
Microsoft	Enterprise	Library	5.0

Welcome	to	Enterprise	Library

Welcome	to	Enterprise	Library.	The	following	sections	of	this	guidance
describe	the	ways	that	you	can	use	Enterprise	Library	and	the	individual
application	blocks	in	your	applications.	The	sections	are:

What	Is	Enterprise	Library?
About	This	Release	of	Enterprise	Library
Developing	Applications	with	Enterprise	Library
Design	of	Enterprise	Library
The	Caching	Application	Block

The	Cryptography	Application	Block
The	Data	Access	Application	Block
The	Exception	Handling	Application	Block
The	Logging	Application	Block
The	Policy	Injection	Application	Block
The	Security	Application	Block
The	Validation	Application	Block
Unity	Dependency	Injection	and	Interception

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Welcome to Enterprise Library'%0AEntLib50_417aa0a0-6a1b-4151-a512-e811afbab0ac%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Is	Enterprise	Library?

Enterprise	Library	consists	of	a	collection	of	application	blocks	and	core
infrastructure.	All	of	these	are	reusable	software	components	designed	to	assist
developers	with	common	enterprise	development	challenges.

Enterprise	Library	also	provides	many	highly	configurable	features	that	make	it
much	easier	to	manage	repetitive	tasks,	known	as	crosscutting	concerns,	which
occur	in	many	places	in	your	applications.	These	include	tasks	such	as	logging,
validation,	caching,	exception	management,	and	more.	In	addition,	the
dependency	injection	container	it	provides	can	help	to	simplify	and	decouple
your	designs,	make	them	more	testable	and	understandable,	and	help	you	to
produce	more	efficient	designs	and	implementations	of	all	kinds	of	applications.

Three	Simple	Steps	for	Using	Enterprise	Library

Benefits	of	Enterprise	Library

Goals	for	Enterprise	Library
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Is Enterprise Library?'%0AEntLib50_bf72fb56-b3ea-4a2d-91b8-488c6cac1fea%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

About	This	Release	of	Enterprise	Library

This	section	contains	the	following	topics	that	will	help	you	to	understand	this
release	of	Enterprise	Library	and	how	you	use	it	alongside	earlier	versions	or
migrate	your	applications	to	this	version.	This	section	includes	the	following
topics:

Changes	in	This	Release
Target	Audience	and	System	Requirements
Contents	of	Enterprise	Library
Migration	and	Side-by-Side	Execution
Related	patterns	&	practices	Links
Copyright	and	Terms	of	Use

How	to	Use	This	Guidance
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'About This Release of Enterprise Library'%0AEntLib50_bd523fec-ab56-483e-97f8-4f72019ac3a2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Changes	in	This	Release

Enterprise	Library	5.0	is	a	new	release	of	the	Microsoft	patterns	&	practices
Enterprise	Library.	One	of	the	major	changes	is	the	implementation	of	full
dependency	injection	capabilities	for	instantiating	and	managing	the	lifetime	of
objects,	which	makes	creation	of	Enterprise	Library	objects	consistent	across
the	entire	library.	Enterprise	Library	can	now	be	used	with	different	dependency
injection	containers.	Unity	is	the	default	dependency	injection	container.	For
alternative	DI	container	configuration	plug-ins	go	to	the	patterns	&	practices:
Enterprise	Library	Contrib	Web	site.

This	release	also	includes	additions	in	functionality	to	several	of	the	existing
application	blocks.	In	addition,	this	release	has	been	adapted	to	work	with	both
Microsoft	Visual	Studio®	2008	and	Microsoft	Visual	Studio	2010;	and	with	the
Microsoft	.NET	Framework	versions	4.0	and	3.5	with	Service	Pack	1.

The	following	sections	discuss	these	and	other	changes:
Integration	of	Unity	and	Object	Builder
Breaking	Changes
Changes	That	Affect	All	Application	Blocks
Changes	to	the	Configuration	Tool
Changes	to	the	Caching	Application	Block
Changes	to	the	Cryptography	Application	Block
Changes	to	the	Data	Access	Application	Block
Changes	to	the	Exception	Handling	Application	Block
Changes	to	the	Logging	Application	Block
Changes	to	the	Policy	Injection	Application	Block
Changes	to	the	Security	Application	Block
Changes	to	the	Validation	Application	Block

Go	to	CodePlex	for	information	on	Known	Issues.

http://www.codeplex.com/Wikipage?ProjectName=entlibcontrib
http://go.microsoft.com/fwlink/?LinkId=188428

Integration	of	Unity	and	Object	Builder

http://msdn.microsoft.com/en-gb/library/dd203099.aspx
http://commonservicelocator.codeplex.com/

Breaking	Changes

http://www.codeplex.com/Wikipage?ProjectName=entlibcontrib

Changes	That	Affect	All	Application	Blocks

http://go.microsoft.com/fwlink/?LinkId=188936
http://www.codeplex.com/entlib/

Changes	to	the	Configuration	Tools

Changes	to	the	Caching	Application	Block

Changes	to	the	Cryptography	Application	Block

Changes	to	the	Data	Access	Application	Block

Changes	to	the	Exception	Handling	Application	Block

Changes	to	the	Logging	Application	Block

Changes	to	the	Policy	Injection	Application	Block

Changes	to	the	Security	Application	Block

Changes	to	the	Validation	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Changes in This Release'%0AEntLib50_280c0073-fa13-478d-826a-89f4b683a029%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Target	Audience	and	System	Requirements

This	guidance	is	intended	for	software	architects	and	software	developers.	To
get	the	greatest	benefit	from	this	guidance,	you	should	have	an	understanding	of
the	following	technologies:

Microsoft	Visual	C#®	or	Microsoft	Visual	Basic®	.NET
Microsoft	.NET	Framework

System	Requirements	and	Prerequisites
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Target Audience and System Requirements'%0AEntLib50_597583b0-5770-4bed-bae9-54eb513ac71e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Contents	of	Enterprise	Library

Enterprise	Library	is	a	combination	of	reusable	components,	a	supporting
infrastructure,	and	guidance.	It	contains	the	following:

Binaries.	The	Enterprise	Library	includes	pre-compiled,	strong-named
assemblies	for	all	the	source	code.	For	more	information,	see	Deploying
Enterprise	Library.
Source	code.	The	Enterprise	Library	includes	the	source	code	for	the
application	blocks,	the	core	infrastructure,	and	the	configuration	tool.
Unit	tests.	The	Enterprise	Library	includes	the	unit	tests	that	were
created	while	the	application	blocks	were	being	developed.	For	more
information,	see	Unit	Tests.
Documentation.	Enterprise	Library	includes	documentation	that	can	be
viewed	with	the	Visual	Studio	Help	system.	The	documentation	includes
guidance	about	how	to	use	the	Enterprise	Library	and	a	class	library
reference.

A	Migration	Guide,	a	wide	range	of	examples,	Hands-On-Labs,	and	other
learning	materials	are	available	from	the	Enterprise	Library	community	Web
site.

The	following	topics	describe	the	contents	of	Enterprise	Library	within	the
context	of	their	function:

The	Enterprise	Library	Application	Blocks
The	Enterprise	Library	Core
The	Enterprise	Library	Configuration	Tools
The	Instance	Creation	and	Dependency	Injection	Mechanism
Utilities,	Tools,	and	Guidance

Additional	features	that	you	can	use	with	Enterprise	Library	are	available	from
the	Enterprise	Library	Community	Site.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=188938
http://go.microsoft.com/fwlink/?LinkId=188936
http://www.codeplex.com/entlib/
http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Contents of Enterprise Library'%0AEntLib50_27dae947-45a7-4160-a7e3-18d2f9f93ee8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Enterprise	Library	Application	Blocks

The	Enterprise	Library	application	blocks	help	to	address	the	common	problems
that	developers	face	from	one	project	to	the	next.	They	are	designed	to
encapsulate	the	Microsoft	recommended	practices	for	.NET	applications.	In
addition,	they	can	be	added	to	.NET	applications	quickly	and	easily.	For
example,	the	Data	Access	Application	Block	provides	access	to	the	most
frequently	used	features	of	ADO.NET	in	simple-to-use	classes,	thus	boosting
developer	productivity.	It	also	addresses	scenarios	not	directly	supported	by	the
underlying	class	libraries.

Different	applications	have	different	requirements,	and	you	will	not	find	that
every	application	block	is	useful	in	every	application	that	you	build.	Before
using	an	application	block,	you	should	have	a	good	understanding	of	your
application	requirements	and	of	the	scenarios	that	the	application	block	is
designed	to	address.

This	release	of	Enterprise	Library	contains	the	following	application	blocks:
The	Caching	Application	Block.	Developers	can	use	this	application
block	to	incorporate	a	local	cache	in	their	applications.
The	Cryptography	Application	Block.	Developers	can	use	this
application	block	to	incorporate	hashing	and	symmetric	encryption	in
their	applications.
The	Data	Access	Application	Block.	Developers	can	use	this	application
block	to	incorporate	standard	database	functionality	in	their	applications.
The	Exception	Handling	Application	Block.	Developers	and	policy
makers	can	use	this	application	block	to	create	a	consistent	strategy	for
processing	exceptions	that	occur	throughout	the	architectural	layers	of
enterprise	applications.
The	Logging	Application	Block.	Developers	can	use	this	application
block	to	include	standard	logging	functionality	in	their	applications	and
systems	administrators	can	use	the	configuration	tool	to	adjust	the
granularity	of	logging	at	run	time.
The	Policy	Injection	Application	Block.	This	block	contains	legacy	code
for	backwards	compatibility	with	existing	applications.	The	new
functionality	is	available	by	using	the	Unity	interception	mechanism	and

call	handlers	located	in	the	related	application	block	assemblies.
The	Security	Application	Block.	Developers	can	use	this	application
block	to	incorporate	authorization	and	security	caching	functionality	in
their	applications.
The	Validation	Application	Block.	Developers	can	use	this	application
block	to	create	validation	rules	for	business	objects	that	can	be	used
across	different	layers	of	their	applications.
Unity	Dependency	Injection	and	Interception.	Developers	can	use	this	to
implement	a	lightweight,	extensible	dependency	injection	container	with
support	for	constructor,	property,	and	method	call	injection;	and	to
capture	calls	to	target	objects	and	add	additional	functionality	to	the
object.

The	Enterprise	Library	also	includes	a	set	of	core	functions,	including
configuration	and	instrumentation.	All	other	application	blocks	use	these
functions.	See	The	Enterprise	Library	Core.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Enterprise Library Application Blocks'%0AEntLib50_e58533a0-327b-41f7-ba56-52218284ac82%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Enterprise	Library	Core

Enterprise	Library	contains	a	set	of	core	features	that	integrate	the	application
blocks	with	the	configuration	system,	support	alternative	configuration	systems,
and	provide	common	utilities	used	across	all	of	the	application	blocks.	The
following	are	some	examples	of	the	contents	of	the	Enterprise	Library	core:

Run-time	configuration	classes	and	providers	that	expose	configuration
data	to	the	library,	the	application	blocks,	and	users'	applications	at	run
time
Common	utility	functions	for	tasks	such	as	serialization,	used	in	many
places	throughout	the	library	and	the	application	blocks	and	available	for
developers	to	use	in	their	code
Instrumentation	features	that	allow	developers	and	administrators	to
monitor	the	behavior	and	performance	of	the	application	blocks	at	run
time
Design-time	configuration	classes	that	support	the	configuration	tools
and	allow	developers	to	specify	and	persist	configuration	information	for
the	library	and	the	application	blocks

For	more	details	about	the	design	of	the	Enterprise	Library	core	features,	see
The	Enterprise	Library	Core	in	the	Design	of	Enterprise	Library	section	of	this
guidance.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Enterprise Library Core'%0AEntLib50_d95d61b8-8fdd-4be9-a2f7-698f43ef306c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Enterprise	Library	Configuration	Tools

Application	blocks	are	designed	to	be	used	in	a	variety	of	enterprise	application
development	scenarios.	This	design	approach	enables	you	to	easily	adapt	an
application	block	to	meet	the	needs	of	your	situation.	You	do	this	with
configuration	settings,	which	you	can	easily	change	using	the	configuration
tools.	You	can	define	configuration	settings	for	an	application	block's	central
functionality	and	for	each	provider	type.

You	can	use	Visual	Studio	to	create	and	modify	configuration	files	or	you	can
use	the	stand-alone	Enterprise	Library	configuration	console.	Collectively,	the
Visual	Studio	integrated	configuration	editor	and	the	stand-alone	configuration
console	are	referred	to	as	the	configuration	tools.	Both	of	these	configuration
tools	have	identical	functionality.	With	these	tools,	you	can	change	and	validate
application	block	settings	without	manually	editing	the	XML	configuration	files
where	they	are	stored.	The	configuration	tools	display	these	settings	and	supply
default	values	that	you	can	change.

Each	application	block	defines	points	of	extensibility,	where	developers	can
include	their	own	implementations	(typically,	these	are	providers)	with	specific
functionality.	For	example,	you	can	add	your	own	custom	log	entry	formatters
to	the	Logging	Application	Block.	These	custom	providers	can	be	interchanged
with	the	providers	that	are	supplied	with	the	application	block.	The
configuration	console	lets	you	select	the	custom	backing	store	and	writes	this
information	to	the	appropriate	XML	configuration	file.	This	means	that	the
application	will	use	the	custom	store	without	any	code	changes	and	without
being	recompiled.

The	Visual	Studio	integrated	configuration	tool	is	named	the	configuration
editor.	The	configuration	editor	has	the	same	functionality	as	the	stand-alone
configuration	console,	but	it	uses	the	Visual	Studio	Properties	grid	to	display	an
application	block's	properties	and	uses	the	errors	list	to	display	configuration
errors.

The	following	describes	some	of	the	activities	the	configuration	tools	help	you
with:

You	can	use	the	configuration	tools	to	create	and	modify	standard	.NET

Framework	<appSettings>	sections.	For	more	information,	see	Using
the	appSettings	Section.
You	can	use	the	configuration	tools	to	tailor	an	application	block's
configuration	to	a	particular	run-time	environment.	For	more
information,	see	Configuring	a	Deployment	Environment.
You	can	use	the	configuration	tools	to	encrypt	and	decrypt	the	data
contained	in	configuration	sections.	For	more	information,	see
Encrypting	Configuration	Data.

Using	configuration	settings	to	adapt	an	application	block	to	a	particular
situation	has	two	advantages:

Different	people	can	configure	the	characteristics	of	an	application	block
at	different	times	during	the	application	life	cycle.	For	example,	a
developer	could	configure	a	provider	to	access	a	particular	database
during	application	development,	while	a	system	administrator	could
decide	during	deployment	to	encrypt	the	database	connection	strings.
You	can	change	the	application	block	configuration	incrementally	for
increasingly	complex	situations.	For	example,	you	could	initially
configure	an	application	block	to	use	the	default	settings	and	providers.
As	your	understanding	of	the	scenario	deepens,	you	can	change	the
application	block	configuration	without	modifying	its	code,	recompiling
it,	or	redeploying	it.

For	more	information	on	using	the	Visual	Studio	configuration	editor	and	the
configuration	console	see	Using	the	Configuration	Tools.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Enterprise Library Configuration Tools'%0AEntLib50_8f5a7290-726c-4dc0-88d3-a571d98aa15c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Instance	Creation	and	Dependency	Injection	Mechanism

Enterprise	Library	incorporates	an	easy-to-use	mechanism	for	creating	and
wiring	instances	of	objects	(which	may	contain	other	dependent	objects),	and
managing	their	lifetimes.	This	feature	is	the	Unity	container	and	the	following
design	patterns	are	used:

Dependency	Injection
Inversion	of	Control	(IoC)
Service	Locator
Service	Container
Factory
Builder

Unity	and	Enterprise	Library
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/Wikipage?ProjectName=entlibcontrib
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Instance Creation and Dependency Injection Mechanism'%0AEntLib50_0a1f0644-e5ac-4d83-9097-c040956dd963%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Utilities,	Tools,	and	Guidance

To	help	developers	learn	how	to	use	Enterprise	Library,	and	to	make	sure	they
get	optimum	results	from	it,	the	installation	of	Enterprise	Library	includes	the
following	utilities,	tools,	and	guidance:

Batch	files	that	build	the	Enterprise	Library	source	code	and	copy	the
assemblies	to	the	appropriate	locations.	For	more	information,	see
Building	Enterprise	Library	from	the	Source	Code.
Utilities	to	install	the	instrumentation	required	by	Enterprise	Library.	For
more	information,	see	Enabling	Instrumentation.

In	addition,	the	source	code	for	Enterprise	Library	includes	Visual	Studio
projects	and	unit	tests	that	developers	can	use	to	extend	and	modify	the	library
and	the	application	blocks.	Developers	can	make	sure	applications	still	meet	the
design	requirements	by	running	the	unit	tests	and	writing	new	tests.	For
information	about	the	unit	tests	included	with	Enterprise	Library,	see	Unit	Tests.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Utilities, Tools, and Guidance'%0AEntLib50_b8326834-e40e-41ca-9ce1-56d8e805aba7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Migration	and	Side-by-Side	Execution

In	general,	applications	built	for	Enterprise	Library	for	.NET	Framework	2.0	in
January	2006	and	later	will	function	with	this	release	of	Enterprise	Library
without	the	need	for	any	code	changes.	It	will	be	necessary	to	update	the
references	to	refer	to	the	new	assemblies	and	to	update	the	configuration	files	to
reference	the	correct	version	of	the	assemblies.	To	review	the	few	breaking
changes	you	may	need	to	address	go	to	the	Breaking	Changes	section.

This	version	of	Enterprise	Library	can	also	be	installed	side	by	side	with	earlier
versions	of	Enterprise	Library.	You	can	deploy	new	applications	written	for	this
version	of	Enterprise	Library	along	with	applications	written	for	earlier
versions.	In	addition,	you	can	choose	to	migrate	existing	applications,	one
assembly	at	a	time,	to	the	new	version.

If	you	decide	to	use	side-by-side	execution,	you	must	deploy	the	different
Enterprise	Library	versions	in	different	directories.	In	any	specific	directory,
you	cannot	mix	and	match	assemblies	from	different	versions.	For	example,	you
cannot	have	Data	Access	Application	Block	version	5.0	in	the	same	directory
with	Caching	Application	Block	version	4.0.

The	shipped	project	files	use	data	in	the	AssemblyInfo.cs	file	to	build
assemblies	that	have	different	version	information.	This	enables	you	to	use
strong	names	and	to	add	different	versions	to	the	global	assembly	cache	for
side-by-side	execution.

Partial	Migration
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=188938
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Migration and Side-by-Side Execution'%0AEntLib50_8d02083f-492c-4469-bb38-a3a82313d34c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Related	patterns	&	practices	Links

For	information	related	to	Enterprise	Library,	and	other	tools	and	guidance	for
designing	and	building	applications,	see	the	patterns	&	practices	Web	site	and
guides:

Microsoft	patterns	&	practices	Developer	Center
Developer's	Guide	to	Microsoft	Enterprise	Library	5
Microsoft	Application	Architecture	Guide,	2nd	Edition
Solution	Development	Fundamentals
patterns	&	practices	Security	Guidance	for	Applications	Index
.NET	Data	Access	Architecture	Guide
Improving	.NET	Application	Performance	and	Scalability
Monitoring	in	.NET	Distributed	Application	Design
Deploying	.NET	Framework-based	Applications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=86354
http://go.microsoft.com/fwlink/?LinkId=188937
http://msdn.microsoft.com/en-us/library/dd673617.aspx
http://msdn.microsoft.com/en-us/library/dd327566.aspx
http://msdn.microsoft.com/en-us/library/ms998408.aspx
http://msdn.microsoft.com/en-us/library/ee817654.aspx
http://go.microsoft.com/fwlink/?LinkId=86538
http://msdn.microsoft.com/en-us/library/ee817668.aspx
http://msdn.microsoft.com/en-us/library/ee817655.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Related patterns & practices Links'%0AEntLib50_9528738a-253b-439e-8d67-7c6e25bb968d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Copyright	and	Terms	of	Use

This	document	is	provided	"as-is".	Information	and	views	expressed	in	this
document,	including	URL	and	other	Internet	Web	site	references,	may	change
without	notice.	You	bear	the	risk	of	using	it.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are
fictitious.	No	real	association	or	connection	is	intended	or	should	be	inferred.

This	document	does	not	provide	you	with	any	legal	rights	to	any	intellectual
property	in	any	Microsoft	product.	You	may	copy	and	use	this	document	for
your	internal,	reference	purposes.

©	2010	Microsoft.	All	rights	reserved.

Microsoft,	Windows,	Windows	Server,	Windows	Vista,	Visual	C#,	Visual	Basic,
and	Visual	Studio	are	trademarks	of	the	Microsoft	group	of	companies.	All
other	trademarks	are	property	of	their	respective	owners.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Copyright and Terms of Use'%0AEntLib50_4b21425b-974d-4612-972a-903175c09dea%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	with	Enterprise	Library

Enterprise	Library	can	be	useful	in	a	variety	of	situations;	the	following	are
some	examples:

Enterprise	Library	provides	sufficient	functionality	to	support	many
common	scenarios	that	enterprise-level	applications	must	address.
Enterprise	Library	can	serve	as	the	basis	for	a	custom	library.	You	can
take	advantage	of	the	extensibility	points	incorporated	in	each
application	block	and	extend	the	application	block	by	supplying	new
providers.	You	can	also	modify	the	source	code	for	the	existing
application	blocks	to	incorporate	new	functionality.	You	can	develop
extensions	for	existing	application	blocks	and	new	application	blocks
yourself,	or	you	can	use	extensions	and	application	blocks	developed	by
others.	Finally,	you	can	add	new	application	blocks	to	Enterprise	Library.
Enterprise	Library	is	designed	so	that	its	application	blocks	can	function
independently	of	each	other.	You	have	to	add	only	the	application	blocks
that	your	application	will	use;	you	do	not	have	to	add	the	entire	library.
Enterprise	Library	includes	the	source	code	for	the	application	blocks.
This	means	you	can	modify	the	application	blocks	to	merge	into	your
existing	library	or	you	can	use	parts	of	the	Enterprise	Library	source
code	in	other	application	blocks	or	applications	that	you	build.
Enterprise	Library	includes	comprehensive	documentation.	This	means
that	you	can	use	the	library	and	the	source	code	as	tools	for	learning
architectural,	design,	and	coding	best	practices.
A	wide	range	of	examples,	Hands-On-Labs,	and	other	learning	materials
are	available	from	the	Enterprise	Library	community	Web	site.

