
Show	All

About	the	InfoPath	Developer's	Reference

The	InfoPath	Developer's	Reference	contains	Help	in	the	following	areas:

Programming	Concepts			Contains	conceptual	information	about
Microsoft	Office	InfoPath	2003	form	development.	Subject	areas	include
form	architecture,	the	form	definition	(.xsf)	file,	the	programming
environment,	and	using	the	InfoPath	object	model.

Developer	Sample	Forms			Contains	documentation	for	a	set	of	forms
designed	to	demonstrate	various	development	techniques	for
customizing	and	implementing	InfoPath	features.

InfoPath	Object	Model	Reference			Contains	documentation	for	the
InfoPath	object	model,	including	all	of	its	collections,	objects,	properties,
methods,	events,	and	enumerations.

InfoPath	XSF	Reference			Contains	documentation	for	the	InfoPath	.xsf
file,	including	all	of	its	namespaces,	types,	groups,	elements,	and
attributes.

Show	All

About	ActiveX	controls

You	can	host	ActiveX	controls	in	forms.	These	controls	can	be
preexisting	(with	some	constraints)	or	can	be	written	specifically	for
InfoPath.

Write	an	ActiveX	control

Add	an	ActiveX	control	to	the	InfoPath	design	environment

Deploy	an	ActiveX	control

Show	All

About	ADO.NET	dataset	integration

You	can	easily	connect	forms	to	Web	services	that	receive	data	from	and
submit	data	to	ADO.NET	datasets.

Connecting	forms	to	Web	services	to	receive	data

Connecting	forms	to	Web	services	to	receive	and	submit	data

Connecting	forms	to	Web	services	to	submit	data

There	are	a	few	limitations	on	datasets:

Only	one	dataset	is	allowed	when	a	form	is	edited.

Copying	and	pasting	of	nested	datasets	updates	the	foreign	key	to	point
to	the	parent	values.

DeleteRule	and	UpdateRule	properties	are	not	supported.

Constraints	or	relationships	cannot	be	disabled.

Show	All

About	backward	compatibility

In	Microsoft	Office	2003	Editions	Service	Pack	1,	existing	forms	function
the	same	way	they	did	in	Microsoft	Office	InfoPath	2003,	while	taking
advantage	of	the	improvements	and	new	features	included	in	the	service
pack.	To	ensure	compatibility	for	users	of	Microsoft	Office	InfoPath	2003
without	Service	Pack	1	or	later	installed,	however,	certain	features	are
not	available	to	existing	forms.

The	following	sections	describe	areas	of	functionality	that	may	be
affected	when	you	are	working	with	more	than	one	version	of	InfoPath.

Upgrading	existing	forms

Creating	new	form	templates

Removing	new	features	from	a	form	template

Disabling	new	features

Opening	form	templates	that	contain	form	code	with	updated	object
model	members

Launching	and	automating	InfoPath	from	another	application

Show	All

About	changing	a	form's	main	data	source

At	times,	you	may	need	to	modify	a	form	to	use	a	different	XML	Schema,
database	server,	or	Web	service	before	or	after	deployment.	You	do	not
have	to	modify	the	form	definition	file	(.xsf)	to	accomplish	this	task,
however,	because	with	Microsoft	Office	InfoPath	2003	Service	Pack	1	or
later,	you	can	change	the	main	data	source	of	your	form	through	the
InfoPath	designer.

The	steps	you	need	to	take	to	do	this	differ,	depending	on	whether	your
form's	main	data	source	is	an	XML	Schema,	an	XML	document,	or	a	data
connection.

Change	the	main	data	source	of	a	form	based	on	an	XML	Schema	or
XML	document.

Change	the	main	data	source	of	a	form	based	on	a	data	connection.

About	digital	signatures

Take	advantage	of	the	following	new	functions	that	have	been	added	to
the	digital	signatures	feature:

Enable	signatures	for	the	entire	form,	or	for	specific	sets	of	data	in	the
form	that	can	be	signed	separately.

For	each	set	of	data	that	can	be	signed,	specify	whether	a	single	or
multiple	signatures	are	allowed	and	what	their	relationship	will	be.	For
example,	you	can	specify	whether	they	are	parallel	cosignatures	or
whether	each	new	signature	countersigns	all	the	earlier	ones.

Specify	a	message	to	be	shown	to	form	users	as	they	sign	the	form.

Insert	and	see	a	signature	in	the	document,	and	view	the	form	as	it	was
presented	to	each	signer.

View	verifiable	nonrepudiation	information	that	has	been	added	to	each
signature	for	increased	security.	This	additional	information	is	part	of	the
signature	and	cannot	be	removed	without	invalidating	the	signature.	At
any	time,	you	can	recall	this	data	by	clicking	on	the	signature	in	the	form.

Add	custom	information	to	the	signature	block	in	fully	trusted	forms
through	an	extensive	digital	signature	object	model.

Access	a	signature	through	a	snapshot.	The	snapshot	is	a	file	in	.png
format.	It	contains	a	view	of	the	signature	within	the	form	and	has	all	its
nonrepudiation	information.

Show	All

About	enabling	forms	to	submit	data

Microsoft	Office	InfoPath	2003	allows	you	to	submit	data	entered	into	a
form	to	a	Web	service	or	a	Windows	SharePoint	Services	form	library,	or
as	an	attachment	to	an	e-mail	message.

Set	up	a	connection	to	a	SharePoint	Services	form	library	that	is
enabled	for	form	submission.

Set	up	an	e-mail	message	that	is	enabled	for	form	submission.

Set	up	a	connection	to	a	Web	service	that	is	enabled	for	data
submission.

Show	All

About	form	architecture

Microsoft	Office	InfoPath	2003	forms	are	composed	of	several	files	and
components	that	are	combined	to	provide	specific	functionality	for	a
particular	end	user	scenario	or	business	need.	InfoPath	forms	can	vary	in
complexity	depending	on	the	type	of	need	that	they	address.

An	InfoPath	form	is	essentially	a	type	of	application	that	creates	a
specified	class	of	XML	documents,	defines	their	layout	and	editing
behavior,	enforces	their	data	consistency,	and	provides	the	routing
information	that	indicates	where	they	should	be	stored.

It	is	important	to	understand	that	InfoPath	forms	are	composed	of	several
different	files	of	many	different	types;	these	files	are	collectively	known	as
the	form	files.	Usually,	an	InfoPath	form	is	composed	of	the	following
types	of	files.

Name Extension Description
Form
definition

.xsf An	InfoPath-generated	file	that	contains
information	about	all	of	the	other	files	and
components	used	in	a	form.	This	file	serves	as
the	manifest	for	the	form.

XML
Schema

.xsd The	XML	Schema	files	that	are	used	to
constrain	and	validate	a	form's	underlying	XML
document	files.

View .xsl The	presentation	logic	files	that	are	used	to
present,	view,	and	transform	the	data	contained
in	a	form's	underlying	XML	document	files.

XML
template

.xml The	.xml	file	that	contains	the	default	data	that
is	displayed	in	a	view	when	a	new	form	is
created.

XML
component
template

.xct The	.xml	file	representations	of	the	editing
controls	that	are	used	when	creating	and	filling
out	a	form.

Presentation .htm,	.gif,
.bmp,	and
others

The	files	used	in	conjunction	with	the	view	files
to	create	a	custom	user	interface.

Business
logic

.js,	.vbs The	script	files	(Microsoft	JScript	and	Microsoft
VBScript)	that	contain	programming	code	used
to	implement	specific	editing	behavior,	data
validation,	event	handlers,	control	of	data	flow,
and	other	custom	business	logic.

Binary .dll,	.exe The	custom	Component	Object	Model	(COM)
components	that	provide	additional	business
logic.

Form
template

.xsn The	compressed	file	format	(.cab)	that
packages	all	the	form	files	into	one	file.

Show	All

About	Human	Workflow	Services	support

Human	Workflow	Services	(HWS)	is	a	service	provided	by	Microsoft
BizTalk	Server	2004	that	enables	client	applications	to	build	and	manage
human-oriented	workflow.	Microsoft	Office	InfoPath	2003	provides
access	to	this	service	by	way	of	the	Workflow	task	pane.	In	this	task
pane,	users	can	start	and	track	HWS	actions	and	respond	to	HWS	tasks.
InfoPath	does	not	provide	a	designer	interface	to	enable	the	Workflow
task	pane;	all	HWS	functionality	is	enabled	by	modifying	the	form
definition	file	(.xsf).

Using	the	Workflow	Task	Pane
The	Workflow	task	pane	allows	the	user	to	start	or	extend	a	workflow	or
respond	to	a	task.

The	three	sections	of	the	Workflow	task	pane	are:

Start	Workflow	Consists	of	the	action	buttons	that	can	be	used	to	start	a
workflow.	This	section	is	only	visible	for	forms	that	are	HWS	enabled	and
that	do	not	have	an	existing	workflow	associated	with	them.

Action	Tracks	the	status	of	actions	and	their	associated	tasks.	Once	a
user	starts	an	action,	the	action	runs	and	is	tracked	by	the	HWS	service.
InfoPath	displays	the	status	of	the	action	and	who	is	assigned	the	task.

Task	Allows	the	user	to	work	with	tasks.	When	a	task	is	assigned	to	a
user,	InfoPath	displays	the	status	of	the	task,	a	button	to	respond	directly
to	the	task,	and	one	or	more	buttons	to	start	new	actions.

Enabling	the	Workflow	task	pane

Adding	allowed	actions	to	forms

Adding	allowed	tasks	to	forms

Using	the	OnClick	event	to	add	action	and	task	buttons

Creating	an	HWS	Adapter
Because	the	Workflow	task	pane	does	not	submit	data	to	the	HWS
service	automatically,	you	must	create	an	HWS	adapter	to	submit	the
form.

There	is	no	designer	interface	associated	to	the	submit	adapters.	To
enable	these	adapters,	modify	the	form	definition	file	(.xsf)	to	include	the
hwsAdapter	element	within	the	dataAdapters	element.

Like	other	InfoPath	Web	service	adapters,	the	element	must	include	a
name	for	the	adapter	and	the	location	of	the	Web	Services	Description
Language	(WSDL),	and	must	specify	whether	the	adapter	allows
submitting	and	querying.	Because	these	adapters	are	only	used	to
submit	data	to	an	HWS	service,	the	submitAllowed	attribute	must	be	set
to	"yes".	The	queryAllowed	attribute	can	be	omitted,	which	corresponds
to	a	default	value	of	"no",	or	it	can	be	included	and	set	to	"no".

As	part	of	the	design	of	actions	and	tasks,	you	can	specify	additional
parameters	that	are	specific	to	each	action	or	task.	Below	is	an	example
of	an	adapter	that	starts	a	workflow	with	an	Approval	action.	The	value
to	use	for	the	hwsOperation	element	type	is
"addActionToNewActivityFlow".	The	typeID	attribute	uses	the
actionTypeID	attribute	value,	which	is	a	GUID.

<xsf:hwsAdapter	name="Start	Approval"	wsdlUrl="http://.../HWSService.asmx?WSDL"	submitAllowed="yes"	queryAllowed="no">
	<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID=”{guid}”	serviceUrl="http://.../HWSService.asmx">
		<xsf:input	source="HWSMessage1.xml">
				<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	replaceWith="/my:myFields/my:param1"	/>
				<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	replaceWith="/a:foo/b:bar"	dataObject=”Aux1”	/>
		</xsf:input>
	</xsf:hwsOperation>
</xsf:hwsAdapter>

The	hwsAdapter	element	has	the	same	default	interface	as	the	other
submit	adapters	supported	by	InfoPath,	but	the	HWS	submit	adapters	do
not	appear	in	the	interface.	Instead,	to	invoke	a	submit	action,	you	must

add	it	to	your	code,	as	shown	in	the	following	example:

XDocument.DataAdapters.Item("Start	Approval").Submit();

At	runtime,	when	the	submit	operation	is	invoked,	a	button	with	the
caption,	Get	Status,	appears	on	the	Workflow	task	pane.	This	button
allows	the	user	to	refresh	the	task	pane	so	that	it	shows	the	current
workflow	information.

Defining	HWS	submit	operations	for	actions

Defining	HWS	receive	operations

Show	All

About	programming	InfoPath

Microsoft	Office	InfoPath	2003	provides	developers	with	a	rich
development	environment	for	customizing	forms.	Forms	can	be
customized	by	writing	programming	code	to	respond	to	form	and	data
validation	events,	to	access	and	manipulate	a	form's	underlying	XML
document,	to	implement	custom	data	submission	and	merges,	and	to
implement	access	to	external	data	sources.	Customizing	a	form	can	also
involve	altering	one	of	the	form	files	to	suit	a	specific	requirement.

It	is	important	to	understand	a	few	key	concepts	that	are	involved	in
programming	an	InfoPath	form.	These	concepts	include	the	InfoPath
programming	components,	programmatic	and	declarative	programming,
the	InfoPath	programming	languages,	and	the	InfoPath	programming
environment.

InfoPath	programming	components

Programmatic	and	declarative	development

InfoPath	programming	languages	and	the	programming	environment

Show	All

About	secondary	data	sources

Microsoft	Office	InfoPath	2003	Service	Pack	1	adds	the	ability	to	connect
multiple	data	sources	to	a	form	simultaneously.	Using	multiple	data
sources	in	your	forms	allows	you	to	build	complex	functionality	such	as
lookup	lists	or	offline	data	stores.

Main	and	secondary	data	sources
The	main	data	source	corresponds	to	the	groups	and	fields	containing
the	data	that	underlies	the	form	and	is	saved	as	the	form	file.

A	secondary	data	source	is	used	to	store	data	from	additional	data
sources.	Whenever	a	new	data	connection	is	created	for	retrieving	data
—	for	example,	by	using	the	Add	button	of	the	Data	Connections	dialog
box—	the	retrieved	data	is	not	stored	in	the	main	data	source	but	in	a
secondary	data	source.	The	secondary	data	source	receives	the	data
from	any	data	connection	used	for	querying,	whether	it	is	an	XML
document,	a	database,	a	Web	service,	or	a	SharePoint	library	or	list.

The	Data	Source	task	pane	displays	the	structure	(groups	and	fields)	of
each	data	source,	both	main	and	secondary,	and	is	used	for	binding
groups	or	fields	in	the	data	source	to	controls	in	the	form.	When	a	user
fills	out	the	form,	the	controls	display	the	data	from	the	data	source	and
allow	it	to	be	updated	during	editing.

New	features	for	working	with	secondary	data	sources
The	following	sections	describe	the	changes	made	to	working	with
secondary	data	sources	in	InfoPath	Service	Pack	1.

The	Data	Connections	dialog	box

Data	Source	task	pane

Fields	and	groups

Controls	available	for	binding	to	secondary	data	sources

Show	All

About	security	and	deployment

Additional	security	features	and	deployment	functionality	have	been
added	to	Microsoft	Office	InfoPath	2003	in	Service	Pack	1.	Support	has
been	added	to	allow	form	templates	to	be	moved	from	one	location	to
another	or	sent	as	an	attachment	to	an	e-mail	message.	In	addition,
support	has	been	added	to	the	InfoPath	design	mode	to	facilitate	the
creation	and	deployment	of	fully	trusted	forms.

Security	levels

Form	templates	can	have	one	of	three	different	security	levels,
depending	on	where	the	form	is	located.	These	security	levels	are	as
follows:

Restricted

Domain

Full	Trust

Note		All	forms	generated	in	the	InfoPath	designer	have	a	security	level
associated	with	them.	InfoPath	will	attempt	to	open	forms	at	their
associated	security	level.	If	the	security	level	associated	with	the	form	is
higher	than	the	security	level	that	can	be	granted	to	it,	the	form	will	not
open.

Forms	are	granted	security	levels	based	on	the	location	from	which	the
form	was	opened.	For	more	information,	see	the	Trust	levels	section.

Trust	levels
The	highest	level	of	trust	granted	to	a	form	template	is	determined	by	the
"cached	from"	location	(that	is,	where	the	form	is	cached	from)	and	other
verification	code,	as	described	in	the	following	table.	The	attributes	listed
in	the	table	(for	example,	HTTP,	UNC,	requireFullTrust)	are	cache-
based	entries	that	are	used	to	determine	the	level	of	trust	granted	to	a
form.

Trust
Level
Granted

Trust	Level
Granted

Trust	Level
Granted

Highest	Level	of	Trust	Granted
Full
Trust

Client
Computer
(Sandboxed)

Intranet
(Sandboxed)

file:
LocationId=CachedFromLocation

	 X 	

file:
LocationId<>CachedFromLocation
or	no	LocationId	(regardless	of
where	the	form	came	from)

	 	 	

CachedFromLocation:	Intranet
HTTP	or	HTTPS

	 	 X

CachedFromLocation:	Internet
HTTP	or	HTTPS

	 	 	

CachedFromLocation:	UNC 	 	 X
Installed	Template
(requireFullTrust="yes")

X 	 	

Installed	Template
(requireFullTrust="no")

	 X 	

Template	with	trusted	publisher
certificate

X 	 	

Extracted	Form	Files 	 X 	

All	form	files	opened	in	the	InfoPath	editor	are	bound	by	a	set	of
conditions	that	determine	the	security	level	in	which	the	form	will	open

and	whether	it	will	open.	When	an	InfoPath	form	is	opened	in	the	editor,	it
will	either	be	opened	with	an	appropriate	security	level,	or	it	will	fail	to
load.	If	a	form	requests	a	higher	security	level	than	it	can	be	granted	(a
form	can	request	a	specific	security	level	using	the	trustLevel	or
requireFullTrust	attribute),	it	will	not	be	permitted	to	load.	Otherwise,	it
will	be	loaded	with	the	security	level	it	requests.	If	the	form	template	is
not	permitted	to	open	with	the	requested	security	level,	the	user	will	not
be	able	to	open	the	form	and	will	receive	the	"Insufficient	Security
Privilege	Warning"	error	message.

The	following	table	describes	the	conditions	required	for	opening	a	form
at	each	security	level	and	the	resultant	behavior	when	the	user	attempts
to	open	the	form:

Form	asks	for: Form	asks	for:

Editor
Opens/Fails

Full	Trust
(requireFullTrust="yes")

Domain	Trust
(trustLevel="Domain"
or	blank)

Highest
trust
level
InfoPath
can
grant
based
on
evidence

Trusted
(installed	or
trusted
certificate)

Editor	opens	at	Full	Trust
level

N/A

Highest
trust
level
InfoPath
can
grant
based
on
evidence

Domain
Trust:
Client
Computer

Fails	to	open Editor	opens	at
Domain	level

Highest
trust

Fails	to	open Editor	opens	at
Domain	level

level
InfoPath
can
grant
based
on
evidence

Domain
Trust:
Intranet

Highest
trust
level
InfoPath
can
grant
based
on
evidence

Domain
Trust:
Internet

Fails	to	open Editor	opens	at
Domain	level

Highest
trust
level
InfoPath
can
grant
based
on
evidence Restricted

Fails	to	open Fails	to	open

Specifying	a	security	level

Mail	deployment	and	mobile	form	templates

Microsoft	Office	InfoPath	2003	Service	Pack	1	allows	you	to	send	your
form	templates	as	an	attachment	to	an	e-mail	message	and	to	move
them	from	one	location	to	another.	Mail	deployment	is	an	easy	and
effective	way	to	distribute	forms	for	interoffice	use	as	well	as	to	deploy
forms	to	remote	users.

Understanding	form	identity

Designing	a	form	to	send	as	an	attachment	to	an	e-mail	message

	Sharing	forms	by	e-mail	message	or	from	a	common	shared	location

Compatibility

Show	All

About	the	form	definition	file

The	Microsoft	Office	InfoPath	2003	form	definition	(.xsf)	file,	commonly
referred	to	as	the	.xsf	file,	serves	as	the	manifest	of	an	InfoPath	form.
The	.xsf	file	is	automatically	created	by	InfoPath	when	a	new	form
template	is	created	and	saved	in	design	mode.	As	form	designers	and
developers	change	the	form	template	or	add	new	features	to	it,	InfoPath
updates	the	.xsf	file	to	reflect	those	changes.

Note		The	.xsf	file	can	also	be	modified	directly	by	using	any	text	or	XML
editor,	such	as	Microsoft	Notepad.	However,	care	should	be	taken	when
making	modifications	to	the	.xsf	file:	if	an	invalid	entry	is	made,	the	form
that	the	file	is	associated	with	may	be	left	in	an	unusable	state.	However,
some	customizations	can	be	made	to	the	.xsf	file	that	cannot	be
generated	in	design	mode.

The	.xsf	file	is	the	core	file	of	an	InfoPath	form	because	it	contains
information	about	the	form	as	a	whole.	Some	of	the	data	it	contains
includes	processing	metadata,	user	interface	customizations,	schema
definitions,	views,	business	logic	declarations,	event	handlers,	and
deployment	information.

The	following	are	some	of	the	items	that	the	.xsf	file	contains:

A	unique	identifier	for	the	form

Global	metadata	information	about	the	form,	including	deployment	and
publishing	information

The	XML	Schema	definitions	for	the	XML	document	that	the	form
produces

Definition	of	views	and	their	associated	user	interface	components
(menus,	toolbars,	and	buttons)

Definition	of	editing	actions	that	are	made	available	using	user	interface
components,	and	how	their	availability	will	be	determined	contextually

Workflow	and	routing	information

Event	handlers,	data	validation,	and	business	logic	that	is	associated	with
individual	XML	nodes	of	the	form's	underlying	XML	document,	or	with	the

XML	document	itself

Event	handlers	associated	with	the	form	as	a	whole

Packaging	information	about	all	of	the	files	contained	within	the	form
template

The	.xsf	file	is	based	on	the	xsf	namespace.	Its	root	element	is	the
xDocumentClass	element.

Note		A	complete	reference	to	the	.xsf	file,	including	all	of	its	elements,
attributes,	and	other	entities,	can	be	found	in	the	InfoPath	XSF	Reference
that	is	part	of	the	InfoPath	Developer's	Reference,	available	in	the
InfoPath	Help	system	and	the	Microsoft	Script	Editor	(MSE)	Help	system.

Show	All

About	the	programming	environment

Microsoft	Office	InfoPath	2003	uses	the	Microsoft	Script	Editor	(MSE)	as
its	primary	integrated	development	environment.	Microsoft	JScript	and
Microsoft	VBScript	are	the	programming	languages	that	are	used	in	MSE
to	create	custom	business	logic	for	a	form.

MSE	can	be	opened	when	working	with	a	form	in	design	mode	by
pointing	to	Script	on	the	Tools	menu	and	clicking	Microsoft	Script
Editor,	or	by	pressing	ALT+SHIFT+F11.	When	you	open	MSE	from
InfoPath,	the	MSE	code	editor	appears	and	the	form's	default	scripting
file	(with	either	a	.js	or	.vbs	extension,	depending	on	the	scripting
language	set	for	the	form)	opens	in	the	code	editing	window.

Working	with	MSE	in	an	InfoPath	form	involves	several	tasks,	including
setting	the	default	scripting	language,	creating	an	event	handler,	and
debugging	scripting	code.

Setting	the	default	scripting	language

Creating	an	event	handler

Debugging	scripting	code

Note		For	more	information	about	using	MSE,	click	Microsoft	Script
Editor	Help	on	the	Help	menu	when	working	in	MSE.

About	Visual	Studio	.NET	integration

Microsoft	Office	InfoPath	2003	Service	Pack	1	or	later	allows	you	to	use
Microsoft	Visual	Studio	.NET	to	write	managed	code	instead	of	script	for
form	code	in	new	InfoPath	form	templates	or	to	add	managed	code	to
existing	form	templates.	To	use	Visual	Studio	.NET	to	create,	debug,	and
build	InfoPath	projects	that	use	Microsoft	Visual	C#	or	Visual	Basic	.NET
managed	code,	you	must	download	the	Microsoft®	Office	InfoPath™
2003	Toolkit	for	Visual	Studio®	.NET	from	the	InfoPath	Developer	Center
on	the	Microsoft	Developer	Network	(MSDN)	Web	site	and	install	it	with
Visual	Studio	.NET	2003.	The	integration	features	provided	by	the	toolkit
allow	you	to	use	a	combination	of	InfoPath	for	form	design	and	Visual
Studio	.NET	for	writing	and	debugging	form	code.	These	integration
features	allow	you	to	take	advantage	of	such	features	of	the	Visual
Studio	.NET	development	environment	as:

Building	your	project	in	debug	or	release	configurations.

Using	IntelliSense	support	in	the	Code	Editor	such	as	statement
completion,	members	lists,	and	inline	parameter	information.

Pressing	F1	in	the	Code	Editor	to	display	context-sensitive	help
information	about	types,	members,	and	other	code	keywords.

Using	Visual	Studio	.NET	debugging	features.

Additionally,	using	managed	code	in	InfoPath	projects	allows	you	to	take
advantage	of	the	features	of	the	.NET	Framework	common	language
runtime	(CLR)	and	to	make	calls	into	the	comprehensive,	object-oriented
collection	of	reusable	types	provided	by	the	.NET	Framework	class
library.

For	more	information	on	using	Visual	Studio	.NET	to	create	InfoPath
projects,	see	the	documentation	installed	with	the	Microsoft	Office
InfoPath	2003	Toolkit	for	Visual	Studio	.NET.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011095341033

Show	All

About	XML	Schema	improvements

Many	improvements	have	been	made	for	XML	Schema	(.xsd)	support	in
Microsoft	Office	InfoPath	2003	Service	Pack	1.

Native	support	for	the	following	XML	Schema	constructs	have	been
added	to	InfoPath:

Abstract	types

Abstract	elements	and	substitution	groups

Required	wildcard	(<any>)

Repeating	or	optional	model	groups	in	the	schema	(sequence,	choice,
group,	and	all	with	minOccurs	or	maxOccurs	different	from	1)

Inline	schemas

Interactive	incremental	creation	of	the	data	source
To	support	abstract	types	or	elements	and	required	wildcards,	creation	of
the	data	source	is	now	interactive.	For	example,	schema	creation	is	not
possible	if	the	schema	delegates	part	of	its	syntax	to	other	schemas.	This
can	happen	when	a	type	or	an	element	is	defined	as	abstract	or	when	the
content	model	of	an	element	contains	an	<any>.	When	one	of	these
conditions	occurs,	InfoPath	will	prompt	the	user	to	specify	a	schema
source	that	contains	the	needed	data	before	proceeding.	This	process	is
repeated	until	the	schema	collection	that	is	loaded	contains	enough
information	to	generate	a	complete	data	source.

Better	model	group	support
Model	groups	specified	as	"choice"	or	"sequence"	and	with	minOccurs
or	maxOccurs	not	equal	to	1	are	now	shown	in	the	Data	Source	task
pane.	They	can	be	bound	to	controls,	and	they	can	be	treated	as	a	group
in	the	data	source.

Note		Model	groups	designated	as	"group"	or	"all"	are	not	displayed	in
the	Data	Source	task	pane.

Native	support	for	inline	schemas
Inline	schemas	are	natively	supported	during	design.	This	feature	allows
you	to	use	an	XML	document	that	contains	its	own	schema	as	a	data
source.

Support	for	data	source	change
The	underlying	data	structure	of	a	form	can	now	be	changed	during	form
creation.	Clicking	Convert	Main	Data	Source	on	the	Tools	menu	allows
you	to	convert	the	current	data	source	while	retaining	the	information	that
depends	on	it.

Changing	a	data	source	is	restricted	to	the	following	paths:

Converting	from	a	blank	form,	XML	Schema,	or	XML	file	to	another	XML
Schema	or	XML	file.

Converting	from	a	Web	service	or	other	data	connection	to	another	Web
service	or	data	connection.

Once	you	specify	the	new	data	source,	all	dependent	data	will	be
mapped	to	the	new	data	source.	If	the	data	cannot	be	mapped,	controls
will	appear	unbound	in	the	view.

Note		Changing	the	data	source	does	not	update	the	code	associated
with	the	form.	Also,	after	using	the	Convert	Main	Data	Source
command,	you	cannot	use	the	Undo	command	on	the	Edit	menu	to
revert	to	the	original	data	source.

Recursive	template	support
The	Repeating	Recursive	Section	control	adds	recursive	structures	of
arbitrary	depth	to	a	form.

This	control	is	now	the	default	control	when	you	drag	a	recursive
structure	from	the	Data	Source	task	pane.

The	properties	of	the	recursive	section	correspond	to	the	properties	of	an
ordinary	section,	with	the	exception	that	digital	signatures	are	not
allowed.	The	only	property	that	can	be	set	in	the	internal	recursive	block
is	the	default	value	of	the	XML	fragment	for	additional	recursive	sections
inserted	within	the	outermost	instance.

Show	All

About	the	InfoPath	object	model

The	Microsoft	Office	InfoPath	2003	object	model	is	a	COM-based	object
model	that	can	be	used	to	interact	with	InfoPath	forms	and	their
underlying	XML	documents.	It	is	similar	to	other	Microsoft	Office
application	object	models	in	that	it	implements	interfaces	for	collections,
objects,	properties,	methods,	and	events.	However,	the	InfoPath	object
model	is	primarily	used	in	scripting	code,	using	the	Microsoft	Script	Editor
(MSE)	that	is	built	into	InfoPath.

Note		Unlike	other	Office	applications	that	support	complete	application
automation,	the	InfoPath	object	model	supports	automation	of	only
certain	features	of	the	run-time	editing	environment.

The	following	sections	discuss	the	InfoPath	functional	areas	that	the
object	model	represents,	the	locations	from	which	the	object	model	can
be	accessed,	and	the	levels	of	object	model	security.

Object	model	functional	areas

Object	model	access

Object	model	security

Viewing	Service	Pack	1	object	model	changes	from	the	Object	Browser

Show	All

Accessing	application	data

The	Microsoft	Office	InfoPath	2003	object	model	provides	objects	and
collections	that	can	be	used	to	gain	access	to	information	about	the
InfoPath	application,	including	information	related	to	a	form's	underlying
XML	document	and	the	form	definition	(.xsf)	file.	This	data	is	accessed
through	the	top-level	object	in	the	InfoPath	object	model	hierarchy—	the
Application	object.

Using	the	Application	object,	InfoPath	form	developers	can	access
information	about	the	currently	installed	instance	of	InfoPath,	including	its
name	and	version	number.	In	the	following	example,	the	Name	and
Version	properties	of	the	Application	object	return	data	in	a	message
box	to	the	user:

Application.XDocuments(0).UI.Alert("Application	name:	"	+	Application.Name	+
			"\nApplication	version:	"	+	Application.Version);

Note	that	the	Alert	method	of	the	UI	object,	which	is	accessed	through
the	XDocument	object,	is	used	to	display	a	message	box	to	the	user.
Because	the	XDocument	object	that	represents	the	currently	open
form's	underlying	XML	document	is	embedded	in	the	InfoPath	script
engine,	the	previous	example	can	also	be	written	as	follows:

XDocument.UI.Alert("Application	name:	"	+	Application.Name	+
			"\nApplication	version:	"	+	Application.Version);

Note		The	\n	character	references	in	the	text	for	the	alert	message	is	a
standard	new	line	feed	that	causes	the	text	to	break	and	be	placed	on	a
new	line	in	the	message	box.

Accessing	data	about	a	form's	XML	document

Accessing	data	about	a	form's	.xsf	file

Show	All

Accessing	external	data	sources

When	working	with	a	Microsoft	Office	InfoPath	2003	form,	you	can	write
scripting	code	to	access	the	form's	secondary	data	sources,	which	are
typically	external	to	the	primary	data	source	of	a	form,	and	then
manipulate	the	data	that	they	contain.	The	InfoPath	object	model
supports	access	to	a	form's	external	data	sources	through	the	use	of	the
DataObject	object	in	association	with	the	DataObjects	collection.

The	InfoPath	object	model	also	provides	a	set	of	data	adapter	objects,
containing	information	about	the	secondary	data	sources,	and	access	to
the	data	that	they	contain.	The	type	of	data	adapter	that	is	returned	by
the	DataObject	object	depends	on	the	type	of	data	source	that	was
selected	when	the	secondary	data	source	was	created	in	design	mode.

Overview	of	the	DataObjects	collection

Overview	of	the	DataObject	object

Overview	of	the	data	adapter	objects

Using	the	DataObjects	collection	and	the	DataObject	object

Show	All

Accessing	form	data

When	you	want	to	extend	the	functionality	of	a	Microsoft	Office	InfoPath
2003	form,	it	is	often	necessary	to	programmatically	access	information
about	the	form's	underlying	XML	document,	access	the	data	that	the	XML
document	contains,	or	perform	some	action	on	the	XML	document.	The
InfoPath	object	model	supports	access	and	manipulation	of	a	form's
underlying	XML	document	through	the	use	of	the	XDocument	object	in
association	with	the	XDocuments	collection.

The	XDocument	object	is	one	of	the	most	useful	objects	within	the
InfoPath	object	model	because	it	provides	a	variety	of	properties,
methods,	and	events	that	not	only	interact	with	a	form's	underlying	XML
document,	but	also	perform	many	of	the	actions	that	are	within	the
InfoPath	user	interface.

Overview	of	the	XDocuments	collection

Overview	of	the	XDocument	object

Using	the	XDocuments	collection	and	the	XDocument	object

Show	All

Automating	InfoPath

Microsoft	Office	InfoPath	2003	Service	Pack	1	offers	expanded
application	automation	in	the	form	of	methods	of	the	Application	object
and	the	XDocuments	collection.

Overview	of	the	Application	and	XDocument	objects

For	backward	compatibility,	the	automation	of	InfoPath	is	accomplished
by	using	the	ExternalApplication	object	from	a	programming	language
or	environment	that	supports	the	Component	Object	Model	(COM).

Overview	of	the	ExternalApplication	object

Using	the	ExternalApplication	object

Show	All

Displaying	alerts	and	dialog	boxes

When	writing	programming	code	to	extend	the	functionality	of	a	Microsoft
Office	InfoPath	2003	form,	it	is	often	useful	to	provide	the	user	with
information	in	a	dialog	box.	Programmatically	displaying	a	dialog	box	is
accomplished	in	InfoPath	by	using	the	UI	object.

Overview	of	the	UI	object

Using	the	UI	object

Show	All

Handling	errors

When	creating	custom	applications,	developers	must	often	perform	error
handling	that	involves	writing	programming	code	to	check	for	errors
raised	by	the	application	or	to	create	and	raise	custom	errors.	The
Microsoft	Office	InfoPath	2003	object	model	supports	error	handling
through	the	use	of	the	Error	object	in	association	with	the	Errors
collection.

In	InfoPath,	errors	can	occur	when	a	form's	XML	Schema	is	validated,
when	a	custom	validation	constraint	fails,	when	an	error	is	generated	by
the	ReportError	method	of	the	DataDOMEvent	object,	or	when	an	error
is	created	using	the	Add	method	of	the	Errors	collection.

Overview	of	the	Errors	collection

Overview	of	the	Error	object

Using	the	Errors	collection	and	the	Error	object

Show	All

Responding	to	form	events

You	can	write	scripting	code	to	respond	to	various	events	that	can	occur
in	Microsoft	Office	InfoPath	2003	as	a	user	fills	out	a	form.	In	InfoPath,
events	take	the	form	of	event	handlers	that	are	created	when	working
with	a	form	in	design	mode.

InfoPath	event	handlers	must	be	initially	created	in	design	mode
because,	in	addition	to	the	scripting	declarations	that	are	created	in	a
form's	primary	scripting	file,	entries	are	also	made	in	the	form	definition
(.xsf)	file.	After	you	have	created	an	event	handler,	you	should	not	alter
its	declaration	in	the	primary	scripting	file.

For	information	about	creating	the	InfoPath	event	handlers,	see	About
the	programming	environment.

Overview	of	the	event	objects

Using	the	event	objects

Show	All

Working	with	form	windows

When	working	programmatically	with	a	Microsoft	Office	InfoPath	2003
form,	you	can	write	scripting	code	to	access	the	form's	windows,	and
then	customize	some	of	the	items	that	they	contain.	The	InfoPath	object
model	supports	access	to	a	form's	windows	through	the	use	of	the
Window	object	in	association	with	the	Windows	collection.

There	are	two	types	of	windows	in	an	InfoPath	form:	the	editing	window
that	is	used	as	the	form	area	when	a	user	fills	out	a	form,	and	the
designing	window	that	is	used	as	the	design	mode	when	a	user	designs
a	form.	When	writing	scripting	code	in	a	form,	it	is	the	editing	window	that
provides	the	most	useful	functionality,	because	you	can	use	the	Window
object	associated	with	it	to	access	a	variety	of	properties	and	methods
that	can	be	used	to	customize	a	form.

Overview	of	the	Windows	collection

Overview	of	the	Window	object

Using	the	Windows	collection	and	the	Window	object

Show	All

Working	with	views

When	working	with	a	Microsoft	Office	InfoPath	2003	form,	you	can	write
scripting	code	to	access	the	form's	views,	and	then	perform	a	variety	of
actions	on	the	data	that	the	views	contain.	The	InfoPath	object	model
supports	access	to	a	form's	views	through	the	use	of	the	View	object.

Overview	of	the	View	object

Using	the	View	object

Show	All

About	the	developer	sample	forms

The	Microsoft	Office	InfoPath	2003	developer	sample	forms	are	a	set	of
forms	designed	to	demonstrate	various	development	techniques	for
customizing	and	implementing	InfoPath	features.	The	following	table	lists
each	of	the	developer	sample	forms	and	the	features	that	they	illustrate.

Name File	name Description
Data
Validation

D_VALID.XSN Demonstrates	the	ways	in	which	data	can	be
validated	in	a	form.	Methods	covered	include
schema-based,	custom,	and	script-based
validation.

Events EVENTS.XSN Demonstrates	the	events	that	can	be	used	in
a	form.	Events	covered	include	form	events,
data	validation	events,	and	control	events.

Structural
Editing

CD_EDIT.XSN Demonstrates	the	ways	in	which	the	source
XML	document	of	a	form	may	be	edited,	and
how	the	editing	actions	that	are	available	to	a
user	are	based	on	context.	Methods	covered
include	field	and	structural	editing,	with
examples	of	editing	using	controls	and
scripting	code.

User
Interface

UIBASICS.XSNDemonstrates	the	ways	in	which	the	InfoPath
user	interface	can	be	customized	in	a	form.
Methods	covered	include	menu	items,
toolbars,	custom	task	panes,	and	custom
dialog	boxes.

Using	the	developer	sample	forms

Show	All

About	the	Data	Validation	developer	sample	form

The	Data	Validation	developer	sample	form	demonstrates	the	variety	of
ways	in	which	data	can	be	validated	in	Microsoft	Office	InfoPath	2003.
This	sample	form	is	divided	into	three	sections,	each	demonstrating	one
of	the	three	methods	of	data	validation:	schema-based	validation,	custom
validation,	and	script-based	validation.

To	test	the	features	of	the	sample	form,	simply	choose	any	field	and	enter
data	that	does	not	comply	with	the	validation	constraint	that	is	associated
with	it.	The	validation	constraints	can	be	viewed	by	resting	the	mouse
pointer	over	the	question	mark	icon	next	to	each	field.	When	you	move
the	cursor	out	of	the	field,	you	receive	one	of	two	possible	error
indications:	an	inline	alert	or	a	dialog	box	alert.

Note		To	see	all	of	the	files	that	make	up	the	Data	Validation	developer
sample	form,	open	the	form	and	click	Extract	Form	Files	on	the	File
menu	while	in	design	mode.	This	extracts	all	of	the	form	files	from	the
form	template	file	and	saves	them	to	a	specified	folder	on	your	hard	disk.

To	learn	how	each	of	the	data	validation	methods	is	implemented	in	the
Data	Validation	developer	sample	form,	see	the	following	topics:

Schema-based	validation	in	the	Data	Validation	developer	sample	form

Custom	validation	in	the	Data	Validation	developer	sample	form

Script-based	validation	in	the	Data	Validation	developer	sample	form

Show	All

Schema-based	validation	in	the	Data	Validation	developer
sample	form

Schema-based	data	validation	in	Microsoft	Office	InfoPath	2003	is
determined	by	the	XML	Schema	associated	with	a	form.	Schema-based
validation	occurs	by	default	whenever	a	user	fills	out	a	form.	After	the
user	enters	data	into	a	field	and	moves	out	of	that	field,	the	data	is
immediately	checked	against	the	XML	Schema.

In	the	Data	Validation	developer	sample	form,	schema-based	validation
is	used	to	verify	that	a	number	falls	within	a	certain	range,	verify	the	type
of	data	in	a	field,	verify	that	a	field	contains	data,	and	limit	the	number	of
rows	that	can	be	added	to	a	table.

Note			InfoPath	supports	the	creation	of	only	data	type	and	required	field
constraints	in	XML	Schemas	in	design	mode.	However,	the	use	of	other
kinds	of	constraints	in	the	schema	is	supported.	To	create	other	kinds	of
schema-based	validation,	you	must	edit	your	XML	Schema	files	using
Microsoft	Notepad	or	some	other	text	editor.

Range	checking	and	data-type	validation	in	the	schema

Required	fields	in	the	schema

Structural	validation	in	the	schema

Show	All

Custom	validation	in	the	Data	Validation	developer	sample
form

Custom	(or	declarative)	validation	in	Microsoft	Office	InfoPath	2003	is
used	to	check	for	required	fields,	verify	a	range	of	values,	and	ensure	the
accuracy	of	a	field.	You	can	use	the	Data	Validation	dialog	box	to	create
complex	validation	constraints	that	perform	calculations	and	validate	the
data	in	other	fields.	Validation	errors	can	be	displayed	as	inline	alerts	or
dialog	box	alerts.	In	either	case,	you	can	write	error	messages	that	tell
the	user	how	to	fix	the	invalid	entry.	As	with	schema-based	validation,
custom	validation	constraints	are	attached	to	fields	in	the	form,	and	the
validation	is	invoked	when	a	user	changes	the	data	in	a	field.

Note		The	Data	Validation	dialog	box	is	available	via	the	Properties
dialog	box	for	each	of	the	Office	InfoPath	2003	controls.

When	you	create	a	custom	data	validation	constraint	in	the	Data
Validation	dialog	box,	Office	InfoPath	2003	creates	an	errorCondition
element	within	the	customValidation	section	of	the	form	definition	(.xsf)
file.	The	following	is	an	example	of	the	validation	constraints	created	in
the	.xsf	file	for	the	cost	field	in	the	Data	Validation	developer	sample
form:

<xsf:customValidation>
			<xsf:errorCondition	
						match="/sampleData/travelExpenses/expense/cost"	
						expressionContext="."	
						expression=".	<	0	or	.	>	500">
						<xsf:errorMessage	
									type="modeless"
									shortMessage="The	cost	of	the	item	must	be	more	than	
												$0.00	and	cannot	go	over	$500.00.">The	cost	of	the	
												item	must	be	more	than	$0.00	and	cannot	go	over	$500.00.
						</xsf:errorMessage>
			</xsf:errorCondition>
</xsf:customValidation>

The	match	attribute	of	the	errorCondition	element	specifies	the	XPath
expression	that	is	used	to	bind	the	custom	data	validation	constraint	to
the	field,	and	the	expression	attribute	is	used	to	specify	the	constraint.

The	errorMessage	element	is	nested	within	the	errorCondition	element
and	is	used	to	specify	the	error	message	that	appears	when	the	value	of
the	associated	field	violates	the	constraint.	The	shortMessage	attribute
equates	to	the	ScreenTip	field	in	the	Data	Validation	dialog	box,	and	the
value	of	the	errorMessage	element	equates	to	the	Message	field	in	the
Data	Validation	dialog	box.	The	type	attribute	is	used	to	specify	error
type.

Show	All

Script-based	validation	in	the	Data	Validation	developer
sample	form

Script-based	validation	is	specified	in	the	business	logic	script	file
associated	with	a	Microsoft	Office	InfoPath	2003	form,	and	it	provides
more	flexibility	than	custom	validation	or	schema-based	validation.	Using
script-based	validation,	you	can	specify	when	a	field	should	be	validated
(for	example,	when	the	user	first	types	data	into	a	field,	after	the	user
leaves	a	field,	or	after	data	is	validated	by	the	schema).	You	can	also
write	script	that	runs	when	a	form	is	opened	or	when	the	user	switches
views.	The	script	you	write	can	perform	a	variety	of	functions,	including
comparing	fields,	calculating	values,	showing	error	messages,	updating
values,	and	revising	other	fields.

Note		InfoPath	supports	writing	script	in	Microsoft	VBScript	and	Microsoft
JScript.	However,	you	cannot	mix	the	scripting	languages	used	within	a
single	form.

To	create	script-based	data	validation,	you	use	InfoPath	design	mode	to
create	an	event	handler	(also	called	an	event	function),	and	then	you
write	scripting	code	for	the	event	handler	using	the	Microsoft	Script	Editor
(MSE).	For	each	event	handler	that	you	create,	InfoPath	places	an	entry
in	the	form	definition	(.xsf)	file	that	contains	the	name	of	the	event
handler	and	the	XML	Document	Object	Model	(DOM)	node	that	the	event
handler	is	associated	with.

Because	the	event	handler	is	referenced	in	the	.xsf	file,	you	cannot
create	a	new	event	handler	entirely	from	within	MSE—	you	must	initially
create	the	event	handler	in	InfoPath	design	mode.	Since	InfoPath	is	used
to	create	the	declaration	of	the	event	handler,	you	cannot	modify	the
event	handler	name	or	its	arguments	once	it	has	been	created.

Event	handlers	in	the	form	definition	file

Script-based	event	handlers	and	functions

Using	the	DataDOMEvent	object

Show	All

About	the	Events	developer	sample	form

The	Events	developer	sample	form	demonstrates	some	of	the	events	that
may	be	used	in	a	Microsoft	Office	InfoPath	2003	form.	In	InfoPath,	events
are	used	to	implement	client-side	business	logic,	which	may	include	data
validation,	controlling	the	behavior	of	a	form,	responding	to	the	actions	of
controls	on	a	form,	or	submitting	a	form.

The	Events	developer	sample	form	is	based	on	the	scenario	of	a
customer	contact	system.	It	contains	three	views	that	are	used	to
manage	customer	information:

New	Customer	View			Used	to	enter	new	customer	information.
Customer	information	must	be	entered	in	this	view	before	the	other	views
can	be	used.

Contact	Customer	View			Used	to	set	the	dates	on	which	the	customer
should	be	contacted	and	to	record	that	the	customer	has	been	contacted.

Archive	Customer	View			Used	to	show	customer	information,	record
notes	about	the	customer,	and	record	that	the	customer	record	has	been
archived.

To	test	the	features	of	the	sample	form,	enter	customer	information	in
New	Customer	view,	and	then	click	Switch	To	Contact	Customer	View
to	switch	views.	After	entering	customer	contact	information	in	Contact
Customer	view,	you	can	click	Switch	To	Archive	Customer	View	to
switch	to	the	list	of	archived	customer	contact	information.

Note		To	see	all	of	the	files	that	make	up	the	Events	developer	sample
form,	open	the	form	and	click	Extract	Form	Files	on	the	File	menu	while
in	design	mode.	This	extracts	all	of	the	form	files	from	the	form	template
file	and	saves	them	to	a	specified	folder	on	your	hard	disk.

To	learn	how	each	event	is	implemented	in	the	Events	developer	sample
form,	see	the	following	topics:

Form	events	in	the	Events	developer	sample	form

Data	validation	events	in	the	Events	developer	sample	form

Control	events	in	the	Events	developer	sample	form

Show	All

Form	events	in	the	Events	developer	sample	form

The	Events	developer	sample	form	implements	a	variety	of	Microsoft
Office	InfoPath	2003	form	events	that	can	be	used	to	respond	to	specific
activities	that	occur	when	a	form	is	opened	and	while	it	is	being	filled	out.
Form	events	can	occur	when	a	form's	version	number	is	validated,	when
a	form	is	opened,	when	a	form	view	is	changed,	and	after	a	form	has
been	merged	with	another	form.

The	following	table	lists	each	of	the	form	events	implemented	in	the
Events	developer	sample	form,	along	with	a	description	of	how	they	are
used.

Event Description
OnVersionUpgradeUsed	to	verify	that	the	version	number	of	the	form

being	opened	matches	the	version	number	of	the
form	when	it	was	originally	designed.	If	the	version
numbers	do	not	match,	this	event	occurs	and
scripting	code	can	be	used	to	update	the	form	or
display	an	error	message.

OnLoad Used	to	initialize	the	form	as	it	is	being	opened.
When	this	event	occurs,	scripting	code	can	be	used
to	set	the	appropriate	view	based	on	data	contained
in	the	form.

OnSwitchView Used	when	changing	from	one	view	to	another.
This	event	occurs	when	a	user	changes	views,	and
scripting	code	can	be	used	to	insert	data	into	the
form.

OnAfterImport Used	to	provide	additional	processing	after	a	form
has	been	merged	with	another	form.	This	event
occurs	after	data	is	imported	from	another	form,
and	scripting	code	can	be	used	to	set	the
appropriate	view	based	on	the	merged	data
contained	in	the	form.

Note		The	OnSubmitRequest	event	is	also	a	form	event,	but	it	was	not
used	in	the	Events	developer	sample	form.

Using	the	OnVersionUpgrade	event

Using	the	OnLoad	event

Using	the	OnSwitchView	event

Using	the	OnAfterImport	event

Show	All

Data	validation	events	in	the	Events	developer	sample
form

The	Events	developer	sample	form	implements	a	variety	of	Microsoft
Office	InfoPath	2003	data	validation	events	that	can	be	used	to	validate
data	that	is	entered	into	a	form.	Data	validation	events	can	occur	after	a
change	has	been	made	to	a	field	or	group,	after	a	change	has	been
made	to	a	field	or	group	but	before	the	data	is	committed,	and	after	a
change	has	been	made	to	a	field	or	group	and	after	the	data	is
committed.

To	use	one	of	the	data	validation	events,	you	must	first	create	the	event
in	the	Field	or	Group	Properties	dialog	box	that	is	available	from	the
Data	Source	task	pane.	To	access	this	dialog	box,	right-click	one	of	the
fields	or	groups	in	the	task	pane,	and	then	click	Properties.	On	the
Validation	and	Script	tab,	select	the	event	you	wish	to	create,	and	then
click	Edit;	this	opens	Microsoft	Script	Editor	(MSE)	and	displays	the
InfoPath-generated	event	handler.

Note		Event	handlers	in	InfoPath	must	be	created	in	design	mode.

The	following	table	lists	each	of	the	data	validation	events	implemented
in	the	Events	developer	sample	form,	along	with	a	description	of	how
they	are	used.

Event Description
OnValidate Used	to	validate	the	data	contained	in	the

ContactDates	group.	When	this	event	occurs,
scripting	code	is	used	to	verify	that	the	dates	used
are	within	a	specified	range.

OnBeforeChange Used	to	validate	the	data	contained	in	the	Email
Campaign	Start,	Phone	Contact	Start,	and
Representative	Visit	date	fields.	When	this	event
occurs,	scripting	code	is	used	to	implement	business
logic	that	checks	for	the	existence	of	certain	dates
before	others	can	be	entered	or	removed.

OnAfterChange Used	to	call	a	function	that	calculates	the	total
campaign	costs	and	updates	the	Campaign	Cost

field.

Using	the	OnValidate	event

Using	the	OnBeforeChange	event

Using	the	OnAfterChange	event

Show	All

Control	events	in	the	Events	developer	sample	form

The	Events	developer	sample	form	implements	a	single	Microsoft	Office
InfoPath	2003	control	event	that	can	respond	to	a	button	click;	this	is	the
OnClick	event.	The	OnClick	event	occurs	after	a	user	clicks	a	button	on
a	form.

Note		The	OnClick	event	is	the	only	control	event	supported	by	InfoPath.

To	use	the	OnClick	event,	you	must	first	create	the	event	in	the	Button
Properties	dialog	box	that	is	available	on	the	shortcut	menu	for	the
button	control.	On	the	General	tab,	set	Script	as	the	Action,	and	then
click	Microsoft	Script	Editor.	This	will	open	Microsoft	Script	Editor
(MSE)	and	display	the	InfoPath-generated	event	handler.

Note		Event	handlers	in	InfoPath	must	be	created	in	design	mode.

In	the	Events	developer	sample	form,	the	OnClick	event	is	implemented
for	the	three	buttons	that	are	used	to	switch	between	views.	The	following
example	from	the	Events	developer	sample	form	shows	the	OnClick
event	handler	for	the	Switch	to	New	Customer	View	button:

function	btnSwitchNew::OnClick(eventObj)
{
			XDocument.View.SwitchView("New	Customer")
}

Note		The	name	of	the	button	used	in	the	event	handler	declaration	is
determined	by	the	value	set	for	the	Script	ID	box	in	the	Button
Properties	dialog	box.

Show	All

About	the	Structural	Editing	developer	sample	form

The	Structural	Editing	developer	sample	form	demonstrates	some	of	the
ways	in	which	the	underlying	XML	document	of	a	Microsoft	Office
InfoPath	2003	form	may	be	edited	using	a	combination	of	controls,	menu
items,	toolbar	buttons,	and	script.	When	filling	out	a	form	in	InfoPath,
users	are	essentially	editing	an	XML	document	in	an	easy-to-use,
graphical	format.	Although	the	Structural	Editing	developer	sample	form
is	primarily	intended	to	demonstrate	structural	editing,	it	is	used	to
illustrate	two	types	of	editing	that	can	occur	in	a	form:

Field	editing			Editing	that	modifies	the	text	in	a	field	(an	element	or
attribute	in	the	form's	underlying	XML	document).	For	example,	entering
data	directly	into	a	text	box	control	changes	the	underlying	data	in	the
element	or	attribute	that	the	control	is	bound	to.

Structural	editing			Editing	that	changes	the	structure	of	the	form's
underlying	XML	document.	Structural	editing	allows	fragments	of	XML
(elements	and	their	associated	child	elements,	attributes,	and	content)	to
be	inserted,	removed,	or	replaced	in	a	single	operation.	For	example,
adding	items	to	a	repeating	section,	repeating	table,	or	list	control	creates
new	elements	and	attributes	within	the	part	of	the	XML	document	that	the
control	is	bound	to.

Both	field	editing	and	structural	editing	are	usually	implemented	by	using
controls	that	connect	a	form	to	an	underlying	XML	document,	allowing
users	to	enter	or	modify	the	data	that	the	XML	document	contains.
However,	you	may	also	implement	field	or	structural	editing	by	using
scripting	code	in	conjunction	with	the	InfoPath	object	model.

In	addition	to	field	and	structural	editing,	InfoPath	provides	the	concept	of
editing	context,	which	means	that	editing	actions	can	be	dependent	on
the	current	selection	or	insertion	point.	For	example,	the	Add	Part
Before	Current	button	on	the	Part	Toolbar	custom	toolbar	of	the
Structural	Editing	developer	sample	form	inserts	a	new	row	in	the	Parts
table	at	a	position	based	on	the	current	context.	The	button	is	enabled
only	if	the	current	selection	is	on	or	within	one	of	the	rows	in	the	table.

To	test	the	features	of	the	sample	form,	simply	type	data	directly	into	the
fields	on	the	form,	or	use	the	Insert	menu,	the	Part	Catalog	custom	task

pane,	the	shortcut	menu,	or	the	Part	Toolbar	custom	toolbar	to	insert	or
remove	rows	in	the	Parts	table.

Note		To	see	all	of	the	files	that	make	up	the	Structural	Editing	developer
sample	form,	open	the	form	and	click	Extract	Form	Files	on	the	File
menu	while	in	design	mode.	This	extracts	all	of	the	form	files	from	the
form	template	file	and	saves	them	to	a	specified	folder	on	your	hard	disk.

To	learn	how	editing	features	are	implemented	in	the	Structural	Editing
developer	sample	form,	see	the	following	topics:

Field	editing	in	the	Structural	Editing	developer	sample	form

Structural	editing	in	the	Structural	Editing	developer	sample	form

Editing	context	in	the	Structural	Editing	developer	sample	form

Show	All

Field	editing	in	the	Structural	Editing	developer	sample
form

Field	editing	in	a	Microsoft	Office	InfoPath	2003	form	occurs	when	data	is
entered	directly	into	a	form	field	(usually	a	text	box	control)	as	a	user	fills
out	a	form.	The	data	that	is	entered	is	stored	as	a	value	of	the	element	or
attribute	of	the	XML	field	(element	or	attribute)	in	the	underlying	XML
document	that	the	control	is	bound	to.	For	example,	in	the	Structural
Editing	developer	sample	form,	text	boxes	are	used	for	editing	the	data
contained	in	the	Part	Number,	Description,	Quantity,	and	Unit	Price	fields.

Field	editing	usually	occurs	when	a	user	enters	data	within	a	control	on	a
form;	the	data	that	the	user	enters	is	stored	in	the	form's	underlying	XML
document.	However,	you	can	also	use	scripting	code	to	manipulate	the
data	contained	in	the	form's	underlying	XML	document	by	modifying	the
XML	document	itself.	If	the	form	includes	a	control	such	as	a	text	box	that
is	bound	to	the	modified	data,	the	data	displayed	in	the	form	will	be
updated	automatically.

Using	controls	for	field	editing

Using	script	for	field	editing

Show	All

Structural	editing	in	the	Structural	Editing	developer
sample	form

Structural	editing	in	a	Microsoft	Office	InfoPath	2003	form	occurs	when	a
user	is	filling	out	a	form,	and	the	type	of	editing	actions	that	the	user
performs	results	in	a	structural	change	to	the	form's	underlying	XML
document.	Structural	changes	involve	inserting	or	removing	elements
and	attributes	in	the	underlying	XML	document	that	the	form	is	bound	to.
For	example,	in	the	Structural	Editing	developer	sample	form,	structural
changes	are	made	when	a	user	inserts	or	removes	items	from	the	Parts
table	or	the	Notes	bulleted	list.

Structural	editing	controls	have	predetermined	editing	actions	that	can	be
associated	with	toolbar	buttons	and	menu	items	in	InfoPath	user	interface
areas.	The	Commands	dialog	box	that	is	available	from	a	structural
editing	control's	Properties	dialog	box	allows	you	to	choose	which
editing	actions	of	the	control	are	available	to	users,	which	user	interface
area	they	appear	in,	and	the	labels	that	are	used	for	the	associated
button	or	menu	items.	The	structural	editing	controls	used	in	this	sample
form	include	a	repeating	table	and	a	bulleted	list.

Structural	editing	can	be	implemented	by	using	an	InfoPath	structural
editing	control,	or	by	using	scripting	code	to	directly	manipulate	the	data
contained	in	the	form's	underlying	XML	document.	If	the	form	includes	a
control	such	as	a	repeating	section	that	is	bound	to	the	modified	(inserted
or	deleted)	data,	the	data	displayed	in	the	form	will	be	updated
automatically.

Using	controls	for	structural	editing

Using	script	for	structural	editing

Show	All

Editing	context	in	the	Structural	Editing	developer	sample
form

Editing	context	in	a	Microsoft	Office	InfoPath	2003	form	is	the
dependence	of	editing	actions	on	the	current	selection	or	insertion	point.
For	example,	if	a	row	in	the	Structural	Editing	developer	sample	form
Parts	table	is	selected,	the	buttons	for	adding	or	removing	parts	on	the
Part	Toolbar	custom	toolbar	are	enabled	and	will	insert	or	remove	rows
in	the	Parts	table	at	a	position	based	on	the	current	context.	If	current
selection	is	not	on	or	within	one	of	the	rows	in	the	table,	the	buttons	are
disabled.

Note		The	Part	Toolbar	custom	toolbar	was	created	by	modifying	the
default	Form	toolbar.

The	following	are	some	of	the	areas	in	the	InfoPath	user	interface	in
which	editing	context	is	applicable:

Insert	menu			Menu	items	available	on	the	Insert	menu.	These	typically
include	menu	items	for	inserting	items	in	a	table	or	section.

Shortcut	menu			Menu	items	available	on	the	shortcut	menu.	These
typically	include	menu	items	for	inserting	or	removing	items	in	a	table,
section,	or	list.

Table	menu			Menu	items	available	on	the	Table	menu.	These	typically
include	menu	items	for	inserting	or	removing	items	in	a	table.

Custom	toolbar			Buttons	and	menu	items	available	on	a	custom	toolbar.
These	typically	include	buttons	or	menu	items	for	inserting	or	removing
items	in	a	table	or	section,	or	buttons	that	call	scripting	code.

In	the	Structural	Editing	developer	sample	form,	a	repeating	table	control
is	used	to	implement	a	table	that	allows	users	to	edit	a	list	of	parts	in	an
invoice.	When	a	user	chooses	to	edit	the	table	using	the	Insert	menu,	the
Part	Toolbar	custom	toolbar,	or	the	shortcut	menu,	InfoPath	determines
the	control	being	used,	and	based	on	the	editing	actions	set	in	design
mode	for	that	control,	performs	the	appropriate	editing	of	the	source	XML
document.

The	structural	editing	controls	have	predetermined	editing	actions	that

can	be	associated	with	toolbar	buttons	and	menu	items	in	InfoPath	user
interface	areas.	The	Commands	dialog	box	that	is	available	from	a
structural	editing	control's	Properties	dialog	box	allows	you	to	choose
which	editing	actions	of	the	control	are	available	to	users,	which	user
interface	area	they	appear	in,	and	the	labels	that	are	used	for	the
associated	buttons	or	menu	items.	In	the	Parts	table	of	the	Structural
Editing	developer	sample	form,	the	following	editing	actions	are	enabled:

Insert			Enabled	on	the	Insert	menu.	Allows	a	user	to	insert	a	new	row	in
the	Parts	table.

Insert	Above			Enabled	on	the	shortcut	menu	and	the	Part	Toolbar
custom	toolbar.	Allows	a	user	to	insert	a	new	row	in	the	Parts	table	that	is
above	the	currently	selected	row.

Insert	Below			Enabled	on	the	shortcut	menu	and	the	Part	Toolbar
custom	toolbar.	Allows	a	user	to	insert	a	new	row	in	the	Parts	table	that	is
below	the	currently	selected	row.

Remove			Enabled	on	the	shortcut	menu	and	the	Part	Toolbar	custom
toolbar.	Allows	a	user	to	remove	the	currently	selected	row.

Note		Other	editing	actions	can	be	used	in	a	repeating	table	control	that
are	not	implemented	in	the	Structural	Editing	developer	sample	form.

Show	All

About	the	User	Interface	developer	sample	form

The	User	Interface	developer	sample	form	demonstrates	the	variety	of
ways	in	which	the	user	interface	can	be	customized	in	a	Microsoft	Office
InfoPath	2003	form.	The	user	interface	features	customized	in	this
sample	form	include	menu	items	on	the	menu	bar,	shortcut	menus,
toolbar	buttons	on	the	Form	toolbar,	and	a	custom	task	pane.

To	test	the	features	of	the	sample	form,	simply	add,	modify,	or	remove
CDs	by	using	the	Insert	menu,	the	CD	Collection	Toolbar,	or	the
shortcut	menu	buttons	while	filling	out	the	form.	You	can	switch	between
CD	Collection	and	All	Tracks	views	by	using	the	View	menu	or	the
custom	task	pane.

Note		To	see	all	of	the	files	that	make	up	the	User	Interface	developer
sample	form,	open	the	form	and	click	Extract	Form	Files	on	the	File
menu	while	in	design	mode.	This	extracts	all	of	the	form	files	from	the
form	template	file	and	saves	them	to	a	specified	folder	on	your	hard	disk.

To	learn	how	each	of	the	user	interface	features	is	implemented	in	the
User	Interface	developer	sample	form,	see	the	following	topics:

Custom	menus	in	the	User	Interface	developer	sample	form

Custom	toolbars	in	the	User	Interface	developer	sample	form

Custom	task	panes	in	the	User	Interface	developer	sample	form

Show	All

Custom	menus	in	the	User	Interface	developer	sample
form

Microsoft	Office	InfoPath	2003	provides	the	ability	to	control	where	and
how	you	want	menu	items	to	appear	within	the	user	interface,	primarily
by	enabling	or	disabling	them	on	various	built-in	menus	used	with	a	form.
Some	of	the	menus	that	you	can	customize	include	View,	Insert,	and
Table,	as	well	as	shortcut	menus	that	are	displayed	when	a	user	clicks
the	shortcut	menu	button	associated	with	a	certain	repeating	table,
repeating	section,	or	optional	section.	Menus	can	be	customized	for
repeating	tables,	repeating	sections,	optional	sections,	and	views.

Note		Many	of	the	other	standard	InfoPath	menus	can	also	be
customized;	the	User	Interface	developer	sample	form	demonstrates	how
to	customize	a	select	few.

Several	custom	menus	are	implemented	in	the	User	Interface	developer
sample	form.	The	following	table	lists	the	views,	tables,	and	sections	of
the	User	Interface	developer	sample	form,	along	with	the	custom	menu
items	that	were	implemented	for	each	of	them.

Name Type Custom	menu	items
CD
Collection

View CD	Collection	menu	item	on	the	View	menu.

All	Tracks View All	Tracks	menu	item	on	the	View	menu.
CD Repeating

section
CD	menu	item	on	the	Section	submenu	of	the
Insert	menu.

Insert	CD	above,	Insert	CD	below,	and	Remove
CD	menu	items	on	the	shortcut	menu	for	the	CD
table.

Track Repeating
table

Track	menu	item	on	the	Section	submenu	of	the
Insert	menu.

Insert	Track	menu	item	on	the	shortcut	menu	for
the	CD	table.

Insert	Tracks	and	Remove	Tracks	menu	items	on

the	Table	menu.

Insert	Track	above,	Insert	Track	below,	and
Remove	Track	menu	items	on	the	shortcut	menu
for	the	Track	table.

Label Optional
section

Label	menu	item	on	the	Section	submenu	of	the
Insert	menu.

Insert	Label	menu	item	on	the	shortcut	menu	for
the	CD	table.

Remove	Label	menu	item	on	the	shortcut	menu
for	the	Label	control.

Note		When	you	customize	menus	in	InfoPath,	those	customizations	are
applied	at	the	view	level.	This	means	that	the	customizations	you	make
are	not	globally	applied	to	all	views.	To	apply	the	same	custom	menus	to
more	than	one	view,	you	must	make	the	menu	customizations	in	each
view.

Customizing	the	View	menu

Customizing	the	Insert	menu

Customizing	the	Table	menu

Customizing	shortcut	menus

Show	All

Custom	toolbars	in	the	User	Interface	developer	sample
form

The	User	Interface	developer	sample	form	implements	a	single	custom
toolbar,	the	CD	Collection	Toolbar,	that	allows	users	to	add	or	remove	a
CD,	Track,	or	Label.	By	default,	Microsoft	Office	InfoPath	2003	has	one
built-in	custom	toolbar,	the	Form	toolbar,	that	can	be	used	to	create
custom	menu	items	that	users	can	click	to	perform	various	actions	on	a
form.

To	customize	the	Form	toolbar	in	design	mode,	you	use	the	Properties
dialog	box	for	the	particular	repeating	section,	repeating	table,	or	optional
section	that	you	are	working	with.	The	Properties	dialog	box	is	accessed
by	right-clicking	the	section	or	table	and	clicking	the	Properties	menu
item	on	the	shortcut	menu.	In	the	Properties	dialog	box	for	repeating
tables	and	optional	sections,	you	click	Customize	Commands	to	open
the	Commands	dialog	box.	For	repeating	sections,	the	Customize
Command	button	is	available	in	the	Section	Properties	dialog	box	that
opens	when	you	choose	to	modify	the	default	settings	of	a	section.	The
Commands	dialog	box	allows	you	to	associate	certain	editing	actions
with	various	command	locations	available	on	the	menus	and	toolbars	in
an	InfoPath	form.	To	create	a	custom	toolbar,	you	select	the	Form
Toolbar	location.

Note		In	the	User	Interface	developer	sample	form,	the	command
location	is	the	CD	Collection	Toolbar,	since	the	default	name	of	the
Form	toolbar	was	modified.	Modifications	to	the	default	name	of	a	toolbar
can	be	made	manually	in	the	form	definition	(.xsf)	file	by	changing	the
value	of	the	caption	attribute	of	the	toolbar	element.

When	you	customize	a	toolbar,	InfoPath	creates	entries	in	the	.xsf	file
using	button	elements	within	the	toolbar	element.	The	caption	that
appears	as	the	name	of	the	toolbar	is	determined	by	the	caption	attribute
of	the	toolbar	element,	and	the	caption	that	appears	as	the	name	of	a
button	on	the	toolbar	is	determined	by	the	caption	attribute	of	a	button
element.

As	you	associate	editing	actions	with	the	custom	toolbar	using	the
Commands	dialog	box,	menu	items	are	placed	directly	on	the	toolbar.

However,	it	is	possible	to	create	menus	on	the	toolbar	and	then	add
menu	items	to	those	menus.	This	is	accomplished	by	nesting	the	button
elements	of	the	toolbar	within	a	menu	element	in	the	.xsf	file.

The	following	is	a	section	from	the	.xsf	file	of	the	User	Interface	developer
sample	form	that	contains	the	toolbar	element.	Note	the	use	of	the
menu	element	to	create	a	menu	on	the	toolbar.

<xsf:toolbar	
			caption="CD	Collection	Toolbar"	
			name="CD	Collection	Toolbar">
			<xsf:button	
						action="xCollection::insert"	
						xmlToEdit="CD_10"	
						caption="New	CD"	
						showIf="always">
			</xsf:button>
			<xsf:button	
						action="xCollection::insert"	
						xmlToEdit="Track_14"	
						caption="New	Track"	
						showIf="always">
			</xsf:button>
			<xsf:button	
						action="xOptional::insert"	
						xmlToEdit="Label_16"	
						caption="New	Label"	
						showIf="always">
			</xsf:button>
			<xsf:menu	
						caption="Remove">
						<xsf:button	
									action="xCollection::remove"	
									xmlToEdit="CD_10"	
									caption="CD"	

									showIf="always">
						</xsf:button>
						<xsf:button	
									action="xCollection::remove"	
									xmlToEdit="Track_14"	
									caption="Track"	
									showIf="always"></xsf:button>
						<xsf:button	
									action="xOptional::remove"	
									xmlToEdit="Label_16"	
									caption="Label"	
									showIf="always">
						</xsf:button>
			</xsf:menu>
</xsf:toolbar>

Notes

Adding	menus	to	a	toolbar	is	a	feature	of	the	.xsf	file	and	is	not	available
when	using	the	Commands	dialog	box	in	design	mode.

While	InfoPath	implements	a	single	custom	toolbar,	you	can	add	multiple
toolbars	to	a	form	by	creating	additional	toolbar	elements	within	the	.xsf
file.	Once	you	have	created	the	additional	toolbars	by	manually	editing
the	.xsf	file,	those	toolbars	are	available	in	the	Commands	dialog	box,
and	you	can	then	associate	editing	actions	with	them.

Show	All

Custom	task	panes	in	the	User	Interface	developer	sample
form

The	User	Interface	developer	sample	form	implements	a	custom	task
pane	that	is	used	to	switch	views	and	perform	other	general-purpose
operations,	such	as	sorting	the	list	of	CDs.	Custom	task	panes	are	.html
files	that	are	displayed	in	the	Microsoft	Office	InfoPath	2003	task	pane	as
a	user	fills	out	a	form.	There	can	be	only	one	custom	task	pane
associated	with	a	form.

To	create	a	custom	task	pane,	you	must	first	create	an	.html	file	by	using
an	HTML	editor	such	as	Microsoft	FrontPage.	You	associate	this	.html	file
with	a	form	by	using	the	Advanced	tab	in	the	Form	Options	dialog	box
that	is	available	on	the	Tools	menu	in	design	mode.	The	Advanced	tab
allows	you	to	add	the	.html	file	and	any	other	supporting	files,	such	as	a
cascading	style	sheet	(.css	file),	using	the	Resource	Manager.	(The
Resource	Manager	can	also	be	accessed	by	clicking	Resource	Manager
on	the	Tools	menu	in	design	mode.)	After	the	.html	file	has	been	added
as	a	resource,	you	can	select	the	Enable	custom	task	pane	check	box
and	set	the	name	and	location	of	your	custom	task	pane.

Note		You	must	add	the	.html	file	to	the	form	using	the	Resource
Manager	before	you	can	make	the	file	a	custom	task	pane.

When	you	add	a	custom	task	pane	to	a	form,	InfoPath	creates	entries	in
the	form	definition	(.xsf)	file	using	the	taskpane	element.	The	caption
attribute	of	the	taskpane	element	is	used	to	store	the	name	of	the
custom	task	pane,	while	the	href	attribute	is	used	to	store	the	.html	file
name.	The	following	is	a	section	from	the	.xsf	file	of	the	User	Interface
developer	sample	form	that	contains	the	taskpane	element:

<xsf:taskpane
			caption="Custom	Task	Pane"
			href="taskpane.htm">
</xsf:taskpane>

In	addition	to	using	standard	HTML	markup,	you	can	also	use	scripting
code	within	the	task	pane	that	calls	the	InfoPath	object	model.	In	the

User	Interface	developer	sample	form,	the	Extension	property	of	the
XDocument	object	is	used	to	gain	access	to	the	business	logic	functions
contained	in	the	form's	primary	script	file.

The	following	is	a	section	from	the	.html	file	used	as	the	custom	task
pane	in	the	User	Interface	developer	sample	form.	The	call	to	the
InfoPath	object	model's	Extension	property	is	used	in	the	onClick	event
for	the	Sort	CDs	hyperlink.	When	the	user	clicks	this	link,	the	Sort
function	within	the	form's	primary	script	file	is	called.	The	Sort	function
then	takes	the	source	XML	document	for	the	form	and	sorts	the	collection
of	CDs	alphabetically	according	to	artist	and	track.

<div	class="action">
			<a	href=""	
						onClick="gobjXDocument.Extension.Sort();return	false;">
						Sort	CDs	by	artist/title
</div>

Note		To	view	the	business	logic	functions	for	the	User	Interface
developer	sample	form,	you	can	open	Microsoft	Script	Editor	(MSE)	in
InfoPath	design	mode	by	clicking	the	Tools	menu,	pointing	to	Script,	and
clicking	Microsoft	Script	Editor,	or	by	pressing	ALT+SHIFT+F11.

InfoPath	Object	Model	Diagram

Application 	 ActiveWindow
Windows
Window
CommandBars
MailEnvelope
TaskPanes
TaskPane
HTMLDocument
HTMLWindow
Window
XDocument

XDocument
User
XDocuments
XDocument
DataObjects
DataObject
DOM
QueryAdapter
ADOAdapter
WebServiceAdapter
XMLFileAdapter

DataAdapters
DAVAdapter
EmailAdapter
HWSAdapter
SharePointListAdapter

Legend

	
	

	

	

Automation	object

ExternalApplication
	

	

Event	objects

DataDOMEvent

DocActionEvent

DocContextChangeEvent

DocEvent

DocReturnEvent

MergeEvent

SaveEvent

SignEvent

VersionUpgradeEvent
	

	

General-purpose	collection

XMLNodes
	

WebServiceAdapter
DOM
Errors
Error

Extension
QueryAdapter

ADOAdapter
WebServiceAdapter
XMLFileAdapter

SignedDataBlocks
SignedDataBlock
Signatures
Signature
Certificate

Solution
DOM

UI
Util

Date
Math

View
Window

ViewInfos
ViewInfo

	

DataAdapters	Collection

Contains	a	data	adapter	object	corresponding	to	each	data	connection
used	within	a	Microsoft	Office	InfoPath	2003	form.

Remarks
Each	data	connection	is	used	to	retrieve	data	(inserted	into	the	main	data
source	or	into	a	secondary	data	source)	or	to	submit	data.

A	data	connection	used	to	retrieve	data	for	the	main	data	source	will
correspond	to	one	of	the	following	data	adapter	object	types:

WebServiceAdapter

ADOAdapter

Note		An	AdoAdapter	object	used	to	retrieve	data	for	the	main	data
source	can	also	submit	data.

A	data	connection	used	to	retrieve	data	for	a	secondary	data	source	will
correspond	to	one	of	the	following	data	adapter	object	types:

ADOAdapter

SharepointListAdapter

WebServiceAdapter

XMLFileAdapter

A	data	connection	used	only	for	submitting	data	will	correspond	to	one	of
the	following	data	adapter	object	types:

EmailAdapter

DAVAdapter

HWSAdapter

WebServiceAdapter

The	DataAdapters	collection	can	be	accessed	using	the	DataAdapters
property	of	the	XDocument	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service

Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

DataObjects	Collection

DataObjects DataObject

Contains	a	DataObject	object	for	each	secondary	data	source	used
within	a	Microsoft	Office	InfoPath	2003	form.	Each	DataObject	object
provides	access	to	the	particular	data	adapter	object	that	was	used	to
connect	to	the	external	data	source.

Remarks
The	DataObjects	collection	implements	properties	that	can	be	used	to
access	a	form's	associated	DataObject	objects,	and	it	is	accessible
through	the	DataObjects	property	of	the	XDocument	object.

Note		The	DataObjects	collection	can	be	used	only	to	get	the	count	of
DataObject	objects	that	it	contains	or	to	return	a	reference	to	a	specified
DataObject	object.	It	cannot	be	used	to	create,	add,	or	remove
DataObject	objects.

Using	the	DataObjects	collection
In	the	following	example,	implemented	as	an	OnClick	event	handler	for	a
button	on	a	form,	the	DataObjects	property	of	the	XDocument	object	is
used	to	set	a	reference	to	the	DataObjects	collection.	The	code	then
loops	through	the	collection	and	displays	the	positional	index	and	name
of	each	DataObject	object	that	it	contains:

function	ShowDataObjectNames::OnClick(eventObj)
{
			//	Set	a	reference	to	the	DataObjects	collection.
			var	objDataObjects	=	XDocument.DataObjects;

			//	Loop	through	the	collection	and	display	the	name
			//	of	each	DataObject	object	that	it	contains.
			for	(i=0;	i	<	objDataObjects.Count;	i++)
			{
						XDocument.UI.Alert("Data	object	"	+	i	+	":	"	+	
									objDataObjects(i).Name);
			}
			objDataObjects	=	null;
}

For	more	information	about	using	the	DataObjects	collection,	see
Accessing	external	data	sources.

Errors	Collection

Errors Error

Contains	an	Error	object	for	each	error	within	a	Microsoft	Office	InfoPath
2003	form.	An	Error	object	contains	information	about	an	InfoPath	error,
including	its	detailed	message,	short	message,	code,	type,	and	the	XML
node	that	is	associated	with	it.

Remarks
The	Errors	collection	is	a	full-featured	collection—	it	provides	properties
and	methods	for	adding,	deleting,	and	gaining	access	to	the	Error
objects	that	it	contains.

In	addition	to	managing	the	errors	generated	by	InfoPath,	the	Errors
collection	can	also	be	used	to	create	custom	errors	using	the	Add
method.

Note		Custom	errors	can	also	be	created	using	the	ReportError	method
of	the	DataDOMEvent	object.

Using	the	Errors	collection
The	Errors	collection	is	accessed	through	the	Errors	property	of	the
XDocument	object.	The	Errors	collection	is	associated	with	a	form's
underlying	XML	document	so	that	when	an	error	occurs,	it	occurs	within
the	XML	document.

In	the	following	example,	the	Count	property	of	the	Errors	collection	is
used	get	the	count	of	errors	currently	contained	in	the	collection:

XDocument.UI.Alert("Count	of	errors:	"	+	XDocument.Errors.Count);

To	delete	a	specific	error	from	the	Errors	collection,	use	the	Delete
method,	passing	the	XML	code	and	condition	name	as	arguments:

XDocument.Errors.Delete(myXMLNode,	"MyErrorName");

To	delete	all	of	the	errors	in	the	Errors	collection,	use	the	DeleteAll
method:

XDocument.Errors.DeleteAll();

To	set	a	reference	to	an	error	within	the	Errors	collection,	use	the	Item
property:

var	objError;

objError	=	XDocument.Errors.Item(0);
//	Or...
objError	=	XDocument.Errors(0);

For	more	information	about	using	the	Errors	collection,	see	Handling
errors.

Signatures	Collection

Contains	a	collection	of	Signature	objects	for	each	signature	in	the
Microsoft	Office	InfoPath	2003	form	or	SignedDataBlock	object.

Remarks
The	Signatures	collection	implements	properties	and	a	method	that	can
be	used	to	access	a	form's	associated	Signature	objects	and	to	create	a
signature.	It	is	accessible	through	the	SignedDataBlock	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Signatures	collection
When	using	the	Create	method,	the	signature	is	not	written	until	the	Sign
method	is	called	on	the	Signature	object.	These	methods	can	be	called
only	from	the	OnSign	event	handler.

Show	All

SignedDataBlocks	Collection

The	collection	of	the	SignedDataBlock	objects	in	the	form	template	as
defined	in	the	form	definition	file	(.xsf).

Remarks
The	SignedDataBlocks	collection	implements	properties	that	can	be
used	to	access	the	SignedDataBlock	objects	associated	with	a	form.
The	SignedDataBlocks	collection	is	accessible	through	the
SignedDataBlocks	property	of	the	XDocument	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

TaskPanes	Collection

TaskPanes TaskPane

Contains	a	collection	of	TaskPane	objects	that	represent	the	task	panes
associated	with	a	window	in	Microsoft	Office	InfoPath	2003.

Remarks
The	TaskPanes	collection	provides	properties	that	can	be	used	to
access	a	collection	of	task	pane	objects,	and	it	is	accessed	through	the
TaskPanes	property	of	the	Window	object.

Note		The	TaskPanes	collection	can	be	used	only	to	get	the	count	of
TaskPane	objects	that	it	contains	and	to	return	a	reference	to	a	specified
TaskPane	object.	It	cannot	be	used	to	add	or	remove	TaskPane	objects.

Using	the	TaskPanes	collection
In	the	following	example,	the	TaskPanes	property	of	the	Window	object
is	used	to	set	a	reference	to	the	TaskPanes	collection:

var	objTaskPanes;

objTaskPanes	=	XDocument.View.Window.TaskPanes;

In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	set	a	reference	to	a	specified	TaskPane	object.	Then	the	code
uses	the	Visible	property	of	the	TaskPane	object	to	make	the	task	pane
visible.

var	objTaskPane;

//	Show	the	built-in	Help	task	pane.
objTaskPane	=	XDocument.View.Window.TaskPanes(4);
objTaskPane.Visible	=	true;

Note		The	Item	property	argument	is	the	type	of	task	pane	to	return,
based	on	the	Type	property	of	the	TaskPane	object,	not	the	position	of
the	TaskPane	object	in	the	TaskPanes	collection.

Show	All

ViewInfos	Collection

ViewInfos ViewInfo

Contains	a	ViewInfo	object	for	each	view	within	a	Microsoft	Office
InfoPath	2003	form.	ViewInfo	objects	contain	descriptive	information
about	the	views	that	they	are	associated	with.

Remarks
The	ViewInfos	collection	implements	properties	that	can	be	used	to
access	a	form's	associated	ViewInfo	objects,	and	it	is	accessible	through
the	ViewInfos	property	of	the	XDocument	object.

Note		The	ViewInfos	collection	can	be	used	only	to	get	the	count	of
ViewInfo	objects	that	it	contains	or	to	return	a	reference	to	a	specified
ViewInfo	object.	It	cannot	be	used	to	create,	add,	or	remove	ViewInfo
objects.

Using	the	ViewInfos	collection
In	the	following	example,	implemented	as	an	OnClick	event	handler	for	a
button	on	a	form,	the	ViewInfos	property	of	the	XDocument	object	is
used	to	set	a	reference	to	the	ViewInfos	collection.	The	code	then	loops
through	the	collection	and	displays	the	positional	index	and	name	of	each
ViewInfo	object	that	it	contains.

function	ShowViewNames::OnClick(eventObj)
{
			//	Set	a	reference	to	the	ViewInfos	collection.
			var	objViewInfos	=	XDocument.ViewInfos;

			//	Loop	through	the	collection	and	display	the	name
			//	of	each	ViewInfo	object	that	it	contains.
			for	(i=0;	i	<	objViewInfos.Count;	i++)
			{
						XDocument.UI.Alert("View	name	"	+	i	+	":	"	+	
									objViewInfos(i).Name);
			}
			objViewInfos	=	null;
}

Show	All

Windows	Collection

Windows Window

Contains	a	Window	object	for	each	window	within	a	Microsoft	Office
InfoPath	2003	form.	Window	objects	represent	the	two	types	of	windows
that	are	used	in	the	InfoPath	application:	the	editing	window	that	is	used
as	the	form	area	when	a	user	fills	out	a	form,	and	the	designing	window
that	is	used	as	the	design	mode	when	a	user	designs	a	form.

Remarks
The	Windows	collection	implements	properties	that	can	be	used	to
access	a	form's	associated	Window	objects,	and	it	is	accessible	through
the	Windows	property	of	the	XDocument	object.

Note		The	Windows	collection	can	be	used	only	to	get	the	count	of
Window	objects	that	it	contains	or	to	return	a	reference	to	a	specified
Window	object.	It	cannot	be	used	to	create,	add,	or	remove	Window
objects.

Using	the	Windows	collection
In	the	following	example,	implemented	as	an	OnClick	event	handler	for	a
button	on	a	form,	the	Windows	property	of	the	Application	object	is
used	to	set	a	reference	to	the	Windows	collection.	The	code	then	loops
through	the	collection	and	displays	the	type	of	each	Window	object	that	it
contains.

function	ShowWindowTypes::OnClick(eventObj)
{
			//	Set	a	reference	to	the	Windows	collection.
			var	objWindows	=	Application.Windows;
			var	strWindowType;

			//	Loop	through	the	collection	and	display	the	type
			//	of	each	Window	object	that	it	contains.
			for	(i=0;	i	<	objWindows.Count;	i++)
			{
						switch	(objWindows(i).Type)
						{
									case	0:
												strWindowType	=	"Editing	window";
												break;
									case	1:
												strWindowType	=	"Designing	window";
												break;
						}

						XDocument.UI.Alert("Window	type	"	+	i	+	":	"	+	strWindowType);
			}
			objWindows	=	null;
			strWindowType	=	null;
}

For	more	information	about	using	the	Windows	collection,	see	Working
with	form	windows.

XDocuments	Collection

XDocuments XDocument

Contains	an	XDocument	object	for	each	Microsoft	Office	InfoPath	2003
form	that	is	currently	open.	The	XDocument	object	represents	a	form's
underlying	XML	document	and	can	be	used	to	interact	with	the	XML	data
that	a	form	contains.

Remarks
The	XDocuments	collection	implements	a	number	of	properties	and
methods	that	can	be	used	to	access	a	form's	associated	XDocument
object,	or	to	create	and	open	the	forms	themselves.	The	XDocuments
collection	is	accessed	through	the	XDocuments	property	of	the
Application	object.

Using	the	XDocuments	collection
In	the	following	example,	the	Open	method	of	the	XDocuments
collection	is	used	to	open	an	existing	form:

Application.XDocuments.Open("C:\\MyForm.xml");

You	can	also	create	a	new	form	based	on	an	existing	form	using	the	New
method:

Application.XDocuments.New("C:\\MyForm.xml");

To	access	an	XDocument	object	contained	in	the	XDocuments
collection,	you	can	pass	the	positional	index	or	the	location	path	to	the
Item	method:

var	objXDoc;

objXDoc	=	Application.XDocuments(0);
//	or...
objXDoc	=	Application.XDocuments("C:\\MyForm.xml");

For	more	information	about	using	the	XDocuments	collection,	see
Accessing	form	data.

Show	All

XMLNodes	Collection

XMLNodes

Contains	a	collection	of	XML	Document	Object	Model	(DOM)	nodes.	The
XMLNodes	collection	is	a	general-purpose	collection	that	is	used	by	a
number	of	Microsoft	Office	InfoPath	2003	methods.

Remarks
The	XMLNodes	collection	provides	properties	that	can	be	used	to
access	a	collection	of	XML	DOM	nodes,	and	it	is	returned	by	both	the
GetSelectedNodes	and	GetContextNodes	methods	of	the	View	object.

After	you	have	set	a	reference	to	one	of	the	XML	DOM	node	objects	that
the	XMLNodes	collection	contains,	you	can	use	any	of	the	properties
and	methods	that	the	XML	DOM	provides	for	interacting	with	an	XML
node	object.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Using	the	XMLNodes	collection
In	the	following	example,	a	reference	is	set	to	a	collection	of	XML	DOM
nodes	returned	by	the	GetSelectedNodes	method	of	the	View	object.
Then	the	code	displays	the	name	and	source	XML	of	the	first	node	found
in	the	collection	using	a	message	box:

var	objXMLNodes;

objXMLNodes	=	XDocument.View.GetSelectedNodes();

if	(objXMLNodes.Count	>	0)
{
			XDocument.UI.Alert(objXMLNodes(0).nodeName	+	"\n\n"	+	objXMLNodes(0).text);
}

Show	All

ADOAdapter	Object

ADOAdapter

Represents	a	connection	to	a	Microsoft	ActiveX	Data	Objects/OLEDB
data	source.	The	ADOAdapter	object	is	a	type	of	Microsoft	Office
InfoPath	2003	data	adapter	that	contains	all	the	information	necessary	for
retrieving	and	submitting	data	to	an	external	data	source.

Remarks
For	secondary	data	sources,	the	ADOAdapter	object	provides	properties
that	can	be	used	to	get	and	set	information	about	the	data	adapter's
connection	string,	SQL	command	text,	and	timeout	value.	It	also	provides
a	method	for	creating	an	SQL	command	text	fragment	based	on	a
specified	XML	node.

If	an	ADO/OLEDB	data	source	is	used	as	the	primary	data	source	for	a
form,	the	ADOAdapter	object	is	accessible	through	the	QueryAdapter
property	of	the	XDocument	object.

Note		The	ADOAdapter	object	is	limited	to	work	only	with	Microsoft	SQL
Server	and	Microsoft	Access	databases.

Using	the	ADOAdapter	object
The	ADOAdapter	object	is	accessible	through	the	QueryAdapter
property	of	the	DataObject	object,	and	DataObject	objects	are
accessible	through	the	DataObjects	property	of	the	XDocument	object.

In	the	following	example,	the	Timeout	property	of	the	ADOAdapter
object	is	used	to	set	the	timeout	for	a	particular	query	operation,	returning
the	timeout	to	its	original	value	after	the	query	operation	is	complete:

function	RunLongQuery()
{

			var	objADOAdapter;
			var	intTimeout;
	
			//	Set	a	reference	to	the	ADOAdapter	object.
			objADOAdapter	=	XDocument.DataObjects("CityDropDownList").QueryAdapter;

			//	Save	the	original	timeout	value.
			intTimeout	=	objADOAdapter.Timeout;

			//	Set	a	longer	timeout	value	and	then	run	the	query.
			objADOAdapter.Timeout	=	60;
			XDocument.DataObjects("CityDropDownList").Query();

			//	Restore	the	original	timeout	value.
			objADOAdapter.Timeout	=	intTimeout;
	
			objADOAdapter	=	null;
			intTimeout	=	null;
}

For	more	information	about	using	the	ADOAdapter	object,	see

Accessing	external	data	sources.

Show	All

Application	Object

Application

Represents	the	Microsoft	Office	InfoPath	2003	application.	The
Application	object	includes	properties	and	methods	that	return
references	to	the	high-level	objects	of	the	InfoPath	object	model.	For
example,	the	XDocuments	property	returns	a	reference	to	a	collection	of
XDocument	objects.

Remarks
The	Application	object	is	the	top-level	object	in	the	InfoPath	object
model,	and	it	provides	a	number	of	properties	and	methods	that	can	be
used	to	access	lower-level	collections	and	objects	in	the	object	model,
and	to	perform	a	variety	of	general	purpose	functions.

Using	the	Application	object
The	Application	object	can	be	used	directly	in	scripting	code	as	in	the
following	Microsoft	JScript	example,	which	uses	the	Alert	method	of	the
UI	object,	accessed	through	the	XDocument	object,	to	display	a
message	box	that	indicates	the	version	number	of	the	current	instance	of
InfoPath:

XDocument.UI.Alert("Application	version:	"	+	Application.Version);

Note	that	the	XDocument	property	was	not	qualified	with	the	name	of	the
Application	object.	This	is	because	both	the	Application	object	and	the
XDocument	object	are	embedded	directly	in	the	InfoPath	script	engine,
and	therefore	they	do	not	have	to	be	explicitly	declared.	However,	they
do	need	to	be	declared	when	used	in	an	expression	or	argument,	as	the
example	above	demonstrates.

Note		The	Application	object	contains	the	following	methods	that	can	be
used	within	InfoPath:

Method Description
FormatString Formats	the	specified	string	or	XML	node

according	to	the	specified	category	and
options	parameters.

IsDestinationReachable Returns	a	Boolean	value	indicating	whether
the	specified	Uniform	Resource	Locator
(URL),	universal	naming	convention	(UNC)
path,	or	IP	address	of	the	destination
computer	can	be	connected	to	from	the	client
computer.

NewADODBConnection Creates	and	returns	a	reference	to	an	empty
ActiveX	Data	Objects	(ADO)	Connection
object.

NewADODBRecordset Creates	and	returns	a	reference	to	an	empty
ActiveX	Data	Objects	(ADO)	Recordset	object.

Note		The	Application	object	contains	the	following	methods	that	can	be

used	for	external	automation:

Method Description
CacheSolution Examines	the	form	template	in	the	cache	and,	if

necessary,	updates	it	from	the	published	location	of
the	form	template.

Quit Quits	the	Microsoft	Office	InfoPath	2003
application.

RegisterSolution Installs	the	specified	Microsoft	Office	InfoPath	form
template.

UnregisterSolutionUninstalls	the	specified	Microsoft	Office	InfoPath
2003	form	template.

The	XDocuments	collection	contains	the	following	additional	methods
that	can	be	used	for	external	automation:

Method Description
Close Closes	the	specified	Microsoft	Office

InfoPath	2003	form.
New Creates	a	new	Microsoft	Office	InfoPath

2003	form	based	on	the	specified	form.
NewFromSolution Creates	a	new	Microsoft	Office	InfoPath

2003	form	based	on	the	specified	form
template.

NewFromSolutionWithData Creates	a	new	Microsoft	Office	InfoPath
2003	form	using	the	specified	XML	data
and	form	template.

Open Opens	the	specified	Microsoft	Office
InfoPath	2003	form.

Although	the	ExternalApplication	object	is	deprecated	in	Microsoft
Office	InfoPath	2003	Service	Pack	1,	replaced	with	the	methods	in	the
above	tables,	ExternalApplication	methods	are	still	available	for
backward	compatibility.

For	more	information	about	using	the	Application	object,	see	Accessing
application	data.

Button	Object

The	Button	object	is	the	Microsoft	Office	InfoPath	2003	object	that	is
used	to	implement	the	OnClick	event	that	is	associated	with	a	button	on
an	InfoPath	form.	This	object	cannot	be	used	directly	in	code.

Show	All

Certificate	Object

Represents	the	X.509	digital	certificate	that	has	been	used	to	create	a
signature.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Certificate	object
Use	the	Certificate	property	of	the	Signature	object	to	return	a
Certificate	object.

The	Certificate	object	contains	the	following	properties,	which	can	be
used	to	return	information	about	a	digital	certificate:

Property Description
IssuedTo Returns	to	whom	the	digital	certificate	is	issued.
IssuedBy Returns	the	issuer	of	the	digital	certificate.
ExpirationDateReturns	the	expiration	date	of	the	digital	certificate.
Status Returns	the	status	of	the	digital	certificate.

Show	All

DataDOM	Object

DataDOM

The	DataDOM	object	is	the	Microsoft	Office	InfoPath	2003	object	that	is
used	to	implement	the	data	validation	events	that	are	associated	with	the
XDocument	object.	This	object	cannot	be	used	directly	in	scripting	code.

Show	All

DataDOMEvent	Object

DataDOMEvent

An	event	object	that	is	used	during	Microsoft	Office	InfoPath	2003	data
validation	events.	The	DataDOMEvent	object	provides	a	number	of
properties	and	a	method	that	can	be	used	within	a	data	validation	event
to	programmatically	interact	with	the	data	that	is	being	validated	and	to
provide	a	response	if	the	data	is	not	valid.

Remarks
The	DataDOMEvent	object	is	passed	as	a	parameter	to	the
OnBeforeChange,	OnValidate,	and	OnAfterChange	events.

Note		The	OnValidate	event	can	occur	without	a	change	in	the	form's
underlying	XML	document.

The	DataDOMEvent	object	is	used	to	get	information	about	the	XML
Document	Object	Model	(DOM)	node	that	is	being	changed,	and	it	also
provides	a	property	for	getting	a	reference	to	a	form's	underlying	XML
document.	In	addition,	it	provides	properties	for	handling	the	change	in
data,	including	rejecting	the	change	and	creating	an	error	message.

Note		The	DataDOMEvent	object	is	passed	as	an	argument	to	one	of	the
data	validation	event	handlers.	Its	properties	and	method	are	only
available	during	the	event	that	it	is	passed	to.

