
FrontPage	Web	Object	Model
Application
System	 Themes
Theme

Webs
Web
Lists
NavigationNode
WebFile
MetaTags

NavigationNodes
Properties
WebFiles
WebFile
MetaTags

WebFolder
List
ListFields

WebFolders
	

WebWindows
WebWindow
PageWindows
PageWindow
WebFile

Web
Lists
NavigationNode
NavigationNodes
Properties
WebFiles
WebFolder
WebFolders

Legend

		Object	and	collection
		Object	only

	

Other	notable	members	of	the	FrontPage	object	model.

BasicList
ListFields
Web
Lists
NavigationNode
WebFile

NavigationNodes
Properties
Themes
Theme

WebFiles
WebFile

WebFolders
WebWindows
WebWindow

WebFolder
List
Properties
WebFiles
WebFile

WebFolders

DocumentLibrary
ListFields
Web
Lists
NavigationNode
WebFile

NavigationNodes
Properties
Themes
Theme

WebFiles
WebFile

WebFolders
WebWindows
WebWindow

WebFolder
List
Properties
WebFiles
WebFile

WebFolders

PageWindowEx
Web
Lists
NavigationNode
NavigationNodes
Properties
Themes

WebFiles
WebFolder

WebFolders
WebWindows

WebFile
MetaTags
NavigationNode

Properties

New	Web	Object	Model	Objects
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Microsoft	Office
FrontPage	2003,	including	product	news,	technical	articles,	downloads,	and
samples.

The	following	table	lists	objects	added	to	the	Office	FrontPage	2003	object
model.

Object Description

Discussion Contains	information	about	a	Discussion	list	in	a
Microsoft	FrontPage	Web	site.

ListFieldAttachments
Contains	information	about	the	attachments	field	when
attachments	are	enabled	for	a	list	in	a	FrontPage	Web
site.

ListFieldRatingScale Contains	information	about	the	rating	scale	list	field	for
a	survey	list	in	a	FrontPage	Web	site.

WebPackage Represents	a	Web	package	that	has	been	created	in
Microsoft	Visual	Basic	for	Applications.

New	Web	Object	Model	Properties
(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Microsoft	Office
FrontPage	2003,	including	product	news,	technical	articles,	downloads,	and
samples.

The	following	table	lists	properties	added	to	the	Office	FrontPage	2003	object
model	(sorted	alphabetically).

New	Property Object(s)

AllowAttachments BasicList,	DocumentLibrary,	List,	Survey,
Discussion

AllowFillInChoices ListFieldChoice

AllowModerate BasicList,	DocumentLibrary,	List,	Survey,
Discussion

AllowRichHTML ListFieldMultiLine
Author WebPackage
Company WebPackage
ComputationFormula ListFieldComputed
DynamicTemplate WebFile
EndNumber ListFieldRatingScale

IsHidden BasicList,	DocumentLibrary,	List,	Survey,
Discussion

IsModified BasicList,	DocumentLibrary,	List,	Survey,
Discussion

OptimizeHTMLFlags Application
OptimizeHTMLPublishFlagsWeb,	WebEx
ReturnType ListFieldComputed
StartNumber ListFieldRatingScale
Subject WebPackage

New	Web	Object	Model	Properties
(by	Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Microsoft	Office
FrontPage	2003,	including	product	news,	technical	articles,	downloads,	and
samples.

The	following	table	lists	properties	added	to	the	Office	FrontPage	2003	object
model	(sorted	by	object	name).

Object New	Properties
OptimizeHTMLFlags

BasicList AllowAttachments,	AllowModerate,	IsHidden,
IsModified

Discussion AllowAttachments,	AllowModerate,	IsHidden,
IsModified

DocumentLibrary AllowAttachments,	AllowModerate,	IsHidden,
IsModified

List AllowAttachments,	AllowModerate
ListFieldChoice AllowFillInChoices
ListFieldComputed ComputationFormula,	ReturnType
ListFieldMultiLine AllowRichHTML
ListFieldRatingScale EndNumber,	StartNumber
List IsHidden,	IsModified

Survey AllowAttachments,	AllowModerate,	IsHidden,
IsModified

WebEx OptimizeHTMLPublishFlags
WebFile DynamicTemplate
Web OptimizeHTMLPublishFlags
WebPackage Author,	Company,	Subject

New	Web	Object	Model	Methods
(Alphabetical	List)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Microsoft	Office
FrontPage	2003,	including	product	news,	technical	articles,	downloads,	and
samples.

The	following	table	lists	methods	added	to	the	Office	FrontPage	2003	object
model	(sorted	alphabetically).

New	Method Object
ApplyDynamicTemplate WebFile

ConvertToField

ListField,	ListFieldChoice,
ListFieldComputed,	ListFieldCounter,
ListFieldCurrency,	ListFieldDateTime,
ListFieldFile,	ListFieldInteger,
ListFieldLookup,	ListFieldMultiLine,
ListFieldNumber,	ListFieldSingleLine,
ListFieldTrueFalse,	ListFieldURL,
ListFieldAttachments,
ListFieldRatingScale

CreateDynamicTemplateState Application
CreatePackage Web,	WebEx
CreateSearchInfo Application
DecodeURL Application
EncodeURL Application
ImportWebPackage Web,	WebEx
Remove WebPackage
ShowBordersShadingDialog Application
ShowFontDialog Application
ShowHTMLDialog Application
ShowHyperlinkParameters Application

ShowImportWebPackageDialog Application
ShowPickURLDialog Application
ShowPositionDialog Application
SplitArgs Application
UpdateDynamicTemplate Web,	WebEx,	WebFile

New	Web	Object	Model	Methods	(by
Object)
Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	Web	site
for	the	latest	information	about	programming	with	Microsoft	Office
FrontPage	2003,	including	product	news,	technical	articles,	downloads,	and
samples.

The	following	table	lists	methods	added	to	the	Office	FrontPage	2003	object
model	(sorted	by	object	name).

New	Method Object
DecodeURL

Application

CreateDynamicTemplateState,	CreateSearchInfo,
EncodeURL,	ShowBordersShadingDialog,
ShowFontDialog,	ShowHTMLDialog,
ShowHyperlinkParameters,
ShowImportWebPackageDialog,
ShowPickURLDialog,	ShowPositionDialog,
SplitArgs

ListFieldAttachments ConvertToField
ListFieldChoice ConvertToField
ListFieldComputed ConvertToField
ListField ConvertToField
ListFieldCounter ConvertToField
ListFieldCurrency ConvertToField
ListFieldDateTime ConvertToField
ListFieldFile ConvertToField
ListFieldInteger ConvertToField
ListFieldLookup ConvertToField
ListFieldMultiLine ConvertToField
ListFieldNumber ConvertToField
ListFieldRatingScale ConvertToField

ListFieldSingleLine ConvertToField
ListFieldTrueFalse ConvertToField
ListFieldURL ConvertToField
Web CreatePackage

WebEx CreatePackage,	ImportWebPackage,
UpdateDynamicTemplate

WebFile ApplyDynamicTemplate,	UpdateDynamicTemplate
Web ImportWebPackage
WebPackage Remove
Web UpdateDynamicTemplate

Creating	Web	Sites
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Microsoft	FrontPage	makes	FrontPage-based	Web	site	creation	as	easy	as
creating	a	new	folder	on	your	hard	drive.	The	key	to	successful	Web	site
management	in	FrontPage	is	planning	the	structure	and	design	of	your	Web	sites.
With	most	Web	servers,	you	have	one	Web	site,	but	with	FrontPage,	you	can
create	as	many	Web	sites	as	you	want,	including	nested	Web	sites,	called
subsites.	A	FrontPage-based	Web	site	comprises	three	layers—	Web	site
structure,	folder	structure,	and	navigation	structure.	Click	one	of	the	links	below
to	select	a	specific	topic.

Understanding	FrontPage	Web	structure

Understanding	FrontPage	folder	structure

Understanding	navigation	structure

Creating	Web	sites	programatically

Creating	a	Web	site	with	the	Add	method

Creating	a	Web	site	with	the	MakeWeb	method

Understanding	FrontPage	Web	structure

Any	folder	on	your	Web	server	can	be	a	Web	site	with	its	own	folder	hierarchy
that	can	include	subsites	below	the	original	Web	site.	When	you	install
FrontPage,	the	program	automatically	provides	a	default	name	for	your	main
Web	site.	On	a	disk-based	system,	the	default	name	is	C:\Documents	and
Settings\user	name\My	Documents\My	Web	Sites	for	Microsoft	Windows	XP.
You	may	want	to	name	the	individual	subsites	for	the	various	company	names
themselves,	such	as	Adventure	Works,	American	Society	of	Science,
Mightyflight	Toys,	or	Coho	Winery.

FrontPage	provides	a	variety	of	Web	site	templates—	corporate,	discussion,
customer	support,	and	so	on.	These	templates	provide	the	foundation	of	the
structure	for	each	Web	site.	For	example,	Adventure	Works	may	want	you	to
establish	a	full-blown	corporate	presence	for	their	Web	site;	and	so	on.	The	Web
site	hierarchy	for	a	disk-based	Web	site	is	shown	in	the	following	diagram.

The	following	figure	shows	the	Web	site	structure	in	Folders	view.	The	subsites
display	a	small	globe	within	the	folder	icon.

Understanding	FrontPage	folder	structure

The	folder	structure	in	FrontPage	behaves	in	the	same	manner	as	the	folder
structure	in	Windows	Explorer.	However,	to	access	these	files	from	Windows
Explorer,	you	have	to	export	them	to	another	location—	either	your	hard	drive	or
server.	During	the	export	process,	the	files	are	converted	to	HTML	pages.	In	that
sense,	opening	FrontPage	is	similar	to	opening	a	window	to	your	Web	sites.	The
folder	hierarchy	for	a	disk-based	Web	site	is	shown	in	the	following	diagram.

The	following	diagram	shows	the	folder	structure	in	Folders	view.

Note		This	diagram	displays	the	same	information	as	the	previous	one	because
both	folders	and	Web	sites	are	displayed	in	the	same	view,	but	you	can	see	from
the	Web	site	and	folder	diagrams	that	they	each	have	their	own	structure.	A	Web
site	or	subsite	is	a	folder.	However,	a	folder	that	is	also	a	Web	site	contains	meta
data	about	that	Web	site.	For	example,	if	you	apply	a	theme	to	one	of	your	Web
sites,	all	folders	within	that	Web	site	will	have	the	same	theme.	However,	you
can	apply	different	themes	to	the	Web	sites	on	your	Web	server.	When	you
change	a	Web	site	to	a	folder,	you	remove	special	settings	that	make	that	folder	a
Web	site,	and	settings	such	as	the	theme	change	to	match	the	"global"	theme	for
the	disk-based	or	server-based	Web	site	that	provides	the	container	for	your

FrontPage-based	subsites.

Understanding	navigation	structure

You	can	create	files	within	your	Web	site,	but	the	navigation	structure	that	links
these	files	to	your	Web	site	isn't	automatically	created	when	the	files	are	created.
However,	each	subsite	can	have	its	own	home	page.	A	home	page	is	usually	the
starting	page	for	any	Web	site	in	the	navigation	structure;	but	in	FrontPage	you
can	create	alternate	pages	that	exist	at	the	same	navigation	level	as	the	home
page.	You	may	want	to	add	links	to	a	home	page	that	navigate	to	the	home	pages
of	other	subsites	that	you're	maintaining.

The	navigation	structure	contains	nodes	that	link	each	of	the	pages	in	your
subsites	and	provide	pointers	to	the	locations	of	each	page	in	the	navigation
structure.	The	navigation	structure	for	a	disk-based	Web	site	is	shown	in	the
following	diagram.

The	following	diagram	shows	the	navigation	structure	in	Navigation	view.

Creating	Web	sites	programmatically

Here's	a	very	simple	design	for	a	Web	site.	The	Coho	Winery	company	wants	to
add	a	subsite	called	Wines	Around	the	World	that	will	start	with	pages	for	two
regions,	Spain	and	France.	The	folder	structure	will	contain	the	Coho	Winery
Web	site	and	the	folder	for	the	subsite,	Wines	Around	the	World,	plus	the	hidden
folder	_private,	and	an	Images	folder.	The	navigation	structure	will	contain	the
Wines	Around	the	World	home	page	(index.htm)	and	the	two	child	pages
(Spain.htm	and	France.htm—	the	left	and	right	nodes	in	the	navigation
structure).

There	are	two	ways	to	create	FrontPage-based	Web	sites	in	Microsoft	Visual
Basic	for	Applications.	You	can	use	the	Add	method	with	the	Webs	collection,
or	you	can	use	the	MakeWeb	method	with	a	WebFolder	object	to	change	an
existing	folder	into	a	Web	site.

Creating	a	Web	site	with	the	Add	method

Once	you've	designed	how	your	Web	site	is	going	to	look	and	function,	you	can
use	the	Set	statement	as	shown	in	the	procedure	below	to	create	a	new	Web	site.

Note		To	run	the	examples	in	this	topic,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Coho	Winery",	or	you	may	substitute	a	Web	site	and
files	of	your	choice.

Private	Sub	Add()

				Dim	myNewWeb	As	WebEx

				Set	myNewWeb	=	_

								Webs.Add("C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World")

End	Sub

When	you	create	a	Web	site	with	this	method,	you	only	create	the	Web	site	and
its	folder;	you	don't	create	a	complete	Web	site	with	all	of	the	folders,	pages,	and
navigation	in	place.	The	next	step	is	adding	a	home	page.	The	following
example	adds	a	home	page.

Private	Sub	Add()

				Dim	myNewWeb	As	WebEx

				Dim	myFiles	As	WebFiles	Dim	myUrl	As	String

				Set	myNewWeb	=	_

								Webs.Add("C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World")

				Set	myFiles	=	myNewWeb.RootFolder.Files	myFileUrl	=	_

								"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\index.htm"

				myFiles.Add(myFileUrl)

End	Sub

Because	index.htm	or	default.htm	are	file	names	associated	with	names
commonly	used	as	home	pages,	FrontPage	creates	the	appropriate	navigation
structure	for	a	home	page	whenever	you	use	one	of	these	names.	However,	if
you	add	further	pages	using	the	Add	method	with	the	WebFile	object,	you	will
add	pages,	but	FrontPage	will	not	automatically	create	the	navigation	structure
for	you—	you	will	have	to	add	the	navigation	structure	manually	as	is	illustrated
in	the	following	example.

Note		The	following	example	creates	a	new	subsite	in	the	Coho	Winery	Web	site

and	creates	two	pages	in	the	new	subsite:	index.htm	and	Spain.htm.

Private	Sub	AddCompleteWeb()

				Dim	myNewWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myUrl	As	String

				Dim	myFileOne	As	String

				Set	myNewWeb	=	_

								Webs.Add("C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World")

				Set	myFiles	=	myNewWeb.RootFolder.Files

				myFileUrl	=	_

								"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\index.htm"

				myFiles.Add(myFileUrl)

				myFileOne	=	"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\"

				myFileOne	=	myFileOne	&	"Spain.htm"

				myFiles.Add	myFileOne

				Call	myNewWeb.HomeNavigationNode.Children.Add(myFileOne,	"Spain",	_

								fpStructLeftmostChild)

				myNewWeb.ApplyNavigationStructure

End	Sub

Notice	the	last	statement—	the	ApplyNavigationStructure	method	applies	the
changes	that	you've	made	to	the	navigation	structure.

There	are	several	constants	you	can	use	in	the	Add	method	for	the	Children
property:	fpStructBaseOnSibling,	fpStructLeftmostChild,	and
fpStructRightmostChild.	Very	simply,	these	constants	inform	FrontPage	which
position	you	want	to	apply	to	the	file	in	the	navigation	structure—	left,	right,	or
base	the	position	on	one	of	the	siblings.	Here,	myFileOne	becomes	the	leftmost
child	of	the	home	page.	The	next	step	is	to	add	the	next	page,	so	that	you	can
view	the	navigation	structure	in	Navigation	view.	The	following	adds	another
page	and	navigation	node	to	the	previous	Web	site.

Private	Sub	Add()

				Dim	myNewWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myFileUrl	As	String

				Dim	myFileOne	As	String

				Dim	myFileTwo	As	String

				Set	myNewWeb	=	_

								Webs.Add("C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World")

				Set	myFiles	=	myNewWeb.RootFolder.Files

				myFileUrl	=	_

								"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\index.htm"

				myFiles.Add(myFileUrl)

				myFileOne	=	"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\"

				myFileOne	=	myFileOne	&	"Spain.htm"

				myFileTwo	=	"C:\My	Web	Sites\Coho	Winery\Wines	Around	the	World\"	

				myFileTwo	=	myFileTwo	&	"France.htm"

				myFiles.Add	myFileOne

				myFiles.Add	myFileTwo

				Call	myNewWeb.HomeNavigationNode.Children.Add(myFileOne,	"Spain",	_

								fpStructLeftmostChild)

				Call	myNewWeb.HomeNavigationNode.Children.Add(myFileOne,	"Spain",	_	

								fpStructRightmostChild)

				myNewWeb.ApplyNavigationStructure

End	Sub

You	can	continue	to	add	pages	and	navigation	nodes	to	your	Web	site	in	this	way
until	your	Web	site	is	complete.	Or,	you	can	create	a	For	loop	where	you	iterate
through	the	Web	site	adding	the	number	of	pages	and	navigation	nodes	you	need
to	complete	the	Web	site.	The	following	example	adds	five	pages	and	navigation
nodes	to	a	new	subsite	in	the	Coho	Winery	Web	site.

Note		Creating,	moving,	or	deleting	files	and	folders	while	attempting	to	modify
the	navigation	structure	may	cause	some	changes	to	be	lost.	First,	make	the
changes	to	the	folder	structure	of	the	Web	site,	then	make	the	navigation
structure	changes,	and	then	apply	the	navigation	structure	to	the	Web	site.

Private	Sub	AddDesignerCrystalWeb()

				Dim	myWeb	As	WebEx

				Dim	myParentWeb	As	WebEx

				Dim	myFolders	As	WebFolders

				Dim	myFolder	As	WebFolder

				Dim	myFiles	As	WebFiles

				Dim	myNewFiles(4)	As	WebFiles

				Dim	myChildNode	As	NavigationNode

				Dim	myNewFilename	As	String

				Dim	myFileURL	As	String

				Dim	myCount	As	Integer

				Dim	myBaseURL	As	String

				Dim	myWebURL	As	String

				Dim	myInputMsg	As	String

				Dim	myExist	As	Boolean

				Set	myParentWeb	=	_

								Webs.Open	("C:/My	Documents/My	Web	Sites/Coho	Winery/")

				myParentWeb.Activate

				myBaseURL	=	"C:/My	Documents/My	Web	Sites/Coho	Winery/"

				myWebURL	=	myBaseURL	&	"Coho	Winery	Designer	Crystal"

				myExist	=	False

				myInputMsg	=	_

								"All	files	will	have	"".htm""	appended.	Type	a	file	name:	"

				Set	myFolders	=	Webs(0).RootFolder.Folders

				For	Each	myFolder	In	myFolders

								'Check	to	see	if	myWebURL	already	exists.

								If	myFolder.IsWeb	And	myFolder.Url	=	myWebURL	Then

												myExist	=	True

								End	If

				Next

				'Create	myWebURL	if	it	doesn't	exist.

				If	myExist	=	False	Then	Webs.Add(myWebURL).Activate

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				'Create	files.

				For	myCount	=	0	To	UBound(myNewFiles)

								myNewFilename	=	InputBox(myInputMsg)

								myFileURL	=	myWeb.Url	&	"/"	&	myNewFilename	&	".htm"

								myFiles.Add	myFileURL

								myFiles(myFileURL).Edit

				Next

				'Add	to	navigation	structure.

				For	myCount	=	0	To	UBound(myNewFiles)

								'Check	if	the	current	page	is	index.htm,	if	so,	skip	it.

								If	myFiles(myCount).Title	=	"index.htm"	Then

												myCount	=	myCount	+	1

								End	If

								Set	myChildNode	=	_

										myWeb.RootNavigationNode.Children(0)

								'Add	navigation	node	to	the	current	page.

								myChildNode.Children.Add	myFiles(myCount).Url,	_

												myFiles(myCount).Title,	fpStructLeftmostChild

				Next

				myWeb.ApplyNavigationStructure

End	Sub

Creating	a	Web	site	with	the	MakeWeb	method

If	you	already	have	an	existing	folder	that	you'd	like	to	convert	to	a	Web	site,
you	can	use	the	MakeWeb	method	with	a	WebFolder	object	as	shown	in	the
following	example.

Note		The	following	example	assumes	that	Webs(0)	is	the	Coho	Winery	Web	site
and	that	it	contains	a	folder	called	FolderOne.

Private	Sub	MakeAWeb()

				Dim	myWeb	As	WebEx

				Dim	myFolder	As	WebFolder

				Set	myWeb	=	Webs(0)

				myWeb.Activate

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("FolderOne")

				myFolder.MakeWeb

End	Sub

You	will	need	to	create	a	navigation	structure	once	PageOne	is	a	subsite	of	Coho
Winery.

Exploring	Procedures
This	topic	is	designed	to	give	users	who	may	be	familiar	with	Microsoft
FrontPage,	but	unfamiliar	with	Microsoft	Visual	Basic	for	Applications	(VBA),
a	background	on	some	of	the	basic	concepts	in	a	FrontPage-based	programming
environment.	Programming	in	FrontPage	Visual	Basic	for	Applications	provides
you	with	HTML	tools	in	an	Microsoft	Office	programming	environment	where
you	can	create	procedures	that	perform	a	task	or	a	series	of	tasks.	For	example,
you	could:

Create	a	procedure	that	retrieves	data	from	a	Microsoft	Access	database	and
displays	the	data	on	your	Web	page.
Publish	a	Microsoft	PowerPoint	presentation	for	automatic	updates	over	the
Internet.
Automatically	update	a	Microsoft	Excel	spreadsheet	with	input	from	users
responding	to	your	Web	site.

This	topic	provides	information	on	the	following	VBA	programming	concepts.

Organize	code	for	modular	use

Types	of	procedures

Public	and	private	procedures

Types	of	procedure	calls

Event	procedures	and	arguments

Create	a	table	in	FrontPage	from	an	Access	database

Organize	code	for	modular	use

Visual	Basic	procedures	provide	a	way	for	developers	to	organize	code	for
modular	use.	Instead	of	writing	the	same	calculator	function	over	and	over	for
each	program,	you	can	take	that	segment	of	code	(the	calculator	function)	and
compile	it	into	a	general	program,	that	can	then	be	accessed	by	many	other
programs.	In	Visual	Basic,	a	block	of	code	is	enclosed	between	a	procedure
heading	and	a	closure	statement—	the	Sub	and	End	Sub	statements.

The	basic	syntax	of	a	procedure	within	Visual	Basic	is	shown	in	the	following
code	sample.

[Private|Public|Static]	Sub	procedurename(arguments)

statements

End	Sub

To	run	any	of	the	complete	code	examples	included	in	the	FrontPage	Visual
Basic	for	Applications	online	help,	follow	these	steps:

1.	 Open	FrontPage,	select	Macro	from	the	Tools	menu,	and	then	click	Visual
Basic	Editor.

2.	 Double-click	Microsoft_FrontPage	(or	the	current	project)	in	the	Project
window	and	expand	the	Modules	folder.

3.	 Double-click	Module	1	to	open	the	Code	window.
4.	 Copy	the	code	block	from	the	documentation,	and	then	paste	it	into	the

Code	window.
5.	 Click	Run	Sub/UserForm	on	the	toolbar.

Your	code	will	automatically	be	saved	when	you	close	the	Visual	Basic	Editor.

Types	of	procedures

FrontPage	VBA	provides	two	types	of	procedures,	Sub	and	Function
procedures.	Sub	procedures	perform	tasks	but	do	not	return	any	values.	They
may	be	called	from	other	subroutines	or	executed	in	response	to	an	event,	such
as	a	mouse	click	or	a	keystroke.

Note		A	Sub	procedure	can	be	an	event	procedure,	but	it	can	also	perform	a	task
without	necessarily	responding	to	an	event.

The	following	procedure	retrieves	the	version	number	of	FrontPage	from	the
active	Web	site	but	doesn't	return	the	version	number	to	any	other	procedure.

Sub	DisplayVersion()

				Dim	myWeb	As	WebEx

				Dim	myVersion	As	String

				myVersion	=	"FrontPage	version	number:	"	&	ActiveWeb.Application.Version

End	Sub

A	Function	procedure	also	performs	tasks,	but	it	can	in	addition	return	one	or
more	values	as	arguments.	The	following	code	sample	returns	the	version
number	of	FrontPage	to	a	calling	procedure.

Function	ReturnVersion()	As	Variant

				Dim	varAppVersion	As	Variant

				varAppVersion	=	Application.Version

				ReturnVersion	=	varAppVersion

End	Function

The	variable	ReturnVersion	now	contains	the	version	number	of	FrontPage.	To
access	this	value	in	the	calling	procedure,	you	could	write	code	similar	to	the
following	sample.

Sub	GetAppVersion()

				Dim	myAppVersion	As	Variant

				MsgBox	"This	version	of	FrontPage	is	version	"	_

				&	ReturnVersion

End	Sub

Alternatively,	you	could	assign	the	expression	ReturnVersion	to	a	variable	and

append	the	variable	to	the	message	box	statement	instead	of	the	function	call.

Both	Sub	and	Function	procedures	can	be	called	to	perform	their	tasks,
depending	on	whether	the	procedures	are	declared	Public	or	Private.

A	macro	is	a	third	term	used	to	describe	code	in	VBA.	As	a	public	Sub
procedure	that	doesn't	take	arguments,	a	macro	may	or	may	not	call	other	Sub	or
Function	procedures	and	can	be	assigned	to	command	bars	and	shortcut	keys	or
run	from	the	Macro	dialog	box.

Public	and	private	procedures

Visual	Basic	provides	two	ways	to	access	a	procedure.	By	default,	procedures
are	public—	they	can	be	called	from	any	other	procedure	in	any	module	within
your	application.	For	example,	if	you've	written	a	procedure	that	lists	images	by
file	name	on	a	Web	page,	you	would	want	to	declare	that	procedure	public	so
that	you	could	use	it	across	all	of	your	Web	sites.	However,	if	you've	written	a
procedure	that	edits	a	specific	database,	you	would	want	that	procedure	to	be
available	only	to	the	module	that	handles	editing	the	database—	in	that	case,	you
can	declare	the	procedure	private.	Procedures	that	have	been	declared	private
can	only	be	referenced	by	other	procedures	within	the	same	module.	The
function	shown	previously	has	been	declared	a	public	function	in	the	following
code	sample	and	can	be	called	across	modules	and	projects.

Public	Function	ReturnVersion()	As	Variant

				statements

End	Function

In	contrast,	a	procedure	that	is	used	to	edit	a	database	should	be	declared	private.

Private	Function	EditCustomerName(strFirstName	As	String)

				statements

End	Function

Types	of	procedure	calls

How	do	you	programmatically	run	a	procedure?	You	declare	it	the	same	way
that	you	would	use	a	keyword,	such	as	Open.	The	following	procedure	calls	the
ReturnVersion	function	and	assigns	the	returned	value	to	a	local	variable,
MyVersion,	for	the	value	that	is	passed	to	the	procedure.

Sub	TestCall()

				Dim	MyVersion	As	Variant

				MyVersion	=	ReturnVersion

End	Sub

If	you	didn't	have	any	information	to	pass	from	one	procedure	to	another,	you
would	simply	declare	the	procedure	name,	as	shown	in	the	following	code
sample.

Sub	TestCall2()

				DisplayCompanySplashScreen

End	Sub

The	TestCall2	procedure	calls	another	procedure,
DisplayCompanySplashScreen,	which	doesn't	take	any	arguments	or	return	any
values.

Event	procedures	and	arguments

If	you	want	an	event,	such	as	clicking	a	command	button,	to	trigger	the
execution	of	code	in	cases	where	you	would	usually	pass	a	value	into	the	calling
procedure,	you	can	execute	the	results	from	the	function	rather	than	return	the
results.	In	this	case	the	ReturnVersion	function	becomes	a	subroutine	and
initiates	the	display	of	the	version	number	for	the	application.

Sub	ReturnVersion()

				Dim	varAppVersion	As	Variant

				varAppVersion	=	Application.System.Version

				DisplayMsgBox	varAppVersion

End	Sub

The	DisplayMsgBox	subroutine	shown	in	the	following	code	sample	displays	the
contents	of	the	variable	varGotAppVersion	that	was	passed	from	the
ReturnVersion	subroutine.

Sub	DisplayMsgBox(varGotAppVersion	As	Variant)

				Dim	varDisplayAppVersion	As	Variant

				varDisplayAppVersion	=	varGotAppVersion

				MsgBox	"This	application	is	version	"	_

								&	varDisplayAppVersion

End	Sub

An	event	procedure	can	now	initiate	the	display	of	the	value	that	is	passed	from
the	ReturnVersion	subroutine.

Private	Sub	CommandButton1_Click()

				ReturnVersion

End	Sub

Create	a	table	in	FrontPage	from	an	Access	database

The	following	procedure	combines	objects	from	the	Page	object	model	and	the
Web	object	model	to	retrieve	data	from	an	open	Microsoft	Access	database	and
insert	it	into	a	table	on	a	FrontPage-based	Web	page.	The	ParseDBTable
procedure	provides	the	parameters	for	the	ParseAccessTable	function	which
calls	the	following	functions	to	create	and	populate	the	table:

AddDBTableToPage—	creates	a	new	table
AddDBRow—	inserts	a	row	onto	the	Web	page
AddMemo—	retrieves	the	memos	from	the	Access	database,	returns	them
as	bookmarks	at	the	bottom	of	the	page	below	the	new	table,	and	returns	the
URL	to	the	bookmark

Note		The	Access	database,	Northwind.mdb,	was	used	for	this	example.	To	run
the	example,	you	must	have	references	in	the	Visual	Basic	Editor	to	the
Microsoft	DAO	3.6	Object	Library	and	the	Microsoft	Access	Object	Library.
You	must	also	open	an	Access	database	before	running	the	example,	and	you
must	add	a	blank	temporary	file	called	tmp.htm	in	the	active	Web	site.	If	you	use
a	database	other	than	Northwind.mdb,	you	must	specify	the	database	name	and
table	in	the	ParseDBTable	procedure.

Function	AddDBTableToPage(myPage	As	PageWindowEx,	_

				myTableName	As	String,	myFields	As	Integer)

				Dim	myTable	As	FPHTMLTable

				Dim	myHTMLString	As	String

				Dim	myCount	As	Integer

				myHTMLString	=	"<table	border=""2""	id=""myRecordSet_"	&	_

				myTableName	&	""">"	&	vbCrLf

				myHTMLString	=	myHTMLString	&	"<tr>"	&	vbCrLf

				For	myCount	=	1	To	myFields

								myHTMLString	=	myHTMLString	&	"<td	id=""myDBField_"	&	_

												myCount	&	""">	</td>"	&	vbCrLf

				Next	myCount

				myHTMLString	=	myHTMLString	&	"</tr>"	&	vbCrLf

				myHTMLString	=	myHTMLString	&	"</table>"	&	vbCrLf

				Call	myPage.Document.body.insertAdjacentHTML("BeforeEnd",	_

								myHTMLString)

End	Function

Function	AddDBRow(myDBTable	As	FPHTMLTable)

				Dim	myHTMLString	As	String

				Dim	myTableRow	As	FPHTMLTableRow

				Set	myTableRow	=	myDBTable.rows(0)

				myHTMLString	=	myTableRow.outerHTML

				Call	myDBTable.insertAdjacentHTML("BeforeEnd",	myHTMLString)

End	Function

Function	AddMemo(myCurrentPage	As	PageWindowEx,	myDBMemo	As	String,	_

				myBkMarkField	As	String,	myIndex)	As	String

				Dim	myHTMLString	As	String

				Dim	myMemoBkMark	As	String

				Dim	myBookMark	As	FPHTMLAnchorElement

				myMemoBkMark	=	myBkMarkField	&	"_"	&	myIndex

				myHTMLString	=	"	Memo	#"	&	_

				myIndex	&	""	&	vbCrLf

				'Add	the	bookmark	to	the	page.

				Call	myCurrentPage.Document.body.insertAdjacentHTML("BeforeEnd",	_

								myHTMLString)

				Set	myBookMark	=	myCurrentPage.Document.all(myMemoBkMark)

				'Add	the	memo	text	to	the	page.

				Call	myCurrentPage.Document.body.insertAdjacentHTML("BeforeEnd",	_

								myDBMemo)

				AddMemo	=	""

End	Function

Function	ParseAccessTable(myDBName	As	String,	myTableName	As	String)

				'Access/DAO	Declarations.

				Dim	myDBApp	As	Access.Application

				Dim	myRecordSet	As	DAO.recordset

				Dim	myDBField	As	DAO.Field

				'FrontPage	Page	object	model	declarations.

				Dim	myPage	As	PageWindowEx

				Dim	myTable	As	FPHTMLTable

				Dim	myTableRow	As	FPHTMLTableRow

				Dim	myTableCell	As	FPHTMLTableCell

				'Function	declarations.

				Dim	myCount	As	Integer

				Dim	myFieldValue	As	String

				Dim	myRecordCount	As	Integer

				myRecordCount	=	0

				'Function	constants.

				Const	myTempPage	=	"tmp.htm"

				'Get	the	current	Access	database.

				On	Error	GoTo	AccessNotThereYet

								Set	myDBApp	=	GetObject(,	"Access.Application")

				'Get	the	database	table.

				On	Error	Resume	Next

				Set	myRecordSet	=	myDBApp.CurrentDb.OpenRecordset(myTableName)

				'Add	a	new	page	to	the	current	Web	site.

				Set	myPage	=	ActiveWeb.LocatePage(myTempPage)

				myPage.SaveAs	myTableName	&	".htm"

				'Delete	the	temporary	file	from	Web	site.

				ActiveWeb.LocatePage(myTempPage).File.Delete

				'Add	a	database-ready	table	to	the	page	with	the	proper	number	of	fields.

				AddDBTableToPage	myPage,	myTableName,	myRecordSet.Fields.Count

				'Get	a	reference	to	the	table.

				Set	myTable	=	myPage.Document.all.tags("table").Item(0)

				'Populate	the	first	row.

				For	myCount	=	0	To	myRecordSet.Fields.Count	-	1

								myTable.rows(0).cells(myCount).innerHTML	=	""	&	_

												Trim(myRecordSet.Fields(myCount).Name)	&	""

				Next

				'Populate	the	rest	of	the	table.

				While	Not	(myRecordSet.EOF)

			

								AddDBRow	myTable

								Set	myTableRow	=	myTable.rows(myTable.rows.Length	-	1)

			

								For	myCount	=	0	To	myRecordSet.Fields.Count	-	1

												Set	myTableCell	=	myTableRow.cells(myCount)

							

												If	IsNull(myRecordSet.Fields(myCount))	Then

																myFieldValue	=	"None"

												Else

																myFieldValue	=	Trim(myRecordSet.Fields(myCount).Value)

												End	If

												If	myRecordSet.Fields(myCount).Type	=	DAO.dbMemo	Then

																myFieldValue	=	AddMemo(myPage,	_

																				myRecordSet.Fields(myCount).Value,	_

																				myRecordSet.Fields(myCount).Name,	myRecordCount)

												End	If

												myTableCell.innerHTML	=	myFieldValue

								Next	myCount

								myRecordSet.MoveNext

								myRecordCount	=	myRecordCount	+	1

				Wend

				myPage.Save

				myDBApp.Quit

				Exit	Function

				AccessNotThereYet:

								Debug.Print	Err.Number	&	":"	&	Err.Description

								Resume

End	Function

Private	Sub	ParseDBTable()

				Call	ParseAccessTable("Northwind.mdb",	"Products")

End	Sub

Sharing	Programming	Projects
Microsoft	FrontPage	doesn't	provide	the	ability	to	create	multiple	projects,	so
sharing	a	project	may	be	a	little	confusing	at	first	glance.	You	can	share	your
Microsoft	FrontPage	projects	using	one	of	the	following	two	methods:

As	a	ComAddIn.
By	exporting	the	.bas,	.cls,	and	.frm	modules	to	a	directory	on	your	hard
drive	(or	a	server	location)	so	that	the	user	can	import	the	modules	to	their
project	in	FrontPage.

Sharing	as	a	COMAddIn

For	a	detailed	description	of	how	to	develop	a	COM	add-in	for	FrontPage,	see
the	FrontPage	Software	Developer	Kit,	which	you	can	view	online	or	download
from	the	Microsoft	Developer	Network	Web	site.

Sharing	by	exporting	the	project

You	can	export	your	modules	from	the	Visual	Basic	Editor	by	selecting	the
module	in	the	Project	window	and	then	pointing	to	Export	File	on	the	File
menu.	In	the	Export	File	dialog	box,	select	the	directory	you	want	the	file	to
reside	in	and	FrontPage	takes	care	of	the	rest.

Note		When	exporting	UserForm	files,	you	must	also	include	the	.frx	file.	This
file	is	used	during	the	import	process	and	does	not	need	to	be	imported,	but	does
need	to	be	available	in	the	same	directory	as	the	other	modules.

Understanding	Absolute	and	Relative
URL	Addressing	in	Microsoft
FrontPage
Microsoft	FrontPage	uses	absolute	URL	addressing.	However,	FrontPage	does
provide	a	way	to	change	the	addressing	of	URLs	between	absolute	and	relative
addressing	through	the	MakeRel	and	MakeAbs	methods.

What	is	an	absolute	URL?

A	URL	defines	the	location	of	an	object.	When	a	URL	is	absolute,	it	defines
unambiguously	where	the	object	is	located.	For	example,
http://www.microsoft.com/FrontPage/default.htm	is	the	exact	location	of	the
welcome	page	for	Microsoft	FrontPage.	The	object,	default.htm,	is	stored	in	the
FrontPage	folder	or	Web	subsite	on	the	Web	server,	www.microsoft.com.

A	disk-based	Web	site	that	contains	your	Web	sites	on	your	hard	drive	might
have	a	base	absolute	URL	such	as	file:///C:/My	Documents/My	Web	Sites,
file:///C:/WINNT/Profiles/your	logon	alias/Personal/My	Web	Sites/index.htm,	or
file:///C:/Documents	and	Settings/your	logon	alias/My	Documents/My	Web
Sites.

As	Web	sites	are	updated	and	the	structure	of	a	Web	site	evolves,	documents	can
often	be	moved	from	one	location	to	another	in	a	Web	site.	If	you're	using	a
relative	address,	you	may	break	some	links.	For	example,	if	you	have	a
document	that	has	a	hyperlink	to	an	object,	you	can	use	an	absolute	URL	to
ensure	that	the	hyperlink	always	refers	to	that	object.	For	example,	a	document
such	as	file:///C:/My	Documents/My	Webs/mydocument.htm,	may	contain	an
absolute	URL	that	refers	to	the	welcome	page,
http://www.microsoft.com/FrontPage/default.htm.	If	the	document,	default.htm,
is	moved	to	another	location,	the	absolute	URL	for	the	document	will	always
refer	to	the	object	on	the	Web	server	at	www.microsoft.com	in	the	subsite	named
FrontPage.	If	the	URL	for	the	hyperlink	to	default.htm	is	a	relative	address,	the
link	could	be	broken	if	mydocument.htm	is	moved	to	a	different	subsite	or	main
Web	site.

What	is	a	relative	URL?

Instead	of	specifying	every	piece	of	a	URL	that	fully	defines	how	to	find	an
object,	you	can	abbreviate	a	URL	to	make	it	"relative"	to	a	current	location.
Relative	URLs	are	typically	used	when	creating	a	Web	site	in	which	the	pages	in
it	refer	to	other	pages	on	the	site.	A	page	such	as	file:///C:/My	Documents/My
Web	Sites/mydocument.htm	can	have	a	relative	URL	to	"newdocument.htm"	or
to	"../My	Web	Sites2/default.htm".	In	these	two	cases,	the	referred	addresses	for
these	files	are	file:///C:/My	Documents/My	Web	Sites/newdocument.htm	and
file:///C:/My	Documents/My	Web	Sites2/default.htm.	Notice	that	the	full	Web

server	or	explicit	directory	isn't	specified;	the	location	is	based	on	where	the
document	is	located.

Relative	URLs	are	very	useful,	particularly	when	constructing	a	site	in	one	place
and	then	publishing	it	to	another	place.	For	example,	you	might	not	want	to
specify	a	server	name	while	authoring	a	Web	page,	because	the	server	name	will
change	when	the	Web	site	is	published.

How	can	an	absolute	URL	be	made	relative?

URLs	can	be	made	relative	either	to	a	server	or	to	a	page.	In	order	to	make	a
URL	relative	to	a	folder	or	to	a	Web	site,	you	need	to	make	the	URL	relative
either	to	a	server	or	to	a	page,	because	FrontPage	will	treat	the	URL	as	if	it	were
being	made	relative	to	a	page	in	that	folder	or	Web	site.	Each	relative	URL,
combined	with	its	base	URL	fully	specifies	where	the	object	is	located.

When	you	have	an	absolute	address	such	as
http://www.microsoft.com/mywebsite	with	an	image	file	called	MyPicture.gif
residing	in	the	images	folder	on	the	Web	site,	you	can	create	a	relative	URL	for
that	address	by	deciding	whether	the	relative	address	will	refer	to	a	server	or	a
page.	For	a	server-relative	URL,	you'd	use	"mywebsite/images/MyPicture.gif"
with	the	server	name	as	the	base	for	the	relative	URL,	which	fully	defines	the
location	of	the	object.	For	a	page-relative	URL,	you'd	use
"images/MyPicture,gif"	with	the	server	name	and	the	Web	site	name	as	the	base
for	the	relative	URL,	which	fully	defines	the	location	of	the	object.	For	a	folder-
relative	URL,	you'd	use	"MyPicture.gif"	with	the	server	name,	Web	site	name,
and	folder	name	as	the	base	for	the	relative	URL;	this	relative	address	fully
defines	the	location	of	the	object.

A	folder-relative	URL	can	also	be	specified	from	a	different	folder,	for	example,
"../images/MyPicture.gif"	could	be	used	if	the	referring	document	were	in
another	top-level	folder	on	the	same	Web	site	and	server.	The	".."	is	the	notation
used	to	indicate	up	one	folder	level	from	the	current	URL	address.

Programmatic	Access	to	Relative	URLs

Once	you've	decided	whether	to	use	server,	Web	site,	or	folder-relative	URLs,
you	can	determine	which	objects	to	use.	For	server	or	Web	site-relative	URLs,
you	would	be	working	with	methods	related	to	the	WebEx	object.	For	folder-
relative	URLs,	you	would	be	working	with	methods	related	to	the	WebFolder

object.

Converting	relative	and	absolute	URLs

Recommended	use	for	FrontPage	is	absolute	addressing.	However,	once	you
have	specified	a	relative	URL	within	FrontPage,	you	can	use	the	MakeAbs
method	to	convert	it	into	an	absolute	URL.	Similarly,	if	you	have	an	absolute
URL	and	you	want	to	insert	a	reference	into	a	document	as	a	relative	URL,	you
can	use	the	MakeRel	method	to	convert	the	address	to	a	relative	address.	You
can	also	use	the	MakeAbs	and	MakeRel	methods	to	convert	a	hyperlink	for	a
WebEx,	WebFolder,	WebFileEx,	NavigationNode,	or	IHTMLDocument2
object.

Exploring	the	Object	Model	in
FrontPage
The	Microsoft	FrontPage	object	model	consists	of	three	separate	object	models
—	the	Application	object	model,	the	Web	object	model,	and	the	Page	object
model	that	is	based	on	the	Microsoft	Internet	Explorer	4.0	Document	object
model.

These	object	models	are	designed	to	provide	Web	designers	with	a	rich	set	of
programming	interfaces	to	manage	individual	HTML	documents	and	FrontPage-
based	Web	sites.	The	object	models	parallel	other	Microsoft	Office	application
object	models	as	closely	as	possible	in	order	to	leverage	the	experience	and
knowledge	users	currently	have	with	other	programmable	Office	applications.	In
addition,	the	Page	object	model	is	compatible	with	the	Document	object	model
of	Microsoft	Internet	Explorer	4.0	and	later.	The	Page	object	model	also
leverages	the	experience	and	knowledge	of	Web	developers	who	program
dynamic	HTML	(DHTML)	using	script.

Differences	in	the	programming	interfaces

FrontPage	provides	a	design-time	user	experience	versus	a	run-time	user
experience,	because	HTML	pages	are	usually	viewed	in	a	browser	rather	than	in
FrontPage.	Other	Office	applications	provide	a	run-time	user	experience	that
contains	an	environment	where	the	developer	can	create	solutions	for	the	user
that	run	within	the	application.	With	FrontPage,	you	can	create	utilities	for	use
during	the	design	phase	of	the	HTML	document	or	Web	site	and,	once	you	have
designed	and	built	your	Web	site,	you	can	use	Microsoft	Visual	Basic	Scripting
Edition	(VBScript),	Microsoft	JScript,	and	DHTML	to	create	interactive	effects
for	use	during	run-time	when	the	page	is	viewed	in	a	browser.

Visit	the	Office	Developer	Center	on	the	Microsoft	Developer	Network	(MSDN)
Web	site	for	the	latest	Microsoft	FrontPage	development	information,	including
new	technical	articles,	downloads,	samples,	product	news,	and	more.

Application	object	model	functionality

The	Application	object	is	the	top-level	object	in	the	Web	object	model	hierarchy
and	provides	access	to	all	of	the	objects	in	FrontPage,	such	as	the	active	Web
site,	active	page,	add-ins,	command	bars,	system,	and	a	collection	of	Web	sites.

FrontPage	Page	object	model	functionality	and
restrictions

The	Page	object	model	provides	access	to	the	HTML	in	a	page	and	has	most	of
the	functionality	of	the	Internet	Explorer	Document	object	model,	with	some
exceptions.	Some	objects	and	members	of	the	Internet	Explorer	Document
object	model	provide	functionality	that	is	only	useful	in	an	Internet	Explorer
environment.	Those	objects	and	members	are	not	implemented	for	use	in	the
Page	object	model.

Web	object	model	functionality

The	Web	object	model	provides	programmatic	management	of	multiple
FrontPage-based	Web	sites	and	their	contents.	This	object	model	is	based	on
conventions	used	by	the	applications	in	the	Microsoft	Office	System	and
Microsoft	Visual	Basic	for	Applications	(VBA).	The	Web	object	model	also
provides	support	for	Microsoft	Visual	SourceSafe	when	accessed	through
FrontPage.

Object	model	interaction

Most	of	the	programming	for	FrontPage-based	Web	sites	will	contain	a
combination	of	Web	and	Page	object	model	programming	elements.	For
additional	information	and	examples	of	this,	see	one	of	the	following	topics.

Accessing	Framesets	with	Microsoft	Visual	Basic

Modifying	Pages	Programmatically

Programming	Dynamic	Elements

Accessing	Framesets	with	Microsoft
Visual	Basic
Frames	are	an	important	part	of	the	design	of	a	Web	site.	Microsoft	FrontPage
provides	support	for	programming	the	content	of	frames.	Click	one	of	the
following	links	for	more	information	on	a	particular	topic.

Exploring	frames

Role	of	a	frameset

Accessing	HTML	tags

Dynamic	frame	sources

Iterating	all	frames	in	a	page	window

Changing	Meta	tag	content	to	another	character	set

Exploring	frames

Accessing	frames	within	a	frameset	in	FrontPage	is	relatively	straightforward	as
long	as	you	keep	in	mind	that	each	frame	accesses	its	own	page	and	that	you
access	the	contents	of	each	page	through	the	Page	object	model.	The	two
windows	involved	in	displaying	the	frames	are	the	PageWindowEx	object	and
FPHTMLWindow2	objects.	The	equivalent	expression	for	accessing	the
contents	in	the	window	associated	with	the	active	frame	is	Set
myActiveFrameInFrameset	=	ActivePageWindow.Document.	The
ActivePageWindow	object	accesses	the	page	window	for	the	frame,	and	the
Document	object	accesses	the	FPHTMLWindow2	object.

Note		You	may	get	permission	denied	errors	if	you	try	to	access	objects	while	in
HTML	view.	When	you	want	to	add	code	or	text	to	a	document	object,	you	must
set	the	FpPageViewMode	constant	for	the	ViewMode	property	to
fpPageViewNormal.	The	value	for	the	view	mode	cannot	be	set	to
fpPageViewHtml	or	fpPageViewPreview.	Alternatively,	in	the	FrontPage	user
interface	(UI),	you	cannot	have	the	HTML	tab	or	the	Preview	tab	open	in	Page
view.

Role	of	a	frameset

A	frameset	is	the	container	for	all	of	the	frames	in	a	Web	window.	Each	frame	is
contained	in	an	individual	page	window	and	has	an	individual	page	associated
with	it.	By	accessing	the	FrameWindow	object	from	the	Web	object	model,	you
access	an	FPHTMLWindow2	object	that	contains	the	frame	page	document.
From	these	objects	you	can	access	the	windows,	documents,	and	frames	of	the
frameset.	In	the	following	statement,	myFrameset	is	an	FPHTMLWindow2
object	that	returns	the	frames	page	document.	From	this	object,	you	can	access
the	<FRAME>	and	<FRAMESET>	tags,	or	the	window	or	document	objects.

Set	myFrameset	=	ActivePageWindow.FrameWindow

This	statement	returns	an	FPHTMLWindow2	object	through	the	Page	object
model.	The	Document	property	of	myFrameset	accesses	the	Page	object	model
for	the	page	that	is	equivalent	to	accessing	the	frames	page	HTML	tab	in	Page
view	in	FrontPage.

Note		The	Frames	Page	HTML	and	No	Frames	tabs	are	only	available	when
frames	exist	on	the	current	page.

Accessing	HTML	tags

You	can	access	the	same	information	that	a	frames	tag	accesses	by	declaring	an
object	as	an	FPHTMLFrameElement.	Some	of	the	properties	and	methods
available	for	this	object	include	border,	borderColor,	click,	frameBorder,
frameSpacing,	innerHTML,	innerText,	insertAdjacentHTML,	and
insertAdjacentText.

Dim	myFramesElements()	As	FPHTMLFrameElement

You	can	access	the	information	for	a	frameset	tag	by	declaring	an
FPHTMLFramesetSite	object.

Dim	myFramesetSite	As	FPHTMLFramesetSite

Dynamic	frame	sources

You	can	dynamically	change	the	frame	source	in	the	HTML	code	by	using	the
following	statements.	This	code	sets	the	frame	source	to	a	new	URL,
Inventory_1stQuarter.htm.

Dim	myDoc	As	Object

Set	myDoc	=	ActivePageWindow.FrameWindow.Document

myDoc.all.tags("frame").Item(0).src	=	_

				"Inventory_1stQuarter.htm"

Iterating	all	frames	in	a	page	window

To	access	the	properties	of	the	frameset	elements	that	reside	in	a	particular
frames	page,	you	must	access	the	FPHTMLDocument	object	through	the
Document	property.	The	following	example	iterates	through	the	frameset	and
frame	elements	for	the	active	frameset	in	Microsoft	FrontPage.	The	frameset
array	(myFSElements)	comprises	each	<FRAMESET>	tag	on	the	frames	page.
The	frames	array	(myFramesElements)	comprises	each	<FRAME>	tag	on	the
frames	page.	The	frame	windows	array	(myFramesWindows)	comprises	each
FPHTMLWindow2	object	that	points	to	each	frame.	You	populate	each	of	the
arrays	by	iterating	through	their	respective	tags	or	objects.	Once	the	arrays	are
populated,	you	change	the	frameSpacing	property	in	the	frameset	element	to
"10",	the	borderColor	property	to	"red",	and	change	various	other	properties	in
the	document.

Private	Sub	AccessFramesPage()

Dim	myFPWindow	As	FPHTMLWindow2

Dim	myFSElements()	As	IHTMLFrameSetElement

Dim	myFramesWindows()	As	FPHTMLWindow2

Dim	myFramesElements()	As	FPHTMLFrameElement

Dim	myStyle	As	FPHTMLStyle

Dim	i	As	Integer

Set	myFPWindow	=	ActivePageWindow.FrameWindow

ReDim	myFSElements(myFPWindow.Document.all.tags("FRAMESET").length)

ReDim	myFramesElements(myFPWindow.Document.all.tags("FRAME").length)

ReDim	myFramesWindows(myFPWindow.frames.length)

For	i	=	0	To	UBound(myFSElements)

				Set	myFSElements(i)	=	_

								myFPWindow.Document.all.tags("FRAMESET").Item(i)

Next	i

i	=	0

For	i	=	0	To	UBound(myFramesWindows)

				Set	myFramesWindows(i)	=	myFPWindow.frames(i)

Next	i

i	=	0

For	i	=	0	To	UBound(myFramesElements)

				Set	myFramesElements(i)	=	_

								myFPWindow.Document.all.tags("FRAME").Item(i)

Next	i

myFSElements(0).frameSpacing	=	"10"

myFramesElements(0).borderColor	=	"red"

With	myFramesWindows(2).Document

				.bgColor	=	"green"

				.body.innerHTML	=	"<p	id=""cool"">	Added	by	FP	Programmability"

				Set	myStyle	=	.all.cool.style

								myStyle.backgroundColor	=	"white"

								myStyle.display	=	False

								myStyle.textDecorationUnderline	=	True

								myStyle.Font	=	"Tahoma,	24"

								myStyle.fontStyle	=	"italic"

End	With

End	Sub

Changing	Meta	tag	content	to	another	character	set

You	can	change	all	of	the	content-type	META	tags	to	a	different	character	set
(Central	European)	as	shown	in	the	following	code	sample.	The	current
character	set	is	shown	in	the	Language	Settings	dialog	box	(available	for	page
properties).

Note		The	entire	content-type	META	tag	contains	a	string	similar	to	the
following:

content	=	"text/html;	charset	=	windows-1252"

The	character	set	is	"windows-1252"	and	is	the	default	character	set	for	U.S.
English.

Each	time	the	program	iterates	through	the	loop,	you	access	the	next	frame	in	the
frameWindow	object,	which	is	the	same	as	accessing	each	HTML	frames	tag	in
succession.	However,	the	Frames	collection	does	not	support	the	For...each
construct.	You	cannot	access	HTTP-EQUIV	type	META	tags	via	their	name;	you
must	instead	use	an	index	as	shown	in	the	following	example.	The	expression
beginning	with	myContentType.Content	sets	the	character	set	to	Central
European.

Note		FrontPage	places	the	content	type	in	<META>	tag	zero(0).

Private	Sub	ChangeCharSet()

				Dim	myFrames	As	IHTMLFramesCollection2

				Dim	myFrame	As	FPHTMLWindow2

				Dim	myHTTPEquiv	As	String

				Dim	myContentType	As	Object

				Dim	myCount	As	Integer

				Set	myFrames	=	ActivePageWindow.FrameWindow.frames

				Set	myFrame	=	ActivePageWindow.FrameWindow.frames(0)

				myHTTPEquiv	=	0

				For	myCount	=	0	To	myFrames.Length	-	1

								Set	myFrame	=	myFrames(myCount)

								Set	myContentType	=	_

												myFrame.Document.all.tags("meta").Item(myHTTPEquiv)

								myContentType.content	=	_

												"text/html;	charset=iso-8859-2"

				Next	myCount

End	Sub

Accessing	the	Object	Model	in
FrontPage	from	Design-Time
Controls
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

A	design-time	control	(DTC)	is	one	of	a	class	of	Microsoft	ActiveX	controls	that
is	exclusively	used	at	design-time	as	an	aid	to	authoring	Web	site	content.	DTCs
function	just	like	embedded	wizards—	they	can	be	edited	to	modify	the	output
that	the	DTC	generates	on	the	Web	page.	Once	the	file	is	closed,	the	DTC
becomes	inactive—	the	text	that	the	DTC	generated	has	been	embedded	into	the
file.

How	are	design-time	controls	different	from	ActiveX
controls?

Design-time	controls	do	not	contain	a	binary	run-time	component,	but	do	have	a
special	interface	that	provides	the	ability	for	the	design-time	control	to	persist
and	generate	text.	Design-time	controls	and	ActiveX	controls	can	co-exist	on	the
same	web	page.	For	more	information	on	DTCs,	see	the	documentation	on	the
Microsoft	workshop	Web	site	for	design-time	controls.

How	do	design-time	controls	differ	from	Visual	InterDev?

FrontPage	and	Microsoft	Visual	InterDev	are	compatible	in	most	areas.	For
design-time	controls,	FrontPage	provides	full	access	to	the	Document	object
model	that's	available	in	Microsoft	Internet	Explorer.	The	Web	object	model	is
also	available	for	design-time	controls	and	provides	a	rich	array	of	objects,
events,	methods,	and	properties.	FrontPage	also	provides	support	for	removing
tags	(or	text)	that	is	inserted	into	a	document	by	design-time	controls.

Properties	supported	by	FrontPage	that	are	not	supported	by	Microsoft	Visual
InterDev:

Preview—	returns	a	string	containing	the	controls	preview	text.
Tag—	returns	the	tag	context	for	the	preview	string.

Built-in	options	in	Visual	InterDev	that	FrontPage	doesn't	support:

QueryBuilder
Data	connections
Visual	InterDev	object	model	for	.asp	pages

How	to	access	the	FrontPage	object	model	from	a	design-time	control

A	design-time	control	is	a	type	of	ActiveX	control,	and	thus	accesses	its	host's
object	model	similarly	to	other	controls	(see	FPHTMLObjectElement	object).
The	design-time	control	has	a	UserControl	property	that	returns	the
UserControl	object.	This	object	in	turn	has	an	Extender	property	that	returns
the	environment	where	the	ActiveX	control	resides.	The	expression,
UserControl.extender	returns	the	environment	for	the	specified	DTC.

The	Extender	property	returns	FPHTMLObjectElement	object	and	provides
access	to	all	of	the	properties	and	methods	in	the	FPHTMLObjectElement
object.	One	of	these	properties	is	the	Document	property	that	accesses	the
FrontPage	Page	object	model	for	the	document	where	the	design-time	control
resides.	The	following	statements	illustrate	how	to	access	the	Document
property	from	a	DTC.

Dim	myDTC	As	FPHTMLObjectElement

Dim	myDoc	As	FPHTMLDocument

Dim	myPageWindow	As	PageWindowEx

Set	myDTC	=	UserControl.Extender

Set	myDocument	=	myDTC.document

Set	myPageWindow	=	myDoc.parentWindow.external

The	last	Set	statement	illustrates	how	to	access	the	Web	object	model	from	the
Page	object	model.

Coding	in	a	Windowless	Environment
In	Microsoft	FrontPage,	it	is	possible	to	create	a	windowless	environment	to	cut
down	on	User	Interface	(UI)	overhead,	but	there	are	some	drawbacks	to	working
in	such	an	environment.	For	example,	opening	a	page	with	the	ViewMode
property	set	to	fpPageViewNoWindow,	creates	a	windowless	environment
where	window	elements	that	require	the	UI	won't	work	correctly.	If	you	open	a
page	without	a	window	and	try	to	access	it	using	code	such	as
PageWindow.Document.ParentWindow,	the	resulting	code	returns	nothing	instead
of	returning	an	FPHTMLWindow2	object.	The	following	statements	provide
access	to	windowless	pages.

Application.LocatePage(DocumentUrl	As	String,	_

				ViewMode	As	FpPageViewMode)	As	PageWindowEx

Web.LocatePage(DocumentUrl	As	String,	ViewMode	As	FPPageViewMode)	_

				As	PageWindowEx

File.Edit(ViewMode	As	FpPageViewMode)	As	PageWindowEx

The	following	table	describes	the	PageWindowEx	methods	and	properties	and
the	objects	or	error	messages	they	return.	Some	methods	and	properties	of	the
PageWindowEx	object	are	disabled	in	a	windowless	environment	and	will
return	the	results	shown	in	the	following	table.

Disabled	Method	or	Property	of
the	PageWindow	Object Returned	Object	or	Error	Message

ActiveDocument Returns	"object	or	with	variable	not	set"	error
message.

ActiveFrameWindow Returns	"object	or	with	variable	not	set"	error
message.

Caption Returns	the	URL	for	the	PageWindow
object.

Document Returns	a	Document	object.
File Returns	a	File	object.

ViewMode This	property	can	not	be	set.	It	returns	the
constant	fpPageViewNoWindow.

Visible Returns	False.

Web

Returns	the	Web	object	if	the	object	was
located	using	the	following	statements.

Web.LocatePage

File.Edit

ApplyTheme Returns	a	run-time	error.
Close(ForceSave) Closes	the	page	window.
Refresh(ForceSave) Refreshes	the	page	window.
Save(ForceOverwrite) Saves	the	page	window.
SaveAs(ForceOverwrite) Saves	the	page	window	to	a	new	URL.

Show	All

Modifying	Pages	Programmatically
This	topic	illustrates	how	to	work	with	the	FPHTMLDocument	object	elements
within	the	Page	object	model	either	to	change	the	contents	of	a	page	or	simply	to
access	the	contents	of	a	page	for	verification.

Microsoft	Visual	Basic	is	a	powerful	tool	that	you	can	use	to	modify	content	in
your	Web	pages.	As	you	browse	through	the	Object	Browser,	you'll	see	many	of
the	same	types	of	components	that	you're	familiar	with	in	Microsoft	Internet
Explorer.

Tip

To	only	view	the	programming	elements	that	are	compatible	with	the	FrontPage
Page	object	model,	select	"FrontPageEditor"	as	the	object	library	in	the	Object
Browser.

You	can	access	the	HTML	elements	of	a	page	using	the	ActiveDocument	or
Document	properties	that	return	the	document	object	via	the	PageWindowEx
object.	For	example,	the	following	statement	changes	the	background	color	for
the	page	in	the	active	page	window.

ActivePageWindow.Document.bgColor	=	"DarkBlue"

The	following	example	checks	for	a	specific	hyperlink	(index.htm)	within	the
active	document.	If	the	hyperlink	is	found,	the	procedure	exits,	but	if	the
hyperlink	isn't	found,	the	procedure	first	checks	if	the	active	document	is
index.htm	and,	if	not,	the	hyperlink	is	added	at	the	end	of	the	document.

Private	Sub	VerifyIndexLink()

				Dim	myDoc	As	FPHTMLDocument

				Dim	myLinks	As	Variant

				Dim	myLink	As	Variant

				Dim	myNumberOfLinks	As	Integer

				Dim	myAddLink	As	Boolean

				Dim	myLinkName	As	String

				Dim	myLinkName2	As	String

				Set	myDoc	=	ActivePageWindow.Document

mk:@MSITStore:vbafpd10.chm::/html/fdobjFPHTMLDocument.htm

				Set	myLinks	=	myDoc.Links

				myNumberOfLinks	=	myLinks.length

				myLinkName	=	"index.htm"

				myLinkName2	=	""""	&	myLinkName	&	""""

				For	Each	myLink	In	myLinks

								If	myLink	=	myLinkName	Then

												myAddLink	=	True

												Exit	For

								End	If

				Next

				If	myAddLink	=	False	And	myDoc.nameProp	<>	"index"	Then

								Call	myDoc.body.insertAdjacentHTML("BeforeEnd",	"<a	href="	_

												&	myLinkName2	&	">"	&	myLinkName	&	"")

								ActivePageWindow.Save

				End	If

				End	Sub

Note		Notice	that	in	the	last	If	statement	the	active	page	window	is	saved	before
exiting	the	procedure.	This	would	be	a	good	statement	to	add	to	the
OnPageClose	event.

Understanding	WebWindows	and
PageWindows
In	Microsoft	Internet	Explorer,	the	window	object	is	the	root	of	the	object
hierarchy.	In	Microsoft	FrontPage,	the	Application	object	is	the	root	of	the
object	hierarchy	and	the	WebWindowEx	object	is	an	object	in	the	third	tier	of
the	object	hierarchy	belonging	to	the	collection	of	WebWindows	(second	tier).
The	Document	property	is	accessed	via	the	PageWindowEx	object	(belonging
to	the	collection	of	PageWindows),	whose	parent	is	the	WebWindowEx	object.
The	object	hierarchy	for	the	WebWindows	collection	is	shown	in	the	following
diagram.

WebWindows	 WebWindowEx
PageWindows
PageWindowEx

What	is	a	WebWindowEx	object?

The	WebWindowEx	object	is	the	window	container	for	the	Web	site.	When	you
open	a	Web	site	in	FrontPage,	you	see	the	Web	site	in	its	"web"	window.
FrontPage	opens	a	new	window	for	each	Web	site	you	open.

What	is	a	PageWindowEx	object?

The	PageWindowEx	object	is	the	container	for	the	web	page.	When	you	open	a
page	in	a	web	window,	that	page	is	contained	in	a	page	window	(visible	in	the
right	pane).	FrontPage	opens	a	new	page	window	for	each	page	you	open;
however	each	PageWindowEx	object	is	contained	within	the	WebWindowEx
object	for	the	individual	Web	site.	Each	page	that	you've	opened	is	visible	on	the
Windows	menu	in	FrontPage.

Where	does	the	DispFPHTMLDocument	object	fit	in?

The	FPHTMLDocument	object	contains	the	HTML	elements	for	a	page.	The
elements	for	the	document	are	available	using	an	expression	such	as

mk:@MSITStore:vbafpd10.chm::/html/fdobjFPHTMLDocument.htm

ActivePageWindow.Document.element	where	element	is	one	of	the	HTML
elements	available	in	FrontPage.	Note	that	not	all	HTML	elements	have
corresponding	properties	that	you	can	use	to	access	the	element.	For	example,
there	is	no	head	property	to	access	the	HEAD	element.	In	these	cases,	use
activepagewindow.Document.all.tags.item("element")	to	return	the	object	that
corresponds	to	the	specified	element.

Returning	an	Object	from	a
Collection
The	Item	property	returns	a	single	object	from	a	collection.	The	following
statements	set	the	fileOne	variable	to	a	WebFile	object	that	represents	the	first
file	in	the	Files	collection.

Note		All	collections	in	the	Microsoft	FrontPage	Web	and	Page	object	models
are	zero-based,	so	you	access	the	first	item	in	the	collection	by	using	a	zero.

Dim	fileOne	As	WebFile

Set	fileOne	=	ActiveWeb.RootFolder.Files.Item(0)

The	Item	property	is	the	default	property	for	most	collections,	so	you	can	omit
the	Item	keyword	as	shown	in	the	following	statement.

Set	fileOne	=	ActiveWeb.RootFolder.Files(0)

Named	objects

Although	you	can	usually	specify	an	integer	value	with	the	Item	property,	it	may
be	more	convenient	to	return	an	object	by	name.	The	following	example	edits	a
file	named	Web	Sales.htm	in	the	active	Web	page.