This	section	describes	the	general	procedures	for	working	with	Enterprise
Library	in	your	applications.	You	can	find	details	of	how	to	use	each	of	the
application	blocks	in	the	relevant	section	for	each.	This	section	includes	the
following	sets	of	related	topics:

Configuring	Enterprise	Library.	These	topics	describe	the	basic	and	more
advanced	procedures	for	configuring	Enterprise	Library;	including	using
the	configuration	tools,	sharing	and	managing	configuration	for	multiple
applications,	configuring	Enterprise	Library	programmatically,

http://www.codeplex.com/entlib/

encrypting	configuration	files,	and	enabling	the	built-in	instrumentation.
Using	Enterprise	Library	in	Applications.	These	topics	describe	how	to
add	the	Enterprise	Library	assemblies	to	your	projects,	import	the
required	namespaces,	and	create	instances	of	Enterprise	Library	objects
that	exercise	the	functionality	of	the	application	blocks.
Deploying	Enterprise	Library.	These	topics	discuss	the	issues	that	you
should	consider	when	deploying	Enterprise	Library	and	applications	that
use	it.	This	includes	versioning	and	strong	naming	assemblies	if	you
modify	the	source	code	for	Enterprise	Library,	and	pointers	to	help	you
use	Enterprise	Library	in	partial	trust	scenarios.
Administering	Enterprise	Library.	This	topic	summarizes	the	techniques
available	to	administrators	and	operators	for	running	multiple	versions	of
Enterprise	Library,	managing	configuration,	using	the	built-in
instrumentation,	and	integrating	with	system	management	tools.
Extending	and	Modifying	Enterprise	Library.	These	topics	provide
advice	on	extending	and	modifying	Enterprise	Library	by	changing	the
source	code,	and	information	about	creating	custom	providers	that
integrate	with	Enterprise	Library	and	the	configuration	tools.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications with Enterprise Library'%0AEntLib50_f5ce41d8-3bed-406d-b3e0-5d06cf1be436%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Enterprise	Library

Configuration	information	for	the	Enterprise	Library	application	blocks	is	stored
in	XML	format.	Typically,	the	information	exists	in	an	XML	file.	By	default,	the
XML	file	that	contains	the	information	is	the	application	configuration	file.

You	can	manually	edit	the	XML	data,	but	the	Enterprise	Library	provides	two
configuration	tools	that	greatly	simplify	this	task.	These	tools	are	the	stand-
alone	configuration	console	and	the	configuration	editor	that	is	integrated	with
Visual	Studio®.	If	you	choose	to	manually	edit	the	XML,	refer	to	the
appropriate	application	block	documentation	for	schema	details.

Note:
When	creating	a	configuration	file	and	adding	application	blocks,	Using	the
Configuration	Tools	provides	a	less	error	prone	experience	and	is	the
recommended	process.	Editing	the	XML	in	Visual	Studio	does	not	enforce
the	configuration	file	hierarchy	at	all	levels	and	can	result	in	invalid	XML.

The	configuration	files	are	not	encrypted,	they	are	in	clear	text,	by	default.	A
configuration	file	may	contain	sensitive	information	about	connection	strings,
user	IDs,	passwords,	database	servers,	and	catalogs.	You	should	protect	this
information	against	unauthorized	read/write	operations	by	using	encryption
techniques.	To	provide	security	they	must	be	encrypted	or	protected	using
access	control	lists	(ACLs).	It	is	recommended	that	the	configuration	store	be	in
the	same	trust	boundary	and	that	decrypting	the	configuration	is	done	in	the
same	trust	boundary	after	the	configuration	is	read.	For	information	about	how
to	encrypt	configuration	files,	see	Encrypting	Configuration	Data.

This	section	includes	the	following	topics:
Using	the	Configuration	Tools
Advanced	Configuration	Scenarios
Using	Group	Policy	with	Enterprise	Library
Configuring	a	Deployment	Environment
Using	the	Fluent	Configuration	API
Using	the	appSettings	Section

http://msdn.microsoft.com/en-us/library/aa374872(VS.85).aspx

Updating	Configuration	Settings	at	Run	Time
Encrypting	Configuration	Data
Enabling	Instrumentation
Source	Schema	for	Enterprise	Library	Core

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Enterprise Library'%0AEntLib50_05ae7aff-85e4-46b5-8401-c4df81a2ea00%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Configuration	Tools

The	Enterprise	Library	configuration	tools	are	graphical	tools	that	allow	you	to
create,	change,	and	validate	application	block	settings	without	having	to
manually	edit	the	XML	configuration	files	where	they	are	stored.	There	is	a
configuration	editor	that	integrates	with	Visual	Studio	2008,	plus	standalone
versions	for	different	operating	system	and	Microsoft®	.NET	Framework
versions	that	you	can	launch	from	within	Visual	Studio	or	open	from	your	Start
menu.

These	tools	display	the	available	configuration	settings,	the	default	values	that
you	can	change,	and	information	about	what	each	setting	means.

This	topic	contains	the	following	sections:
Launching	Configuration	Editor	from	Visual	Studio
Setting	the	Visual	Studio	Configuration	Editor	as	the	Default	Editor
Launching	the	Standalone	Configuration	Tool
Using	Wizards	in	the	Configuration	Tool
Using	the	Keyboard	with	the	Configuration	Tool
The	Configuration	Type	Selector
Enterprise	Library	Configuration	Schema
Building	the	Configuration	Console
Specifying	Different	Assemblies
Configuration	Tool	Usage	Notes

Launching	the	Configuration	Editor	from	Visual	Studio

Setting	the	Visual	Studio	Configuration	Editor	as	the	Default
Editor

Launching	the	Stand-alone	Configuration	Tool

Using	Wizards	in	the	Configuration	Tool

Using	the	Keyboard	with	the	Configuration	Tool

The	Configuration	Type	Selector

Enterprise	Library	Configuration	Schema

Building	the	Configuration	Console

Specifying	Different	Assemblies

Configuration	Tool	Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/aa374872(VS.85).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Configuration Tools'%0AEntLib50_cc9f653d-cf10-4bfa-a8a6-1795a25a6f9d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Advanced	Configuration	Scenarios

The	Enterprise	Library	standalone	configuration	console	and	the	Visual	Studio
integrated	configuration	editor	allow	you	to	satisfy	a	range	of	advanced
configuration	scenarios	based	on	external	configuration	sources	such	as	disk
files.	For	example,	you	can:

Read	configuration	information	from	a	wide	range	of	sources.
Enforce	common	configuration	settings	across	multiple	applications.
Share	configuration	settings	between	applications.
Specify	a	core	set	of	configuration	settings	that	applications	can	inherit.
Merge	configuration	settings	that	are	stored	in	a	shared	location.
Create	different	configurations	for	different	deployment	environments.

The	default	and	simplest	scenario	for	configuring	Enterprise	Library	is	to
configure	your	application	using	the	configuration	tool	without	adding	a
Configuration	Sources	section	or	any	configuration	sources.	This	is	the
approach	described	in	Using	the	Configuration	Tools.

When	you	use	the	configuration	tools	without	specifying	a	configuration	source,
they	default	to	using	the	System	Configuration	Source	to	create	a	single
configuration	file	that	contains	the	entire	configuration	for	the	application.	Your
application	will	expect	this	to	be	named	App.config	file	(which	is	copied	to
[exe-name].config	when	you	compile	your	application)	or	Web.config
(depending	on	the	technology	you	are	using),	and	will	read	it	automatically.

You	can	select	Add	Configuration	Settings	on	the	Blocks	menu	to	display	the
section	that	contains	the	default	System	Configuration	Source.	If	you	click	the
chevron	arrow	to	the	right	of	the	Configuration	Sources	title	to	open	the
section	properties	pane	you	can	see	that	the	System	Configuration	Source	is
also,	by	default,	specified	as	the	Selected	Source—the	configuration	source	to
which	the	configuration	generated	by	the	tool	will	be	written.	When	an
application	that	uses	Enterprise	Library	reads	the	configuration,	it	uses	the
settings	specified	for	the	selected	source.

By	adding	additional	configuration	sources,	you	can	implement	more	advanced
configuration	scenarios.	The	following	sections	describe	the	scenarios	that	you
can	implement	using	the	configuration	tools:

Using	a	Non-default	Configuration	Store
Sharing	the	Same	Configuration	between	Multiple	Applications
Managing	and	Enforcing	Configuration	for	Multiple	Applications
Sharing	Configuration	Sections	across	Multiple	Applications
Applying	a	Common	Configuration	Structure	for	Applications
Managing	Configuration	in	Different	Deployment	Environments

You	can	also	change	the	contents	of	a	configuration	file	programmatically,
which	is	useful	when	working	with	shared	configuration	stored	as	disk	files.	For
more	information,	see	Updating	Shared	Configuration	Settings
Programmatically.	For	links	to	related	topics	and	more	details	of	how	the
configuration	system	works,	see	More	Information	at	the	end	of	this	topic.

Using	a	Non-default	Configuration	Store

http://entlibcontrib.codeplex.com/

Sharing	the	Same	Configuration	between	Multiple	Applications

Managing	and	Enforcing	Configuration	for	Multiple
Applications

Sharing	Configuration	Sections	across	Multiple	Applications

Applying	a	Common	Configuration	Structure	for	Applications

Managing	Configuration	in	Different	Deployment
Environments

Updating	Shared	Configuration	Settings	Programmatically

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Advanced Configuration Scenarios'%0AEntLib50_d0f735b9-e96f-4dcd-a16e-abe2d87cc30a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	a	Non-default	Configuration	Store

The	Enterprise	Library	configuration	tools	allow	you	to	specify	the
configuration	source	to	be	read	at	run	time	to	configure	your	application.	You
can	point	to	configuration	files	or	other	types	of	configuration	sources	from
which	to	read	configuration	information.	This	topic	explains	how	to	add	a	non-
default	configuration	source	to	your	configuration.	It	uses	the	File-based
Configuration	Source,	but	the	same	approach	is	used	with	other	configuration
sources.

To	add	a	configuration	source
1.	 On	the	taskbar,	click	Start,	point	to	All	Programs,	point	to	Microsoft

patterns	&	practices,	point	to	Enterprise	Library	5.0,	point	to
Enterprise	Library	Configuration,	and	then	select	the	version	of	the
configuration	editor	you	require.	Alternatively,	right-click	on	a
configuration	file	in	Visual	Studio	Solution	Explorer	and	click	Edit
Enterprise	Library	V5	Configuration.

2.	 Select	Add	Configuration	Settings	on	the	Blocks	menu	to	display	the
section	that	contains	the	configuration	sources.

3.	 Click	the	Sources	plus-sign	icon,	point	to	Add	Sources,	and	then	click
Add	File-based	Configuration	Source.

4.	 A	new	section	is	added	to	the	Sources	pane	with	the	default	name	of
the	type	of	configuration	source	you	added,	for	example	File-based
Configuration	Source.	If	you	add	more	than	one	of	the	same
configuration	source	type,	the	default	names	increment	by	one	each
time.

5.	 Set	the	properties	of	the	configuration	source.	For	example,	set	the	File
Path	property	by	typing	the	file	path	and	name	of	the	file,	or	by

clicking	the	ellipsis	button	(…)	and	navigating	to	the	file	you	want	to
use.	The	file	can	be	located	on	the	local	machine,	or	in	a	shared
location	if	you	want	to	use	the	same	configuration	for	multiple
applications	or	application	layers.

6.	 Edit	the	Name	property	of	the	configuration	source	if	required.
7.	 Click	the	Configuration	Sources	property	expander	chevron	to	open

the	properties	pane	for	the	section.	Set	the	Selected	Source	property	by
selecting	the	configuration	source	you	want	to	use	for	your	application
from	the	drop-down	list.

8.	 On	the	File,	menu	click	Save	or	Save	As.

Note:
A	QuickStart	sample	named	SqlConfiguration	that	implements	an	example
SQL	Configuration	Source	to	demonstrate	how	you	can	store	configuration
information	in	a	database	is	available	from	the	Enterprise	Library	Contrib
Web	site.	This	provider	uses	the	Data	Access	Application	Block	to	read
configuration	settings	from	a	SQL	Server©	database.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using a Non-default Configuration Store'%0AEntLib50_bb3cf811-6f61-450b-b9e5-b526f53b3ecc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Sharing	Configuration	Sections	across	Multiple	Applications

You	can	use	redirection	to	read	the	configuration	for	individual	application
blocks	(individual	configuration	sections)	from	a	shared	location	or	other
configuration	source.	This	enables	you	to	use	a	local	application	configuration
for	some	application	blocks,	while	reading	and	including	the	shared	sections
configuration.	You	create	composite	configurations	like	this	by	specifying
additional	sources	in	your	application	configuration	file.	The	contents	of	the
individual	sections	in	the	configuration	source	can	be	read	and	included	with	the
contents	of	your	default	application	configuration	file	at	run	time.

The	following	procedure	explains	how	you	can	use	the	configuration	tools	to
redirect	Enterprise	Library	to	read	a	specific	configuration	section's	content
from	a	specified	source.

To	use	redirection	to	read	a	configuration	section	from	a	shared	source
1.	 On	the	taskbar,	click	Start,	point	to	All	Programs,	point	to	Microsoft

patterns	&	practices,	point	to	Enterprise	Library	5.0,	point	to
Enterprise	Library	Configuration,	and	then	select	the	version	of	the
configuration	editor	you	require.	Alternatively,	right-click	on	a
configuration	file	in	Visual	Studio	Solution	Explorer	and	click	Edit
Enterprise	Library	V5	Configuration.

2.	 On	the	Blocks	menu	click	Add	Configuration	Settings.
3.	 In	the	Sources	pane	click	the	plus-sign	icon,	point	to	Add	Sources	and

then	click	the	type	of	configuration	source	you	want	to	add	to	the
configuration.	This	is	the	configuration	source	to	which	you	will
redirect	configuration	sections.	In	this	example,	we	add	a	File-based
Configuration	Source.

4.	 In	the	Sources	column,	enter	the	desired	File	Path	property	for	the	new

configuration	source	by	typing	the	path	and	file	name	or	by	clicking	the
ellipses	(...)	button	and	navigating	to	the	file.

5.	 You	can	now	redirect	sections	from	your	local	source	to	another	using
the	Redirected	Sections	pane.	Click	the	plus	sign	icon	in	the
Redirected	Sections	column	and	click	Add	Redirected	Section.

6.	 In	the	new	Redirected	Section	that	is	displayed,	select	the
configuration	section	that	you	want	to	redirect	to	a	shared	configuration
source.	After	you	select	the	section,	the	name	of	the	redirected	section
changes	to	reflect	this.

7.	 Select	the	configuration	source	that	will	expose	the	shared
configuration	section	you	want	to	use	in	the	drop-down	list	for	the
Configuration	Source	property	of	the	redirected	section.	A	connecting
line	appears	showing	which	configuration	source	will	provide	the
information	for	the	redirected	section.

8.	 Click	Save	or	Save	As	to	save	the	configuration.

Note:
In	the	Configuration	Tool,	when	redirected	sections	are	used	with	a	Selected
Source	other	than	System	Configuration	Source,	the	redirected	sections
configuration	information	will	still	be	saved	to	the	System	Configuration
Source,	which	is	the	file	opened	in	the	configuration	tool.	To	edit	the
contents	of	the	shared	configuration	sections,	open	the	configuration	that
contains	them	directly.

An	Example	of	the	XML	Generated	by	Redirected	Sections
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Sharing Configuration Sections across Multiple Applications'%0AEntLib50_4c09bfbf-a6ff-437d-ac7e-2738e55c9b96%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Applying	a	Common	Configuration	Structure	for	Applications

If	you	add	a	configuration	source	to	your	application	configuration	and	specify
that	this	configuration	source	is	the	parent	source,	Enterprise	Library	will	read
the	contents	of	this	configuration	source	and	merge	any	local	configuration
settings	you	have	specified	with	this	parent	configuration.	Effectively,	it	inherits
the	shared	configuration	and	then	applies	the	local	settings	to	override	any	that
occur	in	both	configurations.	You	can	use	the	configuration	tool	to	specify	a
parent	configuration	that	will	be	inherited.

To	inherit	a	shared	configuration	structure	and	settings	from	another
configuration	source

1.	 On	the	taskbar,	click	Start,	point	to	All	Programs,	point	to	Microsoft
patterns	&	practices,	point	to	Enterprise	Library	5.0,	point	to
Enterprise	Library	Configuration,	and	then	select	the	version	of	the
configuration	editor	you	require.	Alternatively,	right-click	on	a
configuration	file	in	Visual	Studio	Solution	Explorer	and	click	Edit
Enterprise	Library	V5	Configuration.

2.	 On	the	Blocks	menu	click	Add	Configuration	Settings.
3.	 In	the	Sources	pane	click	the	plus-sign	icon,	point	to	Add	Sources	and

then	click	the	type	of	configuration	source	you	want	to	add	to	the
configuration.	This	is	the	configuration	source	from	which	you	will
inherit	configuration	information.	In	this	example,	we	add	a	File-based
Configuration	Source.

4.	 Set	the	properties	of	the	configuration	source	you	added.	For	example,
enter	the	desired	File	Path	property	for	the	new	configuration	source
by	typing	the	path	and	file	name	or	by	clicking	the	ellipses	(...)	button
and	navigating	to	the	file.

5.	 Click	the	Configuration	Sources	property	expander	chevron	to	open
the	properties	pane	for	the	section.	Set	the	Parent	Source	property	to
the	configuration	source	whose	settings	you	want	to	inherit.

6.	 Click	Save	or	Save	As	on	the	File	menu	to	save	your	configuration.

Settings	in	the	inherited	configuration	source	will	apply	to	your	application
unless	you	override	them	by	configuring	the	same	setting	in	your	local
configuration.	For	information	about	how	settings	are	inherited	and	merged,	see
Merge	Rules	for	Inherited	Configuration.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to

http://codeplex.com/entlib/

pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Applying a Common Configuration Structure for Applications'%0AEntLib50_a1391fa6-3bd5-43f6-9d41-3f19ca61f1b5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Merge	Rules	for	Inherited	Configuration

When	you	specify	a	parent	source	from	which	you	inherit	shared	configuration
information,	all	of	that	configuration	information	is	read	and	the	settings	are
merged	at	run-time	at	the	level	of	individual	setting	elements.	For	example,	you
can	add	exception	handlers	to	an	existing	policy,	or	add	a	property	to	an	element
in	the	local	configuration	that	does	not	exist	in	the	default	settings.	The	run	time
merge	basically	behaves	like	a	logical	OR.	If	the	element	or	property	is	in	one
of	the	configuration	files,	it	will	be	present	in	the	merged	configuration.

If	an	element	or	property	is	present	in	both	sources	when	you	inherit	a	section,
the	element	in	the	local	configuration	(the	local	source)	is	the	one	present	in	the
resulting	merged	configuration.	Inheritance	can	only	be	one	level	deep;	you
cannot	define	a	parent	source	for	a	configuration	source	that	is	itself	used	as	a
parent	source.	This	prevents	the	accidental	creation	of	circular	references	and
endless	recursion.

Note:
When	you	use	environmental	overrides	to	specify	different	configurations
for	different	deployment	environments	in	conjunction	with	settings	inherited
from	a	parent	source,	the	merge	rules	described	here	do	not	apply	to	the
inherited	configuration	settings.	The	merged	configuration	is	specified	by	the
combination	of	the	common	and	the	delta	(differences)	configuration	files
that	you	merge.

When	you	use	redirected	sections,	and	an	element	or	property	is	present	in
both	sources,	the	element	from	the	shared	configuration	(the	source	you
redirect	the	section	to)	is	the	one	present	in	the	resulting	merged
configuration.	Local	settings	in	a	redirected	section	are	ignored.	If	you
specify	a	parent	source	as	well	as	redirected	sections,	the	merge	behavior
applies	to	the	redirected	sections.	

To	avoid	issues	when	you	use	different	tools	to	manage	your	configuration,
you	should	avoid	inheriting	the	standard	.NET	configuration	sections	that	are
also	used	by	Enterprise	Library,	such	as	appSettings	and	connectionStrings.

When	creating	a	composite	configuration,	there	is	a	hierarchy	to	the
components	merged	into	your	Enterprise	Library	configuration	at	run	time,	as
described	in	Additive	Merge	below.	In	addition,	there	is	a	hierarchy	for	merging
of	the	collections	from	the	specified	sources,	described	in	the	section	Merged
Collections	Order	later	in	this	topic.

Additive	Merge

Merged	Collections	Order
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Merge Rules for Inherited Configuration'%0AEntLib50_0211977e-2655-4b6e-aae5-5b42a74dd609%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

About	the	Configuration	System

Enterprise	Library	first	looks	at	the	default	configuration	file	(the	current
application	domain	configuration	file).	This	will	be	either	your	App.config	file
(which	is	copied	to	[exe-name].config	when	you	compile	your	application)	or
your	Web.config	file.	This	file	may	contain	a	configuration	section	that	defines
additional	configuration	sources.	The	core	configuration	classes	that	support
reading	configuration	information	first	try	to	read	the	requested	configuration
section	from	the	configured	source	location.

The	enterpriseLibrary.ConfigurationSource	section	in	the	configuration	file
carries	the	selectedSource	attribute,	which	specifies	the	configuration	source
that	the	application	should	use.	The
<enterpriseLibrary.ConfigurationSource>	section	is	retrieved	from	the
current	application	domain's	configuration	file,	and	Enterprise	Library	uses	the
configuration	information	exposed	by	the	configuration	source	specified	by	the
selectedSource	attribute.

The	source	defined	by	the	selectedSource	attribute	could	be	any	of	the
following	sources:

A	System	Configuration	Source,	which	reads	from	the	application's
configuration	file.

A	File-based	Configuration	Source,	which	reads	from	an	arbitrary	file.
A	Manageable	Configuration	Source,	which	reads	from	an	arbitrary
file	and	applies	group	policy	overrides,	or	any	custom	configuration
source.
The	sample	SQL	Configuration	Source	available	from	the	Enterprise
Library	Contrib	Project	Web	site,	which	reads	configuration	data	from	a
database.
A	custom	configuration	source	that	you	create	and	add	to	Enterprise
Library.

