	strvar.substring(3,	0)	return	the
same	substring.

The	only	exception	to	this	is	for	negative	parameters.	If	the	first	parameter	is	less	than
zero,	it	is	treated	as	zero.	If	the	second	parameter	is	negative,	it	is	set	to	the	value	of	the

first	parameter.

The	length	of	the	substring	is	equal	to	the	absolute	value	of	the	difference	between	start
and	end.	For	example,	the	length	of	the	substring	returned	in	strvar.substring(0,	3)	and
strvar.substring(3,	0)	is	three.

Finally,	start	and	end	can	be	strings.	If	so,	these	strings	are	coerced	into	integers	if
possible.	If	not,	the	value	of	the	parameter	is	treated	as	zero.

The	following	example	illustrates	the	use	of	the	substring	method:

function	SubstringDemo()
{
		var	s,	ss;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		ss	=	s.substring(16,	19);
		return(ss);
}

Microsoft®	JScript®	-	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	find	the	difference	between	two	numbers	or	to	indicate
the	negative	value	of	a	numeric	expression.

Syntax	1

result	=	number1	-	number2

Syntax	2

-number

The	-	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number Any	numeric	expression.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

In	Syntax	1,	the	-	operator	is	the	arithmetic	subtraction	operator
used	to	find	the	difference	between	two	numbers.	In	Syntax	2,
the	-	operator	is	used	as	the	unary	negation	operator	to	indicate

the	negative	value	of	an	expression.

For	information	on	when	a	run-time	error	is	generated	by	Syntax	1,	see	the	Operator
Behavior	table.

For	Syntax	2,	as	for	all	unary	operators,	expressions	are	evaluated	as	follows:

If	applied	to	undefined	or	null	expressions,	a	run-time	error
is	raised.

Objects	are	converted	to	strings.

Strings	are	converted	to	numbers	if	possible.	If	not,	a	run-
time	error	is	raised.

Boolean	values	are	treated	as	numbers	(0	if	false,	1	if	true).

The	operator	is	applied	to	the	resulting	number.	In	Syntax	2,	if
the	resulting	number	is	nonzero,	result	is	equal	to	the	resulting
number	with	its	sign	reversed.	If	the	resulting	number	is	zero,
result	is	zero.

Microsoft®	JScript®	sup	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Places	HTML	<SUP>	tags	around	text	in	a	String	object.

Syntax

strVariable.sup()
"String	Literal".sup()

Remarks

The	following	example	demonstrates	how	the	sup	method	works:

var	strVariable	=	"This	is	a	string	object";
strVariable	=	strVariable.sup();

The	value	of	strVariable	after	the	last	statement	is:

^{This	is	a	string	object}
No	checking	is	done	to	see	if	the	tag	has	already	been	applied	to
the	string.

Microsoft®	JScript®	switch	Statement
	Language	Reference	

Version	3	

See	Also

Description

Enables	the	execution	of	one	or	more	statements	when	a
specified	expression's	value	matches	a	label.

Syntax

switch	(expression)	{
			case	label	:
						statementlist
			case	label	:
						statementlist
			...
			default	:
						statementlist
}

The	switch	statement	syntax	has	these	parts:

Part Description
expression The	expression	to	be	evaluated.

label

An	identifier	to	be	matched	against	expression.	If
label	===	expression,	execution	starts	with	the
statementlist	immediately	after	the	colon,	and
continues	until	it	encounters	either	a	break
statement,	which	is	optional,	or	the	end	of	the
switch	statement.

statementlist One	or	more	statements	to	be	executed.

Remarks

Use	the	default	clause	to	provide	a	statement	to	be	executed	if
none	of	the	label	values	matches	expression.	It	can	appear
anywhere	within	the	switch	code	block.

Zero	or	more	label	blocks	may	be	specified.	If	no	label	matches	the	value
of	expression,	and	a	default	case	is	not	supplied,	no	statements	are
executed.

Execution	flows	through	a	switch	statement	as	follows:

1.	 Evaluate	expression	and	look	at	label	in	order	until	a	match
is	found.

2.	 If	a	label	value	equals	expression,	execute	its	accompanying
statementlist.	
Continue	execution	until	a	break	statement	is	encountered,
or	the	switch	statement	ends.	This	means	that	multiple	label
blocks	are	executed	if	a	break	statement	is	not	used.

3.	 If	no	label	equals	expression,	go	to	the	default	case.	If	there
is	no	default	case,	go	to	last	step.

4.	 Continue	execution	at	the	statement	following	the	end	of	the
switch	code	block.

The	following	example	tests	an	object	for	its	type:

function	MyObject()	{
...}
switch	(object.constructor){

	 case	Date:
	 ...
	 case	Number:
	 ...
	 case	String:
	 ...
	 case	MyObject:
	 ...
	 default:	
	 ...
}

Microsoft®	JScript®	tan	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	tangent	of	a	number.

Syntax

Math.tan(number)

The	number	argument	is	a	numeric	expression	for	which	the	tangent	is	sought.

Remarks

The	return	value	is	the	tangent	of	number.

Microsoft®	JScript®	test	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Boolean	value	that	indicates	whether	or	not	a	pattern
exists	in	a	searched	string.

Syntax

rgexp.test(str)

The	test	method	syntax	has	these	parts:

Part Description

rgexp Required.	A	Regular	Expression	object.	Can	be	avariable	name	or	a	literal.
str Required.	The	string	to	test	a	search	on.

Remarks

The	test	method	checks	to	see	if	a	pattern	exists	within	a	string
and	returns	true	if	so,	and	false	otherwise.

The	RegExp	object	is	not	modified	by	the	test	method.

The	following	example	illustrates	the	use	of	the	test	method:

function	TestDemo(re,	s)

{
		var	s1;
		//	Test	string	for	existence	of	regular	expression.
		if	(re.test(s))
				s1	=	"	contains	";
		else
				s1	=	"	does	not	contain	";
		//	Get	text	of	the	regular	expression	itself.
		return(s	+	s1	+	re.source);
}

Microsoft®	JScript®	this	Statement
	Language	Reference	

Version	1	

See	Also

Description

Refers	to	the	current	object.

Syntax

this.property

Remarks

The	this	keyword	is	typically	used	in	object	constructors	to	refer
to	the	current	object.	In	the	following	example,	this	refers	to	the
newly	created	Car	object,	and	assigns	values	to	three	properties:

function	Car(color,	make,	model)
{
		this.color	=	color;
		this.make	=	make;
		this.model	=	model;
}

For	client	versions	of	JScript,	this	refers	to	the	window	object	if
used	outside	of	the	context	of	any	other	object.

Microsoft®	JScript®	toArray	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	standard	JScript	array	converted	from	a	VBArray.

Syntax

safeArray.toArray()

The	safeArray	argument	is	a	VBArray	object.

Remarks

The	conversion	translates	the	multidimensional	VBArray	into	a
single	dimensional	JScript	array.	Each	successive	dimension	is
appended	to	the	end	of	the	previous	one.	For	example,	a
VBArray	with	three	dimensions	and	three	elements	in	each
dimension	is	converted	into	a	JScript	array	as	follows:

Suppose	the	VBArray	contains:	(1,	2,	3),	(4,	5,	6),	(7,	8,	9).	After
translation,	the	JScript	array	contains:	1,	2,	3,	4,	5,	6,	7,	8,	9.

There	is	currently	no	way	to	convert	a	JScript	array	into	a	VBArray.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	converts	the	VB	safe	array	to	a	JScript	array.	Both	of	these	parts	go
into	the	<HEAD>	section	of	an	HTML	page.	The	third	part	is	the	JScript
code	that	goes	in	the	<BODY>	section	to	run	the	other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--
Function	CreateVBArray()
		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(j,	i)	=	k
						document.writeln(k)
						k	=	k	+	1
				Next
				document.writeln("
")
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>
<SCRIPT	LANGUAGE="JScript">
<!--
function	VBArrayTest(vbarray)
{
		var	a	=	new	VBArray(vbarray);
		var	b	=	a.toArray();
		var	i;
		for	(i	=	0;	i	<	9;	i++)	

		{
				document.writeln(b[i]);
		}
}
-->
</SCRIPT>
</HEAD>
<BODY;>
<SCRIPT	LANGUAGE="JScript">
<!--
		VBArrayTest(CreateVBArray());
-->
</SCRIPT>
</BODY>

Microsoft®	JScript®	toLowerCase
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	a	string	where	all	alphabetic	characters	have	been
converted	to	lowercase.

Syntax

strVariable.toLowerCase()
"String	Literal".toLowerCase()

Remarks

The	toLowerCase	method	has	no	effect	on	nonalphabetic
characters.

The	following	example	demonstrates	the	effects	of	the	toLowerCase	method:

var	strVariable	=	"This	is	a	STRING	object";
strVariable	=	strVariable.toLowerCase()

The	value	of	strVariable	after	the	last	statement	is:

this	is	a	string	object

Microsoft®	JScript®	toString	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	a	string	representation	of	an	object.

Syntax

objectname.toString([radix])

The	toString	method	syntax	has	these	parts:

Part Description

objectname Required.	An	object	for	which	a	stringrepresentation	is	sought.

radix Optional.	Specifies	a	radix	for	converting	numeric
values	to	strings.

Remarks

The	toString	method	is	a	member	of	all	built-in	JScript	objects.
How	it	behaves	depends	on	the	object	type:

Object Behavior

Array Elements	of	an	Array	are	converted	to	strings.	The
resulting	strings	are	concatenated,	separated	by	commas.

Boolean
If	the	Boolean	value	is	true,	returns	"true".	Otherwise,
returns	"false"

Function

Returns	a	string	returned	of	the	following	form,	where
functionname	is	the	name	of	the	function	whose	toString
method	was	called:

function	functionname()	{	[native	code]	}

Number Returns	the	textual	representation	of	the	number.
String Returns	the	value	of	the	String	object.

Default
Returns	"[object	objectname]",	where
objectname	is	the	name	of	the	object	type.

The	following	example	illustrates	the	use	of	the	toString	method	with	a
radix	argument:

function	CreateRadixTable	()
{
		var	s1,	s2,	s3,	x;
		document.write("Hex				Dec			Bin
");
		for	(x	=	0;	x	<	16;	x++)
		{
				switch(x)
				{
						case	0	:	
								s1	=	"						";
								s2	=	"				";
								s3	=	"			";
								break;
						case	1	:

								s1	=	"						";
								s2	=	"				";
								s3	=	"			";
								break;
						case	2	:
								s3	=	"		";
								break;
						case	3	:	
								s3	=	"		";
								break;
						case	4	:	
								s3	=	"	";
								break;
						case	5	:
								s3	=	"	";
								break;
						case	6	:	
								s3	=	"	";
								break;
						case	7	:	
								s3	=	"	";
								break;
						case	8	:

								s3	=	""	;
								break;
						case	9	:
								s3	=	"";
								break;
						default:	
								s1	=	"					";
								s2	=	"";
								s3	=	"				";
				}
				document.write("	",	x.toString(16),	s1,	x.toString(
		}
}

Microsoft®	JScript®	toUpperCase
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	a	string	where	all	alphabetic	characters	have	been
converted	to	uppercase.

Syntax

strVariable.toUpperCase()
"String	Literal".toUpperCase()

Remarks

The	toUpperCase	method	has	no	effect	on	nonalphabetic
characters.

The	following	example	demonstrates	the	effects	of	the	toUpperCase	method:

var	strVariable	=	"This	is	a	STRING	object";
strVariable	=	strVariable.toUpperCase()

The	value	of	strVariable	after	the	last	statement	is:

THIS	IS	A	STRING	OBJECT

Microsoft®	JScript®	typeof	Operator
	Language	Reference	

Version	1	

See	Also

Description

Returns	a	string	that	identifies	the	data	type	of	an	expression.

Syntax

typeof	[(]	expression	[)]	;

The	expression	argument	is	any	expression	for	which	type	information	is
sought.

Remarks

The	typeof	operator	returns	type	information	as	a	string.	There
are	six	possible	values	that	typeof	returns:	"number,"	"string,"
"boolean,"	"object,"	"function,"	and	"undefined."

The	parentheses	are	optional	in	the	typeof	syntax.

Microsoft®	JScript®	ubound	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	highest	index	value	used	in	the	specified	dimension
of	the	VBArray.

Syntax

safeArray.ubound(dimension)

The	ubound	method	syntax	has	these	parts:

Part Description
safeArray Required.	A	VBArray	object.

dimension
Optional.	The	dimension	of	the	VBArray	for	which
the	higher	bound	index	is	wanted.	If	omitted,
ubound	behaves	as	if	a	1	was	passed.

Remarks

If	the	VBArray	is	empty,	the	ubound	method	returns	undefined.
If	dim	is	greater	than	the	number	of	dimensions	in	the	VBArray,
or	is	negative,	the	method	generates	a	"Subscript	out	of	range"
error.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	determines	the	the	number	of	dimensions	in	the	safe	array	and	the

upper	bound	of	each	dimension.	Both	of	these	parts	go	into	the	<HEAD>
section	of	an	HTML	page.	The	third	part	is	the	JScript	code	that	goes	in	the
<BODY>	section	to	run	the	other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--
Function	CreateVBArray()
		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(j,	i)	=	k
						k	=	k	+	1
				Next
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>

<SCRIPT	LANGUAGE="JScript">
<!--
function	VBArrayTest(vba)
{
		var	i,	s;
		var	a	=	new	VBArray(vba);

		for	(i	=	1;	i	<=	a.dimensions();	i++)
		{
				s	=	"The	upper	bound	of	dimension	";
				s	+=	i	+	"	is	";
				s	+=	a.ubound(i)+	".
";
				return(s);
		}
}
-->
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT	language="jscript">
		document.write(VBArrayTest(CreateVBArray()));
</SCRIPT>
</BODY>

Microsoft®	JScript®	unescape	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Decodes	String	objects	encoded	with	the	escape	method.

Syntax

unescape(charstring)

The	charstring	argument	is	a	String	object	to	be	decoded.

Remarks

The	unescape	method	returns	a	new	String	object	that	contains
the	contents	of	charstring.	All	characters	encoded	with	the	%xx
hexadecimal	form	are	replaced	by	their	ASCII	character	set
equivalents.

Characters	encoded	in	%uxxxx	format	(Unicode	characters)	are	replaced	with	the
Unicode	character	with	hexadecimal	encoding	xxxx.

Microsoft®	JScript®	>>>	Operator
	Language	Reference	

Version	1	

See	Also

Description

Performs	an	unsigned	right	shift	of	the	bits	in	an	expression.

Syntax

result	=	expression1	>>>	expression2

The	>>>	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	>>>	operator	shifts	the	bits	of	expression1	right	by	the
number	of	bits	specified	in	expression2.	Zeroes	are	filled	in	from
the	left.	Digits	shifted	off	the	right	are	discarded.	For	example:

var	temp
temp	=	-14	>>>	2

The	variable	temp	has	a	value	of	1073741820	as	-14	(11111111
11111111	11111111	11110010	in	binary)	shifted	right	two	bits

equals	1073741820	(00111111	11111111	11111111	11111100	in
binary).

For	information	on	when	a	run-time	error	is	generated	by	the	>>>	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	valueOf	Method
	Language	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	the	primitive	value	of	the	specified	object.

Syntax

object.valueOf()

The	object	argument	is	any	JScript	object.

Remarks

The	valueOf	method	is	defined	differently	for	each	intrinsic
JScript	object.

Object Return	Value

Array

The	elements	of	the	array	are	converted	into	strings,
and	the	strings	are	concatenated	together,	separated
by	commas.	This	behaves	the	same	as	the
Array.toString	and	Array.join	methods.

Boolean The	Boolean	value.

Date The	stored	time	value	in	milliseconds	since	midnight,
January	1,	1970	UTC.

Function The	function	itself.
Number The	numeric	value.
Object The	object	itself.	This	is	the	default.

String The	string	value.

The	Math	object	does	not	have	a	valueOf	method.

Microsoft®	JScript®	var	Statement
	Language	Reference	

Version	1	

See	Also

Description

Declares	a	variable.

Syntax

var	variable	[=	value]	[,	variable2	[=	value2],	...]

The	var	statement	syntax	has	the	following	parts:

Part Description
variable,
variable2

The	names	of	the	variables
being	declared.

value,	value2 The	initial	value	assigned	to	the
variable.

Remarks

Use	the	var	statement	to	declare	variables.	These	variables	can
be	assigned	values	at	declaration	or	later	in	your	script.	Examples
of	declaration	follow:

var	index;
var	name	=	"Thomas	Jefferson";
var	answer	=	42,	counter,	numpages	=	10;

Microsoft®	JScript®	VBArray	Object
	Language	Reference	

Version	3	

See	Also																		Methods																		Properties

Description

Provides	access	to	Visual	Basic	safe	arrays.

Syntax

new	VBArray(safeArray)

The	safeArray	is	a	VBArray	value.

Remarks

VBArrays	are	read-only,	and	cannot	be	created	directly.	The
safeArray	argument	must	have	obtained	a	VBArray	value	before
being	passed	to	the	VBArray	constructor.	This	can	only	be	done
by	retrieving	the	value	from	an	existing	ActiveX	or	other	object.

VBArrays	can	have	multiple	dimensions.	The	indices	of	each	dimension
can	be	different.	The	dimensions	method	retrieves	the	number	of
dimensions	in	the	array;	the	lbound	and	ubound	methods	retrieve	the
range	of	indices	used	by	each	dimension.

The	following	example	consists	of	three	parts.	The	first	part	is	VBScript
code	to	create	a	Visual	Basic	safe	array.	The	second	part	is	JScript	code
that	converts	the	VB	safe	array	to	a	JScript	array.	Both	of	these	parts	go
into	the	<HEAD>	section	of	an	HTML	page.	The	third	part	is	the	JScript
code	that	goes	in	the	<BODY>	section	to	run	the	other	two	parts.

<HEAD>
<SCRIPT	LANGUAGE="VBScript">
<!--
Function	CreateVBArray()
		Dim	i,	j,	k
		Dim	a(2,	2)
		k	=	1
		For	i	=	0	To	2
				For	j	=	0	To	2
						a(j,	i)	=	k
						document.writeln(k)
						k	=	k	+	1
				Next
				document.writeln("
")
		Next
		CreateVBArray	=	a
End	Function
-->
</SCRIPT>
<SCRIPT	LANGUAGE="JScript">
<!--
function	VBArrayTest(vbarray)
{
		var	a	=	new	VBArray(vbarray);
		var	b	=	a.toArray();
		var	i;
		for	(i	=	0;	i	<	9;	i++)	

		{
				document.writeln(b[i]);
		}
}
-->
</SCRIPT>
</HEAD>
<BODY;>
<SCRIPT	LANGUAGE="JScript">
<!--
		VBArrayTest(CreateVBArray());
-->
</SCRIPT>
</BODY>

Microsoft®	JScript®	void	Operator
	Language	Reference	

Version	2	

See	Also

Description

Prevents	an	expression	from	returning	a	value..

Syntax

void	expression

The	expression	argument	is	any	valid	JScript	expression.

Remarks

The	void	operator	evaluates	its	expression,	and	returns
undefined.	It	is	most	useful	in	situations	where	you	want	an
expression	evaluated	but	do	not	want	the	results	visible	to	the
remainder	of	the	script.

Microsoft®	JScript®	while	Statement
	Language	Reference	

Version	1	

See	Also

Description

Executes	a	statement	until	a	specified	condition	is	false.

Syntax

while	(expression)
			statement

The	while	statement	syntax	has	these	parts:

Part Description

expression

A	Boolean	expression	checked
before	each	iteration	of	the	loop.	If
expression	is	true,	the	loop	is
executed.	If	expression	is	false,	the
loop	is	terminated.

statement
The	statement	to	be	executed	if
expression	is	true.	Can	be	a
compound	statement.

Remarks

The	while	statement	checks	expression	before	a	loop	is	first
executed.	If	expression	is	false	at	this	time,	the	loop	is	never

executed.

The	following	example	illustrates	the	use	of	the	while	statement:

function	BreakTest(breakpoint)
{
			var	i	=	0;
			while	(i	<	100)
			{
			if	(i	==	breakpoint)
					break;
					i++;
			}
			return(i);
}

Microsoft®	JScript®	with	Statement
	Language	Reference	

Version	1	

See	Also

Description

Establishes	the	default	object	for	a	statement.

Syntax

with	(object)
			statement

The	with	statement	syntax	has	these	parts:

Part Description

object The	new	default	object.

statement
The	statement	for	which	object	is	the
default	object.	Can	be	a	compound
statement.

Remarks

The	with	statement	is	commonly	used	to	shorten	the	amount	of
code	that	you	have	to	write	in	certain	situations.	In	the	example
that	follows,	notice	the	repeated	use	of	Math:

x	=	Math.cos(3	*	Math.PI)	+	Math.sin(Math.LN10)	
y	=	Math.tan(14	*	Math.E)

When	you	use	the	with	statement,	your	code	becomes	shorter
and	easier	to	read:

with	(Math)
{
		x	=	cos(3	*	PI)	+	sin	(LN10)		
		y	=	tan(14	*	E)
}

Microsoft®	JScript®	JScript	Run-time
Errors

	Language	Reference	
Version	1	

JScript	Syntax	Errors

Error
Number Description

5 Invalid	procedure	call	or	argument
6 Overflow
7 Out	of	memory
9 Subscript	out	of	range
10 This	array	is	fixed	or	temporarily	locked
11 Division	by	zero
13 Type	mismatch
14 Out	of	string	space
17 Can't	perform	requested	operation
28 Out	of	stack	space
35 Sub	or	Function	not	defined
48 Error	in	loading	DLL
51 Internal	error
52 Bad	file	name	or	number
53 File	not	found
54 Bad	file	mode
55 File	already	open
57 Device	I/O	error
58 File	already	exists
61 Disk	full
62 Input	past	end	of	file
67 Too	many	files
68 Device	unavailable
70 Permission	denied
71 Disk	not	ready

74 Can't	rename	with	different	drive
75 Path/File	access	error
76 Path	not	found
91 Object	variable	or	With	block	variable	not	set
92 For	loop	not	initialized
94 Invalid	use	of	Null
322 Can't	create	necessary	temporary	file
424 Object	required
429 Automation	server	can't	create	object
430 Class	doesn't	support	Automation

432 File	name	or	class	name	not	found	during	Automation
operation

438 Object	doesn't	support	this	property	or	method
440 Automation	error
445 Object	doesn't	support	this	action
446 Object	doesn't	support	named	arguments
447 Object	doesn't	support	current	locale	setting
448 Named	argument	not	found
449 Argument	not	optional

450 Wrong	number	of	arguments	or	invalid	property
assignment

451 Object	not	a	collection
453 Specified	DLL	function	not	found

458 Variable	uses	an	Automation	type	not	supported	in
JScript

462 The	remote	server	machine	does	not	exist	or	is
unavailable

501 Cannot	assign	to	variable
502 Object	not	safe	for	scripting
503 Object	not	safe	for	initializing
504 Object	not	safe	for	creating
507 An	exception	occurred
5000 Cannot	assign	to	'this'
5001 Number	expected

5002 Function	expected
5003 Cannot	assign	to	a	function	result
5004 Cannot	index	object
5005 String	expected
5006 Date	object	expected
5007 Object	expected
5008 Illegal	assignment
5009 Undefined	identifier
5010 Boolean	expected
5011 Can't	execute	code	from	a	freed	script
5012 Object	member	expected
5013 VBArray	expected
5014 JScript	object	expected
5015 Enumerator	object	expected
5016 Regular	Expression	object	expected
5017 Syntax	error	in	regular	expression
5018 Unexpected	quantifier
5019 Expected	']'	in	regular	expression
5020 Expected	')'	in	regular	expression
5021 Invalid	range	in	character	set
5022 Exception	thrown	and	not	caught
5023 Function	does	not	have	a	valid	prototype	object

Microsoft®	JScript®	JScript	Syntax
Errors

	Language	Reference	
Version	1	

JScript	Run-time	Errors

Error
Number Description

1001 Out	of	memory
1002 Syntax	error
1003 Expected	':'
1004 Expected	';'
1005 Expected	'('
1006 Expected	')'
1007 Expected	']'
1008 Expected	'{'
1009 Expected	'}'
1010 Expected	identifier
1011 Expected	'='
1012 Expected	'/'
1013 Invalid	number
1014 Invalide	character
1015 Unterminated	string	constant
1016 Unterminated	comment
1018 'return'	statement	outside	of	function
1019 Can't	have	'break'	outside	of	loop
1020 Can't	have	'continue'	outside	of	loop
1023 Expected	hexadecimal	digit
1024 Expected	'while'
1025 Label	redefined
1026 Label	not	found
1027 'default'	can	only	appear	in	a	'switch'	statement
1028 Expected	identifier	or	string

1029 Expected	'@end'
1030 Conditional	compilation	turned	off
1031 Expected	constant
1032 Expected	'@'
1033 Expected	'catch'
1034 Expected	'var'

1035 'throw'	must	be	followed	by	an	expression	on	the	same
source	line

Microsoft®	JScript®	isFinite	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Boolean	value	that	indicates	if	a	supplied	number	is
finite.

Syntax

isFinite(number)

The	number	argument	is	a	required	numeric	value.

Remarks

The	isFinite	method	returns	true	if	number	is	any	value	other
than	NaN,	negative	infinity,	or	positive	infinity.	In	those	three
cases,	it	returns	false.

Microsoft®	JScript®	search	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	position	of	the	first	substring	match	in	a	regular
expression	search.

Syntax

stringObj.search(rgexp)

The	search	method	syntax	has	these	parts:

Part Description
stringObj Required.	The	String	object	or	literal	to	search.

rgexp Required.	A	Regular	Expression	object	containing
the	pattern	to	search	for.

Remarks

The	search	method	indicates	if	a	match	is	present	or	not.	If	a
match	is	found,	the	search	method	returns	an	integer	value	that
indicates	the	offset	from	the	beginning	of	the	string	where	the
match	occurred.	If	no	match	is	found,	it	returns	-1.	To	get	further
information,	use	the	match	method.

The	following	example	illustrates	the	use	of	the	search	method:

function	SearchDemo()
{
		var	r,	re;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		re	=	/fox/i;
		r	=	s.search(re);
		return(r);
}

Microsoft®	JScript®	delete	Operator
	Language	Reference	

Version	3	

See	Also

Description

Deletes	a	property	from	an	object,	or	removes	an	element	from
an	array.

Syntax

delete	expression

Where	expression	is	a	valid	JScript	expression	that	usually	(but	does	not
have	to)	result	in	a	property	name	or	array	element.

Remarks

If	the	result	of	expression	is	an	object,	the	property	specified	in
expression	exists,	and	the	object	will	not	allow	it	to	be	deleted,
false	is	returned.

In	all	other	cases,	true	is	returned.

Microsoft®	JScript®	JScript	Tutorial 	JScript	Language	Reference	

What	Is	JScript?

JScript	Basics
Writing	JScript	Code
JScript	Variables
JScript	Data	Types
JScript	Operators
Controlling	Program	Flow
JScript	Functions
JScript	Objects
JScript	Reserved	Keywords

Advanced	JScript
Recursion
Variable	Scope
Copying,	Passing,	and	Comparing	Data
Using	Arrays
Advanced	Object	Creation
Special	Characters
Troubleshooting	Your	Scripts

Using	JScript	In	Internet	Explorer
Displaying	Information	in	the	Browser
Using	Message	Boxes

Microsoft®	JScript®	JScript	Glossary 	Language	Reference	

	
ASCII	Character	Set

American	Standard	Code	for	Information	Interchange	(ASCII)	7-bit
character	set	widely	used	to	represent	letters	and	symbols	found	on	a
standard	U.S.	keyboard.	The	ASCII	character	set	is	the	same	as	the	first	128
characters	(0–127)	in	the	ANSI	character	set.

	

Automation	object
An	object	that	is	exposed	to	other	applications	or	programming	tools
through	Automation	interfaces.

	

bitwise	comparison
A	bit-by-bit	comparison	of	identically	positioned	bits	in	two	numeric
expressions.