ActiveWeb.RootFolder.Files("Web	Sales.htm").Edit

Using	Events	to	Control	Actions
There	are	two	types	of	events	in	Microsoft	FrontPage—	events	that	are	raise
from	the	Application	and	Web	object	models	and	events	that	are	raised	from	the
Page	object	model.

Application	events

The	events	for	the	Application	object	model	can	be	used	to	control	under	what
conditions	a	Web	site	is	published,	whether	you	want	to	save	a	page	whenever
the	OnPageClose	event	is	fired,	or	whether	you	want	to	set	styles,	fonts,	or
backgrounds	whenever	a	new	page	is	created.

Page	events

In	the	Microsoft	Internet	Explorer	DHTML	object	model,	event	handlers	are
created	using	scripts	for	use	at	run-time.

However,	in	the	FrontPage	Page	object	model,	you're	programming	with	events
and	objects	that	are	compatible	with	Internet	Explorer,	but	for	use	at	design	time.
To	program	events	for	runtime,	you	can	use	the	standard	Microsoft	Visual	Basic
5.0	(or	higher)	keywords	to	access	the	Page	object	model	events	just	as	you
would	to	access	the	Web	object	model	events.	This	method	combines	the	two
techniques	described	previously.	The	following	example	catches	the	onclick
event	for	a	hyperlink	in	FrontPage.

In	the	Visual	Basic	Editor,	insert	a	class	module	and	name	it	CatchOnClick.	Add
the	following	code	to	the	class	module.

Dim	WithEvents	eAnchor	As	FPHTMLAnchorElement

Dim	WithEvents	eDoc	As	FPHTMLDocument

Dim	e	As	IHTMLEventObj

Private	Sub	Class_Initialize()

Set	eDoc	=	ActiveDocument

Set	eAnchor	=	eDoc.links(0)

End	Sub

Private	Function	eAnchor_onclick()	As	Boolean

Set	e	=	eAnchor.Document.parentWindow.event

If	(MsgBox("OnClick	Event	for	"	&	e.srcElement.tagName	&	_

				"	would	you	like	to	cancel	the	event	bubbling?",	_

				vbYesNo)	=	vbYes)	Then

				e.cancelBubble	=	True

				e.returnValue	=	False

Else

				e.cancelBubble	=	False

				e.returnValue	=	True

End	If

End	Function

Private	Function	eDoc_onclick()	As	Boolean

MsgBox	"OnClick	event	for	the	Document	object"

End	Function

Next	add	a	standard	module	and	add	the	following	code.

mk:@MSITStore:vbafpd10.chm::/html/fdevtonclick.htm

Public	e	As	CatchOnClick

Sub	GetClick()

Set	e	=	New	CatchOnClick

End	Sub

Note		To	run	the	example,	perform	the	following	steps:

Add	a	hyperlink	to	a	page	in	FrontPage.
Run	the	GetClick	procedure	to	create	a	global	instance	of	the	CatchOnClick
event	handler	class.
Click	the	hyperlink.

A	prompt	is	displayed	stating	that	the	onclick	event	fired.	The	prompt	also
queries	the	user	to	find	out	whether	the	program	should	pass	the	event	on	up	the
event	chain.	If	Yes	is	chosen,	the	onclick	event	is	passed	up	to	the	document
object	to	be	handled.

To	control	which	document	object	the	event	is	passed	to,	you	must	set	both	the
cancelBubble	and	returnValue	properties.	The	cancelBubble	event	works	to
cancel	the	event	from	going	any	farther	up	the	event	chain.	Set	the
cancelBubble	property	of	the	IHTMLEventObject	to	True	when	you	don't
want	the	onclick	event	to	be	passed	up	to	the	next	level	of	onclick	events,
otherwise,	set	the	cancelBubble	property	to	False.	For	example,	if	you	have	an
image	that	has	an	onclick	event	placed	on	a	document,	which	also	has	an
onclick	event,	you	would	set	the	cancelBubble	property	for	the
IHTMLEventObj	object	to	True	for	the	image,	if	you	don't	want	the	onclick
event	to	be	passed	on	up	to	the	document	onclick	event.

The	returnValue	property	is	used	to	control	the	default	action	taken	by
FrontPage	when	an	event	fires.	Using	the	previous	example	of	an	image	placed
on	a	document,	if	the	returnValue	property	for	the	IHTMLEventObject	for	the
image	is	set	to	False	in	the	onclick	event,	then	the	shortcut	menu	would	be
disabled	(because	the	right-click	context	menu	is	the	default	action	for	the
onclick	event).

mk:@MSITStore:vbafpd10.chm::/html/fdprocancelBubble.htm
mk:@MSITStore:vbafpd10.chm::/html/fdproreturnValue.htm
mk:@MSITStore:vbafpd10.chm::/html/fdobjIHTMLEventObj.htm

Managing	Publishing	with	MetaTags
Automate	publishing	your	Web	site	by	using	a	combination	of	events	such	as
OnBeforeWebPublish	and	meta	data	that	can	be	obtained	by	accessing	the	data
in	the	Properties	collection.	For	example,	before	publishing	a	Web	site,	you
might	want	to	check	the	meta	data	for	all	of	the	pages	in	the	Web	site.	To	check
if	Microsoft	FrontPage	generated	all	of	the	pages	in	your	Web	site,	use	the
following	code	in	the	OnBeforeWebPublishing	event,	along	with	an	event
handler.

Private	Sub	CheckIfFP()

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myMetaTags	As	MetaTags

				Dim	myMetaTag	As	Variant

				Set	myFiles	=	ActiveWeb.RootFolder.Files

				For	Each	myFile	In	myFiles

								Set	myMetaTags	=	myFile.MetaTags

								'Check	for	any	text	files.

								If	myMetaTags.Count	=	0	And	_

												myFile.Extension	<>	".asa"	Then

												MsgBox	myFile.Name	&	"	was	not	generated	by	FrontPage."

								End	If

								'Check	all	web	pages.

								For	Each	myMetaTag	In	myMetaTags

												If	myMetaTag	=	"generator"	Then

														If	myFile.Properties("vti_generator")	=	_

																"Microsoft	FrontPage	4.0"	Then

																Exit	For

														Else

																MsgBox	myFile.Name	&	"	was	not	generated	by	FrontPage."

														End	If

												End	If

								Next

				Next

End	Sub

You	can	also	check	the	value	of	the	vti_donotpublish	property	key	before
publishing.	If	the	document	is	a	draft	or	a	document	that	isn't	to	be	published,	the
vti_donotpublish	property	key	will	be	set	to	True.	The	following	example
checks	the	value	of	the	vti_donotpublish	property	key.

Dim	myFiles	As	WebFiles

Dim	myFile	As	WebFile

For	Each	myFile	In	myFiles

				If	myFile.Properties("vti_donotpublish")	=	True	Then

								MsgBox	"Do	not	publish	"	&	myFile.Name

				End	If

Next

The	vti_donotpublish	property	key	can	be	used	to	disable	publishing.	When
publishing	is	complete,	the	file	will	not	be	published	to	the	server.	The	following
example	disables	publishing	for	the	first	file	in	the	Files	collection.

Sub	PublishThisFile(myFileName	As	String,	myStatus	As	Boolean)

Dim	myFile	As	WebFile

Set	myFile	=	ActiveWeb.LocateFile(myFileName)

Call	myFile.Properties.Add("vti_donotpublish",	Not	(myStatus))

myFile.Properties.ApplyChanges

End	Sub

Private	Sub	PublishFile()

PublishThisFile	Activeweb.RootFolder.Files(0),	False

End	Sub

Programming	Dynamic	Elements	in
Microsoft	FrontPage
The	objects,	methods,	and	properties	in	Microsoft	Internet	Explorer	are	usually
designed	for	run-time	use.	In	Microsoft	FrontPage,	most	of	the	elements	are
designed	for	design-time	only.	You	can	programmatically	add	content	to	an
existing	document,	access	selections	on	a	page,	create	a	scripting	element,	or
modify	an	existing	table.

Adding	content	to	a	document	using	a	TextRange

Accessing	user	selections	using	a	TextRange

Adding	script	to	a	page

Accessing	tables

Adding	content	to	a	document	using	a	TextRange

You	can	programmatically	add	HTML	content	to	a	Web	page	by	creating	a	text
range	and	adding	the	new	content	to	the	page	as	shown	in	the	following
example.	The	text	range	is	created	from	the	BODY	element	of	the	myDocument
variable.	If	the	value	in	the	myClearPage	parameter	is	True,	then	the	entire
content	between	the	opening	and	closing	BODY	element	is	replaced	with	the
new	HTML	content,	otherwise	the	new	content	is	appended	to	the	original
content.

Public	Function	AddHTMLToPage(myDocument	As	Object,	_

				myHTMLText	As	String,	myClearPage	As	Boolean)	As	Boolean

				Dim	myRange	As	IHTMLTxtRange

				Dim	myBodyText	As	FPHTMLBody

				On	Error	GoTo	CannotAddHTML

				'Create	a	TextRange	object

				If	myClearPage	Then

								Set	myRange	=	_

												myDocument.all.tags("BODY").Item(0).createTextRange

								'Clear	the	current	document

								Call	myRange.pasteHTML("")

								myRange.collapse	False

								Set	myRange	=	Nothing

				End	If

				Set	myBodyText	=	myDocument.all.tags("BODY").Item(0)

				myBodyText.innerHTML	=	myBodyText.innerHTML	&	myHTMLText	&	vbCrLf

				AddHTMLToPage	=	True

				Exit	Function

CannotAddHTML:

				AddHTMLToPage	=	False

End	Function

Sub	AddNewHTML()

				Dim	myHTMLString	As	String

				Dim	myBodyElement	As	FPHTMLBody

				myHTMLString	=	"	<I>	New	Sale	on	Vintage	Wines!	</I>	"	&	vbCr

				If	AddHTMLToPage(ActivePageWindow.Document,	myHTMLString,	True)	Then

								Set	myBodyElement	=	_

										ActivePageWindow.Document.all.tags("BODY").Item(0)

				End	If

End	Sub

Accessing	user	selections	using	a	TextRange

You	can	use	the	IHTMLTxtRange	object	to	select	HTML	objects	or	manipulate
a	user	selection	on	a	specified	document.	The	following	example	applies	a
background	color	to	the	current	selection.

Private	Sub	ApplyStyleToSelection()

				Dim	myRange	As	IHTMLTxtRange

				Set	myRange	=	ActiveDocument.selection.createRange

				myRange.parentElement.style.backgroundColor	=	"SkyBlue"

End	Sub

Adding	script	to	a	page

Scripting	in	Microsoft	FrontPage	Visual	Basic	for	Applications	is	easy.	Just	load
the	script	into	a	String	variable	and	insert	the	String	to	the	HEAD	element	for
the	page.	(The	HEAD	element	is	accessed	using	an	IHTMLElement	object.)
Once	the	String	has	been	added	to	the	page,	it	is	a	valid	scripting	element	and
can	be	accessed	through	the	FPHTMLScriptElement	object	and	modified.	The
following	code	adds	a	script	element	to	the	current	page,	verifies	that	the	script
was	added,	adds	a	query	to	the	user	with	OK	and	Cancel	buttons,	and	then	prints
some	of	the	script	element	properties	in	the	Immediate	window	of	the	Visual
Basic	Editor.

Private	Sub	CreateAScript()

				Dim	myScriptElement	As	FPHTMLScriptElement

				Dim	myHTag	As	IHTMLElement

				Dim	myBodyTag	As	IHTMLElement

				Dim	myBodyString	As	String

				Dim	myHTMLString	As	String

				Dim	myText	As	String

				'Build	a	script	tag	construct.

				myHTMLString	=	myHTMLString	&	"<script	language=""VBScript"">"	_

						&	vbCrLf

				myHTMLString	=	myHTMLString	&	"Function	doOK"	&	vbCrLf

				myHTMLString	=	myHTMLString	&	_

						"msgbox	""Please	wait,	an	order	form	is	being	generated..."""	&	_

						vbCrLf

				myHTMLString	=	myHTMLString	&	"End	Function"	&	vbCrLf	&	vbCrLf

				myHTMLString	=	myHTMLString	&	"Function	doCancel"	&	vbCrLf

				myHTMLString	=	myHTMLString	&	_

						"msgbox	""Exiting	ordering	process."""	&	vbCrLf

				myHTMLString	=	myHTMLString	&	"End	Function"	&	vbCrLf

				myHTMLString	=	myHTMLString	&	"</script>"	&	vbCrLf

				'Build	a	call	tag	construct.

				myBodyString	=	"<CENTER>"	&	vbCrLf

				myBodyString	=	myBodyString	&	_

						"<BUTTON	onclick=""doOK()"">OK</BUTTON>"	&	vbTab

				myBodyString	=	myBodyString	&	_

						"<BUTTON	onclick=""doCancel()"">Cancel</BUTTON>"	&	vbCrLf

				myBodyString	=	myBodyString	&	"</CENTER>"

				'Add	text	to	the	document

				myText	=	"I'd	like	to	order	some	vintage	wines."

				'Access	the	HEAD	element.

					Set	myHTag	=	ActivePageWindow.Document.all.tags("HEAD").Item(0)

				'Append	the	script	element	to	the	HEAD	element	(myHTag).

				myHTag.innerHTML	=	myHTag.innerHTML	&	myHTMLString

				'Verify	that	the	script	element	was	added.

				If	ActivePageWindow.Document.scripts.length	=	1	Then

								'Access	the	script	element	just	added.

								Set	myScriptElement	=	ActivePageWindow.Document.scripts(0)

								'Print	script	element	properties	to	the	Immediate	window.

								'JScript	only:	the	next	statement	gets	the	FOR=	attribute	from

								'the	JScript,	otherwise	an	empty	string	prints	in	the	Immediate

								'window.

								Debug.Print	myScriptElement.htmlFor

								'Retrieve	the	content	of	the	script.

								Debug.Print	myScriptElement.outerHTML

								'Check	scripting	language.

								Debug.Print	myScriptElement.language

				End	If

				'Add	a	query	to	the	user	and	call	the	script	element.

				ActiveDocument.body.insertAdjacentHTML	"BeforeEnd",	_

						"<I>"	&	myText	&	"</I><P>"	&	myBodyString

End	Sub

Accessing	tables

Anyone	who	has	created	tables	and	worked	with	their	contents	in	HTML	will
find	it	easy	to	use	Microsoft	Visual	Basic	to	access	tables.	The	following
program	accesses	a	table	on	the	current	page	and	inserts	a	cell.

Sub	AccessTables()

				Dim	myTable	As	FPHTMLTable

				Dim	myRow	As	FPHTMLTableRow

				Dim	myCell	As	FPHTMLTableCell

				'Get	the	table.

				Set	myTable	=	ActiveDocument.all.tags("TABLE").Item(0)

				'Get	the	first	row.

				Set	myRow	=	myTable.rows(0)

				MsgBox	myRow.cells.Length

				'Get	the	first	cell.

				Set	myCell	=	myRow.cells(0)

				MsgBox	myCell.Width

				'Add	a	new	cell	to	the	first	row.

				Set	myCell	=	myTable.rows(0).insertCell(myRow.cells.Length)

End	Sub

Managing	Source	Control	Projects	in
Microsoft	FrontPage
Microsoft	FrontPage	provides	two	methods	of	versioning,	FrontPage	Light
Weight	source	control	(also	known	as	Microsoft	Office-style	locking	or
FrontPage-based	locking)	and	Microsoft	Visual	SourceSafe.	FrontPage	Light
Weight	source	control	is	the	default	versioning	method	for	source	control
projects	in	FrontPage.

Versioning	provides	a	measure	of	control	over	users	who	maintain	pages	on	your
Web	sites.	Both	source	control	methods	provide	checkin,	checkout,
undocheckout.	Visual	SourceSafe	provides	other	versioning	capabilities,	such	as
version	tracking	and	rollback	features.

Creating	a	source	control	project

To	create	a	new	source	control	project,	you	set	the	RevisionControlProject
property	to	the	path	of	the	project	(for	Visual	SourceSafe)	or	to	<FrontPage-
based	Locking>	as	shown	in	the	following	statement.

ActiveWeb.RevisionControlProject	=	"<FrontPage-based	Locking>"

Assuming	that	the	String	"$/Coho	Winery"	is	a	valid	Visual	SourceSafe	project,
the	following	statement	assigns	the	active	Web	site	to	a	Visual	SourceSafe
project.

ActiveWeb.RevisionControlProject	=	"$/Coho	Winery/Inventory"

The	following	example	creates	a	source	control	project	and	checks	out	two	files.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Coho	Winery".	You	may	create	two	files	called
"index.htm"	and	"footnote.htm"	or	substitute	file	names	of	your	choice.

Private	Sub	CreateSourceControl()

				Dim	myWeb	As	WebEx

				Dim	myProject	As	String

				Dim	myFile1	As	WebFile

				Dim	myFile2	As	WebFile

				Set	myWeb	=	Webs.Open("C:\My	Documents\My	Web	Sites\Coho	Winery")

				Set	myFile1	=	myWeb.RootFolder.Files("index.htm")

				Set	myFile2	=	myWeb.RootFolder.Files("footnote.htm")

				myProject	=	"<FrontPage-based	Locking>"

				myWeb.RevisionControlProject	=	myProject

				myFile1.Checkout

				myFile2.Checkout

End	Sub

The	Checkout	method	provides	a	Boolean	force	checkout	argument	for
administrators.

Removing	a	source	control	project

Once	a	project	is	completed,	you	may	decide	to	remove	versioning.	To	do	this,
set	the	RevisionControlProject	property	to	an	empty	String	("")	as	shown	in
the	following	statement.

myWeb.RevisionControlProject	=	""

Switching	between	FrontPage	Light	Weight	and
Visual	SourceSafe	projects

To	switch	between	these	two	types	of	versioning,	you	must	first	set	the
RevisionControlProject	property	to	an	empty	String	("")	as	shown	in	the
following	statement.

myWeb.RevisionControlProject	=	""

Lists	Collection
Multiple	objects Lists

List
Multiple	objects

Represents	the	collection	of	all	List	objects	in	the	current	Web	site.	Lists	allow
information	to	be	shared	and	exchanged	between	different	users	and	different
Web	sites.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	Lists	collection

Use	the	Lists	property	of	the	WebEx	object	to	return	the	collection	of	all	lists	in
the	Web	site.	Use	Lists.item	(index),	where	index	is	either	the	name	of	the	list	or
its	numeric	position	within	the	collection,	to	return	a	single	List	object.

The	following	example	displays	the	names	of	all	lists	in	the	active	Web	site.	If
the	active	Web	site	does	not	contain	any	lists,	a	message	is	displayed	to	the	user.

Sub	ListAllLists()

'Displays	the	names	of	all	lists	in	the	collection

				Dim	lstWebList	As	List

				Dim	strName	As	String

				'Check	if	any	lists	exist

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists

								For	Each	lstWebList	In	ActiveWeb.Lists

												'add	list	names	to	string

												If	strName	=	""	Then

																strName	=	lstWebList.Name	&	vbCr

												Else

																strName	=	strName	&	lstWebList.Name	&	vbCr

												End	If

								Next

								'Display	names	of	all	lists

								MsgBox	"The	names	of	all	lists	in	the	current	Web	site	are:"	_

															&	vbCr	&	strName

				Else

								'Other	wise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

	 	

Use	the	Lists.Add	method	to	add	a	new	list	to	the	Lists	collection.	The
following	example	adds	a	new	list	of	type	fpBasicList	called	NewShare	to	the
active	Web	site.

Sub	NewList()

'Adds	a	new	list	to	the	current	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	list

				objLists.Add	Name:="NewShare",	_

																	ListType:=fpListTypeBasicList,	_

																	Description:="List	of	Shared	files"

				'Display	message	to	user

				MsgBox	"A	new	list	was	added	to	the	Lists	collection."

End	Sub

	 	

MetaTags	Collection
WebFile MetaTags

An	array	of	property	key/value	pairs.	Each	item	in	the	MetaTags	collection
represents	a	META	tag	contained	on	an	HTML	page	in	Microsoft	FrontPage.
There	is	no	MetaTag	object.

Note		META	tags	generated	by	FrontPage,	such	as	META	tags	for	a	theme	or
border,	won't	show	up	in	the	MetaTags	collection.	The	MetaTags	collection	is
only	propagated	after	the	file	is	saved.	For	example,	if	you	add	a	new	META	tag
to	a	page	by	using	the	Code	view	or	by	programmatically	using	the	Page	object
model	in	Microsoft	Visual	Basic	for	Applications,	you	won't	be	able	to	view	the
property	key/value	pairs	until	after	you	save	the	page.	To	save	space	in	the
META	dictionary,	you	can	use	the	following	methods	to	disable	the	META	tag
store:

Set	the	DisableMetaTagStore	key	on	a	per-service	basis
Set	the	DisableMetaTagStore	key	as	a	global	setting	under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Shared	Tools\Web
Server	Extensions\All	Ports
Set	the	vti_disablemetatagstore	property

The	DisableMetaTagStore	key	functions	in	the	same	way	as	other	server
settings;	see	the	Server	Extensions	Resource	Kit	for	more	information	about
server	settings.

Using	the	MetaTags	Collection

Use	the	MetaTags	property	to	return	the	MetaTags	collection.

Note		In	the	meta	data	for	FrontPage,	the	http-equiv	attribute	can	be	used	in
place	of	the	name	attribute.	FrontPage	doesn't	use	the	value	of	the	http-equiv
attribute	in	response	message	headers.	The	syntax	for	META	data	is	as	follows:

<META

CONTENT=description

HTTP-EQUIV=text

NAME=text

TITLE=text

URL=url

>

	 	

You	can	also	return	a	list	of	the	META	tags	that	exist	in	the	active	Web	site	by
accessing	the	file	structure	through	the	root	folder	of	the	ActiveWeb	object,	as
shown	in	the	following	example.

Note		To	run	this	example,	create	a	form	with	a	text	box	called	txtMetaTags	(set
to	multiple	lines)	and	a	command	button	called	cmdGetMetaTagInfo,	and	then
copy	the	example	into	the	code	window.

Private	Sub	cmdGetMetaTagInfo_Click()

Dim	myWeb	As	WebEx

Dim	myFiles	As	WebFiles

Dim	myFile	As	WebFile

Dim	myMetaTags	As	MetaTags

Dim	myMetaTag	As	Variant

Dim	myFileName	As	String

Dim	myMetaTagName	As	String

Dim	myReturnInfo	As	String

Set	myWeb	=	ActiveWeb

Set	myFiles	=	myWeb.RootFolder.Files

With	myWeb

				For	Each	myFile	In	myFiles

								Set	myMetaTags	=	myFile.MetaTags

								For	Each	myMetaTag	In	myMetaTags

												myFileName	=	myFile.Name

												myMetaTagName	=	myMetaTag

												myReturnInfo	=	myFileName	&	":	"	&	myMetaTagName

												txtMetaTags.Text	=	txtMetaTags.Text	&	myReturnInfo

								Next

				Next

				txtMetaTags.SetFocus

				txtMetaTags.CurLine	=	0

End	With

End	Sub

Use	the	Application	property	to	return	the	Application	object.	The	following
statement	returns	the	Application	object.

myApplication	=	ActiveWeb.RootFolder.Files(0).MetaTags.	_	

Application

Use	the	Count	property	to	return	the	number	of	META	elements	in	the
collection.	The	following	statement	returns	the	number	of	META	elements	in	the
tenth	file	of	the	ActiveWeb	object.

myMetaTagCount	=	ActiveWeb.RootFolder.Files(9).MetaTags.Count

	 	

Use	Items(index),	where	index	is	the	property	key	value	as	a	string,	of	an	item
in	the	MetaTags	collection	to	return	the	property	key/value	pair.	The	following
example	returns	the	program	identification	tag	from	the	META	tags	in	the	first
file	of	the	ActiveWeb	object.

myMetaTagOne	=	ActiveWeb.RootFolder.Files(0).MetaTags("ProgId")

	 	

Common	property	key	values	are	"generator"	and	"progid."	For	more
information	about	property	key	values,	see	the	table	in	the	Properties	object.

Use	the	Parent	property	when	you	want	to	return	the	file	container	for	the
MetaTags	collection.	For	example,	the	following	example	returns	the	Url
property	of	the	WebFile	container	object	that	is	associated	with	the	META	tags
for	the	first	file	of	the	ActiveWeb	object.

myMetaTagParent	=	_

				ActiveWeb.RootFolder.Files(0).MetaTags.Parent.Url

	 	

NavigationNodes	Collection
Multiple	objects NavigationNodes

NavigationNode
Multiple	objects

A	collection	of	NavigationNode	objects	within	the	navigational	structure	of	a
Microsoft	FrontPage-based	Web	site.	Each	NavigationNode	object	represents	a
pointer	to	a	page	on	a	Web	site.	The	NavigationNode	object	is	a	member	of	the
NavigationNodes	collection.

Using	the	NavigationNodes	object

Use	the	NavigationNode	property	to	return	the	NavigationNode	object	for	a
WebFile	object.	For	more	information	on	returning	the	collection	of	child	nodes
within	the	navigational	structure	of	a	Web	site,	see	the	Children	property.	The
following	example	builds	a	list	of	the	labels	that	are	associated	with	each
NavigationNode	object	in	the	NavigationNodes	collection.	The	procedure	exits
when	it	reaches	the	end	of	the	navigational	structure.

Private	Sub	GetNavigationNode()

				Dim	myWeb	As	WebEx

				Dim	myWebFiles	As	WebFiles

				Dim	myWebFile	As	WebFile

				Dim	myNavNodeLabel	As	String

				Dim	myLabel	As	String

				On	Error	Resume	Next

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myFiles

								For	Each	myFile	In	myFiles

												myLabel	=	myFile.NavigationNode.Label

												If	Err	<>	0	Then	Exit	Sub

												myNavNodeLabel	=	myNavNodeLabel	&	myLabel	&	vbCRLF

								Next

				End	With

End	Sub

	 	

Use	Children(index),	where	index	is	the	index	number	of	an	item	in	the
collection	of	child	nodes,	to	return	a	single	NavigationNode	object.	The
following	example	returns	the	first	NavigationNode	object	in	the	collection
—	which	is	the	home	page.

Set	myNavNodeOne	=	ActiveWeb.RootNavigationNode.Children(0)

	 	

Use	the	Add	method	to	add	a	NavigationNode	object	to	the	NavigationNodes
collection.	The	following	example	adds	a	node	to	the	rightmost	position	in	the
current	navigational	structure.

Private	Sub	AddNewNavNode()

				Dim	myWeb	As	WebEx

				Dim	myNewNavNode	As	NavigationNode

				Dim	myNavChildren	As	NavigationNodes

				Set	myWeb	=	ActiveWeb

				Set	myNavChildren	=	_

								myWeb.rootfolder.Files(1).NavigationNode.Children

				myNewNavNode	=	_

								myNavChildren.Add("C:\My	Webs\Sale.htm",	"Sale",	fpStructRightmostChild)

				myWeb.ApplyNavigationStructure

End	Sub

	 	

Note		After	you	finish	modifying	your	navigational	structure,	you	must	apply	the
changes	using	the	ApplyNavigationStructure	method	before	the	navigational
structure	is	updated	in	FrontPage.

PageWindows	Collection
Multiple	objects PageWindows

PageWindow
Multiple	objects

A	collection	of	PageWindowEx	objects.	Each	PageWindowEx	object
represents	an	open	Web	page	in	a	Microsoft	FrontPage	application	window.	The
PageWindowEx	object	is	a	member	of	the	PageWindows	collection.

Using	the	PageWindows	object

Use	the	PageWindows	property	to	return	the	PageWindows	collection.	The
following	statement	returns	the	PageWindows	object	to	the	myPages	variable.

myPages	=	WebWindows(0).PageWindows

Use	PageWindows(index),	where	index	is	the	index	number	of	an	item	in	the
PageWindows	collection,	to	return	a	single	PageWindowEx	object.	The
following	statement	returns	the	first	PageWindowEx	object	in	the	collection.

Set	myPageWindow	=	WebWindows(0).PageWindows(0)

Use	the	Add	method	to	add	a	page	window	to	the	PageWindows	collection.	The
following	example	opens	the	specified	page	in	myWebOne	and	adds	the	page	to
the	PageWindows	collection.

Dim	myPageWindows	As	PageWindows

Set	myPageWindows	=	ActiveWeb.WebWindows(0).PageWindows

myPageWindows.Add("C:\My	Web	Sites\myWebOne\bugrep.htm")

Use	the	Application	property	to	return	the	Application	object	from	the
PageWindows	collection.	The	following	example	returns	the	Application	object
from	the	PageWindows	collection.

myAppName	=	WebWindows.PageWindows.Application.Name

Use	the	Close	method	to	close	a	PageWindowEx	object	or	the	collection	of
open	PageWindows.	The	following	statement	closes	the	fourth	PageWindowEx
object	for	the	first	WebWindowEx	object.

WebWindows(0).PageWindows(3).Close

Use	Close(index),	where	index	is	the	index	number	of	an	item	in	the
PageWindows	collection,	to	close	a	single	PageWindowEx	object	as	shown	in
the	following	statements.	Both	statements	close	the	same	page	window.	In	the
first	statement,	you	close	the	page	window	using	the	index	number	for	the	Close
method,	while	in	the	second	statement,	you	close	the	page	window	by	specifying
the	index	number	for	the	page	you	want	to	close.

WebWindows(0).PageWindows.Close(2)

WebWindows(0).PageWindows(2).Close

Use	Close()	to	close	all	of	the	open	PageWindowEx	objects	in	the
PageWindows	collection.	The	following	statement	closes	all	of	the	open	pages
in	the	PageWindows	collection.

WebWindows(0).PageWindows.Close()

Use	the	Count	property	to	return	the	total	number	of	page	windows	in	the
PageWindows	collection.	The	following	example	returns	the	number	of	page
windows	in	the	collection	of	PageWindows.

myPageCount	=	WebWindows(0).PageWindows.Count

Use	the	Parent	property	when	you	want	to	return	the	container	for	the
PageWindows	collection.	The	following	statement	returns	the	WebWindowEx
container	object	for	the	first	PageWindowEx	object	using	the	Parent	property.

Set	myParent	=	ActiveWeb.WebWindows(0).PageWindows.Parent

Properties	Collection

Multiple	objects Properties

A	collection	of	meta	data	as	Property	objects.	Each	item	in	the	Properties
collection	represents	an	item	associated	with	an	individual	WebEx,	WebFile,	or
WebFolder	object.	For	more	information,	see	the	table	of	PropertyKeys	in
Using	the	PropertyKeys.	Choose	a	topic	from	the	following	list	to	go	directly	to
that	topic.

Using	the	Properties	object

Using	the	Properties	collection	within	a	Web	site

Using	the	property	keys

Using	the	Properties	object

Use	the	Add	method	to	add	a	property	to	the	Properties	collection.	The
following	statement	adds	a	copyright	statement	to	the	Properties	collection.

ActiveWeb.Properties.Add	"Copyright",	_

				"Copyright	1999	by	Coho	Winery")

You	can	also	add	and	remove	categories	and	approval	levels.

Use	the	ApplyChanges	method	to	apply	a	Property	object	that	has	been	added
to	the	collection	of	Properties.	The	following	statements	add	and	apply	a
copyright	property	to	the	Properties	collection.

ActiveWeb.Properties.Add	"Copyright",	_

				"Copyright	1999	by	Coho	Winery")

ActiveWeb.Properties.ApplyChanges

Use	the	Count	property	to	return	the	total	number	of	properties	in	the
Properties	collection.	The	following	example	checks	that	the	number	of
properties	in	the	Properties	collection	has	increased	since	the	Copyright
property	was	added	and	applied	to	the	collection,	and	then	goes	on	to	add	the
copyright	to	a	Web	site	page.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Coho	Winery",	or	you	may	substitute	an	alternative
Web	site	URL.

Private	Sub	copyrightAdd()

				Dim	myWeb	As	WebEx

				Dim	myCopyright	As	String

				Dim	myCount	As	Integer

				Dim	myMessage	As	String

				myCopyright	=	"Copyright	1999	by	Coho	Winery"

				myCount	=	ActiveWeb.Properties.Count

				myMessage	=	"No	new	properties	have	been	added."

				Set	myWeb	=	Webs.Open("C:\My	Web	Sites\Coho	Winery")

				myWeb.Activate

				ActiveWeb.Properties.Add	"Copyright",	myCopyright

				If	myCount	<>	ActiveWeb.Properties.Count	–	1	Then

								MsgBox	myMessage

								Exit	Sub

				End	If

				ActiveWeb.RootFolder.Files("Zinfandel.htm").Open

				ActiveDocument.body.insertAdjacentText	"BeforeEnd",	_

								ActiveWeb.Properties("Copyright")

				ActivePageWindow.Save

				ActiveWeb.Close

End	Sub

Use	the	Delete	method	to	delete	a	single	property.	The	following	statement
deletes	the	Copyright	property	from	the	Properties	collection.

ActiveWeb.Properties.Delete("Copyright")

Use	the	Parent	property	when	you	want	to	return	the	container	for	the
Properties	collection.	For	example,	the	following	statement	returns	the	URL	of
the	parent	Web	site.

myParentURL		=	ActiveWeb.Properties.Parent.Url

Using	the	Properties	collection	within	a	Web	site

Use	Properties(index),	where	index	is	the	PropertyKey	of	the	item	in	the
Properties	collection,	to	return	a	single	property.	The	following	example	returns
the	value	of	the	PropertyKey	vti_hassearchbot.

Private	Sub	CheckForSearchBot()

				Dim	myProperties	As	Properties

				Dim	myFoundSearchBot	As	Boolean

				Set	myProperties	=	ActiveWeb.Properties

				With	myProperties

								myFoundSearchBot	=	.Item("vti_hassearchbot")

				End	With

End	Sub

Important		The	values	for	properties	are	variant—	that	is,	each	value	can	be	a
string,	a	Boolean,	or	an	array.	You	can	use	the	Typename()	function	to
determine	the	type	of	the	property	value.

Note		To	run	the	following	example	you	must	create	a	form	that	contains	a	text
box	called	txtCategories.	Also,	notice	that	myCategories	is	declared	as	a
variant	type	in	this	example.	In	a	previous	example,	myFoundSearchBot	was
declared	Boolean—	but	could	also	have	been	declared	as	a	string.

Private	Sub	GetWebPropertyCategories()

				Dim	myProperties	As	Properties

				Dim	myCategories	As	Variant

				Dim	myCategory	As	Variant

				Dim	txtCategories	As	String

				Set	myProperties	=	ActiveWeb.Properties

				With	myProperties

								myCategories	=	.Item("vti_categories")

								For	Each	myCategory	In	myCategories

												txtCategories	=	txtCategories	&	"|"	&	myCategory

								Next

				End	With

End	Sub

Using	the	property	keys

The	property	keys	can	be	a	valuable	tool	for	organizing	information	about	your
Web	sites.	For	example,	you	can	add	categories	to	the	master	list	of	categories
on	your	Web	site.

Important		The	category	names	can	be	added	to	the	categories	list	using	case
sensitivity,	but	will	not	display	with	case	sensitivity	in	the	User	Interface	(UI).
Because	of	this,	a	situation	may	occur	where	a	user	creates	a	category	on	the
client,	such	as	"Web	Administrators",	and	a	duplicate	category	exists	on	the
server,	such	as	"web	administrators".	In	this	case,	in	the	UI,	Microsoft	FrontPage
will	assign	both	categories	to	the	"web	administrators"	category	and	neither	of
these	can	be	deleted	from	the	Web	site	(in	the	UI).	Programmatically,	the	case
sensitivity	will	correctly	display	in	the	Immediate	and	Local	windows	of	the
Visual	Basic	Editor.

The	following	example	first	adds	a	category	to	the	properties	for	the	active	Web
site,	deletes	the	Waiting	category	from	the	same	list	(vti_categories),	and	then
adds	the	new	category	to	each	of	the	files	in	the	active	Web	site.

Note		When	creating	a	new	category,	you	must	first	add	the	new	category	to	the
Web	site	before	you	add	it	to	any	of	the	files.	The	procedure,	AddCategories,
adds	a	new	category	to	the	Web	site	and	the	next	procedure,
AddCategoryToFiles,	adds	the	same	category	to	all	of	the	files	in	the	Web	site.

Private	Sub	AddCategories()

				Dim	myWeb	As	WebEx

				Dim	myCategory(2)	As	String

				Dim	myItem	As	Variant

				Set	myWeb	=	ActiveWeb

				myCategory(0)	=	"+web	administrators"

				myCategory(1)	=	"-waiting"

				ActiveWeb.Properties("vti_categories")	=	myCategory

				ActiveWeb.Properties.ApplyChanges

				'List	all	of	the	items	in	vti_categories	in	the	Immediate	window

				For	Each	myItem	In	myWeb.Properties("vti_categories")

								Debug.Print	myItem

				Next

End	Sub

Private	Sub	AddCategoryToFiles()

				Dim	myWeb	As	WebEx

				Dim	myCategories(1)	As	String

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myItem	As	Variant

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				myCategories(0)	=	"+web	administrators"

				For	Each	myFile	In	myFiles

								myFile.Properties("vti_categories")	=	myCategories

								myFile.Properties.ApplyChanges

								'List	all	the	items	in	vti_categories	in	the	Immediate	window

								For	Each	myItem	In	myFile.Properties("vti_categories")

												Debug.Print	myItem

								Next

				Next

End	Sub

Note		Although	you	can	create	new	categories,	such	as	"web	administrators",
that	aren't	included	in	the	categories	that	are	automatically	installed	with
FrontPage,	these	new	categories	won't	be	visible	in	the	User	Interface	(UI)	until
they	are	added	to	the	Web	site.	Notice	that	in	the	previous	example,	the	new
category	was	added	to	the	Web	site	first	and	will	be	visible	in	the	UI.

The	following	table	provides	detailed	information	about	the	property	keys
available	in	FrontPage.	Notice	that	all	property	keys	in	FrontPage	start	with
“vti_”.	It	is	suggested	that	you	prefix	the	property	keys	you	want	to	add	with	a
short	name,	such	as	an	abbreviation	for	the	name	of	your	company,	to	reduce	the
chances	of	naming	conflicts	with	other	properties.

Property	Key Description Permission

vti_approvallevel

The	approval	level	set	for	a	page.
The	available	levels	are
AssignedTo,	ReviewStatus,	and
Categories.

Read/write

List	of	available	approval	levels
that	can	be	applied	to	documents	in
a	Web	site.	This	property	key	is	a
string	vector	(or	an	array	of

vti_approvallevels
strings).	Used	to	populate	the	Web-
wide	list	of	known	"review
statuses"	(also	known	as	"approval
levels")	that	are	set	for	a	document.
The	approval	levels	you	can	set	are
AssignedTo,	ReviewStatus,	and
Categories.

Read-only

vti_approvedby The	authenticated	name	of	the
person	who	approved	the	page. Read-only

vti_assignedby
The	authenticated	name	of	the
person	who	assigned	the	page	to	a
user.

Read-only

vti_assigneddate This	is	the	date	that	the	page	was
last	assigned	to	a	user. Read-only

vti_assignedto
The	authenticated	name	of	the
person	to	whom	the	page	is
assigned.

Read-only

vti_author

Returns	the	author's	name	in	string
format.	The	identification	of	the
authenticated	author	who	has,	or	is,
making	changes	to	the	document.

Note		This	is	different	from	the
Author	property	stored	as	part	of
Microsoft	Office	document
properties,	which	can	be	set	by	the
user	to	any	arbitrary	value.

Read-only

vti_casesensitiveurls

True	if	the	Web	site	is	running	on	a
server	where	URLs	are	case
sensitive,	such	as	a	server	running
UNIX.	For	example,	if	this	property
is	set	to	True,	then	a	file	named
MyFile.htm	and	a	file	named
myFile.htm	are	treated	as	two
separate	files.

Read-only

The	master	list	of	categories.	This
property	key	is	a	string	vector	(or

vti_categories

an	array	of	strings)	that	is	used	for
both	Web-level	and	document-level
meta	data.	At	the	Web-site	level,
the	property	key	contains	a	list	of
all	known	categories	that	exist	in
the	Web	site.	At	the	document
level,	it	contains	a	list	of	all	the
categories	to	which	the	specified
document	belongs.

Note		These	categories	are
automatically	updated	whenever	a
category	is	added	or	modified	in
any	way.

Read/write

vti_clientvercutoff

You	can	use	this	property	key	to	set
a	version	cutoff	string.	This	is	most
commonly	used	in	a	multi-version
environment	to	prevent	older
versions	of	the	application	from
running	on	a	specific	server.	For
more	information,	see	the
FrontPage	Server	Extensions
Resource	Kit.

Read/write

vti_dataconns List	of	data	connections	used	by
database	features	in	FrontPage. Read-only

vti_defaultcharset The	default	character	set	for	the
Web	site	or	page. Read-only

vti_defaultlanguage The	default	language	for	the	Web
site	or	page. Read-only

vti_description Provides	a	multi-line	text	box	for
the	user	to	write	comments	in. Read/write

vti_donotpublish Set	to	True	if	the	page	is	marked	as
"draft"	or	"not	to	be	published." Read/write

vti_filesize The	size	of	the	file	in	bytes. Read-only
This	property	key	corresponds	to
the	generator	tag	within	an	HTML

vti_generator

document.	The	value	of	the
vti_generator	property	key
contains	the	name	of	the	application
that	"generated"	the	document,
which	may	be	different	from	the
application	that	was	invoked	to
handle	the	page.	For	example,	if
you	created	or	edited	a	page	with
Microsoft	Word,	and	then	retrieved
the	value	of	the	vti_generator
property	key	in	Microsoft
FrontPage	Visual	Basic	for
Applications	for	that	document,	the
value	of	the	vti_generator	property
key	would	be	Microsoft	Word--
even	though	the	procedure	call	was
generated	by	FrontPage.	Valid
values	are	"Microsoft	Word",
"Microsoft	Access",	"Microsoft
FrontPage",	and	so	on.

Note		FrontPage	defers	to	Word
when	there's	a	theme	conflict	if	the
vti_generator	property	key
contains	"Microsoft	Word".

Read-only

vti_globalpage

Marks	a	page	as	global,	that	is,	a
top-level	page	in	the	navigation
structure,	on	the	same	level	as,	but
not	equal	to,	the	home	page.

Read/write

vti_hasframeset

True	if	the	page	contains	framesets.
This	property	key	is	used	when
constructing	link	bar	links.	When
the	page	that	is	being	linked	is	a
frameset,	the	link's	target	attribute
is	forced	to	"_top".	This	causes	the
new	page	to	replace	the	current
frameset	to	prevent	recursive

Read-only

framesets	at	browse	time.

vti_hasruntimebots True	if	the	page	has	run-time	bots
on	it. Read-only

vti_htmlextensions
A	concatenated	string	of	extensions
used	to	specify	a	Web	file,	such	as
htm.html.asp.

Read-only

vti_httpdversion The	version	of	FrontPage	that	is
running	on	the	httpd	server. Read-only

vti_imagemapformat

This	property	key	sets	the	URL
format	used	by	the	server-side
image	map	processor.	Valid	values
are	NCSA	and	CERN.	This
property	key	is	only	useful	for	prior
versions	of	FrontPage.	FrontPage
now	uses	client-side	image	maps.

Read/write

vti_imagemapurlprefix

Sets	the	server-relative	URL	of	the
server-side	image-map	processor
for	the	selected	image-map	format.
If	the	value	of	the
vti_imagemapurlprefix	property
key	is	set	to	an	empty	string	(""),
server-side	image	maps	are	handled
automatically	by	the	FrontPage
Server	Extensions.	For	other
formats,	provide	the	name	and
location	of	the	image-map
processor.	To	specify	client-side
image	maps,	set	this	variable	to	an
empty	string.	For	more	detailed
information,	see	the	FrontPage
Server	Extensions	Resource	Kit.

Read/write

vti_insecureserverurl

Retrieves	the	http://	URL
(unsecured	URL)	for	a	Web	site.
Provides	compatibility	with	older
browsers	that	may	not	have	secure
browsing	capability.	For	more
information,	see	the	FrontPage

Read-only

Server	Extensions	Resource	Kit.

vti_isbrowsable

True	if	the	page	folder	is
browsable.	Use
Folder.IsBrowsable	to	set	this
value..

Read-only

vti_ischildweb

True	if	the	specified	folder	is	the
root	of	a	subsite.	Use
Folder.MakeWeb	and
Folder.RemoveWeb	to	modify.

Read-only

vti_isexecutable

Set	this	property	to	True	to	enable
if	this	folder	is	marked	for
executable	content	on	the	server.
Use	Folder.IsExecutable	to	set	this
value.

Read/write

vti_isscriptable

Set	this	property	to	True	if
scripting	is	enabled	for	this	folder.
Use	Folder.IsScriptable	to	set	this
value.

Read-write

vti_longfilenames

True	if	the	server	supports	file
names	that	are	longer	than	the
standard	8.3	file	format.	(The	8.3
file	format	only	supports	file	names
with	eight	characters	and	extensions
with	three	characters,	such	as
"filename.txt".)

Read-only

vti_metatags

This	property	key	corresponds	to
the	contents	within	the	META	tags
in	an	HTML	document.	All	of	the
information	contained	in	this
property	key	is	added	to	the	META
tags	collection.

Read-only

vti_modifiedby Authenticated	name	of	the	author
who	last	modified	the	page. Read-only

vti_navbuttonhomelabel

The	image	file	associated	with	the
button	that	links	to	the	home	page.

Note		This	image	is	retrieved	from Read/write

the	theme	associated	with	the	file
and	is	not	customizable.

vti_navbuttonhomelabeltext

The	text	that	overlays	the
vti_navbuttonhomelabel.

Note		This	text	is	customizable	by
the	user.

Read/write

vti_navbuttonlabeltext

The	text	that	overlays	the
vti_nvabuttonuplabel.

Note		This	text	is	customizable	by
the	user.

Read/write

vti_navbuttonnextlabel

The	image	file	associated	with	the
button	that	links	to	the	next	page	in
the	navigation	structure.

Note		This	image	is	retrieved	from
the	theme	associated	with	the	file
and	is	not	customizable.

Read/write

vti_navbuttonnextlabeltext

The	text	that	overlays	the
vti_navbuttonnextlabel.

Note		This	text	is	customizable	by
the	user.

Read/write

vti_navbuttonprevlabel

The	image	file	associated	with	the
button	that	links	to	the	previous
page	in	the	navigation	structure.

Note		This	image	is	retrieved	from
the	theme	associated	with	the	file
and	is	not	customizable.

Read/write

The	text	that	overlays	the
vti_navbuttonprevlabel.

vti_navbuttonprevlabeltext Note		This	text	is	customizable	by
the	user.

Read/write

vti_navbuttonuplabel

The	image	file	associated	with	the
button	that	links	to	the	page	one
level	up	in	the	navigation	structure.

Note		This	image	is	retrieved	from
the	theme	associated	with	the	file
and	is	not	customizable.

Read/write

vti_noclientimagemaps True	if	client	image	maps	are
prohibited. Read-only

vti_nonnavpage
True	if	the	page	isn't	associated
with	a	navigation	node	within	the
navigation	structure.

Read/write

vti_nosourcecontrol

True	if	the	Web	site	is	not	being
stored	under	source	control.
Prevents	adding	a	file	to	source
control	if	this	property	is	set	to
True.

Note		If	a	file	has	previously	been
added	to	a	source	control	project
with	the	vti_nosourcecontrol
property	set	to	False,	and	the
property	is	subsequently	set	to
True,	the	file	will	not	be	removed
from	the	source	control	project.

Read/write

This	property	key	corresponds	to
the	"originator"	META	tag	in	an
HTML	document.	The	value	of	this
property	key	contains	the	name	of
the	application	that	created	the
document.	You	should	never
overwrite	this	property	key	with	the
name	of	another	application.	The

vti_originator

vti_generator	property	key	should
be	used	to	track	the	application	that
last	"generated"	the	HTML	page.
Simply	editing	a	document	in
FrontPage	will	change	the	value	of
the	vti_generator	property	key	to
"Microsoft	FrontPage".	Valid
values	are	"Microsoft	Word",
"Microsoft	Access",	"Microsoft
FrontPage",	and	so	on.

Note		FrontPage	defers	to	Word
when	there's	a	theme	conflict	if	the
vti_generator	property	key
contains	"Microsoft	Word".

Read-only

vti_privatetext

The	value	of	this	property	key	must
be	an	integer.	Zero	or	not	present	is
the	default.	A	non-zero	value	means
that	the	page	won't	be	added	to	any
text	indexes.	This	property	key	only
works	with	the	built-in	text
indexing	in	FrontPage	and	is	not
recognized	by	Microsoft	Internet
Information	Services	(IIS).

Read/write

vti_progid

This	corresponds	to	the	"progid"
META	tag	in	an	HTML	document.
The	value	of	this	property	key
determines	which	application	opens
the	document	when	a	user	clicks	(or
double-clicks)	the	document's	file
name	in	Windows	Explorer.	Valid
values	are
"FrontPage.Editor.Document",
"Word.Document",	"Excel.Sheet",
"PowerPoint.Slide",
"Access.Application".

Note		FrontPage	defers	to	Word

Read-only

when	there's	a	theme	conflict	if	the
vti_generator	property	key
contains	"Microsoft	Word".

vti_scriptlanguage Indicates	which	scripting	language
is	enabled	on	the	server. Read-only

vti_secureserverurl

Retrieves	the	https://URL	(secured
URL)	for	a	Web	site.	Provides	a
secure	environment	for	confidential
transactions	over	the	Internet.	For
more	information	see	the
FrontPage	Server	Extensions
Resource	Kit.

Read-only

vti_serveripaddress

The	IP	address	of	the	server.

Note		An	IP	address	beginning	with
127	represents	a	local	server.

Read-only

vti_serverlanguage
The	language	of	the	operating
system.	Used	for	localization
purposes.

Read-only

vti_showhiddenpages True	if	hidden	pages	are	displayed. Read-only

vti_sourcecontrolcheckedoutby Authenticated	name	of	the	authorwho	last	checked	out	a	page. Read-only

vti_sourcecontrolerror

The	error	last	returned	by	the
source	control	system.	This	error	is
added	to	the	META	tag	information
if	an	error	occurs	while	the	file	is
being	added	to	a	source	control
project.

Read-only

vti_sourcecontrolproject

The	name	of	the	source	control
project.	For	a	Microsoft	Visual
SourceSafe	project,	the	string
would	include	the	"$"	symbol,	as	in
"$/myProject"

Read-only

The	value	of	this	property	key	is	the
type	of	source	control	in	use	on	that

vti_sourcecontrolsystem

Web	site.	Can	be	Microsoft	Visual
SourceSafe	or	Microsoft	Frontpage
Light	Weight	source	control.	Valid
values	for	these	two	types	of	source
control	are	"VSS"	and	"LW",
respectively.	This	property	key	is
set	when	a	source	control	project	is
started.	For	more	information	on
source	control	projects,	see
Managing	Source	Control	Projects.

Read-only

vti_sourcecontrolversion
A	numbered	string	that	contains	the
version	of	the	source	control	system
that	is	in	use.

Read-only

vti_textextensions

A	concatenated	string	of	extensions
that	are	commonly	used	to	denote
text	files.	For	example,	the
concatenated	string	might	contain
".txt.rpt..."

Read-only

vti_themedefault The	default	theme	of	the	Web	site. Read-only

vti_themesusecss True	if	CSS	is	used	to	present	the
theme. Read/write

vti_timecreated

The	timestamp	when	the	page	was
created.	The	timestamp	is	in
Universal	Time	Coordinate	(UTC)
or	Greenwich	time.

Read-only

vti_timelastmodified

The	time	that	the	page	was	last
modified.	The	timestamp	is	in	UTC
time.	This	is	only	set	when	the
author	edits	the	page	directly.

Read-only

vti_timelastwritten
The	time	that	the	page	was	last
rewritten.	The	timestamp	is	in	UTC
time.

Read-only

vti_-title The	value	of	the	text	between	the
<TITLE>	tags	on	the	page. Read-only

vti_usernames The	list	of	known	user	names	for	a
specified	Web	site. Read-only

The	type	of	Web	site	server.	Valid

vti_webservertype
values	include,	"MSIIS"	for
Microsoft	Internet	Information
Services	and	"PWS"	for	Personal
Web	Server.

Read-only

vti_welcomenames

A	concatenated	list	of	file	names
that	can	be	used	as	the	file	name	for
the	home	page,	such	as	"index.htm
index.html	default.htm".

Read-only

Themes	Collection
Multiple	objects Themes

Theme

A	collection	of	Theme	objects.	Each	Theme	object	represents	a	theme
associated	with	an	HTML	page	or	a	Web	site	in	Microsoft	FrontPage.	The
Theme	object	is	a	member	of	the	Themes	collection.

Using	the	Themes	collection

Use	the	Themes	property	to	return	the	Themes	collection.	The	Themes	property
can	be	used	with	either	the	Application	or	the	WebEx	object.	The	Themes
property	for	the	Application	object	is	the	collection	of	themes	available	in
FrontPage.	The	Themes	property	for	the	WebEx	object	is	the	collection	of
themes	applied	to	the	files	within	a	Web	site,	or	the	collection	of	themes	applied
to	a	Web	site.	The	following	statement	illustrates	both	the	Themes	and	Count
properties	and	returns	the	number	of	items	in	the	Themes	collection	that	are
available	in	FrontPage.

myTotalThemeCount	=	Application.Themes.Count

	 	

The	following	statement	returns	the	number	of	themes	within	the	active	Web
site.

myWebThemeCount	=	ActiveWeb.Themes.Count

	 	

Use	Themes(index),	where	index	is	the	index	number	of	a	theme	item,	to	return
a	single	Theme	object.	The	following	statement	returns	the	first	theme	in	the
Themes	collection.

myThemeOne	=	Application.Themes(0)

	 	

Use	the	Application	property	to	return	the	Application	object.	The	following
example	returns	the	version	and	build	number	of	FrontPage	from	within	the
Themes	collection.

Note		To	run	this	procedure	you	must	have	at	least	one	open	Web	site.

Private	Sub	GetBuildNumber()

				Dim	myThemes	As	Themes

				Dim	myBuild	As	String

				Set	myThemes	=	ActiveWeb.Themes

				myBuild	=	myThemes.Application.Build

End	Sub

	 	

Use	the	Parent	property	when	you	want	to	return	the	container	for	the	Themes
collection.	For	example,	the	following	statement	returns	the	URL	associated	with
the	parent	container	of	the	Themes	collection.

myParentUrl	=	ActiveWeb.Themes.Parent.Url

	 	

WebFiles	Collection
Multiple	objects WebFiles

WebFile
Multiple	objects

A	collection	of	WebFile	objects.	Each	WebFile	object	represents	all	of	the	open
files	in	a	Web	site.	The	WebFile	object	is	a	member	of	the	WebFiles	collection.

Using	the	WebFiles	object

Use	the	Files	property	to	return	the	WebFiles	collection.	The	following
statement	returns	the	WebFile	objects	in	the	WebFiles	collection.

Set	myWebFiles	=	Application.Webs(0).RootFolder.Files

Use	WebFiles(index),	where	index	is	the	ordinal	number	of	an	item	in	the
WebFiles	collection,	to	return	a	single	WebFile	object.	The	following	statement
returns	the	first	WebFile	object	in	the	collection.

Set	myWebFile	=	ActiveWeb.RootFolder.Files(0)

Use	the	Add	method	to	add	a	WebFile	object	to	the	WebFiles	collection.	The
following	statement	adds	a	new	WebFile	object	to	the	collection	of	WebFiles.

myWebFiles.Add	("C:\New	Web	WebFiles\Sales	Statistics.htm")

Use	the	Application	property	to	return	the	Application	object	from	within	the
WebFiles	collection.	The	following	statement	returns	the	Application	object
from	the	WebFiles	collection.

myApp	=	ActiveWeb.RootFolder.Files.Application

	 	

Use	the	Count	property	to	return	the	number	of	open	files	in	the	WebFiles
collection.	The	following	statement	returns	the	number	of	files	in	the	collection
of	WebFiles.

myCount	=	Webs(0).RootFolder.WebFiles.Count

Use	the	Delete	method	to	delete	a	WebFile	object.	The	following	statement
deletes	the	third	file	in	the	WebFiles	collection.

Webs(0).RootFolder.Files(2).Delete

Use	the	Parent	property	when	you	want	to	return	the	container	for	the	WebFiles
collection.	The	following	statement	returns	the	URL	of	the	folder	for	the	second
file	in	the	active	Web	site.

myWebFileParent	=	ActiveWeb.RootFolder.Files(1).Parent.Url

WebFolders	Collection
Multiple	objects WebFolders

WebFolder
Multiple	objects

A	collection	of	WebFolder	objects.	Each	WebFolder	object	within	the
WebFolders	collection	represents	a	folder	in	a	Web	site.	The	WebFolder	object
is	a	member	of	the	WebFolders	collection.

Note		All	of	the	methods	that	involve	changing	the	location	of	a	folder,	such	as
Copy	or	Move,	only	change	the	location	within	the	current	Web	site;	you	cannot
move	a	folder	from	one	Web	site	to	a	another	Web	site.

Using	the	WebFolders	object

Use	WebFolders(index),	where	index	is	the	index	number	of	an	item	in	the
WebFolders	collection,	to	return	a	single	WebFolder	object.	The	following
example	returns	the	first	WebFolder	object	in	the	collection.

Set	myFolder	=	ActiveWeb.RootFolder.Folders(0)

	 	

Use	the	Add	method	to	add	a	new	WebFolder	object	to	the	WebFolders
collection	in	a	Web	site.	Both	of	the	following	statements	add	a	WebFolder	to
the	collection	of	WebFolders	in	the	active	Web	site—	parentheses	are	not
required	for	the	folder	name,	as	shown	in	the	second	statement.

Note		The	FolderUrl	argument	within	the	quotes	("Coho	Winery")	should	only
include	the	new	folder	name,	not	the	entire	URL,	unless	you	are	adding	a	new
URL	to	the	location	designated	as	the	FolderUrl.	The	program	will	fail	if	the
entire	URL	is	included	for	existing	URLs.

ActiveWeb.RootFolder.Folders.Add	("Coho	Winery")

ActiveWeb.RootFolder.Folders.Add	"Coho	Winery"

	 	

Use	the	Count	property	to	return	the	number	of	total	navigation	nodes	in	the
WebFolders	collection.	The	following	statement	returns	the	number	of	Web
folders	in	the	Coho	Winery	Web	site.

Webs("C:\Web	Server	One\Coho	Winery").Folders.Count

	 	

Use	the	Delete	method	to	delete	a	folder	from	a	Web	site.	The	following
statements	delete	the	tenth	WebFolder	object.	The	second	statement	uses	the
name	of	the	folder	instead	of	the	index	number	to	designate	the	folder	to	delete.

ActiveWeb.RootFolder.Folders(9).Delete

ActiveWeb.RootFolder.Folders("TempFolder").Delete

	 	

Use	the	Copy	method	to	copy	a	WebFolder	object.	The	following	example
copies	a	folder	(WebFolders(4))	to	another	folder	on	the	active	Web	site

(Chardonnay	Inventory).	For	purposes	of	this	example,	WebFolders(4)	is	a
folder	named	Inventory	in	the	Coho	Winery	Web	site.	This	folder	contains	the
entire	wine	inventory—	but	the	Web	designer	wanted	to	feature	the	sale	on
Chardonnay	wines	and	created	a	temporary	folder	that	will	be	edited	to	contain
only	Chardonnay	wine.

Private	Sub	CopyInventory()

				Dim	myFolder	As	WebFolder

				Set	myFolder	=	ActiveWeb.RootFolder.Folders(4)

				myFolder.Copy	("C:\Coho	Winery\Chardonnay	Inventory,	False,	True)

End	Sub

	 	

Use	the	Parent	property	when	you	want	to	return	the	container	for	the
WebFolders	collection.	The	following	statement	returns	the	container	for	the
fourth	folder.

myParent	=	Webs.RootFolder.Folders(3).Parent

	 	

Webs	Collection
Application Webs

Web
Multiple	objects

A	collection	of	WebEx	objects.	Each	WebEx	object	represents	a	Web	site,
which	can	either	be	disk-based	(on	a	local	hard	drive)	or	server-based	(on	a	Web
server).	The	WebEx	object	is	a	member	of	the	Webs	collection.

Using	the	Webs	collection

Use	the	Webs	property	to	return	the	Webs	collection.	You	can	also	use	the
Application	property	to	return	the	Application	object.	The	following	statement
uses	the	Application	object	to	return	the	first	item	in	the	Webs	collection	or	use
the	second	statement	to	return	the	entire	collection	of	Web	sites.

Set	myWebOne	=	Application.Webs(0)

Set	myWebs	=	Application.Webs

	 	

Use	Webs(index),	where	index	is	the	index	number	of	an	item	in	the	Webs
collection,	to	return	a	single	WebEx	object.	The	following	statement	returns	the
third	Web	site	in	the	collection	of	open	WebEx	objects.

Set	myGetWebThree	=	Webs(2)

	 	

Use	the	Add	method	to	add	an	item	to	the	list	of	available	items	in	the	Webs
collection.	The	following	statement	adds	the	Coho	Winery	Web	site	to	the	Webs
collection.	If	it	doesn't	exist,	FrontPage	will	create	a	new	Web	site	at	the
specified	path	and	open	it.

Webs.Add("C:\My	Documents\My	Web	Sites\Coho	Winery")

	 	

Use	the	Application	property	to	return	information	about	the	application	from
within	the	Webs	collection.	The	following	statement	returns	the	version	number
of	the	Application	object.

ActiveWeb.Webs.Application.Version

	 	

Use	the	Count	property	to	return	the	number	of	open	Web	sites	in	the	Webs
collection.	The	following	statement	returns	the	number	of	open	Web	sites.

Webs.Count

	 	

Use	the	Delete	method	to	permanently	delete	a	Web	site	from	the	Webs
collection.	The	following	statement	deletes	the	Coho	Winery	Web	site.

Webs.Delete("C:\My	Documents\My	Web	Sites\Coho	Winery")

	 	

Use	the	Open	method	to	open	a	Web	site.	The	following	statement	opens	a	Web
site	and	adds	it	to	the	collection	of	items	in	the	Webs	collection.

Webs.Open("C:\My	Documents\My	Web	Sites\Coho	Winery")

	 	

Use	the	Parent	method	when	you	want	to	return	the	container	of	the	Webs
collection,	which	is	the	application.	The	following	statement	returns	the
Application	object.

Set	myParent	=	Webs.Parent

	 	

WebWindows	Collection

Multiple	objects WebWindows
WebWindow
Multiple	objects

A	collection	of	WebWindowEx	objects.	Each	WebWindow	object	represents	an
open	Web	site	in	Microsoft	FrontPage.	The	WebWindowEx	object	is	a	member
of	the	WebWindows	collection.

Using	the	WebWindows	Collection

Use	Items(index),	where	index	is	the	index	number	of	an	item	in	the
WebWindows	collection,	to	return	a	single	WebWindowEx	object.	The
following	example	returns	the	Caption	property	for	the	fourth	item	in	the
WebWindows	collection.

Function	ReturnWebWindowCaption()	As	String

				Dim	myCaption	As	String

				Dim	myWebWindow	As	WebWindowEx

				Set	myWebWindow	=	Application.WebWindows(3)

				myCaption	=	myWebWindow.Caption

				ReturnWebWindowCaption	=	myCaption

End	Sub

	 	

Use	the	WebWindows	property	to	return	the	WebWindows	collection.	The
following	example	closes	all	of	the	open	WebWindowEx	objects	in	the
WebWindows	collection	except	the	ActiveWebWindow	object.

Private	Sub	CloseWebWindows

				Dim	myWebWindows	As	WebWindows

				Dim	myWebWindow	As	WebWindowEx

				Dim	myActiveWebWindow	As	WebWindowEx

				Set	myWebWindows	=	Application.WebWindows

				Set	myActiveWebWindow	=	ActiveWebWindow

				For	Each	myWebWindow	In	myWebWindows

								If	myWebWindow.Caption	<>	myActiveWebWindow.Caption	Then	_

												myWebWindow.Close

				Next

End	Sub

	 	

Use	the	Application	property	to	return	the	Application	object.	If	you're	already
working	with	the	WebWindows	collection	and	you'd	like	to	check	the	version
number	of	the	application,	you	can	easily	access	it	through	your	With
myWebWindows	statement	as	shown	in	the	following	example.

With	myWebWindows

				myWebWindowCount	=	myWebWindows.Count

				myAppVersion	=	.Application.Version

				If	myAppVersion	<	"4.0"	Then

								MsgBox	"Please	upgrade	your	FrontPage	software."

				Else

								For	Each	myWebWindow	In	myWebWindows

												myCaption	=	myWebWindow.Caption

												With	myPageWindows

																myPageCount	=	PageWindows.Count

												End	With

								Next

				End	If

End	With

	 	

You	can	use	the	Close	method	to	close	an	individual	WebWindowEx	object,
multiple	WebWindowEx	objects,	or	all	WebWindowEx	objects	in	FrontPage.
For	more	details	on	the	Close	method,	see	the	usage	described	in	the	following
table.

Important		FrontPage	will	close	the	application	if	you	use	the	Close	method	to
close	all	WebWindowEx	objects	in	FrontPage.

Close	Method	Usage Code

Close	an	individual
WebWindowEx	object	in	the
application

Application.WebWindows(index).Close

	 	 	 	 	

or

Application.WebWindows.Close(index)

	 	 	 	 	

Close	multiple
WebWindowEx	objects	in	the
application	(as	shown	in	the
previous	example)

For	Each	myWebWindow	In	myWebWindows

	 	 	 	 	

			If	myWebWindow.Caption	<>	_

								myActiveWebWindow.Caption	Then	_

								myWebWindow.Close

Next

	 	 	 	 	

Close	all	WebWindowEx
objects	in	the	application

Application.WebWindows.Close

	 	 	 	 	

Close	an	individual Webs(index).WebWindows(index).Close

WebWindowEx	object	in	a
Web	site

	 	 	 	 	

Close	multiple
WebWindowEx	objects	in	a
Web	site

Set	myWeb	=	Web(index).WebWindows

	 	 	 	 	

For	Each	myWebWindow	In	myWebWindows

				If	myWebWindow.Caption	_

						<>	myActiveWebWindow.Caption	Then	_

								myWebWindow.Close

Next

	 	 	 	 	

Close	a	collection	in	a	Web
site

Webs(index).WebWindows.Close

	 	 	 	 	

Closing	all	WebWindowEx
objects	in	FrontPage	functions
the	same	as	the	Quit	method

The	expression,
Application.WebWindows.Close	is	the	same	as,
Application.Quit.

Use	the	Count	property	to	return	the	number	of	WebWindowEx	objects	in	the
collection.	The	following	example	returns	the	number	of	WebWindowEx
objects.

Web.WebWindows.Count

	 	

Use	the	Parent	property	when	you	want	to	return	the	container	for	the
WebWindows	collection.	The	following	statement	returns	the	Application
object.