If	there	is	no	<enterpriseLibrary.ConfigurationSource>	section	in	the
configuration	file,	an	instance	of	the	SystemConfigurationSource	class	is	used
by	default	and	becomes	the	application	configuration	source.

Note:
Configuration	sources	are	an	extensibility	point	in	Enterprise	Library.

The	following	XML	fragment	shows	a	configuration	section	that	specifies
Enterprise	Library	should	read	configuration	information	using	the	File
Configuration	Source.
XML

<enterpriseLibrary.ConfigurationSource	selectedSource="fileSource">

		<sources>

				<add	name="fileSource"

									type="Microsoft.Practices.EnterpriseLibrary.Common.Configuration.FileConfigurationSource,

														Microsoft.Practices.EnterpriseLibrary.Common"

									filePath="test.exe.config"/>

				<add	name="systemSource"	

									type="Microsoft.Practices.EnterpriseLibrary.Common.Configuration.SystemConfigurationSource,

														Microsoft.Practices.EnterpriseLibrary.Common"/>

		</sources>

</enterpriseLibrary.ConfigurationSource>

http://entlibcontrib.codeplex.com/

Redirection	and	Inheritance	Configuration	Property	and
Attribute	Settings

Saved	Configuration	Settings
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'About the Configuration System'%0AEntLib50_d294bdc2-2c9d-4358-96ac-bff4017afd0f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Group	Policy	with	Enterprise	Library

Group	Policy	provides	a	centralized	one-to-many	management	capability	for
Windows	that	allows	administrators	to	define	settings	that	apply	to	a	group	of
computers,	systems,	services,	or	applications.	Group	Policy	relies	on	the	Active
Directory®	service	to	manage	the	settings	applied	at	run	time	to	members	of	the
Active	Directory	forest,	domain,	or	subgroup.	For	more	information	about
Group	Policy,	see	Group	Policy	on	MSDN.

Enterprise	Library	includes	a	manageable	configuration	source.	This	allows	you
to	use	Group	Policy	to	manage	an	Enterprise	Library	application.	You	do	not
need	to	write	any	application	code	to	use	these	features.	This	topic	provides
information	about	the	following	tasks	for	using	Group	Policy:

Adding	a	Manageable	Configuration	Source
Generating	and	Installing	Group	Policy	Templates
Troubleshooting	Group	Policy

http://msdn2.microsoft.com/en-us/library/aa374177.aspx

Adding	a	Manageable	Configuration	Source

Generating	and	Installing	Group	Policy	Templates

http://www.microsoft.com/downloads/details.aspx?FamilyID=7d2f6ad7-656b-4313-a005-4e344e43997d&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=9FF6E897-23CE-4A36-B7FC-D52065DE9960&displaylang=en
http://download.microsoft.com/download/a/d/b/adb5177d-01a7-4f04-bfcc-cb7cea8b5bb7/gpmc.msi

Troubleshooting	Group	Policy

Administrator	Enters	Invalid	Values

Application	Is	Modified	Without	Generating	New	Group	Policy
Template

Policies	Conflict	to	Produce	Invalid	Configuration

Other	Errors
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Group Policy with Enterprise Library'%0AEntLib50_6cd834dd-557c-492a-9bc6-7a653c6ac367%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	a	Deployment	Environment

You	can	use	the	configuration	tools	at	design	time	to	customize	the	run-time
settings	of	your	configuration	to	suit	a	particular	deployment	environment.	This
feature	is	useful	if	you	have	multiple	environments	that	share	the	same	basic
configuration	but	require	different	property	settings.	For	example,	you	may	have
a	development	environment	that	uses	one	connection	string	for	the	Data	Access
Application	Block	and	a	test	environment	that	uses	a	different	one.

Every	environment	you	configure	maintains	its	own	environment	delta	file
(using	the	file	name	extension	.dconfig),	which	is	updated	after	you	save	the
configuration.	This	environment	delta	file	contains	the	differences	between	this
environment	and	the	standard	environment,	plus	some	additional	metadata	for
merging	the	differences	into	a	new	complete	configuration	file	that	you	can
deploy.	The	main	advantage	is	that	you	can	distribute	an	environment	delta	file
separately	from	the	original	configuration	file	and	allow	management	by	users
or	administrators	who	have	access	to	all	the	passwords,	server	names,	and	other
details	of	that	environment.

Therefore,	instead	of	maintaining	multiple	configuration	files	or	having	to
change	a	file	manually	or	programmatically,	you	can	create	a	base	configuration
file	(.config)	and	an	environment	delta	file	that	contains	the	differences
(.dconfig).

You	can	use	environmental	property	overrides	to	override	specific	properties	for
a	block	and	for	the	properties	of	the	child	elements	for	a	block,	and	then	create	a
deployment	environment	by	saving	the	configuration	delta.	Then	you	can	export
the	merged	configuration	file	and	copy	or	deploy	it	to	production.

The	lifetime	of	the	main	configuration	and	the	lifetime	of	the	environmental
overrides	are	linked	only	through	the	structure	of	the	files.	The	following
operations	can	be	performed	on	environment	delta	files:

File	|	Save:	Saving	the	main	configuration	also	saves	any	related
environments.	The	environment	.dconfig	file	is	saved	using	the	path
specified	in	the	Environment	Delta	File	property	of	the	environment
override.
File	|	Save	As:	Specifying	a	new	path	or	name	only	affects	the	main

configuration	file.	You	must	change	the	path	and	name	specified	in	the
Environment	Delta	File	property	of	the	environment	override	to	change
the	environment	name	and	path.
File	|	New:	Creating	a	new	configuration	clears	the	existing
configuration	and	all	open	environments,	creates	a	new	empty
configuration	file,	and	clears	the	validation	results.	You	are	prompted	to
save	the	file	being	cleared	if	it	has	any	changes.
Validation:	You	can	save	configuration	and	environment	files	only	if	all
files	are	valid.	Either	all	are	saved	or	none	are	saved.

To	open	or	create	a	configuration	file	in	order	to	create	a	deployment
environment

1.	 Click	on	Open	in	the	File	menu	to	open	an	existing	.config	file,	or	click
New	on	the	File	menu	to	create	a	new	file,	and	then	add	the
appropriately	configured	application	blocks	in	the	configuration	tool.

2.	 Browse	to	the	configuration	file	you	want	or	the	location	where	you
want	to	save	the	new	file.

3.	 Select	a	configuration	file	and	view	the	configured	application	blocks.

To	customize	a	block's	properties	for	a	run	time	environment
1.	 On	the	Environments	menu,	click	New	Environment	to	open	a	new

environment	configuration	file.	You	must	have	an	environment	open	in
order	for	the	property	overrides	to	be	displayed.

2.	 Click	the	Environment	property	expander	chevron	to	open	or	close	the
environment	properties	edit	pane.
Note:

You	can	have	multiple	environment	configuration	files	open
simultaneously.	Each	is	displayed	by	name.

3.	 In	the	edit	pane,	set	the	properties.	The	Environment	Delta	File
property	is	the	name	of	the	delta	file.	If	you	want	to	encrypt	the	file,	set
the	Protection	Provider	property	by	selecting	a	provider	from	the
drop-down	list.	The	Environment	Configuration	File	property	is	the
name	of	the	merged	configuration	file.	The	Environment	Name
property	is	the	name	of	the	environment.

4.	 Repeat	the	previous	steps	for	each	environment	you	want	to	create.
5.	 To	customize	a	block's	properties	for	this	environment,	add	the

application	block	to	the	configuration.	Open	the	Blocks	menu	and
select	the	block	you	require	by	clicking	on	its	settings;	for	example,
Add	Logging	Settings.

6.	 Click	the	blocks	properties	expander	arrow	to	view	the	list	of
properties.	In	the	Overrides	on	[environment	name]	drop-down	box,
click	Override	Properties	to	enable	setting	the	block's	properties	for
this	environment.

Note:
If	you	rename	an	environment,	the	updated	name	may	not	be
displayed	in	the	Overrides	on	[environment	name]	property.
However,	it	will	be	shown	the	next	time	you	open	the	configuration
in	the	tool.

7.	 Click	the	expander	arrow	on	the	left	of	the	named	environment	listed
under	the	block's	properties,	in	this	screen	shot	to	the	left	of	Overrides
on	TestPlatform,	to	display	the	properties	for	that	named	environment.
You	can	then	use	each	property	drop-down	edit	box	to	edit	the
properties	appropriately	for	your	requirements.

8.	 Repeat	steps	4,	5	and	6	for	each	block	you	want	to	customize.

Note:
The	configuration	tool	allows	you	to	add	more	than	one	additional
environment.	Each	configured	item	then	displays	a	set	of	properties	for	the
base	configuration	file	and	a	set	of	properties	specific	to	each	of	the	named
environments	(with	the	exception	of	properties	that	cannot	be	overridden).
This	enables	you	to	edit	the	base	configuration	file	properties	or	the	delta	file
properties	for	a	specific	named	environment.

To	customize	a	block's	child	element	properties	for	a	run-time	environment
1.	 Click	on	the	child	expander	arrow	to	the	left	of	the	block	name

—Logging	Settings	in	this	example—to	display	the	child	elements	if
they	are	not	already	visible.

2.	 In	each	of	the	child	elements	that	you	want	to	configure	for	different

environments,	click	on	the	property	expander	for	the	environment	you
want	to	edit—Overrides	on	TestPlatform	in	this	example.

3.	 Set	the	Overrides	on	[environment	name]	property	to	Override
Properties,	and	then	edit	the	properties	you	want	to	override	for	that
environment.	This	screenshot	shows	how	you	can	specify	different
property	values	for	a	Logging	block	category	filter	and	a	target	listener
in	different	environments.

To	save	a	configuration	(.config)	file	and	a	delta	environment	(.dconfig)	file
1.	 Select	Save	or	Save	As	on	the	File	menu	to	save	both	the	named

environment	configuration	file	and	the	delta	file;	if	either	file	name	is
blank	you	will	be	prompted	to	select	a	path	and	file	name.

Copy	Code

2.	 Click	Save.	The	configuration	file	is	saved	and	you	are	prompted	for	a
path	and	name	to	save	the	delta	environment	file.

3.	 Click	SaveAs	and	you	are	prompted	first	for	a	path	and	name	to	save
the	configuration	file.	Then	you	are	prompted	for	a	path	and	name	to
save	the	delta	environment	file.

To	create	a	merged	environment	configuration	file
1.	 Right-click	on	the	named	Environment	for	which	you	want	to	create	a

merged	deployment	configuration	file,	then	click	Export	Merged
Environment	Configuration	File.

2.	 To	save	just	the	differences	between	the	main	and	an	environment
override	configuration,	click	Save	Environment	Delta	File.

You	can	also	merge	your	main	configuration	file	and	your	environment	delta	file
from	the	command	line.	This	is	useful	if	you	want	to	use	build	scripts	or
automate	deployment.	To	merge	the	configuration	files,	you	must	provide	both
the	main	configuration	file	and	the	environment	delta	file	in	your	command.
The	following	command	shows	the	syntax.

MergeConfiguration.exe	configFile	deltaFile	[mergedFile]	

The	parameters	are	the	following:
configFile.	This	is	the	main	configuration	file	(.config).	It	is	merged	with
the	environment	delta	file.
deltaFile.	This	is	the	environment	delta	file	(.dconfig).	It	contains	the
information	that	is	merged	into	the	main	configuration	file.
mergedFile.	This	is	the	output	file.	This	file	results	from	merging
configFile	with	deltaFile.	If	you	do	not	specify	the	mergedFile,	the	file
name	stored	in	deltaFile	is	used.

Note:
The	environment	delta	files	(.dconfig)	you	create	must	be	reloaded	each	time
you	close	and	reopen	the	configuration	file.

To	reload	an	environment	delta	configuration	file
1.	 Start	the	Enterprise	Library	configuration	console	or	open	the

configuration	file	in	the	Visual	Studio	configuration	editor.	For	more

information	on	the	Enterprise	Library	configuration	console	see	Using
the	Configuration	Tools.

2.	 On	the	File	menu,	click	Open.
3.	 In	the	Open	dialog	box,	browse	to	and	select	the	application	.config	file

you	want	to	reload.
4.	 In	the	Enterprise	Library	configuration	tool,	left-click	Environments,

and	then	click	OpenDelta	File.
5.	 In	the	Open	dialog	box,	select	the	environment	delta	configuration

(.dconfig)	file	you	want	to	reload,	and	then	click	the	Open	button.
6.	 Save	the	changes	through	the	File	menu	or	the	right-click	shortcut

menu	on	the	environment	item,	as	described	in	the	previous	procedure.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring a Deployment Environment'%0AEntLib50_91c6d2cf-d3f1-4c96-a972-4d56c71c3924%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Fluent	Configuration	API

It	is	possible	to	programmatically	manipulate	the	default	configuration	classes
used	by	Enterprise	Library	for	the	core,	instrumentation,	and	all	of	the
application	blocks.	The	fluent	interface	exposed	by	Enterprise	Library	is
designed	to	facilitate	this	process.	The	fluent	interface	can	be	used	for	all	of	the
configurable	features	of	instrumentation	and	for	all	of	the	Enterprise	Library
application	blocks	with	the	exception	of	the	Validation	and	Policy	Injection
Application	Blocks.

Using	the	fluent	configuration	API,	you	can:
Create	configuration	sources	to	pass	to	Enterprise	Library	objects	that
you	create	in	your	applications.
Create	configuration	sources	for	entire	sections	of	the	configuration,
such	as	for	the	Exception	Handling	Application	Block	or	the	Logging
Application	Block.
Create	the	complete	configuration	for	Enterprise	Library	for	an
application.
Create	different	environment-specific	configurations	for	sections	or	for
entire	applications;	this	makes	it	easier	to	deploy	an	application	to
different	run-time	environments.
Modify	the	configuration	at	run	time;	perhaps	to	take	into	account
external	factors	or	changes	to	the	environment.

Effectively,	the	fluent	configuration	API	allows	you	to	specify	a	set	of
configuration	sections	programmatically	and,	if	required,	merge	them	with	other
configuration	settings	specified	in	other	sources	such	as	a	file	configuration
source.	It	also	allows	you	to	programmatically	define	a	base	configuration	that
can	be	changed	from	another	source,	such	as	a	file	configuration	source,	which
provides	the	ability	to	override	parts	of	the	base	configuration.

Working	With	the	Fluent	Configuration	API
Enterprise	Library	provides	the	ConfigurationSourceBuilder	class	that	acts	as
the	basis	for	creating	configuration	sources.	Each	of	the	blocks,	and	the	core	and
instrumentation	features	of	Enterprise	Library,	provides	extensions	to	this	class
that	expose	a	fluent	interface	and	make	it	easy	to	create	configuration	sources.

The	general	approach	is	to	create	an	instance	of	the
ConfigurationSourceBuilder	class	and	then	specify	the	section	you	want	to
configure.	The	extensions	for	each	configuration	section	expose	intuitive
methods	that	allow	you	to	add	the	appropriate	policies,	providers,	or	other	types
of	extensions	to	the	configuration	and	specify	the	required	configuration
settings	for	each	one.	In	Visual	Studio,	the	IntelliSense®	feature	will	help	you
to	locate	and	use	the	individual	methods	available	for	each	configuration
extension.	For	example,	you	can	configure	instrumentation	for	a	configuration
source	using	the	following	code.
C#

var	builder	=	new	ConfigurationSourceBuilder();

builder.ConfigureInstrumentation()

							.ForApplicationInstance("MyApp")

									.EnableLogging()

									.EnablePerformanceCounters();

var	configSource	=	new	DictionaryConfigurationSource();

builder.UpdateConfigurationWithReplace(configSource);

EnterpriseLibraryContainer.Current	

		=	EnterpriseLibraryContainer.CreateDefaultContainer(configSource);

Visual	Basic

Dim	builder	=	New	ConfigurationSourceBuilder()

builder.ConfigureInstrumentation()	_

							.ForApplicationInstance("MyApp")	_

									.EnableLogging()	_

									.EnablePerformanceCounters()	_

Dim	configSource	=	New	DictionaryConfigurationSource()

builder.UpdateConfigurationWithReplace(configSource)

EnterpriseLibraryContainer.Current	_

		=	EnterpriseLibraryContainer.CreateDefaultContainer(configSource)

The	final	line	in	this	code	creates	a	new	container	and	assigns	the	configuration
to	it.	Enterprise	Library	will	use	this	configuration	to	resolve	the	objects	it
requires.	You	can	also	use	the	methods	of	the	IServiceLocator	interface	to
obtain	instances	of	Enterprise	Library	objects	on	demand	in	your	code	by
accessing	the	IServiceLocator	implementation	through	the
EnterpriseLibraryContainer.Current	property.

The	API	also	provides	methods	that	allow	you	to	check	if	a	specific	section
already	exists	in	the	configuration,	and	add	new	sections	to	the	configuration.
For	performance	reasons,	the	fluent	configuration	API	does	not	perform	full
validity	checking	of	the	settings	you	specify.	It	does	check	for	null	values,
however.	To	obtain	full	validity	checking,	you	can	use	the	graphical
configuration	tools	to	set	up	and	verify	your	configuration,	and	then	translate	it
into	calls	to	the	configuration	API.

All	configuration	source	classes	implement	the	IConfigurationSource
interface.	This	interface	allows	your	application	code	to	subscribe	to
notifications	of	configuration	changes.	For	more	information,	see	Updating
Configuration	Settings	at	Run	Time.	By	default,	in	Enterprise	Library,	only	the
Logging	Application	Block	registers	to	receive	notifications	of	configuration
changes.

The	following	examples	show	how	you	can	configure	the	other	blocks	in
Enterprise	Library	using	the	fluent	API:

The	Caching	Application	Block
The	Cryptography	Application	Block
The	Data	Access	Application	Block
The	Exception	Handling	Block
The	Logging	Application	Block
The	Security	Application	Block

The	Caching	Application	Block

The	Cryptography	Application	Block

The	Data	Access	Application	Block

The	Exception	Handling	Block

The	Logging	Application	Block

The	Security	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Fluent Configuration API'%0AEntLib50_d935824f-a38b-4a3d-8a86-76d279a6e761%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	appSettings	Section

You	can	use	the	configuration	tools	to	create	and	modify	Microsoft	.NET
Framework	<appSettings>	sections.	Note	that	the	<appSettings>	sections	must
be	included	in	a	single	file;	they	should	not	be	distributed	across	multiple	files.
Examples	of	files	that	you	cannot	edit	include	the	Machine.config	file	and
<appSettings>	sections	that	include	the	optional	file	attribute	that	specifies	a
relative	path	to	an	external	configuration	file.

Configure	an	<appSettings>	Section	Using	the	Configuration
Tool

Configure	an	<appSettings>	Section	by	Editing	the	XML
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ms228154.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the appSettings Section'%0AEntLib50_eaf61879-2a9d-4f53-9c58-d5c6ea3c9a77%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Updating	Configuration	Settings	at	Run	Time

The	default	configuration	system	included	in	the	Enterprise	Library	Core	is,
with	one	exception,	read-only.	When	using	application	configuration	files
(App.config	and	Web.config),	updates	to	these	files	do	not	affect	existing
instances	of	objects.	However,	new	instances	created	after	changes	are	made	to
the	configuration	file	will	reflect	these	changes.	In	Windows	Forms
applications,	you	can	restart	the	application	to	cause	it	to	read	the	all	of	the	new
configuration	information.	Web	Forms	(ASP.NET)	applications	will	detect	and
reload	the	configuration	information,	but	the	standard	behavior	of	ASP.NET
causes	the	application	to	restart	when	you	edit	the	configuration	file,	which
causes	all	state	to	be	lost	for	the	application.

The	one	exception	to	this	is	the	Logging	Application	Block,	which	is	able	to
detect	configuration	changes	and	reload	the	configuration	without	restarting	the
application.	This	works	for	Web	Forms	and	Windows	Forms	applications,
though	it	will	still	automatically	trigger	the	application	to	restart	for	Web	Forms
applications.	This	means	that	you	cannot	rely	on	maintenance	of	in-process
session	state	in	ASP.NET	applications	when	you	change	the	configuration	file.

Detecting	Configuration	Changes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Updating Configuration Settings at Run Time'%0AEntLib50_1b2fd1e5-51a5-4f55-b0eb-cc830ca93b21%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Encrypting	Configuration	Data

You	can	encrypt	and	decrypt	the	data	in	a	configuration	file's	configuration
sections.	A	configuration	section	contains	the	configuration	information	for	an
application	block.	The	configuration	tool	allows	you	to	select	from	the
encryption	providers	that	are	included	in	the	Machine.config	file.	Typically,
these	are	the	DataProtectionConfigurationProvider,	which	uses	the	Windows
data	protection	API	(DPAPI),	and	the	RsaProtectedConfigurationProvider,
which	uses	RSA.

If	the	encrypted	configuration	file	is	going	to	be	on	only	a	single	server,	you	can
use	the	DataProtectionConfigurationProvider.	If	you	want	to	deploy	the	same
encrypted	configuration	file	on	multiple	servers	in	a	Web	farm,	you	should	use
the	RsaProtectedConfigurationProvider.	This	provider	makes	it	easy	for	you
encrypt	the	data	on	one	server	computer	and	then	export	the	RSA	private	key
needed	to	decrypt	the	data.	You	can	then	deploy	the	configuration	file	and	the
exported	key	to	the	target	servers,	and	then	re-import	the	keys.

The	user	account	used	for	encrypting	the	file	when	using	the
RsaProtectedConfigurationProvider	must	have	the	appropriate	minimal
permissions,	which	must	include	read	permissions	on	the
NetFrameworkConfigurationKey	key	container,	in	order	to	encrypt	and
decrypt	sections	when	using	the	Enterprise	Library	configuration	tools.	By
default,	this	includes	only	administrative	accounts.

The	appropriate	minimal	permissions,	which	must	include	read	permissions,	are
also	required	for	run	time	and	configuration	merges	performed	when	using	the
configuration	tools	and	working	with	configuration	sections	that	have	been
encrypted	by	using	the	RsaProtectedConfigurationProvider.

For	more	information	see	Creating	and	Exporting	an	RSA	Key	Container	on
MSDN.