	

Boolean	expression
An	expression	that	evaluates	to	either	true	or	false.	Non-Boolean
expressions	are	converted	to	Boolean	values,	when	necessary,	according	to
the	following	rules:

All	objects	are	considered	true.

Strings	are	considered	false	if	and	only	if	they	are	empty.

null	and	undefined	are	considered	false.

Numbers	are	considered	false	if	and	only	if	they	are	zero.

	

character	code
A	number	that	represents	a	particular	character	in	a	set,	such	as	the	ASCII
character	set.

	

class
The	formal	definition	of	an	object.	The	class	acts	as	the	template	from
which	an	instance	of	an	object	is	created	at	run	time.	The	class	defines	the
properties	of	the	object	and	the	methods	used	to	control	the	object's
behavior.

	

comment
Text	added	to	code	by	a	programmer	that	explains	how	the	code	works.	In
JScript,	a	comment	line	generally	starts	with	//.	Use	the	/*	and	*/	delimiters
to	create	a	multiline	comment.

	

comparison	operator
A	character	or	symbol	indicating	a	relationship	between	two	or	more	values
or	expressions.	These	operators	include	less	than	(<),	less	than	or	equal	to
(<=),	greater	than	(>),	greater	than	or	equal	to	(>=),	not	equal	(!=),	and
equal	(==).

	

compound	statement
A	sequence	of	statements	enclosed	in	braces	({}).	Can	be	used	to	perform
multiple	tasks	any	time	a	single	statement	is	expected.

	

constructor
A	JScript	function	that	has	two	special	features:

It	is	invoked	by	the	new	operator.

It	is	passed	the	address	of	a	newly	created	object	through	the	this
keyword.

Use	constructors	to	initialize	new	objects.

	

expression
A	combination	of	keywords,	operators,	variables,	and	literals	that	yield	a
string,	number,	or	object.	An	expression	can	perform	a	calculation,
manipulate	characters,	call	a	function,	or	test	data.

	

intrinsic	object
An	object	that	is	part	of	the	standard	JScript	language.	These	objects	are
available	to	all	scripts.	The	intrinsic	objects	in	JScript	are	Array,	Boolean,
Date,	Function,	Global,	Math,	Number,	Object,	RegExp,	Regular
Expression,	and	String.

	

local	time
The	time	on	a	computer,	either	a	client	or	server,	from	where	a	script	is
executed.

	

locale
The	set	of	information	that	corresponds	to	a	given	language	and	country.	A
locale	affects	the	language	of	predefined	programming	terms	and	locale-
specific	settings.	There	are	two	contexts	where	locale	information	is

important:

The	code	locale	affects	the	language	of	terms	such	as	keywords	and
defines	locale-specific	settings	such	as	the	decimal	and	list	separators,
date	formats,	and	character	sorting	order.

The	system	locale	affects	the	way	locale-aware	functionality	behaves,
for	example,	when	you	display	numbers	or	convert	strings	to	dates.
You	set	the	system	locale	using	the	Control	Panel	utilities	provided	by
the	operating	system.

	

null
A	value	indicating	that	a	variable	contains	no	valid	data.	null	is	the	result
of:

An	explicit	assignment	of	null	to	a	variable.

Any	operation	between	expressions	that	contain	null.

	

numeric	expression
Any	expression	that	can	be	evaluated	as	a	number.	Elements	of	the
expression	can	include	any	combination	of	keywords,	variables,	literals,
and	operators	that	result	in	a	number.	In	certain	circumstances,	strings	are
also	converted	to	numbers	if	possible.

	

primitive
A	data	type	that	is	part	of	the	JScript	language	and	manipulated	by	value.
The	data	types	in	JScript	considered	to	be	primitive	are	number,	Boolean,
string,	and	function.	Objects	and	arrays	are	not	primitive	data	types.

	

property
A	named	attribute	of	an	object.	Properties	define	object	characteristics	such
as	size,	color,	and	screen	location,	or	the	state	of	an	object,	such	as	enabled
or	disabled.

	

run-time	error
An	error	that	occurs	when	code	is	running.	A	run-time	error	results	when	a
statement	attempts	an	invalid	operation.

	

scope
Defines	the	visibility	of	a	variable,	procedure,	or	object.	Variables	declared
in	functions	are	visible	only	within	the	function	and	lose	their	value
between	calls.

	

string	comparison
A	comparison	of	two	sequences	of	characters.	Unless	specified	in	the
function	making	the	comparison,	all	string	comparisons	are	binary.	In
English,	binary	comparisons	are	case-sensitive;	text	comparisons	are	not.

	

string	expression
Any	expression	that	evaluates	to	a	sequence	of	continuguous	characters.
Elements	of	a	string	expression	can	include	a	function	that	returns	a	string,
a	string	literal,	a	String	object,	or	a	string	variable.

	

undefined
A	special	value	given	to	variables	after	they	are	created	and	before	a	value

has	been	assigned	to	them.

	

Universal	Coordinated	Time	(UTC)
Universal	Coordinated	Time,	which	refers	to	the	time	as	set	by	the	World
Time	Standard.	Previously	referred	to	as	Greenwich	Mean	time	or	GMT.

	

user-defined	object
An	object	is	one	that	is	created	by	a	user	in	source	code.

	

variable
A	location	used	for	storing	and	manipulating	values	by	name.	As	JScript	is
loosely	typed,	a	single	variable	can	hold	different	types	of	data	over	the
course	of	a	script.

	

wrapper
An	object	that	is	created	to	provide	an	object-style	interface	to	some	other
type	of	data.	The	Number	and	Boolean	objects	are	examples	of	wrapper
objects.

Microsoft®	JScript®	Intrinsic	Objects
	JScript	Tutorial;	

	Previous	

Microsoft	JScript	provides	nine	intrinsic	(or	"built-in")	objects.
They	are	the	Array,	Boolean,	Date,	b>Function,	Global,	Math,
Number,	Object,	and	String	objects.	Each	of	the	intrinsic
objects	has	associated	methods	and	properties	that	are	described
in	detail	in	the	language	reference.	Certain	of	the	objects	are	also
described	here.

Array	Object

In	JScript,	objects	are	handled	as	arrays	and	arrays	are	handled	as
objects.	The	subscripts	of	an	array,	which	are	entirely	equivalent
to	the	properties	of	an	object,	can	be	referred	to	by	number	(or	by
name,	if	you	assign	names	to	them).	To	create	a	new	array,	use
the	new	operator	and	the	Array()	constructor,	as	in	the	following
example.

var	theMonths	=	new	Array(12)		{
theMonths[0]	=	"Jan";
theMonths[1]	=	"Feb";
theMonths[2]	=	"Mar";
theMonths[3]	=	"Apr";
theMonths[4]	=	"May";
theMonths[5]	=	"Jun";
theMonths[6]	=	"Jul";
theMonths[7]	=	"Aug";
theMonths[8]	=	"Sep";

theMonths[9]	=	"Oct";
theMonths[10]	=	"Nov";
theMonths[11]	=	"Dec";
}

When	you	create	an	array	by	using	the	Array	keyword,	JScript
includes	in	the	array	a	write-only	length	property,	which	records
the	number	of	entries	in	the	array.	If	you	do	not	specify	a	number,
the	length	is	set	to	0,	and	the	array	has	no	entries.	If	you	specify	a
number,	the	length	is	set	to	that	number.	If	you	specify	more	than
one	parameter,	the	parameters	are	used	as	entries	in	the	array,	and
the	number	of	parameters	is	assigned	to	the	length	property,	as	in
the	following	example,	which	is	equivalent	to	the	preceding	one.

var	theMonths	=	new	Array("Jan",	"Feb",	"Mar",	"Apr",	"May",	"Jun",	
"Jul",	"Aug",	"Sep",	"Oct",	"Nov",	"Dec");

JScript	automatically	changes	the	value	of	length	if	you	add
elements	to	an	array	that	you	created	with	the	Array	keyword.

String	Object

In	JScript,	strings	are	objects.	This	means	that	any	time	you
declare	a	string	variable	or	use	a	string	literal,	what	you're
actually	doing	is	creating	a	new	string	object.	The	String	object
has	certain	built-in	methods,	which	you	can	use	with	your
strings.	One	of	these	is	the	substring	method,	which	returns	part
of	the	string.	It	takes	two	numbers	as	its	arguments.

aString	=	"0123456789";
var	aChunk	=	aString.substring(4,	7);		//	Sets	aChunk	to	"456".

var	aNotherChunk	=	aString.substring(7,	4);		//	Sets	aNotherChunk	to	"456".

//	Using	the	preceding	Array	creation	example:
firstLetter	=	theMonths	[5].substring(0,1);		//	Sets	the	firstLetter	variable	to	"J".

Another	property	of	the	String	object	is	the	length	property.	This
property	contains	the	number	of	characters	in	the	string,	which	is
0	for	an	empty	string.	This	a	numeric	value,	and	can	be	used
directly	in	calculations.

var	howLong	=	"Hello	World".length		//	Sets	the	howLong	variable	to	11.

Math	Object

The	Math	object	has	a	number	of	properties	and	methods,	all
predefined.	The	properties	are	specific	numbers.	One	of	these	is
the	value	of	pi	(approximately	3.14159...).	This	is	the	Math.PI
property,	shown	in	the	following	example.

//	A	radius	variable	is	declared	and	assigned	a	numeric	value.
var	circleArea	=	Math.PI	*	radius	*	radius;		//	Note	capitalization	of	Math	and	PI.

One	of	the	built-in	methods	of	the	Math	object	is	the
exponentiation	method,	or	pow,	which	raises	a	number	to	a
specified	power.	The	following	example	makes	use	of	both	pi
and	exponentiation.

//	This	formula	calculates	the	volume	of	a	sphere	with	the	given	radius.
volume	=	(4/3)*(Math.PI*Math.pow(radius,3));

Date	Object

Use	the	Date	object	to	capture	today's	date,	and	to	calculate
differences	between	dates.	It	has	a	number	of	properties	and
methods,	all	predefined.	In	general,	the	Date	object	provides	the
day	of	the	week;	the	month,	day,	and	year;	and	the	time	in	hours,
minutes,	and	seconds.	This	information	is	based	on	the	number
of	milliseconds	since	January	1,	1970,	00:00:00.000	GMT.	GMT
stands	for	"Greenwich	Mean	Time";	the	preferred	term	is	UTC,
or	"Universal	Coordinated	Time,"	which	refers	to	signals	issued
by	the	World	Time	Standard.

Note		As	far	as	JScript	is	concerned,	time	begins	at	midnight	on
January	1,	1970;	you	cannot	ask	JScript	to	create	a	Date	object
that	represents	an	earlier	time	than	that.	If	you	need	to	deal	with
earlier	times	you	must	write	your	own	code	to	do	so,	a
formidable	task.

To	create	a	new	Date	object	you	use	the	new	operator.	The	following
example	calculates,	for	the	current	year,	the	number	of	days	that	have
passed	and	the	number	of	days	that	are	left.

/*
This	example	uses	the	array	of	month	names	defined	previously.
The	first	statement	assigns	today's	date,	in	"Day	Month	Date	00:00:00	Year"
format,	to	the	thisIsToday	variable.
*/
var	thisIsToday	=	new	Date();

var	toDay	=	new	Date();		//	Capture	today's	date.

//	Extract	the	year,	the	month,	and	the	day.

var	thisYear	=	toDay.getYear()	+	1900;
var	thisMonth	=	theMonths[toDay.getMonth()];
var	thisDay	=	thisMonth		+	"	"	+	toDay.getDate()	+	","	+	(parseInt(toDay.getYear())	+	1900);

//	Determine	the	#	of	days	since	the	start.
thisDay	=	Math.round(Date.parse(thisDay)/8.64e7);

//	Do	the	same	for	the	beginning	of	the	year.
var	firstDay	=	"Jan	1,	"	+	thisYear;
firstDay	=	Math.floor(Date.parse(firstDay)/8.64e7);	

//	Do	it	again	for	the	end	of	the	year,	in	case	it's	a	leap	year.
var	lastDay	=	"Dec	31,	"	+	thisYear;
lastDay	=	Math.floor(Date.parse(lastDay)/8.64e7);

//	Compute	the	number	of	days	in	the	year.
var	daysInYear	=	(lastDay	-	firstDay)	+	1;

//	Determine	how	many	days	have	elapsed,	and	how	many	are	left.
var	daysElapsed	=	thisDay	-	firstDay;
var	daysLeft	=	daysInYear	-	daysElapsed;	

//	Set	up	comments	for	most	of	the	year.
var	comment1	=	daysElapsed+	"	days	have	elapsed	in	the	year.";
var	comment2	=	"That	means	there	are	"	+	daysLeft	+	"	days	left	in	"	+	thisYear	+	".";

//	Cover	the	special	cases:	beginning	&	end	of	year,	and	single	day.

if	(daysElapsed	==	0)		{
comment1	=	"It's	January	first,	"	+	thisYear	+	".";
}
if	(daysElapsed	==	1)	{
comment1	=	"Only	one	day	gone	so	far.";
}
if(daysElapsed	==	daysInYear)	{
comment1	=	thisYear	+	"	is	just	about	over.";
}

if	(daysLeft	==	0)		{
comment2	=	"Best	wishes	for	the	New	Year!";
}
if	(daysLeft	==	1)		{
comment2	=	"There's	only	one	day	left	in	"	+	thisYear	+	".";
}
if	(daysLeft	==	daysInYear)		{
comment2	=	"Happy	New	Year!";
}

Number	Object

In	addition	to	the	special	numeric	properties	(PI,	for	example)
that	are	available	in	the	Math	object,	several	other	properties	are
available	in	Microsoft	JScript	through	the	Number	object.

Property Description
Largest	possible	number,	about

MAX_VALUE 1.79E+308;	can	be	positive	or
negative.	(Value	varies	slightly	from
system	to	system.)

MIN_VALUE

Smallest	possible	number,	about
2.22E-308;	can	be	positive	or	negative.
(Value	varies	slightly	from	system	to
system.)

NaN Special	nonnumeric	value,	"not	a
number."

POSITIVE_INFINITY

Any	positive	value	larger	than
Number.MAX_VALUE	
is	automatically	converted	to	this
value;	represented	as	"Inf".

NEGATIVE_INFINITY

Any	negative	value	larger	than	-
Number.MAX_VALUE	
is	automatically	converted	to	this
value;	represented	as	"-Inf".

Number.NaN	is	a	special	property	that	is	defined	as	"not	a	number."
Division	by	zero,	for	example,	returns	NaN.	An	attempt	to	parse	a	string
that	cannot	be	parsed	as	a	number	also	returns	Number.NaN.	NaN
compares	unequal	to	any	number	and	also	to	itself.	To	test	for	a	NaN
result,	do	not	compare	against	Number.NaN;	use	the	isNaN()	function
instead.

Microsoft®	JScript®	Creating	Your
Own	Objects

	JScript	Tutorial;	
	Previous	

To	create	instances	of	an	object,	you	must	first	define	it	by	giving
it	properties	and,	if	appropriate,	methods.	For	instance,	the
following	example	defines	a	pasta	object.	Notice	the	keyword
this,	which	you	use	to	refer	to	the	current	object.

function	pasta(grain,	grain2,	width,	shape,	shapenum,	extent,	egg)
{
		this.length	=	7;			//	Number	of	properties	in	the	object,	not	including	this	one.
		this.grain	=	grain;			//	What	grain	is	it	made	of?	(string)
		this.grain2	=	grain2;			//	Any	other	flour	in	it?	(string)
		this.width	=	width;					//	How	wide	is	it?	(number)
		this.shape	=	shape;			//	What	is	the	cross-section?	(string)
		this.shapenum	=	shapenum;		//	Is	it	one	of	the	registered	shapes?	(number)
		this.extent	=	extent;				//	How	long	is	it?	(number)
		this.egg	=	egg;		//	Does	it	have	egg	yolk	as	a	binder?	(Boolean)
}

Once	you	define	an	object,	you	create	instances	of	it	with	the
new	operator.

var	spaghetti	=	new	pasta("wheat",	"",	0.2,	"circle",	9,	30,	true);
var	linguine	=	new	pasta("wheat",	"",	0.3,	"oval",	17,	30,	true);

You	can	add	properties	to	one	instance	of	an	object,	to	change
that	instance,	but	those	properties	do	not	become	part	of	the
definition	of	the	object,	and	do	not	show	up	in	other	instances

unless	you	specifically	add	them.	If	you	want	the	extra	properties
to	show	up	in	all	instances	of	the	object,	you	must	add	them	to
the	object	definition.

//	Additional	properties	for	spaghetti.
spaghetti.color	=	"pale	straw";
spaghetti.drycook	=	7;
spaghetti.freshcook	=	0.5;

var	chowFun	=	new	pasta("rice",	"",	3,	"flat",	,	12,	false);	
/*
Neither	the	chowFun	object,	the	linguine	object,	nor	the	pasta	object	definition
has	the	three	extra	properties	given	to	the	spaghetti	object.
*/

Including	Methods	in	the	Definition

It	is	possible	to	include	methods	in	the	definition	of	an	object.
The	following	example	builds	an	object	that	consists	of	an	array
of	strings,	and	a	method.	The	method	adds	a	string	to	the	array,
increasing	its	size	in	order	to	do	so.	Notice	that	this	makes	each
instance	of	the	object	indefinitely	extensible.

function	addItem(newItem)		//	Define	a	function	to	extend	the	list.
{
				this.length	+=	1;		//	Increment	the	length	of	the	array.
				this[(this.length-1)]	=	newItem;		//	Add	the	new	item,	maintaining	item	numbering.
}

function	shoppingList(firstItem)	//	Define	a	"shopping	list"	object.
{
				this.length	=	2;		//	Number	of	properties	in	the	object,	not	including	this	one.
				this.addItem	=	addItem;			//	Include	the	addItem	function	as	a	method.
				this[(this.length-1)]	=	firstItem;		//	The	first	item	is	numbered	1.
}

var	myList	=	new	shoppingList("Milk");
myList.addItem("Eggs");		//	Use	the	method	to	add	Eggs,	which	become	item	2.
myList.addItem("Breadfruit");		//	Breadfruit	becomes	item	3.

At	this	point,	the	contents	of	the	array	are	as	follows:

myList[length]	is	4

myList[addItem]	is	the	addItem	function

myList[1]	is	Milk

myList[2]	is	Eggs

myList[3]	is	Breadfruit

Note	that	the	indexing	is	not	exactly	as	you	might	expect	it	to	be
if	it	were	handled	in	a	strictly	numeric	way.	If	you	execute	a
for...in	loop	on	this	array,	the	loop	iterates	in	the	order	given
here,	and	the	loop	variable	has	the	initial	value	"length"	rather
than	0.

Microsoft®	JScript®	Using	Message
Boxes

	JScript	Tutorial	
	Previous	

Using	alert,	prompt,	and	confirm

Use	alert,	confirm,	and	prompt	message	boxes	to	obtain	input
from	your	user.	The	boxes	are	methods	of	the	interface	window
object.	Because	the	window	object	is	at	the	top	of	the	object
hierarchy,	you	do	not	actually	have	to	use	the	full	name	(for
example,	"window.alert()")	of	any	of	these	message	boxes,	but	it
is	a	good	idea	to	do	so,	because	it	helps	you	remember	to	which
object	they	belong.

Alert	Message	Box

The	alert	method	has	one	argument,	the	string	of	text	you	want
to	display	to	the	user.	The	string	is	not	HTML.	The	message	box
provides	an	OK	button	so	the	user	can	close	it	and	is	modal,	that
is,	the	user	must	close	the	message	box	before	continuing.

window.alert("Welcome!	Press	OK	to	continue.");
Confirm	Message	Box

The	confirm	message	box	lets	you	ask	the	user	a	"yes-or-no"
question,	and	gives	the	user	the	option	of	clicking	either	an	OK
button	or	a	Cancel	button.	The	confirm	method	returns	either
true	or	false.	This	message	box	is	also	modal:	the	user	must
respond	to	it	(click	a	button),	and	thereby	close	it,	before
proceeding.

var	truthBeTold	=	window.confirm("Click	OK	to	continue.	Click	Cancel	to	stop.");
if	(truthBeTold)	{
window.alert("Welcome	to	our	Web	page!");
}		else		window.alert("Bye	for	now!");

Prompt	Message	Box

The	prompt	message	box	provides	a	text	field	in	which	the	user
can	type	an	answer	in	response	to	your	prompt.	This	box	has	an
OK	button	and	a	Cancel	button.	If	you	provide	a	second	string
argument,	the	prompt	message	box	displays	that	second	string	in
the	text	field,	as	the	default	response.	Otherwise,	the	default	text
is	"<undefined>".

Like	the	alert()	and	confirm()	methods,	prompt	displays	a	modal	message	box.	The
user	must	close	it	before	continuing.

var	theResponse	=	window.prompt("Welcome?","Enter	your	name	here.");

Microsoft®	JScript®	JScript	Language
Reference

	JScript	Tutorial	
	Version	Information	

	Feature	Information

	Alphabetic	Keyword
List

	Errors

	Functions

	Methods

	Objects

	Operators

	Properties

	Statements

	

Welcome	to	the	JScript	Language	Reference

These	handy	blocks	of	information	will	help
you	explore	the	many	different	parts	of
JScript.

You'll	find	all	the	parts	of	the	JScript
language	listed	alphabetically	under	the
Alphabetic	Keyword	List.	But	if	you	want	to
examine	just	one	category,	say,	objects,	each
language	category	has	its	own,	more	compact
section.

How's	it	work?	Click	on	one	of	the	headings
to	the	left	to	display	a	list	of	items	contained
in	that	category.	From	this	list,	select	the	topic
that	you	want	to	view.	Once	you've	opened
that	topic,	you	can	easily	link	to	other	related
sections.

So,	go	ahead	and	take	a	look!	Study	some
statements,	mull	over	the	methods,	or	figure
out	a	few	functions.	You'll	see	just	how
versatile	the	JScript	language	can	be!

	

JScript
Features
(Non-
ECMA)

List	of
non-
ECMA
features
currently
in
JScript.

Microsoft	Scripting
Run-time	Features

List	of	scripting	run-time	features
currently	in	JScript.

©	2000	Microsoft	Corporation.	All	rights	reserved.

Microsoft®	JScript®	Add	Method
(Dictionary)

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	To

Description

Adds	a	key	and	item	pair	to	a	Dictionary	object.

Syntax

object.Add	(key,	item)

The	Add	method	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	The	key	associated	with	the	item	being	added.
item Required.	The	item	associated	with	the	key	being	added.

Remarks

An	error	occurs	if	the	key	already	exists.

The	following	example	illustrates	the	use	of	the	Add	method:

var	d;
d	=	new	ActiveXObject("Scripting.Dictionary");
d.Add("a",	"Athens");

d.Add("b",	"Belgrade");
d.Add("c",	"Cairo");

Microsoft®	JScript®	Add	Method
(Folders)

	Scripting	Run-Time	Reference	
Version	3	

See	Also																				Applies	To

Description

Adds	a	new	Folder	to	a	Folders	collection.

Syntax

object.Add	(folderName)

The	Add	method	has	the	following	parts:

Part Description

object Required.	Always	the	name	of	a	Folders
collection.

folderName Required.	The	name	of	the	new	Folder	beingadded.

Remarks

The	following	example	illustrates	the	use	of	the	Add	method	to
create	a	new	folder:

function	AddNewFolder(path,folderName)
{
		var	fso,	f,	fc,	nf;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		f	=	fso.GetFolder(path);
		fc	=	f.SubFolders;
		if	(folderName	!=	"")
				nf	=	fc.Add(folderName);
		else
				nf	=	fc.Add("New	Folder");
}

An	error	occurs	if	the	folderName	already	exists.

Microsoft®	JScript®	AtEndOfLine
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	To

Description

Returns	true	if	the	file	pointer	is	positioned	immediately	before
the	end-of-line	marker	in	a	TextStream	file;	false	if	it	is	not.
Read-only.

Syntax

object.AtEndOfLine

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfLine	property	applies	only	to	TextStream	files
that	are	open	for	reading;	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfLine	property:

function	GetALine(filespec)
{
		var	fso,	a,	s,	ForReading;
		ForReading	=	1,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		a	=	fso.OpenTextFile(filespec,	ForReading,	false);
		while	(!a.AtEndOfLine)
		{
				s	+=	a.Read(1);
		}
		a.Close();
		return(s);
}

Microsoft®	JScript®	AtEndOfStream
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	To

Description

Returns	true	if	the	file	pointer	is	at	the	end	of	a	TextStream	file;
false	if	it	is	not.	Read-only.

Syntax

object.AtEndOfStream

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfStream	property	applies	only	to	TextStream	files
that	are	open	for	reading,	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfStream	property:

function	GetALine(filespec)
{
		var	fso,	f,	s,	ForReading;
		ForReading	=	1,	s	=	"";

		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.OpenTextFile(filespec,	ForReading,	false);
		while	(!f.AtEndOfStream)
				s	+=	f.ReadLine();
		f.Close();
		return(s);
}

Microsoft®	JScript®	Attributes
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	attributes	of	files	or	folders.	Read/write	or
read-only,	depending	on	the	attribute.

Syntax

object.Attributes	[=	newattributes]

The	Attributes	property	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

newattributes Optional.	If	provided,	newattributes	is	the	newvalue	for	the	attributes	of	the	specified	object.

Settings

The	newattributes	argument	can	have	any	of	the	following	values
or	any	logical	combination	of	the	following	values:

Constant Value Description
Normal 0 Normal	file.	No	attributes	are	set.
ReadOnly 1 Read-only	file.	Attribute	is	read/write.

Hidden 2 Hidden	file.	Attribute	is	read/write.
System 4 System	file.	Attribute	is	read/write.

Volume 8 Disk	drive	volume	label.	Attribute	is	read-
only.

Directory 16 Folder	or	directory.	Attribute	is	read-only.

Archive 32 File	has	changed	since	last	backup.
Attribute	is	read/write.

Alias 64 Link	or	shortcut.	Attribute	is	read-only.
Compressed 128 Compressed	file.	Attribute	is	read-only.

Remarks

The	following	code	illustrates	the	use	of	the	Attributes	property
with	a	file:

function	ToggleArchiveBit(filespec)
{
		var	fso,	f,	r,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec)
		if	(f.attributes	&&	32)
		{
				f.attributes	=	f.attributes	-	32;
				s	=	"Archive	bit	is	cleared.";
		}
		else
		{
				f.attributes	=	f.attributes	+	32;
				s	=		"Archive	bit	is	set.";

		}
		return(s);
}

Microsoft®	JScript®	AvailableSpace
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	amount	of	space	available	to	a	user	on	the	specified
drive	or	network	share.

Syntax

object.AvailableSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	AvailableSpace	property	is	typically
the	same	as	that	returned	by	the	FreeSpace	property.	Differences
may	occur	between	the	two	for	computer	systems	that	support
quotas.

The	following	code	illustrates	the	use	of	the	AvailableSpace	property:

function	ShowAvailableSpace(drvPath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		d	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	=	"Drive	"	+	drvPath.toUpperCase()	+	"	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Available	Space:	"	+	d.AvailableSpace/1024	+	"	Kbytes";
		return(s);
}

Microsoft®	JScript®	BuildPath
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Appends	a	name	to	an	existing	path.

Syntax

object.BuildPath(path,	name)

The	BuildPath	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path
Required.	Existing	path	to	which	name	is	appended.	Path
can	be	absolute	or	relative	and	need	not	specify	an
existing	folder.

name Required.	Name	being	appended	to	the	existing	path.

Remarks

The	BuildPath	method	inserts	an	additional	path	separator
between	the	existing	path	and	the	name,	only	if	necessary.

The	following	example	illustrates	use	of	the	BuildPath	method:

function	GetBuildPath(path)

{
		var	fso,	newpath;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		newpath	=	fso.BuildPath(path,	"New		Folder")
		return(newpath);
}		

Microsoft®	JScript®	Close	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Closes	an	open	TextStream	file.