Application.WebWindows.Parent.Name

	 	

Application	Object
Application Multiple	objects

Represents	the	Microsoft	FrontPage	application.	The	Application	object
includes	properties	and	methods	that	return	top-level	objects.	For	example,	the
ActiveDocument	property	returns	a	document	object	that	references	the
FrontPage	Page	object	model	that	is	compatible	with	Microsoft	Internet	Explorer
4.0	and	later.

Using	the	Application	Object

Use	the	Application	property	to	return	the	Application	object.	You	can	use	the
Application	property	from	any	of	the	objects	in	FrontPage.	The	following
example	accesses	the	Application	object,	and	then	displays	the	Open	dialog
box.

Application.FileDialog(msoFileDialogOpen).Show

Many	of	the	properties	and	methods	that	return	the	most	common	user-interface
objects,	such	as	the	ActiveDocument	property,	can	be	used	without	the
Application	object	qualifier.	For	example,	instead	of	writing
Application.ActiveDocument.Title,	you	can	write	ActiveDocument.Title.
Properties	and	methods	that	can	be	used	without	the	Application	object	qualifier
are	considered	"global."	To	view	global	properties	and	methods	in	the	Object
Browser,	click	<globals>	at	the	top	of	the	list	in	the	Classes	box	of	the	Object
Browser.

Remarks

To	use	Automation	to	control	FrontPage	from	another	application,	use	the
CreateObject	or	GetObject	function	to	return	a	FrontPage	Application	object.
The	following	Microsoft	Word	Visual	Basic	for	Applications	(VBA)	example
starts	FrontPage,	opens	an	existing	Web	site,	and	closes	the	Web	site.

Private	Sub	StartFrontPage()

				Dim	myNewFP	As	Variant

				Set	myNewFP	=	CreateObject("FrontPage.Application")

				myNewFP.Webs.Open	("C:\MyWebs\Adventure	Works")

				myNewFP.Webs.Close	"(C:\MyWebs\Adventure	Works")

				Set	myNewFP	=	Nothing

End	Sub

	 	

BasicList	Object
BasicList Multiple	objects

Contains	information	about	the	basic	list	type	used	within	Microsoft	FrontPage.
The	BasicList	object	allows	users	to	share	and	categorize	information	between
Web	sites.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	BasicList	object

Use	Lists.item(index),	where	index	is	either	the	name	of	the	basic	list	or	its
numeric	position	within	the	collection,	to	return	a	single	Basic	List	object.	The
following	example	displays	the	names	of	all	basic	lists	in	the	active	Web	site.	If
the	Web	site	contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	ListAllLists()

'Displays	the	names	of	all	basic	lists	in	the	collection

				Dim	lstWebList	As	List

				Dim	strName	As	String

				Dim	blnFound	As	Boolean

				'Set	found	flag	to	false

				blnFound	=	False

				'Check	if	any	lists	exist	and,	if	so	cycle	through	them

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	lstWebList.Type	=	fpListTypeBasicList	Then

																'Set	boolean	flag	to	found	and	names	to	string

																blnFound	=	True

																If	strName	=	""	Then

																				strName	=	lstWebList.Name	&	vbCr

																Else

																				strName	=	strName	&	lstWebList.Name	&	vbCr

																End	If

												End	If

								Next

								If	blnFound	=	True	Then

												'Display	names	of	all	basic	lists

												MsgBox	"The	names	of	all	basic	lists	in	the	current	Web	are:"	_

																			&	vbCr	&	strName

								Else

												MsgBox	"There	are	no	basic	lists	in	the	current	Web."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	contains	no	lists."

				End	If

End	Sub

	 	

Use	the	Lists	collection's	Add	method	to	create	a	new	list	of	type
fpListTypeBasicList.	The	following	example	creates	a	new	list	called
NewShare.

Sub	NewList()

'Adds	a	new	list	to	the	current	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	list	and	displays	a	message	to	the	user.

				objLists.Add	Name:="NewShare",	_

																	ListType:=fpListTypeBasicList,	_

																	Description:="List	of	Shared	files"

				MsgBox	"A	new	list	was	added	to	the	Lists	collection."

End	Sub

	 	

Discussion	Object
Discussion Multiple	objects

Contains	information	about	a	Discussion	list	in	a	Microsoft	FrontPage	Web	site.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
Windows	SharePoint	Services.

Using	the	Discussion	object

Use	the	Item	property	for	the	Lists	collection	to	return	a	single	Discussion
object.	The	following	example	assumes	the	first	list	in	the	active	Web	site	is	a
Discussion	object,	and	then	returns	it.

Dim	objDiscussion	As	Discussion

Set	objDiscussion	=	ActiveWeb.Lists(0)

DocumentLibrary	Object
DocumentLibrary Multiple	objects

Represents	the	collection	of	documents	in	the	current	Web	site.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	DocumentLibrary	object

Use	Lists.Item(index),	where	index	is	either	the	name	of	the	document	library	or
its	numeric	position	within	the	collection,	to	return	a	single	DocumentLibrary
object.	The	following	example	displays	the	names	of	all	document	libraries	in
the	active	Web	site.	If	the	Web	site	contains	no	document	libraries,	a	message	is
displayed	to	the	user.

Sub	ListAllLibraries()

'Displays	the	names	of	all	document	libraries

'in	the	collection.

				Dim	lstWebList	As	List

				Dim	strName	As	String

				Dim	blnFound	As	Boolean

				'Set	found	flag	to	false

				blnFound	=	False

				'Check	if	any	lists	exist	and	is	so,	cycle	through	them

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	lstWebList.Type	=	fpListTypeDocumentLibrary	Then

																'Set	boolean	flag	to	found	and	add	name	to	string

																blnFound	=	True

																If	strName	=	""	Then

																				strName	=	lstWebList.Name	&	vbCr

																Else

																				strName	=	strName	&	lstWebList.Name	&	vbCr

																End	If

												End	If

								Next

								If	blnFound	=	True	Then

												'Display	names	of	all	document	libraries

												MsgBox	"The	names	of	all	document	libraries	in	the	current	web	site	are:"	_

																			&	vbCr	&	strName

								Else

												MsgBox	"There	are	no	document	libraries	in	the	current	web	site."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

	 	

Use	the	List	object's	Add	method	to	create	a	new	list	of	type
fpListTypeDocumentLibrary.	The	following	example	creates	a	new	document
library	called	Newlibrary.

Sub	NewLibrary()

'Adds	a	new	list	to	the	current	web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	list

				objLists.Add	Name:="NewLibrary",	_

																	ListType:=fpListTypeDocumentLibrary,	_

																	Description:="List	of	Shared	files"

				'Display	message	to	user

				MsgBox	"A	new	library	was	added	to	the	Lists	collection."

End	Sub

	 	

List	Object
Multiple	objects Lists

List
Multiple	objects

Contains	information	about	the	List	object	and	the	Microsoft	FrontPage
collaboration	objects.	The	List	object	is	a	base	class	that	defines	the	common
members	used	by	the	different	types	of	lists	in	FrontPage.	For	example,	the
collaboration	objects,—	the	BasicList,	Discussion,	DocumentLibrary,	and
Survey	objects—	allow	information	to	be	shared	and	exchanged	between
different	users	and	different	web	sites.	The	List	object	is	a	member	of	the	Lists
collection.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	List	object

Use	Lists.Item(index),	where	index	is	either	the	name	of	the	list	or	its	numeric
position	within	the	collection,	to	return	a	single	List	object.	The	following
example	displays	the	names	of	all	lists	in	the	active	Web	site.	If	the	Web	site
contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	ListAllLists()

'Displays	the	names	of	all	lists	in	the	collection

				Dim	lstWebList	As	List

				Dim	strName	As	String

				'Check	if	any	lists	exist

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists

								For	Each	lstWebList	In	ActiveWeb.Lists

												'add	list	names	to	string

												If	strName	=	""	Then

																strName	=	lstWebList.Name	&	vbCr

												Else

																strName	=	strName	&	lstWebList.Name	&	vbCr

												End	If

								Next

								'Display	names	of	all	lists

								MsgBox	"The	names	of	all	lists	in	the	current	web	are:"	_

															&	vbCr	&	strName

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

	 	

Similarly,	use	the	WebFolder	object's	List	property	to	return	the	List	object
associated	with	the	folder.

Use	the	List	object's	Fields	property	to	return	a	collection	of	ListField	objects
that	define	the	fields	in	the	current	list.

ListField	Object
Multiple	objects ListFields

ListField
Web

Contains	information	about	the	fields	that	make	up	a	List	object.	The	fields	of	a
list	define	the	columns	that	appear	in	the	list	and	present	information	about	the
items	in	the	list.	The	ListField	object	is	a	base	class	that	defines	the	common
members	used	by	the	different	types	of	fields	in	Microsoft	FrontPage	lists.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListField	object

Use	ListFields.Item(index),	where	index	is	the	either	name	of	the	field	or	it's
position	within	the	collection	to	return	a	single	ListField	object.	The	following
example	displays	the	names	of	all	fields	in	the	current	list.	If	the	Web	site
contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	ListAllFields()

'Displays	the	name	of	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												If	strType	=	""	Then

																'Create	new	string

																strType	=	objField.Name	&	vbCr

												Else

																'Add	next	field	name	to	string

																strType	=	strType	&	objField.Name	&	vbCr

												End	If

								Next	objField

								MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																vbCr	&	strType

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	site	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldAttachments	Object
ListFieldAttachments Web

Contains	information	about	the	attachments	field	when	attachments	are	enabled
for	a	list	in	a	Microsoft	FrontPage	Web	site.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
Windows	SharePoint	Services.

Using	the	ListFieldAttachments	object

Use	the	Item	property	for	the	ListFields	collection	to	return	a	single
ListFieldAttachments	object.	The	following	example	returns	the	first	field	in
the	the	first	list	in	the	Lists	collection.

Dim	objList	As	BasicList

Dim	objField	As	ListFieldAttachments

Set	objList	=	ActiveWeb.Lists(0)

Set	objField	=	objList.Fields(0)

ListFieldChoice	Object
ListFieldChoice Web

Contains	information	about	the	choice	field.	The	choice	field	allows	the	user	to
select	from	a	specified	number	of	options	by	providing	a	drop-down	list	or	radio
buttons	in	the	list.

Using	the	ListFieldChoice	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpFieldChoice	to	return	a	single	ListFieldChoice	object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	fpFieldChoice	to	the
ListFields	collection.	The	following	example	adds	a	new	field	named
NewChoiceField	of	type	fpFieldChoice,	to	the	ListFields	collection.	Use	the
AddChoice	method	to	add	choices	to	the	list.	Use	the	clear	method	to	clear	the
choices	from	the	list.

Sub	DisplayChoice()

'Display	choice

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	listFields

				Dim	objFldChoice	As	ListFieldChoice

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewChoiceField"

				'Add	new	field	of	type	fpFieldChoice	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Choice	value	Field",	_

																			Fieldtype:=fpFieldChoice,	Required:=True

				MsgBox	"A	new	Field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldComputed	Object
ListFieldComputed Web

Contains	information	about	fields	created	automatically	by	the	computer.	The
ListFieldComputed	object	cannot	be	created	by	the	user	and	instead	is	used	by
Microsoft	FrontPage	to	create	a	reference	from	the	list	to	a	page	in	the	Web	site.
For	example,	in	many	lists,	the	Title	field	is	created	by	the	computer	and	is	used
to	reference	the	page	corresponding	to	the	list	field.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldComputed	object

Use	ListFields.Item	(index)	to	return	a	ListFieldComputed	object,	where	index
is	either	the	name	of	the	field	or	its	numeric	position	within	the	collection.	The
following	example	displays	the	names	of	all	computed	fields	in	the	current	list.

Sub	ListComputedFields()

'Display	the	names	of	computed	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												'Check	if	it	is	a	computed	field

												If	objField.Type	=	fpFieldComputed	Then

																If	strType	=	""	Then

																				'Create	new	string

																				strType	=	objField.Name	&	vbCr

																Else

																				'Add	next	field	name	to	string

																				strType	=	strType	&	objField.Name	&	vbCr

																End	If

												End	If

								Next	objField

								MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																vbCr	&	strType

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	site	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldCounter	Object
ListFieldCounter Web

Contains	information	about	the	key	counter	used	within	the	list.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Remarks

This	field	is	created	automatically	by	Microsoft	FrontPage	and	cannot	be
modified	by	the	user.

Using	the	ListFieldCounter	object

The	following	example	displays	the	name	associated	with	the	counter	field	in	the
current	list.

Sub	ListCounterFields()

'Displays	the	name	of	counter	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Dim	blnFound	As	Boolean

				blnFound	=	False

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												'Check	if	it	is	a	computed	field	of	type	fpFieldFile

												If	objField.Type	=	fpFieldCounter	Then

																blnFound	=	True

																If	strType	=	""	Then

																				'Create	new	string

																				strType	=	objField.Name	&	vbCr

																Else

																				'Add	next	field	name	to	string

																				strType	=	strType	&	objField.Name	&	vbCr

																End	If

												End	If

								Next	objField

								If	blnFound	=	True	Then

												MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																				vbCr	&	strType

								Else

												MsgBox	"There	are	no	counter	fields	in	the	list."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	site	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldCurrency	Object
ListFieldCurrency Web

Contains	information	about	the	field	type	used	to	view	currency	information
within	the	list.	The	ListFieldCurrency	object	allows	you	to	view	information
about	different	currency	types	within	the	currency	field	of	the	list.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldCurrency	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpListFieldCurrency,	to	return	a	single	ListFieldCurrency	object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	fpFieldCurrency	to	the
ListFields	collection.	The	following	example	adds	a	new	field	named
NewCurrencyField	of	type	fpFieldCurrency	to	the	ListFields	collection	and
changes	the	currency	type	to	display	Canadian	dollars.

Sub	CreateCurrencyField()

'Add	new	Currency	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objFldChoice	As	ListFieldCurrency

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewCurrencyField"

				'Add	new	Field	of	type	fpFieldCurrency	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Currency	Field",	_

																			Fieldtype:=fpFieldCurrency,	Required:=True

				Set	objFldChoice	=	objLstFlds.Item("NewCurrencyField")

				'Change	currency	type	to	Canadian

				objFldChoice.Currency	=	fpCurrencyFieldCanada

				MsgBox	"A	new	Field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldDateTime	Object
ListFieldDateTime Web

Contains	information	about	the	field	used	to	display	dates	and	times	within	a
Microsoft	FrontPage	list.	The	ListFieldDateTime	object	allows	you	to	view
date	and	time	information	in	a	variety	of	different	configurations	depending	on
the	type	of	data	in	the	list.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldDateTime	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpListFieldDateTime,	to	return	a	single	ListFieldDateTime
object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	fpListFieldDateTime	to
the	ListFields	collection.	The	following	example	adds	a	new	field	named
NewDateTimeField	of	type	fpListFieldDateTime	to	the	ListFields	collection.

Sub	CreateDateTimeField()

'Add	new	Date/Time	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewDateTimeField"

				'Add	new	Field	of	type	fpFieldDateTime	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Date	Time	Field",	_

																			Fieldtype:=fpFieldDateTime,	Required:=True

				MsgBox	"A	new	Field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldFile	Object
ListFieldFile Web

Contains	information	about	any	files	contained	in	the	list.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Remarks

This	field	is	created	automatically	by	Microsoft	FrontPage	and	cannot	be
modified	by	the	user.

Using	the	ListFieldFile	object

The	following	example	displays	the	names	of	all	fields	of	type	fpFieldFile	in	the
active	list.	If	no	fields	of	this	type	exist,	or	if	the	Web	contains	no	lists,	a
message	is	displayed	to	the	user.

Sub	ListFileFields()

'Displays	the	name	of	file	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Dim	blnFound	As	Boolean

				blnFound	=	False

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												'Check	if	it	is	a	computed	field	of	type	fpFieldFile

												If	objField.Type	=	fpFieldFile	Then

																blnFound	=	True

																If	strType	=	""	Then

																				'Create	new	string

																				strType	=	objField.Name	&	vbCr

																Else

																				'Add	next	field	name	to	string

																				strType	=	strType	&	objField.Name	&	vbCr

																End	If

												End	If

								Next	objField

								If	blnFound	=	True	Then

												MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																				vbCr	&	strType

								Else

												MsgBox	"There	are	no	file	fields	in	the	list."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldInteger	Object
ListFieldInteger Web

Contains	information	about	fields	created	automatically	by	the	computer.	The
ListFieldinteger	object	cannot	be	created	by	the	user	and	instead	is	used	by
Microsoft	FrontPage	to	create	an	ID	for	each	item	in	the	list.	For	example,	in	a
typical	list,	the	ID	field	is	created	by	the	computer	as	a	unique	identifier	for	each
item	in	the	list.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldInteger	object

Use	ListFields.Item	(index)	to	return	a	ListFieldInteger	object,	where	index	is
either	the	name	of	the	field	or	its	numeric	position	within	the	collection.	The
following	example	displays	the	names	of	all	Integer	fields	in	the	current	list.	If
the	Web	site	contains	no	lists,	or	if	the	list	contains	no	Integer	fields,	a	message
is	displayed	to	the	user.

Sub	ListIntegerFields()

'Displays	the	name	of	Integer	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Dim	blnFound	As	Boolean

				blnFound	=	False

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												'Check	if	it	is	a	computed	field	of	type	fpFieldInteger

												If	objField.Type	=	fpFieldInteger	Then

																blnFound	=	True

																If	strType	=	""	Then

																				'Create	new	string

																				strType	=	objField.Name	&	vbCr

																Else

																				'Add	next	field	name	to	string

																				strType	=	strType	&	objField.Name	&	vbCr

																End	If

												End	If

								Next	objField

								If	blnFound	=	True	Then

												MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																				vbCr	&	strType

								Else

												MsgBox	"There	are	no	Integer	fields	in	the	list."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldLookup	Object
ListFieldLookup Multiple	objects

Contains	information	about	the	Lookup	field.	The	ListFieldLookup	object
allows	you	to	search	for	information	within	the	given	Web	site	based	on	a
specified	field.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldLookup	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpFieldLookup,	to	return	a	single	ListFieldLookup	object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	ListFieldLookup	to	the
ListFields	collection.

The	following	example	adds	a	new	field	named	NewFileLookupField	of	type
fpFieldLookup	to	the	ListFields	collection.

Sub	CreateLookup()

'Add	new	Lookup	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objFldLookup	As	ListFieldLookup

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewFileLookupField"

				'Add	new	Field	of	type	fpFieldLookup	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Lookup	Field",	_

																			Fieldtype:=fpFieldLookup

				Set	objFldLookup	=	objLstFlds.Item("NewFileLookupField")

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldMultiLine	Object
ListFieldMultiLine Web

Contains	information	about	the	field	used	to	display	information	containing
more	than	one	line	of	text.	For	example,	the	ListFieldMultiLine	object	can	be
used	to	display	descriptions	and	summaries,	which	often	require	more	than	a
single	line.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldMultiLine	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpFieldMultiLine,	to	return	a	single	ListFieldMultiLine	object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	fpFieldMultiLine	to	the
ListFields	collection.

The	following	example	adds	a	new	field	named	Description	of	type
fpFieldMultiLine	to	the	ListFields	collection.	The	subroutine	displays	the	name
of	the	new	field	as	well	as	the	number	of	lines	it	will	contain.

Sub	CreateMultiLine()

'Add	new	MultiLine	Field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objLstFldMulti	As	ListFieldMultiLine

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Description"

				'Add	new	Field	of	type	fpFieldMultiLine	to	list

				objLstFlds.Add	Name:=strName,	Description:="Description	Field",	_

																			Fieldtype:=fpFieldMultiLine

				Set	objLstFldMulti	=	objLstFlds.Item(strName)

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	".	It	contains	"	&	_

											objLstFldMulti.NumberOfLines	&	"	lines."

End	Sub

	 	

ListFieldNumber	Object
ListFieldNumber Web

Contains	information	about	how	numbers	are	displayed	in	Microsoft	FrontPage
list	fields.	The	ListFieldNumber	object	allows	you	to	configure	the	way	in
which	you	view	numbers	in	FrontPage	lists.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldNumber	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpFieldNumber,	to	return	a	single	ListFieldNumber	object.

Use	the	ListFields.Add	method	to	add	a	field	of	type	fpFieldNumber	to	the
ListFields	collection.	The	following	example	adds	a	new	field	named	Total	of
type	fpFieldNumber	to	the	ListFields	collection.	The	subroutine	displays	the
name	of	the	new	field	and	the	name	of	the	list	to	which	it	was	added.

Use	the	ListFieldNumber	object's	DisplayFormat	property	to	change	the	way
in	which	the	data	will	be	displayed	in	the	field.

Sub	CreateNumberField()

'Add	new	MultiLine	Field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Total"

				'Add	new	Field	of	type	fpFieldNumber	to	list

				objLstFlds.Add	Name:=strName,	Description:="Numeric	Total	Field",	_

																			Fieldtype:=fpFieldNumber

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldRatingScale	Object
ListFieldRatingScale Web

Contains	information	about	the	rating	scale	list	field	for	a	list	in	a	Microsoft
FrontPage	Web	site.	The	ListFeldRatingScale	object	is	only	available	for
survey	lists.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
Windows	SharePoint	Services.

Using	the	ListFieldRatingScale	Object

Use	the	Item	property	for	the	ListFields	collection	to	return	a	single
ListFieldRatingScale	object.	The	following	example	returns	the	first	field	in	the
first	list	in	the	Lists	collection.	This	example	assumes	that	the	first	list	in	the
active	Web	is	a	Web	survey	list.

Dim	objList	As	BasicList

Dim	objField	As	ListFieldRatingScale

Set	objList	=	ActiveWeb.Lists(0)

Set	objField	=	objList.Fields(0)

ListFields	Collection
Multiple	objects ListFields

Represents	a	collection	of	ListField	objects	that	define	the	text	fields	used
within	Microsoft	FrontPage	lists.	The	ListField	object	is	a	base	class	that
defines	the	common	members	used	by	the	different	types	of	fields	in	FrontPage.
For	example,	the	ListFieldCurrency	and	ListFieldNumber	objects	allow	you
to	customize	the	way	in	which	currency	and	numeric	information	is	displayed.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFields	collection

Use	Fields	.Item	(index),	where	index	is	either	the	name	of	the	list	or	its	position
within	the	collection,	to	return	a	single	ListField	object.	The	following	example
displays	the	names	of	all	fields	in	the	first	list	of	the	active	Web	site.	If	the	Web
site	contains	no	lists,	a	message	is	displayed	to	the	user.

Use	the	Add	method	to	add	a	new	ListField	object	to	the	ListFields	collection.

Sub	ListFields()

'Display	the	names	of	fields	in	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												If	strType	=	""	Then

																'Create	new	string

																strType	=	objField.Name	&	vbCr

												Else

																'Add	next	field	name	to	string

																strType	=	strType	&	objField.Name	&	vbCr

												End	If

								Next	objField

								MsgBox	"The	names	of	the	fields	in	this	list	are:	"	&	_

																vbCr	&	strType

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

	 	

ListFieldSingleLine	Object
ListFieldSingleLine Web

Contains	information	about	the	single	line	field.	The	fpFieldSingleLine	object	is
used	to	display	information	that	typically	requires	no	more	than	a	single	line	of
text.	For	example,	the	Name	and	Title	fields	typically	use	the
ListFieldSingleLine	object	to	display	information.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldSingleLine	object

The	following	example	creates	a	new	field	of	type	ListFieldSingleLine	named
Alternative	Name.	The	subroutine	displays	the	name	of	the	new	field	and	the
name	of	the	list	to	which	it	was	added.

Sub	CreateSingleLineField()

'Add	new	SingleLineField

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Alternative	Name"

				'Add	new	Field	of	type	fpFieldSingleLine	to	list

				objLstFlds.Add	Name:=strName,	Description:="Numeric	Total	Field",	_

																			Fieldtype:=fpFieldSingleLine

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldTrueFalse	Object
ListFieldTrueFalse Web

Contains	information	about	the	Boolean	field	in	a	Microsoft	FrontPage	list.	The
ListFieldTrueFalse	object	allows	you	to	provide	the	user	with	a	simple,	binary
user-interface	option.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldTrueFalse	object

The	following	example	creates	a	new	field	of	type	fpFieldTrueFalse	named
Default	Page.	The	subroutine	displays	the	name	of	the	new	field	and	the	name	of
the	list	to	which	it	was	added.

Sub	CreateTrueFalseField()

'Add	new	TrueFalse	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Default	Page"

				'Add	new	Field	of	type	fpFieldTrueFalse	to	list

				objLstFlds.Add	Name:=strName,	Description:="Determines	if	this	is	"	&	_

					"default	page",	Fieldtype:=fpFieldTrueFalse

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

ListFieldURL	Object
ListFieldURL Web

Contains	information	about	the	Microsoft	FrontPage	field	used	to	display	URLs.
The	ListFieldURL	object	allows	you	to	customize	the	way	URLs	appear	in	the
list	fields.	The	URL	can	be	displayed	as	an	image	or	as	a	link.	Use	the
DisplayFormat	property	to	change	the	view	settings.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	ListFieldURL	object

Use	ListFields.Item	(index),	where	index	is	the	name	or	ordinal	position	of	a
field	of	type	fpField	URL,	to	return	a	single	ListFieldURL	object.

The	following	example	creates	a	new	field	of	type	fpFieldURL	and	displays	the
name	of	the	new	field	and	the	name	of	the	list	into	which	it	was	inserted.

Sub	CreateURLField()

'Add	new	URL	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Location"

				'Add	new	Field	of	type	fpFieldURL	to	list

				objLstFlds.Add	Name:=strName,	Description:="Displays	file	locations",	_

																			Fieldtype:=fpFieldURL

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

	 	

NavigationNode	Object
Multiple	objects NavigationNode

Multiple	objects

Represents	a	node	in	the	navigational	structure	of	a	Web	site.	The
NavigationNode	object	is	a	member	of	the	NavigationNodes	collection.	Within
the	NavigationNodes	collection,	individual	NavigationNode	objects	are
indexed	beginning	with	zero.

Important		From	the	NavigationNode	object,	you	can	access	all	other
navigation	nodes	in	a	Web	site.	The	RootNavigationNode	object,	created	by
default	each	time	you	create	a	new	Web	site,	provides	the	basis	for	the
navigation	structure,	which	is	accessed	through	the	Children	property.	The	first
child	node	of	the	navigation	structure	is	usually	the	home	page	of	the	Web	site,
which	can	be	accessed	through	the	HomeNavigationNode	property.	However,
the	first	child	node	of	the	root	navigation	node	can	be	any	page,	and	may	not
contain	a	HomeNavigationNode	object	at	all.

Using	the	NavigationNode	object

You	can	use	the	NavigationNode	property	to	return	the	NavigationNode	object.
The	following	example	builds	a	list	of	navigation	node	labels	for	the	WebFile
object	of	the	WebFiles	collection.

Private	Sub	GetNavigationNode()

				Dim	myWeb	As	WebEx

				Dim	myWebFiles	As	WebFiles

				Dim	myWebFile	As	WebFile

				Dim	myNavNodeLabel	As	String

				Dim	myLabel	As	String

				On	Error	Resume	Next

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myFiles

								For	Each	myFile	In	myFiles

												myLabel	=	myFile.NavigationNode.Label

												If	Err	<>	0	Then	Exit	Sub

												myNavNodeLabel	=	myNavNodeLabel	&	myLabel	&	vbCRLF

								Next

				End	With

End	Sub

	 	

The	Children	property	returns	the	collection	of	child	nodes	within	the
navigation	structure	of	a	Web	site.	The	following	statement	returns	the	number
of	child	nodes	within	the	navigation	structure	of	the	active	Web	site.

myNavChildrenCount	_

				=	ActiveWeb.RootFolder.Files(0).NavigationNode.Children.Count

	 	

Use	Children(index),	where	index	is	the	index	number	of	a	navigation	node
item,	to	return	a	single	NavigationNode	object.	The	following	statement	returns
the	file	name	of	the	first	navigation	node	in	the	NavigationNodes	collection.

myNavNodeName	_

				=	ActiveWeb.RootFolder.Files(0).NavigationNode.Children(0).File.Name

	 	

The	File	property	returns	the	File	object	that	is	associated	with	the
NavigationNode	object.	The	following	statement	returns	True	if	the	file	is	open.

myNavFile	=	ActiveWeb.RootFolder.Files(3).NavigationNode.File.IsOpen

	 	

The	Home	property	returns	the	Home	object	associated	with	the	current
navigation	node	and	references	information	such	as	the	Children,	File,	Label,
Next,	Prev,	and	other	properties	for	the	home	page.	The	following	statement
returns	the	URL	of	the	Home	property	for	the	NavigationNode	object.

myHomePageUrl	_

				=	ActiveWeb.RootFolder.Files(5).NavigationNode.Home.Url

	 	

You	can	return	the	Label	property	to	set	or	return	text	that	can	be	used	as	buttons
within	the	navigation	structure,	or	used	for	text	in	a	link	bar.	The	following
example	returns	the	label	for	the	home	page.

myLabel	=	ActiveWeb.RootFolder.Files(0).NavigationNode.Label

	 	

Use	the	Next,	Parent,	Prev,	or	Url	properties	to	return	navigation	nodes
associated	with	the	specified	property.	The	following	example	returns	the	URL
that	is	associated	with	the	previous	NavigationNode	object.

myPrevNode	=	ActiveWeb.RootFolder.Files(1).NavigationNode.Prev.Url

	 	

Use	the	Web	property	to	return	the	WebEx	object	associated	with	the	current
navigation	node.	The	following	example	returns	the	WebEx	object	for	the
current	navigation	node.

myNavNodeWeb	=	_

				ActiveWeb.RootFolder.Files(2).NavigationNode.Web.Url

	 	

Use	the	Move	method	to	move	a	navigation	node	from	one	child	node	to
another.	The	following	example	moves	a	navigation	node	to	a	child	location	on	a
sibling	node	in	the	same	Web	site.

Private	Sub	MoveNavNode()

Dim	myNodes	As	NavigationNodes

Dim	myNode	As	NavigationNode

Set	myNodes	=	ActiveWeb.RootNavigationNode.Children

Set	myNode	=	myNodes(4)

myNode.Move	myNodes,	myNodes(2)

ActiveWeb.ApplyNavigationStructure

End	Sub

	 	

PageWindowEx	Object
PageWindowEx Multiple	objects

Represents	an	open	editor	session	and	encapsulates	the	Microsoft	FrontPage
Page	object	model	that	is	compatible	with	the	Document	object	model	for
Microsoft	Internet	Explorer	4.0	and	later.	The	PageWindowEx	object	is	a
member	of	the	PageWindows	collection	and	represents	all	of	the	open	page
windows	in	the	specified	Web	site.	Within	the	PageWindows	collection,
individual	PageWindowEx	objects	are	indexed	beginning	with	zero.

Note		You	can	also	substitute	the	Caption	property	of	the	PageWindow	object
instead	of	the	index	number	when	accessing	a	PageWindowEx	object.	This	only
works	when	the	PageWindowEx	object	has	already	been	saved.	The	following
statements	return	the	PageWindowEx	object	for	an	open	page	window	that	has
a	caption	of	"C:\My	Web	Sites\Coho	Winery\Zinfandel.htm").

Set	objPageWindow	=	ActiveWebWindow.PageWindow("Zinfandel.htm")

Set	objPageWindow	=	WebWindows(0).PageWindow("Zinfandel.htm")

Using	the	PageWindow	object

Use	PageWindows(index),	where	index	is	the	index	number	of	a	page	window
item,	to	return	a	single	PageWindowEx	object.	The	following	statement	returns
the	file	URL	of	the	first	page	window	item	in	the	PageWindows	collection.

PgePageOne	=	WebWindows(0).PageWindows(0).Document.Url

Use	the	ActiveFrameWindow	property	to	return	the	active	frame	of	a
PageWindowEx	object.	The	following	statement	returns	the
ActiveFrameWindow	object.

Note		The	active	frame	is	the	frame	that	currently	has	the	focus;	it	is	shown	in
FrontPage	with	a	blue	border	surrounding	it.

Set	objActiveFrame	_

				=	WebWindows(1).ActivePageWindow.ActiveFrameWindow

Use	the	FrameWindow	property	to	return	an	FPHTMLWindow2	object,	which
can	then	be	used	to	return	the	frames	collection	and	the	content	of	each	of	the
frames	collection	pages.

objFrameWindow	=	WebWindows(0).ActivePageWindow.FrameWindow

Use	the	Document	property	to	return	the	document	associated	with	the
PageWindowEx	object.	The	following	statement	returns	the	document
associated	with	the	first	PageWindowEx	object	of	the	first	WebWindowEx
object.

Set	objDoc	=	WebWindows(0).PageWindows(0).Document

You	can	use	the	IsDirty	property	to	determine	if	the	PageWindowEx	object	is
dirty—	that	is,	if	it	has	been	modified	since	the	last	refresh	or	save.	The	isDirty
property	returns	True	if	the	PageWindowEx	object	is	dirty.	The	following
example	saves	the	PageWindowEx	object	if	the	first	item	in	the	PageWindows
collection	is	dirty.

Private	Sub	CheckPageWindowIsDirty()

				Dim	objPageWin	As	PageWindowEx

				Set	objPageWin	=	WebWindows(0).PageWindows(0)

				If	objPageWin.IsDirty	=	True	Then

								objPageWin.Save

				End	If

End	Sub

You	can	use	the	ViewMode	property	to	set	the	view	for	the	page	as	shown	in	the
following	statement.	For	more	information	on	the	enumerated	constants
available	for	this	property,	see	the	table	under	the	ViewMode	property.

WebWindows(1).PageWindows(1).ViewMode	=	fpPageViewHtml

Survey	Object
Survey Multiple	objects

Contains	information	about	the	Microsoft	FrontPage	Survey	object	that	allows
users	to	vote	on	issues	and	share	information.

This	object	is	supported	only	by	Web	pages	or	sites	that	are	based	on	Microsoft
SharePoint	Services.

Using	the	Survey	object

Use	Lists.Item(index),	where	index	is	is	the	name	or	ordinal	position	of	a	List
object	of	type	fpListTypeSurvey,	to	return	a	single	Survey	object.

The	following	example	lists	the	names	of	all	surveys	in	the	active	Web	site.	If
the	Web	site	contains	no	surveys	or	the	Web	site	contains	no	lists,	a	message	is
displayed	to	the	user.

Sub	ListAllSurveys()

'Displays	the	names	of	all	survey	objects	in	the	collection

				Dim	lstWebList	As	List

				Dim	strName	As	String

				Dim	blnFound	As	Boolean

				'Set	found	flag	to	false

				blnFound	=	False

				'Check	if	any	lists	exist

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	lstWebList.Type	=	fpListTypeSurvey	Then

																'Set	boolen	flag	to	found

																blnFound	=	True

																'add	list	names	to	string

																If	strName	=	""	Then

																				strName	=	lstWebList.Name	&	vbCr

																Else

																				strName	=	strName	&	lstWebList.Name	&	vbCr

																End	If

												End	If

								Next

								If	blnFound	=	True	Then

												'Display	names	of	all	survey	objects

												MsgBox	"The	names	of	all	survey	objects	in	the	current	Web	site	are:"	_

																			&	vbCr	&	strName

								Else

												MsgBox	"There	are	no	survey	objects	in	the	current	Web	site."

								End	If

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

	 	

Use	the	Lists	collection's	Add	method	to	create	a	new	list	of	type
fpListTypeSurvey.	The	following	example	creates	a	new	survey	called
NewSurvey.

Sub	NewSurvey()

'Adds	a	new	Survey	to	the	current	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	survey

				objLists.Add	Name:="NewSurvey",	_

																	ListType:=fpListTypeSurvey,	_

																	Description:="New	Survey"

				'Display	message	to	user

				MsgBox	"A	new	survey	was	added	to	the	Lists	collection."

End	Sub

	 	

System	Object
Application System

Provides	access	to	system	information	such	as	the	operating	system,	screen
resolution,	or	registry.

Using	the	System	Object

Use	the	System	property	to	return	the	System	object.	The	following	statement
returns	the	name	of	the	calling	application.

mySysApp	=	System.Application.Name

	 	

Use	the	Build	and	Version	properties	to	return	build	and	version	information
about	the	operating	system.

myVer	=	System.Version

myBld	=	System.Build

	 	

The	horizontal	and	vertical	resolution	can	be	used	to	determine	if	a	graphic	can
be	displayed	on	a	client’s	machine.	The	following	statements	return	the
resolution	settings.

currHorizRes	=	System.HorizontalResolution

currVertRes	=	System.Vertical.Resolution

	 	

Use	the	OperatingSystem	property	to	return	the	name	of	the	current	operating
system,	as	shown	in	the	following	statement.

thisOps	=	System.OperatingSystem

	 	

Use	the	Parent	property	to	return	the	parent	of	the	specified	object.	The
following	statement	returns	parent	information	for	the	System	object.

Private	Sub	GetSystemParentInfo()

				Dim	mySys	As	System

				Dim	mySysUserName	As	String

				Set	mySys	=	System

				With	mySys

								mySysUserName	=	.Parent.UserName

				End	With

End	Sub

	 	

Use	the	LanguageDesignation	property	to	return	a	three-letter	abbreviation	for
the	language	used	for	the	operating	system.	The	following	statement	returns
"enu"	as	the	language	designation	abbreviation	for	the	English	(US)	language.

currSystemLanguage	=	System.LanguageDesignation

	 	

Use	the	ProfileString	property	to	return	or	set	an	entry	in	the	Windows	registry.
If	used	without	parameters,	the	ProfileString	property	defaults	to	the	following
key:

HKEY_CURRENT_USERS\Software\Microsoft\FrontPage

The	parameters	for	the	ProfileString	property	are:

RegistrySection,	where	RegistrySection	is	a	registry	subtree	such	as
HKEY_CURRENT_USER	or	HKEY_LOCAL_MACHINE.
RegistryKey,	where	RegistryKey	is	the	next	level	below	the	section	or
subtree	with	such	key	names	as	Software	or	Network.

The	following	example	returns	the	Identifier	for	the	CentralProcessor	subkey.

Private	Sub	GetProfileString()

				Dim	mySys	As	System

				Dim	myRegSec	As	String

				Dim	myRegKeyInfo	As	String

				Set	mySys	=	System

				myRegSec	=	_

					"HKEY_LOCAL_MACHINE\Hardware\Description\System\CentralProcessor\0"

				myRegKeyInfo		=	mySys.ProfileString(myRegSec,	"Identifier")

End	Sub

	 	

Theme	Object
Multiple	objects Themes

Theme

Represents	a	theme	in	Microsoft	FrontPage.	The	Theme	object	is	a	member	of
the	Themes	collection.	The	Themes	collection	represents	all	the	themes	on	the
local	machine	or	all	themes	applied	to	a	specific	Web	site.	Within	the	Themes
collection,	individual	Theme	objects	are	indexed	beginning	with	zero.

Using	the	Theme	object

Use	the	Format	property	to	return	format	information	for	a	theme.	The
following	statement	returns	the	format	for	the	first	theme	applied	to	the	active
Web	site.

myThemeFormat	=	ActiveWeb.Themes(1).Format

Use	the	Label	property	to	return	the	name	that	is	displayed	in	the	Theme	list
box.	This	is	the	full	name	of	the	theme.	The	following	statement	returns	the	label
for	the	theme.

myThemeLbl	=	ActiveWeb.Themes(1).Label

Use	the	Name	property	to	return	or	apply	a	theme	to	a	Web	page.	The	Name
property	contains	the	directory	name	for	the	theme,	which	is	an	abbreviated
version	of	the	name	of	the	theme	as	displayed	in	the	Theme	list	box.	The
following	example	lists	the	names	of	all	themes	in	the	themes	collection	in	the
body	of	the	active	document.

Note		To	run	this	example,	you	must	have	a	Web	site	open	that	has	a	theme
applied	to	the	active	page,	the	entire	Web	site,	or	a	specific	file	in	the	Web	site.

Sub	ListThemes()

				

				Dim	objTheme	As	Theme

				

				For	Each	objTheme	In	Application.Themes

								ActiveDocument.body.insertAdjacentText	"beforeend",	objTheme.Name

				Next

End	Sub

Use	the	Version	property	to	return	the	version	number	of	the	theme.	The
following	example	returns	the	version	for	a	theme.

myThemeVersion	=	Theme.Version

WebEx	Object
Multiple	objects Web

Multiple	objects

Represents	a	Microsoft	FrontPage	Web	site.	The	WebEx	object	is	a	member	of
the	Webs	collection,	which	represents	all	of	the	open	Web	sites	in	FrontPage.
FrontPage	provides	the	ability	to	create	multiple	WebEx	objects	on	a	Web
server.	Within	the	Webs	collection,	individual	WebEx	objects	are	indexed
beginning	with	zero.	The	directory	hierarchy	of	a	Web	site	in	FrontPage	is
similar	to	a	folder	hierarchy.	Any	WebFolder	can	represent	a	Web	site,	but
every	WebFolder	does	not	necessarily	represent	a	Web	site.	The	Web	folder
hierarchy	provides	the	link	to	folders	and	files	on	a	Web	server	directory.

Using	the	Web	object	properties

Use	the	Web	property	to	return	the	WebEx	object.	The	following	example
checks	the	Web	site’s	operating	system	for	the	capability	of	processing	long	file
names.

Note		To	run	this	example,	create	a	form	with	a	command	button	called
cmdCheckLongFilenames,	a	text	box	called	txtLongFilenames,	and	copy	the
example	into	the	code	window.

Private	Sub	cmdCheckLongFilenames()

				Dim	objPageWin	As	PageWindow

				Set	objPageWin	=	ActivePageWindow

				With	objPageWin

								If	.Web.AllowsLongFilenames	=	True	Then

												txtlongFilenames	=	_

												"This	operating	system	uses	long	file	names."

												Exit	Sub

								Else

												txtlongFilenames	=	_

												"This	operating	system	only	uses	short	file	names."

								End	If

				End	With

End	Sub

	 	

Use	Webs(index),	where	index	is	the	ordinal	position	of	a	Web	site	in	the	Webs
collection,	to	return	a	single	WebEx	object.	The	following	example	returns	the
URL	of	the	first	Web	site	in	the	Webs	collection.

Application.Webs(0).Url

	 	

Use	the	ActiveWebWindow	property	to	return	the	selected	WebWindowEx
object.	From	the	WebWindowEx	object,	you	can	access	the	ActiveDocument,
ActivePageWindow,	or	Application	properties,	along	with	properties	such	as
Caption,	PageWindows,	Parent,	ViewMode,	Visible,	and	Web.	The	following
example	returns	the	creation	date	and	file	size	of	the	active	document.

Note		Although	Date	is	an	available	type	in	Microsoft	Visual	Basic	for
Applications	(VBA),	the	WebWindowEx	object	returns	the	date	in	string	format
and	does	not	automatically	convert	the	string	to	a	date	format.

Private	Sub	ActiveDocDateSize()

				Dim	objWebWindow	As	WebWindowEx

				Dim	strFileSize	As	String

				Dim	strCreateDate	As	String

				Set	objWebWindow	=	ActiveWebWindow

				With	objWebWindow

								strFileSize	=	.ActiveDocument.fileSize

								strCreateDate	=	.ActiveDocument.fileCreatedDate

				End	With

End	Sub

	 	

The	RevisionControlProject	and	IsUnderRevisionControl	properties	return
the	status	of	the	WebEx	object’s	revision	state.	You	can	control	versioning	in
Microsoft	FrontPage	through	Microsoft	Visual	SourceSafe	or	through	Microsoft
Office-style	locking.	For	more	information	on	source	control	projects	and
Office-style	locking,	see	Managing	Source	Control.

If	a	revision	control	project	does	not	correspond	to	a	valid	Visual	SourceSafe
project,	FrontPage	defaults	to	Office-style	locking.	The	following	example
returns	the	RevisionControlProject	and	IsUnderRevisionControl	properties,
and	includes	a	source	control	project	example.

Note		To	run	this	example,	create	a	module	and	copy	the	example	into	the	code
window.	You	must	have	a	Web	site	open.

Private	Sub	SourceControl()

			Dim	objWeb	As	WebEx

				Set	objWeb	=	ActiveWeb

				If	Not(objWeb.IsUnderRevisionControl)	Then

								objWeb.RevisionControlProject	=	"<FrontPage-based	Locking>"

				End	If

End	Sub

Private	Sub	ReturnRevisionState()

				Dim	objWeb	As	WebEx

				Dim	strRevCtrlProj	As	String

				Dim	blnIsUnderRevCtrl	As	Boolean

				Set	objWeb	=	ActiveWeb

				With	objWeb

								RevCtrlProj	=	.RevisionControlProject

								blnIsUnderRevCtrl	=	.IsUnderRevisionControl

				End	With

End	Sub

	 	

Use	the	RootFolder	and	RootNavigationNode	properties	to	determine	the	root
folder	or	root	navigation	node.	The	RootFolder	property	returns	a	pointer	to	the
root	folder	of	a	Web	site.	The	RootNavigationNode	property	returns	the
NavigationNode	object	from	which	you	can	access	all	other	navigation	nodes	in
a	Web	site.	The	RootNavigationNode	object	is	created	by	default	when	you
create	a	Web	site,	and	provides	the	basis	for	the	navigation	structure,	which	is
accessed	through	the	Children	property.	The	first	child	node	of	the	navigation
structure	is	the	home	page	of	the	Web	site.	The	following	example	returns	the
name	of	the	root	folder	and	the	URL	of	the	RootNavigationNode	object.

Private	Sub	GetRootInfo()

				Dim	objWeb	As	WebEx

				Dim	strRootFolder	As	String

				Dim	strHomeNavNode	As	String

				Set	objWeb	=	ActiveWeb

				With	objWeb

								strRootFolder	=	.RootFolder.Name

								strHomeNavNode	=	.RootNavigationNode.Children(0).Url

				End	With

End	Sub

	 	

Use	the	SharedBorders	property	to	set	the	shared	borders	for	a	Web	site	either
on	or	off.	The	following	statement	sets	the	SharedBorders	property	to	True	and
turns	shared	borders	on	for	the	specified	Web	site.

ActiveWeb.SharedBorders(fpBorderTop)	=	True

	 	

Use	the	WebWindows	property	to	return	the	collection	of	WebWindow	objects
that	are	contained	within	the	current	WebEx	object.	The	following	statement
returns	a	count	of	the	WebWindows	collection.

Application.WebWindows.Count

	 	

Using	the	Web	object	methods

Use	the	Activate	method	to	place	the	focus	on	the	current	object.	The	following
statements	check	if	myAdventureWorksWeb	is	the	active	Web	site;	if	it	is	not,	then
myAdventureWorksWeb	is	activated.

If	ActiveWeb	<>	myAdventureWorksWeb	Then

				objAdventureWorksWeb.Activate

End	If

	 	

Use	the	ApplyNavigationStructure	method	to	apply	a	newly	created	or
modified	navigation	structure	to	a	Web	site.	The	following	statement	applies	a
navigation	structure	to	a	Web	site,	where	the	variable	for	the	Adventure	Works
Web	site	is	webAdventureWorksWeb.

myAdventureWorksWeb.ApplyNavigationStructure

	 	

Use	the	CancelRequests	method	to	cancel	all	server	requests.	The	following
statement	cancels	all	server	requests	for	the	Adventure	Works	Web	site,	with
webAdventureWorksWeb	as	the	Web	object	variable.

Note		The	client	will	stop	all	requests	to	the	server;	however,	the	server	may
have	already	started	a	transaction,	in	which	case	it	will	continue	until	the
transaction	is	finished	and	then	the	remaining	requests	(if	any)	will	be	cancelled.

myAdventureWorksWeb.CancelRequests

	 	

Use	the	LocateFile	or	LocateFolder	methods	to	return	a	WebFile	or	a
WebFolder	object	within	a	Web	site.	The	following	example	locates	a	folder	for
a	disk-based	Web	site.

Application.Web.LocateFolder("C:\My	Web	Sites\Adventure	Works\images")

	 	

Use	the	Publish	method	to	publish	a	Web	site	to	a	Web	server.	The	following
statement	publishes	the	Adventure	Works	Web	site	to	a	Personal	Web	Server
site.

Dim	objWeb	As	WebEx

Set	objWeb	=	Application.Web

With	objWeb

				.Publish	_

				"http://myServer/wwwroot",	fpPublishAddToExistingWeb

	 	

The	FpWebPublishFlags	enumerated	types	can	be	concatenated	as	shown	in	the
following	statement.

myWeb.Publish	_

				"http://myServer/wwwroot",	fpPublishAddToExistingWeb	+	_

				fpPublishCopySubwebs

	 	

WebFile	Object
Multiple	objects WebFile

Multiple	objects

Represents	a	file	in	a	Microsoft	FrontPage-based	Web	site.	The	WebFile	object
is	a	member	of	the	WebFiles	collection.	The	WebFiles	collection	represents	all
of	the	files	in	a	specified	WebFolder	object.	Within	the	WebFiles	collection,
individual	WebFile	objects	are	indexed	beginning	with	zero.	The	WebFile
object	is	similar	to	a	file	in	a	directory-based	hierarchy.	FrontPage	provides	the
ability	to	create	multiple	Web	objects	on	a	Web	server.	Any	WebFolder	can
represent	a	Web	site,	but	every	WebFolder	does	not	necessarily	represent	a	Web
site.

Using	the	File	object

Use	WebFiles(index),	where	index	is	the	ordinal	number	of	a	Web	page,	to
return	a	single	WebFile	object.	The	following	example	returns	the	file	name	of
the	first	Web	page	in	the	WebFiles	collection.

ActiveWeb.RootFolder.Files(0).Name

	 	

Use	the	File	object	to	return	information	about	a	file	on	a	Web	site.	The
following	example	returns	the	Name,	Title,	and	Url	properties	of	each	File
object	on	the	active	Web	site.

Note		To	run	this	program,	you	must	have	a	least	one	Web	site	open.

Private	Sub	GetWebFileInfo()

				Dim	myWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myFileName	As	String

				Dim	myTitle	As	String

				Dim	myUrl	As	String

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myWeb

								For	Each	myFile	In	myFiles

												myFileName	=	myFile.Name

												myTitle	=	myFile.Title

												myUrl	=	myFile.Url

								Next

				End	With

End	Sub

	 	

Use	the	IsOpen	property	to	check	if	a	file	is	currently	open	in	Page	view.	The
following	example	returns	the	IsOpen	property	for	a	specified	File	object.
Notice	that	the	Edit	method	is	used	to	open	the	file	in	this	example.	For	more
information	on	using	these	methods,	see	the	Edit	method.

Note		You	must	have	a	Web	site	open	to	run	this	program.

Private	Sub	CheckForOpenFile()

				Dim	myWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myFileToOpen	As	String

				Dim	myMessage	As	String

				Dim	myFileName	As	String

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				myFileToOpen	=	"index.htm"

				myMessage	=	"This	file	is	currently	open."

				With	myWeb

								For	Each	myFile	In	myFiles

												myFileName	=	myFile.Name

												If	myFileName	=	myFileToOpen	Then

																If	myFile.IsOpen	=	True	Then

																				MsgBox	(myMessage)

																				Exit	Sub

																Else

																				myFile.Edit	fpPageViewNormal

																				Exit	Sub

																End	If

											End	If

								Next

				End	With

End	Sub

	 	

Use	the	Checkin,	Checkout,	and	UndoCheckout	methods	to	manage	file
resources	through	source	control	on	a	Web	site.	The	following	statement	checks
out	the	first	file	in	the	active	Web	site.

Note		You	must	have	a	source	control	project	set	up	in	order	for	this	to	work.

myFileCheckedOut	=	ActiveWeb.RootFolder.Files(1).Checkout

	 	

Similar	to	file	management	features	in	Microsoft	Visual	SourceSafe,	FrontPage
also	provides	an	UndoCheckout	method	that	you	can	use	to	return	a	file	to	its
original	state.	The	following	statement	returns	the	file	to	its	original	state.

myFileCheckedOut	=	ActiveWeb.RootFolder.Files(1).UndoCheckout

	 	

You	can	use	the	CheckedoutBy	property	before	attempting	to	check	out	a	file	to
see	if	the	file	is	currently	checked	out	and	by	whom.	The	following	statement
returns	the	logon	alias	of	the	person	who	checked	out	a	file	or	is	null	if	the	file
isn't	currently	checked	out.

myWhoCheckedOutFile	=	ActiveWeb.RootFolder.Files(0).CheckedoutBy

	 	

Use	the	Properties	property	to	return	information	about	a	Web	site,	such	as	the
type	of	Web	server	(vti_webservertype)	or	if	the	Web	site	has	a	search	bot
(vti_hassearchbot).	The	Properties	property	returns	a	collection	of	key-value
pairs	used	to	maintain	the	meta	information.	The	following	statement	returns
True	for	the	variable	mySearchBot	if	the	Web	site	has	a	search	bot.

mySearchBot	=	ActiveWeb.Properties.Item("vti_hassearchbot")

	 	

Use	the	MetaTags	property	to	return	information	about	the	meta	tags	contained
in	the	HTML	coding	of	a	file.	The	MetaTags	property	returns	a	collection	of
meta	tags	for	a	File	object,	such	as	the	generator	of	the	file.	The	following
example	returns	the	file	name	and	meta	tags	for	each	file	in	a	Web	site.

Note		To	run	this	program,	you	must	have	a	least	one	Web	site	open.

Private	Sub	GetMetaTags()

				Dim	myWeb	As	WebEx

				Dim	myMetaTag	As	Variant

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myMetaTags	As	MetaTags

				Dim	myFileName	As	String

				Dim	myMetaTagName	As	String

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myWeb

								For	Each	myFile	In	myFiles

												Set	myMetaTags	=	myFile.MetaTags

												For	Each	myMetaTag	In	myMetaTags

																myFileName	=	myFile.Name

																myMetaTagName	=	myMetaTag

												Next

								Next

				End	With

End	Sub

	 	

Use	the	SharedBorders	property	to	return	the	shared	borders	on	the	current	Web
page	or	to	set	new	shared	borders.	The	following	statement	returns	the	top
shared	border	of	the	first	file	in	the	Files	collection	of	the	active	Web	site.

myTopBorder	_

				=	ActiveWeb.RootFolder.Files(0).SharedBorders(fpBorderTop)

	 	

You	can	also	set	shared	borders	on	a	Web	page,	as	shown	in	the	following
statement.

ActiveWeb.RootFolder.Files(0).SharedBorders(fpBorderTop)	=	True

	 	

Use	the	ThemeProperties	property	to	return	information	about	whether	the
theme	uses	vivid	colors	or	active	graphics.	The	following	example	returns	the
properties	of	an	applied	theme	and	adds	vivid	colors	to	the	current	theme
properties	if	vivid	colors	haven't	been	applied	to	the	specified	object.

Private	Sub	CheckThemeProperties()

				Dim	myFile	As	WebFile

				Set	myFile	=	ActiveWeb.RootFolder.Files(0)

				If	myFile.ThemeProperties(fpThemeActiveGraphics)	Then

								myFile.ApplyTheme	myFile.ThemeProperties(fpThemeName),	myFile.ThemeProperties(fpThemePropertiesAll)	

				Else

								myFile.ApplyTheme	myFile.ThemeProperties(fpThemeName),	myFile.ThemeProperties(fpThemePropertiesAll)	+	fpThemeActiveGraphics	+	fpThemeVividColors

				End	If

End	Sub

	 	

Using	File	methods

Use	the	Copy,	Delete,	Edit,	Move,	or	Open	methods	to	manage	your	Web
pages.	There's	a	subtle	distinction	between	the	Edit	and	Open	methods.	With	the
Edit	method,	you	can	open	and	modify	a	FrontPage-compatible	file	into	a
PageWindow	object.	With	the	Open	method,	you	can	open	both	FrontPage-
compatible	files	and	any	other	type	of	file	such	as	image	or	text	files,	into	the
file's	associated	editor.	When	you	use	the	Open	method	to	open	a	file	type	that	is
not	FrontPage-compatible,	FrontPage	does	not	return	a	file	object.	The	following
example	opens	a	file,	deletes	a	file,	and	moves	a	file.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Webs	Sites\Coho	Winery".

Private	Sub	OpenFile()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Set	myWeb	=	Webs.Open("C:\My	Documents\My	Webs	Sites\Coho	Winery")

				myWeb.Activate

				Set	myFile	=	myWeb.RootFolder.Files("index.htm")

				myFile.Open

End	Sub

Private	Sub	DeleteFile()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Set	myWeb	=	ActiveWeb

				Set	myFile	=	myWeb.RootFolder.Files(0)

				myFile.Delete

End	Sub

Sub	MoveFile()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Set	myWeb	=	ActiveWeb

				Set	myFile	=	myWeb.RootFolder.Files(0)

				myFile.Move	"New	Filename",	True,	True

End	Sub

	 	

WebFolder	Object
Multiple	objects WebFolder

Multiple	objects

Represents	a	folder	in	a	Microsoft	FrontPage-based	Web	site.	The	WebFolder
object	is	a	member	of	the	WebFolders	collection.

Note		The	Folder	object	is	a	pointer	to	the	WebFolder	object.

The	WebFolders	collection	represents	all	of	the	folders	in	a	specified	Web	site.
Within	the	WebFolders	collection,	individual	WebFolder	objects	are	indexed
beginning	with	zero.	The	WebFolder	object	is	similar	to	a	folder	in	a	directory-
based	hierarchy;	however,	the	relationship	between	WebFolder	objects	and	Web
objects	is	unique.	FrontPage	provides	the	ability	to	create	multiple	WebEx
objects	on	a	Web	server.	Any	WebFolder	can	represent	a	Web	site,	but	every
WebFolder	does	not	necessarily	represent	a	Web	site.	The	folder	hierarchy
provides	the	link	to	folders	and	files	on	a	Web	server	directory.	The	navigation
structure	provides	the	underlying	structure	for	the	Web	objects	within	individual
FrontPage-based	Web	sites.

Using	the	WebFolder	object

Use	WebFolders(index),	where	index	is	the	property	key	of	a	folder,	to	return	a
single	WebFolder	object.	The	following	example	returns	the	file	name	of	the
first	folder	item	in	the	WebFolders	collection.

ActiveDocument.WebFolders(0).Name

Use	the	collection	properties	such	as	Files,	Folders,	or	Properties,	to	return	the
collection	object	for	the	specified	item.	The	following	statements	return	the	first
specified	item	in	the	collection	for	the	active	Web	site.

myFileOne	=	ActiveWeb.RootFolder.Files(0)

myFolderOne	=	ActiveWeb.RootFolder.Folders(0)

myPropertyOne	=	ActiveWeb.Properties("vti_author")

Use	such	properties	as	IsExecutable,	IsReadable,	IsRoot,	and	so	on,	to	check
for	the	specified	state	of	the	folder.	If	you	have	CGI	scripts	that	you'd	like	to
execute,	you	can	add	the	scripts	to	a	folder	and	set	the	IsExecutable	property	of
that	folder	to	True.	When	you	have	content	in	a	folder	that	you'd	like	others	to
browse,	you	can	set	the	IsReadable	property	to	True.	If	you	want	to	check
whether	the	current	folder	is	the	root	folder,	you	can	use	the	IsRoot	property.The
following	example	checks	if	files	in	the	current	WebFolder	object	are
executable,	read-only,	or	located	in	a	root	folder.

Private	Sub	GetFolderInfo()

				Dim	myWeb	As	WebEx

				Dim	myFolder	As	WebFolder

				Dim	myIsExe	As	Boolean

				Dim	myIsReadable	As	Boolean

				Dim	myIsRoot	As	Boolean

				Set	myWeb	=	ActiveWeb

				Set	myFolder	=	myWeb.RootFolder.Folders(1)

				With	myFolder

								myIsExe	=	.IsExecutable

								myIsReadable	=	.IsReadable

								myIsRoot	=	.IsRoot

				End	With

End	Sub

The	IsExecutable,	IsReadable,	and	IsWriteable	properties	return	information
about	the	state	of	the	folder.	The	following	examples	show	how	to	set	the
IsExecutable	and	IsReadable	properties	and	read	the	IsWriteable	property.

Note		You	cannot	set	the	IsWriteable	property,	however	you	can	set	the
IsExecutable	and	IsReadable	properties	for	a	WebFolder	object.

Sub	FolderProperties	()

Dim	myFolder	As	WebFolder

Set	myFolder	=	ActiveWeb.RootFolder.Folders(0)

If	myFolder.IsWritable	Then

				MsgBox	"Folder,	"	&	myFolder.Url	&	"	is	writable"

End	If

If	Not(myFolder.IsReadable)	Then

				MyFolder.IsReadable	=	True

End	If

If	myFolder.IsExecutable	Then

				MyFolder.IsExecutable	=	False

End	If

End	Sub

Folders	(or	WebFolders	collection)	in	FrontPage	serve	two	purposes.	They	can
be	folders	that	help	manage	the	contents	of	a	Web	site	or	they	can	be	entire	Web
sites.	A	Web	site	can	have	multiple	sub	Web	sites	below	it.	The	IsWeb	property
returns	True	if	the	folder	in	question	is	a	Web	subsite.	The	following	example
uses	the	IsWeb	property	to	determine	if	a	folder	is	a	Web	subsite	and,	if	so,
opens	the	Web	site.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Coho	Winery",	or	you	may	substitute	an	alternative
Web	site	URL.

Private	Sub	CheckFolder()

				Dim	myFolder	As	WebFolder

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("Coho	Winery")

				If	myFolder.IsWeb	=	True	Then

								Webs.Open	myFolder.Url

				End	If

End	Sub

Use	the	Url	property	to	return	the	URL	of	the	current	WebFolder	object.	The
following	statement	returns	the	absolute	URL	for	the	eighth	folder	in	the	active
Web	site.

myUrl	=	ActiveWeb.RootFolder.Folders(7).Url

Use	the	Copy,	Delete,	and	Move	methods	to	maintain	your	Web	site	structure.
The	following	statement	copies	a	WebFolder	object	from	one	folder	to	another
folder,	updates	the	links	during	the	copy	process,	and	forces	an	overwrite	if	the
file	already	exists.

myFolder.Copy("C:\My	Web	Sites\New	Adventure	Products",	True,	True)

WebPackage	Object
WebPackage

Represents	a	Web	package	that	has	been	created	in	Microsoft	FrontPage	Visual
Basic	for	Applications.	The	WebPackage	object	is	an	in-memory	object	only
and	does	not	correspond	to	any	FrontPage	User	Interface	element.	Instead,	use
the	WebPackage	object	to	work	with	a	Web	package	once	you've	created	it	in
code.

Using	the	WebPackage	object

Use	the	CreatePackage	method	to	create	a	WebPackage	object.	The	following
example	creates	a	new	Web	package.

Dim	objPackage	As	WebPackage

Set	objPackage	=	ActiveWeb.CreatePackage("New	Web	Package")

Use	the	Add	method	to	add	files	to	the	Web	package.	The	following	example
adds	three	files	to	the	WebPackage	object	created	in	the	previous	code.

objPackage.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

objPackage.Add	objWeb.Url	&	"/test2.htm",	fpDepsNone

objPackage.Add	objWeb.Url	&	"/test3.htm",	fpDepsImages

Use	the	Subject,	Author,	Comany,	and	Title	properties	to	add	information
about	a	Web	package.	The	following	example	specifies	the	subject,	author,	and
company	for	the	WebPackage	object	created	above.	(When	you	create	a	Web
package,	the	Title	parameter	for	the	CreatePackage	method	becomes	the	value
of	the	Title	property.	You	can	change	the	title	of	a	Web	package	by	setting	the
Title	property	to	a	new	value.)

objPackage.Author	=	"John	Smith"

objPackage.Company	=	"Fourth	Coffee"

objPackage.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

Use	the	Remove	method	to	remove	files	that	were	added	by	using	the	Add
method.	The	following	example	removes	one	of	the	files	added	above.

objPackage.Remove	objWeb.Url	&	"/test3.htm",	fpDepsImages

Use	the	Save	method	to	save,	or	export,	a	Web	package.	The	following	example
saves	the	WebPackage	object	created	above.

objPackage.Save	"c:\NewWebPackage.fwp",	True

WebWindowEx	Object

WebWindowEx Multiple	objects

Represents	a	Microsoft	FrontPage	application	window	in	which	a	Web	site	is
opened.	The	WebWindowEx	object	is	a	member	of	the	WebWindows
collection.	The	WebWindows	collection	represents	all	of	the	open	application
windows	in	a	specified	Web	site	or	within	FrontPage.	Within	the	WebWindows
collection,	individual	WebWindowEx	objects	are	indexed	beginning	with	zero.
Each	Web	site	that	is	opened	in	FrontPage	is	contained	in	a	new
WebWindowEx	object,	unless	it	is	opened	in	a	windowless	environment	by
setting	the	Visible	property	of	the	WebWindowEx	object	to	False.	For	more
information	on	windowless	environments,	see	Coding	in	a	Windowless
Environment.

Using	the	WebWindow	object

Use	the	WebWindow	property	to	return	information	about	an	open
WebWindowEx	object.	You	can	also	use	the	PageWindows	property	to	return
information	about	the	collection	of	open	pages	in	a	WebWindowEx	object.	Use
WebWindows(index),	where	index	is	the	index	number	of	an	application
window	item,	to	return	a	single	WebWindow	object.	The	following	statement
returns	the	ViewMode	property	of	the	first	Web	site	in	the	WebWindows
collection.

myViewMode	=	WebWindows(0).ViewMode

	 	

You	can	also	use	the	ViewMode	property	to	switch	between	view	modes	by
setting	the	view	mode	as	shown	in	the	following	statement,	which	switches	the
current	view	mode	to	Navigation	view.

ActiveWebWindow.ViewMode	=	fpWebViewStructure

	 	

The	Activate	method	puts	the	focus	on	the	specified	WebWindowEx	object.
The	following	statements	activates	the	first	Web	sites	in	the	collection	of	open
windows.

myWebWindow	=	WebWindows(0)

myWebWindow.Activate

	 	

The	ActivePageWindow	property	returns	the	active	PageWindowEx	object.
The	following	statements	return	the	URL	and	the	caption	of	the	active
PageWindowEx	object.	The	value	returned	for	the	caption	in	this	case	is	a	file
name,	such	as	"Index.htm".

urlThisDoc	=	WebWindow.ActivePageWindow.Document.Url

fileName	=	WebWindow.ActivePageWindow.Caption

	 	

You	can	also	return	the	Caption	property	from	the	WebWindowEx	object.	In
this	case,	the	text	that	is	returned	reflects	the	text	in	the	title	bar	of	the	FrontPage
application	window,	which	consists	of	the	application	name	and	the	URL	of	the

specified	WebWindowEx	object,	such	as	"Microsoft	FrontPage	–	C:\My
Documents\My	Web	Sites\Adventure	Works".	The	following	statement	returns
the	value	of	the	Caption	property	of	the	WebWindowEx	object.

thisCaption	=	WebWindow.Caption

	 	

Use	the	Close	method	to	close	a	WebWindowEx	object.	The	following
statement	closes	the	specified	WebWindow.