Note:
Whenever	you	change	security	settings	and	permissions,	be	sure	that	you	are
aware	of	any	security	risks	raised	by	giving	elevated	permissions.

http://msdn.microsoft.com/en-us/library/2w117ede.aspx

To	encrypt	a	configuration	section
1.	 Open	one	of	the	Enterprise	Library	configuration	tools.
2.	 Open	an	existing	configuration	file	or	create	a	new	one.
3.	 Click	the	chevron	arrow	at	the	right	of	name	of	the	application	block

whose	configuration	information	you	want	to	encrypt.
4.	 In	the	Properties	pane,	click	the	drop-down	list	for	the	Protection

Provider	property.
5.	 Select	either	DataProtectionConfigurationProvider	or

RsaProtectedConfigurationProvider.

All	the	settings	for	the	providers,	such	as	where	keys	are	stored,	are	also	in	the
Machine.config	file.	You	cannot	change	this	file	with	a	configuration	tool.
Instead,	you	must	modify	the	file	using	a	text	editor.

To	decrypt	a	configuration	file,	simply	open	it	in	the	configuration	tool.	The	file
is	automatically	decrypted.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Encrypting Configuration Data'%0AEntLib50_f48f5196-4e77-461b-b700-5fa6daf41d35%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Enabling	Instrumentation

The	term	instrumentation	refers	to	a	system's	built-in	ability	to	monitor	or
measure	performance	and	to	diagnose	errors.	Enterprise	Library	incorporates
the	following	instrumentation	in	the	majority	of	the	application	blocks:

Event	logs.	The	application	blocks	inform	users	of	key	events,	such	as
errors	or	warnings.
Performance	counters.	The	application	blocks	record	key	metrics—
such	as	the	number	of	critical	events	that	occur	per	second	or	the	average
time	it	takes	to	complete	key	tasks—by	writing	to	the	Microsoft
Windows®	operating	system	performance	counters.

For	details	of	the	design	of	the	Enterprise	Library	instrumentation,	see
Instrumentation.

Enabling	and	Disabling	Instrumentation

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Enabling Instrumentation'%0AEntLib50_f15ecbcb-4dd8-44dc-b41d-8760b7d3805e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	Enterprise	Library	Core

The	Enterprise	Library	Core	provides	services,	such	as	instrumentation	and
configuration,	and	all	Enterprise	Library	application	blocks	except	for	Unity	are
dependent	on	the	core.	The	core	library	functionality	is	contained	in	the
assembly	Microsoft.Practices.EnterpriseLibrary.Common.dll.

There	are	two	configuration	sections	associated	with	the	Enterprise	Library
Core.	They	are	the	instrumentationConfiguration	section	and	the
enterpriseLibrary.ConfigurationSource	section.	These	sections	define	which
types	of	instrumentation	are	enabled	in	the	application	(if	any),	and	which
configuration	source	should	be	used	to	access	configuration	information	within
the	application.	The	following	XML	code	shows	the	configuration	section
declarations	that	define	the	locations	of	these	configuration	sections.	These
declarations	should	be	defined	within	the	<configSections>	section	of	the
application	configuration	file.
XML

<configSections>

		<section	name="instrumentationConfiguration"

											type="Microsoft.Practices.EnterpriseLibrary.Common.Instrumentation.Configuration.InstrumentationConfigurationSection,

																	Microsoft.Practices.EnterpriseLibrary.Common"	/>

		<section	name="enterpriseLibrary.ConfigurationSource"

												type="Microsoft.Practices.EnterpriseLibrary.Common.Configuration.ConfigurationSourceSection,

																	Microsoft.Practices.EnterpriseLibrary.Common"	/>

</configSections>

If	there	is	no	enterpriseLibrary.ConfigurationSource	section	in	the
configuration	file,	an	instance	of	the	SystemConfigurationSource	class
becomes	the	configuration	source	for	the	application.	This	means	that	when	the
application	creates	Enterprise	Library	objects,	it	retrieves	configuration
information	from	the	application	configuration	file.

enterpriseLibrary.ConfigurationSource	Element

sources	Element

instrumentationConfiguration	Child	Element
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for Enterprise Library Core'%0AEntLib50_78c5c78d-846f-4fd8-9671-9a14d10b2e93%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Enterprise	Library	in	Applications

Enterprise	Library	can	be	used	in	most	types	of	applications	and	in	the	majority
of	scenarios	where	you	require	an	easy-to-use	yet	highly	flexible	library	to	help
you	manage	crosscutting	concerns.	For	example,	you	can	use	Enterprise	Library
in	application	built	with	Windows	Forms,	Windows	Presentation	Foundation
(WPF),	Windows	Communication	Foundation	(WCF),	ASP.NET,	Silverlight®,
and	console-based	applications.	You	can	also	use	Enterprise	Library	in	both
greenfield	and	brownfield	scenarios.

When	architecting	new	applications,	Enterprise	Library	can	be	used	to
implement	many	of	the	common	design	patterns	you	incorporate	in	your	design.
You	can	plan	for	its	use	throughout	the	layers	and	components	of	your
application.	You	can	also	use	Enterprise	Library	successfully	in	existing
applications,	where	it	can	help	to	simplify	the	task	of	updating	or	adding	new
functionality.	The	configuration	tools	do	not	affect	existing	information	in	your
application	configuration	files,	and	the	assemblies	and	code	can	be	added	to
existing	applications	without	fear	of	conflicts.

Enterprise	Library	includes	source	code	for	the	application	blocks,	and
compiled	and	signed	versions	of	the	application	block	assemblies.	You	can	use
these	assemblies	directly,	compile	the	application	blocks	and	use	the	compiled
assemblies,	or	include	the	source	code	in	your	application.	However,	before	you
can	use	the	assemblies	in	your	application,	you	must	add	references	to	the
relevant	application	block	assemblies,	and	to	the	Common	and	Unity
assemblies.	Then,	to	write	application	code,	you	also	must	be	aware	of	the
Enterprise	Library	namespace	conventions	and	object	creation	patterns.

This	section	contains	the	following	topics	that	will	help	you	to	get	started	using
Enterprise	Library:

Referencing	Enterprise	Library	Assemblies.	This	topic	explains	how	to
add	references	to	the	required	assemblies	to	your	application,	and	import
these	into	your	projects.
Dependencies	in	Enterprise	Library.	This	topic	explains	how	some	of	the
blocks	depend	on	others,	and	how	all	of	the	blocks	depend	on	core
features	of	Enterprise	Library.	It	will	help	you	to	understand	which
assemblies	and	features	you	require	depending	on	the	blocks	you	use	and

your	own	scenarios.
Creating	and	Referencing	Enterprise	Library	Objects.	This	topic
describes	the	various	ways	of	accessing	Enterprise	Library	objects,	what
their	advantages	and	disadvantages	are,	and	details	of	how	they	work	in
the	underlying	code.

For	information	about	how	to	compile	the	application	blocks,	see	Building
Enterprise	Library	from	the	Source	Code.	For	information	about	the	design	of
the	dependency	injection	mechanism,	see	The	Dependency	Injection	Model.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Enterprise Library in Applications'%0AEntLib50_bf4be8bb-7e39-4a3f-bea0-0e33d90d665b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Referencing	Enterprise	Library	Assemblies

Before	you	can	build	applications	that	incorporate	the	Enterprise	Library
application	blocks,	you	must	add	references	to	the	application	block	assemblies
and	to	the	Common	and	Unity	assemblies.	This	prepares	your	application	to	use
the	Enterprise	Library.	Take	care	to	select	the	assemblies	that	reflect	your
decision	to	use	the	Microsoft	strong-named	assemblies,	or	the	non-strong-
named	assemblies,	or	a	customized	set	of	Enterprise	Library	assemblies.

To	prepare	your	application
1.	 Add	a	reference	to	the	application	block	assembly.	In	Visual	Studio,

right-click	your	project	node	in	Solution	Explorer,	and	then	click	Add
Reference.	Click	the	Browse	tab,	and	then	find	the	location	of	the
application	block	assembly	(the	script	CopyAssemblies.bat	copies	all
application	block	assemblies	to	the	bin	subdirectory).	Select	the
assembly,	and	then	click	OK	to	add	the	reference.	For	example,	to
reference	the	Logging	Application	Block	assembly,	browse	to	the	bin
subdirectory,	select	the	assembly
Microsoft.Practices.EnterpriseLibrary.Logging.dll,	and	then	click
OK.

2.	 Use	the	same	procedure	to	set	a	reference	to	the	following	assemblies:
Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll.

Note:
You	will	also	need	the	assembly	Microsoft.Practices.Unity.Configuration.dll
if	you	wish	to	reference	specific	Unity	configuration	classes	in	your	code.
However,	in	the	majority	of	cases,	you	will	not	require	this	assembly.

Enterprise	Library	Namespaces
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Referencing Enterprise Library Assemblies'%0AEntLib50_6c04b2bb-aef8-4c8d-a0cc-6ba93ac3d35d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Dependencies	in	Enterprise	Library

This	topic	describes	the	dependencies	between	the	blocks	and	on	the	core
features	of	Enterprise	Library.	It	contains	the	following	sections	that	describe
the	inter-block	dependencies	for	common	scenarios:

Dependencies	for	All	Application	Blocks
Block	Dependency	Schematic
Additional	Dependencies	for	the	Caching	Application	Block
Additional	Dependencies	for	the	Exception	Handling	Application	Block
Additional	Dependencies	for	the	Policy	Injection	Application	Block
Additional	Dependencies	for	the	Security	Application	Block

Dependencies	for	All	Application	Blocks

Block	Dependency	Schematic

Additional	Dependencies	for	the	Caching	Application	Block

Additional	Dependencies	for	the	Exception	Handling
Application	Block

Additional	Dependencies	for	the	Policy	Injection	Application
Block

Additional	Dependencies	for	the	Security	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Dependencies in Enterprise Library'%0AEntLib50_274b7762-57d2-4eeb-900c-6a9a36379b7a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	and	Referencing	Enterprise	Library	Objects

This	topic	discusses	the	ways	you	can	instantiate	and	access	Enterprise	Library
objects,	the	advantages	and	disadvantages	of	each	approach,	and	more	details
about	how	they	work	in	the	underlying	code.	Enterprise	Library	offers	a	great
deal	of	functionality,	and	many	different	ways	to	access	it.	This	topic	is	intended
to	clarify	the	choices	and	to	help	you	determine	what	will	work	best	for	your
application.

Typically,	you	will	create	instances	of	Enterprise	Library	objects	using	one	of
the	following	two	approaches:

Using	the	Unity	Service	Locator.	This	is	the	simplest	approach,	and	is
recommended	for	simple	applications	that	have	few	dependencies,	and
where	you	do	not	want	to	take	advantage	of	contemporary	architectural
patterns	such	as	dependency	injection.	It	requires	no	initialization	or
setup.	You	simply	configure	your	application	to	use	Enterprise	Library
and	then	call	the	methods	of	the	service	locator	to	obtain	instances	of
Enterprise	Library	types	on	demand.
Accessing	the	Unity	Container	Directly.	This	more	sophisticated
approach	allows	you	to	obtain	the	full	benefits	of	contemporary
architectural	patterns	such	as	dependency	injection	for	your	layers,
components,	and	custom	types.	It	requires	only	minimal	setup,	but	may
require	that	you	maintain	a	reference	to	the	container	in	your	application.

When	you	use	either	of	these	approaches,	you	will	typically	request	and	obtain
references	to	one	or	more	non-static	objects	and	interfaces	that	are	part	of	each
application	block,	which	allow	you	to	access	the	functionality	of	the	blocks	and
obtain	instances	of	Enterprise	Library	objects	in	your	code	using	both
dependency	injection	and	the	service	locator	approach.	For	a	list	of	these	objects
and	interfaces,	see	Non-Static	Instances	and	Instance	Factories.

Other	approaches	to	creating	Enterprise	Library	objects	that	you	may	choose
include:

Using	a	different	service	locator	if	you	decide	to	use	a	container	other
than	Unity.	For	more	information	about	how	the	service	locator	works,
see	Initializing	and	Setting	the	Current	Container.	For	more	information
about	replacing	the	default	Unity	container,	see	The	Dependency

Injection	Model	in	the	section	"Design	of	Enterprise	Library".
Using	the	legacy	static	facades	and	factories	that	were	the	default
approach	in	previous	versions	of	Enterprise	Library.	For	more
information	about	these,	see	Legacy	Static	Facades	and	Factories.

Using	the	Unity	Service	Locator

Accessing	the	Unity	Container	Directly

Non-Static	Instances	and	Instance	Factories

Legacy	Static	Facades	and	Factories

Initializing	and	Setting	the	Current	Container

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating and Referencing Enterprise Library Objects'%0AEntLib50_bfd186b8-9a32-477a-bee7-14742ba1ca42%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Storing	a	Reference	to	the	Container

Typically,	if	you	do	not	use	constructor,	property,	or	method	call	injection	to
resolve	and	populate	all	of	your	application	dependencies	during	initialization,
you	will	need	to	retain	a	reference	to	the	container	if	you	wish	to	access	it
directly	to	resolve	objects.	However,	there	are	some	other	situations	in	which
you	may	want	to	be	able	to	reference	the	container	after	initialization.	The
following	are	some	scenarios	in	which	you	may	consider	storing	a	reference	to
the	container	for	use	in	your	code:

If	you	are	using	ASP.NET	Web	Forms	or	building	a	Web	service.
You	must	be	able	to	resolve	objects	for	each	page	or	service	request,	and
it	is	quite	expensive	in	terms	of	resources	and	does	not	make	sense	to
create	the	container	and	load	the	Enterprise	Library	configuration
information	or	your	own	custom	registrations	every	time.	In	this	case,
you	will	usually	store	the	populated	container	in	the	ASP.NET
Application	dictionary	or	within	your	service	implementation	and	use	it
to	resolve	instances	as	required	for	each	request.
If	you	are	creating	a	console	application	or	a	component	(rather	than
an	application	with	a	user	interface	or	a	Web	service).	If	you	are	using
Unity	as	your	container,	you	can	create	the	container	and	load	the
Enterprise	Library	container	extension	in	your	startup	code	and	then	use
it	to	resolve	the	dependencies	of	other	classes	on	demand	using	the
Resolve	method.	Any	dependencies	defined	in	these	classes	will	be
populated	automatically.	You	can	hold	it	in	a	global	variable	throughout
the	life	of	the	application.	Note	that	disposing	the	container	is	not
recommended.
If	you	want	to	store	registrations	for	your	own	objects	within	the
container.	You	may	choose	to	use	a	separate	container	for	this,	though
you	can	just	as	easily	make	use	of	the	default	container	that	holds	the
Enterprise	Library	configuration	registrations.
If	you	want	to	be	able	to	resolve	instances	of	objects	on	demand
rather	that	always	having	them	resolved	when	a	class	is	instantiated.	For
example,	if	an	object	is	only	required	in	certain	cases	(perhaps	based	on
the	run-time	environment	or	some	other	factor),	it	may	be	useful	to	be
able	to	call	the	methods	that	resolve	instances	from	the	container	at	run

time	instead	of	using	constructor,	property,	or	method	call	injection	to
create	them	when	the	class	is	initialized.

The	following	table	will	help	you	to	understand	when	and	where	you	should
hold	a	reference	to	the	container	in	forms-based	and	rich	client	applications
built	using	technologies	such	as	Windows	Forms,	Windows	Presentation
Foundation,	and	Silverlight.

Task When Where

Create	and
configure
container.

At	application
startup.

Main	routine,	startup	events,	application
definition	file,	or	as	appropriate	for	the
technology.

Obtain
objects	from
the	container.

At	application
startup,	and	later
if	required.

Where	appropriate	in	the	code.

Store	a
reference	to
the	container.

At	application
startup.

Global	application	state.

Dispose	the
container.

When	the
application	shuts
down.

Where	appropriate	in	the	code	or
automatically	when	the	application
ends.

The	following	table	will	help	you	to	understand	when	and	where	you	should
hold	a	reference	to	the	container	in	request-based	applications	built	using
technologies	such	as	ASP.NET	Web	applications	and	Web	services.

Task When Where

Create	and
configure
container.

At	application
startup.

HTTP	Module	(ASP.NET	and	ASMX),
InstanceContext	extension	(WCF).

Obtain	objects
from	the
container.

During	each
HTTP	request.

In	the	request	start	event	or	load	event.
Objects	are	disposed	when	the	request
ends.

Store	a
reference	to	the

At	application
startup.

Global	application	state	or	service
context.

container.

Dispose	the
container.

When	the
application
shuts	down.

Where	appropriate	in	the	code.

Resolving	an	Entire	Object	Graph	at	Application	Startup

Resolving	and	Injecting	Objects	on	Demand

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/dd203099.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Storing a Reference to the Container'%0AEntLib50_5391b15e-3bc8-41cc-86c3-28a8da60a7dc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Windows	Forms	and	WPF	Applications

Although	they	are	very	different	technologies,	Windows	Forms	and	Windows
Presentation	Foundation	(WPF)	share	some	fundamental	characteristics.	In
particular,	they	both	use	window	objects	to	implement	the	user	interface	and
allow	you	to	specify	which	code	should	run	when	the	application	starts	up.	By
default,	the	startup	code	simply	loads	and	shows	the	main	window,	but	you	can
easily	modify	this	to	create	a	Unity	container,	populate	it	with	the	Enterprise
Library	configuration	information,	and	resolve	the	objects	used	by	the
application.

For	example,	you	may	not	wish	to	create	all	of	the	windows	at	startup	to
minimize	startup	times	or	memory	usage.	You	can	store	a	reference	to	the
container	and	use	it	to	resolve	windows	and	other	types	on	demand.

The	following	sections	contain	more	details:
Windows	Forms	Applications
Windows	Presentation	Foundation	Applications

Windows	Forms	Applications

Windows	Presentation	Foundation	Applications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Windows Forms and WPF Applications'%0AEntLib50_c7948b3a-6bdf-487f-a264-3dbdb51e1a04%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

ASP.NET	Web	Forms	Applications

In	ASP.NET	Web	Forms	applications,	the	recommended	approach	is	to	store	the
container	in	the	global	state	provided	by	the	Application	dictionary	object.	You
can	then	access	the	container	when	required	or—even	better—use	an	HTTP
module	to	perform	injection	on	all	of	the	controls	in	the	page	automatically.

In	general,	you	should	use	the	Application	dictionary	object	to	store	the	single
instance	of	the	container.	You	may	decide	to	create	child	containers	of	the	main
container	and	store	them	in	each	user	Session	object,	or	even	for	each	request,
to	register	your	custom	types	and	mappings	in	the	child	containers.	However,
this	may	reduce	application	performance,	and	you	should	generally	avoid
creating	additional	containers	if	possible.

The	following	sections	describe	the	techniques	and	limitations	for	instantiating
the	container	in	ASP.NET	applications.	They	include	a	basic	and	simple
approach	to	using	the	Application	object	to	store	the	container,	followed	by	the
recommended	approach	that—while	more	complicated—will	perform	injection
on	the	controls	in	your	page	automatically	at	run	time:

The	Basic	Approach.	This	is	the	simplest	approach,	which	may	be
suitable	in	small	applications	where	discoverability	and	testability	are
less	of	a	concern.
Recommended	Approach	for	Dependency	Injection.	This	technique	can
perform	injection	on	the	controls	in	your	page	automatically	at	run	time,
and	provide	better	discoverability	and	testability.
Limitations	and	Alternative	Approaches.	This	section	describes	some	of
the	issues	you	should	be	aware	of	when	using	the	container	in	ASP.NET
applications.

The	Basic	Approach

Recommended	Approach	for	Dependency	Injection

Limitations	and	Alternative	Approaches
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'ASP.NET Web Forms Applications'%0AEntLib50_21fa11ea-d8db-417b-87ea-1e1ac19b7490%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

ASP.NET	Dependency	Injection	HTTP	Module

You	can	use	an	HTTP	module,	an	extension	to	the	ASP.NET
HttpApplicationState	class,	and	code	in	Global.asax	to	force	ASP.NET	to
automatically	inject	dependent	objects	at	every	page	request,	as	discussed	in	the
topic	ASP.NET	Web	Forms	Applications.

The	following	code	shows	a	suitable	HTTP	module	that	captures	the
PreRequestHandlerExecute	event	to	insert	itself	into	the	ASP.NET	execution
pipeline.	On	each	page	request,	the	handler	resolves	the	current	HTTP	handler
through	the	container	using	the	BuildUp	method	and	then	captures	the
OnPageInitComplete	event.	When	the	OnPageInitComplete	executes,	the
module	code	walks	the	complete	control	tree,	resolving	each	control	through	the
container	using	the	BuildUp	method.