Using	the	DataDOMEvent	object
In	the	following	example	from	the	Data	Validation	developer	sample	form,
the	DataDOMEvent	object	is	used	to	check	the	value	of	the	node	using
the	Site	property.	If	the	data	validation	fails,	the	ReportError	method	is
used	to	create	a	custom	error.

function	msoxd__itemB_quantityListB::OnValidate(eventObj)
{
			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	>	50)
						eventObj.ReportError(eventObj.Site,	"Invalid	quantity.		"	+
									"The	total	number	of	each	type	of	block	cannot	exceed	50.",	false);

			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	<	0)
						eventObj.ReportError(eventObj.Site,	"Invalid	quantity.		"	+
									"The	total	number	of	each	type	of	block	cannot	be	less	than	0.",	false);
}

For	more	information	about	using	the	DataDOMEvent	object,	see
Responding	to	form	events.

Show	All

DataObject	Object

DataObjects DataObject

Represents	a	link	to	the	data	adapter	of	a	secondary	data	source.	The
DataObject	object	acts	as	an	intermediary	between	a	Microsoft	Office
InfoPath	2003	form	and	the	data	adapter	object	that	is	used	to	access
data	that	is	contained	in	an	external	data	source.

The	DataObject	object	provides	properties	and	methods	that	can	be
used	to	programmatically	interact	with	data	adapter	objects,	including
retrieving	information	about	the	data	adapter	objects	and	accessing	the
data	that	they	connect	to.	The	DataObject	object	is	accessible	through
the	DataObjects	property	of	the	XDocument	object.

Remarks
An	external	data	source	can	take	the	form	of	a	Microsoft	Access	or
Microsoft	SQL	Server	database,	an	.xml	file,	or	an	XML	Web	service.	The
type	of	data	adapter	object	used	to	access	the	external	data	source
depends	on	the	type	of	data	source.	The	DataObject	object	provides	a
common	set	of	properties	and	a	method	that	can	be	used	for	all	types	of
data	adapter	objects,	and	each	of	the	data	adapter	objects	provides	its
own	set	of	properties	and	methods.

Microsoft	Office	InfoPath	2003	supports	three	types	of	data	adapters:

1.	 ActiveX	Data	Objects			Represented	by	the	ADOAdapter
object.

2.	 Web	services			Represented	by	the	WebServiceAdapter
object.

3.	 XML	file			Represented	by	the	XMLFileAdapter	object.

Using	the	DataObject	object
In	the	following	code	sample,	the	name	of	the	secondary	data	source	is
passed	to	the	Item	property	of	the	DataObjects	collection,	which	returns
a	reference	to	the	DataObject	object,	which,	in	this	case,	is	associated
with	an	ADOAdapter	data	adapter	object.	Using	the	QueryAdapter
property	of	the	DataObject	object,	the	ADOAdapter	data	adapter
object's	Connection	property	is	used	to	display	the	ADO	connection
string	in	a	message	box.

function	TestDataObjects()
{
			var	objDataObject;
	
			//	Set	a	reference	to	the	specified	data	object.
			objDataObject	=	XDocument.DataObjects("CityList");
	
			//	Display	the	connection	information	for	the	ADOAdapter	object.
			XDocument.UI.Alert("Data	Adapter:	"	+	objDataObject.QueryAdapter.Connection);
	
			objDataObject	=	null;
}

For	more	information	about	using	the	DataObject	object,	see	Accessing
external	data	sources.

Show	All

Date	Object

Provides	several	date-related	methods	that	can	be	used	in	Microsoft
Office	InfoPath	2003	forms.

Remarks
Use	the	Date	property	of	the	Util	object	to	return	a	Date	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Date	object
The	Date	object	contains	the	following	methods:

Method Description
Now Returns	a	Variant	that	represents	the	current	system	date	and

time	in	ISO	format.
Today Returns	a	Variant	containing	the	current	system	date	in	ISO

format.

Show	All

DAVAdapter	Object

Represents	a	connection	to	submit	form	information	to	a	Microsoft
Windows	SharePoint	Services	server,	or	other	servers	that	support	DAV
connections.

Remarks
Use	the	Item	property	of	the	DataAdapters	collection	to	return	a
DAVAdapter	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	DAVAdapter	object
The	DAVAdapter	object	contains	the	following	properties:

Property Description
FileName Returns	or	sets	the	file	name	for	the	current	Microsoft

Office	InfoPath	2003	form	when	it	is	submitted	by	the
DAVAdapter	object.

FolderURL Returns	or	sets	the	the	Uniform	Resource	Locator
(URL)	to	which	the	form	will	be	submitted	by	the
DAVAdapter	object.

Name Returns	the	name	of	a	DAVAdapter	object.
QueryAllowed Corresponds	to	the	queryAllowed	attribute	in	the	form

definition	file	(.xsf).	Always	returns	False	for	the
DAVAdapter	object.

SubmitAllowed Corresponds	to	the	submitAllowed	attribute	in	the
form	definition	file	(.xsf).	Always	returns	True	for	the
DAVAdapter	object.

The	DAVAdapter	object	contains	the	following	methods:

Method Description
Query Because	the	DAVAdapter	object	is	available	for	submitting

data	only,	this	method	will	always	generate	a	run-time	error
when	it	is	called	on	that	object.

Submit Executes	the	submit	operation	on	the	associated	adapter.
SubmitData Submits	the	specified	DOM	element	or	DOM	document	to	a

data	adapter.

Show	All

DocActionEvent	Object

DocActionEvent

An	event	object	that	is	used	during	a	Microsoft	Office	InfoPath	2003
button	click	event.	The	DocActionEvent	object	provides	a	number	of
properties	that	can	be	used	within	a	button	click	event	to
programmatically	interact	with	the	data	in	a	form's	underlying	XML
document	and	to	control	the	success	or	failure	of	the	event.

Remarks
The	DocActionEvent	object	is	passed	as	a	parameter	to	the	OnClick
event	button	that	is	contained	in	a	view	of	an	InfoPath	form.	Its	properties
are	available	only	during	the	OnClick	event.

Using	the	DocActionEvent	object
In	the	following	example,	the	Source	property	of	the	DocActionEvent
object	is	used	to	display	the	source	XML	data	of	the	inner-most	XML
Document	Object	Model	(DOM)	node	of	the	form's	underlying	XML
document,	which	contains	the	button:

function	ShowDocActionEventSource::OnClick(eventObj)
{
			XDocument.UI.Alert("Source:	"	+	eventObj.Source.xml);
}

For	more	information	about	using	the	DocActionEvent	object,	see
Responding	to	form	events.

DocContextChangeEvent	Object

An	event	object	that	is	used	during	a	Microsoft	Office	InfoPath	2003
context	change	event.	The	DocContextChangeEvent	object	provides	a
number	of	properties	that	can	be	used	within	a	context	change	to
programmatically	interact	with	the	data	in	a	form's	underlying	XML
document,	to	provide	contextual	feedback	to	the	user,	or	to	perform
actions	for	the	user.

Remarks
The	DocContextChangeEvent	object	is	passed	as	a	parameter	to	the
OnContextChange	event.

The	DocContextChangeEvent	object	is	used	to	get	information	about
the	XML	Document	Object	Model	(DOM)	node	that	is	the	current	context
of	the	form's	underlying	XML	document.	In	addition,	it	provides
information	about	the	type	of	context	change	and	whether	the	change
happened	in	response	to	an	undo	or	redo	operation	performed	by	the
user.

As	described	in	the	OnContextChange	event	topic,	the	Type	property
returns	only	the	value	"ContextNode"	for	context	changes	in	Microsoft
InfoPath	2003	Service	Pack	1.	Nevertheless,	if	code	in	an	event	handler
performs	actions	that	depend	on	current	functionality,	that	code	should
still	be	designed	to	check	the	value	of	the	Type	property,	because	future
versions	of	InfoPath	may	use	different	values	for	different	context
changes.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	DocContextChangeEvent	object
When	the	IsUndoRedo	property	of	the	DocContextChangeEvent	object
is	True,	the	context	change	was	caused	by	an	undo	or	redo	operation
rather	than	an	explicit	user	context	change.	Operations	performed	in	the
OnContextChange	event	handler	that	modify	the	XML	DOM	should	be
avoided	in	response	to	undo	or	redo	actions,	because	they	may	interfere
with	the	user's	intention	to	revert	data	to	a	previous	state.

Example
In	the	following	example,	a	node	named	lastChanged	is	updated	in
response	to	context	changes:

function	XDocument::OnContextChange(eventObj)	
{
				if	(eventObj.Type	==	"ContextNode"	&&	!eventObj.IsUndoRedo)
				{
								var	oContextNode	=	eventObj.Context;
								var	oLastChangedNode	=	
												XDocument.DOM.selectSingleNode("my:lastChanged");
							
								oLastChangedNode.text	=	oContextNode.nodeName;
				}
}

DocEvent	Object

DocEvent

An	event	object	that	is	used	during	a	Microsoft	Office	InfoPath	2003
merge	or	view	switching	event.	The	DocEvent	object	provides	the
XDocument	property	that	can	be	used	within	a	merge	or	view	switching
event	to	programmatically	interact	with	the	data	in	a	form's	underlying
XML	document.

Remarks
The	DocEvent	object	is	passed	as	a	parameter	to	the	OnSwitchView
and	OnAfterChange	events	of	an	InfoPath	form.	The	XDocument
property	that	it	provides	is	available	only	during	these	events.

Using	the	DocEvent	object
In	the	following	example,	the	XDocument	property	of	the	DocEvent
object	is	used	to	display	the	source	XML	of	a	form's	underlying	XML
document	using	the	DOM	property	of	the	XDocument	object:

function	XDocument::OnSwitchView(eventObj)
{
			XDocument.UI.Alert("The	source	XML:	"	+	eventObj.XDocument.DOM.xml);
}

For	more	information	about	using	the	DocEvent	object,	see	Responding
to	form	events.

DocReturnEvent	Object

DocReturnEvent

An	event	object	that	is	used	during	a	Microsoft	Office	InfoPath	2003	load
or	submission	event.	The	DocReturnEvent	object	provides	the
XDocument	property	that	can	be	used	within	a	load	or	submission	event
to	programmatically	interact	with	the	data	in	a	form's	underlying	XML
document.	It	also	provides	the	ReturnStatus	property	that	is	used	to
specify	whether	the	event	is	successful.

Remarks
The	DocReturnEvent	object	is	passed	as	a	parameter	to	the	OnLoad
and	OnSubmitRequest	events	of	an	InfoPath	form.	The	properties	that	it
provides	are	available	only	during	these	events.

Using	the	DocReturnEvent	object
In	the	following	example,	the	XDocument	property	of	the
DocReturnEvent	object	is	used	to	display	the	source	XML	of	a	form's
underlying	XML	document	using	the	DOM	property	of	the	XDocument
object:

function	XDocument::OnLoad(eventObj)
{
			XDocument.UI.Alert("The	source	XML:	"	+	eventObj.XDocument.DOM.xml);
			eventObj.ReturnStatus	=	true;
}

For	more	information	about	using	the	DocReturnEvent	object,	see
Responding	to	form	events.

Show	All

EmailAdapter	Object

Represents	the	data	adapter	for	submitting	form	information	in	e-mail	by
using	Microsoft	Office	Outlook.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	EmailAdapter	object
Use	the	Item	property	of	the	DataAdapters	collection	to	return	an
EmailAdapter	object.

In	the	following	example,	a	reference	to	the	EmailAdapter	object	is	set
by	passing	the	name	of	the	EmailAdapter	object	to	the	Item	property	of
the	DataAdapters	collection:

var	objEmailAdapter;
objEmailAdapter	=	XDocument.DataAdapters("Main	Submit");

After	the	reference	has	been	set,	you	can	use	the	properties	of	the
EmailAdapter	object	as	shown	in	the	following	example,	which	sets	the
To	properties	and	the	Subject	property,	then	submits	the	form.

objEmailAdapter.To	=	"list@example.com";
objEmailAdapter.Subject	=	"Status	Report";
objEmailAdapter.Submit();

The	EmailAdapter	object	contains	the	following	properties:

Property Description
AttachmentFileNameReturns	or	sets	the	file	name	to	be	used	for	the

current	form	when	attached	to	the	e-mail
message	for	an	EmailAdapter	object.

BCC Returns	or	sets	the	BCC	recipients	for	an
EmailAdapter	object.

CC Returns	or	sets	the	CC	recipients	for	an
EmailAdapter	object.

Intro Returns	or	sets	the	introduction	in	the	body	of	the
e-mail	message	for	an	EmailAdapter	object.

Name Returns	the	name	of	an	EmailAdapter	object.
QueryAllowed Corresponds	to	the	queryAllowed	attribute	in	the

form	definition	file	(.xsf).	Always	returns	False	for
the	EmailAdapter	object.

Subject Returns	or	sets	the	subject	of	the	e-mail	message
for	the	specified	EmailAdapter	object.

SubmitAllowed Corresponds	to	the	submitAllowed	attribute	in
the	form	definition	file	(.xsf).	Always	returns	True
for	the	EmailAdapter	object.

To Returns	or	sets	the	To	recipients	for	the	specified
EmailAdapter	object.

The	EmailAdapter	object	contains	the	following	methods:

Method Description
Query Because	the	EmailAdapter	object	is	available	for

submitting	data	only,	this	method	will	always	generate	a
run-time	error	when	it	is	called	on	that	object.

Submit Executes	the	submit	operation	on	the	associated	data
adapter.

SubmitData Submits	the	specified	DOM	element	or	DOM	document	to	a
data	adapter.

Show	All

Error	Object

Errors Error

Represents	an	error	in	a	Microsoft	Office	InfoPath	2003	form.	Each	Error
object	in	InfoPath	is	each	associated	with	an	XML	Document	Object
Model	(DOM)	node	from	a	form's	underlying	XML	document.	When	data
validation	fails	for	a	particular	XML	DOM	node,	InfoPath	creates	an	Error
object	and	places	it	in	the	Errors	collection.

Remarks
That	are	three	types	of	data	validation	errors	that	can	occur	in	an
InfoPath	form:

SCHEMA_VALIDATION			Data	validation	failed	as	a	result	of	an	XML
Schema–defined	constraint.

SYSTEM_GENERATED			Data	validation	failed	as	a	result	of	constraints
defined	in	the	form	definition	(.xsf)	file	or	as	a	result	of	scripting	code
calling	the	ReportError	method	of	the	DataDOMEvent	object.

USER_SPECIFIED			Data	validation	failed	as	a	result	of	a	custom
scripting	error	using	the	Add	method	of	the	Errors	collection.

Note		The	Type	property	of	the	Error	object	can	be	used	to	determine
the	type	of	data	validation	error	that	has	occurred.

Using	the	Error	Object
The	Error	object	provides	a	number	of	properties	that	can	be	used	to
programmatically	interact	with	an	InfoPath	data	validation	error.	The
Error	object	is	accessed	through	the	Errors	property	of	the	XDocument
object,	which	returns	a	reference	to	the	Errors	collection.

In	the	following	example,	the	Item	property	of	the	Errors	collection	is
used	to	set	a	reference	to	an	Error	object;	then	the	ShortErrorMessage
property	of	the	Error	object	is	is	used	to	display	the	error	message	in	a
message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	message:	"	+	objError.ShortErrorMessage);

For	more	information	about	using	the	Error	object,	see	Handling	errors.

Show	All

ExternalApplication	Object

ExternalApplication

Represents	the	Microsoft	Office	InfoPath	2003	application.	The
ExternalApplication	object	implements	a	limited	set	of	methods	that	can
be	used	for	automating	InfoPath	by	an	external	Component	Object	Model
(COM)–based	programming	language.

Remarks
The	ExternalApplication	object	can	be	used	to	perform	a	limited	set	of
InfoPath	operations	such	as	creating,	opening,	or	closing	a	form;
registering	or	unregistering	a	form	template;	or	simply	quitting	the
application.

Using	the	ExternalApplication	object
To	use	the	ExternalApplication	object,	you	must	first	create	a	reference
to	it	using	the	ProgID	of	the	InfoPath	object	model	along	with	the	name	of
the	ExternalApplication	object.	The	following	example	demonstrates
creating	a	reference	to	the	ExternalApplication	object	using	the	Visual
Basic	for	Applications	(VBA)	programming	language:

Dim	objIP	As	Object
Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

Note		This	example	uses	late-binding	for	creating	the	reference	to	the
ExternalApplication	object;	you	can	also	use	early-binding	by	setting	a
reference	to	the	InfoPath	object	model	in	your	programming	environment.

After	you	have	created	a	reference	to	the	ExternalApplication	object,
you	can	then	use	the	methods	that	it	provides	to	interact	with	InfoPath.	In
the	following	example,	written	in	VBA,	the	Open	method	of	the
ExternalApplication	object	is	used	to	open	a	form	based	on	the
specified	Uniform	Resource	Identifier	(URI):

Public	Sub	OpenForm()

			Dim	objIP	As	Object

			'Create	the	ExternalApplication	object	and	open	a	specified	form.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")
			objIP.Open	("C:\My	Forms\Form1.xml")

			Set	objIP	=	Nothing

End	Sub

For	more	information	about	using	the	ExternalApplication	object,	see
Automating	InfoPath.

Show	All

HTMLTaskPane	Object

HTMLTaskPane

Represents	a	custom	task	pane	in	a	Microsoft	Office	InfoPath	2003	form
that	is	associated	with	a	window.	The	HTMLTaskPane	object	provides	a
number	of	properties	and	methods	for	working	with	the	InfoPath	custom
task	pane,	and	it	provides	properties	and	methods	to	the	TaskPane
object	as	an	inherited	object.

Remarks
The	properties	and	methods	that	are	available	for	an	InfoPath	task	pane
are	determined	by	the	type	of	task	pane	that	you	are	working	with.	If	the
Type	property	of	the	TaskPane	object	returns	0,	the	task	pane	is	a
custom	task	pane	and	the	properties	and	methods	that	are	available	are
provided	by	the	HTMLTaskPane	object.	If	the	Type	property	returns	any
other	value,	the	task	pane	is	a	built-in	task	pane	and	the	properties	are
provided	by	the	TaskPane	object	directly.

The	Type	property	is	based	on	the	XdTaskPaneType	enumeration.
These	enumerated	values	are	also	used	as	arguments	to	the	Item
property	of	the	TaskPanes	collection	for	returning	a	reference	to	a
specified	type	of	task	pane.

Note		The	properties	and	methods	of	the	HTMLTaskPane	object	cannot
be	called	during	an	OnLoad	event	because	the	view	is	not	yet	loaded
when	this	event	occurs,	and	task	panes	are	associated	with	the	view.

Using	the	HTMLTaskPane	object
In	the	following	example	from	the	User	Interface	developer	sample	form,
the	Item	property	of	the	TaskPanes	collection	is	used	to	set	a	global
reference	to	the	TaskPane	object	that	represents	the	custom	task	pane.
The	code	then	calls	a	scripting	function	defined	in	the	HTML	code	of	the
custom	task	pane	using	the	HTMLDocument	property	of	the
HTMLTaskPane	object,	which	is	inherited	by	the	TaskPane	object.

function	SetTaskPaneState()
{

			//	Ensure	View	has	loaded	before	trying	to	access	the	task	pane.
			if	(XDocument.View)
			{
						//	Get	a	reference	to	the	custom	task	pane.		It	is	always	the	0-th
						//	task	pane	in	the	TaskPanes	collection.
						if	(gobjTaskPane	==	null)
									gobjTaskPane	=	XDocument.View.Window.TaskPanes.Item(0);

						//	Ensure	that	the	task	pane	is	completely	loaded.
						if	(gobjTaskPane.HTMLDocument.readyState	==	"complete")
						{
									var	strTaskPaneViewId	=	"TP_"	+	XDocument.View.Name.replace(/\W+/g,	"");

									//	Call	a	script	function	defined	in	the	task	pane	HTML	page.
									gobjTaskPane.HTMLDocument.parentWindow.SelectView(strTaskPaneViewId);
						}
			}
}

Show	All

HTMLTaskPaneExternal	Object

HTMLTaskPaneExternal

Represents	a	link	to	the	Microsoft	Office	InfoPath	2003	object	model.	The
HTMLTaskPaneExternal	object	is	used	to	expose	the	InfoPath	object
model	to	the	Dynamic	HTML	(DHTML)	scripting	code	in	a	custom	task
pane.

The	HTMLTaskPaneExternal	object	provides	a	number	of	properties	for
accessing	certain	parts	of	the	InfoPath	object	model,	including	the
XDocument	object	and	the	Window	object.

Remarks
The	HTMLTaskPaneExternal	object	facilitates	using	the	InfoPath	object
model	within	the	scripting	code	that	is	part	of	a	custom	task	pane.	The
object	is	exposed	through	the	external	property	of	the	DHTML	window
object.

Using	the	HTMLTaskPaneExternal	object
In	the	following	example,	the	HTMLTaskPaneExternal	object	is	used
through	the	external	property	of	the	DHTML	window	object	to	set	a
reference	to	the	XDocument	object	that	is	part	of	the	InfoPath	object
model:

var	objXDoc;

objXDoc		=	window.external.XDocument;
objXDoc.View.SwitchView("View2");

Show	All

HWSAdapter	Object

Represents	a	connection	to	submit	form	information	to	a	Microsoft	Biztalk
2004	HWS	(Human	Workflow	Services)	server.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	HWSAdapter	object
The	HWSAdapter	object	contains	the	following	properties:

Property Description
Name Returns	the	name	of	an	HWSAdapter	object.
QueryAllowed Corresponds	to	the	queryAllowed	attribute	in	the	form

definition	file	(.xsf).	Always	returns	False	for	the
HWSAdapter	object.

SubmitAllowed Corresponds	to	the	submitAllowed	attribute	in	the
form	definition	file	(.xsf).	Always	returns	True	for	the
HWSAdapter	object.

The	HWSAdapter	object	contains	the	following	methods:

Method Description
Query Because	the	HWSAdapter	object	is	available	for	submitting

data	only,	this	method	will	always	generate	a	run-time	error
when	it	is	called	on	that	object.

Submit Executes	the	submit	operation	on	the	associated	adapter.

InfoPathControl	Object

Defines	methods	used	from	the	implementation	of	an	ActiveX	control	for
initializing,	uninitializing,	enabling,	disabling,	and	saving	the	state	of	a
control.

Remarks
The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111231033

Using	the	InfoPathControl	Object
The	InfoPathControl	object	defines	the	following	methods	that	must	be
implemented	by	the	developer	of	an	ActiveX	control	for	use	on	InfoPath
forms.

Method Description
Enable Defines	a	method	that	InfoPath	calls	when	it	needs	to	enable

or	disable	an	instance	of	the	control	in	a	view.
Init Defines	a	method	that	performs	any	initialization	routines

required	when	an	instance	of	the	control	is	added	to	an
InfoPath	form.

SaveState Defines	a	method	that	InfoPath	calls	when	it	needs	to	save
the	state	of	an	instance	of	the	control	in	a	view.

Uninit Defines	a	method	that	performs	any	clean	up	routines
required	before	an	instance	of	the	control	is	removed	from	a
view.

InfoPathControlSite	Object

Represents	the	object	that	InfoPath	passes	to	an	ActiveX	control	when	it
is	initialized	in	an	InfoPath	view.	The	InfoPathControlSite	object	defines
the	XDocument	property	for	accessing	the	XDocument	object
associated	with	a	form,	and	the	Node	property	for	accessing	the	XML
node	to	which	the	control	is	bound.

Remarks
The	InfoPathControlSite	object	should	not	be	implemented	by	the
developer	of	an	ActiveX	control.	It	represents	an	interface	that	is
implemented	by	InfoPath	itself.

The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111241033

MailEnvelope	Object

MailEnvelope

Represents	a	custom	e-mail	message	in	a	Microsoft	Office	InfoPath	2003
form.	The	MailEnvelope	object	provides	a	number	of	properties	that	can
be	used	to	programmatically	create	a	custom	e-mail	message	within	the
default	e-mail	editor,	and	it	attaches	the	currently	open	InfoPath	form	to
the	message.

Remarks
After	the	e-mail	message	is	created,	the	default	e-mail	editor	will	display
the	e-mail	message;	users	can	then	inspect	and	edit	the	e-mail	message
before	sending	it.

Note		The	MailEnvelope	object	cannot	be	used	to	send	the	e-mail
messages	it	creates;	users	must	manually	send	the	e-mail	messages.

You	can	also	use	the	ShowMailItem	method	of	the	UI	object	to
programmatically	create	e-mail	messages.

Using	the	MailEnvelope	object
The	MailEnvelope	object	is	accessed	through	the	MailEnvelope
property	of	the	Window	object.

In	the	following	example	from	the	Meeting	Agenda	sample	form,	the
MailEnvelope	property	of	the	Window	object	is	used	to	set	a	reference
to	the	MailEnvelope	object	that	is	associated	with	the	currently	active
window.	The	code	then	uses	the	MailEnvelope	object	to	create	a	custom
e-mail	message.

function	SendMeetingAgendaBtn::OnClick(oEvent)
{
			var	rgRecipients	=	new	Array();
			var	xmlRecipients	=	getNodeList("/mtg:meetingAgenda/
						mtg:attendees/mtg:attendee/mtg:emailAddressPrimary");
			var	xmlRecipient;

			while	(xmlRecipient	=	xmlRecipients.nextNode())
						rgRecipients.push(xmlRecipient.text);

			try
			{
						var	oEnvelope	=	Application.ActiveWindow.MailEnvelope;
	 	
						oEnvelope.Subject	=	getNode("/mtg:meetingAgenda/mtg:subject").text;
						oEnvelope.To	=	rgRecipients.join(";	");
						oEnvelope.Visible	=	true;
			}
			catch(ex)
			{
						XDocument.UI.Alert(ex.description);
			}
}

Show	All

Math	Object

Provides	several	math-related	methods	that	can	be	used	in	Microsoft
Office	InfoPath	2003	forms.

Remarks
Use	the	Math	property	of	the	Util	object	to	retun	a	Math	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Math	object
The	Math	object	contains	the	following	methods:

Function Description
Avg Returns	the	average	value	of	all	the	numerical	elements	in	a

node	set.
Eval Returns	the	set	of	results	calculated	when	the	expression	is

applied	to	each	set	of	elements	in	the	context.
Max Returns	the	largest	value	of	all	the	numerical	elements	in	a

node	set.
Min Returns	the	smallest	value	of	all	the	numerical	elements	in	a

node	set.
Nz Replaces	empty	values	in	the	specified	node	list	with	"0"

(zero).

MergeEvent	Object

An	event	object	that	is	used	during	an	OnMergeRequest	event.	The
MergeEvent	object	provides	properties	and	methods	that	can	be	used
during	an	OnMergeRequest	event	to	programmatically	interact	with	a
form's	underlying	XML	document	and	to	determine	merge	properties
such	as	the	number	of	files	being	merged.

Remarks
During	a	single	merge	forms	operation,	multiple	OnMergeRequest
events	will	occur.	One	OnMergeRequest	event	will	occur	for	each	file
being	merged.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	MergeEvent	object
The	MergeEvent	object	is	passed	as	a	parameter	to	the
OnMergeRequest	event	of	an	InfoPath	form.	The	properties	that	it
provides	are	available	only	during	this	event.

Example
In	the	following	example,	the	DOM	property	and	ReturnStatus	property
of	the	MergeEvent	object	and	the	ImportDOM	method	of	the
XDocument	object	are	used	to	import	(merge)	a	form	from	the
OnMergeRequest	event	handler:

function	XDocument::OnMergeRequest(eventObj)	
{
				XDocument.ImportDOM(eventObj.DOM);

				eventObj.ReturnStatus	=	true;
}

SaveEvent	Object

An	event	object	that	is	used	during	an	OnSaveRequest	event.	The
SaveEvent	object	provides	a	number	of	properties	and	methods	that	can
be	used	during	a	save	operation	from	the	OnSaveRequest	event	handler
to	programmatically	interact	with	a	form's	underlying	XML	document,
determine	save	properties,	and	perform	the	save	operation.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	SaveEvents	object
The	SaveEvent	object	is	passed	as	a	parameter	to	theOnSaveRequest
event	of	an	InfoPath	form.	The	properties	that	it	provides	are	available
only	during	this	event.	This	object	expires	when	the	save	event	expires
so	it	may	not	be	stored	and	used	outside	of	the	scope	of	the	save	event.

Example
In	the	following	example,	the	ReturnStatus	property	and	the
PerformSaveOperation	method	of	the	SaveEvent	object	are	used	to
perform	a	standard	InfoPath	save	operation:

function	XDocument::OnSaveRequest(eventObj)	
{
				eventObj.PerformSaveOperation();
				eventObj.ReturnStatus	=	true;
}

Show	All

SharepointListAdapter	Object

Represents	a	connection	to	a	SharePoint	list	or	document	library.	The
SharePointListAdapter	object	represents	the	Office	InfoPath	2003	data
adapter	for	retrieving	data	from	a	SharePoint	list	or	document	library.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	SharepointListAdapter	Object
For	a	secondary	data	source,	the	SharePointListAdapter	object	is
accessible	through	the	QueryAdapter	property	of	a	data	adapter	object.
Data	adapter	objects	are	accessible	through	the	DataAdapters	property
of	the	XDocument	object.

The	SharepointListAdapter	object	contains	the	following	properties:

Property Description
Name Returns	the	name	of	the	SharepointListAdapter

object.
QueryAllowed A	read-only	property	of	type	Boolean	that	corresponds

to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).	Always	returns	True	for	the
SharepointListAdapter	object.

SiteUrl A	read-only	property	returning	the	Uniform	Resource
Locator	(URL)	of	the	SharePoint	site	that	this	adapter
can	query	from.

SubmitAllowed Corresponds	to	the	submitAllowed	attribute	in	the
form	definition	file	(.xsf).	Always	returns	False	for	the
SharepointListAdapter	object.

The	SharepointListAdapter	object	contains	the	following	methods:

Method Description
Query Reads	data	from	the	SharepointListAdapter	object.
Submit Because	the	SharepointListAdapter	object	is	available	for

receiving	data	only,	this	method	will	always	generate	a	run-time
error	when	it	is	called	on	that	object.

Example
In	the	following	example,	a	reference	to	the	SharePointListAdapter
object	is	accessed	through	the	QueryAdapter	property	of	a	data	adapter
object	by	passing	the	name	of	the	data	adapter	object	to	the	Item
property	of	the	DataAdapters	collection:

var	objSPLAdapter;
objSPLAdapter	=	XDocument.DataAdapters("Announcements").QueryAdapter;

After	the	reference	has	been	set,	you	can	use	the	methods	of	the
SharePointListAdapter	object	as	shown	in	the	following	example,	which
requeries	the	SharePoint	list	or	library	to	update	the	DOM	property	of	the
data	adapter	object:

objSPLAdapter.Query();

Show	All

Signature	Object

Represents	a	digital	signature	that	has	been	added	to	a	form	or	set	of
signed	data	in	a	form.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Signature	object
Use	the	Item	property	of	the	Signatures	collection	to	return	a	Signature
object.

The	Signature	object	contains	the	following	properties,	which	can	be
used	to	return	information	about	a	digital	signature:

Property Description
Comment Returns	the	text	comment	that	was	added	to

the	digital	signature.
Status Returns	the	status	of	the	specified	digital

signature
SignatureBlockXmlNode Returns	the	XML	node	corresponding	the

digital	signature.
Certificate Returns	the	Certificate	object	for	the	X.509

digital	certificate	that	was	used	when	signing
a	form	or	a	set	of	signed	data.

The	Signature	object	contains	the	following	method:

Method Description
Sign Writes	the	XML	digital	signature	block	and	computes	the

cryptographic	hash	for	the	signed	data.

Show	All

SignedDataBlock	Object

Represents	a	set	of	signed	data	in	a	Microsoft	Office	InfoPath	2003	form.
The	SignedDataBlock	object	provides	a	number	of	properties	and	one
method	that	can	be	used	to	programmatically	interact	with	a	set	of	signed
data.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	SignedDataBlock	object
The	SignedDataBlock	object	contains	the	following	read-only	properties:

Property Description
XPath Returns	the	XPath	expression	of	the

set	of	signed	data	represented	by
theSignedDataBlock	object.

Name Returns	the	name	of	the
SignedDataBlock.

Caption Returns	the	friendly	name	of	the
SignedDataBlock.

SignatureRelation Returns	the	relation	among	multiple
signatures	on	the	SignedDataBlock.

Signatures Returns	a	collection	of	the	signatures	of
a	SignedDataBlock.

XPathNamespaceDeclarations Returns	the	namespace	definitions	for
the	SignedDataBlock.

SignatureContainer Returns	the	root	XML	node	of	the	sub-
tree	that	contains	the	signature(s).

The	SignedDataBlock	object	contains	the	following	method:

Method Description
Sign Invokes	the	Digital	Signatures	dialog	box	to	add	a	digital

signature	to	the	SignedDataBlock	section	of	the	form.

Show	All

SignEvent	Object

An	event	object	that	is	used	during	the	OnSign	event.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	SignEvent	object
Use	the	SignedDataBlock	property	of	the	SignEventObject	object	to
determine	which	signed	data	block	is	triggering	the	OnSign	event.	The
OnSign	event	is	raised	for	a	fully	trusted	form	template	only.

Example
In	the	following	example,	the	SignEvent	object	is	used	to	add	a	signature
and	timestamp	to	a	SignedDataBlock	object:

[InfoPathEventHandler(EventType=InfoPathEventType.OnSign)]
public	void	OnSign(SignEvent	e)
{
				Signature	signature	=	e.SignedDataBlock.Signatures.Create();
	 			signature.Sign();

	 			//	Countersign	the	signature	with	a	trusted	timestamp.

	 			//	Get	the	XML	node	storing	the	signature	block.
	 			IXMLDOMNode	oNodeSig	=	signature.SignatureBlockXmlNode;
	 			IXMLDOMNode	oNodeSigValue	=	oNodeSig.selectSingleNode(".//*[local-name(.)=’signatureValue’]");
	 			//	Get	time	stamp	from	timestamp	service	(fictitious).
	 			MyTrustedTimeStampingService	s	=	new	MyTrustedTimeStampingService();
	 			string	strVerifiedTimeStamp	=	s.AddTimeStamp(oNodeSigValue.text);
	
	 			//Add	the	value	returned	from	the	timestamping	service	to	the	
	 			//unsigned	part	of	the	signature	block.
				 IXMLDOMNode	oNodeObj	=	oNodeSig.selectSingleNode(".//*[local-name(.)=’Object’]");
	 			IXMLDOMNode	oNode	=	oNodeObj.cloneNode(false);
	 			oNode.text	=	strVerifiedTimeStamp;
	 			oNodeObj.parentNode.appendChild(oNode);

	 			e.ReturnStatus	=	true;
}

Show	All

Solution	Object

Solution

Corresponds	to	a	Microsoft	Office	InfoPath	2003	form	template.	The
Solution	object	implements	properties	for	getting	information	about	a
form	template,	including	its	version	number,	the	Uniform	Resource
Locator	(URL)	of	its	extracted	form	files,	the	URL	it	was	loaded	from,	and
an	XML	Document	Object	Model	(DOM)	containing	its	form	definition
(.xsf)	file.

Remarks
The	Solution	object	is	accessed	through	the	Solution	property	of	the
XDocument	object.

Using	the	Solution	object
In	the	following	example,	a	reference	is	set	to	the	Solution	object,	then
the	code	gets	the	name	of	the	person	who	authored	the	form	from	the
.xsf	using	the	DOM	property	of	the	Solution	object.	A	test	is	then	made
to	determine	if	there	is	an	author	value,	and	the	results	are	displayed	in	a
message	box.

function	SolutionInfo::OnClick(eventObj)
{
			var	objSolution	=	XDocument.Solution;
			var	strSolutionVersion	=	objSolution.Version;
			var	objAuthorNode	=	objSolution.DOM
						.selectSingleNode("xsf:xDocumentClass/@author");
			var	strAuthorText;

			if	(objAuthorNode	!=	null)
						strAuthorText	=	objAuthorNode.text;
			else
						strAuthorText	=	"Author	not	available.";

			XDocument.UI.Alert("Version:	"	+	strSolutionVersion	+
						"\nAuthor:	"	+	strAuthorText);
}

For	more	information	about	using	the	Solution	object,	see	Accessing
application	data.

Show	All

TaskPane	Object

TaskPanes TaskPane

Represents	a	task	pane	in	a	Microsoft	Office	InfoPath	2003	form	that	is
associated	with	a	window.	The	TaskPane	object	provides	a	number	of
properties	for	working	with	the	InfoPath	built-in	task	panes,	and	the
HTMLTaskPane	object	inherits	those	properties	and	methods	for	working
with	a	custom	task	pane.

Remarks
The	properties	and	methods	that	are	available	for	an	InfoPath	task	pane
are	determined	by	the	type	of	task	pane	that	you	are	working	with.	If	the
Type	property	of	the	TaskPane	object	returns	0,	the	task	pane	is	a
custom	task	pane	and	the	properties	and	methods	that	are	available	are
provided	by	the	HTMLTaskPane	object.	If	the	Type	property	returns	any
other	value,	the	task	pane	is	a	built-in	task	pane	and	the	properties	are
provided	by	the	TaskPane	object	directly.

Note		The	Type	property	is	based	on	the	XdTaskPaneType
enumeration.	These	enumerated	values	are	also	used	as	arguments	to
the	Item	property	of	the	TaskPanes	collection	for	returning	a	reference	to
a	specified	type	of	task	pane.

Using	the	TaskPane	object
In	the	following	example	from	the	User	Interface	developer	sample	form,
the	Item	property	of	the	TaskPanes	collection	is	used	to	set	a	global
reference	to	the	TaskPane	object	that	represents	the	custom	task	pane.
The	code	then	calls	a	scripting	function	defined	in	the	HTML	code	of	the
custom	task	pane	using	the	HTMLDocument	property	of	the
HTMLTaskPane	object,	which	is	inherited	by	the	TaskPane	object.

function	SetTaskPaneState()
{

			//	Ensure	View	has	loaded	before	trying	to	access	the	task	pane.
			if	(XDocument.View)
			{
						//	Get	a	reference	to	the	custom	task	pane.		It	is	always	the	0-th
						//	task	pane	in	the	TaskPanes	collection.
						if	(gobjTaskPane	==	null)
									gobjTaskPane	=	XDocument.View.Window.TaskPanes.Item(0);

						//	Ensure	that	the	task	pane	is	completely	loaded.
						if	(gobjTaskPane.HTMLDocument.readyState	==	"complete")
						{
									var	strTaskPaneViewId	=	"TP_"	+	XDocument.View.Name.replace(/\W+/g,	"");

									//	Call	a	script	function	defined	in	the	task	pane	HTML	page.
									gobjTaskPane.HTMLDocument.parentWindow.SelectView(strTaskPaneViewId);
						}
			}
}

UI	Object

UI

Represents	various	user	interface	components	that	can	be	used	in	a
Microsoft	Office	InfoPath	2003	form.	The	UI	(user	interface)	object
provides	a	number	of	methods	for	displaying	custom	and	built-in	dialog
boxes.

Remarks
The	UI	object	is	used	to	programmatically	display	various	types	of	dialog
boxes	to	users	as	they	fill	out	a	form.	It	is	not	used	for	modifying	the
InfoPath	user	interface.

Using	the	UI	object
The	UI	object	is	accessed	through	the	UI	property	of	the	XDocument
object.

The	UI	object	provides	the	Alert	method,	which	is	used	to	display	a
simple	message	box	with	some	custom	text,	as	shown	in	the	following
example:

XDocument.UI.Alert("Custom	message	text	goes	here.");

One	of	the	built-in	InfoPath	dialog	boxes	that	the	UI	object	can	display	is
the	Digital	Signatures	dialog	box;	this	dialog	box	can	be	displayed	to	the
user	by	using	the	ShowSignatureDialog	method,	as	follows:

XDocument.UI.ShowSignatureDialog();

Note		The	ShowSignatureDialog	method	can	be	used	only	in	forms	that
have	been	enabled	for	digital	signing.	The	method	will	return	an	error	if
used	in	a	form	that	is	not	enabled	for	digital	signing.

For	more	information	about	using	the	UI	object,	see	Displaying	alerts	and
dialog	boxes.

User	Object

Provides	methods	that	can	be	used	to	return	information	about	the
current	user.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	User	object
Use	the	User	property	of	the	Application	object	to	return	a	User	object.

The	User	object	contains	the	following	methods:

Method Description
IsCurrentUser Returns	True	if	the	current	user	matches	the	specified

user	name.
IsUserMemberOfReturns	True	if	current	user	is	a	member	of	the

specified	group.

Show	All

Util	Object

Provides	utility	methods	that	can	be	used	with	Microsoft	Office	InfoPath
2003	forms.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Using	the	Util	object
Use	the	Util	property	of	the	XDocument	object	to	create	a	Util	object.

The	Util	object	contains	the	following	properties:

Property Description
Date Use	this	property	to	return	a	Date	object,	which	provides

several	date-related	methods.
Math Use	this	property	to	return	a	Math	object,	which	provides

several	math-related	methods.

The	Util	object	contains	the	following	method:

Method Description
Match Indicates	whether	a	string	matches	a	specified	pattern.

Show	All

VersionUpgradeEvent	Object

VersionUpgradeEvent

An	event	object	that	is	used	during	a	Microsoft	Office	InfoPath	2003
version	upgrade	event.	The	VersionUpgradeEvent	object	provides	a
number	of	properties	that	can	be	used	within	a	version	upgrade	event	to
programmatically	interact	with	a	form's	underlying	XML	document,
determine	the	version	numbers	of	the	form	and	form	template,	and
provide	a	response	indicating	the	success	of	the	version	upgrade
process.

Remarks
The	VersionUpgradeEvent	object	is	passed	as	a	parameter	to	the
OnVersionUpgrade	event	of	an	InfoPath	form.	The	properties	that	it
provides	are	available	only	during	this	event.

Using	the	VersionUpgradeEvent	object
In	the	following	example,	the	DocumentVersion	and	SolutionVersion
properties	of	the	VersionUpgradeEvent	object	are	used	to	display	the
version	numbers	of	the	form	and	form	template:

function	XDocument::OnVersionUpgrade(eventObj)
{
			XDocument.UI.Alert("The	form	version:	"	+	eventObj.DocumentVersion	+
						"\nThe	form	template	version:	"	+	eventObj.SolutionVersion);
			eventObj.ReturnStatus	=	true;
}

For	more	information	about	using	the	VersionUpgradeEvent	object,	see
Responding	to	form	events.

View	Object

View

Represents	a	view	within	a	Microsoft	Office	InfoPath	2003	form.	The
View	object	provides	a	number	of	properties	and	methods	that	can	be
used	to	programmatically	interact	with	an	InfoPath	view,	including
methods	for	selecting	data	contained	in	the	view,	switching	from	one	view
to	another,	synchronizing	the	view	with	a	form's	underlying	XML
document,	and	executing	an	InfoPath	editing	action.

Remarks
InfoPath	forms	can	contain	one	or	more	views,	and	one	view	is	always
defined	as	the	default	view.	When	you	work	with	a	view	using	the	View
object,	you	are	accessing	the	currently	active	view.

Note		The	InfoPath	object	model	also	provides	the	ViewInfos	collection,
which	can	be	used	to	get	information	about	all	of	the	views	implemented
in	a	form.

Using	the	View	object
The	View	object	is	accessed	through	the	View	property	of	the
XDocument	object.	For	example,	the	following	code	sets	a	reference	to
a	form's	currently	active	view:

var	objView;

objView	=	XDocument.View;

To	change	the	currently	active	view,	you	can	use	the	SwitchView	method
of	the	View	object	as	follows:

XDocument.View.SwitchView("View2");

To	force	an	update	of	a	view	based	on	changes	in	a	form's	underlying
XML	document,	you	can	use	the	ForceUpdate	method	of	the	View
object,	as	shown	here:

XDocument.View.ForceUpdate();

For	more	information	about	using	the	View	object,	see	Working	with
views.

ViewInfo	Object

ViewInfos ViewInfo

Contains	descriptive	information	about	a	view	within	a	Microsoft	Office
InfoPath	2003	form.

Remarks
The	ViewInfo	object	provides	properties	that	can	be	used	to	get	the
name	of	a	view	and	determine	whether	a	view	is	the	default	view	of	the
form.	The	ViewInfo	object	is	accessible	through	the	ViewInfos	property
of	the	XDocument	object.

Note		To	work	with	the	view	programmatically,	use	the	View	object.

Using	the	ViewInfo	object
In	the	following	example,	the	IsDefault	property	of	the	ViewInfo	object	is
used	to	determine	whether	a	view	is	the	default	view	of	the	form.	Then
the	code	uses	the	Name	property	of	the	ViewInfo	object	to	display	the
name	of	the	default	view	in	a	message	box.

var	objViewInfos;

//	Set	a	reference	to	the	ViewInfos	collection.
objViewInfos	=	XDocument.ViewInfos;

//	Determine	the	default	view	and	display	a	
//	message	box	with	its	name.
for	(i=0;	i	<	objViewInfos.Count;	i++)
{
			if	(objViewInfos(i).IsDefault)
						XDocument.UI.Alert("The	default	view	is:	"	+	XDocument.ViewInfos(0).Name);
}

Show	All

WebServiceAdapter	Object

WebServiceAdapter

Represents	a	connection	to	an	XML	Web	service.	The
WebServiceAdapter	object	is	a	type	of	Microsoft	Office	InfoPath	2003
data	adapter	that	contains	all	the	information	necessary	for	retrieving
data	from	and	submitting	data	to	an	external	data	source.

Remarks
The	WebServiceAdapter	object	provides	properties	that	can	be	used	to
get	and	set	information	about	the	data	adapter's	input	and	operation
strings.	It	also	provides	a	property	for	getting	the	Uniform	Resource
Locator	(URL)	of	the	Web	Services	Description	Language	(WSDL)	file	of
the	XML	Web	service.

Using	the	WebServiceAdapter	object
For	secondary	data	sources,	the	WebServiceAdapter	object	is
accessible	through	the	QueryAdapter	property	of	the	DataObject	object,
and	DataObject	objects	are	accessible	through	the	DataObjects
property	of	the	XDocument	object.

If	a	Web	service	is	used	as	the	primary	data	source	for	a	form,	the
WebServiceAdapter	object	is	accessible	through	the	QueryAdapter
property	of	the	XDocument	object.

In	the	following	example,	a	reference	to	the	WebServiceAdapter	object
is	set	by	using	the	QueryAdapter	property	of	the	DataObject	object	by
passing	the	name	of	the	DataObject	object	to	the	Item	property	of	the
DataObjects	collection:

var	objWSAdapter;

objWSAdapter	=	XDocument.DataObjects("GetCityList").QueryAdapter;

After	the	reference	has	been	set,	you	can	use	the	properties	of	the
WebServiceAdapter	object	as	shown	in	the	following	example,	which
sets	a	reference	to	the	XML	node	returned	by	the	Input	property:

var	objInputNode;

objInputNode	=	XDocument.DataObjects("GetCityList").QueryAdapter.Input;

Note	that	in	this	case,	the	QueryAdapter	property	was	used	to	access
the	Input	property	of	the	WebServiceAdapter	object.

For	more	information	about	using	the	WebServiceAdapter	object,	see
Accessing	external	data	sources.

	

The	WebServiceAdapter	object	contains	the	following	properties:

Property Description

ErrorsLocation A	property	of	type	IXMLDOMNode	that	sets	or
retrieves	the	errors	node	under	which	the
WebServiceAdapter	object	will	write	the	error	details
returned	by	the	Web	service.	The	initial	value	is	null.

Input Sets	or	retrieves	a	string	that	contains	the	source	XML
of	the	input	element	contained	in	the	form	definition	file
(.xsf).

Name A	read-only	property	of	type	String	that	returns	the
name	of	the	WebServiceAdapter	object.

Operation Sets	or	retrieves	a	string	that	contains	the	source	XML
of	the	operation	element	contained	in	the	form
definition	(.xsf)	file.

OutputLocation A	property	of	type	IXMLDOMNode	that	sets	or
retrieves	the	output	node	under	which	the
WebServiceAdapter	object	will	copy	the	returned
XML.

QueryAllowed A	read-only	property	of	type	Boolean	that	corresponds
to	the	queryAllowed	attribute	in	the	form	definition
(.xsf)	file.

SubmitAllowed A	read-only	property	of	type	Boolean	that	corresponds
to	the	submitAllowed	attribute	in	the	form	definition
file	(.xsf).

Timeout A	property	of	type	Long	that	sets	or	retrieves	the	length
of	time,	in	seconds,	for	the	WebServiceAdapter	object
to	time-out	on	subsequent	requests.	The	default	value
is	30	seconds.

WSDLURL A	read-only	property	that	returns	a	string	that	contains
the	Uniform	Resource	Locator	(URL)	of	the	Web
Services	Description	Language	(WSDL)	file	for	the
Web	service	associated	with	the	WebServiceAdapter
object.

The	WebServiceAdapter	object	contains	the	following	methods:

Method Property
GenerateDataSetDiffGram Returns	an	ADO.Net	DataSet	containing	an

inline	schema	describing	the	data	and	the

DiffGram	of	the	DataSet.	The	DiffGram	for
the	input	dataDom	is	generated,	using	the
sibling	node	OriginalData	to	compute	the
difference	between	the	OriginalData	and
the	input	dataDom.

Query Executes	the	Query	method	on	the
WebServiceAdapter	object.	Fails	if	the
QueryAllowed	property	is	False.

Submit Executes	the	Submit	method	on	the
WebServiceAdapter	object.	Fails	if	the
SubmitAllowed	property	is	False.

Show	All

Window	Object

Windows Window

Represents	a	window	that	is	used	in	the	Microsoft	Office	InfoPath	2003
application.	Window	objects	represent	the	two	types	of	windows	that	are
used	in	the	InfoPath	application:	the	editing	window	that	is	used	as	the
form	area	when	a	user	fills	out	a	form,	and	the	designing	window	that	is
used	as	the	design	mode	when	a	user	designs	a	form.

Remarks
The	Window	object	provides	a	number	of	properties	and	methods	that
can	be	used	to	programmatically	interact	with	InfoPath	windows,
including	the	ability	to	activate	or	close	a	window	and	the	ability	to
interact	with	the	task	panes	and	command	bars	that	they	contain.	The
Window	object	also	provides	a	property	for	accessing	the	form's
underlying	XML	document	that	is	associated	with	the	window.

Note		Some	properties	of	the	Window	object	are	only	available	when
using	the	editing	window	type;	they	will	return	an	error	if	used	with	the
designing	window	type.

Using	the	Window	object
The	Window	objects	of	an	InfoPath	form	are	accessed	through	the	Item
property	of	the	Windows	collection.	The	type	of	window	can	be
determined	by	the	Type	property	of	the	Window	object.

You	can	access	the	currently	open	window	directly	by	using	the
ActiveWindow	property	of	the	Application	object,	without	going	through
the	Windows	collection.	You	can	also	access	the	Window	object	that	is
associated	with	a	view	by	using	the	Window	property	of	the	View	object.

In	the	following	example,	implemented	as	an	OnClick	event	handler	for	a
button	control,	the	ActiveWindow	property	is	used	to	set	a	reference	to
the	current	window.	Then	the	code	checks	the	window	type;	if	it	is	the
editing	window	type,	it	displays	the	number	of	task	panes	contained	in
the	window	in	a	message	box.

function	WindowObject::OnClick(eventObj)
{

			var	objWindow;
			
			//	Set	a	reference	to	the	current	window.
			objWindow	=	Application.ActiveWindow;
	
			//	Check	that	the	window	is	an	editing	window	type.
			if	(objWindow.Type	==	0)
			{
						//	Display	the	number	of	task	panes	in	the	window.
						XDocument.UI.Alert("Number	of	task	panes:	"	+	
									objWindow.TaskPanes.Count);
			}
	
			objWindow	=	null;
}

For	more	information	about	using	the	Window	object,	see	Working	with
form	windows.

Show	All

XDocument	Object

XDocuments XDocument

Represents	the	underlying	XML	document	of	a	Microsoft	Office	InfoPath
2003	form.

Remarks
The	XDocument	object	is	a	key	object	in	the	InfoPath	object	model	that
provides	properties,	methods,	and	events	that	can	be	used	to
programmatically	interact	with	and	manipulate	the	source	XML	data	of	a
form.

Note		The	XDocument	object	is	embedded	in	the	InfoPath	script	engine.
While	the	XDocument	object	can	be	accessed	using	the	XDocuments
collection,	in	most	cases	you	will	access	it	directly,	without	going	through
the	collection.

Using	the	XDocument	object
The	source	XML	data	of	a	form	takes	the	form	of	an	XML	Document
Object	Model	(DOM),	which	is	accessed	through	the	DOM	property	of	the
XDocument	object.	The	XDocument	object	also	provides	a	number	of
properties	that	can	be	used	to	get	information	about	the	form	and	its
underlying	XML	document.	For	example,	the	following	code	checks	to
see	whether	data	in	the	form	has	been	changed	by	using	the	IsDirty
property:

if	(XDocument.IsDirty)
			XDocument.UI.Alert("Form	has	been	changed.");
else
			XDocument.UI.Alert("Form	has	not	been	changed.");

In	addition	to	information	about	the	form	and	its	underlying	XML
document,	the	XDocument	object	provides	a	number	of	methods	that
can	be	used	on	the	form,	such	as	printing,	saving,	and	submitting.	It	also
provides	a	number	of	events	that	can	be	used	to	respond	to	various
actions	that	occur	at	the	form	level,	such	as	loading	of	a	form,	switching
views,	or	a	merge	operation.

Accessing	the	XDocument	object
The	XDocument	object	can	be	accessed	in	a	variety	places	within	the
InfoPath	object	model.	The	following	table	summarizes	the	locations
where	the	XDocument	object	is	available.

Name Description
XDocuments
collection

Accessed	from	the	Application	object.	Provides
the	Item	property	for	accessing	the	the
XDocument	objects	that	it	contains.

DataDOMEvent	object Provides	an	XDocument	property	for	accessing
the	source	XML	data	during	an	XML	DOM
change.

DocActionEvent
object

Provides	an	XDocument	property	for	accessing
the	source	XML	data	during	a	button	click	in	the
form	area.

DocEvent	object Provides	an	XDocument	property	for	accessing
the	source	XML	data	during	a	switch	view	or
form	merge	operation.

DocReturnEvent
object

Provides	an	XDocument	property	for	accessing
the	source	XML	during	the	loading	or
submission	of	a	form.

VersionUpgradeEvent
object

Provides	an	XDocument	property	for	accessing
the	source	XML	during	during	the	version
upgrade	operation.

Window	object Provides	an	XDocument	property	for	accessing
the	XDocument	object	associated	with	the
window.

Note		For	more	information	about	using	the	XDocument	object	,	see
Accessing	form	data.

Show	All

XMLFileAdapter	Object

XMLFileAdapter

Represents	a	connection	to	an	XML	file.	The	XMLFileAdapter	object	is	a
type	of	Microsoft	Office	InfoPath	2003	data	adapter	that	contains	all	the
information	necessary	for	retrieving	and	submitting	data	to	an	external
data	source.

Remarks
The	XMLFileAdapter	object	provides	the	FileURL	property,	which	can
be	used	get	or	set	the	Uniform	Resource	Locator	(URL)	of	the	XML	file
that	is	being	used	an	external	data	source.

Using	the	XMLFileAdapter	object
For	secondary	data	sources,	the	XMLFileAdapter	object	is	accessible
through	the	QueryAdapter	property	of	the	DataObject	object,	and
DataObject	objects	are	accessible	through	the	DataObjects	property	of
the	XDocument	object.

In	the	following	example,	a	reference	to	the	XMLFileAdapter	object	is
set	by	using	the	QueryAdapter	property	of	the	DataObject	object	by
passing	the	name	of	the	DataObject	object	to	the	Item	property	of	the
DataObjects	collection:

var	objXMLFileAdapter;

objXMLFileAdapter	=	XDocument.DataObjects("GetXMLCityList").QueryAdapter;

For	more	information	about	using	the	XMLFileAdapter	object,	see
Accessing	external	data	sources.

Active	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
the	window	associated	with	the	Window	object	is	the	active	window.

expression.Active

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
To	designate	a	window	as	the	active	window,	use	the	Activate	method	of
the	Window	object.

Example
In	the	following	example,	the	Active	property	of	the	Window	object	is
used	to	determine	whether	the	first	window	contained	in	the	Windows
collection	is	the	active	window:

if	(Application.Windows(0).Active)
{
			XDocument.UI.Alert("The	window	is	active.");
}

ActiveWindow	Property

A	read-only	property	that	returns	a	reference	to	a	Window	object	that
represents	the	currently	active	window.	The	type	of	window	returned	is
based	on	the	XdWindowType	enumeration.

expression.ActiveWindow

expression				Required.	An	expression	that	returns	the	Application
object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Using	the	ActiveWindow	property,	you	can	gain	immediate	access	to	the
window	that	is	currently	being	viewed	by	the	user,	and	then	use	the
properties	and	methods	of	the	Window	object	that	it	returns.

Example
In	the	following	example	from	the	Meeting	Agenda	sample	form,	the
ActiveWindow	property	is	used	to	gain	access	to	the	MailEnvelope
property	of	the	Window	object	that	returns	a	MailEnvelope	object.

var	oEnvelope	=	Application.ActiveWindow.MailEnvelope;

oEnvelope.Subject	=	getNode("/mtg:meetingAgenda/mtg:subject").text;
oEnvelope.To	=	rgRecipients.join(";	");
oEnvelope.Visible	=	true;

AttachmentFileName	Property

Returns	or	sets	a	string	that	represents	the	file	name	to	be	used	for	the
current	form	when	the	form	is	attached	to	the	e-mail	message	of	an
EmailAdapter	object.

expression.AttachmentFileName

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	".xml"	file	name	extension	will	be	appended	to	the	string	if	it	is	not
already	included.

If	the	AttachmentFileName	property	is	set	to	null,	the	form	will	not	be
attached	to	the	e-mail	message.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	AttachmentFileName	property	of	an
instance	of	the	EmailAdapter	object	to	change	the	name	of	the	form
when	it	is	attached	to	the	e-mail	message	before	the	EmailAdapter
object	is	submitted:

objEmailAdapter.AttachmentFileName	=	strName	+	"–"	+	strDate	+	".xml";	
						

BCC	Property	(EmailAdapter	Object)

Returns	or	sets	a	string	that	represents	the	BCC	recipients	of	an	e-mail
message	associated	with	an	EmailAdapter	object.

expression.BCC

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	value	must	be	a	semicolon-delimited	string	that	can	be	resolved	into
a	list	of	valid	e-mail	addresses	by	the	user's	e-mail	client.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	BCC	property	of	an	instance	of	the
EmailAdapter	object	to	change	the	BCC	recipients	before	the
EmailAdapter	is	submitted:

objEmailAdapter.BCC	=	oEmailAdapter.BCC	+	";	newUser@example.com";

BCC	Property	(Index)

The	BCC	property	sets	or	retrieves	a	string	containing	the	blind	carbon
copy	(BCC)	value	for	an	e-mail	message.	This	property	is	implemented	in
several	Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a	BCC
property	link	below	to	view	the	Help	topic	for	a	specific	implementation	of
the	BCC	property.

BCC	property	as	it	applies	to	the	EmailAdapter	object.

BCC	property	as	it	applies	to	the	MailEnvelope	object.

BCC	Property	(MailEnvelope	Object)

Sets	or	retrieves	a	string	containing	the	blind	carbon	copy	(BCC)	value
used	in	the	MailEnvelope	object	that	is	associated	with	a	Window
object.

expression.BCC

expression				Required.	An	expression	that	returns	a	reference	to	the
MailEnvelope	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	values	set	for	the	BCC	property	should	be	a	string	of	valid	e-mail
addresses.	You	can	specify	multiple	e-mail	addresses	by	using	";"
between	each	of	them,	as	shown	in	the	following	example:

objEmail.BCC	=	"someone@example.com;someone@example.com"

Example
In	the	following	example,	the	BCC	property	of	the	MailEnvelope	object	is
used	to	set	the	BCC	value	of	a	custom	e-mail	message:

function	CreateMailEnvelope::OnClick(eventObj)
{
			var	objEmail;

			objEmail	=	Application.ActiveWindow.MailEnvelope;
			objEmail.To	=	"someone@example.com";
			objEmail.CC	=	"someone@example.com";
			objEmail.BCC	=	"someone@example.com";
			objEmail.Subject	=	"Test	e-mail	message";
			objEmail.Visible	=	true;
			objEmail	=	null;
}

Caption	Property	(Index)

This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	objects.	Click	a	Caption	property	link	below	to	view	the
Help	topic	for	a	specific	implementation	of	the	Caption	property.

Caption	property	as	it	applies	to	the	SignedDataBlock	object.

Caption	property	as	it	applies	to	the	Window	object.

Caption	Property	(SignedDataBlock	Object)

A	read-only	property	that	returns	the	friendly	name	of	the
SignedDataBlock	object.

expression.Caption

expression				Required.	An	expression	that	returns	a	reference	to	the
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Caption	Property	(Window	Object)

A	read/write	property	that	returns	or	sets	the	caption	text	for	the	window
represented	by	the	Window	object.

expression.Caption

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Remarks
When	setting	the	caption	text	for	a	window,	the	caption	will	always	be
followed	by	"-	Microsoft	Office	InfoPath	2003".

Example
In	the	following	example,	the	Caption	property	is	used	to	set	the	caption
text	of	the	active	window.

var	strCaption	=	"MyCaption";

Application.ActiveWindow.Caption	=	strCaption;

CC	Property	(EmailAdapter	Object)

Returns	or	sets	a	string	that	represents	the	carbon	copy	(CC)	recipients
for	the	e-mail	message	associated	with	an	EmailAdapter	object.

expression.CC

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	value	must	be	a	semicolon-delimited	string	that	can	be	resolved	into
a	list	of	valid	e-mail	addresses	by	the	user's	e-mail	client.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	CC	property	of	an	instance	of	the
EmailAdapter	object	to	change	the	CC	recipients	before	the
EmailAdapter	object	is	submitted:

objEmailAdapter.CC	=	oEmailAdapter.CC	+	";
newUser@example.com";

CC	Property	(MailEnvelope	Object)

Sets	or	retrieves	a	string	containing	the	carbon	copy	(CC)	value	used	in
the	MailEnvelope	object	that	is	associated	with	a	Window	object.

expression.CC

expression				Required.	An	expression	that	returns	a	reference	to	the
MailEnvelope	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	values	set	for	the	CC	property	should	be	a	string	of	valid	e-mail
addresses.	You	can	specify	multiple	e-mail	addresses	by	using	";"
between	each	of	them,	as	shown	in	the	following	example:

objEmail.CC	=	"someone@example.com;someone@example.com"

Example
In	the	following	example,	the	CC	property	of	the	MailEnvelope	object	is
used	to	set	the	CC	value	of	a	custom	e-mail	message:

function	CreateMailEnvelope::OnClick(eventObj)
{
			var	objEmail;

			objEmail	=	Application.ActiveWindow.MailEnvelope;
			objEmail.To	=	"someone@example.com";
			objEmail.CC	=	"someone@example.com";
			objEmail.BCC	=	"someone@example.com";
			objEmail.Subject	=	"Test	e-mail	message";
			objEmail.Visible	=	true;
			objEmail	=	null;
}

CC	Propety	(Index)

The	CC	property	sets	or	retrieves	a	string	containing	the	carbon	copy
(CC)	value	for	an	e-mail	message.	This	property	is	implemented	in
several	Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a	CC
property	link	below	to	view	the	Help	topic	for	a	specific	implementation	of
the	CC	property.

CC	property	as	it	applies	to	the	EmailAdapter	object.

CC	property	as	it	applies	to	the	MailEnvelope	object.

Show	All

Certificate	Property

A	read-only	property	that	returns	the	Certificate	object	for	the	X.509
digital	certificate	that	was	used	to	sign	a	form	or	a	set	of	signed	data	in	a
form.

expression.Certificate

expression				Required.	An	expression	that	returns	a	Signature	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Command	Property

Sets	or	retrieves	the	SQL	command	string	text	for	an	ADOAdapter
object.

expression.Command

expression				Required.	An	expression	that	returns	a	reference	to	the
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Command	property	of	the	ADOAdapter	object	contains	the	SQL
command	text	that	is	used	by	the	ADO	data	adapter	to	submit	data	to
and	retrieve	data	from	an	ActiveX	Data	Objects/OLEDB	external	data
source.

Note		The	ADOAdapter	object	is	limited	to	work	only	with	Microsoft	SQL
Server	and	Microsoft	Access	databases.

Example
In	the	following	example,	the	Command	property	of	the	ADOAdapter
object	is	used	to	display	the	SQL	command	text	of	the	ADO	data	adapter
in	a	message	box:

var	objADOAdapter;

objADOAdapter	=	XDocument.DataObjects("CityList").QueryAdapter;
XDocument.UI.Alert("SQL	command	text:	"	+	objADOAdapter.Command

CommandBars	Property

A	read-only	property	that	returns	a	reference	to	the	Microsoft	Office
CommandBars	collection	object	contained	in	the	window	that	is
associated	with	the	Window	object.

expression.CommandBars

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjCommandBars1.htm

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	CommandBars	property	can	be	used	only	by	fully	trusted	forms.	If
used	by	a	form	that	is	not	fully	trusted,	the	CommandBars	property	will
return	a	"permission	denied"	error.

Example
In	the	following	example,	the	CommandBars	property	of	the	Window
object	is	used	to	set	a	reference	to	the	CommandBars	collection	object:

var	objCommandBars;
objCommandBars	=	Application.ActiveWindow.CommandBars;

Show	All

Comment	Property

A	read-only	property	that	returns	the	text	comment	that	was	added	to	the
digital	signature	associated	with	a	form	or	a	section	of	a	form.

expression.Comment

expression				Required.	An	expression	that	returns	a	Signature	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

ConditionName	Property

A	read-only	property	that	returns	a	string	value	containing	the	name	of
the	Error	object.

expression.ConditionName

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	ConditionName	property	is	used	only	for	custom	errors;	it	is	not
used	for	schema	validation–generated	or	system-generated	errors.	If	the
type	of	error	is	schema	validation	generated	or	system	generated,	the
ConditionName	property	will	return	null.

Example
In	the	following	example,	the	ConditionName	property	of	the	Error
object	is	used	to	display	the	name	of	a	custom	error	in	a	message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.ConditionName);

Show	All

Connection	Property

Sets	or	retrieves	the	connection	string	used	for	an	ADOAdapter	object.

expression.Connection

expression				Required.	An	expression	that	returns	a	reference	to	the
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Connection	property	of	the	ADOAdapter	object	contains	the
connection	string	that	is	used	by	the	ADO	data	adapter	to	connect	to	an
ActiveX	Data	Objects/OLEDB	external	data	source.

Note		The	ADOAdapter	object	is	limited	to	work	only	with	Microsoft	SQL
Server	and	Microsoft	Access	databases.

Example
In	the	following	example,	the	Connection	property	of	the	ADOAdapter
object	is	used	to	display	the	connection	string	of	the	ADO	data	adapter	in
a	message	box:

var	objADOAdapter;

objADOAdapter	=	XDocument.DataObjects("CityList").QueryAdapter;
XDocument.UI.Alert("Connection	string:	"	+	objADOAdapter.Connection

Context	Property

A	read-only	property	that	returns	a	reference	to	the	XML	Document
Object	Model	(DOM)	node	that	is	the	new	context	node	provided	by	the
DocContextChangeEvent	object.

expression.Context

expression				Required.	An	expression	that	returns	a	reference	to	the
DocContextChangeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Count	Property	(DataAdapters	Collection)

A	read-only	property	that	returns	the	number	of	data	adapters	in	the
DataAdaptersCollection	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	a
DataAdaptersCollection	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Count	Property	(DataObjects	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	DataObject
objects	contained	in	the	DataObjects	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObjects	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	DataObject	objects
and	display	a	message	box	indicating	the	name	of	each	DataObject
object	associated	with	the	form:

for	(i=0;	i	<	XDocument.DataObjects.Count;	i++)
{
			XDocument.UI.Alert("DataObject	name:	"	+	XDocument.DataObjects(i).Name);
}

Show	All

Count	Property	(Errors	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	Error	objects
contained	in	the	Errors	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	the
Errors	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	Error	objects	and
display	a	message	box	indicating	the	short	error	message	of	each	error:

for	(i=0;	i	<	XDocument.Errors.Count;	i++)
{
			XDocument.UI.Alert("Error	message:	"	+	XDocument.Errors(i).ShortErrorMessage);
}

Count	Property	(Index)

The	Count	property	returns	a	count	of	the	number	of	objects	contained	in
a	collection.	This	property	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	collections.	Click	a	Count	property	link	below
to	view	the	Help	topic	for	a	specific	implementation	of	the	Count
property.

Count	property	as	it	applies	to	the	DataAdapters	collection.

Count	property	as	it	applies	to	the	DataObjects	collection.

Count	property	as	it	applies	to	the	Errors	collection.

Count	property	as	it	applies	to	the	MergeEvent	object.

Count	property	as	it	applies	to	the	Signatures	collection.

Count	property	as	it	applies	to	the	SignedDataBlocks	collection.

Count	property	as	it	applies	to	the	TaskPanes	collection.

Count	property	as	it	applies	to	the	ViewInfos	collection.

Count	property	as	it	applies	to	the	Windows	collection.

Count	property	as	it	applies	to	the	XDocuments	collection.

Count	property	as	it	applies	to	the	XMLNodes	collection.

Count	Property	(MergeEvent	Object)

A	read-only	property	that	returns	a	count	of	the	number	of	forms	being
merged	in	a	merging	operation.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	a
MergeEvent	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	can	be	used	in	combination	with	the	Index	property
of	the	MergeEvent	object	to	determine	when	the	last	form	was	merged.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	Index	property	along	with	the	Count
property	of	an	instance	of	the	MergeEvent	object	to	determine	if	the
current	form	is	the	last	form	being	merged:

								var	fLast	=	eventObj.Index	+	1	==	eventObj.Count;
						

Count	Property	(Signatures	Collection)

A	read-only	property	that	returns	the	number	of	Signature	objects	in	the
Signatures	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	a
Signatures	collection.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Count	Property	(SignedDataBlocks	Collection)

A	read-only	property	that	returns	the	number	of	SignedDataBlock
objects	in	the	form	template.

expression.Count

expression				Required.	An	expression	that	returns	a	SignedDataBlocks
collection.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Count	Property	(TaskPanes	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	TaskPane
objects	contained	in	the	TaskPanes	collection.

expression.Count

expression				Required.	Returns	a	reference	to	the	TaskPanes	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	TaskPane	objects.	It
checks	the	Visible	property	of	each	TaskPane	object	and	if	it	is	True,
sets	it	to	False.

var	objTaskPanes;

objTaskPanes	=	XDocument.View.Window.TaskPanes;

for	(i=0;	i	<	objTaskPanes.Count;	i++)
{
			if	(objTaskPanes(i).Visible	=	true)
						objTaskPanes(i).Visible	=	false;
}

Show	All

Count	Property	(ViewInfos	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	ViewInfo
objects	contained	in	the	ViewInfos	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	the
ViewInfos	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	ViewInfo	objects	and
display	a	message	box	indicating	the	name	of	each	view	implemented	in
the	form:

for	(i=0;	i	<	XDocument.ViewInfos.Count;	i++)
{
			XDocument.UI.Alert("View	name:	"	+	XDocument.ViewInfos(i).Name);
}

Show	All

Count	Property	(Windows	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	Window
objects	contained	in	the	Windows	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	the
Windows	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	Window	objects	and
display	a	message	box	indicating	the	window	type	value:

for	(i=0;	i	<	Application.Windows.Count;	i++)
{
			XDocument.UI.Alert("Window	type:	"	+	Application.Windows(i).Type);
}

Show	All

Count	Property	(XDocuments	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	XDocument
objects	contained	in	the	XDocuments	collection.

expression.Count

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	of	the	XDocuments
collection	is	used	within	a	JScript	for	loop	to	iterate	through	the	collection
of	XDocument	objects	and	display	a	message	box	indicating	the	Uniform
Resource	Identifier	(URI)	location	for	each	currently	open	form:

for	(i=0;	i	<	Application.XDocuments.Count;	i++)
{
			XDocument.UI.Alert("XDocument	URI:	"	+	Application.XDocuments(i).URI);
}

Show	All

Count	Property	(XMLNodes	Collection)

A	read-only	property	that	returns	a	count	of	the	number	of	XML
Document	Object	Model	(DOM)	node	objects	contained	in	the
XMLNodes	collection.

expression.Count

expression				Required.	Returns	a	reference	to	the	XMLNodes	collection.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Count	property	returns	a	long	integer	value.

Example
In	the	following	example,	the	Count	property	is	used	within	a	Microsoft
JScript	for	loop	to	iterate	through	the	collection	of	XML	DOM	node
objects	returned	by	the	GetSelectedNodes	method	of	the	View	object
and	display	a	message	box	indicating	the	name	of	each	XML	DOM	node
that	is	contained	in	the	XMLNodes	collection:

var	objXMLNodes;

objXMLNodes	=	XDocument.View.GetSelectedNodes();

for	(i=0;	i	<	objXMLNodes.Count;	i++)
{
			XDocument.UI.Alert("XML	DOM	node		name:	"	+	objXMLNodes(i).nodeName);
}

DataAdapters	Property

A	read-only	property	that	returns	a	reference	to	the	DataAdapters
collection	that	is	associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.DataAdapters

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	DataAdapters	property	of	the	XDocument
object	is	used	to	set	a	reference	to	a	data	adapter	called	"Main	query":

var	objDataAdapter;
objDataAdapter	=	XDocument.DataAdapters("Main	query");

						

Show	All

DataObjects	Property

A	read-only	property	that	returns	a	reference	to	the	DataObjects
collection	that	is	associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.DataObjects

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	DataObjects	collection	provides	programmatic	access	to	a	form's
secondary	data	sources.	Each	secondary	data	source	is	contained	in	a
DataObject	object	within	the	DataObjects	collection.

Example
In	the	following	example,	the	DataObjects	property	of	the	XDocument
object	is	used	to	set	a	reference	to	the	CityList	secondary	data	source:

var	objDataObject;
objDataObject	=	XDocument.DataObjects("CityList");

Date	Property

A	read-only	property	that	returns	a	reference	to	the	Date	object.

expression.Date

expression				Required.	An	expression	that	returns	a	reference	to	the	Util
object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
You	can	access	all	of	the	methods	that	the	Date	object	provides	by	using
the	Date	property.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

DetailedErrorMessage	Property

Sets	or	retrieves	the	string	value	containing	the	detailed	error	message	of
an	Error	object.

expression.DetailedErrorMessage

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	detailed	error	message	is	the	longer	error	message	that	users	can
choose	to	view	when	data	validation	fails	in	their	forms.

Example
In	the	following	example,	the	DetailedErrorMessage	property	of	the
Error	object	is	used	to	display	the	detailed	message	of	an	error	in	a
message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.DetailedErrorMessage

DocumentVersion	Property

A	read-only	property	that	returns	a	string	containing	the	version	number
of	a	Microsoft	Office	InfoPath	2003	form.

expression.DocumentVersion

expression				Required.	An	expression	that	returns	a	reference	to	the
VersionUpgradeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
This	property	can	be	used	only	during	the	OnVersionUpgrade	event.

Example
In	the	following	example,	the	DocumentVersion	property	of	the
VersionUpgradeEvent	object	is	used	to	display	the	version	number	of
an	InfoPath	form	in	a	message	box:

function	XDocument::OnVersionUpgrade(eventObj)
{
			XDocument.UI.Alert("The	form	version:	"	+	eventObj.DocumentVersion
						"\nThe	form	template	version:	"	+	eventObj.SolutionVersion);
			eventObj.ReturnStatus	=	true;
}

Show	All

DOM	Property	(DataObject	Object)

A	read-only	property	that	returns	a	reference	to	an	XML	Document	Object
Model	(DOM)	that	is	associated	with	a	DataObject	object.

expression.DOM

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	DOM	property	allows	you	to	programmatically	access	and
manipulate	the	source	XML	of	a	secondary	data	source	that	is
represented	by	the	DataObject	object.	After	you	have	set	a	reference	to
the	XML	DOM,	which	contains	the	source	XML	data	of	a	secondary	data
source,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	DOM	property	of	the	DataObject	object	is
used	to	return	all	of	the	contents	of	a	form's	secondary	data	source	using
the	xml	property	of	the	XML	DOM:

var	strXML;
strXML	=	XDocument.DataObjects("CityList").DOM.xml;

Show	All

DOM	Property	(Index)

The	DOM	property	returns	a	reference	to	the	Document	Object	Model
(DOM).	This	property	is	implemented	in	several	Microsoft	Office	InfoPath
2003	object	model	objects.	Click	a	DOM	property	link	below	to	view	the
Help	topic	for	a	specific	implementation	of	the	DOM	property.

DOM	property	as	it	applies	to	the	DataObject	object.

DOM	property	as	it	applies	to	the	MergeEvent	object.

DOM	property	as	it	applies	to	the	Solution	object.

DOM	property	as	it	applies	to	the	XDocument	object.

Show	All

DOM	Property	(MergeEvent	Object)

A	read-only	property	that	returns	a	reference	to	a	form's	underlying	XML
document	as	an	XML	Document	Object	Model	(DOM)	construction	for	the
current	form	involved	in	a	merging	operation.

expression.DOM

expression				Required.	An	expression	that	returns	a	reference	to	a
MergeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	DOM	property	allows	you	to	access	and	manipulate	the	source	XML
of	a	form	programmatically.	After	you	have	set	a	reference	to	the	XML
DOM,	which	contains	the	source	XML	data	of	a	form,	you	can	use	any	of
the	properties	and	methods	that	are	supported	by	the	XML	DOM.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Note		To	learn	more	about	the	XML	DOM	and	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
This	example	shows	how	to	use	the	DOM	property	of	an	instance	of	the
MergeEvent	object	to	merge	the	data	into	the	current	form:

								XDocument.ImportDOM(eventObj.DOM);
						

Show	All

DOM	Property	(Solution	Object)

A	read-only	property	that	returns	a	reference	to	an	XML	Document	Object
Model	(DOM)	that	contains	the	source	XML	of	the	form	definition	(.xsf)
file.

expression.DOM

expression				Required.	An	expression	that	returns	a	reference	to	a
Solution	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	DOM	property	of	the	Solution	object	allows	you	to	programmatically
access	and	manipulate	the	source	XML	of	the	.xsf	file.	After	you	have	set
a	reference	to	the	XML	DOM,	which	contains	the	source	XML	data	of	the
.xsf	file,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	DOM	property	of	the	Solution	object	is
used	to	return	all	of	the	contents	of	a	form's	.xsf	file	using	the	xml
property	of	the	XML	DOM:

var	strXML;

strXML	=	XDocument.Solution.DOM.xml;

Show	All

DOM	Property	(XDocument	Object)

A	read-only	property	that	returns	a	reference	to	a	form's	underlying	XML
document	in	the	form	of	an	XML	Document	Object	Model	(DOM).

expression.DOM

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
A	key	property	of	the	XDocument	object,	the	DOM	property	allows	you	to
programmatically	access	and	manipulate	the	source	XML	of	a	form.	After
you	have	set	a	reference	to	the	XML	DOM,	which	contains	the	source
XML	data	of	a	form,	you	can	use	any	of	the	properties	and	methods	that
are	supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	DOM	property	of	the	XDocument	object	is
used	to	return	all	of	the	contents	of	a	form's	underlying	XML	document
using	the	xml	property	of	the	XML	DOM:

var	strXML;
strXML	=	XDocument.DOM.xml;

ErrorCode	Property

Sets	or	retrieves	the	error	code	of	an	Error	object.

expression.ErrorCode

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	ErrorCode	property	is	implemented	as	a	long	integer.

Example
In	the	following	example,	the	ErrorCode	property	of	the	Error	object	is
used	to	display	the	error	code	number	of	an	error	in	a	message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.ErrorCode);

Errors	Property

A	read-only	property	that	returns	a	reference	to	the	Errors	collection	that
is	associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.Errors

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Errors	collection	is	associated	with	a	form's	underlying	XML
document	so	that	when	an	error	occurs,	it	occurs	within	the	XML
document.	After	you	set	a	reference	to	the	Errors	collection,	you	can
access	all	of	its	properties	and	methods	for	managing	the	errors	within	an
InfoPath	form.

Example
In	the	following	example,	the	Errors	property	of	the	XDocument	object	is
used	to	return	the	count	of	the	number	or	errors	and	then	display	that
value	in	a	message	box:

var	intErrors;

intErrors	=	XDocument.Errors.Count;
XDocument.UI.Alert("Total	number	of	errors:	"	+	intErrors);

Show	All

ErrorsLocation	Property

A	read/write	property	that	specifies	the	XML	Document	Object	Model
(DOM)	node	under	which	the	adapter	will	copy	returned	errors	as	XML.

expression.ErrorsLocation

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	initial	value	of	the	ErrorsLocation	property	is	null.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

ExpirationDate	Property

A	read-only	property	that	returns	the	expiration	date	of	a	digital	certificate
in	the	localized	'SHORTDATE'	format.

expression.ExpirationDate

expression				Required.	An	expression	that	returns	a	Certificate	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Extension	Property

A	read-only	property	that	returns	a	reference	to	the	global	scripting
object,	which	exposes	the	functions	and	global	variables	contained	in	a
Microsoft	Office	InfoPath	2003	form's	primary	scripting	file.

expression.Extension

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Extension	property	facilitates	using	the	functions	and	global
variables	implemented	in	an	InfoPath	form's	scripting	file.	Usually,	it	is
used	from	a	custom	task	pane,	from	a	custom	dialog	box,	or	in	the	XSL
Transformation	(XSLT)	of	a	view	where	direct	access	to	the	functions	and
variables	may	be	needed.

For	example,	if	you	were	to	declare	a	global	variable	in	your	scripting	file
such	as	the	following,

var	constCity	=	"Redmond";

You	could	access	that	value	in	the	code	of	your	custom	task	pane	or
dialog	box	by	using	the	Extension	property,	as	shown	here:

XDocument.Extension.constCity;

To	use	the	Extension	property	within	a	custom	task	pane,	you	must	first
set	a	reference	to	the	XDocument	object	by	using	the	Dynamic	HTML
(DHTML)	external	property	of	the	DHTML	window	object,	as	shown	in
this	example:

objXDocument	=	window.external.XDocument;

Example
In	the	following	example,	the	Extension	property	of	the	XDocument
object	is	used	to	access	a	custom	function:

objXDocument	=	window.external.XDocument;
objXDocument.Extension.MyCustomFunction();

FileName	Property	(DAVAdapter	Object)

Returns	or	sets	a	string	that	represents	the	file	name	that	the	current
Microsoft	Office	InfoPath	2003	form	will	be	given	when	the	form	is
submitted	by	the	DAVAdapter	object.

expression.FileName

expression				Required.	An	expression	that	returns	a	reference	to	the
DAVAdapter	object

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Remarks
The	".xml"	file	name	extension	will	be	appended	to	the	string	if	it	is	not
already	included.	If	the	FileName	property	is	set	to	null,	the	form	is	given
the	name	"Form.xml"	when	it	is	submitted.

Example
The	following	example	shows	how	to	use	the	FileName	property	of	an
instance	of	the	DAVAdapter	object	to	set	the	file	name	of	the	submitted
form:

objDAVAdapter.	FileName	=	strName	+	"–"	+	strDate	+	".xml";

FileName	Property	(Index)

This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	collections.	Click	a	FileName	property	link	below	to	view
the	Help	topic	for	a	specific	implementation	of	the	FileName	property.

FileName	property	as	it	applies	to	the	DAVAdapter	object.

FileName	property	as	it	applies	to	the	SaveEvent	object.

FileName	Property	(SaveEvent	Object)

A	read-only	property	that	returns	a	string	that	represents	the	file	name	to
be	used	in	the	OnSaveRequest	event.

expression.FileName

expression				Required.	An	expression	that	returns	a	reference	to	a
SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsSaveAs	property	of	the	SaveEvent	object	is	true,	and	a	save
operation	has	not	yet	occurred,	the	FileName	property	returns	an	empty
string.	If	the	IsSaveAs	property	is	true	and	a	save	operation	has	already
occurred,	the	value	returned	by	the	FileName	property	is	the	file	name
under	which	the	form	was	saved.	If	the	SaveEvent	object	represents	a
save	operation	(that	is,	the	IsSaveAs	property	of	the	SaveEvent	object	is
false),	the	FileName	property	returns	the	same	value	as	the	URI	property
of	the	XDocument	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	FileName	property	of	the	SaveEvent	object
is	used	in	a	notification	to	the	user	before	a	save	operation:

XDocument.UI.Alert("You	are	about	to	save	the	following	file:	"	+	eventObj.
						

Show	All

FileURL	Property

Sets	or	retrieves	the	Uniform	Resource	Locator	(URL)	of	the	XML	file	that
is	associated	with	the	XMLFileAdapter	object.

expression.FileURL

expression				Required.	An	expression	that	returns	a	reference	to	the
XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	FileURL	property	sets	and	retrieves	a	string	value.

Example
In	the	following	example,	the	FileURL	property	of	the	XMLFileAdapter
object,	accessed	through	the	QueryAdapter	property	of	the	XDocument
object,	is	used	to	display	the	URL	of	the	XML	file	in	a	message	box:

XDocument.UI.Alert("XML	file	URL:	"	+	XDocument.QueryAdapter.

FolderURL	Property

A	property	that	returns	or	sets	a	string	that	represents	the	Uniform
Resource	Locator	(URL)	to	which	the	form	will	be	submitted	by	the
DAVAdapter	object.

expression.FolderURL

expression				Required.	An	expression	that	returns	a	reference	to	the
DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Submit	method	of	the	DAVAdapter	object	will	fail	if	the	value	of	the
FolderURL	property	does	not	begin	with	either	the	"http:"	or	the	"https:"
prefix.	The	Submit	method	will	also	fail	if	the	site	specified	by	the
FolderURL	property	is	not	available,	or	if	the	URL	is	not	in	the	same
security	domain	as	the	form	template.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	FolderURL	property	of	an	instance
of	the	DavAdapter	object	to	change	the	folder	to	which	the	form	data	will
be	submitted:

objDavAdapter.FolderURL	=	objDavAdapter.FolderURL	+	"data/";
						

Height	Property

A	read/write	property	of	type	long	integer	that	specifies	the	height	of	the
the	window	represented	by	the	Window	object,	measured	in	points.

expression.Height

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Remarks
This	property	will	return	an	error	if	it	is	set	on	a	window	that	is	minimized
or	maximized.

This	property	can't	be	set	to	a	value	that	is	larger	than	the	value	returned
by	the	UsableHeight	property.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

HTMLDocument	Property

Returns	a	reference	to	an	HTML	document	object	of	the	Microsoft	Office
InfoPath	2003	custom	task	pane.

expression.HTMLDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
HTML	document	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	HTMLDocument	property	of	the	HTMLTaskPane	object	is	one	of
the	properties	inherited	by	the	TaskPane	object	when	the	type	of	the	task
pane	is	0,	which	means	that	it	is	the	custom	task	pane.

Using	the	HTMLDocument	method,	you	can	call	scripting	functions
contained	in	the	HTML	code	of	the	task	pane	from	the	primary	scripting
file	of	a	form,	and	you	can	also	directly	manipulate	the	HTML	code	of	the
task	pane	using	any	of	the	properties	and	methods	that	the	HTML
document	object	provides.

Example
In	the	following	example,	the	HTMLDocument	property	of	the
HTMLTaskPane	object	is	used	to	set	a	reference	to	the	HTML	document
object	of	the	custom	task	pane.	Then	the	code	calls	the
TaskPaneSwitchView	custom	function	that	is	defined	in	the	HTML	code	of
the	custom	task	pane.

var	objHTMLDoc;

objHTMLDoc	=	XDocument.View.Window.TaskPanes(0).HTMLDocument
objHTMLDoc.parentWindow.TaskPaneSwitchView();

Show	All

HTMLWindow	Property

Returns	a	reference	to	an	HTML	window	object	of	the	Microsoft	Office
InfoPath	2003	custom	task	pane.

expression.HTMLWindow

expression				Required.	An	expression	that	returns	a	reference	to	the
HTML	window	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	HTMLWindow	property	of	the	HTMLTaskPane	object	is	one	of	the
properties	inherited	by	the	TaskPane	object	when	the	type	of	the	task
pane	is	0,	which	means	that	it	is	the	custom	task	pane.

Using	the	HTMLWindow	property,	you	can	call	scripting	functions
contained	in	the	HTML	code	of	the	task	pane	from	the	primary	scripting
file	of	a	form,	and	you	can	also	directly	manipulate	the	HTML	code	of	the
task	pane	using	any	of	the	properties	and	methods	that	the	HTML
document	object	provides.

Note		The	HTMLWindow	property	provides	the	same	functionality	as	the
HTMLDocument	property,	but	it	is	only	available	when	using	fully	trusted
forms.	If	the	form	is	not	fully	trusted,	you	can	use	the	HTMLDocument
property.

Example
In	the	following	example,	the	HTMLWindow	property	of	the
HTMLTaskPane	object	is	used	to	set	a	reference	to	the	HTML	window
object	of	the	custom	task	pane	of	a	fully	trusted	form.	Then	the	code	calls
the	TaskPaneSwitchView	custom	function	that	is	defined	in	the	HTML
code	of	the	custom	task	pane.

var	objHTMLDoc;

objHTMLDoc	=	XDocument.View.Window.TaskPanes(0).HTMLWindow
objHTMLDoc.parentWindow.TaskPaneSwitchView();

Index	Property

A	read-only	property	that	returns	the	0-based	index	of	the	form	that	is
currently	being	merged.

expression.Index

expression				Required.	An	expression	that	returns	a	reference	to	a
MergeEvent	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	value	of	the	Index	property	of	the	MergeEvent	object	increases	from
0	to	Count-1	for	each	merge	event	that	occurs	when	forms	are	merged.

When	used	in	combination	with	the	Count	property	of	the	MergeEvent
object,	the	Index	property	can	be	used	to	determine	when	the	last	form
has	been	merged.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	Index	property	along	with	the	Count
property	of	an	instance	of	the	MergeEvent	object	to	determine	if	the
current	form	is	the	last	form	to	be	merged:

var	fLast	=	eventObj.Index	+	1	==	eventObj.Count;

Show	All

Input	Property

Sets	or	retrieves	a	string	value	that	contains	the	source	XML	of	the	input
element	contained	in	the	form	definition	(.xsf)	file.

expression.Input

expression				Required.	An	expression	that	returns	a	reference	to	the
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	input	element	of	the	.xsf	file	contains	information	about	the	parts	of
the	input	Simple	Object	Access	Protocol	(SOAP)	message	that	are	used
to	communicate	with	the	Web	service.	Specific	parts	in	the	SOAP
message	are	replaced	by	Microsoft	Office	InfoPath	2003	with	data	from
within	the	form.	It	is	used	when	a	secondary	data	source	is	populated
with	data	from	a	Web	service,	and	InfoPath	needs	to	pass	arguments	to
the	Web	service	to	retrieve	the	data	that	it	provides.

Example
In	the	following	example,	the	Input	property	of	the	WebServiceAdapter
object	is	used	to	display	the	input	string	of	the	Web	service	data	adapter
in	a	message	box:

var	objWSAdapter;

objWSAdapter	=	XDocument.DataObjects("WebCityList").QueryAdapter;
XDocument.UI.Alert("Input	string:	"	+	objWSAdapter.Input);

Intro	Property

Returns	or	sets	a	string	that	represents	the	introduction	in	the	body	of	the
e-mail	message	for	an	EmailAdapter	object.

expression.Intro

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	Intro	property	of	an	instance	of	the
EmailAdapter	object	to	change	the	introduction	of	the	body	of	the	e-mail
message	before	the	EmailAdapter	is	submitted:

objEmailAdapter.Intro	=	"Here	is	my	status	report	for	the	week.";
						

IsCancelled	Property

A	read/write	property	that	provides	additional	information	for	use	in	the
OnSaveRequest	event	in	conjunction	with	the	ReturnStatus	property.

expression.IsCancelled

expression				Required.	An	expression	that	returns	a	reference	to	a
SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
When	closing	InfoPath,	the	user	is	prompted	to	save	the	document	if	the
IsDirty	property	of	the	XDocument	object	is	true.	If	the	IsCancelled
property	is	true,	InfoPath	will	be	prevented	from	closing	if	the	save
operation	fails	(that	is,	the	ReturnStatus	property	is	false).

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	IsCancelled	property	of	the	SaveEvent
object	is	used	to	ensure	that	the	document	does	not	close	if	the	save
operation	was	cancelled:

eventObj.IsCancelled	=	eventObj.PerformSaveOperation();
if	(eventObj.IsCancelled)	
				return;
eventObj.ReturnStatus	=	true;
						

IsDefault	Property

Sets	or	retrieves	a	Boolean	value	that	indicates	whether	the	view	is
defined	as	the	default	view	in	a	Microsoft	Office	InfoPath	2003	form.

expression.IsDefault

expression				Required.	An	expression	that	returns	a	reference	to	the
ViewInfo	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	IsDefault	property	of	the	ViewInfo	object	can	be	used	to	determine
whether	a	view	is	the	default	view,	and	it	can	be	used	to
programmatically	change	the	default	view	before	the	first	view	is	loaded.

Example
In	the	following	example,	the	IsDefault	property	is	used	to	make	the
second	view	contained	in	the	ViewInfos	collection	the	default	view:

XDocument.ViewInfos(1).IsDefault	=	true;

IsDirty	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
the	data	in	a	Microsoft	Office	InfoPath	2003	form	has	been	modified
since	it	was	last	saved.

expression.IsDirty

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsDirty	property	is	True,	data	in	the	form's	underlying	XML
document	has	been	changed	since	it	was	last	saved.	If	False,	no
changes	have	occurred.

Note		Changes	that	occur	during	the	OnLoad	event	will	not	result	in	the
IsDirty	property	being	set	to	True.

Example
In	the	following	example,	the	IsDirty	property	of	the	XDocument	object
is	used	to	determine	whether	data	in	the	form	has	been	changed:

if	(XDocument.IsDirty)
			XDocument.UI.Alert("Data	has	been	changed.");
else
			XDocument.UI.Alert("Data	has	not	been	changed.");

Show	All

IsDOMReadOnly	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
the	data	in	the	underlying	XML	document	of	a	Microsoft	Office	InfoPath
2003	form	has	been	placed	in	a	read-only	state.

expression.IsDOMReadOnly

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsDOMReadOnly	property	is	True,	data	in	the	form's	underlying
XML	document	is	in	a	read-only	state	and	cannot	be	changed.	If	False,
the	data	in	the	form's	underlying	XML	document	can	be	changed.

To	determine	whether	the	form	has	been	placed	in	a	read-only	state,	use
the	IsReadOnly	property	of	the	XDocument	object.

The	data	in	a	form's	XML	document	will	be	placed	in	a	read-only	state	in
the	following	scenarios:

The	form	is	digitally	signed

The	form	is	in	Reduced	Functionality	Mode	(RFM)	mode

During	the	OnBeforeChange	event

During	the	OnValidate	event

During	an	undo	or	redo	operation

Example
In	the	following	example,	the	IsDOMReadOnly	property	of	the
XDocument	object	is	used	to	determine	whether	data	in	the	form's
underlying	XML	document	has	been	placed	in	a	read-only	state.	If	it	has,
a	return	statement	is	used	to	exit	the	event	handler.

function	msoxd__item::OnAfterChange(objEvent)
{

			//	Determine	whether	the	XML	DOM	is	read-only.
			if	(XDocument.IsDOMReadOnly)
						return;

			//	Continue	normal	processing...

}

IsNew	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
a	newly	created	Microsoft	Office	InfoPath	2003	form	has	been	saved.

expression.IsNew

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsNew	property	is	True,	data	in	the	form's	underlying	XML
document	has	not	been	saved	since	the	form	was	initially	created.	If
False,	the	data	in	the	new	form's	underlying	XML	document	has	been
saved.

Example
In	the	following	example,	the	IsNew	property	of	the	XDocument	object	is
used	to	determine	whether	the	data	in	a	new	form	has	been	saved:

if	(XDocument.IsNew)
			XDocument.UI.Alert("Please	save	your	form.");
else
			return;

IsReadOnly	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
a	Microsoft	Office	InfoPath	2003	form	is	in	read-only	mode.

expression.IsReadOnly

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsReadOnly	property	is	True,	the	form	has	been	placed	in	a	read-
only	state.	Changes	can	still	be	made	to	the	form,	but	it	cannot	be	saved
using	a	save	operation,	it	must	be	saved	using	a	save-as	operation.

To	determine	whether	the	form's	underlying	XML	document	has	been
placed	in	a	read-only	state,	use	the	IsDOMReadOnly	property	of	the
XDocument	object.