Set	myWebWindowOne	=	WebWindows(0)

myWebWindowOne.Close

	 	

Use	the	ViewMode	property	to	return	or	set	one	of	the	values	shown	in	the
following	table.	You	can	also	use	these	enumerated	values	to	switch	views	in
FrontPage.

Enumermated	Constant Value Corresponding	View	in	FrontPage
FpWebViewLinks 0 Hyperlinks	view
FpWebViewFolders 1 Folders	view
FpWebViewStructure 2 Navigation	view
FpWebViewPage 3 Page	view
fpWebViewAllFiles 4 View	a	list	of	every	file	in	Reports	view
FpWebViewTodo 5 View	a	To	Do	list	in	Tasks	view

FpWebViewBrokenLinks 6 View	a	list	of	broken	hyperlinks	in	Reports
view

FpWebFiewSiteSummary 7 Site	Summary	view	in	Reports	view

The	following	statement	sets	the	ViewMode	property	to	fpWebViewPage.

WebWindows(0).ViewMode	=	fpWebViewPage

	 	

Use	the	Visible	property	to	return	or	set	a	Boolean	value	for	the	state	of	a
WebWindowEx	object.	The	Visible	property	returns	True	if	a	WebWindowEx
object	is	visible.	The	following	statement	sets	a	WebWindowEx	object	to	an
invisible	state.

WebWindow.Visible	=	False

	 	

Use	the	Web	property	to	return	information	about	the	WebEx	object.	The
following	statement	returns	the	number	of	properties	for	the	specified	Web	sites.

myProperties	=	ActiveWeb.WebWindows(0).Web.Properties.Count

	 	

Activate	Method
Activates	the	specified	PageWindowEx	,	WebEx	,	or	WebWindowEx	object.
When	you	have	multiple	objects	open,	you	can	use	the	Activate	method	to	work
with	a	specific	PageWindowEx,	WebEx,	or	WebWindowEx	object.

expression.Activate

expression				An	expression	that	returns	a	PageWindowEx,	WebEx,	or
WebWindowEx	object.

Remarks

The	Activate	method	has	no	effect	on	a	windowless	PageWindowEx	object.

Example

This	statement	activates	the	home	page	for	the	Adventure	Works	Web	site.

If	myWeb.Url	=	"C:\My	Web	Sites\Adventure	Works"	Then	myWeb.Activate

Show	All

Add	Method
Add	method	as	it	applies	to	the	ListFields	object.

Adds	a	new	ListField	object	to	the	ListFields	collection.

expression.Add(Name,	Description,	FieldType,	Required,	DefaultValue)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Name			Required.	A	String	that	represents	the	name	of	the	field.

Description			Optional.	A	String	that	represents	a	description	of	the	field.

DefaultValue			Optional.	A	Variant	that	defines	the	default	value.

FieldType			Optional.	An	FpFieldType	constant	that	represents	the	type	of	the
new	field.

FpFieldType	can	be	one	of	these	FpFieldType	constants.
fpFieldAttachments
fpFieldChoice
fpFieldComputed
fpFieldCounter
fpFieldCurrency
fpFieldDateTime
fpFieldFile
fpFieldInteger
fpFieldLookup
fpFieldMultiLine
fpFieldNumber
fpFieldRatingScale
fpFieldSingleLine	default
fpFieldTrueFalse

fpFieldURL

Required			Optional.	A	Boolean	that	determines	if	this	is	a	required	field.	True	if
the	field	is	required.

Add	method	as	it	applies	to	the	Lists	object.

Adds	a	new	List	object	to	the	Lists	collection.

expression.Add(Name,	ParentFolder,	ListType,	Description)

expression				Required.	An	expression	that	returns	a	Lists	object.

Name			Required.	A	String	that	represents	the	name	of	the	new	list.

ParentFolder			Optional.	A	String	that	represents	the	parent	folder	associated
with	the	List.

ListType			Optional.	An	FpListType	constant	that	represents	the	type	of	list.

FpListType	can	be	one	of	these	FpListType	constants.
fpListTypeBasicList	default
fpListTypeDiscussion
fpListTypeDocumentLibrary
fpListTypeSurvey

Description			Optional.	A	String	that	represents	a	description	of	the	List	object.

Add	method	as	it	applies	to	the	NavigationNodes	object.

Adds	a	new	file	to	the	list	of	available	items	in	the	NavigationNodes	collection.
Use	this	method	to	add	a	new	file	to	the	navigation	structure.	For	more
information	on	using	navigation	nodes,	see	the	RootNavigationNode	property
for	the	Web	object,	or	the	Children	property	for	the	NavigationNode	object.

expression.Add(Url,	NodeLabel,	ModificationType,	LeftSibling)

expression				Required.	An	expression	that	returns	a	NavigationNodes
collection.

Url			Required	String.	A	string	that	contains	the	path	for	the	Web	server	where
the	file	will	be	stored.	This	can	be	any	absolute	URL,	such	as	http://web	server			
or	file://file	system	for	disk-based	Webs.

NodeLabel			Required	String.	A	string	of	text	used	to	identify	the
NavigationNode	object	when	viewing	the	navigation	structure	in	Navigation
view.	The	NodeLabel	argument	is	used	only	as	an	aid	to	identification.

ModificationType			Required	FpStructModType.	The	node	modification	type.

FpStructModType	can	be	one	of	these	FpStructModType	constants.
fpStructBaseOnSibling	Use	this	setting	if	you	want	to	add	a	new	node	to	the
right	of	the	node	designated	in	the	left	sibling	argument.
fpStructLeftmostChild	The	leftmost	node	in	the	current	navigation	structure.
fpStructRightmostChild	The	rightmost	node	in	the	current	navigation
structure.

LeftSibling			Optional	Variant.	An	index	into	the	NavigationNodes	collection.
It	can	be	either	a	string	that	represents	a	URL,	or	a	number	that	represents	a	node
in	the	collection.

Remarks

Adding	a	new	file	onto	the	Web	server	(using	the	WebFiles.Add	method)
doesn't	imply	that	you	are	automatically	introducing	the	file	into	the	navigation
structure.	A	NavigationNode	object	must	be	created	separately	for	the	file.	To
create	a	new	NavigationNode	object,	use	the	Add	method	for	the
NavigationNodes	collection.

Note		When	a	template	is	used	to	create	a	new	Web,	navigation	nodes	are
automatically	created	for	the	files	that	have	been	added	to	the	Web	by	the
template.

Add	method	as	it	applies	to	the	PageWindows	object.

Adds	a	new	PageWindowEx	object	to	the	list	of	available	open	items	in	the
PageWindows	collection.

Note		Opening	a	new	or	existing	file	object	by	using	the	Add	method	for	the
PageWindowEx	object	also	adds	the	PageWindowEx	object	that	is	associated
with	the	opened	file	to	the	PageWindows	collection.

expression.Add(FileUrl)

expression				Required.	An	expression	that	returns	a	PageWindows	collection
object.

FileUrl			Optional	String.	A	string	that	contains	the	path	for	the	Web	server
where	the	page	will	be	stored.	This	can	be	any	absolute	URL	for	a	file,	such	as
http://web	server/file				or	file://file	system/file	for	disk-based	Webs.

Remarks

You	can	use	one	of	three	methods	when	you	want	to	open	HTML	pages	in
Microsoft	FrontPage	Page	view—	the	Add,	Edit	or	Open	method.	When	you
want	to	open,	edit,	then	save	a	file	in	Page	view	that	exists	either	on	a	file	server
or	on	a	file	system	on	your	hard	disk,	use	the	Add	method	for	the	PageWindows
object,	as	shown	in	the	following	statements.

Note		It	doesn't	matter	where	the	files	exist;	they	could	reside	on	a	hard	disk,
server,	or	a	FrontPage	Web.

Dim	myFile	As	String

myFile	=	"C:\Adventure	Works	HTML	Files\Hiking.htm"

ActiveWeb.ActiveWebWindow.PageWindows.Add	(myFile)

	 	 	 	

With	this	method,	you	haven't	added	the	file	to	a	FrontPage-based	Web—	you've
just	opened	it.	If	myFile	is	part	of	a	Web,	and	the	Web	is	currently	not	open,
FrontPage	will	also	open	the	Web.

When	you	want	to	open	and	edit	an	HTML	file	that	exists	on	a	Web,	use	the	Edit
method	for	the	Files	collection	in	the	root	folder,	as	shown	in	the	following
statement.

ActiveWeb.RootFolder.Files("Hiking.htm").Edit

	 	 	 	

You	can	use	the	Open	method	in	the	same	way.	However,	you	should	reserve	the
Open	method	for	opening	files	that	are	not	HTML	files,	such	as	Microsoft	Word
documents,	image	files,	and	so	on.

You	can	also	use	the	Add	method	to	open	a	new	unsaved	PageWindow	object.
You	can	use	either	of	the	following	statements	to	open	an	unsaved	page	window.

Set	myUnsavedPageWindow	=	ActiveWebWindow.PageWindows.Add()

Set	myUnsavedPageWindow	=	ActiveWebWindow.PageWindows.Add("")

	 	 	 	

Note		You	can	use	the	expression	ActiveWebWindow.PageWindows.Add("C:\My

Documents\My	Webs\index.htm")	as	a	valid	expression	as	long	as	index.htm	is
a	valid	FrontPage-based	file	that	resides	in	My	Webs.	However,	if	index.htm
does	not	reside	in	My	Webs,	your	code	will	fail.	To	add	a	new	page,	you	must
follow	the	procedure	described	earlier	in	this	section.

Add	method	as	it	applies	to	the	Properties	object.

Adds	a	new	property	to	the	list	of	available	items	in	the	Properties	collection.

expression.Add(PropertyKey,	PropertyValue)

expression				Required.	An	expression	that	returns	the	Properties	collection.

PropertyKey			Required	String.	A	string	that	contains	the	name	of	the	property
that	you	want	to	add.	For	more	information,	see	the	table	of	properties	in	the
Properties	collection	topic.

PropertyValue			Required	Variant.	The	value	of	the	property.

Remarks

You	can	programmatically	add	and	remove	categories	and	approval	ratings	for
the	Properties	collection.

Add	method	as	it	applies	to	the	WebFiles	object.

Adds	a	new	WebFile	object	to	the	list	of	available	items	in	the	WebFiles
collection.	A	WebFile	object	is	not	restrictive	and	can	be	any	type	of	file;	it	is
not	restricted	to	an	HTML	file	type—	it	could	be	an	image	file,	a	movie,	or	an
executable	file.

Note		Use	this	method	to	add	a	new	file	to	a	FrontPage-based	Web.

expression.Add(FileUrl,	ForceOverwrite)

expression				Required.	An	expression	that	returns	a	WebFiles	collection.

FileUrl			Required	String.	A	string	that	contains	the	URL	for	the	file	such	as
"Inventory.htm".	This	can	be	any	absolute	URL	for	a	file,	such	as	http://web
server/file				or	file://file	system/file	for	disk-based	Webs.

ForceOverwrite			Optional	Boolean.

Remarks

Accessing	a	single	WebFile	object	through	the	WebFiles	collection	provides
reference	to	a	WebFile	object	that	doesn't	have	access	to	the	Page	object	model
until	the	Web	file	is	opened.	Once	the	file	is	open,	the	PageWindow	object
associated	with	the	file	provides	access	to	the	Page	object	model	that	is
compatible	with	Microsoft	Internet	Explorer	4.0	and	later.	For	further
information	on	using	the	Page	object	model	in	your	Web	pages,	see	Exploring
the	Object	Model	in	FrontPage.

Add	method	as	it	applies	to	the	WebFolders	object.

Adds	a	new	WebFolder	object	to	the	list	of	available	items	in	the	WebFolders
collection.

expression.Add(FolderUrl)

expression				Required.	An	expression	that	returns	a	WebFolders	collection.

FolderUrl			Required	String.	A	string	that	contains	the	URL	for	the	folder,	such
as	the	Images	folder	in	C:\My	Webs.	This	can	be	any	absolute	URL	for	a	folder,
such	as	http://web	server/folder				or	file://file	system/folder	for	disk-based	webs.

Add	method	as	it	applies	to	the	WebPackage	object.

Returns	a	Boolean	that	represents	whether	the	specified	file	was	successfully
added	to	the	Web	package.

expression.Add(Url,	flags)

expression				Required.	An	expression	that	returns	a	WebPackage	object.

Url			Required	String.	The	path	and	file	name	of	the	file	to	be	added.

flags			Optional	FpDependencyFlags.	Specifies	how	to	handle	dependencies	for
the	specified	file.	Dependencies	are	included	only	if	they	exist	within	the	current
Web	site.

FpDependencyFlags	can	be	a	combination	of	one	or	more	of	the	following
FpDependencyFlags	constants.

fpDepsDefault Includes	all	images,	link	bars,	hyperlinks,	lists,	shared
borders,	and	themes.

fpDepsImages Includes	all	images.
fpDepsLinkbars Includes	all	link	bars.
fpDepsLinks Includes	all	pages	to	which	there	are	hyperlinks.

fpDepsLists Includes	lists	that	may	be	needed	in	order	for	the	page
to	render	correctly.

fpDepsNone Includes	no	dependencies.
fpDepsRecurse Includes	all	files	that	are	in	a	specified	folder.
fpDepsSharedBorders Includes	all	shared	borders.
fpDepsThemes Includes	all	themes.

Remarks

Use	the	CreatePackage	method	to	create	a	new	Web	package.	Then	use	the	Add
method	to	add	pages	and	their	specified	dependencies	to	the	Web	package.	You
can	create	Web	packages	from	files	in	Web	sites	based	on	Microsoft	Windows
SharePoint	Services	and	in	disk-based	Web	sites.

Add	method	as	it	applies	to	the	Webs	object.

Adds	a	new	Web	to	the	list	of	available	items	in	the	Webs	collection.

Security				Avoid	using	hard-coded	passwords	in	your	applications.	If	a
password	is	required	in	a	procedure,	request	the	password	from	the	user,	store	it
in	a	variable,	and	then	use	the	variable	in	your	code.	For	recommended	best
practices	on	how	to	do	this,	see	Security	Notes	for	Microsoft	Office	Solution
Developers.

expression.Add(WebUrl,	UserName,	Password,	WebOpenFlags)

expression				Required.	An	expression	that	returns	a	Webs	collection	object.

WebUrl			Required	String.	A	string	that	contains	the	path	for	the	Web	server
where	the	Web	will	be	stored.	This	can	be	any	absolute	URL	for	a	Web,	such	as
http://web	server				or	file://file	system	for	disk-based	Webs.

UserName			Optional	String.	The	user's	logon	name	for	the	Web	server.

Password			Optional	String.	The	user's	password	for	the	Web	server.

WebOpenFlags			Optional.	An	FpWebOpenFlags	constant	that	represents	the
behavior	of	the	new	Web.

FpWebOpenFlags	can	be	one	of	these	FpWebOpenFlags	constants.
fpOpenInWindow	default
fpOpenNoWindow

Add	method	as	it	applies	to	the	WebWindows	object.

mk:@MSITStore:vbaof11.chm::/html/ofSecurityNotesForOfficeDevs.htm

Adds	a	new	WebWindowEx	object	to	the	WebWindows	collection.

expression.Add(ViewModeEx)

expression				Required.	An	expression	that	returns	a	WebWindows	collection.

ViewModeEx			Required.	An	FpWebViewModeEx	enumerated	constant	that
represents	the	information	displayed	in	the	new	window.

FpWebViewModeEx	can	be	one	of	these	FpWebViewModeEx	constants.
fpWebViewExAccessibility
fpWebViewExAllFiles
fpWebViewExAssignedTo
fpWebViewExBrokenLinks
fpWebViewExBrowserTypes
fpWebViewExCategories
fpWebViewExCheckoutStatus
fpWebViewExComponentErrors
fpWebViewExCSSLinks
fpWebViewExDailyPageHits
fpWebViewExDailySummary
fpWebViewExFolders
fpWebViewExLinks
fpWebViewExMasterPages
fpWebViewExMonthlyPageHits
fpWebViewExMonthlySummary
fpWebViewExNavigation
fpWebViewExOlderFiles
fpWebViewExOsTypes
fpWebViewExPage
fpWebViewExPublishStatus
fpWebViewExRecentlyAddedFiles
fpWebViewExRecentlyChangedFiles
fpWebViewExReferringDomains
fpWebViewExReferringURLs

fpWebViewExRemoteSite
fpWebViewExReviewStatus
fpWebViewExSearchStrings
fpWebViewExSharedBorders
fpWebViewExSiteSummary
fpWebViewExSlowPages
fpWebViewExThemes
fpWebViewExTodo
fpWebViewExUnlinkedFiles
fpWebViewExUsageSummary
fpWebViewExVisitingUsers
fpWebViewExWeeklyPageHits
fpWebViewExWeeklySummary

Example

As	it	applies	to	the	NavigationNodes	object.

This	example	adds	a	new	node	called	footnote.htm	to	the	list	of	items	in	the
NavigationNodes	collection.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Webs\Coho	Winery"	that	contains	a	file	called	footnote.htm.	Or,
you	may	substitute	an	alternative	Web	site	URL	or	file	name.

Private	Sub	AddNewNavNode()

Dim	myHome	As	NavigationNode

Dim	myNewNode	As	NavigationNode

Dim	myFileUrl	As	String

myFileUrl	=	"C:\My	Documents\My	Webs\Coho	Winery\footnote.htm"

Set	myHome	=	ActiveWeb.HomeNavigationNode

Set	myNewNode	=	_

				myHome.Children.Add	(myFileUrl,	_

				"Footnote",	fpStructLeftmostChild)

ActiveWeb.ApplyNavigationStructure

End	Sub

	 	 	 	 	 	

As	it	applies	to	the	PageWindows	object.

This	example	adds	the	Inventory	page	for	Coho	Winery	to	the	list	of	items	in	the
PageWindows	collection.	When	you	add	a	page	using	the	FileUrl	argument,	the
page	that	you	want	to	add	must	exist	as	a	file—	you	cannot	create	a	new	page
using	this	argument.	To	create	an	unsaved	new	page,	see	the	description	in	the
Add	method.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Webs\Coho	Winery"	that	contains	a	file	called	Inventory.htm.
Or,	you	may	substitute	an	alternative	Web	site	URL	or	file	name.

Private	Sub	AddPage()

Dim	myPageWindows	As	PageWindows

Dim	myPage	As	String

Set	myPageWindows	=	ActiveWeb.ActiveWebWindow.PageWindows

myPage	=	"C:\My	Documents\My	Webs\Coho	Winery\Inventory.htm"

myPageWindows.Add	(myPage)

End	Sub

	 	 	 	 	 	

As	it	applies	to	the	Properties	object.

This	example	adds	a	new	file	to	the	list	of	items	in	the	Properties	collection.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Webs\Coho	Winery\Zinfandel.htm"	that	contains	a	file	called
footnote.htm.	Or,	you	may	substitute	an	alternative	Web	site	URL	or	file	name.

Private	Sub	CopyrightAdd()

Dim	myWeb	As	WebEx

Dim	myCopyright	As	String

Dim	myCopyrightProperty	As	Variant

myCopyright	=	"Copyright	1999	by	Coho	Winery"

Set	myWeb	=	Webs.Open("C:\My	Webs\Coho	Winery")

myWeb.Activate

ActiveWeb.Properties.Add	"Copyright",	myCopyright

ActiveWeb.RootFolder.Files("Zinfandel.htm").Open

ActiveDocument.body.insertAdjacentText	"BeforeEnd",	_

				ActiveWeb.Properties("Copyright")

ActivePageWindow.Save

ActiveWeb.Close

End	Sub

	 	 	 	 	 	

As	it	applies	to	the	Webs	object.

This	example	adds	a	new	item	to	the	list	of	files	in	the	Webs	collection.

Webs.Add	("C:\My	Documents\My	Webs\Coho	Winery")

	 	 	 	 	 	

As	it	applies	to	the	WebFiles	object.

This	example	adds	a	new	WebFile	object	to	the	list	of	items	in	the	Files
collection.

ActiveWeb.RootFolder.Files.Add	("C:\New	Web	Files\Sales	Statistics.htm")

	 	 	 	 	 	

As	it	applies	to	the	WebFolders	object.

This	example	adds	a	folder	to	the	list	of	items	in	the	WebFolders	collection.

ActiveWeb.RootFolder.Folders.Add	("Distribution	Centers")

	 	 	 	 	 	

As	it	applies	to	the	WebPackage	object

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"c:\NewWebPackage.fwp",	True

End	With

AddChoice	Method
Adds	a	new	choice	to	the	list	of	available	choices	for	the	current	field.	The	field
must	be	of	type	ListFieldChoice	.

expression.AddChoice(text,	Index)

expression				Required.	An	expression	that	returns	a	ListFieldChoice	object.

text			Required.	A	String	that	represents	the	text	that	will	appear	in	the	drop-
down	list	or	beside	a	radio	button.

Index			Optional.	A	Long	that	represents	the	position	of	the	choice	within	the	list
of	choices.

Example

The	following	example	adds	two	choices	to	a	choice	field	named
NewChoiceField	in	the	first	list	of	the	active	Web	site.	The	new	choices	are
SaleOption1,	which	will	appear	first	in	the	list,	and	SaleOption2,	which	will
appear	second	in	the	list.	The	relative	positions	of	the	choices	are	determined	by
the	optional	Index	argument.

Sub	AddChoice()

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	listFields

				Dim	objFldChoice	As	ListFieldChoice

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'Set	a	reference	to	the	new	field	and	

				'add	two	new	choices	to	the	list.

				Set	objFldChoice	=	objLstFlds.Item("NewChoiceField")

				objFldChoice.AddChoice	text:="SaleOption1",	Index:=1

				objFldChoice.AddChoice	text:="SaleOption2",	Index:=2

End	Sub

	 	

Show	All

AddLinkBar	Method
Returns	a	NavigationNode	object	that	represents	a	link	bar.

expression.AddLinkBar(NodeLabel,	ModificationType,	LeftSibling)

expression				Required.	An	expression	that	returns	a	NavigationNodes
collection.

NodeLabel				Required.	A	String	that	represents	the	label	or	name	of	the	link
bar.

ModificationType				Required.	An	FpStructModType	constant	that	represents
the	structure	of	the	link	bar.

FpStructModType	can	be	one	of	these	FpStructModType	constants.
fpStructBaseOnSibling	Base	the	link	bar	on	its	closest	sibling	node.
fpStructLeftmostChild	Base	the	link	bar	on	its	leftmost	child	node.
fpStructRightmostChild	Base	the	link	bar	on	its	rightmost	child	node.

LeftSibling			Optional.	A	Variant	that	represents	the	left	sibling	of	the	node.
This	value	is	used	to	locate	the	new	link	bar	in	the	hierarchy.

Remark

The	new	node	will	not	appear	in	the	link	bar.	Only	the	node's	children	will
appear	in	the	link	bar.

Note		The	new	link	bar	must	be	added	to	the	structure	before	child	nodes	can	be
added	to	it.

Example

The	following	example	creates	a	new	link	bar	that	is	based	on	its	sibling	in	the
hierarchy	of	navigation	nodes.

Sub	NewLinkBar()

				Dim	objApp	As	FrontPage.Application

				Dim	objNavNodes	As	NavigationNodes

				Dim	objNavNode	As	NavigationNode

				Set	objApp	=	FrontPage.Application

				Set	objNavNodes	=	objApp.ActiveWeb.AllNavigationNodes

				'Reference	a	node	to	use	in	the	method.

				Set	objNavNode	=	objNavNodes.Item(1)

				'Create	new	link	bar	based	on	sibling.

				objNavNodes.AddLinkBar	NodeLabel:="New	link	bar",	_

									ModificationType:=fpStructBaseOnSibling,	_

									LeftSibling:=objNavNode

				'Apply	navigation	structure	so	node	will	appear.

				objApp.ActiveWeb.ApplyNavigationStructure

End	Sub

	 	

ApplyChanges	Method
Apply	changes	to	the	specified	object.	Changes	to	a	property	of	a	WebEx,
WebFile,	or	WebFolder	object	are	not	applied	until	you	use	the	ApplyChanges
method	for	the	specified	object.

expression.ApplyChanges

expression				An	expression	that	returns	a	Properties	collection	object.

Example

This	example	changes	the	value	of	the	vti_title	property	for	a	file	called
Zinfandel.htm	and	applies	the	change.

Private	Sub	ChangeProperties()

				Dim	myProperties	As	Properties

				Set	myProperties	=	_

								ActiveWeb.RootFolder.Files("Zinfandel.htm").Properties

				myProperties("vti_title")	=	"Rogue	Cellars	Wine	List"

				myProperties.ApplyChanges

End	Sub

ApplyDynamicTemplate	Method
Applies	a	Dynamic	Web	Template	to	a	document.

expression.ApplyDynamicTemplate(bzMaster,	pState,)

expression				Required.	An	expression	that	returns	a	WebFile	object.

bzMaster				Required	String.	The	path	and	filename	for	the	Dynamic	Web
Template.

pState				Required	DynamicTemplateState.	Specifies	the	region	mapping	for	the
Dynamic	Web	Template.	Use	the	SetHeadMapping	and	SetBodyMapping
methods	of	the	DynamicTemplateState	object	to	customize	region	mapping.

mk:@MSITStore:vbafpd10.chm::/html/fpmthSetHeadMapping.htm
mk:@MSITStore:vbafpd10.chm::/html/fpmthSetBodyMapping.htm
mk:@MSITStore:vbafpd10.chm::/html/fdobjDynamicTemplateState.htm

Remarks

To	detach	a	Dynamic	Web	Template	use	the	ApplyDynamicTemplate	method
with	the	bzMaster	parameter	set	to	an	empty	string.

Example

The	following	example	applies	the	specified	Dynamic	Web	Template	file	to	the
specified	file.

Dim	objState	As	DynamicTemplateState

Dim	objFile	As	WebFile

Set	objState	=	Application.CreateDynamicTemplateState

Set	objFile	=	ActiveWeb.LocateFile("home.htm")

objFile.ApplyDynamicTemplate	"template.dwt",	objState

ApplyNavigationStructure	Method
Applies	the	navigation	structure	to	the	specified	object.

expression.ApplyNavigationStructure

expression				An	expression	that	returns	a	WebEx	object.

Remarks

There	are	two	details	to	keep	in	mind	when	programmatically	creating	files	and
navigation	nodes:

Navigation	labels	cannot	be	empty.
Changes	to	the	navigation	structure	can	be	lost	if	you	don't	apply	the
navigation	structure	before	starting	operations	that	affect	the	content	of	the
Web	site	such	as	moving	or	adding	files	or	folders.

Example

This	example	adds	a	navigation	node	as	the	rightmost	child	node	and	then
applies	the	changes	to	the	navigation	structure.

Private	Sub	AddNewNavNode()

				Dim	myWeb	As	WebEx

				Dim	myChildNodes	As	NavigationNodes

				Dim	myNewNavNode	As	NavigationNode

				Set	myWeb	=	ActiveWeb

				Set	myChildNodes	=	_

								myWeb.RootFolder.Files(1).NavigationNode.Children

				myNewNavNode	=	_

								myChildNodes.Add(myWeb.Url	&	"Sale.htm",	"Sale",	_

								fpStructRightmostChild)

				myWeb.ApplyNavigationStructure

End	Sub

ApplyTemplate	Method
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Applies	an	existing	HTML	template	to	the	current	Web	site.

expression.ApplyTemplate(TemplateDir,	fOverWrite)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

TemplateDir			Required	String.	The	path	of	the	template.

fOverWrite			Optional.	A	Boolean	that	determines	if	the	current	template	will	be
overwritten.	If	True,	the	current	template	will	be	overwritten.	If	False,	the
current	template	will	not	be	overwritten.	The	default	value	is	False.

Example

The	following	example	adds	a	specified	template	to	the	current	Web	site	using
the	ApplyTemplate	method.	The	method	is	called	with	the	fApplyThemes	and
the	fOverWrite	arguments	set	to	False.	The	themes	will	not	be	applied	to	the
new	Web	site	and	any	existing	template	will	not	be	overwritten.

Sub	UseTemplate()

	 	 	 'Applies	a	template	to	the	current	Web	site	without	overwriting	the	original	template

	 	 	 'or	applying	themes.

				Dim	objApp	As	FrontPage.Application

				Dim	objWeb	As	WebEx

				Dim	strPath	As	String

				Dim	strname	As	String

				Set	objApp	=	FrontPage.Application

				Set	objWeb	=	objApp.ActiveWeb

				'Set	variable	to	template	directory.

				strPath	=	"C:\Program	Files\Microsoft	Office\Templates\"

				'Prompt	the	user	for	the	file	name	of	the	template.

				strname	=	InputBox("Enter	the	file	name	of	the	template	you	wish	to	apply")

				'Add	the	template	name	to	the	path	in	order	to	

	 	 	 	 'create	a	full	path	name.

				strPath	=	strPath	&	strname

				'Apply	the	template	to	the	new	Web	site.

				objWeb.ApplyTemplate	TemplateDir:=strPath,	_

								fOverWrite:=False

End	Sub

Show	All

ApplyTheme	Method
Applies	the	value	contained	in	the	ThemeName	argument	to	the	property	named
in	the	ThemeProperties	argument.	For	example,	a	theme	can	be	applied	to	a
WebFile,	WebFiles,	PageWindowEx,	or	WebEx	object	in	a	Microsoft
FrontPage-based	Web	site.

expression.ApplyTheme(ThemeName,	ThemeProperties)

expression				An	expression	that	returns	an	object	in	the	Applies	To	list.

ThemeName				Required	String.	A	string	that	contains	the	name	of	the	theme
that	you	want	to	apply	to	a	file.	The	ThemeName	parameter	can	be	one	of	the
following:

aftrnoon concrete modular strtedge

arcs corporat nature studio

arctic cypress network sumipntg

artsy deepblue papyrus sunflowr

axis echo passport tabs

balance eclipse piechart technolo

bars edge pixel topo

blank evergreen poetic travel

blends expeditn profile water

blitz folio quad watermar

blocks glacier radial waves

bluecalm global refined willow

blueprnt highway ricepapr zero

boldstri ice ripple

breeze indust rmnsque

canyon inmotion sandston

capsules iris satin

cascade journal sky

checkers layers slate

citrus level sonora

classic loosegst spiral

compass mdshapes spring

ThemeProperties			Optional	FpThemeProperties.	The	properties	associated
with	the	theme.

FpThemeProperties	can	be	one	of	these	FpThemeProperties	constants.
fpThemeActiveGraphics
fpThemeBackgroundImage
fpThemeCSS
fpThemeDefaultSettings
fpThemeName
fpThemeNoBackgroundImage
fpThemeNoCSS
fpThemeNormalColors	default
fpThemeNormalGraphics
fpThemePropertiesAll
fpThemePropertiesNone
fpThemeVividColors

Remarks

The	following	code	applies	the	Sumi	Painting	theme	to	a	file	with	active
graphics.

Dim	strTheme	As	String

strTheme	=	"sumipntg"

Call	WebFile.ApplyTheme(strTheme,	fpThemeActiveGraphics)

To	change	more	than	one	theme	property	when	applying	the	theme,	use	the	plus
sign	(+),	as	shown	in	the	following	example.

strTheme	=	"sumipntg"

WebFile.ApplyTheme(strTheme,	_

fpThemeVividColors	+	fpThemeActiveGraphics)

This	method	is	essentially	the	same	one	you'd	use	for	applying	a	theme	to	a
PageWindowEx	or	WebEx	object.

Example

This	example	contains	a	function,	ApplyThemeToFilesInFolder,	and	a	procedure
that	you	can	modify	to	apply	any	of	the	available	themes.	This	example	applies
the	Artsy	theme	to	all	files	in	a	specified	folder.

Note		To	run	this	example,	copy	the	code	into	a	module	in	the	Microsoft	Visual
Basic	Editor	and	run	the	ChangeToArtsy	procedure.

Function	ApplyThemeToFilesInFolder(myThemeName	As	String,	_

								myFolderObject	As	WebFolder)	As	Boolean

				Dim	myFile	As	WebFile

				Dim	myTheme	As	Theme

				On	Error	GoTo	ERR

				For	Each	myFile	In	myFolderObject.Files

								Call	myFile.ApplyTheme(myThemeName,	fpThemePropertiesAll)

				Next	myFile

				ApplyThemeToFilesInFolder	=	True

				Exit	Function

ERR:

				MsgBox	"An	error	occurred:	"	&	ERR.Description,	vbCritical,	"Error!"

				ApplyThemeToFilesInFolder	=	False

Exit	Function

End	Function

Private	Sub	ChangeToArtsy()

				ApplyThemeToFilesInFolder	"artsy",	ActiveWeb.RootFolder

End	Sub

CancelRequests	Method
Immediately	cancels	all	requests	to	the	WebEx	object	without	saving.

expression.CancelRequests

expression				An	expression	that	returns	a	WebEx	object.

Example

The	CancelRequests	method	can	be	used	to	stop	a	process	that	may	be	taking
too	long,	may	appear	to	be	in	an	infinite	loop,	or	that	may	be	coming	from	a
questionable	source.

Private	Sub	CancelRequestsToWeb_Click()

				Dim	myWeb	As	WebEx

				Set	myWeb	=	ActiveWeb

				myWeb.CancelRequests

End	Sub

Checkin	Method
Checks	the	specified	WebFile	object	into	the	source	control	project.

Note		You	must	have	a	source	control	project	in	place	before	using	this	method.
For	information	about	source	control	projects,	refer	to	Managing	Source	Control
Projects.

expression.Checkin(Comment,	KeepCheckedout)

expression				An	expression	that	returns	a	WebFile	object.

Comment				Optional	String.	A	description	string.

KeepCheckedout				Optional	Boolean.	True	keeps	the	file	checked	out.	Default
value	is	False.

Remarks

The	KeepCheckedout	argument	provides	the	ability	to	have	the	file	remain	in	a
checkedout	state	while	the	user	checks	the	file	in	to	Microsoft	Visual	SourceSafe
to	record	the	changes.	This	does	not	apply	to	Microsoft	FrontPage	Light	Weight
source	control.

Example

The	program	in	this	example	performs	the	following	items:

Checks	out	a	file	and	puts	the	page	in	edit	mode.
Adds	a	welcome	message	to	the	page.
Checks	if	the	open	page	has	been	modified.
Saves	the	page	if	it	has	been	modified.
Closes	the	file	and	checks	it	into	the	existing	source	control	project.

Note		To	run	this	example,	you	must	have	a	source	control	project	in	place	on	a
Web	site	with	a	file	called	"C:\My	Documents\My	Web	Sites\Rogue
Cellars\Zinfandel.htm."	Or,	you	may	substitute	a	Web	site	and	file	of	your
choice.

Private	Sub	CheckinFile()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Dim	myPageWindow	As	PageWindowEx

				Dim	myWelcome	As	String

				Set	myWeb	=	Webs("C:/My	Web	Sites/Rogue	Cellars")

				myWelcome	=	"Welcome	to	my	Web	Site!"

				Set	myFile	=	myWeb.RootFolder.Files("Zinfandel.htm")

				myFile.Checkout

				Set	myPageWindow	=	myFile.Edit(fpPageViewNormal)

				With	myPageWindow

												myPageWindow.Document.body.insertAdjacentText("BeforeEnd",	_

																myWelcome)

								If	myPageWindow.IsDirty	=	True	Then	myPageWindow.Save

												.Close

				End	With

				myFile.Checkin

End	Sub

Checkout	Method
Checks	the	specified	WebFile	object	out	to	the	source	control	project.

Note		You	must	have	a	source	control	project	in	place	before	using	this	method.
For	information	about	source	control	projects,	refer	to	Managing	Source	Control
Projects.

expression.Checkout(ForceCheckout)

expression				An	expression	that	returns	a	WebFile	object.

ForceCheckout				Optional	Boolean.	Forces	a	checkout,	even	if	the	file	is
already	checked	out.	True	forces	a	checkout	of	the	file.	Default	value	is	False.

Remarks

The	ForceCheckout	argument	provides	the	administrator	with	the	ability	to
force	a	checkout	in	cases	where	a	file	has	been	checked	out	by	a	user	who	is
unavailable	to	check	the	file	back	in.

Example

The	program	in	this	example	performs	the	following:

Checks	out	a	file	from	an	existing	source	control	project	and	puts	the	file	in
edit	mode.
Adds	a	welcome	message	to	the	document.
Checks	if	the	open	page	has	been	modified.
Saves	the	page,	if	it	has	been	modified.
Closes	the	file	and	checks	it	into	the	existing	source	control	project.

Note		To	run	this	example,	you	must	have	a	source	control	project	in	place	on	a
Web	site	with	a	file	called	"C:\My	Documents\My	Web	Sites\Rogue
Cellars\Zinfandel.htm".	Or,	you	may	substitute	an	alternative	Web	site	and	file
name.

Private	Sub	CheckoutFile()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Dim	myPageWindow	As	PageWindowEx

				Dim	myWelcome	As	String

				Set	myWeb	=	Webs("C:/My	Web	Sites/Rogue	Cellars")

				myWelcome	=	"Welcome	to	my	Web	Site!"

				Set	myFile	=	myWeb.RootFolder.Files("Zinfandel.htm")

				myFile.Checkout

				Set	myPageWindow	=	myFile.Edit(fpPageViewNormal)

				With	myPageWindow

								myPageWindow.Document.body.insertAdjacentText("BeforeEnd",	_

																myWelcome)

								If	myPageWindow.IsDirty	=	True	Then	myPageWindow.Save

												.Close

				End	With

				myFile.Checkin

End	Sub

ClearChoices	Method
Removes	the	available	choices	for	a	choice	field.

expression.ClearChoices

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Show	All

Close	Method
Close	method	as	it	applies	to	the	PageWindowEx	object.

Closes	the	specified	PageWindowEx	object.

expression.Close(ForceSave,	PromptUser)

expression				Required.	An	expression	that	returns	the	above	object.

ForceSave			Optional	Boolean.	True	forces	the	specified	file	to	be	saved	before
the	Close	method	is	completed.	Default	is	False.

PromptUser			Optional	Boolean.	True	prompts	the	user	before	closing	the	page.
Default	is	False.

Close	method	as	it	applies	to	the	PageWindows	object.

Closes	the	specified	pages	in	the	PageWindows	collection,	or,	if	Null,	closes	all
open	pages	in	the	PageWindows	collection.

expression.Close(Index,	ForceSave,	PromptUser)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Optional	Variant.	Refers	to	an	individual	item	in	the	PageWindows
collection.	Can	be	any	number	corresponding	to	an	item	in	the	collection,	with
the	index	starting	at	zero.

ForceSave			Optional	Boolean.	True	forces	the	specified	file	to	be	saved	before
the	Close	method	is	completed.	Default	is	False.

PromptUser			Optional	Boolean.	True	prompts	the	user	before	closing	the
pages.	Default	is	False.

Close	method	as	it	applies	to	the	WebWindows	object.

Closes	the	specified	WebWindowEx	object.

expression.Close(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index				Optional	Variant.	Refers	to	an	item	in	the	WebWindows	collection.
Can	be	any	number	corresponding	to	an	item	in	the	collection,	with	the	index
starting	at	zero.

Close	method	as	it	applies	to	the	WebEx	and	WebWindowEx	objects.

Closes	the	specified	object.

expression.Close

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	PageWindowEx	object.

The	following	example	closes	the	active	page	window.

Sub	CloseWindow()

'Closes	the	active	page	window

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				If	Not	objApp.ActivePageWindow	Is	Nothing	Then

				objApp.ActivePageWindow.Close	ForceSave:=True

	End	If

End	Sub

As	it	applies	to	the	PageWindows	collection.

The	following	example	closes	the	first	page	window	of	the	first	Web	site	in	the
WebWindows	collection.

Sub	CloseWindow()

'Closes	a	page	window

				Dim	objApp	As	FrontPage.Application

				Dim	objPgeWindows	As	PageWindows

				Set	objApp	=	FrontPage.Application

				Set	objPgeWindows	=	objApp.ActiveWeb.WebWindows(0).PageWindows

				objPgeWindows.Close	Index:=0,	ForceSave:=True

End	Sub

As	it	applies	to	the	WebWindows	object.

The	following	example	closes	all	open	Web	windows.

Sub	CloseWindow()

'Closes	all	Web	page	windows.

				Dim	objApp	As	FrontPage.Application

				Dim	objPgeWindows	As	WebWindows

				Set	objApp	=	FrontPage.Application

				Set	objWebWindows	=	objApp.ActiveWeb.WebWindows

				objWebWindows.Close

End	Sub

As	it	applies	to	the	WebEx	and	WebWindowEx	objects.

The	following	example	closes	the	active	Web	site	(if	one	exists).

Sub	CloseWindow()

'Closes	the	active	document

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				If	Not	objApp.ActiveWeb	Is	Nothing	Then

				objApp.ActiveDocument.Close

	End	If

End	Sub

Show	All

ConvertToField	Method
Changes	a	field	from	one	type	to	another	and	returns	the	object	specified	in	the
Type	parameter.

expression.ConvertToField(Type)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Type				Required	FpFieldType.	Specifies	the	type	of	field	to	which	to	convert
the	specified	field.

FpFieldType	can	be	one	of	the	following	FpFieldType	constants.

fpFieldAttachments Returns	a	ListFieldAttachments	object.
fpFieldChoice Returns	a	ListFieldChoice	object.
fpFieldComputed Returns	a	ListFieldComputed	object.
fpFieldCounter Returns	a	ListFieldCounter	object.
fpFieldCurrency Returns	a	ListFieldCurrency	object.
fpFieldDateTime Returns	a	ListFieldDateTime	object.
fpFieldFile Returns	a	ListFieldFile	object.
fpFieldInteger Returns	a	ListFieldInteger	object.
fpFieldLookup Returns	a	ListFieldLookup	object.
fpFieldMultiLine Returns	a	ListFieldMultiline	object.
fpFieldNumber Returns	a	ListFieldNumber	object.
fpFieldRatingScale Returns	a	ListFieldRatingScale	object.
fpFieldSingleLine Returns	a	ListFieldSingleLine	object.
fpFieldTrueFalse Returns	a	ListFieldTrueFalse	object.
fpFieldURL Returns	a	ListFieldURL	object.

Remarks

The	following	chart	specifies	whether	one	field	type	can	be	converted	to	another
field	type	and	how	the	conversion	works	if	special	conversion	is	necessary.

From
Field/
ToField

Text Choice Note
Note	(Rich

Text
Enabled)

Number

Text N/A Yes Yes Yes

Yes;	converts
numbers	and
sets	other
values	to
NULL

Choice Yes N/A Yes Yes

Yes;	converts
numbers	and
sets	other
values	to
NULL

Note

Yes;	converts
and	truncates
text	to	less
than	255
characters.

Yes;	converts
and	truncates
text	to	255
characters.

N/A Yes

Yes;	converts
numbers	and
sets	other
values	to
NULL

Note
(Rich
Text

Enabled)

No No Yes N/A No

Number Yes Yes Yes Yes N/A

Currency Yes Yes Yes Yes Yes

DateTime Yes Yes Yes Yes No

Boolean Yes;	converts
to	0	or	1.

Yes;	converts
to	0	or	1.

Yes;	converts
to	0	or	1.

Yes;	converts
to	0	or	1.

Yes;	converts
to	0	or	1.

Multi-
value
choice

Yes Yes Yes Yes Yes

Copy	Method
Copies	the	specified	object	to	a	designated	URL.	During	the	copy	process	you
can	choose	to	update	hyperlinks	or	force	a	file	overwrite	if	the	specified	object
has	the	same	name	as	the	designated	object.

expression.Copy(DestinationUrl,	Unused,	ForceOverwrite)

expression				An	expression	that	returns	a	WebFile	or	WebFolder	object.

DestinationUrl				Required	String.	The	target	URL.

Unused				Optional	Boolean.	This	parameter	is	unused.	Setting	it	or	not	setting	it
will	have	no	effect	on	the	functionality	of	the	Copy	method.

ForceOverwrite				Optional	Boolean.	Specifies	whether	to	force	a	file	overwrite
when	a	file	or	folder	is	found	with	the	same	name.	Set	the	argument	to	True	to
force	a	file	overwrite.	Default	value	is	False.

Remarks

The	Copy	method	only	copies	files	or	folders	within	the	same	Web	site.	You
cannot	copy	across	Web	sites.	However,	you	can	use	the	SaveAs	method	for	the
PageWindowEx	object	to	save	a	page	that	has	its	file	currently	located	in	one
Web	site	to	save	the	page	to	a	file	in	another	Web	site.	Or,	you	can	use	the	Add
method	for	the	WebFile	object	to	add	a	file	that	is	currently	located	in	one	Web
site	to	another	Web	site.

Example

This	example	copies	a	file	from	the	Coho	Winery	folder	to	an	Inventory	folder
within	the	same	Web	site.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Coho	Winery."	Or,	you	may	substitute	an	alternative
Web	site	and	file	name.

Private	Sub	FileCopy()

				Dim	myFile	As	WebFile

				Set	myFile	=	ActiveWeb.RootFolder.Files("Zinfandel.htm")

				myFile.Copy	"C:\My	Web	Sites\Coho	Winery\Inventory\Zinfandel.htm"

End	Sub

CreateDynamicTemplateState
Method
Returns	a	DynamicTemplateState	object	that	represents	a	set	of	region
mappings	to	use	when	applying	or	updating	a	Dynamic	Web	Template.

expression.CreateDynamicTemplateState

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbafpd10.chm::/html/fdobjDynamicTemplateState.htm

Example

The	following	example	creates	a	reference	to	a	Dynamic	Web	Template.

Dim	objState	As	DynamicTemplateState

Set	objState	=	Application.CreateDynamicTemplateState

CreatePackage	Method
Returns	a	WebPackage	object	that	represents	a	collection	of	pages,	files,	and
folders	and	their	related	dependencies,	such	as	images,	cascading	style	sheets,
and	JavaScript	files.

expression.CreatePackage(Title)

expression				Required.	An	expression	that	returns	a	WebEx	object.

Title				Required	String.	The	name	of	the	Web	package.	This	value	becomes	the
value	of	the	Title	property	for	the	WebPackage	object.

Remarks

Use	the	CreatePackage	method	to	create	the	WebPackage	object.	Use	the	Add
method	to	add	pages	to	the	Web	package.	Then	use	the	Save	method	to	save	the
new	Web	package	to	disk.	Use	the	Remove	method	to	remove	files	that	were
added	by	using	the	Add	method.

You	can	create	Web	packages	from	files	in	Web	sites	based	on	Microsoft
Windows	SharePoint	Services	and	in	disk-based	Web	sites.

Example

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"c:\NewWebPackage.fwp",	True

End	With

CreateSearchInfo	Method
Returns	a	SearchInfo	object	that	represents	a	custom	find	or	find	and	replace
operation.

expression.CreateSearchInfo

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbafpd10.chm::/html/fdobjSearchInfo.htm

Example

The	following	example	finds	the	next	occurrence	of	the	P	element	in	the	active
document.

Dim	objSearch	As	SearchInfo

Dim	blnFound	As	Boolean

Dim	objRange	As	IHTMLTxtRange

Set	objSearch	=	Application.CreateSearchInfo

objSearch.Find	=	"p"

objSearch.Action	=	fpSearchFindTag

Set	objRange	=	Application.ActiveDocument.selection.createRange

blnFound	=	Application.ActiveDocument.Find(objSearch,	Nothing,	objRange)

If	blnFound	=	True	Then	objRange.Select

DecodeURL	Method
Returns	a	String	that	represents	a	decoded	Web	address	for	the	specified
encoded	Web	address.

expression.DecodeURL(bstrEncodedURL)

expression				Required.	An	expression	that	returns	an	Application	object.

bstrEncodedURL				Required	String.	The	encoded	Web	address	to	decode.

Remarks

Decoding	a	URL	includes	replacing	"%20"	with	spaces.	Use	the	EncodeURL
method	to	encode	a	Web	address.

Example

The	following	example	decodes	the	specified	Web	address.

Dim	strDecodedURL	As	String

strDecodedURL	=	Application.DecodeURL	_

				("http://www.fourthcoffee.com/our%20best%20coffee.htm")

Show	All

Delete	Method
Delete	method	as	it	applies	to	the	NavigationNodes	object.

Deletes	an	individual	navigation	node	from	the	list	of	available	nodes	in	the
NavigationNodes	collection.

expression.Delete(Index)

expression				Required.	An	expression	that	returns	a	NavigationNodes	object.

Index			Optional	Variant.	Refers	to	an	item	in	the	navigation	structure.	Can	be
any	number	corresponding	to	an	item	in	the	navigation	structure,	with	the	index
starting	at	zero.

Delete	method	as	it	applies	to	the	Properties	object.

Deletes	a	property	from	the	list	of	available	properties	in	the	Properties
collection.

expression.Delete(PropertyKey)

expression				Required.	An	expression	that	returns	a	Properties	object.

PropertyKey			Required	String.	A	string	that	represents	the	property	name.

Delete	method	as	it	applies	to	the	WebEx	object.

Deletes	a	Web	site	from	the	list	of	available	Web	sites	in	the	Webs	collection.

expression.Delete(WebDeleteFlags)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

WebDeleteFlags			Optional	FpWebDeleteFlags.	Determines	what	is	deleted
from	the	current	Web	site.	Default	is	fpDeleteEntireWeb.

FpWebDeleteFlags	can	be	one	of	these	FpWebDeleteFlags	constants.
fpDeleteEntireWeb	default
fpDeleteFrontPageInfoFromWeb

Delete	method	as	it	applies	to	the	WebFiles	and	WebFolders	objects.

Deletes	a	task	from	the	list	of	available	tasks	in	the	WebFiles	collection,	or	a
folder	or	folders	from	the	list	of	available	folders	in	the	WebFolders	collection.

expression.Delete(Index)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Index			Required	Variant.	Refers	to	an	item	in	the	WebFiles	or	WebFolders
collection.	Can	be	any	number	corresponding	to	an	item	in	the	collection,	with
the	index	starting	at	zero.

Delete	method	as	it	applies	to	the	Webs	object.

Deletes	a	Web	site	from	the	list	of	available	Web	sites	in	the	Webs	collection.

expression.Delete(Index,	WebDeleteFlags)

expression				Required.	An	expression	that	returns	a	Webs	object.

Index			Required	Variant.	Refers	to	an	item	in	the	Webs	collection.	Can	be	any
number	corresponding	to	an	item	in	the	collection,	with	the	index	starting	at
zero.

WebDeleteFlags			Optional	FpWebDeleteFlags.	Determines	what	is	deleted
from	the	current	Web	site.	Default	is	fpDeleteEntireWeb.

FpWebDeleteFlags	can	be	one	of	these	FpWebDeleteFlags	constants.
fpDeleteEntireWeb	default
fpDeleteFrontPageInfoFromWeb

Delete	method	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Deletes	the	specified	object	from	a	Web	site.

expression.Delete

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	NavigationNodes	object.

This	example	deletes	the	fourth	navigation	node	of	the	second	file	in	the	active
Web	site.

Note		You	must	apply	the	navigation	structure	to	the	Web	site	in	order	for	the
changes	to	be	applied	to	the	Web	site.

Private	Sub	DeleteNavNode()

				Dim	myWeb	As	WebEx

				Dim	myChildNodes	As	NavigationNodes

				Dim	intResponse	As	Integer

				Set	myWeb	=	ActiveWeb

				Set	myChildNodes	=	_

								myWeb.RootFolder.WebFiles(1).NavigationNode.Children

				intResponse	=	MsgBox("Are	you	sure	you	want	to	"	&	_

								"delete	this	navigation	node?",	vbYesNo)

								

				If	intResponse	=	vbYes	Then

								Call	myChildNodes.Delete(3)

								myWeb.ApplyNavigationStructure

				End	If

End	Sub

As	it	applies	to	the	Properties	object.

This	example	deletes	the	SaleText	property	from	the	Sales.htm	file.

Private	Sub	DeleteProperty()

				Dim	myFile	As	WebFile

				Dim	myProp	As	String

				Dim	intResponse	As	Integer

				

				myProp	=	"SaleText"

				Set	myFile	=	ActiveWeb.RootFolder.Files("Sales.htm")

				

				intResponse	=	MsgBox("Are	you	sure	you	want	to	delete	the	"	&	_

								myProp	&	"	property?",	vbYesNo)

				

				If	intrespons	=	vbYes	Then

								myFile.Properties.Delete	myProp

				End	If

End	Sub

As	it	applies	to	the	WebEx	object.

This	example	deletes	a	temporary	Web	site	called	TempWeb.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\TempWeb".	Or,	you	may	substitute	an	alternative
Web	site	URL.

Private	Sub	DeleteWeb()

				Dim	myWeb	As	WebEx

				Dim	myTempWeb	As	WebEx

				Dim	myFolders	As	WebFolders

				Dim	myFolder	As	WebFolder

				Dim	myWebToDelete	As	String

				Dim	intResponse	As	String

				Set	myWeb	=	Webs.Open("C:\My	Documents\My	Webs")

				Set	myFolders	=	myWeb.RootFolder.Folders

				myWebToDelete	=	"TempWeb"

				For	Each	myFolder	In	myFolders

								If	myFolder.IsWeb	=	True	Then

												If	myFolder.Name	=	myWebToDelete	Then

																

																intResponse	=	MsgBox("Are	you	sure	you	want	to	delete	"	&	_

																				"the	"	&	myFolder.Name	&	"	sub	Web	site?",	vbYesNo)

																				

																If	intResponse	=	vbYes	Then

																				Set	myTempWeb	=	Webs.Open(myFolder.Name)

																				myTempWeb.Delete

																End	If

												End	If

								End	If

				Next

				

				ActiveWebWindow.Close

End	Sub

As	it	applies	to	the	WebFiles	collection.

This	statement	deletes	a	file	in	the	active	Web	site.

Note		To	run	this	example,	you	must	have	a	file	called	"C:\My	Documents\My
Web	Sites\TempFile.htm".	Or,	you	may	substitute	an	alternative	file	name.

Private	Sub	DeleteWebFile()

				Dim	intResponse	As	Integer

				

				intResponse	=	MsgBox("Are	you	sure	you	want	"	&	_

								"to	delete	this	file?",	vbYesNo)

				

				If	intResponse	=	vbYes	Then

								ActiveWeb.RootFolder.Files.Delete	"TempFile"

				End	If

End	Sub

Show	All

Edit	Method
The	Edit	method	is	used	to	open	Microsoft	FrontPage	compatible	files	in	a	page
window.	These	files	include	file	formats	such	as	HTML,	CSS,	and	ASP.	To	open
files	of	other	types,	use	the	Open	method.

Note		HTML	files	without	extensions	will	not	open	with	the	Edit	method.

expression.Edit(ViewMode)

expression				An	expression	that	returns	a	WebFile	object.

ViewMode			Optional	FpPageViewMode.

FpPageViewMode	can	be	one	of	these	FpPageViewMode	constants.
fpPageViewDefault	default
fpPageViewHtml
fpPageViewNoFrames
fpPageViewNormal
fpPageViewNoWindow
fpPageViewPreview

Example

This	example	shows	how	to	use	the	Edit	method	to	open	a	file	for	editing.

Note		To	run	this	program,	you	must	have	a	Web	site	open	that	contains	a	file
called	"RedWines.htm."	Or,	you	may	substitute	a	file	of	your	choice.

Private	Sub	ModifyFile()

				Dim	myFile	As	WebFile

				Set	myFile	=	ActiveWeb.RootFolder.Files("RedWines.htm")

				myFile.Edit

End	Sub

EncodeURL	Method
Returns	a	String	that	represents	the	encoded	Web	address	for	the	specified	Web
address.

expression.EncodeURL(bstrDecodedURL)

expression				Required.	An	expression	that	returns	an	Application	object.

bstrDecodedURL				Required	String.	The	Web	address	to	encode.

Remarks

Encoding	a	URL	includes	replacing	spaces	with	"%20".	Use	the	DecodeURL
method	to	decode	a	Web	address.

Example

the	following	example	encodes	the	specified	Web	address.

Dim	strEncodedURL	As	String

strEncodedURL	=	Application.EncodeURL	_

				("http://www.fourthcoffee.com/our	best	coffee.htm")

Show	All

ImportWebPackage	Method
Returns	an	FpPkgImportResult	that	represents	whether	the	specified	package
was	imported	or	whether	there	were	problems	with	the	import.

FpPkgImportResult	can	be	one	of	the	following	FpPkgImportResult
constants.

fpPkgImportCancelled Import	was	cancelled	by	the	user.
fpPkgImportComplete Import	was	completed	successfully.

fpPkgImportErrorInPackage
Import	was	cancelled	because	an	error	in
the	package	was	found	(for	example,	an
invalid	manifest	or	damaged	files).

fpPkgImportFailed Import	failed	for	an	unknown	reason.

fpPkgImportNotTrusted

Import	was	cancelled	because	the	package
was	not	signed	by	a	trusted	certificate	or
the	FpPkgTrustLevel	parameter	was	not
set	to	fpPkgTrustAll.

fpPkgImportServerNotSupported
Import	was	cancelled	because	the	server	on
which	the	Web	site	is	located	does	not
support	Web	packages.

fpPkgImportStopped

Import	was	cancelled	because	a	file,	folder,
or	list	conflict	caused	the	import	process	to
stop	as	a	result	of	the	value	of	the
fpConflictOpts	parameter

expression.ImportWebPackage(packageFileName,	urlDeployTo,
FpPkgTrustLevel,	fpConflictOpts)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

packageFileName				Required	String.	The	path	and	file	name	of	the	package	to
be	imported.

urlDeployTo				Required	String.	The	path	to	which	to	import	the	files	included

in	the	Web	package.

FpPkgTrustLevel				Required	FpPkgTrustLevel.	Specifies	whether	to	trust	all
Web	packages	or	only	those	that	are	digitally	signed	by	a	trusted	source.

FpPkgTrustLevel	can	be	one	of	the	following	FpPkgTrustLevel	constants.

fpPkgTrustAll
fpPkgTrustCertificateStore

fpConflictOpts				Required	FpPkgImportConflictOpts.	Specifies	how	to	handle
conflicts.

FpPkgImportConflictOpts	can	be	one	of	the	following
FpPkgImportConflictOpts	constants.

fpPkgFileConflictMask
fpPkgListConflictMask

fpPkgOnConflictSkip
Skips	importing	any	files	if	a	conflict
arises	when	importing	a	Web	package,
and	continues	the	import	process.

fpPkgOnConflictStop

Stops	the	import	process	if	any
conflict	arises	when	importing	a	Web
package,	and	continues	the	import
process.

fpPkgOnFileConflictOverwrite If	a	file	conflict	exists,	overwrites	that
file.

fpPkgOnFileConflictSkip

Skips	importing	a	file	in	the	Web
package	that	conflicts	with	a	file	in
the	Web	site,	and	continues	the	import
process.

fpPkgOnFileConflictStop
Stops	the	import	process	if	a	file	if	the
Web	package	conflicts	with	an
existing	file	in	the	Web	site.

fpPkgOnListConflictMergeOrRename

Merges	lists	if	they	are	compatible;
otherwise,	the	Web	lists	are	backed	up
and	imported,	and	the	import	process
continues.

fpPkgOnListConflictMergeOrSkip
Merges	lists	if	compatible;	otherwise,
the	import	process	skips	the
conflicting	lists	and	continues.

fpPkgOnListConflictMergeOrStop Merges	lists	if	compatible;	otherwise,
the	import	process	stops.

fpPkgOnListConflictRename Backs	up	all	conflicting	lists	and
continues	the	import	process.

fpPkgOnListConflictSkip Skips	deployment	of	a	list	if	a	list
conflict	exists.

fpPkgOnListConflictStop Stops	the	import	process	of	a	Web
package	if	a	list	conflict	exists.

Remarks

You	can	import	Web	packages	only	into	Web	sites	based	on	Microsoft	Windows
SharePoint	Services.

Example

The	following	example	imports	the	specified	Web	package	into	a	new	folder	in
the	active	Web	site.

Dim	objWeb	As	WebEx

Dim	objFolder	As	WebFolder

Set	objWeb	=	ActiveWeb

Set	objFolder	=	objWeb.AllFolders.Add("NewWebPackageFolder")

objWeb.ImportWebPackage	"c:\NewWebPackage.fwp",	objFolder.Url,	_

				fpPkgTrustCertificateStore,	fpPkgOnListConflictSkip

LocateFile	Method
Returns	the	specified	WebFile	object.

expression.LocateFile(FileUrl)

expression				An	expression	that	returns	a	WebEx	object.

FileUrl			Required	String.	Default	value	is	the	file	portion	of	the	URL.

Example

This	example	locates	a	file	in	the	root	directory	of	the	Web	site	and	puts	the	file
in	edit	mode.

Note		You	must	have	a	Web	site	open	and	a	file	called	"Zinfandel.htm,"	or	you
may	substitute	a	file	of	your	choice.

Private	Sub	LocateAFile()

				Dim	myFile	As	WebFile

				Set	myFile	=	Webs(0).LocateFile("Zinfandel.htm")

				myFile.Edit

End	Sub

In	most	cases,	you	would	probably	use	the	entire	URL	for	the	String	argument
of	the	LocateFile	method—	for	example,	if	you	wanted	to	locate	the	file
First_Qtr.htm	in	C:/My	Documents/My	Web	Sites/Rogue
Cellars/Inventory/First_Qtr.htm.	Any	time	a	folder	exists	in	a	level	deeper	than
the	root	directory	of	the	Web	site,	use	the	entire	URL	as	shown	in	the	following
example.

Private	Sub	GetFile()

				Dim	myFile	As	String

				Dim	myFileFound	As	WebFile

				myFile	=	_

								"C:/My	Documents/My	Web	Sites/Rogue	Cellars/Inventory/First_Qtr.htm"

				Set	myFileFound	=	Webs(0).LocateFile(myFile)

End	Sub

However,	there	is	a	shortcut.	For	example,	if	you	want	to	locate	a	file	in	an
images	folder	that	resides	in	the	root	directory	of	the	Web	site,	you	can	use	a
relative	address	by	using	a	forward	slash	followed	by	the	subfolder	and	file
name	as	shown	in	the	following	statement.

Set	myFileFound	=	Webs(0).LocateFile("images/JPG/myJPGFileList.htm")

Note		You	cannot	substitute	a	backslash	in	a	relative	address.

LocateFolder	Method
Returns	the	specified	WebFolder	object.

expression.LocateFolder(FolderUrl)

expression				An	expression	that	returns	a	WebFolder	object.

FolderUrl				Required	String.	The	default	value	is	the	folder	portion	of	the	URL.

Example

This	example	locates	a	folder	in	the	root	directory	of	a	Web	site.

Note		You	must	have	a	Web	site	open	for	all	of	these	examples.

Private	Sub	LocateAFolder()

				Dim	myFolderFound	As	WebFolder

				Set	myFolderFound	=	Webs(0).LocateFolder("images")

End	Sub

In	most	cases,	you	would	probably	use	the	entire	URL	for	the	String	argument
of	the	LocateFolder	method.	For	example,	a	folder	may	be	several	levels	deep
in	the	folder	hierarchy,	such	as	C:/My	Documents/My	Web	Sites/Rogue
Cellars/Inventory/First_Quarter—	and	you	want	to	locate	First_Quarter.	Any
time	a	folder	exists	in	a	level	deeper	than	the	root	directory	of	the	Web	site,	use
the	entire	URL	as	shown	in	the	following	example.

Private	Sub	GetFolder()

				Dim	myFolder	As	String

				Dim	myFolderFound	As	WebFolder

				myFolder	=	_

								"C:/My	Documents/My	Web	Sites/Rogue	Cellars/Inventory/First_Quarter"

				Set	myFolderFound	=	_

								Webs(0).LocateFolder(myFolder)

End	Sub

However,	there	is	a	shortcut.	For	example,	if	you	want	to	locate	an	images	folder
that	resides	in	the	root	directory	of	the	Web	site,	you	can	use	a	relative	URL	by
using	a	forward	slash	followed	by	the	subfolder	name	as	shown	in	the	following
statement.

Set	myFolderFound	=	Webs(0).LocateFolder("images/JPG")

Note		You	cannot	substitute	a	backslash	in	a	relative	URL.

Show	All

LocatePage	Method
LocatePage	method	as	it	applies	to	the	Application	object.

Returns	a	PageWindowEx	object	for	the	specified	object.

expression.LocatePage(DocumentUrl,	ViewMode)

expression				Required.	An	expression	that	returns	an	Application	object.

DocumentUrl				Required.	A	String	that	represents	the	document	or	file	portion
of	the	entire	URL.	This	can	be	any	absolute	URL,	such	as	"http://web
server/file"	or	"file://file	system/file"	for	disk-based	Web	sites.	The
default	value	is	the	file	portion	of	the	URL.

ViewMode			Optional.	An	FpPageViewMode	constant	that	represents	the	view
mode.

FpPageViewMode	can	be	one	of	these	FpPageViewMode	constants.
fpPageViewDefault	default
fpPageViewHtml
fpPageViewNoFrames
fpPageViewNormal
fpPageViewNoWindow
fpPageViewPreview

LocatePage	method	as	it	applies	to	the	WebEx	object.

Returns	the	PageWindowEx	object	associated	with	the	current	Web	site.

expression.LocatePage(FileUrl,	ViewMode)

expression				Required.	An	expression	that	returns	a	WebEx	object.

FileUrl				Required.	A	String	that	represents	the	document	or	file	portion	of	the
entire	URL.

ViewMode			Optional.	An	FpPageViewMode	constant	that	represents	the	view
mode.

FpPageViewMode	can	be	one	of	these	FpPageViewMode	constants.
fpPageViewDefault	default
fpPageViewHtml
fpPageViewNoFrames
fpPageViewNormal
fpPageViewNoWindow
fpPageViewPreview

Example

This	example	locates	a	page	in	the	root	Web	site	and	a	subsite.

Private	Sub	LocatePages()

				Dim	myRootPage	As	PageWindowEx

				Dim	myWebPage	As	PageWindowEx

				Set	myRootPage	=	_

								Application.LocatePage("Zinfandel.htm",	fpPageViewNormal)

				Set	myWebPage	=	_

								Webs(1).LocatePage("Zinfandel.htm",	fpPageViewNormal)

End	Sub

MakeAbs	Method
Returns	a	String	that	represents	an	absolute	URL	for	the	String	specified	in	the
URL	parameter,	using	the	URLBase	parameter	as	the	starting	point.	If	the	URL
is	already	absolute,	the	URL	is	returned	unchanged.	For	more	information	about
absolute	and	relative	URLs,	refer	to	Understanding	Absolute	and	Relative	URL
Addressing.

expression.MakeAbs(UrlBase,	Url)

expression				An	expression	that	returns	a	Application	object.