The	BuildUp	method	takes	an	existing	object	instance,	resolves	and	populates
any	dependencies	specified	for	the	class,	and	then	returns	the	instance.	If	there
are	no	dependencies,	it	simply	returns	the	original	instance.
C#

using	System;

using	System.Collections.Generic;

using	System.Web;

using	System.Web.UI;

using	Microsoft.Practices.Unity;

namespace	Unity.Web

{

		public	class	UnityHttpModule	:	IHttpModule

		{

				public	void	Init(HttpApplication	context)

				{

						context.PreRequestHandlerExecute	+=	OnPreRequestHandlerExecute;

				}

				public	void	Dispose()	{	}

				private	void	OnPreRequestHandlerExecute(object	sender,	EventArgs	e)

				{

						IHttpHandler	currentHandler	=	HttpContext.Current.Handler;

						HttpContext.Current.Application.GetContainer().BuildUp(

																										currentHandler.GetType(),	currentHandler);

						//	User	Controls	are	ready	to	be	built	up	after	page	initialization	is	complete

						var	currentPage	=	HttpContext.Current.Handler	as	Page;

						if	(currentPage	!=	null)

						{

								currentPage.InitComplete	+=	OnPageInitComplete;

						}

				}

				//	Build	up	each	control	in	the	page's	control	tree

				private	void	OnPageInitComplete(object	sender,	EventArgs	e)

				{

						var	currentPage	=	(Page)sender;

						IUnityContainer	container	=	HttpContext.Current.Application.GetContainer();

						foreach	(Control	c	in	GetControlTree(currentPage))

						{

								container.BuildUp(c.GetType(),	c);

						}

						context.PreRequestHandlerExecute	-=	OnPreRequestHandlerExecute;

				}

				//	Get	the	controls	in	the	page's	control	tree	excluding	the	page	itself

				private	IEnumerable<Control>	GetControlTree(Control	root)

				{

						foreach	(Control	child	in	root.Controls)

						{

								yield	return	child;

								foreach	(Control	c	in	GetControlTree(child))

								{

										yield	return	c;

								}

						}

				}

		}

}

Visual	Basic

Imports	System

Imports	System.Collections.Generic

Imports	System.Web

Imports	System.Web.UI

Imports	Microsoft.Practices.Unity	

Namespace	Unity.Web

		Public	Class	UnityHttpModule

				Implements	IHttpModule

				Public	Sub	Init(ByVal	context	As	HttpApplication)	_

															Implements	System.Web.IHttpModule.Init

						AddHandler	context.PreRequestHandlerExecute,	AddressOf	OnPreRequestHandlerExecute

				End	Sub

				Public	Sub	Dispose()	Implements	System.Web.IHttpModule.Dispose

				End	Sub

				Private	Sub	OnPreRequestHandlerExecute(ByVal	sender	As	Object,	ByVal	e	As	EventArgs)

						Dim	currentHandler	As	IHttpHandler	=	HttpContext.Current.Handler

						HttpContext.Current.Application.GetContainer().BuildUp(_

																										currentHandler.[GetType](),	currentHandler)

						'	User	Controls	are	ready	to	be	built	up	after	page	initialization	is	complete

						Dim	currentPage	=	TryCast(HttpContext.Current.Handler,	Page)

						If	Not	currentPage	Is	Nothing	Then

								AddHandler	currentPage.InitComplete,	AddressOf	OnPageInitComplete

						End	If

				End	Sub

				'	Build	up	each	control	in	the	page's	control	tree

				Private	Sub	OnPageInitComplete(ByVal	sender	As	Object,	ByVal	e	As	EventArgs)

						Dim	currentPage	=	DirectCast(sender,	Page)

						Dim	container	As	IUnityContainer	=	_	HttpContext.Current.Application.GetContainer()

						For	Each	c	As	Control	In	GetControlTree(currentPage)

								container.BuildUp(c.[GetType](),	c)

						Next

						RemoveHandler	context.PreRequestHandlerExecute,	AddressOf	OnPreRequestHandlerExecute

				End	Sub

				'	Get	the	controls	in	the	page's	control	tree	excluding	the	page	itself

				Private	Function	GetControlTree(ByVal	root	As	Control)	As	IEnumerable(Of	Control)

						Dim	controlList	As	New	List(Of	Control)

						For	Each	child	As	Control	In	root.Controls

								If	child	Is	Nothing	Then

										Exit	For

								Else

										controlList.Add(child)

								End	If

								For	Each	c	As	Control	In	GetControlTree(child)

										If	child	Is	Nothing	Then

												Exit	For

										Else

												controlList.Add(child)

										End	If

								Next

						Next

						Return	controlList

				End	Function

		End	Class

End	Namespace

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'ASP.NET Dependency Injection HTTP Module'%0AEntLib50_a00a4ac8-e45a-4b89-83a1-9f7a78e8e96a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

ASP.NET	Application	State	Extension

You	can	use	an	HTTP	module,	an	extension	to	the	ASP.NET
HttpApplicationState	class,	and	code	in	Global.asax	to	force	ASP.NET	to
automatically	inject	dependent	objects	at	every	page	request,	as	discussed	in	the
topic	ASP.NET	Web	Forms	Applications.

The	following	shows	a	suitable	implementation	of	an	application	state	extension
that	exposes	a	static	GetContainer	method.	The	method	creates	a	new	Unity
container	in	the	Application	state	if	one	does	not	already	exist,	or	returns	a
reference	to	the	existing	instance.
C#

using	System.Web;

using	Microsoft.Practices.Unity;

namespace	Unity.Web

{

		public	static	class	HttpApplicationStateExtensions

		{

				private	const	string	GlobalContainerKey	=	"EntLibContainer";

				public	static	IUnityContainer	GetContainer(this	HttpApplicationState	appState)

				{

						appState.Lock();

						try

						{

								var	myContainer	=	appState[GlobalContainerKey]	as	IUnityContainer;

								if	(myContainer	==	null)

								{

										myContainer	=	new	UnityContainer();

										appState[GlobalContainerKey]	=	myContainer;

								}

								return	myContainer;

						}

						finally

						{

										appState.UnLock();

						}

				}

		}

}

Visual	Basic

Imports	System.Web

Imports	Microsoft.Practices.Unity

Namespace	Unity.Web

		Public	Module	HttpApplicationStateExtensions

				Private	Const	GlobalContainerKey	As	String	=	"EntLibContainer"

				<System.Runtime.CompilerServices.Extension>	_

				Public	Shared	Function	GetContainer(appState	As	HttpApplicationState)	As	IUnityContainer

						appState.Lock()

						Try

								Dim	myContainer	=	TryCast(appState(GlobalContainerKey),	IUnityContainer)

								If	myContainer	Is	Nothing	Then

										myContainer	=	New	UnityContainer()

										appState(GlobalContainerKey)	=	myContainer

								End	If

								Return	myContainer

						Finally

								appState.UnLock()

						End	Try

				End	Function

		End	Module

End	Namespace

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'ASP.NET Application State Extension'%0AEntLib50_f8bf058c-60ba-44dd-9729-d1e120f9746f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

WCF	and	ASP.NET	Web	Service	Applications

To	initialize	the	container	and	populate	dependencies	in	a	Web	service
application	requires	a	different	approach	from	the	types	of	applications	that
expose	a	user	interface	(such	as	Windows	Forms,	WPF,	and	ASP.NET	Web
Forms).	This	topic	describes	a	possible	solution	for	ASP.NET	Web	services
(ASMX),	and	points	to	resources	that	will	help	you	implement	the	process	in	a
Windows	Communication	Foundation	(WCF)	application.

ASP.NET	Web	Service	Applications

WCF	Applications
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ms586703.aspx
http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'WCF and ASP.NET Web Service Applications'%0AEntLib50_c97facbe-042b-4e3f-a653-4d27100172bd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Application	Block	Objects

You	can	resolve	instances	of	both	Enterprise	Library	objects	and	your	own
custom	classes	using	the	container.	To	understand	how	to	resolve	the
appropriate	Enterprise	Library	objects,	you	must	be	aware	of	the	way	that	the
Enterprise	Library	configuration	information	for	your	application	maps	to	the
registrations	in	the	container.

Default	and	Named	Object	Registrations
Most	of	the	Enterprise	Library	application	blocks	use	plug-in	providers	to
accomplish	their	tasks,	while	providing	the	flexibility	required	for	use	in	the
widest	range	of	scenarios	and	environments.	For	example,	you	might	add	two
cache	managers	to	the	Caching	Application	Block;	one	that	accesses	a	database
backing	store,	and	one	that	uses	the	local	Isolated	Storage	mechanism.	If	you
use	the	Data	Access	Application	Block,	you	might	define	several	connections	to
different	databases,	depending	on	the	requirements	of	your	application.

Each	provider	is	identified	by	a	name,	and	the	mappings	between	the	provider
interface	or	base	class	and	the	concrete	implementations	of	the	providers	are
differentiated	by	this	name.	An	application	configuration	may,	for	example,
define	two	cache	managers,	DBStore	and	LocalStore,	while	the	Data	Access
Application	Block	configuration	may	contain	mappings	named	CustomerDB,
SalesDB,	and	ProductsDB.

When	you	create	instances	of	these	objects	using	any	of	the	approaches	shown
in	the	related	topics	listed	below,	you	must	provide	the	name	to	select	the
appropriate	object.	However,	Enterprise	Library	also	has	the	concept	of	a
default	provider	for	most	of	the	blocks.	This	is	specified	in	the	configuration,
and	defines	the	provider	that	the	block	will	use	if	you	do	not	specify	a	named
provider.	When	you	resolve	a	type	without	providing	a	name,	the	container	will
return	an	instance	of	the	default	provider	if	it	is	specified	for	the	block.	This	is	a
useful	feature	that	makes	it	easy	to	switch	the	application	to	use	a	different
provider	by	just	changing	the	default	for	the	block	in	the	configuration	file.

For	information	about	configuring	default	and	named	providers,	see	the	topic
"Entering	Configuration	Information"	in	the	section	"Developing	Applications"
for	each	of	the	application	blocks.

Creating	and	Resolving	Objects
The	following	topics	describe	in	more	detail	the	three	main	scenarios	for
creating	or	injecting	instances	of	objects:

Injecting	Resolved	Types	into	Other	Classes
Resolving	Instances	of	Types	Using	Unity
Creating	Application	Block	Objects	Directly

For	details	on	how	to	create	and	reference	objects	see	Creating	and	Referencing
Enterprise	Library	Objects.	For	information	about	initializing	the	Enterprise
Library	container	and—if	required—storing	a	reference	to	it,	see	Storing	a
Reference	to	the	Container.

Note:
Previous	versions	of	Enterprise	Library	used	static	factory	methods	to	create
application	block	objects.	The	static	facades	and	static	types	are	included	in
this	version	of	Enterprise	Library,	and	existing	code	that	uses	them	will
continue	to	work.	For	more	information	about	using	the	static	facades	and
static	types,	see	the	online	guidance	at	http://msdn.microsoft.com/entlib/.

One	point	to	note	if	you	are	familiar	with	the	provider	factory	approach	for
generating	instances	of	objects	used	in	versions	of	Enterprise	Library	prior	to
version	5.0	is	that	the	static	facades	used	in	these	earlier	versions	cannot	be
injected.	New	non-static	facades	are	included	in	this	version	of	Enterprise
Library.

For	more	information	about	Unity,	see	Unity	Dependency	Injection	and
Interception.	For	details	of	how	Unity	integrates	with	the	underlying
configuration	mechanism	in	Enterprise	Library,	see	The	Dependency	Injection
Model.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Application Block Objects'%0AEntLib50_6453869a-c2bb-4494-9095-ea97d328ee94%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Injecting	Resolved	Types	into	Other	Classes

One	of	the	major	advantages	provided	by	dependency	injection	mechanisms
such	as	Unity	is	the	ability	to	automatically	inject	resolved	instances	of	types
into	other	classes	at	run	time.	This	is	the	preferred	approach,	as	it	provides
several	advantages	over	other	techniques	(for	details	of	these	advantages,	see
Creating	and	Referencing	Enterprise	Library	Objects.)

Unity	supports	injection	into	the	parameters	of	constructors	and	methods,	and	to
set	the	value	of	properties.	This	means	that	you	can	easily	inject	instances	of	the
Enterprise	Library	objects	and	your	own	components	and	services	into	custom
business	objects	and	other	components.	The	following	sections	of	this	topic
provide	more	information:

Using	Constructor	Injection
Using	Property	(Setter)	Injection
Using	Method	Call	Injection

Note:
Other	topics	in	this	section	show	how	you	can	resolve	instances	of	Enterprise
Library	objects	on	demand,	and	how	you	can	create	instances	of	Enterprise
Library	objects	directly.	For	more	information,	see	Resolving	Instances	of
Types	Using	Unity	and	Creating	Application	Block	Objects	Directly.

Using	constructor,	method,	and	property	injection	allows	you	to	inject	instances
of	resolved	types	not	only	into	the	target	type	(the	type	you	are	actually
resolving),	but	it	also	populates	dependencies	in	all	resolved	types.	The
following	schematic	shows	an	overview	of	the	process.

For	more	detailed	information	about	the	dependency	injection	features	of	Unity,
see	Unity	Dependency	Injection	and	Interception.

Using	Constructor	Injection

Using	Property	Injection

Using	Method	Call	Injection
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Injecting Resolved Types into Other Classes'%0AEntLib50_58a17e62-fad7-4099-9f77-7ef780f1277d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	Instances	of	Types	Using	Unity

This	topic	discusses	the	methods	that	Unity	provides	for	resolving	types	and
creating	instances	of	types.	It	also	describes	how	you	can	resolve	instances	of
Enterprise	Library	objects	and	your	own	custom	types.	The	topics	are	the
following:

The	Unity	Resolve	Method
Resolving	Instances	of	Enterprise	Library	Types
Resolving	Instances	of	Your	Own	Custom	Types

Note:
Other	topics	in	this	section	show	how	you	can	inject	resolved	instances	into
your	own	custom	classes,	and	how	you	can	create	instances	of	Enterprise
Library	objects	directly.	For	more	information,	see	Injecting	Resolved	Types
into	Other	Classes	and	Creating	Application	Block	Objects	Directly.

The	Unity	Resolve	Method

Resolving	Instances	of	Enterprise	Library	Types

http://commonservicelocator.codeplex.com/

Resolving	Instances	of	Your	Own	Custom	Types
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving Instances of Types Using Unity'%0AEntLib50_7110a918-e653-4f4d-9a1a-43585943613e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Application	Block	Objects	Directly

There	are	times	when	the	configuration	information	for	your	application
scenario	does	not	reside	in	a	configuration	source.	For	example,	your	system
may	dynamically	create	configuration	information	from	data	entered	by	a	user.
For	these	situations,	you	can	directly	construct	application	block	objects,
passing	the	required	configuration	information	to	the	constructor.

Note:
Other	topics	in	this	section	show	how	you	can	inject	resolved	instances	into
your	own	custom	classes,	and	how	you	can	resolve	instances	of	Enterprise
Library	objects	on	demand.	For	more	information,	see	Injecting	Resolved
Types	into	Other	Classes	and	Resolving	Instances	of	Types	Using	Unity.

When	you	construct	an	application	block	object,	you	must	construct	a	specific
provider	implementation	type	using	the	appropriate	constructor	parameters	and
pass	the	required	arguments	to	the	constructor.	The	following	code	shows	how
to	construct	the	Data	Access	Application	Block	SqlDatabase	object.
C#

String	connString	=	@"server=(local)\SQLEXPRESS;database=EntLibTest;"	+	"Integrated	Security=true";

SqlDatabase	db	=	new	SqlDatabase(connString);

Visual	Basic

Dim	connString	As	[String]	=	"server=(local)\SQLEXPRESS;database=EntLibTest;"	+	_

"Integrated	Security=true"

Dim	db	As	New	SqlDatabase(connString)

Configuration	Information	for	New	Objects
Some	object	constructors	have	an	overload	that	accepts	an	instance	of	a
configuration	source	that	implements	the	IConfigurationSource	interface.	This
allows	you	to	supply	configuration	information	directly	to	the	new	object.

Dependency	Injection	for	Existing	Objects
When	you	create	instances	of	objects	without	using	the	Unity	dependency
injection	mechanism,	dependent	objects	are	not	automatically	injected	into	your
new	object.	However,	you	can	force	Unity	to	resolve	and	populate	dependencies
by	using	the	BuildUp	method	of	the	container.	Keep	in	mind	that	constructor
injection	does	not	take	place	when	you	use	the	BuildUp	method	because	the
object	already	exists	and	so	the	constructor	does	not	execute.

The	following	example	shows	how	you	can	use	the	BuildUp	method	to	apply
dependency	injection	to	an	existing	object	instance	named	myDataService	that
implements	the	interface	IMyService.	For	more	information	about	the	BuildUp
method,	see	Using	BuildUp	to	Wire	Up	Objects	Not	Created	by	the	Container	in
the	Unity	documentation.
C#

IMyService	myDataService	=	new	DataService();

IMyService	builtupDataService	=	container.BuildUp<IMyService>(myDataService);

Visual	Basic

Dim	myDataService	As	IMyService	=	New	DataService()

Dim	builtupDataService	As	IMyService	=	container.BuildUp(Of		IMyService)(myDataService)

Note:
Enterprise	Library	includes	code	to	enable	instrumentation.	If	you	directly
construct	application	block	objects,	instrumentation	will	not	be	enabled	for
those	objects.	However,	in	most	cases,	you	can	bind	the	appropriate
instrumentation	providers	to	the	application	providers.	For	more	information
about	instrumentation	listeners	and	instrumentation	providers,	see	Enabling
Instrumentation.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to

http://codeplex.com/entlib/

pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Application Block Objects Directly'%0AEntLib50_dc9bdf09-7ac5-4ab9-846d-8f5c6d29fe3e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deploying	Enterprise	Library

The	Enterprise	Library	Application	Blocks	are	comprised	of	multiple
assemblies.	Each	assembly	that	belongs	to	the	Enterprise	Library	(excluding
Unity,	which	is	a	generic	utility)	has	a	file	name	that	begins	with
Microsoft.Practices.EnterpriseLibrary.	Additionally,	the	application	blocks	may
depend	on	the	Enterprise	Library	common	assemblies.	An	application	that	uses
one	or	more	of	the	application	blocks	may	have	dependencies	on	other
application	blocks.	For	example,	some	applications	that	use	the	Caching
Application	Block	also	require	the	Data	Access	Application	Block	assemblies.
For	information	about	the	dependencies	between	the	application	blocks	and	the
Enterprise	Library	Core,	see	Dependencies	in	Enterprise	Library.

An	application	that	uses	the	Enterprise	Library	application	blocks	can	be
deployed	in	one	of	two	configurations:

As	private	assemblies	in	the	application	folder	hierarchy.
As	shared	assemblies	in	any	file	system	location	or	in	the	global
assembly	cache.

Specific	deployment	recommendations	are	included	in	the	documentation	for
each	application	block.	For	more	information,	see	the	deployment	topic	for	the
individual	application	block.	For	general	information	about	preparing	and
versioning	Enterprise	Library	and	using	the	global	assembly	cache,	see
Preparation	and	Versioning.

Note:
If	you	decide	to	locate	the	Enterprise	Library	assemblies	in	the	global
assembly	cache,	there	are	some	extra	steps	you	must	take	if	you	use	the	Data
Access	Application	Block	and	the	Validation	Application	Block.	These	are
described	in	the	section	"Using	the	Global	Assembly	Cache"	in	the	topic
Preparation	and	Versioning,	and	at
http://entlib.codeplex.com/WorkItem/View.aspx?WorkItemId=26903.

Enterprise	Library	includes	pre-compiled	strong-named	assemblies	for	all	the
source	code.	The	assemblies	are	signed	with	a	Microsoft	strong-naming	key	that

http://entlib.codeplex.com/WorkItem/View.aspx?WorkItemId=26903

is	not	included	with	the	source	code.	This	means	that	you	cannot	build	a
compiled	version	from	the	source	code	that	uses	the	same	public	key.	However,
you	can	use	your	own	key	pair	to	create	strong-named	assemblies.	If	you
believe	that	you	may	customize	the	Enterprise	Library	source	code,	you	should
use	the	binaries	that	you	compile	from	the	source	code	and	sign	with	your	own
key	instead	of	using	the	pre-compiled	binaries	signed	with	the	Microsoft	key.

For	more	information,	see	Building	Enterprise	Library	from	the	Source	Code
and	Strong	Naming	the	Enterprise	Library	Assemblies.

If	you	update	any	of	the	application	blocks,	or	if	you	want	to	install	an	updated
version	of	an	assembly,	you	can	install	the	new	version	and	have	all	applications
use	the	updated	assembly.	Alternatively,	you	can	install	the	new	version	in	the
global	assembly	cache	and	configure	some	applications	to	use	the	updated
version,	while	others	continue	to	use	the	earlier	version.	For	more	details,	see
Updating	Application	Block	Assemblies.

If	you	intend	to	run	your	application	in	partial	trust	environments,	in	particular
using	a	customized	ASP.NET	Medium	Trust	mode,	see	Partial	Trust
Environments.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deploying Enterprise Library'%0AEntLib50_10966b86-db1f-40de-95ff-b84e2cdfff20%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Preparation	and	Versioning

When	you	compile	the	installed	version	of	the	Enterprise	Library	source	code,
the	assemblies	produced	will	not	be	strong	named.	As	a	result,	they	cannot	be
installed	in	the	global	assembly	cache,	nor	will	they	have	the	other	benefits
associated	with	strong-named	assemblies.

Using	XCopy

Using	the	Global	Assembly	Cache

http://entlib.codeplex.com/WorkItem/View.aspx?WorkItemId=26903
http://msdn.microsoft.com/en-us/library/ee817655.aspx

Versioning
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/wd40t7ad(vs.71).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Preparation and Versioning'%0AEntLib50_7fc82b31-039c-4b54-9442-e9e2d866a10d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Building	Enterprise	Library	from	the	Source	Code

Although	the	Enterprise	Library	includes	binaries	for	all	the	source	code,	you
may	want	to	customize	the	source	code.	This	means	you	will	need	to	build	the
Enterprise	Library	yourself.	The	following	sections	describe	how	to	do	this.
After	you	have	the	binaries,	you	may	want	to	strong	name	them.	For	more
information	about	this	topic,	see	Strong	Naming	the	Enterprise	Library
Assemblies.

This	topic	contains	the	following	subsections:
Installing	the	Source	Code
Enterprise	Library	Visual	Studio	Solution	Files
Building	the	Enterprise	Library	Application	Blocks	and	Tools
Building	the	Enterprise	Library	Using	Microsoft	.Net	Framework	4.0
Additional	Notes	for	Building	and	Using	the	Source	Code

Installing	the	Source	Code

Enterprise	Library	Visual	Studio	Solution	Files

Building	the	Enterprise	Library	Application	Blocks	and	Tools

Additional	Notes	for	Building	and	Using	the	Source	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Building Enterprise Library from the Source Code'%0AEntLib50_e13a03ac-387f-4300-bff0-f97c33628f47%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Strong	Naming	the	Enterprise	Library	Assemblies

If	you	build	Enterprise	Library	from	the	source	code,	you	may	decide	to	apply
strong	naming	to	the	assemblies.	A	strong	name	consists	of	the	assembly's
identity—the	simple	text	name,	version	number,	and	culture	information	(if
provided)—plus	a	public	key	and	a	digital	signature.	The	strong	name	is
generated	from	an	assembly	file	(the	file	that	contains	the	assembly	manifest,
which	in	turn	contains	the	names	and	hashes	of	all	the	files	that	make	up	the
assembly),	using	the	corresponding	private	key.	Signing	an	assembly	with	a
strong	name	ensures	that	its	name	is	globally	unique.	Assemblies	with	the	same
strong	name	are	expected	to	be	identical.

For	example,	if	you	intend	to	share	the	Enterprise	Library	assemblies	among
several	applications,	you	can	install	them	into	the	global	assembly	cache.	Each
assembly	in	the	GAC	must	have	a	globally	unique	name.	You	can	use	a	strong
name	to	ensure	this.	Even	if	you	use	the	assemblies	within	only	a	single
application,	you	can	strong	name	them	to	ensure	that	your	application	uses	their
correct	versions.