Example
In	the	following	example,	the	IsReadOnly	property	of	the	XDocument
object	is	used	to	determine	whether	the	form	is	in	a	read-only	state:

if	(XDocument.IsReadOnly)
			XDocument.UI.Alert("The	form	cannot	be	modified.");
else
			return;

IsRecovered	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
a	Microsoft	Office	InfoPath	2003	form	was	last	saved	by	an	AutoRecover
save	operation.

expression.IsRecovered

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
The	following	example	shows	how	to	use	the	IsRecovered	property	to
indicate,	when	the	form	is	opened,	whether	the	form	was	last	saved	by
an	AutoRecover	save	operation:

function	XDocument::OnLoad(eventObj)
{
				XDocument.UI.Alert("Last	saved	by	an	AutoRecover	save	operation:	"	+	XDocument.
}

IsSaveAs	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
the	PerformSaveOperation	method	of	the	SaveEvent	object	will	be
performed	as	a	"save"	operation	or	as	a	"save	as"	operation.

expression.IsSaveAs

expression				Required.	An	expression	that	returns	a	reference	to	a
SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	IsSaveAs	property	returns	true	when	the	event	was	triggered	by	a
call	to	the	SaveAs	method,	or	by	a	call	to	the	Save	method	when	the
document	is	new,	or	by	a	call	to	either	method	when	the	document	is
read-only.	Otherwise,	the	IsSaveAs	property	returns	False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	IsSaveAs	property	of	the	SaveEvent	object
is	used	to	determine	if	the	user	will	be	presented	with	a	Save	As	dialog
box;	otherwise,	it	will	inform	the	user	that	the	form	will	simply	be	saved.

								if	(!eventObj.IsSaveAs)
{
				XDocument.UI.Alert(“About	to	save	this	form.”);
}
eventObj.PerformSaveOperation();
						

Show	All

IsSigned	Property

A	read-only	property	that	returns	a	Boolean	value	that	indicates	whether
a	Microsoft	Office	InfoPath	2003	form	has	been	digitally	signed	using
digital	signatures.

expression.IsSigned

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	IsSigned	property	is	True,	the	form	has	been	digitally	signed.	If
False,	the	form	has	not	been	digitally	signed.

InfoPath	uses	XML	Signatures	to	digitally	sign	forms.

Note		If	a	form	has	been	digitally	signed,	its	underlying	XML	document	is
placed	in	a	read-only	state.

Example
In	the	following	example,	the	IsSigned	property	of	the	XDocument
object	is	used	to	determine	whether	a	form	has	been	digitally	signed:

if	(XDocument.IsSigned)
			XDocument.UI.Alert("This	form	contains	digital	signatures.");
else
			return;

Show	All

IssuedBy	Property

A	read-only	property	that	returns	the	issuer	of	the	digital	certificate.

expression.IssuedBy

expression				Required.	An	expression	that	returns	a	Certificate	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

IssuedTo	Property

A	read-only	property	that	returns	a	string	representing	to	whom	the	digital
certificate	is	issued.

expression.IssuedTo

expression				Required.	An	expression	that	returns	a	Certificate	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

IsUndoRedo	Property	(DataDOMEvent	Object)

A	read-only	property	that	returns	a	Boolean	value	indicating	whether	the
data	validation	event	occurs	during	an	undo	operation	or	a	redo
operation.

expression.IsUndoRedo

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
When	an	undo	or	a	redo	operation	takes	place,	the	form's	underlying
XML	document	is	placed	in	a	read-only	state	and	cannot	be	modified.
This	can	sometimes	occur	during	an	OnAfterChange	event	;	when	it
does,	the	IsUndoRedo	property	is	used	to	bypass	the	script-based	data
validation	that	it	contains.

Example
In	the	following	example	from	the	Data	Validation	developer	sample	form,
the	IsUndoRedo	property	is	used	to	determine	whether	the	event	is
occurring	during	an	undo	or	redo	operation.	If	it	is,	the	event	handler	is
exited	using	the	return;	statement.

function	msoxd__itemB_quantityListB::OnAfterChange(eventObj)
{
			if	(eventObj.IsUndoRedo)
			{
						//	An	undo	or	redo	operation	has	occurred	and	the	DOM	is	read-only.
						return;
			}
			XDocument.DOM.selectSingleNode("/sampleData/listB/total").text	=	
						GetTotal("/sampleData/listB/itemB/quantityListB");
}

IsUndoRedo	Property	(DocContextChangeEvent	Object)

A	read-only	property	that	returns	a	Boolean	value	indicating	whether	the
context	change	event	occurred	in	response	to	undoing	operation	or
redoing	an	operation.

expression.IsUndoRedo

expression				Required.	Returns	a	reference	to	a
DocContextChangeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

IsUndoRedo	Property	(Index)

This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	collections.	Click	an	IsUndoRedo	property	link	below	to
view	the	Help	topic	for	a	specific	implementation	of	the	IsUndoRedo
property.

IsUndoRedo	property	as	it	applies	to	the	DataDOMEvent	object.

IsUndoRedo	property	as	it	applies	to	the	DocContextChangeEvent
object.

Show	All

Item	Property	(DataAdapters	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	data
adapter	object	from	the	DataAdaptersCollection	collection,	based	on
position	or	name.

expression.Item(ByVal	varIndex	As	Variant)	As	Object

expression				Required.	An	expression	that	returns	a	reference	to	the
DataAdapters	collection.

varIndex	Required	Variant.	An	expression	that	specifies	the	position	of	a
member	of	the	DataAdapters	collection.	If	the	argument	is	a	numeric
expression,	it	must	be	a	number	from	0	to	the	value	of	the	collection's
Count	property	minus	1.	If	the	argument	is	a	string	expression,	it	must	be
the	name	of	a	member	of	the	collection.

returns				A	reference	to	a	data	adapter	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	Item	property	of	the	DataAdapters
collection	is	used	to	return	a	reference	to	a	data	adapter	in	the	collection:

var	objDataAdapter;
objDataAdapter	=	XDocument.DataAdapters.Item(0);
				

Because	the	Item	property	is	the	default	property	of	the	DataAdapters
collection,	it	can	also	be	used	as	follows:

var	objDataAdapter;
objDataAdapter	=	XDocument.DataAdapters(0);

				

You	can	also	use	the	name	of	a	data	adapter	as	the	argument	to	the	Item
method,	as	shown	in	the	following	example:

						var	objDataAdapter;
objDataAdapter	=	XDocument.DataAdapters("MyDataAdapter");

				

Show	All

Item	Property	(DataObjects	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	DataObject
object	from	the	DataObjects	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	DataObject

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObjects	collection.

varIndex	Required	Variant.	An	expression	that	specifies	the	position	of	a
member	of	the	DataObjects	collection.	If	a	numeric	expression,	the
argument	must	be	a	number	from	0	to	the	value	of	the	collection's	Count
property	minus	1.	If	a	string	expression,	the	argument	must	be	the	name
of	a	member	of	the	collection.

returns				A	reference	to	a	DataObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	DataObject	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties	or	methods.

Example
In	the	following	example,	the	Item	property	of	the	DataObjects	collection
is	used	to	return	a	reference	to	a	DataObject	object:

var	objDataObject;
objDataObject	=	XDocument.DataObjects.Item(0);

Because	the	Item	property	is	the	default	property	of	the	DataObjects
collection,	it	can	also	be	used	as	follows:

var	objDataObject;
objDataObject	=	XDocument.DataObjects(0);

You	can	also	use	the	name	of	the	DataObject	object	as	the	argument	to
the	Item	method,	as	shown	in	the	following	example:

var	objDataObject;
objDataObject	=	XDocument.DataObjects("MyDataObject");

Item	Property	(Errors	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	Error	object
from	the	Errors	collection.

expression.Item(ByVal	index	As	Long)	As	Error

expression				Required.	An	expression	that	returns	a	reference	to	the
Errors	collection.

index	Required	Long	Integer.	An	expression	that	specifies	the	position
of	a	member	of	the	Errors	collection.	The	argument	must	be	a	number
from	0	to	the	value	of	the	collection's	Count	property	minus	1.

returns				A	reference	to	an	Error	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	index	argument	does	not	match	any	existing
member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	Error	object	that	the	Item	property
returns,	you	can	access	any	of	its	properties	or	methods.

Example
In	the	following	example,	the	Item	property	of	the	Errors	collection	is
used	to	return	a	reference	to	an	Error	object:

var	objError;
objError	=	XDocument.Errors.Item(0);

Because	the	Item	property	is	the	default	property	of	the	Errors	collection,
it	can	also	be	used	as	follows:

var	objError;
objError	=	XDocument.Errors(0);

Item	Property	(Index)

The	Item	property	returns	a	reference	to	an	object	contained	in	a
collection.	This	property	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	collections.	Click	an	Item	property	link	below
to	view	the	Help	topic	for	a	specific	implementation	of	the	Item	property.

Item	property	as	it	applies	to	the	DataAdapters	collection.

Item	property	as	it	applies	to	the	DataObjects	collection.

Item	property	as	it	applies	to	the	Errors	collection.

Item	property	as	it	applies	to	the	Signatures	collection.

Item	property	as	it	applies	to	the	SignedDataBlocks	collection.

Item	property	as	it	applies	to	the	TaskPanes	collection.

Item	property	as	it	applies	to	the	ViewInfos	collection.

Item	property	as	it	applies	to	the	Windows	collection.

Item	property	as	it	applies	to	the	XDocuments	collection.

Item	property	as	it	applies	to	the	XMLNodes	collection.

Show	All

Item	Property	(Signatures	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	digital
signature	from	the	Signatures	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	Signature

expression				Required.	An	expression	that	returns	a	reference	to	the
Signatures	collection.

varIndex				Required	Variant.	A	numeric	expression	that	specifies	the
position	of	a	member	of	the	Signatures	collection.	The	argument	must
be	a	number	from	0	to	the	value	of	the	collection's	Count	property	minus
1.

returns				A	reference	to	a	digital	signature.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Item	Property	(SignedDataBlocks	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified
SignedDataBlock	object	from	the	SignedDataBlocks	collection,	based
on	position	or	name.

expression.Item(ByVal	varIndex	As	Variant)	As	SignedDataBlock

expression				Required.	An	expression	that	returns	a	SignedDataBlocks
collection.

varIndex				Required	Variant.	An	expression	that	specifies	the	position	of
a	member	of	the	SignedDataBlocks	collection.	If	this	argument	is	a
numeric	expression,	it	must	be	a	number	from	0	to	the	value	of	the
collection's	Count	property	minus	1.	If	this	argument	is	a	string
expression,	it	must	be	the	name	of	a	member	of	the	collection.

returns				A	reference	to	a	SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Item	Property	(TaskPanes	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	TaskPane
object	from	the	TaskPanes	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	TaskPane

expression				Required.	Returns	a	reference	to	the	TaskPanes	collection.

varIndex	Required	Variant.	A	numeric	expression	that	specifies	the	type
of	task	pane.	Based	on	the	XdTaskPaneType	enumeration.

returns				A	reference	to	a	TaskPane	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	TaskPane	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties	and	methods.

Example
In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	return	a	reference	to	a	specified	TaskPane	object:

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes.Item(4);

Because	the	Item	property	is	the	default	property	of	the	TaskPanes
collection,	it	can	also	be	used	as	follows:

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes(4);

Show	All

Item	Property	(ViewInfos	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	ViewInfo
object	from	the	ViewInfos	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	ViewInfo

expression				Required.	An	expression	that	returns	a	reference	to	the
ViewInfos	collection.

varIndex	Required	Variant.	An	expression	that	specifies	the	position	of	a
member	of	the	ViewInfos	collection.	If	a	numeric	expression,	the
argument	must	be	a	number	from	0	to	the	value	of	the	collection's	Count
property	minus	1.	If	a	string	expression,	the	argument	must	be	the	name
of	a	member	of	the	collection.

returns				A	reference	to	a	ViewInfo	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	ViewInfo	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties.

Example
In	the	following	example,	the	Item	property	of	the	ViewInfos	collection	is
used	to	return	a	reference	to	a	ViewInfo	object:

var	objViewInfo;
objViewInfo	=	XDocument.ViewInfos.Item(0);

Because	the	Item	property	is	the	default	property	of	the	ViewInfos
collection,	it	can	also	be	used	as	follows:

var	objViewInfo;
objViewInfo	=	XDocument.ViewInfos(0);

You	can	also	use	the	name	of	the	ViewInfo	object,	which	is	the	name	of
a	view,	as	the	argument	to	the	Item	method,	as	shown	in	the	following
example:

var	objViewInfo;
objViewInfo	=	XDocument.ViewInfos("MyView");

Item	Property	(Windows	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	Window
object	from	the	Windows	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	Window

expression				Required.	An	expression	that	returns	a	reference	to	the
Windows	collection.

varIndex	Required	Variant.	An	expression	that	specifies	the	position	of	a
member	of	the	Windows	collection.	The	argument	must	be	a	number
from	0	to	the	value	of	the	collection's	count	property	minus	1.

returns				A	reference	to	a	Window	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	Window	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties	and	methods.

Example
In	the	following	example,	the	Item	property	of	the	Windows	collection	is
used	to	return	a	reference	to	a	Window	object:

var	objWindow;
objWindow	=	Application.Windows.Item(0);

Because	the	Item	property	is	the	default	property	of	the	Windows
collection,	it	can	also	be	used	as	follows:

var	objWindow;
objWindow	=	Application.Windows(0);

Show	All

Item	Property	(XDocuments	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	XDocument
object	from	the	XDocuments	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

varIndex	Required	Variant.	An	expression	that	specifies	the	position	of	a
member	of	the	XDocuments	collection.	If	a	numeric	expression,	the
argument	must	be	a	number	from	0	to	the	value	of	the	collection's	Count
property	minus	1.	If	a	string	expression,	the	argument	must	be	the
Uniform	Resource	Locator	(URL)	path	of	a	member	of	the	collection.

returns				A	reference	to	an	XDocument	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	XDocument	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties	or	methods.

Example
In	the	following	example,	the	Item	property	of	the	XDocuments
collection	is	used	to	return	a	reference	to	an	XDocument	object:

var	objXDoc;
objXDoc	=	Application.XDocuments.Item(0);

Because	the	Item	property	is	the	default	property	of	the	XDocuments
collection,	it	can	also	be	used	as	follows:

var	objXDoc;
objXDoc	=	Application.XDocuments(0);

You	can	also	use	the	name	of	the	XDocument	as	the	argument	to	the
Item	method,	as	shown	in	the	following	example:

var	objXDoc;
objXDoc	=	Application.XDocuments("MyForm");

Show	All

Item	Property	(XMLNodes	Collection)

A	read-only	property	that	returns	a	reference	to	the	specified	XML
Document	Object	Model	(DOM)	node	from	the	XMLNodes	collection.

expression.Item(ByVal	varIndex	As	Variant)	As	IXMLDOMNode

expression				Required.	Returns	a	reference	to	the	XMLNodes	collection.

varIndex	Required	Variant.	A	numeric	expression	that	specifies	the
position	of	a	member	of	the	XMLNodes	collection.	The	argument	must
be	a	number	from	0	to	the	value	of	the	collection's	count	property	minus
1.

returns				A	reference	to	an	XML	DOM	node	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	value	provided	for	the	varIndex	argument	does	not	match	any
existing	member	of	the	collection,	an	error	occurs.

After	you	have	set	a	reference	to	the	XML	DOM	node	object	that	the	Item
property	returns,	you	can	access	any	of	its	properties	and	methods.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	Item	property	of	the	XMLNodes	collection
is	used	to	return	a	reference	to	an	XML	DOM	node	object:

var	objXMLNodes;
var	objXMLNode;

objXMLNodes	=	XDocument.View.GetContextNodes();
objXMLNode	=	objXMLNodes.Item(0);

Because	the	Item	property	is	the	default	property	of	the	XMLNodes
collection,	it	can	also	be	used	as	follows:

var	objXMLNodes;
var	objXMLNode;

objXMLNodes	=	XDocument.View.GetContextNodes();
objXMLNode	=	objXMLNodes(0);

Language	Property

Sets	or	retrieves	a	Microsoft	Office	InfoPath	2003	form's	default	language
code.

expression.Language

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	language	settings	for	an	InfoPath	form	can	also	be	accessed	using
the	LanguageSettings	property	of	the	Application	object.

Example
In	the	following	example,	the	Language	property	of	the	XDocument
object	is	used	to	display	a	form's	current	language	setting	in	a	message
box:

XDocument.UI.Alert("The	current	language	is:	"	+	XDocument.Language

Show	All

LanguageSettings	Property

A	read-only	property	that	returns	a	reference	to	the	Microsoft	Office
LanguageSettings	object.

expression.LanguageSettings

expression				An	expression	that	returns	a	reference	to	the	Application
object.

mk:@MSITStore:vbaof11.chm::/html/ofobjLanguageSettings.htm

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	LanguageSettings	property	is	available	only	when	using	scripting
code.

After	you	establish	a	reference	to	the	LanguageSettings	object,	you	can
access	all	the	properties	and	methods	of	the	object.

Example
The	following	example	uses	the	LanguageID	property	of	the
LanguageSettings	object	to	return	the	LCID	value	(a	four-digit	number)
for	the	language	that	is	currently	being	used	for	the	Office	help	system:

Application.LanguageSettings.LanguageID(3);

Note		Because	Microsoft	Office	InfoPath	2003	uses	scripting	code
instead	of	Visual	Basic	for	Applications	(VBA),	you	cannot	use	the	names
of	enumerated	values;	you	must	use	the	numerical	values	of	the
enumerations,	as	in	the	previous	example	(msoLanguageIDHelp	=	3).

mk:@MSITStore:vbaof11.chm::/html/ofproLanguageID.htm

Left	Property

A	read/write	property	of	type	long	integer	that	specifies	the	horizontal
position	of	the	window	represented	by	the	Window	object,	measured	in
points.

expression.Left

expression				Required.	An	expression	that	returns	a	reference	to	a
Window	object.

Remarks
This	property	will	return	an	error	if	it	is	set	on	a	window	that	is	minimized
or	maximized.

Setting	this	property	to	a	position	that	is	off	the	screen,	will	actually	cause
the	window	to	be	displayed	on	the	screen.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

MachineOnlineState	Property

A	read-only	property	of	type	XdMachineOnlineState	that	returns	the
current	connection	state	of	the	client	computer.

expression.MachineOnlineState

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

MailEnvelope	Property

A	read-only	property	that	returns	a	reference	to	the	MailEnvelope	object
associated	with	the	window	that	is	represented	by	the	Window	object.

expression.MailEnvelope

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	MailEnvelope	property	can	be	used	only	with	the	editing	window
types;	if	used	with	a	designing	window	type,	it	will	return	an	error.	It	will
also	return	an	error	if	no	form	is	open	in	the	form	area.

Example
In	the	following	example,	the	MailEnvelope	property	of	the	Window
object	is	used	to	set	a	reference	to	the	MailEnvelope	object,	which	is
then	used	to	create	and	display	a	custom	e-mail	message:

var	objEmail;

objEmail	=	Application.ActiveWindow.MailEnvelope;
objEmail.Subject	=	"Test	e-mail	message";
objEmail.Visible	=	true;

Show	All

MatchExpression	Property

A	read-only	property	that	returns	a	string	value	containing	the	XPath
expression	for	the	XML	Document	Object	Model	(DOM)	node	for	which
the	event	is	currently	being	processed.

expression.MatchExpression

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	XPath	expression	that	the	MatchExpression	property	contains
points	to	an	XML	DOM	node	in	the	form's	underlying	XML	document.
This	is	the	node	that	is	currently	being	validated	by	the	data	validation
event	handler.

Example
In	the	following	example,	the	MatchExpression	property	of	the
DataDOMEvent	object	is	used	to	display	the	XPath	expression	of	the
XML	DOM	node	that	is	currently	being	validated:

XDocument.UI.Alert("Match	expression:	"	+	eventObj.MatchExpression

Math	Property

A	read-only	property	that	returns	a	reference	to	the	Math	object.

expression.Math

expression				Required.	An	expression	that	returns	a	reference	to	the	Util
object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Using	the	Math	property,	you	can	access	all	of	the	methods	that	the
Math	object	provides.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(ADOAdapter	Object)

A	read-only	property	that	returns	the	name	of	an	ADOAdapter	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	an
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(Application	Object)

A	read-only	property	that	returns	a	string	containing	the	name	of	the
Microsoft	Office	InfoPath	2003	application.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	name	of	the	application	does	not	contain	the	version	number.	To
obtain	the	version	number	of	an	application,	use	the	Version	property	of
the	Application	object.

Example
In	the	following	example,	the	Alert	method	of	the	UI	object,	accessed
through	the	XDocument	object,	is	used	to	display	a	message	box	that
indicates	the	name	of	the	application:

XDocument.UI.Alert("Application	name:	"	+	Application.Name);

Show	All

Name	Property	(DataObject	Object)

A	read-only	property	that	returns	a	string	value	indicating	the	name	of	the
associated	DataObject	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	name	of	the	DataObject	object	is	the	same	as	the	name	of	the
secondary	data	source	that	it	represents.	The	name	of	the	DataObject
object	can	also	be	used	as	the	argument	to	the	Item	property	of	the
DataObjects	collection.

Example
In	the	following	example,	the	Name	property	of	the	DataObject	object	is
used	to	to	display	the	name	of	the	DataObject	object	in	a	message	box:

var	objDataObject;

objDataObject	=	XDocument.DataObjects(0);
XDocument.UI.Alert("DataObject	name:	"	+	objDataObject.Name);

Name	Property	(DAVAdapter	Object)

A	read-only	property	that	returns	the	name	of	a	DAVAdapter	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	a
DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(EmailAdapter	Object)

A	read-only	property	that	returns	the	name	of	an	EmailAdapter	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(HWSAdapter	Object)

A	read-only	property	that	returns	the	name	of	an	HWSAdapter	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	a
HWSAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(Index)

The	Name	property	returns	a	string	that	specifies	the	name	of	an	object.
This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	objects.	Click	a	Name	property	link	below	to	view	the	Help
topic	for	a	specific	implementation	of	the	Name	property.

Name	property	as	it	applies	to	the	ADOAdapter	object.

Name	property	as	it	applies	to	the	Application	object.

Name	property	as	it	applies	to	the	DataObject	object.

Name	property	as	it	applies	to	the	DAVAdapter	object.

Name	property	as	it	applies	to	the	EmailAdapter	object.

Name	property	as	it	applies	to	the	HWSAdapter	object.

Name	property	as	it	applies	to	the	SharepointListAdapter	object.

Name	property	as	it	applies	to	the	SignedDataBlock	object.

Name	property	as	it	applies	to	the	View	object.

Name	property	as	it	applies	to	the	ViewInfo	object.

Name	property	as	it	applies	to	the	WebServiceAdapter	object.

Name	property	as	it	applies	to	the	XMLFileAdapter	object.

Name	Property	(SharePointListAdapter	Object)

A	read-only	property	that	returns	the	name	of	a	SharepointListAdapter
object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	a
SharePointListAdapter	object

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(SignedDataBlock	Object)

A	read-only	property	that	returns	the	name	of	a	SignedDataBlock	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	a
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(View	Object)

A	read-only	property	that	returns	a	string	containing	the	name	of	the	view
that	is	represented	by	the	View	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
To	determine	whether	a	view	is	the	default	view,	use	the	ViewInfo	object.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
Name	property	of	the	View	object	is	used	to	determine	which	view	the
user	has	switched	to.	If	the	view	is	the	Archive	Customer	view,	a	note
value	is	added	to	the	form's	underlying	XML	document:

function	XDocument::OnSwitchView(eventObj)
{
			var	oDate	=	new	Date();

			if	(XDocument.View.Name	==	"Archive	Customer")
			{
						var	oNotesNode	=	XDocument.DOM
									.selectSingleNode("/Customers/CustomerInfo/Notes");
						var	oDivNode	=	XDocument.DOM
									.createNode(1,	"div",	"http://www.w3.org/1999/xhtml");

						oDivNode.text	=	"Note	recorded	"	+	oDate.toString();
						oNotesNode.appendChild(oDivNode);
			}
}

Name	Property	(ViewInfo	Object)

A	read-only	property	that	returns	a	string	value	indicating	the	name	of	the
view	that	is	associated	with	the	ViewInfo	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	the
ViewInfo	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	name	of	the	ViewInfo	object	is	the	same	as	the	name	of	the	view
that	it	represents.	The	name	of	the	ViewInfo	object	can	also	be	used	as
the	argument	to	the	Item	property	of	the	ViewInfos	collection.

Example
In	the	following	example,	the	Name	property	of	the	ViewInfo	object	is
used	to	to	display	the	name	of	a	view	in	a	message	box:

var	objViewInfo;

objViewInfo	=	XDocument.ViewInfos(0);
XDocument.UI.Alert("View	name:	"	+	objViewInfo.Name);

Name	Property	(WebServiceAdapter	Object)

A	read-only	property	that	returns	the	name	of	a	WebServiceAdapter
object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Name	Property	(XMLFileAdapter	Object)

A	read-only	property	that	returns	the	name	of	an	XMLFileAdapter	object.

expression.Name

expression				Required.	An	expression	that	returns	a	reference	to	an
XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

NewValue	Property

A	read-only	property	that	returns	a	string	value	indicating	the	value	of	an
XML	Document	Object	Model	(DOM)	node	that	is	being	updated	or
inserted	during	a	data	validation	event.

expression.NewValue

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	NewValue	property	contains	the	value	of	the	XML	DOM	node	that
will	replace	the	existing	value.	To	get	the	original	value	of	the	XML	DOM
node,	use	the	OldValue	property	of	the	DataDOMEvent	object.

Example
In	the	following	example	from	the	ADO	(ActiveX	Data	Objects)	developer
sample	form,	the	NewValue	property	of	the	DataDOMEvent	object	is
used	to	determine	whether	the	new	value	of	the	XML	DOM	node	is	an
empty	string.	If	it	is	not,	the	code	sets	other	fields	to	be	empty	strings.

function	msoxd__Employees_EmployeeID_attr::OnAfterChange(eventObj)
{
			if	(eventObj.IsUndoRedo)
			{
						//	An	undo	or	redo	operation	has	occurred	and	the	DOM	is	read-only.
						return;
			}
	
			if	(eventObj.NewValue	==	"")
						return;

			if	(XDocument.DOM.selectSingleNode
						('/dfs:myFields/dfs:queryFields/q:Employees/@FirstName').text	!=	"")
						XDocument.DOM.selectSingleNode
									('/dfs:myFields/dfs:queryFields/q:Employees/@FirstName').text	=	"";

			if	(XDocument.DOM.selectSingleNode
						('/dfs:myFields/dfs:queryFields/q:Employees/@LastName').text	!=	"")
						XDocument.DOM.selectSingleNode
									('/dfs:myFields/dfs:queryFields/q:Employees/@LastName').text	=	"";
}

Show	All

Node	Property	(Error	Object)

A	read-only	property	that	returns	a	reference	to	the	XML	Document
Object	Model	(DOM)	node	of	a	form's	underlying	XML	document	that	is
associated	with	an	Error	object.

expression.Node

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Using	the	Node	property,	you	can	access	all	of	the	properties	and
methods	that	the	XML	DOM	node	object	provides.

Example
In	the	following	example,	the	Node	property	of	the	Error	object	is	used	to
display	the	XML	node	of	an	error	in	a	message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.Node.xml);

Show	All

Node	Property	(Index)

The	Node	property	returns	a	reference	to	the	XML	Document	Object
Model	(DOM)	node	of	a	form's	underlying	XML	document	that	is
associated	with	a	particular	object.	This	property	is	implemented	in
several	Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a
Node	property	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	Node	property.

Node	property	as	it	applies	to	the	Error	object.

Node	property	as	it	applies	to	the	InfoPathControlSite	object.

Node	Property	(InfoPathControlSite	Object)

Retrieves	a	reference	to	the	XML	node	to	which	the	ActiveX	control	is
bound.

expression.Node

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControlSite	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111271033

Show	All

OldValue	Property

A	read-only	property	that	returns	a	string	value	indicating	the	original
value	of	an	XML	Document	Object	Model	(DOM)	node	that	is	being
updated	or	deleted	during	a	data	validation	event.

expression.OldValue

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	OldValue	property	contains	the	original	value	of	the	XML	DOM	node
that	will	be	replaced	with	a	new	value	or	deleted.	To	get	the	new	value	of
the	XML	DOM	node,	use	the	NewValue	property	of	the	DataDOMEvent
object.

Example
In	the	following	example,	the	OldValue	property	of	the	DataDOMEvent
object	is	used	to	display	the	original	value	of	an	XML	DOM	node,	along
with	its	new	value:

XDocument.UI.Alert("Original	value:	"	+	eventObj.OldValue	+
			"\nNew	value:	"	+	eventObj.NewValue);

Show	All

Operation	Property	(DataDOMEvent	Object)

A	read-only	property	that	returns	a	string	value	indicating	the	type	of
action	that	is	applied	to	an	XML	Document	Object	Model	(DOM)	node
during	a	data	validation	event.

expression.Operation

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	values	that	the	Operation	property	returns	include	Insert,	Update,
and	Delete.

Example
In	the	following	example	from	the	Structural	Editing	developer	sample
form,	the	Operation	property	of	the	DataDOMEvent	object	is	used	to
check	the	type	of	action	that	is	occurring;	if	it	is	a	delete	action,	the	code
calls	a	custom	function:

function	msoxd__item::OnAfterChange(eventObj)
{
			if	(!eventObj.IsUndoRedo	&&	eventObj.Operation	==	"Delete"
						&&	eventObj.Site.nodeName	==	"item"	&&	
									eventObj.Source.nodeName	==	"item")
			{
						Calculate();
			}
}

Operation	Property	(Index)

The	Operation	property	either	specifies	or	returns	a	string	that
represents	a	Web	service	command	string,	or	returns	the	name	of	an
event	action.	This	property	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	objects.	Click	an	Operation	property	link
below	to	view	the	Help	topic	for	a	specific	implementation	of	the
Operation	property.

Operation	property	as	it	applies	to	the	DataDOMEvent	object.

Operation	property	as	it	applies	to	the	WebServiceAdapter	object.

Show	All

Operation	Property	(WebServiceAdapter	Object)

Sets	or	retrieves	a	string	value	that	contains	the	source	XML	of	the
operation	element	contained	in	the	form	definition	(.xsf)	file.

expression.Operation

expression				Required.	An	expression	that	returns	a	reference	to	the
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	operation	element	of	the	.xsf	file	contains	information	about	the
Web	service,	including	its	name,	the	method	used	for	retrieving	and
submitting	data,	and	its	Uniform	Resource	Locator	(URL).

Example
In	the	following	example,	the	Operation	property	of	the
WebServiceAdapter	object	is	used	to	display	the	operation	string	of	the
Web	service	data	adapter	in	a	message	box:

var	objWSAdapter;

objWSAdapter	=	XDocument.DataObjects("WebCityList").QueryAdapter;
XDocument.UI.Alert("Operation	string:	"	+	objWSAdapter.Operation

Show	All

OutputLocation	Property

A	read/write	property	that	specifies	the	XML	Document	Object	Model
(DOM)	node	under	which	the	adapter	will	copy	the	XML	returned	by	the
XML	Web	service.

expression.OutputLocation

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	value	of	the	OutputLocation	property	is	not	set	on	a	query	adapter,
it	will	correspond	to	the	dataFields	element	in	the	data	source
associated	with	the	data	connection.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

PackageURL	Property

A	read-only	property	that	returns	a	string	containing	the	Uniform
Resource	Locator	(URL)	of	the	cache	folder	that	contains	a	Microsoft
Office	InfoPath	2003	form's	extracted	form	files.

expression.PackageURL

expression				Required.	An	expression	that	returns	a	reference	to	a
Solution	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	PackageURL	property	is	set	at	run	time,	and	the	URL	it	contains
points	to	the	folder	where	the	form	template's	files	are	cached.

Example
In	the	following	example,	the	PackageURL	property	of	the	Solution
object	is	used	to	display	the	folder's	URL	in	a	message	box:

XDocument.UI.Alert("PackageURL:	"	+	XDocument.Solution.PackageURL

Show	All

Parent	Property

A	read-only	property	that	returns	a	reference	to	the	XML	Document
Object	Model	(DOM)	node	of	the	parent	of	the	XML	DOM	node	being
changed	during	a	data	validation	event.

expression.Parent

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XML	DOM	node	that	the	Parent
property	returns,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.	This	can	be	especially	useful	during	delete
operations,	because	the	Parent	property	maps	to	the	location	of	the	XML
DOM	node	that	was	removed.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	partial	example	from	the	Data	Validation	developer
sample	form,	the	Parent	property	of	the	DataDOMEvent	object	is	used
to	check	the	name	of	the	parent	node;	if	it	matches	certain	criteria,	an
error	message	is	displayed:

function	msoxd__shippingDates::OnBeforeChange(eventObj)
{
			var	objOrderDate	=	new	Date(XDocument.DOM.selectSingleNode
						('/sampleData/shippingDates/orderDate')
						.text.replace(/(.*)-(.*)-(.*)/,	"$2-$3-$1"));
			var	objShipDate	=	new	Date(XDocument.DOM.selectSingleNode
						('/sampleData/shippingDates/shipDate')
						.text.replace(/(.*)-(.*)-(.*)/,	"$2-$3-$1"));
			...

			if	(objShipDate.toString()	!=	"NaN"	&&	objOrderDate.toString()	==	"NaN")
			{
						eventObj.ReturnMessage	=	"The	Ship	Date	is	invalid	without	an	order	date.";

						if	(eventObj.Parent.nodeName	==	"orderDate")
									eventObj.ReturnMessage	+=	"		You	must	delete	the	Ship	Date	"	+
												"before	deleting	the	Order	Date.";

						eventObj.ReturnStatus	=	false;
						return;
			}
			...
}

Show	All

QueryAdapter	Property	(DataObject	Object)

A	read-only	property	that	returns	a	reference	to	the	data	adapter	object
that	is	used	for	a	secondary	data	source.

expression.QueryAdapter

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	data	adapter	object	that	the
QueryAdapter	property	returns,	you	can	use	the	properties	and	methods
that	the	particular	data	adapter	object	contains.

Microsoft	Office	InfoPath	2003	supports	three	types	of	data	adapters:

1.	 ActiveX	Data	Objects			Represented	by	the	ADOAdapter
object.

2.	 Web	services			Represented	by	the	WebServiceAdapter
object.

3.	 XML	file			Represented	by	the	XMLFileAdapter	object.

Example
In	the	following	example,	the	QueryAdapter	property	of	the	DataObject
object	is	used	to	return	a	reference	to	the	data	adapter	that	is	associated
with	the	DataObject	object,	which,	in	this	case,	is	an	ADOAdapter	data
adapter	object.	The	code	then	uses	the	Command	property	of	the
ADOAdapter	object	to	display	the	SQL	command	text	in	a	message	box:

var	objDataAdapter;

objDataAdapter	=	XDocument.DataObjects("CityList").QueryAdapter
XDocument.UI.Alert("SQL	command	text:	"	+	objDataAdapter.Command);

QueryAdapter	Property	(Index)

The	QueryAdapter	property	returns	a	reference	to	a	type	of	data	adapter
object	such	as	the	ADOAdapter,	WebServiceAdapter,	or
XMLFileAdapter	object.	This	property	is	implemented	in	a	number	of
Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a
QueryAdapter	property	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	QueryAdapter	property.

QueryAdapter	property	as	it	applies	to	the	DataObject	object.

QueryAdapter	property	as	it	applies	to	the	XDocument	object.

Show	All

QueryAdapter	Property	(XDocument	Object)

A	read-only	property	that	returns	a	reference	to	the	data	adapter	object
that	is	associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.QueryAdapter

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Data	adapter	objects	provide	different	properties	and	methods	that
retrieve	and	submit	data	to	external	data	sources;	the	data	adapter	that	is
associated	with	a	form	is	dependent	on	the	type	of	data	source	that	was
used	when	the	form	was	initially	created.

The	QueryAdapter	property	allows	you	to	access	an	InfoPath	form's
primary	data	source.	To	access	the	data	adapter	objects	used	for	a
form's	secondary	data	sources,	use	the	DataObjects	property	of	the
XDocument	object.

Microsoft	Office	InfoPath	2003	supports	three	types	of	data	adapters:

1.	 ActiveX	Data	Objects			Represented	by	the	ADOAdapter
object.

2.	 Web	services			Represented	by	the	WebServiceAdapter
object.

3.	 XML	file			Represented	by	the	XMLFileAdapter	object.

Note		The	XMLFileAdapter	object	cannot	be	used	with	the
QueryAdapter	property	of	the	XDocument	object,	it	is	only	used	for
secondary	data	sources.	To	access	a	form's	underlying	XML	document,
use	the	DOM	property	of	the	XDocument	object.

Example
In	the	following	example,	the	QueryAdapter	property	of	the	XDocument
object	is	used	to	set	a	reference	to	the	ADOAdapter	data	adapter	object;
then	the	Command	property	of	the	ADOAdapter	object	is	used	to
display	the	SQL	command	text	in	a	message	box:

var	objADOAdapter;

objADOAdapter	=	XDocument.QueryAdapter;
XDocument.UI.Alert("SQL	command	text:	"	+	objADOAdapter.Command);

Show	All

QueryAllowed	Property	(ADOAdapter	Object)

A	read-only	property	of	type	Boolean	that	always	returns	True,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	an	ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(DAVAdapter	Object)

A	read-only	property	of	type	Boolean	that	always	returns	False,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	a	DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(EmailAdapter	Object)

A	read-only	property	of	type	Boolean	that	always	returns	False,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	an	EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(HWSAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	that	is	always	False,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	an	HWSAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(Index)

The	QueryAllowed	property	returns	a	value	that	corresponds	to	the
queryAllowed	attribute	in	the	form	definition	file	(.xsf).	This	property	is
implemented	in	several	Microsoft	Office	InfoPath	2003	object	model
objects.	Click	a	QueryAllowed	property	link	below	to	view	the	Help	topic
for	a	specific	implementation	of	the	QueryAllowed	property.

QueryAllowed	property	as	it	applies	to	the	ADOAdapter	object.

QueryAllowed	property	as	it	applies	to	the	DAVAdapter	object.

QueryAllowed	property	as	it	applies	to	the	EmailAdapter	object.

QueryAllowed	property	as	it	applies	to	the	HWSAdapter	object.

QueryAllowed	property	as	it	applies	to	the	SharepointListAdapter
object.

QueryAllowed	property	as	it	applies	to	the	WebServiceAdapter	object.

QueryAllowed	property	as	it	applies	to	the	XMLFileAdapter	object.

Show	All

QueryAllowed	Property	(SharePointListAdapter	Object)

A	read-only	property	of	type	Boolean	that	always	returns	True,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	a
SharepointListAdapterObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(WebServiceAdapter	Object)

A	read-only	property	of	type	Boolean	that	corresponds	to	the
queryAllowed	attribute	in	the	form	definition	file	(.xsf).	The	default	value
is	False.

expression.QueryAllowed

expression				An	expression	that	returns	a	WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

QueryAllowed	Property	(XMLFileAdapter	Object)

A	read-only	property	of	type	Boolean	that	always	returns	True,
corresponding	to	the	queryAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.QueryAllowed

expression				An	expression	that	returns	an	XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

ReturnMessage	Property

Sets	or	retrieves	a	string	value	indicating	the	error	message	that	will	be
returned	if	the	data	validation	event	is	not	successful.

expression.ReturnMessage

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Used	in	conjunction	with	the	ReturnStatus	property	of	the
DataDOMEvent	object,	the	ReturnStatus	property	displays	a	message
box	to	the	user	with	the	specified	text	message.

Example
In	the	following	example,	the	ReturnMessage	property	of	the
DataDOMEvent	object	is	used	to	display	a	message	to	the	user	if	the
data	validation	for	the	XML	DOM	node	fails:

function	msoxd__id_attr::OnBeforeChange(eventObj)
{
			if	(eventObj.NewValue	==	"")
			{
						eventObj.ReturnMessage	=	"You	must	supply	a	value	for	this	field.";
						eventObj.ReturnStatus	=	false;
						return;
			}
}

Show	All

ReturnStatus	Property	(DataDOMEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the	data
validation	event.

expression.ReturnStatus

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	ReturnStatus	property	is	set	to	False,	the	changes	to	the	XML
Document	Object	Model	(DOM)	node	are	not	accepted	and	the	data
validation	event	fails.	If	set	to	True,	no	data	validation	error	has	occurred
and	the	data	validation	event	is	successful.

Example
In	the	following	example,	the	ReturnStatus	property	of	the
DataDOMEvent	object	is	used	to	indicate	that	the	data	validation	event
was	not	successful.	The	code	also	uses	the	ReturnMessage	property	of
the	DataDOMEvent	object	to	display	a	message	to	the	user.

function	msoxd__id_attr::OnBeforeChange(eventObj)
{
			if	(eventObj.NewValue	==	"")
			{
						eventObj.ReturnMessage	=	"You	must	supply	a	value	for	this	field.";
						eventObj.ReturnStatus	=	false;
						return;
			}
}

ReturnStatus	Property	(DocActionEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the
OnClick	event.

expression.ReturnStatus

expression				Required.	Returns	a	reference	to	the	DocActionEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	ReturnStatus	property	is	set	to	False,	the	OnClick	event	fails.	If
set	to	True,	the	OnClick	event	is	successful.	The	default	value	is	True.

Note		Setting	the	ReturnStatus	property	to	false	will	cause	a	message
box	to	be	displayed	which	indicates	what	has	failed.

Example
In	the	following	example,	the	ReturnStatus	property	of	the
DocActionEvent	object	is	used	to	indicate	that	the	OnClick	event	was
not	successful:

function	DocActionEventCancel::OnClick(eventObj)
{
			//	Cancel	the	event.
			eventObj.ReturnStatus	=	false;
}

ReturnStatus	Property	(DocReturnEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the
OnLoad	and	OnSubmitRequest	events.

expression.ReturnStatus

expression				Required.	Returns	a	reference	to	the	DocReturnEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	ReturnStatus	property	is	set	to	False,	the	OnLoad	and
OnSubmitRequest	events	fail.	If	set	to	True,	the	OnLoad	and
OnSubmitRequest	events	are	successful.	The	default	value	for	the
OnLoad	event	is	True,	and	the	default	value	for	the	OnSubmitRequest
event	is	False.

Example
In	the	following	example,	the	ReturnStatus	property	of	the
DocReturnEvent	object	is	used	to	indicate	that	the	OnLoad	event	was
not	successful:

function	XDocument::OnLoad(eventObj)
{
			//	Cancel	the	event.
			eventObj.ReturnStatus	=	false;
}

ReturnStatus	Property	(Index)

The	ReturnStatus	property	returns	a	Boolean	value	indicating	whether
the	changes	that	occurred	during	the	event	are	accepted	or	rejected.	This
property	is	implemented	in	several	Microsoft	Office	InfoPath	2003	object
model	objects.	Click	a	ReturnStatus	property	link	below	to	view	the	Help
topic	for	a	specific	implementation	of	the	ReturnStatus	property.

ReturnStatus	property	as	it	applies	to	the	DataDOMEvent	object.

ReturnStatus	property	as	it	applies	to	the	DocActionEvent	object.

ReturnStatus	property	as	it	applies	to	the	DocReturnEvent	object.

ReturnStatus	property	as	it	applies	to	the	MergeEvent	object.

ReturnStatus	property	as	it	applies	to	the	SaveEvent	object.

ReturnStatus	property	as	it	applies	to	the	VersionUpgradeEvent	object.

ReturnStatus	Property	(MergeEvent	Object)

A	read-write	property	that	sets	or	retrieves	a	Boolean	value	indicating	the
return	status	of	the	OnMergeRequest	event.

expression.ReturnStatus

expression				Required.	An	expression	that	returns	a	reference	to	a
MergeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	default	value	of	the	ReturnStatus	property	of	the	MergeEvent
object	is	False.	If	this	property	is	not	set	to	True,	the	event	handler	for
the	OnMergeRequest	event	will	fail.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

ReturnStatus	Property	(SaveEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the
OnSaveRequest	event.

expression.ReturnStatus

expression				Required.	An	expression	that	returns	a	reference	to	a
SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

ReturnStatus	Property	(SignEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the
OnSign	event.

expression.ReturnStatus

expression				Required.	An	expression	that	returns	a	reference	to	a
SignEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

ReturnStatus	Property	(VersionUpgradeEvent	Object)

Sets	or	retrieves	a	Boolean	value	indicating	the	return	status	of	the
OnVersionUpgrade	event.

expression.ReturnStatus

expression				Required.	Returns	a	reference	to	the
VersionUpgradeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	ReturnStatus	property	is	set	to	False,	the	OnVersionUpgrade
event	fails	and	the	form	is	not	opened.	If	set	to	True,	the
OnVersionUpgrade	event	is	successful.

Example
In	the	following	example,	the	ReturnStatus	property	of	the
VersionUpgradeEvent	object	is	used	to	indicate	that	the
OnVersionUpgrade	event	was	not	successful:

function	XDocument::OnVersionUpgrade(eventObj)
{
			//	Cancel	the	event.
			eventObj.ReturnStatus	=	false;
}

Role	Property

Sets	or	retrieves	the	user's	current	role.

expression.Role

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	Role	property	is	used	to	determine	the
current	user's	role.

var	strCurrentRole	=	XDocument.Role;
						

RollBack	Property	(MergeEvent	object)

A	read/write	property	that	provides	additional	information	to	the
OnMergeRequest	event	along	with	the	ReturnStatus	property	flag.

expression.RollBack

expression				Required.	An	expression	that	returns	a	reference	to	a
MergeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	ReturnStatus	property	of	the	MergeEvent	object	is	set	to	True,
this	property	is	ignored.

If	the	ReturnStatus	property	is	False	and	the	RollBack	property	is	True,
the	entire	merging	operation	will	be	cancelled	and	rolled	back	to	the	state
before	the	operation	was	initiated.	If	the	RollBack	property	is	False,
merging	the	current	form	will	fail,	but	the	merging	operation	will	continue
with	the	next	form.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	RollBack	property	of	the	MergeEvent
object	is	used	to	rollback	the	entire	operation	if	a	merge	fails.

								try
{
				XDocument.ImportDOM(eventObj.DOM)
}
catch	(ex)
{
				eventObj.ReturnStatus	=	false;
				eventObj.RollBack	=	true;
}
						

ShortErrorMessage	Property

Sets	or	retrieves	the	string	value	containing	the	short	error	message	of
an	Error	object.

expression.ShortErrorMessage

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	short	error	message	is	the	ToolTip	that	users	view	when	data
validation	fails	in	their	forms.

Example
In	the	following	example,	the	ShortErrorMessage	property	of	the	Error
object	is	used	to	display	the	short	message	of	an	error	in	a	message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.ShortErrorMessage);

Show	All

SignatureBlockXmlNode	Property

A	read-only	property	that	returns	the	XML	node	corresponding	a	digital
signature.

expression.SignatureBlockXmlNode

expression				Required.	An	expression	that	returns	a	Signature	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

SignatureContainer	Property

A	read-only	property	that	returns	the	root	XML	node	of	the	subtree
containing	the	signatures	in	the	SignedDataBlock	object.

expression.SignatureContainer

expression				Required.	An	expression	that	returns	a	reference	to	the
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

SignatureRelation	Property

A	read-only	property	that	returns	the	relation	among	multiple	signatures
of	the	SignedDataBlock	object,	expressed	as	XdSignatureRelation
enumerated	constants.

expression.SignatureRelation

expression				Required.	An	expression	that	returns	a	reference	to	the
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Signatures	Property

A	read-only	property	that	returns	a	reference	to	the	Signatures	collection
associated	with	the	SignedDataBlock	object.

expression.Signatures

expression				Required.	An	expression	that	returns	a	reference	to	the
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

SignedDataBlock	Property

A	read-only	property	that	returns	the	signed	data	block	that	triggers	the
OnSign	event.

expression.SignedDataBlock

expression				Required.	An	expression	that	returns	a	SignEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

SignedDataBlocks	Property

A	read-only	property	that	returns	a	reference	to	the	SignedDataBlocks
collection	that	is	associated	with	an	XDocument	object.

expression.SignedDataBlocks

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	SignedDataBlocks	property	is	used	to	obtain	a	reference	to	the
SignedDataBlocks	collection.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Site	Property

A	read-only	property	that	returns	a	reference	to	the	XML	Document
Object	Model	(DOM)	node	where	the	data	validation	event	is	currently
being	processed.

expression.Site

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XML	DOM	node	that	the	Site
property	returns,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example	from	the	Data	Validation	developer	sample	form,
the	Site	property	of	the	DataDOMEvent	object	is	used	to	check	the	value
of	the	XML	DOM	node;	if	it	matches	certain	criteria,	an	error	is	created:

function	msoxd__itemB_quantityListB::OnValidate(eventObj)
{
			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	>	50)
						eventObj.ReportError(eventObj.Site,	"Invalid	quantity.		"	+
									"The	total	number	of	each	type	of	block	cannot	exceed	50.",	false);

			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	<	0)
						eventObj.ReportError(eventObj.Site,	"Invalid	quantity.		"	+
									"The	total	number	of	each	type	of	block	cannot	be	less	than	0.",	false);
}

Show	All

SiteUrl	Property

A	read-only	property	returning	the	Uniform	Resource	Locator	(URL)	of
the	Windows	SharePoint	Services	site	that	the	SharepointListAdapter
will	query.

expression.SiteUrl

expression				Required.	An	expression	that	returns	a	reference	to	a
SharePointListAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
The	following	example	shows	how	to	use	the	SiteUrl	property	of	a
SharePointListAdapter	object	to	store	the	URL	location	in	a	local
variable:

var	strSiteURL	=	XDocument.DataAdapters["Announcements"].SiteUrl
						

Show	All

Solution	Property

A	read-only	property	that	returns	a	reference	to	the	Solution	object	that
is	associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.Solution

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Solution	object	provides	access	to	information	about	a	form's
associated	form	definition	(.xsf)	file,	including	access	to	an	XML
Document	Object	Model	(DOM)	that	contains	all	of	the	source	XML	of	the
.xsf	file.

Example
In	the	following	example,	the	Solution	property	of	the	XDocument	object
is	used	to	load	a	variable	with	the	XML	contents	of	the	.xsf	file:

var	strXSF;
strXSF	=	XDocument.Solution.DOM.xml;

Show	All

SolutionVersion	Property

A	read-only	property	that	returns	a	string	containing	the	version	number
of	a	Microsoft	Office	InfoPath	2003	form	template.

expression.SolutionVersion

expression				Required.	An	expression	that	returns	a	reference	to	the
VersionUpgradeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
This	property	can	be	used	only	during	the	OnVersionUpgrade	event.

Example
In	the	following	example,	the	SolutionVersion	property	of	the
VersionUpgradeEvent	object	is	used	to	display	the	version	number	of
an	InfoPath	form	template	in	a	message	box:

function	XDocument::OnVersionUpgrade(eventObj)
{
			XDocument.UI.Alert("The	form	version:	"	+	eventObj.DocumentVersion	+
						"\nThe	form	template	version:	"	+	eventObj.SolutionVersion);
			eventObj.ReturnStatus	=	true;
}

Show	All

Source	Property	(DataDOMEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XML	Document
Object	Model	(DOM)	where	the	data	validation	event	is	occurring.

expression.Source

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Afer	you	have	set	a	reference	to	the	XML	DOM	node	that	the	Source
property	returns,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example	from	the	Structural	Editing	developer	sample
form,	the	Source	property	of	the	DataDOMEvent	object	is	used	to	return
a	reference	to	the	XML	DOM	node	that	caused	the	initial	change.	If	the
node	name	matches	certain	criteria,	a	custom	function	is	called.

function	msoxd__quantity::OnAfterChange(eventObj)
{
			if	(!eventObj.IsUndoRedo	&&	eventObj.Source.nodeName	!=	"item")
						Calculate(eventObj.Site.parentNode);
}

Show	All

Source	Property	(DocActionEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	inner-most	XML
Document	Object	Model	(DOM)	node	of	a	form's	underlying	XML
document.

expression.Source

expression				Required.	Returns	a	reference	to	the	DocActionEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XML	DOM	node	that	the	Source
property	returns,	you	can	use	any	of	the	properties	and	methods	that	are
supported	by	the	XML	DOM.

Note		To	learn	more	about	the	XML	DOM	and	all	of	the	properties	and
methods	that	it	supports,	see	the	MSXML	5.0	SDK	documentation	in	the
Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	Source	property	of	the	DocActionEvent
object	is	used	to	display	the	source	XML	data	of	the	XML	DOM	node	in	a
message	box:

function	DocActionEventSource::OnClick(eventObj)
{
			XDocument.UI.Alert("Source:	"	+	eventObj.Source.xml);
}

Show	All

Source	Property	(Index)

The	Source	property	returns	a	reference	to	the	XML	Document	Object
Model	(DOM)	node	containing	the	source	XML	of	the	data	being	changed
during	an	event.	This	property	is	implemented	in	a	number	of	Microsoft
Office	InfoPath	2003	object	model	objects.	Click	a	Source	property	link
below	to	view	the	Help	topic	for	a	specific	implementation	of	the	Source
property.

Source	property	as	it	applies	to	the	DataDOMEvent	object.

Source	property	as	it	applies	to	the	DocActionEvent	object.

Show	All

Status	Property	(Certificate	Object)

A	read-only	property	that	returns	the	status	of	the	digital	certificate.	The
status	that	is	returned	is	one	of	the	XdCertificateStatus	enumerated
constants.

expression.Status

expression				Required.	An	expression	that	returns	a	Certificate	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Status	Property	(Index)

This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	collections.	Click	a	Status	property	link	below	to	view	the
Help	topic	for	a	specific	implementation	of	the	Status	property.

Status	property	as	it	applies	to	the	Certificate	object.

Status	property	as	it	applies	to	the	Signature	object.

Show	All

Status	Property	(Signature	Object)

A	read-only	property	that	returns	the	status	of	the	specified	digital
signature.	The	status	that	is	returned	is	based	on	the
XdSignatureStatus	enumeration

expression.Status

expression				Required.	An	expression	that	returns	a	Signature	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Status	property	only	verifies	whether	the	hash	of	the	digital
signature	is	valid.	It	does	not	verify	the	chain	of	trust	of	the	digital
certificate,	nor	does	it	verify	that	the	image	of	the	view	captured	at	the
time	the	signature	was	added	matches	the	current	view	of	the	signed
form.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Subject	Property	(EmailAdapter	Object)

Returns	or	sets	a	string	that	represents	the	subject	of	the	e-mail	message
associated	with	the	specified	EmailAdapter	object.

expression.Subject

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	Subject	property	of	an	instance	of
the	EmailAdapter	object	to	change	the	subject	of	the	e-mail	message
before	the	EmailAdapter	object	is	submitted:

objEmailAdapter.Subject	=	"Weekly	Status	Report";

Subject	Property	(MailEnvelope	Object)

Sets	or	retrieves	a	string	containing	the	subject	value	used	in	the
MailEnvelope	object	that	is	associated	with	a	Window	object.

expression.Subject

expression				Required.	An	expression	that	returns	a	reference	to	the
MailEnvelope	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	MailEnvelope	object	does	not	support	the	programmatic	creation	of
the	body	of	an	e-mail	message.	Users	enter	the	body	text	after	the	e-mail
message	is	displayed	in	the	default	e-mail	editor.

Example
In	the	following	example,	the	Subject	property	of	the	MailEnvelope
object	is	used	to	set	the	subject	value	of	a	custom	e-mail	message:

function	CreateMailEnvelope::OnClick(eventObj)
{
			var	objEmail;

			objEmail	=	Application.ActiveWindow.MailEnvelope;
			objEmail.To	=	"someone@example.com";
			objEmail.CC	=	"someone@example.com";
			objEmail.BCC	=	"someone@example.com";
			objEmail.Subject	=	"Test	e-mail	message";
			objEmail.Visible	=	true;
			objEmail	=	null;
}

Show	All

SubmitAllowed	Property	(ADOAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	corresponding	to	the
submitAllowed	attribute	in	the	form	definition	file	(.xsf).

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	an
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	default	value	of	the	SubmitAllowed	property	is	False,	as	is	the
default	value	for	the	submitAllowed	attribute.	If	the	submitAllowed
attribute	is	set	to	True,	the	ADO	connection	supports	submitting	data	as
well	as	querying.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitAllowed	Property	(DAVAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	that	always	returns
False,	corresponding	to	the	submitAllowed	attribute	in	the	form
definition	file	(.xsf).

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	a
DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitAllowed	Property	(EmailAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	that	always	returns
True,	corresponding	to	the	submitAllowed	attribute	in	the	form	definition
file	(.xsf).

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitAllowed	Property	(HWSAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	that	is	always	True,
corresponding	to	the	submitAllowed	attribute	in	the	form	definition	file
(.xsf).

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	a
HWSAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

SubmitAllowed	Property	(Index)

The	SubmitAllowed	property	returns	a	value	that	corresponds	to	the
sumitAllowed	attribute	in	the	form	definition	file	(.xsf).	This	property	is
implemented	in	several	Microsoft	Office	InfoPath	2003	object	model
objects.	Click	a	SubmitAllowed	property	link	below	to	view	the	Help
topic	for	a	specific	implementation	of	the	SubmitAllowed	property.

SubmitAllowed	property	as	it	applies	to	the	ADOAdapter	object.

SubmitAllowed	property	as	it	applies	to	the	DAVAdapter	object.

SubmitAllowed	property	as	it	applies	to	the	EmailAdapter	object.

SubmitAllowed	property	as	it	applies	to	the	HWSAdapter	object.

SubmitAllowed	property	as	it	applies	to	the	SharepointListAdapter
object.

SubmitAllowed	property	as	it	applies	to	the	WebServiceAdapter	object.

SubmitAllowed	property	as	it	applies	to	the	XMLFileAdapter	object.

Show	All

SubmitAllowed	Property	(SharePointListAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	corresponding	to	the
submitAllowed	attribute	in	the	form	definition	file	(.xsf).	Always	returns
False	for	the	SharePointListAdapter	object.

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	a
SharepointListAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitAllowed	Property	(WebServiceAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	corresponding	to	the
submitAllowed	attribute	in	the	form	definition	file	(.xsf).	The	default
value	is	False.

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitAllowed	Property	(XMLFileAdapter	Object)

A	read-only	property	that	returns	a	Boolean	value	that	always	returns
False,	corresponding	to	the	submitAllowed	attribute	in	the	form
definition	file	(.xsf).

expression.SubmitAllowed

expression				Required.	An	expression	that	returns	a	reference	to	an
XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

TaskPanes	Property

A	read-only	property	that	returns	a	reference	to	the	TaskPanes	collection
that	is	associated	with	the	Window	object.

expression.TaskPanes

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	TaskPanes	property	can	be	used	only	with	the	editing	window	types;
if	used	with	a	designing	window	type,	it	will	return	an	error.

Example
In	the	following	example,	the	TaskPanes	property	of	the	Window	object
is	used	to	set	a	reference	to	the	TaskPanes	collection:

var	objTaskPanes;

objTaskPanes	=	Application.ActiveWindow.TaskPanes;

Show	All

Timeout	Property	(ADOAdapter	Object)

Sets	or	retrieves	the	long	integer	timeout	value	for	an	ADOAdapter
object.

expression.Timeout

expression				Required.	An	expression	that	returns	a	reference	to	the
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Timeout	property	of	the	ADOAdapter	object	contains	the	timeout
value	that	is	used	by	the	ADO	data	adapter	to	regulate	the	time	used	to
submit	and	retrieve	data	from	an	ActiveX	Data	Objects/OLEDB	external
data	source.

Note		The	ADOAdapter	object	is	limited	to	work	only	with	Microsoft	SQL
Server	and	Microsoft	Access	databases.

Example
In	the	following	example,	the	Timeout	property	of	the	ADOAdapter
object	is	used	to	display	the	timeout	value	of	the	ADO	data	adapter	in	a
message	box:

var	objADOAdapter;

objADOAdapter	=	XDocument.DataObjects("CityList").QueryAdapter;
XDocument.UI.Alert("SQL	command	text:	"	+	objADOAdapter.Timeout

Show	All

Timeout	Property	(Index)

The	Timeout	property	sets	or	retrieves	the	time-out	value	for	some	types
of	data	adapters.	This	property	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	objects.	Click	a	Timeout	property	link	below
to	view	the	Help	topic	for	a	specific	implementation	of	the	Timeout
property.

Timeout	property	as	it	applies	to	the	ADOAdapter	object.

Timeout	property	as	it	applies	to	the	WebServiceAdapter	object.

Timeout	Property	(WebServiceAdapter	Object)

Sets	or	retrieves	the	long	integer	time-out	value	in	seconds	for	a
WebServiceAdapter	object.

expression.Timeout

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	default	value	of	the	Timeout	property	of	the	WebServiceAdapter
object	is	30	seconds.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

To	Property	(EmailAdapter	Object)

Returns	or	sets	a	string	that	represents	the	recipients	for	the	e-mail
message	associated	with	a	specified	EmailAdapter	object.

expression.To

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	value	must	be	a	semicolon-delimited	string	that	can	be	resolved	into
a	list	of	valid	e-mail	addresses	by	the	user's	e-mail	client.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
This	example	shows	how	to	use	the	To	property	of	an	instance	of	the
EmailAdapter	object	to	change	the	recipients	of	an	e-mail	message
before	the	EmailAdapter	object	is	submitted:

objEmailAdapter.To	=	objEmailAdapter.To	+	";	newUser@example.com";

To	Property	(Index)

The	To	property	returns	or	sets	the	recipients	of	an	e-mail	message.	This
property	is	implemented	in	several	Microsoft	Office	InfoPath	2003	object
model	objects.	Click	a	To	property	link	below	to	view	the	Help	topic	for	a
specific	implementation	of	the	To	property.

To	property	as	it	applies	to	the	EmailAdapter	object.

To	property	as	it	applies	to	the	MailEnvelope	object.

To	Property	(MailEnvelope	Object)

Sets	or	retrieves	a	string	containing	the	send-to	value	used	in	the
MailEnvelope	object	that	is	associated	with	a	Window	object.

expression.To

expression				Required.	An	expression	that	returns	a	reference	to	the
MailEnvelope	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	values	set	for	the	To	property	should	be	a	string	of	valid	e-mail
addresses.	You	can	specify	multiple	e-mail	addresses	by	using	";"
between	each	of	them,	as	shown	in	the	following	example:

objEmail.To	=	"someone@example.com;someone@example.com"

Example
In	the	following	example,	the	To	property	of	the	MailEnvelope	object	is
used	to	set	the	send-to	value	of	a	custom	e-mail	message:

function	CreateMailEnvelope::OnClick(eventObj)
{
			var	objEmail;

			objEmail	=	Application.ActiveWindow.MailEnvelope;
			objEmail.To	=	"someone@example.com";
			objEmail.CC	=	"someone@example.com";
			objEmail.BCC	=	"someone@example.com";
			objEmail.Subject	=	"Test	e-mail	message";
			objEmail.Visible	=	true;
			objEmail	=	null;
}

Top	Property

A	read/write	property	of	type	long	integer	that	specifies	the	vertical
position	of	the	window	represented	by	the	Window	object,	measured	in
points.

expression.Top

expression				Required.	An	expression	that	returns	a	reference	to	a
Window	object.

Remarks
The	Top	property	will	return	an	error	if	it	is	set	on	a	window	that	is
minimized	or	maximized.

Setting	the	Top	property	to	a	position	that	is	off	the	screen,	will	cause	the
entire	window	to	be	displayed	on	the	screen.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Type	Property	(DocContextChangeEvent	Object)

A	read-only	property	that	returns	a	string	containing	the	type	of	context
change	event	that	occurred	when	the	OnContextChange	event	was
triggered.

expression.Type

expression				Required.	An	expression	that	returns	a	reference	to	the
DocContextChangeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
As	described	in	the	OnContextChange	event	topic,	the	Type	property
returns	only	the	value	"ContextNode"	for	context	changes	in	Microsoft
InfoPath	2003	Service	Pack	1.	Nevertheless,	if	code	in	an	event	handler
performs	actions	that	depend	on	current	functionality,	that	code	should
still	be	designed	to	check	the	value	of	the	Type	property,	because	future
versions	of	InfoPath	may	use	different	values	for	different	context
changes.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Type	Property	(Error	Object)

A	read-only	property	that	returns	a	string	value	containing	the	type	of	an
Error	object.

expression.Type

expression				Required.	An	expression	that	returns	a	reference	to	the
Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
There	are	three	types	or	errors:

SCHEMA_VALIDATION			Data	validation	failed	as	a	result	of	an	XML
Schema–defined	constraint.

SYSTEM_GENERATED			Data	validation	failed	as	a	result	of	constraints
defined	in	the	form	definition	(.xsf)	file	or	as	a	result	of	scripting	code
calling	the	ReportError	method	of	the	DataDOMEvent	object.

USER_SPECIFIED			Data	validation	failed	as	a	result	of	a	custom
scripting	error	using	the	Add	method	of	the	Errors	collection.

Example
In	the	following	example,	the	Type	property	of	the	Error	object	is	used	to
display	the	type	of	an	error	in	a	message	box:

var	objError;

objError	=	XDocument.Errors(0);
XDocument.UI.Alert("Error	name:	"	+	objError.Type);

Show	All

Type	Property	(HTMLTaskPane	Object)

A	read-only	property	that	returns	a	value	indicating	the	type	of	task	pane
represented	by	the	HTMLTaskPane	object,	which	is	always	a	custom
task	pane.

expression.Type

expression				Required.	An	expression	that	returns	a	reference	to	the
HTMLTaskPane	object.	Based	on	the	XdTaskPaneType	enumeration.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Type	property	of	the	HTMLTaskPane	object	is	one	of	the	properties
inherited	from	the	TaskPane	object	when	the	type	of	the	task	pane	is	0,
which	means	that	it	is	the	custom	task	pane.

Note		The	Type	property	is	based	on	the	XdTaskPaneType
enumeration.	These	enumerated	values	are	also	used	as	arguments	to
the	Item	property	of	the	TaskPanes	collection	for	returning	a	reference	to
a	specified	type	of	task	pane.

Example
In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	set	a	reference	to	the	HTMLTaskPane	object	that	represents
the	custom	task	pane.	Then	the	Visible	property	of	the	HTMLTaskPane
object	is	used	to	make	the	custom	task	pane	appear	in	the	Microsoft
Office	InfoPath	2003	user	interface.	The	type	value	of	the	custom	task
pane	is	the	same	as	the	value	passed	to	the	Item	property.

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes(0);
objTaskPane.Visible	=	true;

Type	Property	(Index)

The	Type	property	returns	a	value	indicating	the	type	of	the	object.	This
property	is	implemented	in	several	Microsoft	Office	InfoPath	2003	object
model	objects.	Click	a	Type	property	link	below	to	view	the	Help	topic	for
a	specific	implementation	of	the	Type	property.

Type	property	as	it	applies	to	the	DocContextChangeEvent	object.

Type	property	as	it	applies	to	the	Error	object.

Type	property	as	it	applies	to	the	HTMLTaskPane	object.

Type	property	as	it	applies	to	the	TaskPane	object.

Type	property	as	it	applies	to	the	Window	object.

Show	All

Type	Property	(TaskPane	Object)

A	read-only	property	that	returns	a	value	indicating	the	type	of	task	pane
represented	by	the	TaskPane	object.

expression.Type

expression				Required.	An	expression	that	returns	a	reference	to	the
TaskPane	object.	Based	on	the	XdTaskPaneType	enumeration.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
If	the	Type	property	of	the	TaskPane	object	returns	0,	the	task	pane	is	a
custom	task	pane.	If	the	Type	property	returns	any	other	value,	the	task
pane	is	a	built-in	task	pane.

Note		The	Type	property	is	based	on	the	XdTaskPaneType
enumeration.	These	enumerated	values	are	also	used	as	arguments	to
the	Item	property	of	the	TaskPanes	collection	for	returning	a	reference	to
a	specified	type	of	task	pane.

Example
In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	set	a	reference	to	the	TaskPane	object	that	represents	the
built-in	Help	task	pane.	Then	the	Visible	property	of	the	TaskPane	object
is	used	to	make	the	Help	task	pane	appear	in	the	Microsoft	Office
InfoPath	2003	user	interface.

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes.Item(4);
objTaskPane.Visible	=	true;

Show	All

Type	Property	(Window	Object)

A	read-only	property	that	returns	a	long	integer	value	that	indicates	the
type	of	window	that	is	represented	by	the	Window	object.	The	value
returned	is	based	on	the	XdWindowType	enumeration.

expression.Type

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Window	objects	represent	the	two	types	of	windows	that	are	used	in
the	InfoPath	application:	the	editing	window	that	is	used	as	the	form	area
when	a	user	fills	out	a	form,	and	the	designing	window	that	is	used	as	the
design	mode	when	a	user	designs	a	form.

Example
In	the	following	example,	the	Type	property	of	the	Window	object	is	used
to	determine	the	type	of	window	that	is	the	currently	active	window:

if	(Application.ActiveWindow.Type	==	0)
			XDocument.UI.Alert("The	active	window	is	an	editing	window.");
else
			XDocument.UI.Alert("The	active	window	is	a	designing	window.");

UI	Property

Returns	a	reference	to	the	Microsoft	Office	InfoPath	2003	UI	object.

expression.UI

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	UI	(user	interface)	object	provides	a	number	of	methods	that	can	be
used	to	display	custom	and	built-in	dialog	boxes.

Example
In	the	following	example,	the	UI	property	of	the	XDocument	object	is
used	to	display	a	simple	message	box	using	the	Alert	method:

XDocument.UI.Alert("Here	is	the	message	text.");

Show	All

URI	Property	(Index)

The	URI	property	returns	a	string	value	that	specifies	a	Uniform
Resource	Identifier	(URI)	location.	This	property	is	implemented	in	a
number	of	Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a
URI	property	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	URI	property.

URI	property	as	it	applies	to	the	Solution	object.

URI	property	as	it	applies	to	the	XDocument	object.

Show	All

URI	Property	(Solution	Object)

A	read-only	property	that	returns	a	string	value	containing	the	Uniform
Resource	Identifier	(URI)	of	a	Microsoft	Office	InfoPath	2003	form
template.

expression.URI

expression				Required.	An	expression	that	returns	a	reference	to	a
Solution	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	value	of	the	URI	property	of	the	Solution	object	can	take	the	form	of
a	Uniform	Resource	Locator	(URL)	or	Uniform	Resource	Name	(URN),
depending	on	the	location	from	which	the	form	was	opened.

Example
In	the	following	example,	the	URI	property	of	the	Solution	object	is	used
to	display	a	form	template's	URI	in	a	message	box:

XDocument.UI.Alert("URI:	"	+	XDocument.Solution.URI);

Show	All

URI	Property	(XDocument	Object)

A	read-only	property	that	returns	a	string	value	containing	the	Uniform
Resource	Identifier	(URI)	of	a	Microsoft	Office	InfoPath	2003	form.

expression.URI

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	URI	property	can	be	used	as	the	name	of	a	form	when	accessed
through	the	XDocuments	collection,	as	shown	in	the	following	example:

Application.XDocuments(XDocument.URI);

Example
In	the	following	example,	the	URI	property	of	the	XDocument	object	is
used	to	display	a	form's	URI	in	a	message	box:

XDocument.UI.Alert("URI:	"	+	XDocument.URI);

UsableHeight	Property

A	read-only	property	of	type	long	integer	that	returns	the	available
screen	height	(the	maximum	number	of	points	to	which	you	can	set	the
height	of	an	InfoPath	document	window.)

expression.UsableHeight

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

UsableWidth	Property

A	read-only	property	of	type	long	integer	that	returns	the	available
screen	width	(the	maximum	number	of	points	to	which	you	can	set	the
width	of	an	InfoPath	document	window.)

expression.UsableWidth

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

User	Property

A	read-only	property	that	returns	a	reference	to	the	User	object.

expression.User

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Util	Property

Read-only	property	that	returns	a	reference	to	the	Util	object.

expression.Util

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Version	Property	(Application	Object)

A	read-only	property	that	returns	a	string	containing	the	Microsoft	Office
InfoPath	2003	version	number.

expression.Version

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	version	number	of	the	application	does	not	contain	the	name.	To
obtain	the	name	of	an	application,	use	the	Name	property	of	the
Application	object.

To	obtain	the	version	number	of	a	form	template,	use	the	Version
property	of	the	Solution	object.

Example
In	the	following	example,	the	Version	property	of	the	Application	object
is	used	to	display	the	application's	version	number	in	a	message	box:

XDocument.UI.Alert("Application	version:	"	+	Application.Version);

Version	Property	(Index)

The	Version	property	returns	a	string	value	that	specifies	a	version
number.	This	property	is	implemented	in	a	number	of	Microsoft	Office
InfoPath	2003	object	model	objects.	Click	a	Version	property	link	below
to	view	the	Help	topic	for	a	specific	implementation	of	the	Version
property.

Version	property	as	it	applies	to	the	Application	object.

Version	property	as	it	applies	to	the	Solution	object.

Show	All

Version	Property	(Solution	Object)

A	read-only	property	that	returns	a	string	containing	the	version	number
of	a	Microsoft	Office	InfoPath	2003	form	template.

expression.Version

expression				Required.	An	expression	that	returns	a	reference	to	the
Solution	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
To	obtain	the	version	number	of	the	InfoPath	application,	use	the	Version
property	of	the	Application	object.

Example
In	the	following	example,	the	Version	property	of	the	Solution	object	is
used	to	display	a	form	template's	version	number	in	a	message	box:

XDocument.UI.Alert("Form	template	version:	"	+	XDocument.Solution.

View	Property

A	read-only	property	that	returns	a	reference	to	the	View	object
associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.View

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	View	object	that	the	View	property	accesses	represents	the	view
that	is	currently	active	in	an	InfoPath	form.	After	you	have	set	a	reference
to	the	View	object,	you	can	access	any	of	its	properties	and	methods	to
programmatically	interact	with	the	view.

Example
In	the	following	example,	the	View	property	of	the	XDocument	object	is
used	to	set	a	reference	to	the	View	object;	then,	using	the	Name
property	of	the	View	object,	it	displays	the	name	of	the	view	in	a
message	box:

var	objView;

objView	=	XDocument.View;
XDocument.UI.Alert("View	name:	"	+	objView.Name);

ViewInfos	Property

A	read-only	property	that	returns	a	reference	to	the	ViewInfos	collection
associated	with	a	Microsoft	Office	InfoPath	2003	form.

expression.ViewInfos

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	ViewInfos	collection	contains	a	collection	of	ViewInfo	objects	that
contain	information	about	each	of	the	views	implemented	in	an	InfoPath
form.

Example
In	the	following	example,	the	ViewInfos	property	of	the	XDocument
object	is	used	to	set	a	reference	to	the	ViewInfos	collection;	then,	using
the	Count	property	of	the	ViewInfos	collection,	it	loops	through	the
collection	to	determine	the	default	view	using	the	IsDefault	property	of
the	ViewInfo	object.	When	the	default	view	is	found,	the	code	displays
the	name	of	the	view	in	a	message	box.

var	objViewInfos;
	
objViewInfos	=	XDocument.ViewInfos;
for	(i=0;	i	<	objViewInfos.Count;	i++)
{
			if	(objViewInfos(i).IsDefault)
			XDocument.UI.Alert("The	default	view	is:	"	+	objViewInfos(i).Name);
}

Show	All

Visible	Property	(HTMLTaskPane	Object)

Sets	or	retrieves	a	Boolean	value	indicating	that	the	task	pane
represented	by	the	HTMLTaskPane	object,	which	is	always	a	custom
task	pane,	is	visible	in	the	Microsoft	Office	InfoPath	2003	user	interface.

expression.Visible

expression				Required.	An	expression	that	returns	a	reference	to	the
HTMLTaskPane	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Visible	property	of	the	HTMLTaskPane	object	is	one	of	the
properties	inherited	from	the	TaskPane	object	when	the	type	of	the	task
pane	is	0,	which	means	that	it	is	the	custom	task	pane.

Setting	the	Visible	property	to	True	causes	the	task	pane	to	appear	in
the	user	interface,	and	setting	it	to	False	causes	it	to	be	removed	from
the	user	interface.

Example
In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	set	a	reference	to	the	HTMLTaskPane	object	that	represents
the	custom	task	pane.	Then	the	Visible	property	of	the	HTMLTaskPane
object	is	used	to	make	the	custom	task	pane	appear	in	the	InfoPath	user
interface.

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes(0);
objTaskPane.Visible	=	true;

Visible	Property	(Index)

The	Visible	property	specifies	or	returns	a	Boolean	value	indicating
whether	the	user	interface	component	represented	by	the	object	is	visible
in	the	user	interface.	This	property	is	implemented	in	several	Microsoft
Office	InfoPath	2003	object	model	objects.	Click	a	Visible	property	link
below	to	view	the	Help	topic	for	a	specific	implementation	of	the	Visible
property.

Visible	property	as	it	applies	to	the	HTMLTaskPane	object.

Visible	property	as	it	applies	to	the	MailEnvelope	object.

Visible	property	as	it	applies	to	the	TaskPane	object.

Visible	Property	(MailEnvelope	Object)

Sets	or	retrieves	a	Boolean	value	that	indicates	the	visibility	of	the
custom	e-mail	message	created	with	the	MailEnvelope	object	that	is
associated	with	a	Window	object.

expression.Visible

expression				Required.	An	expression	that	returns	a	reference	to	the
MailEnvelope	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
When	the	Visible	property	of	the	MailEnvelope	object	is	set	to	True,	the
custom	e-mail	message	will	be	displayed	using	the	default	e-mail	editor.
If	there	is	no	default	e-mail	editor	configured,	the	Visible	property	will
return	an	error.

Example
In	the	following	example,	the	Visible	property	of	the	MailEnvelope	object
is	used	to	display	a	custom	e-mail	message	in	the	default	e-mail	editor:

function	CreateMailEnvelope::OnClick(eventObj)
{
			var	objEmail;

			objEmail	=	Application.ActiveWindow.MailEnvelope;
			objEmail.To	=	"someone@example.com";
			objEmail.CC	=	"someone@example.com";
			objEmail.BCC	=	"someone@example.com";
			objEmail.Subject	=	"Test	e-mail	message";
			objEmail.Visible	=	true;
			objEmail	=	null;
}

Show	All

Visible	Property	(TaskPane	Object)

Sets	or	retrieves	a	Boolean	value	indicating	that	the	task	pane
represented	by	the	TaskPane	object	is	visible	in	the	Microsoft	Office
InfoPath	2003	user	interface.

expression.Visible

expression				Required.	An	expression	that	returns	a	reference	to	the
TaskPane	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Setting	the	Visible	property	to	True	causes	the	task	pane	to	appear	in
the	user	interface,	and	setting	it	to	False	causes	it	to	be	removed	from
the	user	interface.

Example
In	the	following	example,	the	Item	property	of	the	TaskPanes	collection
is	used	to	set	a	reference	to	the	TaskPane	object	that	represents	the
built-in	Help	task	pane.	Then	the	Visible	property	of	the	TaskPanes
object	is	used	to	make	the	Help	task	pane	appear	in	the	InfoPath	user
interface.

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes(4);
objTaskPane.Visible	=	true;

Width	Property

A	read/write	property	of	type	long	integer	that	specifies	the	width	of	the
window	represented	by	the	Window	object,	measured	in	points.

expression.Width

expression				Required.	An	expression	that	returns	a	reference	to	a
Window	object.

Remarks
The	Width	property	will	return	an	error	if	it	is	set	on	a	window	that	is
minimized	or	maximized.

The	Width	property	can't	be	set	to	a	value	that	is	larger	than	the	value
returned	by	the	UsableWidth	property.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Window	Property	(HTMLTaskPaneExternal	Object)

A	read-only	property	that	returns	a	reference	to	the	Window	object
associated	with	a	custom	task	pane.

expression.Window

expression				Required.	An	expression	that	returns	a	reference	to	the
HTMLTaskPaneExternal	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Window	object	returned	by	the	Window	property	represents	the
currently	active	Microsoft	Office	InfoPath	2003	window	that	is	associated
with	the	custom	task	pane.

Example
In	the	following	example,	the	HTMLTaskPaneExternal	object	is	used
through	the	external	property	of	the	Dynamic	HTML	(DHTML)	window
object	to	set	a	reference	to	the	Window	object	that	is	part	of	the	InfoPath
object	model:

var	objWindow;

objWindow		=	window.external.Window;
objWindow.MailEnvelope.Visible	=	true;

Window	Property	(Index)

The	Window	property	returns	a	reference	to	a	Window	object.	This
property	is	implemented	in	a	number	of	Microsoft	Office	InfoPath	2003
object	model	objects.	Click	a	Window	property	link	below	to	view	the
Help	topic	for	a	specific	implementation	of	the	Window	property.

Window	property	as	it	applies	to	the	HTMLTaskPaneExternal	object.

Window	property	as	it	applies	to	the	View	object.

Show	All

Window	Property	(View	Object)

A	read-only	property	that	returns	a	reference	to	the	window	object
associated	with	a	view.

expression.Window

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Window	object	returned	by	the	Window	property	represents	the
currently	active	Microsoft	Office	InfoPath	2003	window.	It	can	also	be
accessed	through	the	Windows	collection.

Example
In	the	following	example,	the	Window	property	of	the	View	object	is	used
to	set	a	reference	to	the	first	task	pane	contained	in	the	TaskPanes
collection:

var	objTaskPane;

objTaskPane	=	XDocument.View.Window.TaskPanes(0);

Windows	Property

A	read-only	property	that	returns	a	reference	to	the	Windows	collection.

expression.Windows

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
After	you	have	set	a	reference	to	the	Windows	collection,	you	can	use	its
properties	to	access	each	of	the	Window	objects	that	it	contains.

Note		The	Windows	collection	can	be	used	only	to	get	the	count	of	the
Window	objects	that	it	contains	or	to	return	a	reference	to	a	Window
object.	It	cannot	be	used	to	add	or	remove	Window	objects.

Example
In	the	following	example,	the	Windows	property	is	used	to	access	the
Count	property	of	the	Windows	collection	and	display	the	value	in	a
message	box:

XDocument.UI.Alert("Count	of	Windows:	"	+	Application.Windows.Count);

WindowState	Property

A	read/write	property	of	type	XdWindowState	that	returns	or	sets	the
state	of	the	window	represented	by	the	Window	object.

expression.WindowState

expression				Required.	An	expression	that	returns	a	reference	to	a
Window	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

WSDLURL	Property

A	read-only	property	that	returns	a	string	value	containing	the	Uniform
Resource	Locator	(URL)	of	the	Web	Services	Description	Language
(WSDL)	file	for	the	Web	service	associated	with	the	WebServiceAdapter
object.

expression.WSDLURL

expression				Required.	An	expression	that	returns	a	reference	to	the
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	WSDL	file	is	an	XML	document	that	defines	the	format	of	messages
an	XML	Web	service	understands.	The	service	description	serves	as	an
agreement	that	defines	the	behavior	of	an	XML	Web	service	and	instructs
potential	clients	in	how	to	interact	with	it.	The	behavior	of	an	XML	Web
service	is	determined	by	messaging	patterns	that	the	service	defines	and
supports.	These	patterns	conceptually	dictate	what	the	service	consumer
can	expect	to	happen	when	a	properly	formatted	message	is	submitted	to
the	XML	Web	service.

Example
In	the	following	example,	the	WSDLURL	property	of	the
WebServiceAdapter	object	is	used	to	display	the	URL	of	the	WSDL	file
that	is	used	for	the	Web	service:

var	objWSAdapter;

objWSAdapter	=	XDocument.DataObjects("WebCityList").QueryAdapter;
XDocument.UI.Alert("WSDL	file	URL:	"	+	objWSAdapter.WSDLURL

Show	All

XDocument	Property	(DataDOMEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	DataDOMEvent	object	during	a	data	validation
event.

expression.XDocument

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XDocument	object	that	the
XDocument	property	of	the	DataDOMEvent	object	returns,	you	can	use
any	of	the	properties	and	methods	that	it	provides.

Example
In	the	following	example,	the	XDocument	property	of	the
DataDOMEvent	object	is	used	to	set	a	reference	to	the	XDocument
object:

var	objXDoc;

objXDoc	=	eventObj.XDocument;

XDocument	Property	(DocActionEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	DocActionEvent	object	during	an	OnClick
event.

expression.XDocument

expression				Required.	Returns	a	reference	to	the	DocActionEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XDocument	object	that	the
XDocument	property	of	the	DocActionEvent	object	returns,	you	can
use	any	of	the	properties	and	methods	that	it	provides.

Example
In	the	following	example,	the	XDocument	property	of	the
DocActionEvent	object	is	used	to	set	a	reference	to	the	XDocument
object:

var	objXDoc;

objXDoc	=	eventObj.XDocument;

XDocument	Property	(DocContextChangeEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	DocContextChangeEvent	object	in	an
OnContextChange	event.

expression.XDocument

expression				Required.	Returns	a	reference	to	a
DocContextChangeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

XDocument	Property	(DocEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	DocEvent	object	during	an	OnSwitchView	or
OnAfterChange	event.

expression.XDocument

expression				Required.	Returns	a	reference	to	the	DocEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XDocument	object	that	the
XDocument	property	of	the	DocEvent	object	returns,	you	can	use	any	of
the	properties	and	methods	that	it	provides.

Example
In	the	following	example,	the	XDocument	property	of	the	DocEvent
object	is	used	to	set	a	reference	to	the	XDocument	object:

var	objXDoc;

objXDoc	=	eventObj.XDocument;

XDocument	Property	(DocReturnEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	DocReturnEvent	object	during	an	OnLoad	or
OnSubmitRequest	event.

expression.XDocument

expression				Required.	Returns	a	reference	to	the	DocReturnEvent
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XDocument	object	that	the
XDocument	property	of	the	DocReturnEvent	object	returns,	you	can
use	any	of	the	properties	and	methods	that	it	provides.

Example
In	the	following	example,	the	XDocument	property	of	the
DocReturnEvent	object	is	used	to	set	a	reference	to	the	XDocument
object:

var	objXDoc;

objXDoc	=	eventObj.XDocument;

Show	All

XDocument	Property	(HTMLTaskPaneExternal	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
associated	with	a	custom	task	pane.

expression.XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
HTMLTaskPaneExternal	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	XDocument	object	returned	by	the	XDocument	property	represents
the	form's	underlying	XML	document	that	is	associated	with	the	custom
task	pane.

Example
In	the	following	example,	the	HTMLTaskPaneExternal	object	is	used
through	the	external	property	of	the	Dynamic	HTML	(DHTML)	window
object	to	set	a	reference	to	the	XDocument	object	that	is	part	of	the
InfoPath	object	model:

var	objXDoc;

objXDoc		=	window.external.XDocument;
objXDoc.View.SwitchView("View2");

XDocument	Property	(Index)

The	XDocument	property	returns	a	reference	to	an	XDocument	object.
This	property	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	objects.	Click	an	XDocument	property	link	below	to	view
the	Help	topic	for	a	specific	implementation	of	the	XDocument	property.

XDocument	property	as	it	applies	to	the	DataDOMEvent	object.

XDocument	property	as	it	applies	to	the	DocActionEvent	object.

XDocument	property	as	it	applies	to	the	DocContextChangeEvent
object.

XDocument	property	as	it	applies	to	the	DocEvent	object.

XDocument	property	as	it	applies	to	the	DocReturnEvent	object.

XDocument	property	as	it	applies	to	the	HTMLTaskPaneExternal
object.

XDocument	property	as	it	applies	to	the	MergeEvent	object.

XDocument	property	as	it	applies	to	the	SaveEvent	object.

XDocument	property	as	it	applies	to	the	VersionUpgradeEvent	object.

XDocument	property	as	it	applies	to	the	Window	object.

XDocument	Property	(InfoPathControlSite	Object)

Retrieves	a	reference	to	the	XDocument	object	associated	with	the	view
that	contains	the	control.

expression.XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControl	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111281033

XDocument	Property	(MergeEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	MergeEvent	object	in	an	OnMergeRequest
event.

expression.XDocument

expression				Required.	Returns	a	reference	to	a	MergeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

XDocument	Property	(SignEvent	Object)

Retrieves	a	reference	to	the	XDocument	object	associated	with	the
OnSign	event.

expression.XDocument

expression				Required.	An	expression	that	returns	a	reference	to	a
SignEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

XDocument	Property	(VersionUpgradeEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	VersionUpgradeEvent	object	during	an
OnVersionUpgrade	event.

expression.XDocument

expression				Required.	Returns	a	reference	to	the
VersionUpgradeEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	set	a	reference	to	the	XDocument	object	that	the
XDocument	property	of	the	VersionUpgradeEvent	object	returns,	you
can	use	any	of	the	properties	and	methods	that	it	provides.

Example
In	the	following	example,	the	XDocument	property	of	the
VersionUpgradeEvent	object	is	used	to	set	a	reference	to	the
XDocument	object:

var	objXDoc;

objXDoc	=	eventObj.XDocument;

Show	All

XDocument	Property	(Window	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	window	that	is	represented	by	the	Window
object.

expression.XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	XDocument	property	can	be	used	only	with	the	editing	window
types;	if	used	with	a	designing	window	type,	it	will	return	an	error.	It	will
also	return	an	error	if	no	form	is	open	in	the	form	area.

Example
In	the	following	example,	the	XDocument	property	of	the	Window	object
is	used	to	set	a	reference	to	the	form's	underlying	XML	document	that	is
associated	with	the	currently	active	window:

var	objXDoc;

objXDoc	=	Application.ActiveWindow.XDocument;

XDocuments	Property

A	read-only	property	that	returns	a	reference	to	the	XDocuments
collection.

expression.XDocuments

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
After	you	have	set	a	reference	to	the	XDocuments	collection,	you	can
use	its	properties	to	access	each	of	the	XDocument	objects	that	it
contains.

Example
In	the	following	example,	the	XDocuments	property	is	used	to	access
the	Count	property	of	the	XDocuments	collection	and	display	the	value
in	a	message	box:

XDocument.UI.Alert("Count	of	XDocuments:	"	+	Application.XDocuments

Show	All

XPath	Property

A	read-only	property	that	returns	the	XPath	expression	of	a
SignedDataBlock	object.

expression.XPath

expression				Required.	An	expression	that	returns	a	reference	to	a
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

XPathNamespaceDeclarations	Property

A	read-only	property	containing	the	namespace	declarations	for	the
XPath	expression	returned	by	the	XPath	property	of	a	SignedDataBlock
object.

expression.XPathNamespaceDeclarations

expression				Required.	An	expression	that	returns	a	reference	to	a
SignedDataBlock	object

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Activate	Method

Activates	the	window	that	is	represented	by	the	Window	object.

expression.Activate()

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Activate	method	can	be	used	only	with	the	editing	window	types;	if
used	with	a	designing	window	type,	it	will	return	an	error.

To	determine	whether	a	window	is	the	active	window,	use	the	Active
property	of	the	Window	object.

Example
In	the	following	example,	the	Activate	method	of	the	Window	object	is
used	to	activate	a	window	that	is	associated	with	the	view.	Note	the
check	of	the	window	type.

var	objWindow;

//	Set	a	reference	to	a	view's	associated	window.
objWindow	=	XDocument.View.Window;
	
if	(objWindow.Type	==	0)
{
			//	Make	the	window	the	active	window.
			objWindow.Activate();
}

objWindow	=	null;

Show	All

Add	Method

Adds	an	Error	object	to	the	Errors	collection	and	returns	a	reference	to
the	new	Error	object.

expression.Add(ByVal	varNode	As	Variant,	ByVal	bstrConditionName
As	String,	ByVal	bstrShortErrorMessage	As	String,	[ByVal
bstrDetailedErrorMessage	As	String],	[ByVal	lErrorCode	As	Long],
[ByVal	bstrType	As	String	=	"modeless"])	As	Error

expression				Required.	An	expression	that	returns	a	reference	to	the
Errors	collection.

varNode	Required	Variant.	The	XML	node	that	the	error	will	be
associated	with.

bstrConditionName	Required	String.	The	name	of	the	error.

bstrShortErrorMessage	Required	String.	The	short	message	for	the
error.

bstrDetailedErrorMessage	Optional	String.	The	detailed	message	for
the	error.

lErrorCode	Optional	Long	Integer.	Default	value	is	0.	The	error	code	of
the	error.

bstrType	Optional	String.	Default	value	is	"modeless".	The	type	of	error
processing.	The	other	supported	value	is	"modal".

returns				A	reference	to	the	newly	created	Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Add	method	is	used	to	create	custom	error	messages	in	a	Microsoft
Office	InfoPath	2003	form.	There	are	two	types	of	errors	that	can	be
created	using	the	Add	method:

modeless			The	user	is	notified	of	the	error	with	an	inline	alert	and	can
choose	to	return	to	the	previous	value	with	an	undo	operation.

modal			The	user	is	notified	of	the	error	with	a	dialog	box	alert.	After
clicking	OK	in	the	dialog	box	alert,	the	error	will	appear	as	an	inline	alert
and	the	user	can	choose	to	return	to	the	previous	value	with	an	undo
operation.

Note		Custom	errors	can	also	be	created	using	the	ReportError	method
of	the	DataDOMEvent	object.

Example
In	the	following	example,	the	Add	method	of	the	Errors	collection	is	used
to	create	a	custom	error	message:

var	objErrors;
var	objError;

objErrors	=	XDocument.Errors;
objError	=	objErrors.Add(MyXMLNode,	"ValidationError",	"The	data	is	invalid.");

Alert	Method

Displays	a	message	box	with	a	custom	text	message	in	a	Microsoft
Office	InfoPath	2003	form.

expression.Alert(ByVal	bstrAlertString	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object.

bstrAlertString	Required	String.	The	text	to	be	displayed.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Alert	method	displays	a	simple	message	box	that	uses	an
information	icon	and	an	OK	button.	Only	the	text	in	the	message	box	can
be	customized.

Note		Carriage	returns	can	be	inserted	into	the	text	of	the	custom
message	by	using	the	standard	\n	characters.

Example
In	the	following	example,	the	Alert	method	of	the	UI	object	is	used	to
display	a	message	box:

XDocument.UI.Alert("Custom	message	text	goes	here.");

Avg	Method

Returns	a	Variant	that	is	the	average	value	of	all	of	the	numerical
elements	in	a	node	set.

expression.Avg(ByVal	pxmllistInput	As	IXMLDOMNodeList)	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Math	object.

pxmllistInput				Required	IXMLDOMNodeList.	The	node	set	that
contains	the	values	to	be	averaged.

returns				A	Variant	that	represents	the	average	value	of	all	the	numerical
elements	in	a	node	set.

Security
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	averageAge	is	set	to	the	average
value	of	all	of	the	numerical	elements	in	the	my:ages	node	set.

var	ages	=	XDocument.DOM.selectNodes("//my:ages");
var	averageAge	=	XDocument.Util.Math.Avg(ages);

BuildSQLFromXMLNodes	Method

Returns	a	string	containing	an	SQL	command	text	fragment	using	the
specified	XML	node.

expression.BuildSQLFromXMLNodes(ByRef	pXmlNode	As
IXMLDOMNode)	As	String

expression				Required.	An	expression	that	returns	a	reference	to	the
ADOAdapter	object.

pXmlNode	Required	Object.	The	XML	node	to	be	converted	to	an	SQL
fragment.

returns				String.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	fragment	of	SQL	that	the	BuildSQLFromXMLNodes	method
generates	is	an	SQL	WHERE	clause	in	the	form	of	field	=	value.	The
XML	node	that	you	use	for	the	pXmlNode	argument	should	be	a
descendant	of	the	dfs:queryFields	node;	when	you	have	the	SQL
command	text	fragment,	you	can	add	it	to	the	existing	SQL	command
string	of	the	ADOAdapter	object	using	the	Command	property.