UrlBase				Required	Variant.	A	base	URL.	Can	be	a	string	or	a	WebEx,
WebFolder,	WebFile,	NavigationNode,	or	IHTMLDocument2	object.

Url				Required	String.	A	string	that	contains	the	entire	URL	for	the	Web	site.
This	can	be	any	URL	for	a	Web	site,	such	as	"http://web	server/folder"	or
"file://file	system/folder"	for	disk-based	Web	sites.

Example

This	example	changes	a	relative	URL	to	an	absolute	URL.

Note		To	run	this	example,	you	must	have	a	Web	site	and	a	file	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars\Zinfandel.htm."	Or,	you	may	substitute
an	alternative	Web	site	URL	or	file	name.

Private	Sub	MakeURLAbsolute()

				Dim	myBaseURL	As	WebEx

				Dim	myAbsAddress	As	String

				Dim	myLocalUrl	As	String

				myBaseURL	=	Webs.Open("C:\My	Web	Sites")

				myLocalUrl	=	"Zinfandel.htm"

				myAbsAddress	=	MakeAbs(myBaseURL,	myLocalUrl)

End	Sub

	 	

MakeRel	Method
Returns	a	String	that	represents	a	relative	URL	for	the	String	specified	in	the
URL	parameter,	using	the	URLBase	parameter	as	the	starting	point.	If	the	URL
is	already	relative	to	the	URLBase	parameter,	the	URL	is	returned	unchanged.
For	more	information	about	absolute	and	relative	URLs,	refer	to	Understanding
Absolute	and	Relative	URL	Addressing.

expression.MakeRel(UrlBase,	Url)

expression				An	expression	that	returns	an	Application	object.

UrlBase				Required	Variant.	A	base	URL.	Can	be	a	string	or	a	WebEx,
WebFolder,	WebFile,	NavigationNode,	or	IHTMLDocument2	object.

Url				Required	String.	A	string	that	contains	the	entire	URL.	This	can	be	any
URL	for	a	Web	site,	such	as	"http://web	server/folder"	or	"file://file
system/folder"	for	disk-based	Web	sites.

Example

This	example	changes	an	absolute	URL	to	a	relative	URL,	adds	a	hyperlink	to
the	active	document	using	the	relative	URL,	and	then	saves	the	changes	to	the
document.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars."	You	must	also	have	two	files,	one
called	"Zinfandel.htm"	and	the	other	called	"index.htm,"	which	has	an	absolute
URL	(the	default	state).	Or,	you	may	substitute	an	alternative	Web	site	URL	and
file	names.

Private	Sub	MakeURLRelative()

				Dim	myFile	As	WebFile

				Dim	myFile2	As	WebFile

				Dim	myBaseURL	As	WebEx

				Dim	myDoc	As	FPHTMLDocument

				Dim	myRelAddress	As	String

				Dim	myRelAddress2	As	String

				Set	myBaseURL	=	Webs.Open("C:\My	Documents\My	Web	Sites\Rogue	Cellars")

				Set	myFile	=	myBaseURL.RootFolder.Files("Zinfandel.htm")

				Set	myFile2	=	myBaseURL.RootFolder.Files("index.htm")

				Set	myDoc	=	myFile.Edit(fpPageViewNormal).Document

				myRelAddress	=	MakeRel(myBaseURL,	myFile2.Url)

				myRelAddress2	=	""""	&	myRelAddress	&	""""

				Call	myDoc.body.insertAdjacentHTML("BeforeEnd",	"<a	href="	_

												&	myRelAddress2	&	">"	&	myRelAddress	&	"")

				ActivePageWindow.Save

End	Sub

	 	

MakeWeb	Method
Creates	a	new	Web	site	from	an	existing	folder.	To	create	a	new	Web	site	without
first	creating	a	folder,	see	the	Add	method.

Security			Avoid	using	hard-coded	passwords	in	your	applications.	If	a	password
is	required	in	a	procedure,	request	the	password	from	the	user,	store	it	in	a
variable,	and	then	use	the	variable	in	your	code.	For	recommended	best	practices
on	how	to	do	this,	see	Security	Notes	for	Microsoft	Office	Solution	Developers.

expression.MakeWeb(UserName,	Password)

expression				An	expression	that	returns	a	WebFolder	object.

UserName				Optional	String.	The	logon	name	of	the	user.	You	can	use	this
option	to	create	a	default	user	name	for	the	Web	site.

Password				Optional	String.	The	password	of	the	user.	You	can	use	this	option
to	create	a	default	password	for	the	Web	site.

Example

This	example	creates	a	new	Web	site	from	an	existing	folder	named
"Distributors,	"	which	is	a	folder	in	the	Rogue	Cellars	Web	site.	This	example
assumes	that	there	is	a	Web	site	on	your	local	computer	named	Rogue	Cellars
that	contains	a	folder	named	Distributors.	Alternatively,	you	can	substitute	a
different	Web	site	and	folder	name.

Private	Sub	MakeWeb()

				Dim	myWeb	As	WebEx

				Dim	myFolder	As	WebFolder

				Set	myWeb	=	Webs("C:\My	Web	Sites\Rogue	Cellars")

				myWeb.Activate

				Set	myFolder	=	Active.RootFolder.Folders("Distributors")

				myFolder.MakeWeb

End	Sub

Show	All

Move	Method	(Web	Object	Model)
Move	method	as	it	applies	to	the	WebFile	and	WebFolder	objects.

Moves	the	specified	object	from	its	current	location	to	a	designated	URL.

expression.Move(DestinationUrl,	UpdateLinks,	ForceOverwrite)

expression				An	expression	that	returns	one	of	the	above	objects.

DestinationUrl				Required	String.	The	target	URL,	such	as	"C:\My
Documents\My	Web	Sites\Adventure	Works".

UpdateLinks				Required	Boolean.True	to	update	links	during	the	move	process.

ForceOverwrite				Required	Boolean.True	to	overwrite	duplicate	files	or	folders.

Move	method	as	it	applies	to	the	NavigationNode	object.

Moves	a	navigation	node	from	one	location	to	another	in	the	navigation
structure.	Returns	a	NavigationNode	object	that	represents	the	node	after	it	has
been	moved.

expression.Move(NodeCollection,	NewLeftSibling)

expression				An	expression	that	returns	a	NavigationNode	object.

NodeCollection				Required	NavigationNodes.	The	target	navigation	collection.

NewLeftSibling				Optional	Variant.	The	navigation	node	that	will	precede	the
new	node	in	the	navigation	structure.	If	it	is	not	specified,	the	node	will	become
the	last	node	in	the	target	node	collection	specified	in	the	NodeCollection
parameter.

Example

As	it	applies	to	the	WebFile	object.

The	following	statement	moves	a	file	from	one	position	in	the	file	structure	to
another.

myFile.Move("C:\My	Documents\My	Web	Sites\Adventure	Works\Images",	_

				True,	False)

	As	it	applies	to	the	NavigationNode	object.

The	following	example	moves	a	node	from	the	fifth	position	in	the	navigation
structure	to	the	fourth	position	in	the	navigation	structure	by	designating	the
third	node	as	the	new	left	sibling.

Private	Sub	MoveNavNode()

				Dim	myNodes	As	NavigationNodes

				Dim	myNode	As	NavigationNode

				Set	myNodes	=	ActiveWeb.RootNavigationNode.Children

				Set	myNode	=	myNodes(4)

				myNode.Move(myNodes,2)

				ActiveWeb.ApplyNavigationStructure

End	Sub

OnTime	Method
Starts	a	background	timer	that	runs	a	macro	on	the	specified	date	at	the	specified
time.

expression.OnTime(When,	Name,	Tolerance)

expression				Required.	An	expression	that	returns	an	Application	object.

When				Required	Variant.	The	time	at	which	the	macro	is	to	be	run.	Can	be	a
string	that	specifies	a	time	(for	example,	"4:30	pm"	or	"16:30"),	or	it	can	be	a
serial	number	returned	by	a	function	such	as	TimeValue	or	TimeSerial	(for
example,	TimeValue("2:30	pm")	or	TimeSerial(14,	30,	00)).	You	can	also
include	the	date	(for	example,	"6/30	4:15	pm"	or	TimeValue("6/30	4:15
pm")).

Use	the	sum	of	the	return	values	of	the	Now	function	and	either	the	TimeValue
or	TimeSerial	function	to	set	a	timer	to	run	a	macro	a	specified	amount	of	time
after	the	statement	is	run.	For	example,	use	Now+TimeValue("00:05:30")	to	run
a	macro	5	minutes	and	30	seconds	after	the	statement	is	run.

Name				Required	String.	The	name	of	the	macro	to	be	run.	Use	the	complete
macro	path	to	ensure	that	the	correct	macro	is	run	(for	example,
"Project.Module1.Macro1").	For	the	macro	to	run,	the	document	or	template
must	be	available	both	when	the	OnTime	method	is	run	and	when	the	time
specified	by	When	arrives.

Tolerance				Optional	Variant.	The	maximum	time	(in	seconds)	that	can	elapse
before	a	macro	that	wasn't	run	at	the	time	specified	by	When	is	canceled.
Macros	may	not	always	run	at	the	specified	time.	For	example,	if	a	dialog	box	is
being	displayed,	the	macro	will	be	delayed	until	Microsoft	FrontPage	has
completed	the	task.	If	this	argument	is	0	(zero)	or	omitted,	the	macro	is	run
regardless	of	how	much	time	has	elapsed	since	the	time	specified	by	When.

Remarks

Microsoft	FrontPage	can	maintain	only	one	background	timer	set	by	the
OnTime	method.	If	you	start	another	timer	before	an	existing	timer	runs,	the
existing	timer	is	canceled.

Example

This	example	runs	the	macro	named	"Macro1"	in	the	current	module	at	3:55
P.M.

Application.OnTime	When:=Timevalue("15:55:00"),	Name:="Macro1"

This	example	runs	the	macro	named	"Macro1"	15	seconds	from	the	time	the
example	is	run.	The	macro	name	includes	the	project	and	module	name.

Application.OnTime	When:=Now	+	TimeValue("00:00:15"),	_

				Name:="Project1.Module1.Macro1"

This	example	runs	the	macro	named	"Start"	at	1:30	P.M.	The	macro	name
includes	the	project	and	module	name.

Show	All

Open	Method
Open	method	as	it	applies	to	the	WebFile	object.

Opens	a	file	in	a	Web	site.

expression.Open

expression				Required.	An	expression	that	returns	a	WebFile	object.

Open	method	as	it	applies	to	the	Webs	object.

Opens	a	Web	site.	Returns	a	WebEx	object.

expression.Open(szWebUrl,	UserName,	Password,	WebOpenFlags)

expression				Required.	An	expression	that	returns	a	Webs	object.

szWebUrl			Required	String.	The	base	URL	of	the	Web	site,	such	as	"C:\My
Web	Sites".	This	can	be	any	absolute	URL,	such	as	"http://web	server			"	or
"file://file	system			"	for	disk-based	Web	sites.

UserName			Optional	String.	The	logon	name	of	the	user.

Password			Optional	String.	A	designated	string	of	characters	to	validate	access
to	the	specified	Web	site.

WebOpenFlags			Optional	FpWebOpenFlags.

Note		Avoid	using	hard-coded	passwords	in	your	applications.	If	a	password	is
required	in	a	procedure,	request	the	password	from	the	user,	store	it	in	a	variable,
and	then	use	the	variable	in	your	code.	For	recommended	best	practices	on	how
to	do	this,	see	Security	Notes	for	Microsoft	Office	Solution	Developers.

FpWebOpenFlags	can	be	one	of	these	FpWebOpenFlags	constants.
fpOpenInWindow	default
fpOpenNoWindow

Example

The	following	example	opens	the	Rogue	Cellars	Web	site	and	the	Oktoberfest
Sale	file,	and	performs	the	following	tasks:

Adds	text	to	the	file	by	creating	a	property	to	hold	the	text.
Accesses	the	Page	object	model	using	the	ActiveDocument	property	and
the	insertAdjacentText	method.
Adds	text	to	the	page	by	substituting	mySaleProp	for	the	text	parameter	in
the	insertAdjacentText	method.
Closes	Microsoft	FrontPage.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars",	or	you	may	substitute	an	alternative
Web	site	URL	and	file	name.

Private	Sub	AddSaleText()

				Dim	objWeb	As	Web

				Dim	objFile	As	WebFile

				Dim	strSaleProp	As	String

				Dim	strSaleText	As	String

				strSaleText	=	"Vintage	Wines	for	Oktoberfest	Sale!!!"

				Set	objWeb	=	Webs.Open("C:\My	Documents\My	Web	Sites\Rogue	Cellars")

				Set	objFile	=	ActiveWeb.RootFolder.Files("Sale.htm")

				objFile.Properties.Add	"SaleText",	mySaleText

				strSaleProp	=	objFile.Properties("SaleText")

				objFile.Open

				ActiveDocument.body.insertAdjacentText	"BeforeEnd",	strSaleProp

				WebWindows.Close

End	Sub

Show	All

Publish	Method
Publishes	a	Web	site	to	a	Web	server.

expression.Publish(DestinationUrl,	PublishFlags,	UserName,	Password)

expression				An	expression	that	returns	a	WebEx	object.

DestinationUrl				Required	String.	A	string	that	contains	the	entire	target	URL
for	the	Web	site,	such	as	“http://wwwroot/Adventure	Works”.	This	can	be	any
URL	for	a	Web	site,	such	as	http://web	server			/folder				or	file://file
system			/folder				for	disk-based	Web	sites.

PublishFlags			Optional	FpWebPublishFlags.

FpWebPublishFlags	can	be	one	of	these	FpWebPublishFlags	constants.
fpPublishAddToExistingWeb
fpPublishCopyAllFiles
fpPublishCopySubwebs
fpPublishIncremental
fpPublishLogInTempDir
fpPublishNoDeleteUnmatched
fpPublishUseLastPublishTime
fpPublishNone	default

UserName				Optional	String.	The	name	of	the	user	who	is	publishing	the	Web
site.

Password				Optional	String.	The	password	of	the	user.

Note		Avoid	using	hard-coded	passwords	in	your	applications.	If	a	password	is
required	in	a	procedure,	request	the	password	from	the	user,	store	it	in	a	variable,
and	then	use	the	variable	in	your	code.	For	recommended	best	practices	on	how
to	do	this,	see	Security	Notes	for	Microsoft	Office	Solution	Developers.

Example

The	following	example	publishes	the	active	Web	site.

Note		If	the	Web	site	you	are	publishing	to	is	an	existing	Web	site,	you	must	use
the	argument	fpPublishAddToExistingWeb,	otherwise	your	Web	site	won't	be
published.	If	the	Web	site	you	are	publishing	to	doesn't	exist,	don't	use	the
fpPublishAddToExistingWeb	argument	because	your	Web	site	won't	be
published.

Private	Sub	PublishMyWeb()

				Dim	myWeb	As	WebEx

				Dim	myBaseURL	As	String

				Dim	myPublishParam	As	FpWebPublishFlags

				Set	myWeb	=	Application.ActiveWeb

				myBaseURL	=	"http://www.Adventure-Works.com"

				myPublishParam	=	fpPublishAddToExistingWeb

				myWeb.Publish	myBaseURL,	myPublishParam

End	Sub

Quit	Method
Quits	the	application.	This	method	does	not	save	any	changes	that	have	not	been
previously	saved	using	the	Save	or	SaveAs	command,	but	immediately	exits	the
active	application.

expression.Quit

expression				An	expression	that	returns	an	Application	object.

Example

This	example	quits	the	application	without	saving	any	changes	that	were	made
since	the	previous	Save	or	SaveAs	command	was	executed.

Private	Sub	QuitApp()

				Application.Quit

End	Sub

	 	

RecalcHyperlinks	Method
Recalculates	all	meta	data	on	the	server	for	the	specified	Web	site.	This
operation	will	rebuild	all	hyperlinks,	titles	for	Web	pages,	themes	on	pages,	and
so	on	in	a	Microsoft	FrontPage	Web	site.

Note		This	operation	may	take	a	long	time	to	complete	depending	on	the	amount
of	meta	data	on	the	server.

expression.RecalcHyperlinks

expression				An	expression	that	returns	a	WebEx	object.

Example

The	following	example	recalculates	the	hyperlinks	for	the	active	Web	site.

Private	Sub	RecalcLinks()

				Dim	myWeb	As	WebEx

				Set	myWeb	=	Application.ActiveWeb

				myWeb.RecalcHyperlinks

End	Sub

Show	All

Refresh	Method	(Web	Object	Model)
Refresh	method	as	it	applies	to	the	WebEx	object.

Refreshes	the	specified	WebEx	object.

expression.Refresh(FetchAll)

expression				Required.	An	expression	that	returns	a	WebEx	object.

FetchAll				Optional	Boolean.	True	to	retrieve	all	information	for	all	documents
regardless	of	view.	When	set	to	False	this	argument	retrieves	only	the
information	necessary	to	support	the	current	view.	However,	if	the	Reports	or
Hyperlink	view	is	open,	False	refreshes	all	documents.	Default	is	False.

Refresh	method	as	it	applies	to	the	PageWindowEx	object.

Refreshes	the	specified	page	with	an	option	to	save	changes.

expression.Refresh(SaveChanges)

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

SaveChanges			Optional	Boolean.	True	to	save	changes.

Example

The	following	statements	refresh	the	active	page	and	the	first	page	of	the	first
Web	site	opened.

ActivePageWindow.Refresh

WebWindows(0).PageWindows(0).Refresh

You	can	use	the	following	statement	to	save	any	changes	you	may	have	made	to
the	active	page.

ActivePageWindow.Refresh(True)

You	can	use	the	following	statements	to	refresh	the	active	Web	site	and	the	first
Web	site	opened.

ActiveWeb.Refresh

Webs(0).Refresh

Show	All

Remove	Method	(Web	Object	Model)
Returns	a	Boolean	that	represents	whether	a	specified	file	was	successfully
removed	from	a	Web	package.

expression.Remove(Url,	flags)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Url				Required	String.	The	path	and	file	name	of	the	file	to	remove	from	the
Web	package.

flags				Required	FpDependencyFlags.	Specifies	which	dependencies	to	include
when	removing	the	Web	package.

FpDependencyFlags	can	be	a	combination	of	one	or	more	of	the	following
FpDependencyFlags	constants.

fpDepsDefault Removes	all	images,	link	bars,	hyperlinks,	lists,	shared
borders,	and	themes.

fpDepsImages Removes	all	images.
fpDepsLinkbars Removes	all	link	bars.
fpDepsLinks Removes	all	pages	to	which	there	are	hyperlinks.

fpDepsLists Removes	lists	that	may	be	needed	in	order	for	the	page
to	render	correctly.

fpDepsNone Removes	no	dependencies.
fpDepsRecurse Removes	all	files	that	are	in	a	specified	folder.
fpDepsSharedBorders Removes	all	shared	borders.
fpDepsThemes Removes	all	themes.

Example

The	following	example	creates	a	Web	package	and	adds	three	files	to	it,	removes
the	last	file	added	to	the	package,	and	then	saves	the	package	to	the	local	drive.

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Add	objWeb.Url	&	"/test2.htm",	fpDepsNone

				.Add	objWeb.Url	&	"/test3.htm",	fpDepsImages

				

				.Remove	objWeb.Url	&	"/test3.htm",	fpDepsImages

				

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				

				.Save	"c:\NewWebPackage.fwp",	True

End	With

RemoveChoice	Method
Removes	the	specified	choice	from	the	specified	field.

expression.RemoveChoice(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index				Required.	A	Long	that	represents	the	position	of	the	choice	within	the
array.

Example

The	following	example	removes	the	first	choice	from	the	NewChoiceField	field
in	the	first	list	of	the	active	Web	site.

Sub	RemoveChoice()

'Removes	first	choice	from	array

				Dim	objApp	As	FrontPage.Application

				Dim	objListFields	As	listFields

				Dim	objListField	As	ListFieldChoice

				Set	objApp	=	FrontPage.Application

				Set	objListFields	=	objApp.ActiveWeb.Lists.Item(0).Fields

				Set	objListField	=	objListFields.Item("NewChoiceField")

				'Remove	first	choice	in	list

				objListField.RemoveChoice	Index:=0

End	Sub

RemoveWeb	Method
Removes	a	Web	site.

expression.RemoveWeb(UserName,	Password)

expression				An	expression	that	returns	a	WebFolder	object.

UserName				Optional	String.	The	logon	name	of	the	user.

Password				Optional	String.	The	password	of	the	user.

Note		Avoid	using	hard-coded	passwords	in	your	applications.	If	a	password	is
required	in	a	procedure,	request	the	password	from	the	user,	store	it	in	a	variable,
and	then	use	the	variable	in	your	code.	For	recommended	best	practices	on	how
to	do	this,	see	Security	Notes	for	Microsoft	Office	Solution	Developers.

Remarks

The	RemoveWeb	method	is	the	complement	of	the	MakeWeb	method.	Just	as
the	MakeWeb	method	creates	the	meta	data	for	the	Web	site	from	a	folder,	the
RemoveWeb	method	removes	the	meta	data	for	the	Web	site	from	a	folder,	but
the	folder	remains	intact.	This	is	different	from	the	Delete	method	for	the
WebEx	object,	where	the	entire	contents	of	the	specified	Web	site	are	removed.

Example

The	following	example	removes	a	Web	site	from	a	folder.	The	folder	and	its
contents	remain	intact,	but	the	folder	is	no	longer	a	Web	site.

Note			You	must	have	the	Web	site	that	contains	the	folder	open.

Private	Sub	WebRemove()

				Dim	myFolders	As	WebFolders

				Dim	myFolder	As	WebFolder

				Set	myWebFolders	=	Webs(0).RootFolder.Folders

				For	Each	myFolder	In	myFolders

								If	myFolder.Name	=	"TempWeb"	Then

												myFolder.RemoveWeb

												Exit	For

								End	If

				Next

End	Sub

Run	Method
Runs	the	designated	Microsoft	Visual	Basic	macro.	You	can	use	the	Run	method
to	execute	a	specified	procedure	in	Microsoft	FrontPage.	You	can	also	use	the
Run	method	from	within	the	procedure	of	an	ActiveX	control	that	carries	out
instructions	to	query	or	modify	a	FrontPage-based	Web	site.

Note		You	cannot	pass	parameters	to	a	procedure	using	the	Run	method.	Use	the
Call	statement	to	pass	parameters	to	a	procedure.

expression.Run(MacroName,	safeArrayOfParams)

expression				An	expression	that	returns	an	Application	object.

MacroName				Required	String.	The	name	of	the	macro,	add-in,	or	script.

safeArrayOfParams				Required.	A	ParamArray	of	type	Variant.

Example

The	following	example	runs	a	macro	from	another	procedure.

Note		To	run	this	example,	you	must	have	a	Web	site	named	Rogue	Cellars	or
you	can	substitute	a	different	Web	site	in	place	of	the	Rogue	Cellars	Web	site.
Copy	the	following	procedures	into	a	code	module	and	run	StartMacro.

Private	Sub	StartMacro()

				Dim	myMacro	As	String

				myMacro	=	"OpenRogueCellars"

				Run	(myMacro)

End	Sub

Sub	OpenRogueCellars()

				Dim	myWeb	As	Web

				Set	myWeb	=	Webs.Open("C:\My	Web	Sites\Rogue	Cellars")

End	Sub

	 	

Show	All

Save	Method
As	it	applies	to	the	WebPackage	object.

Saves	a	Web	package	with	the	specified	file	name.

expression.Save(strFileName,	fOverWrite)

expression				Required.	An	expression	that	returns	a	WebPackage	object.

strFileName				Required	String.	The	path	and	file	name	of	the	Web	package.
Web	packages	have	an	.fwp	file	name	extension.	The	Save	method	does	not
automatically	include	this	file	name	extension,	so	you	should	specify	it	as	part	of
the	file	name.

fOverWrite				Required	Long.	False	to	not	overwrite	an	existing	file	with	the
same	file	name.

As	it	applies	to	the	PageWindowEx	object.

Saves	a	specified	page.

expression.Save(ForceOverwrite)

expression				An	expression	that	returns	a	PageWindowEx	object.

ForceOverwrite				Optional	Boolean.	False	to	not	save	over	an	existing	file.	The
default	value	is	True.

Example

As	it	applies	to	the	WebPackage	object.

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"C:\My	Documents\NewWebPackage.fwp",	True

End	With

As	it	applies	to	the	PageWindowEx	object.

The	following	example	creates	a	property,	adds	it	to	a	file,	and	then	saves	the
page.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars",	or	you	may	substitute	an	alternative
Web	site	URL	and	file	name.

Private	Sub	AddSaleText()

				Dim	myWeb	As	WebEx

				Dim	myFile	As	WebFile

				Dim	mySaleProp	As	String

				Dim	mySaleText	As	String

				mySaleText	=	"Vintage	Wines	for	Oktoberfest	Sale!!!"

				Set	myWeb	=	Webs.Open("C:\My	Documents\My	Web	Sites\Rogue	Cellars")

				Set	myFile	=	ActiveWeb.RootFolder.Files("Sale.htm")

				myFile.Properties.Add	"SaleText",	mySaleText

				mySaleProp	=	myFile.Properties("SaleText")

				myFile.Open

				ActiveDocument.body.insertAdjacentText	"BeforeEnd",	mySaleProp

				ActivePageWindow.Save

				WebWindows.Close

End	Sub

SaveAs	Method
Writes	the	specified	page	object	to	the	destination	URL.

expression.SaveAs(DestinationUrl,	ForceOverwrite)

expression				An	expression	that	returns	a	PageWindowEx	object.

DestinationUrl				Required	String.	A	string	that	contains	the	entire	URL	for	the
Web	site,	such	as	“C:\My	Documents\My	Web	Sites\Adventure
Works\index.htm”.	This	can	be	any	URL	for	a	Web	site,	such	as	http://web
server			/folder			/file				or	file://file	system			/folder			/file				for	disk-based	Web
sites.

ForceOverwrite				Optional	Boolean.	False	to	not	save	over	an	existing	file.	The
default	value	is	True.

Example

The	following	example	saves	an	existing	file	to	another	Web	site	under	a	new
name.	(It	isn't	necessary	to	change	the	name	of	the	file.)	The	program	first
activates	the	container	Web	site,	and	then	it	opens	the	file	and	saves	it	to	a
different	Web	site	with	a	new	name.

Note		You	must	have	a	file	named	Zinfandel.htm	in	the	C:\My	Web	Sites	folder,
or	change	the	name	of	the	file	in	the	program	to	match	an	existing	file	in	your
Web	site.

Private	Sub	SaveAsNewFile()

				Dim	myFile	As	WebFile

				Dim	myPageWindow	As	PageWindowEx

				Webs("C:\My	Web	Sites").Activate

				Set	myFile	=	ActiveWeb.RootFolder.Files("Zinfandel.htm")

				myFile.Open

				Set	myPageWindow	=	ActivePageWindow

				myPageWindow.SaveAs	("C:\My	Web	Sites\Rogue	Cellars\Zinfandel	Sale.htm")

				myPageWindow.Close

End	Sub

Show	All

SaveReport	Method
Saves	a	specified	report	to	an	HTML	file	on	the	user's	computer.

expression.SaveReport(reportviewModeEx,	DestinationUrl,	Title,
ForceOverwrite)

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

reportviewModeEx				Required.	An	FpWebViewModeEx	constant	that
represents	the	type	of	report	you	want	to	save.

FpWebViewModeEx	can	be	one	of	these	FpWebViewModeEx	constants.
fpWebViewExAllFiles
fpWebViewExAssignedTo
fpWebViewExBrokenLinks
fpWebViewExBrowserTypes
fpWebViewExCategories
fpWebViewExCheckoutStatus
fpWebViewExComponentErrors
fpWebViewExDailyPageHits
fpWebViewExDailySummary
fpWebViewExFolders
fpWebViewExLinks
fpWebViewExMonthlyPageHits
fpWebViewExMonthlySummary
fpWebViewExNavigation
fpWebViewExOlderFiles
fpWebViewExOsTypes
fpWebViewExPage
fpWebViewExPublishStatus
fpWebViewExRecentlyAddedFiles
fpWebViewExRecentlyChangedFiles

fpWebViewExReferringDomains
fpWebViewExReferringURLs
fpWebViewExReviewStatus
fpWebViewExSearchStrings
fpWebViewExSiteSummary
fpWebViewExSlowPages
fpWebViewExTodo
fpWebViewExUnlinkedFiles
fpWebViewExUsageSummary
fpWebViewExVisitingUsers
fpWebViewExWeeklyPageHits
fpWebViewExWeeklySummary

DestinationUrl				Required.	A	String	that	represents	the	target	file	name	for	the
report.

Title				Required.	A	String	that	represents	the	title	of	the	new	report.

ForceOverwrite				Optional.	A	Boolean	that	indicates	if	any	previously	created
report	with	the	same	file	name	will	be	overwritten	by	the	new	report.	If	True,	an
existing	file	will	be	overwritten.	The	default	value	is	True.

Example

The	following	example	saves	a	report	of	all	files	in	the	current	Web	site	to	a	file
named	Report1.htm	on	the	local	user's	computer.	The	report	will	overwrite	any
existing	report	in	the	\Reports	directory	with	the	name	"Report1.htm".

Sub	ReportSave()

'Saves	a	specified	report	to	a	specified	location.

				Dim	objApp	As	FrontPage.Application

				Dim	objWebwdw	As	WebWindowEx

				Set	objApp	=	FrontPage.Application

				Set	objWebwdw	=	objApp.ActiveWebWindow

				'Save	the	report

				objWebwdw.SaveReport	reportviewModeEx:=fpWebViewExAllFiles,	_

								Title:="Current	Project	Progress",	_

								DestinationURL:="C:\NewProject\Reports\Report1.htm",	_

								ForceOverwrite:=True

End	Sub

SetChoices	Method
Set	the	choices	for	a	field	of	type	choice	to	the	items	indicated	in	the
ppsaChoices	argument.

expression.SetChoices(ppsaChoices)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

ppsaChoices				Required	String.	An	array	of	items	that	represent	the	choices	in
the	list	field.

ShowBordersShadingDialog	Method
Displays	the	Borders	and	Shading	dialog	box	and	returns	a	String	that
represents	the	Cascading	Style	Sheet	property	settings	for	the	borders	and
shading	properties	selected	in	the	Borders	and	Shading	dialog	box.	A	value	is
returned	when	the	users	clicks	OK.	If	the	user	clicks	Cancel,	an	empty	String	is
returned.

expression.ShowBordersShadingDialog(strCSSIn)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

strCSSIn				Optional	Variant.	A	String	that	represents	the	initial	custom	settings
for	the	dialog	box.

Example

The	following	example	displays	the	Borders	and	Shading	dialog	box,	and	then
sets	the	border	style	for	the	active	element	to	the	border	settings	returned.

Dim	strCSS	As	String

Dim	strCSSIn	As	String

strCSSIn	=	"border:	3	double	#00FFFF"

strCSS	=	Application.ShowBordersShadingDialog(strCSSIn)

If	strCSS	<>	""	Then	ActiveDocument.activeElement	_

				.Style.Border	=	strCSS

ShowFontDialog	Method
Displays	the	Font	dialog	box	and	returns	a	String	that	represents	the	Cascading
Style	Sheet	properties	for	the	font	properties	selected	in	the	Font	dialog	box.	A
value	is	returned	when	the	users	clicks	OK.	If	the	user	clicks	Cancel,	an	empty
String	is	returned.

expression.ShowFontDialog(strCSSIn)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

strCSSIn				Optional	Variant.	A	String	that	represents	the	initial	custom	settings
for	the	dialog	box.

Example

The	following	example	displays	the	Font	dialog	box,	and	then	sets	the	font	style
for	the	active	element	to	the	font	settings	returned.

Dim	strCSS	As	String

Dim	strCSSIn	As	String

strCSSIn	=	"font-size:14pt;	color:#FF0000"

strCSS	=	Application.ShowFontDialog(strCSSIn)

If	strCSS	<>	""	Then	ActiveDocument	_

				.activeElement.Style.Font	=	strCSS

ShowHTMLDialog	Method
Displays	a	custom	dialog	box	by	using	the	contents	of	an	HTML	page.	Returns	a
Variant.

expression.ShowHTMLDialog(Url,	pVarArgIn)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Url				Required	String.	The	path	and	file	name	of	the	page	to	render	as	a	dialog
box.

pVarArgIn				Optional	Variant.	Data	used	to	set	the	initial	settings	of	the	custom
dialog	box.

Example

The	following	example	displays	the	specified	Web	page	in	a	Microsoft	Windows
dialog	box.

Application.ShowHTMLDialog("c:\test.htm")	

ShowHyperlinkParameters	Method
Displays	the	Hyperlink	Parameter	dialog	box	and	returns	a	String	that
represents	the	hyperlink	plus	the	parameters,	separated	by	a	question	mark.

expression.ShowHyperlinkParameters(bstrPath,	bstrQuery,	bstrColumns,
bstrColTypes)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

bstrPath				Required	String.	Specifies	the	Web	address	for	the	hyperlink.

bstrQuery				Required	String.	Specifies	the	query	string	to	pass	in	when	opening
the	linked	page.

bstrColumns				Required	String.	Specifies	a	comma-delimited	String	that
contains	the	names	of	the	database	columns	that	are	available	for	use	in	the
URL.

bstrColTypes				Required	String.	Specifies	a	comma-delimited	String	that
represents	the	data	type	values	of	the	database	columns.

Remarks

The	values	for	the	bstrColTypes	parameter	include	the	following.

Data	type Value Description

adArray 819 When	combined	with	another	data	type,	indicates	an
array	of	the	other	data	type.

adBigInt 20 Indicates	an	8-byte	signed	integer.
adBinary 128 Indicates	a	binary	value.
adBoolean 11 Indicates	a	Boolean	value.
adBSTR 8 Indicates	a	null-terminated	character	string.

adChapter 136 Indicates	a	4-byte	chapter	value	that	identifies	rows
in	a	child	row	set.

adChar 129 Indicates	a	string	value.

adCurrency 6
Indicates	a	currency	value.	Currency	is	a	fixed-point
number	with	four	digits	to	the	right	of	the	decimal
point	and	is	stored	in	an	eight-byte	signed	integer.

adDate 7

Indicates	a	date	value.	A	date	value	is	stored	as	a
double,	the	whole	part	of	which	is	the	number	of
days	since	December	30,	1899,	and	the	fractional
part	of	which	is	the	fraction	of	a	day.

adDBDate 133 Indicates	a	date	value	(yyyymmdd).
adDBTime 134 Indicates	a	time	value	(hhmmss).

adDBTimeStamp 135 Indicates	a	date/time	stamp	(yyyymmddhhmmss
plus	a	fraction	in	billionths).

adDecimal 14 Indicates	an	exact	numeric	value	with	a	fixed
precision	and	scale.

adDouble 5 Indicates	a	double-precision	floating-point	value.
adEmpty 0 Indicates	no	value.
adError 10 Indicates	a	32-bit	error	code.

adFileTime 64 Indicates	a	64-bit	value	representing	the	number	of
100-nanosecond	intervals	since	January	1,	1601.

adGUID 72 Indicates	a	globally	unique	identifier	(GUID).

adIDispatch 9 Indicates	a	pointer	to	an	IDispatch	interface	on	a
COM	object.	(ADO	does	not	currently	support	this
data	type.	Usage	may	cause	unpredictable	results.)

adInteger 3 Indicates	a	4-byte	signed	integer.

adIUnknown 13
Indicates	a	pointer	to	an	IUknown	interface	on	a
COM	object.	(ADO	does	not	currently	support	this
data	type.	Usage	may	cause	unpredictable	results.)

adLongVarBinary 205 Indicates	a	long	binary	value.
adLongVarChar 201 Indicates	a	long	string	value.
adLongVarWChar 203 Indicates	a	long	null-terminated	Unicode	value.

adNumeric 131 Indicates	an	exact	numeric	value	with	a	fixed
precision	and	scale.

adPropVariant 138 Indicates	an	Automation	PROPVARIANT.
adSingle 4 Indicates	a	single-precision	floating	point.
adSmallInt 2 Indicates	a	2-byte	signed	integer.
adTinyInt 16 Indicates	a	1-byte	signed	integer.
adUnsignedBigInt 21 Indicates	an	8-byte	unsigned	integer.
adUnsignedInt 19 Indicates	a	4-byte	unsigned	integer.
adUnsignedSmallInt 18 Indicates	a	2-byte	unsigned	integer.
adUnsignedTinyInt 17 Indicates	a	1-byte	unsigned	integer.
adUserDefined 132 Indicates	a	user-defined	variable.
adVarBinary 204 Indicates	a	binary	value.
adVarChar 200 Indicates	a	string	value.

adVariant 12
Indicates	an	Automation	Variant.	(ADO	does	not
currently	support	this	data	type.	Usage	may	cause
unpredictable	results.)

adVarNumeric 139 Indicates	a	numeric	value.
adVarWChar 202 Indicates	a	null-terminated	Unicode	character	string.
adWChar 130 Indicates	a	null-terminated	Unicode	character	string.

For	more	information	on	ActiveX	data	types,	see	ActiveX	Data	Object	(ADO)
on	the	Microsoft	Developer	Network	(MSDN)	Web	site.

Example

The	following	example	displays	the	Hyperlink	Parameter	dialog	box	with	the
following	URL	and	settings.

Application.ShowHyperlinkParameters	"http://www.fourthcoffee.com/coffee.asp",	_

				"type=black",	"CategoryID,CategoryName,Description",	"3,202,202"

ShowImportWebPackageDialog
Method
Returns	a	Boolean	that	indicates	whether	the	method	successfully	added	the
specified	Web	package.

expression.ShowImportWebPackageDialog(packageFileName,
urlImportedTo)

expression				Required.	An	expression	that	returns	an	Application	object.

packageFileName				Required	String.	The	path	and	file	name	of	the	Web
package	to	import.

urlImportedTo				Required	String.	The	path	and	file	name	of	where	to	import	the
Web	package.

Remarks

You	can	import	Web	packages	only	into	Web	sites	based	on	Microsoft	Windows
SharePoint	Services.

Example

The	following	example	displays	the	Import	Web	Package	dialog	box,	and	then
indicates	whether	the	specified	Web	package	was	added	successfully	to	the
specified	Web	site.

Dim	blnResponse	As	Boolean

blnResponse	=	Application.ShowImportWebPackageDialog	_

				("c:\NewWebPackage.fwp",	ActiveWeb.Url)

If	blnResponse	=	True	Then

				MsgBox	"The	Web	package	was	added	successfully."

Else

				MsgBox	"Unable	to	add	the	Web	package	to	the	specified	site."	_

								&	vbCrLf	&	"Contact	your	administrator	for	assistance."

End	If

ShowPickURLDialog	Method
Displays	the	the	Edit	Hyperlink	dialog	box	and	returns	a	String	that	represents
the	URL	to	the	file	that	the	user	has	selected	in	the	Edit	Hyperlink	dialog	box.

expression.ShowPickURLDialog(strBaseURL,	strFileURL)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

strBaseURL				Optional	Variant.	The	base	URL	for	the	resulting	hyperlink.

strFileURL				Optional	Variant.	The	selected	page	for	a	new	hyperlink.	The	user
may	change	this	by	selecting	a	different	page	in	the	Edit	Hyperlink	dialog	box.

Example

The	following	example	displays	the	the	Edit	Hyperlink	dialog	box.

Dim	strURL	As	String

Dim	objSelection	As	IHTMLTxtRange

Dim	strHyperlink	As	String

strURL	=	Application.ShowPickURLDialog	_

				(ActiveWeb.Url,	"c:\test.htm")

				

Set	objSelection	=	ActiveDocument.selection.createRange

With	objSelection

				strHyperlink	=	""	&	.Text	&	""

				.pasteHTML	strHyperlink

End	With

ShowPositionDialog	Method
Returns	a	String	that	represents	the	value	of	the	position	attribute	for	a
cascading	style	sheet.

expression.ShowPositionDialog(strCSSIn)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

strCSSIn				Optional	Variant.	A	String	that	represents	the	initial	custom	settings
for	the	dialog	box.

Example

The	following	example	sets	the	position	attribute	for	the	active	element	in	the
active	document.	Note	that	using	the	setAttribute	method	overwrites	any	other
style	attribute	settings	for	the	active	element.

Dim	strCSS	As	String

Dim	strCSSIn	As	String

strCSSIn	=	"position:	absolute;	left:	750"

strCSS	=	Application.ShowPositionDialog(strCSSIn)

If	strCSS	<>	""	Then	ActiveDocument.activeElement	_

				.setAttribute	"style",	strCSS

SplitArgs	Method
Returns	a	Variant	that	represents	an	array	of	the	individual	items	in	the	specified
string	separated	by	the	specified	character	string.

expression.SplitArgs(String,	Tokens)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

String				Required	String.	The	string	containing	the	data.

Tokens				Required	String.	The	character	string	that	separates	the	items	in	the
String	parameter.

Remarks

The	SplitArgs	method	is	similar	to	the	Split	function	in	Microsoft	Visual	Basic;
however,	the	SplitArgs	method	will	not	break	quote-delimited	strings.

Example

The	following	example	splits	the	specified	string	into	an	array	of	the	items	in	the
specified	string	that	are	separated	by	a	comma.

Dim	varArray()	As	Variant

varArray	=	Application.SplitArgs("this,is	a,test",	",")

UndoCheckout	Method
Returns	the	specified	file	to	its	prior	state	in	the	source	control	project	without
saving	any	changes	that	may	have	been	made.

Note		You	must	have	a	source	control	project	in	place	before	using	this	method.
For	information	about	source	control	projects,	refer	to	Managing	Source	Control
Projects.

expression.UndoCheckout

expression				An	expression	that	returns	a	WebFile	object.

Example

The	following	example	checks	a	file	in	to	its	prior	state	(its	state	before
checkout).	The	file	must	be	part	of	a	source	control	project.

Note		To	run	this	procedure,	you	must	have	a	source	control	project	in	place	with
a	Web	site	open	and	a	page	called	Zinfandel.htm	contained	in	the	Web	site.	Or,
substitute	an	alternate	Web	site	and	file	name.

Private	Sub	UndoCheckout()

				Dim	myWeb	As	WebEx

				Set	myWeb	=	("C:/My	Web	Sites/Rogue	Cellars")

				myWeb.RootFolder.Files("Zinfandel.htm").UndoCheckout

End	Sub

UpdateDynamicTemplate	Method
Updates	the	pages	that	are	attached	to	a	Dynamic	Web	Template	so	that	any
changes	to	the	Dynamic	Web	Template	are	applied	to	pages	that	reference	the
Dynamic	Web	Template.

expression.UpdateDynamicTemplate(type,	pbzLog)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

pState			Required	DynamicTemplateState.	Specifies	the	region	mapping	to	use
when	updating	the	Dynamic	Web	Template.	Use	the	SetHeadMapping	and
SetBodyMapping	methods	of	the	DynamicTemplateState	object	to	customize
region	mapping.

pbzLog				Required	String.	A	ByRef	parameter	that	returns	a	String	containing
the	log	entry	about	the	update	process	for	a	file.	In	the	case	of	an	error,	it	returns
information	that	indicates	which	files	have	failed.

mk:@MSITStore:vbafpd10.chm::/html/fpmthSetHeadMapping.htm
mk:@MSITStore:vbafpd10.chm::/html/fpmthSetBodyMapping.htm
mk:@MSITStore:vbafpd10.chm::/html/fdobjDynamicTemplateState.htm

Remarks

If	an	error	occurs,	the	update	process	will	terminate	unless	the	SkipOnQuery
property	is	set	to	True.

Example

The	following	example	updates	the	Dynamic	Web	Template	references	in	the
specified	file.

Dim	objState	As	DynamicTemplateState

Dim	objFile	As	WebFile

Dim	strLog	As	String

Set	objState	=	Application.CreateDynamicTemplateState

Set	objFile	=	ActiveWeb.LocateFile("home.htm")

objFile.UpdateDynamicTemplate	objState,	strLog

VerifyAllLinks	Method
Verifies	all	hyperlinks	in	the	specified	Web	site.

Note		The	Broken	Hyperlinks	report	uses	the	VerifyAllLinks	method	to	display
any	pages	with	broken	hyperlinks.

expression.VerifyAllLinks

expression				Required.	An	expression	that	returns	a	WebWindowEx	object

Example

The	following	example	uses	the	VerifyAllLinks	method	to	check	for	broken
links	in	the	active	Web	site,	and	then	switches	to	the	Broken	Hyperlinks	report
view.

Sub	VerifyLinks()

'Verifies	broken	links	in	the	current	view

				Dim	objApp	As	FrontPage.Application

				Dim	objWebwdw	As	WebWindowEx

				Set	objApp	=	FrontPage.Application

				Set	objWebwdw	=	objApp.ActiveWebWindow

				'Verify	all	links	in	the	current	web.

				objWebwdw.VerifyAllLinks

End	Sub

ActiveDocument	Property
Returns	an	FPHTMLDocument	object	that	represents	the	Web	page	currently
displayed	in	the	Microsoft	FrontPage	application	window.

expression.ActiveDocument

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

mk:@MSITStore:::/html/fdobjFPHTMLDocument.htm

Remarks

This	object	provides	access	to	the	Microsoft	FrontPage	Page	Object	Model
elements	that	are	compatible	with	Microsoft	Internet	Explorer	4.0	and	later.	This
object	model	provides	programmatic	access	to	the	HTML	in	the	specified	page.

Example

The	following	statement	returns	the	active	document	in	FrontPage.

myDoc	=	Application.ActiveDocument

The	following	statement	returns	the	active	document	for	the	specified	page
window.

myDoc	=	Application.WebWindows(0).PageWindows(0).ActiveDocument

ActiveFrameWindow	Property
Returns	an	FPHTMLWindow2	object	that	represents	the	document	displayed	in
the	active	page	window.

Note			If	the	active	page	contains	frames,	the	ActiveFrameWindow	property
returns	the	currently	selected	frame,	if	one	is	selected,	or	the	frames	page	itself,
if	none	of	the	frames	is	selected.	If	a	page	does	not	contain	frames,	the
ActiveFrameWindow	property	returns	the	window	containing	the	specified
page.

expression.ActiveFrameWindow

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

Note		Accessing	the	ActiveFrameWindow	property	is	the	same	as	accessing	the
parent	window	through	the	active	page	window	as	follows:

ActivePageWindow.Document.parentWindow

Example

The	following	example	retrieves	the	ActiveFrameWindow	object.

Private	Sub	GetActiveFrame()

				Dim	myPageWindow	As	PageWindowEx

				Dim	myFrame	As	FPHTMLWindow2

				Set	myPageWindow	=	_

												ActiveWeb.ActiveWebWindow.ActivePageWindow

				Set	myFrame	=	myPageWindow.ActiveFrameWindow

End	Sub

ActivePageWindow	Property
Returns	a	PageWindowEx	object	that	represents	the	window	in	which	the
current	page	is	displayed.

expression.ActivePageWindow

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	returns	the	PageWindowEx	object	for	the	Application
object.

Private	Sub	GetActivePageWindow()

				Dim	myPageWindow	As	PageWindowEx

				Set	myPageWindow	=	ActivePageWindow

End	Sub

The	following	example	returns	the	PageWindowEx	object	from	the
WebWindowEx	object.

Private	Sub	GetActivePageWindow()

				Dim	myPage	As	PageWindowEx

				Set	myPage	=	ActiveWebWindow.ActivePageWindow

End	Sub

ActiveWeb	Property
Returns	a	WebEx	object	that	represents	the	Web	site	currently	open	in	Microsoft
FrontPage.

expression.ActiveWeb

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

The	Microsoft	FrontPage	Visual	Basic	for	Applications	object	model	provides
access	to	the	Web	object	model	through	the	ActiveWeb	property.	For	more
information	about	the	FrontPage	object	models,	see	Exploring	the	Object	Model
in	FrontPage.

Example

This	example	uses	the	ActiveWeb	property	to	locate	the	Web	page	index.htm
and	changes	the	background	color	of	the	page.

Note		To	run	this	example,	create	a	form	with	one	command	button	called
cmdActiveWebColorChange	and	paste	the	following	code	in	the	code	window.
You	must	have	a	Web	page	called	index.htm	for	this	procedure	to	change	the
background	color.

Private	Sub	cmdActiveWebBKGRDColorChange_Click()

				Dim	myPageWin	As	PageWindowEx

				Set	myPageWin	=	Application.ActiveWeb.LocatePage("index.htm")

				myPageWin.Document.bgColor	=	"PapayaWhip"

End	Sub

Note		Microsoft	Visual	Basic	provides	color	constants	with	a	"vb"	prefix,	such
as	vbCyan.	FrontPage	builds	Web	pages	in	HTML,	which	uses	different	color
constants	than	Visual	Basic.	If	you	use	the	color	constants	provided	with	Visual
Basic	in	your	existing	programs,	you	may	need	to	change	these	to	the	equivalent
hexadecimal	color	values	when	you	port	your	programs	to	a	FrontPage-based
Web	site,	or	when	you	use	colors	across	Microsoft	Office	applications	that
include	a	FrontPage-based	Web	site.

ActiveWebWindow	Property
Returns	a	WebWindowEx	object	that	represents	the	window	in	which	the
currently	open	Web	site	is	displayed.

expression.ActiveWebWindow

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	prints	the	value	of	the	ActiveDocument.nameProp	property	for	the
WebEx	object.

Note		To	run	this	example,	create	a	form	with	a	command	button	called
"cmdActiveWebWindowDisplay"	and	a	label	called	"lblWebWindowDisplay".
Paste	the	following	code	in	the	code	window.	You	must	have	a	Microsoft
FrontPage-based	Web	page	open	for	this	procedure	to	return	a	document	name.

Private	Sub	cmdActiveWebWindowDisplay_Click()

				On	Error	Resume	Next

				Dim	myCurrentWebWindow	As	WebWindowEx

				Set	myCurrentWebWindow	=	Application.ActiveWebWindow

				With	myCurrentWebWindow

								lblWebWindowDisplay.Caption	=	.ActiveDocument.nameProp

				End	With

End	Sub

AllFiles	Property
Returns	a	WebFiles	collection	that	represents	all	files	in	the	specified	Web	site.

expression.AllFiles

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WebFiles	collection	returns	all	files	in	the	collection	regardless	of	their
position	in	the	Web	site	hierarchy.

Example

The	following	example	searches	through	the	files	in	the	active	Web	site	for	a
page	with	the	title	"Main	Page."	If	the	page	is	found,	it	is	opened	in	Microsoft
FrontPage.

Sub	FindFileTitle()

	 	 	 'Returns	a	collection	of	all	files	in	the	current	Web	site.

				Dim	objApp	As	FrontPage.Application

				Dim	objWebFile	As	WebFile

				Dim	objWebFiles	As	WebFiles

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	WebFiles	collection.

				Set	objWebFiles	=	objApp.ActiveWeb.AllFiles

				'Check	each	file	in	the	collection	for	the	title	Main	Page.

				For	Each	objWebFile	In	objWebFiles

								'If	the	title	is	found	open	the	page	in	the	editor.

								If	objWebFile.Title	=	"Main	Page"	Then

												objWebFile.Open

								End	If

								'If	not	found,	check	next	file.

				Next	objWebFile

End	Sub

AllFolders	Property
Returns	a	WebFolders	collection	that	represents	all	folders	in	the	current	Web
site.

expression.AllFolders

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	WebFolders	collection	returns	all	folders	in	the	collection	regardless	of
their	position	in	the	Web	site	hierarchy.

Example

The	following	example	searches	through	the	WebFolders	collection	for	a	folder
named	"Folder1."	If	the	folder	is	found,	the	example	searches	for	a	file	with	the
title	"Main	Page."	If	the	title	is	found,	the	file	is	opened	in	Microsoft	FrontPage.

Sub	WebFoldersFind()

				Dim	objApp	As	FrontPage.Application

				Dim	objWebFolder	As	WebFolder

				Dim	objWebFolders	As	WebFolders

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	WebFolders	collection.

				Set	objWebFolders	=	objApp.ActiveWeb.AllFolders

				'Check	each	folder	in	the	collection	for	the	name	"Folder1".

				For	Each	objWebFolder	In	objWebFolders

							'If	the	folder	is	found	then	search	through	each

							'file	in	the	folder	for	a	file	with	the	title

							'Main	Page	and	open	the	file	if	it	exists.

							If	objWebFolder.Name	=	"Folder1"	Then

										For	i	=	1	To	objWebFolder.Files.Count

														If	objWebFolder.Files.Item(i).Title	=	"Main	Page"	Then

																		objWebFolder.Files.Item(i).Open

																		Exit	For

														End	If

										Next	i

							End	If

				'If	not	found	check	next	file.

				Next	objWebFolder

End	Sub

AllNavigationNodes	Property
Returns	a	NavigationNodes	collection	object	that	represents	all	of	the
navigation	nodes	in	the	specified	Web	site.

Note		Navigation	nodes	are	used	to	display	a	graphic	representation	of	the
current	Web	site	in	Navigation	view.

expression.AllNavigationNodes

expression				Required.	An	expression	that	returns	a	WebEx	object.

Example

The	following	example	returns	a	reference	to	the	NavigationNodes	collection
and	displays	the	file	name	of	the	first	object	in	the	collection	and	the	title	of	the
Web	site	in	which	it	exists.

Sub	AllNavigationNodes()

				Dim	objApp	As	FrontPage.Application

				Dim	objNavNode	As	NavigationNode

				Dim	objNavNodes	As	NavigationNodes

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	NavigationNodes	collection.

				Set	objNavNodes	=	objApp.ActiveWeb.AllNavigationNodes

				'Return	a	reference	to	the	first	node	in	the	collection.

				Set	objNavNode	=	objNavNodes.Item(0)

				'Display	the	file	name	and	the	Web	of	the	first

				'navigation	node	in	the	collection

				MsgBox	"The	URL	of	this	file	is	"	&	objNavNode.Url	&	_

								vbCr	&	".	It	is	found	in	the	"	_

								&	objNavNode.Web.Title	&	"	Web	site."

End	Sub

AllowAttachments	Property
Sets	or	returns	a	Boolean	that	represents	whether	a	list	allows	allows
attachments.

expression.AllowAttachments

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AllowFillInChoices	Property
Sets	or	returns	a	Boolean	that	represents	whether	a	choice	field	allows	users	to
enter	a	custom	choice.

expression.AllowFillInChoices

expression				Required.	An	expression	that	returns	a	ListFieldChoice	object.

AllowModerate	Property
Sets	or	returns	a	Boolean	that	represents	whether	to	allow	using	the	moderation
setting	in	a	list.

expression.AllowModerate

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

AllowMultipleResponses	Property
Returns	or	sets	a	Boolean	that	determines	whether	users	can	respond	more	than
once	to	a	given	survey.	If	False,	a	user	can	only	respond	once	to	a	survey.

expression.AllowMultipleResponses

expression				Required.	An	expression	that	returns	a	Survey	object.

Example

The	following	example	sets	the	AllowMultipleResponses	property	of	all
Survey	objects	in	the	active	Web	site	to	False	so	that	users	can	only	respond
once	to	a	given	survey.

Sub	ChangeResponses()

'Sets	number	of	responses	to	one	per	user.

				Dim	objApp	As	FrontPage.Application

				Dim	objList	As	Object

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Cycle	through	each	list	and	check	for	list	type.

				For	Each	objList	In	objLists

								'If	it's	a	Survey	then	change	responses	to	single.

								If	objList.Type	=	fpListTypeSurvey	Then

												objList.AllowMultipleResponses	=	False

								End	If

				Next

End	Sub

AllowRichHTML	Property
Sets	or	returns	a	Boolean	that	represents	whether	to	display	the	Rich	Text
Format	(RTF)	edit	control	in	the	browser.

expression.AllowRichHTML

expression				Required.	An	expression	that	returns	a	ListFieldMultiLine	object.

AllowsLongFilenames	Property
Returns	True	if	the	operating	system	on	the	machine	where	the	Web	site	resides
accepts	long	file	names.	Read-only	Boolean.

expression.AllowsLongFilenames

expression				Required.	An	expression	that	returns	a	WebEx	object.

Example

The	following	example	checks	whether	the	active	Web	site	allows	long	file
names.	The	example	assumes	the	existence	of	a	procedure	named
ConvertLongFilenames.

If	ActiveWeb.AllowsLongFilenames	=	True	Then

				Exit	Sub

Else

				Call	ConvertLongFilenames()

End	If

AnswerWizard	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	an	AnswerWizard	object	that	contains	the	files	used	by	the	Help	search
engine.

expression.AnswerWizard

expression	Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjAnswerWizard.htm

Example

This	example	adds	an	Answer	Wizard	file	and	retrieves	the	Creator	and	Count
properties.

Note		The	Creator	property	for	Microsoft	FrontPage	is	different	from	the
Creator	property	used	by	other	Microsoft	Office	objects,	such	as	the
AnswerWizard	object.	The	Creator	property	for	FrontPage	uses	a	string
format,	while	Office	objects	use	a	32-bit	integer	to	identify	the	application	that
created	the	file.	In	this	example,	you'll	note	that	the	Creator	property	returns	a
32-bit	integer	rather	than	the	FrontPage	string	format	because	the
AnswerWizard	object	is	an	Office	shared	object.	For	more	information,	use	the
Object	Browser	for	all	libraries	or	Microsoft	Visual	Basic	Help	to	view	more
detailed	information	about	the	Creator	property	for	Microsoft	Office	objects.

Private	Sub	GetAnswerWizardInfo()

				Dim	myAW	As	AnswerWizard

				Dim	myAWFiles	As	AnswerWizardFiles

				Dim	myAWCount	As	Integer

				Dim	myAWCreator	As	String

				Set	myAW	=	ActiveWeb.Application.AnswerWizard

				Set	myAW	=	myAW.Files

				With	myAWFiles

												myAWCreator	=	.Creator

												.Add("myAWFile")

												myAWCount	=	.Count

				End	With

End	Sub

Application	Property
Returns	an	Application	object	that	represents	the	Microsoft	FrontPage
application.

expression.Application

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	application	name	can	be	directly	accessed	from	the	objects	and	collections
in	the	FrontPage	object	model.	This	statement	shows	the	FrontPage	application
accessed	from	the	Files	collection.

Set	currApp	=	ActiveWeb.RootFolder.Files.Application

Assistant	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	an	Assistant	object	that	represents	the	Microsoft	Office	Assistant.	Read-
only.

expression.Assistant

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjAssistant1.htm

Example

The	following	example	returns	a	reference	to	the	Microsoft	Office	Assistant	and
modifies	its	properties.	The	subroutine	displays	the	Assistant	on	the	screen,	turns
animation	sounds	on,	and	sets	the	MoveWhenInTheWay	property	to	True.	The
Assistant	will	now	move	to	another	location	on	the	screen	if	it	is	in	the	user's
way.

Sub	fpAsst()

'Creates	a	reference	to	the	Office	Assistant	and	modifies	its	properties

				Dim	objApp	As	FrontPage.Application

				Dim	objAsst	As	Assistant

				Set	objApp	=	FrontPage.Application

				'Return	a	reference	to	the	Office	Assistant

				Set	objAsst	=	objApp.Assistant

				With	objAsst

							'Make	assistant	visible

							.Visible	=	True

							'Allow	sounds	during	animations

							.Sounds	=	True

							'Move	the	Assistant	out	of	the	way	when	needed

							.MoveWhenInTheWay	=	True

				End	With

End	Sub

Author	Property
Sets	or	returns	a	String	that	represents	the	name	of	the	author	who	created	a
Web	package.

expression.Author

expression				Required.	An	expression	that	returns	a	WebPackage	object.

Example

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"c:\NewWebPackage.fwp",	True

End	With

Build	Property
Returns	the	build	number	for	the	specified	object.	Read-only	String.

expression.Build()

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	Application	object	is	specified,	the	Build	property	returns	the	build
number	of	the	application.	When	the	System	object	is	specified,	this	property
returns	the	build	number	of	the	operating	system.	For	example,	the	format	used
on	the	About	dialog	box	for	an	application	might	look	like	this:	“Version:
4.0.0.xxxx,”	where	xxxx	is	the	build	number	of	the	application.	When	the	Build
property	for	the	System	object	is	accessed,	it	returns	the	current	build	of	the
operating	system	as	you	might	see	used	on	the	Properties	page	of	the	System
dialog	box.

Example

The	following	statement	returns	the	build	number	of	the	application.

myAppBuild	=	Application.Build

	 	

You	can	access	the	system	build	as	shown	in	the	following	statement.

mySysbuild	=	System.Build

	 	

Caption	Property
Returns	a	String	that	represents	either	the	caption	text	in	the	title	bar	or	the	URL
of	a	page.

expression.Caption

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Caption	property	returns	different	values	depending	on	the	object.	For
example,	the	Caption	property	for	the	PageWindowEx	object	returns	the	file
URL	of	the	open	page,	while	the	Caption	property	for	the	WebWindowEx
object	returns	the	text	of	the	title	bar	for	the	Microsoft	FrontPage	application
window.

Example

This	statement	returns	the	caption	of	the	active	page.

myCaption	=	ActivePageWindow.Caption

The	following	example	demonstrates	accessing	both	the	active	WebWindowEx
and	PageWindowEx	objects	using	the	With	and	For	statements.

Private	Sub	GetPageWindowCaption()

				Dim	myWebWindow	As	WebWindowEx

				Dim	myPageWindows	As	PageWindows

				Dim	myPageWindowCaptions	As	String

				Dim	myWebWindowCaption	As	String

				Set	myWebWindow	=	Application.ActiveWebWindow

				Set	myPageWindows	=	myWebWindow.PageWindows

				With	myWebWindow

								myWebWindowCaption	=	.Caption

				End	With

				For	Each	myPageWindow	In	myPageWindows

								myPageWindowCaptions	=	myPageWindowCaptions	&	myPageWindow.Caption

				Next

End	Sub

CheckedoutBy	Property
Returns	a	String	that	represents	the	logon	name	of	the	person	to	whom	the
specified	file	is	checked	out.

Note		You	must	have	a	source	control	project	in	place	before	using	this	method.

expression.CheckedoutBy

expression				Required.	An	expression	that	returns	a	WebFile	object.

Example

This	example	retrieves	the	logon	alias	of	the	person	who	checked	out	the	file.

Note		You	must	have	a	source	control	project	to	run	this	example.

Private	Sub	GetCheckedOutBy()

				Dim	myCheckedOutAlias	As	String

				myCheckedOutAlias	=	_

								ActiveWeb.RootFolder.Files(0).CheckedoutBy

End	Sub

Children	Property
Returns	a	NavigationNodes	collection	that	represents	the	collection	of	child
nodes	for	a	navigation	node.

expression.Children

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Example

The	following	example	returns	the	number	of	child	nodes	that	exist	directly
below	the	home	page	navigation	node.

Private	Sub	GetChildrenCount()

				Dim	myCount	As	Integer

				myCount	=	ActiveWeb.HomeNavigationNode.Children.Count

End	Sub

Choices	Property
Returns	or	sets	a	String	that	represents	an	array	of	all	choices	in	the	current
field.

expression.Choices

expression				Required.	An	expression	that	returns	a	ListFieldChoice	object.

Example

The	following	example	displays	the	text	for	all	choices	in	the	field
"NewChoiceField."	If	the	field	contains	no	choices,	a	message	is	displayed	to	the
user.	The	field	"NewChoiceField"	is	an	object	of	type	ListFieldChoice.

Sub	ViewChoices()

'Displays	the	choices	in	the	current	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objFldChoice	As	ListFieldChoice

				Dim	VarChoices	As	Variant

				Dim	strChoice	As	String

				Dim	blnFound	As	Boolean

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'Reference	choice	field

				Set	objFldChoice	=	objLstFlds.Item("NewChoiceField")

				blnFound	=	False

				For	Each	VarChoice	In	objFldChoice.Choices

								If	strChoice	=	""	Then

												'if	first	value	in	string

												strChoice	=	VarChoice	&	vbCr

												'The	list	contains	at	least	one	choice

												blnFound	=	True

								Else

												'add	value	to	string

												strChoice	=	strChoice	&	VarChoice	&	vbCr

								End	If

				Next	VarChoice

				If	blnFound	=	True	Then

								'Display	choices

								MsgBox	"The	current	list	contains	the	following	choices:	"	&	_

								vbCr	&	strChoice

				Else

								'Display	message	to	user

								MsgBox	"The	current	field	contains	no	choices."

				End	If

End	Sub

COMAddIns	Property
Returns	a	COMAddIns	collection	that	represents	all	the	Component	Object
Model	(COM)	add-ins	currently	loaded	in	Microsoft	FrontPage.	These	are	listed
in	the	COM	Add-Ins	dialog	box	(Add-Ins	command	on	the	Tools	menu).

expression.COMAddIns

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjCOMAddIns.htm

Remarks

All	of	the	FrontPage	add-ins	that	are	registered	in	the	Microsoft	Windows
Registry	are	located	under	the	following	key:

HKEY_CURRENT_USER\Software\Microsoft\Office\version\FrontPage\AddIns

Add-ins	designed	for	administrators	are	registered	under:

HKey_Local_Machine\Software\Microsoft\Office\version\FrontPage\Addins

Example

The	following	example	returns	the	number	of	add-ins	available	to	FrontPage.

Private	Sub	GetCOMAddIns()

				Dim	myWeb	As	WebEx

				Dim	myAddinCount	As	Integer

				Set	myWeb	=	ActiveWeb

				myAddinCount	=	Application.COMAddIns.Count

End	Sub

CommandBars	Property
Returns	a	CommandBars	collection	that	represents	the	menu	and	toolbars
displayed	in	Microsoft	FrontPage.

expression.CommandBars

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjCommandBars1.htm

Remarks

You	can't	access	FrontPage-specific	pop-up	shortcut	menus	using	the
CommandBars	collection.	For	example,	you	can't	access	the	shortcut	menu	that
appears	when	you	right-click	a	page	in	Page	view.	However,	you	can	create	your
own	pop-up	shortcut	menus	using	the	ShowPopup	method	for	the
CommandBar	object.

mk:@MSITStore:vbaof11.chm::/html/ofmthShowPopup1.htm
mk:@MSITStore:vbaof11.chm::/html/ofobjCommandBar1.htm

Example

The	following	three	procedures	set	up	a	new	menu	item	on	a	toolbar.

Procedure	1

Sub	AddMenuItem()

				Dim	newMenu	As	CommandBarControl

				Dim	toolsMenu	As	CommandBar

				Set	toolsMenu	=	Application.CommandBars("Tools")

				Set	newMenu	=	_

												toolsMenu.Controls.Add(msoControlButton,	,	,	,	True)

				newMenu.Caption	=	"New	&Menu	Item"

End	Sub

The	following	procedure	connects	the	click	event	to	the	custom	button	and	must
be	added	to	a	class	or	form	module.	The	module	shown	is	a	form	module.	This
procedure	adds	a	new	item	to	the	Tools	menu	and	connects	the	events	of	the
custom	button	by	assigning	the	variable	e_NewMenu	(used	in	the	WithEvents
statement)	to	the	custom	button	variable	newMenu.