Syntax

object.Close();

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	following	example	illustrates	use	of	the	Close	method:

var	fso;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
a	=	fso.CreateTextFile("c:\\testfile.txt",	true);
a.WriteLine("This	is	a	test.");
a.Close();

Microsoft®	JScript®	Column	Property
	Scripting	Run-Time	Reference	

Version	2	

See	Also																			Applies	To

Description

Read-only	property	that	returns	the	column	number	of	the	current
character	position	in	a	TextStream	file.

Syntax

object.Column

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	newline	character	has	been	written,	but	before	any	other
character	is	written,	Column	is	equal	to	1.

The	following	examples	illustrates	the	use	of	the	Column	property:

function	GetColumn()
{
		var	fso,	f,	m;
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true);
		f.Write("Hello	World!");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		m	=	f.ReadLine();
		return(f.Column);
}

Microsoft®	JScript®	Copy	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Copies	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Copy(destination[,	overwrite]);

The	Copy	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

destination Required.	Destination	where	the	file	or	folder	is	tobe	copied.	Wildcard	characters	are	not	allowed.

overwrite
Optional.	Boolean	value	that	is	True	(default)	if
existing	files	or	folders	are	to	be	overwritten;	False
if	they	are	not.

Remarks

The	results	of	the	Copy	method	on	a	File	or	Folder	are	identical
to	operations	performed	using	FileSystemObject.CopyFile	or
FileSystemObject.CopyFolder	where	the	file	or	folder	referred
to	by	object	is	passed	as	an	argument.	You	should	note,	however,
that	the	alternative	methods	are	capable	of	copying	multiple	files

or	folders.

The	following	example	illustrates	the	use	of	the	Copy	method:

var	fso,	f;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f	=	fso.CreateTextFile("c:\\testfile.txt",	true);
f.WriteLine("This	is	a	test.");
f.Close();
f	=	fso.GetFile("c:\\testfile.txt");
f.Copy("c:\\windows\\desktop\\test2.txt");

Microsoft®	JScript®	CopyFile	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Copies	one	or	more	files	from	one	location	to	another.

Syntax

object.CopyFile	(source,	destination[,	overwrite])

The	CopyFile	method	syntax	has	these	parts:

Part Description

object Required.	The	object	is	always	the	name	of	a
FileSystemObject.

source
Required.	Character	string	file	specification,	which
can	include	wildcard	characters,	for	one	or	more
files	to	be	copied.

destination
Required.	Character	string	destination	where	the	file
or	files	from	source	are	to	be	copied.	Wildcard
characters	are	not	allowed.

overwrite

Optional.	Boolean	value	that	indicates	if	existing
files	are	to	be	overwritten.	If	true,	files	are
overwritten;	if	false,	they	are	not.	The	default	is
true.	Note	that	CopyFile	will	fail	if	destination	has
the	read-only	attribute	set,	regardless	of	the	value	of
overwrite.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component
of	the	source	argument.	For	example,	you	can	use:

fso	=	new	ActiveXObject("Scripting.FileSystemObject");
fso.CopyFile	("c:\\mydocuments\\letters*.doc",	"c:\\tempfolder\\")

But	you	can't	use:

fso	=	new	ActiveXObject("Scripting.FileSystemObject");
fso.CopyFile	("c:\\mydocuments*\\R1???97.xls",	"c:\\tempfolder")

If	source	contains	wildcard	characters	or	destination	ends	with	a
path	separator	(\),	it	is	assumed	that	destination	is	an	existing
folder	in	which	to	copy	matching	files.	Otherwise,	destination	is
assumed	to	be	the	name	of	a	file	to	create.	In	either	case,	three
things	can	happen	when	an	individual	file	is	copied.

If	destination	does	not	exist,	source	gets	copied.	This	is	the
usual	case.

If	destination	is	an	existing	file,	an	error	occurs	if	overwrite
is	false.	Otherwise,	an	attempt	is	made	to	copy	source	over
the	existing	file.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't
match	any	files.	The	CopyFile	method	stops	on	the	first	error	it
encounters.	No	attempt	is	made	to	roll	back	or	undo	any	changes
made	before	an	error	occurs.

Microsoft®	JScript®	CopyFolder
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Recursively	copies	a	folder	from	one	location	to	another.

Syntax

object.CopyFolder	(source,	destination[,	overwrite]);

The	CopyFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	Character	string	folder	specification,
which	can	include	wildcard	characters,	for	one	or
more	folders	to	be	copied.

destination
Required.	Character	string	destination	where	the
folder	and	subfolders	from	source	are	to	be	copied.
Wildcard	characters	are	not	allowed.

overwrite

Optional.	Boolean	value	that	indicates	if	existing
folders	are	to	be	overwritten.	If	true,	files	are
overwritten;	if	false,	they	are	not.	The	default	is
true.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component

of	the	source	argument.	For	example,	you	can	use:

fso	=	new	ActiveXObject("Scripting.FileSystemObject");
fso.CopyFolder	("c:\\mydocuments\\letters*",	"c:\\tempfolder\\")

But	you	can't	use:

fso	=	new	ActiveXObject("Scripting.FileSystemObject");
fso.CopyFolder	("c:\\mydocuments**",	"c:\\tempfolder\\")

If	source	contains	wildcard	characters	or	destination	ends	with	a
path	separator	(\),	it	is	assumed	that	destination	is	an	existing
folder	in	which	to	copy	matching	folders	and	subfolders.
Otherwise,	destination	is	assumed	to	be	the	name	of	a	folder	to
create.	In	either	case,	four	things	can	happen	when	an	individual
folder	is	copied.

If	destination	does	not	exist,	the	source	folder	and	all	its
contents	gets	copied.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	attempt	is	made	to	copy	the
folder	and	all	its	contents.	If	a	file	contained	in	source
already	exists	in	destination,	an	error	occurs	if	overwrite	is
false.	Otherwise,	it	will	attempt	to	copy	the	file	over	the
existing	file.

If	destination	is	a	read-only	directory,	an	error	occurs	if	an
attempt	is	made	to	copy	an	existing	read-only	file	into	that
directory	and	overwrite	is	false.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't
match	any	folders.

The	CopyFolder	method	stops	on	the	first	error	it	encounters.	No	attempt
is	made	to	roll	back	any	changes	made	before	an	error	occurs.

Microsoft®	JScript®	Count	Property
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	the	number	of	items	in	a	collection	or	Dictionary	object.
Read-only.

Syntax

object.Count

The	object	is	always	the	name	of	one	of	the	items	in	the	Applies	To	list.

Remarks

The	following	code	illustrates	use	of	the	Count	property:

function	CountDemo()
{
		var	a,	d,	i,	s;																	//	Create	some	variables.
		d	=	new	ActiveXObject("Scripting.Dictionary");		
		d.Add	("a",	"Athens");										//	Add	some	keys	and	items.
		d.Add	("b",	"Belgrade");
		d.Add	("c",	"Cairo");
		a	=	(new	VBArray(d.Keys()));				//	Get	the	keys.
		s	=	"";

		for	(i	=	0;	i	<	d.Count;	i++)			//Iterate	the	dictionary.
		{
				s	+=	a.getItem(i)	+	"	-	"	+	d(a.getItem(i))	+	"
";
		}
		return(s);						 	 									//	Return	the	results.
}

Microsoft®	JScript®	CreateFolder
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Creates	a	folder.

Syntax

object.CreateFolder(foldername)

The	CreateFolder	method	has	these	parts:

Part Description

object Required.	Always	the	name	of	a
FileSystemObject.

foldername Required.	String	expression	that	identifies	thefolder	to	create.

Remarks

An	error	occurs	if	the	specified	folder	already	exists.

The	following	code	illustrates	how	to	use	the	CreateFolder	method	to
create	a	folder:

var	fso	=	new	ActiveXObject("Scripting.FileSystemObject");
var	a	=	fso.CreateFolder("c:\\new	folder");

Microsoft®	JScript®	CreateTextFile
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	To

Description

Creates	a	specified	file	name	and	returns	a	TextStream	object
that	can	be	used	to	read	from	or	write	to	the	file.

Syntax

object.CreateTextFile(filename[,	overwrite[,	unicode]])

The	CreateTextFile	method	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	FileSystemObject
or	Folder	object.

filename Required.	String	expression	that	identifies	the	file	to
create.

overwrite

Optional.	Boolean	value	that	indicates	whether	you
can	overwrite	an	existing	file.	The	value	is	true	if	the
file	can	be	overwritten,	false	if	it	can't	be	overwritten.
If	omitted,	existing	files	are	not	overwritten.

unicode

Optional.	Boolean	value	that	indicates	whether	the
file	is	created	as	a	Unicode	or	ASCII	file.	The	value
is	true	if	the	file	is	created	as	a	Unicode	file,	false	if
it's	created	as	an	ASCII	file.	If	omitted,	an	ASCII	file
is	assumed.

Remarks

The	following	code	illustrates	how	to	use	the	CreateTextFile
method	to	create	and	open	a	text	file:

var	fso	=	new	ActiveXObject("Scripting.FileSystemObject");
var	a	=	fso.CreateTextFile("c:\\testfile.txt",	true);
a.WriteLine("This	is	a	test.");
a.Close();

If	the	overwrite	argument	is	false,	or	is	not	provided,	for	a
filename	that	already	exists,	an	error	occurs.

Microsoft®	JScript®	DateCreated
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was
created.	Read-only.

Syntax

object.DateCreated

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateCreated
property	with	a	file:

function	ShowFileInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	"Created:	"	+	f.DateCreated;
		return(s);
}

Microsoft®	JScript®

DateLastAccessed
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last
accessed.	Read-only.

Syntax

object.DateLastAccessed

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastAccessed
property	with	a	file:

function	ShowFileAccessInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	filespec.toUpperCase()	+	"
";
		s	+=	"Created:	"	+	f.DateCreated	+	"
";

		s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
		s	+=	"Last	Modified:	"	+	f.DateLastModified;
		return(s);
}

Important		This	method	depends	on	the	underlying	operating	system
for	its	behavior.	If	the	operating	system	does	not	support	providing	time
information,	none	will	be	returned.

Microsoft®	JScript®

DateLastModified
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last
modified.	Read-only.

Syntax

object.DateLastModified

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastModified
property	with	a	file:

function	ShowFileAccessInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	filespec.toUpperCase()	+	"
";
		s	+=	"Created:	"	+	f.DateCreated	+	"
";

		s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
		s	+=	"Last	Modified:	"	+	f.DateLastModified;
		return(s);
}

Microsoft®	JScript®	Delete	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	file	or	folder.

Syntax

object.Delete(force);

The	Delete	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.

force
Optional.	Boolean	value	that	is	True	if	files	or	folders
with	the	read-only	attribute	set	are	to	be	deleted;	False
(default)	if	they	are	not.

Remarks

An	error	occurs	if	the	specified	file	or	folder	does	not	exist.

The	results	of	the	Delete	method	on	a	File	or	Folder	are	identical	to
operations	performed	using	FileSystemObject.DeleteFile	or
FileSystemObject.DeleteFolder.

The	Delete	method	does	not	distinguish	between	folders	that	have	contents
and	those	that	do	not.	The	specified	folder	is	deleted	regardless	of	whether
or	not	it	has	contents.

The	following	example	illustrates	the	use	of	the	Delete	method:

var	fso,	f;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f	=	fso.CreateTextFile("c:\\testfile.txt",	true);
f.WriteLine("This	is	a	test.");
f.Close();
f	=	fso.GetFile("c:\\testfile.txt");
f.Delete();

Microsoft®	JScript®	DeleteFile
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	file.

Syntax

object.DeleteFile	(filespec[,	force]);

The	DeleteFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec
Required.	The	name	of	the	file	to	delete.	The	filespec
can	contain	wildcard	characters	in	the	last	path
component.

force
Optional.	Boolean	value	that	is	true	if	files	with	the
read-only	attribute	set	are	to	be	deleted;	false	(default)
if	they	are	not.

Remarks

An	error	occurs	if	no	matching	files	are	found.	The	DeleteFile
method	stops	on	the	first	error	it	encounters.	No	attempt	is	made
to	roll	back	or	undo	any	changes	that	were	made	before	an	error
occurred.

The	following	example	illustrates	the	use	of	the	DeleteFile	method:

function	DeleteFile(filespec)
{
		var	fso;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fso.DeleteFile(filespec);
}

Microsoft®	JScript®	DeleteFolder
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	folder	and	its	contents.

Syntax

object.DeleteFolder	(folderspec[,	force]);

The	DeleteFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec
Required.	The	name	of	the	folder	to	delete.	The
folderspec	can	contain	wildcard	characters	in	the	last
path	component.

force
Optional.	Boolean	value	that	is	true	if	folders	with
the	read-only	attribute	set	are	to	be	deleted;	false
(default)	if	they	are	not.

Remarks

The	DeleteFolder	method	does	not	distinguish	between	folders
that	have	contents	and	those	that	do	not.	The	specified	folder	is
deleted	regardless	of	whether	or	not	it	has	contents.

An	error	occurs	if	no	matching	folders	are	found.	The	DeleteFolder

method	stops	on	the	first	error	it	encounters.	No	attempt	is	made	to	roll
back	or	undo	any	changes	that	were	made	before	an	error	occurred.

The	following	example	illustrates	the	use	of	the	DeleteFolder	method:

function	DeleteFolder(folderspec)
{
		var	fso;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fso.DeleteFolder(folderspec);
}

Microsoft®	JScript®	Dictionary
Object

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Methods																				Properties

Description

Object	that	stores	data	key,	item	pairs.

Syntax

y	=	new	ActiveXObject("Scripting.Dictionary")

Remarks

A	Dictionary	object	is	the	equivalent	of	a	PERL	associative
array.	Items	can	be	any	form	of	data,	and	are	stored	in	the	array.
Each	item	is	associated	with	a	unique	key.	The	key	is	used	to
retrieve	an	individual	item	and	is	usually	a	integer	or	a	string,	but
can	be	anything	except	an	array.

The	following	code	illustrates	how	to	create	a	Dictionary	object:

var	y	=	new	ActiveXObject("Scripting.Dictionary
y.add	("a",	"test");
if	(y.Exists("a"))
		document.write("true");
...

Microsoft®	JScript®	Drive	Object
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Provides	access	to	the	properties	of	a	particular	disk	drive	or
network	share.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	object	to
access	drive	properties:

function	ShowFreeSpace(drvPath)
{
				var	fso,	d,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				d	=	fso.GetDrive(fso.GetDriveName(drvPath));
				s	=	"Drive	"	+	drvPath	+	"	-	"	;
				s	+=	d.VolumeName	+	"
";
				s	+=	"Free	Space:	"	+	d.FreeSpace/1024	+	"	Kbytes";
				return(s);
}

Microsoft®	JScript®	Drive	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	drive	letter	of	the	drive	on	which	the	specified	file	or
folder	resides.	Read-only.

Syntax

object.Drive

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	property:

function	ShowFileAccessInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	f.Name	+	"	on	Drive	"	+	f.Drive	+	"
";
		s	+=	"Created:	"	+	f.DateCreated	+	"
";
		s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
		s	+=	"Last	Modified:	"	+	f.DateLastModified;

		return(s);
}

Microsoft®	JScript®	DriveExists
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	drive	exists;	False	if	it	does	not.

Syntax

object.DriveExists(drivespec)

The	DriveExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

drivespec Required.	A	drive	letter	or	a	complete	pathspecification.

Remarks

For	drives	with	removable	media,	the	DriveExists	method
returns	true	even	if	there	are	no	media	present.	Use	the	IsReady
property	of	the	Drive	object	to	determine	if	a	drive	is	ready.

The	following	example	illustrates	the	use	of	the	DriveExists	method:

function	ReportDriveStatus(drv)
{

		var	fso,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		if	(fso.DriveExists(drv))
				s	+=	"Drive	"	+	drv	+	"	exists.";
		else	
				s	+=	"Drive	"	+	drv	+	"	doesn't	exist.";
		return(s);
}

Microsoft®	JScript®	DriveLetter
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	drive	letter	of	a	physical	local	drive	or	a	network
share.	Read-only.

Syntax

object.DriveLetter

The	object	is	always	a	Drive	object.

Remarks

The	DriveLetter	property	returns	a	zero-length	string	("")	if	the
specified	drive	is	not	associated	with	a	drive	letter,	for	example,	a
network	share	that	has	not	been	mapped	to	a	drive	letter.

The	following	code	illustrates	the	use	of	the	DriveLetter	property:

function	ShowDriveLetter(drvPath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(fso.GetDriveName(drvPath));

		s	=	"Drive	"	+	d.DriveLetter.toUpperCase()	+	":	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Available	Space:	"	+	d.AvailableSpace/1024	+	"	Kbytes";
		return(s);
}

Microsoft®	JScript®	Drives	Collection
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Read-only	collection	of	all	available	drives.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them
to	appear	in	the	Drives	collection.

The	following	example	illustrates	how	to	get	the	Drives	collection	using
the	Drives	property	and	iterate	the	collection	using	the	Enumerator
object:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);
		s	=	"";
		for	(;	!e.atEnd();	e.moveNext())
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;

				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
		}
		return(s);
}

Microsoft®	JScript®	Drives	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Drives	collection	consisting	of	all	Drive	objects
available	on	the	local	machine.

Syntax

object.Drives

The	object	is	always	a	FileSystemObject.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them
to	appear	in	the	Drives	collection.

You	can	iterate	the	members	of	the	Drives	collection	using	the
Enumerator	object	and	the	for	statement:

function	ShowDriveList()
{
		var	fso,	s,	n,	e,	x;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		e	=	new	Enumerator(fso.Drives);

		s	=	"";
		for	(;	!e.atEnd();	e.moveNext())
		{
				x	=	e.item();
				s	=	s	+	x.DriveLetter;
				s	+=	"	-	";
				if	(x.DriveType	==	3)
						n	=	x.ShareName;
				else	if	(x.IsReady)
						n	=	x.VolumeName;
				else
						n	=	"[Drive	not	ready]";
				s	+=		n	+	"
";
		}
		return(s);
}

Microsoft®	JScript®	DriveType
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	value	indicating	the	type	of	a	specified	drive.

Syntax

object.DriveType

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	DriveType	property:

function	ShowDriveType(drvpath)
{
		var	fso,	d,	s,	t;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(drvpath);
		switch	(d.DriveType)
		{
				case	0:	t	=	"Unknown";	break;
				case	1:	t	=	"Removable";	break;

				case	2:	t	=	"Fixed";	break;
				case	3:	t	=	"Network";	break;
				case	4:	t	=	"CD-ROM";	break;
				case	5:	t	=	"RAM	Disk";	break;
		}	
		s	=	"Drive	"	+	d.DriveLetter	+	":	-	"	+	t;
		return(s);
}

Microsoft®	JScript®	Exists	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	true	if	a	specified	key	exists	in	the	Dictionary	object,
false	if	it	does	not.

Syntax

object.Exists(key)

The	Exists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.

key Required.	Key	value	being	searched	for	in	the
Dictionary	object.

The	following	example	illustrates	the	use	of	the	Exists	method:

function	keyExists(k)
{
		var	fso,	s	=	"";
		d	=	new	ActiveXObject("Scripting.Dictionary");
		d.Add("a",	"Athens");
		d.Add("b",	"Belgrade");

		d.Add("c",	"Cairo");
		if	(d.Exists(k))
				s	+=	"Specified	key	exists.";
		else	
				s	+=	"Specified	key	doesn't	exist.";
		return(s);
}

Microsoft®	JScript®	File	Object
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Provides	access	to	all	the	properties	of	a	file.

Remarks

The	following	code	illustrates	how	to	obtain	a	File	object	and
how	to	view	one	of	its	properties.

function	ShowFileInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	f.DateCreated;
		return(s);
}

Microsoft®	JScript®	FileExists
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	True	if	a	specified	file	exists;	False	if	it	does	not.

Syntax

object.FileExists(filespec)

The	FileExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec

Required.	The	name	of	the	file	whose	existence	is	to	be
determined.	A	complete	path	specification	(either
absolute	or	relative)	must	be	provided	if	the	file	isn't
expected	to	exist	in	the	current	folder.

The	following	example	illustrates	the	use	of	the	FileExists	method:

function	ReportFileStatus(filespec)
{
		var	fso,	s	=	filespec;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		if	(fso.FileExists(filespec))

				s	+=	"	exists.";
		else	
				s	+=	"	doesn't	exist.";
		return(s);
}

Microsoft®	JScript®	Files	Collection
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Collection	of	all	File	objects	within	a	folder.

Remarks

The	following	example	illustrates	how	to	get	a	Files	collection
and	iterate	the	collection	using	the	Enumerator	object	and	the
for	statement:

function	ShowFolderFileList(folderspec)
{
		var	fso,	f,	f1,	fc,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(folderspec);
		fc	=	new	Enumerator(f.files);
		s	=	"";
		for	(;	!fc.atEnd();	fc.moveNext())
		{
						s	+=	fc.item();
						s	+=	"
";
		}
		return(s);

}

Microsoft®	JScript®	Files	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Files	collection	consisting	of	all	File	objects	contained
in	the	specified	folder,	including	those	with	hidden	and	system
file	attributes	set.

Syntax

object.Files

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Files	property:

function	ShowFolderFileList(folderspec)
{
		var	fso,	f,	fc,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(folderspec);
		fc	=	new	Enumerator(f.files);
		s	=	"";
		for	(;	!fc.atEnd();	fc.moveNext())

		{
				s	+=	fc.item();
				s	+=	"
";
		}
		return(s);
}

Microsoft®	JScript®	FileSystemObject
Object

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Methods																				Properties

Description

Provides	access	to	a	computer's	file	system.

Syntax

y	=	new	ActiveXObject("Scripting.FileSystemObject")

Remarks

The	following	code	illustrates	how	the	FileSystemObject	is	used
to	return	a	TextStream	object	that	can	be	read	from	or	written	to:

var	fso	=	new	ActiveXObject("Scripting.FileSystemObject
var	a	=	fso.CreateTextFile("c:\\testfile.txt",	true);
a.WriteLine("This	is	a	test.");
a.Close();

In	the	example	code,	the	ActiveXObject	object	is	assigned	to	the
FileSystemObject	(fso).	The	CreateTextFile	method	then
creates	the	file	as	a	TextStream	object	(a),	and	the	WriteLine
method	writes	a	line	of	text	to	the	created	text	file.	The	Close
method	flushes	the	buffer	and	closes	the	file.

Microsoft®	JScript®	FileSystem
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	type	of	file	system	in	use	for	the	specified	drive.

Syntax

object.FileSystem

The	object	is	always	a	Drive	object.

Remarks

Available	return	types	include	FAT,	NTFS,	and	CDFS.

The	following	code	illustrates	the	use	of	the	FileSystem	property:

function	ShowFileSystemType(drvPath)
{
		var	fso,d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(drvPath);
		s	=	d.FileSystem;
		return(s);

}

Microsoft®	JScript®	Folder	Object
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Provides	access	to	all	the	properties	of	a	folder.

Remarks

The	following	code	illustrates	how	to	obtain	a	Folder	object	and
how	to	return	one	of	its	properties:

function	ShowFolderInfo(folderspec)
{
		var	fso,	folder,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		folder	=	fso.GetFolder(folderspec);
		s	=	folder.DateCreated;
		return(s);
}

Microsoft®	JScript®	Folders
Collection

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Properties																		Methods

Description

Collection	of	all	Folder	objects	contained	within	a	Folder
object.

Remarks

The	following	example	illustrates	how	to	get	a	Folders	collection
and	how	to	iterate	the	collection	using	the	Enumerator	object
and	the	for	statement:

function	ShowFolderList(folderspec)
{
		var	fso,	f,	fc,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(folderspec);
		fc	=	new	Enumerator(f.SubFolders);
		s	=	"";
		for	(;	!fc.atEnd();	fc.moveNext())
		{
				s	+=	fc.item();
				s	+=	"
";
		}

		return(s);
}

Microsoft®	JScript®	FolderExists
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	True	if	a	specified	folder	exists;	False	if	it	does	not.

Syntax

object.FolderExists(folderspec)

The	FolderExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec

Required.	The	name	of	the	folder	whose	existence	is
to	be	determined.	A	complete	path	specification
(either	absolute	or	relative)	must	be	provided	if	the
folder	isn't	expected	to	exist	in	the	current	folder.

The	following	example	illustrates	the	use	of	the	FileExists	method:

function	ReportFolderStatus(fldr)
{
		var	fso,	s	=	fldr;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		if	(fso.FolderExists(fldr))

				s	+=	"	exists.";
		else	
				s	+=	"	doesn't	exist.";
		return(s);
}

Microsoft®	JScript®	FreeSpace
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	amount	of	free	space	available	to	a	user	on	the
specified	drive	or	network	share.	Read-only.

Syntax

object.FreeSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	FreeSpace	property	is	typically	the
same	as	that	returned	by	the	AvailableSpace	property.
Differences	may	occur	between	the	two	for	computer	systems
that	support	quotas.

The	following	code	illustrates	the	use	of	the	FreeSpace	property:

function	ShowFreeSpace(drvPath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		d	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	=	"Drive	"	+	drvPath.toUpperCase()	+	"	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Free	Space:	"	+	d.FreeSpace/1024	+	"	Kbytes";
		return(s);
}

Microsoft®	JScript®

GetAbsolutePathName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	complete	and	unambiguous	path	from	a	provided	path
specification.

Syntax

object.GetAbsolutePathName(pathspec)

The	GetAbsolutePathName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	Path	specification	to	change	to	a	completeand	unambiguous	path.

Remarks

A	path	is	complete	and	unambiguous	if	it	provides	a	complete
reference	from	the	root	of	the	specified	drive.	A	complete	path
can	only	end	with	a	path	separator	character	(\)	if	it	specifies	the
root	folder	of	a	mapped	drive.

Assuming	the	current	directory	is	c:\mydocuments\reports,	the	following
table	illustrates	the	behavior	of	the	GetAbsolutePathName	method.

pathspec Returned	path
"c:" "c:\mydocuments\reports"
"c:.." "c:\mydocuments"
"c:\\" "c:\"
"c:*.*\\may97" "c:\mydocuments\reports*.*\may97"
"region1" "c:\mydocuments\reports\region1"
"c:\\..\\..\\mydocuments" "c:\mydocuments"

The	following	example	illustrates	the	use	of	the	GetAbsolutePathName
method:

function	ShowAbsolutePath(path)
{
		var	fso,	s=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetAbsolutePathName(path);
		return(s);
}

Microsoft®	JScript®	GetBaseName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	base	name	of	the	last	component,
less	any	file	extension,	in	a	path.

Syntax

object.GetBaseName(path)

The	GetBaseName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	base	name	is	to	be	returned.

Remarks

The	GetBaseName	method	returns	a	zero-length	string	("")	if	no
component	matches	the	path	argument.

Note		The	GetBaseName	method	works	only	on	the	provided	path
string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the
existence	of	the	specified	path.

The	following	example	illustrates	the	use	of	the	GetBaseName	method:

function	ShowBaseName(filespec)
{
		var	fso,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetBaseName(filespec);
		return(s);
}

Microsoft®	JScript®	GetDrive	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Returns	a	Drive	object	corresponding	to	the	drive	in	a	specified
path.

Syntax

object.GetDrive	(drivespec);

The	GetDrive	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

drivespec

Required.	The	drivespec	argument	can	be	a	drive
letter	(c),	a	drive	letter	with	a	colon	appended	(c:),	a
drive	letter	with	a	colon	and	path	separator	appended
(c:\),	or	any	network	share	specification
(\\computer2\share1).

Remarks

For	network	shares,	a	check	is	made	to	ensure	that	the	share
exists.

An	error	occurs	if	drivespec	does	not	conform	to	one	of	the	accepted	forms
or	does	not	exist.

To	call	the	GetDrive	method	on	a	normal	path	string,	use	the	following
sequence	to	get	a	string	that	is	suitable	for	use	as	drivespec:

DriveSpec	=	GetDriveName(GetAbsolutePathName(Path))
The	following	example	illustrates	the	use	of	the	GetDrive
method:

function	ShowFreeSpace(drvPath)
{
		var	fso,	d,	s	="";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(fso.GetDriveName(drvPath)
		s	=	"Drive	"	+	drvPath.toUpperCase()	+	"	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Free	Space:	"	+	d.FreeSpace/1024	+	"	Kbytes";
		return(s);
}

Microsoft®	JScript®	GetDriveName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	name	of	the	drive	for	a	specified
path.