Example
In	the	following	example,	the	BuildSQLFromXMLNodes	method	of	the
ADOAdapter	object	is	used	to	create	an	SQL	command	text	fragment
based	on	a	specified	XML	node.	This	example	is	based	on	a	form	that
uses	the	Orders	table	in	the	Microsoft	SQL	Server	Northwind	sample
database.

function	QueryGreaterThan()
{
			var	objQueryFieldNode;
			var	strWhereClause;
			var	strOldCommand;
			var	objQueryFieldAttributes;
			var	objCurQueryFieldAttribute;

			//	Build	the	WHERE	clause	from	the	QueryFields	in	the	form's
			//	underlying	XML	DOM.
			objQueryFieldNode	=	XDocument.DOM
						.selectSingleNode("dfs:myFields/dfs:queryFields/q:Orders");
			strWhereClause	=	XDocument.QueryAdapter
						.BuildSQLFromXMLNodes(objQueryFieldNode);

			//	Replace	the	'='	signs	with	'>=',	and	append	the	clause	to	
			//	the	SQL	command	text.
			strWhereClause	=	strWhereClause.replace(/=/,	">=");
			strOldCommand	=	XDocument.QueryAdapter.Command;
	
			if	(strWhereClause	!=	"")
			{
						XDocument.QueryAdapter.Command	=	strOldCommand	+	
									"	where	"	+	strWhereClause;
			}

	
			//	Clear	the	QueryFields	so	the	WHERE	clause	isn't	
			//	automatically	generated.
			objQueryFieldAttributes	=	objQueryFieldNode.attributes;
			while	(objCurQueryFieldAttribute	=	objQueryFieldAttributes.nextNode())
			{
						objCurQueryFieldAttribute.text	=	"";
			}
	
			//	Perform	the	query.
			try
			{
						XDocument.Query();
			}
			catch	(e)
			{
						XDocument.UI.Alert("Failed	to	query.\n\n"	+	e.message);
			}
	
			//	Reset	the	command	so	that	subsequent	queries	are	based	on	
			//	the	correct	SQL	command	text	string.
			XDocument.QueryAdapter.Command	=	strOldCommand;

			//	Clean	up.
			objQueryFieldNode	=	null;
			strWhereClause	=	null;
			strOldCommand	=	null;
			objQueryFieldAttributes	=	null;
			objCurQueryFieldAttribute	=	null;

}

Show	All

CacheSolution	Method	(Application	Object)

Examines	the	form	template	in	the	cache	and,	if	necessary,	updates	it
from	the	published	location	of	the	form	template.

expression.CacheSolution(ByVal	bstrSolutionURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

bstrSolutionURI				Required	String.	The	string	that	specifies	the	Uniform
Resource	Identifier	(URI)	of	the	form	template.	This	parameter	can	be
specified	as	a	form	definition	(.xsf)	file	or	a	form	template	(.xsn)	file.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	that	currently	exists	in	the	cache	matches	the	form
template	from	the	published	location,	no	caching	takes	place.	If	the
computer	is	offline	and	the	form	is	already	in	the	cache,	the	cache	is	kept
and	no	update	will	occur.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	Visual	Basic	for	Applications	(VBA)	example,	the
CacheSolution	method	of	the	Application	object	is	used	to	cache	a
form	template:

Public	Sub	CacheFormTemplate()

			Dim	I	As	Integer
			Dim	objApp	As	Object
			Dim	aryForms(2)	As	String

			'	Create	a	reference	to	the	Application	object.
			Set	objApp	=	CreateObject("InfoPath.Application")

			'	Populate	the	array	with	form	template	locations.
			aryForms(0)	=	"\\MyServer\MyForms\MyForm.xsn"
			aryForms(1)	=	"\\MyServer\MyForms\manifest.xsf"

			'	Loop	through	the	array	and	cache	the	form	templates.
			For	I	=	0	To	UBound(aryForms)	-	1
						objApp.CacheSolution(aryForms(I))
			Next	I

End	Sub

Show	All

CacheSolution	Method	(ExternalApplication	Object)

Examines	the	form	template	in	the	cache	and,	if	necessary,	updates	it
from	the	published	location	of	the	form	template.

expression.CacheSolution(ByVal	bstrSolutionURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrSolutionURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	the	form	template.	This	parameter
can	be	specified	as	a	form	definition	(.xsf)	file	or	a	form	template	(.xsn)
file

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	that	currently	exists	in	the	cache	matches	the	form
template	from	the	published	location,	no	caching	takes	place.	If	the
computer	is	offline	and	the	form	is	already	in	the	cache,	the	cache	is	kept
and	no	update	will	occur.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	CacheSolution	method
of	the	ExternalApplication	object	is	used	to	cache	a	form	template:

Public	Sub	CacheFormTemplate()

			Dim	I	As	Integer
			Dim	objExternalApp	As	Object
			Dim	aryForms(2)	As	String

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objExternalApp	=	CreateObject("InfoPath.ExternalApplication")

			'Populate	the	array	with	form	template	locations.
			aryForms(0)	=	"\\MyServer\MyForms\MyForm.xsn"
			aryForms(1)	=	"\\MyServer\MyForms\manifest.xsf"

			'Loop	through	the	array	and	cache	the	form	templates.
			For	I	=	0	To	UBound(aryForms)	-	1
						objExternalApp.CacheSolution(aryForms(I))
			Next	I

End	Sub

Show	All

CacheSolution	Method	(Index)

The	CacheSolution	method	examines	the	form	template	in	the	cache
and,	if	necessary,	updates	it	from	the	published	location	of	the	form
template.	This	method	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	collections.	Click	a	CacheSolution	method
link	below	to	view	the	Help	topic	for	a	specific	implementation	of	the
CacheSolution	method.

CacheSolution	method	as	it	applies	to	the	Application	object.

CacheSolution	method	as	it	applies	to	the	ExternalApplication	object.

Show	All

Close	Method	(ExternalApplication	Object)

Closes	the	specified	Microsoft	Office	InfoPath	2003	form.

expression.Close(ByVal	bstrDocumentURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrDocumentURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	a	form.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	Close	method	closes	the	currently	open	form	without	quitting	the
InfoPath	application.	When	using	the	Close	method,	the	form	is	closed
unconditionally,	meaning	that	any	changes	made	to	the	data	in	the	form
are	not	saved.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	Close	method	of	the
ExternalApplication	object	is	used	to	close	the	currently	open	form:

Public	Sub	AutomateInfoPathForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Open	an	InfoPath	form.
			objIP.Open	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	opened.")

			'Close	the	InfoPath	form.
			objIP.Close	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	closed.")

			'Quit	the	InfoPath	application.
			objIP.Quit
			MsgBox	("The	InfoPath	application	has	been	closed.")

			Set	objIP	=	Nothing

End	Sub

Close	Method	(Index)

The	Close	method	closes	the	item	associated	with	the	specified
collection	or	object.	This	method	is	implemented	in	several	Microsoft
Office	InfoPath	2003	object	model	collections	and	objects.	Click	a	Close
method	link	below	to	view	the	Help	topic	for	a	specific	implementation	of
the	Close	method.

Close	method	as	it	applies	to	the	ExternalApplication	object.

Close	method	as	it	applies	to	the	Window	object.

Close	method	as	it	applies	to	the	XDocuments	collection.

Show	All

Close	Method	(Window	Object)

Closes	the	window	that	is	represented	by	the	Window	object.

expression.Close([ByVal	bForce	As	Boolean])

expression				Required.	An	expression	that	returns	a	reference	to	the
Window	object.

bForce	Optional	Boolean.	Default	value	is	False.	Determines	whether
open	documents	will	be	saved.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Close	method	will	close	the	associated	window	and	the	forms	that	it
contains.	If	the	bForce	parameter	is	set	to	True,	all	forms	will	be	closed
without	saving,	even	if	they	contain	changes	since	they	were	last	saved.
If	set	to	False,	users	will	be	prompted	to	save	their	changes.

The	Close	method	can	be	used	only	with	the	editing	window	types;	if
used	with	a	designing	window	type,	it	will	return	an	error.	In	addition,	the
Close	method	can	only	be	used	with	the	OnSubmitRequest	and	OnClick
event	handlers.	If	used	with	any	other	type	of	event	handler,	it	will	return
an	error.

Note		If	the	window	being	closed	is	the	only	window	open	in	Microsoft
Office	InfoPath	2003,	the	InfoPath	application	will	also	be	closed.

Example
In	the	following	example,	the	Close	method	of	the	Window	object	is
used	to	close	the	currently	active	window,	forcing	a	save	if	changes	in	the
form	have	occurred:

Application.ActiveWindow.Close(false);

Show	All

Close	Method	(XDocuments	Collection)

Closes	the	specified	Microsoft	Office	InfoPath	2003	form.

expression.Close(ByVal	varIndex	As	Variant)

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

varIndex	Required	Variant.	The	string	value	that	specifies	the	Uniform
Resource	Identifier	(URI)	of	a	form,	a	long	integer	value	that	specifies	the
positional	index	of	an	XDocument	object	within	the	XDocuments
collection,	or	a	reference	to	an	XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Close	method	closes	the	currently	open	form	without	quitting	the
InfoPath	application.	The	form	is	closed	unconditionally,	meaning	that
any	changes	made	to	the	data	in	the	form	are	not	saved.

Example
In	the	following	example,	the	Close	method	of	the	XDocuments
collection	is	used	to	close	the	currently	open	form	using	the	positional
index	of	an	XDocument	object	contained	in	the	collection:

Application.XDocuments.Close(0);

Alternatively,	you	can	pass	a	reference	to	an	XDocument	object:

var	objXDoc;

objXDoc	=	Application.XDocuments(0);
Application.XDocuments.Close(objXDoc);

Confirm	Method

Displays	a	message	box	with	buttons	for	input	from	a	user.	The	value	that
is	returned	is	one	of	the	XdConfirmChoice	enumerated	constants.

expression.Confirm(prompt	As	String,	buttons	As	XdConfirmButtons)
As	XdConfirmChoice

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object

bstrPrompt				Required	String.	The	text	message	to	be	displayed.

lButtons				Required	XdConfirmButtons.	Specifies	the	number	and	type
of	buttons	to	display.	You	may	specify	any	of	the	values	of	the
XdConfirmButtons	enumeration.

Security
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Remarks

Example
In	the	following	example,	the	Confirm	method	of	the	UI	object	is	used	to
display	a	dialog	box	with	Yes	and	No	buttons:

XDocument.UI.Confirm("Do	you	wish	to	continue?",	4);
						

Create	Method

Creates	a	new	Signature	object.	This	method	can	be	called	only	from
the	OnSign	event	handler.

expression.Create()

expression				Required.	An	expression	that	returns	a	Signatures
collection.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	digital	signature	in	not	actually	written	to	the	file	until	the	Sign
method	is	called	for	the	newly	created	Signature	object.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

CreateDOM	Method

Creates	a	new	instance	of	the	XML	Document	Object	Model	(DOM)	in
memory.

expression.CreateDOM()	As	XMLDOMDocument

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

returns				A	reference	to	the	XML	DOM.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Using	the	CreateDOM	method	to	create	an	instance	of	the	XML	DOM	is
equivalent	to	using	the	following	method	of	creating	a	Microsoft	XML
Core	Services	(MSXML)	5.0	DOMDocument	object:

var	objDoc	=	new	ActiveXObject("Msxml2.DOMDocument.5.0");
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	CreateDOM	method	of	the	XDocument
object	is	used	to	create	an	instance	of	XML	DOM	and	assign	it	to	a
variable.

var	objDOM	=	XDocument.CreateDOM();

Show	All

Delete	Method

Deletes	the	specified	Error	object	from	the	Errors	collection.

expression.Delete(ByVal	varNode	As	Variant,	ByVal
bstrConditionName	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
Errors	collection.

varNode	Required	Variant.	The	XML	Document	Object	Model	(DOM)
node	associated	with	the	error.

bstrConditionName	Required	String.	The	name	of	the	error.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Delete	method	deletes	all	the	Error	objects	in	the	Errors	collection
that	are	associated	with	the	specified	XML	node	and	that	have	the	same
name.	To	delete	all	of	the	Error	objects	contained	in	the	Errors
collection,	use	the	DeleteAll	method.

Note		The	Delete	method	will	only	delete	errors	that	were	created	using
the	Add	method	of	the	Errors	collection.	It	cannot	be	used	to	delete
errors	that	occur	because	of	schema	or	data	validation	constraints,	or
errors	that	were	created	using	the	ReportError	method	of	the
DataDOMEvent	object.

Example
In	the	following	example,	the	Delete	method	of	the	Errors	collection	is
used	to	delete	all	the	errors	based	on	their	associated	XML	node	and
name:

XDocument.Errors.Delete(MyXMLNode,	"ValidationError");

DeleteAll	Method

Deletes	all	of	the	Error	objects	contained	in	the	Errors	collection.

expression.DeleteAll()

expression				Required.	An	expression	that	returns	a	reference	to	the
Errors	collection.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
To	delete	a	specific	Error	object	from	the	Errors	collection,	use	the
Delete	method.

Note		Unlike	the	Delete	method	that	will	only	delete	errors	that	were
created	using	the	Add	method	of	the	Errors	collection,	the	DeleteAll
method	will	delete	all	errors	in	the	Errors	collection,	regardless	of	how
they	were	created.

Example
In	the	following	example,	the	DeleteAll	method	of	the	Errors	collection	is
used	to	delete	all	the	errors	that	it	contains:

XDocument.Errors.DeleteAll();

DisableAutoUpdate	Method

Disables	automatic	synchronization	between	a	form's	underlying	XML
document	and	the	associated	View	object.

expression.DisableAutoUpdate()

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	views	in	a	Microsoft	Office	InfoPath	2003	form	are	automatically
synchronized	with	the	data	that	is	contained	in	a	form's	underlying	XML
document.	You	can	override	this	by	using	the	DisableAutoUpdate
method.	You	may	need	to	do	this	for	performance	reasons,	such	as	when
you	are	programatically	making	many	changes	to	a	form's	underlying
XML	document	and	you	do	not	want	the	view	to	be	refreshed	until	the
changes	are	complete.

Automatic	synchronization	can	be	enabled	using	the	EnableAutoUpdate
method	of	the	View	object.

Example
In	the	following	example,	the	DisableAutoUpdate	method	of	the	View
object	is	used	to	disable	synchronization	between	a	form's	underlying
XML	document	and	the	view	that	it	is	associated	with:

XDocument.View.DisableAutoUpdate();

Enable	Method

Defines	a	method	that	must	be	provided	by	the	developer	for	InfoPath	to
call	when	it	needs	to	enable	or	disable	an	instance	of	the	control	in	a
view.

expression.Enable(vfEnabled	As	Boolean)

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControl	object.

vfEnabled				Required.	A	Boolean	value	that	specifies	whether	the
control	is	enabled.

Remarks
InfoPath	will	call	the	Enable	method	to	enable	or	disable	the	control,
such	as	when	the	view	is	being	refreshed	or	closed,	when	the	document
is	signed	and	should	not	be	edited,	or	when	rules	are	applied	to	the	form
that	must	disable	the	control.

The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111251033

EnableAutoUpdate	Method

Enables	automatic	synchronization	between	a	form's	underlying	XML
document	and	the	associated	View	object.

expression.EnableAutoUpdate()

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	views	in	a	Microsoft	Office	InfoPath	2003	form	are	automatically
synchronized	with	the	data	that	is	contained	in	a	form's	underlying	XML
document.	However,	this	can	be	overridden	using	the
DisableAutoUpdate	method.	To	re-enable	synchronization,	use	the
EnableAutoUpdate	method.

Example
In	the	following	example,	the	EnableAutoUpdate	method	of	the	View
object	is	used	to	enable	synchronization	between	a	form's	underlying
XML	document	and	the	view	that	it	is	associated	with:

XDocument.View.EnableAutoUpdate();

Eval	Method

Returns	a	Variant	containing	the	set	of	results	calculated	when	the
expression	is	applied	to	each	set	of	elements	in	the	context.

expression.Eval(ByVal	nodeList	As	IXMLDOMNodeList,	ByVal
bstrExpression	as	String)	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Math	object.

nodeList				Required	IXMLDOMNodeList.	The	node	that	sets	the
context	for	the	expression.

bstrExpression				Required	String.	The	expression	to	be	applied	to
each	set	of	nodes	in	the	specified	context.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	maxCost	is	set	to	the	largest	cost
value,	where	cost	is	calculated	by	multiplying	price	by	quantity.

var	nodes	=	XDocument.DOM.selectNodes("/my:items/my:item");
var	maxCost	=	XDocument.Util.Math.Max(XDocument.Util.Math.Eval

Show	All

ExecuteAction	Method

Executes	a	Microsoft	Office	InfoPath	2003	editing	command	against	a
form's	underlying	XML	document,	based	on	the	data	selected	in	the	view
that	is	associated	with	the	View	object.

expression.ExecuteAction(ByVal	bstrAction	As	String,	[ByVal
varXmlToEdit	As	Variant])

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

bstrAction	Required	String.	The	name	of	the	editing	action	to	perform.

varXmlToEdit	Optional	Variant.	The	name	of	the	field	or	group	to	which
to	apply	the	editing	action.	This	is	equivalent	to	the	value	of	the	name
attribute	in	the	xmlToEdit	element	of	the	form	definition	(.xsf)	file.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	ExecuteAction	method	is	used	to	programmatically	perform	built-in
InfoPath	editing	actions	against	a	form's	underlying	XML	document,
based	on	the	selected	context	in	a	view.

The	action	that	is	executed	will	be	the	same	action	that	would	be	used
when	clicking	on	an	equivalent	menu	or	toolbar	button;	namely	one	for
which	the	button	element	in	the	.xsf	file	has	corresponding	xmlToEdit
and	action	attributes.	As	with	using	a	button,	the	action	will	be	based	on
current	selection:	it	will	act	on	the	selected	context	(and	in	the	case
where	the	selection	would	lead	the	button	to	be	disabled,	then	the
ExecuteAction	method	will	have	no	effect).

Note		It	is	possible	with	scripting	code	to	first	set	the	selection	context	by
using	the	SelectNodes	or	SelectText	methods	of	the	View	object,	then
calling	the	ExecuteAction	method	to	act	on	that	context.

The	ExecuteAction	method	will	return	an	error	for	the	following	reasons:

The	bstrAction	parameter	does	not	contain	a	valid	editing	component
name.

The	varXmlToEdit	parameter	does	not	match	an	editing	component	that
is	defined	in	the	view.

The	varXmlToEdit	parameter	is	required	for	a	specific	editing	action.

The	editing	action	is	not	applicable	to	the	selected	context.

Valid	parameter	combinations

Note		In	some	cases,	calling	the	ExecuteAction	method	from	the
OnClick	event	for	a	button	in	a	view	may	cause	an	error.	This	is	because
the	selected	context	changes	to	the	button	when	the	button	is	clicked.	In
this	case,	it	is	better	to	use	a	button	(or	link)	on	a	custom	task	pane,
toolbar,	or	menu	to	call	the	ExecuteAction	method.

Example
In	the	following	example,	the	ExecuteAction	method	of	the	View	object
is	used	to	delete	selected	data	and	place	it	on	the	clipboard:

XDocument.View.ExecuteAction("Cut");

In	the	following	example,	the	ExecuteAction	method	of	the	View	object
is	used	to	insert	data	using	the	xCollection	editing	component,	based	on
the	selected	context:

XDocument.View.ExecuteAction("xCollection::insert",	"group1_1");

Export	Method

Exports	the	view	to	a	file	of	the	specified	format.

expression.Export(ByVal	bstrURL	As	String,	ByVal	bstrFormat	As
String)

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

bstrURL	Required	String.	The	directory	location	that	the	exported	view
file	will	be	written	to.

bstrFormat	Required	String.	The	type	of	file	format	to	export	to.	Only
the	"MHT"	value	is	supported.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	used	in	a	form	that	is	not	fully	trusted,	the	Export	method	will	return	a
"permission	denied"	error.

Example
In	the	following	example,	the	Export	method	of	the	View	object	is	used
to	export	the	current	view:

XDocument.View.Export("C:\\MyView",	"MHT");

Show	All

ForceUpdate	Method

Forces	synchronization	between	a	form's	underlying	XML	document	and
the	associated	View	object.

expression.ForceUpdate()

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	views	in	a	Microsoft	Office	InfoPath	2003	form	are	automatically
synchronized	with	the	data	that	is	contained	in	a	form's	underlying	XML
document.	However,	you	can	force	synchronization	to	occur	using	the
ForceUpdate	method.	This	is	also	useful	when	data	in	a	secondary	data
source	has	changed	and	needs	to	be	refreshed	in	the	view.

Automatic	synchronization	can	be	disabled	using	the
DisableAutoUpdate	method	and	enabled	using	the	EnableAutoUpdate
method.

Example
In	the	following	example,	the	ForceUpdate	method	of	the	View	object	is
used	to	force	synchronization	between	a	form's	underlying	XML
document	and	the	view	that	it	is	associated	with:

XDocument.View.ForceUpdate();

Show	All

FormatString	Method

Formats	the	specified	string	or	XML	node	according	to	the	specified
category	and	options	parameters.

expression.FormatString(ByVal	varInput,	ByVal	bstrCategory	As
String,	ByVal	bstrOptions	As	String)	As	String

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

varInput	Required	String	or	XML	node.	The	string	value	or	XML	node	to
be	formatted.

bstrCategory	Required	String.	The	string	value	that	specifies	the
category	used	for	formatting.	Values	include	number,	percentage,
currency,	date,	time,	and	datetime.

bstrOptions	Required	String.	The	string	value	that	specifies	the	options
used	for	formatting.	Takes	the	form	of	a	case-sensitive	string	in	the
format	"optionName:value".

returns				String.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	FormatString	method	can	be	used	anywhere	in	your	scripting	code
in	which	you	need	to	change	the	format	of	a	specified	string.	It	must	be
qualified	with	the	Application	object	name,	and	its	return	value	must	be
assigned	to	a	variable	or	used	as	an	expression	that	requires	a	string
value.

The	following	sections	list	the	values	that	may	be	used	for	the
bstrCategory	and	bstrOptions	parameters:

List	of	categories

List	of	options

Example
In	the	following	example,	the	FormatString	method	of	the	Application
object	is	used	to	format	the	specified	date	string	into	a	long	date	format:

Application.FormatString("2003-01-08",	"date",	"dateFormat:Long	Date");

Show	All

GenerateDataSetDiffGram	Method

Returns	an	XML	DataSet,	containing	an	inline	schema	describing	the
data	and	the	DataSet's	DiffGram.

expression.GenerateDataSetDiffGram(ByVal	pNode	As
IXMLDocumentObject)	As	IXMLDocumentObject

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

pNode				Required	IXMLDocumentObject.	An	XML	Document	Object
Model	(DOM)	node	that	contains	the	XML	data	of	the	DataSet	whose
DiffGram	will	be	created.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	DiffGram	for	the	input	pNode	is	generated	using	the	sibling	node
originalData	to	compute	the	difference	between	the	originalData	and	the
input	pNode.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

GetContextNodes	Method

Returns	a	reference	to	an	XMLNodes	collection	that	is	populated	with
XML	Document	Object	Model	(DOM)	nodes	based	on	the	current
context.	It	consists	of	the	sequence	of	XML	DOM	nodes	that	are	mapped
from	the	view,	corresponding	to	the	current	XSL	Transformation	(XSLT)
node,	starting	at	the	current	selection	and	walking	up	through	the	view
ancestors	to	the	BODY	tag.
expression.GetContextNodes([ByVal	varNode	As	Variant],	[ByVal
varViewContext	As	Variant])	As	XMLNodes

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

varNode	Optional	Variant.	An	XML	DOM	node.

varViewContext	Optional	Variant.	The	ID	of	the	control	that	is	used	for
the	context.

returns				A	reference	to	the	XMLNodes	collection.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	no	parameters	are	used,	the	context	nodes	are	based	on	the	current
selection.	If	parameters	are	used,	then	the	context	nodes	returned	are
those	that	would	be	returned	based	on	the	selection	that	would	be
obtained	from	calling	the	SelectNodes	method	of	the	View	object.

Example
In	the	following	partial	example	from	the	Structural	Editing	developer
sample	form,	the	GetContextNodes	method	of	the	View	object	is	used
to	return	a	collection	of	XML	DOM	nodes	based	on	the	current	context.
Then	the	code	loops	through	the	collection	of	XML	DOM	nodes	looking
for	a	particular	node.	When	it	is	found,	the	code	calls	the	custom
ApplyDiscountToItem	function	to	update	the	data	that	the	node	contains.

objContextNodes	=	XDocument.View.GetContextNodes();

//	Scan	the	list	of	context	nodes	for	an	item	node	and	if	one	is	found
//	apply	the	discount	to	it.
for	(var	i	=	0;	i	<	objContextNodes.Count;	i++)
{
			if	(objContextNodes.item(i).nodeName	==	"item")
			{
						ApplyDiscountToItem(objContextNodes.item(i),	intPercentage);
						blnAppliedDiscount	=	true;
						break;
			}
}

Show	All

GetDataVariable	Method

Returns	a	string	containing	the	value	of	the	specified	variable,	which	is	a
predefined	variable	stored	as	a	processing	instruction	attribute	in	the
form's	underlying	XML	document.

expression.GetDataVariable(ByVal	lVariableNumber	As	Long)	As	String

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

lVariableNumber	Required	Long.	The	number	of	the	variable.

returns				String.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	variable	is	not	defined	or	is	empty,	the	GetDataVariable	method	will
return	an	empty	string.	To	set	a	variable,	use	the	SetDataVariable
method	of	the	XDocument	object.

Note		InfoPath	only	supports	using	the	initialView	variable,	which	is	the
variable	used	to	specify	the	initial	view	displayed	when	a	form	is	opened.
The	number	of	this	variable	is	always	1,	and	its	value	must	be	the	name
of	a	view	within	the	form.

Example
In	the	following	example,	the	GetDataVariable	method	of	the
XDocument	object	is	used	to	return	the	value	of	the	first	variable:

var	strVariable1;
strVariable1	=	XDocument.GetDataVariable(1);

Show	All

GetDOM	Method

Returns	a	reference	to	the	XML	Document	Object	Model	(DOM)	of	the
specified	DataObject	object	associated	with	the	XDocument	object.

expression.GetDOM(ByVal	bstrName	As	String)	As	XMLDOMDocument

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

bstrName	Required	String.	The	name	of	a	DataObject	object.

returns				A	reference	to	an	XML	DOM	document	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	you	have	a	reference	to	the	XML	DOM	that	the	GetDOM	method
returns,	you	can	use	any	of	the	properties	and	methods	that	the	XML
DOM	supports	to	manipulate	the	data	that	the	DOM	contains.

Note		For	more	information	about	the	XML	DOM,	see	the	MSXML	5.0
SDK	documentation	in	the	Microsoft	Script	Editor	(MSE)	Help	system.

Example
In	the	following	example,	the	GetDOM	method	of	the	XDocument	object
is	used	to	set	a	reference	to	the	XML	DOM	that	it	returns,	which	in	this
case	is	the	DataObject	object	named	CityDropDownList:

var	objXml;

objXml	=	XDocument.GetDOM("CityDropDownList");

GetNamedNodeProperty	Method

Returns	the	value	of	a	named	property	for	the	specified	XML	node,	which
must	be	a	nonattribute	node	in	the	main	data	source.

expression.GetNamedNodeProperty(ByVal	varMainDOMNode	As
Variant,	ByVal	bstrPropertyName	As	String,	ByVal	bstrDefaultValue	As
String)	As	String

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

varMainDOMNode				Required	Variant.	An	XML	node	corresponding	to	a
nonattribute	node	in	the	main	data	source,	for	which	a	named	property	is
to	be	set.

bstrPropertyName	Required	String.	Specifies	the	name	of	the	property
whose	value	is	to	be	returned.

bstrDefaultValue	Required	String.	Specifies	the	default	value	to	be
returned	if	the	property	has	not	been	set.

returns				A	string	corresponding	to	the	current	value	of	the	named
property	for	the	specified	XML	node	in	the	main	data	source.	If	the
specified	property	has	not	been	set	for	this	XML	node,	the	specified
default	string	is	returned.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Named	properties	allow	users	to	associate	strings	with	user-defined
properties	of	XML	element	nodes	in	the	main	data	source.	The	value	of	a
named	property	can	be	set	by	using	the	SetNamedNodeProperty
method.	Use	the	GetNamedNodeProperty	method	to	read	the	value	of	a
named	property.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
The	following	example	demonstrates	setting	and	getting	the	value	of	a
named	property	(with	the	name	"cost")	of	an	XML	node	(called	"item"):

var	objXMLNode	=	XDocument.DOM.selectSingleNode("/items/item");

var	strTest	=	XDocument.GetNamedNodeProperty(objXMLNode,	'cost',	'Value	not	set');

//	The	value	of	the	"cost"	named	property	is	set	to	100.
XDocument.SetNamedNodeProperty(objXMLNode,	'cost',	'100');

strTest	=	XDocument.GetNamedNodeProperty(objXMLNode,	'cost',	'Value	not	set');

In	the	following	XSL	example,	the	"cost"	named	property	of	the	item	node
is	displayed:

<xsl:value-of	select="xdXDocument:GetNamedNodeProperty(item,	'cost',	'empty')"/>

Show	All

GetSelectedNodes	Method

Returns	a	reference	to	an	XMLNodes	collection	that	is	populated	with
XML	Document	Object	Model	(DOM)	nodes	based	on	the	current
selection	of	items	in	a	view.

expression.GetSelectedNodes()	As	XMLNodes

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

returns				A	reference	to	the	XMLNodes	collection.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	no	items	are	selected	in	a	view,	or	if	only	text	is	selected,	then	the
GetSelectedNodes	method	returns	an	empty	collection.

Example
In	the	following	example,	the	GetSelectedNodes	method	of	the	View
object	is	used	to	set	a	reference	to	a	collection	of	XML	DOM	nodes
based	on	what	is	currently	selected	in	the	view.	Then	the	code
determines	whether	nodes	were	returned	and,	if	they	were,	displays
information	about	the	first	node	found	in	the	XMLNodes	collection	in	a
message	box.

objXMLNodes	=	XDocument.View.GetSelectedNodes();

if	(objXMLNodes.Count	>	0)
{
			XDocument.UI.Alert(objXMLNodes(0).nodeName	+	"\n\n"	+	objXMLNodes(0).text);
}

ImportDOM	Method

Imports	the	specified	XML	data	into	the	current	form.

expression.ImportDOM(ByVal	pxDoc	As	IXMLDocumentObject)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

pxDoc				Required	IXMLDocument.	The	XML	data	that	is	to	be	imported
(merged)	into	the	currently	open	form.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Using	the	object	model	to	import	a	form	programmatically	is	equivalent	to
performing	a	merge	operation	using	the	Merge	Forms	command	on	the
File	menu	in	InfoPath.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	ImportDOM	method	of	the	XDocument
object	is	used	to	import	a	form	from	the	OnMergeRequest	event	handler:

XDocument::OnMergeRequest(eventObj)	
{
				XDocument.ImportDOM(eventObj.DOM);
				eventObj.ReturnStatus	=	true;
}

Show	All

ImportFile	Method

Imports	the	specified	form	into	the	current	form.

expression.ImportFile(ByVal	bstrFileURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

bstrFileURI	Required	String.	The	Uniform	Resource	Identifier	(URI)	of
the	form	that	is	to	be	imported	(merged)	into	the	currently	open	form.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Using	the	object	model	to	programmatically	import	a	form	is	equivalent	to
performing	a	merge	operation	in	the	user	interface.

Example
In	the	following	example,	the	ImportFile	method	of	the	XDocument
object	is	used	to	import	a	form:

XDocument.ImportFile("C:\SomeOtherForm.xml");

Init	Method

Defines	a	method	that	must	be	provided	by	the	developer	to	perform	any
initialization	routines	required	when	an	instance	of	the	control	is	added	to
an	InfoPath	form.

expression.Init(pControlSite	As	InfoPathControlSite)

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControl	object.

pControlSite				Required.	An	instance	of	the	InfoPathControlSite
object.

Remarks
InfoPath	calls	the	Init	method	when	a	user	adds	an	instance	of	the
control	to	a	view.	InfoPath	passes	an	instance	of	the
InfoPathControlSite	object	to	the	Init	method	when	the	control	is
initialized.	The	InfoPathControlSite	object	provides	the	Node	property
that	provides	access	to	the	XML	DOM	node	to	which	the	control	is
bound,	and	the	XDocument	property	for	accessing	the	XDocument
object	associated	with	a	form,	which	in	turn	provides	access	to	the	full
InfoPath	object	model.

The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011039801033

Show	All

IsCurrentUser	Method

Returns	True	if	the	current	user	matches	the	specified	user	name.

expression.IsCurrentUser(ByVal	bstrUsername	As	String)	As	Boolean

expression				Required.	An	expression	that	returns	a	reference	to	the
User	object.

bstrUsername				Required	String.	The	user	name	in	the	format	of
"domain\username."

returns				A	Boolean	value	indicating	whether	the	specified	user	name
matches	the	name	of	the	current	user.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Even	though	the	IsCurrentUser	method	is	marked	as	security	level	0,	it
is	not	always	accessible.	When	a	call	is	made	to	the	IsCurrentUser
method,	InfoPath	first	performs	a	security	check	to	determine	if	access	to
this	method	is	allowed.	The	security	check	confirms	whether	the	calling
code	is	trusted	or	not	and	it	determines	the	location	of	the	calling	code.

If	the	calling	code	is	trusted	(as	it	is	when,	for	example,	the
IsCurrentUser	method	is	called	from	an	installed	or	signed	InfoPath	form
template,	or	from	trusted	external	code,	such	as	an	executable	file	on	the
local	computer),	InfoPath	will	allow	full	access	to	the	IsCurrentUser
method.

If	the	calling	code	is	not	trusted	(as	in	the	circumstance	of	a	call	coming
from	a	domain-based	InfoPath	form	template	or	from	script	executing	in
Microsoft	Internet	Explorer),	InfoPath	first	checks	where	the	call	is	being
made	from.	If	the	call	is	from	code	that	is	not	trusted	in	an	InfoPath	form
template	at	a	URL	such	as	"http://www.contoso.com/example.xsn",	then
the	call	is	from	the	Internet	zone.	InfoPath	denies	access	to	the
IsCurrentUser	method	for	all	calls	that	are	not	trusted	coming	from	the
Internet	zone.	If	the	call	is	from	a	URL	such	as
"http://contoso/example.xsn",	then	the	call	is	from	the	Intranet	zone.	For	a
call	that	is	not	trusted	from	the	Intranet	zone,	InfoPath	checks	whether
the	Internet	Explorer	user	authentication	settings	allow	automatic	logon
(in	the	Intranet	zone	only	or	for	every	logon).	If	Internet	Explorer	is
configured	for	automatic	logon,	then	InfoPath	allows	full	access	to	the
IsCurrentUser	method.	Otherwise,	access	to	the	IsCurrentUser	method
is	denied.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	IsCurrentUser	method	of	the	User	object	is
used	to	determine	if	the	current	user	equals	"UserDomain\NancyDavilio".

var	fUserMatched;
fUserMatched	=	Application.User.IsCurrentUser("UserDomain\NancyDavolio")

Show	All

IsDestinationReachable	Method

Returns	a	Boolean	value	indicating	whether	the	specified	Uniform
Resource	Locator	(URL),	universal	naming	convention	(UNC)	path,	or	IP
address	of	the	destination	computer	can	be	connected	to	from	the	client
computer.

expression.IsDestinationReachable(ByVal	bstrDestination	As	String,
[ByVal	bstrBehavior	As	String)	As	Boolean

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

bstrDestination				Required	String.	Specifies	the	location	to	check	for
network	connectivity.	IP	addresses,	a	UNC	paths,	or	a	URLs	are
acceptable	values.

returns				A	Boolean	value	indicating	whether	the	destination	is
reachable.	True	if	the	specified	destination	can	be	connected	to;
otherwise,	False.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Note		If	an	IP	address	is	specified,	the	security	level	for	this	method
becomes	level	3.	It	is	not	possible	to	determine	the	domain	from	the	IP
address,	therefore	the	caller	must	have	the	full	trust	permission.

Remarks
For	UNC	and	URL	strings,	valid	values	are	those	including	only	the
server	name,	for	example	http://MyServer	or	\\MyServer.	Values	such	as
http://MyServer/MyVirtualDirectory	or	\\MyServer\MyShare	are	not
considered	valid.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

IsUserMemberOf	Method

Returns	a	Boolean	value	that	indicates	whether	the	current	user	is	a
member	of	the	specified	group.

expression.IsUserMemberOf(ByVal	bstrGroupname	As	String)	As
Boolean

expression				Required.	An	expression	that	returns	a	reference	to	the
User	object.

bstrGroupname				Required	String.	The	group	name	in	the	format	of
"domain\groupname."

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Even	though	the	IsUserMemberOf	method	is	marked	as	security	level	0,
it	is	not	always	accessible.	When	a	call	is	made	to	the	IsUserMemberOf
method,	InfoPath	first	performs	a	security	check	to	determine	if	access	to
this	method	is	allowed.	The	security	check	confirms	whether	the	calling
code	is	trusted	or	not	and	it	determines	the	location	of	the	calling	code.

If	the	calling	code	is	trusted	(as	it	is	when,	for	example,	the
IsUserMemberOf	method	is	called	from	an	installed	or	signed	InfoPath
form	template,	or	from	trusted	external	code,	such	as	an	executable	file
on	the	local	computer),	InfoPath	will	allow	full	access	to	the
IsUserMemberOf	method.

If	the	calling	code	is	not	trusted	(as	in	the	circumstance	of	a	call	coming
from	a	domain-based	InfoPath	form	template	or	from	script	executing	in
Microsoft	Internet	Explorer),	InfoPath	first	checks	where	the	call	is	being
made	from.	If	the	call	is	from	code	that	is	not	trusted	in	an	InfoPath	form
template	at	a	URL	such	as	"http://www.contoso.com/example.xsn",	then
the	call	is	from	the	Internet	zone.	InfoPath	will	deny	access	to	the
IsUserMemberOf	method	for	all	calls	that	are	not	trusted	coming	from
the	Internet	zone.	If	the	call	is	from	a	URL	such	as
"http://contoso/example.xsn",	then	the	call	is	from	the	Intranet	zone.	For	a
call	that	is	not	trusted	from	the	Intranet	zone,	InfoPath	checks	whether
the	Internet	Explorer	user	authentication	settings	allow	automatic	logon
(in	the	Intranet	zone	only	or	for	every	logon).	If	Internet	Explorer	is
configured	for	automatic	logon,	then	InfoPath	checks	the	user's	group
membership.	If	the	group	membership	is	public,	InfoPath	allows	full
access	to	the	IsUserMemberOf	method.	If	the	group	membership	is	not
fully	public,	InfoPath	hides	the	result.	That	is,	InfoPath	treats	the	group
membership	as	if	it	were	not	visible.	The	return	value	in	this	case	is
always	False	because	the	group	membership	is	not	public.	InfoPath	does
not	report	that	access	is	denied.

Note		Group	membership	information	is	fully	public	if	access	to	it	is
allowed	and	the	information	is	visible	by	all	non-anonymous	users.	If
even	a	single	non-anonymous	user	has	been	specifically	denied	access
to	membership	information,	then	the	group	membership	information	is	not

fully	public.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	IsUserMemberOf	method	of	the	User
object	is	used	to	determine	if	the	current	user	is	a	member	of	the
"GroupDomain\Administrators"	group.

var	fGroupMatched;
fGroupMatched	=	Application.User.IsUserMemberOf("GroupDomain\Administrators")

Match	Method

Returns	a	Boolean	value	that	indicates	whether	the	test	matches	the
specified	pattern.

expression.Match(ByVal	bstrValue	As	String,	ByVal	bstrPattern	As
String)	As	Boolean

bstrValue				Required	String.	The	string	to	test	against	the	pattern.

bstrPattern				Required	String.	The	pattern	to	use.

returns				A	Boolean	value	that	indicates	whether	the	string	matches	the
pattern.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
The	Match	method	can	be	used	to	test	any	string	against	a	regular
expression.	The	regular	expression	must	conform	to	the	W3C's	XML
Schema	specification	for	regular	expressions
(http://www.w3.org/TR/xmlschema-2/#regexs).

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Note			The	XML	Schema	specification	for	regular	expressions	is	different
from	regular	expressions	in	Perl.

Example
In	the	following	example,	the	variable	isSSNValid	is	set	to	a	value	that
indicates	whether	or	not	the	value	stored	in	the	my:SSN	node	is	a	legal
Social	Security	Number:

var	SSN	=	XDocument.DOM.selectSingleNode(“//my:SSN”);
var	isSSNValid	=	XDocument.Util.Match(SSN.text,	"\\d\\d\\d-\\d\\d-\\d\\d\\d\\d");

Max	Method

Returns	a	Variant	that	is	the	largest	value	of	all	of	the	numerical
elements	in	a	node	set.

expression.Max(ByVal	pxmllistInput	As	IXMLDOMNodeList)	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Math	object.

pxmllistInput	Required	IXMLDOMNodeList.	The	node	set	to	search	for
the	largest	value.

returns				A	Variant	that	represents	the	largest	value	of	all	the	numerical
elements	in	a	node	set.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	maxAge	is	set	to	the	maximum	value	of	all	of
the	numerical	elements	in	the	my:ages	node	set:

var	ages	=	XDocument.DOM.selectNodes("//my:ages");
var	maxAge	=	XDocument.Util.Math.Max(ages);

Min	Method

Returns	a	Variant	that	is	the	smallest	value	of	all	of	the	numerical
elements	in	a	node	set.

expression.Min(ByVal	pxmllistInput	As	IXMLDOMNodeList)	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Math	object.

pxmllistInput				Required	IXMLDOMNodeList.	The	node	set	to	search
for	the	smallest	value.

returns				A	Variant	that	represents	the	smallest	value	of	all	the	numerical
elements	in	a	node	set.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	minAge	is	set	to	the	minimum	value
of	all	of	the	numerical	elements	in	the	my:ages	node	set:

var	ages	=	XDocument.DOM.selectNodes("//my:ages");
var	maxAge	=	XDocument.Util.Math.Min(ages);

Show	All

Navigate	Method

Loads	the	specified	HTML	document	into	the	Microsoft	Office	InfoPath
2003	custom	task	pane.

expression.Navigate(ByVal	bstrURL	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
HTMLTaskPane	object.

bstrURL	Required	String.	The	Uniform	Resource	Locator	(URL)	of	the
HTML	document	to	navigate	to.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Navigate	method	of	the	HTMLTaskPane	object	is	one	of	the
methods	inherited	by	the	TaskPane	object	when	the	type	of	the	task
pane	is	0,	which	means	that	it	is	the	custom	task	pane.

Note		The	Navigate	method	cannot	be	called	during	an	OnLoad	event
because	the	view	is	not	yet	loaded	when	this	event	occurs,	and	task
panes	are	associated	with	the	view.

Example
In	the	following	example,	the	Navigate	method	of	the	HTMLTaskPane
object	is	used	to	load	an	HTML	document	into	the	custom	task	pane.	The
HTML	document	that	it	loads	is	one	that	is	included	in	the	form	files	of	the
form	template:

var	objTaskPane;

//	Set	a	reference	to	the	custom	task	pane.
objTaskPane	=	XDocument.View.Window.TaskPanes(0);
objTaskPane.Navigate("taskpane2.htm");

Show	All

New	Method	(ExternalApplication	Object)

Creates	a	new	Microsoft	Office	InfoPath	2003	form	based	on	a	specified
form.

expression.New(ByVal	bstrDocumentURI	As	String,	[ByVal	dwBehavior
As	Long	=	1])

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrDocumentURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	a	form.

dwBehavior	Optional	Long.	Default	value	is	1.	A	long	value	that
specifies	how	the	form	should	be	opened.	The	values	are	based	on	the
XdDocumentVersionMode	enumeration.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	New	method	can	be	used	to	only	create	a	new	form	based	on	an
existing	form;	it	cannot	be	used	to	create	a	new	form	based	on	a	form
template.	To	create	a	form	from	a	form	template,	use	the
NewFromSolution	method	of	the	ExternalApplication	object.

When	you	use	the	New	method,	InfoPath	is	opened	and	the	new	form	is
ready	to	be	filled	out.

Note		You	cannot	use	the	Close	method	of	the	ExternalApplication
object	to	close	a	from	that	has	been	opened	with	the	New	method.	When
the	New	method	creates	a	form,	the	name	of	that	form	is	not	yet	known.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	New	method	of	the
ExternalApplication	object	is	used	to	create	a	new	form	based	on	a
specified	form:

Public	Sub	CreateFromForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Create	an	InfoPath	form.
			objIP.New	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	created.")

			Set	objIP	=	Nothing

End	Sub

New	Method	(Index)

The	New	method	creates	a	new	item	based	on	a	form.	This	method	is
implemented	in	a	number	of	Microsoft	Office	InfoPath	2003	object	model
collections	and	objects.	Click	a	New	method	link	below	to	view	the	Help
topic	for	a	specific	implementation	of	the	New	method.

New	method	as	it	applies	to	the	ExternalApplication	object.

New	method	as	it	applies	to	the	XDocuments	collection.

Show	All

New	Method	(XDocuments	Collection)

Creates	a	new	Microsoft	Office	InfoPath	2003	form	based	on	the
specified	form.

expression.New(ByVal	varURI	As	Variant,	[ByVal	dwBehavior	As	Long	=
1])	As	XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

varURI	Required	Variant.	Specifies	the	Uniform	Resource	Identifier
(URI)	of	a	form.

dwBehavior	Optional	Long.	Default	value	is	1.	A	long	value	that
specifies	how	the	form	should	be	opened.	The	values	are	based	on	the
XdDocumentVersionMode	enumeration.

returns				A	reference	to	an	XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	New	method	can	only	be	used	to	create	a	new	form	based	on	an
existing	form;	it	cannot	be	used	to	create	a	new	form	based	on	a	form
template.	To	create	a	form	from	a	form	template,	use	the
NewFromSolution	method	of	the	XDocuments	collection.

When	you	use	the	New	method,	the	new	form	opens	in	InfoPath	and	is
ready	to	be	filled	out.

Note		If	you	use	the	optional	dwBehavior	argument	in	the	New	method,
you	can	only	pass	the	numerical	value	of	the	XdDocumentVersionMode
enumeration.	Because	InfoPath	uses	scripting	languages	for	working	with
the	object	model,	named	values	cannot	be	used.

Example
In	the	following	example,	the	New	method	of	the	XDocuments	collection
is	passed	the	URI	of	an	existing	form,	and	a	new	form	is	created	and	its
associated	XDocument	object	returned:

var	objXDoc;

objXDoc	=	Application.XDocuments.New("C:\\MyForm.xml");

Show	All

NewADODBConnection	Method

Creates	and	returns	a	reference	to	an	empty	ActiveX	Data	Objects	(ADO)
Connection	object.

expression.NewADODBConnection()	ADODB.Connection

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

returns				A	reference	to	an	ADO	Connection	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	is	not	fully	trusted,	the	NewADODBConnection	method	will
return	a	"permission	denied"	error.

Example
In	the	following	example,	the	NewADODBConnection	method	of	the
Application	object	is	used	to	set	a	reference	to	an	empty	ADO
Connection	object:

var	objADOConnection;

objADOConnection	=	Application.NewADODBConnection();

Show	All

NewADODBRecordset	Method

Creates	and	returns	a	reference	to	an	empty	ActiveX	Data	Objects	(ADO)
Recordset	object.

expression.NewADODBRecordset()	ADODB.Recordset

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

returns				A	reference	to	an	ADO	Recordset	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	is	not	fully	trusted,	the	NewADODBRecordset	method	will
return	a	"permission	denied"	error.

Example
In	the	following	example,	the	NewADODBRecordset	method	of	the
Application	object	is	used	to	set	a	reference	to	an	empty	ADO
Recordset	object:

var	objADORecordset;

objADORecordset	=	Application.NewADODBRecordset();

Show	All

NewFromSolution	Method	(ExternalApplication	Object)

Creates	a	new	Microsoft	Office	InfoPath	2003	form	based	on	the
specified	form	template.

expression.NewFromSolution(ByVal	bstrSolutionURI	As	String)

expression			Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrSolutionURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	a	form	template.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	NewFromSolution	method	can	be	used	only	to	create	a	new	form
based	on	an	existing	form	template;	it	cannot	be	used	to	create	a	new
form	based	on	an	existing	form.	To	create	a	form	from	an	existing	form,
use	the	New	method	of	the	ExternalApplication	object.

When	you	use	the	NewFromSolution	method,	InfoPath	is	opened	and
the	new	form	is	ready	to	be	filled	out.

Note		You	cannot	use	the	Close	method	of	the	ExternalApplication
object	to	close	a	from	that	has	been	opened	with	the	NewFromSolution
method.	When	the	NewFromSolution	method	creates	a	form,	the	name
of	that	form	is	not	yet	known.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	NewFromSolution
method	of	the	ExternalApplication	object	is	used	to	create	a	new	form
based	on	a	specified	form	template:

Public	Sub	CreateFromFormTemplate()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Create	an	InfoPath	form	from	a	form	template.
			objIP.NewFromSolution	("C:\My	Forms\MyFormTemplate.xsn")
			MsgBox	("The	InfoPath	form	has	been	created.")

			Set	objIP	=	Nothing

End	Sub

Show	All

NewFromSolution	Method	(Index)

The	NewFromSolution	method	creates	a	new	item	based	on	a	form
template.	This	method	is	implemented	in	a	number	of	Microsoft	Office
InfoPath	2003	object	model	collections	and	objects.	Click	a
NewFromSolution	method	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	NewFromSolution	method.

NewFromSolution	method	as	it	applies	to	the	ExternalApplication
object.

NewFromSolution	method	as	it	applies	to	the	XDocuments	collection.

Show	All

NewFromSolution	Method	(XDocuments	Collection)

Creates	a	new	Microsoft	Office	InfoPath	2003	form	based	on	the
specified	form	template.

expression.NewFromSolution(ByVal	varURI	As	Variant)	As	XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

varURI	Required	Variant.	Specifies	the	Uniform	Resource	Identifier
(URI)	of	a	form.

returns				A	reference	to	an	XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	NewFromSolution	method	can	only	be	used	to	create	a	new	form
based	on	an	existing	form	template;	it	cannot	be	used	to	create	a	new
form	based	on	a	form.	To	create	a	form	from	an	existing	form,	use	the
New	method	of	the	XDocuments	collection.

When	you	use	the	NewFromSolution	method,	the	new	form	opens	in
InfoPath	and	is	ready	to	be	filled	out.

Example
In	the	following	example,	the	NewFromSolution	method	of	the
XDocuments	collection	is	passed	the	URI	of	an	existing	form	template,
and	a	new	form	is	created	and	its	associated	XDocument	object
returned:

var	objXDoc;

objXDoc	=	Application.XDocuments.NewFromSolution("C:\\MyForm.xsn");

Show	All

NewFromSolutionWithData	Method

Creates	a	new	Microsoft	Office	InfoPath	2003	form	using	the	specified
XML	data	and	form	template.

expression.	NewFromSolutionWithData(ByVal	varXMLData	As	Variant,
ByVal	varSolutionURI	As	Variant,	[ByVal	dwBehavior	As	Long	=	1])	As
XDocument

expression				An	expression	that	returns	a	reference	to	an	XDocuments
collection.

varXMLData				Required	Variant.	Provides	the	XML	data	to	be	used	as	a
template	for	the	form.	Can	be	a	string	that	specifies	the	Uniform
Resource	Identifier	(URI)	of	an	XML	document,	or	an	XMLDOMNode	that
contains	the	XML	to	be	used	as	the	XML	document	(template).

varSolutionURI				Required	Variant.	String	which	specifies	the	Uniform
Resource	Identifier	(URI)	of	a	form	template	file	(an	.xsf	or	.xsn	file).

dwBehavior				Optional	Long.	Reserved	for	future	use.	This	value
should	be	omitted	or	set	to	1.

returns				A	reference	to	an	XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	following	related	methods	of	the	XDocuments	collection	are	also
available:

The	New	method	enables	creating	a	new	instance	of	InfoPath	by	using	a
specified	XML	document.	The	XML	document	must	correspond	to	an
InfoPath	form.	A	new	form	is	opened	in	InfoPath,	using	the	supplied	XML
document	as	initial	data,	and	its	associated	form	template	as	specified	in
the	processing	instructions	in	the	header	of	the	document.

The	NewFromSolution	method	enables	creating	a	new	instance	of
InfoPath	using	a	specified	form	template,	and	its	associated	XML	form
(the	initial	template	data).

The	NewFromSolutionWithData	method	supports	a	scenario	that	is	not
provided	by	the	foregoing	two	methods:	specifying	both	the	XML
document	used	as	initial	data	and	the	form	template.	The	XML	document
does	not	need	to	have	been	created	by	InfoPath.	It	can	be	supplied	either
as	a	URI	or	as	an	XMLDOMNode.

When	you	use	the	NewFromSolutionWithData	method,	the	new	form
opens	in	InfoPath	and	is	ready	to	be	filled	out.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	NewFromSolutionWithData	method	of	the
XDocuments	collection	is	passed	the	URIs	of	an	existing	XML
document,	and	an	existing	form	template,	and	a	new	form	is	created	and
its	associated	XDocument	object	is	returned:

var	objXDoc	=	Application.XDocuments.NewFromSolutionWithData

In	the	following	example,	the	NewFromSolutionWithData	method	of	the
XDocuments	collection	is	passed	an	XMLDOMNode	as	initial	data	and
the	URI	of	an	existing	form,	and	a	new	form	is	created	and	its	associated
XDocument	object	is	returned:

var	objXMLNode	=	XDocument.DOM.selectSingleNode("/employees/employee");

var	objXDoc	=	Application.XDocuments.NewFromSolutionWithData

Now	Method

Returns	a	Variant	that	represents	the	current	system	date	and	time	in
ISO	format	(yyyy-mm-ddThh:mm:ss).

expression.Now()	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	a	Date
object.

returns				A	Variant	that	represents	the	current	system	date	and	time.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	currentDateTime	is	set	to	the
current	system	date	and	time:

var	currentDateTime	=	XDocument.Util.Date.Now();

Nz	Method

Returns	a	Variant	that	is	identical	to	the	node	set	passed	to	the	function,
except	empty	values	in	the	node	list	are	replaced	with	zeros	(0).

expression.Nz(ByVal	pxmllistInput	As	IXMLDOMNodeList)	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Math	object.

pxmllistInput				Required.	The	node	set	that	will	have	its	empty	values
replaced	with	zeroes.

returns				A	Variant	that	represents	a	node	set.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	noZero	is	set	to	a	node	set	that	is
identical	to	the	my:ages	node	set,	with	all	blank	values	replaced	by	zeros:

var	ages	=	XDocument.DOM.selectNodes("//my:ages");
var	noZero	=	XDocument.Util.Math.Nz(ages);

Show	All

Open	Method	(ExternalApplication	Object)

Opens	the	specified	Microsoft	Office	InfoPath	2003	form.

expression.Open(ByVal	bstrDocumentURI	As	String,	[ByVal
dwBehavior	As	Long	=	1])

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrDocumentURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	a	form.

dwBehavior	Optional	Long.	Default	value	is	1.	A	long	value	that
specifies	how	the	form	should	be	opened.	The	values	are	based	on	the
XdDocumentVersionMode	enumeration.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	Open	method	can	be	used	only	to	open	a	form;	it	cannot	be	used	to
open	a	form	template.	To	create	a	form	from	a	form	template,	use	the
NewFromSolution	method	of	the	ExternalApplication	object.	To	create
a	form	based	on	an	existing	form,	use	the	New	method	of	the
ExternalApplication	object.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	Open	method	of	the
ExternalApplication	object	is	used	to	open	a	specified	form:

Public	Sub	AutomateInfoPathForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Open	an	InfoPath	form.
			objIP.Open	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	opened.")

			'Close	the	InfoPath	form.
			objIP.Close	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	closed.")

			'Quit	the	InfoPath	application.
			objIP.Quit
			MsgBox	("The	InfoPath	application	has	been	closed.")

			Set	objIP	=	Nothing

End	Sub

Open	Method	(Index)

The	Open	method	opens	a	form.	This	method	is	implemented	in	a
number	of	Microsoft	Office	InfoPath	2003	object	model	collections	and
objects.	Click	an	Open	method	link	below	to	view	the	Help	topic	for	a
specific	implementation	of	the	Open	method.

Open	method	as	it	applies	to	the	ExternalApplication	object.

Open	method	as	it	applies	to	the	XDocuments	collection.

Show	All

Open	Method	(XDocuments	Collection)

Opens	the	specified	Microsoft	Office	InfoPath	2003	form.

expression.Open(ByVal	varURI	As	Variant,	[ByVal	dwBehavior	As	Long
=	1])	As	XDocument

expression				Required.	An	expression	that	returns	a	reference	to	the
XDocuments	collection.

varURI	Required	Variant.	Specifies	the	Uniform	Resource	Identifier
(URI)	of	a	form.

dwBehavior	Optional	Long.	Default	value	is	1.	A	long	value	that
specifies	how	the	form	should	be	opened.	The	values	are	based	on	the
XdDocumentVersionMode	enumeration.

returns				A	reference	to	an	XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Open	method	can	only	be	used	to	open	a	form;	it	cannot	be	used	to
open	a	form	template.	To	create	a	form	from	a	form	template,	use	the
NewFromSolution	method	of	the	XDocuments	collection.	To	create	a
form	based	on	an	existing	form,	use	the	New	method	of	the
XDocuments	collection.

When	you	use	the	Open	method,	the	specified	form	opens	in	InfoPath
and	is	ready	to	be	filled	out.

Note		If	you	use	the	optional	dwBehavior	argument	in	the	Open	method,
you	can	only	pass	the	numerical	value	of	the	XdDocumentVersionMode
enumeration.	Because	InfoPath	uses	scripting	languages	for	working	with
the	object	model,	named	values	cannot	be	used.

Example
In	the	following	example,	the	Open	method	of	the	XDocuments
collection	is	passed	the	URI	of	an	existing	form,	and	the	form	is	opened
and	its	associated	XDocument	object	returned:

var	objXDoc;

objXDoc	=	Application.XDocuments.Open("C:\\MyForm.xml");

PerformSaveOperation	Method

Performs	the	save	operation	requested	by	the	user.

expression.PerformSaveOperation()

expression				Required.	An	expression	that	returns	a	reference	to	a
SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	PerformSaveOperation	method	performs	a	"save"	or	"save	as"
operation	depending	on	the	value	of	the	IsSaveAs	property	of	the
SaveEvent	object.	If	the	operation	is	successful,	the	IsDirty	property	of
the	XDocument	object	is	set	to	False	and	the	PerformSaveOperation
method	returns	True.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	PerformSaveOperation	method	of	the
SaveEvent	object	is	used	to	save	the	form	using	the	internal	definition	of
save.

eventObj.PerformSaveOperation();

PrintOut	Method

Prints	the	form	content	as	it	is	rendered	in	the	window	corresponding	to
the	form's	active	view.

expression.PrintOut()

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	PrintOut	method	uses	the	current	printer	settings.	Returns	a
permission	denied	error	if	called	from	a	form	that	is	not	fully	trusted.

It	is	recommended	that	you	don't	call	the	PrintOut	method	from	an
OnLoad	or	OnSwitchView	event	procedure.	You	may	encounter	one	or
more	of	the	following	behaviors	when	calling	the	PrintOut	method	from
an	OnLoad	or	OnSwitchView	event	procedure:

The	view	may	print	correctly.

A	blank	document	may	be	printed.

The	incorrect	view	may	be	printed.

The	following	exception	may	occur:

Invalid	context	for	the	OM	call.

Example
In	the	following	example,	the	PrintOut	method	of	the	XDocument	object
is	used	to	print	the	current	view:

XDocument.PrintOut();

Query	Method	(ADOAdapter	Object)

Reads	data	from	the	associated	data	adapter.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	an
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	fails	if	the	QueryAllowed	property	of	the
ADOAdapter	object	is	False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Query	Method	(DataObject	Object)

Reads	data	from	the	data	adapter	that	is	associated	with	the	DataObject
object	and	repopulates	the	DataObject	object's	associated	XML
Document	Object	Model	(DOM).

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	the
DataObject	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	can	be	used	to	refresh	the	data	contained	in	the	XML
DOM	that	is	associated	with	a	DataObject	object.

Example
In	the	following	example,	the	Query	method	of	the	DataObject	object	is
used	to	refresh	the	data	contained	in	the	XML	DOM	associated	with	the
DataObject	object:

XDocument.DataObjects("CityList").Query();

After	you	have	refreshed	the	data	in	the	DataObject	object,	you	can	call
the	ForceUpdate	method	of	the	View	object	to	synchronize	the	data
contained	in	the	DataObject	object	and	the	view:

XDocument.View.ForceUpdate();

Query	Method	(DAVAdapter	Object)

The	Query	method	is	available	for	the	DAVAdapter	object	but,	because
the	DAVAdapter	object	is	available	for	submitting	data	only,	the	method
will	always	generate	a	run-time	error	when	it	is	called	on	that	object.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	the
DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Query	Method	(EmailAdapter	Object)

The	Query	method	is	available	for	the	EmailAdapter	object	but,	because
the	EmailAdapter	object	is	available	for	submitting	data	only,	the	method
will	always	generate	a	run-time	error	when	it	is	called	on	that	object.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	the
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Query	Method	(HWSAdapter	Object)

The	Query	method	is	available	for	the	HWSAdapter	object	but,	because
the	HWSAdapter	object	is	available	for	submitting	data	only,	the	method
will	always	generate	a	run-time	error	when	it	is	called	on	that	object.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	the
HWSAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Query	Method	(Index)

The	Query	method	retrieves	data	from	the	associated	data	adapter	and
stores	it	in	an	XML	Document	Object	Model	(DOM).	This	method	is
implemented	in	a	number	of	Microsoft	Office	InfoPath	2003	object	model
objects.	Click	a	Query	method	link	below	to	view	the	Help	topic	for	a
specific	implementation	of	the	Query	method.

Query	method	as	it	applies	to	the	ADOAdapter	object.

Query	method	as	it	applies	to	the	DataObject	object.

Query	method	as	it	applies	to	the	DAVAdapter	object.

Query	method	as	it	applies	to	the	HWSAdapter	object.

Query	method	as	it	applies	to	the	EmailAdapter	object.

Query	method	as	it	applies	to	the	SharepointListAdapter	object.

Query	method	as	it	applies	to	the	WebServiceAdapter	object.

Query	method	as	it	applies	to	the	XDocument	object.

Query	method	as	it	applies	to	the	XMLFileAdapter	object.

Query	Method	(SharePointListAdapter	Object)

Reads	data	from	the	associated	data	adapter.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	a
SharepointListAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	fails	if	the	QueryAllowed	property	of	the
SharePointListAdapter	object	is	False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Query	Method	(WebServiceAdapter	Object)

Reads	data	from	the	associated	data	adapter.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	fails	if	the	QueryAllowed	property	of	the
WebServiceAdapter	object	is	False.

Note		An	ADO.Net	DataSet	cannot	be	used	as	a	query	parameter	for	the
WebServiceAdapter	object	or	any	other	data	adapter.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Query	Method	(XDocument	Object)

Retrieves	data	from	a	form's	associated	data	adapter	object	and	stores
the	data	in	the	form's	underlying	XML	Document	Object	Model	(DOM).

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	will	return	an	error	if	the	form	does	not	have	an
associated	data	adapter	object.

Example
In	the	following	example,	the	Query	method	of	the	XDocument	object	is
used	to	query	the	associated	data	adapter:

XDocument.Query();

Query	Method	(XMLFileAdapter	Object)

Reads	data	from	the	associated	data	adapter.

expression.Query()

expression				Required.	An	expression	that	returns	a	reference	to	an
XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Query	method	fails	if	the	QueryAllowed	property	of	the
XMLFileAdapter	object	is	False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Quit	Method	(Application	Object)

Quits	the	Microsoft	Office	InfoPath	2003	application.

expression.Quit([ByVal	bForce	As	Boolean	=	False])

expression				Required.	An	expression	that	returns	a	reference	to	the
Application	object.

bForce	Optional	Boolean.	Default	value	is	False.	Determines	whether
open	forms	will	be	saved	during	the	quit	operation.	If	set	to	False,	all
forms	will	be	closed	without	saving,	even	if	the	data	in	the	forms	has
been	changed.	If	set	to	True,	the	user	will	be	prompted	to	save	the	forms.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	Quit	method	is	used	in	a	form	that	is	not	fully	trusted,	the	method
will	return	a	"permission	denied"	error.

Example
In	the	following	example,	the	Quit	method	of	the	Application	object	is
used	to	quit	InfoPath	without	saving	any	of	the	currently	open	forms:

Application.Quit(false);

Show	All

Quit	Method	(ExternalApplication	Object)

Quits	the	Microsoft	Office	InfoPath	2003	application.

expression.Quit

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	you	use	the	Close	method	of	the	ExternalApplication	object	before
using	the	Quit	method,	data	that	has	been	changed	in	the	form	will	not
be	saved,	nor	will	users	be	prompted	to	save	it.	However,	if	you	do	not
use	the	Close	method	but	only	use	the	Quit	method,	users	will	be
prompted	to	save	the	form	before	quitting	the	InfoPath	application.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	Quit	method	of	the
ExternalApplication	object	is	used	to	quit	the	InfoPath	application:

Public	Sub	AutomateInfoPathForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Open	an	InfoPath	form.
			objIP.Open	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	opened.")

			'Close	the	InfoPath	form.
			objIP.Close	("C:\My	Forms\Form1.xml")
			MsgBox	("The	InfoPath	form	has	been	closed.")

			'Quit	the	InfoPath	application.
			objIP.Quit
			MsgBox	("The	InfoPath	application	has	been	closed.")

			Set	objIP	=	Nothing

End	Sub

Quit	Method	(Index)

The	Quit	method	quits	the	application.	This	method	is	implemented	in	a
number	of	Microsoft	Office	InfoPath	2003	object	model	objects.	Click	a
Quit	method	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	Quit	method.

Quit	method	as	it	applies	to	the	Application	object.

Quit	method	as	it	applies	to	the	ExternalApplication	object.

Show	All

RegisterSolution	Method	(Application	Object)

Installs	the	specified	Microsoft	Office	InfoPath	form	template.

expression.RegisterSolution(ByVal	bstrSolutionURL	As	String,	[ByVal
bstrBehavior	As	String	=	"overwrite"])

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

bstrSolutionURL				Required	String.	The	string	that	specifies	the
Uniform	Resource	Locator	(URL)	of	the	form	template.	This	parameter
can	be	specified	as	a	form	definition	(.xsf)	file	or	a	form	template	(.xsn)
file.

bstrBehavior				Optional	String.	Default	value	is	"overwrite".	The	string
that	specifies	how	the	form	template	is	to	be	installed.	The	only	other
valid	value	for	this	parameter	is	"new-only".

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	has	already	been	registered,	and	"new-only"	is
specified	for	the	bstrBehavior	parameter,	the	RegisterSolution	method
will	return	an	error.	If	"overwrite"	is	specified,	the	form	template's
registration	record	will	be	overwritten.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	Visual	Basic	for	Applications	(VBA)	example,	the
RegisterSolution	method	of	the	Application	object	is	used	to	install	a
form	template:

Public	Sub	InstallForm()

			Dim	objIP	As	Object

			'	Create	a	reference	to	the	Application	object.
			Set	objIP	=	CreateObject("InfoPath.Application")

			'	Register	the	InfoPath	form	template.
			objIP.RegisterSolution	("C:\\My	Forms\\MyFormTemplate.xsn")
			MsgBox	"The	InfoPath	form	template	has	been	registered."

			Set	objIP	=	Nothing

End	Sub

Show	All

RegisterSolution	Method	(ExternalApplication	Object)

Installs	the	specified	Microsoft	Office	InfoPath	2003	form	template.

expression.RegisterSolution(ByVal	bstrSolutionURL	As	String,	[ByVal
bstrBehavior	As	String	=	"overwrite"])

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrSolutionURL	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Locator	(URL)	of	the	form	template.	This	parameter
can	be	specified	as	a	form	definition	(.xsf)	file	or	a	form	template	(.xsn)
file.

bstrBehavior	Optional	String.	Default	value	is	overwrite.	The	string
value	that	specifies	how	the	form	template	is	to	be	installed.	The	only
other	valid	value	for	this	parameter	is	new-only.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	has	already	been	registered,	and	the	new-only	value
is	used	for	the	bstrBehavior	parameter,	the	RegisterSolution	method
will	return	an	error.	If	the	overwrite	value	is	used,	the	form	template's
registration	record	will	be	overwritten.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	RegisterSolution
method	of	the	ExternalApplication	object	is	used	to	install	a	form
template:

Public	Sub	InstallForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Register	the	InfoPath	form	template.
			objIP.RegisterSolution	("C:\\My	Forms\MyFormTemplate.xsn")
			MsgBox	("The	InfoPath	form	template	has	been	registered.")

			Set	objIP	=	Nothing

End	Sub

Show	All

RegisterSolution	Method	(Index)

The	RegisterSolution	method	installs	the	specified	Microsoft	Office
InfoPath	2003	form	template.	This	method	is	implemented	in	several
InfoPath	object	model	collections.	Click	a	RegisterSolution	method	link
below	to	view	the	Help	topic	for	a	specific	implementation	of	the
RegisterSolution	method.

RegisterSolution	method	as	it	applies	to	the	Application	object.

RegisterSolution	method	as	it	applies	to	the	ExternalApplication
object.

Show	All

ReportError	Method

Creates	an	Error	object	and	adds	it	to	the	Errors	collection.

expression.ReportError(ByVal	varNode	As	Variant,	ByVal
bstrShortErrorMessage	As	String,	ByVal	fSiteIndependent	As
Boolean,	[ByVal	bstrDetailedErrorMessage	As	String],	[ByVal
lErrorCode	As	Long],	[ByVal	bstrType	As	String	=	"modeless"])	As	Error

expression				Required.	Returns	a	reference	to	the	DataDOMEvent
object.

varNode				Required	Variant.	The	XML	Document	Object	Model	(DOM)
node	that	the	error	is	associated	with.

bstrShortErrorMessage				Required	String.	The	text	to	be	used	for	the
short	error	message.

fSiteIndependent				Optional	Boolean.	Sets	the	condition	for	automatic
deletion	of	the	Error	object.	If	True,	the	Error	object	will	be	deleted	on
change	for	any	nodes	that	matched	the	XPath	expression	corresponding
to	the	Error	object.	If	False,	the	Error	object	will	be	deleted	when	the
node	returned	by	the	Site	property	of	a	given	event	object	has	been
changed.

bstrDetailedErrorMessage				Optional	String.	The	text	to	be	used	for
the	detailed	error	message.

lErrorCode				Optional	Long.	The	number	to	be	used	as	the	error	code.

bstrType				Optional	String.	Default	value	is	"modeless".	Determines
whether	the	change	in	value	will	be	automatically	rejected	or	whether	the
user	will	be	prompted	to	accept	or	reject	the	change.	The	other	value	is
"modal".

returns				A	reference	to	an	Error	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
When	the	ReportError	method	of	the	DataDOMEvent	object	is	called,
Microsoft	Office	InfoPath	2003	creates	an	Error	object	and	adds	it	to	the
Errors	collection.	Errors	are	removed	from	the	collection	when	the
validation	constraint	is	no	longer	invalid,	or	when	they	are	explicitly
removed	using	the	Delete	or	DeleteAll	methods	of	the	Errors	collection.

Errors	can	also	be	created	using	the	Add	method	of	the	Errors
collection.

Note		Site-independent	errors	should	be	used	when	you	want	the	errors
to	apply	to	all	XML	DOM	nodes	of	the	same	type.	If	you	want	the	error	to
apply	to	a	specific	XML	DOM	node,	use	site-dependent	errors.

Example
In	the	following	example	from	the	Data	Validation	developer	sample	form,
the	ReportError	method	of	the	DataDOMEvent	object	is	used	to	create
a	custom	error	and	add	it	to	the	errors	collection:

function	msoxd__total::OnValidate(eventObj)
{
			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	>	75)
						eventObj.ReportError(eventObj.Site,	"The	total	is	too	high.		"	+
									"The	total	number	of	blocks	cannot	be	greater	than	75.",	false);

			if	(parseInt(eventObj.Site.nodeTypedValue,	10)	<	0)
						eventObj.ReportError(eventObj.Site,	"The	total	is	too	low.		"	+
									The	total	number	of	blocks	cannot	be	less	than	0.",	false);
}

Show	All

Save	Method

Saves	the	form	to	the	Uniform	Resource	Locator	(URL)	that	it	is	currently
associated	with.

expression.Save()

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	Save	method	will	return	an	error	if	called	from	a	form	that	is	not	fully
trusted.

Example
In	the	following	example,	the	Save	method	of	the	XDocument	object	is
used	to	save	a	form:

XDocument.Save();

Show	All

SaveAs	Method

Saves	the	form	to	the	specified	Uniform	Resource	Locator	(URL).

expression.SaveAs(ByVal	bstrFileUrl	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

bstrFileUrl	Required	String.	The	URL	address	that	the	form	should	be
saved	to.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	SaveAs	method	will	return	an	error	if	called	from	a	form	that	is	not
fully	trusted.

Note		The	URL	that	the	form	is	saved	to	must	be	in	the	same	domain	as
the	form	that	calls	the	SaveAs	method.

Example
In	the	following	example,	the	SaveAs	method	of	the	XDocument	object
is	used	to	save	a	form:

XDocument.SaveAs("C:\MyForm.xml");

SaveState	Method

Defines	a	method	that	InfoPath	calls	when	it	needs	to	save	the	state	of
an	instance	of	the	control	in	a	view.

expression.SaveState()

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControl	object.

Remarks
The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011111261033

Show	All

SelectNodes	Method

Selects	a	range	of	nodes	in	a	view	based	on	the	specified	starting	XML
Document	Object	Model	(DOM)	node,	the	ending	XML	DOM	node,	and
the	view	context.

expression.SelectNodes(ByRef	pxnStartNode	As	XMLDOMNode,
[ByVal	varEndNode	As	Variant],	[ByVal	varViewContext	As	Variant])

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

pxnStartNode	Required	XMLDOMNode.	The	XML	DOM	node	that
begins	the	range.

varEndNode	Optional	Variant.	The	XML	DOM	node	that	ends	the	range.
If	not	specified,	only	the	starting	XML	DOM	node	will	be	used.

varViewContext	Optional	Variant.	The	ID	of	the	control	that	is	used	for
the	context,	which	is	an	element	with	the	specified	view	context	of
xd:CtrlId.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	a	view	context	is	specified,	all	of	the	XML	DOM	nodes	that	are	to	be
selected	must	be	within	that	context.

If	any	of	the	arguments	to	the	SelectNodes	method	are	null	or	are	not
exposed	in	the	view,	the	SelectNodes	method	will	return	an	error.	In
addition,	if	there	are	more	than	one	set	of	view	elements	which	map	to
the	same	specified	XML	DOM	nodes,	within	the	specified	view	context,
then	the	SelectNodes	method	will	also	return	an	error.

Example
In	the	following	example,	the	SelectNodes	method	of	the	View	object	is
used	to	set	selection	on	a	single	item	in	the	view,	corresponding	to	the
specified	XML	DOM	node	and	then,	using	the	GetSelectedNodes
method	of	the	View	object,	determines	whether	the	selection	has	been
successful	by	displaying	information	about	the	XML	DOM	node	in	a
message	box:

function	SelectEmployee()
{
			var	objXMLNodes;
			var	objXMLNode;

			objXMLNode	=	XDocument.DOM.selectSingleNode("/employees/employee");
			XDocument.View.SelectNodes(objXMLNode);

			objXMLNodes	=	XDocument.View.GetSelectedNodes();
			if	(objXMLNodes.Count	>	0)
			{
						XDocument.UI.Alert(objXMLNodes(0).nodeName	+	"\n\n"	+	objXMLNodes(0).text);
			}
}

Show	All

SelectText	Method

Selects	the	text	contained	in	an	editable	field	that	is	bound	to	the
specified	XML	Document	Object	Model	(DOM)	node.

expression.SelectText(ByRef	pxnField	As	XMLDOMNode,	[ByVal
varViewContext	As	Variant)

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

pxnField	Required	XMLDOMNode.	The	XML	DOM	node.

varViewContext	Optional	Variant.	The	ID	of	the	control	that	is	used	for
the	context,	which	is	an	element	with	the	specified	view	context	of
xd:CtrlId.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	a	view	context	is	specified,	then	the	editable	field	that	is	to	be	selected
must	be	within	that	context.

If	there	are	more	than	one	set	of	view	elements	which	map	to	the	same
specified	XML	DOM	node,	within	the	given	view	context,	then	the
SelectText	method	will	return	an	error.	In	addition,	if	any	of	the
arguments	to	the	SelectText	method	are	null	or	are	not	exposed	in	the
view,	then	the	SelectText	method	will	also	return	an	error.

Example
In	the	following	example,	the	SelectText	method	of	the	View	object	is
used	to	select	a	field	that	is	bound	to	an	XML	DOM	node:

var	objXMLNode;

objXMLNode	=	XDocument.DOM.selectSingleNode("/employees/employee/name");
XDocument.View.SelectText(objXMLNode);

Show	All

SetDataVariable	Method

Sets	the	value	of	a	predefined	variable	stored	as	a	processing	instruction
attribute	in	the	form's	underlying	XML	document.

expression.SetDataVariable(ByVal	lVariableNumber	As	Long,	ByVal
bstrVariableValue	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

lVariableNumber	Required	Long.	The	number	of	the	variable.

bstrVariableValue	Required	String.	The	value	of	the	variable.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	variable	being	set	is	not	a	valid	processing	instruction	attribute,	the
SetDataVariable	method	will	return	an	error.

To	get	the	value	of	a	variable,	use	the	GetDataVariable	method	of	the
XDocument	object.

Note		Microsoft	Office	InfoPath	2003	only	supports	using	the	initialView
variable,	which	is	the	variable	used	to	specify	the	initial	view	displayed
when	a	form	is	opened.	The	number	of	this	variable	is	always	1,	and	its
value	must	be	the	name	of	a	view	within	the	form.

Example
In	the	following	example,	the	SetDataVariable	method	of	the
XDocument	object	is	used	to	set	the	value	of	the	first	variable:

XDocument.SetDataVariable(1,	"View	2");

SetDirty	Method

Sets	theIsDirty	property	on	the	XDocument	object	to	a	Boolean	value
that	indicates	whether	the	data	in	a	Microsoft	Office	InfoPath	2003	form
has	been	modified	since	it	was	last	saved.

expression.SetDirty(ByVal	vfIsDirty	As	Boolean)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

vfIsDirty				Required	Boolean.	Specifies	whether	the	form	is	to	be
marked	as	unmodified	or	not.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	SetDirty	method	can	be	used	from	the	OnSubmitRequest	event
handler	to	force	a	document	to	be	marked	as	unchanged.	InfoPath	will
therefore	not	request	the	user	to	save	the	form	when	it	is	closed.

The	SetDirty	method	can	also	be	used	from	the	OnSaveRequest	event
handler	to	programmatically	mark	the	form	as	changed	or	unchanged
since	it	was	last	saved.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	IsDirty	property	of	the	current	form	is	set	to
False	so	that	InfoPath	will	not	prompt	the	user	to	save	the	form	when	it	is
closed.

XDocument.SetDirty(false);

SetNamedNodeProperty	Method

Sets	the	value	of	a	named	property	for	the	supplied	XML	node,	which
must	be	a	nonattribute	node	in	the	main	data	source.

expression.SetNamedNodeProperty(ByVal	pxmlMainDOMNode	As
IXMLDOMNode,	ByVal	bstrPropertyName	As	String,	ByVal	bstrValue
As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

pxmlMainDOMNode				Required	IXMLDOMNode.	An	XML	node
corresponding	to	a	nonattribute	node	in	the	main	data	source,	for	which	a
named	property	is	to	be	set.

bstrPropertyName				Required	String.	Specifies	the	name	of	the
property	being	set.

bstrValue				Required	String.	Specifies	the	value	to	which	the	property
will	be	set.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Named	properties	allow	users	to	associate	strings	with	user-defined
properties	of	XML	element	nodes	in	the	main	data	source.	The	value	of	a
named	property	can	be	set	by	using	the	SetNamedNodeProperty
method.	Use	the	GetNamedNodeProperty	method	to	read	the	value	of	a
named	property.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	value	of	a	named	property	(with	the	name
"cost")	of	an	XML	node	(called	"item")	is	set	by	using	the
SetNamedNodeProperty	method:

var	objXMLNode	=	XDocument.DOM.selectSingleNode("/items/item");
XDocument.SetNamedNodeProperty(objXMLNode,	'cost',	'100');
var	strTest	=	XDocument.GetNamedNodeProperty(myNode,	'cost',	'empty');

SetSaveAsDialogFileName	Method

Sets	the	default	file	name	for	a	form	in	the	Save	As	dialog	box.

expression.SetSaveAsDialogFileName(ByVal	strFileName	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	a	UI
object.

strFileName				Required.	The	file	name	of	the	form	supplied	to	the	Save
As	dialog	box.

Security
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	the	strFileName	argument	is	null,	"Form"	is	used	as	the	file	name.	The
SetSaveAsDialogFileName	method	may	be	used	in	conjunction	with	the
SetSaveAsDialogLocation	method.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	SetSaveAsDialogFileName	method	of	the
UI	object	is	used	to	set	the	default	file	name	for	the	Save	As	dialog	box:

XDocument.UI.SetSaveAsDialogFileName("Status	Report.xml");

SetSaveAsDialogLocation	Method

Sets	the	initial	location	at	which	the	Save	As	dialog	starts	to	browse
when	it	is	opened.

expression.SetSaveAsDialogLocation(ByVal	strLocationUrl	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object.

strLocationUrl				Required.	The	location,	expressed	as	a	URL,	at	which
the	Save	As	dialog	box	starts	browsing.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	location	specified	must	be	an	absolute	path	and	it	should	not	include
a	file	name.	InfoPath	handles	invalid	paths,	however,	and	no	error
message	is	generated	if	an	invalid	path	is	specified	for	the
strLocationUrl	argument.	The	SetSaveAsDialogLocation	method	may
be	used	in	conjunction	with	the	SetSaveAsDialogFileName	method.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	SetSaveAsDialogLocation	method	of	the
UI	object	is	used	to	set	the	initial	location	for	the	Save	As	dialog:

XDocument.UI.SetSaveAsDialogLocation("\\\\MyShare\\Forms");

ShowMailItem	Method

Creates	an	e-mail	message	in	the	default	e-mail	editor	and	attaches	the
currently	open	Microsoft	Office	InfoPath	2003	form	to	the	message.

expression.ShowMailItem(ByVal	bstrTo	As	String,	ByVal	bstrCC	As
String,	ByVal	bstrBCC	As	String,	ByVal	bstrSubject	As	String,	ByVal
bstrBody	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object.

bstrTo	Required	String.	The	e-mail	address	to	send	the	e-mail	message
to.

bstrCC	Required	String.	The	e-mail	address	to	copy	the	e-mail	message
to.

bstrBCC	Required	String.	The	e-mail	address	to	blind	copy	the	e-mail
message	to.

bstrSubject	Required	String.	The	subject	of	the	e-mail	message.

bstrBody	Required	String.	The	body	text	of	the	e-mail	message.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
After	the	e-mail	message	is	created,	the	default	e-mail	editor	will	display
the	e-mail	message;	users	can	then	inspect	and	edit	the	e-mail	message
before	sending	it.	The	ShowMailItem	method	will	return	an	error	if	no	e-
mail	editing	program	is	available.

Note		The	ShowMailItem	method	does	not	send	the	e-mail	messages	it
creates;	users	must	manually	send	the	e-mail	messages.

You	can	also	use	the	MailEnvelope	object,	accessed	through	the
MailEnvelope	property	of	the	Window	object,	to	programmatically	create
e-mail	messages.

Example
In	the	following	example,	the	ShowMailItem	method	of	the	UI	object	is
used	to	create	a	custom	e-mail	message:

XDocument.UI.ShowMailItem("someone@example.com",	"",	"",	
			"Updated	Form",	"Here	is	the	updated	form	that	you	requested.");

Show	All

ShowModalDialog	Method

Displays	a	custom	modal	dialog	box	in	a	Microsoft	Office	InfoPath	2003
form.

expression.ShowModalDialog(ByVal	bstrName	As	String,	[ByVal
varArguments	As	Variant],	[ByVal	varHeight	As	Variant],	[ByVal
varWidth	As	Variant],	[ByVal	varTop	As	Variant],	[ByVal	varLeft	As
Variant])	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object.

bstrName	Required	String.	The	name	of	the	.html	file	used	for	the	modal
dialog	box.

varArguments	Optional	Variant.	Specifies	the	arguments	to	use	when
displaying	the	modal	dialog	box.	Can	be	any	type	of	value,	including	an
array	of	values.

varHeight	Optional	Variant.	Sets	the	height	of	the	modal	dialog	box.

varWidth	Optional	Variant.	Sets	the	width	of	the	modal	dialog	box.

varTop	Optional	Variant.	Sets	the	top	position	of	the	modal	dialog	box
relative	to	the	upper	left	corner	of	the	desktop.

varLeft	Optional	Variant.	Sets	the	left	position	of	the	modal	dialog	box
relative	to	the	upper	left	corner	of	the	desktop.

returns				Variant.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
The	ShowModalDialog	method	of	the	UI	object	allows	you	to	display
custom	dialog	boxes	to	users	as	they	fill	out	a	fully	trusted	form.	Custom
dialog	boxes	are	implemented	as	.html	files	created	in	any	type	of	HTML
editor,	such	as	Microsoft	FrontPage.	You	can	use	scripting	code	in	a
custom	dialog	box	that	interacts	with	the	InfoPath	object	model	if	you
pass	objects	to	the	custom	dialog	box	using	the	varArguments
parameter.

To	use	a	custom	dialog	box	in	an	InfoPath	form,	you	must	first	add	the
.html	file	of	the	custom	dialog	box	to	the	form's	set	of	resource	files	by
using	the	Resource	Manager	dialog	box.	The	Resource	Manager
dialog	box	is	available	from	the	Tools	menu	in	design	mode.	After	you
have	added	the	custom	dialog	box	file	to	the	form,	you	can	use	the
ShowModalDialog	method	to	display	it.

Note		Although	the	ShowModalDialog	method	can	only	be	used	in	fully
trusted	forms,	you	can	create	a	custom	dialog	box	in	standard	forms
using	the	showModalDialog	method	of	the	Dynamic	HTML	(DHTML)
object	model.

Example
In	the	following	example,	the	ShowModalDialog	method	of	the	UI	object
is	used	to	display	a	custom	dialog	box.	Note	that	the	XDocument	object
is	passed	to	the	custom	dialog	box	using	the	varArguments	parameter.

XDocument.UI.ShowModalDialog("SimpleDialog.htm",	XDocument);

The	following	example	is	the	HTML	code	used	to	implement	a	simple
custom	dialog	box.	Note	the	use	of	the	dialogArguments	property	of	the
DHTML	window	object	to	get	the	values	passed	to	the	custom	dialog
box,	which	in	this	case	is	the	XDocument	object	of	the	InfoPath	object
model,	from	the	ShowModalDialog	method.	When	a	user	clicks	the
Show	Alert	button	in	the	custom	dialog	box,	the	source	XML	of	the
form's	underlying	XML	document	appears	in	a	message	box.

<html>
			<head>
						<script	language="jscript">
									var	gobjXDocument	=	null;

									function	Initialize()
									{
												//	Save	a	reference	to	the	XDocument	object.
												if	(typeof	window.dialogArguments	==	"object")
												gobjXDocument	=	window.dialogArguments;
									}
						</script>

						<title>A	Simple	Custom	Dialog	Box</title>
			</head>

			<body	style="BACKGROUND-COLOR:	window"	onLoad="Initialize()">
						Click	one	of	the	following	buttons:

						

						

						<div	id="divButtons"	tyle="align:center">
									<input	id="btnShowAlert"	style="WIDTH:	106px;	HEIGHT:	24px"	
												onclick='gobjXDocument.UI.Alert(gobjXDocument.DOM.xml);'	
												type="button"	size="21"	value="Show	Alert"></input>
									<input	id="btnCancel"	style="WIDTH:	106px;	HEIGHT:	24px"	
												onclick="window.close();"	type="button"	size="21"	
												value="Cancel"></input>
						</div>
			</body>
</html>

ShowSignatureDialog	Method

Displays	the	Microsoft	Office	InfoPath	2003	Digital	Signatures	dialog
box.

expression.ShowSignatureDialog()

expression				Required.	An	expression	that	returns	a	reference	to	the	UI
object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	ShowSignatureDialog	method	can	be	used	only	in	forms	that	have
been	enabled	for	digital	signing.	The	method	will	return	an	error	if	used	in
a	form	that	is	not	enabled	for	digital	signing.

Example
In	the	following	example,	the	ShowSignatureDialog	method	of	the	UI
object	is	used	to	display	the	InfoPath	Digital	Signatures	dialog	box:

XDocument.UI.ShowSignatureDialog();

Sign	Method	(Index)

This	method	is	implemented	in	several	Microsoft	Office	InfoPath	2003
object	model	collections.	Click	a	Sign	method	link	below	to	view	the	Help
topic	for	a	specific	implementation	of	the	Sign	method.

Sign	method	as	it	applies	to	the	Signature	object.

Sign	method	as	it	applies	to	the	SignedDataBlock	object.

Sign	Method	(Signature	Object)

Writes	the	XML	digital	signature	block	and	computes	the	cryptographic
hash	for	the	signed	data.	This	method	can	only	be	called	from	the
OnSign	event	handler.	Calling	this	method	displays	the	Digital
Signatures	dialog	box.

expression.Sign()

expression				Required.	An	expression	that	returns	a	reference	to	a
Signature	object.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
Use	the	Create	method	of	the	Signatures	collection	to	create	a	digital
signature.	Then,	use	the	Sign	method	to	write	the	digital	signature.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Sign	Method	(SignedDataBlock	Object)

Invokes	the	Digital	Signatures	dialog	box	to	add	a	digital	signature	to	a
set	of	signed	data	in	a	Microsoft	Office	InfoPath	2003	form.	The	new
signature	uses	the	default	signature	template,	and	it	is	applied	to	the
SignedDataBlock	object.

expression.Sign()

expression				Required.	An	expression	that	returns	a	reference	to	a
SignedDataBlock	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Submit	Method	(ADOAdapter	Object)

Executes	the	submit	operation	on	the	associated	adapter.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	a
ADOAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Fails	if	the	SubmitAllowed	property	of	the	ADOAdapter	object	is	False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Submit	Method	(DAVAdapter	Object)

Executes	the	submit	operation	on	the	associated	adapter.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	a
DAVAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Submit	method	of	the	DAVAdapter	object	submits	the	form's	entire
underlying	XML	document,	whereas	the	SubmitData	method	of	the
DAVAdapter	object	can	submit	any	XML	DOM	element	or	document.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Submit	Method	(EmailAdapter	Object)

Executes	the	submit	operation	on	the	associated	adapter.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
The	Submit	method	of	the	EmailAdapter	object	submits	the	form's
entire	underlying	XML	document,	whereas	the	SubmitData	method	of
the	EmailAdapter	object	can	submit	any	XML	DOM	element	or
document.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Submit	Method	(HWSAdapter	Object)

Executes	the	submit	operation	for	the	associated	adapter.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	an
HWSAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Submit	Method	(Index)

The	Submit	method	executes	the	submit	operation	on	the	associated
data	adapter.	This	method	is	implemented	in	several	Microsoft	Office
InfoPath	2003	object	model	collections.	Click	a	Submit	method	link
below	to	view	the	Help	topic	for	a	specific	implementation	of	the	Submit
method.

Submit	method	as	it	applies	to	the	ADOAdapter	object.

Submit	method	as	it	applies	to	the	DAVAdapter	object.

Submit	method	as	it	applies	to	the	EmailAdapter	object.

Submit	method	as	it	applies	to	the	HWSAdapter	object.

Submit	method	as	it	applies	to	the	SharepointListAdapter	object.

Submit	method	as	it	applies	to	the	WebServiceAdapter	object.

Submit	method	as	it	applies	to	the	XDocument	object.

Submit	method	as	it	applies	to	the	XMLFileAdapter	object.

Submit	Method	(SharePointListAdapter	Object)

The	Submit	method	is	available	for	the	SharepointListAdapter	object
but,	because	the	SharePointListAdapter	object	is	available	for	receiving
data	only,	the	method	will	always	generate	a	run-time	error	when	it	is
called	on	that	object.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	a
SharepointListAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Submit	Method	(WebServiceAdapter	Object)

Executes	the	submit	operation	on	the	associated	adapter.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	a
WebServiceAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Fails	if	the	SubmitAllowed	property	of	the	WebServiceAdapter	object	is
False.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

Submit	Method	(XDocument	Object)

Executes	the	predefined	submit	operation	in	a	Microsoft	Office	InfoPath
2003	form.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	an
XDocument	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Using	the	Submit	method	is	similar	to,	but	not	exactly	like,	using	the
submit	operation	from	the	InfoPath	user	interface.	Calling	the	Submit
method	simply	performs	the	submit	operation,	but	the	submit	operation
must	first	be	enabled	for	a	form	in	design	mode.

Note		You	can	write	a	custom	submit	operation	using	the
OnSubmitRequest	event,	and	then	you	can	programmatically	call	the
event	using	the	Submit	method.

Example
In	the	following	example,	the	Submit	method	of	the	XDocument	object	is
used	to	submit	the	form	using	the	predefined	submit	operation:

XDocument.Submit();

Submit	Method	(XMLFileAdapter	Object)

The	Submit	method	is	available	for	the	XMLFileAdapter	object	but,
because	the	XMLFileAdapter	object	is	available	for	receiving	data	only,
the	method	will	always	generate	a	run-time	error	when	it	is	called	on	that
object.

expression.Submit()

expression				Required.	An	expression	that	returns	a	reference	to	a
XMLFileAdapter	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitData	Method	(DavAdapter	Object)

Submits	the	specified	DOM	element	or	DOM	document	to	a	data	adapter.

expression.SubmitData(ByVal	pData	As	IXMLDOMNode)

expression				Required.	An	expression	that	returns	a	reference	to	a
DAVAdapter	object.

pData				Required	IXMLDOMNode.	The	XML	data	that	is	to	be	merged
into	the	currently	open	form.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitData	Method	(EmailAdapter	Object)

Submits	the	specified	DOM	element	or	DOM	document	to	a	data	adapter.

expression.SubmitData(ByVal	pData	As	IXMLDOMNode)

expression				Required.	An	expression	that	returns	a	reference	to	an
EmailAdapter	object.

pData				Required	IXMLDOMNode.	The	XML	data	that	is	to	be	merged
into	the	currently	open	form.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

SubmitData	Method	(Index)

The	SubmitData	method	executes	the	submit	operation	for	the
associated	data	adapter.	This	method	is	implemented	in	several
Microsoft	Office	InfoPath	2003	object	model	collections.	Click	a
SubmitData	method	link	below	to	view	the	Help	topic	for	a	specific
implementation	of	the	SubmitData	method.

SubmitData	method	as	it	applies	to	the	DAVAdapter	object.

SubmitData	method	as	it	applies	to	the	EmailAdapter	object.

SwitchView	Method

Changes	the	active	view	of	a	Microsoft	Office	InfoPath	2003	form	to	a
specified	view.

expression.SwitchView(ByVal	bstrName	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
View	object.

bstrName	Required	String.	The	name	of	the	view	to	switch	to.	If	an
empty	string	is	used,	the	default	view	is	displayed.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
If	an	empty	string	is	used	as	the	bstrName	parameter,	the	view	is
changed	to	the	default	view	of	the	form.

Example
In	the	following	example,	the	SwitchView	method	of	the	View	object	is
used	to	change	the	current	view	to	the	default	view:

XDocument.View.SwitchView("");

Today	Method

Returns	a	Variant	containing	the	current	system	date	in	ISO	format
(yyyy-mm-dd).

expression.Today()	As	Variant

expression				Required.	An	expression	that	returns	a	reference	to	the
Date	object.

returns				A	Variant	containing	the	current	system	date.

Security	Level
0:	Can	be	accessed	without	restrictions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	variable	currentDate	is	set	to	the	current
system	date.

var	currentDate	=	XDocument.Util.Date.Today();

Uninit	Method

Defines	a	method	that	must	be	provided	by	the	developer	to	perform	any
clean	up	routines	that	are	required	before	an	instance	of	the	control	is
removed	from	a	view.

expression.Uninit()

expression				Required.	An	expression	that	returns	a	reference	to	the
InfoPathControl	object.

Remarks
InfoPath	calls	the	Uninit	method	immediately	before	the	control	is
removed	from	the	view	and	destroyed.	Note	that	because	InfoPath	forms
make	use	of	XSL	transforms	to	represent	views,	any	changes	in	the	data
or	explicit	calls	to	the	object	model	can	cause	InfoPath	to	automatically
synchronize	the	view	with	the	data	that	is	contained	in	a	form's
underlying	XML	document,	which	destroys	and	recreates	the	view.	This
means	that	ActiveX	controls	are	likely	to	be	created	and	destroyed	much
more	often	within	a	given	session	than	controls	in	Visual	Basic	forms	or
Web	forms.	ActiveX	controls	which	need	to	preserve	state	information
independent	of	the	bound	data,	such	as	the	state	of	the	scroll	position,
should	create	routines	in	the	Init	method	of	the	control	that	use	the
SetNamedNodeProperty	method	to	save	this	information,	and	use	the
GetNamedNodeProperty	method	to	restore	state	information	during	the
Init	method	call.

The	InfoPathControl	and	InfoPathControlSite	objects	and	their
methods	and	properties	are	designed	to	be	used	only	from	the
implementation	of	an	ActiveX	control.	These	objects	and	their	members
are	not	supported	in	InfoPath	form	code.	For	more	information	on	how	to
create	ActiveX	controls	that	work	with	InfoPath,	see	the	InfoPath
Developer	Center.