Strong	names	satisfy	the	following	requirements:
Strong	names	guarantee	name	uniqueness	by	relying	on	unique	key
pairs.	No	one	can	generate	the	same	assembly	name	that	you	can	because
an	assembly	generated	with	one	private	key	has	a	different	name	than	an
assembly	generated	with	another	private	key.
Strong	names	protect	the	version	lineage	of	an	assembly.	A	strong	name
can	ensure	that	no	one	can	produce	a	subsequent	version	of	your
assembly.	Users	can	be	sure	that	a	version	of	the	assembly	they	are
loading	comes	from	the	same	publisher	that	created	the	version
originally	provided	with	the	application.
Strong	names	provide	a	strong	integrity	check.	Passing	the	.NET
Framework	security	checks	guarantees	that	the	contents	of	the	assembly
have	not	been	changed	since	it	was	built.	However,	note	that	strong
names	alone	do	not	imply	a	level	of	trust	such	as	that	provided	by,	for
example,	a	digital	signature	and	supporting	certificate.

For	information	about	deploying	assemblies	into	the	global	assembly	cache,	see
Working	with	Assemblies	and	the	Global	Assembly	Cache.

http://msdn2.microsoft.com/en-us/library/6axd4fx6.aspx

Using	Visual	Studio	to	Strong	Name	Enterprise	Library
Assemblies
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Strong Naming the Enterprise Library Assemblies'%0AEntLib50_8bc6cce9-1935-4b82-a1ad-9fbd4a91fc1e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Updating	Application	Block	Assemblies

If	an	upgraded	version	of	an	Enterprise	Library	Application	Block	becomes
available,	you	can	install	the	new	version	and	have	all	applications	use	the
updated	assembly.	However,	if	the	new	version	introduces	compatibility
problems	for	certain	applications,	you	can	install	the	new	version	in	the	global
assembly	cache	and	configure	some	applications	to	use	the	updated	version,
while	others	continue	to	use	the	earlier	version.

Updating	Private	Assemblies

Updating	Shared	Assemblies
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Updating Application Block Assemblies'%0AEntLib50_2fe3ef51-528f-4fd6-8492-1a1b07d9fae9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Partial	Trust	Environments

Applications	that	use	versions	of	the	Enterprise	Library	prior	to	version	3.0
require	enough	permissions	so	that	the	only	security	level	they	can	use	is	full
trust.	With	later	versions	of	Enterprise	Library,	including	this	version,	you	can
run	applications	under	partial	trust.	A	common	example	is	an	ASP.NET
application	that	runs	in	a	hosted	environment.	Typically,	these	types	of
applications	require	only	enough	permissions	to	run	under	medium	trust.
Depending	on	the	Enterprise	Library	features	that	your	application	uses,	you
may	need	to	grant	additional	permissions	beyond	those	granted	by	a	default
partial-trust	policy.

This	topic	contains	the	following	sections:
Overview	of	Partial	Trust
Enterprise	Library	and	Partial	Trust
Enterprise	Library	Code	Access	Security	and	the	SecurityTransparent
Attribute

Overview	of	Partial	Trust

http://msdn.microsoft.com/en-us/library/930b76w0.aspx
http://msdn.microsoft.com/en-us/library/ms998341.aspx
http://msdn2.microsoft.com/en-us/library/7c9c2y1w.aspx

Enterprise	Library	and	Partial	Trust

Enterprise	Library	Code	Access	Security	and	the
SecurityTransparent	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Partial Trust Environments'%0AEntLib50_fe303e51-5b35-4c36-9bf6-406f0751e14b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Customizing	the	Medium	Trust	Policy

The	tables	in	the	following	sections	show	the	additional	permissions—beyond
those	granted	by	default	in	the	medium	trust	policy—that	may	be	required	by
your	application.	You	need	to	grant	these	additional	permissions	only	if	you
want	to	use	these	specific	features.	Unless	otherwise	noted,	make	these
modifications	in	the	custom	policy	file.

For	extended	examples	of	how	to	modify	a	custom	policy	file,	see	How	To:	Use
Medium	Trust	in	ASP.NET	2.0	on	MSDN.	If	you	are	using	a	partial-trust	policy
other	than	medium	trust,	other	restrictions	and	permissions	may	apply.	For	a
table	that	lists	the	different	permissions	and	the	trust	policies	that	allow	them,
see	ASP.NET	Code	Access	Security	on	MSDN.

These	additional	permissions	are	the	following:
General	Permissions
Caching	Application	Block	Permissions
Cryptography	Application	Block	Permissions
Data	Access	Application	Block	Permissions
Exception	Handling	Application	Block	Permissions
Logging	Application	Block	Permissions
Security	Application	Block	Permissions
Policy	Injection	Application	Block	Permissions
Validation	Application	Block	Permissions

The	next	sections	describe	these	permissions.

http://msdn2.microsoft.com/en-us/library/ms998341.aspx
http://msdn2.microsoft.com/en-us/library/87x8e4d1.aspx

General	Permissions

Caching	Application	Block

Cryptography	Application	Block

Data	Access	Application	Block

Exception	Handling	Application	Block

Logging	Application	Block

Security	Application	Block

Policy	Injection	Application	Block

Validation	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Customizing the Medium Trust Policy'%0AEntLib50_3ec66771-43d1-4db1-b604-609018478f1b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Limitations	When	Using	Partial	Trust

There	may	be	some	limitations	regarding	how	you	use	partial	trust	with	an
Enterprise	Library	application	block.	These	limitations	include	the	following:

Enterprise	Library	throws	a	Security	Exception	if	it	cannot	obtain	the
mandatory	permissions.
Some	calls	to	Logging	Application	Block	trace	listener	classes	fail.
ASP.NET	application	directories	require	specific	permissions.
The	AzMan	provider	is	not	available	with	partial	trust.

Enterprise	Library	Throws	Security	Exception

Limitations	on	Logging	Application	Block	Trace	Listeners

ASP.NET	Application	Directories	Require	Permissions

AzMan	Provider	Not	Available
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Limitations When Using Partial Trust'%0AEntLib50_aef042e4-bd38-4280-876e-d6d39174564e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Administering	Enterprise	Library

This	topic	describes	some	of	the	main	scenarios	for	system	administrators	and
operators	who	manage	applications	that	use	Enterprise	Library.	In	general,	the
processes	and	techniques	are	no	different	from	those	involved	in	managing	any
.NET	application.	However,	Enterprise	Library	does	provide	several	useful
features	designed	to	make	administration	and	management	easier.	This	section
covers	the	following	topics:

Running	Multiple	Versions	of	Enterprise	Library
Run	Time	Configuration
Changes	to	the	Run	Time	Environment
Instrumentation	within	the	Application	Blocks
Integration	with	Enterprise	Management	Tools
Debugging	Using	the	Source	Code

Running	Multiple	Versions	of	Enterprise	Library

Run	Time	Configuration

Changes	to	the	Run	Time	Environment

Instrumentation	within	the	Application	Blocks

Integration	with	Enterprise	Management	Tools

Debugging	Using	the	Source	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Administering Enterprise Library'%0AEntLib50_92689f11-4ae5-446c-ba53-1d8deecd38b9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	Enterprise	Library

Enterprise	Library	can	serve	as	the	basis	for	a	custom	library.	You	can	take
advantage	of	the	extensibility	points	incorporated	in	each	application	block	and
extend	the	application	block	by	supplying	new	providers.	You	can	also	modify
the	source	code	for	the	existing	application	blocks	to	incorporate	new
functionality.	Use	the	guidelines	in	this	topic	when	you	extend	the	Enterprise
Library.

There	are	three	ways	to	extend	the	Enterprise	Library.	You	can:
Write	custom	providers.	For	detailed	information	about	creating
providers	and	extensions	for	each	application	block,	see	the	"Extending
and	Modifying"	topic	in	the	sections	of	this	documentation	for	each	of
the	blocks.	For	general	information	about	creating	custom	providers,	and
integrating	with	the	configuration	tools,	see	Creating	Custom	Providers
for	Enterprise	Library.
Modify	the	source	code	of	an	application	block.	For	more	information
about	the	design	of	each	block,	see	the	topic	"Design	of	the	Application
Block"	in	the	sections	of	this	guidance	devoted	to	each	of	the	application
blocks.
Write	a	new	application	block.	You	can	use	the	existing	blocks	as
guidance	to	create	a	completely	new	block.	You	will	also	find	additional
information	and	resources	on	creating	and	extending	the	blocks	on	the
Enterprise	Library	community	contributions	site	at
http://www.codeplex.com/entlibcontrib/.

The	following	sections	explain	some	of	the	factors	to	keep	in	mind	when
extending	or	modifying	Enterprise	Library.

http://www.codeplex.com/entlibcontrib/

Guidelines	for	Extending	Enterprise	Library

http://msdn.microsoft.com/en-us/library/czefa0ke(VS.71).aspx
http://go.microsoft.com/fwlink/?LinkId=70294
http://msdn.microsoft.com/en-gb/library/dd673617.aspx

Guidelines	for	Modifying	the	Application	Blocks
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying Enterprise Library'%0AEntLib50_ebcb0d9f-ee0c-4599-9f21-1df89b878381%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Custom	Providers	for	Enterprise	Library

Enterprise	Library	incorporates	an	easy-to-use	extensible	mechanism	for	you	to
add	your	own	custom	providers	if	you	require	specialized	behavior.	You	can
plug	in	custom	providers	that	you	create	without	needing	to	recompile
Enterprise	Library.

In	addition,	the	configuration	mechanism	makes	it	easy	to	add	a	full	design-time
experience	to	your	custom	providers	so	that	they	can	be	configured	within	the
configuration	tools	in	exactly	the	same	way	as	the	built-in	providers.	The
configuration	tools	are	metadata	driven,	and	read	information	about	available
providers	and	extensions	from	assemblies	located	in	their	run-time	folder	on
startup.	This	means	that	you	do	not	need	to	recompile	the	configuration	tool	to
add	a	design-time	experience	for	your	custom	providers.

The	following	topics	describe	the	general	process	for	creating	a	custom	provider
for	Enterprise	Library,	and	include	an	example	of	a	simple	provider:

Enterprise	Library	Extension	Points.	This	topic	lists	the	extension	points
for	Enterprise	Library,	and	the	classes	you	can	use	when	creating	a
custom	provider	and	specifying	configuration	information	for	it.
Enterprise	Library	Configuration	Integration.	This	topic	describes	the
two	ways	that	you	can	integrate	custom	providers	into	the	Enterprise
Library	configuration	system.
Creating	a	Custom	Provider.	This	topic	provides	the	information
required	for	creating	a	provider	that	you	add	to	the	application
configuration	using	the	Add	Custom	[provider	type]	menu	commands	in
the	configuration	tools,	and	explains	how	you	can	create	a	fully
integrated	design-time	experience	for	a	custom	provider.

You	can	download	a	Visual	Studio	project	containing	the	example	provider
described	in	this	section.	The	project	includes	a	custom	exception	handler	in
both	basic	and	full	configuration	integration	modes,	and	a	simple	console
application	that	uses	both	versions	of	the	handler.	To	download	the	sample,	go
to	http://www.codeplex.com/entlib/.

Note:

http://www.codeplex.com/entlib/

This	section	does	not	cover	extending	the	Unity	dependency	injection	and
interception	mechanism.	For	information	about	how	you	can	extend	Unity,
see	the	documentation	available	on	the	Unity	Web	site	at
http://www.codeplex.com/unity/.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/unity/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Custom Providers for Enterprise Library'%0AEntLib50_3d7d908a-3382-4d75-9909-c968dfade305%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Enterprise	Library	Extension	Points

The	following	tables	list	the	extension	points	that	Enterprise	Library	provides
for	each	of	the	application	blocks.	For	each	type	of	provider	or	extension,	the
tables	show:

The	interface	you	can	implement	and/or	the	base	class	you	can	inherit.
The	type	of	the	configuration	element	to	apply	to	your	custom	class	to
enable	basic	integration	with	the	configuration	system.
The	base	class	that	you	must	inherit	in	your	custom	configuration
element	if	you	want	to	implement	full	design-time	configuration
integration.	Your	custom	provider	or	extension	will	then	use	your	custom
configuration	element	class	as	its	configuration	element	type,	instead	of
the	default	shown	in	the	Configuration	Element	(basic	integration)
column.

Providers	and	extensions	that	cannot	be	integrated	with	the	configuration	tools
have	no	entry	in	the	Configuration	Element	(basic	integration)	column.

Caching	Application	Block

Custom
Provider
or
Extension

Interface	or
Base	Class

Configuration	Element
(basic	integration)

Configuration	Element	Base
Class	(design	time
integration)

Backing
Store

IBackingStore
BaseBackingStore

CustomCacheStorageData CacheStorageData

Cache
Manager

ICacheManager CustomCacheManagerData CacheManagerDataBase

Expiration
Policy

ICacheItemExpiration n/a n/a

Storage
Encryption
Provider

IStorageEncryptionProvider n/a StorageEncryptionProviderData

Cryptography	Application	Block

Custom
Provider
or
Extension

Interface	or
Base	Class

Configuration	Element
(basic	integration)

Hash
Algorithm
Provider

IHashProvider CustomHashProviderData

Symmetric
Encryption
Algorithm
Provider

ISymmetricCryptoProvider CustomSymmetricCryptoProviderData

Data	Access	Application	Block

Custom
Provider
or	Extension

Interface
or
Base
Class

Configuration
Element
(basic	integration)

Configuration	Element
Base
Class	(design	time
integration)

Database
Provider

Database n/a n/a

Exception	Handling	Application	Block

Custom
Provider
or
Extension

Interface	or
Base	Class

Configuration
Element
(basic	integration)

Configuration
Element	Base
Class	(design	time
integration)

Exception
Handler

IExceptionHandler CustomHandlerData ExceptionHandlerData

Exception
Formatter

ExceptionFormatter n/a n/a

Logging	Application	Block

Custom
Provider
or
Extension

Interface	or
Base	Class

Configuration	Element
(basic	integration)

Configuration
Element	Base
Class	(design
time	integration)

Log	Entry
Formatter

ILogFormatter CustomFormatterData FormatterData

Trace
Listener

CustomTraceListener CustomTraceListenerData TraceListenerData

Log	Filter ILogFilter
LogFilter

CustomLogFilterData LogFilterData

If	you	implement	a	custom	Log	Filter	by	implementing	the	ILogFilter	interface
or	by	extending	the	LogFilter	base	class,	you	must	be	aware	of	an	issue	that	can
prevent	application	code	from	resolving	the	configured	name	of	the	provider.
However,	this	is	only	an	issue	when	you	wish	to	query	the	collection	of	filters
when	checking	if	a	log	entry	will	be	specifically	blocked	by	this	filter.	The
ILogFilter	interface	defines	a	Name	property	that	should	return	the	name	of	the
instance	of	the	custom	log	filter	from	the	configuration.	However,	there
currently	is	no	way	to	retrieve	that	name	from	within	your	custom	log	filter.
Instead,	you	can	pass	a	key/value	pair	in	the	NameValueCollection	received	by
the	constructor,	and	use	this	to	set	the	Name	property	of	the	filter.	When
configuring	your	custom	log	filter,	you	will	have	to	duplicate	the	name:	once	for
the	actual	name	of	that	instance	of	the	custom	log	filter,	and	again	in	the	named
property	collection	that	is	passed	to	the	constructor.

Policy	Injection	Application	Block
Policy	injection	is	a	feature	driven	by	the	Unity	interception	mechanism.	You
can	create	custom	behaviors,	call	handlers,	call	handler	attributes,	and	matching
rules	for	use	with	the	Unity	interception	mechanism.	For	more	information,	see
http://www.codeplex.com/unity/.

http://www.codeplex.com/unity/

Security	Application	Block

Custom
Provider
or	Extension

Interface	or
Base	Class

Configuration	Element
(basic	integration)

Configuration	Element
Base
Class	(design	time
integration)

Authorization
Provider

AuthorizationProvider CustomAuthorizationProviderData AuthorizationProviderData

Security
Cache
Provider

ISecurityCacheProvider CustomSecurityCacheProviderData SecurityCacheProviderData

Validation	Application	Block

Custom
Provider
or
Extension

Interface	or
Base	Class

Configuration
Element
(basic	integration)

Configuration
Element	Base
Class	(design
time
integration)

Validator Validator<T>
Validator

CustomValidatorData ValidatorData

Validator
Attribute

ValueValidatorAttribute n/a n/a

For	more	information	about	creating	custom	providers	and	extensions	for
Enterprise	Library,	see	Enterprise	Library	Configuration	Integration	and
Creating	a	Custom	Provider.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Enterprise Library Extension Points'%0AEntLib50_cb80a94d-5ff9-4384-8806-b84382a3e975%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Enterprise	Library	Configuration	Integration

Enterprise	Library	allows	you	to	easily	integrate	custom	providers	and
extensions	into	the	library	in	such	a	way	that	you	can	configure	them	using	the
Enterprise	Library	configuration	tools.	There	are	two	types,	or	levels,	of
configuration	integration.

Basic	Configuration	Integration

Full	Configuration	Integration
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Enterprise Library Configuration Integration'%0AEntLib50_090c3f47-afb3-478d-b20a-9caf5bde3e97%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	a	Custom	Provider

The	following	steps	describe	the	process	for	creating	a	custom	provider:
Preparing	Your	Project
Implementing	the	Interface	or	Extending	the	Base	Class
Specifying	the	Configuration	Element	Type
Adding	Full	Design-time	Integration
Summary	of	Steps

Preparing	Your	Project

Implementing	the	Interface	or	Extending	the	Base	Class

Specifying	the	Configuration	Element	Type

Adding	Full	Design-time	Integration

Summary	of	Steps
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating a Custom Provider'%0AEntLib50_aa02ad32-54e2-4fa3-91d8-b2c4bfbe14c7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	Enterprise	Library

Enterprise	Library	incorporates	a	set	of	best	practices	in	its	overall	design.
Among	these	are	the	following:

It	uses	common	application	block	functionality	(the	Enterprise	Library
Core).
It	uses	uniform	conventions	for	naming	and	versioning.
It	incorporates	instrumentation	into	all	application	blocks.
It	uses	unit	tests	written	during	the	design	phase.

The	section	describes	the	design	of	Enterprise	Library	and	includes	the
following	topics:

Design	Patterns.	This	topic	describes	the	use	of	design	patterns	within
Enterprise	Library.
The	Enterprise	Library	Core.	This	topic	describes	the	Enterprise	Library
Core,	including	the	configuration	system.
Providers.	This	topic	describes	the	use	of	providers	to	implement
extensibility.
Design	Time	Configuration.	This	topic	describes	the	design-time
configuration	features	of	Enterprise	Library.
The	Dependency	Injection	Model.	This	topic	describes	the	dependency
injection	mechanism	used	by	Enterprise	Library	to	instantiate	objects	and
manage	their	lifetimes.
Instrumentation.	This	topic	describes	the	implementation	of
instrumentation	within	Enterprise	Library.
Group	Policy	Support.	This	topic	describes	Group	Policy	support	using
the	Manageable	Configuration	Source.
Unit	Tests.	This	topic	describes	the	use	of	unit	tests	within	Enterprise
Library.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of Enterprise Library'%0AEntLib50_93b0aa98-98b7-4f7a-b7b3-f3ac52852d50%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	Patterns

In	software	architecture	and	development,	a	pattern	is	a	description	of	a
recurring	problem	that	occurs	in	a	specific	context	and,	based	on	a	set	of
guiding	forces,	suggests	a	solution.	The	solution	is	usually	a	simple	mechanism
because	it	is	a	collaboration	between	two	or	more	classes,	objects,	services,
processes,	threads,	components,	or	nodes	that	work	together	to	solve	the
underlying	architecture	or	development	challenge.

Patterns	are	useful	to	developers	and	architects	because	they	do	the	following:
They	document	simple	mechanisms	that	work.
They	provide	a	common	vocabulary	and	taxonomy	for	developers	and
architects.
They	allow	solutions	to	be	described	concisely	as	combinations	of
patterns.
They	enable	reuse	of	architecture,	design,	and	implementation	decisions.

The	Enterprise	Library	application	blocks	use	the	following	patterns	(among
others):

Plug-in	pattern.	This	pattern	extends	the	behavior	of	a	class	by	allowing
extensions	to	plug	into	an	abstract	class	that,	in	turn,	plugs	into	a	core
class.	This	creates	a	new	subclass	that	includes	only	the	capabilities
required	in	the	specific	context.
Dependency	Injection	pattern.	With	this	pattern,	you	can	inject	objects
into	a	class,	instead	of	relying	on	the	class	to	create	the	object.

For	more	information	about	patterns,	see	the	Microsoft	patterns	&	practices
Web	site.

http://msdn.microsoft.com/practices/

Plug-in	Pattern

Dependency	Injection	Pattern
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.martinfowler.com/articles/injection.html
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design Patterns'%0AEntLib50_68e82ab7-4cf9-4303-94fb-3afcc733f88f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Enterprise	Library	Core

Many	tasks	that	the	Enterprise	Library	application	blocks	perform	are	common
across	more	than	one	application	block	and	are	also	useful	in	application	code
outside	of	Enterprise	Library.	Examples	are	routines	that	serialize	data	or	access
configuration	information.	To	promote	usability,	these	routines	reside	in	a
common	assembly	named	the	Enterprise	Library	Core.

In	addition,	all	the	application	blocks	are	designed	to	have	a	limited	number	of
dependencies	so	that	they	can	be	used	individually	as	well	as	with	other
application	blocks.	All	application	blocks	except	Unity	depend	on	the	Enterprise
Library	Core,	which	is	a	logical	grouping	made	up	of	the	following	subsystems:

The	Common	assembly
Instrumentation	for	the	application	blocks
Configuration	helper	classes	and	design-time	configuration	components

For	information	about	the	dependencies	between	application	blocks	and	the
Enterprise	Library	Core,	see	Dependencies	in	Enterprise	Library.

The	Common	Assembly

Instrumentation

Configuration	Helper	Classes	and	Design-time	Components
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Enterprise Library Core'%0AEntLib50_5dca2781-1fa7-4f76-a5cf-11fc3faf6cf1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Providers

A	provider	in	the	Microsoft.NET	Framework	is	an	intermediary	piece	of	code;
with	it,	your	application	can	connect	to	a	service	or	data	source	and	then	retrieve
or	modify	an	object	or	data	from	that	service	or	source.	The	Enterprise	Library
includes	many	providers.	In	addition,	you	can	create	your	own	provider	to
supply	information	that	you	need	for	your	specific	application.