Syntax

object.GetDriveName(path)

The	GetDriveName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	drive	name	is	to	be	returned.

Remarks

The	GetDriveName	method	returns	a	zero-length	string	("")	if
the	drive	can't	be	determined.

Note		The	GetDriveName	method	works	only	on	the	provided	path
string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the
existence	of	the	specified	path.

The	following	example	illustrates	the	use	of	the	GetDriveName	method:

function	GetDriveLetter(path)
{
		var	fso,	s	="";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(path)
		return(s);
}

Microsoft®	JScript®

GetExtensionName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	extension	name	for	the	last
component	in	a	path.

Syntax

object.GetExtensionName(path)

The	GetExtensionName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	extension	name	is	to	be	returned.

Remarks

For	network	drives,	the	root	directory	(\)	is	considered	to	be	a
component.

The	GetExtensionName	method	returns	a	zero-length	string	("")	if	no
component	matches	the	path	argument.

The	following	example	illustrates	the	use	of	the	GetExtensionName
method:

function	ShowExtensionName(filespec)
{
		var	fso,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetExtensionName(filespec);
		return(s);
}

Microsoft®	JScript®	GetFile	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Returns	a	File	object	corresponding	to	the	file	in	a	specified	path.

Syntax

object.GetFile(filespec)

The	GetFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec Required.	The	filespec	is	the	path	(absolute	or	relative)to	a	specific	file.

Remarks

An	error	occurs	if	the	specified	file	does	not	exist.

The	following	example	illustrates	the	use	of	the	GetFile	method:

function	ShowFileAccessInfo(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		f	=	fso.GetFile(filespec);
		s	=	f.Path.toUpperCase()	+	"
";
		s	+=	"Created:	"	+	f.DateCreated	+	"
";
		s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
		s	+=	"Last	Modified:	"	+	f.DateLastModified		
		return(s);
}

Microsoft®	JScript®	GetFileName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	the	last	component	of	specified	path	that	is	not	part	of
the	drive	specification.

Syntax

object.GetFileName(pathspec)

The	GetFileName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	The	path	(absolute	or	relative)	to	a	specificfile.

Remarks

The	GetFileName	method	returns	a	zero-length	string	("")	if
pathspec	does	not	end	with	the	named	component.

Note		The	GetFileName	method	works	only	on	the	provided	path
string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the
existence	of	the	specified	path.

The	following	example	illustrates	the	use	of	the	GetFileName	method:

function	ShowFileName(filespec)
{
		var	fso,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetFileName(filespec);
		return(s);
}

Microsoft®	JScript®	GetFileVersion
Method

	Scripting	Run-Time	Reference	
	Version	5	

See	Also																		Applies	To

Description

Returns	the	version	number	of	a	specified	file.

Syntax

object.GetFileVersion(pathspec)

The	GetFileVersion	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	The	path	(absolute	or	relative)	to	a	specificfile.

Remarks

The	GetFileVersion	method	returns	a	zero-length	string	("")	if
pathspec	does	not	end	with	the	named	file	or	if	the	file	does	not
contain	version	information.

Note		The	GetFileVersion	method	works	only	on	the	provided	path
string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for	the
existence	of	the	specified	path.

The	following	example	illustrates	the	use	of	the	GetFileVersion	method:

function	ShowFileVersion(pathspec)
{
		var	fso,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		s	+=	fso.GetFileVersion(pathspec);
		if	(s	==	"")
				s	=	"No	version	information	available.";
		return(s);
}

Microsoft®	JScript®	GetFolder
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	Folder	object	corresponding	to	the	folder	in	a	specified
path.

Syntax

object.GetFolder(folderspec)

The	GetFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec Required.	The	folderspec	is	the	path	(absolute	orrelative)	to	a	specific	folder.

Remarks

An	error	occurs	if	the	specified	folder	does	not	exist.

The	following	example	illustrates	the	use	of	the	GetFolder	method:

function	ShowFolderList(folderspec)
{
		var	fso,	f,	fc,	s;

		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(folderspec);
		fc	=	new	Enumerator(f.SubFolders);
		s	=	"";
		for	(;	!fc.atEnd();	fc.moveNext())
		{
				s	+=	fc.item();
				s	+=	"
";
		}
		return(s);
}

Microsoft®	JScript®

GetParentFolderName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	name	of	the	parent	folder	of	the
last	component	in	a	specified	path.

Syntax

object.GetParentFolderName(path)

The	GetParentFolderName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	parent	folder	name	is	to	be	returned.

Remarks

The	GetParentFolderName	method	returns	a	zero-length	string
("")	if	there	is	no	parent	folder	for	the	component	specified	in	the
path	argument.

Note		The	GetParentFolderName	method	works	only	on	the	provided
path	string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it	check	for
the	existence	of	the	specified	path.

The	following	example	illustrates	the	use	of	the	GetParentFolderName
method:

function	ShowParentFolderName(filespec)
{
	var	fso,	s	=	"";
	fso	=	new	ActiveXObject("Scripting.FileSystemObject");
	s	+=	fso.GetParentFolderName(filespec);
	return(s);
}

Microsoft®	JScript®	GetSpecialFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	special	folder	object	specified.

Syntax

object.GetSpecialFolder(folderspec)

The	GetSpecialFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec
Required.	The	name	of	the	special	folder	to	be
returned.	Can	be	any	of	the	constants	shown	in	the
Settings	section.

Settings

The	folderspec	argument	can	have	any	of	the	following	values:

Constant Value Description

WindowsFolder 0
The	Windows	folder	contains	files
installed	by	the	Windows	operating
system.

SystemFolder 1 The	System	folder	contains	libraries,
fonts,	and	device	drivers.

TemporaryFolder 2
The	Temp	folder	is	used	to	store
temporary	files.	Its	path	is	found	in
the	TMP	environment	variable.

The	following	example	illustrates	the	use	of	the	GetSpecialFolder
method:

var	fso,	tempfile;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

function	CreateTempFile()
{
		var	tfolder,	tfile,	tname,	fname,	TemporaryFolder	=	2;
		tfolder	=	fso.GetSpecialFolder(TemporaryFolder
		tname	=	fso.GetTempName();
		tfile	=	tfolder.CreateTextFile(tname);
		return(tfile);
}
tempfile	=	CreateTempFile();
tempfile.writeline("Hello	World");
tempfile.close();

Microsoft®	JScript®	GetTempName
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Returns	a	randomly	generated	temporary	file	or	folder	name	that
is	useful	for	performing	operations	that	require	a	temporary	file
or	folder.

Syntax

object.GetTempName	();

The	optional	object	is	always	the	name	of	a	FileSystemObject.

Remarks

The	GetTempName	method	does	not	create	a	file.	It	provides
only	a	temporary	file	name	that	can	be	used	with	CreateTextFile
to	create	a	file.

The	following	example	illustrates	the	use	of	the	GetTempName	method:

var	fso,	tempfile;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

function	CreateTempFile()

{
		var	tfolder,	tfile,	tname,	fname,	TemporaryFolder	=	2;
		tfolder	=	fso.GetSpecialFolder(TemporaryFolder);
		tname	=	fso.GetTempName();
		tfile	=	tfolder.CreateTextFile(tname);
		return(tfile);
}
tempfile	=	CreateTempFile();
tempfile.writeline("Hello	World");
tempfile.close();

Microsoft®	JScript®	IsReady	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	drive	is	ready;	False	if	it	is	not.

Syntax

object.IsReady

The	object	is	always	a	Drive	object.

Remarks

For	removable-media	drives	and	CD-ROM	drives,	IsReady
returns	True	only	when	the	appropriate	media	is	inserted	and
ready	for	access.

The	following	code	illustrates	the	use	of	the	IsReady	property:

function	ShowDriveInfo(drvpath)
{
		var	fso,	d,	s,	t;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject")
		d	=	fso.GetDrive(drvpath)
		switch	(d.DriveType)

		{
				case	0:	t	=	"Unknown";	break;
				case	1:	t	=	"Removable";	break;
				case	2:	t	=	"Fixed";	break;
				case	3:	t	=	"Network";	break;
				case	4:	t	=	"CD-ROM";	break;
				case	5:	t	=	"RAM	Disk";	break;
		}	
		s	=	"Drive	"	+	d.DriveLetter	+	":	-	"	+	t;
		if	(d.IsReady)
				s	+=	"
"	+	"Drive	is	Ready.";
		else
				s	+=	"
"	+	"Drive	is	not	Ready.";
		return(s);
}

Microsoft®	JScript®	IsRootFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	folder	is	the	root	folder;	False	if	it
is	not.

Syntax

object.IsRootFolder

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	IsRootFolder
property:

function	DisplayLevelDepth(pathspec)
{
		var	fso,	f,	n,	s	=	"";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(pathspec);
		n	=	0;
		if	(f.IsRootFolder)
						s	=	"The	specified	folder	is	the	root	folder."

		else
		{
				do
				{	
						f	=	f.ParentFolder;
						n++;
				}
				while	(!f.IsRootFolder)
				s	=	"The	specified	folder	is	nested	"	+	n	+	"	levels	deep."
		}
		return(s);
}

Microsoft®	JScript®	Items	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	an	array	containing	all	the	items	in	a	Dictionary	object.

Syntax

object.Items()

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Items	method:

function	ItemsDemo()
{
		var	a,	d,	i,	s;	 	 	 	 	 //	Create	some	variables.
		d	=	new	ActiveXObject("Scripting.Dictionary");		
		d.Add	("a",	"Athens");	 	 	 	 //	Add	some	keys	and	items.
		d.Add	("b",	"Belgrade");
		d.Add	("c",	"Cairo");
		a	=	(new	VBArray(d.Items())).toArray();	 //	Get	the	items.
		s	=	"";
		for	(i	in	a)	 	 	 	 	 //	Iterate	the	dictionary.

		{
				s	+=	a[i]	+	"
";
		}
		return(s);	 	 	 	 	 	 //	Return	the	results.
}

Microsoft®	JScript®	Keys	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Returns	an	array	containing	all	existing	keys	in	a	Dictionary
object.

Syntax

object.Keys()

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Keys	method:

function	KeysDemo()
{
		var	a,	d,	i,	s;	 	 	 	 	 //	Create	some	variables.
		d	=	new	ActiveXObject("Scripting.Dictionary");		
		d.Add	("a",	"Athens");	 	 	 	 //	Add	some	keys	and	items.
		d.Add	("b",	"Belgrade");
		d.Add	("c",	"Cairo");
		a	=	(new	VBArray(d.Keys())).toArray();	 //	Get	the	keys.
		s	=	"";

		for	(i	in	a)	 	 	 	 	 //	Iterate	the	dictionary.
		{
				s	+=	a[i]	+	"	-	"	+	d(a[i])	+	"
";
		}
		return(s);	 	 	 	 	 	 //	Return	the	results.
}

Microsoft®	JScript®	Line	Property
	Scripting	Run-Time	Reference	

Version	2	

See	Also																			Applies	To

Description

Read-only	property	that	returns	the	current	line	number	in	a
TextStream	file.

Syntax

object.Line

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	file	is	initially	opened	and	before	anything	is	written,
Line	is	equal	to	1.

The	following	example	illustrates	the	use	of	the	Line	property:

function	GetLine()
{
		var	fso,	f,	r
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject")

		f	=	fso.OpenTextFile("c:\\textfile.txt",	ForWriting,	true)
		f.WriteLine("Hello	world!");
		f.WriteLine("JScript	is	fun");
		f.Close();
		f	=	fso.OpenTextFile("c:\\textfile.txt",	ForReading);
		r	=		f.ReadAll();
		return(f.Line);
}

Microsoft®	JScript®	Move	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Moves	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Move(destination);

The	Move	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

destination Required.	Destination	where	the	file	or	folder	is	tobe	moved.	Wildcard	characters	are	not	allowed.

Remarks

The	results	of	the	Move	method	on	a	File	or	Folder	are	identical
to	operations	performed	using	FileSystemObject.MoveFile	or
FileSystemObject.MoveFolder.	You	should	note,	however,	that
the	alternative	methods	are	capable	of	moving	multiple	files	or
folders.

Microsoft®	JScript®	MoveFile	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Moves	one	or	more	files	from	one	location	to	another.

Syntax

object.MoveFile	(source,	destination);

The	MoveFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	The	path	to	the	file	or	files	to	be	moved.
The	source	argument	string	can	contain	wildcard
characters	in	the	last	path	component	only.

destination
Required.	The	path	where	the	file	or	files	are	to	be
moved.	The	destination	argument	can't	contain
wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path
separator	(\),	it	is	assumed	that	destination	specifies	an	existing
folder	in	which	to	move	the	matching	files.	Otherwise,
destination	is	assumed	to	be	the	name	of	a	destination	file	to
create.	In	either	case,	three	things	can	happen	when	an	individual

file	is	moved:

If	destination	does	not	exist,	the	file	gets	moved.	This	is	the
usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source
doesn't	match	any	files.	The	MoveFile	method	stops	on	the	first
error	it	encounters.	No	attempt	is	made	to	roll	back	any	changes
made	before	the	error	occurs.

Important		This	method	allows	moving	files	between	volumes	only	if
supported	by	the	operating	system.

The	following	example	illustrates	the	use	of	the	MoveFile	method:

function	MoveFile2Desktop(filespec)
{
		var	fso;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fso.MoveFile(filespec,	"c:\\windows\\desktop\\"
}

Microsoft®	JScript®	MoveFolder
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Moves	one	or	more	folders	from	one	location	to	another.

Syntax

object.MoveFolder	(source,	destination);

The	MoveFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	The	path	to	the	folder	or	folders	to	be
moved.	The	source	argument	string	can	contain
wildcard	characters	in	the	last	path	component	only.

destination
Required.	The	path	where	the	folder	or	folders	are
to	be	moved.	The	destination	argument	can't	contain
wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path
separator	(\),	it	is	assumed	that	destination	specifies	an	existing
folder	in	which	to	move	the	matching	files.	Otherwise,
destination	is	assumed	to	be	the	name	of	a	destination	folder	to
create.	In	either	case,	three	things	can	happen	when	an	individual

folder	is	moved:

If	destination	does	not	exist,	the	folder	gets	moved.	This	is
the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source
doesn't	match	any	folders.	The	MoveFolder	method	stops	on	the
first	error	it	encounters.	No	attempt	is	made	to	roll	back	any
changes	made	before	the	error	occurs.

Important		This	method	allows	moving	folders	between	volumes	only
if	supported	by	the	operating	system.

The	following	example	illustrates	the	use	of	the	MoveFolder	method:

function	MoveFldr2Desktop(fldrspec)
{
		var	fso;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fso.MoveFolder(fldrspec,	"c:\\windows\\desktop\\"
}

Microsoft®	JScript®	Name	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	name	of	a	specified	file	or	folder.	Read/write.

Syntax

object.Name	[=	newname]

The	Name	property	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

newname Optional.	If	provided,	newname	is	the	new	name	ofthe	specified	object.

Remarks

The	following	code	illustrates	the	use	of	the	Name	property:

function	ShowFileAccessInfo(filespec)
{
				var	fso,	f,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				f	=	fso.GetFile(filespec);

				s	=	f.Name	+	"	on	Drive	"	+	f.Drive	+	"
";
				s	+=	"Created:	"	+	f.DateCreated	+	"
";
				s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
				s	+=	"Last	Modified:	"	+	f.DateLastModified;
				return(s);
}

Microsoft®	JScript®	OpenTextFile
Method

	Scripting	Run-Time	Reference	
	Version	2	

See	Also																		Applies	To

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can
be	used	to	read	from,	write	to,	or	append	to	the	file.

Syntax

object.OpenTextFile(filename[,	iomode[,	create[,	format]]])

The	OpenTextFile	method	has	these	parts:

Part Description

object Required.	Object	is	always	the	name	of	a
FileSystemObject.

filename Required.	String	expression	that	identifies	the	file	toopen.

iomode Optional.	Can	be	one	of	three	constants:	ForReading,
ForWriting,	or	ForAppending.

create

Optional.	Boolean	value	that	indicates	whether	a	new
file	can	be	created	if	the	specified	filename	doesn't
exist.	The	value	is	True	if	a	new	file	is	created,	False
if	it	isn't	created.	If	omitted,	a	new	file	isn't	created.

format
Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	any	of	the	following	settings:

Constant Value Description

ForReading 1 Open	a	file	for	reading	only.	You	can't
write	to	this	file.

ForWriting 2 Open	a	file	for	writing.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the
file.

The	format	argument	can	have	any	of	the	following	settings:

Value Description
TristateTrue Open	the	file	as	Unicode.
TristateFalse Open	the	file	as	ASCII.
TristateUseDefault Open	the	file	using	the	system	default.

Remarks

The	following	code	illustrates	the	use	of	the	OpenTextFile
method	to	open	a	file	for	appending	text:

var	fs,	a,	ForAppending;
ForAppending	=	8;
fs	=	new	ActiveXObject("Scripting.FileSystemObject");
a	=	fs.OpenTextFile("c:\\testfile.txt",	ForAppending,	false
...
a.Close();

Microsoft®	JScript®	ParentFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	folder	object	for	the	parent	of	the	specified	file	or
folder.	Read-only.

Syntax

object.ParentFolder

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ParentFolder
property	with	a	file:

function	ShowFileAccessInfo(filespec)
{
				var	fso,	f,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				f	=	fso.GetFile(filespec);
				s	=	f.Name	+	"	in	"	+	f.ParentFolder	+	"
";
				s	+=	"Created:	"	+	f.DateCreated	+	"
";
				s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";

				s	+=	"Last	Modified:	"	+	f.DateLastModified;	
				return(s);
}

Microsoft®	JScript®	Path	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	path	for	a	specified	file,	folder,	or	drive.

Syntax

object.Path

The	object	is	always	a	File,	Folder,	or	Drive	object.

Remarks

For	drive	letters,	the	root	drive	is	not	included.	For	example,	the
path	for	the	C	drive	is	C:,	not	C:\.

The	following	code	illustrates	the	use	of	the	Path	property	with	a	File
object:

function	ShowFileAccessInfo(filespec)
{
		var	fso,	d,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFile(filespec);
		s	=	f.Path.toUpperCase()	+	"
";

		s	+=	"Created:	"	+	f.DateCreated	+	"
";
		s	+=	"Last	Accessed:	"	+	f.DateLastAccessed	+	"
";
		s	+=	"Last	Modified:	"	+	f.DateLastModified		
		return(s);
}

Microsoft®	JScript®	Read	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Reads	a	specified	number	of	characters	from	a	TextStream	file
and	returns	the	resulting	string.

Syntax

object.Read(characters)

The	Read	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a
TextStream	object.

characters Required.	Number	of	characters	youwant	to	read	from	the	file.

The	following	example	illustrates	how	to	use	the	Read	method	to	read	a	six	character
header	from	a	file	and	return	the	resulting	string:

function	GetHeader()
{
		var	fso,	f;

		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true);
		f.Write("Header");
		f.Write("1234567890987654321");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		return(f.Read(6));
}

Microsoft®	JScript®	ReadLine
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	To

Description

Reads	an	entire	line	(up	to,	but	not	including,	the	newline
character)	from	a	TextStream	file	and	returns	the	resulting
string.

Syntax

object.ReadLine()

The	object	argument	is	always	the	name	of	a	TextStream	object.

Remarks

The	following	example	illustrates	the	use	of	the	Line	property:

function	GetLine()
{
		var	fso,	f,	r;
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true);

		f.WriteLine("Hello	world!");
		f.WriteLine("JScript	is	fun");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		r	=		f.ReadLine();
		return(r);
}

Microsoft®	JScript®	Remove	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Removes	a	key,	item	pair	from	a	Dictionary	object.

Syntax

object.Remove(key)

The	Remove	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.

key Required.	Key	associated	with	the	key,	item	pair	you
want	to	remove	from	the	Dictionary	object.

Remarks

An	error	occurs	if	the	specified	key,	item	pair	does	not	exist.

The	following	code	illustrates	use	of	the	Remove	method:

var	a,	d,	i,	s;														//	Create	some	variables.
d	=	new	ActiveXObject("Scripting.Dictionary");		
d.Add	("a",	"Athens");							//	Add	some	keys	and	items.

d.Add	("b",	"Belgrade");
d.Add	("c",	"Cairo");
...
d.Remove("b");															//	Remove	second	pair.

Microsoft®	JScript®	RootFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Folder	object	representing	the	root	folder	of	a
specified	drive.	Read-only.

Syntax

object.RootFolder

The	object	is	always	a	Drive	object.

Remarks

All	the	files	and	folders	contained	on	the	drive	can	be	accessed
using	the	returned	Folder	object.

The	following	example	illustrates	the	use	of	the	RootFolder	property:

function	GetRootFolder(drv)
{
		var	fso,d;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		if	(fso.DriveExists(drv))
				{

						d	=	fso.GetDrive(drv);
						return(d.RootFolder);
				}
		else
				return(false);
}

Microsoft®	JScript®	SerialNumber
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	decimal	serial	number	used	to	uniquely	identify	a
disk	volume.

Syntax

object.SerialNumber

The	object	is	always	a	Drive	object.

Remarks

You	can	use	the	SerialNumber	property	to	ensure	that	the
correct	disk	is	inserted	in	a	drive	with	removable	media.

The	following	code	illustrates	the	use	of	the	SerialNumber	property:

function	ShowDriveInfo(drvpath)
{
		var	fso,	d,	s,	t;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)));
		switch	(d.DriveType)

		{
				case	0:	t	=	"Unknown";	break;
				case	1:	t	=	"Removable";	break;
				case	2:	t	=	"Fixed";	break;
				case	3:	t	=	"Network";	break;
				case	4:	t	=	"CD-ROM";	break;
				case	5:	t	=	"RAM	Disk";	break;
		}	
		s	=	"Drive	"	+	d.DriveLetter	+	":	-	"	+	t;
		s	+=	"
"	+	"SN:	"	+	d.SerialNumber;
		return(s);
}

Microsoft®	JScript®	ShareName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	network	share	name	for	a	specified	drive.

Syntax

object.ShareName

The	object	is	always	a	Drive	object.

Remarks

If	object	is	not	a	network	drive,	the	ShareName	property	returns
a	zero-length	string	("").

The	following	code	illustrates	the	use	of	the	ShareName	property:

function	ShowDriveInfo(drvpath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)));
		s	=	"Drive	"	+	d.DriveLetter	+	":	-	"	+	d.ShareName

		return(s);
}

Microsoft®	JScript®	ShortName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	short	name	used	by	programs	that	require	the	earlier
8.3	naming	convention.

Syntax

object.ShortName

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName
property	with	a	File	object:

function	ShowShortName(filespec)
{
				var	fso,	f,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				f	=	fso.GetFile(filespec);
				s	=	"The	short	name	for	"	+	""	+	f.Name;
				s	+=	""	+	"
";
				s	+=	"is:	"	+	""	+	f.ShortName	+	"";

				return(s);
}

Microsoft®	JScript®	ShortPath
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	short	path	used	by	programs	that	require	the	earlier
8.3	file	naming	convention.

Syntax

object.ShortPath

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName
property	with	a	File	object:

function	ShowShortPath(filespec)
{
				var	fso,	f,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				f	=	fso.GetFile(filespec);
				s	=	"The	short	path	for	"	+	""	+	f.Name;
				s	+=	""	+	"
";
				s	+=	"is:	"	+	""	+	f.ShortPath	+	"";

				return(s);
}

Microsoft®	JScript®	Size	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

For	files,	returns	the	size,	in	bytes,	of	the	specified	file.	For
folders,	returns	the	size,	in	bytes,	of	all	files	and	subfolders
contained	in	the	folder.

Syntax

object.Size

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Size	property	with	a
Folder	object:

function	ShowFolderSize(filespec)
{
				var	fso,	f,	s;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");
				f	=	fso.GetFolder(filespec);
				s	=	f.Name	+	"	uses	"	+	f.size	+	"	bytes.";
				return(s);

}

Microsoft®	JScript®	Skip	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Skips	a	specified	number	of	characters	when	reading	a
TextStream	file.

Syntax

object.Skip(characters)

The	Skip	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a
TextStream	object.

characters Required.	Number	of	characters	toskip	when	reading	a	file.

Remarks

Skipped	characters	are	discarded.

The	following	example	illustrates	the	use	of	the	Skip	method:

function	SkipDemo()
{

		var	fso,	f,	r;
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject")
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true);
		f.WriteLine("Hello	world!");
		f.WriteLine("JScript	is	fun");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		f.Skip(6);
		r	=	f.ReadLine();
		return(r);
}

Microsoft®	JScript®	SubFolders
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Folders	collection	consisting	of	all	folders	contained	in
a	specified	folder,	including	those	with	hidden	and	system	file
attributes	set.

Syntax

object.SubFolders

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	SubFolders
property:

function	ShowFolderList(folderspec)
{
		var	fso,	f,	fc,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.GetFolder(folderspec);
		fc	=	new	Enumerator(f.SubFolders);
		s	=	"";

		for	(;!fc.atEnd();	fc.moveNext())
				{
						s	+=	fc.item();
						s	+=	"
";
				}
				return(s);
}

Microsoft®	JScript®	TextStream
Object

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Methods																				Properties

Description

Facilitates	sequential	access	to	file.

Syntax

TextStream.{property	|	method()}

The	property	and	method	arguments	can	be	any	of	the	properties	and
methods	associated	with	the	TextStream	object.	Note	that	in	actual	usage,
TextStream	is	replaced	by	a	variable	placeholder	representing	the
TextStream	object	returned	from	the	FileSystemObject.

Remarks

In	the	following	code,	a	is	the	TextStream	object	returned	by	the
CreateTextFile	method	on	the	FileSystemObject:

var	fso	=	new	ActiveXObject("Scripting.FileSystemObject");
var	a	=	fso.CreateTextFile("c:\\testfile.txt",	true);
a.WriteLine("This	is	a	test.");
a.Close();

WriteLine	and	Close	are	two	methods	of	the	TextStream	object.

Microsoft®	JScript®	TotalSize
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	total	space,	in	bytes,	of	a	drive	or	network	share.

Syntax

object.TotalSize

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	TotalSize	property:

function	SpaceReport(drvPath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		d	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	=	"Drive	"	+	drvPath	+	"	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Total	Space:	"+	d.TotalSize/1024	+	"	Kbytes	
";
		s	+=	"Free	Space:		"	+	d.FreeSpace/1024	+	"	Kbytes";

		return(s);
}

Microsoft®	JScript®	Type	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	information	about	the	type	of	a	file	or	folder.	For
example,	for	files	ending	in	.TXT,	"Text	Document"	is	returned.

Syntax

object.Type

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Type	property	to
return	a	folder	type.	In	this	example,	try	providing	the	path	of	the
Recycle	Bin	or	other	unique	folder	to	the	procedure.

function	ShowFileType(filespec)
{
		var	fso,	f,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		if	(fso.FolderExists(filespec))
				f	=	fso.GetFolder(filespec);
		else	if	(fso.FileExists(filespec))

				f	=	fso.GetFile(filespec);
		else
				s	=	"File	or	Folder	does	not	exist.";
		s	=	f.Name	+	"	is	a	"	+	f.Type;	
		return(s);
}

Microsoft®	JScript®	VolumeName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	volume	name	of	the	specified	drive.
Read/write.

Syntax

object.VolumeName	[=	newname]

The	VolumeName	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Drive	object.

newname Optional.	If	provided,	newname	is	the	new	name	ofthe	specified	object.

Remarks

The	following	code	illustrates	the	use	of	the	VolumeName
property:

function	SpaceReport(drvPath)
{
		var	fso,	d,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		d	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	=	"Drive	"	+	drvPath	+	"	-	";
		s	+=	d.VolumeName	+	"
";
		s	+=	"Total	Space:	"+	d.TotalSize/1024	+	"	Kbytes	
";
		s	+=	"Free	Space:		"	+	d.FreeSpace/1024	+	"	Kbytes";
		return(s);
}

Microsoft®	JScript®	Write	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																			Applies	To

Description

Writes	a	specified	string	to	a	TextStream	file.