Note			This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions
Service	Pack	1	or	later	is	not	installed.	Any	form	template	that	contains	a
view	with	an	ActiveX	control	that	implements	this	object	model	member	in
its	code	will	generate	an	error	message	if	it	is	opened	in	InfoPath	when
service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT063755291033&CTT=11&Origin=HV011039911033

Show	All

UnregisterSolution	Method	(Application	Object)

Uninstalls	the	specified	Microsoft	Office	InfoPath	2003	form	template.

expression.UnregisterSolution(ByVal	bstrSolutionURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	an
Application	object.

bstrSolutionURI				Required	String.	The	string	that	specifies	the	Uniform
Resource	Identifier	(URI)	of	the	form	template.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	cannot	be	unregistered,	the	UnregisterSolution
method	will	return	an	error.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	Visual	Basic	for	Applications	(VBA)	example,	the
UnregisterSolution	method	of	the	Application	object	is	used	to
uninstall	a	form	template:

Public	Sub	UninstallForm()

			Dim	objIP	As	Object

			'	Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.Application")

			'	Unregister	the	InfoPath	form	template.
			objIP.UnregisterSolution	("C:\\My	Forms\\MyFormTemplate.xsn")
			MsgBox	("The	InfoPath	form	template	has	been	unregistered.")

			Set	objIP	=	Nothing

End	Sub

Show	All

UnregisterSolution	Method	(ExternalApplication	Object)

Uninstalls	the	specified	Microsoft	Office	InfoPath	2003	form	template.

expression.UnregisterSolution(ByVal	bstrSolutionURI	As	String)

expression				Required.	An	expression	that	returns	a	reference	to	the
ExternalApplication	object.

bstrSolutionURI	Required	String.	The	string	value	that	specifies	the
Uniform	Resource	Identifier	(URI)	of	the	form	template.

Security	Level
3:	Can	be	accessed	only	by	fully	trusted	forms.

Remarks
If	the	form	template	cannot	be	unregistered,	the	UnregisterSolution
method	will	return	an	error.

Example
In	the	following	example,	which	is	written	in	the	Visual	Basic	for
Applications	(VBA)	programming	language,	the	UnregisterSolution
method	of	the	ExternalApplication	object	is	used	to	uninstall	a	form
template:

Public	Sub	UninstallForm()

			Dim	objIP	As	Object

			'Create	a	reference	to	the	ExternalApplication	object.
			Set	objIP	=	CreateObject("InfoPath.ExternalApplication")

			'Unregister	the	InfoPath	form	template.
			objIP.UnregisterSolution	("C:\\My	Forms\\MyFormTemplate.xsn")
			MsgBox	("The	InfoPath	form	template	has	been	unregistered.")

			Set	objIP	=	Nothing

End	Sub

Show	All

UnregisterSolution	Method	(Index)

The	UnregisterSolution	method	uninstalls	the	specified	Microsoft	Office
InfoPath	2003	form	template.	This	method	is	implemented	in	several
Microsoft	Office	InfoPath	2003	object	model	collections.	Click	an
UnregisterSolution	method	link	below	to	view	the	Help	topic	for	a
specific	implementation	of	the	UnregisterSolution	method.

UnregisterSolution	method	as	it	applies	to	the	Application	object.

UnregisterSolution	method	as	it	applies	to	the	ExternalApplication
object.

Show	All

OnAfterChange	Event

Occurs	after	changes	to	a	form's	underlying	XML	document	have	been
accepted	and	after	the	OnValidate	event	has	occurred.

Function	node::OnAfterChange(ByRef	pDataDOMEvent	As
DataDOMEvent)

pDataDOMEvent	Required	DataDOMEvent.	A	reference	to	the
DataDOMEvent	object.

Remarks
This	event	handler	does	not	allow	users	to	cancel	an	operation.

The	OnAfterChange	event	is	typically	used	for	changing	data	in	a	form
after	other	changes	have	occurred—	for	example,	making	calculations	or
changing	the	structure	of	a	form's	underlying	XML	document.

Note		In	some	cases,	events	related	to	changes	in	a	form's	underlying
XML	document	may	occur	more	than	once.	For	example,	when	existing
data	is	changed,	an	insert	and	delete	operation	occurs.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
OnAfterChange	event	handler	is	used	to	call	a	custom	function	that
performs	calculations:

function	msoxd__ContactDates::OnAfterChange(eventObj)
{
			if	(eventObj.IsUndoRedo)
			{
						//	An	undo	or	redo	operation	has	occurred	and	the	DOM	is	read-only.
						return;
			}
			CalculateTotalCampaignCost();
}

Show	All

OnAfterImport	Event

Occurs	after	the	import	(or	merge)	operation	has	successfully	completed.

Function	XDocument::OnAfterImport(ByRef	pEvent	As	DocEvent)

pEvent	Required	DocEvent.	A	reference	to	the	DocEvent	object.

Remarks
This	event	handler	does	not	allow	users	to	cancel	an	operation.

If	the	merge	operation	includes	merging	multiple	forms,	the
OnAfterImport	event	occurs	only	after	all	forms	have	been	merged	and
the	complete	operation	is	successful.

Note		The	OnAfterImport	event	handler	cannot	be	created	using
Microsoft	Office	InfoPath	2003	design	mode;	it	must	be	created	manually.

Creating	the	OnAfterImport	event	handler

Example
In	the	following	example,	the	OnAfterImport	event	handler	is	used	to
display	a	message	box	that	informs	the	user	that	the	merge	operation
completed	successfully:

function	XDocument::OnAfterImport(eventObj)
{
			XDocument.UI.Alert("Merge	operation	was	successful.")
}

Show	All

OnBeforeChange	Event

Occurs	after	changes	to	a	form's	underlying	XML	document	have	been
made	but	before	the	changes	are	accepted.

Function	node::OnBeforeChange(ByRef	pDataDOMEvent	As
DataDOMEvent)

pDataDOMEvent	Required	DataDOMEvent.	A	reference	to	the
DataDOMEvent	object.

Remarks
This	event	handler	allows	users	to	cancel	an	operation.

During	the	OnBeforeChange	event,	the	form's	underlying	XML
document	is	placed	in	read-only	mode.	If	the	ReturnStatus	property	of
the	DataDOMEvent	object	is	set	to	False,	Microsoft	Office	InfoPath	2003
rejects	the	changes	that	were	made	and	a	message	box	is	displayed	to
the	user.	If	an	error	occurs	in	the	scripting	code	for	the	OnBeforeChange
event	handler,	InfoPath	rejects	the	changes	and	restores	the	data	to	its
previous	state.

Notes

It	is	best	to	avoid	switching	views	during	the	OnBeforeChange	event;
changes	have	not	yet	been	accepted,	and	switching	to	another	view	may
result	in	an	error.

In	some	cases,	events	related	to	changes	in	a	form's	underlying	XML
document	may	occur	more	than	once.	For	example,	when	existing	data	is
changed,	an	insert	and	delete	operation	occurs.

If	a	validation	error	is	encountered	in	any	OnBeforeChange	event
handler,	the	document	fails	to	load.	A	try-catch	block	in	the	OnLoad
event	can	be	used	to	catch	this	validation	failure	and	to	load	the
document	despite	the	error.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
OnBeforeChange	event	handler	is	used	to	validate	the	data	in	a	field.	If
the	data	is	not	valid,	the	ReturnStatus	property	of	the	DataDOMEvent
object	is	used	to	reject	the	changes.

function	msoxd__RepVisitDt::OnBeforeChange(eventObj)
{
			var	oNode	=	XDocument.DOM.selectSingleNode
						("/Customers/CustomerInfo/ContactDates/PhoneContactDt");

			if	(!oNode.text)
			{
						eventObj.ReturnMessage	=	"The	Phone	Contact	Start	date	must	be	
									set	prior	to	the	Representative	Visit	date.";
						eventObj.ReturnStatus	=	false;
						return;
			}

			//	If	the	data	is	valid,	eventObj.ReturnStatus	=	true.
			eventObj.ReturnStatus	=	true;
			return;
}

Show	All

OnClick	Event

Occurs	when	a	button	control	is	clicked	within	a	view	in	a	Microsoft	Office
InfoPath	2003	form.

Function	ScriptID::OnClick(ByRef	eventObj	As	DocActionEvent)

eventObj	Required	DocActionEvent.	A	reference	to	the
DocActionEvent	object.

Remarks
This	event	handler	does	not	allow	users	to	cancel	an	operation.

Note		The	OnClick	event	for	the	InfoPath	button	control	is	the	only
control	event	that	is	supported.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
OnClick	event	handler	is	used	to	perform	data	validation	on	some	of	the
fields	contained	in	the	New	Customer	view	when	a	user	clicks	a	button	to
switch	to	another	view:

function	btnSwitchContact::OnClick(eventObj)
{
			if	(XDocument.View.Name	==	"New	Customer")
			{
						if	(XDocument.DOM.selectSingleNode
									('/Customers/CustomerInfo/CustomerName').text	==	""
									&&	XDocument.DOM.selectSingleNode
									('/Customers/CustomerInfo/CustomerID').text	==	"")
						{
									XDocument.UI.Alert("The	Customer	Name	and	ID	must	"	+
												"be	filled	in	prior	to	switching	the	view.");
									return;
						}
						else	if	(XDocument.DOM.selectSingleNode
									('/Customers/CustomerInfo/CustomerName').text	==	"")
						{
									XDocument.UI.Alert("The	Customer	Name	must	be	filled	"	+
												"in	prior	to	switching	the	view.");
									return;
						}
						else	if	(XDocument.DOM.selectSingleNode
									('/Customers/CustomerInfo/CustomerID').text	==	"")
						{
									XDocument.UI.Alert("The	Customer	ID	must	be	filled	in	"	+
												"prior	to	switching	the	view.");
									return;

						}
			}
			XDocument.View.SwitchView('Contact	Customer');
}

Show	All

OnContextChange	Event

Occurs	after	the	context	node	changes.

Function	XDocument::OnContextChange(ByRef	pEvent	As
DocContextChangeEvent)

pEvent				Required	DocContextChangeEvent.	A	reference	to	the
DocContextChangeEvent	object.

Remarks
The	context	node	is	the	XML	DOM	node	mapped	to	the	view	that
corresponds	to	the	container	(or	item)	with	the	current	XML	selection.	For
example,	if	the	current	selection	in	the	view	is	in	a	text	box,	the	context
node	is	the	node	to	which	the	text	box	is	bound.	If	the	current	selection	is
a	repeating	section,	the	context	node	is	the	node	for	that	item.	If	two
repeating	sections	are	selected,	the	context	node	is	the	ancestor	XML
DOM	for	both	items	mapped	to	the	view.

The	OnContextChange	event	is	asynchronous.	It	does	not	fire	on	every
change	in	the	context	node;	instead,	it	fires	after	the	application	has
stopped	processing	other	events.

When	the	document	loads,	or	when	a	view	change	occurs,	the
OnContextChange	event	will	occur	after	the	OnLoad	and
OnSwitchView	events	occur.

When	the	IsUndoRedo	property	of	the	DocContextChangeEvent	object
is	True,	the	context	change	was	caused	by	a	user's	undo	or	redo
operation	rather	than	an	explicit	user	context	change.	Operations
performed	within	the	OnContextChange	event	handler	that	modify	the
XML	DOM	should	be	avoided	in	response	to	undo	or	redo	operations,
because	they	may	interfere	with	the	user's	intention	to	revert	data	to	a
previous	state.

For	rich	text	box	controls,	the	OnContextChange	event	is	not	raised	for
context	changes	within	the	XHTML	content—	that	is,	selection	changes
to	the	rich	text	in	the	control.	The	GetContextNodes	method	can	be
used	to	determine	the	selection	within	rich	text	box	controls.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	instructions	specific	to	different	context	nodes	in
a	form	are	added	to	the	body	of	a	custom	task	pane:

function	XDocument::OnContextChange(eventObj)	
{
				var	oContextNode	=	eventObj.Context;

				var	strText	=	"";
				if(oContextNode.nodeName	==	"my:root")
								strText	=	"";
				else	if(oContextNode.nodeName	==	"my:singleName")
								strText	=	"Type	your	full	name.";
				else	if(oContextNode.nodeName	==	"my:webSite")
								strText	=	"Type	the	Web	address	of	your	personal	web	page.";

				var	oTaskPane	=	XDocument.View.Window.TaskPanes.Item(0);
				oTaskPane.HTMLDocument.body.innerText	=	strText;
}

Show	All

OnLoad	Event

Occurs	after	a	Microsoft	Office	InfoPath	2003	form	has	been	loaded,	but
before	any	views	have	been	initialized.

Function	XDocument::OnLoad(ByRef	pEvent	As	DocReturnEvent)

pEvent	Required	DocReturnEvent.	A	reference	to	the	DocReturnEvent
object.

Remarks
This	event	handler	allows	users	to	cancel	an	operation.

If	the	ReturnStatus	property	of	the	DocReturnEvent	object	is	set	to
False,	InfoPath	cancels	the	loading	of	the	form.	If	an	error	occurs	in	the
scripting	code	for	the	OnLoad	event	handler,	InfoPath	ignores	it	and
relies	on	the	ReturnStatus	property	of	the	DocReturnEvent	object.	If
the	ReturnStatus	property	is	not	explicitly	set,	the	default	value	of	True	is
used.

Note		When	the	OnLoad	event	occurs,	the	view	is	not	initialized	and	the
XSL	Transformation	(XSLT)	used	for	the	view	is	not	yet	loaded.	The
XDocument	object	is	not	added	to	the	XDocuments	collection	until	after
the	OnLoad	event	has	occurred.	However,	the	XDocument	object	is
available	during	the	OnLoad	event.

Example
In	the	following	example	from	the	Sales	Report	sample	form,	the	OnLoad
event	handler	is	used	to	determine	whether	the	form	has	been	digitally
signed,	and	if	it	hasn't,	to	initialize	some	date	values	using	a	combination
of	scripting	functions	and	custom	functions:

function	XDocument::OnLoad(objEvent)
{
			//	Avoid	DOM	updates	when	the	document	has	been	digitally	signed.
			if	(XDocument.IsSigned)
						return;

			var	today	=	new	Date();
			initializeNodeValue("/sls:salesReport/sls:date",	getDateString(today));
			initializeNodeValue("/sls:salesReport/sls:year",	today.getFullYear());
}

This	Onload	event	handler	example	depends	on	two	custom	functions,
which	are	also	from	the	Sales	Report	sample	form:	initializeNodeValue
and	setNodeValue.

function	initializeNodeValue(xpath,	strValue)
{
				var	xmlNode	=	getNode(xpath);

				//	Set	the	node	value	*ONLY*	if	the	node	is	empty.
				if	(xmlNode.text	==	"")
								setNodeValue(xmlNode,	strValue);
}

function	setNodeValue(xpath,	value)
{
				var	xmlNode	=	getNode(xpath);

				if	(!xmlNode)
								return;

				//	The	xsi:nil	needs	to	be	removed	before	we	set	the	value.
				if	(value	!=	""	&&	xmlNode.getAttribute("xsi:nil"))
								xmlNode.removeAttribute("xsi:nil");

				//	Setting	the	value	would	mark	the	document	as	dirty.
				//	Let's	do	that	if	the	value	has	really	changed.
				if	(xmlNode.text	!=	value)
								xmlNode.text	=	value;
}

Show	All

OnMergeRequest	Event

Occurs	when	the	merge	operation	is	invoked	either	from	the	Microsoft
Office	InfoPath	2003	user	interface	or	from	the	command	line	by	using
the	/aggregate	option.

Function	XDocument::OnMergeRequest(ByRef	pEvent	As	MergeEvent)

pEvent				Required	MergeEvent.	A	reference	to	the	MergeEvent	object.

Remarks
If	the	ReturnStatus	property	of	the	MergeEvent	object	is	set	to	False,
InfoPath	cancels	the	merge	operation.	If	an	error	occurs	in	the	code	for
the	OnMergeRequest	event	handler,	InfoPath	ignores	the	error	and
relies	on	the	ReturnStatus	property	of	the	MergeEvent	object.	If	the
ReturnStatus	property	is	not	explicitly	set,	the	default	value	of	False	is
used.

For	InfoPath	forms	stored	in	a	Windows	SharePoint	Services	form	library,
the	OnMergeRequest	event	also	occurs	when	the	MergeDocuments2
method	of	the	OpenXMLDocuments	control	is	executed.	For	more
information	on	the	OpenXMLDocuments	control,	see	the	SharePoint
Products	and	Technologies	2003	Software	Development	Kit,	which	is
available	on	the	Microsoft	SharePoint	Products	and	Technologies	Web
site.

If	you	create	an	event	handler	for	the	OnMergeRequest	event	of	a	form
template,	you	must	edit	the	form	definition	file	(.xsf)	to	set	the
useScriptHandler	attribute	to	"yes"	before	it	will	run.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

http://r.office.microsoft.com/r/rlidAWSContentRedir?AssetID=XT010936161033&CTT=11&Origin=HV011041321033

Example
In	the	following	example,	the	OnMergeRequest	event	handler	performs
a	merge	operation,	and	it	sets	variables	to	indicate	the	status	of	the
merge	operation:

var	g_fMerging	=	false;

function	XDocument::OnMergeRequest(eventObj)
{
			//	Set	global	property	to	indicate	that	forms	are	being	merged.
			if	(eventObj.Index	==	0)
							g_fMerging	=	true;

			XDocument.ImportDOM(eventObj.DOM);
			eventObj.ReturnStatus	=	true;
			
			if	(eventObj.Index	+	1	==	eventObj.Count)
			{
						g_fMerging	=	false;
						XDocument.UI.Alert("Your	request	to	merge	"	+	eventObj.Count	+
					"	files	is	now	complete.");
			}
}

OnSaveRequest	Event

Occurs	when	the	save	operation	is	invoked	from	the	Microsoft	Office
InfoPath	2003	user	interface	or	by	using	the	Save	or	SaveAs	method	of
the	XDocument	object	in	the	InfoPath	object	model.

Function	XDocument::OnSaveRequest(ByRef	pEvent	As	SaveEvent)

pEvent				Required	SaveEvent.	A	reference	to	the	SaveEvent	object.

Remarks
If	the	ReturnStatus	property	of	the	SaveEvent	object	is	set	to	False,
InfoPath	cancels	the	save	operation.	If	an	error	occurs	in	the	code	for	the
OnSaveRequest	event	handler,	InfoPath	ignores	the	error	and	relies	on
the	ReturnStatus	property	of	the	SaveEvent	object.	If	the	ReturnStatus
property	is	not	explicitly	set,	the	default	value	of	False	is	used.

The	ReturnStatus	property	works	in	conjunction	with	the	IsCancelled
property	when	the	InfoPath	form	is	closing.	If	the	document	has	changes
that	have	not	been	saved	and	the	user	cancels	the	save	operation,	the
IsCancelled	property	can	be	set	to	True	to	allow	InfoPath	to	close.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Example
In	the	following	example,	the	OnSaveRequest	event	handler	is	used	to
create	an	XMLHTTP	object	for	transporting	the	form's	underlying	XML
document:

function	XDocument::OnSaveRequest(eventObj)
{
	 //	Write	the	code	to	be	run	before	saving	here.

	 XDocument.UI.Alert("Begin	saving	form.");

	 eventObj.IsCancelled	=	eventObj.PerformSaveOperation();

	 //	Write	the	code	to	be	run	after	saving	here.

	 XDocument.UI.Alert("Form	saved.");

	 eventObj.ReturnStatus	=	true;
}

OnSign	Event

Occurs	after	a	set	of	signed	data	has	been	selected	to	sign.

Function	XDocument::OnSign(ByRef	pEvent	As	SignEvent)

pEvent				Required	SignEvent.	A	reference	to	the	SignEvent	object.

Remarks
You	can	use	this	event	to	add	additional	data	to	the	digital	signature.	For
example,	you	can	add	data	from	a	trusted	timestamp	server,	or	add	a
server-side	countersignature	of	the	transaction.	You	can	also	use	this
event	to	block	signing	if	the	current	user	is	not	a	member	of	a	particular
group.

Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

Show	All

OnSubmitRequest	Event

Occurs	when	the	submit	operation	is	invoked	either	from	the	Microsoft
Office	InfoPath	2003	user	interface	or	by	using	the	Submit	method	of	the
XDocument	object	in	the	InfoPath	object	model.

Function	XDocument::OnSubmitRequest(ByRef	pEvent	As
DocReturnEvent)

pEvent	Required	DocReturnEvent.	A	reference	to	the	DocReturnEvent
object.

Remarks
This	event	handler	allows	users	to	cancel	an	operation.

If	the	ReturnStatus	property	of	the	DocReturnEvent	object	is	set	to
False,	InfoPath	cancels	the	submit	operation.	If	an	error	occurs	in	the
scripting	code	for	the	OnSubmitRequest	event	handler,	InfoPath	ignores
it	and	relies	on	the	ReturnStatus	property	of	the	DocReturnEvent
object.	If	the	ReturnStatus	property	is	not	explicitly	set,	the	default	value
of	False	is	used.

Example
In	the	following	example,	the	OnSubmitRequest	event	handler	is	used	to
create	an	XMLHTTP	object	for	transporting	the	form's	underlying	XML
document:

function	XDocument::OnSubmitRequest(eventObj)
{
			//	Create	an	XMLHTTP	object	for	document	transport.
			try
			{
						var	objXmlHttp	=	new	ActiveXObject("MSXML2.XMLHTTP");
			}
			catch(ex)
			{
						XDocument.UI.Alert("Could	not	create	MSXML2.XMLHTTP	
									object.\r\n"	+	ex.number	+	"	-	"	+	ex.description);

						//	Return	with	eventObj.ReturnStatus	==	false,	
						//	because	no	change	was	made	to	this	value.
						return;	
			}

			//	Post	the	XML	document	to	strUrl.
			objXmlHttp.open("POST",	strUrl,	false);
			try
			{
						objXmlHttp.send(XDocument.DOM.xml);
			}
			catch(ex)
			{
						XDocument.UI.Alert("Could	not	post	(ASP)	document	to	"	+	

									strUrl	+	"\r\n"	+	ex.number	+	"	-	"	+	ex.description);

						//	Return	with	eventObj.ReturnStatus	==	false.
						return;
			}
			//	If	here,	the	submit	operation	is	has	been	successful.
			eventObj.ReturnStatus	=	true;	
}

Show	All

OnSwitchView	Event

Occurs	after	a	view	in	a	Microsoft	Office	InfoPath	2003	form	has	been
successfully	switched.

Function	XDocument::OnSwitchView(ByRef	pEvent	As	DocEvent)

pEvent	Required	DocEvent.	A	reference	to	the	DocEvent	object.

Remarks
This	event	handler	does	not	allow	users	to	cancel	an	operation.

Note		The	OnSwitchView	event	also	occurs	when	a	form	is	first	opened.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
OnSwitchView	event	handler	is	used	to	check	the	name	of	the	current
view.	If	the	view	has	the	name	"Archive	Customer,"	data	is	added	to	the
form's	underlying	XML	document.

function	XDocument::OnSwitchView(eventObj)
{
			var	oDate	=	new	Date();

			if	(XDocument.View.Name	==	"Archive	Customer")
			{
						var	oNotesNode	=	XDocument.DOM.
									selectSingleNode("/Customers/CustomerInfo/Notes");
						var	oDivNode	=	XDocument.DOM.
									createNode(1,	"div",	"http://www.w3.org/1999/xhtml");

						oDivNode.text	=	"Note	recorded	"	+	oDate.toString();
						oNotesNode.appendChild(oDivNode);
			}
}

Show	All

OnValidate	Event

Occurs	after	changes	to	a	form's	underlying	XML	document	have	been
accepted	but	before	the	OnAfterChange	event	occurs.

Function	node::OnValidate(ByRef	pDataDOMEvent	As	DataDOMEvent)

pDataDOMEvent	Required	DataDOMEvent.	A	reference	to	the
DataDOMEvent	object.

Remarks
This	event	handler	does	not	allow	users	to	cancel	an	operation.

During	the	OnValidate	event,	the	form's	underlying	XML	document	is
placed	in	read-only	mode.

The	OnValidate	event	is	typically	used	for	handling	errors	and	working
with	the	Errors	collection—	for	example,	adding	new	errors	or	deleting
existing	ones.

Note		In	some	cases,	events	related	to	changes	in	a	form's	underlying
XML	document	may	occur	more	than	once.	For	example,	when	existing
data	is	changed,	an	insert	and	delete	operation	occurs.

Example
In	the	following	partial	example	from	the	Events	developer	sample	form,
the	OnValidate	event	handler	is	used	to	validate	contact	information.	If
the	data	is	invalid,	the	ReportError	method	of	the	DataDOMEVent	object
is	used	to	create	an	error.

function	msoxd__ContactDates::OnValidate(eventObj)
{
			var	iNumberOfDays	=	0;
			var	objEmailDate	=	XDocument.DOM.selectSingleNode
						('/Customers/CustomerInfo/ContactDates/EmailCampaignDt');
			var	objPhoneContactDate	=	XDocument.DOM.selectSingleNode
						('/Customers/CustomerInfo/ContactDates/PhoneContactDt');
			var	objRepVisitDate	=	XDocument.DOM.selectSingleNode
						('/Customers/CustomerInfo/ContactDates/RepVisitDt');

			//	First	validate	the	email	and	phone	contact	dates.
			if	(!objEmailDate	||	!objPhoneContactDate)
						return;

			var	emailDate	=	
						new	Date(objEmailDate.text.replace(/(.*)-(.*)-(.*)/,	"$2-$3-$1"));
			var	phoneContactDate	=	
						new	Date(objPhoneContactDate.text.replace(/(.*)-(.*)-(.*)/,	"$2-$3-$1"));

			if	(isNaN(emailDate)	||	isNaN(phoneContactDate))
						return;

			//	Get	the	number	of	days	between	the	two	dates.
			iNumberOfDays	=	GetElapsedDays(emailDate,	phoneContactDate);

			if	(iNumberOfDays	<	REQUIRED_PHONE_EMAIL_INTERVAL)

						eventObj.ReportError(objPhoneContactDate,	
									"The	Phone	Contact	Start	date	must	occur	after	"	+	
									REQUIRED_PHONE_EMAIL_INTERVAL	+	
									"	days	from	the	start	of	the	Email	Campaign.",	false);
			...
}

Show	All

OnVersionUpgrade	Event

Occurs	when	the	version	number	of	a	Microsoft	Office	InfoPath	2003
form	being	opened	is	older	than	the	version	number	of	the	form	template
on	which	it	is	based.

Function	XDocument::OnVersionUpgrade(ByRef	pEvent	As
VersionUpgradeEvent)

pEvent	Required	VersionUpgradeEvent.	A	reference	to	the
VersionUpgradeEvent	object.

Remarks
This	event	handler	allows	users	to	cancel	an	operation.

During	the	OnVersionUpgrade	event,	the	form's	underlying	XML
document	is	placed	in	read-only	mode,	and	it	is	not	validated	against	the
form's	associated	XML	Schema.	If	the	ReturnStatus	property	of	the
VersionUpgradeEvent	object	is	set	to	False,	InfoPath	cancels	the
opening	of	the	form.	If	an	error	occurs	in	the	scripting	code	for	the
OnVersionUpgrade	event	handler,	InfoPath	ignores	it	and	relies	on	the
ReturnStatus	property	of	the	VersionUpgradeEvent	object.	If	the
ReturnStatus	property	is	not	explicitly	set,	the	default	value	of	True	is
used.

Example
In	the	following	example	from	the	Events	developer	sample	form,	the
OnVersionUpgrade	event	handler	is	used	to	determine	whether	the	form
with	the	incorrect	older	version	number	contains	an	EmailAddress
element.	If	it	does	not,	one	is	added.

function	XDocument::OnVersionUpgrade(eventObj)
{
			if	(!XDocument.DOM.selectSingleNode("/Customers/CustomerInfo/EmailAddress"))
			{
						try
						{
									//	Create	the	new	element.
									var	objItemNode	=	XDocument.DOM.selectSingleNode("/Customers/CustomerInfo")
												.ownerDocument.createElement("EmailAddress");

									//	Add	the	new	<item>	element	to	the	XML	document	as	a
									//	child	of	the	<order>	element.
									XDocument.DOM.selectSingleNode("/Customers/CustomerInfo")
												.appendChild(objItemNode);
									eventObj.ReturnStatus=true;
						}
						catch(ex)
						{
									XDocument.UI.Alert("There	was	an	error	inserting	the	"	+
												"<EmailAddress>	node.\nDescription:	"	+	ex.description);
									eventObj.ReturnStatus=false;
						}
			}
}

Show	All

XdCertificateStatus	Enumeration

The	XdCertificateStatus	enumeration	is	used	to	determine	the	status	of
a	digital	certificate.	These	enumerated	values	are	returned	by	the	Status
property	of	the	Certificate	object.

Name Value Description
xdCertificateStatusError 0 The	status	of	the	specified	digital

certificate	cannot	be	determined.
xdCertificateStatusValid 1 The	specified	digital	certificate	is

valid.
xdCertificateStatusExpired 2 The	specified	digital	certificate

has	expired.
xdCertificateStatusNotTrusted 3 The	specified	digital	certificate	is

not	trusted.
xdCertificateStatusRevoked 4 The	specified	digital	certificate

has	been	revoked.

XdConfirmButtons	Enumeration

The	XdConfirmButtons	enumeration	is	used	to	determine	the	type	of
buttons	to	be	displayed	in	a	message	box.	These	enumerated	values	are
used	by	the	Confirm	method	of	the	UI	object.

Name Value Description
xdOKCancel 1 OK	and	Cancel	buttons	are	displayed.
xdYesNoCancel 3 Yes,	No,	and	Cancel	buttons	are	displayed.
xdYesNo 4 Yes	and	No	buttons	are	displayed

XdConfirmChoice	Enumeration

The	XdConfirmChoice	enumeration	is	used	to	determine	which	button	is
clicked	in	a	message	box.	These	enumerated	values	are	used	by	the
Confirm	method	of	the	UI	object.

Name Value Description
xdOK 1 The	OK	button	was	clicked.
xdCancel 2 The	Cancel	button	was	clicked.
xdYes 6 The	Yes	button	was	clicked.
xdNo 7 The	No	button	was	clicked.

Show	All

XdDocumentVersionMode	Enumeration

The	XdDocumentVersionMode	enumeration	is	used	to	determine	how	a
Microsoft	Office	InfoPath	2003	form	will	be	opened.	These	enumerated
values	are	used	as	arguments	to	the	New	and	Open	methods	of	the
ExternalApplication	object.

Name Value Description
xdCanOpenInReadOnlyMode 8 The	form	is	opened	in

read-only	mode.
xdCanTransformSigned 16 The	form	is	opened	and	its

transform	applied,	even
though	it	has	a	digital
signature.

xdFailOnVersionMismatch 0 The	form	is	created	or
opened	only	if	it	is
accessible	and	its	version
number	matches	the
version	number	of	the	form
template.

xdFailOnVersionOlder 1 The	form	is	created	or
opened	only	if	it	is
accessible	and	its	version
number	is	not	older	than
the	version	number	of	the
form	template.

xdIgnoreDataAdaptersQueryFailure 64 The	form	is	opened	even	if
the	query	associated	with
its	data	adapter	fails	to
return	data.

xdPromptTransformSigned 32 The	form	is	opened	and	the
Digital	Signatures	dialog
box	is	displayed	before	the
form's	transform	is	applied.

xdUseExistingVersion 2 The	form	is	created	or
opened	using	the	existing

version	number	of	the	form
template.

XdMachineOnlineState	Enumeration

The	XdMachineOnlineState	enumeration	is	used	to	determine	the	state
of	the	connection	for	the	client	computer.	These	enumerated	values	are
returned	by	the	MachineOnlineState	property	of	the	Application	object.

Name Value Description
xdOffline 0 The	client	computer	is	not	connected	to	the

network.
xdOnline 1 The	client	computer	is	connected	to	the

network.
xdIEIsInOfflineMode 2 Microsoft	Internet	Explorer	is	in	offline

mode.

XdSignatureRelation	Enumeration

The	XdSignatureRelation	enumeration	is	used	to	determine	how	digital
signatures	can	be	added	to	a	SignedDataBlock	object.	These
enumerated	values	are	read-only.

Name Value Description
xdSignatureRelationCoSign 2 Specifies	that	signatures	are

independent	of	each	other	in
the	SignedDataBlock	object.

xdSignatureRelationCounterSign 3 Specifies	that	each	signature
signs	the	preceding	signature
in	the	SignedDataBlock
object.

xdSignatureRelationSingle 1 Specifies	that	only	one
signature	can	exist	in	the
SignedDataBlock	object.

Show	All

XdSignatureStatus	Enumeration

The	XdSignatureStatus	enumeration	is	used	to	determine	the	status	of
a	digital	signature.	These	enumerated	values	are	returned	by	the	Status
property	of	the	Signature	object.

Name Value Description
xdSignatureStatusError 0 The	status	of	the	specified

digital	signature	cannot	be
determined.

xdSignatureStatusValid 1 The	specified	digital	signature
is	valid.

xdSignatureStatusInvalid 2 The	specified	digital	signature
is	invalid.

xdSignatureStatusUnsupported 3 The	specified	digital	signature
is	not	supported	by	Microsoft
Office	InfoPath	2003.

Show	All

XdTaskPaneType	Enumeration

The	XdTaskPaneType	enumeration	is	used	to	determine	the	type	of
Microsoft	Office	InfoPath	2003	task	pane	that	is	currently	displayed.
These	enumerated	values	are	returned	by	the	Type	property	of	the
TaskPane	object.	These	values	are	also	used	as	the	positional	argument
to	the	Item	property	of	the	TaskPanes	collection.

Name Value Description
xdTaskPaneBulletsNumbering 9 The	Bullets	and	Numbering

task	pane.	Used	for	applying
bullet	and	numbering	styles	to	a
form.

xdTaskPaneClipArt 5 The	Clip	Art	task	pane.	Used	for
inserting	clip	art	into	a	form.

xdTaskPaneDesignerNew 2 The	Design	a	Form	task	pane.
Used	to	design	a	new	form,	open
a	form	in	design	mode,	or	select
a	form	to	fill	out.

xdTaskPaneFillOutAForm 1 The	Fill	Out	a	Form	task	pane.
Used	to	open	a	form	to	fill	out	or
design.

xdTaskPaneFind 6 The	Find	task	pane.	Used	to
search	for	text	in	a	form.

xdTaskPaneFormatting 8 The	Font	task	pane.	Used	to
format	text.

xdTaskPaneHelp 4 The	Help	task	pane.	Used	to
display	the	InfoPath	Help
system.

xdTaskPaneHTML 0 The	InfoPath	custom	task	pane.
Used	by	form	developers	to
provide	extra	form	functionality.

xdTaskPaneHWSWorkflow 12 The	Microsoft	BizTalk	Server
2004	Human	Workflow	Services
(HWS)	Workflow	task	pane.

xdTaskPaneParaFormatting 11 The	Paragraph	task	pane.	Used
to	configure	properties	of
paragraphs	including	alignment
and	spacing.

xdTaskPaneReplace 7 The	Replace	task	pane.	Used	to
find	and	replace	text	in	a	form.

xdTaskPaneSearchResults 3 The	Search	Results	task	pane.
Used	to	display	the	results	of	a
search.

xdTaskPaneSpelling 10 The	Spelling	task	pane.	Used	to
check	the	spelling	in	a	form.

XdWindowState	Enumeration

The	XdWindowState	enumeration	is	used	to	determine	the	state	of	the
Microsoft	Office	InfoPath	2003	window	that	is	represented	by	the
Window	object.	These	enumerated	values	are	returned	or	set	by	the
WindowState	property	of	the	Window	object.

Name Value Description
xdWindowStateMaximize 1 The	window	is	maximized.
xdWindowStateNormal 2 The	window	is	not	maximized	or

minimized.
xdWindowStateMinimize 3 The	window	is	minimized.

Show	All

XdWindowType	Enumeration

The	XdWindowType	enumeration	is	used	to	determine	the	type	of
Microsoft	Office	InfoPath	2003	window	that	is	currently	displayed.	These
enumerated	values	are	returned	by	the	Type	property	of	the	Window
object.

Name Value Description
xdDesignerWindow 1 The	current	window	is	the	window	that	is

displayed	in	design	mode.
xdEditorWindow 0 The	current	window	is	the	window	that	is

displayed	when	filling	out	a	form.

InfoPath	XSF	Diagram

<xDocumentClass>
*<applicationParameters> 	 	 *

<solutionProperties>
*<calculations>
*<calculatedField>(s)

*<customValidation>
*<errorCondition>(s)
<errorMessage>

*<dataAdapters>
*<davAdapter>(s)
<fileName>
<folderURL>

*<emailAdapter>(s)
*<attachmentFileName>
*<bcc>
*<cc>
*<intro>
*<subject>
*<to>

*<hwsAdapter>(s)
*<hwsOperation>

*<input>
*<partFragment>(s)

*<webServiceAdapter>(s)
<operation>
*<input>
*<partFragment>(s)

*<dataObjects>

Legend

*				Optional	Element

(s)	Repeating	Element

	

*<dataObject>(s)
<query>
*<adoAdapter>
*<webServiceAdapter>
<operation>
*<input>
*<partFragment>(s)

*<sharepointListAdapter>
*<field>(s)

*<xmlFileAdapter>
*<documentSchemas>
<documentSchema>(s)

*<documentSignatures>
*<signedDataBlock>(s)
*<message>(s)

*<documentVersionUpgrade>
	 *<useScriptHandler>
*<useTransform>

*<domEventHandlers>
*<domEventHandler>(s)
*<ruleSetAction>(s)

*<extensions>
*<extension>(s)

*<externalViews>
*<externalView>(s)
*<mainpane>

*<featureRestrictions>
*<autoRecovery>
*<exportToExcel>

*<exportToWeb>
*<print>
*<save>
*<sendMail>

*<fileNew>
<initialXMLDocument>
*<customCategory>(s)

*<hwsWorkflow>
<allowedActions>
<action>(s)

<allowedTasks>
<task>(s)

<location>
*<importParameters>
*<importSource>(s)

*<listProperties>
*<fields>
*<field>(s)

*<onLoad>
<ruleSetAction>

<package>
<files>
*<file>(s)
*<fileProperties>
*<property>(s)

*<permissions>
<allowedControl>(s)

*<query>
*<adoAdapter>

*<queryAction>
*<sharepointListAdapter>

*<field>(s)
*<webServiceAdapter>

<operation>
*<input>
*<partFragment>(s)

*<xmlFileAdapter>
*<roles>
<role>(s)
<membership>(s)
<getUserNameFromData>(s)
<group>(s)
<username>(s)

*<ruleSets>
*<ruleSet>(s)
<rule>(s)
*<assignmentAction>(s)
*<closeDocumentAction>(s)
*<dialogBoxExpressionAction>(s)
*<dialogBoxMessageAction>(s)
*<exitRuleSet>(s)
*<openNewDocumentAction>(s)
*<queryAction>(s)
*<submitAction>(s)
*<switchViewAction>(s)

*<save>
*<useScriptHandler>

*<schemaErrorMessages>

*<override>(s)
<errorMessage>

*<scripts>
*<script>(s)

*<submit>
*<davAdapter>
<fileName>
<folderURL>

*<emailAdapter>
*<attachmentFileName>
*<bcc>
*<cc>
*<intro>
*<subject>
*<to>

*<errorMessage>
*<ruleSetAction>
*<submitAction>
*<successMessage>
*<useHttpHandler>
*<useScriptHandler>
*<useQueryAdapter>
*<webServiceAdapter>
<operation>
*<input>
*<partFragment>(s)

<taskpane>
<views>
<view>(s)

*<editing>
*<xmlToEdit>(s)
*<editWith>(s)
*<fragmentToInsert>
<chooseFragment>(s)
*<attributeData>

*<masterDetail>
<mainpane>
*<menu>(s)
*<button>(s)
*<menu>(s)

*<menuArea>(s)
*<button>(s)
*<menu>(s)

<printSettings>
*<footer>
*<header>

*<toolbar>(s)
*<button>(s)
*<menu>(s)

*<unboundControls>
*<button>(s)
*<ruleSetAction>

	 	

Show	All

InfoPath	XSF	Schema

The	Microsoft	Office	InfoPath	2003	form	definition	(.xsf)	file	schema	is	an
XML	Schema	(.xsd)	file	that	is	used	to	validate	the	.xsf	file	contained	in
an	InfoPath	form	template.

The	following	is	a	complete	listing	of	the	contents	of	the	.xsf	schema	file:

<?xml	version="1.0"	encoding="UTF-8"	?>
<xsd:schema	xmlns:xsd="http://www.w3.org/2001/XMLSchema"	xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
	 targetNamespace="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"	elementFormDefault="qualified"
	 attributeFormDefault="unqualified">
	 <!--	xdTitle	type	-->
	 <xsd:simpleType	name="xdTitle">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:minLength	value="1"	/>
	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 <xsd:pattern	value="([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])(([^\p{Zl}\p{Zp}\p{Cc}])*([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdViewName	type	-->
	 <xsd:simpleType	name="xdViewName">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:minLength	value="1"	/>
	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 <xsd:pattern	value="([^\p{Z}\p{C}/\\#&"><])(([^\p{Zl}\p{Zp}\p{C}/\\#&"><])*([^\p{Z}\p{C}/\\#&"><]))?"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdRoleName	type	-->
	 <!--	uses	xdViewName	as	base	-->
	 <xsd:simpleType	name="xdRoleName">
	 	 <xsd:restriction	base="xsf:xdViewName"></xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdYesNo	type	-->

	 <xsd:simpleType	name="xdYesNo">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:enumeration	value="yes"	/>
	 	 	 <xsd:enumeration	value="no"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdEnabledDisabled	type	-->
	 <xsd:simpleType	name="xdEnabledDisabled">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:enumeration	value="enabled"	/>
	 	 	 <xsd:enumeration	value="disabled"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdManualAuto	type	-->
	 <xsd:simpleType	name="xdManualAuto">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:enumeration	value="manual"	/>
	 	 	 <xsd:enumeration	value="automatic"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdExpressionLiteral	type	-->
	 <xsd:simpleType	name="xdExpressionLiteral">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:enumeration	value="expression"	/>
	 	 	 <xsd:enumeration	value="literal"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdFileName	type	-->
	 <xsd:simpleType	name="xdFileName">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:minLength	value="1"	/>
	 	 	 <xsd:maxLength	value="64"	/>
	 	 </xsd:restriction>

	 </xsd:simpleType>
	 <!--	xdScriptLanguage	type	-->
	 <xsd:simpleType	name="xdScriptLanguage">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:pattern	value="(([Jj][Aa][Vv][Aa]|(([Jj])|([Vv][Bb]))([Ss][Cc][Rr][Ii][Pp][Tt]))([.][Ee][Nn][Cc][Oo][Dd][Ee]))|([Jj][Aa][Vv][Aa]|(([Jj])|([Vv][Bb]))([Ss][Cc][Rr][Ii][Pp][Tt]))|([Mm][Aa][Nn][Aa][Gg][Ee][Dd][Cc][Oo][Dd][Ee])"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdSolutionVersion	type	-->
	 <xsd:simpleType	name="xdSolutionVersion">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:pattern	value="(([0-9]{1,4}.){3}[0-9]{1,4})"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdEmptyString	type	-->
	 <xsd:simpleType	name="xdEmptyString">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:maxLength	value="0"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdErrorMessage	type	-->
	 <xsd:simpleType	name="xdErrorMessage">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:maxLength	value="1023"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdDesignMode	type	-->
	 <xsd:simpleType	name="xdDesignMode">
	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 <xsd:enumeration	value="normal"	/>
	 	 	 <xsd:enumeration	value="protected"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdTrustLevel	type	-->

	 <xsd:simpleType	name="xdTrustLevel">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:enumeration	value="restricted"	/>
	 	 	 <xsd:enumeration	value="domain"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdSignedDataBlockName	type	-->
	 <xsd:simpleType	name="xdSignedDataBlockName">
	 	 <xsd:restriction	base="xsd:ID">
	 	 	 <xsd:minLength	value="1"	/>
	 	 	 <xsd:maxLength	value="255"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdSignedDataBlockMessage	type	-->
	 <xsd:simpleType	name="xdSignedDataBlockMessage">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:maxLength	value="255"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdSignatureRelationEnum	type	-->
	 <xsd:simpleType	name="xdSignatureRelationEnum">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:enumeration	value="countersign"	/>
	 	 	 <xsd:enumeration	value="cosign"	/>
	 	 	 <xsd:enumeration	value="single"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xdHWSname	type	-->
	 <xsd:simpleType	name="xdHWSname">
	 	 <xsd:restriction	base="xsd:NCName">
	 	 	 <xsd:pattern	value="[^-^\.^\\^\[^\]^\|^\+^?^*^@^\{^\}^\(^\)^>^<^=^;^,]*"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>

	 <!--	xdHWSCaption	type	-->
	 <xsd:simpleType	name="xdHWSCaption">
	 	 <xsd:restriction	base="xsd:string">
	 	 	 <xsd:minLength	value="1"	/>
	 	 	 <xsd:maxLength	value="255"	/>
	 	 </xsd:restriction>
	 </xsd:simpleType>
	 <!--	xDocumentClass	-->
	 <xsd:element	name="xDocumentClass">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	ref="xsf:package"	minOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:permissions"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:views"	minOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:hwsWorkflow"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:externalViews"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:scripts"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:schemaErrorMessages"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:documentSchemas"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:applicationParameters"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:featureRestrictions"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:fileNew"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:customValidation"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:domEventHandlers"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:importParameters"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:listProperties"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:taskpane"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:documentSignatures"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:dataObjects"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:dataAdapters"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:query"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:submit"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:save"	minOccurs="0"	/>

	 	 	 	 <xsd:element	ref="xsf:roles"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:onLoad"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:documentVersionUpgrade"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:extensions"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:ruleSets"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:calculations"	minOccurs="0"	/>
	 	 	 </xsd:all>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="author"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="description"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="solutionVersion"	type="xsf:xdSolutionVersion"	use="optional"	/>
	 	 	 <xsd:attribute	name="productVersion"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="solutionFormatVersion"	type="xsf:xdSolutionVersion"	use="required"	/>
	 	 	 <xsd:attribute	name="dataFormSolution"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="requireFullTrust"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="trustLevel"	type="xsf:xdTrustLevel"	use="optional"	/>
	 	 	 <xsd:attribute	name="trustSetting"	type="xsf:xdManualAuto"	use="optional"	/>
	 	 	 <xsd:attribute	name="publishUrl"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 	 <xsd:key	name="view_name_key">
	 	 	 <xsd:selector	xpath="./xsf:views/xsf:view"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:key	name="externalView_name_key">
	 	 	 <xsd:selector	xpath="./xsf:externalViews/xsf:externalView"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>

	 	 <xsd:key	name="view_or_externalView_name_key">
	 	 	 <xsd:selector	xpath="./xsf:views/xsf:view	|	./xsf:externalViews/xsf:externalView"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:key	name="ruleset_name_key">
	 	 	 <xsd:selector	xpath="./xsf:ruleSets/xsf:ruleSet"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:key	name="dataObject_name_key">
	 	 	 <xsd:selector	xpath="./xsf:dataObjects/xsf:dataObject"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:unique	name="adapter_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:dataObjects/xsf:dataObject/xsf:query/*	|	./xsf:query/*	|	./xsf:dataAdapters/*	|	./xsf:submit/xsf:webServiceAdapter	|	./xsf:submit/xsf:davAdapter	|	./xsf:submit/xsf:emailAdapter"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <xsd:key	name="adapter_name_key">
	 	 	 <xsd:selector	xpath="./xsf:dataAdapters/*"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:unique	name="view_external_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:views/xsf:view	|	./xsf:externalViews/xsf:externalView"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	schemaErrorMessages	-->
	 <xsd:element	name="schemaErrorMessages">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:override"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>

	 <!--	override	-->
	 <xsd:element	name="override">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:errorMessage"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="match"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	applicationParameters	-->
	 <xsd:element	name="applicationParameters">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	ref="xsf:solutionProperties"	minOccurs="0"	/>
	 	 	 </xsd:all>
	 	 	 <xsd:attribute	name="application"	use="required">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:enumeration	value="InfoPath	Design	Mode"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	solutionProperties	-->
	 <xsd:element	name="solutionProperties">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="allowCustomization"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="lastOpenView"	use="optional"	/>
	 	 	 <xsd:attribute	name="scriptLanguage"	type="xsf:xdScriptLanguage"	use="optional"	/>
	 	 	 <xsd:attribute	name="automaticallyCreateNodes"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="lastVersionNeedingTransform"	type="xsf:xdSolutionVersion"	use="optional"	/>
	 	 	 <xsd:attribute	name="fullyEditableNamespace"	type="xsd:anyURI"	use="optional"	/>

	 	 	 <xsd:attribute	name="publishSaveUrl"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	featureRestrictions	-->
	 <xsd:element	name="featureRestrictions">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	name="save"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	ref="xsf:exportToWeb"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:exportToExcel"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:print"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:sendMail"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:autoRecovery"	minOccurs="0"	/>
	 	 	 </xsd:all>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	exportToWeb	-->
	 <xsd:element	name="exportToWeb">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	exportToExcel	-->
	 <xsd:element	name="exportToExcel">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	print	-->

	 <xsd:element	name="print">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	sendMail	-->
	 <xsd:element	name="sendMail">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	autoRecovery	-->
	 <xsd:element	name="autoRecovery">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="feature"	type="xsf:xdEnabledDisabled"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	query	-->
	 <xsd:element	name="query">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:queryAction"	/>
	 	 	 	 <xsd:element	ref="xsf:adoAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:webServiceAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:xmlFileAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:sharepointListAdapter"	/>
	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	scripts	-->
	 <xsd:element	name="scripts">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>

	 	 	 	 <xsd:element	ref="xsf:script"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="language"	type="xsf:xdScriptLanguage"	use="required"	/>
	 	 	 <xsd:attribute	name="enforceScriptTimeout"	type="xsf:xdYesNo"	use="optional"	default="yes"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="script">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="src"	type="xsf:xdFileName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	dataObjects	-->
	 <xsd:element	name="dataObjects">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 <xsd:element	ref="xsf:dataObject"	/>
	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="dataObjects_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:dataObject"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <xsd:element	name="dataObject">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	name="query">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:choice>
	 	 	 	 	 	 	 <xsd:element	ref="xsf:adoAdapter"	/>
	 	 	 	 	 	 	 <xsd:element	ref="xsf:webServiceAdapter"	/>
	 	 	 	 	 	 	 <xsd:element	ref="xsf:xmlFileAdapter"	/>
	 	 	 	 	 	 	 <xsd:element	ref="xsf:sharepointListAdapter"	/>

	 	 	 	 	 	 </xsd:choice>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="schema"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="initOnLoad"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	dataAdapters	-->
	 <xsd:element	name="adoAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"	/>
	 	 	 <xsd:attribute	name="connectionString"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="commandText"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="webServiceAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:operation"	/>
	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"	/>
	 	 	 <xsd:attribute	name="wsdlUrl"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="useDataSet"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="hwsAdapter">
	 	 <xsd:complexType>

	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:hwsOperation"	/>
	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="wsdlUrl"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="operation">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:input"	minOccurs="0"	/>
	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="soapAction"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="serviceUrl"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="hwsOperation">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:input"	/>
	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="type"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="typeID"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="serviceUrl"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="input">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 <xsd:element	ref="xsf:partFragment"	/>

	 	 	 </xsd:choice>
	 	 	 <xsd:attribute	name="source"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="partFragment">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="match"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="replaceWith"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="sendAsString"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="filter"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="xmlFileAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"	/>
	 	 	 <xsd:attribute	name="fileUrl"	type="xsd:anyURI"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="sharepointListAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	name="field"	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="sharepointName"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="infopathName"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="isLookup"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="siteUrl"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="sharepointGuid"	type="xsd:string"	use="required"	/>

	 	 	 <xsd:attribute	name="infopathGroup"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="davAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	name="folderURL">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="fileName">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 </xsd:all>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="overwriteAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="emailAdapter">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	name="to"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>

	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="cc"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="bcc"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="subject"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="intro"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	name="attachmentFileName"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 	 	 	 <xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	/>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 </xsd:element>
	 	 	 </xsd:all>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>

	 	 	 <xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="dataAdapters">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 <xsd:element	ref="xsf:adoAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:webServiceAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:xmlFileAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:sharepointListAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:davAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:emailAdapter"	/>
	 	 	 	 <xsd:element	ref="xsf:hwsAdapter"	/>
	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	documentSchemas	-->
	 <xsd:element	name="documentSchemas">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:documentSchema"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="documentSchema">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="location"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="rootSchema"	type="xsf:xdYesNo"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	customValidation	-->
	 <xsd:element	name="customValidation">

	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:errorCondition"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="errorCondition">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:errorMessage"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="match"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="expression"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="expressionContext"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="showErrorOn"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="errorMessage">
	 	 <xsd:complexType>
	 	 	 <xsd:simpleContent>
	 	 	 	 <xsd:extension	base="xsf:xdErrorMessage">
	 	 	 	 	 <xsd:attribute	name="type"	use="optional">
	 	 	 	 	 	 <xsd:simpleType>
	 	 	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 	 	 <xsd:enumeration	value="modal"	/>
	 	 	 	 	 	 	 	 <xsd:enumeration	value="modeless"	/>
	 	 	 	 	 	 	 </xsd:restriction>
	 	 	 	 	 	 </xsd:simpleType>
	 	 	 	 	 </xsd:attribute>
	 	 	 	 	 <xsd:attribute	name="shortMessage"	use="required">
	 	 	 	 	 	 <xsd:simpleType>
	 	 	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 	 	 <xsd:maxLength	value="127"	/>

	 	 	 	 	 	 	 </xsd:restriction>
	 	 	 	 	 	 </xsd:simpleType>
	 	 	 	 	 </xsd:attribute>
	 	 	 	 </xsd:extension>
	 	 	 </xsd:simpleContent>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	domEventHandlers	-->
	 <xsd:element	name="domEventHandlers">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:domEventHandler"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="domEventHandler_handlerObject_unique">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@handlerObject"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <xsd:element	name="domEventHandler">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:ruleSetAction"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="match"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="handlerObject"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 	 <xsd:keyref	name="domEventHandler_ruleSetAction"	refer="xsf:ruleset_name_key">
	 	 	 <xsd:selector	xpath="./xsf:ruleSetAction"	/>
	 	 	 <xsd:field	xpath="@ruleSet"	/>
	 	 </xsd:keyref>
	 </xsd:element>

	 <!--	importParameters	-->
	 <xsd:element	name="importParameters">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:importSource"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="enabled"	type="xsf:xdYesNo"	use="required"	/>
	 	 	 <xsd:attribute	name="useScriptHandler"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="importSource">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="schema"	type="xsf:xdFileName"	use="required"	/>
	 	 	 <xsd:attribute	name="transform"	type="xsf:xdFileName"	use="required"	/>
	 	 	 <xsd:attribute	name="authoringOfTransform"	type="xsf:xdManualAuto"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	listProperties	-->
	 <xsd:element	name="listProperties">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	ref="xsf:fields"	/>
	 	 	 </xsd:all>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="fields">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:field"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>

	 <xsd:element	name="field">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="type"	type="xsd:NMTOKEN"	use="required"	/>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="columnName"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="required"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="viewable"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="node"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="maxLength"	type="xsd:byte"	/>
	 	 	 <xsd:attribute	name="aggregation"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="sum"	/>
	 	 	 	 	 	 <xsd:enumeration	value="count"	/>
	 	 	 	 	 	 <xsd:enumeration	value="average"	/>
	 	 	 	 	 	 <xsd:enumeration	value="min"	/>
	 	 	 	 	 	 <xsd:enumeration	value="max"	/>
	 	 	 	 	 	 <xsd:enumeration	value="first"	/>
	 	 	 	 	 	 <xsd:enumeration	value="last"	/>
	 	 	 	 	 	 <xsd:enumeration	value="merge"	/>
	 	 	 	 	 	 <xsd:enumeration	value="plaintext"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	submit	-->
	 <xsd:element	name="submit">
	 	 <xsd:complexType>
	 	 	 <xsd:all>
	 	 	 	 <xsd:element	name="submitAction"	minOccurs="0">
	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 <xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"	/>

	 	 	 	 	 </xsd:complexType>
	 	 	 	 	 <xsd:keyref	name="submitAdapter_name_keyref"	refer="xsf:adapter_name_key">
	 	 	 	 	 	 <xsd:selector	xpath="."	/>
	 	 	 	 	 	 <xsd:field	xpath="@adapter"	/>
	 	 	 	 	 </xsd:keyref>
	 	 	 	 </xsd:element>
	 	 	 	 <xsd:element	ref="xsf:useHttpHandler"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:useScriptHandler"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:ruleSetAction"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:useQueryAdapter"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:webServiceAdapter"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:davAdapter"	minOccurs="0"	/>
	 	 	 	 <xsd:element	ref="xsf:emailAdapter"	minOccurs="0"	/>
	 	 	 	 <xsd:element	name="successMessage"	type="xsd:string"	minOccurs="0"	/>
	 	 	 	 <xsd:element	name="errorMessage"	type="xsd:string"	minOccurs="0"	/>
	 	 	 </xsd:all>
	 	 	 <xsd:attribute	name="caption"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="onAfterSubmit"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="close"	/>
	 	 	 	 	 	 <xsd:enumeration	value="keepOpen"	/>
	 	 	 	 	 	 <xsd:enumeration	value="openNew"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="showStatusDialog"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="showSignatureReminder"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="disableMenuItem"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 	 <xsd:keyref	name="submit_ruleSetAction"	refer="xsf:ruleset_name_key">
	 	 	 <xsd:selector	xpath="./xsf:ruleSetAction"	/>
	 	 	 <xsd:field	xpath="@ruleSet"	/>

	 	 </xsd:keyref>
	 </xsd:element>
	 <xsd:element	name="useHttpHandler">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="method"	use="required">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="POST"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="href"	type="xsd:anyURI"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="useScriptHandler"	/>
	 <xsd:element	name="useQueryAdapter"	/>
	 <!--	onLoad	-->
	 <xsd:element	name="onLoad">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:ruleSetAction"	minOccurs="1"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 	 <xsd:keyref	name="load_ruleSetAction"	refer="xsf:ruleset_name_key">
	 	 	 <xsd:selector	xpath="./xsf:ruleSetAction"	/>
	 	 	 <xsd:field	xpath="@ruleSet"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <!--	save	-->
	 <xsd:element	name="save">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="1">
	 	 	 	 <xsd:element	ref="xsf:useScriptHandler"	/>

	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	roles	-->
	 <xsd:element	name="roles">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:role"	minOccurs="1"	maxOccurs="unbounded"	/>
	 	 	 	 <xsd:element	ref="xsf:membership"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="default"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="initiator"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="hideStatusBarDisplay"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 	 <!--	role	names	must	be	unique	-->
	 	 <xsd:unique	name="roles_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:role"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <!--	fields	must	reference	existing	role	-->
	 	 <xsd:key	name="role_name_key">
	 	 	 <xsd:selector	xpath="./xsf:role"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:keyref	name="role_default"	refer="xsf:role_name_key">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@default"	/>
	 	 </xsd:keyref>
	 	 <xsd:keyref	name="role_initiator"	refer="xsf:role_name_key">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@initiator"	/>
	 	 </xsd:keyref>
	 	 <xsd:keyref	name="role_membership"	refer="xsf:role_name_key">

	 	 	 <xsd:selector	xpath="./xsf:membership/*"	/>
	 	 	 <xsd:field	xpath="@memberOf"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <xsd:element	name="role">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdRoleName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="membership">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="1"	maxOccurs="unbounded">
	 	 	 	 <xsd:element	ref="xsf:getUserNameFromData"	/>
	 	 	 	 <xsd:element	ref="xsf:userName"	/>
	 	 	 	 <xsd:element	ref="xsf:group"	/>
	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="getUserNameFromData">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="select"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="userName">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="group">
	 	 <xsd:complexType>

	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	hwsWorkflow	-->
	 <xsd:element	name="hwsWorkflow">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:location"	minOccurs="1"	maxOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:allowedActions"	minOccurs="1"	maxOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:allowedTasks"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="taskpaneVisible"	type="xsf:xdYesNo"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="hws_actiontask_name">
	 	 	 <xsd:selector	xpath="./xsf:allowedActions/xsf:action|./xsf:allowedTasks/xsf:task"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	location	-->
	 <xsd:element	name="location">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="url"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	allowedActions	-->
	 <xsd:element	name="allowedActions">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:action"	minOccurs="1"	maxOccurs="20"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="hws_actionTypeID_unique">

	 	 	 <xsd:selector	xpath="./xsf:action"	/>
	 	 	 <xsd:field	xpath="@actionTypeID"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	action	-->
	 <xsd:element	name="action">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"	/>
	 	 	 <xsd:attribute	name="actionTypeID"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="canInitiateWorkflow"	type="xsf:xdYesNo"	use="required"	/>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	allowedTasks	-->
	 <xsd:element	name="allowedTasks">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:task"	minOccurs="1"	maxOccurs="20"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="hws_taskID_unique">
	 	 	 <xsd:selector	xpath="./xsf:task"	/>
	 	 	 <xsd:field	xpath="@taskTypeID"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	task	-->
	 <xsd:element	name="task">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"	/>
	 	 	 <xsd:attribute	name="taskTypeID"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>

	 <!--	fileNew	-->
	 <xsd:element	name="fileNew">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:initialXmlDocument"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="initialXmlDocument">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:customCategory"	minOccurs="0"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="href"	type="xsf:xdFileName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	customCategory	-->
	 <xsd:element	name="customCategory">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	package	-->
	 <xsd:element	name="package">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:files"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="files">
	 	 <xsd:complexType>

	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:file"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="file">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:fileProperties"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdFileName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="fileProperties">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:property"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="property">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="type"	type="xsd:QName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	permissions	-->
	 <xsd:element	name="permissions">
	 	 <xsd:complexType>
	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 <xsd:element	ref="xsf:allowedControl"	/>
	 	 	 </xsd:choice>

	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="allowedControl">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="cabFile"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="clsid"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="version"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	View	and	Context-Driven	Editing	definitions	-->
	 <!--	External	Views	-->
	 <xsd:element	name="externalViews">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:externalView"	minOccurs="1"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="default"	type="xsd:string"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="externalViews_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:externalView"	/>
	 	 	 <xsd:field	xpath="@default"	/>
	 	 </xsd:unique>
	 	 <xsd:keyref	name="external_views_printView"	refer="xsf:externalView_name_key">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@default"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <xsd:element	name="externalView">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:mainpane"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="target"	type="xsd:string"	/>

	 	 	 <xsd:attribute	name="name"	type="xsf:xdViewName"	use="required"	/>
	 	 	 <xsd:attribute	name="designMode"	type="xsf:xdDesignMode"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	attributeData	-->
	 <xsd:element	name="attributeData">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="attribute"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="value"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	button	-->
	 <xsd:element	name="button">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdTitle"	/>
	 	 	 <xsd:attribute	name="icon"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="tooltip"	type="xsf:xdTitle"	/>
	 	 	 <xsd:attribute	name="name"	type="xsd:NMTOKEN"	/>
	 	 	 <xsd:attribute	name="xmlToEdit"	type="xsd:NMTOKEN"	/>
	 	 	 <xsd:attribute	name="action">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::insert"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::insertBefore"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::insertAfter"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::remove"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::refreshFilter"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xCollection::removeAll"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xOptional::insert"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xOptional::remove"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xReplace::replace"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xFileAttachment::attach"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xFileAttachment::open"	/>

	 	 	 	 	 	 <xsd:enumeration	value="xFileAttachment::saveAs"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xFileAttachment::remove"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="showIf">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="always"	/>
	 	 	 	 	 	 <xsd:enumeration	value="enabled"	/>
	 	 	 	 	 	 <xsd:enumeration	value="immediate"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	chooseFragment	-->
	 <xsd:element	name="chooseFragment">
	 	 <xsd:complexType	mixed="true">
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="parent"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="followingSiblings"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="innerFragment"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	editWith	-->
	 <xsd:element	name="editWith">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:masterDetail"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:fragmentToInsert"	minOccurs="0"	maxOccurs="1"	/>

	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="component"	use="required">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="xCollection"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xOptional"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xReplace"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xTextList"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xField"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xImage"	/>
	 	 	 	 	 	 <xsd:enumeration	value="xFileAttachment"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdTitle"	use="optional"	/>
	 	 	 <xsd:attribute	name="autoComplete"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="proofing"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="type"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="plain"	/>
	 	 	 	 	 	 <xsd:enumeration	value="formatted"	/>
	 	 	 	 	 	 <xsd:enumeration	value="plainMultiline"	/>
	 	 	 	 	 	 <xsd:enumeration	value="formattedMultiline"	/>
	 	 	 	 	 	 <xsd:enumeration	value="rich"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="useFilter"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:enumeration	value="yes"	/>
	 	 	 	 	 	 <xsd:enumeration	value="no"	/>

	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="widgetIcon"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:enumeration	value="standard"	/>
	 	 	 	 	 	 <xsd:enumeration	value="filter"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="filterDependency"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="field"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="removeAncestors"	type="xsd:nonNegativeInteger"	use="optional"	/>
	 	 	 <xsd:attribute	name="maxLength"	use="optional">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:integer">
	 	 	 	 	 	 <xsd:minInclusive	value="-1"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="9999"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="allowedFileTypes"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:anyAttribute	namespace="http://schemas.microsoft.com/office/infopath/2003"	processContents="skip"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	unboundControls	-->
	 <xsd:element	name="unboundControls">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <!--	button	-->
	 	 	 	 <xsd:element	name="button"	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 	 <xsd:complexType>

	 	 	 	 	 	 <xsd:sequence>
	 	 	 	 	 	 	 <xsd:element	ref="xsf:ruleSetAction"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 	 	 	 </xsd:sequence>
	 	 	 	 	 	 <xsd:attribute	name="name"	use="required">
	 	 	 	 	 	 	 <xsd:simpleType>
	 	 	 	 	 	 	 	 <!--	type	of	name	is	non	qualified	name,	but	NCName	also	accepts	'.'	and	'-',	
	 	 	 	 	 	 	 	 so	these	characters	are	 disabled	by	pattern	restriction	-->
	 	 	 	 	 	 	 	 <xsd:restriction	base="xsd:NCName">
	 	 	 	 	 	 	 	 	 <xsd:pattern	value="[^\.\^-]*"	/>
	 	 	 	 	 	 	 	 </xsd:restriction>
	 	 	 	 	 	 	 </xsd:simpleType>
	 	 	 	 	 	 </xsd:attribute>
	 	 	 	 	 </xsd:complexType>
	 	 	 	 	 <xsd:keyref	name="button_ruleSetAction"	refer="xsf:ruleset_name_key">
	 	 	 	 	 	 <xsd:selector	xpath="./xsf:ruleSetAction"	/>
	 	 	 	 	 	 <xsd:field	xpath="@ruleSet"	/>
	 	 	 	 	 </xsd:keyref>
	 	 	 	 </xsd:element>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	editing	-->
	 <xsd:element	name="editing">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:xmlToEdit"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	Master	Detail	-->
	 <xsd:element	name="masterDetail">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="master"	type="xsd:string"	/>

	 	 	 <xsd:attribute	name="masterViewContext"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="masterKey"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="detailKey"	type="xsd:string"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	fragmentToInsert	-->
	 <xsd:element	name="fragmentToInsert">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:chooseFragment"	minOccurs="1"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	mainpane	-->
	 <xsd:element	name="mainpane">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="transform"	type="xsf:xdFileName"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	printSettings	-->
	 <xsd:element	name="printSettings">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:header"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 	 <xsd:element	ref="xsf:footer"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="orientation">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="portrait"	/>
	 	 	 	 	 	 <xsd:enumeration	value="landscape"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>

	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="header">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="footer">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="marginUnitsType">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="in"	/>
	 	 	 	 	 	 <xsd:enumeration	value="cm"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="rightMargin">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:float">
	 	 	 	 	 	 <xsd:minInclusive	value="0"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="100"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="leftMargin">
	 	 	 	 <xsd:simpleType>

	 	 	 	 	 <xsd:restriction	base="xsd:float">
	 	 	 	 	 	 <xsd:minInclusive	value="0"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="100"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="topMargin">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:float">
	 	 	 	 	 	 <xsd:minInclusive	value="0"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="100"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="bottomMargin">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:float">
	 	 	 	 	 	 <xsd:minInclusive	value="0"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="100"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="printerName">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="paperSize">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>

	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="paperSource">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="copies">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:integer">
	 	 	 	 	 	 <xsd:minInclusive	value="1"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="9999"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="collate"	type="xsf:xdYesNo"	/>
	 	 	 <xsd:attribute	name="pageRangeStart">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:integer">
	 	 	 	 	 	 <xsd:minInclusive	value="1"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="32000"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="pageRangeEnd">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:integer">
	 	 	 	 	 	 <xsd:minInclusive	value="1"	/>
	 	 	 	 	 	 <xsd:maxInclusive	value="32000"	/>
	 	 	 	 	 </xsd:restriction>

	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="printerSpecificSettings">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:maxLength	value="255"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="header">
	 	 <xsd:complexType	mixed="true">
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="footer">
	 	 <xsd:complexType	mixed="true">
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	toolbar	-->
	 <xsd:element	name="toolbar">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:group	ref="xsf:UIItem"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	/>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdTitle"	use="required"	/>

	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	menu	-->
	 <xsd:element	name="menu">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:group	ref="xsf:UIItem"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdTitle"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	menuArea	-->
	 <xsd:element	name="menuArea">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:group	ref="xsf:UIItem"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	use="required">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:NMTOKEN">
	 	 	 	 	 	 <xsd:enumeration	value="msoFileMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoEditMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoInsertMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoViewMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoFormatMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoToolsMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoTableMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoHelpMenu"	/>
	 	 	 	 	 	 <xsd:enumeration	value="msoStructuralEditingContextMenu"	/>
	 	 	 	 	 </xsd:restriction>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>

	 </xsd:element>
	 <!--	UIContainer	-->
	 <xsd:group	name="UIContainer">
	 	 <xsd:choice>
	 	 	 <xsd:element	ref="xsf:toolbar"	/>
	 	 	 <xsd:element	ref="xsf:menu"	/>
	 	 	 <xsd:element	ref="xsf:menuArea"	/>
	 	 </xsd:choice>
	 </xsd:group>
	 <!--	UIItem	-->
	 <xsd:group	name="UIItem">
	 	 <xsd:choice>
	 	 	 <xsd:element	ref="xsf:button"	/>
	 	 	 <xsd:element	ref="xsf:menu"	/>
	 	 </xsd:choice>
	 </xsd:group>
	 <!--	taskpane	-->
	 <xsd:element	name="taskpane">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="caption"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="href"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	views	-->
	 <xsd:element	name="views">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:view"	minOccurs="1"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="default"	type="xsd:string"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="views_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:view"	/>

	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <xsd:keyref	name="view_printView"	refer="xsf:view_or_externalView_name_key">
	 	 	 <xsd:selector	xpath="./xsf:view"	/>
	 	 	 <xsd:field	xpath="@printView"	/>
	 	 </xsd:keyref>
	 	 <xsd:keyref	name="views_default"	refer="xsf:view_name_key">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@default"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <!--	ViewContent	-->
	 <xsd:group	name="ViewContent">
	 	 <xsd:choice>
	 	 	 <xsd:element	ref="xsf:editing"	minOccurs="0"	/>
	 	 	 <xsd:element	ref="xsf:mainpane"	minOccurs="0"	/>
	 	 	 <xsd:element	ref="xsf:printSettings"	minOccurs="0"	/>
	 	 	 <xsd:group	ref="xsf:UIContainer"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 <xsd:element	ref="xsf:unboundControls"	minOccurs="0"	/>
	 	 </xsd:choice>
	 </xsd:group>
	 <!--	view	-->
	 <xsd:element	name="view">
	 	 <xsd:complexType>
	 	 	 <xsd:group	ref="xsf:ViewContent"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 <xsd:attribute	name="caption"	type="xsf:xdViewName"	/>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdViewName"	use="required"	/>
	 	 	 <xsd:attribute	name="showMenuItem"	type="xsf:xdYesNo"	use="optional"	/>
	 	 	 <xsd:attribute	name="printView"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="designMode"	type="xsf:xdDesignMode"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="toolbar_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:toolbar"	/>

	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <xsd:unique	name="menuArea_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:menuArea"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <xsd:unique	name="xmlToEdit_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:editing/xsf:xmlToEdit"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 	 <xsd:key	name="xmlToEdit_name_key">
	 	 	 <xsd:selector	xpath="./xsf:editing/xsf:xmlToEdit"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:key>
	 	 <xsd:keyref	name="button_xmlToEdit_reference"	refer="xsf:xmlToEdit_name_key">
	 	 	 <xsd:selector	xpath="./xsf:menuArea/xsf:button	|	./xsf:menu/xsf:button	|	./xsf:toolbar/xsf:button"	/>
	 	 	 <xsd:field	xpath="@xmlToEdit"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <!--	xmlToEdit	-->
	 <xsd:element	name="xmlToEdit">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:editWith"	minOccurs="0"	maxOccurs="1"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsd:NMTOKEN"	use="required"	/>
	 	 	 <xsd:attribute	name="item"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="container"	type="xsd:string"	/>
	 	 	 <xsd:attribute	name="viewContext">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 	 	 <xsd:pattern	value="((\.|\#|[a-zA-Z0-9_])[a-zA-Z0-9_]*)(\s((\.|\#|[a-zA-Z0-9_])[a-zA-Z0-9_]*))*"	/>
	 	 	 	 	 </xsd:restriction>

	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	Digital	Signatures	-->
	 <xsd:element	name="documentSignatures">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:signedDataBlock"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="signatureLocation"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="signedDataBlock">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	name="message"	type="xsf:xdSignedDataBlockMessage"	minOccurs="0"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdSignedDataBlockName"	use="required"	/>
	 	 	 <xsd:attribute	name="data"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="signatureLocation"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="mode"	type="xsf:xdSignatureRelationEnum"	use="required"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="signedDataBlock_name_unique">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	Version	Upgrade	-->
	 <xsd:element	name="documentVersionUpgrade">
	 	 <xsd:complexType>
	 	 	 <xsd:choice>
	 	 	 	 <xsd:element	ref="xsf:useScriptHandler"	/>

	 	 	 	 <xsd:element	ref="xsf:useTransform"	/>
	 	 	 </xsd:choice>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="useTransform">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="transform"	use="required">
	 	 	 	 <xsd:simpleType>
	 	 	 	 	 <xsd:union	memberTypes="xsf:xdFileName	xsf:xdEmptyString"	/>
	 	 	 	 </xsd:simpleType>
	 	 	 </xsd:attribute>
	 	 	 <xsd:attribute	name="minVersionToUpgrade"	type="xsf:xdSolutionVersion"	use="required"	/>
	 	 	 <xsd:attribute	name="maxVersionToUpgrade"	type="xsf:xdSolutionVersion"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	XSF	Extensions	-->
	 <xsd:element	name="extensions">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:extension"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="extension">
	 	 <xsd:complexType	mixed="true">
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsd:NMTOKEN"	use="required"	/>
	 	 	 <xsd:anyAttribute	processContents="skip"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <!--	Rules	-->

	 <xsd:element	name="ruleSetAction">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="ruleSet"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="rule">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:choice	minOccurs="0"	maxOccurs="unbounded">
	 	 	 	 	 <xsd:element	ref="xsf:dialogBoxMessageAction"	/>
	 	 	 	 	 <xsd:element	ref="xsf:dialogBoxExpressionAction"	/>
	 	 	 	 	 <xsd:element	ref="xsf:switchViewAction"	/>
	 	 	 	 	 <xsd:element	ref="xsf:assignmentAction"	/>
	 	 	 	 	 <xsd:element	ref="xsf:queryAction"	/>
	 	 	 	 	 <xsd:element	name="submitAction">
	 	 	 	 	 	 <xsd:complexType>
	 	 	 	 	 	 	 <xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"	/>
	 	 	 	 	 	 </xsd:complexType>
	 	 	 	 	 </xsd:element>
	 	 	 	 	 <xsd:element	ref="xsf:openNewDocumentAction"	/>
	 	 	 	 	 <xsd:element	ref="xsf:closeDocumentAction"	/>
	 	 	 	 </xsd:choice>
	 	 	 	 <xsd:element	name="exitRuleSet"	minOccurs="0">
	 	 	 	 	 <xsd:complexType	/>
	 	 	 	 </xsd:element>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="caption"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="condition"	type="xsd:string"	use="optional"	/>
	 	 	 <xsd:attribute	name="isEnabled"	type="xsf:xdYesNo"	use="optional"	default="yes"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="dialogBoxMessageAction">
	 	 <xsd:simpleType>

	 	 	 <xsd:restriction	base="xsd:string">
	 	 	 	 <xsd:maxLength	value="1024"	/>
	 	 	 </xsd:restriction>
	 	 </xsd:simpleType>
	 </xsd:element>
	 <xsd:element	name="dialogBoxExpressionAction"	type="xsd:string"	/>
	 <xsd:element	name="switchViewAction">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="view"	type="xsf:xdViewName"	use="required"	/>
	 	 </xsd:complexType>
	 	 <xsd:keyref	name="switchViewAction_view_keyref"	refer="xsf:view_name_key">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@view"	/>
	 	 </xsd:keyref>
	 </xsd:element>
	 <xsd:element	name="assignmentAction">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="targetField"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="expression"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="queryAction">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="adapter"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="openNewDocumentAction">
	 	 <xsd:complexType>
	 	 	 <xsd:attribute	name="solutionURI"	type="xsd:anyURI"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="closeDocumentAction">
	 	 <xsd:complexType>

	 	 	 <xsd:attribute	name="promptToSaveChanges"	type="xsf:xdYesNo"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="ruleSet">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:rule"	minOccurs="1"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="ruleSets">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:ruleSet"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="ruleSets_name_unique">
	 	 	 <xsd:selector	xpath="./xsf:ruleSet"	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>
	 <!--	Declarative	Calculations	-->
	 <xsd:element	name="calculations">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:calculatedField"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="treatBlankValueAsZero"	type="xsf:xdYesNo"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="calculatedField">
	 	 <xsd:complexType>

	 	 	 <xsd:attribute	name="target"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="expression"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="refresh"	type="xsd:string"	use="required"	/>
	 	 </xsd:complexType>
	 </xsd:element>
</xsd:schema>

Show	All

xsf	Namespace

The	Microsoft	Office	InfoPath	2003	form	definition	(.xsf)	file	conforms	to
an	XSD	schema	definition,	and	uses	a	corresponding	namespace.

Namespace	URI

xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"

Remarks
All	of	the	elements	within	the	.xsf	file	are	namespace	qualified	using	the
xsf	namespace.

Show	All

xdDesignMode	Type

Specifies	whether	a	view	(*.xsl)	file	can	be	opened	in	design	mode	in
Microsoft	Office	InfoPath	2003.

Type
xsd:NMTOKEN

Facets

Name Description
enumeration normal
enumeration protected

Remarks
The	xdDesignMode	type	is	used	for	attributes	in	the	form	definition	file
(.xsf)	to	specify	whether	a	view	can	be	opened	in	design	mode
("normal"),	or	whether	the	view	is	not	permitted	to	be	opened	in	design
mode	("protected").

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdDesignMode	type:

<xsd:simpleType	name="xdDesignMode"	>
		<xsd:restriction	base="xsd:NMTOKEN">
				<xsd:enumeration	value="normal"	/>
				<xsd:enumeration	value="protected"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdEmptyString	Type

Specifies	an	empty	string.

Type

xsd:string

Facets

Name Description
maxLength 0

Remarks
The	xdEmptyString	type	is	used	for	attributes	in	the	form	definition	(.xsf)
file	that	specify	an	empty	string.

Example
The	following	example	is	the	declaration	of	the	xdEmptyString	type:

<xsd:simpleType	name="xdEmptyString">
			<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="0"	/>
			</xsd:restriction>
</xsd:simpleType>

xdEnabledDisabled	Type

Specifies	whether	a	feature	is	enabled	or	disabled.

Type
xsd:NMTOKEN

Facets

Name Description
enumeration enabled
enumeration disabled

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdEnabledDisabled	type:

<xsd:simpleType	name="xdEnabledDisabled">
		<xsd:restriction	base="xsd:NMTOKEN">
				<xsd:enumeration	value="enabled"	/>
				<xsd:enumeration	value="disabled"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdErrorMessage	Type

Specifies	an	error	message.

Type

xsd:string

Facets

Name Description
maxLength 1023

Remarks
The	xdErrorMessage	type	is	used	for	attributes	in	the	form	definition
(.xsf)	file	that	specify	an	error	message	no	greater	than	1023	characters
in	length.

Example
The	following	example	is	the	declaration	of	the	xdErrorMessage	type:

<xsd:simpleType	name="xdErrorMessage">
			<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="1023"	/>
			</xsd:restriction>
</xsd:simpleType>

Show	All

xdExpressionLiteral	simpleType

Specifies	a	type	for	identifying	whether	a	value	should	be	interpreted	as	a
literal	value	or	an	XPath	expression	that	returns	a	value.

Type
xsd:NMTOKEN

Remarks
The	xdExpressionLiteral	type	is	used	for	the	valueType	attribute	in	the
davAdapter	and	emailAdapterelements.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdExpressionLiteral
type:

<xsd:simpleType	name="xdExpressionLiteral">
		<xsd:restriction	base="xsd:NMTOKEN">
				<xsd:enumeration	value="expression"	/>
				<xsd:enumeration	value="literal"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdFileName	Type

Specifies	the	name	of	a	file.

Type

xsd:string

Facets

Name Description
minLength 1
maxLength 64

Remarks
The	xdFileName	type	is	used	for	attributes	in	the	form	definition	(.xsf)	file
that	specify	a	file	name	that	can	be	from	1	to	64	characters	in	length.

Example
The	following	example	is	the	declaration	of	the	xdFileName	type:

<xsd:simpleType	name="xdFileName">
			<xsd:restriction	base="xsd:string">
						<xsd:minLength	value="1"	/>
						<xsd:maxLength	value="64"	/>
			</xsd:restriction>
</xsd:simpleType>

xdHWSCaption	simpleType

Specifies	a	type	for	the	caption	of	the	Microsoft	Biztalk	Server	2004	HWS
(Human	Workflow	Services)	action	or	task	element.

Type
xsd:string

Facets

Name Description
maxLength 255	characters
minLength 1	character

Remarks
The	length	of	the	caption	cannot	be	less	than	one	character	or	greater
than	255	characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdHWSCaption	type:

<xsd:simpleType	name="xdHWSCaption"	>
		<xsd:restriction	base="xsd:string">
				<xsd:minLength	value="1"	/>
				<xsd:maxLength	value="255"	/>
		</xsd:restriction>
</xsd:simpleType>

xdHWSname	simpleType

Specifies	a	type	for	a	unique	name	of	the	Microsoft	Biztalk	Server	2004
HWS	(Human	Workflow	Services)	action	or	task	element	as	specified	by
the	HWS	workflow	designer.

Type
xsd:NCName

Facets

Name Description
pattern [^-^\.^\\^\[^\]^\|^\+^?^*^@^\{^\}^\(^\)^>^<^=^;^,]*

Remarks
The	name	cannot	contain	the	following	characters:

\	/	"	[]	:	<	>	+	=	;	,	?	*	@

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdHWSname	type:

<xsd:simpleType	name="xdHWSname"	>
		<xsd:restriction	base="xsd:NCName">
				<xsd:pattern	value="[^-^\.^\\^\[^\]^\|^\+^?^*^@^\{^\}^\(^\)^>^<^=^;^,]*"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdManualAuto	Type

Specifies	a	"manual"	or	"automatic"	value.

Type
xsd:NMTOKEN

Facets

Name Description
enumeration manual
enumeration automatic

Remarks
The	xdTrustManualAuto	type	is	used	for	attributes	in	the	form	definition
(.xsf)	file	that	require	a	"manual"	or	"automatic"	value.	The	default	value
is	"manual".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdManualAuto	type:

<xsd:simpleType	name="xdManualAuto"	>
		<xsd:restriction	base="xsd:NMTOKEN">
				<xsd:enumeration	value="manual"	/>
				<xsd:enumeration	value="automatic"	/>
		</xsd:restriction>
</xsd:simpleType>

xdRoleName	Type

Specifies	the	role	name.

Type
xsf:xdViewName

Remarks
Role	name	has	restrictions	on	values	it	can	contain.	These	restrictions
are	the	same	as	the	constraining	facets	of	the	xsf:xdViewName	type.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdRoleName	type:

<xsd:simpleType	name="xdRoleName"	>
		<xsd:restriction	base="xsf:xdViewName"></xsd:restriction>
</xsd:simpleType>

Show	All

xdScriptLanguage	Type

Specifies	the	name	of	a	scripting	language.

Type

xsd:NMTOKEN

Facets

Name Description
pattern ((([Jj][Aa][Vv][Aa])|([Jj])|([Vv][Bb]))	([Ss][Cc][Rr][Ii][Pp][Tt]))

Remarks
The	xdScriptLanguage	type	is	used	for	attributes	in	the	form	definition
(.xsf)	file	that	specify	the	name	of	a	scripting	language.

Example
The	following	example	is	the	declaration	of	the	xdScriptLanguage	type:

<xsd:simpleType	name="xdScriptLanguage">
			<xsd:restriction	base="xsd:NMTOKEN">
						<xsd:pattern	value="((([Jj][Aa][Vv][Aa])|([Jj])|([Vv][Bb]))
									([Ss][Cc][Rr][Ii][Pp][Tt]))"	/>
			</xsd:restriction>
</xsd:simpleType>

xdSignatureRelationEnum	Type

Contains	the	signature	relation	enumeration	for	the	signedDataBlock
element.

Type
xsd:string

Facets

Name Description
countersign Specifies	that	each	signature	signs	the	previous	signature	in

the	signedDataBlock.
cosign Specifies	that	each	signature	in	the	signedDataBlock	is

independent.
single Specifies	that	only	one	signature	is	allowed	for	the

signedDataBlock.

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the
xdSignatureRelationEnum	type:

<xsd:simpleType	name="xdSignatureRelationEnum"	>
		<xsd:restriction	base="xsd:string">
				<xsd:enumeration	value="countersign"	/>
				<xsd:enumeration	value="cosign"	/>
				<xsd:enumeration	value="single"	/>
		</xsd:restriction>
</xsd:simpleType>

xdSignedDataBlockMessage	Type

Defines	the	maximum	string	length	for	the	signatures	confirmation
message	element.

Type
xsd:simpleType

Facets

Name Description
maxLength 255	characters

Remarks
The	signature	confirmation	message	has	a	maximum	length	of	255
characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the
xdSignedDataBlockMessage	type:

<xsd:simpleType	name="xdSignedDataBlockMessage">
		<xsd:restriction	base="xsd:string">
				<xsd:maxLength	value="255"	/>
		</xsd:restriction>
</xsd:simpleType>

xdSignedDataBlockName	Type

Defines	the	maximum	string	length	for	the	name	attribute	of	the
signedDataBlock	element.

Type
xsd:simpleType

Facets

Name Description
maxLength 255	characters
minLength 1	character

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the
xdSignedDataBlockName	type:

<xsd:simpleType	name="xdSignedDataBlockName">
		<xsd:restriction	base="xsd:ID">
				<xsd:minLength	value="1"	/>
				<xsd:maxLength	value="255"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdSolutionVersion	Type

Specifies	a	version	number.

Type

xsd:string

Facets

Name Description
pattern (([0-9]{1,4}.){3}[0-9]{1,4})

Remarks
The	xdSolutionVersion	type	is	used	for	attributes	in	the	form	definition
(.xsf)	file	that	specify	a	version	number.

Example
The	following	example	is	the	declaration	of	the	xdSolutionVersion	type:

<xsd:simpleType	name="xdSolutionVersion">
			<xsd:restriction	base="xsd:string">
						<xsd:pattern	value="(([0-9]{1,4}.){3}[0-9]{1,4})"	/>
			</xsd:restriction>
</xsd:simpleType>

Show	All

xdTitle	Type

Specifies	a	title	string.

Type

xsd:string

Facets

Name Description
minLength 1
maxLength 255
pattern ([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])(([^\p{Zl}\p{Zp}\p{Cc}])*

([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

Remarks
The	xdTitle	type	is	used	for	attributes	in	the	form	definition	(.xsf)	file	that
are	a	string	of	characters	that	can	be	from	1	to	255	characters	in	length,
and	that	follow	a	prescribed	pattern.

Example
The	following	example	is	the	declaration	of	the	xdTitle	type:

<xsd:simpleType	name="xdTitle">
			<xsd:restriction	base="xsd:string">
						<xsd:minLength	value="1"	/>
						<xsd:maxLength	value="255"	/>
						<xsd:pattern	value="([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
									(([^\p{Zl}\p{Zp}\p{Cc}])*([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?"	/>
			</xsd:restriction>
</xsd:simpleType>

Show	All

xdTrustLevel	Type

Specifies	a	"restricted"	or	"domain"	value.

Type
xsd:string

Facets

Name Description
enumeration restricted
enumeration domain

Remarks
The	xdTrustLevel	type	is	used	for	attributes	in	the	form	definition	(.xsf)
file	that	require	a	"restricted"	or	"domain"	value.	The	default	value	is
"domain".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	example	is	the	declaration	of	the	xdTrustLevel	type:

<xsd:simpleType	name="xdTrustLevel">
		<xsd:restriction	base="xsd:string">
				<xsd:enumeration	value="restricted"	/>
				<xsd:enumeration	value="domain"	/>
		</xsd:restriction>
</xsd:simpleType>

Show	All

xdViewName	Type

Specifies	a	view	name.

Type

xsd:string

Facets

Name Description
minLength 1
maxLength 255
pattern ([^\p{Z}\p{C}/\\#&"><])

(([^\p{Zl}\p{Zp}\p{C}/\\#&"><])*
([^\p{Z}\p{C}/\\#&"><]))?

Remarks
The	xdViewName	type	is	used	for	attributes	in	the	form	definition	(.xsf)
file	that	are	a	string	of	characters	that	can	be	from	1	to	255	characters	in
length,	and	that	follow	a	prescribed	pattern.

Example
The	following	example	is	the	declaration	of	the	xdViewName	type:

<xsd:simpleType	name="xdViewName">
			<xsd:restriction	base="xsd:string">
						<xsd:minLength	value="1"	/>
						<xsd:maxLength	value="255"	/>
						<xsd:pattern	value="([^\p{Z}\p{C}/\\#&"><])
									(([^\p{Zl}\p{Zp}\p{C}/\\#&"><])*([^\p{Z}
									\p{C}/\\#&"><]))?"	/>
			</xsd:restriction>
</xsd:simpleType>

Show	All

xdYesNo	Type

Specifies	a	yes	or	no	value.

Type

xsd:NMTOKEN

Facets

Name Description
enumeration yes
enumeration no

Remarks
The	xdYesNo	type	is	used	for	attributes	in	the	form	definition	(.xsf)	file
that	require	a	yes	or	no	value.

Example
The	following	example	is	the	declaration	of	the	xdYesNo	type:

<xsd:simpleType	name="xdYesNo">
			<xsd:restriction	base="xsd:NMTOKEN">
						<xsd:enumeration	value="yes"	/>
						<xsd:enumeration	value="no"	/>
			</xsd:restriction>
</xsd:simpleType>

Show	All

UIContainer	Group

Represents	a	collection	of	user	interface	(UI)	elements.

Remarks
The	UIContainer	group	is	used	as	an	element	of	the	ViewContent
group.

Example
The	following	example	is	the	XML	Schema	declaration	of	the
UIContainer	group:

<xsd:group	name="UIContainer">
			<xsd:choice>
						<xsd:element	ref="xsf:toolbar"	/>
						<xsd:element	ref="xsf:menu"	/>
						<xsd:element	ref="xsf:menuArea"	/>
			</xsd:choice>
</xsd:group>

Show	All

UIItem	Group

Represents	a	collection	of	user	interface	(UI)	elements.

Remarks
The	UIItem	group	is	used	as	an	element	of	the	toolbar,	menu,	and
menuArea	elements.

Example
The	following	example	is	the	XML	Schema	declaration	of	the	UIItem
group:

<xsd:group	name="UIItem">
			<xsd:choice>
						<xsd:element	ref="xsf:button"	/>
						<xsd:element	ref="xsf:menu"	/>
			</xsd:choice>
</xsd:group>

Show	All

ViewContent	Group

Represents	a	collection	of	elements	used	in	a	view.

Remarks
The	ViewContent	group	is	used	as	an	element	of	the	view	element.

Example
The	following	example	is	the	XML	Schema	declaration	of	the
ViewContent	group:

<xsd:group	name="ViewContent">
			<xsd:choice>
						<xsd:element	ref="xsf:editing"	minOccurs="0"	/>
						<xsd:element	ref="xsf:mainpane"	minOccurs="0"	/>
						<xsd:element	ref="xsf:printSettings"	minOccurs="0"	/>
						<xsd:group	ref="xsf:UIContainer"	minOccurs="0"	maxOccurs="unbounded"	/>
						<xsd:element	ref="xsf:unboundControls"	minOccurs="0"	/>
			</xsd:choice>
</xsd:group>

Show	All

action	Element

Contains	the	Microsoft	Biztalk	Server	2004	Human	Workflow	Services
(HWS)	action	information	that	has	been	enabled	for	the	form.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

name xsf:xdHWSname Yes The	unique
name	of	the
action	as
specified	by
the	HWS
workflow
designer,	and
used	for	the
onClick	event
of	the	button
in	the
Workflow	task
pane.

Cannot
contain	the
following
characters:

\	/	"	[]	:	<	>
+	=	;	,	?	*
@

actionTypeID xsd:string Yes The	unique	ID
for	the	action.

string

canInitiateWorkflow xsf:xdYesNo Yes Indicates
whether	the
action	can	be
used	to	start
an	activity
flow.

yes

no

caption xsf:xdHWSCaption No The	label	for
the
corresponding
button	in	the
Workflow	task
pane	to	start
the	action.

minLength
=	1

maxLength
=	255

Definition

<xsd:element	name="action"	>
		<xsd:complexType>
				<xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"></xsd:attribute>
				<xsd:attribute	name="actionTypeID"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="canInitiateWorkflow"	type="xsf:xdYesNo"	use="required"></xsd:attribute>
				<xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	action	element	is	an	optional	element	of	the	allowedActions
element.

Each	action	enabled	for	the	form	must	have	a	corresponding	action
element	in	the	allowedActions	section	of	the	form	definition	file	(.xsf).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	action	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter			name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

adoAdapter	Element

Defines	an	ActiveX	Data	Objects	(ADO)	data	adapter	that	retrieves	data
from	an	ADO	data	source	for	the	specified	data	object.

Type

xsd:complexType

Structure

Name Description
commandText (Required	attribute)	A	string	property	that	contains

the	ADO	SQL	command	text	to	be	used	for	querying
the	data	from	the	specified	data	source.

connectionString (Required	attribute)	A	string	property	that	contains
the	ADO	connection	string	to	be	used	to	connect	to
the	data	source.

name (Optional	attribute)	Contains	the	name	of	the
adoAdapter	element.

queryAllowed (Optional	attribute)	Specifies	whether	data	can	be
retrieved	from	the	data	source	through	the	Query
method	of	the	data	adapter	object.

submitAllowed (Optional	attribute)	Specifies	whether	data	can	be
submitted	to	the	data	source	through	the	Submit
method	of	the	data	adapter	object.

Remarks
The	adoAdapter	element	is	an	optional	element	of	the	query	element.

Example
The	following	is	an	example	of	the	adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

allowedActions	Element

Contains	the	Microsoft	Biztalk	Server	2004	Human	Workflow	Services
(HWS)	actions	enabled	for	the	form.

Type
xsd:complexType

Child	Elements

Element Description
action Contains	the	information	for	an	individual	action.

Attributes
None.

Definition

<xsd:element	name="allowedActions"	>
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:action"	minOccurs="1"	maxOccurs="20"	/>
				</xsd:sequence>
		</xsd:complexType>
		<xsd:unique	name="hws_actionTypeID_unique">
				<xsd:selector	xpath="./xsf:action"	/>
				<xsd:field	xpath="@actionTypeID"	/>
		</xsd:unique>
</xsd:element>

Remarks
The	allowedActions	element	is	an	optional	element	of	the
hwsWorkflow	element.

Each	action	to	be	enabled	for	the	form	must	have	a	corresponding	action
element	in	the	allowedActions	section	of	the	form	definition	file	(.xsf).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	allowedActions	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"	/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

allowedControl	Element

Specifies	the	ActiveX	controls	that	are	allowed	to	be	instantiated.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

cabFile xsd:string No Specifies	the	name	of	the	CAB
file.

string

clsid xsd:string Yes Specifies	the	CLSID	(COM
class	ID)	of	the	ActiveX	control.

string

version xsd:string No Specifies	the	ActiveX	control
version	number.

string

Definition

<xsd:element	name="allowedControl">
		<xsd:complexType>
				<xsd:attribute	name="cabFile"	type="xsd:string"	use="optional"></xsd:attribute>
				<xsd:attribute	name="clsid"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="version"	type="xsd:string"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
When	the	view	contains	an	OBJECT	tag,	the	control	will	be	instantiated
only	if	the	CLSID	is	listed	as	an	allowedControl	element	in	the
permissions	element.	Controls	other	than	those	corresponding	to	the
CLSIDs	listed	in	the	permissions	element	are	not	allowed	to	be
instantiated	in	the	view.