Procedure	2

Private	Sub	AddButton_Click()

				Dim	newMenu	As	CommandBarControl

				Dim	WithEvents	e_NewMenu	As	CommandBarButton

				Sub	AddMenuItemWithEventHook()

								Dim	toolsMenu	As	CommandBar

								Set	toolsMenu	=	Application.CommandBars("Tools")

								Set	newMenu	=	_

																toolsMenu.Controls.Add(msoControlButton,	,	,	,	True)

								Set	e_NewMenu	=	newMenu

								newMenu.Caption	=	"New	&Menu	Item"

				End	Sub

Private	Sub	e_NewMenu_Click(ByVal	Ctrl	As	_

								Office.CommandBarButton,	CancelDefault	As	Boolean)

				MsgBox	"Menu	Item	Clicked"

				Ctrl.Caption	=	"Clicked"

End	Sub

To	execute	FrontPage	custom	menu	items	using	the	CommandBars	collection,
index	the	menu	item	and	call	the	execute	method	for	that	item.	The	following
example	inserts	a	Microsoft	Office	spreadsheet	control	at	the	insertion	point.

Procedure	3

Sub	ExecuteMenu()

				Dim	I	As	String

				Dim	C	As	String

				Dim	O	As	String

				I	=	"Insert"

				C	=	"C&omponent"

				O	=	"Office	Sp&readsheet"

				CommandBars(I).Controls(C).Controls(O).Execute

End	Sub

The	following	example	returns	the	status	of	various	properties	of	the	command
bars	in	the	active	Web	site.

Private	Sub	GetCommandBars()

				Dim	myWeb	As	WebEx

				Dim	myCB	As	Object

				Dim	myCBCount	As	Integer

				Dim	myDisplayFonts	As	Boolean

				Dim	myDisplayKeysInToolTips	As	Boolean

				Dim	myLargeButtons	As	Boolean

				Dim	myMenuAnimationStyle	As	String

				Set	myWeb	=	ActiveWeb

				Set	myCB	=	Application.CommandBars

				With	myCB

												myCBCount	=	.Count

												myDisplayFonts	=	.DisplayFonts

												myDisplayKeysInToolTips	=	.DisplayKeysInTooltips

												myLargeButtons	=	.LargeButtons

												myMenuAnimationStyle	=	.MenuAnimationStyle

				End	With

End	Sub

The	following	example	is	a	tool	that	iterates	through	the	command	bars	and
returns	several	properties	from	each	menu.

Note		To	run	this	example,	create	a	form	that	has	a	text	box	called	txtComBar
and	a	command	button	called	cmdComBar,	and	copy	the	following	code	to	the
code	window.

Private	Sub	cmdComBar_Click()

				Dim	myWeb	As	WebEx

				Dim	myComBars	As	Object

				Dim	myComBar	As	Object

				Dim	myText	As	String

				Dim	myName	As	String

				Dim	myAdaptMenu	As	String

				Dim	myEnabledMenu	As	String

				Dim	myMenuHeight	As	String

				Dim	myMenuWidth	As	String

				Set	myWeb	=	ActiveWeb

				Set	myComBars	=	Application.CommandBars

				myName	=	"Name:	"

				myAdaptMenu	=	"Menu	Adaptive?	"

				myEnabledMenu	=	"Menu	Enabled?	"

				myMenuHeight	=	"Menu	Height:	"

				myMenuWidth	=	"Menu	Width:	"

				txtComBar.Locked	=	True

				txtComBar.maxLength	=	10000

				txtComBar.MultiLine	=	True

				txtComBar.ScrollBars	=	fmScrollBarsVertical

				With	myComBars

								For	Each	myComBar	In	myComBars

												With	myComBar

																myText	=	myText	&	myName	&	.Name	&	vbCrLf

																myText	=	myText	&	myAdaptMenu	&	.AdaptiveMenu	&	vbCrLf

																myText	=	myText	&	myEnabledMenu	&	.Enabled	&	vbCrLf

																myText	=	myText	&	myMenuHeight	&	.Height	&	vbCrLf

																myText	=	myText	&	myMenuWidth	&	.Width	&	vbCrLf

																txtComBar.Text	=	myText

												End	With

								Next

								txtComBar.SetFocus

								txtComBar.CurLine	=	0

				End	With

End	Sub

Company	Property
Sets	or	returns	a	String	that	represents	the	name	of	the	company	that	created	a
Web	package.

expression.Company

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"c:\NewWebPackage.fwp",	True

End	With

ComputationFormula	Property
Sets	or	returns	a	String	that	represents	the	formula	used	to	get	a	value	for	a
calculated	field.

expression.ComputationFormula

expression				Required.	An	expression	that	returns	a	ListFieldComputed	object.

Show	All

ConnectionSpeed	Property
Returns	or	sets	an	FpConnectionSpeed	value	that	indicates	the	user's	Internet
connection	type.

FpConnectionSpeed	can	be	one	of	these	FpConnectionSpeed	constants.
fpConnect144	14400	baud-rate	modem
fpConnect288	28800	baud-rate	modem
fpConnect56K	56600	baud-rate	modem
fpConnectISDN	ISDN	connection
fpConnectT1	T1	connection
fpConnectT3	T3	connection

expression.ConnectionSpeed

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

The	ConnectionSpeed	property	is	used	in	conjunction	with	the	SlowPage
property	to	determine	the	simulated	download	time	of	a	Web	page.	The	default
value	is	fpConnect144.

Example

The	following	example	sets	the	ConnectionSpeed	property	to	fpConnect56K,
simulating	a	56K	modem.	The	amount	of	time	a	file	takes	to	download	and	the
criteria	used	to	determine	a	"slow"	page	in	the	Reports	view	will	be	based	on
this	value.

Sub	SpeedOfConnection()

'Modifies	the	ConnectionSpeed	property

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				With	objApp

							'Set	the	connection	type	to	56K	modem

							.ConnectionSpeed	=	fpConnect56K

				End	With

End	Sub

Count	Property
Returns	the	number	of	items	in	the	specified	collection.	Read-only	Variant.

expression.Count

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Some	collections	are	0-based	and	some	are	1-based.	The	Count	property	for
collections	begins	with	1	even	though	you	access	the	first	item	in	a	collection
with	a	0.

Example

The	following	example	returns	the	number	of	themes	and	folders	in	the	active
Web	site.

Private	Sub	GetWebCount()

				Dim	myWeb	As	WebEx

				Dim	myCount	As	Integer

				Set	myWeb	=	ActiveWeb

				With	myWeb

												myThemeCount	=	.Themes.Count

												myFolderCount	=	.RootFolder.Folders.Count

				End	With

End	Sub

Creator	Property
Returns	a	String	that	represents	the	name	of	the	application	in	which	this	object
was	created.	If	the	object	was	created	in	Microsoft	FrontPage,	this	property
returns	the	String	"FrontPage.Editor.Document".

Note		The	Creator	property	for	FrontPage	is	different	from	the	Creator
property	used	by	other	Microsoft	Office	objects.	The	Creator	property	for
FrontPage	uses	a	string	format,	while	Office	objects	use	a	32-bit	integer	to
identify	the	application	that	created	the	file.

expression.Creator

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	checks	if	the	creator	of	a	file	is	FrontPage.

Private	Sub	GetCreator()

				Dim	myCreator	As	String

				myCreator	=	ActiveWeb.RootFolder.Files(0).Creator

				If	myCreator	<>	"FrontPage.Editor.Document"	Then

								MsgBox	"This	file	was	not	created	by	FrontPage."

				End	If

End	Sub

Show	All

Currency	Property
Returns	or	sets	an	FpCurrencyFieldFormat	enumerated	constant	that
determines	the	type	of	currency	to	be	used	in	the	currency	field.	Read/write.

FpCurrencyFieldFormat	can	be	one	of	these	FpCurrencyFieldFormat
constants.
fpCurrencyFieldArgentina
fpCurrencyFieldAustralia
fpCurrencyFieldAustria
fpCurrencyFieldBelgiumBF
fpCurrencyFieldBelgiumFB
fpCurrencyFieldBolivia
fpCurrencyFieldBrazil
fpCurrencyFieldCanada
fpCurrencyFieldCanadaF
fpCurrencyFieldChile
fpCurrencyFieldColombia
fpCurrencyFieldCostaRica
fpCurrencyFieldCzech
fpCurrencyFieldDenmark
fpCurrencyFieldDominicanRepublic
fpCurrencyFieldEcuador
fpCurrencyFieldElSalvador
fpCurrencyFieldEuro
fpCurrencyFieldEuroPostfix
fpCurrencyFieldFinland
fpCurrencyFieldFrance
fpCurrencyFieldGermany
fpCurrencyFieldGreece
fpCurrencyFieldGuatemala
fpCurrencyFieldHonduras

fpCurrencyFieldHongKong
fpCurrencyFieldHungary
fpCurrencyFieldIreland
fpCurrencyFieldItaly
fpCurrencyFieldJapan
fpCurrencyFieldKorea
fpCurrencyFieldMexico
fpCurrencyFieldNetherlands
fpCurrencyFieldNewZealand
fpCurrencyFieldNicaragua
fpCurrencyFieldNorway
fpCurrencyFieldPanama
fpCurrencyFieldParaguay
fpCurrencyFieldPeru
fpCurrencyFieldPoland
fpCurrencyFieldPortugal
fpCurrencyFieldPRChina
fpCurrencyFieldRussia
fpCurrencyFieldSingapore
fpCurrencyFieldSlovakia
fpCurrencyFieldSlovenia
fpCurrencyFieldSouthAfrica
fpCurrencyFieldSpain
fpCurrencyFieldSweden
fpCurrencyFieldSwitzerland
fpCurrencyFieldTaiwan
fpCurrencyFieldTurkey
fpCurrencyFieldUnitedKingdom
fpCurrencyFieldUnitedStates
fpCurrencyFieldUruguay
fpCurrencyFieldVenezuela

expression.Currency

expression				Required.	An	expression	that	returns	a	ListFieldCurrency	object.

Remarks

The	default	value	for	this	field	is	determined	by	the	user's	system	settings.

Example

The	following	example	creates	a	new	field	of	type	fpFieldCurrency	and
changes	the	default	currency	setting	to	display	Canadian.

Sub	CreateCurrencyField()

'Add	new	Currency	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objFldChoice	As	ListFieldCurrency

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewCurrencyField"

				'Add	new	Field	of	type	fpFieldCurrency	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Choice	value	Field",	_

																			Fieldtype:=fpFieldCurrency,	Required:=True

				Set	objFldChoice	=	objLstFlds.Item("NewCurrencyField")

				'Change	currency	type	to	Canadian

				objFldChoice.Currency	=	fpCurrencyFieldCanada

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	"."

End	Sub

DefaultText	Property
Sets	or	returns	a	String	that	represents	the	default	value	for	a	hyperlink	field,
which	is	the	URL	and	the	text	displayed	text	for	the	hyperlink.

expression.DefaultText

expression				Required.	An	expression	that	returns	a	ListFieldURL	object.

DefaultValue	Property
Returns	or	sets	a	Variant	that	defines	the	default	value	of	the	field.	Read/write.

expression.DefaultValue

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	value	of	all	pre-populated	fields	is	Empty.

Example

The	following	example	displays	the	names	of	all	fields	in	the	list	and	their
associated	default	values.	If	the	active	Web	site	does	not	contain	any	lists,	a
message	is	displayed	to	the	user.

Sub	FieldDefaultValue()

'Display	the	default	value	of	the	field

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Display	fields	in	first	list	of	collection

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												If	strType	=	""	Then

																'if	first	value	in	string

																strType	=	objField.Name	&	"		-		"	&	_

																objField.DefaultValue	&	vbCr

												Else

																'add	value	to	string

																strType	=	strType	&	objField.Name	&	"		-		"	&	_

																objField.DefaultValue	&	vbCr

												End	If

								Next	objField

								MsgBox	"The	names	of	the	fields	in	this	list	and	their	default"	&	_

																					"	values	are:	"	&	vbCr	&	strType

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

DefaultViewPage	Property
Returns	or	sets	a	String	that	defines	the	relative	URL	to	the	page	that	is	viewed
when	the	list	is	opened.	This	property	corresponds	to	the	default	view	page	field
on	the	Supporting	Files	tab	of	the	Properties	dialog	box.

expression.DefaultViewPage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	start	page	is	AllItems.htm.

Example

The	following	example	lists	the	names	of	all	lists	in	the	document	and	their
corresponding	default	view	page	URLs.	The	subroutine	creates	a	single	string
containing	all	list	names	and	default	view	pages	and	displays	the	formatted
message	to	the	user.

Sub	ViewDefaultPage()

'Lets	the	user	view	the	default	view

'page	for	all	lists	in	the	web.

				Dim	lstWebList	As	List

				Dim	strURL	As	String

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists

								For	Each	lstWebList	In	ActiveWeb.Lists

												'add	default	view	pages	names	to	string

												If	strURL	=	""	Then

																strURL	=	lstWebList.Name	&	"		-		"	&	_

																lstWebList.DefaultViewPage	&	vbCr

												Else

																strURL	=	strURL	&	lstWebList.Name	&	"		-		"	&	_

																lstWebList.DefaultViewPage	&	vbCr

												End	If

								Next

								'Display	default	view	pages	of	all	lists

								MsgBox	"The	default	view	pages	of	all	lists	in	the	current	web	are:"	_

															&	vbCr	&	vbCr	&	strURL

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

Description	Property
Returns	or	sets	a	String	that	represents	the	description	for	the	current	list.	The
description	appears	below	the	title	of	the	list	on	the	default	view	page.
Read/write.

expression.Description

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	enter	a	description	for	the	first	list	in
the	collection,	and	then	changes	the	Description	property	based	on	the	user's
input.

Sub	SetDescription()

'Set	the	list	description

				Dim	objApp	As	FrontPage.Application

				Dim	objWeb	As	WebEx

				Dim	lstWebList	As	List

				Dim	StrDesc	As	String

				Set	objApp	=	FrontPage.Application

				Set	objWeb	=	objApp.ActiveWeb

				'Reference	first	list	in	collection

				Set	lstWebList	=	objWeb.Lists.Item(0)

				'Get	new	description	from	user

				StrDesc	=	InputBox("Enter	a	new	description	for	the	list	"	&	_

														lstWebList.Name	&	".")

				'Set	description	property

				lstWebList.Description	=	StrDesc

End	Sub

Show	All

DesignSecurity	Property
Returns	or	sets	an	FpListDesignSecurity	constant	that	defines	the	security
permissions	of	the	List.

FpListDesignSecurity	can	be	one	of	these	FpListDesignSecurity	constants.
fpListDesignSecurityCreator	Only	the	creator	of	the	list	has	permission	to
modify	it.
fpListDesignSecurityEveryone	All	users	have	permission	to	modify	the	list.

expression.DesignSecurity

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	the	security	mode	of	each	BasicList	object	in
the	current	web.	The	subroutine	changes	the	DesignSecurity	property	to
fpListDesignSecurityEveryone	if	it	isn't	already	set.	Once	the	property	is	set,
all	users	can	edit	the	design	settings	of	BasicList	objects	in	the	current	web.

Note		Use	the	ApplyChanges	method	to	save	any	changes	made	to	the	list.

Sub	SetSecurityType()

'Changes	security	type	of	all	BasicLists.

				Dim	objApp	As	FrontPage.Application

				Dim	objList	As	List

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Cycle	through	each	list	and	check	for	list	type

				For	Each	objList	In	objLists

								'If	it's	a	BasicList	than	change	permissions

								If	objList.Type	=	fpListTypeBasicList	Then

												If	objList.DesignSecurity	<>	_

															fpListDesignSecurityEveryone	Then

																objList.DesignSecurity	=	_

																fpListDesignSecurityEveryone

												End	If

												objList.ApplyChanges

								End	If

				Next

End	Sub

DisplayForm	Property
Returns	or	sets	a	String	that	represents	the	relative	URL	of	the	form	that
contains	the	user	interface	associated	with	the	list.	Read/write.

expression.DisplayForm

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	names	of	all	lists	in	the	active	Web	site	and
the	relative	URLs	of	their	associated	Web	forms.

Sub	ViewFormURL()

'Displays	the	URL	of	the	form

'associated	with	the	list

				Dim	lstWebList	As	List

				Dim	strURL	As	String

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists	and	add	URLs	to	string

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	strURL	=	""	Then

																strURL	=	lstWebList.Name	&	"		-		"	&	_

																lstWebList.DisplayForm	&	vbCr

												Else

																strURL	=	strURL	&	lstWebList.Name	&	"		-		"	&	_

																lstWebList.DisplayForm	&	vbCr

												End	If

								Next

								'Display	URLs	of	all	forms	in	Web	site

								MsgBox	"The	relative	URLs	of	the	forms	are:"	_

															&	vbCr	&	vbCr	&	strURL

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

Show	All

DisplayFormat	Property
DisplayFormat	property	as	it	applies	to	the	ListFieldChoice	object.

Returns	or	sets	an	FpChoiceFieldFormat	enumerated	constant	that	represents
the	type	of	user	interface	control	used	by	the	field.	Read/write.

FpChoiceFieldFormat	can	be	one	of	these	FpChoiceFieldFormat	constants.
fpChoiceFieldDropdown
fpChoiceFieldRadioButtons

expression.DisplayFormat

expression				Required.	An	expression	that	returns	a	ListFieldChoice	object.

DisplayFormat	property	as	it	applies	to	the	ListFieldDateTime	object.

Returns	or	sets	an	FpDateTimeFieldFormat	enumerated	constant	that
represents	the	way	in	which	the	date	and	time	values	are	displayed.	Read/write.

FpDateTimeFieldFormat	can	be	one	of	these	FpDateTimeFieldFormat
constants.
fpDateTimeFieldDateAndTime
fpDateTimeFieldDateOnly
fpDateTimeFieldTimeOnly

expression.DisplayFormat

expression				Required.	An	expression	that	returns	a	ListFieldDateTime	object.

DisplayFormat	property	as	it	applies	to	the	ListFieldNumber	object.

Returns	or	sets	an	FpNumberFieldFormat	enumerated	constant	that	determines
the	way	in	which	numbers	are	displayed	in	the	List.	Read/write.

FpNumberFieldFormat	can	be	one	of	these	FpNumberFieldFormat	constants.
fpNumberFieldAuto	The	number	will	be	automatically	formatted.
fpNumberFieldFiveDecimals	The	number	will	be	displayed	with	five	decimal
places.
fpNumberFieldFourDecimals	The	number	will	be	displayed	with	four	decimal
places.
fpNumberFieldInteger	The	number	will	be	displayed	as	an	integer	with	no
decimal	places.
fpNumberFieldOneDecimal	The	number	will	be	displayed	with	one	decimal
place.
fpNumberFieldThreeDecimals	The	number	will	be	displayed	with	three
decimal	places.
fpNumberFieldTwoDecimals	The	number	will	be	displayed	with	two	decimal
places.

expression.DisplayFormat

expression				Required.	An	expression	that	returns	a	ListFieldNumber	object.

DisplayFormat	property	as	it	applies	to	the	ListFieldURL	object.

Returns	or	sets	an	FpURLFieldFormat	enumerated	constant	that	represents	the
image-linking	information.	Read/write.

FpURLFieldFormat	can	be	one	of	these	FpURLFieldFormat	constants.
fpURLFieldImage
fpURLFieldLink

expression.DisplayFormat

expression				Required.	An	expression	that	returns	a	ListFieldURL	object.

Example

As	it	applies	to	the	ListFieldChoice	object.

The	following	example	changes	the	display	type	of	a	field	named
NewChoiceField	in	the	first	list	of	the	active	Web	site.	The	choices	will	now	be
displayed	in	a	drop-down	list.

Sub	ChangeViewFormat()

'Change	the	display	type	of	the	field

				Dim	objApp	As	FrontPage.Application

				Dim	objListFields	As	ListFields

				Dim	objListField	As	ListFieldChoice

				Set	objApp	=	FrontPage.Application

				Set	objListFields	=	objApp.ActiveWeb.Lists.Item(0).Fields

				Set	objListField	=	objListFields.Item("NewChoiceField")

				'Change	display	format	to	DropDown	list

				objListField.DisplayFormat	=	fpChoiceFieldDropdown

End	Sub

Document	Property	(Web	Object
Model)
Returns	an	FPHTMLDocument	object,	providing	access	to	the	Page	object
model	in	Microsoft	FrontPage	that	is	compatible	with	Microsoft	Internet
Explorer	4.0	and	later.	For	more	information	on	the	Page	object	model,	see
Exploring	the	Object	Model	in	FrontPage.

expression.Document

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

Example

The	following	example	opens	a	page	and	uses	the	insertAdjacentText	method
to	add	text	to	the	document.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars"	that	contains	a	file	named	Sales.htm.
You	may	substitute	an	alternative	Web	site	URL	or	file	name.

Private	Sub	AddTextToDoc()

				Dim	myWeb	As	WebEx

				Dim	myPageWindow	As	PageWindowEx

				Dim	myText	As	String

				Set	myWeb	=	_

								Webs.Open("C:\My	Documents\My	Web	Sites\Rogue	Cellars")

				myWeb.Activate

				myText	=	"Winter	Sale	Begins	November	1st!"

				Set	myPageWindow	=	_

								ActiveWeb.RootFolder.Files("Sales.htm").Edit

				myPageWindow.Document.body.insertAdjacentText	_

								"BeforeEnd",	myText

				ActivePageWindow.Save

				ActiveWeb.Close

End	Sub

DownloadTime	Property
Returns	a	Long	that	represents	the	simulated	amount	of	time	(in	seconds)	a
given	file	will	take	to	download.	Read-only.

expression.DownloadTime

expression				Required.	An	expression	that	returns	a	WebFile	object.

Remarks

This	property	is	used	in	conjunction	with	the	ConnectionSpeed	property	to
determine	which	files	will	appear	in	the	Slow	Pages	report.

Example

The	following	example	displays	the	names	of	all	files	in	the	current	Web	site
with	a	download	time	greater	than	a	specified	value.	The	subroutine	prompts	the
user	to	enter	a	download	time	in	seconds.	It	then	searches	through	each	file	in
the	All	collection	and	displays	the	names	of	any	file	with	a	download	time
greater	than	the	specified	number	of	seconds.	The	Name	property	value	is	added
to	a	String	containing	the	names	of	all	matching	files	in	the	collection.	The
String,	stored	in	the	variable	strName,	is	then	displayed	to	the	user.	If	no
matching	files	are	found	in	the	Web	site,	a	message	is	displayed	to	the	user.

Sub	DownloadTime()

'Displays	the	names	of	all	files	with	a	download	time	greater	than

'a	given	value

				Dim	objApp	As	FrontPage.Application

				Dim	objwebFile	As	WebFile

				Dim	objWebFiels	As	WebFiles

				Dim	strSec	As	String				'User	input	value

				Dim	strNames	As	String		'Name	of	all	matching	files

				Dim	blnFound	As	Boolean	'Boolean	flag

				Set	objApp	=	FrontPage.Application

				Set	objWebFiles	=	objApp.ActiveWeb.AllFiles

				blnFound	=	False

				'Prompt	user	to	enter	input

				strSec	=	InputBox("Enter	the	number	of	seconds	download	time.")

				'Search	through	each	file	in	the	collection

				For	Each	objwebFile	In	objWebFiles

								'If	user	input	is	less	than	download	time

								If	strSec	<	objwebFile.DownloadTime	Then

												blnFound	=	True

												If	strName	=	""	Then

																strName	=	strName	&	objwebFile.Name

												Else

																'Otherwise	add	next	file	name	to	string

																strName	=	strName	&	",	"	&	vbCr	&	objwebFile.Name

												End	If

								End	If

				Next	objwebFile

				If	blnFound	=	True	Then

							'Display	names	of	all	files	that	match	the	criteria

							MsgBox	"The	files	that	take	longer	than	"	&	_

														strSec	&	"	seconds	to	download	are:	"	&	vbCr	&	vbCr	&	_

														strName	&	"."

				Else

								'No	files,	display	message

								MsgBox	"There	are	no	files	that	match	your	criteria."

				End	If

End	Sub

DynamicTemplate	Property
Returns	a	String	that	represents	returns	the	path	and	file	name	of	a	Dynamic
Web	Template.	An	empty	String	indicates	that	no	Dynamic	Web	Template	is
attached.

expression.DynamicTemplate

expression				Required.	An	expression	that	returns	a	WebFile	object.

Remarks

If	an	error	occurs,	the	update	process	will	terminate	unless	the	SkipOnQuery
property	is	set	to	True.

Example

The	following	example	updates	the	Dynamic	Web	Template	for	each	file	in	the
active	Web	site	if	a	Dynamic	Web	Template	is	attached.

Dim	objState	As	DynamicTemplateState

Dim	objFile	As	WebFile

Dim	strLog	As	String

Set	objState	=	Application.CreateDynamicTemplateState

For	Each	objFile	In	ActiveWeb.AllFiles

				If	objFile.DynamicTemplate	<>	""	Then	_

								objFile.UpdateDynamicTemplate	objState,	strLog

Next

EditForm	Property
Returns	or	sets	a	String	that	represents	the	relative	URL	of	the	form	used	for
editing	the	current	list	in	Microsoft	FrontPage.	The	edit	form	allows	you	to
modify	the	columns	in	the	current	list.	Read/write.

expression.EditForm

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	filename	is	EditForm.htm.

Example

The	following	example	displays	the	names	of	all	lists	in	the	active	Web	site	and
the	relative	URL	of	their	associated	edit	forms.

Sub	ViewEditFormURL()

'Displays	the	URL	of	the	form

'associated	with	editing	the	list

				Dim	lstWebList	As	List

				Dim	strURL	As	String

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists	and	add	URLs	to	string

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	strURL	=	""	Then

																strURL	=	lstWebList.Name	&	"		-		"	&	_

																lstWebList.EditForm	&	vbCr

												Else

																strURL	=	strURL	&	lstWebList.Name	&	"		-		"	&	_

																lstWebList.EditForm	&	vbCr

												End	If

								Next

								'Display	URLs	of	all	editing	forms	in	Web	site

								MsgBox	"The	relative	URLs	of	the	editing	forms	are:"	_

															&	vbCr	&	vbCr	&	strURL

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

Show	All

EditSecurity	Property
Returns	or	sets	an	FpListEditSecurity	constant	that	determines	which	users	can
edit	the	current	list.

FpListEditSecurity	can	be	one	of	these	FpListEditSecurity	constants.
fpListEditSecurityAll	All	users	can	edit	the	list.
fpListEditSecurityNone	No	users	can	edit	the	list.
fpListEditSecurityOnlyOwn	Users	can	only	edit	their	own	lists.

expression.EditSecurity

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	the	edit	permissions	of	all	lists	of	type
fpListTypeBasicList	to	fpListEditSecurityOnlyOwn.	Once	the	property	is	set,
users	can	edit	only	lists	that	they	have	created.

Note		Use	the	ApplyChanges	method	to	save	any	changes	made	to	the	list.

Sub	ChangeEditPermissions()

'Changes	the	permissions	of	all	BasicLists	in	the	web

				Dim	objApp	As	FrontPage.Application

				Dim	objList	As	Object

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Cycle	through	each	list	and	check	for	list	type

				For	Each	objList	In	objLists

								'If	it's	a	BasicList	then	change	permissions

								If	objList.Type	=	fpListTypeBasicList	Then

												If	objList.EditSecurity	<>	fpListEditSecurityOnlyOwn	Then

																objList.EditSecurity	=	fpListEditSecurityOnlyOwn

																objList.ApplyChanges

												End	If

								End	If

				Next

End	Sub

EndNumber	Property
Sets	or	returns	a	Long	that	represents	the	ending	number	for	the	number	scale	in
a	rating	scale	field.

expression.EndNumber

expression				Required.	An	expression	that	returns	a	ListFieldRatingScale
object.

Extension	Property
Returns	a	String	that	represents	the	extension	for	the	specified	file.	Read-only.

expression.Extension

expression				Required.	An	expression	that	returns	a	WebFile	object.

Example

This	statement	returns	the	extension	of	the	first	page	in	the	root	folder	of	the
active	Web	site.

myHomePageExt	=	ActiveWeb.RootFolder.File(0).Extension

Fields	Property
Returns	a	ListFields	collection	that	represents	all	fields	in	the	current	list.	The
ListFields	collection	contains	ListField	objects	that	correspond	to	the	column
properties	of	a	list	member	document.

expression.Fields

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	names	of	all	fields	in	the	first	list	of	the
Lists	collection.

Sub	DisplayFields()

'Returns	the	fields	collection

				Dim	objApp	As	FrontPage.Application

				Dim	lstWebList	As	List

				Dim	lstFields	As	ListFields

				Dim	lstField	As	ListField

				Dim	StrName	As	String

				Set	objApp	=	FrontPage.Application

				Set	lstWebList	=	objApp.ActiveWeb.Lists.Item(0)

				Set	lstFields	=	lstWebList.Fields

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	lstField	In	lstFields

																'add	URLs	to	string

																If	StrName	=	""	Then

																				'If	empty	string

																				StrName	=	lstField.Name	&	vbCr

																Else

																				'add	names	to	string

																				StrName	=	StrName	&	lstField.Name	&	vbCr

																End	If

								Next

								'Display	formatted	string

								MsgBox	"The	list	"	&	lstWebList.Name	&	_

															"contains	the	following	fields"	&	vbCr	&	vbCr	&	_

															StrName

				Else

						'Otherwise	display	message	to	user

								MsgBox	"The	current	web	contains	no	lists."

				End	If

End	Sub

File	Property
Returns	a	WebFile	object	that	represents	the	Web	page	associated	with	the
specified	object.

expression.File

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	returns	the	name	of	the	Web	page	associated	with	a	navigation
node	in	the	active	Web	site.

Private	Sub	GetFileFromNavNode()

				Dim	myNavNode	As	NavigationNode

				Dim	myNavNodes	As	NavigationNodes

				Dim	myNavFiles	As	String

				Dim	myNavFile	As	String

				On	Error	Resume	Next

				Set	myNavNodes	=	ActiveWeb.HomeNavigationNode.Children

				For	Each	myNavNode	In	myNavNodes

								myNavFile	=	myNavNode.File.Name

								If	ERR	<>	0	Then	Exit	Sub

								myNavFiles	=	myNavFiles	&	myNavFile	&	vbCrLf

				Next

End	Sub

Show	All

FileDialog	Property
Returns	a	FileDialog	object	that	represents	a	single	instance	of	a	file	dialog	box.

expression.FileDialog(DialogType)

expression				Required.	An	expression	that	returns	an	Application	object.

DialogType			Required	MsoFileDialogType.	The	type	of	dialog	box	to	open.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

mk:@MSITStore:vbaof11.chm::/html/ofobjFileDialog.htm

Example

The	following	example	displays	the	Save	As	dialog	box.

Sub	ShowSaveAsDialog()

'Display	the	Save	As	dialog	box

				Dim	dlgSaveAs	As	FileDialog

				'Set	the	dialog	type

				Set	dlgSaveAs	=	Application.FileDialog(msoFileDialogSaveAs)

				'Display	the	dialog

				dlgSaveAs.Show

End	Sub

The	following	example	displays	the	Open	dialog	box,	and	allows	the	user	to
open	multiple	files	at	the	same	time.

Sub	ShowOpenDialog()

'Display	the	Open	dialog	box

				Dim	dlgOpen	As	FileDialog

				'Set	the	dialog	box	type	to	Open

				Set	dlgOpen	=	Application.FileDialog(msoFileDialogOpen)

				'Display	the	dialog	box

				With	dlgOpen

								.AllowMultiSelect	=	True

								.Show

				End	With

End	Sub

The	following	example	displays	the	Open	dialog	box,	and	allows	the	user	to
open	multiple	files	at	the	same	time.	If	the	documents	are	HTML	files,	they	are
opened	in	Microsoft	FrontPage.

Sub	ShowOpenDialog()

'Display	the	Open	dialog	box

				Dim	dlgOpen	As	FileDialog

				'Set	the	dialog	box	type	to	Open

				Dim	i	as	Integer

				Set	dlgOpen	=	Application.FileDialog(msoFileDialogOpen)

				'Display	the	dialog	box

				With	dlgOpen

								.AllowMultiSelect	=	True

								.Show

				End	With

				For	i	=	1	To	dlgOpen.SelectedItems.Count

								If	Right(dlgOpen.SelectedItems(i),	3)	=	"htm"	Then

												ActiveWebWindow.PageWindows.Add	dlgOpen.SelectedItems(i)

								End	If

				Next

End	Sub

FileDialogViewPage	Property
Returns	or	sets	a	String	that	represents	the	relative	URL	of	the	page	associated
with	the	DocumentLibrary	object.	Read/write.

expression.FileDialogViewPage

expression				Required.	An	expression	that	returns	a	DocumentLibrary	object.

Example

The	following	example	creates	a	new	document	library	called	NewLibrary	and
displays	the	relative	URL	of	the	File	dialog	page.

Sub	NewLibrary()

'Add	a	new	list	to	the	current	web

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Dim	objLibrary	As	DocumentLibrary

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	list

				objLists.Add	Name:="NewLibrary",	_

																	ListType:=fpListTypeDocumentLibrary,	_

																	Description:="List	of	Shared	files"

				Set	objLibrary	=	objLists.Item("NewLibrary")

				'Display	message	to	user

				MsgBox	"A	new	list	was	added	to	the	Lists	collection."	&	_

											"The	page	associated	with	the	file	dialog	is	"	&	_

												objLibrary.FileDialogViewPage	&	"."

End	Sub

Files	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	a	WebFiles	collection	that	represents	the	items	in	the	specified	Web
folder.	Read-only	object.

expression.Files

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Remarks

The	Files	property	is	an	accessor	property	used	to	access	the	WebFiles
collection.	To	access	the	collection,	declare	a	variable	of	type	WebFiles	as
shown	in	the	statement	Dim	myFiles	As	WebFiles,	and	then	set	the	variable
myFiles	to	Web.RootFolder.Files.

Example

The	following	example	retrieves	all	of	the	properties	of	a	file	and	concatenates
the	META	tags	into	a	string	with	a	pipe	("|")	delimiter	separating	the	data.

Note		The	PropertyKeys	shown	in	this	example	apply	to	a	Web	site	created	with
the	One	Page	Web	Site	template.	Other	templates	may	use	other	PropertyKeys.
For	more	information	about	using	PropertyKeys,	see	the	Properties	collection.

Private	Sub	GetFileProperties()

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myAuthor	As	String

				Dim	myModifiedBy	As	String

				Dim	myTimeCreated	As	String

				Dim	myTimeLastModified	As	String

				Dim	myFileSize	As	String

				Dim	myTitle	As	String

				Dim	myMetaTags	As	Variant

				Dim	myMetaTag	As	Variant

				Dim	myProgID	As	Variant

				Dim	myGenerator	As	String

				Dim	myTimeLastWritten	As	String

				Dim	myProperties	As	Properties

				Dim	myMetaTagList	As	String

				Set	myFiles	=	ActiveWeb.RootFolder.Files

				For	Each	myFile	In	myFiles

								Set	myProperties	=	myFile.Properties

								myAuthor	=	myAuthor	&	myProperties("vti_author")

								myModifiedBy	=	myModifiedBy	&	_

												myProperties("vti_modifiedby)	&	"|"

								myTimeCreated	=	myTimeCreated	&	_

												myProperties("vti_timecreated")	&	"|"

								myTimeLastModified	=	myTimeLastModified	&	_

												myProperties("vti_timelastmodified")	&	"|"

								myFileSize	=	myFileSize	&	_

												myProperties("vti_FileSize)	&	"|"

								myTitle	=	myTitle	&	myProperties("vti_title")	&	"|"

								myProgID	=	myProgID	&	myProperties("vti_title")	&	"|"

								myGenerator	=	myGenerator	&	_

												myProperties("vti_generator")	&	"|"

								myTimeLastWritten	=	myTimeLastWritten	&	_

												myProperties("vti_timelastwritten")	&	"|"

								myMetaTags	=	myProperties("vti_metatags")

								For	Each	myMetaTag	In	myMetaTags

												myMetaTagList	=	myMetaTagList	&	myMetaTag	&	"|"

								Next

				Next

End	Sub

FileSaveForm	Property
Returns	or	sets	a	String	that	represents	the	relative	URL	of	the	form	page	that	is
displayed	when	files	are	saved.	Read/write.

expression.FileSaveForm

expression				Required.	An	expression	that	returns	a	DocumentLibrary	object.

Example

The	following	example	creates	a	new	document	library	called	"NewLibrary"	and
displays	the	relative	URL	of	the	page	associated	with	saving	a	file	to	the	library.

Sub	NewLibrary()

'Adds	a	new	list	to	the	current	web

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Dim	objLibrary	As	DocumentLibrary

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Add	new	list

				objLists.Add	Name:="NewLibrary",	_

																	ListType:=fpListTypeDocumentLibrary,	_

																	Description:="List	of	Shared	files"

				Set	objLibrary	=	objLists.Item("NewLibrary")

				'Display	message	to	user

				MsgBox	"A	new	list	was	added	to	the	Lists	collection."	&	_

											"The	URL	of	the	page	associated	with	the	Save	dialog	is	"	&	_

												objLibrary.FileSaveForm	&	"."

End	Sub

FileSearch	Property
Returns	a	FileSearch	object	that	provides	access	to	file	search	capabilities
within	a	Web	site.

expression.FileSearch

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjFileSearch1.htm

Remarks

The	FileSearch	object	is	a	Microsoft	Office	shared	object	and	does	not	accept	a
URL	as	a	file	name	or	folder	name	value.

Example

The	following	example	searches	the	Adventure	Works	Web	site	and	its
subdirectories	and	returns	the	number	of	Index.htm	files	found.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Adventure	Works".	As	an	alternative,	you	can	change
the	value	for	the	LookIn	property	to	a	Web	site	that	is	currently	available	to	you.
You	may	also	need	to	set	a	reference	to	the	Microsoft	Office	Object	Library
(References	option	on	the	Tools	menu).

Private	Sub	WebFileSearch()

				Dim	myFileSearch	As	FileSearch

				Dim	myFileCount	As	Integer

				Set	myFileSearch	=	Application.FileSearch

				With	myFileSearch

												.FileName	=	"index.htm"

												.LookIn	=	"C:\My	Web	Sites\Adventure	Works"

												.SearchSubFolders	=	True

												.Execute

												myFileCount	=	.FoundFiles.Count

				End	With

End	Sub

Folder	Property
Returns	a	WebFolder	object	that	represents	the	folder	associated	with	the	list.
The	Web	folder	hierarchy	provides	the	link	to	folders	and	files	on	a	Web	server
directory.	The	navigation	structure	provides	the	underlying	structure	for	the	Web
objects	within	individual	Microsoft	FrontPage	Web	sites.

expression.Folder

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	name	of	the	Web	folder	associated	with	the
current	list.	If	the	current	Web	site	contains	no	lists,	a	message	is	displayed	to	the
user.

Sub	ReturnFolder()

'Returns	the	folder	associated	with	the	list

				Dim	objApp	As	FrontPage.Application

				Dim	objFolder	As	WebFolder

				Set	objApp	=	FrontPage.Application

				If	Not	objApp.ActiveWeb.Lists	Is	Nothing	Then

								Set	objFolder	=	objApp.ActiveWeb.Lists(0).Folder

								MsgBox	"The	name	of	the	associated	Web	folder	is:	"	&	_

																objFolder.Name	&	"."

				Else

								MsgBox	"The	Active	Web	site	contains	no	lists."

				End	If

End	Sub

Folders	Property
Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	a	WebFolders	collection	that	represents	the	child	folders	contained	the
specified	folder.	Read-only.

expression.Folders

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Remarks

The	Folders	property	returns	the	WebFolders	collection	for	the	specified	Web
site.	To	access	the	collection,	you	declare	a	variable	of	type	WebFolders	as	in
the	statement	Dim	myFolders	As	WebFolders,	and	then	set	the	variable	to
Web.RootFolder.Folders.

Example

The	following	example	retrieves	two	of	the	properties	of	a	folder	and
concatenates	the	data	into	a	string	with	a	pipe	("|")	delimiter	separating	the	data.

Note		The	PropertyKeys	shown	in	this	example	apply	to	a	Web	site	created	with
the	One	Page	Web	Site	template.	Other	templates	may	use	other	PropertyKeys.
For	more	information	about	using	PropertyKeys,	see	the	Properties	collection.

Private	Sub	GetFolderProperties()

				Dim	myFolders	As	WebFolders

				Dim	myFolder	As	WebFolder

				Dim	myHasSubDirs	As	String

				Dim	myIsScriptable	As	String

				Dim	myProperties	As	Properties

				Set	myFolders	=	ActiveWeb.RootFolder.Folders

				For	Each	myFolder	In	myFolders

												Set	myProperties	=	myFolder.Properties

											

												myHasSubDirs	=	myHasSubDirs	&	_

																								myProperties("vti_	hassubdirs")	&	"|"

												myIsScriptable	=	myIsScriptable	&	_

																								myProperties("vti_	isscriptable")	&	"|"

				Next

End	Sub

Format	Property
Returns	a	String	that	represents	the	format	of	the	specified	Theme	object.	Read-
only.

expression.Format

expression				Required.	An	expression	that	returns	a	Theme	object.

Remarks

The	theme	format	reflects	the	difference	between	the	formats	for	the	different
versions	of	Microsoft	FrontPage.	For	example,	the	format	number	for	FrontPage
98	can	be	either	0.0	or	1.0,	while	the	format	number	for	FrontPage	2000	is	2.0,
and	so	on.

Example

The	following	example	retrieves	the	format	of	the	applied	theme	for	the	active
Web	site.

Private	Sub	GetThemeFormat()

				Dim	myFormat	As	String

				myFormat	=	ActiveWeb.Themes(0).Format

End	Sub

FrameWindow	Property
Returns	an	FPHTMLWindow2	object	that	represents	the	page	window	and
accesses	the	Internet	Explorer	Window	objects.

Note		The	Document	property	of	the	FPHTMLWindow2	object	points	to	the
FPHTMLDocument	object	of	the	frames	page.

expression.FrameWindow

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

Example

This	example	retrieves	the	IHTMLLocation	property	of	the	FrameWindow
object.

Private	Sub	GetFrameWindowLocation()

				Dim	myWeb	As	WebEx

				Dim	myPage	As	PageWindowEx

				Dim	myFrameWindowLocation	As	String

				Set	myWeb	=	Webs("C:\My	Webs\Coho	Winery")

				Set	myPage	=	_

																myWeb.ActiveWebWindow.ActivePageWindow

				myFrameWindowLocation	=	myPage.FrameWindow.Location.href

End	Sub

Home	Property
Returns	a	HomeNavigationNode	object	that	represents	the	navigation	node	for	a
specified	page.

expression.Home

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Example

The	following	example	searches	for	a	navigation	node	with	the	label	"Sale",	and
then	updates	it.

Private	Sub	ChangeNavLabel()

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Set	myFiles	=	ActiveWeb.RootFolder.Files

				For	Each	myFile	In	myFiles

								If	myFile.NavigationNode.Home.Label	=	"Sale"	Then

												myFile.NavigationNode.Home.Label	=	"Sales	Items"

								End	If

				Next

End	Sub

HomeNavigationNode	Property
Returns	a	NavigationNode	object	for	the	home	page.

expression.HomeNavigationNode

expression				Required.	An	expression	that	returns	a	WebEx	object.

Remarks

The	home	navigation	node	is	the	starting	point	for	all	navigation	addressing
within	the	navigation	structure.	Whenever	you	want	to	add,	move,	or	delete	a
node,	change	any	of	the	attributes	for	a	node,	or	just	access	the	current
navigation	structure,	you	use	the	HomeNavigationNode	object	as	a	starting
point.	The	only	time	you	would	use	the	RootNavigationNode	object	to	access
the	navigation	structure	is	when	you	want	to	add	or	access	a	navigation	node	at
the	same	level	as	the	HomeNavigationNode	object.

Example

The	following	example	accesses	the	HomeNavigationNode	object	and	retrieves
the	URL	for	the	home	page.

Private	Sub	GetHomeNavigationNode()

				Dim	myWeb	As	WebEx

				Dim	myHomeNode	As	NavigationNode

				Dim	myHomeUrl	As	String

				Set	myWeb	=	ActiveWeb

				myHomeNode	=	myWeb.HomeNavigationNode

				myHomeUrl	=	myHomeNode.Url

End	Sub

HorizontalResolution	Property
Returns	the	horizontal	resolution	of	the	screen	in	pixels.	Read-only	Long.

expression.HorizontalResolution()

expression				Required.	An	expression	that	returns	a	System	object.

Example

The	following	example	returns	the	horizontal	resolution	of	the	screen.

myHoriz	=	System.HorizontalResolution

	 	

InNavBars	Property
True	to	specify	that	the	current	page	will	be	visible	in	the	Web	site's	link	bars.
Read/write	Boolean.

Note		A	link	bar	is	a	set	of	hyperlinks	used	for	navigating	a	Web	site.

expression.InNavBars

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Remarks

All	pages	with	the	InNavBars	property	set	to	False	will	appear	grayed	out	in
Navigation	view.

Example

The	following	example	prompts	the	user	to	select	which	navigation	nodes	will
appear	in	the	link	bar.	If	the	user	selects	Yes,	the	current	page	will	appear	in	the
link	bar.	If	the	user	selects	No,	the	current	page	will	not	appear	in	the	link	bar
and	will	appear	grayed	out	in	Navigation	view.	The	user	is	prompted	for	each
navigation	node	in	the	active	Web	site.

Sub	AllNavigationNodes()

'Return	a	collection	of	all	navigation	nodes	used	in	the	current	web

'Allows	you	to	select	which	pages	will	appear	in	the	link	bar

				Dim	objApp	As	FrontPage.Application

				Dim	objNavNode	As	NavigationNode

				Dim	objNavNodes	As	NavigationNodes

				Dim	strAns	As	String

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	NavigationNodes	collection

				Set	objNavNodes	=	objApp.ActiveWeb.AllNavigationNodes

				'For	each	node	in	the	collection

				For	Each	objNavNode	In	objNavNodes

								'Prompt	the	user

								strAns	=	MsgBox("Do	you	want	the	page	"	&	objNavNode.Label	&	_

															"	to	appear	in	the	link	bar?",	vbYesNo)

								'If	user	answers	yes,	set	to	True

								If	strAns	=	vbYes	Then

												objNavNode.InNavBars	=	True

								Else

												'If	no,	set	to	False

												objNavNode.InNavBars	=	False

								End	If

				'Go	to	next	node

				Next	objNavNode

End	Sub

IsDirty	Property
True	if	the	page	displayed	in	the	specified	page	window	has	changed	since	the
last	time	the	user	saved	the	page.	Read-write	Boolean.

expression.IsDirty

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

Example

The	following	example	checks	if	the	active	page	has	changed,	and	then	executes
the	Save	method	if	the	page	has	been	modified.

Private	Sub	DirtyDocument()

				Dim	myPage	As	PageWindowEx

				Dim	myDoc	As	FPHTMLDocument

				Dim	mySaveCheck	As	Boolean

				Set	myDoc	=	WebWindows(0).PageWindows(0).Document

				Call	myDoc.body.insertAdjacentHTML("BeforeEnd",	_

																"	modified	")

				If	ActivePageWindow.IsDirty	=	True	Then

												ActivePageWindow.Save

				End	If

End	Sub

IsExecutable	Property
Returns	or	sets	a	Boolean	that	represents	the	setting	for	execute	permission	for	a
WebFolder	object.

expression.IsExecutable

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	retrieves	the	setting	of	the	IsExecutable	property	for	a
WebFolder	object.

Private	Sub	CheckExecutable()

				Dim	myFolder	As	WebFolder

				Dim	myExeStatus	As	Boolean

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("images")

				myExeStatus	=	myFolder.IsExecutable

End	Sub

IsHidden	Property
Sets	or	returns	a	Boolean	that	represents	whether	a	list	is	displayed	in	the
browser.

expression.IsHidden

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

IsHiddenFoldersEnabled	Property
True	to	display	hidden	folders	in	the	specified	Web	site.	Read/write	Boolean.

expression.IsHiddenFoldersEnabled

expression				Required.	An	expression	that	returns	a	WebEx	object.

Example

The	following	example	prompts	the	user	to	display	hidden	folders	in	the	current
Web	site.	The	IsHiddenFoldersEnabled	property	is	set	based	on	the	user's
response.

Sub	ViewAllFolders()

'Prompts	the	user	to	view	hidden	folders

				Dim	objApp	As	FrontPage.Application

				Dim	objWeb	As	WebEx

				Dim	strAns	As	String

				Set	objApp	=	FrontPage.Application

				Set	objWeb	=	objApp.ActiveWeb

				'prompt	user

				strAns	=	MsgBox("Do	you	want	to	view	hidden	folders?",	vbYesNo)

				'Set	value	of	property	to	match	user's	response

				If	strAns	=	vbYes	Then

								objWeb.IsHiddenFoldersEnabled	=	True

				Else

								objWeb.IsHiddenFoldersEnabled	=	False

				End	If

End	Sub

IsLinkBar	Property
True	indicates	that	the	navigation	node	is	a	link	bar.	Read-only	Boolean.

Note		Link	bars	provide	hypertext	links	that	allow	you	to	navigate	through	the
pages	in	the	current	Web	site.

expression.IsLinkBar

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Example

The	following	example	traverses	the	navigation	node	hierarchy	and	displays	the
names	of	any	link	bars	in	the	Web	site.	If	no	link	bars	are	found	a	message	is
displayed	to	the	user.

Sub	DisplayLinkBar()

'Return	a	collection	of	all	navigation	nodes	used	in	the	current	Web	site

'Searches	through	the	collection	and	displays	the	names	of	all	link	bars

				Dim	objApp	As	FrontPage.Application

				Dim	objNavNode	As	NavigationNode

				Dim	objNavNodes	As	NavigationNodes

				Dim	strAns	As	String

				Dim	blnFound	As	Boolean

				blnFound	=	False

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	NavigationNodes	collection

				Set	objNavNodes	=	objApp.ActiveWeb.AllNavigationNodes

				'For	each	node	in	the	collection

				For	Each	objNavNode	In	objNavNodes

							'If	set	to	True,	this	is	a	link	bar

							If	objNavNode.IsLinkBar	=	True	Then

											MsgBox	objNavNode.Label	&	"	is	a	link	bar."

											blnFound	=	True

							End	If

				'Go	to	next	node

				Next	objNavNode

				'If	no	link	bars	are	found,	display	a	message

				If	blnFound	=	False	Then

								MsgBox	"There	are	no	link	bars	in	the	current	Web	site."

				End	If

End	Sub

IsModified	Property
Returns	a	Boolean	that	represents	whether	a	list	has	been	changed	since	the	last
time	the	list	was	updated.

expression.IsModified

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

IsOpen	Property
True	if	the	specified	Web	page	is	displayed	in	the	page	window.	Read-only
Boolean.

expression.IsOpen

expression				Required.	An	expression	that	returns	a	WebFile	object.

Example

The	following	example	uses	the	IsOpen	property	to	check	if	a	file	named
"index.htm"	is	open,	and	opens	it	if	it	isn't.

Private	Sub	CheckForOpenFile()

				Dim	myWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myWeb

								For	Each	myFile	In	myFiles

												If	myFile.Name	=	"index.htm"	Then

																If	myFile.IsOpen	=	True	Then

																				MsgBox	"This	file	is	open,	try	again	later."

																				Exit	Sub

																Else

																				myFile.Open

																				Exit	Sub

																End	If

												End	If

								Next

				End	With

End	Sub

IsOrphan	Property
True	indicates	that	the	file	cannot	be	reached	by	hyperlink	from	any	page	in	the
Web	site.	Read-only.

expression.IsOrphan

expression				Required.	An	expression	that	returns	a	WebFile	object.

Example

The	following	example	searches	through	the	current	Web	site	and	displays	the
names	of	all	orphan	files.	An	orphan	file	is	denoted	by	its	IsOrphan	property.
Once	a	file	is	found	with	an	IsOrphan	property	that	equals	True,	the	Label
property	value	is	added	to	a	String	containing	the	names	of	all	orphan	nodes	in
the	Web	site.	The	names	of	the	orphan	files,	stored	in	the	String	variable
strName,	are	then	displayed	to	the	user.	If	no	orphan	files	are	found	in	the	Web
site,	a	message	is	displayed	to	the	user.

Sub	ListOrphans()

'Displays	the	names	of	orphan	files.

				Dim	objApp	As	FrontPage.Application

				Dim	objWebFile	As	WebFile

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				'For	each	file	in	the	Web	site	site

				For	Each	objWebFile	In	ActiveWeb.AllFiles

				

								'Check	if	the	file	is	an	orpahn

								If	objWebFile.IsOrphan	Then

												strName	=	strName	&	objWebFile.Name	&	"	|	"

								End	If

				Next

				If	strName	<>	""	Then

							'Display	names	of	all	orphan	pages

							MsgBox	"The	orphan	pages	in	the	current	Web	site	are:	"	&	vbCr	&	vbCr	&	_

														strName	&	"."

				Else

								'No	orphans,	display	message

								MsgBox	"There	are	no	orphan	pages	in	the	Web	site."

				End	If

End	Sub

IsReadable	Property
True	indicates	that	a	folder	is	has	read	permission.	Read/write	Boolean.

expression.IsReadable

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Example

The	following	example	retrieves	the	setting	of	the	IsReadable	property	for	a
folder	called	"images"	in	the	active	Web	site.

Private	Sub	CheckReadable()

				Dim	myFolder	As	WebFolder

				Dim	myReadStatus	As	Boolean

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("images")

				myReadStatus	=	myFolder.IsReadable

End	Sub

IsRoot	Property
True	if	the	specified	Web	folder	is	the	root	folder	in	the	Web	site.	Read-only
Boolean.

expression.IsRoot

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Example

The	following	example	retrieves	the	setting	of	the	IsRoot	property	for	a
WebFolder	object.

Private	Sub	CheckExecutable()

				Dim	myFolder	As	WebFolder

				Dim	myIsRoot	As	Boolean

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("images")

				myIsRoot	=	myFolder.IsRoot

End	Sub

IsUnderRevisionControl	Property
True	if	source	control	is	used	on	files	in	the	specified	Web	site.	Read-only
Boolean.

expression.IsUnderRevisionControl

expression				Required.	An	expression	that	returns	a	WebEx	object.

Remarks

You	must	have	a	source	control	project	created	through	Microsoft	Visual
SourceSafe	or	Microsoft	Office	in	order	to	use	revision	control.	For	information
about	source	control	projects,	refer	to	Managing	Source	Control	Projects.

Example

The	following	example	creates	a	source	control	project	and	then,	in	the	second
procedure,	checks	the	state	of	the	IsUnderRevisionControl	property.

Private	Sub	SourceControlProject()

				Dim	myWeb	As	WebEx

				Set	myWeb	=	ActiveWeb

				If	Not	(myWeb.IsUnderRevisionControl)	Then

								myWeb.RevisionControlProject	=	_

												"<FrontPage-based	Locking>"

				End	If

End	Sub

Private	Sub	GetRevisionState()

				Dim	myWeb	As	WebEx

				Dim	myRevCtrlProj	As	String

				Dim	myIsRevCtrl	As	Boolean

				Set	myWeb	=	ActiveWeb

				With	myWeb

								myRevCtrlProj	=	.RevisionControlProject

								myIsUnderRevCtrl	=	.IsUnderRevisionControl	

				End	With

End	Sub

IsWeb	Property
True	if	the	specified	Web	folder	is	the	root	folder	for	a	Web	site,	which	may	be
the	root	folder	for	the	active	Web	site	or	a	subsite	off	of	the	active	Web	site.
Read-only.

expression.IsWeb

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Example

This	example	retrieves	the	setting	of	the	IsWeb	property	for	a	WebFolder
object.

Private	Sub	CheckExecutable()

				Dim	myFolder	As	WebFolder

				Dim	myWebStatus	As	Boolean

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("images")

				myWebStatus	=	myFolder.IsWeb

End	Sub

IsWritable	Property
True	if	a	folder	has	write	permissions.	Read-only	Boolean.

expression.IsWritable

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Example

The	following	example	retrieves	the	setting	of	the	IsWritable	property	for	a
WebFolder	object.

Private	Sub	CheckExecutable()

				Dim	myFolder	As	WebFolder

				Dim	myWritableStatus	As	Boolean

				Set	myFolder	=	ActiveWeb.RootFolder.Folders("images")

				myWritableStatus	=	myFolder.IsWritable

End	Sub

Show	All

Item	Property
Item	property	as	it	applies	to	the	MetaTags	object.

Returns	a	Variant	representing	a	property	key/value	pair.

expression.Item(PropertyKey)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

PropertyKey			Required	String.	A	string	that	contains	an	index	number	of	the
collection.	The	index	starts	at	zero.

Item	property	as	it	applies	to	the	Properties	object.

Returns	or	sets	a	Variant	that	represents	a	property.	Read/write.

expression.Item(PropertyKey)

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

PropertyKey			Required	String.	A	string	that	contains	an	index	number	of	the
collection.	The	index	starts	at	zero.

Item	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	a	an	individual	object	in	a	collection.

expression.Item(Index)

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Index			Required	Variant.	The	name	or	ordinal	value	of	the	object	within	the
collection.	Index	starts	at	zero.

Example

As	it	applies	to	the	NavigationNodes	collection.

The	following	example	demonstrates	returning	a	value	by	indexing	an	item	in
the	collection.	This	example	returns	the	label	for	the	first	navigation	node	in	the
navigation	structure	of	the	active	Web.

Note		You	access	the	NavigationNodes	collection	through	the	Children
property	of	the	RootNavigationNode	property	of	the	active	Web.

Private	Sub	GetNavigationNode()

					Dim	myWeb	As	WebEx

					Dim	myNavNodes	As	NavigationNodes

					Dim	myNavNodeLabel	As	String

					Set	myWeb	=	ActiveWeb

					myNavNodeLabel	=	myWeb.RootNavigationNode	_

									.Children.Item(0).Label	End	Sub

As	it	applies	to	the	MetaTags	object.

The	following	statement	returns	the	contents	of	a	META	tag	that	exists	on	a	Web
page	in	the	active	Web,	and	demonstrates	the	PropertyKey	argument.

myMetaTagContents	=	ActiveWeb.RootFolder.Files	_

				.Item(0).MetaTags.Item("generator")

It	isn't	always	necessary	to	specify	the	index	or	property	name	of	the	Item
property	when	returning	values	from	a	collection.	The	following	example	returns
a	list	of	file	names	of	each	Web	page	that	contains	a	META	tag	name	equivalent
to	"generator"	in	the	active	Web,	without	specifying	the	Item	property.
FindGeneratorTags	retrieves	a	list	of	the	files	that	contain	the	"generator"
META	tag	and	adds	value	of	the	Item	property	to	the	variable	myMetaTag,
because	in	this	case	the	value	of	the	Item	property	is	the	same	as	the	file	name.
This	is	different	from	the	previous	example,	which	returned	the	contents	of	the
"generator"	META	tag.

Function	FindGeneratorTags()	As	String

				Dim	myWeb	As	WebEx

				Dim	myMetaTags	As	MetaTags

				Dim	myMetaTag	As	Variant

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myMetaTagName	As	String

				Dim	myReturnFileName	As	String

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myWeb

								For	Each	myFile	In	myFiles

												Set	myMetaTags	=	myFile.MetaTags

																For	Each	myMetaTag	In	myMetaTags

																				myMetaTagName	=	myMetaTag

																				If	myMetaTagName	=	"generator"	Then

																								myReturnFileName	=	myReturnFileName	&	myFile.Name

																				End	If

																Next

								Next

				End	With

				FindGeneratorTags	=	myReturnFileName

End	Function

Show	All

Label	Property
As	it	applies	to	the	NavigationNode	object.

Sets	or	returns	a	String	that	represents	the	label	associated	with	the	active
navigation	node.	This	label	is	used	as	a	reference	for	individual	navigation	nodes
in	Navigation	view.	Read/write.

expression.Label()

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Remarks

Use	the	text	in	the	Label	property	for	the	text	in	a	banner	or	button	that	links	to
another	navigation	node	in	the	navigation	structure.

As	it	applies	to	the	Theme	object.

Returns	a	String	that	represents	the	name	of	the	specified	theme.

expression.Label()

expression				Required.	An	expression	that	returns	a	Theme	object.

Example

As	it	applies	to	the	NavigationNode	object.

The	following	example	sets	the	text	for	the	label	of	the	first	child	node.	The	label
shows	the	placement	of	the	node	in	Navigation	view.

	 	 Private	Sub	AddLabelToNavigationNode()

				Dim	myNode	As	NavigationNode

				Set	myNode	=	ActiveWeb.HomeNavigationNode.Children(0)

				myNewNode.Label	=	"Finance	Page"

End	Sub

	 	 	 	

As	it	applies	to	the	Theme	object.

The	following	example	retrieves	the	name	of	a	theme.

Note		To	run	this	procedure,	you	must	have	an	open	Web	site	with	a	page	that
has	previously	had	a	theme	applied	to	it.

	 	 Private	Sub	GetThemeName()

				Dim	myTheme	As	String

				myTheme	=	ActiveWeb.Themes(0).Label

End	Sub

	 	 	 	

LanguageDesignation	Property
Returns	the	abbreviated	name	of	the	designated	language	of	the	system	software.
Read-only	String.

expression.LanguageDesignation()

expression				Required.	An	expression	that	returns	a	System	object.

Remarks

Using	the	two-letter	language	abbreviation	from	the	ISO	Standard	639	and
adding	a	third	letter,	such	as	"u"	for	the	United	States,	creates	the	three-letter
abbreviation.

You	can	also	get	the	two-letter	language	abbreviation	with	GetLocaleInfo()	by
specifying	LOCALE_SABBREVLANGNAME	as	the	LCType.	The
abbreviated	name	"enu"	is	returned	for	the	English	(U.S.)	language	and	is	the
same	abbreviation	that	is	returned	with	the	LanguageDesignation	property.

Example

This	example	displays	the	abbreviated	name	of	the	designated	language	of	the
system	software.

myLang	=	System.LanguageDesignation

	 	

LanguageSettings	Property
Returns	the	LanguageSettings	object	for	the	Microsoft	FrontPage	application.
Read-only	LanguageSettings.

expression.LanguageSettings()

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjLanguageSettings.htm

Example

The	following	example	returns	the	LanguageID	property	for	the	user	interface
and	sets	the	LanguagePreferredForEditing	properties.

The	LanguageSettings	property	has	a	required	constant	called
MsoAppLanguageID.	The	enumerated	values	for	this	constant	are
msoLanguageIDHelp,	msoLanguageIDInstall,	msoLanguageIDUI,	and
msoLanguageIDUIPrevious.	The	LanguagePreferredForEditing	property
also	has	enumerated	constants	for	the	available	languages.	For	more	detailed
information,	see	the	LanguageSettings	object.

Private	Sub	GetLanguageInfo()

				Dim	myLSet	As	LanguageSettings

				Dim	myLangID	As	String

				Dim	prfLang	As	String

				Set	myLSet	=	Application.LanguageSettings

				With	myLSet

								myLangID	=	.LanguageID(msoLanguageIDUI)

								prfLang	=	_

																.LanguagePreferredForEditing(msoLanguageIDEnglishUS)	_

																=	True

				End	With

End	Sub

	 	

mk:@MSITStore:vbaof11.chm::/html/ofobjLanguageSettings.htm

List	Property
Returns	a	List	object	that	represents	the	list	associated	with	the	specified	folder.

expression.List

expression				Required.	An	expression	that	returns	a	WebFolder	object.

Example

The	following	example	returns	the	list	object	associated	with	the	second	folder
in	the	active	Web	site	and	displays	the	names	of	all	fields	in	the	list.

Sub	ReturnList()

				'Returns	the	list	associated	with	a	folder

				Dim	objApp	As	FrontPage.Application

				Dim	objFolder	As	WebFolder

				Dim	objListField	As	ListField

				Dim	objList	As	List

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				For	Each	objFolder	In	objApp.ActiveWeb.AllFolders

								If	Not	objFolder.List	Is	Nothing	Then

												'Return	the	List	using	the	List	property

												Set	objList	=	objFolder.List

												For	Each	objListField	In	objList.Fields

																'Add	list	names	to	string

																If	strName	=	""	Then

																				strName	=	objListField.Name	&	vbCr

																Else

																				strName	=	strName	&	objListField.Name	&	vbCr

																End	If

												Next

												MsgBox	"The	field	names	within	the"	&	objList.Name	&	"	list	are:	"	&	vbCr	&	_

												strName

								End	If

				Next

End	Sub

Lists	Property
Returns	a	Lists	collection	object	that	represents	a	collection	of	all	lists	in	a	Web
site.	A	list	can	be	a	DocumentLibrary	object,	a	BasicList	object,	or	a	Survey
object.

expression.Lists

expression				Required.	An	expression	that	returns	a	WebEx	object.

Example

The	following	example	returns	a	reference	to	the	Lists	collection	using	the	Lists
property	for	the	active	Web	site.	The	example	displays	the	name	of	each	list	in
the	collection.

Sub	ViewLists()

'Returns	a	collection	of	all	lists	in	the	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objWeb	As	WebEx

				Dim	objlists	As	Lists

				Dim	objlist	As	List

				Set	objApp	=	FrontPage.Application

				Set	objWeb	=	objApp.ActiveWeb

				'Reference	the	Lists	collection

				Set	objlists	=	objWeb.Lists

				'Display	the	name	of	each	list	in	the	Lists	collection

				For	i	=	1	To	objlists.Count

								MsgBox	"The	name	of	the	list	is	"	&	objlists.Item(i).Name

				Next	i

End	Sub

LookupField	Property
Returns	a	ListField	object	that	defines	the	field	on	which	to	perform	a	search.

expression.LookupField

expression				Required.	An	expression	that	returns	a	ListFieldLookup	object.

Example

The	following	example	creates	a	new	field	of	type	fpFieldLookup	and	displays
the	name	of	the	new	field	and	the	name	of	the	field	that	is	being	searched.

Sub	CreateLookup()

'Adds	new	Lookup	field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	listFields

				Dim	objFldLookup	As	ListFieldLookup

				Dim	ObjField	As	ListField

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"NewFileLookupField"

				'Add	new	Field	of	type	fpFieldLookup	to	list

				objLstFlds.Add	Name:=strName,	Description:="New	Lookup	Field",	_

																			Fieldtype:=fpFieldLookup

				Set	objFldLookup	=	objLstFlds.Item("NewFileLookupField")

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	".	The	field	used	for	the	"	&	_

											"lookup	is	"	&	objFldLookup.LookupField.Name	&	"."