Syntax

object.Write(string)

The	Write	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	aTextStream	object.

string Required.	The	text	you	want	to	write	tothe	file.

Remarks

Specified	strings	are	written	to	the	file	with	no	intervening	spaces
or	characters	between	each	string.	Use	the	WriteLine	method	to
write	a	newline	character	or	a	string	that	ends	with	a	newline
character.

The	following	example	illustrates	the	use	of	the	Write	method:

function	WriteDemo()

{
		var	fso,	f,	r
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject")
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true)
		f.Write("Hello	world!");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		r	=	f.ReadLine();
		return(r);
}

Microsoft®	JScript®	WriteBlankLines
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	To

Description

Writes	a	specified	number	of	newline	characters	to	a	TextStream
file.

Syntax

object.WriteBlankLines(lines)

The	WriteBlankLines	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	aTextStream	object.

lines Required.	Number	of	newline	characters
you	want	to	write	to	the	file.

Remarks

The	following	example	illustrates	the	use	of	the
WriteBlankLines	method:

function	WriteBlanksDemo()
{

		var	fso,	f,	r;
		var	ForReading	=	1,	ForWriting	=	2;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForWriting,	true);
		f.Write("Hello	world!");
		f.WriteBlankLines(2);
		f.Write("JScript	is	fun!");
		f.Close();
		f	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		r	=	f.ReadAll();
		return(r);
}

Microsoft®	JScript®	WriteLine
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	To

Description

Writes	a	specified	string	and	newline	character	to	a	TextStream
file.

Syntax

object.WriteLine([string])

The	WriteLine	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	aTextStream	object.

string
Optional.	The	text	you	want	to	write	to
the	file.	If	omitted,	a	newline	character
is	written	to	the	file.

Remarks

The	following	example	illustrates	use	of	the	WriteLine	method:

var	fso,	f;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

f	=	fso.CreateTextFile("c:\\testfile.txt",	true);
f.WriteLine("This	is	a	test.");
f.Close();

Copyright

Microsoft®	JScript®

Information	in	this	document	is	subject	to	change	without	notice.	The	names	of
companies,	products,	people,	characters,	and/or	data	mentioned	herein	are
fictitious	and	are	in	no	way	intended	to	represent	any	real	individual,	company,
product,	or	event,	unless	otherwise	noted.	Complying	with	all	applicable
copyright	laws	is	the	responsibility	of	the	user.	No	part	of	this	document	may	be
reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or
mechanical,	for	any	purpose,	without	the	express	written	permission	of
Microsoft	Corporation.

Microsoft	may	have	patents,	patent	applications,	trademarks,	copyrights,	or	other
intellectual	property	rights	covering	subject	matter	in	this	document.	Except	as
expressly	provided	in	any	written	license	agreement	from	Microsoft,	the
furnishing	of	this	document	does	not	give	you	any	license	to	these	patents,
trademarks,	copyrights,	or	other	intellectual	property.

©	1991-2000	Microsoft	Corporation.	All	rights	reserved.

Microsoft,	MS,	MS-DOS,	ActiveX,	JScript,	Microsoft	Press,	Visual	Basic,
Windows,	Windows	NT,	Win32,	and	Win32s	are	either	registered	trademarks	or
trademarks	of	Microsoft	Corporation	in	the	U.S.A.	and/or	other	countries.

Other	product	and	company	names	mentioned	herein	may	be	the	trademarks	of
their	respective	owners.

Microsoft®	JScript®	Infinity	Property
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	an	initial	value	of	Number.POSITIVE_INFINITY.

Syntax

Infinity

Remarks

The	Infinity	property	is	a	member	of	the	Global	object,	and	is
made	available	when	the	scripting	engine	is	initialized.

Microsoft®	JScript®	getDate	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	day	of	the	month	value	in	a	Date	object	using	local	time.

Syntax

objDate.getDate()

Remarks

To	get	the	date	value	using	Universal	Coordinated	Time	(UTC),
use	the	getUTCDate	method.

The	return	value	is	an	integer	between	1	and	31	that	represents	the	date	value	in	the
Date	object.

The	following	example	illustrates	the	use	of	the	getDate	method:

function	DateDemo()
{
		var	d,	s	=	"Today's	date	is:	";
		d	=	new	Date();
		s	+=	(d.getMonth()	+	1)	+	"/";
		s	+=	d.getDate()	+	"/";

		s	+=	d.getYear();
		return(s);
}

Microsoft®	JScript®	getDay	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	day	of	the	week	value	in	a	Date	object	using	local
time.

Syntax

objDate.getDay()

Remarks

To	get	the	day	using	Universal	Coordinated	Time	(UTC),	use	the
getUTCDay	method.

The	value	returned	from	the	getDay	method	is	an	integer	between	0	and	6	representing
the	day	of	the	week	and	corresponds	to	a	day	of	the	week	as	follows:

0	=	Sunday
1	=	Monday
2	=	Tuesday
3	=	Wednesday
4	=	Thursday
5	=	Friday
6	=	Saturday

The	following	example	illustrates	the	use	of	the	getDay	method:

function	DateDemo()

{
		var	d,	day,	x,	s	=	"Today	is:	";
		var	x	=	new	Array("Sunday",	"Monday",	"Tuesday");
		var	x	=	x.concat("Wednesday","Thursday",	"Friday");
		var	x	=	x.concat("Saturday");
		d	=	new	Date();
		day	=	d.getDay();
		return(s	+=	x[day]);
}

Microsoft®	JScript®	getHours	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	hours	value	in	a	Date	object	using	local	time.

Syntax

objDate.getHours()

Remarks

To	get	the	hours	value	using	Universal	Coordinated	Time	(UTC),
use	the	getUTCHours	method.

The	getHours	method	returns	an	integer	between	0	and	23	indicating	the	number	of
hours	since	midnight.	A	zero	occurs	in	two	situations:	the	time	is	before	1:00:00	am,	or
the	time	was	not	stored	in	the	Date	object	when	the	object	was	created.	The	only	way	to
determine	which	situation	you	have	is	to	also	check	the	minutes	and	seconds	for	zero
values.	If	they	are	all	zeroes,	it	is	nearly	certain	that	the	time	was	not	stored	in	the	Date
object.

The	following	example	illustrates	the	use	of	the	getHours	method:

function	TimeDemo()
{
		var	d,	s	=	"The	current	local	time	is:	";
		var	c	=	":";

		d	=	new	Date();
		s	+=	d.getHours()	+	c;
		s	+=	d.getMinutes()	+	c;
		s	+=	d.getSeconds()	+	c;
		s	+=	d.getMilliseconds();
		return(s);
}

Microsoft®	JScript®	getMinutes
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	minutes	value	in	a	Date	object	using	local	time.

Syntax

objDate.getMinutes()

Remarks

To	get	the	minutes	value	using	Universal	Coordinated	Time
(UTC),	use	the	getUTCMinutes	method.

The	getMinutes	method	returns	an	integer	between	0	and	59	equal	to	the	minutes	value
stored	in	the	Date	object.	A	zero	is	returned	in	two	situations:	one	occurs	when	the	time
is	less	than	one	minute	after	the	hour.	The	other	occurs	when	the	time	was	not	stored	in
the	Date	object	when	the	object	was	created.	The	only	way	to	determine	which	situation
you	have	is	to	also	check	the	hours	and	seconds	for	zero	values.	If	they	are	all	zeroes,	it
is	nearly	certain	that	the	time	was	not	stored	in	the	Date	object.

The	following	example	illustrates	the	use	of	the	getMinutes	method:

function	TimeDemo()
{
		var	d,	s	=	"The	current	local	time	is:	";
		var	c	=	":";

		d	=	new	Date();
		s	+=	d.getHours()	+	c;
		s	+=	d.getMinutes()	+	c;
		s	+=	d.getSeconds()	+	c;
		s	+=	d.getMilliseconds();
		return(s);
}

Microsoft®	JScript®	getMonth
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	month	value	in	the	Date	object	using	local	time.

Syntax

objDate.getMonth()

Remarks

To	get	the	month	value	using	Universal	Coordinated	Time
(UTC),	use	the	getUTCMonth	method.

The	getMonth	method	returns	an	integer	between	0	and	11	indicating	the	month	value
in	the	Date	object.	The	integer	returned	is	not	the	traditional	number	used	to	indicate	the
month.	It	is	one	less.	If	"Jan	5,	1996	08:47:00"	is	stored	in	a	Date	object,	getMonth
returns	0.

The	following	example	illustrates	the	use	of	the	getMonth	method:

function	DateDemo()
{
		var	d,	s	=	"Today's	date	is:	";
		d	=	new	Date();
		s	+=	(d.getMonth()	+	1)	+	"/";

		s	+=	d.getDate()	+	"/";
		s	+=	d.getYear();
		return(s);
}

Microsoft®	JScript®	getSeconds
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	seconds	value	in	a	Date	object	using	local	time.

Syntax

objDate.getSeconds()

Remarks

To	get	the	seconds	value	using	Universal	Coordinated	Time
(UTC),	use	the	getUTCSeconds	method.

The	getSeconds	method	returns	an	integer	between	0	and	59	indicating	the	seconds
value	of	the	indicated	Date	object.	A	zero	is	returned	in	two	situations.	One	occurs	when
the	time	is	less	than	one	second	into	the	current	minute.	The	other	occurs	when	the	time
was	not	stored	in	the	Date	object	when	the	object	was	created.	The	only	way	to
determine	which	situation	you	have	is	to	also	check	the	hours	and	minutes	for	zero
values.	If	they	are	all	zeroes,	it	is	nearly	certain	that	the	time	was	not	stored	in	the	Date
object.

The	following	example	illustrates	the	use	of	the	getSeconds	method:

function	TimeDemo()
{
		var	d,	s	=	"The	current	local	time	is:	";

		var	c	=	":";
		d	=	new	Date();
		s	+=	d.getHours()	+	c;
		s	+=	d.getMinutes()	+	c;
		s	+=	d.getSeconds()	+	c;
		s	+=	d.getMilliseconds();
		return(s);
}

Microsoft®	JScript®	getTime	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	time	value	in	a	Date	object.

Syntax

objDate.getTime()

Remarks

The	getTime	method	returns	an	integer	value	representing	the
number	of	milliseconds	between	midnight,	January	1,	1970	and
the	time	value	in	the	Date	object.	The	range	of	dates	is
approximately	285,616	years	from	either	side	of	midnight,
January	1,	1970.	Negative	numbers	indicate	dates	prior	to	1970.

When	doing	multiple	date	and	time	calculations,	it	is	frequently	useful	to	define
variables	equal	to	the	number	of	milliseconds	in	a	day,	hour,	or	minute.	For	example:

var	MinMilli	=	1000	*	60
var	HrMilli	=	MinMilli	*	60
var	DyMilli	=	HrMilli	*	24

The	following	example	illustrates	the	use	of	the	getTime

method:

function	GetTimeTest()
{
		var	d,	s,	t;
		var	MinMilli	=	1000	*	60;
		var	HrMilli	=	MinMilli	*	60;
		var	DyMilli	=	HrMilli	*	24;
		d	=	new	Date();
		t	=	d.getTime();
		s	=	"It's	been	"
		s	+=	Math.round(t	/	DyMilli)	+	"	days	since	1/1/70";
		return(s);
}

Microsoft®	JScript®

getTimezoneOffset
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	the	difference	in	minutes	between	the	time	on	the	host	computer	and	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getTimezoneOffset()

Remarks

The	getTimezoneOffset	method	returns	an	integer	value
representing	the	number	of	minutes	between	the	time	on	the
current	machine	and	UTC.	These	values	are	appropriate	to	the
computer	the	script	is	executed	on.	If	it	is	called	from	a	server
script,	the	return	value	is	appropriate	to	the	server.	If	it	is	called
from	a	client	script,	the	return	value	is	appropriate	to	the	client.

This	number	will	be	positive	if	you	are	behind	UTC	(e.g.,	Pacific	Daylight	Time),	and
negative	if	you	are	ahead	of	UTC	(e.g.,	Japan).

For	example,	suppose	a	server	in	New	York	City	is	contacted	by	a	client	in	Los	Angeles
on	December	1.	getTimezoneOffset	returns	480	if	executed	on	the	client,	or	300	if
executed	on	the	server.

The	following	example	illustrates	the	use	of	the	getTimezoneOffset	method:

function	TZDemo()

{
		var	d,	tz,	s	=	"The	current	local	time	is	";
		d	=	new	Date();
		tz	=	d.getTimezoneOffset();
		if	(tz	<	0)
				s	+=	tz	/	60	+	"	hours	before	GMT";
		else	if	(tz	==	0)
				s	+=	"GMT";
		else
				s	+=	tz	/	60	+	"	hours	after	GMT";
		return(s);
}

Microsoft®	JScript®	getYear	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	year	value	in	a	Date	object.

Syntax

objDate.getYear()

Remarks

This	method	is	obsolete,	and	is	provided	for	backwards
compatibility	only.	Use	the	getFullYear	method	instead.

For	years	from	1900	through	1999,	the	year	is	a	2-digit	integer	value	returned	as	the
difference	between	the	stored	year	and	1900.	For	other	dates,	the	4-digit	year	is	returned.
For	example,	1996	is	returned	as	96,	but	1825	and	2025	are	returned	as-is.

Note	For	JScript	version	1.0,	getYear	returns	a	value	that
is	the	result	of	the	subtraction	of	1900	from	the	year	value
in	the	provided	Date	object,	regardless	of	the	value	of	the
year.	For	example,	the	year	1899	is	returned	as	-1	and	the
year	to	2000	is	returned	as	100.

The	following	example	illustrates	the	use	of	the	getYear	method:

function	DateDemo()
{

		var	d,	s	=	"Today's	date	is:	";
		d	=	new	Date();
		s	+=	(d.getMonth()	+	1)	+	"/";
		s	+=	d.getDate()	+	"/";
		s	+=	d.getYear();
		return(s);
}

Microsoft®	JScript®	getUTCFullYear
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	year	value	in	a	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getUTCFullYear()

Remarks

To	get	the	year	using	local	time,	use	the	getFullYear	method.

The	getUTCFullYear	method	returns	the	year	as	an	absolute	number.	This
avoids	the	classic	year	2000	problem	where	dates	beginning	with	January
1,	2000	are	confused	with	those	beginning	January	1,	1900.

The	following	example	illustrates	the	use	of	the	getUTCFullYear	method:

function	UTCDateDemo()
{
		var	d,	s	=	"Today's	UTC	date	is:	";
		d	=	new	Date();
		s	+=	(d.getUTCMonth()	+	1)	+	"/";

		s	+=	d.getUTCDate()	+	"/";
		s	+=	d.getUTCFullYear();
		return(s);
}

Microsoft®	JScript®	getUTCHours
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	hours	value	in	a	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getUTCHours()

Remarks

To	get	the	number	of	hours	elapsed	since	midnight	using	local
time,	use	the	getHours	method.

The	getUTCHours	method	returns	an	integer	between	0	and	23	indicating
the	number	of	hours	since	midnight.	A	zero	occurs	in	two	situations:	the
time	is	before	1:00:00	A.M.,	or	a	time	was	not	stored	in	the	Date	object
when	the	object	was	created.	The	only	way	to	determine	which	situation
you	have	is	to	also	check	the	minutes	and	seconds	for	zero	values.	If	they
are	all	zeroes,	it	is	nearly	certain	that	the	time	was	not	stored	in	the	Date
object.

The	following	example	illustrates	the	use	of	the	getUTCHours	method:

function	UTCTimeDemo()
{

		var	d,	s	=	"Current	Universal	Coordinated	Time	(UTC)	is:	";
		var	c	=	":";
		d	=	new	Date();
		s	+=	d.getUTCHours()	+	c;
		s	+=	d.getUTCMinutes()	+	c;
		s	+=	d.getUTCSeconds()	+	c;
		s	+=	d.getUTCMilliseconds();
		return(s);
}

Microsoft®	JScript®	getUTCMinutes
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	minutes	value	in	a	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getUTCMinutes()

Remarks

To	get	the	number	of	minutes	stored	using	local	time,	use	the
getMinutes	method.

The	getUTCMinutes	method	returns	an	integer	between	0	and	59	equal	to
the	number	of	minutes	value	in	the	Date	object.	A	zero	occurs	in	two
situations:	the	time	is	less	than	one	minute	after	the	hour,	or	a	time	was	not
stored	in	the	Date	object	when	the	object	was	created.	The	only	way	to
determine	which	situation	you	have	is	to	also	check	the	hours	and	seconds
for	zero	values.	If	they	are	all	zeroes,	it	is	nearly	certain	that	the	time	was
not	stored	in	the	Date	object.

The	following	example	illustrates	the	use	of	the	getUTCMinutes	method:

function	UTCTimeDemo()
{

		var	d,	s	=	"Current	Universal	Coordinated	Time	(UTC)	is:	";
		var	c	=	":";
		d	=	new	Date();
		s	+=	d.getUTCHours()	+	c;
		s	+=	d.getUTCMinutes()	+	c;
		s	+=	d.getUTCSeconds()	+	c;
		s	+=	d.getUTCMilliseconds();
		return(s);
}

Microsoft®	JScript®	getUTCMonth
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	month	value	value	in	a	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getUTCMonth()

Remarks

To	get	the	month	in	local	time,	use	the	getMonth	method.

The	getUTCMonth	method	returns	an	integer	between	0	and	11	indicating
the	month	value	in	the	Date	object.	The	integer	returned	is	not	the
traditional	number	used	to	indicate	the	month.	It	is	one	less.	If	"Jan	5,	1996
08:47:00.0"	is	stored	in	a	Date	object,	getUTCMonth	returns	0.

The	following	example	illustrates	the	use	of	the	getUTCMonth	method:

function	UTCDateDemo()
{
		var	d,	s	=	"Today's	UTC	date	is:	";
		d	=	new	Date();

		s	+=	(d.getUTCMonth()	+	1)	+	"/";
		s	+=	d.getUTCDate()	+	"/";
		s	+=	d.getUTCFullYear();
		return(s);
}

Microsoft®	JScript®	getUTCSeconds
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	seconds	value	in	a	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.getUTCSeconds()

Remarks

To	get	the	number	of	seconds	in	local	time,	use	the	getSeconds
method.

The	getUTCSeconds	method	returns	an	integer	between	0	and	59
indicating	the	seconds	value	of	the	indicated	Date	object.	A	zero	occurs	in
two	situations:	the	time	is	less	than	one	second	into	the	current	minute,	or	a
time	was	not	stored	in	the	Date	object	when	the	object	was	created.	The
only	way	to	determine	which	situation	you	have	is	to	also	check	the
minutes	and	hours	for	zero	values.	If	they	are	all	zeroes,	it	is	nearly	certain
that	the	time	was	not	stored	in	the	Date	object.

The	following	example	illustrates	the	use	of	the	getUTCSeconds	method:

function	UTCTimeDemo()
{

		var	d,	s	=	"Current	Universal	Coordinated	Time	(UTC)	is:	";
		var	c	=	":";
		d	=	new	Date();
		s	+=	d.getUTCHours()	+	c;
		s	+=	d.getUTCMinutes()	+	c;
		s	+=	d.getUTCSeconds()	+	c;
		s	+=	d.getUTCMilliseconds();
		return(s);
}

Microsoft®	JScript®	setDate	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Sets	the	numeric	date	of	the	Date	object	using	local	time.

Syntax

objDate.setDate(numDate)

The	numDate	argument	is	a	numeric	value	equal	to	the	numeric	date.

Remarks

To	set	the	date	value	using	Universal	Coordinated	Time	(UTC),
use	the	setUTCDate	method.

If	the	value	of	numDate	is	greater	than	the	number	of	days	in	the	month	stored	in	the
Date	object	or	is	a	negative	number,	the	date	is	set	to	a	date	equal	to	numDate	minus	the
number	of	days	in	the	stored	month.	For	example,	if	the	stored	date	is	January	5,	1996,
and	setDate(32)	is	called,	the	date	changes	to	February	1,	1996.	Negative	numbers	have
a	similar	behavior.

The	following	example	illustrates	the	use	of	the	setDate	method:

function	SetDateDemo(newdate)
{
		var	d,	s;
		d	=	new	Date();

		d.setDate(newdate);
		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString();	
		return(s);
}

Microsoft®	JScript®	setHours	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Sets	the	hour	value	in	the	Date	object	using	local	time.

Syntax

objDate.setHours(numHours[,	numMin[,	numSec[,	numMilli]]])

The	setHours	method	syntax	has	these	parts:

Part Description

numHours Required.	A	numeric	value	equal	tothe	hours	value.

numMin

Optional.	A	numeric	value	equal	to
the	minutes	value.	Must	be	supplied
if	either	of	the	following	arguments
are	used.

numSec
Optional.	A	numeric	value	equal	to
the	seconds	value.	Must	be	supplied
if	the	following	argument	is	used.

numMilli Optional.	A	numeric	value	equal	to
the	milliseconds	value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

To	set	the	hours	value	using	Universal	Coordinated	Time	(UTC),	use	the	setUTCHours
method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative	number,	other	stored
values	are	modified	accordingly.	For	example,	if	the	stored	date	is	"Jan	5,	1996
00:00:00",	and	setHours(30)	is	called,	the	date	is	changed	to	"Jan	6,	1996	06:00:00."
Negative	numbers	have	a	similar	behavior.

The	following	example	illustrates	the	use	of	the	setHours	method:

function	SetHoursDemo(nhr,	nmin,	nsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setHours(nhr,	nmin,	nsec);
		s	=	"Current	setting	is	"	+	d.toLocaleString()	
		return(s);
}

Microsoft®	JScript®	setMonth	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Sets	the	month	value	in	the	Date	object	using	local	time.

Syntax

objDate.setMonth(numMonth[,	dateVal])

The	setMonth	method	syntax	has	these	parts:

Part Description

numMonth Required.	A	numeric	value	equal	tothe	month.

dateVal

Optional.	A	numeric	value
representing	the	date.	If	not
supplied,	the	value	from	a	call	to
the	getDate	method	is	used.

Remarks

To	set	the	month	value	using	Universal	Coordinated	Time
(UTC),	use	the	setUTCMonth	method.

If	the	value	of	numMonth	is	greater	than	11	(January	is	month	0)	or	is	a	negative
number,	the	stored	year	is	modified	accordingly.	For	example,	if	the	stored	date	is	"Jan
5,	1996"	and	setMonth(14)	is	called,	the	date	is	changed	to	"Mar	5,	1997."

The	following	example	illustrates	the	use	of	the	setMonth	method:

function	SetMonthDemo(newmonth)
{		
		var	d,	s;
		d	=	new	Date();
		d.setMonth(newmonth);
		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString();	
		return(s);
}

Microsoft®	JScript®	setSeconds
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Sets	the	seconds	value	in	the	Date	object	using	local	time.

Syntax

objDate.setSeconds(numSeconds[,	numMilli])

The	setSeconds	method	syntax	has	these	parts:

Part Description

numSeconds Required.	A	numeric	value	equalto	the	seconds	value.

numMilli Optional.	A	numeric	value	equal
to	the	milliseconds	value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

To	set	the	seconds	value	using	Universal	Coordinated	Time	(UTC),	use	the
setUTCSeconds	method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative	number,	other	stored

values	are	modified	accordingly.	For	example,	if	the	stored	date	is	"Jan	5,	1996
00:00:00"	and	setSeconds(150)	is	called,	the	date	is	changed	to	"Jan	5,	1996	00:02:30."

The	following	example	illustrates	the	use	of	the	setSeconds	method:

function	SetSecondsDemo(nsec,	nmsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setSeconds(nsec,	nmsec);
		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString()	+	sep	+	d.getMilliseconds();
		return(s);
}

Microsoft®	JScript®	setTime	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Sets	the	date	and	time	value	in	the	Date	object.

Syntax

objDate.setTime(milliseconds)

The	milliseconds	argument	is	an	integer	value	representing	the	number	of	elapsed
seconds	since	midnight,	January	1,	1970	GMT.

Remarks

If	milliseconds	is	negative,	it	indicates	a	date	before	1970.	The
range	of	available	dates	is	approximately	285,616	years	from
either	side	of	1970.

Setting	the	date	and	time	with	the	setTime	method	is	independent	of	the	time	zone.

The	following	example	illustrates	the	use	of	the	setTime	method:

function	SetTimeTest(newtime)
{
		var	d,	s;
		d	=	new	Date();

		d.setTime(newtime);
		s	=	"Current	setting	is	";
		s	+=	d.toUTCString();
		return(s);
}

Microsoft®	JScript®	setYear	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Sets	the	year	value	in	the	Date	object.

Syntax

objDate.setYear(numYear)

The	numYear	argument	is	a	numeric	value	equal	to	the	year	minus	1900.

Remarks

This	method	is	obsolete,	and	is	maintained	for	backwards
compatibility	only.	Use	the	setFullYear	method	instead.

To	set	the	year	of	a	Date	object	to	1997,	call	setYear(97).	To	set	the	year	to	2010,	call
setYear(2010).	Finally,	to	set	the	year	to	a	year	in	the	range	0-99,	use	the	setFullYear
method.

Note	For	JScript	version	1.0,	setYear	uses	a	value	that	is
the	result	of	the	addition	of	1900	to	the	year	value
provided	by	the	numYear,	regardless	of	the	value	of	the
year.	For	example,	to	set	the	year	to	1899	numYear	is	-1
and	to	set	the	year	to	2000	numYear	is	100.

The	following	example	illustrates	the	use	of	the	setYear	method:

function	SetYearDemo(newyear)

{		
		var	d,	s;
		d	=	new	Date();
		d.setYear(newyear);
		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString();	
		return(s);
}

Microsoft®	JScript®	setUTCFullYear
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	year	value	in	the	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.setUTCFullYear(numYear[,	numMonth[,	numDate]])

The	setUTCFullYear	method	syntax	has	these	parts:

Part Description
numYear Required.	A	numeric	value	equal	to	the	year.

numMonth Optional.	A	numeric	value	equal	to	the	month.	Must
be	supplied	if	numDate	is	supplied.

numDate Optional.	A	numeric	value	equal	to	the	date.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

In	addition,	if	the	value	of	an	argument	is	greater	that	its	range	or	is	a

negative	number,	other	stored	values	are	modified	accordingly.

To	set	the	year	using	local	time,	use	the	setFullYear	method.

The	range	of	years	supported	in	the	Date	object	is	approximately	285,616
years	from	either	side	of	1970.

The	following	example	illustrates	the	use	of	the	setUTCFullYear	method:

function	SetUTCFullYearDemo(newyear)
{
		var	d,	s;
		d	=	new	Date();
		d.setUTCFullYear(newyear);
		s	=	"Current	setting	is	";
		s	+=	d.toUTCString();	
		return(s);
}

Microsoft®	JScript®	setUTCHours
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	hours	value	in	the	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.setUTCHours(numHours[,	numMin[,	numSec[,
numMilli]]])

The	setUTCHours	method	syntax	has	these	parts:

Part Description
numHours Required.	A	numeric	value	equal	to	the	hours	value.

numMin
Optional.	A	numeric	value	equal	to	the	minutes
value.	Must	be	supplied	if	either	numSec	or
numMilli	are	used.

numSec
Optional.	A	numeric	value	equal	to	the	seconds
value.	Must	be	supplied	if	numMilli	argument	is
used.

numMilli Optional.	A	numeric	value	equal	to	the	milliseconds
value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned

from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

To	set	the	hours	value	using	local	time,	use	the	setHours	method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative
number,	other	stored	values	are	modified	accordingly.	For	example,	if	the
stored	date	is	"Jan	5,	1996	00:00:00.00",	and	setUTCHours(30)	is	called,
the	date	is	changed	to	"Jan	6,	1996	06:00:00.00."