If	an	ActiveX	control	listed	in	the	permissions	element	is	not	installed
(that	is,	if	a	CLSID	of	a	control	is	not	registered),	or	if	an	earlier	version	of
the	control	than	that	version	specified	in	the	permissions	element	is	the
only	version	installed,	then	the	required	CAB	files	will	be	installed.	If	the
CAB	files	are	not	included,	or	if	the	installation	is	stopped,	the	form	will
not	open.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	allowedControl	element:

<xsf:permissions>
		<xsf:allowedControl
								cabFile="{84F32C01-78D8-4B93-8ED4-106DA70224C2}.cab”	
								clsid="{84F32C01-78D8-4B93-8ED4-106DA70224C2}"	
								version=”1,0,0,1”	/>
		<xsf:allowedControl
								clsid="{F08DF954-8592-11D1-B16A-00C0F0283630}"	/>
</xsf:permissions>

Show	All

allowedTasks	Element

Contains	the	Microsoft	Biztalk	Server	2004	Human	Workflow	Services
(HWS)	tasks	enabled	for	the	form.

Type
xsd:complexType

Child	Elements

Element Description
task Contains	the	information	for	an	individual	task.

Attributes
None.

Definition

<xsd:element	name="allowedTasks">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:task"	minOccurs="1"	maxOccurs="20"/>
				</xsd:sequence>
		</xsd:complexType>
		<xsd:unique	name="hws_taskID_unique">
				<xsd:selector	xpath="./xsf:task"/>
				<xsd:field	xpath="@taskTypeID"/>
		</xsd:unique>
</xsd:element>

Remarks
The	allowedTasks	element	is	an	optional	element	of	the	hwsWorkflow
element.

Each	task	to	be	enabled	for	the	form	must	have	a	corresponding	task
element	in	the	allowedTasks	section	of	the	form	definition	file	(.xsf).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	allowedTasks	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"	/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

applicationParameters	Element

Contains	form-specific	properties	that	describe	how	a	form	should	be
used	in	Microsoft	Office	InfoPath	2003	design	mode.

Type

xsd:complexType

Structure

Name Description
application (Required	attribute)	Identifies	the	name	of	the

application	used	to	design	the	InfoPath	form.
solutionProperties (Optional	element)	Contains	design-time	information

about	the	InfoPath	form.

Remarks
The	applicationParameters	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	applicationParameters	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:names?pace1:mynames"/>
</xsf:applicationParameters>

Show	All

assignmentAction	Element

Defines	an	action	to	set	the	value	of	a	field.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

targetField xsd:string Yes Contains	an	XPath
expression	for	the	target
node.

string

expression xsd:string Yes Contains	an	XPath
expression	to	populate	the
value	of	the	targetField.

string

Definition

<xsd:element	name="assignmentAction"	>
		<xsd:complexType>
				<xsd:attribute	name="targetField"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="expression"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	assignmentAction	element	is	a	child	element	of	the	rule	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	assignmentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

attachmentFileName	Element

Contains	the	file	name	of	the	file	attachment	to	be	included	with	the	e-
mail	message	when	the	form	is	submitted	by	using	the	emailAdapter
element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	to	submit	a

Microsoft	Office	InfoPath	file	as	an	attachment	to	an	e-
mail	message,	with	a	specified	set	of	recipients,	a
subject,	and	an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the	value	of
the
attachmentFileName
element.

string

valueType xsf:xdExpressionLiteralNo Specifies	whether	the
value	attribute	is
interpreted	as	an
XPath	expression	or
a	literal	string.

expression

literal

Definition

<xsd:element	name="attachmentFileName"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	attachmentFileName	element	is	a	child	element	of	the
emailAdapter	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	attachmentFileName	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="prst@foo.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="john@bar.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

attributeData	Element

Specifies	the	name,	and	associated	value,	of	an	attribute	that	will	be
inserted,	or	modified	if	it	already	exists,	by	the	insert	action	of	the
xCollection	or	xOptional	editing	components.

Type

xsd:complexType

Structure

Name Description
attribute (Required	attribute)	Specifies	the	name	of	the	attribute	to	be

inserted.
value (Required	attribute)	Specifies	the	value	of	the	attribute	to	be

inserted.

Remarks
The	attributeData	element	is	an	optional	element	of	the
chooseFragment	element.

Example
The	following	is	an	example	of	the	attributeData	element:

<xsf:editWith	component="xOptional">
			<xsf:fragmentToInsert>
						<xsf:chooseFragment	parent="report">
									<xsf:attributeData	attribute="author"	value="author	name"/>
						</xsf:chooseFragment>
			</xsf:fragmentToInsert>
</xsf:editWith>

autoRecovery	Element

Specifies	whether	the	form	will	save	AutoRecover	information	and
whether	the	AutoRecover	setting	can	be	changed	by	the	user.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

feature xsf:xdEnabledDisabled required Sets	whether	the
AutoRecover
feature	is
enabled.

enabled

disabled

Definition

<xsd:element	name="autoRecovery">
		<xsd:complexType>
				<xsd:attribute	name="feature"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	autoRecovery	element	is	an	optional	element	of	the
featureRestrictions	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	autoRecovery	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

bcc	Element

Contains	information	related	to	the	BCC	recipients	of	the	e-mail	message
when	the	form	is	submitted	using	the	emailAdapter	element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	needed	to

submit	a	Microsoft	Office	InfoPath	2003	SP1	file	as	an
attachment	to	an	e-mail,	with	a	specified	set	of	recipients,
a	subject,	and	an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the
value	of	the
bcc	element.

string

valueType xsf:xdExpressionLiteralNo Specifies
whether	the
value
attribute	is
interpreted	as
an	XPath
expression	or
as	a	literal
string.

expression

literal

Definition

<xsd:element	name="bcc"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
If	multiple	addresses	are	specifed	for	the	value	of	the	bcc	element,	the
addresses	must	be	separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	bcc	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

Show	All

button	Element

Defines	a	button	that	has	an	associated	action.

Type

xsd:complexType

Structure

Name Description
action (Optional	attribute)	Specifies	an	action	of	an	editing

component,	using	the	syntax
"NameOfEditingComponent::NameOfAction".

caption (Optional	attribute)	Provides	the	caption	displayed	on	the
button.

icon (Optional	attribute)	Provides	a	Uniform	Resource	Locator
(URL)	to	a	bitmap	(.bmp)	or	graphics	interchange	format	(.gif)
file,	which	is	used	for	the	button	or	menu	item.

name (Optional	attribute)	Used	to	associate	the	OnClick	event
handler	of	the	button	with	a	scripting	function.

showIf (Optional	attribute)	Specifies	the	editing	context	of	the	button.
tooltip (Optional	attribute)	Provides	the	ScreenTip	text	to	be	used	for

the	button.
xmlToEdit (Optional	attribute)	Specifies	the	name	of	an	xmlToEdit

element,	for	which	the	button	is	used.

Remarks
The	button	element	is	an	optional	element	of	the	toolbar,	menu,	and
menuArea	elements.	Each	button	element	declaration	corresponds	to	a
button	on	a	toolbar,	menu,	or	menu	area	item,	and	each	button	has	an
action	(or	command)	associated	with	it.

Example
The	following	is	an	example	of	the	button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

Show	All

calculatedField	Element

Defines	an	individual	calculation,	including	the	formula,	when	the
calculation	is	to	be	performed,	and	where	the	result	will	be	stored.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

target xsd:string Yes Contains	the	XPath	location
where	the	result	of	the
expression	will	be	stored.

string

expression xsd:string Yes Contains	the	formula,	in	the
form	of	an	XPath
expression,	to	be	evaluated.
The	result	is	stored	in	the
target	location.

string

refresh xsd:string Yes Specifies	when	the
expression	will	be
evaluated.

onInit

onChange

Definition

<xsd:element	name="calculatedField">
		<xsd:complexType>
				<xsd:attribute	name="target"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="expression"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="refresh"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	calculatedField	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"/>
</xsf:calculations>

Show	All

calculations	Element

Contains	definitions	for	calculations	performed	in	the	form	and	specifies
how	blank	values	are	handled.

Type
xsd:complexType

Child	Elements

Element Description
calculatedField Defines	an	individual	calculation,	including	the	formula,

when	the	calculation	is	to	be	performed,	and	where	the
result	will	be	stored.

Attributes

Attribute Type Required Description
Possible
Values

treatBlankValueAsZero xsf:xdYesNo No Specifies
whether	a
blank	field
should	be
calculated
with	a	value
of	zero.
Default	is
yes.

yes

no

Definition

<xsd:element	name="calculations">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:calculatedField"	minOccurs="0"	maxOccurs="unbounded"/>
				</xsd:sequence>
				<xsd:attribute	name="treatBlankValueAsZero"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Every	calculation	in	the	form	will	have	a	calculatedField	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	calculations	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"	/>
</xsf:calculations>

Show	All

cc	Element

Contains	information	related	to	the	CC	recipients	of	the	e-mail	message
when	the	form	is	submitted	using	the	emailAdapter	element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	needed	to

submit	a	Microsoft	Office	InfoPath	2003	SP1	file	as	an
attachment	to	an	e-mail,	with	a	specified	set	of	recipients,
a	subject,	and	an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the
value	of	the	cc
element.

string

valueType xdExpressionLiteral No Specifies
whether	the
value	attribute
is	interpreted	as
an	XPath
expression	or	a
literal	string.

expression

literal

Definition

<xsd:element	name="cc"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
If	multiple	addresses	are	specifed	for	the	value	of	the	cc	element,	the
addresses	must	be	separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	cc	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

Show	All

chooseFragment	Element

Specifies	an	XML	fragment.

Type

xsd:complexType

Structure

Name Description
attributeData (Optional	element)	Specifies	the	name,	and

associated	value,	of	an	attribute	that	will	be	inserted,
or	modified	if	it	already	exists,	by	the	insert	action	of
the	xCollection	or	xOptional	editing	components.

followingSiblings (Optional	attribute)	Specifies	a	relative	XPath
expression	from	the	parent	node	that	specifies	the
XML	Document	Object	Model	(DOM)	nodes	prior	to
which	the	insertion	of	the	XML	fragment	should
occur.

Note		This	is	not	necessary	in	Microsoft	Office
InfoPath	2003	Service	Pack	1	and	will	not	be
automatically	generated	by	InfoPath.

parent (Optional	attribute)	Specifies	a	relative	XPath
expression	from	the	container	node	that	specifies	the
XML	DOM	node	under	which	the	XML	fragment	is
inserted.

innerFragment (Optional	attribute)	Specifies	a	relative	XPath
expression	from	the	parent	node	to	the	smallest
fragment	to	be	inserted.

Note		Use	of	this	attribute	requires	Microsoft	Office
InfoPath	2003	Service	Pack	1.

Remarks
The	chooseFragment	element	is	a	required	element	of	the
fragmentToInsert	element.

The	chooseFragment	element	has	an	open	content	model.	It	may
contain	text,	or	one	or	more	element	nodes,	or	mixed	content	(both
element	nodes	and	text	nodes).	In	addition	to	or	instead	of	XML	data	to
be	inserted	directly	as	a	fragment,	it	can	contain	one	or	more
attributeData	elements.	In	this	case	the	attributeData	elements	are	not
included	as	inserted	content,	but	are	each	used	to	specify	setting	an
attribute	value.

The	chooseFragment	elements	are	typically	ordered	in	increasing	size.
The	first	will	be	the	data	fragment	to	be	inserted	by	the	insertBefore	and
insertAfter	actions,	when	there	is	already	at	least	one	item	in	the
collection.	The	insert	action,	on	the	other	hand,	can	be	invoked	when
there	is	currently	a	node	in	the	XML	tree	corresponding	to	a	container,
but	no	node	corresponding	to	an	item	(in	other	words,	it	can	be	used	to
insert	the	first	item).

Note		Microsoft	Office	InfoPath	2003	Service	Pack	1	will	generate	only
one	chooseFragment	node.	For	more	information,	see	the
innerFragment	attribute.

Note		Any	element	content	within	the	XML	fragment,	other	than	attribute
data,	corresponds	to	new	content	to	be	inserted	into	the	form's
underlying	XML	document,	and	should	be	in	the	appropriate	namespace.

Example
The	following	is	an	example	of	the	chooseFragment	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

closeDocumentAction	Element

Defines	a	form	close	action.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

promptToSaveChanges xdYesNo Yes Specifies
whether	the	user
is	prompted	to
save	changes	to
the	form	before
the	action
completes.
Default	is	"yes".

yes

no

Definition

<xsd:element	name="closeDocumentAction">
		<xsd:complexType>
				<xsd:attribute	name="promptToSaveChanges"	type="xsf:xdYesNo"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	closeDocumentAction	element	is	a	child	element	of	the	rule
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	closeDocumentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

customCategory	Element

Specifies	the	category	that	the	form	template	appears	under	in	the	Fill
Out	a	Form	task	pane.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description Possible	Values
name xsf:xdTitle required Specifies

the	name	of
the	custom
category.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

Definition

<xsd:element	name="customCategory">
		<xsd:complexType>
				<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	customCategory	element	is	an	optional	element	of	the
initialXmlDocument	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	customCategory	element:

<xsf:fileNew>	
			<xsf:initialXmlDocument	
						caption="Travel	Report"
						href="TravelReportTemplate.xml">
						<xsf:customCategory	name="Reports"/>
			</xsf:initialXmlDocument>
</xsf:fileNew>	

Show	All

customValidation	Element

Defines	rule-based	custom	validation	on	top	of	all	validation	enforced
through	the	XML	Schema.

Type

xsd:complexType

Structure

Name Description
errorCondition (Optional	element)	Defines	a	custom	validation	(or	error

condition)	for	a	specific	XML	Document	Object	Model
(DOM)	node	in	a	form's	underlying	XML	document.

Remarks
The	customValidation	element	is	an	optional	element	of	the
xDocumentClass	element.

Note		It	is	possible	to	create	multiple	error	conditions	on	a	field	in	a	form
using	multiple	errorCondition	elements,	but	they	will	not	appear	in	the
Data	Validation	dialog	box	while	in	design	mode.

Example
The	following	is	an	example	of	the	customValidation	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

dataAdapters	Element

Contains	information	about	submit	adapters	that	are	used	as	the	main
submit	adapters	for	the	form	and	that	therefore	are	not	declared	inline
within	the	submit	element.

Type
xsd:complexType

Child	Elements

Element Description
webServiceAdapter Contains	information	to	enable	InfoPath	forms	to

be	submitted	to	an	XML	Web	service.
davAdapter Contains	information	to	enable	InfoPath	forms	to

be	submitted	to	a	server	running	Microsoft
Windows	SharePoint	Services	or	to	a	Web-based
Distributed	Authoring	and	Versioning	(WebDAV)
server.

emailAdapter Contains	information	to	enable	submission	of	an
Infopath	form	as	an	attachment	to	an	e-mail,	with	a
specified	set	of	recipients,	a	subject,	and	an
introduction.

hwsAdapter Defines	the	Microsoft	Biztalk	2004	Human
Workflow	Services	(HWS)	data	adapter	that	is
used	to	start	or	extend	an	activity	flow	and	respond
to	a	task.

Attributes
None.

Definition

<xsd:element	name="dataAdapters">
		<xsd:complexType>
				<xsd:choice	minOccurs="0"	maxOccurs="unbounded">
						<xsd:element	ref="xsf:webServiceAdapter"/>
						<xsd:element	ref="xsf:davAdapter"/>
						<xsd:element	ref="xsf:emailAdapter"/>
						<xsd:element	ref="xsf:hwsAdapter"/>
				</xsd:choice>
		</xsd:complexType>
</xsd:element>

Remarks
The	dataAdapters	element	is	an	optional	element	of	the
xDocumentClass	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dataAdapters	element:

<xsf:dataAdapters>
		<xsf:webServiceAdapter	name="submit	2"	...	submitAllowed="yes">
						...
		</xsf:webServiceAdapter>
			<xsf:emailAdapter	name="submit	4"	…	submitAllowed="yes"/>	
</xsf:dataAdapters>

Show	All

dataObject	Element

Defines	a	secondary	data	object	that	is	used	in	a	Microsoft	Office
InfoPath	2003	form.

Type

xsd:complexType

Structure

Name Description
initOnLoad (Optional	attribute)	Specifies	whether	the	data	object	should

be	initialized	on	document	load.
name (Required	attribute)	The	unique	name	for	the	data	object.
schema (Optional	attribute)	The	name	of	an	XML	Schema	file.
query (Required	element)	Associates	the	data	adapter	with	the

data	object	or	a	form's	underlying	XML	document.

Remarks
The	dataObject	element	is	an	optional	element	of	the	dataObjects
element.

Multiple	dataObject	elements	are	allowed	within	a	form.	Each	data	object
is	an	XML	Document	Object	Model	(DOM)	populated	from	an	external
data	source	that	can	be	accessed	directly	(by	name)	from	the	XSL
Transformation	(XSLT)–based	view	code	and	any	script-based	business
logic	code	in	the	form.

Example
The	following	is	an	example	of	the	dataObject	element:

<xsf:dataObjects>
			<xsf:dataObject	
						name="EmployeeNames"	
						schema="EmployeeNames.xsd"	
						initOnLoad="yes">
						<xsf:query>
									<xsf:adoAdapter	
												connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
															Password="";User	ID=Admin;
															Data	Source=infnwind.mdb;Mode=Share	Deny	None;
															Extended	Properties="";..."
												commandText="select	[EmployeeID],[LastName],[FirstName]	
															from	[Employees]	as	[Employees]"	
												queryAllowed="yes"
												submitAllowed="yes">
						</xsf:adoAdapter>
	 	 	 </xsf:query>
	 	 </xsf:dataObject>
	 </xsf:dataObjects>

Show	All

dataObjects	Element

Defines	all	secondary	data	objects	used	in	a	Microsoft	Office	InfoPath
2003	form.

Type

xsd:complexType

Structure

Name Description
dataObject (Optional	element)	Defines	a	secondary	data	object	that	is

used	in	an	InfoPath	form.

Remarks
The	dataObjects	element	is	an	optional	element	of	the
xDocumentClass	element.

The	dataObjects	element	contains	a	collection	of	data	objects	that	are
used	to	populate	various	XML	Document	Object	Models	(DOMs)	from
external	data	sources.	These	data	objects	can	be	accessed	directly	(by
name)	from	the	XSL	Transformation	(XSLT)–based	view	code	and	any
script-based	business	logic	code	in	the	form.

Example
The	following	is	an	example	of	the	dataObjects	element:

<xsf:dataObjects>
			<xsf:dataObject	
						name="EmployeeNames"	
						schema="EmployeeNames.xsd"	
						initOnLoad="yes">
						<xsf:query>
									<xsf:adoAdapter	
												connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
															Password="";User	ID=Admin;
															Data	Source=infnwind.mdb;Mode=Share	Deny	None;
															Extended	Properties="";..."
												commandText="select	[EmployeeID],[LastName],[FirstName]	
															from	[Employees]	as	[Employees]"	
												queryAllowed="yes"
												submitAllowed="yes">
						</xsf:adoAdapter>
	 	 	 </xsf:query>
	 	 </xsf:dataObject>
	 </xsf:dataObjects>

Show	All

davAdapter	Element

Contains	information	to	enable	InfoPath	forms	to	be	submitted	to	a	server
running	Microsoft	Windows	SharePoint	Services	or	to	a	Web-based
Distributed	Authoring	and	Versioning	(WebDAV)	server.

Type
xsd:complexType

Child	Elements

Element Description
folderURL Contains	the	Uniform	Resource	Locator	(URL)	of	the	server

to	which	the	file	is	submitted.
fileName Contains	the	name	of	the	file	as	a	literal	string	or	XPath

expression.

Attributes

Attribute Type Required Description Possible	Values
name xdTitle Yes The	name	of

the	adapter.
Used	when
invoking	the
davAdapter
from	code.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

overwriteAllowed xdYesNo No Specifies
whether	the
adapter	can
overwrite	an
existing	file.

yes

no

queryAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
querying	the
data	source.
Omitted	for
the
davAdapter,
corresponding
to	a	default
value	of	"no".

yes

no

submitAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
submitting	to
the	data
source.
Always	set	to

yes

no

"yes"	for	the
davAdapter.

Definition

<xsd:element	name="davAdapter"	>
		<xsd:complexType>
				<xsd:all>
						<xsd:element	name="folderURL">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="fileName">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
				</xsd:all>
				<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>
				<xsd:attribute	name="overwriteAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
				<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
				<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	davAdapter	element:

<xsf:davAdapter	name="SubmitToSharePoint"	overwriteAllowed="yes"	submitAllowed="yes">
	<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>
	<xsf:folderURL	value="http://some_server/some_doc_lib"/>
</xsf:davAdapter>

Show	All

dialogBoxExpressionAction	Element

Defines	an	XPath	expression	to	be	displayed	in	a	dialog	box.

Type
xsd:string

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="dialogBoxExpressionAction"	type="xsd:string"></xsd:element>

Remarks
The	dialogBoxExpressionAction	element	is	a	child	element	of	the	rule
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dialogBoxExpressionAction
element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

dialogBoxMessageAction	Element

Defines	a	literal	message	to	be	displayed	in	a	dialog	box.

Type
xsd:simpleType

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="dialogBoxMessageAction">
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="1024"/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:element>

Remarks
The	dialogBoxMessageAction	element	is	a	child	element	of	the	rule
element.

The	maximum	length	of	the	message	is	1,024	characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dialogBoxMessageAction	element:

<<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

documentSchema	Element

Defines	an	XML	Schema	for	a	form.

Type

xsd:complexType

Structure

Name Description
location (Required	attribute)	Contains	the	namespace	Uniform

Resource	Identifier	(URI)	and	location	(a	Uniform
Resource	Locator	(URL),	relative	to	the	form	definition
(.xsf)	file),	and	delimited	by	a	white	space,	of	the	.xsd	file
defining	the	XML	Schema.

rootSchema (Optional	attribute)	Identifies	an	XML	Schema	as	the	top-
level	schema	of	the	form	being	filled	out.

Remarks
The	documentSchema	element	is	a	required	element	of	the
documentSchemas	element.	One	documentSchema	element	is
present	for	each	declared	XML	Schema	in	the	form.

Microsoft	Office	InfoPath	2003	includes	all	XML	Schemas	in	the	form
template	and	modifies	the	schema	references	in	the	.xsd	files	to	be
relative	path	names.	If	a	form's	underlying	XML	document	contains
references	to	multiple	XML	Schemas,	they	are	listed	with	separate
documentSchema	elements	and	the	top-level	XML	Schema	has	its
rootSchema	attribute	set	to	"yes".

If	an	XML	Schema	file	contains	references	to	other	XML	Schema	files
using	the	include	or	import	settings,	those	referenced	files	do	not	have	to
be	listed	in	the	documentSchemas	element.	However,	they	must	be
included	in	the	form	template	with	their	references	changed	to	relative	file
names.

Example
The	following	is	an	example	of	the	documentSchema	element:

<xsf:documentSchemas>
			<xsf:documentSchema
						location="urn:schema:custom:Namespace	customFilename.xsd"
						rootSchema="yes"/>
</xsf:documentSchemas>

Show	All

documentSchemas	Element

Defines	the	XML	Schemas	that	the	Microsoft	Office	InfoPath	2003	form	is
designed	to	handle.

Type

xsd:complexType

Structure

Name Description
documentSchema (Required	element)	Defines	an	XML	Schema	for	a

form.	One	documentSchema	element	is	present	for
each	declared	XML	Schema	in	the	form.

Remarks
The	documentSchemas	element	is	an	optional	element	of	the
xDocumentClass	element.	It	defines	all	of	the	target	XML	Schemas	that
are	used	in	the	form.

Example
The	following	is	an	example	of	the	documentSchemas	element:

<xsf:documentSchemas>
			<xsf:documentSchema
						location="urn:schema:custom:Namespace	customFilename.xsd"
						rootSchema="yes"/>
</xsf:documentSchemas>

Show	All

documentSignatures	Element

Contains	the	signedDataBlock	element,	which	defines	how	digital
signatures	are	applied	to	a	form	or	section	of	a	form.

Type

xsd:complexType

Structure

Name Description
signatureLocation (Optional	attribute)	Contains	an	XPath	expression

that	points	to	the	XML	DOM	node	within	the	form's
underlying	XML	document	that	is	used	for	storing
the	digital	signature.

Child	Elements

Element Description
signedDataBlock Defines	a	nodeset	in	the	form's	underlying	XML

document	to	which	a	digital	signature	can	be	applied.

Definition

	 <xsd:element	name="documentSignatures">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	ref="xsf:signedDataBlock"	minOccurs="0"	maxOccurs="unbounded"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="signatureLocation"	type="xsd:string"	use="optional"	/>
	 	 </xsd:complexType>
	 </xsd:element>
	 <xsd:element	name="signedDataBlock">
	 	 <xsd:complexType>
	 	 	 <xsd:sequence>
	 	 	 	 <xsd:element	name="message"	type="xsf:xdSignedDataBlockMessage"	minOccurs="0"	/>
	 	 	 </xsd:sequence>
	 	 	 <xsd:attribute	name="name"	type="xsf:xdSignedDataBlockName"	use="required"	/>
	 	 	 <xsd:attribute	name="data"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="signatureLocation"	type="xsd:string"	use="required"	/>
	 	 	 <xsd:attribute	name="mode"	type="xsf:xdSignatureRelationEnum"	use="required"	/>
	 	 </xsd:complexType>
	 	 <xsd:unique	name="signedDataBlock_name_unique">
	 	 	 <xsd:selector	xpath="."	/>
	 	 	 <xsd:field	xpath="@name"	/>
	 	 </xsd:unique>
	 </xsd:element>

Remarks
The	signedDataBlock	element	is	a	new	XSF	element	addition	in
Microsoft	Office	InfoPath	2003	Service	Pack	1.	See	below	for	backward
compatibility	information	with	1.0	form	solutions.

For	backward	compatibility,	the	document	signatures	element	defines	the
location	of	the	digital	signature	XML	Document	Object	Model	(DOM)
node	within	the	form's	underlying	XML	document.

The	documentSignatures	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	documentSignatures	element:

<xsf:documentSignatures	signatureLocation=”my:myfields/my:subtree1	|	my:myfields/my:subtree2”/>

The	following	is	an	example	of	the	documentSignatures	element	used
in	Microsoft	Office	InfoPath	2003	Service	Pack	1:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name="main"
		data="my:myfields/my:subtree1	|	my:myfields/my:subtree2"
		signatureLocation="my:mifields/sig:signatures/main"
		mode="countersign">
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound	to	the	terms	of	this	document.	</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

documentVersionUpgrade	Element

Defines	how	forms	created	with	an	older	version	of	the	form	template	can
be	upgraded	to	the	latest	version	of	the	form	template.

Type

xsd:complexType

Structure

Name Description
useScriptHandler (Optional	element)	Specifies	that	the	upgrade	will	be

handled	using	scripting	code.
useTransform (Optional	element)	Specifies	that	the	upgrade	will	be

handled	by	an	XSL	Transformation	(XSLT)	supplied
by	the	newer	version	of	the	form	template.

Remarks
The	documentVersionUpgrade	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	documentVersionUpgrade	element:

<xsf:documentVersionUpgrade>
			<xsf:useTransform
						transform="upgrade.xsl"
						minVersionToUpgrade="0.0.0.0"
						maxVersionToUpgrade="1.0.0.5"/>
</xsf:documentVersionUpgrade>

Show	All

domEventHandler	Element

Defines	an	event	handler	for	one	or	more	specific	XML	Document	Object
Model	(DOM)	nodes.

Type

xsd:complexType

Structure

Name Description
handlerObject (Required	attribute)	Identifies	the	unique	name	of	the

event	handler	in	the	scripting	code.
match (Required	attribute)	Identifies	the	XML	DOM	node	for

which	the	event	handler	is	declared.	Value	must	be	a
valid	XPath	expression	that	identifies	the	XML	node.

dataObject (Optional	attribute)	Contains	the	name	of	the	dataObject
to	be	used	in	the	event	handler.

Note		Use	of	this	attribute	requires	Microsoft	Office
InfoPath	2003	Service	Pack	1.

Remarks
The	domEventHandler	element	is	an	optional	element	of	the
domEventHandlers	element.

Example
The	following	is	an	example	of	the	domEventHandler	element:

<xsf:domEventHandlers>
			<xsf:domEventHandler
						match="TravelReport/Expenses"
						handlerObject="TravelExpenses"/>
</xsf:domEventHandlers>

Show	All

domEventHandlers	Element

Contains	pointers	to	various	script-based	event	handlers	that	react	to
changes	in	XML	Document	Object	Model	(DOM)	nodes	of	a	form's
underlying	XML	document	when	the	form	is	being	filled	out.

Type

xsd:complexType

Structure

Name Description
domEventHandler (Optional	element)	Defines	an	event	handler	object

for	one	or	more	specific	XML	DOM	nodes.

Remarks
The	domEventHandlers	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	domEventHandlers	element:

<xsf:domEventHandlers>
			<xsf:domEventHandler
						match="TravelReport/Expenses"
						handlerObject="TravelExpenses"/>
</xsf:domEventHandlers>

Show	All

editing	Element

Contains	information	about	the	editing	components	used	in	the	view.

Type

xsd:complexType

Structure

Name Description
xmlToEdit (Optional	element)	Specifies	an	instance	of	an	editing

component.

Remarks
The	editing	element	is	an	optional	element	of	the	view	element.

The	editing	components	section	of	the	Microsoft	Office	InfoPath	2003
form	definition	(.xsf)	file	defines	how	and	when	users	are	able	to	edit
specified	XML	Document	Object	Model	(DOM)	nodes	of	a	form's
underlying	XML	document.	Only	one	editing	element	is	allowed	per	view.
Each	editing	element	can	contain	zero	or	more	xmlToEdit	elements.

Example
The	following	is	an	example	of	the	editing	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

editWith	Element

Specifies	an	instance	of	an	editing	component,	and	provides	the
corresponding	parameters	to	determine	its	exact	behavior.

Type

xsd:complexType

Structure

Name Description
allowedFileTypes (Optional	attribute)	Specifies	the	file	extensions	of

files	that	can	be	attached	to	the	form.
autoComplete (Optional	attribute)	Switches	the	auto-completion	of

fields	on	or	off.
caption (Optional	attribute)	Specifies	an	identifier	for

alternate	forms	of	XML	data	to	be	used	in	the	editing
component.

component (Required	attribute)	Specifies	the	name	of	the	editing
component	that	will	be	referenced	within	the	action
attribute	of	a	button	element.

field (Optional	attribute)	Specifies	a	relative	XPath
expression	from	the	XML	Document	Object	Model
(DOM)	node	specified	by	the	item	attribute	of	the
xmlToEdit	element.

fragmentToInsert (Optional	element)	Contains	alternate	versions	of
XML	data	(fragments).

proofing (Optional	attribute)	Switches	the	proofing	features,
such	as	the	spelling	checker,	on	or	off.

removeAncestors (Optional	attribute)	Specifies	the	number	of	ancestor
(parent)	elements	to	be	removed	when	the	last	item
is	removed.

type (Optional	attribute)	Specifies	the	type	of	editing	for
the	fields	that	match	the	XPath	expression	specified
by	the	item	attribute	of	the	xmlToEdit	element.

widgetIcon (Optional	attribute)	Specifies	whether	or	not	a
modified	widget	icon	will	be	shown	for	filtered	items.

useFilter (Optional	attribute)	Indicates	the	user	wants	a	filter
widget.

filterDependency (Optional	attribute)	Specifies	automatic	reapplication
of	the	filter	when	filter	fields	change.

maxLength (Optional	attribute)	Specifies	the	maximum	number
of	characters	allowed	for	text	boxes.

Remarks
The	editWith	element	is	an	optional	element	of	the	xmlToEdit	element.

If	the	viewContext	attribute	of	the	xmlToEdit	element	is	defined,	the
parameters	of	the	editWith	element	are	associated	with	the	specified
view	context.

Example
The	following	is	an	example	of	the	editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

emailAdapter	Element

Contains	the	information	needed	to	submit	an	InfoPath	form	as	an
attachment	to	an	e-mail,	with	a	specified	set	of	recipients,	a	subject,	and
an	introduction.

Type
xsd:complexType

Child	Elements

Element Description
to Contains	a	list	of	addresses,	separated	by

semicolons,	to	be	added	to	the	to	line	of	the
submitted	e-mail.

cc Contains	a	list	of	addresses,	separated	by
semicolons,	to	be	added	to	the	cc	line	of	the
submitted	e-mail.

bcc Contains	a	list	of	addresses,	separated	by
semicolons,	to	be	added	to	the	bcc	line	of	the
submitted	e-mail.

subject Contains	the	subject	of	the	submitted	e-mail.
intro Contains	the	introduction	of	the	submitted	e-mail.
attachmentFileName Contains	the	file	name	of	the	attachment	to	be

submitted	with	the	e-mail.

Attributes

Attribute Type Required Description Possible	Values
name xdTitle Yes Contains	the

name	of	the
emailAdapter.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

queryAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
querying	the
data	source.
Omitted	for	the
emailAdapter,
corresponding
to	a	default
value	of	"no".

yes

no

submitAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
submitting	to
the	data
source.
Always	set	to
"yes"	for	the
emailAdapter.

yes

no

Definition

<xsd:element	name="emailAdapter">
		<xsd:complexType>
				<xsd:all>
						<xsd:element	name="to"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="cc"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="bcc"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="subject"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="intro"	minOccurs="0">
								<xsd:complexType>

										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	name="attachmentFileName"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
				</xsd:all>
				<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>
				<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
				<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	emailAdapter	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

Show	All

errorCondition	Element

Defines	a	custom	validation	(or	error	condition)	for	a	specific	XML
Document	Object	Model	(DOM)	node	in	a	form's	underlying	XML
document.

Type

xsd:complexType

Structure

Name Description
expression (Required	attribute)	An	XPath	expression	(relative

to	the	expressionContext	attribute,	if	specified)
that	must	be	evaluated	to	validate	the	XML	DOM
node	specified	in	the	match	attribute.

expressionContext (Optional	attribute)	Specifies	the	XML	DOM	node
on	which	the	expression	specified	in	the
expression	attribute	is	rooted.

match (Required	attribute)	Identifies	the	XML	DOM	nodes
on	which	the	custom	validation	is	declared.

showErrorOn (Optional	attribute)	Identifies	XML	DOM	nodes
(within	the	context	of	the	expression	context	XML
DOM	node)	on	which	the	error	should	be	displayed
when	the	form	is	filled	out.

errorMessage (Required	element)	Specifies	the	error	message	to
be	returned	if	the	value	of	the	specified	XML	DOM
node	is	considered	to	be	invalid.

Remarks
The	errorCondition	element	is	an	optional	element	of	the
customValidation	element.

Example
The	following	is	an	example	of	the	errorCondition	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

errorMessage	Element

Specifies	the	error	message	that	should	be	returned	if	the	value	of	the
specified	XML	Document	Object	Model	(DOM)	node	is	considered	to	be
invalid.

Type

xsf:xdErrorMessage

Structure

Name Description
shortMessage (Required	attribute)	Identifies	the	short	error	message	to

return	in	case	of	invalid	data.
type (Optional	attribute)	Identifies	the	type	of	error	message

to	return.

Remarks
The	errorMessage	element	is	a	required	element	of	the	errorCondition,
override,	and	submit	elements.

You	can	supply	a	detailed	error	message	as	the	value	of	the
errorMessage	element.	The	detailed	error	message	is	displayed	by
clicking	the	shortcut	menu's	Full	error	description	button	when	error
information	is	displayed	and	when	the	error	message	type	attribute	is	set
to	"modal".

Example
The	following	is	an	example	of	the	errorMessage	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

exitRuleSet	Element

An	element	that	stops	further	rule	processing	of	the	entire	ruleSet.

Type
xsd:complexType

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="exitRuleSet"	minOccurs="0">
		<xsd:complexType/>
</xsd:element>

Remarks
The	exitRuleSet	element	must	be	the	last	child	element	of	the	rule
element.	The	ruleSet	element	processing	will	be	halted	only	if	the	rule
element	is	executed.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	exitRuleSet	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

exportToExcel	Element

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	export	the	form	to	a	Microsoft	Office	Excel	2003
workbook.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ui xsf:xdEnabledDisabled required Sets	whether	the
user	can	export
the	contents	of
the	form	to	an
Excel	workbook.

enabled

disabled

Definition

<xsd:element	name="exportToExcel"	>
		<xsd:complexType>
				<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	exportToExcel	element	is	an	optional	element	of	the
featureRestrictions	element.	If	this	element	is	not	included	in	the	form
definition	file	(.xsf),	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	export	the	form	to	an	Excel	workbook.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	exportToExcel	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

exportToWeb	Element

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	export	the	form	to	a	Web	page.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ui xsf:xdEnabledDisabled required Sets	whether	the
user	can	export
the	contents	of
the	form	to	a	Web
page.

enabled

disabled

Definition

<xsd:element	name="exportToWeb">
		<xsd:complexType>
				<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	exportToWeb	element	is	an	optional	element	of	the
featureRestrictions	element.	If	this	element	is	not	included	in	the	form
definition	file	(.xsf),	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	export	the	form	to	a	Web	page.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	exportToWeb	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

extension	Element

Contains	open	content	model	information.

Type

xsd:complexType

Structure

Name Description
name (Required	attribute)	A	unique	name	identifying	the	extension

being	specified.

Remarks
The	extension	element	is	an	optional	element	of	the	extensions
element.

Note		Use	of	the	extension	element	is	reserved.	Microsoft	Office
InfoPath	2003	ignores	any	content	within	the	extension	element.

Example
The	following	is	an	example	of	the	extension	element:

<xsf:extensions>
			<xsf:extension	
						name="someValue"	
						anyAttributesHere="someValue">
									...open	content	model	here...
			</xsf:extension>
<xsf:extensions>

Show	All

extensions	Element

Includes	minor	upgrades	to	the	Microsoft	Office	InfoPath	2003	form
definition	(.xsf)	file	that	can	be	used	by	specific	future	versions	of
InfoPath	or	by	specific	forms.

Type

xsd:complexType

Structure

Name Description
extension (Optional	element)	Contains	open	content	model	information.

Remarks
The	extensions	element	is	an	optional	element	of	the	xDocumentClass
element.

The	extensions	element	contains	zero	or	more	extension	elements,
each	of	which	has	an	open	content	model.

Note		Use	of	the	extension	element	is	reserved.	Microsoft	Office
InfoPath	2003	ignores	any	content	within	the	extension	element.

Example
The	following	is	an	example	of	the	extensions	element:

<xsf:extensions>
			<xsf:extension	
						name="someValue"	
						anyAttributesHere="someValue">
									...open	content	model	here...
			</xsf:extension>
<xsf:extensions>

Show	All

externalView	Element

Defines	a	view	that	cannot	be	edited	in	Microsoft	Office	InfoPath.

Type
xsd:complexType

Child	Elements

Element Description
mainpane Specifies	the	XSL	Transformation	(XSLT)	to	be	applied	to	the

view.

Attributes

Attribute Type Required Description Possible	Values
name xsf:xdViewName Yes Contains	the

name	of	the
externalView
element.

minlength	=	1

maxlength	=	255

pattern	=
([^\p{Z}\p{C}/\\#&"><])
(([^\p{Zl}\p{Zp}\p{C}/\\#&">
<])*([^\p{Z}\p{C}/\\#&">
<]))?

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Definition

<xsd:element	name="externalView">
<xsd:complexType>
		<xsd:sequence>
			<xsd:element	ref="xsf:mainpane"	/>
		</xsd:sequence>
		<xsd:attribute	name="name"	type="xsf:xdViewName"	use="required"	/>
	</xsd:complexType>
</xsd:element>

Example
The	following	is	an	example	of	the	externalView	element:

<xsf:externalViews>
	<xsf:externalView	name="Sales	Doc">
		<xsf:mainpane	transform="myWordView.xsl"	/>
	</xsf:externalView>
<xsf:externalViews>

Show	All

externalViews	Element

Contains	one	or	more	externalView	elements.

Type
xsd:complexType

Child	Elements

Element Description
externalViewDefines	a	view	that	cannot	be	edited	in	Microsoft	Office

InfoPath.

Attributes
None.

Definition

<xsd:element	name="externalViews"	>
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:externalView"	minOccurs="1"	maxOccurs="unbounded"	/>
				</xsd:sequence>
		</xsd:complexType>
		<xsd:unique	name="externalViews_name_unique">
				<xsd:selector	xpath="./xsf:externalView"	/>
				<xsd:field	xpath="@default"	/>
		</xsd:unique>
		<xsd:keyref	name="external_views_printView"	refer="xsf:externalView_name_key">
				<xsd:selector	xpath="."	/>
				<xsd:field	xpath="@default"	/>
		</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	externalViews	element:

<xsf:externalViews>
	<xsf:externalView	name="Sales	Doc">
		<xsf:mainpane	transform="myWordView.xsl"	/>
	</xsf:externalView>
<xsf:externalViews>

Show	All

featureRestrictions	Element

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	save	the	form,	export	the	form,	print	the	form,	or
send	the	form	as	an	e-mail	attachment.

Type
xsd:complexType

Child	Elements

Element Description
save (Optional	element)	Specifies	whether	the	user	can	use

the	form's	menus,	toolbars,	or	keyboard	shortcuts	to
save	the	form.

exportToWeb (Optional	element)	Specifies	whether	the	user	can	use
the	form's	menus,	toolbars,	or	keyboard	shortcuts	to
export	the	form	to	a	Web	page.

exportToExcel (Optional	element)	Specifies	whether	the	user	can	use
the	form's	menus,	toolbars,	or	keyboard	shortcuts	to
export	the	form	to	an	Microsoft	Office	Excel	2003
workbook.

print (Optional	element)	Specifies	whether	the	user	can	use
the	form's	menus,	toolbars,	or	keyboard	shortcuts	to
print	the	form.

sendMail (Optional	element)	Specifies	whether	the	user	can	use
the	form's	menus,	toolbars,	or	keyboard	shortcuts	to
send	the	form	as	an	e-mail	attachment.

autoRecovery (Optional	element)	Specifies	whether	the	form	will	save
AutoRecover	information	and	whether	the	AutoRecover
setting	can	be	changed	by	the	user.

Attributes
None.

Definition

<xsd:element	name="featureRestrictions">
		<xsd:complexType>
				<xsd:all>
						<xsd:element	name="save"	minOccurs="0">
								<xsd:complexType>
										<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
						<xsd:element	ref="xsf:exportToWeb"	minOccurs="0"	/>
						<xsd:element	ref="xsf:exportToExcel"	minOccurs="0"	/>
						<xsd:element	ref="xsf:print"	minOccurs="0"	/>
						<xsd:element	ref="xsf:sendMail"	minOccurs="0"	/>
						<xsd:element	ref="xsf:autoRecovery"	minOccurs="0"	/>
				</xsd:all>
		</xsd:complexType>
</xsd:element>

Remarks
Disabling	any	of	the	featureRestrictions	element's	child	elements	does
not	disable	the	use	of	form	code	to	save	the	form,	export	the	form,	print
the	form,	or	send	the	form	as	an	email	attachment.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	featureRestrictions	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

field	Element

Defines	one	field	for	form	library	columns.

Type

xsd:complexType

Structure

Name Description
aggregation (Optional	attribute)	Specifies	how	the	XML	Document

Object	Model	(DOM)	nodes	returned	from	an	XPath
expression	in	the	node	attribute	should	be	aggregated	to
obtain	a	single	value	for	the	document.	Can	either	be	an
aggregation	action	or	an	indication	of	the	particular
element	in	the	collection.

columnName (Required	attribute)	Identifies	the	column	name	in	the
SQL	table	(underlying	the	form	list	view).

maxLength (Optional	attribute)	Defines	the	length	of	the	field	in
number	of	bytes.

name (Required	attribute)	Identifies	the	friendly	name	of	the
field	to	be	used	on	the	form	list	view.

node (Required	attribute)	Defines	the	XPath	expression	needed
to	extract	the	value	of	the	specified	property	from	the
form's	underlying	XML	document.

required (Optional	attribute)	Specifies	whether	this	field	accepts
null	values.

type (Required	attribute)	Identifies	the	standard	XML	Schema
data	type.

viewable (Optional	attribute)	Specifies	whether	this	field	should	be
added	to	the	default	view.	Possible	values	"yes"	and	"no".
The	default	value	is	"no".

Remarks
The	field	element	is	an	optional	element	of	the	fields	element.

Example
The	following	is	an	example	of	the	field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

field	Element	(sharepointListAdapter	Element)

Contains	field	mapping	information	for	each	field	in	a	SharePoint	list	and
the	corresponding	name	used	in	InfoPath.

Type
xsd:ComplexType

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	to	query

a	SharePoint	list	or	library.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

sharepointName xsd:string Yes Contains	the	name	of	a
field	in	a	SharePoint
list.

string

infopathName xsd:string Yes Contains	the
corresponding	InfoPath
field	name	for	the
sharepointName.

string

isLookup xdYesNo No Specifies	whether	a
field	in	a	SharePoint	list
is	a	lookup	field.	The
default	is	"no".

yes

no

Definition

<xsd:element	name="field"	minOccurs="0"	maxOccurs="unbounded">
		<xsd:complexType>
				<xsd:attribute	name="sharepointName"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="infopathName"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="isLookup"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Each	field	returned	from	a	SharePoint	list	or	library	by	the
sharepointListAdapter	data	adapter	will	have	a	field	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	field	element:

<xsf:field
	sharepointName="xd__x007b_D00F1DBD_..."
	infopathName="Title_1"
	isLookup="no">
</xsf:field>

fields	Element

Defines	a	set	of	one	or	more	field	elements.

Type

xsd:complexType

Structure

Name Description
field (Optional	element)	Defines	one	field	for	form	library	columns.

Remarks
The	fields	element	is	an	optional	element	of	the	listProperties	element.

Example
The	following	is	an	example	of	the	fields	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

file	Element

Identifies	a	file	as	part	of	a	Microsoft	Office	InfoPath	2003	form.

Type

xsd:complexType

Structure

Name Description
name (Required	attribute)	Specifies	the	name	of	the	file.
fileProperties (Optional	element)	Defines	the	properties	of	a	file.

Remarks
The	file	element	is	an	optional	element	of	the	files	element.

Example
The	following	is	an	example	of	the	file	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

Show	All

fileName	Element

Specifies	the	file	name	or	an	expression	that	returns	a	file	name	when
the	form	is	submitted	using	the	davAdapter.

Type
xsd:complexType

Parent	Elements

Element Description
davAdapter The	parent	element	that	contains	all	the	information

necessary	to	submit	files	to	a	server	that	is	running
Microsoft	Windows	SharePoint	Services	or	a	Web	based
Distributed	Authoring	and	Versioning	(WebDAV)	server.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the
name	of	the
file,	once
submitted	to
the	server.

string

valueType xsf:xdExpressionLiteralNo Specifies
whether	the
name	of	the
file	should	be
interpreted	as
an	XPath
expression	or
as	a	literal
string.

expression

literal

Definition

<xsd:element	name="fileName"	>
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	extension	".xml"	is	appended	to	the	file	name	if	a	file	name	extension
is	not	specified.

The	following	system	reserved	characters	will	be	replaced	by	an
underscore	("_")	character	when	a	form	is	submitted:

\	/	:	*	?	"	<	>	|

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	fileName	element:

<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>

Show	All

fileNew	Element

Provides	a	reference	to	an	.xml	file	containing	sample	data	to	be	loaded
when	a	user	chooses	to	create	a	new	form	based	on	the	form	template.

Type

xsd:complexType

Structure

Name Description
initialXmlDocument (Required	element)	Contains	a	reference	to	the

XML	template	file	that	is	used	for	the	creation	of	a
new	form	based	on	the	form	template.

Remarks
The	fileNew	element	is	an	optional	element	of	the	xDocumentClass
element.

The	fileNew	element	of	the	Microsoft	Office	InfoPath	2003	form	definition
(.xsf)	file	defines	the	name	and	location	of	an	XML	template	file	that	is
used	when	a	user	clicks	Fill	Out	a	Form	on	the	File	menu.	The	XML
template	file	contains	the	sample	data	that	is	loaded	when	the	user
chooses	to	create	a	new	form	based	on	the	form	template.

Example
The	following	is	an	example	of	the	fileNew	element:

<xsf:fileNew>
			<xsf:initialXmlDocument
						caption="Travel	Report"
						href="TravelReportTemplate.xml"/>
</xsf:fileNew>

fileProperties	Element

Defines	the	properties	of	a	file.

Type

xsd:complexType

Structure

Name Description
property (Optional	element)	Defines	one	specific	property	for	the

specified	file.

Remarks
The	fileProperties	element	is	an	optional	element	of	the	file	element.

Example
The	following	is	an	example	of	the	fileProperties	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

files	Element

Identifies	a	list	of	files	that	are	used	by	a	Microsoft	Office	InfoPath	2003
form.

Type

xsd:complexType

Structure

Name Description
file (Optional	element)	Identifies	a	file	as	part	of	an	InfoPath	form.

Remarks
The	files	element	is	a	required	element	of	the	package	element.

The	files	element	may	include	specific	property	names	and	values	for
each	file.

Example
The	following	is	an	example	of	the	files	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

Show	All

folderURL	Element

Specifies	the	Uniform	Resource	Locator	(URL)	of	a	Web-based
Distributed	Authoring	and	Versioning	(WebDAV)	server	or	a	server	that	is
running	Microsoft	Windows	SharePoint	Services.

Type
xsd:complexType

Parent	Elements

Element Description
davAdapter The	parent	element,	which	contains	all	information

necessary	to	submit	Infopath	forms	to	a	Web-based
Distributed	Authoring	and	Versioning	(WebDAV)	server	or	a
server	that	is	running	SharePoint	Services.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes The	URL	of	the	Web-based
Distributed	Authoring	and
Versioning	(WebDAV)	server	or
the	server	that	is	running
SharePoint	Services.

string

Definition

<xsd:element	name="folderURL">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	URL	must	begin	with	"http://"	or	"https://".	Other	common	protocols
will	cause	an	error.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	folderURL	element:

<folderURL	value="http://some_server/some_doc_lib"/>

footer	Element

Specifies	the	footer	text.

Type
xsd:simpleType

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="footer"	>
		<xsd:complexType	mixed="true">
				<xsd:sequence>
						<xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
				</xsd:sequence>
		</xsd:complexType>
</xsd:element>

Remarks
The	footer	element	is	a	child	element	of	the	printSettings	element.	The
footer	text	should	not	exceed	255	characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	footer	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

fragmentToInsert	Element

Contains	alternate	versions	of	XML	data	(fragments).

Type

xsd:complexType

Structure

Name Description
chooseFragment (Required	element)	Specifies	an	XML	fragment.

Remarks
The	fragmentToInsert	element	is	an	optional	element	of	the	editWith
element.

XML	fragments	are	sources	of	XML	data	that	can	be	used	within	an
associated	editing	component.	More	than	one	chooseFragment	element
can	be	defined	within	a	fragmentToInsert	element.

The	fragmentToInsert	element	is	used	by	the	xCollection,	xOptional,
and	xReplace	editing	components.

Example
The	following	is	an	example	of	the	fragmentToInsert	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

getUserNameFromData	Element

Allows	user	names	to	be	determined	by	an	XPath	query	into	the	data	in
the	main	data	source	or	a	secondary	data	source	and	to	be	associated
with	a	role.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

dataObject xsd:string No The	name	of	the	secondary
data	source	where	the	user
name	can	be	found.

string

select xsd:string Yes An	XPath	query	expression
returning	one	or	more	data
nodes	containing	the	user
names.

string

memberOf xsd:string Yes Specifies	the	role	to	be
associated	with	a	user	whose
user	name	is	returned	by	the
XPath	query.

string

Definition

<xsd:element	name="getUserNameFromData">
		<xsd:complexType>
				<xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"></xsd:attribute>
				<xsd:attribute	name="select"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	getUserNameFromData	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="Domain\username1"	memberOf="A"	/>
						<xsf:userName	name="Domain\username2"	memberOf="B"	/>
						<xsf:group	name="Domain\username3"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

group	Element

Associates	a	group	with	a	particular	role.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

name xsd:string Yes Specifies	users	in	the	form	of
"domain\groupname"	or
"groupname".

string

memberOf xsd:string Yes Specifies	the	role	to	be
associated	with	the	group.

string

Definition

<xsd:element	name="group">
		<xsd:complexType>
				<xsd:attribute	name="name"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Users	can	be	assigned	roles	through	grouping	that	can	be	managed
externally,	without	requiring	a	form	update.	Groups	can	be	set	up	through
the	Active	Directory	directory	service.	Permissions	specifying	who	can
access	the	membership	information	can	be	set	for	groups.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	group	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"/>
			<xsf:role	name="B"/>
			<xsf:role	name="C"/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"
								select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"/>
						<xsf:userName	name="Domain\username1"	memberOf="A"/>
						<xsf:userName	name="Domain\username2"	memberOf="B"/>
						<xsf:group	name="Domain\username3"	memberOf="C"/>
			</xsf:membership>
</xsf:roles>

header	Element

Specifies	the	header	text.

Type
xsd:simpleType

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="header"	>
		<xsd:complexType	mixed="true">
				<xsd:sequence>
						<xsd:any	minOccurs="0"	maxOccurs="unbounded"	processContents="skip"	/>
				</xsd:sequence>
		</xsd:complexType>
</xsd:element>

Remarks
The	header	element	is	a	child	element	of	the	printSettings	element.	The
header	text	should	not	exceed	255	characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	header	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

Show	All

hwsAdapter	Element

Defines	the	Microsoft	BizTalk	2004	Human	Workflow	Services	(HWS)
data	adapter,	which	can	be	used	to	start	or	extend	an	activity	flow	and
respond	to	a	task.

Type
xsd:complexType

Child	Elements

Element Description
hwsOperation Defines	the	HWS	operation	type,	such	as	adding	an

action	to	a	new	activity	flow,	adding	an	action	to	an
existing	activity	flow,	and	responding	to	a	task.

Attributes

Attribute Type Required Description Possible	Values
name xdTitle Yes Contains	the

name	of	the
data	adapter.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

wsdlUrl xsd:string Yes Contains	the
Uniform
Resource
Locator	(URL)
of	the	HWS
Web	service.

string

queryAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
querying	the
data	source.
Can	be
omitted	for
the
hwsAdapter,
corresponding
to	a	default
value	of	"no".

yes

no

submitAllowed xdYesNo No Specifies
whether	the
adapter	can
be	used	for
submitting	to
the	data

yes

no

source.
Always	set	to
"yes"	for	the
hwsAdapter.

Definition

<xsd:element	name="hwsAdapter">
		<xsd:complexType>
				<xsd:choice>
						<xsd:element	ref="xsf:hwsOperation"/>
				</xsd:choice>
				<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>
				<xsd:attribute	name="wsdlUrl"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
				<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Upon	submit,	the	hwsAdapter	automatically	creates	a	globally	unique
identifier	(GUID),	as	required	by	the	HWS	Web	service;	encodes	the	XML
file;	and	updates	the	processing	instructions	of	the	XML	instance	file.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	hwsAdapter	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

hwsOperation	Element

Defines	the	Microsoft	BizTalk	2004	Human	Workflow	Services	(HWS)
operation	type,	such	as	adding	an	action	to	a	new	activity	flow,	adding	an
action	to	an	existing	activity	flow,	and	responding	to	a	task.

Type
xsd:complexType

Child	Elements

Element Description
input Specifies	the	XML	form	file,	which	is	encoded	and	submitted

with	the	HWS	operation.

Attributes

Attribute Type Required Description Possible	Values
type xsd:string Yes Specifies

the	HWS
operation
type.

addActionToNewActivityFlow

addActionToActivityFlow

sendTaskResponse

typeID xsd:string Yes Contains
the	globally
unique
identifier
(GUID)	for
the
operation.

string

serviceUrl xsd:string Yes Specifies
the	Uniform
Resource
Locator
(URL)
location	of
the	HWS
Web
service.

string

Definition

<xsd:element	name="hwsOperation">
		<xsd:complexType>
				<xsd:choice>
						<xsd:element	ref="xsf:input"/>
				</xsd:choice>
				<xsd:attribute	name="type"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="typeID"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="serviceUrl"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Upon	submit,	the	hwsAdapter	element	automatically	creates	a	globally
unique	identifier	(GUID),	as	required	by	the	HWS	Web	service;	encodes
the	XML	file;	and	updates	the	processing	instructions	of	the	XML	instance
file	with	the	new	GUID.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	hwsOperation	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter		name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

hwsWorkflow	Element

Contains	the	information	to	enable	the	Workflow	task	pane	and	to
enable	individual	actions	and	tasks	associated	with	a	Microsoft	BizTalk
2004	Human	Workflow	Services	(HWS)	server.

Type
xsd:complexType

Child	Elements

Element Description
location (Required)	Contains	the	Uniform	Resource	Locator

(URL)	of	the	HWS	Web	service.
allowedActions Contains	the	HWS	actions	enabled	for	the	form.
allowedTasks Contains	the	HWS	tasks	enabled	for	the	form.

Attributes

Attribute Type Required Description
Possible
Values

taskpaneVisible xdYesNo No Specifies	whether	the
Workflow	task	pane	is
visible.	Default	value	is
"yes".

yes

no

Definition

<xsd:element	name="hwsWorkflow">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:location"	minOccurs="1"	maxOccurs="1"/>
						<xsd:element	ref="xsf:allowedActions"	minOccurs="1"	maxOccurs="1"/>
						<xsd:element	ref="xsf:allowedTasks"	minOccurs="0"	maxOccurs="1"/>
				</xsd:sequence>
				<xsd:attribute	name="taskpaneVisible"	type="xsf:xdYesNo"></xsd:attribute>
		</xsd:complexType>
		<xsd:unique	name="hws_actiontask_name">
				<xsd:selector	xpath="./xsf:allowedActions/xsf:action|./xsf:allowedTasks/xsf:task"/>
				<xsd:field	xpath="@name"/>
		</xsd:unique>
</xsd:element>

Remarks
For	every	action	and	task	included	in	the	hwsWorkflow	element,	a
button	is	enabled	on	the	Workflow	task	pane;	however,	the	button	event
must	be	scripted	manually	for	each	action	and	task.

InfoPath	does	not	support	multiple	actions	in	a	form	and	does	not	support
HWS	activity	models	(predefined	sets	of	actions).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	hwsWorkflow	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
	<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
		<xsf:allowedActions>
			<xsf:action	name="approval"	actionTypeID="123"	
				canInitiateWorkflow="yes"	caption="Get	Approval"/>
			<xsf:action	name="delegate"	actionTypeID="234"			
				canInitiateWorkflow="no"	caption="Delegate"/>
		</xsf:allowedActions>
		<xsf:allowedTasks>
			<xsf:task	name="getManagerApproval"	taskTypeID="435"	
				caption="Send	Response"/>
			<xsf:task	name="getVPApproval"	taskTypeID="436"		
					caption	="Send	Response"/>
			<xsf:task	name="delegateToManager"	taskTypeID="420"	
					caption="Respond"/>
		</xsf:allowedTasks>
</xsf:hwsWorkflow>

Show	All

importParameters	Element

Contains	all	the	parameters	that	define	how	the	import	(merge)	forms
feature	works	for	the	form.

Type

xsd:complexType

Structure

Name Description
enabled (Required	attribute)	Specifies	whether	form	merging

is	enabled	for	the	form.
importSource (Optional	element)	Specifies	all	parameters	to	be

used	when	merging	a	form	of	a	specific	XML	Schema
into	a	destination	form.

useScriptHandler (Optional	attribute)	Specifies	whether	to	use	the
event	handler	defined	for	the	OnMergeRequest
event	when	importing	(merging)	forms.

Remarks
The	importParameters	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	importParameters	element:

<xsf:importParameters
			enabled="yes"
			useScriptHandler="yes">
			<xsf:importSource
						name="MySource"
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

Show	All

importSource	Element

Specifies	all	parameters	to	be	used	when	merging	a	form	of	a	specific
XML	Schema	into	a	destination	form.

Type

xsd:complexType

Structure

Name Description
name (Required	attribute)	Identifies	the	name	of	the	source	form	as

defined	in	the	processing	instruction	of	that	form’s	underlying
XML	document.

schema (Required	attribute)	Identifies	the	XML	Schema	file	that
should	be	used	during	the	merge	operation	to	validate	the
form	being	merged.

transform (Required	attribute)	Identifies	the	.xslt	file	that	should	be	used
during	the	merge	operation	when	the	source	form	(the	one
that	is	being	merged	in)	matches	the	XML	Schema	specified
in	the	corresponding	schema	attribute.

Remarks
The	importSource	element	is	an	optional	element	of	the
importParameters	element.

If	the	importSource	element	is	not	defined,	the	default	.xslt	file	is	used
for	all	transformations	during	a	merge	operation.

Example
The	following	is	an	example	of	the	importSource	element:

<xsf:importParameters
			enabled="yes"
			<xsf:importSource
						name=""
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

Show	All

initialXmlDocument	Element

Contains	a	reference	to	the	XML	template	file	that	is	used	for	the	creation
of	a	new	form	based	on	the	form	template.

Type

xsd:complexType

Structure

Name Description
caption (Required	attribute)	Defines	the	text	string	to	be	used

as	the	name	of	the	form	in	the	Template	Gallery	and	in
the	most	recently	used	list.

customCategory (Optional	element)	Specifies	the	category	that	the
form	template	appears	under	in	the	Fill	Out	a	Form
task	pane.

href (Required	attribute)	Specifies	the	Uniform	Resource
Locator	(URL)	of	the	XML	template	file	to	be	used
when	a	user	clicks	Fill	Out	a	Form	on	the	File	menu.

Remarks
The	initialXmlDocument	element	is	a	required	element	of	the	fileNew
element.

Example
The	following	is	an	example	of	the	initialXmlDocument	element:

<xsf:fileNew>
			<xsf:initialXmlDocument
						caption="Travel	Report"
						href="TravelReportTemplate.xml"/>
</xsf:fileNew>

Show	All

input	Element

Contains	the	substitution	information	for	parts	of	the	input	Simple	Object
Access	Protocol	(SOAP)	message	to	the	Web	service.

Type

xsd:complexType

Structure

Name Description
source (Required	attribute)	Contains	the	name	of	the	resource

file	in	the	form	template	that	contains	the	XML	Schema
for	the	input	SOAP	message	of	the	selected	operation	of
the	Web	service.

partFragment (Optional	element)	Defines	one	substitution	group	for	a
specific	part	of	the	input	SOAP	message.

Remarks
The	input	element	is	an	optional	element	of	the	operation	element.

Specified	parts	in	the	SOAP	message	are	replaced	when	the	form
template	is	filled	out	with	data	from	within	the	form.	It	is	used	when	a
secondary	data	source	is	populated	from	a	Web	service	call	and
Microsoft	Office	InfoPath	2003	needs	some	input	arguments	to	make	the
Web	service	calls.

Example
The	following	is	an	example	of	the	input	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter		name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

intro	Element

Contains	the	introduction	for	the	e-mail	message	when	the	form	is
submitted	by	using	the	emailAdapter	element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	needed	to

submit	an	InfoPath	form	as	an	attachment	to	an	e-mail
message,	with	a	specified	set	of	recipients,	a	subject,	and
an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the	value	of	the
intro	element.

string

Definition

<xsd:element	name="intro"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	intro	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

Show	All

listProperties	Element

Identifies	the	properties	that	should	be	on	a	list	view	of	all	forms
belonging	to	the	form	template.

Type

xsd:complexType

Structure

Name Description
fields (Optional	element)	Defines	a	set	of	one	or	more	field	elements.

Remarks
The	listProperties	element	is	an	optional	element	of	the
xDocumentClass	element.

XML	documents	belonging	to	a	form	can	be	placed	in	a	single	folder	or
form	library.	Depending	on	the	underlying	support	in	the	file	system	or
server,	this	information	can	be	used	to	create	meaningful	list	views	on	a
set	of	forms.	For	example,	when	Microsoft	Office	InfoPath	2003	forms	are
saved	to	a	Windows	SharePoint	Services	form	library	that	is	based	on	an
InfoPath	form	template,	form	properties	specified	in	this	section	are
automatically	promoted	and	made	available	to	the	default	view	of	the
form	library.

Example
The	following	is	an	example	of	the	listProperties	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

Show	All

location	Element

Contains	the	Uniform	Resource	Locator	(URL)	of	the	Microsoft	BizTalk
2004	Human	Workflow	Services	(HWS)	Web	service.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

url xsd:string Yes The	location	of	the	HWS
Web	service.

string

Definition

<xsd:element	name="location">
		<xsd:complexType>
				<xsd:attribute	name="url"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	location	element	is	a	child	element	of	the	hwsWorkflow	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	location	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
	<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
		<xsf:allowedActions>
			<xsf:action	name="approval"	actionTypeID="123"	
				canInitiateWorkflow="yes"	caption="Get	Approval"/>
			<xsf:action	name="delegate"	actionTypeID="234"			
				canInitiateWorkflow="no"	caption="Delegate"/>
		</xsf:allowedActions>
		<xsf:allowedTasks>
			<xsf:task	name="getManagerApproval"	taskTypeID="435"	
				caption="Send	Response"/>
			<xsf:task	name="getVPApproval"	taskTypeID="436"		
					caption	="Send	Response"/>
			<xsf:task	name="delegateToManager"	taskTypeID="420"	
					caption="Respond"/>
		</xsf:allowedTasks>
</xsf:hwsWorkflow>

Show	All

mainpane	Element

Determines	what	is	displayed	in	the	main	pane.

Type

xsd:complexType

Structure

Name Description
transform (Required	attribute)	Specifies	the	relative	URL	to	the	XSL

Transformation	(XSLT)	that	is	used	for	the	view.

Remarks
The	mainpane	element	is	a	required	element	of	the	view	element.

The	mainpane	element	is	an	optional	element	of	the	externalView
element.

The	main	pane	is	the	main	form	area,	as	opposed	to	secondary	user
interface	areas	such	as	the	task	pane.

Example
The	following	is	an	example	of	the	mainpane	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

The	following	is	an	example	of	the	mainpane	element	used	within	the
externalView	element:

<xsf:externalViews>
	<xsf:externalView	name="Sales	Doc">
		<xsf:mainpane	transform="myWordView.xsl"	/>
	</xsf:externalView>
<xsf:externalViews>

Show	All

masterDetail	Element

Defines	the	XML	fragments	that	form	a	master	and	detail	relationship	in	a
view's	repeating	tables	or	repeating	sections.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

master xsd:string No Contains	the	XPath
of	the	XML	fragment
that	is	bound	to	a
master	table	or
section.

string

masterViewContext xsd:string No Specifies	a	string
that	identifies	an
HTML	element	in
the	view.

string

masterKey xsd:string No Contains	the	XPath
of	the	field	in	the
master	XML
fragment	that	forms
the	relationship	to
the	detail	XML
fragment.

string

detailKey xsd:string No Contains	the	XPath
of	the	field	in	the
detail	XML	fragment
that	forms	the
relationship	to	the
master	XML
fragment.

string

Definition

<xsd:element	name="masterDetail"	>
		<xsd:complexType>
				<xsd:attribute	name="master"	type="xsd:string"></xsd:attribute>
				<xsd:attribute	name="masterViewContext"	type="xsd:string"></xsd:attribute>
				<xsd:attribute	name="masterKey"	type="xsd:string"></xsd:attribute>
				<xsd:attribute	name="detailKey"	type="xsd:string"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	masterDetail	element:

<xsf:editWith	caption="group2"
	xd:autogeneration="template"	
	component="xCollection">
		<xsf:masterDetail	
			masterViewContext="CTRL1_5"
			master="my:group2"
			masterKey="my:field1"
			detailKey="my:field3">
		</xsf:masterDetail>
</xsf:editWith>

Show	All

membership	Element

Associates	a	user	or	group	of	users	with	a	role.

Type
xsd:complexType

Child	Elements

Element Description
getUserNameFromData Allows	user	names	to	be	determined	by	an

XPath	query	into	the	data	in	the	main	data
source	or	a	secondary	data	source	and	to	be
associated	with	a	role.

userName Defines	a	user	to	a	particular	role.
group Defines	which	group	a	user	belongs	to.

Attributes
None.

Definition

<xsd:element	name="membership">
		<xsd:complexType>
				<xsd:choice	minOccurs="1"	maxOccurs="unbounded">
						<xsd:element	ref="xsf:getUserNameFromData"/>
						<xsd:element	ref="xsf:userName"/>
						<xsd:element	ref="xsf:group"/>
				</xsd:choice>
		</xsd:complexType>
</xsd:element>

Remarks
InfoPath	associates	a	role	with	the	current	user	based	on	the
membership	order	in	the	form	definition	file	(.xsf).	Developers	can	modify
this	order	by	hand	in	the	form	definition	file.	The	membership	element
must	be	a	child	of	the	roles	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	membership	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"/>
			<xsf:role	name="B"/>
			<xsf:role	name="C"/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"/>
						<xsf:userName	name="Domain\username1"	memberOf="A"/>
						<xsf:userName	name="Domain\username2"	memberOf="B"/>
						<xsf:group	name="Domain\username3"	memberOf="C"/>
			</xsf:membership>
</xsf:roles>

menu	Element

Contains	information	about	the	custom	menus	used	in	the	view.

Type

xsd:complexType

Structure

Name Description
button (Optional	element)	Defines	a	button	that	has	an	associated

action.
caption (Required	attribute)	Used	as	the	caption	for	a	menu.
menu (Optional	element)	Contains	information	about	the	menus	used

within	a	menu	(cascading	menus).

Remarks
The	menu	element	is	an	optional	element	of	the	view,	toolbar,	and
menuArea	elements.	Multiple	menus	can	be	declared	for	a	form,	and
each	menu	can	contain	multiple	menu	or	button	elements.

Note		To	create	cascading	menus,	a	menu	element	can	be	nested	inside
another	menu	element.

Example
The	following	is	an	example	of	the	menu	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

menuArea	Element

Contains	information	about	the	Microsoft	Office	InfoPath	2003	built-in
menus	used	in	the	view.

Type

xsd:complexType

Structure

Name Description
button (Optional	element)	Defines	a	button	that	has	an	associated

action.
name (Required	attribute)	Corresponds	to	one	of	the	built-in	InfoPath

top-level	menus.
menu (Optional	element)	Contains	information	about	the	menus	used

within	the	menu	area.

Remarks
The	menuArea	element	is	an	optional	element	of	the	view	element.

The	menuArea	element	is	analogous	to	the	top-level	menus	found	in
InfoPath	when	filling	out	a	form.	Multiple	buttons	or	menus	can	be
declared	within	a	menuArea	element.	Each	button	element	creates	an
additional	menu	item	within	the	corresponding	built-in	menu,	specified	by
the	name	attribute	of	the	menuArea	element,	and	has	an	action	(or
command)	associated	with	it.	If	a	menu	element	is	nested	within	a
menuArea	element,	this	creates	a	cascading	menu	off	of	the	built-in
menu.

Example
The	following	is	an	example	of	the	menuArea	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

message	Element

Contains	the	signature	confirmation	message	that	is	shown	when	a
signature	is	applied	to	the	form	or	section	of	the	form.

Type
xsf:xdSignedDataBlockMessage

Parent	Elements

Element Description
signedDataBlock Defines	a	node	set	in	the	form's	underlying	XML

document,	to	which	a	digital	signature	can	be	applied.

Child	Elements
None.

Attributes
None.

Definition

<xsd:element	name="message"	type="xsf:xdSignedDataBlockMessage"	minOccurs="0"	></xsd:element>

Remarks
The	confirmation	message	is	limited	to	255	characters.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	message	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name=”main”
		data=”my:myfields/my:subtree1	|	my:myfields/my:subtree2”
		signatureLocation=”my:mifields/sig:signatures/main”
		mode=”countersign”>
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound
				to	the	terms	of	this	document.	
		</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

onLoad	Element

Contains	one	ruleSet	element	that	is	invoked	when	the	form	is	opened.

Type
xsd:complexType

Child	Elements

Element Description
ruleSetActionDefines	the	ruleSet	action	element	to	be	invoked.

Attributes
None.

Definition

<xsd:element	name="onLoad">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:ruleSetAction"	minOccurs="1"	maxOccurs="1"/>
				</xsd:sequence>
		</xsd:complexType>
		<xsd:keyref	name="load_ruleSetAction"	refer="xsf:ruleset_name_key">
				<xsd:selector	xpath="./xsf:ruleSetAction"/>
				<xsd:field	xpath="@ruleSet"/>
		</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	onLoad	element:

<xsf:onLoad>
	<xsf:ruleSetAction	ruleSet="RuleSet4"/>
</xsf:onLoad>

Show	All

openNewDocumentAction	Element

Defines	a	form	create	action.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

solutionURI xsd:anyURI Yes The	Uniform	Resource
Identifier	(URI)	of	the
solution	on	which	the	new
form	will	be	based.

anyURI

Definition

<xsd:element	name="openNewDocumentAction">
		<xsd:complexType>
				<xsd:attribute	name="solutionURI"	type="xsd:anyURI"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	openNewDocumentAction	element	is	a	child	element	of	the	rule
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	openNewDocumentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

operation	Element

Defines	the	operation	(method)	of	the	Web	service	to	be	used	for
retrieving	and	submitting	data.

Type

xsd:complexType

Structure

Name Description
name (Required	attribute)	Contains	the	unique	name	of	the	Web

service	method.
serviceUrl (Required	attribute)	Contains	the	Web	service	Uniform

Resource	Locator	(URL)	to	which	the	request	should	be
sent.

soapAction (Required	attribute)	Contains	the	value	of	the	SOAPAction
attribute	in	the	Simple	Object	Access	Protocol	(SOAP)
request	message.

input (Optional	element)	Contains	the	substitution	information	for
parts	of	the	input	SOAP	message	to	the	Web	service.

Remarks
The	operation	element	is	a	required	element	of	the	webServiceAdapter
element.

Example
The	following	is	an	example	of	the	operation	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

override	Element

Defines	one	overriding	error	message	for	XML	Schema	data	type	errors
for	an	individual	XML	Document	Object	Model	(DOM)	node.

Type

xsd:complexType

Structure

Name Description
errorMessage (Required	element)	Specifies	the	error	message	that

should	be	returned	if	the	value	of	the	specified	XML	DOM
node	is	considered	to	be	invalid.

match (Required	attribute)	Identifies	the	XML	DOM	node	for
which	the	error	message	override	is	defined.

Remarks
The	override	element	is	an	optional	element	of	the
schemaErrorMessages	element.

Example
The	following	is	an	example	of	the	override	element:

<xsf:schemaErrorMessages>
			<xsf:override
						match="/sampleData/number">
						<xsf:errorMessage
									shortMessage="Invalid	Number.">
												The	value	entered	must	be	a	valid	number.
						</xsf:errorMessage>
			</xsf:override>
</xsf:schemaErrorMessages>

package	Element

Contains	information	about	all	of	the	files	used	in	a	Microsoft	Office
InfoPath	2003	form.

Type

xsd:complexType

Structure

Name Description
files (Required	element)	Identifies	a	list	of	files	that	are	used	by	an

InfoPath	form.

Remarks
The	package	element	is	a	required	element	of	the	xDocumentClass
element.

Example
The	following	is	an	example	of	the	package	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

Show	All

partFragment	Element

Defines	one	substitution	group	for	a	specific	part	of	the	input	Simple
Object	Access	Protocol	(SOAP)	message.

Type

xsd:complexType

Structure

Name Description
match (Required	attribute)	Contains	an	XPath	expression	that

identifies	the	elements	and	attributes	inside	the	input
SOAP	message	that	are	to	be	replaced	at	run	time.

replaceWith (Required	attribute)	Contains	an	XPath	expression	that
identifies	the	values	in	the	source	document	that	should
be	used	to	replace	parts	of	the	input	SOAP	message.

sendAsString (Optional	attribute)	Specifies	that	the	data	is	submitted	as
a	string	through	the	webServiceAdapter	data	adapter.

dataObject (Optional	attribute)	Specifies	the	name	of	the	data	object
to	use	when	submitting	a	partFragment	element	to	a
Microsoft	Biztalk	2004	Human	Workflow	Services	(HWS)
server.

filter (Optional	attribute)	Specifies	the	XPath	expression	of	the
structured	XML	subtree	when	submitting	a	subset	of	the
XML	data.

Remarks
The	partFragment	element	is	an	optional	element	of	the	input	element.

Multiple	partFragment	elements	are	allowed.

Example
The	following	is	an	example	of	the	partFragment	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
												<xsf:partFragment
															match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
															replaceWith="/dfs:myFields/dfs:dataFields/s0:IsPrime"	/>	
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

permissions	Element

Asserts	the	permissions	the	InfoPath	form	requires	for	the	ActiveX
controls	in	the	view.

Type
xsd:complexType

Child	Elements

Element Description
allowedControl Specifies	the	ActiveX	controls	that	are	allowed	to	be

instantiated.

Attributes
None.

Definition

<xsd:element	name="permissions">
		<xsd:complexType>
				<xsd:choice	minOccurs="0"	maxOccurs="unbounded">
						<xsd:element	ref="xsf:allowedControl"/>
				</xsd:choice>
		</xsd:complexType>
</xsd:element>

Remarks
The	permissions	element	also	provides	installation	information	for
ActiveX	controls	that	are	not	already	installed	on	the	user's	computer.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	permissions	element:

<xsf:permissions>
		<xsf:allowedControl	
								cabFile="{84F32C01-78D8-4B93-8ED4-106DA70224C2}.cab”	
								clsid="{84F32C01-78D8-4B93-8ED4-106DA70224C2}"	
								version="1,0,0,1"/>
		<xsf:allowedControl	
								clsid="{F08DF954-8592-11D1-B16A-00C0F0283630}"/>
</xsf:permissions>

Show	All

print	Element

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	print	the	form.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ui xsf:xdEnabledDisabled Yes Sets	whether	the
user	can	print	the
form.

enabled

disabled

Definition

<xsd:element	name="print">
		<xsd:complexType>
				<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	print	element	is	an	optional	element	of	the	featureRestrictions
element.	If	this	element	is	not	included	in	the	form	definition	file	(.xsf),	the
user	can	use	the	form's	menus,	toolbars,	or	keyboard	shortcuts	to	print
the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	print	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

printSettings	Element

Specifies	the	printer	settings	used	when	printing	the	view.

Type

xsd:complexType

Structure

Name Description
bottomMargin (Optional	attribute)	Specifies	the	bottom

margin.
collate (Optional	attribute)	Specifies	whether	the	paper

is	collated.
copies (Optional	attribute)	Specifies	the	number	of

copies.
footer (Optional	attribute)	Specifies	the	footer	text.
header (Optional	attribute)	Specifies	the	header	text.
leftMargin (Optional	attribute)	Specifies	the	left	margin.
marginUnitsType (Optional	attribute)	Specifies	the	margin	unit

size.
orientation (Optional	attribute)	Specifies	the	orientation.
pageRangeEnd (Optional	attribute)	Specifies	the	last	page	to

be	printed.
pageRangeStart (Optional	attribute)	Specifies	the	first	page	to

be	printed.
paperSize (Optional	attribute)	Specifies	the	size	of	the

paper.
paperSource (Optional	attribute)	Specifies	the	source	of	the

paper.
printerName (Optional	attribute)	Specifies	the	name	of	the

printer.
printerSpecificSettings (Optional	attribute)	Specifies	printer	specific

settings.
rightMargin (Optional	attribute)	Specifies	the	right	margin.
topMargin (Optional	attribute)	Specifies	the	top	margin.

Remarks
The	printSettings	element	is	an	optional	element	of	the	view	element.

Example
The	following	is	an	example	of	the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>	

Show	All

property	Element

Defines	one	specific	property	for	the	specified	file.

Type

xsd:complexType

Structure

Name Description
name (Required	attribute)	Defines	the	name	of	the	property.
type (Required	attribute)	Defines	the	type	of	the	property.
value (Required	attribute)	For	simple	properties,	specifies	a	value	for

the	property.	For	complex	and	multi-valued	properties,	the
specified	value	is	defined	as	a	container	XML	tree	using	an	open
content	model.

Remarks
The	property	element	is	an	optional	element	of	the	fileProperties
element.

Example
The	following	is	an	example	of	the	property	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

Show	All

query	Element

Associates	a	data	adapter	with	a	data	object	or	a	form's	underlying	XML
document.

Type

xsd:complexType

Structure

Name Description
adoAdapter (Optional	element)	Defines	an	ActiveX	Data

Objects	(ADO)	data	adapter	that	retrieves	data
from	an	ADO	data	source	for	the	specified	data
object.

webServiceAdapter (Optional	element)	Defines	a	Web	service	data
adapter	that	retrieves	data	from	a	Web	service
for	the	specified	data	object.

xmlFileAdapter (Optional	element)	Defines	an	.xml	file	data
adapter	that	retrieves	data	from	an	.xml	file	for
the	specified	data	object.

queryAction (Optional	element)	Defines	a	data	connection
query	action.

sharepointListAdapter (Optional	element)	Contains	the	data	adapter
information	to	query	a	SharePoint	list	or	library.

Remarks
The	query	element	is	an	optional	element	of	the	xDocumentClass
element	and	the	dataObject	element.

Only	one	data	adapter	can	be	specified	in	the	query	element.

Example
The	following	is	an	example	of	the	query	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

query	Element	(dataObject	Element)

Associates	a	data	adapter	with	a	data	object.

Type
xsd:complexType

Parent	Elements

Element Description
dataObject Defines	a	secondary	data	object	that	is	used	in	a	Microsoft

Office	InfoPath	form.

Child	Elements

Element Description
adoAdapter (Optional	element)	Defines	an	ActiveX	Data

Objects	(ADO)	data	adapter	that	retrieves	data
from	an	ADO	data	source	for	the	specified	data
object.

webServiceAdapter (Optional	element)	Defines	a	Web	service	data
adapter	that	retrieves	data	from	a	Web	service
for	the	specified	data	object.

xmlFileAdapter (Optional	element)	Defines	an	.xml	file	data
adapter	that	retrieves	data	from	an	.xml	file	for
the	specified	data	object.

sharepointListAdapter (Optional	element)	Contains	the	data	adapter
information	to	query	a	SharePoint	list	or	library.

Attributes
None.

Definition

<xsd:element	name="query"	>
		<xsd:complexType>
				<xsd:choice>
						<xsd:element	ref="xsf:adoAdapter"	/>
						<xsd:element	ref="xsf:webServiceAdapter"	/>
						<xsd:element	ref="xsf:xmlFileAdapter"	/>
						<xsd:element	ref="xsf:sharepointListAdapter"	/>
				</xsd:choice>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	query	element:

<xsf:dataObjects>
	<xsf:dataObject	
		name="EmployeeNames"
		schema="EmployeeNames.xsd"
		initOnLoad="yes">
		<xsf:query>
			<xsf:adoAdapter
				connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
				Password="";User	ID=Admin;
				Data	Source=infnwind.mdb;Mode=Share	Deny	None;
				Extended	Properties="";..."
				commandText="select	[EmployeeID],[LastName],[FirstName]	
					from	[Employees]	as	[Employees]"	
				queryAllowed="yes"
				submitAllowed="yes">
			</xsf:adoAdapter>
		</xsf:query>
	</xsf:dataObject>
</xsf:dataObjects>

queryAction	Element

Defines	a	data	connection	query	action.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

adapter xsd:string Yes Contains	the	name	of	the	data
adapter	to	query.

string

Definition

<xsd:element	name="queryAction">
		<xsd:complexType>
				<xsd:attribute	name="adapter"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	queryAction	element	is	a	child	element	of	the	rule	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	queryAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

role	Element

Defines	role.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description Possible	Values
name xdRoleName Yes Used	to

identify	the
role.

Same	restriction	as
xdViewName.

Definition

<xsd:element	name="role">
		<xsd:complexType>
				<xsd:attribute	name="name"	type="xsf:xdRoleName"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Each	time	a	role	is	created	for	a	form,	a	corresponding	role	element	is
created	in	the	form	definition	file	(.xsf).	You	can	assign	users	to	roles	by
using	user	names,	groups,	and	XPath	user	names.	Users	can	be
selected	for	roles	in	one	of	four	ways:

Initiator—	role	for	new	documents.

User	name—	NT	domain	users	(intranet	or	trusted	only).

XPath	user	name—	user	names	stored	in	XML	data	(intranet	or	trusted
only).

Group—	Active	Directory	directory	service	groups	(intranet	or	trusted
only).

InfoPath	makes	the	user	assignment	by	following	the	membership	order
in	the	form	definition	file.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	role	element:

<roles	initiator=”xsd:string”	default=”xsd:string”	hideStatusBarDisplay="xsf:xdYesNo">
						<role	name=”xsf:xdRoleName”/>
						<membership>
												<getUserNameFromData	dataObject=”xsd:string”	select=”xsd:string”	memberOf=”xsd:string”	/>
												<userName	name=”xsd:string”	memberOf=”xsd:string”	/>
												<userName	name=”xsd:string”	memberOf=”xsd:string”	/>
												<group	name=”xsd:string”	memberOf=”xsd:string”	/>
						</membership>
</roles>

roles	Element

Defines	roles.

Type
xsd:complexType

Child	Elements

Element Description
role Defines	role.
membershipMaps	a	user	or	group	of	users	to	a	role.

Attributes

Attribute Type Required Description
Possible
Values

default xsd:string Yes Specifies	the
name	identifier	of
the	role	that	is	the
default	role.

string

initiator xsd:string No Specifies	the
name	identifier	of
the	role	chosen	to
be	the	initiator
role.

string

hideStatusBarDisplay xdYesNo No Specifies	whether
the	current	role
should	be
displayed	in	the
status	bar.

yes

no

Definition

<xsd:element	name="roles">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:role"	minOccurs="1"	maxOccurs="unbounded"/>
						<xsd:element	ref="xsf:membership"	minOccurs="0"	maxOccurs="1"/>
				</xsd:sequence>
				<xsd:attribute	name="default"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="initiator"	type="xsd:string"	use="optional"></xsd:attribute>
				<xsd:attribute	name="hideStatusBarDisplay"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
		<!--	role	names	must	be	unique	-->
		<xsd:unique	name="roles_name_unique">
				<xsd:selector	xpath="./xsf:role"	/>
				<xsd:field	xpath="@name"	/>
		</xsd:unique>
		<!--	fields	must	reference	existing	role	-->
		<xsd:key	name="role_name_key">
				<xsd:selector	xpath="./xsf:role"	/>
				<xsd:field	xpath="@name"	/>
		</xsd:key>
		<xsd:keyref	name="role_default"	refer="xsf:role_name_key">
				<xsd:selector	xpath="."	/>
				<xsd:field	xpath="@default"	/>
		</xsd:keyref>
		<xsd:keyref	name="role_initiator"	refer="xsf:role_name_key">
				<xsd:selector	xpath="."	/>
				<xsd:field	xpath="@initiator"	/>
		</xsd:keyref>
		<xsd:keyref	name="role_membership"	refer="xsf:role_name_key">

				<xsd:selector	xpath="./xsf:membership/*"	/>
				<xsd:field	xpath="@memberOf"	/>
		</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	roles	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"/>
			<xsf:role	name="B"/>
			<xsf:role	name="C"/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"/>
						<xsf:userName	name="Domain\username1"	memberOf="A"	/>
						<xsf:userName	name="Domain\username2"	memberOf="B"	/>
						<xsf:group	name="Domain\username3"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>	

Show	All

rule	Element

Defines	an	action	invoked	after	an	event	has	occurred	in	the	form.

Type
xsd:complexType

Child	Elements

Element Description
assignmentAction Defines	an	action	to	set	the	value	of	a

field.
closeDocumentAction Defines	a	form	close	action.
dialogBoxExpressionAction Defines	an	XPath	expression	to	be

displayed	in	a	dialog	box.
dialogBoxMessageAction Defines	a	literal	message	to	be	displayed

in	a	dialog	box.
exitRuleSet An	element	which,	if	present	at	the	end	of

the	rule,	stops	further	rule	processing	of
the	entire	ruleSet	when	the	rule	is
executed.

openNewDocumentAction Defines	a	form	create	action.
queryAction Defines	a	data	connection	query	action.
submitAction Defines	a	form	submit	action.
switchViewAction Defines	a	view	switch	action.

Attributes

Attribute Type Required Description
Possible
Values

caption xsd:string Yes Contains	the	name	of	the	rule
as	it	appears	in	the	user
interface.

string

condition xsd:string No Defines	the	XPath	expression,
evaluated	as	a	Boolean	value,
that	determines	whether	the
associated	action	will	be
invoked.

string

isEnabled xdYesNo No Specifies	whether	the	rule	is
enabled	for	the	form.	The
default	value	is	"yes".

yes

no

Definition

<xsd:element	name="rule">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:choice	minOccurs="0"	maxOccurs="unbounded">
								<xsd:element	ref="xsf:dialogBoxMessageAction"/>
								<xsd:element	ref="xsf:dialogBoxExpressionAction"/>
								<xsd:element	ref="xsf:switchViewAction"/>
								<xsd:element	ref="xsf:assignmentAction"/>
								<xsd:element	ref="xsf:queryAction"/>
								<xsd:element	name="submitAction">
										<xsd:complexType>
												<xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"></xsd:attribute>
										</xsd:complexType>
								</xsd:element>
								<xsd:element	ref="xsf:openNewDocumentAction"/>
								<xsd:element	ref="xsf:closeDocumentAction"/>
						</xsd:choice>
						<xsd:element	name="exitRuleSet"	minOccurs="0">
								<xsd:complexType	/>
						</xsd:element>
				</xsd:sequence>
				<xsd:attribute	name="caption"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="condition"	type="xsd:string"	use="optional"></xsd:attribute>
				<xsd:attribute	name="isEnabled"	type="xsf:xdYesNo"	use="optional"	default="yes"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	rule	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>	

Show	All

ruleSet	Element

Contains	one	or	more	rule	elements.

Type
xsd:complexType

Child	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Attributes

Attribute Type Required Description
Possible
Values

name xsd:string Yes Contains	the	name	of	the
ruleSet	element.

string

Definition

<xsd:element	name="ruleSet">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:rule"	minOccurs="1"	maxOccurs="unbounded"/>
				</xsd:sequence>
				<xsd:attribute	name="name"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ruleSet	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense>	75">
				<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
				<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
				<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>	

ruleSetAction	Element

Defines	the	ruleSet	action	element	to	be	invoked.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ruleSet xsd:string Yes Contains	the	name	of	the
ruleSet	to	be	invoked.

string

Definition

<xsd:element	name="ruleSetAction">
		<xsd:complexType>
				<xsd:attribute	name="ruleSet"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	ruleSetAction	element	is	a	child	of	the	submit,	domEventHandler,
onLoad,	and	button	elements.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ruleSetAction	element:

<xsf:onLoad>
	<xsf:ruleSetAction	ruleSet="RuleSet4"/>
</xsf:onLoad>

ruleSets	Element

Contains	one	or	more	ruleSet	elements.

Type
xsd:complexType

Child	Elements

Element Description
ruleSet Contains	one	or	more	rule	elements.

Attributes
None.

Definition

<xsd:element	name="ruleSets">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	ref="xsf:ruleSet"	minOccurs="0"	maxOccurs="unbounded"/>
				</xsd:sequence>
		</xsd:complexType>
		<xsd:unique	name="ruleSets_name_unique">
				<xsd:selector	xpath="./xsf:ruleSet"/>
				<xsd:field	xpath="@name"/>
		</xsd:unique>
</xsd:element>

Remarks
The	ruleSets	element	is	an	optional	element	of	the	xDocumentClass
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ruleSets	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>	

Show	All

save	Element

Shows	whether	the	Save	using	custom	code	check	box	option	is
enabled.

Type
xsd:complexType

Child	Elements

Element Description
useScriptHandler Specifies	that	the	submit,	save,	or	version	upgrade

operation	will	be	handled	using	form	code.

Attributes
None.

Definition

<xsd:element	name="save">
		<xsd:complexType>
				<xsd:choice	minOccurs="0"	maxOccurs="1">
						<xsd:element	ref="xsf:useScriptHandler"/>
				</xsd:choice>
		</xsd:complexType>
</xsd:element>

Remarks
If	the	Save	using	custom	code	check	box	option	is	enabled,	the
<xsf:save><xsf:useScriptHandler/></xsf:save>	elements	will	be	added	to
the	form	definition	file	(.xsf)	as	a	child	of	the	xDocumentClass	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	save	element:

<xsf:save>
				<xsf:useScriptHandler/>	
</xsf:save>

Show	All

save	Element	(featureRestrictions	Element)

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	save	the	form.

Type
xsd:complexType

Parent	Elements

Element Description
featureRestrictions Specifies	whether	the	user	can	use	the	form's

menus,	toolbars,	or	keyboard	shortcuts	to	save	the
form,	export	the	form,	print	the	form,	or	send	the
form	as	an	e-mail	attachment.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ui xsf:xdEnabledDisabled Yes Sets	whether	the
user	can	save	the
form.

enabled

disabled

Definition

<xsd:element	name="save"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	save	element	is	an	optional	element	of	the	featureRestrictions
element.	If	this	element	is	not	included	in	the	form	definition	file	(.xsf),
then	the	user	can	use	the	form's	menus,	toolbars,	or	keyboard	shortcuts
to	save	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	save	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

schemaErrorMessages	Element

Contains	custom	error	messages	used	to	override	XML	Schema	data
type	errors.

Type

xsd:complexType

Structure

Name Description
override (Optional	element)	Defines	one	overriding	error	message	for

XML	Schema	data	type	errors	for	an	individual	XML	Document
Object	Model	(DOM)	node.

Remarks
The	schemaErrorMessages	element	is	an	optional	element	of	the
xDocumentClass	element.

Example
The	following	is	an	example	of	the	schemaErrorMessages	element:

<xsf:schemaErrorMessages>
			<xsf:override
						match="/sampleData/number">
						<xsf:errorMessage
									shortMessage="Invalid	Number.">
												The	value	entered	must	be	a	valid	number.
						</xsf:errorMessage>
			</xsf:override>
</xsf:schemaErrorMessages>

Show	All

script	Element

Defines	the	source	scripting	file	containing	all	the	data-level	script	content
referenced	in	the	form.

Type

xsd:complexType

Structure

Name Description
src (Required	attribute)	Provides	a	relative	URL	within	the	form

template	to	the	specified	script	source	file.

Remarks
The	script	element	is	an	optional	element	of	the	scripts	element.

Example
The	following	is	an	example	of	the	script	element:

<xsf:scripts	language="jscript">
			<xsf:script	src="myscripts.js"/>
</xsf:scripts>

Show	All

scripts	Element

Defines	the	source	of	all	business	logic	scripts	used	at	the	document
level	in	the	form.

Type

xsd:complexType

Structure

Name Description
language (Required	attribute)	Defines	the	script	language

used	in	the	business	logic	source	files.
script (Optional	element)	Defines	the	source	scripting

file	containing	all	the	data-level	script	content
referenced	in	the	form.

enforceScriptTimeout (Optional	element)	Specifies	whether	to	enable
or	disable	a	time-out	period	for	scripts.

Remarks
The	scripts	element	is	an	optional	element	of	the	xDocumentClass
element.

There	can	potentially	be	more	than	one	script	element	in	the	scripts
element;	however,	they	should	all	be	written	in	the	same	scripting
language.	All	defined	script	sources	are	concatenated	and	loaded	into	a
single	script	engine	environment	when	the	form	is	being	filled	out.	This
means	that	duplicate	functions	and	property	names	are	resolved	by
default	by	the	script	engine,	and	the	last	declaration	is	the	one	that	is
used.	Form	developers	must	ensure	unique	names	across	scripting
source	files	that	are	used	in	a	form.

In	order	to	add	encoded	jscript	files	to	a	form,	you	need	to	edit	the	form
definition	file	(.xsf)	to	change	the	language	property	in	the	scripts
element.	After	the	property	has	been	updated,	the	scripts	section	in	the
.xsf	file	will	look	like	the	following:

<xsf:scripts	language="jscript.encode">
	 <xsf:script	src="scriptenc.js"></xsf:script>
</xsf:scripts>

The	scripts	element	is	not	present	in	the	.xsf	file	if	the	form	uses
managed	code.