A	provider	type	defines	an	interface	that	is	associated	with	a	capability	an
application	block	must	have	to	perform	correctly.	A	provider	is	a	specific
implementation	of	a	provider	type.	Each	application	block	includes	one	or	more
providers	for	each	provider	type.	You	can	also	write	custom	providers	for
application	blocks.	Separating	the	application	block's	functionality	from	specific
implementations	of	its	capabilities	achieves	the	following	goals:

Variability.	This	allows	you	to	choose	from	multiple	implementations	of
the	same	capability,	according	to	the	requirements	of	a	specific
application.
Extensibility.	This	allows	you	to	use	the	application	block	in
environments	where	the	capability	in	question	has	a	mandatory
implementation.	For	example,	an	application	can	require	a	specific
encryption	algorithm	when	deployed	to	a	particular	environment.
Encapsulation.	This	allows	you	to	react	to	changes	in	the	environment
in	which	the	application	block	is	used.	With	providers,	functionality	that
is	not	a	part	of	the	application	block's	core	functionality	can	be	replaced
or	upgraded	without	affecting	other	areas	of	the	application	block.
Portability	across	environments.	This	allows	you	to	deploy	the
application	block	in	a	new	environment	with	providers	specific	to	that
environment.	You	can	also	create	providers	that	run	in	one	environment
and	simulate	behavior	from	a	different	environment.
Minimized	coupling	between	application	blocks.	Application	blocks
that	are	dependent	on	other	application	blocks	can	encapsulate	this
dependency	in	a	provider.	This	means	that	the	application	block	is	less
vulnerable	to	revisions	in	the	application	block	on	which	it	depends.	For
example,	the	Exception	Handling	Application	Block	includes	the	logging
exception	handler.	This	handler	is	dependent	on	the	Logging	Application
Block	and	is	included	as	a	provider.	A	new	version	of	the	Logging

Application	Block	would	require	only	a	new	logging	handler	provider;
the	rest	of	the	Exception	Handling	Application	Block	can	remain
unchanged.

For	information	about	creating	your	own	providers	for	the	application	blocks,
see	the	"Extending	and	Modifying"	section	of	the	documentation	for	each
application	block.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Providers'%0AEntLib50_d24ef321-06d7-480d-8f72-505675b5b021%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	Time	Configuration

All	application	blocks	include	both	run-time	support	and	design-time	support
for	configuration	settings.	The	run-time	support	includes	classes	that	represent
the	configuration	settings.	The	Configuration	Application	Block	uses	these	class
definitions	when	it	loads	configuration	settings.	It	reads	the	configuration
settings	from	storage	and	returns	objects	that	contain	the	configuration	data	to
the	application	block.

The	design-time	configuration	support	includes	classes	that	allow	you	to	change
the	configuration	settings	by	using	the	Enterprise	Library	configuration	tools.
These	classes	define	a	visual	representation	of	the	different	configuration
settings,	specify	the	actions	that	can	be	performed	based	on	the	current
configuration	state,	and	provide	the	ability	to	validate	the	configuration	settings.

The	following	figure	illustrates	the	relationship	between	the	run-time
configuration	support	and	the	design-time	configuration	support.

The	design-time	classes	depend	on	the	configuration	run-time	classes	because

they	obtain	the	current	configuration	settings	from	the	configuration	run-time
objects.	When	you	change	these	settings	and	save	the	changes,	the	design-time
objects	update	the	run-time	objects,	which	are	then	saved	in	storage.	However,
the	run-time	classes	have	no	dependency	on	the	design-time	classes.	There	is	a
single	lightweight	design-time	assembly	that	contains	design-time	core	and
some	block-specific	classes.	This	is	separate	from	the	assemblies	containing	the
run-time	implementations.	The	design-time	assembly	is	not	required	for	running
an	application	that	uses	the	application	blocks.	However,	it	is	required	when	you
use	the	configuration	console	to	change	the	configuration	of	an	application
block.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design Time Configuration'%0AEntLib50_f963c0b7-904b-467b-80c4-7f20966f0b2c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Dependency	Injection	Model

This	topic	describes	the	mechanism	used	by	Enterprise	Library	to	create	and
manage	the	lifetime	of	objects	within	the	core	and	the	application	blocks.
Enterprise	Library	uses	a	dependency	injection	mechanism	to	create	and
manage	the	lifetime	of	all	the	Enterprise	Library	objects	it	creates.	Depending
on	the	style	of	your	application,	it	may	use	the	same	dependency	injection
container	that	Enterprise	Library	uses.	This	topic	contains	the	following
sections:

Application	and	Container	Initialization
Using	an	Alternative	Dependency	Injection	Container
More	Information

To	learn	how	to	use	the	Unity	dependency	injection	approach	when	writing
application	code,	see	Using	Enterprise	Library	in	Applications.

Application	and	Container	Initialization

http://commonservicelocator.codeplex.com/

Using	an	Alternative	Dependency	Injection	Container

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib
http://codeplex.com/entlibcontrib
http://commonservicelocator.codeplex.com/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Dependency Injection Model'%0AEntLib50_f6e155be-34e9-4f2e-9567-ff222b7afbb2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Instrumentation

In	Enterprise	Library,	the	interfaces	and	classes	responsible	for	logging	events
to	the	Windows	Event	Log	or	updating	Windows	Performance	Counters	are
separated	from	those	that	indicate	an	instrumentation-worthy	activity	has
occurred.

Each	application	block	contains	one	or	more	classes	responsible	for	translating
activities	from	within	the	block	into	Event	Log	messages	or	Performance
Counter	updates.	These	classes	are	generally	known	as	instrumentation
providers	because	they	provide	instrumentation	services	within	that	block.
Classes	within	an	application	block	use	the	instrumentation	providers	to	indicate
that	an	activity	has	occurred.

Each	block	is	responsible	for	a	different	set	of	activities	and	so	the	exact
interface	of	the	provider	varies	for	each	block.	For	example,	the	instrumentation
provider	interface	for	the	CachingInstrumentationProvider	class	is	as
follows:
C#

public	interface	ICachingInstrumentationProvider

{

		void	FireCacheUpdated(long	updatedEntriesCount,	long	totalEntriesCount);

		void	FireCacheAccessed(string	key,	bool	hit);

		void	FireCacheExpired(long	itemsExpired);

		void	FireCacheScavenged(long	itemsScavenged);

		void	FireCacheCallbackFailed(string	key,	Exception	exception);		

		void	FireCacheFailed(string	errorMessage,	Exception	exception);

}

The	Cache	class	in	the	Caching	Block	uses	an
ICachingInstrumentationProvider	each	time	it	must	indicate	the	cache	was
accessed.	When	the	cache	is	accessed	it	calls	the	FireCacheAccessed	method	of
the	instrumentation	provider.

The	instrumentation	providers	are	typically	connected	to	other	classes	within

the	block	through	a	constructor	parameter.	The	Cache	class,	for	example,	takes
an	ICachingInstrumentationProvider	as	shown	here.
C#

public	class	Cache	:	ICacheOperations,	IDisposable

{				

				public	Cache(IBackingStore	backingStore,	

																	ICachingInstrumentationProvider	instrumentationProvider)

				{

						...

				}

				...

}

Because	the	implementations	for	the	instrumentation	provider	interfaces	are
registered	within	the	dependency	injection	container,	they	are	injected	into	the
classes	that	require	them.

How	Instrumentation	Providers	Work
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Instrumentation'%0AEntLib50_f8747c05-6255-4911-9b84-7562443d8a2f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Group	Policy	Support

This	reference	supplements	the	information	in	Using	Group	Policy	with
Enterprise	Library.	It	is	divided	into	the	following	sections:

The	Manageable	Configuration	Source	Class.	This	section	describes	the
design	of	the	class	that	provides	Group	Policy	configuration	support	in
Enterprise	Library.
Integration	of	Group	Policy	with	Enterprise	Library	Applications.	This
section	provides	information	about	how	instances	of	the
ManageableConfigurationSource	are	integrated	with	Group	Policy	and
includes	information	about	Group	Policy	template	structure.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Group Policy Support'%0AEntLib50_cb005873-a57a-4239-9faf-5484e0e729bd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Manageable	Configuration	Source	Class

This	topic	describes	the	classes	that	make	up	the
ManageableConfigurationSource	class.

ManageableConfigurationSource

ManageabilityHelper
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Manageable Configuration Source Class'%0AEntLib50_8acd3afb-6529-403a-b413-2ab8dda05fc0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Integration	of	Group	Policy	with	Enterprise	Library	Applications

The	ManageableConfigurationSource	class	reads	configuration	overrides
from	the	registry	and	applies	those	overrides	to	an	application	configuration	file.
By	reading	the	registry	in	this	way,	this	configuration	source	allows	you	to	use
Group	Policy	to	specify	the	settings.	A	Group	Policy	template	defines	the
configuration	options	for	each	application	that	is	configured	in	Group	Policy
and	defines	the	default	options	in	Group	Policy	for	each	configuration	option.
One	Group	Policy	template	is	required	for	each	application	because	a	separate
registry	key	represents	each	application.	The	key	is	based	on	the	application
name.

To	simplify	the	creation	of	Group	Policy	templates,	you	can	use	the
AdministrativeTemplateGenerator	class	to	generate	an	AdmContent	object,
and	then	write	this	content	to	a	stream	in	order	to	generate	ADM	files	from	the
Enterprise	Library	configuration	tools.	These	templates	use	the	settings	defined
in	the	application	configuration	file	to	determine	the	default	settings	for	each
option.	They	also	determine	the	structure	of	the	ADM	template,	which	must
match	the	contents	of	the	configuration	file.

In	this	version	of	Enterprise	Library,	templates	and	Group	Policy	support	are
available	for	all	the	application	blocks,	except	for	the	Validation	Application
Block,	the	Policy	Injection	Application	Block,	and	Unity.	Group	Policy	is	a
fairly	static	and	flat	mechanism,	and	the	configuration	for	these	application
blocks	is	quite	dynamic	and	usually	complex.	Therefore,	it	would	be	almost
impossible	to	provide	a	useable	user	interface	implementation	for	these
application	blocks.

Note:
Applications	that	use	Group	Policy	to	specify	their	settings	must	define	and
use	a	ManageableConfigurationSource	in	the	configuration	sources
section,	and	set	the	EnableGroupPolicy	flag	on	that	source	to	true.	You	can
use	the	configuration	tools	to	configure	this	setting.

This	section	contains	the	following	topics:

Group	Policy	Template	Structure
General	Settings	for	the	Application	Blocks
Exceptions	to	the	General	Template	Structure
Applying	Group	Policy	Settings
Limitations	of	Group	Policy	Support

Group	Policy	Template	Structure

http://msdn2.microsoft.com/en-gb/library/aa374150.aspx

General	Settings	for	the	Application	Blocks

Exceptions	to	the	General	Template	Structure

Applying	Group	Policy	Settings

Limitations	of	Group	Policy	Support
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integration of Group Policy with Enterprise Library Applications'%0AEntLib50_ed570525-fc2e-4a9e-b944-91758bb6f72b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Unit	Tests

Enterprise	Library	includes	Visual	Studio®	solution	files	that	include	Visual
Studio	Team	System	unit	tests	with	the	application	block	projects.	You	can	use
the	main	Enterprise	Library	solution	file	(EnterpriseLibrary.VSTS.sln)	to	build
the	entire	Enterprise	Library	with	the	unit	tests.	This	solution	contains	the	entire
set	of	application	block	projects	and	the	Enterprise	Library	core	projects,	and
includes	all	unit	tests	for	execution	with	the	Visual	Studio	Team	System.

The	Enterprise	Library	solution	files	include	two	build	configurations:	Release
and	Debug.	All	projects	within	a	solution	file	are	compiled	in	both
configurations,	including	the	unit	test	projects.	For	more	information,	see
Building	Enterprise	Library	from	the	Source	Code.

Note:
This	release	of	Enterprise	Library	does	not	include	solutions	that	use	the
NUnit	test	framework.

Software	Requirements

Organization

http://msdn2.microsoft.com/en-us/library/7c5ka91b.aspx

Using	the	Unit	Tests
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46a0-8da2-eebc53a68034&DisplayLang=en
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Unit Tests'%0AEntLib50_07ebea52-f33c-4172-ba66-bce68408946c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Caching	Application	Block

The	Enterprise	Library	Caching	Application	Block	lets	developers	incorporate	a
local	cache	in	their	applications.	It	supports	both	an	in-memory	cache	and,
optionally,	a	backing	store	that	can	either	be	the	database	store	or	isolated
storage.	The	Caching	Application	Block	can	be	used	without	modification;	it
provides	all	the	functionality	needed	to	retrieve,	add,	and	remove	cached	data.
Configurable	expiration	and	scavenging	policies	are	also	part	of	the	block.

Note:
Caching	Application	Block	functionality	is	built	into	.NET	Framework	4.0;
therefore	the	Enterprise	Library	Caching	Application	Block	will	be
deprecated	in	releases	after	5.0.	You	should	consider	using	the	.NET	4.0
System.Runtime.Caching	classes	instead	of	the	Caching	Application	Block
in	future	development.

The	Enterprise	Library	Caching	Application	Block	includes	the	following
features:

You	can	use	the	graphical	Enterprise	Library	configuration	tools	to
manage	configuration	settings.
You	can	configure	a	persistent	storage	location,	using	either	isolated
storage	or	the	Enterprise	Library	Data	Access	Application	Block,	whose
state	is	synchronized	with	the	in-memory	cache.
Administrators	can	manage	the	configuration	using	Group	Policy	tools.
You	can	extend	the	block	by	creating	custom	expiration	policies	and
storage	locations.
You	are	assured	that	the	block	performs	in	a	thread-safe	manner.

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Caching	Application	Block:

What	Does	the	Caching	Application	Block	Do?	This	topic	provides	a
brief	overview	that	will	help	you	to	understand	what	the	block	can	do,
and	explains	some	of	the	concepts	and	features	it	incorporates.	It	also
provides	a	simple	example	of	the	way	that	you	can	write	code	to	use	the

http://msdn.microsoft.com/en-us/library/system.runtime.caching(VS.100).aspx

block.
When	Should	I	Use	the	Caching	Application	Block?	This	topic	will	help
you	to	decide	if	the	block	is	suitable	for	your	requirements.	It	explains
the	benefits	of	using	the	block,	and	any	alternative	techniques	you	may
consider.	It	also	provides	details	of	any	limitations	of	the	block	that	may
affect	your	decision	to	use	it.
Developing	Applications	Using	the	Caching	Application	Block.	This
topic	first	explains	how	to	configure	the	Caching	Application	Block	and
add	it	to	your	application.	It	then	explains	how	to	select	a	backing	store.
Key	Scenarios.	This	section	demonstrates	how	to	use	the	block	to
perform	typical	caching	operations.
Design	of	the	Caching	Application	Block.	This	topic	explains	the
decisions	that	went	into	designing	the	Caching	Application	Block	and
the	rationale	behind	those	decisions.
Extending	and	Modifying	the	Caching	Application	Block.	This	topic
explains	how	to	extend	the	block	by	adding	your	own	backing	store	and
your	own	expiration	policies.	It	also	explains	how	to	modify	it	by
changing	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	Caching	Application	Block	assemblies.

More	Information
For	related	information,	see	the	following	patterns	&	practices	guides	and
documents:

Microsoft	Application	Architecture	Guide,	2nd	Edition
Caching	Architecture	Guide	for	.NET	Framework	Applications
Enterprise	Library	home	page	on	MSDN®
Enterprise	Library	on	the	CodePlex	Web	site

For	links	to	external	caching	providers,	see	the	"More	Information"	section	in
The	Caching	Application	Block	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/dd673617.aspx
http://msdn.microsoft.com/en-us/library/ee817645.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://www.codeplex.com/entlib
http://msdn.microsoft.com/en-us/library/cc511588.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Caching Application Block'%0AEntLib50_39c7b13a-9654-47bc-93ee-77c48a4ca6cb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Caching	Application	Block	Do?

The	Caching	Application	Block	provides	an	in-memory	cache	that	your
application	can	manipulate	through	a	simple	API	to	store	and	retrieve	items,	and
to	obtain	information	about	the	stored	items.	In	addition,	you	can	configure	a
persistent	or	custom	backing	store	for	your	cache,	and—if	required—encrypt
the	information	stored	there.	You	can	configure	more	than	one	cache	for	your
application,	and	specify	a	partition	for	each	one	so	that	data	from	multiple
caches	can	be	stored	in	separate	containers	within	the	same	backing	store
location,	such	as	a	database.	The	following	schematic	shows	the	main	elements
of	the	Caching	Application	Block.

At	application	startup,	the	block	loads	the	in-memory	cache	from	the	backing
store	(if	configured).	Alternatively,	you	can	also	load	the	cache	yourself	if	you
want	to	implement	a	delayed	loading	pattern.	As	the	application	runs,	the	block
checks	the	expiration	of	cached	items	and	removes	them	from	the	cache.	Expiry
can	be	configured	based	on	sliding	or	absolute	time	values;	or	through
dependencies	on	files,	other	cached	items,	or	external	resources.	The	block	also
manages	the	cache	in	conjunction	with	memory	availability,	based	on	cached
item	priorities.

Note:
For	information	about	the	types	of	expiration	you	can	use,	and	the	default
expiration	for	new	items,	see	Design	of	the	Expiration	Process.

As	application	code	interacts	with	the	Cache	Manager,	it	updates	the	in-memory
cache	and—if	a	backing	store	is	configured—updates	the	backing	store.	You
can	configure	an	encryption	provider	for	the	backing	store,	which	is
implemented	by	the	Cryptography	Application	Block,	to	encrypt	the	items	that
are	cached	in	the	backing	store	(note	that	the	block	does	not	encrypt	items
stored	in	the	in-memory	cache).

The	block	includes	providers	that	store	data	in	a	database	or	in	Isolated	Storage
on	the	local	machine.	It	does	not	provide	a	distributed	caching	mechanism.
Additional	providers,	including	providers	that	support	distributed	caching,	may
be	available	from	third	parties	and	the	Enterprise	Library	community	Web	site.
For	more	information,	see	the	CodePlex	Community	and	Enterprise	Library
Contributions	Web	sites.

http://www.codeplex.com/entlib/
http://www.codeplex.com/entlibcontrib/

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Caching Application Block Do?'%0AEntLib50_906fb004-84fa-462e-8c9f-a7fb1081d679%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Caching	Application	Block?

The	Caching	Application	Block	is	suitable	if	you	encounter	any	of	the	following
situations:

You	must	repeatedly	access	static	data	or	data	that	rarely	changes.
Data	access	is	expensive	in	terms	of	creation,	access,	or	transportation.
Data	must	always	be	available,	even	when	the	source,	such	as	a	server,	is
not	available.

You	can	use	the	Caching	Application	Block	with	any	of	the	following
application	types:

Windows	Forms
Windows	Presentation	Foundation	(WPF)
Windows	Communication	Foundation	(WCF)
Console	application
Windows	service
ASP.NET	Web	application	or	Web	service	if	you	need	features	not
included	in	the	ASP.NET	cache

Scenarios	for	the	Caching	Application	Block

Benefits	of	the	Caching	Application	Block

Limitations	of	the	Caching	Application	Block

http://msdn.microsoft.com/en-us/library/aa970910.aspx
http://msdn.microsoft.com/en-us/library/ms994921.aspx

Alternatives	to	Using	the	Caching	Application	Block

http://msdn.microsoft.com/en-us/library/cc645013.aspx

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Caching Application Block?'%0AEntLib50_7823abac-b4e9-49ce-8798-cd32abb89cb5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Caching	Application	Block

This	section	describes	how	to	use	the	Caching	Application	Block	to	develop
applications.	It	explains	how	to	enter	configuration	information	for	the	block,
incorporate	it	into	your	solution,	and	select	a	backing	store.	This	section
includes	the	following	topics:

Entering	Configuration	Information
Adding	Application	Code
Selecting	a	Backing	Store

All	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want	to	use	the
source	code,	you	must	compile	it.	To	learn	how	to	compile	the	Enterprise
Library	source	code,	see	Building	Enterprise	Library	from	the	Source	Code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Caching Application Block'%0AEntLib50_e059d319-04df-45f2-a560-443fb055c6fc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

These	procedures	explain	how	to	configure	the	Caching	Application	Block.	If
you	add	a	Database	Cache	Storage	provider	to	the	configuration	of	the	Caching
Application	Block,	the	configuration	tool	automatically	adds	the	Data	Access
Application	Block.	You	must	configure	that	block	before	you	configure	the
Database	Cache	Storage	provider	in	the	Caching	Application	Block
configuration.

For	details	of	the	schema	for	the	Caching	Application	Block	configuration,	see
Source	Schema	for	the	Caching	Application	Block.	You	can	also	configure	the
block	in	code	by	using	an	alternate	configuration	source.	For	more	information,
see	Advanced	Configuration	Scenarios	and	Using	the	Fluent	Configuration	API.

To	add	the	Caching	Application	Block
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Caching	Settings.
3.	 The	configuration	tool	automatically	adds	the	Caching	Settings	section

with	default	values,	and	a	default	Cache	Manager	item.

To	configure	cache	managers
1.	 Click	the	properties	expander	arrow	in	the	Caching	Settings	section	to

open	the	list	of	properties.
2.	 (Optional)	Change	the	Default	Cache	Manager	property	name.	The

default	cache	manager	is	used	if	the	code	does	not	specify	a	cache
manager.	Either	enter	a	new	name	or	select	one	from	the	drop-down
list.	The	default	name	is	CacheManager.

3.	 (Optional)	If	you	want	to	encrypt	the	configuration,	make	a	selection
from	the	Protection	Provider	drop-down	list.	You	can	select	the
RsaProtectedConfigurationProvider	or	the
DataProtectedConfigurationProvider.	See	Encrypting	Configuration
Data	for	information	about	the	restrictions	on	using	the
RsaProtectedConfigurationProvider.

4.	 (Optional)	If	you	want	to	run	your	application	in	partial	trust	mode,
change	the	Require	Permission	property	to	False.	The	default	is	True.