The	following	example	illustrates	the	use	of	the	setUTCHours	method:

function	SetUTCHoursDemo(nhr,	nmin,	nsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setUTCHours(nhr,	nmin,	nsec);
		s	=	"Current	setting	is	"	+	d.toUTCString()	
		return(s);
}

Microsoft®	JScript®	setUTCMinutes
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	minutes	value	in	the	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.setUTCMinutes(numMinutes[,	numSeconds[,
numMilli]])

The	setUTCMinutes	method	syntax	has	these	parts:

Part Description

numMinutes Required.	A	numeric	value	equal	to	the	minutesvalue.

numSeconds Optional.	A	numeric	value	equal	to	the	secondsvalue.	Must	be	supplied	if	numMilli	is	used.

numMilli Optional.	A	numeric	value	equal	to	the
milliseconds	value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from

the	getMonth	method.

To	modify	the	minutes	value	using	local	time,	use	the	setMinutes	method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative
number,	other	stored	values	are	modified	accordingly.	For	example,	if	the
stored	date	is	"Jan	5,	1996	00:00:00.00",	and	setUTCMinutes(70)	is
called,	the	date	is	changed	to	"Jan	5,	1996	01:10:00.00."

The	following	example	illustrates	the	use	of	the	setUTCMinutes	method:

function	SetUTCMinutesDemo(nmin,	nsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setUTCMinutes(nmin,nsec);
		s	=	"Current	setting	is	"	+	d.toUTCString()	
		return(s);
}

Microsoft®	JScript®	setUTCMonth
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	month	value	in	the	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.setUTCMonth(numMonth[,	dateVal])

The	setUTCMonth	method	syntax	has	these	parts:

Part Description
numMonth Required.	A	numeric	value	equal	to	the	month.

dateVal
Optional.	A	numeric	value	representing	the	date.	If
not	supplied,	the	value	from	a	call	to	the
getUTCDate	method	is	used.

Remarks

To	set	the	month	value	using	local	time,	use	the	setMonth
method.

If	the	value	of	numMonth	is	greater	than	11	(January	is	month	0)	or	is	a
negative	number,	the	stored	year	is	incremented	or	decremented
appropriately.	For	example,	if	the	stored	date	is	"Jan	5,	1996	00:00:00.00",
and	setUTCMonth(14)	is	called,	the	date	is	changed	to	"Mar	5,	1997

00:00:00.00."

The	following	example	illustrates	the	use	of	the	setUTCMonth	method:

function	SetUTCMonthDemo(newmonth)
{		
		var	d,	s;
		d	=	new	Date();
		d.setUTCMonth(newmonth);
		s	=	"Current	setting	is	";
		s	+=	d.toUTCString();	
		return(s);
}

Microsoft®	JScript®	setUTCSeconds
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	seconds	value	in	the	Date	object	using	Universal
Coordinated	Time	(UTC).

Syntax

objDate.setUTCSeconds(numSeconds[,	numMilli])

The	setUTCSeconds	method	syntax	has	these	parts:

Part Description

numSeconds Required.	A	numeric	value	equal	to	the	secondsvalue.

numMilli Optional.	A	numeric	value	equal	to	the
milliseconds	value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

To	set	the	seconds	value	using	local	time,	use	the	setSeconds	method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative
number,	other	stored	values	are	modified	accordingly.	For	example,	if	the
stored	date	is	"Jan	5,	1996	00:00:00.00"	and	setSeconds(150)	is	called,	the
date	is	changed	to	"Jan	5,	1996	00:02:30.00."

The	following	example	illustrates	the	use	of	the	setSeconds	method:

function	SetUTCSecondsDemo(nsec,	nmsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setUTCSeconds(nsec,	nmsec);
		s	=	"Current	setting	is	";
		s	+=	d.toUTCString()	+	sep	+	d.getUTCMilliseconds();
		return(s);
}

Microsoft®	JScript®	toLocaleString
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	a	date	converted	to	a	string	using	the	current	locale.

Syntax

dateObj.toLocaleString()

Remarks

The	toLocaleString	method	returns	a	String	object	that	contains
the	date	written	in	the	current	locale's	default	format.	The	format
of	the	return	value	depends	on	the	current	locale.	For	example,	in
the	United	States,	toLocaleString	may	return	"01/05/96
00:00:00"	for	January	5,	but	in	Europe,	it	may	return	"05/01/96
00:00:00"	for	the	same	date,	as	European	convention	puts	the	day
before	the	month.

The	following	example	illustrates	the	use	of	the	toLocaleString	method:

function	toLocaleStrDemo()
{		
		var	d,	s;
		d	=	new	Date();

		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString();	
		return(s);
}

Microsoft®	JScript®	parse	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Parses	a	string	containing	a	date,	and	returns	the	number	of	milliseconds	between	that
date	and	midnight,	January	1,	1970.

Syntax

Date.parse(dateVal)

The	dateVal	argument	is	either	a	string	containing	a	date	in	a	format	such	as	"Jan	5,	1996
08:47:00"	or	a	VT_DATE	value	retrieved	from	an	ActiveX®	object	or	other	object.

Remarks

The	parse	method	returns	an	integer	value	representing	the
number	of	milliseconds	between	midnight,	January	1,	1970	and
the	date	supplied	in	dateVal.

The	parse	method	is	a	static	method	of	the	Date	object.	Because	it	is	a	static	method,	it
is	invoked	as	shown	in	the	following	example	rather	than	invoked	as	a	method	of	a
created	Date	object.

var	datestring	=	"November	1,	1997	10:15	AM";
Date.parse(datestring)

The	following	rules	govern	what	the	parse	method	can	successfully
parse:

Short	dates	can	use	either	a	"/"	or	"-"	date	separator,	but	must

follow	the	month/day/year	format,	for	example	"7/20/96".

Long	dates	of	the	form	"July	10	1995"	can	be	given	with	the	year,
month,	and	day	in	any	order,	and	the	year	in	2-digit	or	4-digit
form.	If	you	use	the	2-digit	form,	the	year	must	be	greater	than	or
equal	to	70.

Any	text	inside	parentheses	is	treated	as	a	comment.	These
parentheses	may	be	nested.

Both	commas	and	spaces	are	treated	as	delimiters.	Multiple
delimiters	are	permitted.

Month	and	day	names	must	have	two	or	more	characters.	Two
character	names	that	are	not	unique	are	resolved	as	the	last	match.
For	example,	"Ju"	is	resolved	as	July,	not	June.

The	stated	day	of	the	week	is	ignored	if	it	is	incorrect	given	the
remainder	of	the	supplied	date.	For	example,	"Tuesday	November
9	1996"	is	accepted	and	parsed	even	though	that	date	actually
falls	on	a	Friday.	The	resulting	Date	object	contains	"Friday
November	9	1996".

JScript	handles	all	standard	time	zones,	as	well	as	Universal
Coordinated	Time	(UTC)	and	Greenwich	Mean	Time	(GMT).

Hours,	minutes,	and	seconds	are	separated	by	colons,	although	all
need	not	be	specified.	"10:",	"10:11",	and	"10:11:12"	are	all	valid.

If	the	24-hour	clock	is	used,	it	is	an	error	to	specify	"PM"	for
times	later	than	12	noon.	For	example,	"23:15	PM"	is	an	error.

A	string	containing	an	invalid	date	is	an	error.	For	example,	a
string	containing	two	years	or	two	months	is	an	error.

The	following	example	illustrates	the	use	of	the	parse	method:

function	GetTimeTest(testdate)
{
		var	d,	s,	t;
		var	MinMilli	=	1000	*	60;
		var	HrMilli	=	MinMilli	*	60;
		var	DyMilli	=	HrMilli	*	24;
		d	=	new	Date();
		t	=	Date.parse(testdate);
		s	=	"There	are	"
		s	+=	Math.round(Math.abs(t	/	DyMilli))	+	"	days	"
		s	+=	"between	"	+	testdate	+	"	and	1/1/70";
		return(s);
}

Microsoft®	JScript®	UTC	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	the	number	of	milliseconds	between	midnight,	January	1,	1970	Universal
Coordinated	Time	(UTC)	(or	GMT)	and	the	supplied	date.

Syntax

Date.UTC(year,	month,	day[,	hours[,	minutes[,	seconds[,ms]]]])

The	UTC	method	syntax	has	these	parts:

Part Description

year

Required.	The	full	year	designation	is
required	for	cross-century	date
accuracy.	If	year	is	between	0	and	99
is	used,	then	year	is	assumed	to	be
1900	+	year.

month
Required.	The	month	as	an	integer
between	0	and	11	(January	to
December).

date Required.	The	date	as	an	integer
between	1	and	31.

hours

Optional.	Must	be	supplied	if	minutes
is	supplied.	An	integer	from	0	to	23
(midnight	to	11pm)	that	specifies	the

hour.

minutes
Optional.	Must	be	supplied	if	seconds
is	supplied.	An	integer	from	0	to	59
that	specifies	the	minutes.

seconds
Optional.	Must	be	supplied	if
milliseconds	is	supplied.	An	integer
from	0	to	59	that	specifies	the	seconds.

ms Optional.	An	integer	from	0	to	999
that	specifies	the	milliseconds.

Remarks

The	UTC	method	returns	the	number	of	milliseconds	between	midnight,	January	1,
1970	UTC	and	the	supplied	date.	This	return	value	can	be	used	in	the	setTime	method
and	in	the	Date	object	constructor.	If	the	value	of	an	argument	is	greater	than	its	range
or	is	a	negative	number,	other	stored	values	are	modified	accordingly.	For	example,	if
you	specify	150	seconds,	JScript	redefines	that	number	as	two	minutes	and	30	seconds.

The	difference	between	the	UTC	method	and	the	Date	object	constructor	that	accepts	a
date	is	that	the	UTC	method	assumes	UTC,	and	the	Date	object	constructor	assumes
local	time.

The	UTC	method	is	a	static	method.	Therefore,	a	Date	object	does	not	have	to	be
created	before	it	can	be	used.	The	UTC	method	is	invoked	as	follows:

var	datestring	=	"November	1,	1997	10:15	AM";
Date.UTC(datestring)

Note		If	year	is	between	0	and	99,	use	1900	+
year	for	the	year.

The	following	example	illustrates	the	use	of	the	UTC	method:

function	DaysBetweenDateAndNow(yr,	mo,	dy)
{
		var	d,	r,	t1,	t2,	t3;
		var	MinMilli	=	1000	*	60
		var	HrMilli	=	MinMilli	*	60
		var	DyMilli	=	HrMilli	*	24
		t1	=	Date.UTC(yr,	mo,	dy)
		d	=	new	Date();
		t2	=	d.getTime();
		if	(t2	>=	t1)	
				t3	=	t2	-	t1;
		else
				t3	=	t1	-	t2;
		r	=	Math.round(t3	/	DyMilli);
		return(r);
}

Microsoft®	JScript®	function
Statement

	Language	Reference	
Version	1	

See	Also

Description

Declares	a	new	function.

Syntax

function	functionname([argument1	[,	argument2	[,
...argumentn]]])
{
			statements
}

The	function	statement	syntax	has	the	following	parts:

Part Description

functionname The	name	of	the
function.

argument1...argumentn

An	optional,	comma-
separated	list	of
arguments	the	function
understands.

statements One	or	more	JScript
statements.

Remarks

Use	the	function	statement	to	declare	a	function	for	later	use.
The	code	contained	in	statements	is	not	executed	until	the
function	is	called	from	elsewhere	in	the	script.

The	following	example	illustrates	the	use	of	the	function	statement:

function	myfunction(arg1,	arg2)
{
		var	r;
		r	=	arg1	*	arg2;
		return(r);
}

Note		When	calling	a	function,	ensure	that	you
always	include	the	parentheses	and	any
required	arguments.	Calling	a	function	without
parentheses	causes	the	text	of	the	function	to	be
returned	instead	of	the	results	of	the	function.

Microsoft®	JScript®	parseInt	Method
	Language	Reference	

Version	1	

See	Also																		Applies	To

Description

Returns	an	integer	converted	from	a	string.

Syntax

parseInt(numstring,	[radix])

The	parseInt	method	syntax	has	these	parts:

Part Description

numstring Required.	A	string	to	convert	into	anumber.

radix

Optional.	A	value	between	2	and	36
indicating	the	base	of	the	number
contained	in	numstring.	If	not
supplied,	strings	with	a	prefix	of	'0x'
are	considered	hexidecimal	and
strings	with	a	prefix	of	'0'	are
considered	octal.	All	other	strings
are	considered	decimal.

Remarks

The	parseInt	method	returns	an	integer	value	equal	to	the

number	contained	in	numstring.	If	no	prefix	of	numstring	can	be
successfully	parsed	into	an	integer,	NaN	(not	a	number)	is
returned.

parseInt("abc")				//	Returns	NaN.
parseInt("12abc")		//	Returns	12.

You	can	test	for	NaN	using	the	isNaN	method.

Microsoft®	JScript®	parseFloat
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Returns	a	floating-point	number	converted	from	a	string.

Syntax

parseFloat(numstring)

The	numstring	argument	is	a	string	that	contains	a	floating-point	number.

Remarks

The	parseFloat	method	returns	an	numerical	value	equal	to	the
number	contained	in	numstring.	If	no	prefix	of	numstring	can	be
successfully	parsed	into	a	floating-point	number,	NaN	(not	a
number)	is	returned.

parseFloat("abc")				//	Returns	NaN.
parseFloat("1.2abc")	//	Returns	1.2.

You	can	test	for	NaN	using	the	isNaN	method.

Microsoft®	JScript®	%	Operator
	Language	Reference	

Version	1	

See	Also

Description

Divides	two	numbers	and	returns	the	remainder.

Syntax

result	=	number1	%	number2

The	%	operator	syntax	has	these	parts:

Part Description
result Any	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

The	modulus,	or	remainder,	operator	divides	number1	by
number2	(rounding	floating-point	numbers	to	integers)	and
returns	only	the	remainder	as	result.	For	example,	in	the
following	expression,	A	(which	is	result)	equals	5.

A	=	19	%	6.7

For	information	on	when	a	run-time	error	is	generated	by	the	%
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	*	Operator
	Language	Reference	

Version	1	

See	Also

Description

Multiplies	two	numbers.

Syntax

result	=	number1*number2

The	*	operator	syntax	has	these	parts:

Part Description
result Any	variable.
number1 Any	expression.
number2 Any	expression.

Remarks

For	information	on	when	a	run-time	error	is	generated	by	the	*
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	/	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	divide	two	numbers	and	return	a	numeric	result.

Syntax

result	=	number1	/	number2

The	/	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

For	information	on	when	a	run-time	error	is	generated	by	the	/
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	Global	Object
	Language	Reference	

Version	3	

See	Also																		Methods																		Properties

Description

An	intrinsic	object	whose	purpose	is	to	collect	global	methods
into	one	object.

Syntax

The	Global	object	has	no	syntax.	You	call	its	methods	directly.

Remarks

The	Global	object	is	never	used	directly,	and	cannot	be	created
using	the	new	operator.	It	is	created	when	the	scripting	engine	is
initialized,	thus	making	its	methods	and	properties	available
immediately.

Microsoft®	JScript®	split	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	array	of	strings	that	results	when	a	string	is	separated
into	substrings.

Syntax

stringObj.split(str)

The	split	method	syntax	has	these	parts:

Part Description

stringObj Required.	The	String	object	or	literal	to	be	split.	Thisobject	is	not	modified	by	the	split	method.

str
Required.	A	string	or	Regular	Expression	object
describing	what	character	is	used	to	define	where	the
splits	take	place.

Remarks

The	result	of	the	split	method	is	an	array	of	strings	split	at	each
point	where	str	occurred	in	stingObj.

The	following	example	illustrates	the	use	of	the	split	method:

function	SplitDemo()

{
		var	s,	ss;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		//	Split	at	each	space	character.
		ss	=	s.split("	");
		return(ss);
}

Microsoft®	JScript®	getVarDate
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	VT_DATE	value	in	a	Date	object.

Syntax

dateobj.getVarDate()

The	dateobj	argument	is	any	Date	object.

Remarks

The	getVarDate	method	is	used	when	interacting	with	ActiveX®
objects	or	other	objects	that	accept	and	return	date	values	in
VT_DATE	format.

Microsoft®	JScript®	match	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns,	as	an	array,	the	results	of	a	search	on	a	string	using	a
supplied	Regular	Expression	object.

Syntax

stringObj.match(rgExp)	

The	match	method	syntax	has	these	parts:

Part Description

stringObj Required.	The	String	object	or	literal	on	which	toperform	the	search.
rgExp Required.	The	regular	expression	to	use	in	the	search.

Remarks

The	match	method,	which	behaves	like	the	exec	method,	returns
an	array	of	values.	Element	zero	of	the	array	contains	the	last
matched	characters.	Elements	1...n	contain	matches	to	any
parenthesized	substrings	in	the	regular	expression.

The	method	updates	the	contents	of	the	RegExp	object.

The	following	example	illustrates	the	use	of	the	match	method:

function	MatchDemo()
{
		var	r,	re;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		re	=	/fox/i;
		r	=	s.match(re);
		return(r);
}

Microsoft®	JScript®	replace	Method
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	copy	of	a	string	with	text	replaced	using	a	regular
expression.

Syntax

stringObj.replace(rgExp,	replaceText)

The	replace	method	syntax	has	these	parts:

Part Description

stringObj
Required.	The	String	object	or	literal	on	which	to
perform	the	replace.	This	object	is	not	modified	by
the	replace	method.

rgExp Required.	A	Regular	Expression	object	describing
what	to	search	for.

replaceText
Required.	A	String	object	or	literal	containing	the
text	to	replace	for	every	successful	match	of	rgExp
in	stringObj.

Remarks

The	result	of	the	replace	method	is	a	copy	of	stringObj	after	all
replacements	have	been	made.

The	method	updates	the	contents	of	the	RegExp	object.

The	following	example	illustrates	the	use	of	the	replace	method:

function	ReplaceDemo()
{
		var	r,	re;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		re	=	/fox/i;
		r	=	s.replace(re,	"pig");
		return(r);
}

In	addition,	the	replace	method	can	also	replace	subexpressions
in	the	pattern.	The	following	example	swaps	each	pair	of	words
in	the	string:

function	ReplaceDemo()
{
		var	r,	re;
		var	s	=	"The	quick	brown	fox	jumped	over	the	lazy	yellow	dog.";
		re	=	/(\S+)(\s+)(\S+)/g;
		r	=	s.replace(re,	"$3$2$1");	 //	Swap	each	pair	of	words.
		return(r);
}

Microsoft®	JScript®

OpenAsTextStream
Method

	Scripting	Run-Time	Reference	
	Version	3	

See	Also																		Applies	To

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can
be	used	to	read	from,	write	to,	or	append	to	the	file.

Syntax

object.OpenAsTextStream([iomode,	[format]])

The	OpenAsTextStream	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	object.

iomode
Optional.	Indicates	input/output	mode.	Can	be	one	of
three	constants:	ForReading,	ForWriting,	or
ForAppending.

format
Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	any	of	the	following	settings:

Constant Value Description

ForReading 1 Open	a	file	for	reading	only.	You	can't
write	to	this	file.

ForWriting 2
Open	a	file	for	writing.	If	a	file	with	the
same	name	exists,	its	previous	contents
are	overwritten.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the
file.

The	format	argument	can	have	any	of	the	following	settings:

Constant Value Description

TristateUseDefault -2 Opens	the	file	using	the	system
default.

TristateTrue -1 Opens	the	file	as	Unicode.
TristateFalse 	0 Opens	the	file	as	ASCII.

Remarks

The	OpenAsTextStream	method	provides	the	same	functionality
as	the	OpenTextFile	method	of	the	FileSystemObject.	In
addition,	the	OpenAsTextStream	method	can	be	used	to	write	to
a	file.

The	following	code	illustrates	the	use	of	the	OpenAsTextStream	method:

function	TextStreamTest()
{
				var	fso,	f,	ts,	s;
				var	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	8;
				var	TristateUseDefault	=	-2,	TristateTrue	=	-1,	TristateFalse	=	0;
				fso	=	new	ActiveXObject("Scripting.FileSystemObject");

				fso.CreateTextFile("test1.txt");											//	Create	a	file.
				f	=	fso.GetFile("test1.txt");
				ts	=	f.OpenAsTextStream(ForWriting,	TristateUseDefault
				ts.Write("Hello	World");
				ts.Close();
				ts	=	f.OpenAsTextStream(ForReading,	TristateUseDefault
				s	=	ts.ReadLine();
				ts.Close();
				return(s);
}

Microsoft®	JScript®	abs	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	acos	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	ActiveXObject
Object
See	Also

	Language	Reference	

GetObject	Function

Microsoft®	JScript®	Operator
Behavior

	Language	Reference	
Version	1	

The	following	table	describes	the	behavior	of	most	Microsoft
JScript	operators.	The	columns	and	rows	represent	the	different
types	of	expressions	possible	on	either	side	of	an	operator	in
JScript,	and	the	entries	in	the	table	describe	the	behavior.

An	E	indicates	a	run-time	error.	An	N	indicates	a	numeric	result,	or	a	Boolean	result	in
the	case	of	logical	operators.

	 obj as ns num bool undef null
obj N E N N N E E
as E E E E E E E
ns N E N N N E E
num N E N N N E E
bool N E N N N E E
undef E E E E E E E
null E E E E E E E

obj	=	object,	as	=	alphanumeric	string,	ns	=
numeric	string,	num	=	number,	bool	=
Boolean,	undef	=	undefined,	null	=	null	value.

Microsoft®	JScript®	anchor	Method
See	Also

	Language	Reference	

link	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	anchor	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	asin	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	atan	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	atan2	Method
See	Also

	Language	Reference	

atan	Method
Math	Object	Methods
tan	Method

Microsoft®	JScript®	atan2	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	atEnd	Method
See	Also

	Language	Reference	

item	Method
moveFirst	Method
moveNext	Method

Microsoft®	JScript®	atEnd	Method
Applies	To

	Language	Reference	

Enumerator	Object

Microsoft®	JScript®	big	Method
See	Also

	Language	Reference	

small	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	big	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	&	Operator
See	Also

	Language	Reference	

&=	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	<<	Operator
See	Also

	Language	Reference	

<<=	Operator
>>	Operator
>>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	~	Operator
See	Also

	Language	Reference	

!	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	|	Operator
See	Also

	Language	Reference	

|=	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	>>	Operator
See	Also

	Language	Reference	

<<	Operator
>>=	Operator
>>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	blink	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	blink	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	bold	Method
See	Also

	Language	Reference	

italics	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	bold	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	Boolean	Object
See	Also

	Language	Reference	

new	Operator
var	Statement

Microsoft®	JScript®	Boolean	Object
Methods

	Language	Reference	

Members	of	Boolean.prototype

toString	Method
valueOf	Method

Nonmembers	of	Boolean.prototype

The	Boolean	object	has	no	methods	that	are	not	part	of	the	prototype.

Microsoft®	JScript®	Boolean	Object
Properties

	Language	Reference	

Members	of	Boolean.prototype

constructor	Property

Nonmembers	of	Boolean.prototype

prototype	Property

Microsoft®	JScript®	break	Statement
See	Also

	Language	Reference	

continue	Statement
do...while	Statement
for	Statement
for...in	Statement
Labeled	Statement
while	Statement

Microsoft®	JScript®	@cc_on
Statement
See	Also

	Language	Reference	

Conditional	Compilation
Conditional	Compilation	Variables
@if	Statement
@set	Statement

Microsoft®	JScript®	ceil	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	charAt	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	charAt	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	charCodeAt
Method
See	Also

	Language	Reference	

fromCharCode	Method
String	Object	Methods

Microsoft®	JScript®	charCodeAt
Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	,	Operator
See	Also

	Language	Reference	

for	Statement
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	Comparison
Operators
See	Also

	Language	Reference	

Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	compile	Method
See	Also

	Language	Reference	

Regular	Expression	Object	Methods
Regular	Expression	Object	Properties
Regular	Expression	Syntax

Microsoft®	JScript®	compile	Method
Applies	To

	Language	Reference	

Regular	Expression	Object

Microsoft®	JScript®	+=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	increment	a	variable	by	a	specified	amount.

Syntax

result	+=	expression

The	+=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	this	operator	is	exactly	the	same	as	specifying:

result	=	result	+	expression

The	underlying	subtype	of	the	expressions	determines	the
behavior	of	the	+=	operator.

If Then
Both	expressions	are	numeric	or
Boolean Add.

Both	expressions	are	strings Concatenate.
One	expression	is	numeric	and
the	other	is	a	string Concatenate.

For	information	on	when	a	run-time	error	is	generated	by	the	+=	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	&=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	perform	a	bitwise	AND	on	an	expression.

Syntax

result	&=	expression

The	&=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	this	operator	is	exactly	the	same	as	specifying:

result	=	result	&	expression

The	&=	operator	looks	at	the	binary	representation	of	the	values
of	result	and	expression	and	does	a	bitwise	AND	operation	on
them.	The	output	of	this	operation	behaves	like	this:

0101				(result)
1100				(expression)

0100				(output)

Any	time	both	of	the	expressions	have	a	1	in	a	digit,	the	result
has	a	1	in	that	digit.	Otherwise,	the	result	has	a	0	in	that	digit.

For	information	on	when	a	run-time	error	is	generated	by	the	&=	operator,
see	the	Operator	Behavior	table.

Microsoft®	JScript®	|=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	perform	a	bitwise	OR	on	an	expression.

Syntax

result	|=	expression

The	|=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	this	operator	is	exactly	the	same	as	specifying:

result	=	result	|	expression

The	|=	operator	looks	at	the	binary	representation	of	the	values	of
result	and	expression	and	does	a	bitwise	OR	operation	on	them.
The	result	of	this	operation	behaves	like	this:

0101				(result)
1100				(expression)

1101				(output)

Any	time	either	of	the	expressions	has	a	1	in	a	digit,	the	result
has	a	1	in	that	digit.	Otherwise,	the	result	has	a	0	in	that	digit.

For	information	on	when	a	run-time	error	is	generated	by	the	|=	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	^=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	perform	a	bitwise	exclusive	OR	on	an	expression.

Syntax

result	^=	expression

The	^=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	the	^=	operator	is	exactly	the	same	as	specifying:

result	=	result	^	expression

The	^=	operator	looks	at	the	binary	representation	of	the	values
of	two	expressions	and	does	a	bitwise	exclusive	OR	operation	on
them.	The	result	of	this	operation	behaves	as	follows:

0101				(result)
1100				(expression)

1001				(result)

When	one,	and	only	one,	of	the	expressions	has	a	1	in	a	digit,	the
result	has	a	1	in	that	digit.	Otherwise,	the	result	has	a	0	in	that
digit.

For	information	on	when	a	run-time	error	is	generated	by	the	^=	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	/=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	divide	a	variable	by	an	expression.

Syntax

result	/=	expression

The	/=	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression Any	numeric	expression.

Remarks

Using	the	/=	operator	is	exactly	the	same	as	specifying:

result	=	result	/	expression

For	information	on	when	a	run-time	error	is	generated	by	the	/=
operator,	see	the	Operator	Behavior	table.

<<=	operator">	<<=	operator;	Left	Shift	operator;	compound
assignment	operators;	operators;	shifting	bits">

Microsoft®	JScript®	<<=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	shift	the	bits	of	an	expression	to	the	left.

Syntax

result	<<=	expression

The	<<=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	the	<<=	operator	is	exactly	the	same	as	specifying:

result	=	result	<<	expression

The	<<=	operator	shifts	the	bits	of	result	left	by	the	number	of
bits	specified	in	expression.	For	example:

var	temp

temp	=	14
temp	<<=	2	

The	variable	temp	has	a	value	of	56	because	14	(00001110	in
binary)	shifted	left	two	bits	equals	56	(00111000	in	binary).	Bits
are	filled	in	with	zeroes	when	shifting.

For	information	on	when	a	run-time	error	is	generated	by	the	<<=	operator,
see	the	Operator	Behavior	table.

Microsoft®	JScript®	%=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	divide	two	numbers	and	return	only	the	remainder.

Syntax

result	%=	expression

The	%=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	numeric	expression.

Remarks

Using	the	%=	operator	is	exactly	the	same	as	specifying:

result	=	result	%	expression

For	information	on	when	a	run-time	error	is	generated	by	the	%=
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	*=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	multiply	a	number	by	another	number.