End	Sub

MaximumValue	Property
Returns	or	sets	a	Variant	that	specifies	the	maximum	value	allowed	for	this
field.	This	property	is	the	equivalent	of	setting	the	Maximum	value	allowed
field	in	the	Modify	Field	dialog	box	of	the	user	interface.	Read/write.

expression.MaximumValue

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

An	error	message	will	be	displayed	to	the	user	if	invalid	data	is	entered	into	this
field.	Use	the	MinimumValue	property	value	to	set	the	minimum	value	for	the
field.

Example

The	following	example	displays	the	names	and	maximum	values	of	all	fields	of
type	fpFieldNumber	and	fpFieldCurrency	in	the	first	list	of	the	active	Web
site.	If	the	list	contains	no	fields	of	this	type,	a	message	is	displayed	to	the	user.

Sub	DisplayMaximum()

'Displays	the	maximum	value	of	all	ListFieldNumber

'and	ListFieldCurrency	fields	in	the	list

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Dim	objLstFld	As	Object

				Dim	strValues	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'Cycle	through	lists	and	add	value	to	string

				For	Each	objLstFld	In	objLstFlds

								If	(objLstFld.Type	=	fpFieldNumber)	Or	(objLstFld.Type	=	fpFieldCurrency)	Then

												strValues	=	strValues	&	objLstFld.Name	&	vbTab	&	_

																								objLstFld.MaximumValue	&	vbCr

								End	If

				Next	objLstFld

				If	strValues	<>	""	Then

								MsgBox	"The	fields	and	their	maximum	values	are:"	&	vbCr	&	_

																vbCr	&	strValues

				Else

								MsgBox	"There	are	no	ListFieldNumber	or	ListFieldCurrency	fields	in	the	current	list."

				End	If

End	Sub

The	following	example	changes	the	maximum	value	of	all	fields	of	type
ListFieldNumber	in	the	first	list	of	the	active	Web	site	to	a	constant	with	the
value	200.

Note		Use	the	ApplyChanges	method	to	apply	any	changes	made	to	the	list.

Sub	ChangeMaximum()

'Changes	maximum	value	for	all	fields	of	type

'ListFieldNumber

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Dim	objLstFld	As	Object

				Const	varMax	As	Variant	=	200

				Set	objApp	=	FrontPage.Application

				If	objApp.ActiveWeb.Lists.Count	>	0	Then

								Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

								'Cycle	through	lists	and	change	values

								For	Each	objLstFld	In	objLstFlds

												If	objLstFld.Type	=	fpFieldNumber	Then

																objLstFld.MaximumValue	=	varMax

												End	If

								Next	objLstFld

								objApp.ActiveWeb.Lists(0).ApplyChanges

				Else

								MsgBox	"The	active	Web	site	contains	no	lists."

				End	If

End	Sub

MaxLength	Property	(Web	Object
Model)
Returns	or	sets	a	Long	that	represents	the	maximum	length	(in	characters)	of	the
specified	field.	Read/write.

expression.MaxLength

expression				Required.	An	expression	that	returns	a	ListFieldSingleLine	object.

Example

The	following	example	adds	a	new	field	of	type	fpFieldSingleLine	to	the
ListFields	collection	of	the	first	list	in	the	active	Web	site	and	displays	the	name
of	the	new	field,	the	name	of	the	list	to	which	it	was	added,	and	the	maximum
length	in	characters	of	the	new	field.

Sub	CreateSingleLineField()

'Add	new	SingleLineField

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	objListField	As	ListFieldSingleLine

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"AlternativeName"

				'Add	new	field	of	type	fpFieldSingleLine	to	list

				objLstFlds.Add	Name:=strName,	Description:="Numeric	Total	Field",	_

																			Fieldtype:=fpFieldSingleLine

				Set	objListField	=	objLstFlds.Item("AlternativeName")

				MsgBox	"A	new	field	named	"	&	strName	&	_

											"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&

												_	".	The	maximum	length	of	the	"	&	_

											"field	is	"	&	objListField.MaxLength	&	"	characters."

End	Sub

MetaTags	Property
Returns	the	MetaTags	collection	for	the	specified	WebFile	object.

expression.MetaTags

expression				Required.	An	expression	that	returns	a	WebFile	object.

Example

The	following	example	iterates	through	the	META	tags	collection	in	each	file	in
the	active	Web	site	and	concatenates	the	file	names	and	META	tag	names	into	a
string	called	myReturnInfo.

Private	Sub	GetMetaTagInfo_Click()

				Dim	myWeb	As	WebEx

				Dim	myFiles	As	WebFiles

				Dim	myFile	As	WebFile

				Dim	myMetaTags	As	MetaTags

				Dim	myMetaTag	As	Variant

				Dim	myFileName	As	String

				Dim	myMetaTagName	As	String

				Dim	myReturnInfo	As	String

				Set	myWeb	=	ActiveWeb

				Set	myFiles	=	myWeb.RootFolder.Files

				With	myWeb

									For	Each	myFile	In	myFiles

													Set	myMetaTags	=	myFile.MetaTags

													For	Each	myMetaTag	In	myMetaTags

																					myFileName	=	myFile.Name

																					myMetaTagName	=	myMetaTag

																					myReturnInfo	=	myFileName	&	":	"	_

																									&	myMetaTagName

													Next

									Next

				End	With

End	Sub

MinimumValue	Property
Returns	or	sets	a	Variant	that	specifies	the	minimum	allowed	value	for	the	field.
This	property	is	the	equivalent	of	setting	the	Minimum	value	allowed	field	in
the	Modify	Field	dialog	box	of	the	user	interface.	Read/write.

expression.MinimumValue

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

An	error	message	will	be	displayed	to	the	user	if	invalid	information	is	entered
into	this	field.	Use	the	MaximumValue	property	to	set	the	maximum	allowed
value	of	the	field.

Example

The	following	example	displays	the	names	and	minimum	values	for	all	fields	of
type	fpFieldNumber	and	fpFieldCurrency	in	the	first	list	of	the	active	Web
site.

Sub	DisplayMinimum()

'Displays	the	minimum	value	of	all	ListFieldNumber

'and	ListFieldCurrency	fields	in	the	list

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Dim	objLstFld	As	Object

				Dim	strValues	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'Cycle	through	lists	and	add	value	to	string

				For	Each	objLstFld	In	objLstFlds

								If	(objLstFld.Type	=	fpFieldNumber)	Or	(objLstFld.Type	=	fpFieldCurrency)	Then

												strValues	=	strValues	&	objLstFld.Name	&	vbTab	&	_

																								objLstFld.MinimumValue	&	vbCr

								End	If

				Next	objLstFld

				If	strValues	<>	""	Then

								MsgBox	"The	fields	and	their	minimum	values	are:"	&	vbCr	&	_

																vbCr	&	strValues

				Else

								MsgBox	"There	are	no	ListFieldNumber	or	ListFieldCurrency	fields	in	the	current	list."

				End	If

End	Sub

The	following	example	changes	the	minimum	value	of	all	fields	of	type
fpListFieldNumber	in	the	first	list	in	the	active	Web	site	to	a	constant	with	the
value	200.

Note		Use	the	ApplyChanges	method	to	apply	any	changes	made	to	the	list.

Sub	ChangeMinimum()

'Changes	minimum	value	for	all	fields	of	type

'ListFieldNumber

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Dim	objLstFld	As	Object

				Const	varMin	As	Variant	=	1

				Set	objApp	=	FrontPage.Application

				If	objApp.ActiveWeb.Lists.Count	>	0	Then

								Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

								'Cycle	through	lists	and	change	values

								For	Each	objLstFld	In	objLstFlds

												If	objLstFld.Type	=	fpFieldNumber	Then

																objLstFld.MinimumValue	=	varMin

												End	If

								Next	objLstFld

								objApp.ActiveWeb.Lists(0).ApplyChanges

				Else

								MsgBox	"The	active	Web	site	contains	no	lists."

				End	If

End	Sub

MonthsShown	Property
Returns	or	sets	a	Long	that	determines	how	many	months	will	be	displayed	in
the	Microsoft	FrontPage	Reports	view.	Read/write.

expression.MonthsShown

expression				Required.	An	expression	that	returns	an	Application	object.

Example

The	following	example	prompts	the	user	to	enter	the	number	of	months	he	or	she
wants	to	view	in	the	report,	and	then	sets	the	MonthsShown	property	to	that
value.	The	subroutine	"SetMonths"	prompts	the	user	for	input,	performs	a
validation	on	the	input	data,	converts	it	to	the	correct	type	and	sets	the
MonthsShown	property	to	the	new	value.	If	the	value	is	of	an	incorrect	type,	an
error	message	is	displayed	to	the	user.

Sub	SetMonthsShown()

'Modifies	the	MonthsShown	property

			Dim	objApp	As	FrontPage.Application

			Set	objApp	=	FrontPage.Application

			Call	SetMonths(objApp)

End	Sub

Sub	SetMonths(ByRef	objApp	As	Application)

'Sets	the	number	of	months	to	view	in	Reports	view

				Dim	varNum	As	Variant

				Dim	lngNum	As	Long

				'Prompt	the	user	to	enter	a	value

				varNum	=	InputBox("Enter	the	number	of	months	you	wish	to	view	in	the	report.")

				'Check	to	see	that	the	value	is	of	the	correct	type

				If	IsNumeric(varNum)	Then

							'If	it's	numeric,	convert	it	to	Long

							lngNum	=	CLng(varNum)

							'Set	the	MonthsShown	value	to	the	new	value

							objApp.MonthsShown	=	lngNum

							'Display	the	new	setting	information	to	the	user

							MsgBox	"The	MonthsShown	value	was	set	correctly."	&	_	

											"	The	number	of	months	that	will	be	shown	is	"	_

											&	lngNum	&	"."

				Else

							'Otherwise,	display	an	error	message	to	the	user

							MsgBox	"The	input	value	was	incorrect",	vbCritical

				End	If

End	Sub

Name	Property
Returns	a	String	that	represents	the	name	assigned	to	the	specified	object.	Read-
only	String.

expression.Name

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	name	of	a	file	or	folder	is	usually	the	last	part	of	the	URL.	For	example,	if
you	have	a	URL	of	"C:\My	Web	Sites\Adventure	Works\index.htm",	the	value	of
the	Name	property	for	the	file	is	"index.htm".	Similarly,	"Images"	is	the	value	of
the	Name	property	for	the	folder	in	the	URL	"C:\My	Web	Sites\Adventure
Works\Images".

Example

The	following	statement	returns	the	application	name	with	AppName	as	the	string
variable.

AppName	=	Application.Name

	 	

NavigationNode	Property
Returns	a	NavigationNode	object	that	represents	the	current	node	in	the
navigation	structure.

expression.NavigationNode

expression				Required.	An	expression	that	returns	a	WebFile	object.

Remarks

If	a	NavigationNode	is	not	found	within	the	navigation	structure	for	the
specified	Web	site,	the	NavigationNode	property	returns	Null.

Example

The	following	example	uses	the	NavigationNode	property	to	return	the	file
name	associated	with	the	navigation	node.

Private	Sub	GetNavNode()

				Dim	myWeb	As	WebEx

				Dim	myNavNode	As	NavigationNode

				Dim	myNavNodeLabel	As	String

				Set	myWeb	=	ActiveWeb

				Set	myNavNode	=	_

									myWeb.RootNavigationNode.Files(0).NavigationNode

				With	myNavNode

									myNavNodeLabel	=	.Label

				End	With

End	Sub

	 	

NewForm	Property
Returns	or	sets	a	String	that	represents	the	form	used	for	adding	new	content	to
the	current	list	in	Microsoft	FrontPage.	Read/write.

expression.NewForm

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	default	file	name	for	the	BasicList	and	Survey	objects	is	NewForm.htm.
The	default	file	name	for	the	DocumentLibrary	object	is	Upload.htm.

Example

The	following	example	displays	the	name	of	each	list	in	the	active	Web	site	and
the	relative	URLs	of	their	associated	New	form	pages.	If	the	active	Web	site
contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	ViewNewFormURL()

'Display	the	URL	of	the	form

'associated	with	adding	new	content

				Dim	lstWebList	As	List

				Dim	strURL	As	String

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								'Cycle	through	lists	and	add	URLs	to	string

								For	Each	lstWebList	In	ActiveWeb.Lists

												If	strURL	=	""	Then

																strURL	=	lstWebList.Name	&	"		-		"	&	_

																lstWebList.NewForm	&	vbCr

												Else

																strURL	=	strURL	&	lstWebList.Name	&	"		-		"	&	_

																lstWebList.NewForm	&	vbCr

												End	If

								Next

								'Display	URLs	of	all	New	forms	in	Web	site

								MsgBox	"The	relative	URLs	of	the	New	forms	are:"	_

															&	vbCr	&	vbCr	&	strURL

				Else

								'Otherwise	display	message	to	user

								MsgBox	"The	current	Web	site	contains	no	lists."

				End	If

End	Sub

NewPageorWeb	Property
Returns	a	NewFile	object	that	represents	a	page	or	Web	site	listed	on	the	New
task	pane.

expression.NewPageorWeb

expression				Required.	An	expression	that	returns	an	Application	object.

mk:@MSITStore:vbaof11.chm::/html/ofobjNewFile.htm

Example

The	following	example	creates	a	new	instance	of	the	NewFile	object	and	adds	a
file	named	"template.htm"	to	the	New	task	pane.	The	new	file	listing	will	show
up	under	the	Other	files	section	listed	at	the	bottom	of	the	task	pane.

Sub	NewPage()

'Creates	a	new	page	using	the	NewFile	object

			Dim	objApp	As	FrontPage.Application

			Dim	objNewFile	As	NewFile

			Set	objApp	=	FrontPage.Application

			

			'Create	a	reference	to	an	instance	of	the	NewFile	object

			Set	objNewFile	=	objApp.NewPageorWeb

			objNewFile.Add	"template.htm"

End	Sub

Next	Property
Returns	a	NavigationNode	object	that	represents	the	next	navigation	node	in	the
navigation	sequence.	Read-only	Object.

expression.Next

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Remarks

Although	the	Next	property	is	a	member	of	the	NavigationNode	class,	this
property	navigates	within	the	Children	collection	of	the	specified
NavigationNode	object.

Note		The	Children	collection	does	not	wrap,	so	that	code	such	as
Children(Children.Count	–	1).Next	returns	an	"Object	variable	or	With
block	variable	not	set"	error.

Example

The	following	example	moves	the	navigation	pointer	to	the	next	node,	unless	the
current	node	is	the	last	node	of	the	level	in	the	navigation	structure.

Private	Sub	MoveNext()

				Dim	theNode	As	NavigationNode

				Dim	theNextNode	As	NavigationNode

				On	Error	Resume	Next

				Set	theNode	=	ActiveWeb.HomeNavigationNode.Children(1)

				Set	theNextNode	=	theNode.Next

				If	Err	<>	0	then

												MsgBox	"End	of	the	current	navigation	row"

				End	If

End	Sub

	 	

NumberOfLines	Property
Returns	or	sets	a	Long	that	represents	the	number	of	lines	that	will	appear	in	the
field.	Read/write.

expression.NumberOfLines

expression				Required.	An	expression	that	returns	a	ListFieldMultiLine	object.

Example

The	following	example	adds	a	new	ListFieldMultiLine	field	named
"Description"	to	the	ListFields	collection.	The	subroutine	displays	the	name	of
the	new	field	as	well	as	the	number	of	lines	it	will	contain.

Sub	CreateMultiLine()

'Add	new	MultiLine	Field

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	ObjField	As	ListField

				Dim	objLstFldMulti	As	ListFieldMultiLine

				Dim	strName	As	String

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				strName	=	"Description"

				'Add	new	Field	of	type	fpFieldMultiLine	to	list

				objLstFlds.Add	Name:=strName,	Description:="Description	Field",	_

																			Fieldtype:=fpFieldMultiLine

				Set	objLstFldMulti	=	objLstFlds.Item(strName)

				objLstFldMulti.NumberOfLines	=	5

				MsgBox	"A	new	field	named	"	&	strName	&	"	was	added	to	the	list	"	&	_

											objApp.ActiveWeb.Lists.Item(0).Name	&	".	It	contains	"	&	_

											objLstFldMulti.NumberOfLines	&	"	lines."

End	Sub

OlderFile	Property
Returns	or	sets	a	Long	that	determines	the	number	of	days	that	a	file	must	exist
in	a	Web	site	(without	being	modified)	before	it	is	classified	as	older.	Once	a	file
is	classified	as	older,	it	appears	in	the	Older	Files	view	in	the	Reports	view.
Read/write.

expression.OlderFile

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

Use	the	RecentFile	property	to	return	or	set	the	number	of	days	that	a	new	or
recently	modified	file	shows	up	in	the	Recently	Added	Files	list	in	the	Reports
view.

Example

The	following	example	prompts	the	user	to	enter	a	value	that	specifies	the
number	of	days	a	file	must	exist	before	it	is	classified	as	older.	The	subroutine
SetOldVal	prompts	the	user	for	input,	performs	a	validation	on	the	input	data,
converts	it	to	the	correct	type,	and	sets	the	OlderFile	property	to	the	new	value.
If	the	value	is	of	an	incorrect	type,	an	error	message	is	displayed	to	the	user.

Sub	FPOldFile()

'Sets	a	value	that	determines	how	old	a	file	is

			Dim	objApp	As	FrontPage.Application

			Set	objApp	=	FrontPage.Application

			Call	SetOldVal(objApp)

End	Sub

Sub	SetOldVal(ByRef	objApp	As	Application)

'Sets	the	value	that	determines	how	old	a	file	is

				Dim	varNum	As	Variant

				Dim	lngNum	As	Long

				'Prompt	the	user	to	enter	a	value

				varNum	=	InputBox("Enter	the	number	of	days	a	file	can	exist	"	&

																						_	"before	it	is	classified	as	old.")

				'Check	to	see	that	the	value	is	of	the	correct	type

				If	IsNumeric(varNum)	Then

							'If	it's	numeric,	convert	it	to	Long

							lngNum	=	CLng(varNum)

							'Set	the	OlderFIle	value	to	the	new	value

							objApp.OlderFile	=	lngNum

							'Display	the	new	setting	information	to	the	user

							MsgBox	"The	OlderFile	value	was	set	correctly."	&	vbCr	&	_

														"The	number	of	days	after	which	a	file	becomes	old	is	"	_	&	lngNum	&	"."

				Else

							'Otherwise,	display	an	error	message	to	the	user

							MsgBox	"The	input	value	was	incorrect.",	vbCritical

				End	If

End	Sub

OperatingSystem	Property
Returns	a	String	that	represents	the	name	of	the	current	operating	system,	for
example,	“Windows”	or	“Windows	NT”.

expression.OperatingSystem()

expression				Required.	An	expression	that	returns	a	System	object.

Example

The	following	example	displays	system	information	in	a	label	on	a	form.

lblSystemInfo.Caption	=	System.OperatingSystem

	 	

This	example	prints	the	name	of	the	current	operating	system	in	the	Immediate
window.

myOpSys	=	System.OperatingSystem

	 	

Show	All

OptimizeHTMLFlags	Property
Returns	or	sets	an	FpOptimizeHTMLFlags	constant	that	represents	how	the
HyperText	Markup	Language	(HTML)	is	optimized	in	a	Web	page.

FpOptimizeHTMLFlags	can	be	one	or	more	of	the	following
FpOptimizeHTMLFlags	constants.

fpHtmlOptAdjacentTags Combines	adjacent	elements	of	the	same
type.

fpHtmlOptAuthorComponents Removes	Author-Time	FrontPage	Web
component	comments.

fpHtmlOptBrowseComponents Removes	Browse-Time	FrontPage	Web
component	comments.

fpHtmlOptCellFormattingAttr Removes	cell	formatting	sttributes.

fpHtmlOptDwtCmnts Removes	Dynamic	Web	Template
comments.

fpHtmlOptEmpty Removes	empty	tags.

fpHtmlOptGenerator
Removes	META	elements	that	contain
Generator	and	Programatic	Identifier
information.

fpHtmlOptHTMLAllWhitespace Removes	all	white	spaces	that	don't	affect
rendering.

fpHtmlOptHTMLCmnts Removes	all	other	HTML	comments.

fpHtmlOptHTMLLeadWhitespace Removes	leading	white	spaces	from	eachline.
fpHtmlOptHTMLMisnest Removes	incorrectly	nested	tags.
fpHtmlOptOn Enables	optimization.
fpHtmlOptScriptCmnts Removes	script	comments.
fpHtmlOptThemes Removes	theme	comments.

fpHtmlOptTrcImageAttr Removes	image	tracing	attributes	from
the	BODY	element.

fpHtmlOptUnusedStyles Removes	unused	styles.
Removes	Vector	Markup	Language

fpHtmlOptVMLGraphics (VML)	from	a	page	that	uses	Office
drawings	and	WordArt.

fpHtmlOptWordHTML Removes	Word-specific	HTML	markup.

expression.OptimizeHTMLFlags

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

Use	fpHTMLOptOn	to	turn	optimization	on.	Specify	additional	optimization
settings	by	separating	each	with	an	ampersand	(&).

Example

The	following	example	turns	optimization	on	for	the	current	page	and	specifies
that	all	Microsoft	FrontPage	Web	component	comments	are	to	be	removed	from
the	page.

Application.OptimizeHTMLFlags	=	fpHtmlOptOn	_

				+	fpHtmlOptAuthorComponents	+	fpHtmlOptBrowseComponents

Show	All

OptimizeHTMLPublishFlags
Property
Sets	or	returns	one	or	more	FpOptimizeHTMLFlags	constants	that	represents
how	the	HyperText	Markup	Language	(HTML)	in	the	pages	of	a	Web	site	is
optimized	during	publishing.

FpOptimizeHTMLFlags	can	be	one	or	more	of	the	following
FpOptimizeHTMLFlags	constants.

fpHtmlOptAuthorComponents Removes	Author-Time	FrontPage	Web
component	comments.

fpHtmlOptBrowseComponents Removes	Browse-Time	FrontPage	Web
component	comments.

fpHtmlOptCellFormattingAttr Removes	cell	formatting	attributes.

fpHtmlOptDwtCmnts Removes	Dynamic	Web	Template
comments.

fpHtmlOptGenerator
Removes	META	elements	that	contain
Generator	and	Programatic	Identifier
information.

fpHtmlOptHTMLAllWhitespace Removes	all	white	spaces	that	don't	affect
rendering.

fpHtmlOptHTMLCmnts Removes	all	HTML	comments.

fpHtmlOptHTMLLeadWhitespace Removes	leading	white	spaces	from	eachline.
fpHtmlOptOn Enables	optimization.
fpHtmlOptScriptCmnts Removes	script	comments.
fpHtmlOptThemes Removes	theme	comments.

fpHtmlOptTrcImageAttr Removes	image	tracing	attributes	from
the	BODY	element.

fpHtmlOptVMLGraphics
Removes	Vector	Markup	Language
(VML)	from	a	page	that	uses	Office
drawings	and	WordArt.

fpHtmlOptWordHTML Removes	Word-specific	HTML	markup.

expression.OptimizeHTMLPublishFlags

expression				Required.	An	expression	that	returns	one	a	WebEx	object.

Remarks

Use	fpHTMLOptOn	to	turn	optimization	on.	Specify	additional	optimization
settings	by	separating	each	with	an	ampersand	(&).

Example

The	following	example	turns	optimization	on	for	the	active	Web	site	and
specifies	that	all	Microsoft	FrontPage	Web	component	comments	are	to	be
removed	when	publishing	the	site.

ActiveWeb.OptimizeHTMLPublishFlags	=	fpHtmlOptOn	_

				+	fpHtmlOptAuthorComponents	+	fpHtmlOptBrowseComponents

OrganizationName	Property
Returns	the	name	of	the	organization	for	the	application.	Read-only	String.

Note		The	name	of	the	organization	is	usually	set	during	the	installation	of	an
application	or	operating	system.

Example

Instead	of	creating	a	company	name	variable	for	your	Web	page,	you	can	use	the
organization	name	as	shown	in	the	following	statement.

myCompanyName	=	Application.OrganizationName

	 	

PageWindows	Property
Returns	the	specified	PageWindowEx	object.

expression.PageWindows

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

Example

The	following	example	retrieves	a	page	window	that	contains	the	page
Spain.htm	and	sets	the	view	mode	to	Preview.

Note		To	run	this	procedure,	you	must	have	an	open	Web	site	that	contains	an
open	page	called	Spain.htm,	or	substitute	a	file	of	your	choice.

Private	Sub	SetPagePreview()

				Dim	myPage	As	PageWindowEx

				Set	myPage	=	ActiveWebWindow.PageWindows("Spain.htm")

				myPage.ViewMode	=	fpPageViewPreview

End	Sub

Parent	Property
Returns	an	Object	that	represents	the	Parent	object	for	the	specified	object.

expression.Parent

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Specifying	the	Parent	property	of	a	WebFile	object	returns	the	WebFolder
object.	When	an	object	is	contained	in	a	Web	site,	the	Parent	property	returns
the	WebEx	object.	For	example,	if	the	Theme	object	is	contained	in	a	WebEx
object	called	"Adventure	Works	Web",	the	Parent	property	returns	"Adventure
Works	Web";	otherwise,	for	a	theme	referenced	outside	of	a	WebEx	object,	the
Parent	property	returns	the	name	of	the	Application	object—	in	this	case,
"Microsoft	FrontPage".	However,	when	the	System	object	is	specified	from	a
client	computer,	the	Parent	property	returns	the	Application	object	of	the	host,
not	the	client.

The	following	table	describes	the	values	returned	for	the	different	object	types.

Object Description
MetaTags Returns	the	WebFile	object	for	the	META	tags.

NavigationNode
Returns	the	parent	NavigationNode	object,	except	in	the
case	of	the	RootNavigationNode	object,	whose	parent	is	the
WebEx	object.

NavigationNodes Returns	the	parent	NavigationNode	object	for	the	collectionof	navigation	nodes	based	on	the	navigation	structure.

PageWindowEx Returns	the	WebWindowEx	or	Application	object	in	which
the	page	resides.

PageWindows Returns	the	Application	object	that	contains	the	collection.

Properties Returns	the	WebEx,	WebFile,	or	WebFolder	object	from
the	META	tag	information.

System Returns	the	Application	object.
Theme Returns	the	parent	WebEx	or	WebFile	object	for	the	theme.
Themes Returns	the	WebEx	object	that	contains	the	collection.
WebEx Returns	the	Application	object.
WebFile Returns	the	WebFolder	object.
WebFiles Returns	the	parent	WebFolder	object.

WebFolder
Returns	either	the	parent	WebFolder	object	(if	it's	a
subfolder)	or	the	WebEx	object	for	the	root	folder.

WebFolders Returns	the	WebFolder	object	that	contains	the	collection.
Webs Returns	the	Application	object.

WebWindowEx Returns	the	Application	object	that	contains	the	specified
object.

WebWindows Returns	the	Application	object	that	contains	the	collection.

Example

In	the	following	example,	myParent	returns	the	file	type	and	build	of	the	parent
application	for	the	active	Web	site.

Private	Sub	GetParentInfo()

				Dim	myWeb	As	WebEx

				Dim	myParent	As	String

				Dim	myParentBuild	As	String

				Set	myWeb	=	Application.ActiveWeb

				With	myWeb

								myParent	=	.Parent.FileSearch.FileType

								myParentBuild	=	.Parent.Build

				End	With

End	Sub

Prev	Property
Returns	a	NavigationNode	object	that	represents	the	previous	navigation	node
in	the	navigation	sequence.	Read-only.

expression.Prev

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Example

The	following	example	moves	the	navigation	pointer	to	the	previous	node,
unless	the	current	node	is	the	first	node	of	the	level	in	the	navigation	structure.

Private	Sub	MovePrev()

				Dim	theNode	as	NavigationNode

				Dim	thePrevNode	as	NavigationNode

				On	Error	Resume	Next

				Set	theNode	=	ActiveWeb.HomeNavigationNode.Children(1)

				Set	thePrevNode	=	theNode.Prev

				If	Err	<>	0	Then

												MsgBox	"The	current	navigation	level	starts	here."

				End	If

End	Sub

	 	

PreviewDocument	Property
Returns	an	IHTMLDocument2	object	that	represents	the	document	in	the
preview	mode	of	the	Page	view.

expression.PreviewDocument

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

Remarks

The	PreviewDocument	property	returns	nothing	if	the	active	page	window	is
not	currently	in	preview	mode.

Example

The	following	example	displays	the	title	of	the	document	currently	in	preview
mode.	If	there	is	no	document	in	preview	mode,	a	message	is	displayed	to	the
user.

Sub	PreviewDocument()

'Displays	the	title	of	the	document	currently	in	preview	mode

				Dim	FPApp	As	FrontPage.Application

				Dim	objPageWindow	As	PageWindowEx

				Set	FPApp	=	FrontPage.Application

				Set	objPageWindow	=	FPApp.ActivePageWindow

				'If	the	page	window	is	in	preview	mode,	display	the	title

				If	objPageWindow.ViewMode	=	fpPageViewPreview	Then

								MsgBox	"The	title	of	the	document	is:	"	_

															&	objPageWindow.PreviewDocument.Title

				Else

								MsgBox	"The	page	window	is	not	in	preview	mode."

				End	If

End	Sub

ProductCode	Property
Returns	the	globally	unique	identifier	(GUID)	for	Microsoft	FrontPage.	Read-
only	String.

expression.ProductCode()

expression				Required.	An	expression	that	returns	an	Application	object.

Example

This	statement	returns	the	Product	ID	for	FrontPage.

mySystem	=	Application.ProductCode

	 	

ProfileString	Property
Returns	or	sets	a	String	that	represents	an	entry	in	the	Microsoft	Windows
registry	under	the	following	subkey:

HKEY_CURRENT_USER\Software\Microsoft\FrontPage\

expression.ProfileString(RegistrySection,	RegistryKey)

expression				Required.	An	expression	that	returns	a	System	object.

RegistrySection				Required	String.	A	subkey	below	the
"HKEY_CURRENT_USER\Software\Microsoft\FrontPage\"	subkey	in	the
Windows	registry.

RegistryKey				Required	String.	The	name	of	the	entry	in	the	subkey	specified
by	szSection.	For	example,	Software	or	Network	in	the	Registry	Editor	are
subkeys.

Example

The	following	example	returns	the	value	of	the	subkey,	0	(zero),	in	the	Recently
Used	URLs	entry.

Note		To	run	this	example,	you	must	have	recently	opened	a	page	that	exists	in
one	of	your	Web	sites.

Private	Sub	GetRegRecentlyUsedInfo()

				Dim	mySecKey	As	String

				Dim	myRegKey	As	String

				Dim	myProfile	As	String

				mySecKey	=	"HKEY_CURRENT_USER\Software"

				mySecKey	=	mySecKey	&	_

												"\Microsoft\FrontPage\Editor\Recently	Used	URLs"

				myRegKey	=	"0"

				myProfile	=	System.ProfileString(mySecKey,	myRegKey)

End	Sub

Properties	Property
Returns	a	Properties	collection	that	represents	the	properties	for	the	specified
object.

expression.Properties

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	adds	a	new	property	and	displays	it	on	the	active	Web
page.

Note		To	run	this	example,	you	must	have	a	Web	site	called	"C:\My
Documents\My	Web	Sites\Rogue	Cellars"	and	a	file	called	"Zinfandel.htm".	Or,
you	may	substitute	an	alternative	Web	site	URL	and	file	name.

Private	Sub	CopyrightAdd()

				Dim	myWeb	As	WebEx

				Dim	myCopyright	As	String

				myCopyright	=	"Copyright	1999	by	Rogue	Cellars"

				Set	myWeb	=	Webs.Open("C:\My	Documents\My	Web	Sites\Rogue	Cellars")

				myWeb.Activate

				ActiveWeb.Properties.Add	"Copyright",	myCopyright

				ActiveWeb.RootFolder.Files("Zinfandel.htm").Open

				ActiveDocument.body.insertAdjacentText	"BeforeEnd",	_

									ActiveWeb.Properties("Copyright")

				ActivePageWindow.Save

				ActiveWeb.Close

End	Sub

ReadOnly	Property
Returns	a	Boolean	that	determines	if	a	specified	field	has	read-only	permissions.
If	True,	the	field	cannot	be	modified	by	the	user.	Read-only.

expression.ReadOnly

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	stores	the	names	and	default	values	of	all	fields	with
read-only	permissions	in	the	first	list	of	the	active	Web	site.	If	the	active	Web
site	contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	FieldPermissions()

'Displays	read/write	permissions	of	all

'fields	in	the	list.

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	objFields	As	listFields

				Dim	strPerms	As	String

				Set	objApp	=	FrontPage.Application

				Set	objFields	=	objApp.ActiveWeb.Lists.Item(0).Fields

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objFields

													'If	field	is	read-only,	add	to	list

													If	objField.ReadOnly	=	True	Then

																If	strPerms	=	""	Then

																				'if	first	value	in	string

																				strPerms	=	objField.Name	&	"		-		"	&	_

																				objField.DefaultValue	&	vbCr

																Else

																				'add	value	to	string

																				strType	=	strPerms	&	objField.Name	&	"		-		"	&	_

																				objField.DefaultValue	&	vbCr

																End	If

													End	If

								Next	objField

				Else

								'display	message	to	user

								MsgBox	"The	active	Web	site	contains	no	lists."

				End	If

End	Sub

Show	All

ReadSecurity	Property
Returns	or	sets	an	FpListReadSecurity	constant	that	represents	which	users	can
read	the	information	in	a	specified	list.	Read/write.

FpListReadSecurity	can	be	one	of	these	FpListReadSecurity	constants.
fpListReadSecurityAll	All	users	can	read	the	list.
fpListReadSecurityOnlyOwn	Only	the	creator	of	the	list	can	read	it.

expression.ReadSecurity

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	the	read	permissions	of	all	lists	of	type
fpListBasicList	in	the	active	Web	site	to	fpListReadSecurityAll.	All	users	can
now	read	all	lists	of	type	fpListTypeBasicList.

Note		Use	the	ApplyChanges	method	to	save	any	changes	to	the	list.

Sub	ChangePermissions()

'Changes	permission	of	all	BasicLists	in	the	current	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objList	As	Object

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Cycle	through	each	list	and	check	for	list	type

				For	Each	objList	In	objLists

								'If	it's	a	BasicList	then	change	permissions

								If	objList.Type	=	fpListTypeBasicList	Then

												If	objList.ReadSecurity	<>	fpListReadSecurityAll	Then

																objList.ReadSecurity	=	fpListReadSecurityAll

												objList.ApplyChanges

												End	If

								End	If

				Next

End	Sub

RecentFile	Property
Returns	or	sets	a	Long	that	represents	the	number	of	days	that	a	new	or	recently
modified	file	shows	up	in	the	Recently	Added	Files	list	in	Reports	view.	For
example,	if	the	RecentFile	property	is	set	to	20,	a	new	file	or	a	file	that	has	been
modified	will	be	classified	as	recent	for	the	first	20	days	of	its	existence.
Read/write.

expression.RecentFile

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

Use	the	OlderFile	property	to	set	the	number	of	days	a	file	exists	in	a	Web	site
without	being	modified	before	it	shows	up	in	the	Older	Files	list	in	Reports	view.

Example

The	following	example	prompts	the	user	to	enter	the	number	of	days	a	file	can
exist	with	the	classification	recent,	and	then	sets	the	RecentFile	property	to	that
value.	The	subroutine	SetRecent	prompts	the	user	for	input,	performs	a
validation	on	the	input	data,	converts	it	to	the	correct	type,	and	sets	the
RecentFile	property	to	the	new	value.	If	the	value	is	of	an	incorrect	type,	an
error	message	is	displayed	to	the	user.

Sub	FPRecentFile()

'Sets	a	value	that	determines	how	long	a	file	can	be	classified	recent

			Dim	objApp	As	FrontPage.Application

			Set	objApp	=	FrontPage.Application

			Call	SetRecent(objApp)

End	Sub

Sub	SetRecent(ByRef	objApp	As	Application)

'Sets	the	value	that	determines	how	long	a	file	will	be	classified	as	recent

				Dim	varNum	As	Variant

				Dim	lngNum	As	Long

				'Prompt	the	user	to	enter	a	value

				varNum	=	InputBox("Enter	the	number	of	days	a	file	"	&	_

																						"can	exist	before	it	is	classified	as	old.")

				'Check	to	see	that	the	value	is	of	the	correct	type

				If	IsNumeric(varNum)	Then

							'If	it's	numeric,	convert	it	to	Long

							lngNum	=	CLng(varNum)

							'Set	the	RecentFile	value	to	the	new	value

							objApp.RecentFile	=	lngNum

							'Display	the	new	setting	information	to	the	user

							MsgBox	"The	RecentFile	value	was	set	correctly."	&	vbCr	&	_

														"The	number	of	days	a	new	or	modified	file	will	be	classified	as	recent	is	"	_

															&	lngNum	&	"."

				Else

							'Otherwise,	display	an	error	message	to	the	user

							MsgBox	"The	input	value	was	incorrect.",	vbCritical

				End	If

End	Sub

Required	Property
Returns	or	sets	a	Boolean	that	determines	if	the	field	is	required.	If	the	field	is
required,	it	cannot	be	removed	from	the	current	list.	Read/write.

expression.Required

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	names	and	default	values	of	all	required
fields	in	the	current	list.	If	no	required	fields	exist	or	if	the	active	Web	site
contains	no	lists,	a	message	is	displayed	to	the	user.

Sub	DisplayRequiredFields()

'Displays	the	names	and	default	values

'of	all	required	fields	in	the	first	list	of

'the	web.

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	objFields	As	ListFields

				Dim	strReq	As	String

				Dim	BlnFound	As	Boolean

				Set	objApp	=	FrontPage.Application

				Set	objFields	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'set	found	flag	to	false

				BlnFound	=	False

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objFields

													'If	field	is	required,	add	to	list

												If	objField.Required	=	True	Then

																If	strReq	=	""	Then

																				'if	first	value	in	string

																				strReq	=	objField.Name	&	"		-		"	&	_

																				objField.DefaultValue	&	vbCr

																				'The	list	contains	at	least	1	required	field

																				BlnFound	=	True

																Else

																				'add	value	to	string

																				strReq	=	strReq	&	objField.Name	&	"		-		"	&	_

																				objField.DefaultValue	&	vbCr

																End	If

												End	If

								Next	objField

				Else

								'display	message	to	user

								MsgBox	"The	active	web	contains	no	lists."

				End	If

				If	BlnFound	=	True	Then

								MsgBox	"The	current	list	contains	the	following	required	fields:	"	&	_

															vbCr	&	strReq

				Else

								MsgBox	"The	current	list	contains	no	required	field(s)."

				End	If

End	Sub

Show	All

ReturnType	Property
Returns	an	FpFieldType	that	represents	the	type	of	field.

FpFieldType	can	be	one	of	the	following	FpFieldType	constants.

fpFieldAttachments Returns	a	ListFieldAttachments	object.
fpFieldChoice Returns	a	ListFieldChoice	object.
fpFieldComputed Returns	a	ListFieldComputed	object.
fpFieldCounter Returns	a	ListFieldCounter	object.
fpFieldCurrency Returns	a	ListFieldCurrency	object.
fpFieldDateTime Returns	a	ListFieldDateTime	object.
fpFieldFile Returns	a	ListFieldFile	object.
fpFieldInteger Returns	a	ListFieldInteger	object.
fpFieldLookup Returns	a	ListFieldLookup	object.
fpFieldMultiLine Returns	a	ListFieldMultiline	object.
fpFieldNumber Returns	a	ListFieldNumber	object.
fpFieldRatingScale Returns	a	ListFieldRatingScale	object.
fpFieldSingleLine Returns	a	ListFieldSingleLine	object.
fpFieldTrueFalse Returns	a	ListFieldTrueFalse	object.
fpFieldURL Returns	a	ListFieldURL	object.

expression.ReturnType

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

RevisionControlProject	Property
Returns	or	sets	the	RevisionControlProject	property.	Read/write	String.

expression.RevisionControlProject()

expression				Required.	An	expression	that	returns	a	WebEx	object.

Remarks

A	revision	control	project	can	either	be	a	Microsoft	Visual	SourceSafe	project,	or
a	FrontPage-based	locking	project.	For	a	Visual	SourceSafe	control	project,	you
must	start	the	RevisionControlProject	property	with	the	string	"$/";	for	a
FrontPage-based	locking	control	project,	you	must	set	the
RevisionControlProject	property	to	"<FrontPage-based	Locking>".

To	remove	a	source	control	project,	set	the	RevisionControlProject	property	to
an	empty	string.

Example

The	following	example	sets	the	RevisionControlProject	property	in	a	Visual
SourceSafe	project.

Private	Sub	SetRevisionControlProjectName()

				Dim	myWeb	As	WebEx

				Dim	myRevisionControlProject	As	String

				Set	myWeb	=	ActiveWeb

				myRevisionControlProject	=	_

									"$/Rogue	Cellars/Rogue	Cellars	Update"

				myWeb.RevisionControlProject	=	_

									myRevisionControlProject

End	Sub

	 	

RootFolder	Property
Returns	a	WebFolder	object	that	represents	the	active	WebEx	object's	root.

expression.RootFolder()

expression				Required.	An	expression	that	returns	a	WebEx	object.

Example

The	following	statement	returns	the	name	of	the	root	folder.

ActiveWeb.RootFolder.Name

	 	

RootNavigationNode	Property
Returns	a	NavigationNode	object	that	represents	the	top-level	navigation	node.

expression.RootNavigationNode()

expression				Required.	An	expression	that	returns	a	WebEx	object.

Remarks

You	can	use	the	RootNavigationNode	property	to	determine	the	root	navigation
node.	The	RootNavigationNode	property	returns	the	NavigationNode	object
from	which	you	can	access	all	other	navigation	nodes	in	a	Web	site.	The
RootNavigationNode	object	is	created	by	default	when	you	create	a	Web	site
and	provides	the	basis	for	the	navigation	structure,	which	is	accessed	through	the
Children	collection.	The	first	child	node	of	the	navigation	structure	is	the	home
page	of	the	Web	site.

Example

The	following	example	adds	a	global	navigation	node	to	the	right	of	the	home
navigation	node.

Private	Sub	AddNode()

				Dim	myRNode	As	NavigationNode

				Dim	myPage	As	String

				Set	myRNode	=	ActiveWeb.RootNavigationNode

				myPage	=	"http://myServer/myWeb/search.htm"

				Call	myRNode.Children.Add(myPage,	"Search",	_

									fpStructRightmostChild)

				ActiveWeb.ApplyNavigationStructure

End	Sub

Show	All

SelectedFiles	Property
Returns	an	array	of	WebFile	objects	representing	the	selected	files.

expression.SelectedFiles

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

Remarks

You	must	have	Folders	view	open	in	Microsoft	FrontPage	in	order	to	select
multiple	files	and	you	must	use	the	right	pane	to	select	the	files.	From	Folders
view	you	can	select	multiple	files	in	a	single	Web	site	or	in	multiple	Web	sites.	If
you	must	use	Page	view,	you	can	only	select	one	file	per	Web	site	from	the	left
pane.

Tip

You	can	use	the	fpWebViewFolders	constant	of	the	ViewMode	property	to	set
the	view	to	the	Folders	view.

Example

The	following	example	concatenates	the	names	of	the	selected	files.

Note		The	delimiter	used	to	separate	the	file	names	in	the	variable	mySelName	is
a	space.

Private	Sub	GetSelectedFileNames()

				Dim	myWebWindows	As	WebWindows

				Dim	myWebWindow	As	WebWindowEx

				Dim	mySelFiles	As	Variant

				Dim	mySelFile	As	WebFile

				Dim	mySelName	As	String

				Dim	myCount	As	Integer

				Set	myWebWindows	=	WebWindows

				mySelFiles	=	ActiveWebWindow.SelectedFiles

				For	myCount	=	0	To	UBound(mySelFiles)

									Set	mySelFile	=	mySelFiles(myCount)

									mySelName	=	mySelName	&	"	"	&	mySelFile.Name

				Next

End	Sub

SelectedFolders	Property
Returns	an	array	of	WebFolder	objects	representing	the	selected	folders.

expression.SelectedFolders

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

Remarks

You	must	have	Folders	view	open	in	Microsoft	FrontPage	in	order	to	select
multiple	folders	and	you	must	use	the	right	pane	to	select	the	folders.	From
Folders	view,	you	can	select	multiple	folders	in	a	single	Web	site	or	in	multiple
Web	sites.	If	you	must	use	Page	view,	you	can	only	select	one	folder	per	Web
site	from	the	folders	in	the	left	pane.

Note			If	you're	programmatically	selecting	folders,	you	can	use	the
fpWebViewFolders	constant	of	the	ViewMode	property	to	set	the	view	to
Folders	view.

Example

The	following	example	concatenates	the	names	of	the	selected	folders.

Note		The	delimiter	used	to	separate	the	folder	names	in	the	variable	mySelName
is	a	space.

Private	Sub	GetSelectedFolderNames()

				Dim	myWebWindows	As	WebWindows

				Dim	myWebWindow	As	WebWindowEx

				Dim	mySelFolders	As	Variant

				Dim	mySelFolder	As	WebFolder

				Dim	mySelName	As	String

				Dim	myCount	As	Integer

				Set	myWebWindows	=	WebWindows

				mySelFolders	=	ActiveWebwindow.SelectedFolders

				For	myCount	=	0	To	UBound(mySelFolders)

					Set	mySelFolder	=	mySelFolders(myCount)

					mySelName	=	mySelName	&	"	"	&	mySelFolder.Name

				Next

End	Sub

Show	All

SharedBorders	Property
True	if	any	shared	borders	are	in	use	for	the	WebEx	or	WebFile	object.
Read/write	Variant.

expression.SharedBorders(BorderIndex)

expression				Required.	An	expression	that	returns	a	WebEx	or	WebFile	object.

BorderIndex				Optional	FpSharedBorders.	The	border	index	can	be	one	of	the
FpSharedBorders	constants.	The	default	constant	is	fpBorderTop.

FpSharedBorders Value Description
fpBorderTop 1 Sets	a	border	for	the	top	of	a	page.
fpBorderLeft 2 Sets	a	border	for	the	left	side	of	a	page.
fpBorderRight 4 Sets	a	border	for	the	right	side	of	a	page.
fpBorderBottom 8 Sets	a	border	for	the	bottom	of	a	page.
fpBorderAll 255	or	&HFF Sets	borders	on	all	sides	of	a	page.

Remarks

Shared	borders,	such	as	the	constant	fpBorderLeft,	can	be	used	to	set	individual
border	values.

Note		The	default	shared	border	is	used	if	a	shared	border	is	not	specified.

Example

The	following	example	sets	the	shared	border	for	the	active	Web	site.

Private	Sub	SetSharedBorders()

				Dim	myPage	As	PageWindowEx

				ActiveWeb.SharedBorders(fpBorderLeft)	=	True

End	Sub

ShowAsPercentage	Property
Returns	or	sets	a	Boolean	that	determines	if	the	value	in	the	field	will	be
displayed	as	a	percentage.	Read/write.

expression.ShowAsPercentage

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	the	ShowAsPercentage	property	of	all	fields	of	type
fpFieldNumber	to	True.	The	values	in	the	fields	will	now	appear	as
percentages.

Note					Use	the	ApplyChanges	method	to	apply	any	changes	made	to	the	list.

Sub	DisplayAsPercentage()

'Displays	all	fields	of	type	fpFieldNumber	as

'a	percentage

				Dim	objApp	As	FrontPage.Application

				Dim	objLstFlds	As	ListFields

				Dim	strName	As	String

				Dim	objLstFld	As	Object

				Set	objApp	=	FrontPage.Application

				Set	objLstFlds	=	objApp.ActiveWeb.Lists.Item(0).Fields

				'Cycle	through	lists	and	displays	as	a	percentage

				For	Each	objLstFld	In	objLstFlds

								If	objLstFld.Type	=	fpFieldNumber	Then

												objLstFld.ShowAsPercentage	=	True

								End	If

				Next	objLstFld

				objApp.ActiveWeb.Lists.Item(0).ApplyChanges

End	Sub

ShowStartupDialog	Property
Returns	or	sets	a	Boolean	that	determines	if	the	New	task	pane	will	be	displayed
when	Microsoft	FrontPage	is	started.

expression.ShowStartupDialog

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

The	ShowStartup	property	is	global,	meaning	that	any	changes	will	not	take
affect	until	FrontPage	is	restarted.

Example

The	following	example	sets	the	ShowStartupDialog	property	to	True.	The	next
time	FrontPage	is	started,	the	New	pane	will	appear.

Sub	TaskPaneStartup()

'Modifes	the	Startup	task	pane	property

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				With	objApp

							'Set	to	True,	the	task	pane	will	appear	on	startup

							.ShowStartupDialog	=	True

				End	With

End	Sub

ShowUserNamesInResults	Property
Returns	or	sets	a	Boolean	that	determines	if	the	names	of	users	who	have
completed	the	survey	will	be	visible.	Read/write.

expression.ShowUserNamesInResults

expression				Required.	An	expression	that	returns	a	Survey	object.

Example

The	following	example	sets	the	ShowUserNamesInResults	property	for	each
Survey	object	in	the	active	Web	site	to	True,	displaying	the	names	of	all	users
who	completed	the	survey.

Note		Use	the	ApplyChanges	method	to	save	any	changes	made	to	the	list.

Sub	ChangePermissions()

'Changes	permission	of	all	BasicLists	in	the	current	Web	site

				Dim	objApp	As	FrontPage.Application

				Dim	objList	As	Object

				Dim	objLists	As	Lists

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				'Cycle	through	each	list	and	check	for	list	type

				For	Each	objList	In	objLists

								'If	it's	a	Survey	then	change	permissions

								If	objList.Type	=	fpListTypeSurvey	Then

												If	objList.ShowUserNamesInResults	<>	True	Then

																objList.ShowUserNamesInResults	=	True

																objList.ApplyChanges

												End	If

								End	If

				Next

End	Sub

SlowPage	Property
Returns	or	sets	a	Long	that	specifies	the	number	of	seconds	a	page	can	take	to
download	before	it	is	classified	as	slow.	Pages	that	are	classified	as	slow	appear
in	the	Slow	Pages	list	in	the	Microsoft	FrontPage	Reports	view.	Read/write.

expression.SlowPage

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

The	SlowPage	property	is	used	in	conjunction	with	the	ConnectionSpeed
property	to	determine	the	simulated	download	time	of	a	Web	page.

Example

The	following	example	sets	the	SlowPage	property	to	10	seconds,	indicating	that
all	pages	that	take	over	10	seconds	to	download	(in	this	case,	using	a	56K
modem)	will	be	classified	as	slow	in	the	FrontPage	Reports	view.

Sub	SetSlowPage()

'Modifies	the	SlowPage	property

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				With	objApp

								'Set	value	to	10,	slow	pages	take	at	least	10	seconds

								.SlowPage	=	10

								'Set	user's	connection	speed	to	56K	modem

								.ConnectionSpeed	=	fpConnect56K

				End	With

End	Sub

StartNumber	Property
Returns	a	Long	that	represents	the	starting	number	for	the	number	scale	in	a
rating	scale	field.

expression.StartNumber

expression				Required.	An	expression	that	returns	a	ListFieldRatingScale
object.

Subject	Property
Sets	or	returns	a	String	that	represents	the	subject	of	a	Web	package.

expression.Subject

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	creates	a	new	Web	package	and	adds	the	page	"test.htm"
to	the	package,	including	all	dependencies	for	the	page,	and	then	saves	the	new
Web	package.

Dim	objWeb	As	WebEx

Dim	objPackage	As	WebPackage

Set	objWeb	=	ActiveWeb

Set	objPackage	=	objWeb.CreatePackage("New	Web	Package")

With	objPackage

				.Author	=	"John	Smith"

				.Company	=	"Fourth	Coffee"

				.Subject	=	"This	is	a	new	Web	package	for	Fourth	Coffee."

				.Add	objWeb.Url	&	"/test.htm",	fpDepsDefault

				.Save	"c:\NewWebPackage.fwp",	True

End	With

SubTree	Property
Returns	a	NavigationNodes	collection	object	that	represents	a	collection	of	all
the	nodes	in	the	subtree	of	the	current	navigation	node.	A	subtree	of	a	node	is
defined	as	all	nodes	which	are	adjacent	to	or	attached	to	the	parent	node	and
appear	below	the	parent	node	in	the	tree	hierarchy.

expression.SubTree

expression				Required.	An	expression	that	returns	a	NavigationNode	object.

Example

The	following	example	prompts	the	user	to	enter	the	name	of	a	navigation	node
in	the	current	Web	site	and	returns	the	subtree	for	that	particular	node.	If	the
node	is	found,	its	label	property	value	is	added	to	a	String	containing	the	names
of	all	nodes	in	the	parent	node's	subtree.	The	String	stored	in	the	variable
strSubNodes	is	displayed	to	the	user.	If	the	node	is	not	found	in	the	Web	site,	a
message	is	displayed	to	the	user.

Sub	DisplaySubTree()

'Returns	the	subtree	of	a	given	node

				Dim	objApp	As	FrontPage.Application

				Dim	objNavNode	As	NavigationNode

				Dim	objNavNodes	As	NavigationNodes

				Dim	objSubTree	As	NavigationNodes

				Dim	objSubNode	As	NavigationNode

				Dim	strAns	As	String						'User	input

				Dim	blnFound	As	Boolean			'Boolean	found	flag

				Dim	intCount	As	Integer			'Integer	counter

				Dim	strSubNodes	As	String	'Names	of	all	sub	nodes

				blnFound	=	False

				intCount	=	0

				Set	objApp	=	FrontPage.Application

				'Create	a	reference	to	the	NavigationNodes	collection

				Set	objNavNodes	=	objApp.ActiveWeb.AllNavigationNodes

				'Prompt	the	user	to	enter	the	name	of	the	node

				strAns	=	InputBox("Enter	the	name	of	the	node	for	which	"	&	_

																							"	you	want	to	view	the	subtree.")

				'While	the	node	is	not	found	and	there	are	more	nodes	in	the	tree

				Do	While	(Not	blnFound	=	True)	And	(intCount	<=	objNavNodes.Count	-	1)

								'Compare	user	input	with	node	label

								If	Trim(strAns)	=	objNavNodes.Item(intCount).Label	Then

												'If	found,	return	node

												Set	objNavNode	=	objNavNodes.Item(intCount)

												'Set	found	flag	to	true

												blnFound	=	True

								Else

												'Otherwise	increase	counter,	keep	checking

												intCount	=	intCount	+	1

								End	If

				Loop

				If	blnFound	=	True	Then

							Set	objSubTree	=	objNavNode.SubTree

							For	Each	objSubNode	In	objSubTree

											'If	the	string	is	empty	or	has	not	yet	been	set

											If	strSubNodes	=	""	Then

															strSubNodes	=	strSubNodes	&	objSubNode.Label

											Else

															'otherwise	add	next	node	lable	to	string

															strSubNodes	=	strSubNodes	&	",	"	&	vbCr	&	objSubNode.Label

											End	If

							Next	objSubNode

							'Display	names	of	all	nodes	in	subtree

							MsgBox	"The	nodes	found	in	the	subtree	of	"	&	objNavNode.Label	&	"	are:	"	_

														&	vbCr	&	vbCr	&	strSubNodes	&	"."

				Else

							'If	not	found,	display	message	to	user

							MsgBox	"The	navigation	node	"	&	strAns	&	"	was	not	found."

				End	If

End	Sub

Show	All

SubViewMode	Property
Returns	or	sets	an	FpWebSubView	constant	that	determines	the	view	type	in	the
current	sub	window.	Read/write.

FpWebSubView	can	be	one	of	these	FpWebSubView	constants.
fpWebSubViewFolders	Change	the	current	sub	window	view	to	Folders	view.
fpWebSubViewNavigation	Change	the	current	sub	window	to	Navigation
view.
fpWebSubViewNone	Close	the	current	sub	window.

expression.SubViewMode

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

Example

The	following	example	prompts	the	user	to	open	the	sub	window	in	Folders
view	if	the	sub	window	is	not	currently	visible.	If	the	sub	window	is	currently
open,	the	user	is	not	prompted	and	the	program	ends.

Sub	SubModeType()

'Modifies	the	sub	window	view	mode	of	the	current	web	window

				Dim	objApp	As	FrontPage.Application

				Dim	objWebwdw	As	WebWindowEx

				Dim	strAns	As	String

				Set	objApp	=	FrontPage.Application

				Set	objWebwdw	=	objApp.ActiveWebWindow

				'Check	if	the	sub	window	is	open	or	closed

				If	objWebwdw.SubViewMode	=	fpWebSubViewNone	Then

								strAns	=	MsgBox("The	subwindow	is	not	visible."	&	_

																								"Would	you	like	to	view	the	subwindow?",	vbYesNo)

								'Prompt	the	user	to	open	the	subwindow

								If	strAns	=	vbYes	Then

												'Change	the	sub	window	to	Folder	view

												objWebwdw.SubViewMode	=	fpWebSubViewFolders

								End	If

				End	If

End	Sub

System	Property
Returns	the	System	object.

expression.System()

expression				Required.	An	expression	that	returns	an	Application	object.

Example

This	statement	returns	the	current	operating	system.

mySystem	=	Application.System.OperatingSystem

	 	

Template	Property
Returns	or	sets	a	String	that	represents	the	file	path	of	the	template	applied	to
the	document	library.	Read/write.

expression.Template

expression				Required.	An	expression	that	returns	a	DocumentLibrary	object.

Example

The	following	example	creates	a	reference	to	a	document	library	named
NewLibrary	and	displays	the	file	path	of	the	template	associated	with	the	library.

Sub	TemplatePath()

'Displays	the	file	path	of	the	template

				Dim	objApp	As	FrontPage.Application

				Dim	objLists	As	Lists

				Dim	objLibrary	As	DocumentLibrary

				Set	objApp	=	FrontPage.Application

				Set	objLists	=	objApp.ActiveWeb.Lists

				Set	objLibrary	=	objLists.Item("NewLibrary")

				'Display	message	to	user

				MsgBox	"The	file	path	of	the	template	associated	with	the	"	&	_

												"document	library	is	"	&	objLibrary.Template	&	"."

End	Sub

Show	All

ThemeProperties	Property
Returns	the	Theme	object	for	the	specified	object.

expression.ThemeProperties(PropertyIndex)

expression				An	expression	that	returns	a	PageWindowEx,	WebEx,	or	WebFile
object.

PropertyIndex				Optional	FpThemeProperties.	Returns	or	sets	the	theme
properties.

For	more	detailed	information	on	the	individual	Type	constants	shown	in	the
following	table,	see	the	tables	and	lists	in	the	ApplyTheme	method.

FpThemeProperties Value Description

fpThemeActiveGraphics 16	or	&H10 Returns	the	active	graphics
constant.

fpThemeBackgroundImage 1 Returns	a	background	image.

fpThemeCSS 4096	or
&H1000 Returns	the	cascading	style	sheet.

fpThemeDefaultSettings
16777216
or
&H1000000

Returns	the	theme	applied	to	the
web.

fpThemeName
33554432
or
&H2000000

Returns	the	ThemeName
constant.

fpThemeNoBackgroundImage 0 Returns	a	background	without	an
image.

fpThemeNoCSS 0
Returns	this	property	if	a
cascading	style	sheet	has	not	been
set	or	is	not	wanted.

fpThemeNormalColors 0 Returns	the	color	mode	for
normal	color.
Returns	the	graphics	mode	for

fpThemeNormalGraphics 0 normal	graphics.

fpThemePropertiesAll 4369	or
&H1111

Returns	all	of	the	theme
properties.	After	a	theme	is
applied	to	an	object,	the
fpThemePropertiesAll	property
combines	all	the	properties
applied	to	the	object.

fpThemePropertiesNone 0 Returns	none	for	the	theme
properties.

fpThemeVivdColors 256 Returns	the	vivid	colors	property.

Example

The	following	example	checks	the	theme	properties	for	active	graphics.	If	active
graphics	have	been	applied,	then	vivid	colors	are	applied	in	addition	to	the	theme
properties	that	are	already	applied	to	the	active	page	window.	If	active	graphics
aren't	applied,	then	active	graphics	and	vivid	colors	are	both	applied	to	the	active
page	window.

Private	Sub	GetThemeProperties()

				Dim	myPageWindow	As	PageWindowEx

				Set	myPageWindow	=	ActiveWeb.ActiveWebWindow.ActivePageWindow

				If	myPageWindow.ThemeProperties(fpThemeActiveGraphics)	Then

								myPageWindow.AppyTheme	(fpThemePropertiesAll	+	_

												fpThemeVividColors)

								Exit	Sub

				Else

								myPageWindow.ApplyTheme	(fpThemePropertiesAll	+	_

												fpThemeActiveGraphics	+	fpThemeVividColors)

			End	If

End	Sub

The	following	example	adds	a	background	picture	to	the	specified	file.

Private	Sub	AddBackgroundImage()

				Dim	myFile	As	WebFile

				Set	myFile	=	Webs(0).Rootfolder.Files("index.htm")

				If	myFile.ThemeProperties(fpThemeBackgroundImage)	=	0	Then

								myFile.ApplyTheme	myFile.ThemeProperties(fpThemeName),	_

												myfile.ThemeProperties(fpThemePropertiesAll)	+	_

												fpThemeBackgroundImage

				End	If

End	Sub

Themes	Property
Returns	a	Themes	collection	that	represents	the	themes	available	for	the
specified	object.

expression.Themes

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Remarks

The	Themes	property	as	applied	to	the	Application	object	returns	the	collection
of	themes	available	to	be	applied.	When	the	Themes	property	is	applied	to	the
WebEx	object,	it	returns	the	collection	of	themes	that	have	been	applied	to	the
Web	site.	This	is	the	same	as	the	list	that	appears	in	the	Web’s	_theme	directory.
If	a	theme	is	applied	to	a	WebEx	object,	there	will	be	one	theme	in	the
collection.	However,	if	a	page	in	a	Web	site	has	its	own	theme,	separate	from	the
theme	that	was	applied	to	the	Web	site,	then	the	Themes	collection	for	the
WebEx	object	will	have	two	themes	in	it—	the	theme	that	was	originally	applied
to	the	Web	site,	and	the	theme	that	was	applied	specifically	to	the	page.

Example

The	following	example	searches	for	a	specific	theme	among	the	themes	that	are
available	locally	on	the	client,	as	well	as	the	themes	applied	to	the	active	Web
site.

Private	Sub	SearchAllThemes()

				Dim	myTheme	As	Theme

				Dim	myThemeToFind	As	String

				Dim	myIsFound	As	Boolean

				myThemeToFind	=	"blends"

				myIsFound	=	False

				For	Each	myTheme	In	Application.Themes

									If	myTheme.Label	=	myThemeToFind	Then

													myIsFound	=	True

													Exit	For

									End	If

				Next

				For	Each	myTheme	In	ActiveWeb.Themes

									If	myTheme.Label	=	myThemeToFind	Then

													myIsFound	=	True

													Exit	For

									End	If

				Next

End	Sub

	 	

Title	Property
Returns	the	title	of	the	specified	object.	Read-only	or	read/write	String
depending	on	the	specified	object.

expression.Title

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Remarks

For	the	WebEx	and	WebFile	objects	the	Title	property	returns	the	title	of	the
active	WebEx	object	as	a	read/write	String.

Example

At	the	same	time	as	you're	traversing	the	navigation	nodes,	you	can	also	return
the	title	(file	name)	of	the	file	that's	associated	with	a	particular	node.	The
following	example	returns	the	title	of	the	file	associated	with	a	navigation	node
in	the	active	Web	site.

Private	Sub	GetFileFromNavNode()

				Dim	myWeb	As	WebEx

				Dim	myNavNode	As	NavigationNode

				Dim	myFileFromNavNode	As	String

				Set	myWeb	=	ActiveWeb

				Set	myNavNode	=	_

									myWeb.RootNavigationNode.File.NavigationNode

				With	myNavNode

									myFileFromNavNode	=	.File.Title

				End	With

End	Sub

	 	

The	following	example	shows	how	you	can	set	the	title	of	the	first	file	in	the
Web	site.

Private	Sub	SetTitle()

				Dim	myWeb	As	WebEx

				Dim	myNewTitle	As	String

				Dim	myFile	As	WebFile

				MyNewTitle	=	"Inventory.htm"

				Set	myWeb	=	ActiveWeb

				Set	myFile	=	myWeb.RootFolder.Files(0)

				MyFile.Title	=	myNewTitle

End	Sub

Show	All

Type	Property
Type	property	as	it	applies	to	the	BasicList,	DocumentLibrary,	List,	and

Survey	objects.

Returns	an	FpListType	constant	that	represents	the	type	of	the	current	list.
Read-only.

FpListType	can	be	one	of	these	FpListType	constants.
fpListTypeBasicList
fpListTypeDocumentLibrary
fpListTypeSurvey
fpListTypeDiscussion

expression.Type

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	all	other	objects	in	the	Applies	To	list.

Returns	an	FpFieldType	constant	that	represents	the	type	of	the	current	field.
Read-only.

FpFieldType	can	be	one	of	these	FpFieldType	constants.
fpFieldAttachments
fpFieldChoice
fpFieldComputed
fpFieldCounter
fpFieldCurrency
fpFieldDateTime
fpFieldFile
fpFieldInteger
fpFieldLookup
fpFieldMultiLine

fpFieldNumber
fpFieldRatingScale
fpFieldSingleLine
fpFieldTrueFalse
fpFieldURL

expression.Type

expression							Required.	An	expression	that	returns	one	of	the	objects	as
mentioned	above.

Example

As	it	applies	to	the	BasicList,	DocumentLibrary,	List,	and	Survey
objects.

The	following	example	displays	the	names	of	all	lists	in	the	active	Web	site	and
their	associated	type	names.	If	the	active	Web	site	contains	no	lists,	a	message	is
displayed	to	the	user.

Sub	ViewListTypes()

'Displays	the	name	of	the	list	and

'its	associated	type

				Dim	lstWebList	As	List

				Dim	strType	As	String

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

				'Cycle	through	lists

								For	Each	lstWebList	In	ActiveWeb.Lists

												'add	types	to	string

												If	strType	=	""	Then

																strType	=	lstWebList.Name	&	"	-	"	&	_

																lstWebList.Type	&	vbCr

												Else

																strType	=	strType	&	lstWebList.Name	&	"	-	"	&	_

																lstWebList.Type	&	vbCr

												End	If

								Next

												'Display	types	of	all	lists	in	the	web

												MsgBox	"The	list	types	in	the	current	web	are:"	_

												&	vbCr	&	strType

							Else

											'Otherwise	display	message	to	user

											MsgBox	"The	current	web	contains	no	lists."

					End	If

End	Sub

As	it	applies	to	the	ListField	object.