Example
The	following	is	an	example	of	the	scripts	element:

<xsf:scripts	language="jscript"	enforceScriptTimeout="no">		
		<xsf:script	src="internal.js"	/>	
		<xsf:script	src="script.js"	/>	
</xsf:scripts>

Show	All

sendMail	Element

Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,	or
keyboard	shortcuts	to	send	the	form	as	an	email	attachment.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

ui xdEnabledDisabled required Sets	whether	the
user	can	send	the
form	as	an	email
attachment.

enabled

disabled

Definition

<xsd:element	name="sendMail"	>
		<xsd:complexType>
				<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
The	sendMail	element	is	an	optional	element	of	the	featureRestrictions
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	sendMail	element:

<xsf:featureRestrictions>
				<xsf:save	ui="disabled"/>
				<xsf:sendMail	ui="disabled"/>				
				<xsf:exportToWeb	ui="disabled"/>		
				<xsf:exportToExcel	ui="disabled"/>
				<xsf:print	ui="enabled"/>
				<xsf:autoRecovery	feature="disabled"/>	
</xsf:featureRestrictions>

Show	All

sharepointListAdapter	Element

Contains	the	data	adapter	information	to	query	a	SharePoint	list	or
library.

Type
xsd:complexType

Child	Elements

Element Description
field Contains	field	mapping	information	for	each	field	in	a

SharePoint	list	and	the	corresponding	name	used	in	Microsoft
Office	InfoPath	2003	Service	Pack	1.

Attributes

Attribute Type Required Description Possible	Values
name xdTitle Yes Contains	the	name	of

the
sharepointListAdapter
and	is	used	as	the
secondary	data	source
name.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

siteUrl xsd:string Yes Contains	the	Uniform
Resource	Locator	(URL)
of	the	SharePoint	site.

string

sharepointGuid xsd:string Yes Contains	the	GUID	of
the	SharePoint	list.

string

infopathGroup xsd:string Yes Contains	the	name	of
the	group	under	which
all	fields	in	the
SharePoint	list	will	be
stored.

string

queryAllowed xdYesNo No Specifies	whether	the
adapter	can	be	used	for
querying	the	data
source.	Always	set	to
"yes"	for	the
sharepointListAdapter.

yes

no

submitAllowed xdYesNo No Specifies	whether	the
adapter	can	be	used	for
submitting	to	the	data
source.	Omitted	for	the
sharepointListAdapter,
corresponding	to	a
default	value	of	"no".

yes

no

Definition

<xsd:element	name="sharepointListAdapter">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	name="field"	minOccurs="0"	maxOccurs="unbounded">
								<xsd:complexType>
										<xsd:attribute	name="sharepointName"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="infopathName"	type="xsd:string"	use="required"></xsd:attribute>
										<xsd:attribute	name="isLookup"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
								</xsd:complexType>
						</xsd:element>
				</xsd:sequence>
				<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>
				<xsd:attribute	name="siteUrl"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="sharepointGuid"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="infopathGroup"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
				<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Each	field	in	the	SharePoint	list	that	is	returned	by	the	data	adapter	will
have	a	field	element.	The	sharepointListAdapter	can	only	be	used	as	a
secondary	data	source	and	does	not	support	a	submit	action.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl=”http://xyzco/reports/”
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="XyzReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

Show	All

signedDataBlock	Element

Defines	a	node	set	in	the	form's	underlying	XML	document	to	which	a
digital	signature	can	be	applied.

Type
xsd:complexType

Child	Elements

Element Description
message The	signature	confirmation	message	shown	when	a	digital

signature	is	applied	to	the	form	or	to	a	section	of	the	form.

Attributes

Attribute Type Required Description
name xdSignedDataBlockName Yes Contains	the

name	of	the
signedDataBlock
element.

data xsd:string Yes Contains	an
XPath	match
expression	that
defines	the	node
set	to	which	the
signature	will	be
applied.

signatureLocation xsd:string Yes Contains	an
XPath	expression
that	points	to	the
XML	Document
Object	Model
(DOM)	node
within	the	form's
underlying	XML
document	that	is
used	for	storing
the	digital
signature.

mode xdSignatureRelationEnum Yes Specifies	the
signature
relationship	for
the
signedDatablock
element.	The
default	is	"single".

Definition

<xsd:element	name="signedDataBlock">
		<xsd:complexType>
				<xsd:sequence>
						<xsd:element	name="message"	type="xsf:xdSignedDataBlockMessage"	minOccurs="0"></xsd:element>
				</xsd:sequence>
				<xsd:attribute	name="name"	type="xsf:xdSignedDataBlockName"	use="required"></xsd:attribute>
				<xsd:attribute	name="data"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="signatureLocation"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="mode"	type="xsf:xdSignatureRelationEnum"	use="required"></xsd:attribute>
		</xsd:complexType>
		<xsd:unique	name="signedDataBlock_name_unique">
				<xsd:selector	xpath="."/>
				<xsd:field	xpath="@name"/>
		</xsd:unique>
</xsd:element>

Remarks
The	node	set	must	be	the	union	of	connected	subtrees.	If	a	nonleaf	node
is	included	in	a	signedDataBlock,	then	all	children	must	be	included.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	signedDataBlock	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name=”main”
		data=”my:myfields/my:subtree1	|	my:myfields/my:subtree2”
		signatureLocation=”my:mifields/sig:signatures/main”
		mode=”countersign”>
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound
			to	the	terms	of	this	document.</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

solutionProperties	Element

Contains	design-time	information	about	a	Microsoft	Office	InfoPath	2003
form.

Type

xsd:complexType

Structure

Name Description
allowCustomization (Optional	attribute)	Indicates	whether

the	form	can	be	modified	or	customized.
automaticallyCreateNodes (Optional	attribute)	Indicates	whether

XML	Document	Object	Model	(DOM)
nodes	will	be	automatically	generated
when	controls	are	inserted	in	the	view	in
design	mode.

fullyEditableNamespace (Optional	attribute)	Identifies	the
namespace	of	an	XML	Schema	in	the
form	template	that	can	be	entirely
modified	in	InfoPath	design	mode.

lastOpenView (Optional	attribute)	Identifies	the	name
of	the	view	that	was	last	open	in
InfoPath	when	designing	a	form.

lastVersionNeedingTransform (Optional	attribute)	Identifies,
temporarily,	the	value	of	the
maxToVersionUpgrade	attribute	in	the
documentVersionUpgrade	element	for
upgrade	with	an	.xslt	file	if	scripting
code	is	being	used	for	the	upgrade.

scriptLanguage (Optional	attribute)	Identifies	the	name
of	the	scripting	language	used	to
implement	the	business	logic	of	the
form.

publishSaveUrl (Optional	attribute)	Contains	the
location	of	the	saved	form	template	if
different	from	the	value	of	the
publishUrl	attribute.

Remarks
The	solutionProperties	element	is	an	optional	element	of	the
applicationParameters	element.

Example
The	following	is	an	example	of	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:names?pace1:mynames"/>
</xsf:applicationParameters>

Show	All

subject	Element

Contains	the	subject	line	of	the	e-mail	message	when	the	form	is
submitted	using	the	emailAdapter	element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	needed	to

submit	an	InfoPath	form	as	an	attachment	to	an	e-mail
message,	with	a	specified	set	of	recipients,	a	subject,	and
an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the
value	of	the
subject
element.

string

valueType xdExpressionLiteral No Specifies
whether	the
value	attribute
is	interpreted	as
an	XPath
expression	or	a
literal	string.

expression

literal

Definition

<xsd:element	name="subject"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	subject	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

Show	All

submit	Element

Contains	information	about	the	submission	functionality	of	a	form.

Type

xsd:complexType

Structure

Name Description
caption (Optional	attribute)	Defines	the	name	of	the

submit	button	and	corresponding	menu	item
that	will	appear	on	the	File	menu	when	a
user	is	filling	out	the	form.

disableMenuItem (Optional	attribute)	Specifies	whether	the
menu	item	for	the	submit	operation	should	be
disabled.

errorMessage (Optional	element)	Specifies	the	text	to	be
used	in	the	error	message.	If	the
showStatusDialog	attribute	of	the	submit
element	is	set	to	"no",	this	element	will	be
ignored.

onAfterSubmit (Optional	attribute)	Specifies	whether	the
form	should	be	closed,	kept	open,	or	if	a	new
form	should	be	created	after	a	successful
submission.

showSignatureReminder (Optional	attribute)	Specifies	whether	a
dialog	box	should	be	displayed	to	prompt	the
user	to	digitally	sign	the	form	before
submitting	it.

showStatusDialog (Optional	attribute)	Specifies	whether	the
status	dialog	box	should	be	shown	after	the
submit	operation.	Values	include	"yes"	and
"no".	The	default	values	is	"yes".

successMessage (Optional	element)	Specifies	the	text	to	be
used	to	notify	the	user	that	the	submission
was	successful.

useHttpHandler (Optional	element)	Specifies	that	the	form	is
to	be	submitted	to	the	specified	Uniform
Resource	Locator	(URL)	using	the	specified
HTTP	method.

useScriptHandler (Optional	element)	Specifies	that	the	form	is

to	be	submitted	by	scripting	code	in	the
associated	script	file.	Submit	code	must	be
written	in	the	OnSubmitRequest	event
handler	in	the	form's	primary	scripting	file.

useQueryAdapter (Optional	element)	Specifies	that	the	form	is
to	be	submitted	to	the	same	data	adapter	as
specified	in	the	query	element.

webServiceAdapter (Optional	element)	Specifies	that	the	form	is
to	be	submitted	to	a	Web	service	adapter.

submitAction (Optional	element)	Specifies	the	data	adapter
used	to	submit	the	form.

Remarks
The	submit	element	is	an	optional	element	of	the	xDocumentClass
element.

Example
The	following	is	an	example	of	the	submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

submitAction	Element	(rule	Element)

Defines	a	form	submit	action.

Type
xsd:complexType

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Child	Elements
None.

Attributes

Attribute Type Required Description Possible	Values
adapter xsf:xdTitle Yes Contains

the	name	of
the	data
adapter	to
submit.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

Definition

<xsd:element	name="submitAction">
		<xsd:complexType>
				<xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

submitAction	Element	(submit	Element)

Specifies	the	data	adapter	used	to	submit	the	form.

Type
xsd:complexType

Parent	Elements

Element Description
submit Contains	information	about	the	submission	functionality	of	a

form.

Child	Elements
None.

Attributes

Attribute Type Required Description Possible	Values
adapter xsf:xdTitle Yes The	name

of	the	data
adapter
used	for
submitting
the	form.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}])
(([^\p{Zl}\p{Zp}\p{Cc}])*
([^\p{Z}\p{Cc}\p{Cf}\p{Cn}]))?

Definition

<xsd:element	name="submitAction"	minOccurs="0"	>
		<xsd:complexType>
				<xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"></xsd:attribute>
		</xsd:complexType>
		<xsd:keyref	name="submitAdapter_name_keyref"	refer="xsf:adapter_name_key">
				<xsd:selector	xpath="."	/>
				<xsd:field	xpath="@adapter"	/>
		</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAction	element:

<xsf:submit	caption="Su&bmit"	disableMenuItem="no"	onAfterSubmit="keepOpen"	showStatusDialog="yes">
	<xsf:submitAction	adapter="dav"/>
</xsf:submit>

<xsf:dataAdapters>
	<xsf:davAdapter	name="dav"	folderUrl="http://some_server/some_doc_lib"	getFileNameFromData="/my:myFields/my:field1"	overwriteAllowed="no"></xsf:davAdapter>
</xsf:dataAdapters>

successMessage	Element

Specifies	the	text	to	be	used	to	notify	the	user	that	the	submission	was
successful.

Type

xsd:string

Remarks
The	successMessage	element	is	an	optional	element	of	the	submit
element.

The	successMessage	element	does	not	contain	any	attributes	or	child
elements.

The	successMessage	element	is	ignored	if	the	showStatusDialog
attribute	of	the	submit	element	is	set	to	"no".

Example
The	following	is	an	example	of	the	successMessage	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

switchViewAction	Element

Defines	a	view	switch	action.

Type
xsd:complexType

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Child	Elements
None.

Attributes

Attribute Type Required Description Possible	Values
view xsf:xdViewName Yes Contains

the	name	of
the	view.

minLength	=	1

maxLength	=	255

pattern	=
([^\p{Z}\p{C}/\\#&"><])
(([^\p{Zl}\p{Zp}\p{C}/\\#&">
<])*([^\p{Z}\p{C}/\\#&">
<]))?

Definition

<xsd:element	name="switchViewAction">
	<xsd:complexType>
	 		 <xsd:attribute	name="view"	type="xsf:xdViewName"	use="required"/>
	</xsd:complexType>
	<xsd:keyref	name="switchViewAction_view_keyref"	refer="xsf:view_name_key">
	 	<xsd:selector	xpath="."	/>
	 	<xsd:field	xpath="@view"/>
	</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	switchViewAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

task	Element

Contains	the	Microsoft	BizTalk	Server	2004	Human	Workflow	Services
(HWS)	task	information	enabled	for	the	form.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

name xsf:xdHWSname Yes The	unique
name	of	the	task,
as	specified	in
the	HWS
Workflow
designer;	used
for	the	onClick
event	of	the
button	in	the
HWS	Workflow
task	pane.

Cannot
contain	the
following
characters:

\	/	"	[]	:	<	>
+	=	;	,	?	*
@

taskTypeID xsd:string Yes The	unique	ID
for	the	task.

string

caption xsf:xdHWSCaption No The	label	for	the
corresponding
button	in	the
HWS	Workflow
task	pane	to	start
or	respond	to	a
task.

minLength
=	1

maxLength
=	255

Definition

	 <xsd:element	name="task">
	 	 <xsd:complexType>
	 	 	 	<xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"/>
	 	 	 	<xsd:attribute	name="taskTypeID"	type="xsd:string"	use="required"/>
	 	 	 	<xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"/>
	 	 </xsd:complexType>
	 </xsd:element>

Remarks
The	task	element	is	an	optional	element	of	the	allowedTasks	element.

Each	task	enabled	for	the	form	must	have	a	corresponding	task	element
in	the	allowedTasks	section	of	the	form	definition	file	(.xsf).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	task	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	
												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>

						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

taskpane	Element

Defines	a	custom	task	pane	to	be	used	in	a	Microsoft	Office	InfoPath
2003	form.

Type

xsd:complexType

Structure

Name Description
caption (Required	attribute)	Defines	the	caption	used	in	the	task	pane

drop-down	list	box.
href (Required	attribute)	Specifies	the	relative	or	absolute	Uniform

Resource	Locator	(URL)	to	an	.html	file.

Remarks
The	taskpane	element	is	an	optional	element	of	the	xDocumentClass
element.

The	task	pane	is	a	modeless	panel	that	appears	to	the	right	of	the	main
form	area.	Task	panes	contain	commands	specific	to	completing	tasks
that	are	related	to	a	single	form.	InfoPath	supports	the	use	of	a	single
custom	task	pane.

To	get	multiple	task	pane	behavior,	you	can	include	multiple	.htm	files	in
the	form	template	and	use	the	Navigate	method	of	the	HTMLTaskPane
object	in	the	Microsoft	Office	InfoPath	2003	object	model	to	navigate	to
different	.htm	files.

Example
The	following	is	an	example	of	the	taskpane	element:

<xsf:xDocumentClass>
			...
			<xsf:taskpane
						caption="Design	Issues	Help"
						href="DesignIssuesHelp.htm"/>
			...
</xsf:xDocumentClass>

Show	All

to	Element

Contains	the	recipient	information	for	the	to	line	of	the	e-mail	message
when	the	form	is	submitted	using	the	emailAdapter	element.

Type
xsd:complexType

Parent	Elements

Element Description
emailAdapter Parent	element	that	contains	the	information	needed	to

submit	an	InfoPath	form	as	an	attachment	to	an	e-mail
message,	with	a	specified	set	of	recipients,	a	subject,	and
an	introduction.

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

value xsd:string Yes Contains	the
value	of	the
to	element.

string

valueType xsf:xdExpressionLiteralNo Specifies
whether	the
value
attribute	is
interpreted	as
an	XPath
expression	or
as	a	literal
string.

expression

literal

Definition

<xsd:element	name="to"	minOccurs="0">
		<xsd:complexType>
				<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
Multiple	addresses	on	the	to	line	must	be	separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	to	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

toolbar	Element

Contains	information	about	the	toolbars	used	in	the	view.

Type

xsd:complexType

Structure

Name Description
button (Optional	element)	Defines	a	button	that	has	an	associated

action.
caption (Required	attribute)	Used	as	the	title	of	the	toolbar,	when	the

toolbar	is	not	docked	to	the	user	interface.
name (Required	attribute)	Identifies	the	corresponding	toolbar	within

different	views.	Must	be	unique	within	a	given	view.
menu (Optional	element)	Contains	information	about	the	menus	used

within	the	toolbar.

Remarks
The	toolbar	element	is	an	optional	element	of	the	view	element.	There
can	be	multiple	toolbars	declared	for	a	view,	and	each	toolbar	can	have
multiple	menu	or	button	elements.

Example
The	following	is	an	example	of	the	toolbar	element:

<xsf:toolbar	caption="CD	Collection	Toolbar"
			name="CD	Collection	Toolbar">
			<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
						caption="New	CD"	showIf="always"></xsf:button>
			<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
						caption="New	Track"	showIf="always"></xsf:button>
			<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
						caption="New	Label"	showIf="always"></xsf:button>
			<xsf:menu	caption="Remove">
						<xsf:button	action="xCollection::remove"	xmlToEdit="CD_10"	
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::remove"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::remove"	xmlToEdit="Label_16"	
									caption="Label"	showIf="always"></xsf:button>
			</xsf:menu>
</xsf:toolbar>

Show	All

unboundControls	Element

Defines	the	unbound	button	controls	that	are	used	in	the	view.

Type

xsd:complexType

Structure

Name Description
button (Optional	element)	Defines	a	button	that	has	an	associated

action.

Remarks
The	unboundControls	element	is	an	optional	element	of	the	view
element.

Unbound	controls	in	Microsoft	Office	InfoPath	2003	are	the	buttons	that
are	dragged	from	the	Controls	task	pane	onto	the	view	in	design	mode.
The	name	assigned	to	the	button	control	is	used	in	the	name	attribute	of
the	button	element,	and	when	a	user	clicks	on	the	button,	the	scripting
code	associated	with	the	button	will	be	called.

Example
The	following	is	an	example	of	the	unboundControls	element:

<xsf:view>
			<xsf:unboundControls>
						<xsf:button	name="MyButton"></xsf:button>
			</xsf:unboundControls>
			...
</xsf:view>

The	following	script	handler,	included	in	the	script	file,	will	be	called	when
the	button	is	clicked:

function	MyButton::OnClick()
{
			//	Write	your	code	here.
}

Show	All

useHttpHandler	Element

Specifies	that	the	form	is	to	be	submitted	to	the	specified	Uniform
Resource	Locator	(URL)	using	the	specified	HTTP	method.

Type

xsd:complexType

Structure

Name Description
href (Required	attribute)	Specifies	the	URL	to	which	the	form	should

be	submitted.
method (Required	attribute)	Specifies	the	HTTP	method	to	use	for	the

submit	operation.

Remarks
The	useHttpHandler	element	is	an	optional	element	of	the	submit
element.

Example
The	following	is	an	example	of	the	useHttpHandler	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useHttpHandler>
						href="http://MyServer/InfoPathScripts/MyScript.asp"
						method="POST"
			</xsf:useHttpHandler>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

useQueryAdapter	Element

Specifies	that	the	form	is	to	be	submitted	to	the	same	data	adapter	as
specified	in	the	query	element.

Type

xsd:complexType

Remarks
The	useQueryAdapter	element	is	an	optional	element	of	the	submit
element.

The	query	element	used	is	the	one	that	is	the	child	element	of	the
xDocumentClass	element,	not	the	query	element	that	is	a	child	of	the
dataObject	element.

The	useQueryAdapter	element	does	not	contain	any	attributes	or	child
elements.

Example
The	following	is	an	example	of	the	useQueryAdapter	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useQueryAdapter/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

userName	Element

Associates	a	user	with	a	particular	role.

Type
xsd:complexType

Child	Elements
None.

Attributes

Attribute Type Required Description
Possible
Values

name xsd:string Yes Specifies	the	name	of	a	user
for	inclusion	in	the
membership	list	of	a	role.

string

memberOf xsd:string Yes Specifies	the	role	to	be
associated	with	the	user.

string

Definition

<xsd:element	name="userName">
		<xsd:complexType>
				<xsd:attribute	name="name"	type="xsd:string"	use="required"></xsd:attribute>
				<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"></xsd:attribute>
		</xsd:complexType>
</xsd:element>

Remarks
InfoPath	requires	that	a	user	be	associated	with	only	one	role	at	a	time.

If	a	user	creates	a	new	InfoPath	document	from	a	form	template,	that
user	is	assigned	to	the	role	specified	in	the	optional	initiator	attribute	of
the	roles	element.	If	no	role	has	been	designated	as	the	initiator	role,
InfoPath	assigns	the	user	to	the	role	specified	in	the	memberOf	attribute
of	the	first	entry	that	corresponds	to	the	user	in	the	membership	list	of	the
roles	element.	An	entry	in	the	membership	list	corresponds	to	a	user	if
any	one	of	the	following	conditions	is	true:

The	name	of	the	user	matches	the	value	of	the	name	attribute	of	a
userName	element	in	the	membership	list.

The	user	is	included	in	a	group	identified	by	a	group	element	in	the
membership	list.

The	name	of	the	user	matches	a	name	returned	by	a
getUserNameFromData	element	in	the	membership	list.

If	no	entry	for	the	user	is	found	in	the	membership	list,	InfoPath
associates	the	user	with	the	role	specified	in	the	default	attribute	of	the
roles	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	userName	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"/>
			<xsf:role	name="B"/>
			<xsf:role	name="C"/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"/>
						<xsf:userName	name="Domain\username1"	memberOf="A"/>
						<xsf:userName	name="Domain\username2"	memberOf="B"/>
						<xsf:group	name="Domain\username3"	memberOf="C"/>
			</xsf:membership>
</xsf:roles>

Show	All

useScriptHandler	Element

Specifies	that	the	submit,	save,	or	version	upgrade	operation	will	be
handled	using	form	code.

Type

xsd:element

Remarks
The	useScriptHandler	element	is	an	optional	element	of	the	submit
element,	the	save	element	and	the	documentVersionUpgrade	element.
The	useScriptHandler	element	contains	no	attributes	or	child	elements.

When	used	with	the	submit	element,	it	declares	that	the	form	data	will	be
processed	by	script	code	in	the	associated	form	file.	The	submit	form
code	must	be	written	in	the	OnSubmitRequest	event	handler	in	the	form's
primary	script	file.

When	used	with	the	save	element,	it	declares	that	the	save	operation	of
the	form	data	will	be	processed	by	form	code	in	the	associated	form	code
file.	The	code	must	be	written	in	the	OnSaveRequest	event	handler	in	the
form's	primary	scripting	file.

When	used	with	the	documentVersionUpgrade	element,	it	declares	that
the	upgrade	of	older	forms	(created	with	an	older	version	of	the	form
template)	will	be	processed	by	form	code	in	the	associated	scripting	file.
The	form	upgrade	code	must	be	written	in	the	OnVersionUpgrade	event
handler	in	the	form's	primary	script	file.

Example
The	following	is	an	example	of	the	useScriptHandler	element:

<xsf:documentVersionUpgrade>
			<xsf:useScriptHandler/>
</xsf:documentVersionUpgrade>

Show	All

useTransform	Element

Specifies	that	the	upgrade	will	be	handled	by	an	XSL	Transformation
(XSLT)	supplied	by	the	newer	version	of	the	form	template.

Type

xsd:complexType

Structure

Name Description
maxToVersionUpgrade (Optional	attribute)	Inclusive	value	for	the	latest

form	that	needs	to	be	upgraded.
minVersionToUpgrade (Required	attribute)	Inclusive	value	for	the

oldest	form	that	can	be	upgraded.
transform (Required	attribute)	Specifies	the	XSLT	file

name	relative	to	the	form	template.

Remarks
The	useTransform	element	is	an	optional	element	of	the
documentVersionUpgrade	element.

When	a	user	fills	out	a	form,	Microsoft	Office	InfoPath	2003	automatically
runs	the	specified	XSLT	on	the	form's	underlying	XML	document	and
uses	the	output	as	the	XML	data	to	be	edited,	if	the	version	of	the	form	is
greater	than	or	equal	to	the	minVersionToUpgrade	attribute	and	the
version	is	less	than	or	equal	to	the	maxVersionToUpgrade	attribute.

Example
The	following	is	an	example	of	the	useTransform	element:

<xsf:documentVersionUpgrade>
			<xsf:useTransform
						transform="upgrade.xsl"
						minVersionToUpgrade="0.0.0.0"
						maxVersionToUpgrade="1.0.0.5"/>
</xsf:documentVersionUpgrade>

Show	All

view	Element

Contains	information	about	a	Microsoft	Office	InfoPath	2003	view.

Type

xsd:complexType

Structure

Name Description
caption (Optional	attribute)	Provides	the	display	caption	for

the	view	within	the	view	list.
designMode (Optional	attribute)	Determines	whether	the	view	can

be	opened	in	design	mode.
editing (Optional	element)	Contains	information	about	the

editing	components	used	in	the	view.
mainpane (Required	element)	Determines	what	is	displayed	in

the	main	pane	(form	area).
menu (Optional	element)	Contains	information	about	the

custom	menus	used	in	the	view.
menuArea (Optional	element)	Contains	information	about	the

custom	menu	items	that	can	be	added	to	the
InfoPath	built-in	menus.

name (Required	attribute)	Identifies	the	view	for	object
model	calls	when	switching	views,	and	for	specifying
the	default	view.

printSettings (Optional	element)	Specifies	the	printer	settings	used
when	printing	the	view.

printView (Optional	attribute)	Specifies	the	name	of	another
view	to	use	for	printing	this	view.

toolbar (Optional	element)	Contains	information	about	the
toolbars	used	in	the	view.

unboundControls (Optional	element)	Defines	the	unbound	button
controls	that	are	used	in	the	view.

showMenuItem (Optional	element)	Provides	the	display	of	the	menu
item	in	the	View	menu	with	a	check	mark	when
enabled.

Remarks
The	view	element	is	a	required	element	of	the	views	element.

Example
The	following	is	an	example	of	the	view	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

views	Element

Defines	all	of	the	views	that	have	been	implemented	in	a	Microsoft	Office
InfoPath	2003	form.

Type

xsd:complexType

Structure

Name Description
default (Optional	attribute)	Specifies	the	name	of	the	view	chosen	to	be

the	default	view.
view (Required	element)	Contains	information	about	an	InfoPath	view.

Remarks
The	views	element	is	a	required	element	of	the	xDocumentClass
element.

Example
The	following	is	an	example	of	the	views	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

Show	All

webServiceAdapter	Element

Defines	a	Web	service	data	adapter	that	retrieves	data	from	a	Web
service	for	the	specified	data	object.

Type

xsd:complexType

Structure

Name Description
queryAllowed (Optional	attribute)	Specifies	whether	data	can	be

retrieved	from	the	data	source	through	the	query
method	of	the	adapter	object.

submitAllowed (Optional	attribute)	Specifies	whether	data	can	be
submitted	to	the	data	source	through	the	submit	method
of	the	adapter	object.

wsdUrl (Required	attribute)	Contains	the	Uniform	Resource
Locator	(URL)	of	the	Web	Services	Description
Language	(WSDL)	file	that	describes	the	Web	service
specification.

operation (Required	element)	Defines	the	operation	(method)	of
the	Web	service	to	be	used	for	retrieving	and	submitting
data.

useDataSet (Optional	attribute)	Specifies	whether	the	adapter	will
support	an	ADO.Net	DataSet.	Default	is	"no".

Remarks
The	webServiceAdapter	element	is	an	optional	element	of	the	query
element.

The	webServiceAdapter	element	can	also	be	used	to	define	a	Web
service	adapter	used	to	submit	the	main	or	secondary	form	data.

Example
The	following	is	an	example	of	the	webServiceAdapter	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no"
						useDataSet="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

xDocumentClass	Element

The	root	element	of	the	form	definition	(.xsf)	file	file.	Contains	all	other
elements	and	attributes	of	the	.xsf	file.

Type

xsd:complexType

Structure

Name Description
author (Optional	attribute)	Identifies	the	author	of

the	form.
dataFormSolution (Optional	attribute)	Identifies	the	form	as	a

database	form.
description (Optional	attribute)	A	brief	description	of	the

form.
name (Optional	attribute)	Provides	a	unique,

Uniform	Resource	Name	(URN)–based
name	for	the	form	that	the	.xsf	file	defines.

productVersion (Optional	attribute)	Identifies	the	version
number	of	InfoPath	with	which	the	form	has
been	created	or	for	which	a	particular	form
is	intended.

publishUrl (Optional	attribute)	Identifies	where	the	form
was	published	and	where	the	form	template
should	download	updates	from.

requireFullTrust (Optional	attribute)	Allows	the	form	to	run	as
a	fully	trusted	form	when	a	form	template	is
registered	or	signed	with	a	certificate.

solutionFormatVersion (Required	attribute)	Identifies	the	version
number	that	represents	the	format	of	the
.xsf	file.

solutionVersion (Optional	attribute)	Identifies	the	version
number	of	the	form.

xmlns (Required	attribute)	Defines	the	xsf
namespace.

applicationParameters (Optional	element)	Contains	form-specific
properties	that	describe	how	a	form	should
be	used	in	InfoPath	design	mode.

customValidation (Optional	element)	Defines	rule-based
custom	validation	on	top	of	all	validation

enforced	through	the	XML	Schema.
dataObjects (Optional	element)	Defines	all	secondary

data	objects	used	in	an	InfoPath	form.
documentSchemas (Optional	element)	Defines	the	XML

Schemas	that	the	InfoPath	form	is	designed
to	handle.

documentSignatures (Optional	element)	Defines	the	location	of
the	digital	signature	XML	Document	Object
Model	(DOM)	node	within	the	form's
underlying	XML	document.

documentVersionUpgrade (Optional	element)	Defines	how	forms
created	with	an	older	version	of	the	form
template	can	be	upgraded	to	the	latest
version	of	the	form	template.

domEventHandlers (Optional	element)	Contains	pointers	to
various	script-based	event	handlers	that
react	to	changes	in	XML	DOM	nodes	of	a
form's	underlying	XML	document	while	the
form	is	being	filled	out.

extensions (Optional	element)	Includes	minor	upgrades
to	the	InfoPath	.xsf	file	that	can	be	used	by
future	releases	of	InfoPath	or	by	specific
forms.

fileNew (Optional	element)	Provides	a	reference	to
an	.xml	file	containing	sample	data,	to	be
loaded	when	a	user	chooses	to	create	a
new	form	based	on	the	form	template.

importParameters (Optional	element)	Contains	all	the
parameters	that	define	how	the	import
(merge)	forms	feature	works	for	the	form.

listProperties (Optional	element)	Identifies	the	properties
that	should	be	on	a	list	view	of	all	forms
belonging	to	a	form	template.

package (Required	element)	Contains	information
about	all	of	the	files	used	in	an	InfoPath
form.

query (Optional	element)	Associates	a	data
adapter	with	the	form's	underlying	XML
document.

schemaErrorMessages (Optional	element)	Contains	custom	error
messages	used	to	override	XML	Schema
data	type	errors.

scripts (Optional	element)	Defines	the	source	of	all
business	logic	scripts	used	at	the	document
level	in	the	form.

submit (Optional	element)	Contains	information
about	the	submission	functionality	of	a	form.

taskpane (Optional	element)	Defines	a	custom	task
pane	to	be	used	in	an	InfoPath	form.

views (Required	element)	Defines	all	of	the	views
that	have	been	implemented	in	an	InfoPath
form.

trustLevel (Optional	attribute)	Specifies	the	trust	level
of	a	form.

trustSetting (Optional	attribute)	Specifies	the	trust
setting	of	a	form.

Remarks
The	xDocumentClass	element	is	a	required	element	and	must	be
present	in	the	InfoPath	.xsf	file.

The	attributes	that	are	contained	within	the	xDocumentClass	element
are	collectively	called	the	global	metadata	section.	The	global	metadata
section	of	the	.xsf	file	is	a	required	section	that	contains	global
information	about	the	InfoPath	form.

Example
The	following	is	an	example	of	the	xDocumentClass	element:

xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:schemas-microsoft-com:myTravelReport"
			author="Frank	Miller"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			dataFormSolution="yes"
			requireFullTrust="yes"
			trustLevel="restricted"
			trustSetting="manual"
			publishUrl="http://www.contoso.com/InfoPathTemplates/MyTemplate.xsn">
			...
</xsf:xDocumentClass

Show	All

xmlFileAdapter	Element

Defines	an	.xml	file	data	adapter	that	retrieves	data	from	an	.xml	file	for
the	specified	data	object.

Type

xsd:complexType

Structure

Name Description
fileUrl (Required	attribute)	Contains	the	Uniform	Resource	Locator

(URL)	of	the	.xml	file.
name (Optional	attribute)	Contains	the	name	of	the	xmlFileAdapter

element.

Remarks
The	xmlFileAdapter	element	is	an	optional	element	of	the	query
element.

Example
The	following	is	an	example	of	the	xmlFileAdapter	element:

<xsf:query>
			<xsf:xmlFileAdapter	fileUrl="currencies.xml"	/>
</xsf:query>

Show	All

xmlToEdit	Element

Specifies	an	instance	of	an	editing	component.

Type

xsd:complexType

Structure

Name Description
container (Optional	attribute)	Specifies	an	XPath	expression	that

determines	the	context	in	which	the	control	will	be
selectable	and	its	actions	enabled.

editWith (Optional	element)	Defines	an	instance	of	an	editing
component,	and	provides	the	corresponding	parameters	to
determine	its	exact	behavior.

item (Required	attribute)	Specifies	an	XPath	expression	that
determines	the	XML	Document	Object	Model	(DOM)
nodes	to	be	edited	using	the	editing	component	defined	in
the	editWith	element.

name (Required	attribute)	Used	in	the	xmlToEdit	attribute	of	the
button	element	to	associate	actions	of	the	associated
editing	component	with	buttons	defined	in	menus	and
toolbars.

viewContext (Optional	attribute)	Specifies	a	string	that	identifies	an
HTML	element	in	the	view.

Remarks
The	xmlToEdit	element	is	an	optional	element	of	the	editing	element.

xmlToEdit	elements	are	used	to	define	the	editing	components	that	can
be	used	in	a	form.	The	xmlToEdit	elements	can	contain	multiple
editWith	elements	that	specify	the	editing	components	that	will	be	used
to	edit	various	types	of	XML	DOM	nodes.

Example
The	following	is	an	example	of	the	xmlToEdit	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

action	Attribute

Specifies	an	action	of	an	editing	component,	using	the	syntax
"NameOfEditingComponent::NameOfAction".

Type

xsd:NMTOKEN

Remarks
The	action	attribute	is	an	optional	attribute	of	the	button	element,	but	is
required	for	buttons	used	with	editing	components.

The	following	are	the	editing	actions	that	may	be	used	as	the	value	of	the
action	attribute.

Name Description
xCollection::insert Inserts	an	item.
xCollection::insertBefore Inserts	an	item	before	the	current	selection.
xCollection::insertAfter Inserts	an	item	after	the	current	selection.
xCollection::remove Removes	an	item.
xCollection::removeAll Removes	all	items.
xOptional::insert Inserts	an	optional	item.
xOptional::remove Removes	an	optional	item.
xReplace::replace Replaces	an	existing	item.
xFileAttachment::attach Opens	a	dialog	box	to	browse	for	files	to	attach

to	a	form.
xFileAttachment::open Opens	a	file	attached	to	a	form.
xFileAttachment::saveAs Opens	the	a	dialog	box	to	browse	for	a	location

where	a	file	is	to	be	saved.
xFileAttachment::remove Removes	the	file	from	the	form.

Example
The	following	is	an	example	of	the	action	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

Show	All

actionTypeID	Attribute

Contains	a	unique	ID	for	the	action	element.

Type
xsd:string

Parent	Elements

Element Description
action Contains	the	information	for	an	action.

Definition

<xsd:attribute	name="actionTypeID"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
The	actionTypeID	attribute	is	an	attribute	of	the	action	element.

The	value	of	the	actionTypeID	attribute	must	be	unique	in	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	actionTypeID	attribute	as	it	is	used	in
the	action	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"	/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

adapter	Attribute	(queryAction	Element)

Contains	the	adapter	name	for	the	data	connection	used	for	the
queryAction	element.

Type
xsd:string

Parent	Elements

Element Description
queryAction Defines	a	data	connection	query	action.

Definition

<xsd:attribute	name="adapter"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	adapter	attribute	as	it	is	used	in	the
queryAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

adapter	Attribute	(submitAction	Element)

Contains	the	name	of	the	data	adapter	to	submit.

Type
xsf:xdTitle

Parent	Elements

Element Description
submitActionDefines	a	submit	action	for	a	form.

Definition

<xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	adapter	attribute	as	it	is	used	in	the
submitAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

adapter	Attribute	(submitAction	Element)

Contains	the	name	of	the	data	adapter	used	for	submitting	the	form.

Type
xsd:complexType

Parent	Elements

Element Description
submitAction Specifies	the	data	adapter	used	to	submit	the	form.

Definition

<xsd:element	name="submitAction"	minOccurs="0"	>
		<xsd:complexType>
				<xsd:attribute	name="adapter"	type="xsf:xdTitle"	use="required"></xsd:attribute>
		</xsd:complexType>
		<xsd:keyref	name="submitAdapter_name_keyref"	refer="xsf:adapter_name_key">
				<xsd:selector	xpath="."	/>
				<xsd:field	xpath="@adapter"	/>
		</xsd:keyref>
</xsd:element>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	adapter	attribute	as	it	is	used	in	the
submitAction	element:

<xsf:submit	caption="Su&bmit"	disableMenuItem="no"	onAfterSubmit="keepOpen"	showStatusDialog="yes">
	<xsf:submitAction	adapter="dav"/>
</xsf:submit>
<xsf:dataAdapters>
	<xsf:davAdapter	name="dav"	folderUrl="http://some_server/some_doc_lib"	getFileNameFromData="/my:myFields/my:field1"	overwriteAllowed="no"></xsf:davAdapter>
</xsf:dataAdapters>

Show	All

aggregation	Attribute

Specifies	how	the	nodes	returned	from	an	XPath	expression	in	the	node
attribute	should	be	aggregated	to	obtain	a	single	value	for	the	document.

Type

xsd:simpleType

Remarks
The	aggregation	attribute	is	an	optional	attribute	of	the	field	element.

The	aggregation	attribute	can	either	be	an	aggregation	action	or	an
indication	of	the	particular	element	in	the	collection.	It	uses	the	following
aggregation	actions:	sum,	count,	average,	min,	max,	first,	last,	merge,
and	plaintext.

Example
The	following	is	an	example	of	the	aggregation	attribute	as	it	is	used	in
the	field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

Show	All

allowCustomization	Attribute

Identifies	whether	the	Microsoft	Office	InfoPath	2003	form	can	be
modified	or	customized.

Type

xsf:xdYesNo

Remarks
The	allowCustomization	attribute	is	an	optional	attribute	of	the
solutionProperties	element.

If	the	allowCustomization	attribute	is	set	to	"no",	an	error	is	generated
when	a	user	tries	to	modify	the	form	template	after	opening	it	in	InfoPath.
Allowed	values	are	"yes"	and	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	allowCustomization	attribute	as	it	is
used	in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

Show	All

allowedFileTypes	attribute

Specifies	the	file	name	extensions	of	files	that	can	be	attached	to	the
form.

Type
xsd:string

Parent	Elements

Element Description
editWith Specifies	an	instance	of	an	editing	component,	and	provides

the	corresponding	parameters	to	determine	its	exact	behavior.

Definition

<xsd:attribute	name="allowedFileTypes"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
The	file	extensions	listed	in	the	allowedFileTypes	attribute	value	are
separated	by	commas.

Example

<xsf:xmlToEdit	name="some_name"			item="/my:myFields/my:field1">
	<xsf:editWith	allowedFileTypes="doc,	xls"	component="xFileAttachment"/>
</xsf:xmlToEdit>
	
<menuArea	name="msoStructuralEditingContextMenu">
	<button	action="xFileAttachment::attach"	xmlToEdit="some_name"	caption="Attach..."	showIf="immediate"	/>
	<button	action="xFileAttachment::open"	xmlToEdit="some_name"	caption="Open"	showIf="immediate"	/>
	<button	action="xFileAttachment::saveAs"	xmlToEdit="some_name"	caption="Save	As..."	showIf="immediate"	/>
	<button	action="xFileAttachment::remove"	xmlToEdit="some_name"	caption="Delete	file"	showIf="immediate"	/>
</menuArea>

application	Attribute

Identifies	the	name	of	the	application	used	to	design	the	Microsoft	Office
InfoPath	2003	form.

Type

xsd:string

Remarks
The	application	attribute	is	a	required	attribute	of	the
applicationParameters	element.

The	only	value	supported	is	"InfoPath	Design	Mode".

Example
The	following	is	an	example	of	the	application	attribute	as	it	is	used	in
the	applicationParameters	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

attribute	Attribute

Specifies	the	name	of	the	attribute	to	be	inserted.

Type

xsd:string

Remarks
The	attribute	attribute	is	a	required	attribute	of	the	attributeData
element.

Example
The	following	is	an	example	of	the	attribute	attribute	as	it	is	used	in	the
attributeData	element:

<xsf:editWith	component="xOptional">
			<xsf:fragmentToInsert>
						<xsf:chooseFragment	parent="report">
									<xsf:attributeData	attribute="author"	value="author	name"/>
						</xsf:chooseFragment>
			</xsf:fragmentToInsert>
</xsf:editWith>

author	Attribute

Identifies	the	author	of	the	form.

Type

xsd:string

Remarks
The	author	attribute	is	an	optional	attribute	of	the	xDocumentClass
element.

Example
The	following	is	an	example	of	the	author	attribute	as	it	is	used	in	the
xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

autoComplete	Attribute

Switches	the	auto-completion	of	fields	on	or	off.

Type

xsf:xdYesNo

Remarks
The	autoComplete	attribute	is	an	optional	attribute	of	the	editWith
element.

Values	include	"yes"	and	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	autoComplete	attribute	as	it	is	used
in	the	editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									autoComplete="yes"
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

automaticallyCreateNodes	Attribute

Identifies	whether	XML	Document	Object	Model	(DOM)	nodes	will	be
automatically	generated	when	controls	are	inserted	in	the	view	in	design
mode.

Type

xsf:xdYesNo

Remarks
The	automaticallyCreateNodes	attribute	is	an	optional	attribute	of	the
solutionProperties	element.

The	automaticallyCreateNodes	attribute	corresponds	to	the
Automatically	create	data	source	check	box	at	the	bottom	of	the
Controls	task	pane.

Example
The	following	is	an	example	of	the	automaticallyCreateNodes	attribute
as	it	is	used	in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

bottomMargin	Attribute

Specifies	the	bottom	margin	when	printing	a	view.

Type

xsd:string

Remarks
The	bottomMargin	attribute	is	an	optional	attribute	of	the	printSettings
element.

The	bottomMargin	attribute	must	be	greater	than	or	equal	to	zero.

Example
The	following	is	an	example	of	the	bottomMargin	attribute	as	it	is	used
in	the	printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

cabFile	Attribute

Specifies	the	name	of	the	CAB	file.

Type
xsd:string

Parent	Elements

Element Description
allowedControl Specifies	the	ActiveX	controls	that	are	allowed	to	be

instantiated.

Definition

<xsd:attribute	name="cabFile"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
The	cabFile	attribute	must	refer	to	a	file	within	the	InfoPath	package.	If
the	cabFile	attribute	is	not	specified,	the	control	must	already	be
registered	on	the	local	computer	or	the	form	will	not	open.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	cabFile	attribute	as	it	is	used	in	the
allowedControl	element:

<xsf:permissions>
		<xsf:allowedControl	
								cabFile="{84F32C01-78D8-4B93-8ED4-106DA70224C2}.cab”	
								clsid="{84F32C01-78D8-4B93-8ED4-106DA70224C2}"	
								version="1,0,0,1"	/>
		<xsf:allowedControl	
								clsid="{F08DF954-8592-11D1-B16A-00C0F0283630}"	/>
</xsf:permissions>

canInitiateWorkflow	Attribute

Specifies	whether	the	action	element	can	be	used	to	initiate	or	extend	an
activity	flow.

Type
xsf:xdYesNo

Parent	Elements

Element Description
action Contains	the	information	for	an	action.

Definition

<xsd:attribute	name="canInitiateWorkflow"	type="xsf:xdYesNo"	use="required"	></xsd:attribute>

Remarks
The	canInitiateWorkflow	attribute	is	a	required	attribute	of	the	action
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	canInitiateWorkflow	attribute	as	it	is
used	in	the	action	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"	/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

caption	Attribute	(action	Element)

Specifies	a	label	for	the	button	in	the	Workflow	task	pane	corresponding
to	the	action	element.

Type
xsf:xdHWSCaption

Parent	Elements

Element Description
action Contains	the	information	for	an	action.

Definition

<xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"	></xsd:attribute>

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	action	element.

If	a	caption	is	not	specified,	the	value	of	the	name	attribute	will	be	used
as	the	caption	for	the	button	in	the	Workflow	task	pane.

The	caption	attribute	is	also	used	to	extend	an	activity	flow.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
action	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"	/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

caption	Attribute	(button	Element)

Provides	the	caption	displayed	on	the	button.

Type

xsf:xdTitle

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	button	element.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

caption	Attribute	(editWith	Element)

Specifies	an	identifier	for	alternate	forms	of	XML	data	to	be	used	in	the
editing	component.

Type

xsf:xdTitle

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	editWith	element.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									autoComplete="yes"
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

caption	Attribute	(initialXmlDocument	Element)

Defines	the	text	string	to	be	used	as	the	name	of	the	form	in	the	Template
Gallery	and	in	the	most	recently	used	list.

Type

xsf:xdTitle

Remarks
The	caption	attribute	is	a	required	attribute	of	the	initialXmlDocument
element.

If	this	attribute	is	not	specified,	the	name	of	the	form	is	used	as	the
caption.	The	maximum	size	for	the	caption	text	string	is	255	characters.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
initialXmlDocument	element:

<xsf:fileNew>
			<xsf:initialXmlDocument
						caption="Travel	Report"
						href="TravelReportTemplate.xml"/>
</xsf:fileNew>

caption	Attribute	(menu	Element)

Used	as	the	caption	for	a	menu.

Type

xsf:xdTitle

Remarks
The	caption	attribute	is	a	required	attribute	of	the	menu	element.

When	used	for	a	menu	that	is	nested	within	a	view,	the	caption	is	the	top-
level	menu	caption;	when	used	for	a	menu	that	is	nested	within	a	toolbar,
the	caption	is	for	the	button	on	a	drop-down	menu;	and	when	used	for	a
menu	that	is	nested	inside	another	menu	(cascading	menu),	the	caption
is	the	sub-menu	caption.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
menu	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

Show	All

caption	Attribute	(rule	Element)

Contains	the	name	of	a	rule	as	it	appears	in	Microsoft	Office	InfoPath.

Type
xsd:string

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occured	in	the

form.

Definition

<xsd:attribute	name="caption"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
rule	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>

caption	Attribute	(submit	Element)

Defines	the	name	of	the	submit	button	and	corresponding	menu	item	that
will	appear	on	the	File	menu	when	a	user	is	filling	out	a	form.

Type

xsd:string

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	submit	element.

The	default	value	is	"Submit",	but	any	text	string	can	be	used.	If	the
caption	attribute	is	missing	or	is	set	to	an	empty	string,	the	default	value
is	used.	The	"&"	characters	can	be	used	to	create	a	keyboard
shortcut	for	the	submit	menu	item.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

caption	Attribute	(task	Element)

Specifies	a	label	for	the	button	in	the	Workflow	task	pane	corresponding
to	the	task	element.

Type
xsf:xdHWSCaption

Parent	Elements

Element Description
task The	Human	Workflow	Services	(HWS)	task	information

enabled	for	the	form.

Definition

<xsd:attribute	name="caption"	type="xsf:xdHWSCaption"	use="optional"	></xsd:attribute>

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	task	element.

If	a	caption	is	not	specified,	the	value	of	the	name	attribute	will	be	used
as	the	caption	for	the	button	in	the	Workflow	task	pane.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
task	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter			name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"		queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

caption	Attribute	(taskpane	Element)

Defines	the	caption	used	in	the	task	pane	drop-down	list	box.

Type

xsd:string

Remarks
The	caption	attribute	is	a	required	attribute	of	the	taskpane	element.

If	the	caption	attibute	is	contains	an	empty	value,	then	the	default
caption	of	"Form	Tasks"	is	used.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
taskpane	element:

<xsf:xDocumentClass>
			...
			<xsf:taskpane
						caption="My	Custom	Task	Pane"
						href="MyCustomTaskPane.htm"/>
			...
</xsf:xDocumentClass>

caption	Attribute	(toolbar	Element)

Used	as	the	title	of	the	toolbar,	when	the	toolbar	is	not	docked	to	the	user
interface.

Type

xsf:xdTitle

Remarks
The	caption	attribute	is	a	required	attribute	of	the	toolbar	element.

Note		The	caption	attribute	is	also	used	for	the	name	of	the	toolbar	in	the
Customize	Commands	dialog	box	for	a	control.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
toolbar	element:

<xsf:toolbar	caption="CD	Collection	Toolbar"
			name="CD	Collection	Toolbar">
			<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
						caption="New	CD"	showIf="always"></xsf:button>
			<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
						caption="New	Track"	showIf="always"></xsf:button>
			<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
						caption="New	Label"	showIf="always"></xsf:button>
			<xsf:menu	caption="Remove">
						<xsf:button	action="xCollection::remove"	xmlToEdit="CD_10"	
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::remove"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::remove"	xmlToEdit="Label_16"	
									caption="Label"	showIf="always"></xsf:button>
			</xsf:menu>
</xsf:toolbar>

caption	Attribute	(view	Element)

Provides	the	display	caption	for	the	view	within	the	view	list.

Type

xsf:xdViewName

Remarks
The	caption	attribute	is	an	optional	attribute	of	the	view	element.

If	not	specified,	the	caption	of	the	view	defaults	to	the	value	of	the	name
attribute.

Example
The	following	is	an	example	of	the	caption	attribute	as	it	is	used	in	the
view	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

clsid	Attribute

Specifies	the	COM	class	ID	(CLSID)	of	an	ActiveX	control.

Type
xsd:string

Parent	Elements

Element Description
allowedControl Specifies	the	ActiveX	controls	that	are	allowed	to	be

instantiated.

Definition

<xsd:attribute	name="clsid"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

When	the	view	contains	an	OBJECT	tag,	the	control	will	be	instantiated
only	if	the	CLSID	is	listed	as	an	allowedControl	element	in	the
permissions	element.	If	an	ActiveX	control	with	this	CLSID	is	not
present	on	the	system	and	can't	be	installed,	the	form	will	not	open.

Example
The	following	is	an	example	of	the	clsid	attribute	as	it	is	used	in	the
allowedControl	element:

<xsf:permissions>
		<xsf:allowedControl	
								cabFile="{84F32C01-78D8-4B93-8ED4-106DA70224C2}.cab”	
								clsid="{84F32C01-78D8-4B93-8ED4-106DA70224C2}"	
								version="1,0,0,1"	/>
		<xsf:allowedControl	
								clsid="{F08DF954-8592-11D1-B16A-00C0F0283630}"	/>
</xsf:permissions>

collate	attribute

Specifies	whether	the	paper	is	collated.

Type
xsf:xdYesNo

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	a	view.

Definition

<xsd:attribute	name="collate"	type="xsf:xdYesNo"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	collate	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>	

columnName	Attribute

Identifies	the	column	name	in	the	SQL	table	(underlying	the	form	list
view).

Type

xsf:xdTitle

Remarks
The	columnName	attribute	is	a	required	attribute	of	the	field	element.

Example
The	following	is	an	example	of	the	columnName	attribute	as	it	is	used	in
the	field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

Show	All

commandText	Attribute

A	string	property	that	contains	the	ActiveX	Data	Objects	(ADO)	SQL
command	text	to	be	used	for	querying	the	data	from	the	specified	data
source.

Type

xsd:string

Remarks
The	commandText	attribute	is	a	required	attribute	of	the	adoAdapter
element.

Example
The	following	is	an	example	of	the	commandText	attribute	as	it	is	used
in	the	adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

component	Attribute

Specifies	the	name	of	the	editing	component	that	will	be	referenced
within	the	action	attribute	of	a	button	element.

Type

xsd:enumeration

Remarks
The	component	attribute	is	a	required	attribute	of	the	editWith	element.

Valid	component	names	include	xCollection,	xOptional,	xReplace,
xTextList,	xField,	xImage,	xFileAttachment.

Example
The	following	is	an	example	of	the	component	attribute	as	it	is	used	in
the	editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									autoComplete="yes"
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

The	following	is	an	example	of	the	component	attribute	as	it	is	used	in
the	editWith	element,	where	the	value	of	the	component	attribute	is
"xFileAttachment":

<xsf:xmlToEdit	name="some_name"		item="/my:myFields/my:field1">

			<xsf:editWith	allowedFileTypes="doc,	xls"	component="xFileAttachment"/>
</xsf:xmlToEdit>
	
<menuArea	name="msoStructuralEditingContextMenu">
			<button	action="xFileAttachment::attach"	xmlToEdit="some_name"	caption="Attach..."	showIf="immediate"	/>
			<button	action="xFileAttachment::open"	xmlToEdit="some_name"	caption="Open"	showIf="immediate"	/>
			<button	action="xFileAttachment::saveAs"	xmlToEdit="some_name"	caption="Save	As..."	showIf="immediate"	/>
			<button	action="xFileAttachment::remove"	xmlToEdit="some_name"	caption="Delete	file"	showIf="immediate"	/>
</menuArea>

Show	All

condition	Attribute

Defines	an	XPath	expression	evaluated	as	a	Boolean	value	to	determine
whether	the	associated	action	will	be	invoked.

Type
xsd:string

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Definition

<xsd:attribute	name="condition"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	condition	attribute	as	it	is	used	in	the
rule	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>

Show	All

connectionString	Attribute

A	string	property	that	contains	the	ActiveX	Data	Objects	(ADO)
connection	string	to	be	used	to	connect	to	the	data	source.

Type

xsd:string

Remarks
The	connectionString	attribute	is	a	required	attribute	of	the	adoAdapter
element.

Example
The	following	is	an	example	of	the	connectionString	attribute	as	it	is
used	in	the	adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

container	Attribute

Specifies	an	XPath	expression	that	determines	the	context	in	which	the
control	will	be	selectable	and	its	actions	enabled.

Type

xsd:string

Remarks
The	container	attribute	is	an	optional	attribute	of	the	xmlToEdit	element.

If	the	current	context	(view	selection	or	insertion	point)	is	within	some
HTML	element	that	maps	back	to	an	XML	Document	Object	Model
(DOM)	node	that	satisfies	the	container	XPath	expression,	the	control	is
enabled.	Otherwise,	all	actions	are	disabled.

It	does	not	suffice	for	the	container	XML	DOM	node	to	exist.	Actions	will
be	enabled	only	when	the	current	selection	is	within	an	HTML	element
that	maps	to	the	container	XML	DOM	node.

Note		In	Microsoft	Office	InfoPath	2003	design	mode,	generated	XPath
expressions	for	the	item	and	container	attributes	will	always	be	in	the
form	item="/a/b/c",	which	provides	the	full	path	from	the	root	element	of
the	form's	underlying	XML	document.	But	patterns	such	as	item="b/c",
or	with	predicates	as	in	item="b[@p='23']/c[q]"	are	allowed	if	the	form
definition	(.xsf)	file	is	edited	manually.

Example
The	following	is	an	example	of	the	container	attribute	as	it	is	used	in	the
xmlToEdit	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

copies	attribute
Specifies	the	number	of	copies	to	be	printed.

Type
xsd:Integer

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Usage

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>	

Definition

<xsd:attribute	name="copies"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:integer">
						<xsd:minInclusive	value="1"	/>
						<xsd:maxInclusive	value="9999"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Show	All

data	Attribute

Contains	an	XPath	match	expression	that	defines	the	nodeset	to	which
the	signature	will	be	applied.

Type
xsd:string

Parent	Elements

Element Description
signedDataBlock Defines	a	nodeset	in	the	form's	underlying	XML

document	to	which	a	digital	signature	can	be	applied

Definition

<xsd:attribute	name="data"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	data	attribute	as	it	is	used	in	the
signedDataBlock	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name=”main”
		data="my:myfields/my:subtree1	|	my:myfields/my:subtree2"
		signatureLocation="my:mifields/sig:signatures/main"
		mode="countersign">
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound	to	the	terms	of	this	document.	</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

dataFormSolution	Attribute

Identifies	the	form	as	a	database	form.

Type

xsf:xdYesNo

Remarks
The	dataFormSolution	attribute	is	an	optional	attribute	of	the
xDocumentClass	element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"no".	Forms
based	on	ActiveX	Data	Objects	(ADO)	or	Web	services	and	that	have	a
special	query	view	should	have	this	attribute	set	to	"yes"	to	work	properly
in	Microsoft	Office	InfoPath	2003.

Example
The	following	is	an	example	of	the	dataFormSolution	attribute	as	it	is
used	in	the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
				solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

Show	All

dataObject	Attribute	(domEventHandler	Element)

Contains	the	name	of	the	dataObject	element	to	be	used	in	the	event
handler.

Type
xsd:string

Parent	Elements

Element Description
domEventHandlerDefines	an	event	handler	for	one	or	more	specific

XML	Document	Object	Model	(DOM)	nodes.

Definition

<xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
The	dataObject	attribute	is	an	optional	attribute	of	the
domEventHandler	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dataObject	attribute	as	it	is	used	in
the	domEventHandler	element:

<xsf:domEventHandlers>
	<xsf:domEventHandler
		match="TravelReport/Expenses"
		handlerObject="TravelExpenses"
		dataObject="dataObject1"/>
</xsf:domEventHandlers>

dataObject	Attribute	(getUserNameFromData	Element)

The	name	of	the	secondary	data	source	where	the	user	name	name	can
be	found.

Type
xsd:string

Parent	Elements

Element Description
getUserNameFromData Retrieves	a	user	name	by	using	an	XPath

query	of	the	data	in	the	main	data	source	or	in
a	secondary	data	source.

Definition

<xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
For	the	main	data	source,	this	attribute	should	not	be	present.	An	empty
string	is	invalid.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dataObject	attribute	as	it	is	used	in
the	getUserNameFromData	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

dataObject	Attribute	(partFragment	Element)

Specifies	the	name	of	the	data	object	to	use	when	submitting	a
partFragment	element	to	a	Microsoft	Biztalk	2004	Human	Workflow
Services	(HWS)	server.

Type
xsd:string

Parent	Elements

Element Description
partFragmentDefines	one	substitution	group	for	a	specific	part	of	the

input	Simple	Object	Access	Protocol	(SOAP)	message.

Definition

<xsd:attribute	name="dataObject"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	dataObject	attribute	as	it	is	used	in
the	partFragment	element:

<xsf:partFragment	
	match="ActionSection/Target"
	replaceWith="/my:myFields/my:Target"
	dataObject="hwsDataObject3"/>

Show	All

default	Attribute

Specifies	the	name	identifier	of	the	view	chosen	to	be	the	default	view.

Type

xsd:string

Remarks
The	default	attribute	is	an	optional	attribute	of	the	views	element.

If	not	specified,	the	default	view	is	the	first	view	element	found	within	the
views	element.	This	view	is	loaded	when	an	Microsoft	Office	InfoPath
2003	is	initially	opened.

Note		In	the	case	of	forms	that	use	ActiveX	Data	Objects	(ADO)	or	a
Web	service	as	their	primary	data	source,	the	default	view	is	set	by	the
initialView	attribute	in	the	processing	instruction	of	the	form's	XML
template	file.	This	attribute	cannot	be	changed	while	in	design	mode.

Example
The	following	is	an	example	of	the	default	attribute	as	it	is	used	in	the
views	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

default	Attribute	(roles	Element)

Designates	a	particular	role	as	the	default	role.

Type
xsd:string

Parent	Elements

Element Description
roles Defines	roles.

Definition

<xsd:attribute	name="default"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
If	a	user	of	a	form	is	not	defined	in	the	membership	element	of	the	roles
element	or	if	the	role	of	a	user	cannot	be	determined,	that	user	is
implicitly	assigned	to	the	role	specified	by	the	default	attribute.	The
default	attribute	is	required	for	the	roles	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	default	attribute	as	it	is	used	in	the
roles	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

description	Attribute

A	brief	description	of	the	form.

Type

xsd:string

Remarks
The	description	attribute	is	an	optional	attribute	of	the	xDocumentClass
element.

The	value	of	the	description	attribute	can	contain	up	to	255	characters.

Example
The	following	is	an	example	of	the	description	attribute	as	it	is	used	in
the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

Show	All

designMode	Attribute	(view	Element)

Determines	whether	the	view	(*.xsl)	file	specified	in	a	view	element	can
be	opened	in	design	mode	in	Microsoft	Office	InfoPath	2003.

Type
xsf:xdDesignMode

Parent	Elements

Element Description
view Contains	information	about	a	Microsoft	Office	InfoPath	2003

view.

Definition

<xsd:attribute	name="designMode"	type="xsf:xdDesignMode"	></xsd:attribute>

Remarks
You	can	create	a	custom	view	for	a	form	template	by	creating	an	XSL
Transformation	(XSLT)	(*.xsl)	file	that	contains	constructs	that	are	not
supported	in	design	mode	in	InfoPath.	To	ensure	that	a	view	can't	be
opened	in	design	mode	(and	to	prevent	data	loss),	set	the	designMode
attribute	in	the	form	definition	file	(.xsf)	to	"protected".	Protected	views
are	shown	in	all	views	lists	and	users	can	be	fill	them	out	like	all	forms,
but	they	cannot	be	opened	in	design	mode.	If	the	designMode	attribute
is	specified	as	"normal"	or	is	not	specified,	the	view	can	be	opened	in
design	mode.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	designMode	attribute	as	it	is	used	in
the	view	element:

<xsf:view	name="View"	caption="View"	designMode="protected">
			<xsf:mainpane	transform="view1.xsl"/>
						...
</xsf:view>

Show	All

detailKey	Attribute

Contains	the	XPath	of	the	field	in	the	detail	XML	fragment	that	forms	the
relationship	to	the	master	XML	fragment.

Type
xsd:string

Parent	Elements

Element Description
masterDetailDefines	the	XML	fragments	that	form	a	master	and	detail

relationship	in	a	view's	repeating	tables	or	repeating
sections.

Definition

<xsd:attribute	name="detailKey"	type="xsd:string"	></xsd:attribute>

Remarks
Use	a	relative	XPath	for	the	detailKey	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	detailKey	attribute	as	it	is	used	in	the
masterDetail	element:

<xsf:editWith	caption="group2"
	xd:autogeneration="template"	
	component="xCollection">
		<xsf:masterDetail	
			masterViewContext="CTRL1_5"
			master="my:group2"
			masterKey="my:field1"
			detailKey="my:field3">
		</xsf:masterDetail>
</xsf:editWith>

disableMenuItem	Attribute

Specifies	whether	the	menu	item	for	the	submit	operation	should	be
disabled.

Type

xsf:xdYesNo

Remarks
The	disableMenuItem	attribute	is	an	optional	attribute	of	the	submit
element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	disableMenuItem	attribute	as	it	is
used	in	the	submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

enabled	Attribute

Specifies	whether	form	merging	is	enabled	for	the	form.

Type

xsf:xdYesNo

Remarks
The	enabled	attribute	is	a	required	attribute	of	the	importParameters
element.

Values	include	"yes"	or	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	enabled	attribute	as	it	is	used	in	the
importParameters	element:

<xsf:importParameters
			enabled="yes"
			<xsf:importSource
						name=""
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

Show	All

enforceScriptTimeout	Attribute

Specifies	whether	to	enable	or	disable	a	time-out	period	for	scripts	in	a
form.

Type
xsf:xdYesNo

Parent	Elements

Element Description
scripts Defines	the	source	of	all	business	logic	scripts	used	at	the

document	level	in	the	form.

Definition

<xsd:attribute	name="enforceScriptTimeout"	type="xsf:xdYesNo"	use="optional"	default="yes"	></xsd:attribute>

Remarks
Setting	the	enforceScriptTimeout	attribute	to	"no"	in	the	form	definition
file	(.xsf)	disables	the	time-out	period	for	scripts	running	in	the	form.	The
default	value	is	"yes".

For	code	running	in	a	task	pane,	there	is	a	separate	time-out	period
provided	by	Microsoft	Internet	Explorer.	This	time-out	period	is	not
affected	by	the	value	of	the	enforceScriptTimeout	attribute.

A	time-out	period	cannot	be	specified	for	managed	code	in	InfoPath
forms.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	enforceScriptTimeout	attribute	as	it
is	used	in	the	scripts	element:

<xsf:scripts	language="jscript"	enforceScriptTimeout="no">		
			<xsf:script	src="internal.js"	/>	
			<xsf:script	src="script.js"	/>	
</xsf:scripts>

Show	All

expression	Attribute

An	XPath	expression	(relative	to	the	expressionContext	attribute,	if
specified)	that	must	be	evaluated	to	validate	the	XML	Document	Object
Model	(DOM)	node	specified	in	the	match	attribute.

Type

xsd:string

Remarks
The	expression	attribute	is	a	required	attribute	of	the	errorCondition
element.

If	the	specified	expression	evaluates	to	True,	it	is	considered	to	be	an
error	condition	and	the	specified	error	message	is	displayed.

Example
The	following	is	an	example	of	the	expression	attribute	as	it	is	used	in
the	errorCondition	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

expression	Attribute	(assignmentAction	Element)

Contains	an	XPath	expression	to	populate	the	value	of	the	targetField
attribute.

Type
xsd:string

Parent	Elements

Element Description
assignmentAction Defines	an	action	to	set	the	value	of	a	field.

Definition

<xsd:attribute	name="expression"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	expression	attribute	as	it	is	used	in
the	assignmentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

Show	All

expression	Attribute	(calculatedField	Element)

Contains	the	formula,	in	the	form	of	an	XPath	expression,	to	be
evaluated.	The	result	is	stored	in	the	target	location.

Type
xsd:string

Parent	Elements

Element Description
calculatedField Defines	an	individual	calculation,	including	the	formula,

when	the	calculation	is	to	be	performed,	and	where	the
result	will	be	stored.

Definition

<xsd:attribute	name="expression"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	expression	attribute	as	it	is	used	in
the	calculatedField	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"	/>
</xsf:calculations>

Show	All

expressionContext	Attribute

Specifies	the	XML	Document	Object	Model	(DOM)	node	on	which	the
expression	specified	in	the	expression	attribute	is	rooted.

Type

xsd:string

Remarks
The	expressionContext	attribute	is	an	optional	attribute	of	the
errorCondition	element.

It	contains	a	relative	XPath	expression	that	identifies	the	XML	DOM	node
(within	the	context	of	the	matched	XML	DOM	node)	on	which	the
expression	is	rooted	and	therefore	should	be	evaluated.	The	default
value	is	"."	This	is	the	same	as	the	matched	XML	DOM	node.

Example
The	following	is	an	example	of	the	expressionContext	attribute	as	it	is
used	in	the	errorCondition	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

feature	Attribute

Sets	whether	the	AutoRecover	feature	is	enabled.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
autoRecovery Specifies	whether	the	form	will	save	AutoRecover

information	and	whether	the	AutoRecover	setting	can	be
changed	by	the	user.

Definition

<xsd:attribute	name="feature"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	feature	attribute	as	it	is	used	in	the
autoRecovery	element:

<xsf:autoRecovery	 feature="disabled"/>

Show	All

field	Attribute

Specifies	a	relative	XPath	expression	from	the	XML	Document	Object
Model	(DOM)	node	specified	by	the	item	attribute	of	the	xmlToEdit
element.

Type

xsd:string

Remarks
The	field	attribute	is	an	optional	attribute	of	the	editWith	element.

The	field	attribute	refers	to	the	XML	DOM	node	in	the	form's	underlying
XML	document	,which	is	to	be	displayed	as	an	editable	field	for	an	xText
list	editing	component.	The	default	value	is	'.',	which	corresponds	to
editing	the	text	content	of	the	XML	DOM	node	specified	by	the	item
attribute	of	the	xmlToEdit	element.

Example
The	following	is	an	example	of	the	field	attribute	as	it	is	used	in	the
editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith
									autoComplete="no"
									field="@artist"
									component="xTextList">
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

fileUrl	Attribute

Contains	the	Uniform	Resource	Locator	(URL)	of	the	.xml	file.

Type

xsd:anyURI

Remarks
The	fileUrl	attribute	is	a	required	attribute	of	the	xmlFileAdapter
element.

Example
The	following	is	an	example	of	the	fileUrl	attribute	as	it	is	used	in	the
xmlFileAdapter	element:

<xsf:query>
			<xsf:xmlFileAdapter	fileUrl="currencies.xml"	/>
</xsf:query>

Show	All

filter	Attribute

Specifies	the	XPath	expression	of	the	structured	XML	subtree	when
submitting	a	subset	of	the	XML	data.

Type
xsd:string

Parent	Elements

Element Description
partFragmentDefines	one	substitution	group	for	a	specific	part	of	the

input	Simple	Object	Access	Protocol	(SOAP)	message.

Definition

<xsd:attribute	name="filter"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
Use	the	filter	attribute	when	submitting	the	selected	field	or	group	as	a
structured	XML	subtree,	including	the	tags.	Can	be	omitted	when
submitting	the	content	of	the	field	or	group.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	filter	attribute	as	it	is	used	in	the
partFragment	element:

<xsf:partFragment	match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
	replaceWith=/dfs:myFields/dfs:dataFields/s0:IsPrime"
	filter="."
	sendAsString="yes"/>

Show	All

filterDependency	Attribute

Specifies	automatic	reapplication	of	a	filter	when	filter	fields	change.

Type
xsd:string

Parent	Elements

Element Description
editWith Specifies	an	instance	of	an	editing	component,	and	provides

the	corresponding	parameters	to	determine	its	exact	behavior.

Definition

<xsd:attribute	name="filterDependency"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
The	filterDependency	attribute	in	the	form	definition	file	(.xsf)	is	always
present	for	filters	that	are	specified	on	repeating	tables	and	repeating
sections	created	in	the	designer.	Even	though	there	is	no	way	to	toggle
filterDependency	on	and	off	in	design	mode	in	InfoPath,	you	can	turn	off
automatic	refreshing	of	filters	by	removing	the	filterDependency	attribute
from	the	editWith	element	in	the	form	definition	file.

When	the	filterDependency	attribute	is	present,	the	filter	is	reapplied
when	the	onAfterChange	event	of	a	node	is	raised.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	filterDependency	attribute	as	it	is
used	in	the	editWith	element:

<editWith	component="xCollection"	widgetIcon="filter|standard"	useFilter="yes|no"
				filterDependency="xpath1	|	xpath2	|	xpath3>

Show	All

followingSiblings	Attribute

Specifies	a	relative	XPath	expression	from	the	parent	node	that	specifies
the	XML	Document	Object	Model	(DOM)	nodes	prior	to	which	the
insertion	of	the	XML	fragment	should	occur.

Type

xsd:string

Remarks
The	followingSiblings	attribute	is	an	optional	attribute	of	the
chooseFragment	element.

The	insertion	will	be	as	a	child	of	the	parent	node,	but	it	will	be	prior	to
any	nodes	found	that	satisfy	the	XPath	expression	specified	by	the
followingSiblings	attribute.	If	no	nodes	are	found,	the	insertion	acts	as
an	append.

The	followingSiblings	attribute	is	only	used	during	an	insert	when	the
current	context	is	not	in	an	item.	The	behavior	is	to	append	to	the	content
of	the	parent	node,	unless	the	followingSiblings	attribute	is	specified,	in
which	case	the	insertion	is	still	within	the	content	of	the	parent,	but	prior
to	any	followingSiblings	nodes.

Example
The	following	is	an	example	of	the	followingSiblings	attribute	as	it	is
used	in	the	chooseFragment	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection"
															followingSiblings=".">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

footer	Attribute

Specifies	the	footer	text	when	printing	a	view.

Type

xsd:string

Remarks
The	footer	attribute	is	an	optional	attribute	of	the	printSettings	element.
The	printSettings	element	also	provides	a	header	attribute.

The	footer	attribute	cannot	be	greater	than	255	characters	in	length.

When	using	a	header	or	footer	in	a	form,	there	are	a	number	of	variables
that	can	be	used	to	display	information	such	as	page	numbers,	dates,
and	times;	or	to	align	the	text	that	the	header	or	footer	contains.

Header	and	footer	variables

Example
The	following	is	an	example	of	the	footer	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

fullyEditableNamespace	Attribute

Identifies	the	namespace	of	an	XML	Schema	in	the	form	template	that
can	be	entirely	modified	in	Microsoft	Office	InfoPath	2003	design	mode.

Type

xsd:anyURI

Remarks
The	fullyEditableNamespace	attribute	is	an	optional	attribute	of	the
solutionProperties	element.

Example
The	following	is	an	example	of	the	fullyEditableNamespace	attribute	as
it	is	used	in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

Show	All

handlerObject	Attribute

Identifies	the	unique	name	of	the	event	handler	in	the	scripting	code.

Type

xsd:string

Remarks
The	handlerObject	attribute	is	a	required	attribute	of	the
domEventHandler	element.

The	referenced	script	must	use	this	name	to	define	event	handlers	for	the
specified	XML	Document	Object	Model	(DOM)	node.	For	example,	script
may	contain	functions	such	as	TravelExpenses::OnValidate	and
TravelExpenses::OnAfterChange	that	are	called	whenever	the	specified
events	occur	at	the	matching	XML	DOM	node.

Example
The	following	is	an	example	of	the	handlerObject	as	it	is	used	in	the
domEventHandler	element:

<xsf:domEventHandlers>
			<xsf:domEventHandler
						match="TravelReport/Expenses"
						handlerObject="TravelExpenses"/>
</xsf:domEventHandlers>

Show	All

header	Attribute

Specifies	the	header	text	when	printing	a	view.

Type

xsd:string

Remarks
The	header	attribute	is	an	optional	attribute	of	the	printSettings
element.	The	printSettings	element	also	provides	a	footer	attribute.

The	header	attribute	cannot	be	greater	than	255	characters	in	length.

When	using	a	header	or	footer	in	a	form,	there	are	a	number	of	variables
that	can	be	used	to	display	information	such	as	page	numbers,	dates,
and	times;	or	to	align	the	text	that	the	header	or	footer	contains.

Header	and	footer	variables

Example
The	following	is	an	example	of	the	header	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

hideStatusBarDisplay	attribute

Specifies	whether	the	current	role	is	displayed	in	the	status	bar.

Type
xsf:xdYesNo

Parent	Elements

Element Description
roles Defines	roles.

Definition

<xsd:attribute	name="hideStatusBarDisplay"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	name	of	the	role	for	the	current	user	is	displayed	in	the	status	bar.	If
the	role	of	a	user	is	changed	programmatically,	the	status	bar	is	updated.

The	value	of	the	hideStatusBarDisplay	attribute	is	"no"	by	default.	If	the
attribute	is	not	included	in	the	roles	element,	therefore,	the	role	of	the
current	user	is	displayed	in	the	status	bar.	The	hideStatusBarDisplay
attribute	must	be	included	in	the	roles	element	and	its	value	must	be	set
to	"yes"	to	prevent	the	role	for	the	current	user	from	being	displayed	in
the	status	bar.

There	is	no	mechanism	in	the	user	interface	of	InfoPath	for	changing	the
hideStatusBarDisplay	attribute.	To	add	this	attribute	to	the	roles
element	or	to	change	its	value,	the	form	definition	file	(.xsf)	of	a	form
must	be	edited	manually.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	hideStatusBarDisplay	attribute	as	it
is	used	in	the	roles	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

Show	All

href	Attribute	(initialXmlDocument	Element)

Specifies	the	name	of	the	XML	template	file	to	be	used	when	a	user
clicks	Fill	Out	a	Form	on	the	File	menu.

Type

xsf:xdFileName

Remarks
The	href	attribute	is	a	required	attribute	of	the	initialXmlDocument
element.

Example
The	following	is	an	example	of	the	href	attribute	as	it	is	used	in	the
initialXmlDocument	element:

<xsf:fileNew>
			<xsf:initialXmlDocument
						caption="Travel	Report"
						href="TravelReportTemplate.xml"/>
</xsf:fileNew>

Show	All

href	Attribute	(taskpane	Element)

Specifies	the	relative	or	absolute	Uniform	Resource	Locator	(URL)	to	an
.html	file.

Type

xsd:string

Remarks
The	href	attribute	is	a	required	attribute	of	the	taskpane	element.

The	.html	file	is	loaded	into	an	instance	of	the	task	pane	when	a	form	is
opened.	The	.html	file	can	include	business	logic	scripting	code	and	can
access	appropriate	Microsoft	Office	InfoPath	2003	object	model
members.

Example
The	following	is	an	example	of	the	href	attribute	as	it	is	used	in	the
taskpane	element:

<xsf:xDocumentClass>
			...
			<xsf:taskpane
						caption="My	Custom	Task	Pane"
						href="MyCustomTaskPane.htm"/>
			...
</xsf:xDocumentClass>

Show	All

href	Attribute	(useHttpHandler	Element)

Specifies	the	Uniform	Resource	Locator	(URL)	to	which	the	form	should
be	submitted.

Type

xsd:anyURI

Remarks
The	href	attribute	is	a	required	attribute	of	the	useHttpHandler	element.

Example
The	following	is	an	example	of	the	href	attribute	as	it	is	used	by	the
useHttpHandler	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useHttpHandler>
						href="http://MyServer/InfoPathScripts/MyScript.asp"
						method="POST"
			</xsf:useHttpHandler>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

icon	Attribute

Provides	a	Uniform	Resource	Locator	(URL)	to	a	bitmap	(.bmp)	or
graphics	interchange	format	(.gif)	file,	which	is	used	for	the	button	or
menu	item.

Type

xsd:string

Remarks
The	icon	attribute	is	an	optional	attribute	of	the	button	element.

If	an	icon	is	not	specified,	the	caption	alone	will	be	used.	If	both	caption
and	icon	are	specified,	both	will	be	displayed.	Alternatively,	the	value	can
also	be	an	ID,	allowing	access	to	internal	system	icons.	If	the	value	is	an
integer,	it	will	be	interpreted	as	an	ID.

Example
The	following	is	an	example	of	the	icon	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	icon="cd.bmp"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	icon="track.bmp"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"	icon="label.bmp"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

Show	All

infopathGroup	Attribute

Contains	the	name	of	the	group	under	which	all	fields	in	a	SharePoint	list
or	library	will	be	stored.

Type
xsd:string

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	to	query

a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="infopathGroup"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	infopathGroup	attribute	as	it	is	used
in	the	sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl=”http://xyzco/reports/”
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="XyzReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

infopathName	Attribute

An	attribute	of	the	field	element.	Contains	the	corresponding	InfoPath
field	name	for	the	sharepointName	attribute.

Type
xsd:string

Parent	Elements

Element Description
field Contains	field	mapping	information	for	each	field	in	a

SharePoint	list	or	library	and	the	corresponding	name	used	in
Microsoft	Office	InfoPath.

Definition

<xsd:attribute	name="infopathName"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
The	infopathName	appears	as	the	field	names	in	Microsoft	Office
InfoPath	2003	SP1	for	the	fields	returned	from	the	SharePoint	list	or
library.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	infopathName	attribute	as	it	is	used
in	the	field	element:

<xsf:field
	sharepointName="xd__x007b_D00F1DBD_..."
infopathName="Title_1"	isLookup="no">
</xsf:field>

initiator	Attribute

Designates	a	particular	role	as	the	initiator	role.

Type
xsd:string

Parent	Elements

Element Description
roles Defines	roles.

Definition

<xsd:attribute	name="initiator"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
If	a	user	creates	a	new	InfoPath	document	from	a	form	template,	that
user	is	assigned	to	the	role	that	has	been	designated	as	the	initiator	role.
If	no	role	is	designated	as	the	initiator	role	in	the	form	definition	file	of	a
form	(that	is,	if	the	initiator	attribute	is	not	included	for	the	roles
element),	users	who	create	forms	from	the	accompanying	form	template
retain	the	roles	to	which	they	are	assigned	in	the	membership	element
of	the	roles	element.	After	a	form	has	been	saved,	closed,	and
reopened,	InfoPath	no	longer	checks	for	the	initiator	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	initiator	attribute	as	it	is	used	in	the
roles	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

initOnLoad	Attribute

Specifies	whether	the	data	object	should	be	initialized	on	document	load.

Type

xsf:xdYesNo

Remarks
The	initOnLoad	attribute	is	an	optional	attribute	of	the	dataObject
element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	initOnLoad	attribute	as	it	is	used	in
the	dataObject	element:

<xsf:dataObjects>
			<xsf:dataObject	
						name="EmployeeNames"	
						schema="EmployeeNames.xsd"	
						initOnLoad="yes">
						<xsf:query>
									<xsf:adoAdapter	
												connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
															Password="";User	ID=Admin;
															Data	Source=infnwind.mdb;Mode=Share	Deny	None;
															Extended	Properties="";..."
												commandText="select	[EmployeeID],[LastName],[FirstName]	
															from	[Employees]	as	[Employees]"	
												queryAllowed="yes"
												submitAllowed="yes">
						</xsf:adoAdapter>
	 	 	 </xsf:query>
	 	 </xsf:dataObject>
	 </xsf:dataObjects>

Show	All

innerFragment	Attribute

Specifies	a	relative	XPath	expression	from	the	parent	node	to	the
smallest	fragment	to	be	inserted.

Type
xsd:string

Parent	Elements

Element Description
chooseFragment Specifies	an	XML	fragment.

Definition

<xsd:attribute	name="innerFragment"	type="xsd:string"	use="optional"	></xsd:attribute>

Remarks
The	innerFragment	attribute	is	used	to	identify	the	position	of	the	current
data	context	within	the	fragment,	and	to	choose	the	right	subtree	to
insert.	This	reduces	the	need	to	define	multiple	fragments	in	the	form
definition	file	(.xsf)	for	different	data	contexts.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	innerFragment	attribute	as	it	is	used
in	the	chooseFragment	element:

<xsf:xmlToEdit	name="expense_1"	item="/my:myFields/my:expenses/my:expense"	container="/my:myFields"	>
	<xsf:editWith	caption="expense"	component="xCollection">
		<xsf:fragmentToInsert>
			<xsf:chooseFragment	innerFragment="my:expenses/my:expense"	>	
				<my:expenses>
					<my:expense/>
				</my:expenses>	
			</xsf:chooseFragment>	
		</xsf:fragmentToInsert>
	</xsf:editWith>	
</xsf:xmlToEdit>	

Show	All

isEnabled	Attribute

Specifies	whether	the	rule	is	enabled	for	the	form.

Type
xsf:xdYesNo

Parent	Elements

Element Description
rule Defines	an	action	invoked	after	an	event	has	occurred	in	the

form.

Definition

<xsd:attribute	name="isEnabled"	type="xsf:xdYesNo"	use="optional"	default="yes"	></xsd:attribute>

Remarks
The	default	value	for	the	isEnabled	attribute	is	"yes".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	isEnabled	attribute	as	it	is	used	in	the
rule	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>

isLookup	Attribute

Specifies	whether	a	field	in	a	SharePoint	list	is	a	lookup	field.

Type
xsf:xdYesNo

Parent	Elements

Element Description
field Contains	field	mapping	information	for	each	SharePoint	field

and	the	corresponding	name	used	in	Microsoft	Office	InfoPath
2003	SP1.

Definition

<xsd:attribute	name="isLookup"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	default	value	for	the	isLookup	attribute	is	"no".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	isLookup	attribute	as	it	is	used	in	the
field	element:

<xsf:field
	sharepointName="xd__x007b_D00F1DBD_..."
	infopathName="Title_1"	isLookup="no">
</xsf:field>

Show	All

item	Attribute

Specifies	an	XPath	expression	that	determines	the	XML	Document
Object	Model	(DOM)	nodes	to	be	edited	using	the	editing	component
defined	in	the	editWith	element.

Type

xsd:string

Remarks
The	item	attribute	is	a	required	attribute	of	the	xmlToEdit	element.

Example
The	following	is	an	example	of	the	item	attribute	as	it	is	used	in	the
xmlToEdit	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

language	Attribute

Defines	the	script	language	used	in	the	business	logic	source	files.

Type

xsf:xdScriptLanguage

Remarks
The	language	attribute	is	a	required	attribute	of	the	scripts	element.

Allowed	values	include	"vbscript",	"jscript",	and	"javascript".	The	default
value	is	"jscript".

Example
The	following	is	an	example	of	the	language	attribute	as	it	is	used	in	the
scripts	element:

<xsf:scripts	language="jscript"	enforceScriptTimeout="no">
				<xsf:scriptsrc="internal.js"	/>
				<xsf:scriptsrc="script.js"	/>
</xsf:scripts>

Show	All

lastOpenView	Attribute

Identifies	the	name	of	the	view	that	was	last	open	in	Microsoft	Office
InfoPath	2003	design	mode.

Type

xsd:string

Remarks
The	lastOpenView	attribute	is	an	optional	attribute	of	the
solutionProperties	element.

The	next	time	the	form	is	opened	in	InfoPath	design	mode,	this	view	is
automatically	displayed.	The	value	for	this	attribute	should	be	an	existing
view	name	in	the	form	template.

Example
The	following	is	an	example	of	the	lastOpenView	attribute	as	it	is	used	in
the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.0.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

Show	All

lastVersionNeedingTransform	Attribute

Identifies,	temporarily,	the	value	of	the	maxToVersionUpgrade	attribute
in	the	documentVersionUpgrade	element	for	upgrade	with	an	.xslt	file	if
scripting	code	is	being	used	for	the	upgrade.

Type

xsf:xdSolutionVersion

Remarks
The	lastVersionNeedingTransform	attribute	is	an	optional	attribute	of
the	solutionProperties	element.

Example
The	following	is	an	example	of	the	lastVersionNeedingTransform
attribute	as	it	is	used	in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.0.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

leftMargin	Attribute

Specifies	the	left	margin	when	printing	a	view.

Type

xsd:string

Remarks
The	leftMargin	attribute	is	an	optional	attribute	of	the	printSettings
element.

The	leftMargin	attribute	must	be	greater	than	or	equal	to	zero.

Example
The	following	is	an	example	of	the	leftMargin	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

location	Attribute

Contains	the	namespace	Uniform	Resource	Identifier	(URI)	and	location
(a	Uniform	Resource	Locator	(URL),	relative	to	the	form	definition	(.xsf)
file),	and	delimited	by	a	space,	of	the	.xsd	file	defining	the	XML	Schema.

Type

xsd:string

Remarks
The	location	attribute	is	a	required	attribute	of	the	documentSchema
element.

Non-namespace-based	XML	Schemas	are	listed	with	just	the	.xsd	file,
omitting	the	namespace	declaration	and	the	white	space	delimiter.

Example
The	following	is	an	example	of	the	location	attribute	as	it	is	used	in	the
documentSchema	element:

<xsf:documentSchemas>
			<xsf:documentSchema
						location="urn:schema:custom:Namespace	customFilename.xsd"
						rootSchema="yes"/>
</xsf:documentSchemas>

marginUnitsType	Attribute

Specifies	the	margin	unit	size	when	printing	a	view.

Type

xsd:NMTOKEN

Remarks
The	marginUnitsType	attribute	is	an	optional	attribute	of	the
printSettings	element.

Values	include	"in"	(inch)	and	"cm"	(centimeter).

Example
The	following	is	an	example	of	the	marginUnitsType	attribute	as	it	is
used	in	the	printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

master	Attribute

Contains	the	XPath	of	the	XML	fragment	that	is	bound	to	a	master	table
or	section.

Type
xsd:string

Parent	Elements

Element Description
masterDetailDefines	the	XML	fragments	that	form	a	master	and	detail

relationship	in	a	view's	repeating	tables	or	repeating
sections.

Definition

<xsd:attribute	name="master"	type="xsd:string"	></xsd:attribute>

Remarks
Use	a	relative	XPath	for	the	master	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	master	attribute	as	it	is	used	in	the
masterDetail	element:

<xsf:editWith	caption="group2"
	xd:autogeneration="template"	
	component="xCollection">
		<xsf:masterDetail	
			masterViewContext="CTRL1_5"
			master="my:group2"
			masterKey="my:field1"
			detailKey="my:field3">
		</xsf:masterDetail>
</xsf:editWith>

Show	All

masterKey	Attribute

Contains	the	XPath	of	the	field	in	the	master	XML	fragment	that	forms	the
relationship	to	the	detail	XML	fragment.

Type
xsd:string

Parent	Elements

Element Description
masterDetailDefines	the	XML	fragments	that	form	a	master	and	detail

relationship	in	a	view's	repeating	tables	or	repeating
sections.

Definition

<xsd:attribute	name="masterKey"	type="xsd:string"	></xsd:attribute>

Remarks
Use	a	relative	XPath	for	the	masterKey	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	masterKey	attribute	as	it	is	used	in
the	masterDetail	element:

<xsf:editWith	caption="group2"
	xd:autogeneration="template"	
	component="xCollection">
		<xsf:masterDetail	
			masterViewContext="CTRL1_5"
			master="my:group2"
			masterKey="my:field1"
			detailKey="my:field3">
		</xsf:masterDetail>
</xsf:editWith>

Show	All

masterViewContext	Attribute

Contains	a	string	that	identifies	an	HTML	element	in	the	view.

Type
xsd:string

Parent	Elements

Element Description
masterDetailDefines	the	XML	fragments	that	form	a	master	and	detail

relationship	in	a	view's	repeating	tables	or	repeating
sections.

Definition

<xsd:attribute	name="masterViewContext"	type="xsd:string"	></xsd:attribute>

Remarks
The	value	of	the	masterViewContext	attribute	specifies	an	element	that
has	an	xd:CtrLId	attribute	with	a	matching	value	in	the	HTML	that
represents	a	view	of	the	form.	For	example,	a	masterViewContext
attribute	with	a	value	of	"myID"	corresponds	to	the	element	that	has	a
value	of	"myID"	for	its	xd:CtrlId	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	masterViewContext	attribute	as	it	is
used	in	the	masterDetail	element:

<xsf:editWith	caption="group2"
	xd:autogeneration="template"	
	component="xCollection">
		<xsf:masterDetail	
			masterViewContext="CTRL1_5"
			master="my:group2"
			masterKey="my:field1"
			detailKey="my:field3">
		</xsf:masterDetail>
</xsf:editWith>

Show	All

match	Attribute	(domEventHandler	Element)

Identifies	the	XML	Document	Object	Model	(DOM)	node	for	which	the
event	handler	is	declared.

Type

xsd:string

Remarks
The	match	attribute	is	a	required	attribute	of	the	domEventHandler
element.

The	value	must	be	a	valid	XPath	expression	that	identifies	the	XML	DOM
node.

Note		The	XPath	expression	cannot	contain	predicates.

Example
The	following	is	an	example	of	the	match	attribute	as	it	is	used	in	the
domEventHandler	element:

<xsf:domEventHandlers>
			<xsf:domEventHandler
						match="TravelReport/Expenses"
						handlerObject="TravelExpenses"/>
</xsf:domEventHandlers>

Show	All

match	Attribute	(errorCondition	Element)

Identifies	the	XML	Document	Object	Model	(DOM)	nodes	on	which	the
custom	validation	is	declared.

Type

xsd:string

Remarks
The	match	attribute	is	a	required	attribute	of	the	errorCondition
element.

Example
The	following	is	an	example	of	the	match	attribute	as	it	is	used	in	the
errorCondition	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

match	Attribute	(override	Element)

Identifies	the	XML	Document	Object	Model	(DOM)	node	for	which	the
error	message	override	is	defined.

Type

xsd:string

Remarks
The	match	attribute	is	a	required	attribute	of	the	override	element.

The	value	of	the	match	attribute	must	be	a	valid	XPath	expression	that
identifies	the	XML	DOM	node.

Example
The	following	is	an	example	of	the	match	attribute	as	it	is	used	in	the
override	element:

<xsf:schemaErrorMessages>
			<xsf:override
						match="/sampleData/number">
						<xsf:errorMessage
									shortMessage="Invalid	Number.">
												The	value	entered	must	be	a	valid	number.
						</xsf:errorMessage>
			</xsf:override>
</xsf:schemaErrorMessages>

Show	All

match	Attribute	(partFragment	Element)

Contains	an	XPath	expression	that	identifies	the	elements	and	attributes
inside	the	input	Simple	Object	Access	Protocol	(SOAP)	message	that	are
to	be	replaced	at	run	time.

Type

xsd:string

Remarks
The	match	attribute	is	a	required	attribute	of	the	partFragment	element.

Example
The	following	is	an	example	of	the	match	attribute	as	it	is	used	in	the
partFragment	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
												<xsf:partFragment
															match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
															replaceWith="/dfs:myFields/dfs:dataFields/s0:IsPrime"	/>	
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

maxLength	Attribute

Defines	the	length	of	the	field	in	number	of	bytes.

Type

xsd:byte

Remarks
The	maxLength	attribute	is	an	optional	attribute	of	the	field	element.

Example
The	following	is	an	example	of	the	maxLength	attribute	as	it	is	used	in
the	field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									maxLength="10"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

maxLength	Attribute	(editWith	Element)

Specifies	the	maximum	number	of	characters	allowed	for	plain	single	line
text	boxes.

Type
xsd:simpleType

Parent	Elements

Element Description
editWith Specifies	an	instance	of	an	editing	component,	and	provides

the	corresponding	parameters	to	determine	its	exact	behavior.

Definition

<xsd:attribute	name="maxLength"	use="optional"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:integer">
						<xsd:minInclusive	value="-1"	/>
						<xsd:maxInclusive	value="9999"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
The	maxLength	attribute	is	only	valid	for	plain-text	edit	controls	that	do
not	allow	paragraph	breaks.	Such	controls	correspond	to	editWith
elements	with	a	component	attribute	set	to	"xField"	and	a	type	attribute
set	to	"plain"	(or	without	a	type	attribute	specified).

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	maxLength	attribute	as	it	is	used	in
the	editWith	element:

<editWith	component="xField"	maxLength="100">

maxVersionToUpgrade	Attribute

Inclusive	value	for	the	latest	form	that	needs	to	be	upgraded.

Type

xsf:xdSolutionVersion

Remarks
The	maxVersionToUpgrade	attribute	is	an	optional	attribute	of	the
useTransform	element.

Example
The	following	example	shows	the	maxVersionToUpgrade	attribute	as	it
is	used	in	the	useTransform	element:

<xsf:documentVersionUpgrade>
			<xsf:useTransform
						transform="upgrade.xsl"
						minVersionToUpgrade="0.0.0.0"
						maxVersionToUpgrade="1.0.0.5"/>
</xsf:documentVersionUpgrade>

Show	All

memberOf	Attribute	(getUserNameFromData	Element)

Specifies	the	role	to	be	associated	with	a	user	whose	user	name	is
returned	by	an	XPath	query	of	a	data	source.

Type
xsd:string

Parent	Elements

Element Description
getUserNameFromData Retrieves	a	user	name	by	using	an	XPath

query	of	the	data	in	the	main	data	source	or	in
a	secondary	data	source.

Definition

<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	memberOf	attribute	as	it	is	used	in
the	getUserNameFromData	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

memberOf	Attribute	(group	Element)

Specifies	the	role	to	which	a	group	is	assigned.

Type
xsd:string

Parent	Elements

Element Description
group Associates	a	group	with	a	particular	role.

Definition

<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	memberOf	attribute	as	it	is	used	in
the	group	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

memberOf	Attribute	(userName	Element)

Specifies	the	role	to	which	a	user	is	assigned.

Type
xsd:string

Parent	Elements

Element Description
userName Associates	a	user	with	a	particular	role.

Definition

<xsd:attribute	name="memberOf"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	memberOf	attribute	as	it	is	used	in
the	userName	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

method	Attribute

Specifies	the	HTTP	method	to	use	for	the	submit	operation.

Type

xsd:NMTOKEN

Remarks
The	method	attribute	is	a	required	attribute	of	the	useHttpHandler
element.

The	only	supported	value	is	"POST".

Example
The	following	is	an	example	of	the	method	attribute	as	it	is	used	by	the
useHttpHandler	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useHttpHandler>
						href="http://MyServer/InfoPathScripts/MyScript.asp"
						method="POST"
			</xsf:useHttpHandler>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

minVersionToUpgrade	Attribute

Inclusive	value	for	the	oldest	form	that	can	be	upgraded.

Type

xsf:xdSolutionVersion

Remarks
The	minVersionToUpgrade	attribute	is	a	required	attribute	of	the
useTransform	element.

The	minVersionToUpgrade	attribute	is	used	to	prevent	running	the	XSL
Transformation	(XSLT)	on	forms	so	different	from	the	current	one	that	the
XSLT	causes	risk	of	data	loss.

Example
The	following	example	shows	the	minVersionToUpgrade	attribute	as	it
is	used	in	the	useTransform	element:

<xsf:documentVersionUpgrade>
			<xsf:useTransform
						transform="upgrade.xsl"
						minVersionToUpgrade="0.0.0.0"
						maxVersionToUpgrade="1.0.0.5"/>
</xsf:documentVersionUpgrade>

mode	Attribute

Specifies	the	signature	relationship	for	the	signedDataBlock	element.