Syntax

result	*=	expression

The	*=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	the	*=	operator	is	exactly	the	same	as	specifying:

result	=	result	*	expression

For	information	on	when	a	run-time	error	is	generated	by	the	*=
operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	>>=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	shift	the	bits	of	an	expression	to	the	right,	preserving
sign.

Syntax

result	>>=	expression

The	>>=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	the	>>=	operator	is	exactly	the	same	as	specifying:

result	=	result	>>	expression

The	>>=	operator	shifts	the	bits	of	result	right	by	the	number	of
bits	specified	in	expression.	The	sign	bit	of	result	is	used	to	fill
the	digits	from	the	left.	Digits	shifted	off	the	right	are	discarded.
For	example,	after	the	following	code	is	evaluated,	temp	has	a
value	of	-4:	14	(11110010	in	binary)	shifted	right	two	bits	equals
-4	(11111100	in	binary).

var	temp
temp	=	-14
temp	>>=	2

For	information	on	when	a	run-time	error	is	generated	by	the
>>=	operator,	see	the	Operator	Behavior	table.

Microsoft®	JScript®	-=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	subtract	the	value	of	an	expression	from	a	variable.

Syntax

result	-=	expression

The	-=	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression Any	numeric	expression.

Remarks

Using	the	-=	operator	is	exactly	the	same	as	doing	the	following:

result	=	result	-	expression
For	information	on	when	a	run-time	error	is	generated	by	the	-	operator,	see	the	Operator
Behavior	table.

Microsoft®	JScript®	>>>=	Operator
	Language	Reference	

Version	1	

See	Also

Description

Used	to	make	an	unsigned	right	shift	of	the	bits	in	a	variable.

Syntax

result	>>>=	expression

The	>>>=	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression Any	expression.

Remarks

Using	the	>>>=	operator	is	exactly	the	same	as	doing	the
following:

result	=	result	>>>	expression

The	>>>=	operator	shifts	the	bits	of	result	right	by	the	number	of
bits	specified	in	expression.	Zeroes	are	filled	in	from	the	left.
Digits	shifted	off	the	right	are	discarded.	For	example:

var	temp

temp	=	-14
temp	>>>=	2

The	variable	temp	has	a	value	of	1073741820	as	-14	(11111111
11111111	11111111	11110010	in	binary)	shifted	right	two	bits
equals	1073741820	(00111111	11111111	11111111	11111100	in
binary).

For	information	on	when	a	run-time	error	is	generated	by	the	>>>=	operator,	see	the
Operator	Behavior	table.

Microsoft®	JScript®	concat	Method
(Array)
See	Also

	Language	Reference	

concat	Method	(String)
join	Method

Microsoft®	JScript®	concat	Method
(Array)
Applies	To

	Language	Reference	

Array	Object
String	Object

Microsoft®	JScript®	concat	Method
(String)
See	Also

	Language	Reference	

Addition	Operator	(+)
concat	Method	(Array)
String	Object	Methods

Microsoft®	JScript®	concat	Method
(String)
Applies	To

	Language	Reference	

Array	Object
String	Object

Microsoft®	JScript®	Conditional
Compilation
See	Also

	Language	Reference	

Conditional	Compilation	Variables
@cc_on	Statement
@if	Statement
@set	Statement

Microsoft®	JScript®	Conditional
Compilation	Variables
See	Also

	Language	Reference	

Conditional	Compilation
@cc_on	Statement
@if	Statement
@set	Statement

Microsoft®	JScript®	?:	Operator
See	Also

	Language	Reference	

if...else	Statement
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	constructor
Property
See	Also

	Language	Reference	

prototype	Property

Microsoft®	JScript®	constructor
Property
Applies	To

	Language	Reference	

Array	Object
Boolean	Object
Date	Object
Function	Object
Math	Object
Number	Object
Object	Object
String	Object

Microsoft®	JScript®	continue
Statement
See	Also

	Language	Reference	

break	Statement
do...while	Statement
for	Statement
for...in	Statement
Labeled	Statement
while	Statement

Microsoft®	JScript®	cos	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	Date	Object
See	Also

	Language	Reference	

new	Operator
var	Statement

Microsoft®	JScript®	Date	Object	
Properties

	Language	Reference	

constructor	Property
prototype	Property

Microsoft®	JScript®	++	and	--
Operators
See	Also

	Language	Reference	

Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	description
Property
See	Also

	Language	Reference	

number	Property

Microsoft®	JScript®	description
Property
Applies	To

	Language	Reference	

Error	Object

Microsoft®	JScript®	dimensions
Method
See	Also

	Language	Reference	

getItem	Method
lbound	Method
toArray	Method
ubound	Method

Microsoft®	JScript®	dimensions
Method
Applies	To

	Language	Reference	

VBArray	Object

Microsoft®	JScript®	do...while
Statement
See	Also

	Language	Reference	

break	Statement
continue	Statement
for	Statement
for...in	Statement
while	Statement
Labeled	Statement

Microsoft®	JScript®	E	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	Enumerator
Object
See	Also

	Language	Reference	

Drives	Collection
Files	Collection
Folders	Collection

Microsoft®	JScript®	Enumerator
Object
Methods

	Language	Reference	

atEnd	Method
item	Method
moveFirst	Method
moveNext	Method

Microsoft®	JScript®	Enumerator
Object
Properties

	Language	Reference	

The	Enumerator	object	has	no	properties.

Microsoft®	JScript®	Error	Object
See	Also

	Language	Reference	

new	Operator
throw	Statement
try...catch	Statement
var	Statement

Microsoft®	JScript®	Error	Object	
Properties

	Language	Reference	

description	Property
number	Property

Microsoft®	JScript®	escape	Method
See	Also

	Language	Reference	

String	Object
unescape	Method

Microsoft®	JScript®	escape	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	eval	Method
See	Also

	Language	Reference	

String	Object

Microsoft®	JScript®	eval	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	exec	Method
See	Also

	Language	Reference	

RegExp	Object
Regular	Expression	Object	Methods
Regular	Expression	Object	Properties
Regular	Expression	Syntax

Microsoft®	JScript®	exec	Method
Applies	To

	Language	Reference	

Regular	Expression	Object

Microsoft®	JScript®	exp	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	fixed	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	fixed	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	floor	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	fontcolor	Method
See	Also

	Language	Reference	

fontsize	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	fontcolor	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	fontsize	Method
See	Also

	Language	Reference	

fontcolor	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	fontsize	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	for	Statement
See	Also

	Language	Reference	

for...in	Statement
while	Statement

Microsoft®	JScript®	for...in	Statement
See	Also

	Language	Reference	

for	Statement
while	Statement

Microsoft®	JScript®	fromCharCode
Method
See	Also

	Language	Reference	

charCodeAt	Method
String	Object	Methods

Microsoft®	JScript®	fromCharCode
Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	Function	Object
See	Also

	Language	Reference	

function	Statement
new	Operator
var	Statement

Microsoft®	JScript®	Function	Object
Methods

	Language	Reference	

Members	of	Function.prototype

toString	Method
valueOf	Method

Nonmembers	of	Function.prototype

The	Function	object	has	no	methods	that	are	not	part	of	the	prototype.

Microsoft®	JScript®	Function	Object
Properties

	Language	Reference	

Members	of	Function.prototype

arguments	Property
caller	Property

constructor	Property

Nonmembers	of	Function.prototype

prototype	Property

Microsoft®	JScript®	getItem	Method
See	Also

	Language	Reference	

dimensions	Method
lbound	Method
toArray	Method
ubound	Method

Microsoft®	JScript®	getItem	Method
Applies	To

	Language	Reference	

VBArray	Object

Microsoft®	JScript®	GetObject
Function
See	Also

	Language	Reference	

ActiveXObject	Object

Microsoft®	JScript®	@if	Statement
See	Also

	Language	Reference	

Conditional	Compilation
Conditional	Compilation	Variables
@cc_on	Statement
@set	Statement

Microsoft®	JScript®	if...else	Statement
See	Also

	Language	Reference	

Conditional	Operator	(?:)

Microsoft®	JScript®	indexOf	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	isNaN	Method
See	Also

	Language	Reference	

isFinite	Method
NaN	Property	(Global)
parseFloat	Method
parseInt	Method

Microsoft®	JScript®	isNaN	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	italics	Method
See	Also

	Language	Reference	

bold	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	italics	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	item	Method
See	Also

	Language	Reference	

atEnd	Method
moveFirst	Method
moveNext	Method

Microsoft®	JScript®	item	Method
Applies	To

	Language	Reference	

Enumerator	Object

Microsoft®	JScript®	join	Method
See	Also

	Language	Reference	

Array	Object	Methods
String	Object

Microsoft®	JScript®	join	Method
Applies	To

	Language	Reference	

Array	Object

Microsoft®	JScript®	Labeled
Statement
See	Also

	Language	Reference	

break	Statement
continue	Statement

Microsoft®	JScript®	lastIndexOf
Method
See	Also

	Language	Reference	

indexOf	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	lastIndexOf
Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	lbound	Method
See	Also

	Language	Reference	

dimensions	Method
getItem	Method
toArray	Method
ubound	Method

Microsoft®	JScript®	lbound	Method
Applies	To

	Language	Reference	

VBArray	Object

Microsoft®	JScript®	length	Property
(Array)
See	Also

	Language	Reference	

length	Property	(Function)
length	Property	(String)

Microsoft®	JScript®	length	Property
(Array)
Applies	To

	Language	Reference	

Array	Object

Microsoft®	JScript®	length	Property
(Function)
See	Also

	Language	Reference	

arguments	Property
length	Property	(Array)
length	Property	(String)

Microsoft®	JScript®	length	Property
(Function)
Applies	To

	Language	Reference	

Function	Object

Microsoft®	JScript®	length	Property
(String)
See	Also

	Language	Reference	

length	Property	(Array)
length	Property	(Function)
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	length	Property
(String)
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	link	Method
See	Also

	Language	Reference	

anchor	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	link	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	LN2	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	LN10	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	log	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	LOG2E	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	Log10E	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	Math	Object
See	Also

	Language	Reference	

Number	Object

Microsoft®	JScript®	max	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	min	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	moveFirst
Method
See	Also

	Language	Reference	

atEnd	Method
item	Method
moveNext	Method

Microsoft®	JScript®	moveFirst
Method
Applies	To

	Language	Reference	

Enumerator	Object

Microsoft®	JScript®	moveNext
Method
See	Also

	Language	Reference	

atEnd	Method
item	Method
moveFirst	Method

Microsoft®	JScript®	moveNext
Method
Applies	To

	Language	Reference	

Enumerator	Object

Microsoft®	JScript®	NaN	Property
Applies	To

	Language	Reference	

Number	Object

Microsoft®	JScript®	new	Operator
See	Also

	Language	Reference	

function	Statement

Microsoft®	JScript®	number	Property
See	Also

	Language	Reference	

description	Property

Microsoft®	JScript®	number	Property
Applies	To

	Language	Reference	

Error	Object

Microsoft®	JScript®	Object	Object
See	Also

	Language	Reference	

Function	Object
Global	Object

Microsoft®	JScript®	Object	Object
Methods

	Language	Reference	

Members	of	Object.prototype

toString	Method
valueOf	Method

Non-members	of	Object.prototype

The	Object	object	has	no	methods	that	are	not	part	of	the	prototype.

Microsoft®	JScript®	Object	Object
Properties

	Language	Reference	

Members	of	Object.prototype

prototype	Property
constructor	Property

Non-members	of	Object.prototype

The	Object	object	has	no	properties	that	are	not	part	of	the	prototype.

Microsoft®	JScript®	PI	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	pow	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	prototype
Property
See	Also

	Language	Reference	

constructor	Property

Microsoft®	JScript®	prototype
Property
Applies	To

	Language	Reference	

Array	Object
Boolean	Object
Date	Object
Function	Object
Number	Object
Object	Object
String	Object

Microsoft®	JScript®	random	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	return	Statement
See	Also

	Language	Reference	

function	Statement

Microsoft®	JScript®	reverse	Method
See	Also

	Language	Reference	

Array	Object	Methods

Microsoft®	JScript®	reverse	Method
Applies	To

	Language	Reference	

Array	Object

Microsoft®	JScript®	round	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	ScriptEngine
Function
See	Also

	Language	Reference	

ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	JScript®

ScriptEngineBuildVersion
Function
See	Also

	Language	Reference	

ScriptEngine	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	JScript®

ScriptEngineMajorVersion
Function
See	Also

	Language	Reference	

ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	JScript®

ScriptEngineMinorVersion
Function
See	Also

	Language	Reference	

ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function

Microsoft®	JScript®	sin	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	slice	Method
See	Also

	Language	Reference	

slice	Method	(String)

Microsoft®	JScript®	slice	Method
Applies	To

	Language	Reference	

Array	Object
String	Object

Microsoft®	JScript®	slice	Method
(String)
See	Also

	Language	Reference	

slice	Method	(Array)
String	Object	Methods

Microsoft®	JScript®	slice	Method
(String)
Applies	To

	Language	Reference	

Array	Object
String	Object

Microsoft®	JScript®	small	Method
See	Also

	Language	Reference	

big	Method
String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	small	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	sort	Method
See	Also

	Language	Reference	

Array	Object	Methods

Microsoft®	JScript®	sort	Method
Applies	To

	Language	Reference	

Array	Object

Microsoft®	JScript®	source	Property
See	Also

	Language	Reference	

Regular	Expression	Object	Methods
Regular	Expression	Object	Properties
Regular	Expression	Syntax

Microsoft®	JScript®	source	Property
Applies	To

	Language	Reference	

Regular	Expression	Object

Microsoft®	JScript®	sqrt	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	SQRT1_2
Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	SQRT2	Property
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	strike	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties

Microsoft®	JScript®	strike	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	String	Object
See	Also

	Language	Reference	

new	Operator

Microsoft®	JScript®	String	Object
Properties

	Language	Reference	

Members	of	String.prototype

constructor	Property

Nonmembers	of	String.prototype

length	Property
prototype	Property

Microsoft®	JScript®	sub	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
sup	Method

Microsoft®	JScript®	sub	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	substr	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
substring	Method

Microsoft®	JScript®	substr	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	substring	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
substr	Method

Microsoft®	JScript®	substring	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	sup	Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
sub	Method

Microsoft®	JScript®	sup	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	switch	Statement
See	Also

	Language	Reference	

break	Statement
if...else	Statement

Microsoft®	JScript®	tan	Method
Applies	To

	Language	Reference	

Math	Object

Microsoft®	JScript®	test	Method
See	Also

	Language	Reference	

RegExp	Object
Regular	Expression	Object	Methods
Regular	Expression	Object	Properties
Regular	Expression	Syntax

Microsoft®	JScript®	test	Method
Applies	To

	Language	Reference	

Regular	Expression	Object

Microsoft®	JScript®	this	Statement
See	Also

	Language	Reference	

new	Operator

Microsoft®	JScript®	toArray	Method
See	Also

	Language	Reference	

dimensions	Method
getItem	Method
lbound	Method
ubound	Method

Microsoft®	JScript®	toArray	Method
Applies	To

	Language	Reference	

VBArray	Object

Microsoft®	JScript®	toLowerCase
Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
toUpperCase	Method

Microsoft®	JScript®	toLowerCase
Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	toString	Method
See	Also

	Language	Reference	

function	Statement

Microsoft®	JScript®	toString	Method
Applies	To

	Language	Reference	

Array	Object
Boolean	Object
Function	Object
Number	Object
Object	Object
String	Object

Microsoft®	JScript®	toUpperCase
Method
See	Also

	Language	Reference	

String	Object	Methods
String	Object	Properties
toLowerCase	Method

Microsoft®	JScript®	toUpperCase
Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	typeof	Operator
See	Also

	Language	Reference	

Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	ubound	Method
See	Also

	Language	Reference	

dimensions	Method
getItem	Method
lbound	Method
toArray	Method

Microsoft®	JScript®	ubound	Method
Applies	To

	Language	Reference	

VBArray	Object

Microsoft®	JScript®	unescape	Method
See	Also

	Language	Reference	

escape	Method
String	Object

Microsoft®	JScript®	unescape	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	>>>	Operator
See	Also

	Language	Reference	

>>>=	Operator
<<	Operator
>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	valueOf	Method
See	Also

	Language	Reference	

toString	Method

Microsoft®	JScript®	valueOf	Method
Applies	To

	Language	Reference	

Array	Object
Boolean	Object
Date	Object
Function	Object
Number	Object
Object	Object
String	Object

Microsoft®	JScript®	var	Statement
See	Also

	Language	Reference	

function	Statement
new	Operator

Microsoft®	JScript®	VBArray	Object
See	Also

	Language	Reference	

Array	Object

Microsoft®	JScript®	VBArray	Object
Methods

	Language	Reference	

dimensions	Method
getItem	Method
lbound	Method
toArray	Method
ubound	Method

Microsoft®	JScript®	VBArray	Object
Properties

	Language	Reference	

The	VBArray	object	has	no	properties.

Microsoft®	JScript®	void	Operator
See	Also

	Language	Reference	

Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	while	Statement
See	Also

	Language	Reference	

break	Statement
continue	Statement
do...while	Statement
for	Statement
for...in	Statement

Microsoft®	JScript®	with	Statement
See	Also

	Language	Reference	

this	Statement

Microsoft®	JScript®	isFinite	Method
See	Also

	Language	Reference	

isNaN	Method

Microsoft®	JScript®	isFinite	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	search	Method
See	Also

	Language	Reference	

exec	Method
match	Method
replace	Method
String	Object	Methods
test	Method

Microsoft®	JScript®	search	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	delete	Operator
See	Also

	Language	Reference	

Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	Add	Method
(Dictionary)
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Folders)
Exists	Method
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	JScript®	Add	Method
(Dictionary)
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	JScript®	Add	Method
(Folders)
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)

Microsoft®	JScript®	Add	Method
(Folders)
Applies	To

	Scripting	Run-Time	Reference	

Folders	Collection

Microsoft®	JScript®	AtEndOfLine
Property
See	Also

	Scripting	Run-Time	Reference	

AtEndOfStream	Property

Microsoft®	JScript®	AtEndOfLine
Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	AtEndOfStream
Property
See	Also

	Scripting	Run-Time	Reference	

AtEndOfLine	Property

Microsoft®	JScript®	AtEndOfStream
Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	Attributes
Property
See	Also

	Scripting	Run-Time	Reference	
	

DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Attributes
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	AvailableSpace
Property
See	Also

	Scripting	Run-Time	Reference	
	

DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	AvailableSpace
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	BuildPath
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDriveName	Method
GetExtensionName	Method
GetFileName	Method
GetParentFolderName	Method
GetTempName	Method

Microsoft®	JScript®	BuildPath
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	Close	Method
See	Also

	Scripting	Run-Time	Reference	

Read	Method
Write	Method

Microsoft®	JScript®	Close	Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	Column	Property
See	Also

	Scripting	Run-Time	Reference	

Line	Property

Microsoft®	JScript®	Column	Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	Copy	Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
CopyFolder	Method
Delete	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	JScript®	Copy	Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object
Folder	Object

Microsoft®	JScript®	CopyFile	Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
CopyFolder	Method
CreateTextFile	Method
DeleteFile	Method
MoveFile	Method

Microsoft®	JScript®	CopyFile	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	CopyFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
Copy	Method
CreateFolder	Method
DeleteFolder	Method
MoveFolder	Method

Microsoft®	JScript®	CopyFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	Count	Property
See	Also

	Scripting	Run-Time	Reference	

CompareMode	Property
Item	Property
Key	Property

Microsoft®	JScript®	Count	Property
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object
Drives	Collection
Files	Collection
Folders	Collection

Microsoft®	JScript®	CreateFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFolder	Method
DeleteFolder	Method
MoveFolder	Method

Microsoft®	JScript®	CreateFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	CreateTextFile
Method
See	Also

	Scripting	Run-Time	Reference	

CreateFolder	Method
OpenAsTextStream	Method
OpenTextFile	Method

Microsoft®	JScript®	CreateTextFile
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object
Folder	Object

Microsoft®	JScript®	DateCreated
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	DateCreated
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®

DateLastAccessed
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®

DateLastAccessed
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®

DateLastModified
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®

DateLastModified
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	Delete	Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
DeleteFile	Method
DeleteFolder	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	JScript®	Delete	Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object
Folder	Object

Microsoft®	JScript®	DeleteFile
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
CreateTextFile	Method
Delete	Method
DeleteFolder	Method
MoveFile	Method

Microsoft®	JScript®	DeleteFile
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	DeleteFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFolder	Method
CreateFolder	Method
Delete	Method
DeleteFile	Method
MoveFolder	Method

Microsoft®	JScript®	DeleteFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	Dictionary
Object
Methods

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	JScript®	Drive	Object
See	Also

	Scripting	Run-Time	Reference	
	

Drives	Collection
File	Object
Files	Collection
Folder	Object
Folders	Collection
GetDrive	Method

Microsoft®	JScript®	Drive	Object
Properties

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	Drive	Object
Methods

	Scripting	Run-Time	Reference	
	

The	Drive	object	has	no	methods.

Microsoft®	JScript®	Drive	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Drive	Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	DriveExists
Method
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
FileExists	Method
FolderExists	Method
GetDrive	Method
GetDriveName	Method
IsReady	Property

Microsoft®	JScript®	DriveExists
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	DriveLetter
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	DriveLetter
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	Drives	Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Property
File	Object
Files	Collection
Folder	Object
Folders	Collection

Microsoft®	JScript®	Drives	Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	JScript®	Drives	Collection
Methods

	Scripting	Run-Time	Reference	

The	Drives	collection	has	no	methods.

Microsoft®	JScript®	Drives	Property
See	Also

	Scripting	Run-Time	Reference	
	

Drives	Collection
Files	Property
SubFolders	Property

Microsoft®	JScript®	Drives	Property
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	JScript®	DriveType
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	DriveType
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	Exists	Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	JScript®	Exists	Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	JScript®	File	Object
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
Files	Collection
Folder	Object
Folders	Collection

Microsoft®	JScript®	File	Object
Properties

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
Type	Property

Microsoft®	JScript®	File	Object
Methods

	Scripting	Run-Time	Reference	
	

Copy	Method
Delete	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	JScript®	FileExists
Method
See	Also

	Scripting	Run-Time	Reference	

DriveExists	Method
FolderExists	Method
GetFile	Method
GetFileName	Method

Microsoft®	JScript®	FileExists
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	Files	Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
File	Object
Folder	Object
Folders	Collection

Microsoft®	JScript®	Files	Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	JScript®	Files	Collection
Methods

	Scripting	Run-Time	Reference	

The	Files	collection	has	no	methods.

Microsoft®	JScript®	Version
Information

	Language	Reference	

The	following	table	lists	the	version	of	Microsoft	JScript
implemented	by	host	applications.

Host	Application
JScript	Version
1.0 2.0 3.0 4.0 5.0

Microsoft	Internet	Explorer	3.0 x 	 	 	 	
Microsoft	Internet	Information	Server	1.0 	 x 	 	 	
Microsoft	Internet	Explorer	4.0 	 	 x 	 	
Microsoft	Internet	Information	Server	4.0 	 	 x 	 	
Microsoft	Windows	Scripting	Host	1.0 	 	 x 	 	
Microsoft	Visual	Studio	6.0 	 	 	 x 	
Microsoft	Internet	Explorer	5.0 	 	 	 	 x
Microsoft	Internet	Information	Services	5.0 	 	 	 	 x

The	following	table	lists	JScript	language	features	and	the
version	when	first	introduced.

Language	Element
Version	First	Introduced

1.0 2.0 3.0 4.0 5.0
$1...$9	Properties 	 	 x 	 	
abs	Method x 	 	 	 	
acos	Method x 	 	 	 	
ActiveXObject	Object 	 	 x 	 	
Addition	Operator	(+) x 	 	 	 	
anchor	Method x 	 	 	 	

arguments	Property 	 x 	 	 	
Array	Object 	 x 	 	 	
asin	Method x 	 	 	 	
Assignment	Operator	(=) x 	 	 	 	
atan	Method x 	 	 	 	
atan2	Method x 	 	 	 	
atEnd	Method 	 	 x 	 	
big	Method x 	 	 	 	
Bitwise	AND	Operator	(&) x 	 	 	 	
Bitwise	Left	Shift	Operator
(<<) x 	 	 	 	

Bitwise	NOT	Operator	(~) x 	 	 	 	
Bitwise	OR	Operator	(|) x 	 	 	 	
Bitwise	Right	Shift	Operator
(>>) x 	 	 	 	

Bitwise	XOR	Operator	(^) x 	 	 	 	
blink	Method x 	 	 	 	
bold	Method x 	 	 	 	
Boolean	Object 	 x 	 	 	
break	Statement x 	 	 	 	
caller	Property 	 x 	 	 	
catch	Statement 	 	 	 	 x
@cc_on	Statement 	 	 x 	 	
ceil	Method x 	 	 	 	
charAt	Method x 	 	 	 	
charCodeAt	Method 	 	 x 	 	
Comma	Operator	(,) x 	 	 	 	
//	(Single-line	Comment
Statement) x 	 	 	 	

/*..*/	(Multiline	Comment x 	 	 	 	

Statement)
Comparison	Operators x 	 	 	 	

compile	Method 	 	 x 	 	
concat	Method	(Array) 	 	 x 	 	
concat	Method	(String) 	 	 x 	 	
Conditional	Compilation 	 	 x 	 	
Conditional	Compilation
Variables 	 	 x 	 	

Conditional	(trinary)	Operator
(?:) x 	 	 	 	

constructor	Property 	 x 	 	 	
continue	Statement x 	 	 	 	
cos	Method x 	 	 	 	
Data	Type	Conversion 	 	 x 	 	
Date	Object x 	 	 	 	
Decrement	Operator	(--) x 	 	 	 	
delete	Operator 	 	 x 	 	
description	Property 	 	 	 	 x
dimensions	Method 	 	 x 	 	
Division	Operator	(/) x 	 	 	 	
do...while	Statement 	 	 x 	 	
E	Property x 	 	 	 	
Enumerator	Object 	 	 x 	 	
Equality	Operator	(==) x 	 	 	 	
Error	Object 	 	 	 	 x
escape	Method x 	 	 	 	
eval	Method x 	 	 	 	
exec	Method 	 	 x 	 	
exp	Method x 	 	 	 	
fixed	Method x 	 	 	 	

floor	Method x 	 	 	 	
fontcolor	Method x 	 	 	 	

fontsize	Method x 	 	 	 	
for	Statement x 	 	 	 	
for...in	Statement 	 	 	 	 x
fromCharCode	Method 	 	 x 	 	
Function	Object 	 x 	 	 	
function	Statement x 	 	 	 	
getDate	Method x 	 	 	 	
getDay	Method x 	 	 	 	
getFullYear	Method 	 	 x 	 	
getHours	Method x 	 	 	 	
getItem	Method 	 	 x 	 	
getMilliseconds	Method 	 	 x 	 	
getMinutes	Method x 	 	 	 	
getMonth	Method x 	 	 	 	
GetObject	Function 	 	 x 	 	
getSeconds	Method x 	 	 	 	
getTime	Method x 	 	 	 	
getTimezoneOffset	Method x 	 	 	 	
getUTCDate	Method 	 	 x 	 	
getUTCDay	Method 	 	 x 	 	
getUTCFullYear	Method 	 	 x 	 	
getUTCHours	Method 	 	 x 	 	
getUTCMilliseconds	Method 	 	 x 	 	
getUTCMinutes	Method 	 	 x 	 	
getUTCMonth	Method 	 	 x 	 	
getUTCSeconds	Method 	 	 x 	 	
getVarDate	Method 	 	 x 	 	

getYear	Method x 	 	 	 	
Global	Object 	 	 x 	 	
Greater	than	Operator	(>) x 	 	 	 	

Greater	than	or	equal	to
Operator	(>=) x 	 	 	 	

Identity	Operator	(===) x 	 	 	 	
@if	Statement 	 	 x 	 	
if...else	Statement x 	 	 	 	
Increment	Operator	(++) x 	 	 	 	
index	Property 	 	 x 	 	
indexOf	Method x 	 	 	 	
Inequality	Operator	(!=) x 	 	 	 	
Infinity	Property 	 	 x 	 	
input	Property 	 	 x 	 	
instanceof	Operator 	 	 	 	 x
isFinite	Method 	 	 x 	 	
isNaN	Method x 	 	 	 	
italics	Method x 	 	 	 	
item	Method 	 	 x 	 	
join	Method 	 x 	 	 	
Labeled	Statement 	 	 x 	 	
lastIndex	Property 	 	 x 	 	
lastIndexOf	Method x 	 	 	 	
lbound	Method 	 	 x 	 	
length	Property	(Array) 	 x 	 	 	
length	Property	(Function) 	 x 	 	 	
length	Property	(String) x 	 	 	 	
Less	than	Operator	(<) x 	 	 	 	
Less	than	or	equal	to	Operator x 	 	 	 	