The	following	example	displays	the	names	of	all	fields	in	the	first	list	of	the
Lists	collection	and	their	associated	type	names.	If	the	active	Web	site	contains
no	lists,	a	message	is	displayed	to	the	user.

Sub	Fieldtype()

'Displays	the	field	types	of	the	current	list

				Dim	objApp	As	FrontPage.Application

				Dim	objField	As	ListField

				Dim	strType	As	String

				Set	objApp	=	FrontPage.Application

				If	Not	ActiveWeb.Lists	Is	Nothing	Then

								For	Each	objField	In	objApp.ActiveWeb.Lists.Item(0).Fields

												If	strType	=	""	Then

																strType	=	objField.Name	&	"	-	"	&	_

																objField.Type	&	vbCr

												Else

																strType	=	strType	&	objField.Name	&	"	-	"	&	_

																objField.Type	&	vbCr

												End	If

								Next	objField

												MsgBox	"The	names	of	the	fields	in	this	list	and	their	types	are:	"	&	_

												vbCr	&	strType

				Else

									'Otherwise	display	message	to	user

									MsgBox	"The	current	Web	site	contains	no	lists."

									End	If

End	Sub

Url	Property
Returns	the	URL	for	the	specified	object.	Read-only	String.

expression.Url

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	to	list.

Remarks

URLs	can	be	absolute	or	relative.	An	absolute	URL	contains	the	exact	path	to
the	specified	object	while	a	relative	URL	may	contain	characters	such	as	"../..",
"?",	or	";"	depending	on	the	URL	access	scheme	used	to	parse	the	relative	URL.
The	Microsoft	FrontPage	object	model	always	uses	absolute	URLs.	For	more
information	on	URLs,	see	Understanding	Absolute	and	Relative	URLs	in
FrontPage.

Example

The	following	example	returns	the	URL	of	the	first	file	in	the	root	folder	of	the
active	Web	site.

Private	Sub	GetFileUrl()

				Dim	myFile	As	WebFile

				Dim	myURL	As	String

				Set	myFile	=	ActiveWeb.RootFolder.Files(0)

				myURL	=	myFile.Url

End	Sub

UserName	Property
Returns	the	logon	name	of	the	user	that	is	currently	logged	on	to	the	network	or
operating	system.	Read/write	String.

expression.UserName

expression				Required.	An	expression	that	returns	an	Application	object.

Remarks

The	UserName	property	is	the	default	parameter	whenever	a	user	name	is
required	for	a	parameter	in	the	Web	Object	Model.	For	example,	the	Webs.Open
and	Webs.Publish	methods	both	require	a	UserName	parameter.	When	the
parameter	isn't	specified,	the	default	parameter	is	the	user	name	of	the	user
currently	logged	on.

Example

The	following	example	returns	the	current	user's	logon	name.

myLogonName	=	Application.UserName

VBE	Property
Returns	a	VBE	object	that	represents	the	Microsoft	Visual	Basic	Editor.

expression.VBE

expression				Required.	An	expression	that	returns	an	Application	object.

Example

The	following	example	creates	a	reference	to	the	Visual	Basic	Editor	and
displays	the	name	of	the	active	project	to	the	user.

Sub	ReturnVBE()

'Creates	a	reference	to	the	VBE	and	displays	a	message	to	user

				Dim	objApp	As	FrontPage.Application

				Set	objApp	=	FrontPage.Application

				'Display	the	name	of	the	active	project

				MsgBox	"The	name	of	the	active	project	is:	"	&	_

												objApp.VBE.ActiveVBProject.Name

End	Sub

Version	Property
Returns	the	version	of	the	specified	object	with	the	format:	"x.x.x",	where	x
represents	a	number	in	the	version.	Read-only	String.

expression.Version()

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	the	Application	object	is	specified,	the	Version	property	returns	the	version	of
the	application.	When	the	Version	property	for	the	System	object	is	accessed,	it
returns	the	current	version	of	the	operating	system	as	you	might	see	used	on	the
Properties	page	of	the	System	dialog	box.

Example

The	following	example	returns	the	version	of	the	application.

Public	Sub	GetAppVersion()

				Dim	myAppVersion	As	String

				myAppVersion	=	Application.Version

End	Sub

	 	

VerticalResolution	Property
Returns	the	vertical	resolution	of	the	screen	in	pixels.	Read-only	Long.

expression.VerticalResolution()

expression				Required.	An	expression	that	returns	a	System	object.

Example

This	example	returns	the	vertical	resolution	of	the	screen.

myVerticalRes	=	System.VerticalResolution

	 	

Show	All

ViewMode	Property	(Web	Object
Model)

ViewMode	property	as	it	applies	to	the	PageWindowEx	object.

Returns	or	sets	an	FpPageViewMode	constant	that	represents	the	view	mode	of
the	active	page	window.	Read/write.

FpPageViewMode	can	be	one	of	these	FpPageViewMode	constants.
fpPageViewNoFrames
fpPageViewNormal
fpPageViewNoWindow
fpPageViewPreview
fpPageViewDefault
fpPageViewHtml

expression.ViewMode

expression				Required.	An	expression	that	returns	a	PageWindowEx	object.

ViewMode	property	as	it	applies	to	the	WebWindowEx	object.

Returns	or	sets	an	FpWebViewMode	constant	that	defines	the	view	mode	of	the
current	window.	Read/write.

FpWebViewMode	can	be	one	of	these	FpWebViewMode	constants.
fpWebViewAllFiles
fpWebViewBrokenLinks
fpWebViewFolders
fpWebViewLinks
fpWebViewPage
fpWebViewSiteSummary
fpWebViewStructure

fpWebViewTodo

expression.ViewMode

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

ViewMode	property	as	it	applies	to	the	FPHTMLDocument	and
IFPDocument	objects.

Returns	a	Long	that	represents	the	view	mode	of	the	document.	Read-only.

expression.ViewMode(ViewMode)

expression				Required.	An	expression	that	returns	an	FPHTMLDocument	or
IFPDocument	object.

ViewMode			Required	Long.	The	new	viewing	mode.

Example

As	it	applies	to	the	PageWindowEx	object.

The	following	example	changes	the	view	mode	of	the	active	window	to	the
value	fpPageViewNormal	(Design	view)	if	it	is	not	already	in	the	default	view
mode.

Sub	ChangeViewMode()

'Changes	the	view	mode	of	the	active	window

					Dim	fpApp	As	FrontPage.Application

					Dim	objPage	As	PageWindowEx

					Set	fpApp	=	FrontPage.Application

					Set	objPage	=	fpApp.ActivePageWindow

					If	objPage.ViewMode	<>	fpPageViewDefault	Then

									objPage.ViewMode	=	fpPageViewNormal

									MsgBox	"The	current	page	window	has	been	restored	"	&	_

													"to	normal	view."

					End	If

End	Sub

As	it	applies	to	the	WebWindowEx	object.

The	following	example	changes	the	view	mode	of	the	active	Web	site	window	to
fpWebBrokenLinks	(Broken	Links	view)	if	the	window	is	not	already	in	the
view.

Sub	ChangeViewMode()

'Changes	the	view	mode	of	the	active	window

				Dim	fpApp	As	FrontPage.Application

				Dim	objWebWindow	As	WebWindowEx

				Set	fpApp	=	FrontPage.Application

				Set	objWebWindow	=	fpApp.ActiveWebWindow

				If	objWebWindow.ViewMode	<>	fpWebViewBrokenLinks	Then

								objWebWindow.ViewMode	=	fpWebViewBrokenLinks

								MsgBox	"The	current	page	window	has	been	restored	"	&	_

												"to	Broken	Links	view."

				End	If

End	Sub

As	it	applies	to	the	FPHTMLDocument	object.

The	following	example	displays	the	view	mode	of	the	active	document.

Sub	DisplayViewMode()

'Changes	the	view	mode	of	the	active	window

				Dim	fpApp	As	FrontPage.Application

				Dim	objDoc	As	FPHTMLDocument

				Set	fpApp	=	FrontPage.Application

				Set	objDoc	=	fpApp.ActiveDocument

				Select	Case	objDoc.ViewMode

								Case	1

												MsgBox	"The	document	is	in	Normal	mode."

								Case	2

												MsgBox	"The	document	is	in	HTML	mode"

								Case	8

												MsgBox	"The	document	is	in	Preview	mode"

				End	Select

End	Sub

Show	All

ViewModeEx	Property
Returns	or	sets	an	FpWebViewModeEx	enumerated	constant	that	represents	the
current	view	mode	of	the	Web	site	window.	Read/write.

FpWebViewModeEx	can	be	one	of	these	FpWebViewModeEx	constants.
fpWebViewExAccessibility
fpWebViewExAllFiles
fpWebViewExAssignedTo
fpWebViewExBrokenLinks
fpWebViewExBrowserTypes
fpWebViewExCategories
fpWebViewExCheckoutStatus
fpWebViewExComponentErrors
fpWebViewExCSSLinks
fpWebViewExDailyPageHits
fpWebViewExDailySummary
fpWebViewExFolders
fpWebViewExLinks
fpWebViewExMasterPages
fpWebViewExMonthlyPageHits
fpWebViewExMonthlySummary
fpWebViewExNavigation
fpWebViewExOlderFiles
fpWebViewExOsTypes
fpWebViewExPage
fpWebViewExPublishStatus
fpWebViewExRecentlyAddedFiles
fpWebViewExRecentlyChangedFiles
fpWebViewExReferringDomains
fpWebViewExReferringURLs
fpWebViewExRemoteSite

fpWebViewExReviewStatus
fpWebViewExSearchStrings
fpWebViewExSharedBorders
fpWebViewExSiteSummary
fpWebViewExSlowPages
fpWebViewExThemes
fpWebViewExTodo
fpWebViewExUnlinkedFiles
fpWebViewExUsageSummary
fpWebViewExVisitingUsers
fpWebViewExWeeklyPageHits
fpWebViewExWeeklySummary

expression.ViewModeEx

expression				Required.	An	expression	that	returns	a	WebWindowEx	object.

Example

The	following	example	changes	the	view	mode	to	display	the	daily	page	hits.

Sub	ViewPageHits()

'Changes	the	current	view	mode	to	view	page	hits

				ActiveWeb.ActiveWebWindow.ViewModeEx	=	fpWebViewExDailyPageHits

End	Sub

ViewPages	Property
Rreturns	a	String	array	that	represents	a	list	of	pages	that	contain	a	view	for	the
list.

expression.ViewPages

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Visible	Property
Returns	or	sets	the	visible	state	of	the	PageWindowEx	or	WebWindowEx
object.	The	visible	state	for	the	PageWindowEx	object	is	read-only	Boolean.
The	visible	state	for	the	WebWindowEx	object	is	read/write	Boolean.

expression.Visible

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

In	the	following	example,	the	GetVisibleState	procedure	returns	the	visible
state	of	the	first	PageWindowEx	object	from	the	CheckIfVisible	function.

Private	Sub	GetVisibleState()

				Dim	myIsVisible	As	Boolean

				myIsVisible	=	CheckIfVisible

End	Sub

Function	CheckIfVisible()	As	Boolean

				Dim	myPage	As	PageWindowEx

				Dim	myVisibleState	As	Boolean

				Set	myPage	=	Application.Webs(0).WebWindows(0).PageWindows(0)

				myVisibleState	=	myPage.Visible

				CheckIfVisible	=	myVisibleState

End	Function

The	following	example	sets	the	visible	state	of	a	WebWindowEx	object	to	a
windowless	state.

Private	Sub	OpenInNoWindow()

				Dim	myWebWindow	As	WebWindowEx

				Set	myWebWindow	=	Webs(0).WebWindows(0)

				myWebWindow.Visible	=	False

End	Sub

Web	Property
Returns	a	WebEx	object	that	represents	a	Microsoft	FrontPage	Web	site.

expression.Web

expression				Required.	An	expression	that	returns	one	of	the	above	objects.

Example

The	following	example	returns	the	title	of	the	active	Web	site.

Private	Sub	GetWebTitle()

				Dim	myWeb	As	WebEx

				Dim	myWebName	As	String

				Set	myWeb	=	ActiveWeb

				myWebName	=	myWeb.RootFolder.Web.Title

End	Sub

Webs	Property
Returns	the	collection	of	open	Web	sites	for	the	specified	object.

expression.Webs

expression	Required.	An	expression	that	returns	an	Application	object.

Example

The	following	example	creates	an	array	that	contains	all	of	the	URLs	for	all	the
open	subsites	in	your	Web	site.

Note		You	must	open	any	Web	sites	for	which	you	wish	to	retrieve	the	URLs.

Private	Sub	GetWebs()

				Dim	myWebs	As	Webs

				Dim	myWeb	As	WebEx

				Dim	myOpenWebs()	As	Variant

				Dim	i	As	Integer

				Dim	myWebCount	As	Integer

				Set	myWebs	=	Application.Webs

				myWebCount	=	myWebs.Count

				ReDim	myOpenWebs(myWebCount)

				Do

								For	Each	myWeb	In	myWebs

																myOpenWebs(i)	=	myWeb.Url

																i	=	i	+	1

								Next

				Loop	Until	i	>	myWebCount

End	Sub

	 	

WebWindows	Property
Returns	the	collection	of	open	WebWindows	objects	in	the	specified	object.

expression.WebWindows

expression				Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	checks	if	any	of	the	Web	windows	are	set	to	Page	view,
and	changes	those	that	are	in	Page	view	to	Folders	view.

Private	Sub	GetViewModes()

				Dim	myWebWindows	As	WebWindows

				Dim	myWebWindow	As	WebWindowEx

				Dim	myView	As	FpWebViewMode

				Set	myWebs	=	Webs

				Set	myWebWindows	=	myWebs.WebWindows

				For	Each	myWebWindow	In	myWebWindows

												myView	=	myWebWindow.ViewMode

												If	myView	=	fpWebViewPage	Then

																myWebWindow.ViewMode	=	fpWebViewFolders

												End	If

				Next				

End	Sub

OnActivate	Event
Occurs	when	the	page	window	or	Web	window	obtains	the	focus	and	becomes
the	current	window.

Private	Sub	expression_OnActivate()

expression					A	variable	which	references	an	object	of	type	PageWindowEx	or
WebWindowEx	declared	with	events	in	a	class	module.

Example

The	following	example	uses	the	IsDirty	property	to	determine	if	the	page	shown
in	the	specified	window	has	changed	since	the	last	refresh	or	save	and	saves	the
document	that	has	changed.

Private	Sub	PageWindowEx_OnActivate()

'Displays	a	message	when	the	window	obtains	focus

				If	PageWindowEx.IsDirty	Then

								PageWindowEx.Save

				End	If

End	Sub

	 	

OnAfterPageSave	Event
Occurs	after	a	page	is	saved.

Private	Sub	Application_OnAfterPageSave(ByVal	pPage	As
PageWindowEx,	Success	As	Boolean)

pPage				Required	PageWindowEx	object.

Success			Required	Boolean.	True	if	the	PageWindowEx	object	was
successfully	saved.

Remarks

The	OnAfterPageSave	event	is	associated	with	the	Application	object.	After
the	user	saves	a	page	or	closes	Microsoft	FrontPage,	the	OnAfterPageSave
event	fires	and	executes	the	code	that	you	specified	within	the	event	procedure.

Example

The	following	example	displays	a	message	box	after	the	page	has	been	saved
and	displays	the	file	name	of	the	page.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site	and	one
open	page	within	that	Web	site.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdSave	and	a	button	called	cmdCancel.	Add	the	following	code	to	the	form
code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

Private	Sub	cmdSave_Click()

				Dim	myPageWindow	As	PageWindowEx

				Set	myPageWindow	=	ActiveWeb.ActiveWebWindow.ActivePageWindow

				myPageWindow.Save

End	Sub

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

Private	Sub	eFPApplication_OnAfterPageSave(ByVal	pPage	As	_

								PageWindow,	Success	As	Boolean)

				If	Success	=	True	Then

								MsgBox	"The	following	page	was	saved:	"	&	pPage.File.Name

				Else

									MsgBox	"There	was	a	problem	with	saving	your	page:	"	&	_

								pPage.File.Name

				End	If

End	Sub

OnAfterPageWindowViewChange
Event
Occurs	when	a	page	window	has	switched	view	types.

Private	Sub	expression_OnAfterPageWindowViewChange(ByVal	pPage	As
PageWindowEx)

expression			An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pPage							The	PageWindowEx	object	in	which	the	view	has	changed.

Example

The	following	example	prompts	the	user	to	refresh	the	window	after	it	has
changed	view	modes.

Private	Sub	objApp_OnAfterPageWindowViewChange(ByVal	pPage	As	PageWindowEx)

'Occurs	when	a	view	changes

				Dim	strAns	As	String

				'Prompt	user	to	refresh	view

				strAns	=	MsgBox("The	view	has	changed,	would	you	like	to	refresh	the	window?",	vbYesNo)

				If	strAns	=	vbYes	Then

								pPage.Refresh

				End	If

End	Sub

OnAfterPublish	Event
Occurs	after	a	Web	site	is	published.

Private	Sub	expression_OnAfterPublish(Success	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type	WebEx
declared	with	events	in	a	class	module.

Success					A	Boolean	that	determines	if	the	publish	operation	was	successful.	If
True,	then	the	Web	site	was	successfully	published.

Example

The	following	example	displays	a	message	to	the	user	based	on	the	result	of	the
Publish	method.

Private	Sub	objWeb_OnAfterPublish(Success	As	Boolean)

'Occurs	after	a	web	is	published

				If	Success	=	True	Then

								MsgBox	"The	web	was	published	successfully."

				Else

								MsgBox	"An	error	occurred,	the	web	was	not	published.",	vbExclamation

				End	If

End	Sub

	 	

OnAfterSave	Event
Occurs	after	the	active	document	has	been	saved	by	the	user.

Private	Sub	expression_OnAfterSave(Success	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type
PageWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

Success					A	Boolean	that	indicates	if	the	operation	was	successful.	If	True,	the
file	was	saved.

Example

The	event	in	the	following	example	occurs	after	the	active	document	is	saved	in
an	extended	page	window.	A	message	is	displayed	to	the	user	based	on	the	result
of	the	operation.

Private	Sub	PageWindowEx_OnAfterSave(Success	As	Boolean)

'Displays	message	based	on	value	of	Success

				If	Success	=	True	Then

								MsgBox	"The	file	"	&	PageWindowEx.ActiveDocument.Title	&	"	was	saved."

				Else

								MsgBox	"The	file	"	&	PageWindowEx.ActiveDocument.Title	&	"	was	not	saved."

				End	If

End	Sub

	 	

OnAfterSubViewChange	Event
Occurs	after	the	Web	window	subview	changes.

Private	Subexpression_OnAfterSubViewChange()

expression					A	variable	name	which	references	an	object	of	type
WebWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

Example

The	following	example	displays	a	message	to	the	user	whenever	the	subview	of
the	active	Web	site	window	changes	or	after	the	subview	closes.

Private	Sub	objWebWindow_OnAfterSubViewChange()

	'Display	a	message	indicating	which	view	the	subwindow	is	currently	in

				Select	Case	objwebWindow.SubViewMode

								Case	fpWebSubViewFolders

												MsgBox	"The	view	in	the	subwindow	has	changed	to	Folder	View."

								Case	fpWebSubViewNavigation

												MsgBox	"The	view	in	the	subwindow	has	changed	to	Navigation	View."

								Case	fpWebSubViewNone

												MsgBox	"The	sub	window	has	closed."

				End	Select

End	Sub

	 	

OnAfterViewChange	Event
Occurs	after	the	view	has	changed	in	the	active	page	window	or	Web	site
window.

Private	Sub	expression_OnAfterViewChange()

expression					A	variable	name	which	references	an	object	in	the	Applies	To	list
declared	using	the	WithEvents	keyword	in	a	class	module.

Example

The	following	example	displays	the	name	of	the	new	page	window	view	mode.

Private	Sub	PageWindowEx_OnAfterViewChange()

'Occurs	when	the	view	changes	in	the	active	window

				MsgBox	"The	page	has	changed	to	"	&	PageWindowEx.ViewMode	&	"."

End	Sub

	 	

OnAfterWebPublish	Event
Occurs	after	a	Web	site	is	published.

Private	Sub	expression_OnAfterWebPublish(ByVal	pWeb	As	WebEx,
Success	As	Boolean)

expression					A	variable	name	which	references	an	object	in	the	Applies	To	list
declared	using	the	WithEvents	keyword	in	a	class	module.

pWeb				Required	WebEx.	The	specified	WebEx	object.

Success				Required	Boolean.	True	if	the	specified	Web	was	successfully
published.

Remarks

The	OnAfterWebPublish	event	is	associated	with	the	Application	object.	After
the	user	publishes	a	Web	site	in	Microsoft	FrontPage,	the	OnAfterWebPublish
event	fires	and	executes	the	code	that	you	specified	within	the	event	procedure.

Example

The	following	example	creates	a	property	called	"Published"	with	the	value	of
True	after	a	Web	site	has	been	published.

Note		To	run	this	example	you	must	have	one	Web	site	open.	This	example	uses
a	Web	site	called	Rogue	Cellars.	You	can	create	a	Web	site	called	Rogue	Cellars,
or	you	can	substitute	a	Web	site	of	your	choice	in	the	following	code	sample.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	command	buttons,	a
button	called	cmdPublishWeb,	and	a	button	called	cmdCancel.	Then	add	the
following	code	to	the	form	code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdPublishWeb_Click()

				ActiveWeb.Publish	"C:\My	Documents\My	Web	Sites\Rogue	Cellars"

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnAfterWebPublish(ByVal	pWeb	As	WebEx,	Success	As	Boolean)

				If	Success	=	True	Then

								pWeb.Properties.Add	"Published",	True

								pWeb.Properties.ApplyChanges

				Else

								MsgBox	"There	was	a	problem	publishing	your	"	&	pWeb	&	"	web."

				End	If

End	Sub

	 	

OnAfterWebWindowSubViewChange
Event
Occurs	after	the	Folder	List	in	the	Web	view	sub	window	has	changed	from
Folders	view	to	Navigation	view.

Private	Sub	application__OnAfterWebWindowSubViewChange(ByVal
pWebWindow	As	WebWindowEx)

application					An	object	of	type	Application	declared	with	events	in	a	class
module.

pWebWindow							The	WebWindowEx	object	in	which	the	view	has	changed.

Example

The	following	example	displays	the	name	of	the	view	type	in	the	sub	window,
unless	the	sub	window	is	closed	by	the	user.

Private	Sub	objApp_OnAfterWebWindowSubViewChange(ByVal	pWebWindow	As	WebWindowEx

'Occurs	when	a	sub	view	in	the	Web	window	changes

				'Display	a	message	indicating	what	view	the	sub	window	is	currently	in

				Select	Case	pWebWindow.SubViewMode

								Case	fpWebSubViewFolders

												MsgBox	"The	view	in	the	sub	window	has	changed	to	Folder	View."

								Case	fpWebSubViewNavigation

												MsgBox	"The	view	in	the	sub	window	has	changed	to	Navigation	View."

								Case	fpWebSubViewNone

												MsgBox	"The	sub	window	has	closed."

				End	Select

End	Sub

OnAfterWebWindowViewChange
Event
Occurs	after	the	Web	site	window	view	has	changed.

Private	Sub	expression_OnAfterWebWindowViewChange(ByVal
pWebWindow	As	WebWindowEx)

expression					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pWebWindow							The	WebWindowEx	object	in	which	the	view	has	changed.

Example

The	following	example	displays	the	name	of	the	new	view	type	to	the	user	every
time	the	view	is	changed.

Private	Sub	objApp_OnAfterWebWindowViewChange(ByVal	pWebWindow	As	WebWindowEx)

'Occurs	after	the	Web	site	window	view	changes.

				'Display	message	to	user

				MsgBox	"The	view	has	changed	to	"	&	pWebWindow.ViewModeEx	&	"	mode."

End	Sub

	 	

OnBeforePageSave	Event
Occurs	before	a	page	is	saved.

Private	Sub	expression_OnBeforePageSave(ByVal	pPage	As
PageWindowEx,	SaveAsUI	As	Boolean,	Cancel	As	Boolean

expression					A	variable	name	which	references	an	object	of	type
PageWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

pPage				Required	PageWindowEx.	The	specified	PageWindowEx	object.

SaveAsUI				Required	Boolean.	True	when	the	Save	As	dialog	box	is	used	to
save	a	page.	This	can	be	the	first	time	the	page	is	saved	or	when	the	page	is
saved	as	a	new	page.	False	when	when	an	existing	page	is	saved.

Cancel				Required	Boolean.	Causes	Microsoft	FrontPage	to	abort	the	save	when
set	to	True.	When	Cancel	is	programmatically	set	to	True,	the	user	can	abort	the
save	process	by	clicking	the	Cancel	button	on	the	form.	Default	is	False.

Remarks

The	OnBeforePageSave	event	is	associated	with	the	Application	object.	When
the	user	saves	a	page	or	closes	FrontPage,	the	OnBeforePageSave	event	fires
and	executes	the	code	that	you	specified	within	the	event	procedure.

Note		If	you	set	Cancel	to	True,	the	page	won't	be	saved.

Example

The	following	example	displays	a	message	box	before	the	page	has	been	saved
and	displays	the	document	title	of	the	file	for	the	page.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site	and	one
open	page	within	that	site.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdSave,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the	form
code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdSave_Click()

				Dim	myPageWindow	As	PageWindowEx

				Set	myPageWindow	=	ActiveWeb.ActiveWebWindow.ActivePageWindow

				myPageWindow.Save

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnBeforePageSave(ByVal	pPage	As	_

								PageWindowEx,	SaveAsUI	As	Boolean,	Cancel	As	Boolean)

				MsgBox	"The	following	page	will	be	saved:	"	&	pPage.File.Name	_

								&	"will	be	saved	with	the	title:	"	&	pPage.Document.Title

End	Sub

	 	

OnBeforePageWindowViewChange
Event
Occurs	before	the	current	Page	window	view	is	changed.

Private	Sub	application__OnBeforePageWindowViewChange(ByVal	pPage
As	PageWindowEx,	ByVal	TargetView	As	FpPageViewMode,	Cancel	As
Boolean)

application					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pPage							The	PageWindowEx	object	in	which	the	view	has	changed.

TargetView	The	specified	target	window	type.

Cancel	A	Boolean	that	determines	if	the	event	will	be	cancelled.	If	False,	the
event	will	not	be	cancelled.	If	True,	the	event	will	be	cancelled.

Remarks

This	event	can	be	cancelled.

Example

The	following	example	prompts	the	user	before	the	current	view	is	changed.	The
Cancel	argument	is	modified	based	on	the	user's	response.

Private	Sub	objApp_OnBeforePageWindowViewChange(ByVal	pPage	As	PageWindowEx,		_

								ByVal	TargetView	As	FpPageViewMode,	Cancel	As	Boolean)

'Prompts	the	user	before	changing	the	view	type

				Dim	strAns	As	String

				'Prompt	user	to	change	view

				strAns	=	MsgBox("Are	you	sure	you	want	to	change	the	current	view?",	_

																				vbYesNo)

				If	strAns	=	vbYes	Then

								'Don't	cancel	event

								Cancel	=	False

				Else

								'Cancel	event

								Cancel	=	True

End	Sub

	 	

OnBeforePublish	Event
Occurs	before	a	Web	site	is	published.

Private	Sub	expression_OnBeforePublish(Destination	As	String,	Cancel	As
Boolean)

expression					A	variable	name	which	references	an	object	of	type	WebEx
declared	using	the	WithEvents	keyword	in	a	class	module.

Destination					A	String	that	specifies	the	URL	of	the	published	Web	site.

Cancel							A	Boolean	that	specifies	whether	to	cancel	the	publish	operation.
True	cancels	publishing	the	Web	site.

Remarks

This	event	can	be	cancelled.

Example

The	following	example	displays	a	message	to	the	user	before	a	Web	site	is
published.	It	also	allows	the	user	to	cancel	the	event	before	it	occurs.

Private	Sub	expression_OnBeforePublish(Destination	As	String,	Cancel	As	Boolean)

'Occurs	before	a	web	is	published.

				Dim	blnAns	As	Boolean

				blnAns	=	MsgBox	_

								("Are	you	sure	you	want	to	publish	to	the	following	destination:	"	&	_

												Destination)

				If	blnAns	=	False	Then

								Cancel	=	True

				Else

								Cancel	=	False

				End	If

End	Sub

	 	

OnBeforeSave	Event
Occurs	before	a	page	in	an	active	extended	page	window	is	saved.

Private	Sub	expression_OnBeforeSave(SaveAsUI	As	Boolean,	Cancel	As
Boolean)

expression				A	variable	name	that	references	an	object	of	type	PageWindowEx
declared	using	the	WithEvents	keyword	in	a	class	module.

SaveAsUI	A	Boolean	that	determines	if	the	user	interface	will	be	displayed.	If
True,	the	Save	As	dialog	box	will	be	displayed.

Cancel	A	Boolean	that	determines	if	the	save	operation	will	be	cancelled.	If
True,	the	document	will	not	be	saved.

Example

The	following	example	prompts	the	user	before	saving	the	document.	If	the	user
clicks	No,	the	document	will	not	be	saved.	If	the	user	clicks	Yes,	the	document
will	be	saved.

Private	Sub	PageWindowEx_OnBeforeSave(SaveAsUI	As	Boolean,	Cancel	As	Boolean)

'Prompt	user	before	saving	the	document

				Dim	strAns	As	String

				strAns	=	MsgBox("Do	you	really	want	to	save	the	document?",	vbYesNo)

				'Change	cancel	value	based	on	user	input

				If	strAns	=	VbNo	Then

								Cancel	=	True

				End	If

End	Sub

OnBeforeSubViewChange	Event
Occurs	before	the	sub	view	of	the	Web	site	window	changes.

Private	Sub	expression_OnBeforeSubViewChange(ByVal	TargetSubView	As
FpWebSubView,	Cancel	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type
WebWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

TargetSubView							An	FpWebSubView	enumerated	constant	that	represents	the
new	sub	view	type.

Cancel							A	Boolean	that	determines	if	the	operation	will	be	cancelled.	If
False,	the	sub	view	will	change	view	types.

Example

The	following	example	prompts	the	user	before	changing	the	sub	view	of	the
Web	site	window.	If	the	user	clicks	No,	the	sub	view	will	not	change.	If	the	user
clicks	Yes,	the	sub	view	will	change	to	a	new	view	type.

Private	Sub	objwebWindow_OnBeforeSubViewChange

																						(ByVal	TargetSubView	As	FpWebSubView,	Cancel	As	Boolean)

'Occurs	when	the	subview	of	the	active	web	window	is	changed

				Dim	strAns	As	String

				'Prompt	user

				strAns	=	MsgBox("Are	you	sure	you	want	to	change	the	subview?",	vbYesNo)

				If	strAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	

Show	All

OnBeforeViewChange	Event
OnBeforeViewChange	event	as	it	applies	to	the	PageWindowEx	object.

Occurs	before	the	view	mode	of	the	page	window	changes.

Private	Sub	expression_OnBeforeViewChange(ByVal	TargetView	As
FpPageViewMode,	Cancel	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type
PageWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

TargetView							An	FpPageViewMode	enumerated	constant	that	represents	the
new	view	type.

Cancel							A	Boolean	that	determines	if	the	operation	will	be	cancelled.	If	True,
the	view	will	not	be	changed.

OnBeforeViewChange	event	as	it	applies	to	the	WebWindowEx	object.

Occurs	before	the	view	mode	of	the	Web	site	window	changes.

Private	Sub	expression_OnBeforeViewChange(ByVal	TargetView	As
FpWebViewModeEx,	Cancel	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type
WebWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

TargetView							An	FpWebViewModeEx	enumerated	constant	that	represents
the	new	view	type.

Cancel							A	Boolean	that	determines	if	the	operation	will	be	cancelled.	If	True,
the	view	will	not	be	changed.

Example

The	following	example	prompts	the	user	before	changing	the	view	of	the	page
window.	If	the	user	clicks	Yes,	the	view	is	changed.

Private	Sub	PageWindowEx_OnBeforeViewChange(ByVal	TargetView	As	FpPageViewMode,	_

																																																				Cancel	As	Boolean)

'Prompts	user	before	changing	views

				Dim	blnAns	As	Boolean

				strAns	=	MsgBox("Are	you	sure	you	want	to	change	the	current	view?",	_

																				vbYesNo)

				If	strAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	

OnBeforeWebPublish	Event
Occurs	before	a	Web	site	is	published.

Private	Sub	expression_OnBeforeWebPublish(ByVal	pWeb	As	WebEx,
Destination	As	String,	Cancel	As	Boolean)

expression					The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pWeb				Required	WebEx.	The	specified	WebEx	object.

Destination				Required	String.	The	URL	of	the	target	location.

Cancel				Required	Boolean.	Causes	Microsoft	FrontPage	to	abort	the	publish
when	set	to	True.	When	Cancel	is	programmatically	set	to	True,	the	user	can
abort	the	save	process	by	clicking	the	Cancel	button	on	the	form.	Default	is
False.

Remarks

The	OnBeforeWebPublish	event	is	associated	with	the	Application	object.
When	the	user	publishes	a	Web	site	in	FrontPage,	the	OnBeforeWebPublish
event	fires	and	executes	the	code	within	the	event	procedure.

Example

The	following	example	adds	a	copyright	string	to	the	index	page	of	the	specified
Web	site.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site.	This
example	uses	a	Web	site	called	Rogue	Cellars.	You	can	create	a	Web	site	called
Rogue	Cellars	or	you	can	substitute	a	Web	site	of	your	choice	in	the	following
code	sample.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdPublishWeb,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the
form	code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdPublishWeb_Click()

				ActiveWeb.Publish	"C:\My	Documents\My	Web	Sites\Rogue	Cellars"

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnBeforeWebPublish(ByVal	pWeb	As	WebEx,	_

								Destination	As	String,	Cancel	As	Boolean)

				Dim	myCopyright	As	String

				Dim	myIndexFile	As	WebFile

				myCopyright	=	"Copyright	1999	by	Rogue	Cellars"

				Set	myIndexFile	=	pWeb.RootFolder.Files("index.htm")

				myIndexFile.Open

				If	myIndexFile.Application.ActiveDocument.body.outerText	<>	_

												myCopyright	Then

								myIndexFile.Application.ActiveDocument.body.insertAdjacentText	_

												"BeforeEnd",	myCopyright

				End	If

				ActivePageWindow.Close

End	Sub

	 	

OnBeforeWebWindowSubViewChange
Event
Occurs	before	the	sub	window	of	the	current	Web	window	is	changed	by	the
user.

Private	Sub	expression_OnBeforeWebWindowSubViewChange(ByVal
pwebwindow	As	WebWindowEx,	ByVal	TargetSubView	As	FpWebSubView,
Cancel	As	Boolean)

expression					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pWebWindow					The	WebWindowEx	object	that	contains	the	sub	window.

TargetSubView							The	sub	window	view	type.

Cancel							A	Boolean	that	determines	if	the	event	will	be	cancelled.	If	False,
the	event	will	not	be	cancelled.	If	True,	the	event	will	be	cancelled.

Example

The	following	example	prompts	the	user	before	changing	the	current	sub
window	view.	The	Cancel	argument	is	modified	based	on	the	users'	response.

Private	Sub	objApp_OnBeforeWebWindowSubViewChange(ByVal	pwebwindow	As	WebWindowEx,	_

								ByVal	TargetSubView	As	FpWebSubView,	Cancel	As	Boolean)

'Occurs	before	the	web	window	sub	view	is	changed.	Prompts	the	user	to	verify	the	change

				Dim	strAns	As	String

				'Prompt	the	user	before	changing	views

				strAns	=	MsgBox("Are	you	sure	you	want	to	change	the	sub	window	view?",	_

																					vbYesNo)

				If	strAns	=	vbYes	Then

								'Yes,	don't	cancel	the	event

								Cancel	=	False

				Else

								'No,	cancel	the	event

								Cancel	=	True

				End	If

End	Sub

	 	

OnBeforeWebWindowViewChange
Event
Occurs	before	the	Web	site	window	view	changes.

Private	Sub	expression__OnBeforeWebWindowViewChange(ByVal
pWebWindow	As	WebWindowEx,	ByVal	TargetView	As
FpWebViewModeEx,	Cancel	As	Boolean)

expression					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pWebWindow					The	WebWindowEx	object	that	contains	the	view.

TargetView							The	FPWebViewModeEx	window	view	type.

Cancel							A	Boolean	that	determines	if	the	event	will	be	cancelled.	If	False,
the	event	will	not	be	cancelled.	If	True,	the	event	will	be	cancelled.

Example

The	following	example	prompts	the	user	before	changing	the	current	view.	The
Cancel	argument	is	modified	based	on	the	users'	response.

Private	Sub	objApp_OnBeforeWebWindowViewChange(ByVal	pWebWindow	As	WebWindowEx,	_

									ByVal	TargetView	As	FpWebViewModeEx,	Cancel	As	Boolean)

'Occurs	before	the	view	is	changed	in	the	web	window.	Prompts	the	user	to	verify	the	change

				Dim	strAns	As	String

				'Prompt	the	user	before	changing	views

				strAns	=	MsgBox("Are	you	sure	you	want	to	change	the	view	mode?",	_

																					vbYesNo)

				If	strAns	=	vbYes	Then

								'Yes,	don't	cancel	the	event

								Cancel	=	False

				Else

								'No,	cancel	the	event

								Cancel	=	True

				End	If

End	Sub

	 	

Show	All

OnClose	Event
OnClose	event	as	it	applies	to	the	PageWindowEx	object.

Occurs	when	the	active	page	window	is	closed	by	the	user.

Private	Sub	expression_OnClose(Cancel	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type
PageWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

Cancel							A	Boolean	that	determines	if	the	operation	will	be	cancelled.	True
cancels	closing	the	active	page	window.

OnClose	event	as	it	applies	to	the	WebEx	object.

Occurs	when	the	active	Web	site	window	is	closed	by	the	user.

Private	Sub	expression_OnClose(pCancel	As	Boolean)

expression					A	variable	name	which	references	an	object	of	type	WebEx
declared	using	the	WithEvents	keyword	a	class	module.

Cancel					A	Boolean	that	determines	if	the	operation	will	be	cancelled.	True
cancels	closing	the	active	Web	site.

Example

The	following	example	prompts	the	user	before	closing	the	active	page	window.
If	the	user	clicks	No,	the	window	will	not	close.

Private	Sub	PageWindowEx_OnClose(Cancel	As	Boolean)

'Displays	a	message

				Dim	strAns	As	String

				'Prompt	user

				strAns	=	MsgBox("Are	you	sure	you	want	to	close	the	active	page	window?",	_

																				vbYesNo)

				If	strAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	

OnDeactivate	Event
Occurs	when	a	user	switches	to	another	application	window	and	the	active	Web
site	window	loses	the	focus.

Private	Sub	expression_OnDeactivate()

expression					A	variable	name	which	references	an	object	of	type
WebWindowEx	declared	using	the	WithEvents	keyword	in	a	class	module.

Example

The	following	example	displays	a	message	to	the	user	when	the	window	is
deactivated.

Private	Sub	objWebWindow_OnDeactivate()

'Occurs	when	the	current	web	window	is	deactivated

				MsgBox	"The	window	has	been	deactivated."

End	Sub

	 	

OnPageClose	Event
Occurs	when	a	page	is	closed.

Private	Sub	expression_OnPageClose(ByVal	pPage	As	PageWindowEx,
Cancel	As	Boolean)

expression					The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pPage				Required	PageWindowEx.	The	specified	PageWindowEx	object.

Cancel				Required	Boolean.	Causes	Microsoft	FrontPage	to	abort	the	close
when	set	to	True.	When	Cancel	is	programmatically	set	to	True,	the	user	can
abort	the	save	process	by	clicking	the	Cancel	button	on	the	form.	Default	is
False.

Remarks

The	OnPageClose	event	is	associated	with	the	Application	object.	When	the
user	closes	a	PageWindowEx	object,	the	OnPageClose	event	fires	and	executes
the	code	within	the	event	procedure.

Example

The	following	example	uses	the	IsDirty	property	to	check	if	a	page	has	been
modified,	and	if	it	has	saves	the	page	before	closing	it.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site	and	one
open	page	within	that	Web	site.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdClosePage,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the
form	code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdClosePage_Click()

				ActivePageWindow.Close

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnPageClose(ByVal	pPage	As	_

								PageWindowEx,	Cancel	As	Boolean)

				If	pPage.IsDirty	=	True	Then	pPage.Save

End	Sub

	 	

OnPageNew	Event
Occurs	when	a	new	page	is	created.

Private	Sub	expression_OnPageNew(ByVal	pPage	As	PageWindowEx)

expression					The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pPage				Required	PageWindowEx.	A	PageWindowEx	object.

Remarks

When	the	user	creates	a	new	page	within	a	frameset,	the	OnPageNew	event	is
only	fired	once—	when	the	page	containing	the	frameset	tags	is	opened.	Then
Microsoft	FrontPage	executes	the	code	within	the	event	procedure.

Note		The	OnPageNew	event	only	fires	for	the	default	frameset,	even	if	there
are	more	frames	on	the	page.	This	event	only	fires	if	FrontPage	is	in	Page	view.
If	FrontPage	is	in	any	other	view,	the	OnPageNew	event	won't	fire.

Example

The	following	example	applies	a	theme	to	a	new	page.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site.	This
example	uses	Rogue	Cellars	as	the	specified	Web	site	and	Zinfandel.htm	as	the
specified	page.	You	can	create	a	Web	site	and	page	using	these	names	or	you	can
substitute	a	Web	site	and	page	of	your	choice.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdAddPage,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the	form
code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdAddPage_Click()

				Dim	myPageWindows	As	PageWindows

				Dim	myFile	As	String

				Set	myPageWindows	=	ActiveWeb.ActiveWebWindow.PageWindows

				myFile	=	_

								"C:/My	Documents/My	Web	Sites/Rogue	Cellars/Zinfandel.htm"

				myPageWindows.Add	(myFile)

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnPageNew(ByVal	pPage	As	PageWindowEx)

				pPage.ApplyTheme	("artsy")

End	Sub

	 	

OnPageOpen	Event
Occurs	when	a	page	is	opened.

Private	Sub	expression_OnPageOpen(ByVal	pPage	As	PageWindowEx)

expression					The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pPage				Required	PageWindowEx.	A	PageWindowEx	object.

Remarks

The	OnPageOpen	event	is	associated	with	the	Application	object.	When	the
user	opens	a	page,	Microsoft	FrontPage	opens	the	frameset	for	the	page	and	fires
the	OnPageOpen	event	for	the	default	frameset.	Then	FrontPage	executes	the
code	that	you	specified	within	the	event	procedure.

Note		The	OnPageOpen	event	only	fires	for	the	default	frameset,	even	if	there
are	more	frames	on	the	page.The	OnPageOpen	event	only	fires	if	the	page	is
not	open.

Example

The	following	example	changes	the	title	of	the	FPHTMLDocument	object,
when	the	document	is	opened	in	a	PageWindowEx	object.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site.	This
example	uses	Rogue	Cellars	as	the	specified	Web	site	and	Zinfandel.htm	as	the
specified	page.	You	can	create	a	Web	site	and	page	using	these	names	or	you	can
substitute	a	Web	site	and	page	of	your	choice.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdAddPage,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the	form
code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdAddPage_Click()

				Dim	myPageWindows	As	PageWindows

				Dim	myFile	As	String

				Set	myPageWindows	=	ActiveWeb.ActiveWebWindow.PageWindows

				myFile	=	_

								"C:/My	Documents/My	Web	Sites/Rogue	Cellars/Zinfandel.htm"

				myPageWindows.Add	(myFile)

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnPageOpen(ByVal	pPage	As	_

								PageWindowEx)

				Dim	myDoc	As	FPHTMLDocument

				Set	myDoc	=	pPage.ActiveDocument

				myDoc.Title	=	"Rogue	Cellars	Home	Page"

End	Sub

	 	

OnPageWindowActivate	Event
Occurs	when	the	page	in	the	current	window	obtains	the	focus.

Private	Sub	expression_OnPageWindowActivate(ByVal	pPage	As
PageWindowEx)

expression				The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pPage	The	PageWindowEx	object	that	contains	the	view.

Example

The	following	example	prompts	the	user	to	refresh	the	page	each	time	the	page
window	obtains	the	focus.

Private	Sub	objApp_OnPageWindowActivate(ByVal	pPage	As	PageWindowEx)

'Occurs	when	current	page	in	the	main	window	obtains	focus.

'Prompts	the	user	to	refresh	the	current	page.

					Dim	strAns	As	String

					strAns	=	MsgBox("Do	you	want	to	refresh	the	page	"	&	pPage.Caption	&	"?",	_

																						vbYesNo)

					If	strAns	=	vbYes	Then

									pPage.Refresh

					End	If

End	Sub

OnRecalculateHyperlinks	Event
Occurs	before	the	hyperlink	structure	in	Hyperlinks	view	is	recalculated	to	view
any	changes	made	to	the	Web	site.

Private	Sub	expression_OnRecalculateHyperlinks(ByVal	pWeb	As	WebEx,
Cancel	As	Boolean)

expression					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pWeb							The	WebEx	object	that	contains	the	view.

Cancel							A	Boolean	that	determines	if	the	event	will	be	cancelled.	If	False,
the	event	will	not	be	cancelled.	If	True,	the	event	will	be	cancelled.

Example

The	following	example	prompts	the	user	before	recalculating	the	hyperlink
structure.	If	the	user	accepts,	the	event	will	continue	and	the	hyperlinks	will	be
recalculated.

Private	Sub	objApp_OnRecalculateHyperlinks(ByVal	pWeb	As	WebEx,	Cancel	As	Boolean)

'Occurs	when	the	current	web's	hyperlinks	are	recalculated.

				Dim	strAns	As	String

				strAns	=	MsgBox("This	action	will	cause	the	hyperlinks	structure	to	be	recalculated.	"	_

																					&	"Do	you	want	to	continue?",	vbYesNo)

				'Set	value	of	Cancel	argument	to	users'	response

				If	strAns	=	vbYes	Then

								Cancel	=	False

				Else

								Cancel	=	True

				End	If

End	Sub

	 	

OnWebClose	Event
Occurs	when	a	Web	site	is	closed.

Private	Sub	expression_OnWebClose(ByVal	pWeb	As	WebEx,	Cancel	As
Boolean)

expression					An	object	of	type	Application	declared	using	the	WithEvents
keyword	in	a	class	module.

pWeb				Required	WebEx.	A	WebEx	object.

Cancel				Required	Boolean.	True	if	the	closing	process	was	cancelled	through
the	user	interface,	or	if	Cancel	was	set	to	True.	Default	is	False.

Remarks

The	OnWebClose	event	is	associated	with	the	Application	object.	When	you
close	a	Web	site,	the	OnWebClose	event	fires	and	executes	the	code	that	you
specified	within	the	event	procedure.

Example

The	following	example	iterates	through	the	open	pages	and,	if	necessary,	saves
them	before	the	Web	site	is	closed.

Note		To	run	this	example,	you	must	have	at	least	one	open	Web	site	and	one
open	page	within	that	Web	site.	This	example	uses	Rogue	Cellars	as	the
specified	Web	site.	You	can	create	a	Web	site	called	Rogue	Cellars	or	substitute
a	Web	site	of	your	choice.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdCloseWeb,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the
form	code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdCloseWeb_Click()

				Webs("C:/My	Documents/My	Web	Sites/Rogue	Cellars").Close

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnWebClose(ByVal	pWeb	As	WebEx,	_

								Cancel	As	Boolean)

				Dim	myPageWindows	As	PageWindows

				Dim	myPageWindow	As	PageWindowEx

				Set	myPageWindows	=	pWeb.ActiveWebWindow.PageWindows

				For	Each	myPageWindow	In	myPageWindows

								If	myPageWindow.IsDirty	=	True	Then	myPageWindow.Save

				Next

End	Sub

	 	

Show	All

OnWebFileCheckOut	Event
Occurs	when	a	file	in	the	current	Web	site	is	checked	out.

Private	Sub	expression_OnWebFileCheckOut(ByVal	pWeb	As	Web,	ByVal
pFile	As	WebFile,	CheckedOut	As	Boolean,	pCheckOutOption	As
FpCheckOutOption)

expression					The	variable	name	that	references	an	object	of	type	Application
declared	using	the	WithEvents	keyword	in	a	class	module.

pWeb					The	current	WebEx	object	that	contains	the	file.

pFile					The	WebFile	being	checked	out.

CheckedOut							A	Boolean	that	indicates	the	status	of	the	file.	If	True,	the	file
is	checked	out.	If	False,	the	file	has	not	been	checked	out.

pCheckOutoption	FpCheckOutOption.	Specifies	the	checkout	file	option.

FpCheckOutOption	can	be	one	of	these	FpCheckOutOption	constants.
FPCheckOut	Default.	Check	the	file	out.
FPCheckOutCancel	Cancel	the	file	check	out.
FPCheckOutReadOnly	Checks	out	a	read-only	version	of	the	file.
FPCheckOutPromptUser	Prompts	the	user	before	checking	out	the	file.

Example

The	following	example	prompts	the	user	before	the	file	is	checked	out.

Private	Sub	objApp_OnWebFileCheckOut(ByVal	pWeb	As	Web,	ByVal	pFile	As	WebFile,

																																					_	CheckedOut	As	Boolean,	_

																																						pCheckOutOption	As	FpCheckOutOption)

'Occurs	when	a	file	in	the	current	web	is	checked	out.

				'Prompt	the	user	before	checking	out	the	file

				pCheckOutOption	=	fpCheckOutPromptUser

End	Sub

OnWebNew	Event
Occurs	when	a	new	Web	site	is	created.

Private	Sub	expression_OnWebNew(ByVal	pWeb	As	Web)

expression	The	variable	name	that	references	an	object	of	type	Application
declared	using	the	WithEvents	keyword	in	a	class	module.

pWeb				Required	WebEx.	A	WebEx	object.

Remarks

The	OnWebNew	event	is	associated	with	the	Application	object.	When	the	user
creates	a	new	Web	site	in	Microsoft	FrontPage,	the	OnWebNew	event	fires	and
executes	the	code	within	the	event	procedure.

Example

The	following	example	creates	a	temporary	Web	site	and	adds	a	new	file.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdCreateWeb,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the
form	code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdCreateWeb_Click()

				Webs.Add	("C:/My	Documents/My	Web	Sites/TempWeb")

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnWebNew(ByVal	pWeb	As	Web)

				Dim	myFile	As	WebFile

				Set	myFile	=	pWeb.RootFolder.Files.Add("index.htm")

				myFile.Open

End	Sub

	 	

OnWebOpen	Event
Occurs	when	a	Web	site	is	opened.

Private	Sub	expression_OnWebOpen(ByVal	pWeb	As	Web)

expression	The	variable	name	that	references	an	object	of	type	Application
declared	using	the	WithEvents	keyword	in	a	class	module.

pWeb				Required	WebEx.	A	WebEx	object.

Remarks

The	OnWebOpen	event	is	associated	with	the	Application	object.	When	the
user	opens	a	Web	site	in	Microsoft	FrontPage,	the	OnWebOpen	event	fires	and
executes	the	code	that	you	specified	within	the	event	procedure.

Example

The	following	example	opens	the	Index.htm	file	when	a	Web	site	is	opened.

Note		This	example	uses	Rogue	Cellars	as	the	specified	Web	site	to	be	opened.
You	can	create	a	Web	site	called	Rogue	Cellars	or	you	can	substitute	a	Web	site
of	your	choice.

Create	a	form	called	frmLaunchEvents.frm	and	add	two	buttons,	a	button	called
cmdOpenWeb,	and	a	button	called	cmdCancel.	Add	the	following	code	to	the	form
code	window.

Option	Explicit

Private	WithEvents	eFPApplication	As	Application

Private	pPage	As	PageWindowEx

	 	

Private	Sub	UserForm_Initialize()

				Set	eFPApplication	=	New	Application

End	Sub

	 	

Private	Sub	cmdOpenWeb_Click()

				Webs.Open	("C:/My	Documents/My	Web	Sites/Rogue	Cellars")

End	Sub

	 	

Private	Sub	cmdCancel_Click()

				'Hide	the	form.

				frmLaunchEvents.Hide

				Exit	Sub

End	Sub

	 	

Private	Sub	eFPApplication_OnWebOpen(ByVal	pWeb	As	Web)	

				Dim	myFile	As	WebFile

				Set	myFile	=	pWeb.RootFolder.Files.Add("index.htm")

				myFile.Open

End	Sub

	 	

WindowActivate	Event
Occurs	when	a	window	is	activated.

Private	Sub	expression_WindowActivate(ByVal	pWebWindow	As
WebWindowEx)

expression					The	variable	name	of	an	object	of	type	Application	declared	using
the	WithEvents	keyword	in	a	class	module.

pWebWindow							The	WebWindowEx	object.

Remarks

When	an	instance	of	Microsoft	FrontPage	obtains	the	focus,	a	WindowActivate
event	will	fire	for	each	open	window.

Example

The	following	example	prompts	the	user	to	close	the	window	when	the
FrontPage	window	obtains	the	focus.

Private	Sub	expression_WindowActivate(ByVal	pWebWindow	As	WebWindowEx)

'Occurs	when	a	FrontPage	window	obtains	focus.

				Dim	strAns	As	String

				strAns	=	MsgBox("Are	you	sure	you	want	to	open	the	window	"	_

																					&	pWebWindow.Caption	&	"?",	_

																					vbYesNo)

				If	strAns	=	vbNo	Then

								pWebWindow.Close

				End	If

End	Sub

	 	

WindowDeactivate	Event
Occurs	when	a	Web	window	is	deactivated.

Private	Sub	expression_WindowDeactivate(ByVal	pWebWindow	As
WebWindowEx)

expression				The	variable	name	of	an	object	of	type	Application	declared	with
events	in	a	class	module.

pWebWindow				The	WebWindowEx	object.

Example

The	following	example	prompts	the	user	to	close	the	window	when	the	window
loses	the	focus.

Private	Sub	expression_WindowDeactivate(ByVal	pWebWindow	As	WebWindowEx)

'Occurs	when	a	Microsoft	FrontPage	window	loses	focus.

				Dim	strAns	As	String

				strAns	=	MsgBox("Do	you	want	to	close	this	window?"	_

																					&	pWebWindow.Caption	&	"?",	_

																					vbYesNo)

				If	strAns	=	vbYes	Then

								pWebWindow.Close

				End	If

End	Sub

	 	

Show	All

FrontPage	Web	Object	Model
Enumerated	Constants
This	topic	provides	a	list	of	all	enumerated	constants	in	the	Microsoft	FrontPage
Web	Object	Model.

FpCheckOutOption

Constant Value
fpCheckOut 1
fpCheckOutCancel 3
fpCheckOutPromptUser 0
fpCheckOutReadOnly 2

FpChoiceFieldFormat

Constant Value
fpChoiceFieldCheckBoxes 2
fpChoiceFieldDropdown 0
fpChoiceFieldRadioButtons 1

FpConnectionSpeed

Constant Value
fpConnect1000K 9
fpConnect128K 3
fpConnect144 0
fpConnect1500K 4
fpConnect256K 6
fpConnect288 1
fpConnect384K 7
fpConnect512K 8

fpConnect56K 2
fpConnectISDN 3
fpConnectT1 4
fpConnectT3 5

FpCurrencyFieldFormat

Constant Value
fpCurrencyFieldAlgerian 5121
fpCurrencyFieldArgentina 11274
fpCurrencyFieldAustralia 3081
fpCurrencyFieldAustria 3079
fpCurrencyFieldBahraini 15361
fpCurrencyFieldBelgiumBF 2067
fpCurrencyFieldBelgiumFB 2060
fpCurrencyFieldBolivia 16394
fpCurrencyFieldBrazil 1046
fpCurrencyFieldCanada 4105
fpCurrencyFieldCanadaF 3084
fpCurrencyFieldChile 13322
fpCurrencyFieldColombia 9226
fpCurrencyFieldCostaRica 5130
fpCurrencyFieldCzech 1029
fpCurrencyFieldDenmark 1030
fpCurrencyFieldDominicanRepublic 7178
fpCurrencyFieldEcuador 12298
fpCurrencyFieldEgyptian 3073
fpCurrencyFieldElSalvador 17418
fpCurrencyFieldEuro -1
fpCurrencyFieldEuroPostfix -2
fpCurrencyFieldFinland 1035
fpCurrencyFieldFrance 1036
fpCurrencyFieldGermany 1031

fpCurrencyFieldGreece 1032
fpCurrencyFieldGuatemala 4106
fpCurrencyFieldHonduras 18442
fpCurrencyFieldHongKong 3076
fpCurrencyFieldHungary 1038
fpCurrencyFieldIndian 1081
fpCurrencyFieldIranian 1065
fpCurrencyFieldIraqi 2049
fpCurrencyFieldIreland 6153
fpCurrencyFieldIsraeli 1037
fpCurrencyFieldItaly 1040
fpCurrencyFieldJapan 1041
fpCurrencyFieldJordanian 11265
fpCurrencyFieldKorea 1042
fpCurrencyFieldKuwaiti 13313
fpCurrencyFieldLebanese 12289
fpCurrencyFieldLibyan 4097
fpCurrencyFieldMexico 2058
fpCurrencyFieldMoroccan 6145
fpCurrencyFieldNetherlands 1043
fpCurrencyFieldNewZealand 5129
fpCurrencyFieldNicaragua 19466
fpCurrencyFieldNorway 1044
fpCurrencyFieldOmani 8193
fpCurrencyFieldPakistani 1056
fpCurrencyFieldPanama 6154
fpCurrencyFieldParaguay 15370
fpCurrencyFieldPeru 10250
fpCurrencyFieldPoland 1045
fpCurrencyFieldPortugal 2070
fpCurrencyFieldPRChina 2052
fpCurrencyFieldQatari 16385
fpCurrencyFieldRussia 1049

fpCurrencyFieldSaudiArabian 1025
fpCurrencyFieldSingapore 4100
fpCurrencyFieldSlovakia 1051
fpCurrencyFieldSlovenia 1060
fpCurrencyFieldSouthAfrica 7177
fpCurrencyFieldSpain 1034
fpCurrencyFieldSweden 1053
fpCurrencyFieldSwitzerland 2055
fpCurrencyFieldSyrian 10241
fpCurrencyFieldTaiwan 1028
fpCurrencyFieldThai 1054
fpCurrencyFieldTunisian 7169
fpCurrencyFieldTurkey 1055
fpCurrencyFieldUAE 14337
fpCurrencyFieldUnitedKingdom 2057
fpCurrencyFieldUnitedStates 1033
fpCurrencyFieldUruguay 14346
fpCurrencyFieldVenezuela 8202
fpCurrencyFieldVietnamese 1066
fpCurrencyFieldYemeni 9217

FpDateTimeFieldFormat

Constant Value
fpDateTimeFieldDateAndTime 0
fpDateTimeFieldDateOnly 1

FpDependencyFlags

Constant Value
fpDepsDefault 255
fpDepsImages 2
fpDepsLinkbars 16
fpDepsLinks 1

fpDepsLists 4
fpDepsNavbars 32
fpDepsNone 0
fpDepsRecurse 256
fpDepsSharedBorders 128
fpDepsThemes 8
fpDepsWebParts 64

FpFieldType

Constant Value
fpFieldAttachments 13
fpFieldChoice 5
fpFieldComputed 11
fpFieldCounter 9
fpFieldCurrency 3
fpFieldDateTime 4
fpFieldFile 12
fpFieldInteger 10
fpFieldLookup 6
fpFieldMultiLine 1
fpFieldNumber 2
fpFieldRatingScale 14
fpFieldSingleLine 0
fpFieldTrueFalse 7
fpFieldURL 8

FpFolderType

Constant Value
fpFolderDHTMLSharedLib 1

FpListDesignSecurity

Constant Value
fpListDesignSecurityCreator 1
fpListDesignSecurityEveryone 0

FpListEditSecurity

Constant Value
fpListEditSecurityAll 0
fpListEditSecurityNone 2
fpListEditSecurityOnlyOwn 1

FpListReadSecurity

Constant Value
fpListReadSecurityAll 0
fpListReadSecurityOnlyOwn 1

FpListType

Constant Value
fpListTypeBasicList 0
fpListTypeDiscussion 3
fpListTypeDocumentLibrary 2
fpListTypeSurvey 1

FpNumberFieldFormat

Constant Value
fpNumberFieldAuto -1
fpNumberFieldFiveDecimals 5
fpNumberFieldFourDecimals 4
fpNumberFieldInteger 0
fpNumberFieldOneDecimal 1
fpNumberFieldThreeDecimals 3

fpNumberFieldTwoDecimals 2

FpOptimizeHTMLFlags

Constant Value
fpHtmlOptAdjacentTags 64
fpHtmlOptAuthorComponents 8
fpHtmlOptBots 8
fpHtmlOptBrowseComponents 131072
fpHtmlOptCellFormattingAttr 256
fpHtmlOptDreamWeaver 2
fpHtmlOptDwtCmnts 1024
fpHtmlOptEmpty 32
fpHtmlOptGenerator 16
fpHtmlOptHTMLAllWhitespace 16384
fpHtmlOptHTMLCmnts 4096
fpHtmlOptHTMLLeadWhitespace 8192
fpHtmlOptHTMLMisnest 32768
fpHtmlOptOn -2147483648
fpHtmlOptScriptCmnts 2048
fpHtmlOptThemes 4
fpHtmlOptTrcImageAttr 512
fpHtmlOptUnusedStyles 65536
fpHtmlOptVMLGraphics 128
fpHtmlOptWordHTML 1

FpPageViewMode

Constant Value
fpPageViewDefault 0
fpPageViewHtml 2
fpPageViewInBetween 512
fpPageViewInvalid -1
fpPageViewNoFrames 4

fpPageViewNormal 1
fpPageViewNoWindow 128
fpPageViewPreview 8
fpPageViewPrintPreview 256
fpPageViewSplit 16
fpPageViewText 32
fpPageViewXml 64

FpPkgImportConflictOpts

Constant Value
fpPkgFileConflictMask 15
fpPkgListConflictMask 240
fpPkgOnConflictSkip 17
fpPkgOnConflictStop 0
fpPkgOnFileConflictOverwrite 2
fpPkgOnFileConflictSkip 1
fpPkgOnFileConflictStop 0
fpPkgOnListConflictMergeOrRename 64
fpPkgOnListConflictMergeOrSkip 48
fpPkgOnListConflictMergeOrStop 32
fpPkgOnListConflictRename 80
fpPkgOnListConflictSkip 16
fpPkgOnListConflictStop 0

FpPkgImportResult

Constant Value
fpPkgImportCancelled 2
fpPkgImportComplete 0
fpPkgImportErrorInPackage 3
fpPkgImportFailed 1
fpPkgImportNotTrusted 5
fpPkgImportServerNotSupported 6

fpPkgImportStopped 4

FpPkgTrustLevel

Constant Value
fpPkgTrustAll 1
fpPkgTrustCertificateStore 2

FpSharedBorders

Constant Value
_fpBorderNone 0
fpBorderAll 255
fpBorderBottom 8
fpBorderLeft 2
fpBorderRight 4
fpBorderTop 1

FpStructModType

Constant Value
fpStructBaseOnSibling 0
fpStructLeftmostChild 1
fpStructRightmostChild 2

FpThemeProperties

Constant Value
fpThemeActiveGraphics 16
fpThemeBackgroundImage 1
fpThemeCSS 4096
fpThemeDefaultSettings 16777216
fpThemeName 33554432
fpThemeNoBackgroundImage 0

fpThemeNoCSS 0
fpThemeNormalColors 0
fpThemeNormalGraphics 0
fpThemePropertiesAll 4369
fpThemePropertiesNone 0
fpThemeVividColors 256

FpURLComponent

Constant Value
fpURLComponentBookmark 256
fpURLComponentFileExtension 128
fpURLComponentFileName 64
fpURLComponentPassword 4
fpURLComponentPath 32
fpURLComponentPort 16
fpURLComponentQuery 512
fpURLComponentScheme 1
fpURLComponentServer 8
fpURLComponentUserName 2

FpURLFieldFormat

Constant Value
fpURLFieldImage 1
fpURLFieldLink 0

FpWebDeleteFlags

Constant Value
fpDeleteEntireWeb 0
fpDeleteFrontPageInfoFromWeb 1

FpWebOpenFlags

Constant Value
fpOpenInWindow 0
fpOpenNoWindow 2

FpWebPublishFlags

Constant Value
fpPublishAddToExistingWeb 2
fpPublishCopyAllFiles 64
fpPublishCopySubwebs 4
fpPublishIncremental 1
fpPublishLogInTempDir 8
fpPublishNoDeleteUnmatched 16
fpPublishNone 0
fpPublishRemoteToLocal 128
fpPublishSynchronize 256
fpPublishUseLastPublishTime 32
fpPublishUsingDav 512
fpPublishUsingPassiveFtp 1024

FpWebSubView

Constant Value
fpWebSubViewFolders 1
fpWebSubViewNavigation 2
fpWebSubViewNone 0

FpWebViewMode

Constant Value
fpWebViewAllFiles 4
fpWebViewBrokenLinks 6
fpWebViewFolders 1
fpWebViewLinks 0

fpWebViewPage 3
fpWebViewRemoteSite 8
fpWebViewSiteSummary 7
fpWebViewStructure 2
fpWebViewTodo 5

FpWebViewModeEx

Constant Value
fpWebViewExAccessibility 37
fpWebViewExAllFiles 4
fpWebViewExAssignedTo 13
fpWebViewExBrokenLinks 6
fpWebViewExBrowserTypes 29
fpWebViewExCategories 17
fpWebViewExCheckoutStatus 16
fpWebViewExComponentErrors 18
fpWebViewExCSSLinks 33
fpWebViewExDailyPageHits 19
fpWebViewExDailySummary 22
fpWebViewExFolders 1
fpWebViewExLinks 0
fpWebViewExMasterPages 32
fpWebViewExMonthlyPageHits 21
fpWebViewExMonthlySummary 24
fpWebViewExNavigation 2
fpWebViewExOlderFiles 8
fpWebViewExOsTypes 28
fpWebViewExPage 3
fpWebViewExPublishStatus 15
fpWebViewExRecentlyAddedFiles 9
fpWebViewExRecentlyChangedFiles 10
fpWebViewExReferringDomains 25

fpWebViewExReferringURLs 26
fpWebViewExRemoteSite 34
fpWebViewExReviewStatus 14
fpWebViewExSearchStrings 27
fpWebViewExSharedBorders 36
fpWebViewExSiteSummary 7
fpWebViewExSlowPages 11
fpWebViewExThemes 35
fpWebViewExTodo 5
fpWebViewExUnlinkedFiles 12
fpWebViewExUsageSummary 31
fpWebViewExVisitingUsers 30
fpWebViewExWeeklyPageHits 20
fpWebViewExWeeklySummary 23