Type
xsf:xdSignatureRelationEnum

Parent	Elements

Element Description
signedDataBlock Defines	a	nodeset	in	the	form's	underlying	XML

document	to	which	a	digital	signature	can	be	applied

Definition

<xsd:attribute	name="mode"	type="xsf:xdSignatureRelationEnum"	use="required"></xsd:attribute>

Remarks
The	default	mode	of	a	signedDataBlock	element	is	single.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	mode	attribute	as	it	is	used	in	the
signedDataBlock	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name="main"
		data="my:myfields/my:subtree1	|	my:myfields/my:subtree2"
		signatureLocation="my:mifields/sig:signatures/main"
		mode="countersign">
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound	to	the	terms	of	this	document.	</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

name	Attribute	(action	Element)

The	unique	name	of	the	action	as	specified	by	the	Microsoft	BizTalk
2003	Human	Workflow	Services	(HWS)	workflow	designer.

Type
xsf:xdHWSname

Parent	Elements

Element Description
action Contains	the	information	for	an	individual	action.

Definition

<xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"	></xsd:attribute>

Remarks
The	name	attribute	is	a	required	attribute	of	the	action	element.

The	name	is	used	for	the	onClick	event	of	the	corresponding	button	in
the	Workflow	task	pane.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
action	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter			name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"		queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

name	attribute	(adoAdapter	element)

Contains	the	name	of	the	adoAdapter	element.

Type
xsf:xdTitle

Parent	Elements

Element Description
adoAdapter Defines	an	ActiveX	Data	Objects	(ADO)	data	adapter	that

retrieves	data	from	an	ADO	data	source	for	the	specified
data	object.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"	></xsd:attribute>

Remarks
The	name	attribute	is	an	optional	attribute	of	the	adoAdapter	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	name="EmpInformation"
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

name	Attribute	(button	Element)

Used	to	associate	the	OnClick	event	handler	of	the	button	with	a	scripting
function.

Type

xsd:NMTOKEN

Remarks
The	name	attribute	is	an	optional	attribute	of	the	button	element,	but	is
required	for	buttons	that	use	scripting	code	for	their	actions.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoViewMenu">
			<xsf:button	caption="CD	Collection"	
						name="SwitchToView0"></xsf:button>
			<xsf:button	caption="All	Tracks"	
						name="SwitchToView1"></xsf:button>
</xsf:menuArea>

In	the	form's	internal	scripting	file,	the	following	event	handlers	are	used
for	the	button	actions:

function	SwitchToView0::OnClick()
{
			XDocument.View.SwitchView("CD	Collection");
}

function	SwitchToView1::OnClick()
{
			XDocument.View.SwitchView("All	Tracks");
}

Show	All

name	Attribute	(customCategory	Element)

Specifies	the	name	of	the	custom	category.

Type
xsf:xdTitle

Parent	Elements

Element Description
customCategory Specifies	the	category	that	the	form	template	appears

under	in	the	Fill	Out	a	Form	task	pane.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>

Remarks
The	name	attribute	is	a	required	attribute	of	the	customCategory
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
customCategory	element:

<xsf:customCategory	name="Reports"/>

name	Attribute	(dataObject	Element)

The	unique	name	for	the	data	object.

Type

xsf:xdTitle

Remarks
The	name	attribute	is	a	required	attribute	of	the	dataObject	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
dataObject	element:

<xsf:dataObjects>
			<xsf:dataObject	
						name="EmployeeNames"	
						schema="EmployeeNames.xsd"	
						initOnLoad="yes">
						<xsf:query>
									<xsf:adoAdapter	
												connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
															Password="";User	ID=Admin;
															Data	Source=infnwind.mdb;Mode=Share	Deny	None;
															Extended	Properties="";..."
												commandText="select	[EmployeeID],[LastName],[FirstName]	
															from	[Employees]	as	[Employees]"	
												queryAllowed="yes"
												submitAllowed="yes">
						</xsf:adoAdapter>
	 	 	 </xsf:query>
	 	 </xsf:dataObject>
	 </xsf:dataObjects>

Show	All

name	Attribute	(davAdapter	Element)

The	name	of	a	davAdapter,	used	to	invoke	the	adapter	from	form	code.

Type
xsf:xdTitle

Parent	Elements

Element Description
davAdapterContains	information	to	enable	InfoPath	files	to	be

submitted	to	a	server	that	is	running	Microsoft	Windows
SharePoint	Services	or	a	Web-based	Distributed	Authoring
and	Versioning	(WebDAV)	server.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
davAdapter	element:

<xsf:davAdapter	name="SubmitToSharePoint"	overwriteAllowed="yes"	submitAllowed="yes">
	<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>
	<xsf:folderURL	value="http://some_server/some_doc_lib"/>
</xsf:davAdapter>

name	Attribute	(emailAdapter	Element)

Contains	the	name	of	the	emailAdapter	element.

Type
xsf:xdTitle

Parent	Elements

Element Description
emailAdapter Contains	the	information	to	submit	an	InfoPath	file	as	an

attachment	to	an	e-mail	message,	with	a	specified	set	of
recipients,	a	subject,	and	an	introduction.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
emailAdapter	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="my:bccNames"	valueType="expression"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

name	Attribute	(extension	Element)

A	unique	name	identifying	the	extension	being	specified.

Type

xsd:NMTOKEN

Remarks
The	name	attribute	is	a	required	attribute	of	the	extension	element.

Note		Use	of	the	extension	element	is	reserved.	Microsoft	Office
InfoPath	2003	ignores	any	content	within	the	extension	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
extension	element:

<xsf:extensions>
			<xsf:extension	
						name="someValue"	
						anyAttributesHere="someValue">
									...open	content	model	here...
			</xsf:extension>
<xsf:extensions>

Show	All

name	Attribute	(externalView	Element)

Contains	the	name	of	an	externalView	element.

Type
xsf:xdViewName

Parent	Elements

Element Description
externalViewDefines	a	view	that	cannot	be	edited	in	InfoPath.

Definition

<xsd:attribute	name="name"	type="xsf:xdViewName"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
externalView	element:

<xsf:externalViews>
	<xsf:externalView	name="Sales	Doc">
		<xsf:mainpane	transform="myWordView.xsl"	/>
	</xsf:externalView>
<xsf:externalViews>

name	Attribute	(field	Element)

Identifies	the	friendly	name	of	the	field	to	be	used	on	the	form	list	view.

Type

xsf:xdTitle

Remarks
The	name	attribute	is	a	required	attribute	of	the	field	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the	field
element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

Show	All

name	Attribute	(file	Element)

Specifies	the	name	of	the	file.

Type

xsf:xdFileName

Remarks
The	name	attribute	is	a	required	attribute	of	the	file	element.

This	must	be	a	relative	URL	from	the	URL	of	the	form	definition	(.xsf)	file.
All	files	specified	here	are	inside	the	form	template,	so	absolute	URLs	are
not	supported.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the	file
element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

name	Attribute	(group	Element)

Specifies	the	name	of	a	group	of	users	to	be	assigned	to	a	particular	role.

Type
xsd:string

Parent	Elements

Element Description
group Associates	a	group	with	a	particular	role.

Definition

<xsd:attribute	name="name"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
group	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

name	Attribute	(hwsAdapter	Element)

Contains	the	name	of	the	data	adapter.

Type
xsf:xdTitle

Parent	Elements

Element Description
hwsAdapter Defines	the	Microsoft	Biztalk	2004	HWS	(Human	Workflow

Services)	data	adapter	to	start	or	extend	an	activity	flow,
and	respond	to	a	task.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
hwsAdapter	element:

<hwsAdapter
	 name="xsf:xdTitle"
	 wsdlUrl="xsd:string"
	 queryAllowed="xsf:xdYesNo"
	 submitAllowed="xsf:xdYesNo">
	<hwsOperation	type="xsd:string"	typeID="xsd:string"	serviceUrl="xsd:string"/>
</hwsAdapter>

Show	All

name	Attribute	(importSource	Element)

Identifies	the	name	of	the	source	form	as	defined	in	the	processing
instruction	of	that	form’s	underlying	XML	document.

Type

xsd:string

Remarks
The	name	attribute	is	a	required	attribute	of	the	importSource	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	used	in	the
importSource	element:

<xsf:importParameters
			enabled="yes"
			<xsf:importSource
						name="My	Form"
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

name	Attribute	(menuArea	Element)

Corresponds	to	one	of	the	built-in	Microsoft	Office	InfoPath	2003	top-
level	menus.

Type

xsd:NMTOKEN

Remarks
The	name	attribute	is	a	required	attribute	of	the	menuArea	element.

There	cannot	be	more	than	one	menu	area	with	the	same	name	within	a
given	view.

InfoPath	has	the	following	named	menu	areas	that	correspond	to	the
built-in	menu	elements	that	can	be	customized	using	the	menuArea
element:

Name Description
msoFileMenu Menu	items	that	are	added	to	the	File

menu.
msoEditMenu Menu	items	that	are	added	to	the

Edit	menu.
msoInsertMenu Menu	items	that	are	added	to	the

Insert	menu.
msoViewMenu Menu	items	that	are	added	to	the

View	menu.
msoFormatMenu Menu	items	that	are	added	to	the

Format	menu.
msoToolsMenu Menu	items	that	are	added	to	the

Tools	menu.
msoTableMenu Menu	items	that	are	added	to	the

Table	menu.
msoHelpMenu Menu	items	that	are	added	to	the

Help	menu.
msoStructuralEditingContextMenu Menu	items	that	are	added	to	the

right-click	shortcut	menu.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
menuArea	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

name	Attribute	(operation	Element)

Contains	the	unique	name	of	the	Web	service	method.

Type

xsd:string

Remarks
The	name	attribute	is	a	required	attribute	of	the	operation	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
operation	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

name	Attribute	(property	Element)

Defines	the	name	of	the	property.

Type

xsd:string

Remarks
The	name	attribute	is	a	required	attribute	of	the	property	element.	A
fileType	value	of	"ActiveX-CAB"	identifies	that	the	file	is	a	.cab	file	added
by	the	designer	and	indicates	that	the	file	should	be	managed	by	the
ActiveX	support	features	of	the	designer.	The	timestamp	property
identifies	the	latest	version	of	the	.cab	file.	The	version	information	is
used	for	automatically	updating	the	file	when	the	developer	has	a	more
recent	version	in	the	ActiveX	ICT/CAB	directory.

Example
The	following	are	examples	of	the	name	attribute	as	it	is	used	in	the
property	element:

<xsf:files>
						<xsf:file	name="example.cab">
									<xsf:fileProperties>
												<xsf:property	name="fileType"	type="string"	value="ActiveX-CAB"	/>
												<xsf:property	name="timestamp"	type="string"	value="xyz"	/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

name	Attribute	(role	Element)

Specifies	a	string	that	can	be	used	to	identify	a	particular	role.

Type
xsf:xdRoleName

Parent	Elements

Element Description
role Defines	role.

Definition

<xsd:attribute	name="name"	type="xsf:xdRoleName"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the	role
element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\groupname1"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

name	Attribute	(ruleSet	Element)

Contains	the	name	of	the	ruleSet	element.

Type
xsd:string

Parent	Elements

Element Description
ruleSet Contains	one	or	more	rule	elements.

Definition

<xsd:attribute	name="name"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
ruleSet	element:

<xsf:ruleSets>
	<xsf:ruleSet	name="RuleSet1">
		<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
			<xsf:dialogBoxMessageAction>Don't	forget	receipts!</xsf:dialogBoxMessageAction>
				<xsf:openNewDocumentAction	solution="urn:approvalForm"/>
				<xsf:exitRuleSet/>
		</xsf:rule>
		<xsf:rule	caption="Always	Submit"	isEnabled="no">
			<xsf:submitAction	adapter="Expense	Database"/>
		</xsf:rule>
	</xsf:ruleSet>

	<xsf:ruleSet	name="RuleSet2">
		<xsf:rule	caption="Look	up	contact">
			<xsf:queryAction	adapter="Contacts"/>
		</xsf:rule>
	</xsf:ruleSet>
</xsf:ruleSets>	

Show	All

name	Attribute	(sharepointListAdapter	Element)

Contains	the	name	of	the	sharepointListAdapter	element;	also	used	as
the	secondary	data	source	name.

Type
xsf:xdTitle

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	to	query

a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl="http://www.contoso.com/reports/"
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="ContosoReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

name	Attribute	(signedDataBlock	Element)

Contains	the	name	of	the	signedDataBlock	element.

Type
xsf:xdSignedDataBlockName

Parent	Elements

Element Description
signedDataBlock Defines	a	nodeset	in	the	form's	underlying	XML

document	to	which	a	digital	signature	can	be	applied.

Definition

<xsd:attribute	name="name"	type="xsf:xdSignedDataBlockName"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
signedDataBlock	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name="main"
		data="my:myfields/my:subtree1	|	my:myfields/my:subtree2"
		signatureLocation="my:mifields/sig:signatures/main"
		mode="countersign">
		<xsf:message>By	clicking	the	"Sign"	button	below,	I	agree	to	be	bound	to	the	terms	of	this	document.	</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

name	Attribute	(task	Element)

The	unique	name	of	the	task	as	specified	by	the	Microsoft	Biztalk	Server
2004	HWS	(Human	Workflow	Services)	workflow	designer.

Type
xsf:xdHWSname

Parent	Elements

Element Description
task The	HWS	task	information	enabled	for	the	form

Definition

<xsd:attribute	name="name"	type="xsf:xdHWSname"	use="required"	></xsd:attribute>

Remarks
The	name	attribute	is	used	for	the	onClick	event	of	the	button	in	the
Workflow	task	pane.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the	task
element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter			name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"		queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

name	Attribute	(toolbar	Element)

Identifies	the	corresponding	toolbar	within	different	views.

Type

xsf:xdTitle

Remarks
The	name	attribute	is	a	required	attribute	of	the	toolbar	element.

Must	be	unique	within	a	given	solution.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
toolbar	element:

<xsf:toolbar	caption="CD	Collection	Toolbar"
			name="CD	Collection	Toolbar">
			<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
						caption="New	CD"	showIf="always"></xsf:button>
			<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
						caption="New	Track"	showIf="always"></xsf:button>
			<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
						caption="New	Label"	showIf="always"></xsf:button>
			<xsf:menu	caption="Remove">
						<xsf:button	action="xCollection::remove"	xmlToEdit="CD_10"	
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::remove"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::remove"	xmlToEdit="Label_16"	
									caption="Label"	showIf="always"></xsf:button>
			</xsf:menu>
</xsf:toolbar>

name	Attribute	(userName	Element)

Specifies	the	name	of	a	user	to	be	assigned	to	a	particular	role.

Type
xsd:string

Parent	Elements

Element Description
userName Associates	a	user	with	a	particular	role.

Definition

<xsd:attribute	name="name"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
userName	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"	/>
			<xsf:role	name="B"	/>
			<xsf:role	name="C"	/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"	select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"	/>
						<xsf:userName	name="domain\username1"	memberOf="A"	/>
						<xsf:userName	name="domain\username2"	memberOf="B"	/>
						<xsf:group	name="domain\username3"	memberOf="C"	/>
			</xsf:membership>
</xsf:roles>

name	Attribute	(view	Element)

Identifies	the	view	for	object	model	calls	when	switching	views,	and	for
specifying	the	default	view.

Type

xsf:xdViewName

Remarks
The	name	attribute	is	a	required	attribute	of	the	view	element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
view	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

Show	All

name	Attribute	(webServiceAdapter	Element)

Contains	the	name	of	the	webServiceAdapter	element.

Type
xsf:xdTitle

Parent	Elements

Element Description
webServiceAdapter Defines	a	Web	service	data	adapter	that	retrieves

data	from	a	Web	service	for	the	specified	data
object.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"></xsd:attribute>

Remarks
The	name	attribute	is	an	optional	attribute	of	the	webServiceAdapter
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
webServiceAdapter	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no"
						useDataSet="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://www.contoso.com/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

name	Attribute	(xDocumentClass	Element)

Provides	a	unique,	Uniform	Resource	Name	(URN)–based	name	for	the
form	that	the	form	definition	(.xsf)	file	defines.

Type

xsd:string

Remarks
The	name	attribute	is	an	optional	attribute	of	the	xDocumentClass
element.

If	this	attribute	is	missing,	the	form	is	named	from	the	Uniform	Resource
Locator	(URL)	or	form	definition	file	name,	which	can	be	obtained	from
the	processing	instructions	of	the	form's	underlying	XML	document.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

name	Attribute	(xmlFileAdapter	Element)

Contains	the	name	of	the	xmlFileAdapter	element.

Type
xsf:xdTitle

Parent	Elements

Element Description
xmlFileAdapter Defines	an	.xml	file	data	adapter	that	retrieves	data

from	an	.xml	file	for	the	specified	data	object.

Definition

<xsd:attribute	name="name"	type="xsf:xdTitle"	use="optional"	></xsd:attribute>

Remarks
The	name	attribute	is	an	optional	attribute	of	the	xmlFileAdapter
element.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
xmlFileAdapter	element:

<xsf:query>
			<xsf:xmlFileAdapter	name="CurrencyInfo"	fileUrl="currencies.xml"	/>
</xsf:query>

name	Attribute	(xmlToEdit	Element)

Used	in	the	xmlToEdit	attribute	of	the	button	element	to	associate
actions	of	the	associated	editing	component	to	buttons	defined	in	menus
and	toolbars.

Type

xsd:NMTOKEN

Remarks
The	name	attribute	is	a	required	attribute	of	the	xmlToEdit	element.

There	should	be	no	more	than	one	xmlToEdit	element	with	the	same
name	in	a	given	view.

Example
The	following	is	an	example	of	the	name	attribute	as	it	is	used	in	the
xmlToEdit	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

node	Attribute

Defines	the	XPath	expression	needed	to	extract	the	value	of	the	specified
property	from	the	form's	underlying	XML	document.

Type

xsd:string

Remarks
The	node	attribute	is	a	required	attribute	of	the	field	element.

Example
The	following	is	an	example	of	the	node	attribute	as	it	is	used	in	the	field
element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

onAfterSubmit	Attribute

Specifies	whether	the	form	should	be	closed,	kept	open,	or	if	a	new	form
should	be	created	after	a	successful	submission.

Type

xsd:NMTOKEN

Remarks
The	onAfterSubmit	attribute	is	an	optional	attribute	of	the	submit
element.

Values	include	"Close",	"KeepOpen",	and	"OpenNew".	The	default	value
is	"KeepOpen".

If	the	submit	operation	is	not	successful,	then	the	onAfterSubmit
attribute	is	ignored	and	the	form	is	kept	open.

Example
The	following	is	an	example	of	the	onAfterSubmit	attribute	as	it	is	used
in	the	submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

orientation	Attribute

Specifies	the	orientation	when	printing	a	view.

Type

xsd:NMTOKEN

Remarks
The	orientation	attribute	is	an	optional	attribute	of	the	printSettings
element.

Values	include	"portrait"	and	"landscape".

Example
The	following	is	an	example	of	the	orientation	attribute	as	it	is	used	in
the	printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

overwriteAllowed	Attribute
Specifies	whether	the	adapter	can	overwrite	an	existing	file.

Type
xsf:xdYesNo

Parent	Elements

Element Description
davAdapterContains	information	to	enable	InfoPath	files	to	be

submitted	to	a	Microsoft	Windows	SharePoint	Services
server	or	a	Web-based	Distributed	Authoring	and
Versioning	(WebDAV)	server.

Definition

<xsd:attribute	name="overwriteAllowed"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	overwriteAllowed	attribute	as	it	is
used	in	the	davAdapter	element:

<xsf:davAdapter	name="SubmitToSharePoint"	overwriteAllowed="yes"	submitAllowed="yes">
	<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>
	<xsf:folderURL	value="http://some_server/some_doc_lib"/>
</xsf:davAdapter>

pageRangeEnd	Attribute

Specifies	the	last	page	to	be	printed.

Type
xsd:Integer

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="pageRangeEnd"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:integer">
						<xsd:minInclusive	value="1"	/>
						<xsd:maxInclusive	value="32000"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	pageRangeEnd	attribute	as	it	is	used
in	the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

pageRangeStart	Attribute

Specifies	the	first	page	to	be	printed.

Type
xsd:Integer

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="pageRangeStart"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:integer">
						<xsd:minInclusive	value="1"	/>
						<xsd:maxInclusive	value="32000"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	pageRangeStart	attribute	as	it	is	used
in	the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>	

paperSize	attribute

Specifies	the	size	of	the	paper.

Type
xsd:String

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="paperSize"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="255"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	paperSize	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

paperSource	Attribute

Specifies	the	source	of	the	paper.

Type
xsd:String

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="paperSource"	>
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="255"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	paperSource	attribute	as	it	is	used	in
the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

Show	All

parent	Attribute

Specifies	a	relative	XPath	expression	from	the	container	node.

Type

xsd:string

Remarks
The	parent	attribute	is	an	optional	attribute	of	the	chooseFragment
element.

Refers	to	the	XML	Document	Object	Model	(DOM)	node	under	which	this
fragment	should	be	inserted.	The	default	value	is	".",	which	corresponds
to	inserting	directly	under	the	container	parent	node.

Example
The	following	is	an	example	of	the	parent	attribute	as	it	is	used	in	the
chooseFragment	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection"
															followingSiblings=".">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

printerName	Attribute

Specifies	the	printer	name.

Type
xsd:String

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="printerName">
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="255"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	printerName	attribute	as	it	is	used	in
the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"	>	
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	
</xsf:printSettings>

printerSpecificSettings	Attribute

Specifies	settings	for	a	particular	printer.

Type
xsd:String

Parent	Elements

Element Description
printSettings Specifies	the	printer	settings	used	when	printing	the	view.

Definition

<xsd:attribute	name="printerSpecificSettings">
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:maxLength	value="255"	/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	printerSpecificSettings	attribute	as	it
is	used	in	the	printSettings	element:

<xsf:printSettings	
			orientation="landscape"	
			header="&Pqsdf"	
			footer="&D"	
			printerName="\\printserver\printer"	
			paperSource="Auto	Select"	
			paperSize="Envelope	DL"	
			topMargin="0.8"		
			leftMargin="0.8"	
			bottomMargin="0.8"	
			rightMargin="0.8"	
			marginUnitsType="in"	
			copies="2"	
			collate="no"	
			pageRangeStart="1"	
			pageRangeEnd="1"
			printerSpecificSettings="name	of	file	that	contains	printer-specific	settings">
			<xsf:header>	
							
									<div>&Pqsdf</div>	
							
			</xsf:header>	
			<xsf:footer>	
							
									<div>&D</div>	
							
			</xsf:footer>	

</xsf:printSettings>

printView	Attribute

Specifies	the	name	of	another	view	to	use	for	printing	this	view.

Type

xsd:string

Remarks
The	printView	attribute	is	an	optional	attribute	of	the	view	element.

Example
The	following	is	an	example	of	the	printView	attribute	as	it	is	used	in	the
view	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View"	printView="PrintView">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

Show	All

productVersion	Attribute

Identifies	the	version	number	of	Microsoft	Office	InfoPath	2003	form
template	with	which	the	form	was	created	or	for	which	a	particular	form	is
intended.

Type

xsd:string

Remarks
The	productVersion	attribute	is	an	optional	attribute	of	the
xDocumentClass	element.

Its	format	is	####.####.####	(major.minor.build).

Example
The	following	is	an	example	of	the	productVersion	attribute	as	it	is	used
in	the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

Show	All

promptToSaveChanges	Attribute

Specifies	whether	the	user	is	prompted	to	save	changes	to	the	form
before	the	action	completes.

Type
xsf:xdYesNo

Parent	Elements

Element Description
closeDocumentActionDefines	a	form	close	action.

Definition

<xsd:attribute	name="promptToSaveChanges"	type="xsf:xdYesNo"	use="required"	></xsd:attribute>

Remarks
The	default	value	is	"yes".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	promptToSaveChanges	attribute	as
it	is	used	in	the	closeDocumentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense	>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

proofing	Attribute

Switches	the	proofing	features,	such	as	the	spelling	checker,	on	or	off.

Type

xsf:xdYesNo

Remarks
The	proofing	attribute	is	an	optional	attribute	of	the	editWith	element.

Values	include	"yes"	and	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	proofing	attribute	as	it	is	used	in	the
editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									proofing="yes"
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

publishSaveUrl	Attribute

Contains	the	location	of	the	saved	form	template	if	different	from	the
value	of	the	publishUrl	attribute.

Type
xsd:string

Parent	Elements

Element Description
solutionProperties Contains	design-time	information	about	an	InfoPath

form.

Definition

<xsd:attribute	name="publishSaveUrl"	type="xsd:string"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	publishSaveUrl	attribute	as	it	is	used
in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.1.0.10"
						fullyEditableNamespace="urn:names?pace1:mynames"/
						publishSaveUrl="C:\Documents	and	Settings\username\Desktop\Template1.xsn">
</xsf:applicationParameters>

Show	All

publishUrl	Attribute

Identifies	where	the	form	was	published	and	where	the	form	template
should	download	updates	from.

Type

xsd:string

Remarks
The	publishUrl	attribute	is	an	optional	attribute	of	the	xDocumentClass
element.

The	publishUrl	attribute	is	set	automatically	when	a	form	is	published	or
deployed	through	the	InfoPath	design	mode.	When	a	form	is	opened,	it
will	attempt	to	retrieve	the	latest	updates	from	the	published	location.

Example
The	following	is	an	example	of	the	publishUrl	attribute	as	it	is	used	in	the
xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="0.9.0.0"
			publishUrl="http://MyServer/InfoPathTemplates/MyTemplate.xsn">
			...
</xsf:xDocumentClass>

queryAllowed	Attribute	(adoAdapter	Element)

Specifies	whether	data	can	be	retrieved	from	the	data	source	through	the
query	method	of	the	data	adapter	object.

Type

xsf:xdYesNo

Remarks
The	queryAllowed	attribute	is	an	optional	attribute	of	the	adoAdapter
element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

queryAllowed	Attribute	(davAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	querying	the	data	source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
davAdapterContains	information	to	enable	InfoPath	files	to	be

submitted	to	a	server	that	is	running	Microsoft	Windows
Sharepoint	Services	or	a	Web-based	Distributed	Authoring
and	Versioning	(WebDAV)	server.

Definition

<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	queryAllowed	attribute	is	generally	omitted	for	the	davAdapter
element,	corresponding	to	a	default	value	of	"no".	A	value	of	"yes"	for	this
attribute	causes	an	error.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	davAdapter	element:

<xsf:davAdapter	name="SubmitToSharePoint"	overwriteAllowed="yes"
			submitAllowed="yes"	queryAllowed="no">
	<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>
	<xsf:folderURL	value="http://contoso/some_doc_lib"/>
</xsf:davAdapter>

queryAllowed	Attribute	(emailAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	querying	the	data	source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
emailAdapter Contains	the	information	to	submit	an	InfoPath	file	as	an

attachment	to	an	e-mail	message,	with	a	specified	set	of
recipients,	a	subject,	and	an	introduction.

Definition

<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	queryAllowed	attribute	is	generally	omitted	for	the	emailAdapter
element,	corresponding	to	a	default	value	of	"no".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	emailAdapter	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes"	queryAllowed
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

queryAllowed	Attribute	(hwsAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	querying	the	data	source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
hwsAdapter Defines	the	Microsoft	Biztalk	2004	HWS	(Human	Workflow

Services)	data	adapter	to	start	or	extend	an	activity	flow,
and	respond	to	a	task.

Definition

<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	queryAllowed	attribute	can	be	omitted	from	the	hwsAdapter
element,	corresponding	to	a	default	value	of	"no".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	hwsAdapter	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get			Approval"	/>
						<xsf:action		name="delegate"			actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"	/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"		taskTypeID="435"	
									caption="Send	Response"	/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send			Response"	/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"	/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter			name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"			typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"	/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"	/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

queryAllowed	Attribute	(sharepointListAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	querying	the	data	source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	to	query

a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="queryAllowed"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
The	queryAllowed	value	is	always	set	to	"yes"	for	the
sharepointListdapter.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl="http://www.contoso.com/reports/"
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="ContosoReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

queryAllowed	Attribute	(webServiceAdapter	Element)

Specifies	whether	data	can	be	retrieved	from	the	data	source	through	the
query	method	of	the	data	adapter	object.

Type

xsf:xdYesNo

Remarks
The	queryAllowed	attribute	is	an	optional	attribute	of	the
webServiceAdapter	element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"yes".

Example
The	following	is	an	example	of	the	queryAllowed	attribute	as	it	is	used	in
the	webServiceAdapter	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

refresh	Attribute

Specifies	when	the	expression	will	be	evaluated.

Type
xsd:string

Parent	Elements

Element Description
calculatedField Defines	an	individual	calculation,	including	the	formula,

when	the	calculation	is	to	be	performed,	and	where	the
result	will	be	stored.

Definition

<xsd:attribute	name="refresh"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
The	expression	specified	by	the	expression	attribute	is	evaluated
according	to	the	refresh	attribute	of	the	calculatedField	element.	A
value	of	"onInit"	causes	the	expression	to	be	evaluated	when	the	node	is
initialized.	A	value	of	"onChange"	causes	the	expression	to	be	evaluated
when	one	or	more	parameters	of	the	expression	change.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	refresh	attribute	as	it	is	used	in	the
calculatedField	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"	/>
</xsf:calculations>

removeAncestors	Attribute

Specifies	the	number	of	ancestor	(parent)	elements	to	be	removed	when
the	last	item	is	removed.

Type

xsd:nonNegativeInteger

Remarks
The	removeAncestors	attribute	is	an	optional	attribute	of	the	editWith
element.

Default	=	0.	Must	be	a	non-negative	integer.

Example
The	following	is	an	example	of	the	removeAncestors	attribute	as	it	is
used	in	the	editWith	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						<xsf:editWith	caption="CD"
									removeAncestors="0"
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

replaceWith	Attribute

Contains	an	XPath	expression	that	identifies	the	values	in	the	source
document	that	should	be	used	to	replace	parts	of	the	input	Simple	Object
Access	Protocol	(SOAP)	message.

Type

xsd:string

Remarks
The	replaceWith	attribute	is	a	required	attribute	of	the	partFragment
element.

Example
The	following	is	an	example	of	the	replaceWith	attribute	as	it	is	used	in
the	partFragment	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
												<xsf:partFragment
															match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
															replaceWith="/dfs:myFields/dfs:dataFields/s0:IsPrime"	/>	
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

required	Attribute

Identifies	whether	this	field	accepts	Null	values.

Type

xsf:xdYesNo

Remarks
The	required	attribute	is	an	optional	attribute	of	the	field	element.

Values	include	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	required	attribute	as	it	is	used	in	the
field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

requireFullTrust	Attribute

Allows	the	form	to	run	as	a	fully	trusted	form	when	a	form	template	is
registered	or	signed	with	a	certificate.

Type

xsf:xdYesNo

Remarks
The	requireFullTrust	attribute	is	an	optional	attribute	of	the
xDocumentClass	element.

Forms	that	have	the	requireFullTrust	attribute	set	to	"yes"	get	full	trust
security	privileges	in	Microsoft	Office	InfoPath	2003.	Allowed	attribute
values	are	"yes"	and	"no".	The	default	value	is	"no".

Note		Fully	trusted	forms	need	to	be	registered,	otherwise	they	cannot	be
opened	in	InfoPath.

Example
The	following	is	an	example	of	the	requireFullTrust	attribute	as	it	is	used
in	the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0"
			requireFullTrust="yes">
			...
</xsf:xDocumentClass>

rightMargin	Attribute

Specifies	the	right	margin	when	printing	a	view.

Type

xsd:string

Remarks
The	rightMargin	attribute	is	an	optional	attribute	of	the	printSettings
element.

The	rightMargin	attribute	must	be	greater	than	or	equal	to	zero.

Example
The	following	is	an	example	of	the	rightMargin	attribute	as	it	is	used	in
the	printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

rootSchema	Attribute

Identifies	an	XML	Schema	as	the	top-level	schema	of	the	form	being
filled	out.

Type

xsf:xdYesNo

Remarks
The	rootSchema	attribute	is	an	optional	attribute	of	the
documentSchema	element.

Only	one	of	the	XML	Schemas	defined	for	a	form	can	be	marked	as	the
root	schema.	Allowed	values	are	"yes"	and	"no".	The	default	value	is
"no".

Example
The	following	is	an	example	of	the	rootSchema	attribute	as	it	is	used	in
the	documentSchema	element:

<xsf:documentSchemas>
			<xsf:documentSchema
						location="urn:schema:custom:Namespace	customFilename.xsd"
						rootSchema="yes"/>
</xsf:documentSchemas>

ruleSet	Attribute

Contains	the	name	of	the	ruleSet	action	element	to	be	invoked.

Type
xsd:string

Parent	Elements

Element Description
ruleSetActionDefines	the	ruleSet	action	element	to	be	invoked.

Definition

<xsd:attribute	name="ruleSet"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ruleSet	attribute	as	it	is	used	in	the
ruleSetAction	element:

<xsf:onLoad>
	<xsf:ruleSetAction	ruleSet="RuleSet4"/>
</xsf:onLoad>

Show	All

schema	Attribute	(dataObject	Element)

The	name	of	an	XML	Schema	file.

Type

xsd:string

Remarks
The	schema	attribute	is	an	optional	attribute	of	the	dataObject	element.

Microsoft	Office	InfoPath	2003	automatically	packages	the	XML	Schema
for	each	secondary	data	object	as	part	of	the	form	template.	An	entry	is
made	in	the	form	definition	(.xsf)	file	for	the	XML	Schema	file	using	the
files	element,	and	it	is	the	file	name	that	is	referenced	from	the	schema
attribute	of	the	dataObject	element.

Example
The	following	is	an	example	of	the	schema	attribute	as	it	is	used	in	the
dataObject	element:

<xsf:dataObjects>
			<xsf:dataObject	
						name="EmployeeNames"	
						schema="EmployeeNames.xsd"	
						initOnLoad="yes">
						<xsf:query>
									<xsf:adoAdapter	
												connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
															Password="";User	ID=Admin;
															Data	Source=infnwind.mdb;Mode=Share	Deny	None;
															Extended	Properties="";..."
												commandText="select	[EmployeeID],[LastName],[FirstName]	
															from	[Employees]	as	[Employees]"	
												queryAllowed="yes"
												submitAllowed="yes">
						</xsf:adoAdapter>
	 	 	 </xsf:query>
	 	 </xsf:dataObject>
	 </xsf:dataObjects>

Show	All

schema	Attribute	(importSource	Element)

Identifies	the	XML	Schema	file	that	should	be	used	during	the	merge
operation	to	validate	the	form	being	merged.

Type

xsf:xdFileName

Remarks
The	schema	attribute	is	a	required	attribute	of	the	importSource
element.

If	the	source	document	to	be	merged	belongs	to	the	specified	schema,
the	specified	parameters	are	used	for	meging	into	the	current	form.	If	the
schema	attribute	is	not	specified,	a	"Schema	XSD	not	found"	error	is
returned.

Example
The	following	is	an	example	of	the	schema	attribute	as	it	used	in	the
importSource	element:

<xsf:importParameters
			enabled="yes"
			<xsf:importSource
						name="My	Form"
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

scriptLanguage	Attribute

Identifies	the	name	of	the	scripting	language	used	to	implement	the
business	logic	of	the	Microsoft	Office	InfoPath	2003	form.

Type

xsf:xdScriptLanguage

Remarks
The	scriptLanguage	attribute	is	an	optional	attribute	of	the
solutionProperties	element.

InfoPath	supports	the	following	values	for	this	attribute:	"JavaScript",
"JScript",	and	"VBScript".

Example
The	following	is	an	example	of	the	scriptLanguage	attribute	as	it	is	used
in	the	solutionProperties	element:

<xsf:	applicationParameters	application="InfoPath	Design	Mode">
			<xsf:	solutionProperties
						allowCustomization="no"
						lastOpenView="view1"
						scriptLanguage="JScript"
						automaticallyCreateNodes="no"
						lastVersionNeedingTransform="1.0.0.10"
						fullyEditableNamespace="urn:namespace1:mynames"/>
</xsf:applicationParameters>

Show	All

select	Attribute

An	XPath	query	expression	that	returns	one	or	more	data	nodes	that
contain	user	names.

Type
xsd:string

Parent	Elements

Element Description
getUserNameFromData Retrieves	a	user	name	by	using	an	XPath

query	of	the	data	in	the	main	data	source	or	in
a	secondary	data	source.

Definition

<xsd:attribute	name="select"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	select	attribute	as	it	is	used	in	the
getUserNameFromData	element:

<xsf:roles	initiator="A"	default="C"	hideStatusBarDisplay="yes">
			<xsf:role	name="A"/>
			<xsf:role	name="B"/>
			<xsf:role	name="C"/>

			<xsf:membership>
						<xsf:getUserNameFromData	dataObject="catalog"
							select="/dfs:myFields/dfs:dataFields/d:UserA"	memberOf="B"/>
						<xsf:userName	name="Domain\username1"	memberOf="A"/>
						<xsf:userName	name="Domain\username2"	memberOf="B"/>
						<xsf:group	name="Domain\username3"	memberOf="C"/>
			</xsf:membership>
</xsf:roles>

sendAsString	Attribute

Specifies	that	the	data	is	submitted	as	a	string	through	the
webServiceAdapter	data	adapter.

Type
xsf:xdYesNo

Parent	Elements

Element Description
partFragmentDefines	one	substitution	group	for	a	specific	part	of	the

input	Simple	Object	Access	Protocol	(SOAP)	message.

Definition

<xsd:attribute	name="sendAsString"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
It	may	be	necessary	to	set	the	sendAsString	attribute	to	"yes"	for
digitally	signed	data,	because	this	setting	preserves	non-printing
characters	in	the	data.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	sendAsString	attribute	as	it	is	used	in
the	partFragment	element:

<xsf:partFragment	match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
	replaceWith=/dfs:myFields/dfs:dataFields/s0:IsPrime"
	filter="."	sendAsString="yes"/>

Show	All

serviceUrl	Attribute

Contains	the	Web	service	Uniform	Resource	Locator	(URL)	to	which	the
request	should	be	sent.

Type

xsd:string

Remarks
The	serviceUrl	attribute	is	a	required	attribute	of	the	operation	element.

Example
The	following	is	an	example	of	the	serviceUrl	attribute	as	it	is	used	in	the
operation	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

serviceUrl	Attribute	(hwsOperation	Element)

Specifies	the	Uniform	Resource	Locator	(URL)	of	the	Microsoft	BizTalk
2004	Human	Workflow	Services	(HWS)	Web	service.

Type
xsd:string

Parent	Elements

Element Description
hwsOperation Defines	the	HWS	operation	type,	such	as	adding	an

action	to	a	new	activity	flow,	adding	an	action	to	an
existing	activity	flow,	or	responding	to	a	task.

Definition

<xsd:attribute	name="serviceUrl"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	serviceUrl	attribute	as	it	is	used	in	the
hwsOperation	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get		Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

sharepointGuid	Attribute

Contains	the	GUID	of	the	SharePoint	list.

Type
xsd:string

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	needed

to	query	a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="sharepointGuid"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	sharepointGuid	attribute	as	it	is	used
in	the	sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl=”http://xyzco/reports/”
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="XyzReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

Show	All

sharepointName	Attribute

Contains	the	name	of	a	fieldin	a	SharePoint	list.

Type
xsd:string

Parent	Elements

Element Description
field Contains	field	mapping	information	for	each	field	in	a

SharePoint	list	and	the	corresponding	name	used	in	Microsoft
Office	InfoPath	2003	Service	Pack	1.

Definition

<xsd:attribute	name="sharepointName"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	sharepointName	attribute	as	it	is
used	in	the	field	element:

<xsf:field
	sharepointName="xd__x007b_D00F1DBD_..."
	infopathName="Title_1"
	isLookup="no">
</xsf:field>

shortMessage	Attribute

Identifies	the	short	error	message	to	return	in	case	of	invalid	data.

Type

xsd:string

Remarks
The	shortMessage	attribute	is	a	required	attribute	of	the	errorMessage
element.

This	is	displayed	in	a	ScreenTip	in	the	default	error	user	interface.	For
modal	errors,	this	attribute	is	ignored	and	the	detailed	message	is	used
instead.	Maximum	length	of	the	error	message	is	127	characters.

Example
The	following	is	an	example	of	the	shortMessage	attribute	as	it	is	used
in	the	errorMessage	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

showErrorOn	Attribute

Identifies	XML	Document	Object	Model	(DOM)	nodes	(within	the	context
of	the	expression	context	XML	DOM	node)	on	which	the	error	should	be
displayed	when	the	form	is	filled	out.

Type

xsd:string

Remarks
The	showErrorOn	attribute	is	an	optional	attribute	of	the	errorCondition
element.

Contains	(relative	to	expression	context	XML	DOM	node)	an	XPath
expression.	Default	is	"."	This	is	the	same	as	the	expression	context.

Example
The	following	is	an	example	of	the	showErrorOn	attribute	as	it	is	used	in
the	errorCondition	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

showIf	Attribute

Specifies	the	editing	context	of	the	button.

Type

xsd:NMTOKEN

Remarks
The	showIf	attribute	is	an	optional	attribute	of	the	button	element.

Allowed	values	include	"always",	"enabled",	and	"immediate".	Default
value	is	"always".	Only	applies	to	buttons	used	with	editing	components.
If	the	showIf	attribute	is	set	to	"enabled",	then	the	button	is	visible	only	if
the	action	is	contextually	enabled.	If	the	showIf	attribute	is	set	to
"immediate",	then	the	button	is	visible	only	if	the	action	is	contextually
immediate.

Example
The	following	is	an	example	of	the	showIf	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="immediate"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="immediate"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

Show	All

showMenuItem	Attribute

Displays	a	menu	item	in	the	InfoPath	View	menu	and	adds	a	check	mark
next	to	the	item	when	it	is	in	use.

Type
xsf:xdYesNo

Parent	Elements

Element Description
view Contains	information	about	an	InfoPath	view.

Definition

<xsd:attribute	name="showMenuItem"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
The	showMenuItem	attribute	is	an	optional	attribute	of	the	view	element.
The	default	value	is	"yes".

If	the	showMenuItem	attribute	for	a	menu	item	in	the	View	menu	is	set
to	"yes",	the	item	appears	in	the	View	menu	and	has	a	check	mark	next
to	it	when	it	is	in	use.	The	menu	item	appears	with	the	caption	that	has
been	defined	for	it	and	in	the	order	specified	in	the	form	definition	file
(.xsf).	If	the	showMenuItem	attribute	is	not	present	or	is	set	to	"no",	the
menu	item	does	not	appear	in	the	View	menu.	Users	can	still	add	items
to	the	View	menu	by	customizing	it,	but	such	items	will	not	display	a
check	mark	when	they	are	in	use.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	showMenuItem	attribute	as	it	is	used
in	the	view	element:

<xsf:view	name="View	1"	caption="First	view"	showMenuItem="yes">
			<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
</xsf:view>

showSignatureReminder	Attribute

Specifies	whether	a	dialog	box	should	be	displayed	to	prompt	the	user	to
digitally	sign	the	document	before	submitting	it.

Type

xsf:xdYesNo

Remarks
The	showSignatureReminder	attribute	is	an	optional	attribute	of	the
submit	element.

Values	include	"yes"	and	"no".	The	default	value	is	"no".	If	set	to	"yes"
and	the	form	is	not	digitally	signed	when	a	user	tries	to	submit	it,	the
dialog	box	is	displayed.

Example
The	following	is	an	example	of	the	showSignatureReminder	attribute	as
it	is	used	in	the	submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

showStatusDialog	Attribute

Specifies	whether	the	status	dialog	box	should	be	shown	after	the	submit
operation.

Type

xsf:xdYesNo

Remarks
The	showStatusDialog	attribute	is	an	optional	attribute	of	the	submit
element.

Values	include	"yes"	and	"no".	The	default	values	is	"yes".

If	the	showStatusDialog	attribute	is	set	to	"yes"	and	no	custom
messages	are	defined	(using	the	errorMessage	or	successMessage
elements),	then	the	Microsoft	Office	InfoPath	2003	default	submit
messages	are	displayed.

Example
The	following	is	an	example	of	the	showStatusDialog	attribute	as	it	is
used	in	the	submit	element:

<xsf:submit
			caption="Su&bmit"
			disableMenuItem="no"
			onAfterSubmit="KeepOpen"
			showStatusDialog="yes"
			showSignatureReminder="yes">
			<xsf:useScriptHandler/>
			<xsf:successMessage>Submit	was	successful.</xsf:successMessage>
			<xsf:errorMessage>Submit	was	not	successful.</xsf:errorMessage>
</xsf:submit>

Show	All

signatureLocation	Attribute

Contains	an	XPath	expression	that	points	to	the	XML	Document	Object
Model	(DOM)	node	within	the	form's	underlying	XML	document	that	is
used	for	storing	the	digital	signature.

Type

xsd:string

Remarks
The	signatureLocation	attribute	is	a	required	attribute	of	the
documentSignatures	element.

Example
The	following	is	an	example	of	the	signatureLocation	attribute	as	it	is
used	in	the	documentSignatures	element:

<xsf:documentSignatures
			signatureLocation="/employees/my:signatures1">
</xsf:documentSignatures>

Show	All

signatureLocation	Attribute	(signedDataBlock	Element)

Contains	an	XPath	expression	that	points	to	the	XML	Document	Object
Model	(DOM)	node	in	the	form's	underlying	XML	document	that	is	used
for	storing	the	digital	signature.

Type
xsd:string

Parent	Elements

Element Description
signedDataBlock Defines	a	node	set	in	the	form's	underlying	XML

document	to	which	a	digital	signature	can	be	applied.

Definition

<xsd:attribute	name="signatureLocation"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	signatureLocation	attribute	as	it	is
used	in	the	signedDataBlock	element:

<xsf:documentSignatures>
	<xsf:signedDataBlock	name=”main”
		data=”my:myfields/my:subtree1	|	my:myfields/my:subtree2”
		signatureLocation=”my:mifields/sig:signatures/main”
		mode=”countersign”>
		<xsf:message>By	pressing	the	"Sign"	button	below,	I	agree	to	be	bound
				to	the	terms	of	this	document.</xsf:message>
	</xsf:signedDataBlock>
</xsf:documentSignatures>

Show	All

siteUrl	Attribute

Contains	the	Uniform	Resource	Locator	(URL)	of	a	SharePoint	site.

Type
xsd:string

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	needed

to	query	a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="siteUrl"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	siteUrl	attribute	as	it	is	used	in	the
sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl=”http://xyzco/reports/”
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="XyzReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1"></xsf:field>
</xsf:sharepointListAdapter>

soapAction	Attribute

Contains	the	value	of	the	SOAPAction	attribute	in	the	Simple	Object
Access	Protocol	(SOAP)	request	message.

Type

xsd:string

Remarks
The	soapAction	attribute	is	a	required	attribute	of	the	operation
element.

Example
The	following	is	an	example	of	the	soapAction	attribute	as	it	is	used	in
the	operation	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

solutionFormatVersion	Attribute

Identifies	the	version	number	that	represents	the	format	of	the	form
definition	file	(.xsf).

Type

xsf:xdSolutionVersion

Remarks
The	solutionFormatVersion	attribute	is	a	required	attribute	of	the
xDocumentClass	element.

Its	format	is	####.####.####.####	(major.minor.revision.build).	The
version	number	of	the	.xsf	file	allows	Microsoft	Office	InfoPath	2003	to
determine	whether	the	current	form	is	compatible	with	the	product
version	in	which	it	is	being	opened.

Example
The	following	is	an	example	of	the	solutionFormatVersion	attribute	as	it
is	used	in	the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

Show	All

solutionURI	Attribute

The	Uniform	Resource	Identifier	(URI)	of	the	solution	on	which	the	new
form	will	be	based.

Type
xsd:anyURI

Parent	Elements

Element Description
openNewDocumentActionDefines	a	form	create	action.

Definition

<xsd:attribute	name="solutionURI"	type="xsd:anyURI"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	solutionURI	attribute	as	it	is	used	in
the	openNewDocumentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

solutionVersion	Attribute

Identifies	the	version	number	of	the	form.

Type

xsf:xdSolutionVersion

Remarks
The	solutionVersion	attribute	is	an	optional	attribute	of	the
xDocumentClass	element.

Its	format	is	####.####.####.####	(major.minor.revision.build).

Example
The	following	is	an	example	of	the	solutionVersion	attribute	as	it	is	used
in	the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

Show	All

source	Attribute

Contains	the	name	of	the	resource	file	in	the	form	template	that	contains
the	XML	Schema	for	the	input	Simple	Object	Access	Protocol	(SOAP)
message	of	the	selected	operation	of	the	Web	service.

Type

xsd:string

Remarks
The	source	attribute	is	a	required	attribute	of	the	input	element.

Example
The	following	is	an	example	of	the	source	attribute	as	it	is	used	in	the
input	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
												<xsf:partFragment
															match="/dfs:myFields/dfs:dataFields/s0:IsPrime/s0:inValue"
															replaceWith="/dfs:myFields/dfs:dataFields/s0:IsPrime"	/>	
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

src	Attribute

Provides	a	relative	URL	within	the	form	template	to	the	specified	script
source	file.

Type

xsf:xdFileName

Remarks
The	src	attribute	is	a	required	attribute	of	the	script	element.

Example
The	following	is	an	example	of	the	src	attribute	as	it	is	used	in	the	script
element:

<xsf:scripts	language="jscript">
			<xsf:script	src="myscripts.js"/>
</xsf:scripts>

submitAllowed	Attribute	(adoAdapter	Element)

Specifies	whether	data	can	be	submitted	to	the	data	source	through	the
submit	method	of	the	data	adapter	object.

Type

xsf:xdYesNo

Remarks
The	submitAllowed	attribute	is	an	optional	attribute	of	the	adoAdapter
element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	adoAdapter	element:

<xsf:query>
			<xsf:adoAdapter	
						connectionString="Provider=Microsoft.Jet.OLEDB.4.0;
									Password="";User	ID=Admin;
									Data	Source=infnwind.mdb;Mode=Share	Deny	None;
									Extended	Properties="";..."
						commandText="select	[EmployeeID],[LastName],[FirstName]	
									from	[Employees]	as	[Employees]"	
						queryAllowed="yes"
						submitAllowed="yes">
			</xsf:adoAdapter>
</xsf:query>

Show	All

submitAllowed	Attribute	(davAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	submitting	to	the	data
source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
davAdapterContains	information	needed	to	submit	InfoPath	forms	to	a

server	running	Microsoft	Windows	SharePoint	Services	or
to	a	Web-based	Distributed	Authoring	and	Versioning
(WebDAV)	server.

Definition

<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
The	value	of	the	submitAllowed	attribute	is	always	set	to	"yes"	for	the
davAdapter	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	davAdapter	element:

<xsf:davAdapter	name="SubmitToSharePoint"	overwriteAllowed="yes"	
	<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>
	<xsf:folderURL	value="http://some_server/some_doc_lib"/>
</xsf:davAdapter>

submitAllowed	Attribute	(emailAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	submitting	to	the	data
source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
emailAdapter Contains	the	information	needed	to	submit	an	InfoPath

form	as	an	attachment	to	an	e-mail	message,	with	a
specified	set	of	recipients,	a	subject,	and	an	introduction.

Definition

<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
The	value	of	the	submitAllowed	attribute	is	always	set	to	"yes"	for	the
emailAdapter	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	emailAdapter	element:

<xsf:emailAdapter	name="Submit"	submitAllowed="yes">
	<xsf:to	value="someone@example.com"	valueType="literal"/>
	<xsf:cc	value="my:ccNames"	valueType="expression"/>
	<xsf:bcc	value="someoneelse@example.com"	valueType="literal"/>
	<xsf:subject	value="My	report"	valueType="literal"/>
	<xsf:intro	value="See	below"/>
	<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>
</xsf:emailAdapter>

submitAllowed	Attribute	(hwsAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	submitting	to	the	data
source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
hwsAdapter Defines	the	Microsoft	BizTalk	2004	Human	Workflow

Services	(HWS)	data	adapter,	which	can	be	used	to	start
or	extend	an	activity	flow	or	respond	to	a	task.

Definition

<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
The	value	of	the	submitAllowed	attribute	is	always	set	to	"yes"	for	the
hwsAdapter	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	hwsAdapter	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send		Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

submitAllowed	Attribute	(sharepointListAdapter	Element)

Specifies	whether	the	adapter	can	be	used	for	submitting	to	the	data
source.

Type
xsf:xdYesNo

Parent	Elements

Element Description
sharepointListAdapter Contains	the	data	adapter	information	needed

to	query	a	SharePoint	list	or	library.

Definition

<xsd:attribute	name="submitAllowed"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
The	submitAllowed	attribute	is	omitted	for	the	sharepointListAdapter
element,	corresponding	to	a	default	value	of	"no".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	sharepointListAdapter	element:

<xsf:sharepointListAdapter
	name="Status	Report	library"
	siteUrl=”http://xyzco/reports/”
	sharepointGuid="{ABD2E239-0EE7-48F4-B506-C38A1728E195}"
	infopathGroup="XyzReportsLibrary"
	queryAllowed="yes>
	<xsf:field
		sharepointName="File_x0020_Type"
		infopathName="Type"></xsf:field>
	<xsf:field
		sharepointName="xd__x007b_D00F1DBD_..."
		infopathName="Title_1">
	</xsf:field>
</xsf:sharepointListAdapter>

submitAllowed	Attribute	(webServiceAdapter	Element)

Specifies	whether	data	can	be	submitted	to	the	data	source	through	the
submit	method	of	the	data	adapter	object.

Type

xsf:xdYesNo

Remarks
The	submitAllowed	attribute	is	an	optional	attribute	of	the
webServiceAdapter	element.

Allowed	values	are	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	submitAllowed	attribute	as	it	is	used
in	the	webServiceAdapter	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

target	Attribute	(calculatedField	Element)

Contains	the	XPath	location	where	the	result	of	the	expression	attribute
will	be	stored.

Type
xsd:string

Parent	Elements

Element Description
calculatedField Defines	an	individual	calculation,	including	the	formula,

when	the	calculation	is	to	be	performed,	and	where	the
result	will	be	stored.

Definition

<xsd:attribute	name="target"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	target	attribute	as	it	is	used	in	the
calculatedField	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"	/>
</xsf:calculations>

Show	All

targetField	Attribute

Contains	an	XPath	expression	for	the	target	node.

Type
xsd:string

Parent	Elements

Element Description
assignmentAction Defines	an	action	to	set	the	value	of	a	field.

Definition

<xsd:attribute	name="targetField"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	targetField	attribute	identifies	the	node	that	will	receive	the	value
from	the	expression	attribute.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	targetField	attribute	as	it	is	used	in
the	assignmentAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

taskpaneVisible	Attribute

Specifies	whether	the	Workflow	task	pane	is	visible.

Type
xsf:xdYesNo

Parent	Elements

Element Description
hwsWorkflow Contains	the	information	to	enable	the	Workflow	task

pane	and	to	enable	individual	actions	and	tasks
associated	with	a	Microsoft	Biztalk	2004	Human
Workflow	Services	(HWS)	server.

Definition

<xsd:attribute	name="taskpaneVisible"	type="xsf:xdYesNo"	></xsd:attribute>

Remarks
The	default	value	for	the	taskpaneVisible	attribute	is	"yes".	The
taskpaneVisible	attribute	is	an	optional	attribute	of	the	hwsWorkflow
element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	taskpaneVisible	attribute	as	it	is	used
in	the	hwsWorkflow	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
	<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"	/>
		<xsf:allowedActions>
			<xsf:action	name="approval"	actionTypeID="123"	
				canInitiateWorkflow="yes"	caption="Get	Approval"	/>
			<xsf:action	name="delegate"	actionTypeID="234"			
				canInitiateWorkflow="no"	caption="Delegate"	/>
		</xsf:allowedActions>
		<xsf:allowedTasks>
			<xsf:task	name="getManagerApproval"	taskTypeID="435"	
				caption="Send	Response"	/>
				<xsf:task	name="getVPApproval"	taskTypeID="436"		
					caption	="Send	Response"	/>
				<xsf:task	name="delegateToManager"	taskTypeID="420"	
					caption="Respond"	/>
		</xsf:allowedTasks>
</xsf:hwsWorkflow>

Show	All

taskTypeID	Attribute

The	unique	ID	of	the	Microsoft	BizTalk	Server	2004	Human	Workflow
Services	(HWS)	workflow	task.

Type
xsd:string

Parent	Elements

Element Description
task The	HWS	task	information	enabled	for	the	form.

Definition

<xsd:attribute	name="taskTypeID"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	taskTypeID	attribute	uses	a	namespace	to	uniquely	identify	a	task
but	does	not	represent	the	current	instance	of	the	task	being	performed.
The	current	instance	of	the	task	is	stored	in	the	XML	instance	file.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	taskTypeID	attribute	as	it	is	used	in
the	task	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get		Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send		Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes"	queryAllowed="no">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

tooltip	Attribute

Provides	the	ScreenTip	text	to	be	used	for	the	button.

Type

xsf:xdTitle

Remarks
The	tooltip	attribute	is	an	optional	attribute	of	the	button	element.

This	attribute	applies	only	to	buttons	used	on	a	toolbar.

Example
The	following	is	an	example	of	the	tooltip	attribute	as	it	is	used	in	the
button	element:

<xsf:toolbar	caption="CD	Collection	Toolbar"	name="CD	Collection	Toolbar">
			<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"	
						caption="New	CD"	showIf="always"
						tooltip="Insert	a	CD.">
			</xsf:button>
			...
</xsf:toolbar>

topMargin	Attribute

Specifies	the	top	margin	when	printing	a	view.

Type

xsd:string

Remarks
The	topMargin	attribute	is	an	optional	attribute	of	the	printSettings
element.

The	topMargin	attribute	must	be	greater	than	or	equal	to	zero.

Example
The	following	is	an	example	of	the	topMargin	attribute	as	it	is	used	in	the
printSettings	element:

<xsf:view	name="View"	caption="View">
			<xsf:printSettings
						header="Header	text	goes	here."
						footer="Footer	text	goes	here."
						orientation="portrait"						
						marginUnitsType="in"
						topMargin="1"
						leftMargin="2"
						rightMargin="2"
						bottomMargin="1"
			</xsf:printSettings>
			...
</xsf:view>

Show	All

transform	Attribute	(importSource	Element)

Identifies	the	.xslt	file	that	should	be	used	during	the	merge	operation
when	the	source	form	(the	one	that	is	being	merged	in)	matches	the	XML
Schema	specified	in	the	corresponding	schema	attribute.

Type

xsf:xdFileName

Remarks
The	transform	attribute	is	a	required	attribute	of	the	importSource
element.

Example
The	following	is	an	example	of	the	transform	attribute	as	it	is	used	in	the
importSource	element:

<xsf:importParameters
			enabled="yes"
			<xsf:importSource
						name="My	Form"
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

Show	All

transform	Attribute	(mainpane	Element)

Specifies	the	relative	URL	to	the	XSL	Transformation	(XSLT)	that	is	used
for	the	view.

Type

xsf:xdFileName

Remarks
The	transform	attribute	is	a	required	attribute	of	the	mainpane	element.

Example
The	following	is	an	example	of	the	transform	attribute	as	it	is	used	in	the
mainpane	element:

<xsf:views	default="View">
			<xsf:view	name="View"	caption="View">
						<xsf:mainpane	transform="view1.xsl"></xsf:mainpane>
						...
			</xsf:view>
</xsf:views>

Show	All

transform	Attribute	(useTransform	Element)

Specifies	the	.xslt	file	name	relative	to	the	form	template.

Type

xsf:xdFileName	xsf:xdEmptyString

Remarks
The	transform	attribute	is	a	required	attribute	of	the	useTransform
element.	Its	maximum	length	is	64	characters.

Example
The	following	example	shows	the	transform	attribute	as	it	is	used	in	the
useTransform	element:

<xsf:documentVersionUpgrade>
			<xsf:useTransform
						transform="upgrade.xsl"
						minVersionToUpgrade="0.0.0.0"
						maxVersionToUpgrade="1.0.0.5"/>
</xsf:documentVersionUpgrade>

Show	All

treatBlankValueAsZero	Attribute

Specifies	whether	a	blank	field	should	be	calculated	with	a	value	of	zero.

Type
xsf:xdYesNo

Parent	Elements

Element Description
calculations Contains	definitions	for	calculations	performed	in	the	form,

and	specifies	how	blank	values	are	handled.

Definition

<xsd:attribute	name="treatBlankValueAsZero"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
Default	is	"yes".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	treatBlankValueAsZero	attribute	as	it
is	used	in	the	calculations	element:

<xsf:calculations>
	<xsf:calculatedField
		target="/my:myFields/my:average"
		expression="xdMath:Avg(../my:expenses/my:expense/my:amount)"
		refresh="onChange"/>
		treatBlankValueAsZero=”yes”/>
</xsf:calculations>

Show	All

trustLevel	Attribute

Specifies	the	trust	level	of	a	form	template.

Type
xsf:xdTrustLevel

Parent	Elements

Element Description
xDocumentClass The	root	element	of	the	form	definition	file	(.xsf).

Contains	all	other	elements	and	attributes	of	the	form
definition	file.

Definition

<xsd:attribute	name="trustLevel"	type="xsf:xdTrustLevel"	use="optional"></xsd:attribute>

Remarks
If	the	trustLevel	attribute	is	present	along	with	the	requireFullTrust
attribute	in	the	form	definition	file,	and	the	requireFullTrust	attribute	is
set	to	"yes",	then	the	requireFullTrust	attribute	takes	precedence.	A
form	template	that	is	not	permitted	full	trust	(because	it	lacks	proper
certificate,	installation,	or	registration)	will	fail	to	load	in	edit	mode,	and	a
warning	will	be	displayed.	If	the	form	template	is	permitted	full	trust,	it	will
load	and	run	properly	in	the	full	trust	security	zone.

The	default	value	is	"domain".	If	the	trustLevel	attribute	is	not	present,
the	default	value	is	also	"domain".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	trustLevel	attribute	as	it	is	used	in	the
xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:schemas-microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			dataFormSolution="yes"
			requireFullTrust="yes"
			trustLevel="restricted"
			trustSetting="manual"
			publishUrl="http://MyServer/InfoPathTemplates/MyTemplate.xsn">
			...
</xsf:xDocumentClass>

Show	All

trustSetting	Attribute

Specifies	the	trust	setting	of	a	form	template.

Type
xsf:xdManualAuto

Parent	Elements

Element Description
xDocumentClass The	root	element	of	the	form	definition	file	(.xsf)	.

Contains	all	other	elements	and	attributes	of	the	form
definition	file.

Definition

<xsd:attribute	name="trustSetting"	type="xsf:xdManualAuto"	use="optional"></xsd:attribute>

Remarks
The	default	value	is	"manual".	If	the	trustSetting	attribute	is	not	present,
the	default	value	is	also	"manual".

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	trustSetting	attribute	as	it	is	used	in
the	xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:schemas-microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			dataFormSolution="yes"
			requireFullTrust="yes"
			trustLevel="restricted"
			trustSetting="manual"
			publishUrl="http://MyServer/InfoPathTemplates/MyTemplate.xsn">
			...
</xsf:xDocumentClass>

Show	All

type	Attribute	(editWith	Element)

Specifies	the	type	of	editing	for	the	fields	that	match	the	XPath
expression	specified	by	the	item	attribute	of	the	xmlToEdit	element.

Type

xsd:enumeration

Remarks
The	type	attribute	is	an	optional	attribute	of	the	editWith	element.

The	type	attribute	is	used	with	the	xField	editing	component,	and	it
supports	the	following	values:	"plain",	"plainMultiline",	"formatted",
"formattedMultiline",	and	"rich".	The	default	value	is	"plain".

Note	that	if	the	matched	XML	Document	Object	Model	(DOM)	node	does
not	support	the	full	editing	services	specified,	the	effective	type	is
downgraded	appropriately	(this	means	downgrading	to	"plain").	For
example,	an	attribute	node	will	behave	as	plain	even	if	set	to	rich.	Only
data	that	is	in	a	CDATA	section,	or	that	corresponds	to	XHTML,	can
support	values	other	than	"plain".

Example
The	following	is	an	example	of	the	type	attribute	as	it	is	used	in	the
editWith	element:

<xsf:xmlToEdit	name="Label_4"	
			item="/CustomUISample/CDCollection/CD/Label">
			<xsf:editWith	type="rich"	autoComplete="no"	
						component="xField">
			</xsf:editWith>
</xsf:xmlToEdit>

type	Attribute	(errorMessage	Element)

Identifies	the	type	of	error	message	to	return.

Type

xsd:NMTOKEN

Remarks
The	type	attribute	is	an	optional	attribute	of	the	errorMessage	element.

Allowed	values	are	"modeless"	and	"modal".	Default	value	is	"modeless".

A	dialog	box	with	the	long	message	is	returned	for	"modal"	errors.	When
the	dialog	box	is	closed,	the	field	is	marked	with	a	dashed	red	border	to
indicate	that	the	value	is	invalid.	A	user	can	read	the	error	message	by
right-clicking	the	field.

For	"modeless"	errors,	no	dialog	box	is	displayed.	The	field	is	marked
with	a	dashed	red	border	to	indicate	that	the	value	is	invalid.	A	user	can
read	the	error	message	by	right-clicking	the	field.

Note		If	the	field	is	invalid	as	a	result	of	scripting	code	or	because	it	was
invalid	to	begin	with,	but	has	not	been	edited,	then	it	will	be	marked	with
a	red	underline.

Example
The	following	is	an	example	of	the	type	attribute	as	it	is	used	in	the
errorMessage	element:

<xsf:customValidation>
			<xsf:errorCondition
						match="/exp:expenseReport"
						expressionContext="exp:reportDate"
						expression="msxsl:string-compare(.,	../exp:startDate)	<	0	and	../exp:startDate	!=	"""
						showErrorOn=".">
						<xsf:errorMessage
									type="modeless"
									shortMessage="The	report	date	occurs	before	the	end	of	the	expense	period.">
									The	report	date	occurs	before	the	end	of	the	expense	period.	Verify	that	this	is	correct.
						</xsf:errorMessage>	
			</xsf:errorCondition>
</xsf:customValidation>

Show	All

type	Attribute	(field	Element)

Identifies	the	standard	XML	Schema	data	type.

Type

xsd:NMTOKEN

Remarks
The	type	attribute	is	a	required	attribute	of	the	field	element.

Example
The	following	is	an	example	of	the	type	attribute	as	it	is	used	in	the	field
element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

type	Attribute	(hwsOperation	Element)

Specifies	the	Microsoft	BizTalk	Server	2004	Human	Workflow	Services
(HWS)	operation	type.

Type
xsd:string

Parent	Elements

Element Description
hwsOperation Defines	the	HWS	operation	type,	such	as	adding	an

action	to	a	new	activity	flow,	adding	an	action	to	an
existing	activity	flow,	or	responding	to	a	task.

Definition

<xsd:attribute	name="type"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	allowed	HWS	operation	types	are:

addActionToNewActivityFlow	Starts	a	new	workflow.

addActionToActivityFlow	Starts	a	new	workflow,	or	if	one	exists,
extends	the	workflow.

sendTaskResponse	Responds	to	a	task.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	type	attribute	as	it	is	used	in	the
hwsOperation	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action	name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

type	Attribute	(property	Element)

Defines	the	type	of	the	property.

Type

xsd:QName

Remarks
The	type	attribute	is	a	required	attribute	of	the	property	element.

All	simple	XML	Schema	data	types	are	allowed.

Example
The	following	is	an	example	of	the	type	attribute	as	it	is	used	in	the
property	element:

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

Show	All

typeID	Attribute

Contains	the	globally	unique	identifier	(GUID)	for	the	Microsoft	BizTalk
Server	2004	Human	Workflow	Services	(HWS)	operation.

Type
xsd:string

Parent	Elements

Element Description
hwsOperation Defines	the	HWS	operation	type,	such	as	adding	an

action	to	a	new	activity	flow,	adding	an	action	to	an
existing	activity	flow,	or	responding	to	a	task.

Definition

<xsd:attribute	name="typeID"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	GUID	is	automatically	generated	upon	submit	of	the	hwsAdapter
element,	and	it	updates	the	processing	instructions	of	the	XML	instance
file.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	typeID	attribute	as	it	is	used	in	the
hwsOperation	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action	name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

Show	All

ui	Attribute	(exportToExcel	Element)

Sets	whether	the	user	can	export	the	contents	of	the	form	to	a	Microsoft
Office	Excel	2003	workbook.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
exportToExcel Specifies	whether	the	user	can	use	the	form's	menus,

toolbars,	or	keyboard	shortcuts	to	export	the	form	to	an
Microsoft	Office	Excel	2003	workbook.

Definition

<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ui	attribute	as	it	is	used	in	the
exportToExcel	element:

<xsf:exportToExcel	 ui="disabled"/>

Show	All

ui	Attribute	(exportToWeb	Element)

Sets	whether	the	user	can	export	the	contents	of	the	form	to	a	Web	page.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
exportToWeb Specifies	whether	the	user	can	use	the	form's	menus,

toolbars,	or	keyboard	shortcuts	to	export	the	form	to	a
Web	page.

Definition

<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ui	attribute	as	it	is	used	in	the
exportToWeb	element:

<xsf:exportToWeb	 ui="disabled"/>

Show	All

ui	Attribute	(print	Element)

Sets	whether	the	user	can	print	the	form.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
print Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,

or	keyboard	shortcuts	to	print	the	form

Definition

<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ui	attribute	as	it	is	used	in	the	print
element:

<xsf:print	ui="disabled"/>

Show	All

ui	Attribute	(save	Element)

Sets	whether	the	user	can	save	the	form.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
save Specifies	whether	the	user	can	use	the	form's	menus,	toolbars,

or	keyboard	shortcuts	to	save	the	form.

Definition

<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ui	attribute	as	it	is	used	in	the	save
element:

<xsf:save	ui="disabled"/>

Show	All

ui	Attribute	(sendMail	Element)

Sets	whether	the	user	can	send	the	form	as	an	e-mail	attachment.

Type
xsf:xdEnabledDisabled

Parent	Elements

Element Description
sendMail Specifies	whether	the	user	can	use	the	form's	menus,

toolbars,	or	keyboard	shortcuts	to	send	the	form	as	an	e-mail
attachment.

Definition

<xsd:attribute	name="ui"	type="xsf:xdEnabledDisabled"	use="required"	></xsd:attribute>

Remarks
Setting	this	attribute	to	a	value	other	than	"enabled"	or	"disabled"	will
result	in	an	error	message	when	you	attempt	to	open	the	form.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	ui	attribute	as	it	is	used	in	the
sendMail	element:

<xsf:sendMail	ui="disabled"/>

Show	All

url	Attribute

Contains	the	Uniform	Resource	Locator	(URL)	for	a	Microsoft	BizTalk
2004	Human	Workflow	Services	(HWS)	Web	service.

Type
xsd:string

Parent	Elements

Element Description
location The	location	of	the	HWS	Web	service.

Definition

<xsd:attribute	name="url"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	url	attribute	is	a	required	attribute	of	the	location	element.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	url	attribute	as	it	is	used	in	the
location	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
	<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
		<xsf:allowedActions>
			<xsf:action	name="approval"	actionTypeID="123"	
					canInitiateWorkflow="yes"	caption="Get	Approval"/>
			<xsf:action	name="delegate"	actionTypeID="234"			
					canInitiateWorkflow="no"	caption="Delegate"/>
		</xsf:allowedActions>
		<xsf:allowedTasks>
				<xsf:task	name="getManagerApproval"	taskTypeID="435"	
						caption="Send	Response"/>
				<xsf:task	name="getVPApproval"	taskTypeID="436"		
						caption	="Send	Response"/>
				<xsf:task	name="delegateToManager"	taskTypeID="420"	
						caption="Respond"/>
		</xsf:allowedTasks>
</xsf:hwsWorkflow>

useDataSet	Attribute

Specifies	whether	an	adapter	will	support	an	ADO.NET	DataSet.

Type
xsf:xdYesNo

Parent	Elements

Element Description
webServiceAdapter Defines	a	Web	service	data	adapter	that	retrieves

data	from	a	Web	service	or	submits	data	to	a	Web
service.

Definition

<xsd:attribute	name="useDataSet"	type="xsf:xdYesNo"	use="optional"></xsd:attribute>

Remarks
Default	is	"no".

Use	of	the	useDataSet	attribute	requires	Microsoft	Office	InfoPath	2003
Service	Pack	1.

An	ADO.NET	DataSet	cannot	be	used	as	a	query	parameter	for	the
webServiceAdapter	element	or	any	other	data	adapter.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	useDataSet	attribute	as	it	is	used	in
the	webServiceAdapter	element:

<xsf:webServiceAdapter	
	wsdlUrl="http://www.contoso.com/DataSet.asmx?WSDL"
	queryAllowed="yes"
	useDataSet="yes">
									...
</xsf:webServiceAdapter>

Show	All

useFilter	Attribute

Indicates	the	user	wants	a	filter	widget.

Type
xsd:simpleType

Parent	Elements

Element Description
editWith (Optional	element)	Specifies	an	instance	of	an	editing

component,	and	provides	the	corresponding	parameters	to
determine	its	exact	behavior.

Definition

<xsd:attribute	name="useFilter"	use="optional">
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:enumeration	value="yes"/>
						<xsd:enumeration	value="no"/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
The	useFilter	attribute	is	an	optional	attribute	of	the	editWith	element.
Its	default	value	is	"no".	If	the	user	selects	the	filter	widget	check	box	in
the	property	dialog	of	a	repeating	section	or	repeating	table,	and	the
useFilter	attribute	is	set	to	"yes",	the	widgetIcon	attribute	is	set	to
"Filter".	The	useFilter	attribute	is	only	applicable	for	repeating	sections
and	tables.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	useFilter	attribute	as	it	is	used	in	the
editWith	element:

<editWith	component="xCollection"	widgetIcon="filter|standard"
	useFilter="yes|no"	filterDependency="xpath1	|	xpath2	|	xpath3>

useScriptHandler	Attribute

Specifies	whether	to	use	the	event	handler	defined	for	the
OnMergeRequest	event	when	importing	(merging)	forms.

Type
xsf:xdYesNo

Parent	Elements

Element Description
importParameters Contains	all	the	parameters	that	define	how	the

import	(merge)	forms	feature	works	for	the	form.

Definition

<xsd:attribute	name="useScriptHandler"	type="xsf:xdYesNo"	use="optional"	></xsd:attribute>

Remarks
If	you	create	an	event	handler	for	the	OnMergeRequest	event	of	a	form
template,	you	must	set	the	useScriptHandler	attribute	to	"yes"	before	it
will	run.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	useScriptHandler	attribute	as	it	is
used	in	the	importParameters	element:

<xsf:importParameters
			enabled="yes"
			useScriptHandler="yes">
			<xsf:importSource
						name="MySource"
						schema="MySchema.xsd"
						transform="schematransform.xslt"/>
</xsf:importParameters>

value	Attribute	(attachmentFileName	Element)

Contains	the	value	of	the	attachmentFileName	element.

Type
xsd:string

Parent	Elements

Element Description
attachmentFileName Contains	the	file	name	of	the	file	attachment	to	be

included	with	an	e-mail	message	when	the	form	is
submitted	using	the	emailAdapter	element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"	></xsd:attribute>

Remarks
If	the	value	attribute	is	an	empty	string,	the	e-mail	message	will	not
include	a	file	attachment.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
attachmentFileName	element:

<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>

value	Attribute	(attributeData	Element)

Specifies	the	value	of	the	attribute	to	be	inserted.

Type

xsd:string

Remarks
The	value	attribute	is	a	required	attribute	of	the	attributeData	element.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
attributeData	element:

<xsf:editWith	component="xOptional">
			<xsf:fragmentToInsert>
						<xsf:chooseFragment	parent="report">
									<xsf:attributeData	attribute="author"	value="author	name"/>
						</xsf:chooseFragment>
			</xsf:fragmentToInsert>
</xsf:editWith>

value	Attribute	(bcc	Element)

Specifies	the	value	of	the	bcc	element,	as	a	literal	string	or	as	an
expression	based	on	the	valueType	attribute.

Type
xsd:string

Parent	Elements

Element Description
bcc Contains	the	recipient	information	for	the	bcc	line	of	an	e-mail

message	when	the	form	is	submitted	using	the	emailAdapter
element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Multiple	addresses	on	the	bcc	line	of	an	e-mail	message	must	be
separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the	bcc
element:

<xsf:bcc	value="someone@example.com"	valueType="literal"/>

value	Attribute	(cc	Element)

Specifies	the	value	of	the	cc	element,	as	a	literal	string	or	as	an
expression	based	on	the	valueType	attribute.

Type
xsd:string

Parent	Elements

Element Description
cc Contains	the	recipient	information	for	the	cc	line	of	the	e-mail

message	when	the	form	is	submitted	using	the	emailAdapter
element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Multiple	addresses	on	the	cc	line	of	an	e-mail	message	must	be
separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the	cc
element:

<xsf:cc	value="my:ccNames"	valueType="expression"/>

Show	All

value	Attribute	(fileName	Element)

Specifies	the	value	of	the	fileName	element,	as	a	literal	string	or	as	an
expression	based	on	the	valueType	attribute.

Type
xsd:string

Parent	Elements

Element Description
fileName Contains	the	name	of	the	file	as	a	literal	string	or	XPath

expression.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
fileName	element:

<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>

Show	All

value	Attribute	(folderURL	Element)

Specifies	the	Uniform	Resource	Locator	(URL)	of	the	Web-based
Distributed	Authoring	and	Versioning	(WebDAV)	server	or	server	that	is
running	Microsoft	Windows	SharePoint	Services	to	which	the	file	is
submitted.

Type
xsd:string

Parent	Elements

Element Description
folderURL Contains	the	URL	of	the	server	to	which	the	file	is	submitted.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
The	URL	must	begin	with	"http://"	or	"https://".	Other	common	protocols
will	cause	an	error.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
folderURL	element:

<folderURL	value="http://some_server/some_doc_lib"/>

value	Attribute	(intro	Element)

Contains	the	value	of	the	intro	element.

Type
xsd:string

Parent	Elements

Element Description
intro Contains	the	introduction	for	the	e-mail	message	when	the	form

is	submitted	using	the	emailAdapter	element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
intro	element:

<xsf:intro	value="See	below"/>

Show	All

value	Attribute	(property	Element)

For	simple	properties,	specifies	a	value	for	the	property.	For	complex	and
multi-valued	properties,	the	specified	value	is	defined	as	a	container	XML
tree	using	an	open	content	model.

Type

xsd:string

Remarks
The	value	attribute	is	a	required	attribute	of	the	property	element.	The
.cab	files	that	are	included	in	an	InfoPath	form	package	are	listed	in	the
package	and	files	elements	of	an	.xsf	file.	A	fileType	value	of	"ActiveX-
CAB"	identifies	that	the	file	is	a	.cab	file	added	by	the	designer	and
indicates	that	the	file	should	be	managed	by	the	ActiveX	support	features
of	the	designer.

Example
The	following	are	examples	of	the	value	attribute	as	it	is	used	in	the
property	element:

<xsf:files>
						<xsf:file	name="example.cab">
									<xsf:fileProperties>
												<xsf:property	name="fileType"	type="string"	value="ActiveX-CAB"	/>
												<xsf:property	name="timestamp"	type="string"	value="xyz"	/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

<xsf:package>
			<xsf:files>
						<xsf:file	name="view_1.xsl">
									<xsf:fileProperties>
												<xsf:property
															name="lang"	
															type="string"
															value="1033"/>
									</xsf:fileProperties>
						</xsf:file>
			</xsf:files>
</xsf:package>

value	Attribute	(subject	Element)

Contains	the	value	of	the	subject	element,	either	as	an	expression	or	as
a	literal	string.

Type
xsd:string

Parent	Elements

Element Description
subject Contains	the	subject	line	of	the	e-mail	message	when	the	form

is	submitted	using	the	emailAdapter	element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the
subject	element:

<xsf:subject	value="My	report"	valueType="literal"/>

value	Attribute	(to	Element)

Specifies	the	value	of	the	to	element,	as	a	literal	string	or	as	an
expression	based	on	the	valueType	attribute.

Type
xsd:string

Parent	Elements

Element Description
to Parent	element	that	contains	the	"to"	line	information	of	the

emailAdapter	element.

Definition

<xsd:attribute	name="value"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Multiple	addresses	on	the	"to"	line	of	an	e-mail	message	must	be
separated	by	semicolons.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	value	attribute	as	it	is	used	in	the	to
element:

<xsf:to	value="someone@example.com"	valueType="literal"/>

Show	All

valueType	Attribute	(attachmentFileName	Element)

Specifies	whether	the	value	attribute	of	the	attachmentFileName
element	should	be	interpreted	as	a	literal	value	or	an	XPath	expression
which	returns	a	value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
attachmentFileName Contains	the	file	name	of	the	file	attachment	to	be

included	with	an	e-mail	message	when	the	form	is
submitted	using	the	emailAdapter	element.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"	></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
attachmentFileName	element:

<xsf:attachmentFileName	value="Status	Report"	valueType="literal"/>

Show	All

valueType	Attribute	(bcc	Element)

Specifies	whether	the	value	attribute	of	the	bcc	element	should	be
interpreted	as	a	literal	value	or	as	an	XPath	expression	that	returns	a
value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
bcc Contains	the	recipient	information	for	the	bcc	line	of	an	e-mail

message	when	the	form	is	submitted	using	the	emailAdapter
element.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
bcc	element:

<xsf:bcc	value="someone@example.com"	valueType="literal"/>

Show	All

valueType	Attribute	(cc	Element)

Specifies	whether	the	value	attribute	of	the	cc	element	should	be
interpreted	as	a	literal	value	or	as	an	XPath	expression	that	returns	a
value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
cc Specifies	the	value	of	the	cc	element,	as	a	literal	string	or	as	an

expression	based	on	the	valueType	attribute.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
cc	element:

<xsf:cc	value="my:ccNames"	valueType="expression"/>

Show	All

valueType	Attribute	(fileName	Element)

Specifies	whether	the	value	of	the	fileName	element	should	be
interpreted	as	a	literal	value	or	as	an	XPath	expression	that	returns	a
value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
fileName Contains	the	name	of	the	file	as	a	literal	string	or	as	an	XPath

expression.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
fileName	element:

<xsf:fileName	value="my:myFields/my:fileName"	valueType="expression"/>

Show	All

valueType	Attribute	(subject	Element)

Specifies	whether	the	value	attribute	of	the	subject	element	should	be
interpreted	as	a	literal	value	or	as	an	XPath	expression	that	returns	a
value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
subject Contains	the	subject	line	of	an	e-mail	message	when	the	form

is	submitted	using	the	emailAdapter	element.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
subject	element:

<xsf:subject	value="My	report"	valueType="literal"/>

Show	All

valueType	Attribute	(to	Element)

Specifies	whether	the	value	attribute	of	the	to	element	should	be
interpreted	as	a	literal	value	or	as	an	XPath	expression	that	returns	a
value.

Type
xsf:xdExpressionLiteral

Parent	Elements

Element Description
to Parent	element	that	contains	the	"to"	line	information	of	the

emailAdapter	element.

Definition

<xsd:attribute	name="valueType"	type="xsf:xdExpressionLiteral"	use="optional"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	valueType	attribute	as	it	is	used	in	the
to	element:

<xsf:to	value="someone@example.com"	valueType="literal"/>

Show	All

version	Attribute

Specifies	the	ActiveX	control	version	number.

Type
xsd:string

Parent	Elements

Element Description
allowedControl Specifies	the	ActiveX	controls	that	are	allowed	to	be

instantiated.

Definition

<xsd:attribute	name="version"	type="xsd:string"	use="optional"></xsd:attribute>

Remarks
If	the	clsid	attribute	for	an	ActiveX	control	is	included	in	the
allowedControl	element	in	a	form	definition	file	(.xsf),	but	the	control	is
not	installed	on	the	user's	computer,	the	control	will	be	installed
automatically	if	the	cabFile	attribute	for	the	control	is	present	and	the
CAB	file	is	present	in	the	form	template	file	(.xsn)	or	in	the	same	directory
as	the	form	definition	file.	If	the	control	is	already	installed	on	the	user's
computer	but	is	an	earlier	version	than	the	one	listed	in	the	version
attribute,	the	install	process	still	will	initiate	if	the	CAB	file	for	the	control	is
present.	If	the	CAB	file	is	not	present	for	some	reason	or	the	installation
fails	or	is	stopped,	the	form	will	not	open.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	version	attribute	as	it	is	used	in	the
allowedControl	element:

<xsf:permissions>
		<xsf:allowedControl	
								cabFile="{84F32C01-78D8-4B93-8ED4-106DA70224C2}.cab”	
								clsid="{84F32C01-78D8-4B93-8ED4-106DA70224C2}"	
								version=”1,0,0,1”/>
		<xsf:allowedControl	
								clsid="{F08DF954-8592-11D1-B16A-00C0F0283630}"/>
</xsf:permissions>

Show	All

view	Attribute

Contains	the	name	of	the	view	that	is	switched	to	as	a	result	of	the	rule
element	action.

Type
xsf:xdViewName

Parent	Elements

Element Description
switchViewAction Defines	a	view	switch	action.

Definition

<xsd:attribute	name="view"	type="xsf:xdViewName"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	view	attribute	as	it	is	used	in	the
switchViewAction	element:

<xsf:rule	caption="Receipts"	condition="my:expense>	75">
	<xsf:dialogBoxMessageAction>Don't	forget	your	receipts!</xsf:dialogBoxMessageAction>
	<xsf:switchViewAction	view="Approval	View"/>
	<xsf:assignmentAction	targetField="my:group8/my:group9/my:target"	
		expression	="sum(my:expenses/my:expense)	*	my:taxRate"/>
	<xsf:queryAction	adapter="Exchange	Rates"/>
	<xsf:submitAction	adapter="Exchange	Rates"/>
	<xsf:openNewDocumentAction	solutionURI="uri:microsoft-ExpenseReport"/>
	<xsf:closeDocumentAction	promptToSaveChanges="yes"/>
	<xsf:dialogBoxExpressionAction>my:group/my:field1</xsf:dialogBoxExpressionAction>
	<xsf:exitRuleSet/>
</xsf:rule>

viewable	Attribute

Identifies	whether	the	field	should	be	added	to	the	default	view.

Type

xsf:xdYesNo

Remarks
The	viewable	attribute	is	an	optional	attribute	of	the	field	element.

Values	include	"yes"	and	"no".	The	default	value	is	"no".

Example
The	following	is	an	example	of	the	viewable	attribute	as	it	is	used	in	the
field	element:

<xsf:listProperties>
			<xsf:fields>
						<xsf:field
									type="xsd:date"
									name="TravelDate"
									columnName="TravelDate"	
									required="yes"
									viewable="yes"
									node="TravelReport/Header/travelDate"
									aggregation="first"/>
			</xsf:fields>
</xsf:listProperties>

Show	All

viewContext	Attribute

Specifies	a	string	that	identifies	an	HTML	element	in	the	view.

Type

xsd:string

Remarks
The	viewContext	attribute	is	an	optional	attribute	of	the	xmlToEdit
element.

The	viewContext	attribute	names	an	HTML	element	that	has	the
xd:CtrlId	attribute.	For	example,	viewContext="myID"	in	the	form
definition	(.xsf)	file	corresponds	to	xd:CtrlId="myID"	in	the	XSLT/HTML
code	for	the	view.

Note		If	the	xd:CtrlId	attribute	is	not	used	in	the	XSLT/HTML	code	for	the
view,	then	the	viewContext	attribute	is	ignored.

The	viewContext	attribute	can	be	used	to	disambiguate	controls	when
two	instances	of	the	same	control	have	the	same	XML	context	(so	that
the	XML	context	is	identical).	An	example	is	a	table	of	contents	with
chapter	titles,	and	below,	the	same	chapters	repeated	with	full	content.
Two	editWith	elements	for	item="chapter"	but	different	view	contexts	can
specify	distinct	behavior.

Example
The	following	is	an	example	of	the	viewContext	attribute	as	it	is	used	in
the	xmlToEdit	element:

<xsf:editing>
			<xsf:xmlToEdit	name="CD_10"
						item="/CustomUISample/CDCollection/CD"	
						container="/CustomUISample">
						viewContext="cdID"
						<xsf:editWith	caption="CD"
									xd:autogeneration="template"	
									component="xCollection">
									<xsf:fragmentToInsert>
												<xsf:chooseFragment	parent="CDCollection">
															<CD>
																		<Title></Title>
																		<Artist></Artist>
																		<Tracks>
																					<Track></Track>
																					<Track></Track>
																		</Tracks>
															</CD>
												</xsf:chooseFragment>
									</xsf:fragmentToInsert>
						</xsf:editWith>
			</xsf:xmlToEdit>
</xsf:editing>

Show	All

widgetIcon	Attribute

Specifies	whether	a	modified	icon	will	be	shown	for	filtered	items.

Type
xsd:simpleType

Parent	Elements

Element Description
editWith (Optional	element)	Specifies	an	instance	of	an	editing

component,	and	provides	the	corresponding	parameters	to
determine	its	exact	behavior.

Definition

<xsd:attribute	name="widgetIcon"	use="optional">
		<xsd:simpleType>
				<xsd:restriction	base="xsd:string">
						<xsd:enumeration	value="standard"/>
						<xsd:enumeration	value="filter"/>
				</xsd:restriction>
		</xsd:simpleType>
</xsd:attribute>

Remarks
The	widgetIcon	attribute	is	an	optional	attribute	of	the	editWith	element.
Its	default	value	is	"standard".

The	properties	dialog	boxes	for	repeating	sections	and	tables	have	a
Filter	Data	button	on	the	Display	tab.	Below	the	Filter	Data	button	is	a
check	box	that	allows	the	user	to	select	whether	a	modified	icon	will	be
shown	to	indicate	filtered	items.	If	the	user	applies	a	filter	and	selects	this
check	box,	the	widgetIcon	attribute	in	the	form	definition	file	(.xsf)	is	set
to	"filter".	The	widgetIcon	attribute	is	only	applicable	for	repeating
sections	and	tables.

Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	widgetIcon	attribute	as	it	is	used	in
the	editWith	element:

<editWith	component="xCollection"
	widgetIcon="filter|standard"	useFilter="yes|no"
	filterDependency="xpath1	|	xpath2	|	xpath3>

Show	All

wsdlUrl	Attribute

Contains	the	Uniform	Resource	Locator	(URL)	of	the	Web	Services
Description	Language	(WSDL)	file	that	describes	the	Web	service
specification.

Type

xsd:string

Remarks
The	wsdlUrl	attribute	is	a	required	attribute	of	the	webServiceAdapter
element.

Example
The	following	is	an	example	of	the	wsdlUrl	attribute	as	it	is	used	in	the
webServiceAdapter	element:

<xsf:query>
			<xsf:webServiceAdapter	
						wsdlUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx?WSDL"	
						queryAllowed="yes"	
						submitAllowed="no">
						<xsf:operation	
									name="getOrders"	
									soapAction="http://tempuri.org/getOrders"	
									serviceUrl="http://localhost/infopathwebservicesample/infopathwebservicesample.asmx">
									<xsf:input	
												source="Submit.xml">
									</xsf:input>
						</xsf:operation>
			</xsf:webServiceAdapter>
</xsf:query>

Show	All

wsdlUrl	Attribute	(hwsAdapter	Element)

Contains	the	Uniform	Resource	Locator	(URL)	of	the	Microsoft	BizTalk
2004	Human	Workflow	Services	(HWS)	Web	service.

Type
xsd:string

Parent	Elements

Element Description
hwsAdapter Defines	the	HWS	data	adapter	to	start	or	extend	an	activity

flow	or	respond	to	a	task.

Definition

<xsd:attribute	name="wsdlUrl"	type="xsd:string"	use="required"></xsd:attribute>

Remarks
Note		This	item	is	not	supported	when	the	Disable	Service	Pack
features	option	on	the	Advanced	tab	of	the	Options	dialog	box	in
InfoPath	is	selected	or	when	Microsoft	Office	2003	Editions	Service	Pack
1	or	later	is	not	installed.	Any	form	defined	by	a	form	definition	file	(.xsf)
that	includes	this	item	cannot	be	opened	in	InfoPath	when	service	pack
features	are	disabled	or	unavailable.

Example
The	following	is	an	example	of	the	wsdlUrl	attribute	as	it	is	used	in	the
hwsAdapter	element:

<xsf:hwsWorkflow	taskpaneVisible="yes">
			<xsf:location	url="http://www.contoso.com/hwsservice/hwsservice.asmx"/>
			<xsf:allowedActions>
						<xsf:action		name="approval"	actionTypeID="123"	
									canInitiateWorkflow="yes"	caption="Get	Approval"/>
						<xsf:action		name="delegate"	actionTypeID="234"			
									canInitiateWorkflow="no"	caption="Delegate"/>
			</xsf:allowedActions>
			<xsf:allowedTasks>
						<xsf:task	name="getManagerApproval"	taskTypeID="435"	
									caption="Send	Response"/>
						<xsf:task	name="getVPApproval"	taskTypeID="436"		
									caption	="Send	Response"/>
						<xsf:task	name="delegateToManager"	taskTypeID="420"	
									caption="Respond"/>
			</xsf:allowedTasks>
</xsf:hwsWorkflow>

<xsf:hwsAdapter	name="Start	Approval"				
			wsdlUrl="http://www.contoso.com/hwsservice/hwsservice.asmx?WSDL"	
			submitAllowed="yes">
			<xsf:hwsOperation	type="addActionToNewActivityFlow"	typeID="{guid}"
						serviceUrl="http://www.contoso.com/hwsservice/hwsservice.asmx">
						<xsf:input	source="HWSMessage1.xml">
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param1"	
												replaceWith="/my:myFields/my:param1"/>
									<xsf:partFragment	match="/ns1:HWSMessage/ActionSection/param2"	

												replaceWith="/a:some/b:thing"	dataObject="Aux1"/>
						</xsf:input>
			</xsf:hwsOperation>
</xsf:hwsAdapter>

xmlns	Attribute

Defines	the	xsf	namespace.

Type

xsd:string

Remarks
The	xmlns	attribute	is	a	required	attribute	of	the	xDocumentClass
element,	and	is	the	standard	mechanism	for	declaring	XML	namespaces.

Example
The	following	is	an	example	of	the	xmlns	attribute	as	it	is	used	in	the
xDocumentClass	element:

<xsf:xDocumentClass
			xmlns:xsf="http://schemas.microsoft.com/office/infopath/2003/solutionDefinition"
			name="urn:microsoft-com:myTravelReport"
			author="AuthorName"
			description="Travel	Report	form	for	entering	travel	reports,	issues,	expenses,	etc."
			dataFormSolution="yes"
			solutionVersion	=	"1.0.0.1"
			productVersion="11.0.5106"
			solutionFormatVersion="1.0.0.0">
			...
</xsf:xDocumentClass>

xmlToEdit	Attribute

Specifies	the	name	of	an	xmlToEdit	element,	for	which	the	button	is
used.

Type

xsd:NMTOKEN

Remarks
The	xmlToEdit	attribute	is	an	optional	attribute	of	the	button	element,
but	is	required	for	buttons	used	with	editing	components.

Example
The	following	is	an	example	of	the	xmlToEdit	attribute	as	it	is	used	in	the
button	element:

<xsf:menuArea	name="msoInsertMenu">
			<xsf:menu	caption="&Section">
						<xsf:button	action="xCollection::insert"	xmlToEdit="CD_10"
									caption="CD"	showIf="always"></xsf:button>
						<xsf:button	action="xCollection::insert"	xmlToEdit="Track_14"	
									caption="Track"	showIf="always"></xsf:button>
						<xsf:button	action="xOptional::insert"	xmlToEdit="Label_16"	
									caption="Label"></xsf:button>
			</xsf:menu>
</xsf:menuArea>

XDocument	Property	(SaveEvent	Object)

A	read-only	property	that	returns	a	reference	to	the	XDocument	object
that	is	associated	with	the	SaveEvent	object	in	an	OnSaveRequest
event.

expression.XDocument

expression				Required.	Returns	a	reference	to	a	SaveEvent	object.

Security	Level
2:	Can	be	accessed	only	by	forms	running	in	the	same	domain	as	the
currently	open	form,	or	by	forms	that	have	been	granted	cross-domain
permissions.

Remarks
Note		This	object	model	member	is	not	supported	when	the	Disable
Service	Pack	features	option	on	the	Advanced	tab	of	the	Options
dialog	box	in	InfoPath	is	selected	or	when	Microsoft	Office	2003	Service
Pack	1	or	later	is	not	installed.	Any	form	that	implements	this	object
model	member	in	its	code	will	generate	an	error	message	if	it	is	opened
in	InfoPath	when	service	pack	features	are	disabled	or	unavailable.