(<=)
link	Method x 	 	 	 	
LN2	Property x 	 	 	 	
LN10	Property x 	 	 	 	
log	Method x 	 	 	 	
LOG2E	Property x 	 	 	 	
LOG10E	Property x 	 	 	 	
Logical	AND	Operator	(&&) x 	 	 	 	
Logical	NOT	Operator	(!) x 	 	 	 	
Logical	OR	Operator	(||) x 	 	 	 	
match	Method 	 	 x 	 	
Math	Object x 	 	 	 	
max	Method x 	 	 	 	
MAX_VALUE	Property 	 x 	 	 	
min	Method x 	 	 	 	
MIN_VALUE	Property 	 x 	 	 	
Modulus	Operator	(%) x 	 	 	 	
moveFirst	Method 	 	 x 	 	
moveNext	Method 	 	 x 	 	
Multiplication	Operator	(*) x 	 	 	 	
NaN	Property	(Global) 	 	 x 	 	
NaN	Property	(Number) 	 x 	 	 	
NEGATIVE_INFINITY
Property 	 x 	 	 	

new	Operator x 	 	 	 	
Nonidentity	Operator	(!==) x 	 	 	 	
Number	Object 	 x 	 	 	
number	Property 	 	 	 	 x
Object	Object 	 	 x 	 	
Operator	Precedence x 	 	 	 	

parse	Method x 	 	 	 	
parseFloat	Method x 	 	 	 	
parseInt	Method x 	 	 	 	
PI	Property x 	 	 	 	
POSITIVE_INFINITY
Property 	 x 	 	 	

pow	Method x 	 	 	 	
prototype	Property 	 x 	 	 	
random	Method x 	 	 	 	
RegExp	Object 	 	 x 	 	
Regular	Expression	Object 	 	 x 	 	
Regular	Expression	Syntax 	 	 x 	 	
replace	Method x 	 	 	 	
return	Statement x 	 	 	 	
reverse	Method 	 x 	 	 	
round	Method x 	 	 	 	
ScriptEngine	Function 	 x 	 	 	
ScriptEngineBuildVersion
Function 	 x 	 	 	

ScriptEngineMajorVersion
Function 	 x 	 	 	

ScriptEngineMinorVersion
Function 	 x 	 	 	

search	Method 	 	 x 	 	
@set	Statement 	 	 x 	 	
setDate	Method x 	 	 	 	
setFullYear	Method 	 	 x 	 	
setHours	Method x 	 	 	 	
setMilliseconds	Method 	 	 x 	 	
setMinutes	Method x 	 	 	 	

setMonth	Method x 	 	 	 	
setSeconds	Method x 	 	 	 	
setTime	Method x 	 	 	 	
setUTCDate	Method 	 	 x 	 	
setUTCFullYear	Method 	 	 x 	 	
setUTCHours	Method 	 	 x 	 	
setUTCMilliseconds	Method 	 	 x 	 	
setUTCMinutes	Method 	 	 x 	 	
setUTCMonth	Method 	 	 x 	 	
setUTCSeconds	Method 	 	 x 	 	
setYear	Method x 	 	 	 	
sin	Method x 	 	 	 	
slice	Method	(Array) 	 	 x 	 	
slice	Method	(String) 	 	 x 	 	
small	Method x 	 	 	 	
sort	Method 	 x 	 	 	
source	Property 	 	 x 	 	
split	Method 	 	 x 	 	
sqrt	Method x 	 	 	 	
SQRT1_2	Property x 	 	 	 	
SQRT2	Property x 	 	 	 	
strike	Method x 	 	 	 	
String	Object x 	 	 	 	
sub	Method x 	 	 	 	
substr	Method 	 	 x 	 	
substring	Method x 	 	 	 	
Subtraction	Operator	(-) x 	 	 	 	
sup	Method x 	 	 	 	
switch	Statement 	 	 x 	 	
tan	Method x 	 	 	 	

test	Method 	 	 x 	 	
this	Statement x 	 	 	 	
throw	Statement 	 	 	 	 x
toArray	Method 	 	 x 	 	
toGMTString	Method x 	 	 	 	
toLocaleString	Method x 	 	 	 	
toLowerCase	Method x 	 	 	 	
toString	Method 	 x 	 	 	
toUpperCase	Method x 	 	 	 	
toUTCString	Method 	 	 x 	 	
try	Statement 	 	 	 	 x
typeof	Operator x 	 	 	 	
ubound	Method 	 	 x 	 	
Unary	Negation	Operator	(-) x 	 	 	 	
unescape	Method x 	 	 	 	
Unsigned	Right	Shift	Operator
(>>>) x 	 	 	 	

UTC	Method x 	 	 	 	
valueOf	Method 	 x 	 	 	
var	Statement x 	 	 	 	
VBArray	Object 	 	 x 	 	
void	Operator 	 x 	 	 	
while	Statement x 	 	 	 	
with	Statement x 	 	 	 	

Microsoft®	JScript®	Files	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Files	Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	JScript®	FileSystemObject
Object
Methods

	Scripting	Run-Time	Reference	
	

BuildPath	Method
CopyFile	Method
CopyFolder	Method
CreateFolder	Method
CreateTextFile	Method
DeleteFile	Method
DeleteFolder	Method
DriveExists	Method
FileExists	Method
FolderExists	Method
GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method
MoveFile	Method
MoveFolder	Method
OpenTextFile	Method

Microsoft®	JScript®	FileSystemObject
Object
Properties

	Scripting	Run-Time	Reference	

Drives	Property

Microsoft®	JScript®	FileSystem
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	FileSystem
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	Folder	Object
See	Also

	Scripting	Run-Time	Reference	
	

Drive	Object
Drives	Collection
File	Object
Files	Collection
Folders	Collection

Microsoft®	JScript®	Folder	Object
Properties

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Folder	Object
Methods

	Scripting	Run-Time	Reference	
	

Copy	Method
Delete	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	JScript®	Folders
Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
File	Object
Files	Collection
Folder	Object
SubFolders	Property

Microsoft®	JScript®	Folders
Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	JScript®	Folders
Collection
Methods

	Scripting	Run-Time	Reference	

Add	Method	(Folders)

Microsoft®	JScript®	FolderExists
Method
See	Also

	Scripting	Run-Time	Reference	

DriveExists	Method
FileExists	Method
GetFolder	Method
GetParentFolderName	Method

Microsoft®	JScript®	FolderExists
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	FreeSpace
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	FreeSpace
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®

GetAbsolutePathName
Method
See	Also

	Scripting	Run-Time	Reference	

GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®

GetAbsolutePathName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetBaseName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetBaseName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetDrive	Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetDrive	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetDriveName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetDriveName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®

GetExtensionName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®

GetExtensionName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetFile	Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetFile	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetFileName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetFileName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetFileVersion
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetFileVersion
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetFolder
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®	GetFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®

GetParentFolderName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	JScript®

GetParentFolderName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetSpecialFolder
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetTempName	Method

Microsoft®	JScript®	GetSpecialFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	GetTempName
Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method

Microsoft®	JScript®	GetTempName
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	IsReady	Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	IsReady	Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	IsRootFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	IsRootFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	JScript®	Items	Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	JScript®	Items	Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	JScript®	Keys	Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Remove	Method
RemoveAll	Method

Microsoft®	JScript®	Keys	Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	JScript®	Line	Property
See	Also

	Scripting	Run-Time	Reference	

Column	Property

Microsoft®	JScript®	Line	Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	Move	Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
Delete	Method
MoveFile	Method
MoveFolder	Method
OpenAsTextStream	Method

Microsoft®	JScript®	Move	Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object
Folder	Object

Microsoft®	JScript®	MoveFile	Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
DeleteFile	Method
GetFile	Method
GetFileName	Method
Move	Method
MoveFolder	Method
OpenTextFile	Method

Microsoft®	JScript®	MoveFile	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	MoveFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
DeleteFile	Method
GetFile	Method
GetFileName	Method
Move	Method
MoveFile	Method
OpenTextFile	Method

Microsoft®	JScript®	MoveFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	Name	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Name	Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	OpenTextFile
Method
See	Also

	Scripting	Run-Time	Reference	

CreateTextFile	Method
OpenAsTextStream	Method

Microsoft®	JScript®	OpenTextFile
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	JScript®	ParentFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	ParentFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	Path	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
AvailableSpace	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
DriveLetter	Property
DriveType	Property
Files	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
TotalSize	Property
Type	Property
VolumeName	Property

Microsoft®	JScript®	Path	Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object
File	Object
Folder	Object

Microsoft®	JScript®	Read	Method
See	Also

	Scripting	Run-Time	Reference	

ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method

Microsoft®	JScript®	Read	Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	ReadLine
Method
See	Also

	Scripting	Run-Time	Reference	

Read	Method
ReadAll	Method
Skip	Method
SkipLine	Method

Microsoft®	JScript®	ReadLine
Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	Remove	Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
RemoveAll	Method

Microsoft®	JScript®	Remove	Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	JScript®	RootFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	RootFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	SerialNumber
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	SerialNumber
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	ShareName
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
TotalSize	Property
VolumeName	Property

Microsoft®	JScript®	ShareName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	ShortName
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	ShortName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	ShortPath
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	ShortPath
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	Size	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
SubFolders	Property
Type	Property

Microsoft®	JScript®	Size	Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	Skip	Method
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	JScript®	Skip	Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	SubFolders
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
Type	Property

Microsoft®	JScript®	SubFolders
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	JScript®	TextStream
Object
Methods

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteBlankLines	Method
WriteLine	Method

Microsoft®	JScript®	TextStream
Object
Properties

	Scripting	Run-Time	Reference	

AtEndOfLine	Property
AtEndOfStream	Property
Column	Property
Line	Property

Microsoft®	JScript®	TotalSize
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
VolumeName	Property

Microsoft®	JScript®	TotalSize
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	Type	Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property

Microsoft®	JScript®	Type	Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	JScript®	VolumeName
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property

Microsoft®	JScript®	VolumeName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	JScript®	Write	Method
See	Also

	Scripting	Run-Time	Reference	

WriteBlankLines	Method
WriteLine	Method

Microsoft®	JScript®	Write	Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	WriteBlankLines
Method
See	Also

	Scripting	Run-Time	Reference	

Write	Method
WriteLine	Method

Microsoft®	JScript®	WriteBlankLines
Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	WriteLine
Method
See	Also

	Scripting	Run-Time	Reference	

Write	Method
WriteBlankLines	Method

Microsoft®	JScript®	WriteLine
Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	JScript®	getDate	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getDay	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getHours	Method
See	Also

	Language	Reference	

Date	Object	Methods
getUTCHours	Method
setHours	Method
setUTCHours	Method

Microsoft®	JScript®	getHours	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getMinutes
Method
See	Also

	Language	Reference	

Date	Object	Methods
getUTCMinutes	Method
setMinutes	Method
setUTCMinutes	Method

Microsoft®	JScript®	getMinutes
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getMonth
Method
See	Also

	Language	Reference	

Date	Object	Methods
getUTCMonth	Method
setMonth	Method
setUTCMonth	Method

Microsoft®	JScript®	getMonth
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getSeconds
Method
See	Also

	Language	Reference	

Date	Object	Methods
getUTCSeconds	Method
setSeconds	Method
setUTCSeconds	Method

Microsoft®	JScript®	getSeconds
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getTime	Method
See	Also

	Language	Reference	

Date	Object	Methods
setTime	Method

Microsoft®	JScript®	getTime	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®

getTimezoneOffset
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getYear	Method
See	Also

	Language	Reference	

Date	Object	Methods
getFullYear	Method
getUTCFullYear	Method
setFullYear	Method
setUTCFullYear	Method
setYear	Method

Microsoft®	JScript®	getYear	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getUTCFullYear
Method
See	Also

	Language	Reference	

Date	Object	Methods
getFullYear	Method
setFullYear	Method
setUTCFullYear	Method

Microsoft®	JScript®	getUTCFullYear
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getUTCHours
Method
See	Also

	Language	Reference	

Date	Object	Methods
getHours	Method
setHours	Method
setUTCHours	Method

Microsoft®	JScript®	getUTCHours
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getUTCMinutes
Method
See	Also

	Language	Reference	

Date	Object	Methods
getMinutes	Method
setMinutes	Method
setUTCMinutes	Method

Microsoft®	JScript®	getUTCMinutes
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getUTCMonth
Method
See	Also

	Language	Reference	

Date	Object	Methods
getMonth	Method
setMonth	Method
setUTCMonth	Method

Microsoft®	JScript®	getUTCMonth
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	getUTCSeconds
Method
See	Also

	Language	Reference	

Date	Object	Methods
getSeconds	Method
setSeconds	Method
setUTCSeconds	Method

Microsoft®	JScript®	getUTCSeconds
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setDate	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setHours	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setMonth	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setSeconds
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setTime	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setYear	Method
See	Also

	Language	Reference	

Date	Object	Methods
getFullYear	Method
getUTCFullYear	Method
getYear	Method
setFullYear	Method
setUTCFullYear	Method

Microsoft®	JScript®	setYear	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setUTCFullYear
Method
See	Also

	Language	Reference	

Date	Object	Methods
getFullYear	Method
getUTCFullYear	Method
setFullYear	Method

Microsoft®	JScript®	setUTCFullYear
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setUTCHours
Method
See	Also

	Language	Reference	

Date	Object	Methods
getHours	Method
getUTCHours	Method
setHours	Method

Microsoft®	JScript®	setUTCHours
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setUTCMinutes
Method
See	Also

	Language	Reference	

Date	Object	Methods
getMinutes	Method
getUTCMinutes	Method
setMinutes	Method

Microsoft®	JScript®	setUTCMinutes
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setUTCMonth
Method
See	Also

	Language	Reference	

Date	Object	Methods
getMonth	Method
getUTCMonth	Method
setMonth	Method

Microsoft®	JScript®	setUTCMonth
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	setUTCSeconds
Method
See	Also

	Language	Reference	

Date	Object	Methods
getSeconds	Method
getUTCSeconds	Method
setSeconds	Method

Microsoft®	JScript®	setUTCSeconds
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	toLocaleString
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	parse	Method
See	Also

	Language	Reference	

Date	Object	Methods

Microsoft®	JScript®	parse	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	UTC	Method
See	Also

	Language	Reference	

Date	Object	Methods
setTime	Method

Microsoft®	JScript®	UTC	Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	function
Statement
See	Also

	Language	Reference	

new	Operator

Microsoft®	JScript®	parseInt	Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	parseFloat
Method
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	%	Operator
See	Also

	Language	Reference	

%=	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	*	Operator
See	Also

	Language	Reference	

*=	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	/	Operator
See	Also

	Language	Reference	

/=	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	Global	Object
See	Also

	Language	Reference	

Object	Object

Microsoft®	JScript®	Global	Object
Methods

	Language	Reference	

escape	Method
eval	Method
isFinite	Method
isNaN	Method
parseFloat	Method
parseInt	Method
unescape	Method

Microsoft®	JScript®	Global	Object
Properties

	Language	Reference	

Infinity	Property
NaN	Property

Microsoft®	JScript®	split	Method
See	Also

	Language	Reference	

concat	Method
RegExp	Object
Regular	Expression	Syntax
String	Object	Methods

Microsoft®	JScript®	split	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®	getVarDate
Method
See	Also

	Language	Reference	

getDate	Method
parse	Method

Microsoft®	JScript®	getVarDate
Method
Applies	To

	Language	Reference	

Date	Object

Microsoft®	JScript®	match	Method
See	Also

	Language	Reference	

exec	Method
RegExp	Object
replace	Method
search	Method
String	Object	Methods
test	Method

Microsoft®	JScript®	replace	Method
See	Also

	Language	Reference	

exec	Method
match	Method
RegExp	Object
search	Method
String	Object	Methods
test	Method

Microsoft®	JScript®	replace	Method
Applies	To

	Language	Reference	

String	Object

Microsoft®	JScript®

OpenAsTextStream
Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
CreateTextFile	Method
Delete	Method
Move	Method
OpenTextFile	Method

Microsoft®	JScript®

OpenAsTextStream
Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object

Microsoft®	JScript®	String	Object	
Methods

	Language	Reference	

Members	of	String.prototype

anchor	Method
big	Method
blink	Method
bold	Method
charAt	Method
charCodeAt	Method
concat	Method
fixed	Method
fontcolor	Method
fontsize	Method
fromCharCode	Method
indexOf	Method
italics	Method
lastIndexOf	Method
link	Method
match	Method
replace	Method
search	Method
slice	Method
small	Method
split	Method
strike	Method
sub	Method
substr	Method
substring	Method
sup	Method

toLowerCase	Method
toUpperCase	Method

toString	Method
valueOf	Method

Nonmembers	of	String.prototype

The	String	object	has	no	methods	that	are	not	part	of	the	prototype.

Microsoft®	JScript®	Operator
Summary

	Language	Reference	
Version	1	

Computational

Addition	(+)
Decrement	(--)
Division	(/)
Increment	(++)
Modulus	(%)
Multiplication	(*)
Subtraction	(-)
Unary	negation	(-)

Logical

Comma	(,)
Conditional	(trinary)	(?:)	
Equality	(==)
Greater	than	(>)
Greater	than	or	equal	to	(>=)
Identity	(===)
Inequality	(!=)
Less	than	(<)
Less	than	or	equal	to	(<=)
Logical	AND	(&&)
Logical	NOT	(!)
Logical	OR	(||)
Nonidentity	(!==)

Bitwise

Bitwise	AND	(&)
Bitwise	Left	Shift	(<<)
Bitwise	NOT	(~)
Bitwise	OR	(|)
Bitwise	Right	Shift	(>>)
Bitwise	XOR	(^)
Unsigned	Right	Shift	(>>>)

Assignment

Assignment	(=)
Compound	Assignment	Operators

Miscellaneous

delete
instanceof
new
typeof
void

Microsoft®	JScript®	Regular
Expression	Object
Methods

	Language	Reference	

compile	Method
exec	Method
test	Method

Microsoft®	JScript®	Regular
Expression	Object
Properties

	Language	Reference	

lastIndex	Property
source	Property

Microsoft®	JScript®	|=	Operator
See	Also

	Language	Reference	

|	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	^=	Operator
See	Also

	Language	Reference	

^	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	/=	Operator
See	Also

	Language	Reference	

/	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	<<=	Operator
See	Also

	Language	Reference	

<<	Operator
>>	Operator
>>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	%=	Operator
See	Also

	Language	Reference	

%	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	*=	Operator
See	Also

	Language	Reference	

*	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	>>=	Operator
See	Also

	Language	Reference	

<<	Operator
>>	Operator
>>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	-=	Operator
See	Also

	Language	Reference	

-	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	>>>=	Operator
See	Also

	Language	Reference	

>>>	Operator
<<	Operator
>>	Operator
Operator	Behavior
Operator	Precedence
Operator	Summary

Microsoft®	JScript®	NaN	Property
	Language	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	special	value	NaN	indicating	that	an	expression	is
not	a	number.

Syntax

NaN

Remarks

The	NaN	property	(not	a	number)	is	a	member	of	the	Global
object,	and	is	made	available	when	the	scripting	engine	is
initialized.

Microsoft®	JScript®	RemoveAll
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	To

Description

The	RemoveAll	method	removes	all	key,	item	pairs	from	a
Dictionary	object.

Syntax

object.RemoveAll()

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	RemoveAll	method:

var	a,	d,	i;													//	Create	some	variables.
d	=	new	ActiveXObject("Scripting.Dictionary");
d.Add	("a",	"Athens");			//	Add	some	keys	and	items.
d.Add	("b",	"Belgrade");
d.Add	("c",	"Cairo");
...
d.RemoveAll();	 	 //	Clear	the	dictionary.

Microsoft®	JScript®	Item	Property
	Scripting	Run-Time	Reference	

Version	2	

See	Also																		Applies	To

Description

Sets	or	returns	an	item	for	a	specified	key	in	a	Dictionary	object.
For	collections,	returns	an	item	based	on	the	specified	key.
Read/write.

Syntax

object.Item(key)[=	newitem]

The	Item	property	has	the	following	parts:

Part Description

object Required.	Always	the	name	of	a	collection	or
Dictionary	object.

key Required.	Key	associated	with	the	item	being	retrieved
or	added.

newitem
Optional.	Used	for	Dictionary	object	only;	no
application	for	collections.	If	provided,	newitem	is	the
new	value	associated	with	the	specified	key.

Remarks

If	key	is	not	found	when	changing	an	item,	a	new	key	is	created
with	the	specified	newitem.	If	key	is	not	found	when	attempting
to	return	an	existing	item,	a	new	key	is	created	and	its
corresponding	item	is	left	empty.

The	following	example	illustrates	the	use	of	the	Item	property.

function	DicTest(keyword)
{
		var	a,	d;	
		d	=	new	ActiveXObject("Scripting.Dictionary");
		d.Add("a",	"Athens");
		d.Add("b",	"Belgrade");
		d.Add("c",	"Cairo");
		a	=	d.Item(keyword);
		return(a);
}

Microsoft®	JScript®	Date	Object	
Methods

	Language	Reference	

Members	of	Date.prototype

getDate	Method
getDay	Method
getFullYear	Method
getHours	Method
getMilliseconds	Method
getMinutes	Method
getMonth	Method
getSeconds	Method
getTime	Method
getTimezoneOffset	Method
getUTCDate	Method
getUTCDay	Method
getUTCFullYear	Method
getUTCHours	Method
getUTCMilliseconds	Method
getUTCMinutes	Method
getUTCMonth	Method
getUTCSeconds	Method
getVarDate	Method
getYear	Method
setDate	Method
setFullYear	Method
setHours	Method
setMilliseconds	Method
setMinutes	Method
setMonth	Method

setSeconds	Method
setTime	Method
setUTCDate	Method
setUTCFullYear	Method
setUTCHours	Method
setUTCMilliseconds	Method
setUTCMinutes	Method
setUTCMonth	Method
setUTCSeconds	Method
setYear	Method
toGMTString	Method
toLocaleString	Method
toUTCString	Method

toString	Method
valueOf	Method

Nonmembers	of	Date.prototype

parse	Method
UTC	Method

Microsoft®	JScript®	getFullYear
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	year	value	in	the	Date	object	using	local	time.

Syntax

objDate.getFullYear()

Remarks

To	get	the	year	using	Universal	Coordinated	Time	(UTC),	use	the
getUTCFullYear	method.

The	getFullYear	method	returns	the	year	as	an	absolute	number.	For
example,	the	year	1976	is	returned	as	1976.	This	avoids	the	classic	year
2000	problem	where	dates	beginning	with	January	1,	2000	are	confused
with	those	beginning	with	January	1,	1900.

The	following	example	illustrates	the	use	of	the	GetFullYear	method:

function	DateDemo()
{
		var	d,	s	=	"Today's	UTC	date	is:	";
		d	=	new	Date();

		s	+=	(d.getMonth()	+	1)	+	"/";
		s	+=	d.getDate()	+	"/";
		s	+=	d.getFullYear();
		return(s);
}

Microsoft®	JScript®	setFullYear
Method

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	the	year	value	in	the	Date	object	using	local	time.

Syntax

objDate.setFullYear(numYear[,	numMonth[,	numDate]])

The	setFullYear	method	syntax	has	these	parts:

Part Description
numYear Required.	A	numeric	value	equal	to	the	year.

numMonth Optional.	A	numeric	value	equal	to	the	month.	Must
be	supplied	if	numDate	is	supplied.

numDate Optional.	A	numeric	value	equal	to	the	date.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is
optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

In	addition,	if	the	value	of	an	argument	is	greater	than	its	range	or	is	a
negative	number,	other	stored	values	are	modified	accordingly.

To	set	the	year	using	Universal	Coordinated	Time	(UTC),	use	the
setUTCFullYear	method.

The	range	of	years	supported	in	the	date	object	is	approximately	285,616
years	from	either	side	of	1970.

The	following	example	illustrates	the	use	of	the	setFullYear	method:

function	SetFullYearDemo(newyear)
{
		var	d,	s;
		d	=	new	Date();
		d.setFullYear(newyear);
		s	=	"Current	setting	is	";
		s	+=	d.toLocaleString();	
		return(s);
}

Microsoft®	JScript®	setMinutes
Method

	Language	Reference	
Version	1	

See	Also																		Applies	To

Description

Sets	the	minutes	value	in	the	Date	object	using	local	time.

Syntax

objDate.setMinutes(numMinutes[,	numSeconds[,	numMilli]])

The	setMinutes	method	syntax	has	these	parts:

Part Description

numMinutes Required.	A	numeric	value	equalto	the	minutes	value.

numSeconds

Optional.	A	numeric	value	equal
to	the	seconds	value.	Must	be
supplied	if	the	numMilli	argument
is	used.

numMilli Optional.	A	numeric	value	equal
to	the	milliseconds	value.

Remarks

All	set	methods	taking	optional	arguments	use	the	value	returned
from	corresponding	get	methods,	if	you	do	not	specify	an
optional	argument.	For	example,	if	the	numMonth	argument	is

optional,	but	not	specified,	JScript	uses	the	value	returned	from
the	getMonth	method.

To	set	the	minutes	value	using	Universal	Coordinated	Time	(UTC),	use	the
setUTCMinutes	method.

If	the	value	of	an	argument	is	greater	than	its	range	or	is	a	negative	number,	other	stored
values	are	modified	accordingly.	For	example,	if	the	stored	date	is	"Jan	5,	1996
00:00:00"	and	setMinutes(90)	is	called,	the	date	is	changed	to	"Jan	5,	1996	01:30:00."
Negative	numbers	have	a	similar	behavior.

The	following	example	illustrates	the	use	of	the	setMinutes	method:

function	SetMinutesDemo(nmin,	nsec)
{		
		var	d,	s;
		var	sep	=	":";
		d	=	new	Date();
		d.setMinutes(nmin,	nsec);
		s	=	"Current	setting	is	"	+	d.toLocaleString()	
		return(s);
}

Microsoft®	JScript®	lastIndex
Property	(Regular
Expression)

	Language	Reference	
Version	3	

See	Also																		Applies	To

Description

Specifies	the	index	at	which	to	start	the	next	match.

Syntax

rgexp.lastIndex	[=	index]

The	lastIndex	property	syntax	has	these	parts:

Part Description

rgexp Required.	A	Regular	Expression	object.	Can	be	avariable	name	or	a	literal.
index The	index	from	which	to	begin	the	next	search.

Remarks

The	lastIndex	property	is	modified	by	the	exec	method,	and	the
match,	replace,	and	split	methods	of	the	String	object.

The	following	rules	apply	to	values	of	lastIndex:

If	lastIndex	is	greater	than	the	length	of	the	string,	the	test
and	exec	methods	fail,	and	lastIndex	is	set	to	zero.

If	lastIndex	is	equal	to	the	length	of	the	string,	the	regular
expression	matches	if	the	pattern	matches	the	empty	string.
Otherwise,	the	match	fails	and	lastIndex	is	reset	to	zero.

Otherwise,	lastIndex	is	set	to	the	next	position	following	the
most	recent	match.

Microsoft®	JScript®	NaN	Property
See	Also

	Language	Reference	

isNaN	Method

Microsoft®	JScript®	NaN	Property
Applies	To

	Language	Reference	

Global	Object

Microsoft®	JScript®	RemoveAll
Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
Remove	Method

Microsoft®	JScript®	RemoveAll
Method
Applies	To

	Scripting	Run-Time	Reference	
	

Dictionary	Object

Microsoft®	JScript®	Item	Property
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object
Drives	Collection
Files	Collection
Folders	Collection