5.	 To	access	the	default	Cache	Manager	properties,	click	the	section

expander	arrow	to	the	left	of	the	default	Cache	Manager	title.	If	you
renamed	the	cache	manager,	the	title	will	be	the	name	you	assigned	it.

6.	 (Optional)	Rename	the	CacheManager	node.	The	default	name	is
CacheManager.

7.	 (Optional)	Set	the	Backing	Store	property.	The	default	is	<none>
which	means	that	the	cache	manager	only	stores	data	in	memory.	The
drop-down	list	shows	you	the	available	backing	stores	you	can	choose
from.	You	can	add	backing	stores	in	the	Backing	Stores	pane.

8.	 (Optional)	Set	the	Number	to	Remove	when	Scavenging	property.
This	is	the	number	of	elements	to	remove	after	scavenging	begins.	The
default	setting	is	10	elements.

9.	 (Optional)	Set	the	Max.	Elements	in	Cache	Before	Scavenging
property.	This	is	the	maximum	number	of	elements	that	can	be	in	the
cache	before	scavenging.	The	default	setting	is	1000	elements.

10.	 (Optional)	Set	the	Expiration	Polling	Frequency	property.	This	is	the
frequency	of	the	timer	that	regulates	how	often	the	background
scheduler	checks	for	expired	items.	The	unit	is	seconds,	and	the	default
setting	is	60.

By	default,	the	cache	stores	items	only	in	memory	and	assigns	the	value	of	the

backing	store	to	NullBackingStore.	You	can	add	caching	stores	and	then
configure	the	Caching	Application	Block	to	use	any	of	the	stores	you	have
added.	You	can	configure	the	Caching	Application	Block	to	use	database	cache
storage,	isolated	storage,	or	custom	cache	storage.	Database	cache	storage	uses
the	Data	Access	Application	Block.

To	add	database	cache	storage	and	configure	the	Caching	Application
Block	to	use	it

1.	 Click	the	plus	sign	icon	in	the	Backing	Stores	pane,	point	to	Add
Backing	Stores	and	click	Add	DataCacheStorage.

2.	 The	configuration	tool	automatically	adds	the	Database	Settings
section.	For	information	about	configuring	this	section,	see	The	Data
Access	Application	Block	documentation.

3.	 Click	the	properties	expander	arrow	in	the	new	DataCacheStorage
section	to	open	the	list	of	properties.

4.	 (Optional)	Set	the	Name	property	by	renaming	the	DataCacheStorage
node.

5.	 Set	the	Database	Instance	property	by	making	a	selection	from	the	text
box	drop-down	list.	This	is	the	name	of	the	database	connection	string.
It	must	correspond	to	the	name	of	a	connection	string	in	the	Database
Settings	section.

6.	 If	you	want	to	encrypt	the	information	stored	in	the	database,	you	must
have	configured	an	encryption	provider.	To	add	a	new	encryption

provider,	click	the	plus	sign	icon	in	the	Encryption	Providers	pane	of
the	Caching	Settings	section,	point	to	Add	Encryption	Providers	and
then	click	Add	Symmetric	Crypto	Provider	(this	is	the	only
encryption	provider	offered).	The	configuration	tool	automatically	adds
the	Cryptography	Settings	section.

7.	 In	the	Cryptography	Settings	section	(not	the	Caching	Settings
section),	add	a	symmetric	cryptography	provider	to	the	configuration.
For	information	about	configuring	this	block,	see	The	Cryptography
Application	Block	documentation.

8.	 In	the	Caching	Settings	section,	select	the	new	symmetric	encryption
provider	you	configured	in	the	Cryptography	Settings	section	or	an
existing	encryption	provider	in	that	section,	in	the	drop-down	list	for
the	Symmetric	Crypto	Provider	property.

9.	 In	the	Backing	Stores	pane,	in	the	Data	Cache	Storage	section,	set	the
Encryption	Provider	property	by	selecting	the	Symmetric	Crypto
Provider	item	you	just	configured.

10.	 In	the	Cache	Managers	section,	select	the	new	backing	store	you
added	in	the	drop-down	list	for	the	Backing	Store	property	of	the
cache	manager	that	will	use	this	backing	store.

To	add	isolated	storage	and	configure	the	Caching	Application	Block	to	use
it

1.	 Click	the	plus	sign	icon	in	the	Backing	Stores	pane,	point	to	Add
Backing	Stores	and	click	Add	Isolated	Storage	Cache	Store.

2.	 (Optional)	In	the	new	Isolated	StorageCacheStore	section,	set	the
Name	property.

3.	 Set	the	Partition	Name	property.	This	identifies	the	portion	of	isolated
storage	that	the	cache	manager	will	use.

4.	 If	you	want	to	encrypt	the	information	stored	in	isolated	storage,	you
must	have	configured	an	encryption	provider.	To	add	a	new	encryption
provider,	click	the	plus	sign	icon	in	the	Encryption	Providers	pane	of
the	Caching	Settings	section,	point	to	Add	Encryption	Providers	and
then	click	Add	Symmetric	Crypto	Provider	(this	is	the	only
encryption	provider	offered).	The	configuration	tool	automatically	adds
the	Cryptography	Settings	section.

5.	 In	the	Cryptography	Settings	section	(not	the	Caching	Settings
section),	add	a	symmetric	cryptography	provider	to	the	configuration.

For	information	about	configuring	this	block,	see	The	Cryptography
Application	Block	documentation.

6.	 In	the	Caching	Settings	section,	select	the	new	symmetric	encryption
provider	you	configured	in	the	Cryptography	Settings	section	or	an
existing	encryption	provider	in	that	section,	in	the	drop-down	list	for
the	Symmetric	Crypto	Provider	property.

7.	 In	the	Backing	Stores	pane,	in	the	Isolated	Storage	Cache	Store
section,	set	the	Encryption	Provider	property	by	selecting	the
Symmetric	Crypto	Provider	item	you	just	configured.

8.	 In	the	Cache	Managers	section,	select	the	new	backing	store	you
added	in	the	drop-down	list	for	the	Backing	Store	property	of	the
cache	manager	that	will	use	this	backing	store.

To	add	a	custom	cache	storage	provider
1.	 Click	the	plus	sign	icon	in	the	Backing	Stores	pane,	point	to	Add

Backing	Stores	and	click	Add	Custom	Cache	Storage.
2.	 The	Type	Selector	dialog	is	displayed.	Navigate	to	the	assembly

containing	your	custom	backing	store	and	click	on	it.	The	store	will	be
added	and	displayed	in	the	Backing	Stores	pane.

3.	 (Optional)	In	the	new	custom	store	section,	set	the	Name	property.
4.	 If	the	custom	backing	store	requires	any	other	configuration	values	to

be	provided,	add	these	as	key/value	pairs	to	the	configuration	by	typing
them	into	the	Key	and	Value	text	boxes.	As	you	enter	a	value,	the
configuration	tool	displays	a	new	row	in	this	section.	Click	the	cross
button	to	remove	a	name/value	pair.

If	you	want	to	add	another	cache	manager	to	your	application	configuration,
click	the	plus	sign	icon	in	the	Cache	Managers	pane,	point	to	Add	Cache
Managers	and	then	click	on	the	manager	you	wish	to	add.	Repeat	the	preceding
procedures.	There	can	be	only	one	default	cache	manager.	Each	instance	of	the
cache	manager	must	have	a	unique	name.

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_9805bcb6-f6bf-44ae-8bbc-674fe3e6642a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Caching	Application	Block

This	topic	lists	the	XML	elements	and	attributes	used	to	configure	the	Caching
Application	Block.	You	can	manually	edit	the	XML	data,	but	the	Enterprise
Library	configuration	tools	greatly	simplify	this	task.	If	you	choose	to	manually
edit	the	XML,	use	the	schema	information	contained	in	this	topic.

The	configuration	file	has	the	following	section	handler	declaration.
XML

<configSections>

<section	name="cachingConfiguration"	

									type="Microsoft.Practices.EnterpriseLibrary.Caching.Configuration.CacheManagerSettings,

															Microsoft.Practices.EnterpriseLibrary.Caching"	/>

</configSections>

The	section	handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section	handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
cachingConfiguration.	The	name	of	the	section	handler	class	is
Microsoft.Practices.EnterpriseLibrary.Caching.Configuration.CacheManagerSettings

cachingConfiguration	Element

encryptionProviders	Element

backingStores	Element

cacheManagers	Element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Caching Application Block'%0AEntLib50_66f57cad-ca40-41d4-97ca-4685c3b3ec3a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Caching	Application	Block	is	designed	to	support	the	most	common
situations	for	storing	data	in	a	cache.	When	adding	your	application	code,	refer
to	the	scenarios	in	the	Key	Scenarios	sections	and	select	the	ones	that	best	suit
your	situation.	Use	the	code	that	accompanies	the	scenario	either	as	it	is,	or
revise	it	as	required.

To	prepare	your	application
1.	 Add	a	reference	to	the	Caching	Application	Block	assembly.	In

Microsoft	Visual	Studio®,	right-click	your	project	node	in	Solution
Explorer,	and	then	click	Add	Reference.	Click	the	Browse	tab	and	find
the	location	of	the
Microsoft.Practices.EnterpriseLibrary.Caching.dll	assembly.	Select
the	assembly,	and	then	click	OK	to	add	the	reference.

2.	 Follow	the	same	procedure	to	set	a	reference	to	the	following
assemblies:

Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll

3.	 If	you	are	using	the	database	backing	store,	add	a	reference	to
Microsoft.Practices.EnterpriseLibrary.Caching.Database.dll	and
Microsoft.Practices.EnterpriseLibrary.Data.dll.

4.	 If	you	are	using	the	Cryptography	Application	Block	to	encrypt	data	in
the	cache,	add	references	to
Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.dll
and
Microsoft.Practices.EnterpriseLibrary.Caching.Cryptography.dll.

5.	 (Optional)	To	use	elements	from	the	Caching	Application	Block
without	fully	qualifying	the	element	reference,	add	the	following	using
statements	(C#)	or	Imports	statements	(Microsoft	Visual	Basic®)	to
the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Caching;

using	Microsoft.Practices.EnterpriseLibrary.Caching.Expirations;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Caching

Imports	Microsoft.Practices.EnterpriseLibrary.Caching.Expirations

Note:
For	Visual	Basic	projects,	you	can	also	use	the	References	page	of	the
Project	Designer	to	manage	references	and	imported	namespaces.	To	access
the	References	page,	select	a	project	node	in	Solution	Explorer,	and	then
click	[project	name]	Properties	on	the	Project	menu.	When	the	Project
Designer	appears,	click	the	References	tab.

Next,	add	the	application	code.	Generally,	there	are	two	steps	to	create	code	that
uses	the	Caching	Application	Block:

1.	 Resolve	a	CacheManager	instance.
2.	 Call	the	appropriate	methods.

Each	key	scenario	demonstrates	how	to	incorporate	these	steps	into	an
application.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_6da7b6ad-3295-468d-9202-df6daca525c2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Selecting	a	Backing	Store

Each	cache	manager	can	be	configured	to	store	data	only	in	memory,	which
means	that	it	uses	the	null	backing	store,	or	each	cache	manager	can	be
configured	to	store	data	both	in	memory	and	in	persistent	storage.	The	type	of
persistent	storage	is	specified	when	you	configure	the	backing	store.	Backing
stores	let	cached	data	survive	if	the	application	must	be	restarted.	In	its	original
state,	the	Caching	Application	Block	supports	two	types	of	persistent	backing
stores,	each	of	which	is	suited	to	particular	situations:

Isolated	storage	–	see	Using	the	Isolated	Storage	Backing	Store.
Database	cache	storage	–	see	Using	the	Data	Access	Application	Block
Backing	Store.

If	you	intend	to	perform	caching	in	a	multiple-server	environment,	such	as	a
Web	farm,	see	Considerations	for	Server	Scenarios.

To	protect	external	data	stores	from	unauthorized	access,	consider	this	list	of
Usage	Notes.

Developers	can	extend	the	Caching	Application	Block	to	support	additional
types	of	backing	stores.	For	more	information	about	this	topic,	see	Extending
and	Modifying	the	Caching	Application	Block.

Note:
An	application	can	use	more	than	one	cache;	each	cache	will	be	represented
by	a	cache	manager	in	the	application's	configuration.	The	Caching
Application	Block	does	not	support	the	use	of	the	same	persistent	backing
store	location	by	multiple	cache	managers	in	an	application.	However,
multiple	cache	managers	in	an	application	can	have	the	same	partition	name.

Usage	Notes

http://msdn.microsoft.com/en-us/library/aa374872(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms191465.aspx

Using	the	Null	Backing	Store

Using	the	Isolated	Storage	Backing	Store

http://msdn.microsoft.com/en-us/library/kbcw921f.aspx

Using	the	Data	Access	Application	Block	Backing	Store

Considerations	for	Server	Scenarios

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Selecting a Backing Store'%0AEntLib50_9b5f7ac7-b6de-4d4b-b22d-5b70747ef88f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	section	describes	the	most	common	situations	developers	must	address
when	storing	data	in	a	cache.	Each	scenario	explains	the	task,	gives	a	real-world
situation	for	the	task,	and	includes	code	demonstrating	how	to	use	the	Caching
Application	Block	to	complete	the	task.

Adding	Items	to	the	Cache.	This	topic	describes	the	basic	caching
operations	such	as	how	to	add	an	item	to	the	cache	using	the	Add
method,	setting	the	item's	expiration	policy	(for	the	expiration	process)
and	its	priority	(for	the	scavenging	process).
Removing	Items	from	the	Cache.	This	topic	describes	how	to	remove	an
item	from	the	cache	using	the	Remove	method.
Retrieving	Items	from	the	Cache.	This	topic	describes	how	to	obtain	an
item	from	the	cache	using	the	GetData	method.
Flushing	the	Cache.	This	topic	describes	how	to	flush	the	cache,	which
empties	it,	using	the	Flush	method.
Loading	the	Cache.	This	topic	demonstrates	proactive	and	reactive
loading.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_cd901b95-0339-43be-8376-60a809b982f2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Items	to	the	Cache

Caches	store	items	that	are	either	expensive	to	create	or	expensive	to	transport.
For	example,	in	a	retail	application,	a	list	of	products	must	be	passed	from	the
data	access	components	to	the	user	interface	components	so	that	the	product	list
can	be	displayed	to	the	users.	The	data	represents	real-world	business	entities,
such	as	products	or	orders.	To	increase	performance,	some	of	these	items	may
be	added	to	the	cache.

Typical	Goals

Solution

Using	the	Add	Method

Refreshing	Removed	Items

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/ms973893.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Items to the Cache'%0AEntLib50_a2b5be4d-d4e7-4db7-a068-3dd8c4344bfb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Removing	Items	from	the	Cache

The	scavenging	and	expiration	processes	automatically	remove	items	from	the
cache	according	to	the	priorities	and	expiration	policies	of	the	items.	You	can
also	remove	specific	items	from	the	cache.	For	example,	in	a	retail	application,
some	data	may	no	longer	be	applicable,	depending	on	selections	the	customer
makes.

Typical	Goals

Solution

Using	the	Remove	Method
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Removing Items from the Cache'%0AEntLib50_ada48e02-08e2-48e3-8518-7e10955b1c2f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Retrieving	Items	from	the	Cache

Data	stored	in	the	cache	must	be	retrieved	so	that	it	can	be	displayed	or
processed.	For	example,	in	a	retail	application,	you	may	want	to	display	a	list	of
products	from	a	catalog.

Typical	Goals

Solution

Using	the	GetData	Method
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Retrieving Items from the Cache'%0AEntLib50_7f6ac31c-8a58-4403-9c77-79595bdc0cc9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Flushing	the	Cache

Flushing	lets	you	manage	cached	items	to	make	sure	that	storage,	memory,	and
other	resources	are	used	efficiently.	Flushing	removes	all	items	in	the	cache,
including	those	that	have	not	yet	expired.	For	example,	in	a	retail	application,
cached	data	may	no	longer	be	valid	because	of	selections	made	by	the	customer
or	because	the	customer	has	logged	off.

Typical	Goals

Solution

Using	the	Flush	Method
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Flushing the Cache'%0AEntLib50_34e6f0b6-41bd-4dee-996d-00466059737b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Loading	the	Cache

Before	you	can	use	cached	data,	you	must	first	load	data	into	the	cache.	For
example,	in	a	retail	application,	you	may	want	to	load	data	about	various
products,	or	all	products,	into	the	cache.

Typical	Goals

Solution

Caching	Data	Proactively

Caching	Data	Reactively

http://msdn.microsoft.com/en-us/library/dd673617.aspx

Loading	Examples
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Loading the Cache'%0AEntLib50_295f8fbd-d4e2-4bfd-9784-7b1f95363e2a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Caching	Application	Block

The	Caching	Application	Block	is	designed	specifically	so	that:
It	provides	a	set	of	APIs	that	are	manageable	in	size.
It	enables	developers	to	incorporate	the	standard	caching	operations	into
their	applications	without	having	to	learn	the	internal	workings	of	the
block.
It	uses	the	Enterprise	Library	configuration	tools	for	easy	configuration.
It	performs	efficiently.
It	is	thread	safe.	Code	is	considered	to	be	thread	safe	when	it	can	be
called	from	multiple	programming	threads	without	unwanted	interaction
among	those	threads.
It	ensures	that	the	backing	store	remains	intact	if	an	exception	occurs
while	it	is	being	accessed.
It	ensures	that	the	states	of	the	in-memory	cache	and	the	backing	store
remain	synchronized.

This	topic	describes	the	design	of	the	caching	system,	describing	the	highlights
and	specific	design	details.	Other	topics	in	this	section	include	Design	of	the
Expiration	Process	and	Design	of	the	Scavenging	Process.

Design	Highlights

Design	Details
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Caching Application Block'%0AEntLib50_5e0848c4-aa5d-4921-9a92-75cb8377fbab%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Expiration	Process

The	Caching	Application	Block's	expiration	process	is	performed	by	the
BackgroundScheduler.	It	periodically	examines	the	cached	items	in	the	hash
table	to	see	if	any	items	have	expired.	You	control	how	frequently	the	expiration
cycle	occurs	when	you	configure	an	instance	of	the	ICacheManager	interface
default	implementation	CacheManager	by	using	the	configuration	tools.

The	expiration	policies	provided	with	the	Caching	Application	Block	are	these:
Absolute.	This	means	the	item	expires	at	a	specific	time.
Sliding.	This	means	the	item	expires	after	the	specified	time	has	elapsed
from	when	the	item	was	last	accessed.	The	default	time	is	2	minutes.
Extended	format.	This	allows	you	to	specify	very	detailed	expiration
conditions.	For	example,	you	can	specify	that	an	item	expires	every
Saturday	night	at	10:03	PM	or	on	the	third	Tuesday	of	each	month.
Extended	formats	are	listed	in	the	ExtendedFormat.cs	file.
File	dependency.	This	means	the	item	expires	when	a	specific	file	is
modified.
Never	expired.	This	means	the	item	will	never	expire,	although	it	may
still	be	removed	if	the	block	detects	a	lack	of	available	memory.

The	first	three	policies,	absolute,	sliding,	and	extended	format,	are	referred	to	as
time-based	expirations.	You	should	use	time-based	expiration	for	volatile	cache
items,	such	as	those	that	have	regular	data	refreshes	or	those	that	are	valid	for
only	a	specified	time.	Time-based	expiration	lets	you	set	policies	that	keep	items
in	the	cache	only	as	long	as	their	data	remains	current.	For	example,	if	you	are
writing	an	application	that	tracks	currency	exchange	rates	by	obtaining	the	data
from	a	frequently	updated	Web	site,	you	can	cache	the	currency	rates	for	the
time	that	those	rates	remain	constant	on	the	source	Web	site.	In	this	situation,
you	would	set	an	expiration	policy	that	is	based	on	the	frequency	of	the	Web
site	updates.

The	fourth	policy,	file	dependency,	is	referred	to	as	a	notification-based
expiration.	It	defines	the	validity	of	a	cached	item	based	on	a	particular	file.	If
the	file	is	modified,	the	cached	item	is	invalidated	and	removed	from	the	cache.

The	Add	method	has	two	overloads.	One	overload	assumes	the	default

expiration	policy,	which	is	NeverExpired.	The	other	overload	lets	you	set	the
expiration	policies	yourself.	You	can	use	as	many	policies	as	you	want,
including	policies	that	you	create	yourself.	(For	more	information	about
extending	the	Caching	Application	Block	by	adding	your	own	expiration
policies,	see	Extending	and	Modifying	the	Caching	Application	Block.)	If	you
have	an	item	with	multiple	policies,	the	item	will	expire	if	any	one	of	the
policy's	criteria	is	met.

Marking	and	Sweeping

Callbacks
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Expiration Process'%0AEntLib50_9861aeec-729f-4e54-9a73-86574a0bc80f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Scavenging	Process

The	Caching	Application	Block's	scavenging	process	is	performed	by	the
BackgroundScheduler	object.	It	checks	the	cache	every	time	an	item	is	added
to	see	if	the	number	of	items	in	the	cache	has	reached	a	predetermined	limit.
You	use	the	configuration	tools	to	set	this	limit	when	you	configure	an	instance
of	a	cache	manager.	You	also	set	how	many	items	are	removed	from	the	cache
after	scavenging	begins.

When	an	item	is	added	to	the	cache,	the	code	can	set	one	of	four	priority
settings:	Low,	Normal,	High,	or	NotRemovable.	The	BackgroundScheduler
object	determines	which	items	should	be	scavenged	by	doing	a	major	sort	based
on	priority	and	a	minor	sort	based	on	the	last	time	the	item	was	accessed.	For
example,	an	item	with	a	Low	priority	that	has	just	been	used	will	be	scavenged
before	something	with	a	High	priority	that	has	not	been	accessed	for	three
years.	The	default	value	is	Normal.

The	NotRemovable	priority	is	used	when	you	want	an	item	to	remain	in	the
cache	until	it	expires.	However,	the	cache	should	not	be	used	as	the	only
location	where	an	item	of	data	exists.	A	cache	should	be	used	to	improve
performance;	it	should	not	be	used	as	a	form	of	permanent	storage.

Unlike	the	expiration	process,	the	scavenging	process	performs	marking	and
sweeping	in	a	single	pass.	For	more	information	about	marking	and	sweeping,
see	Design	of	the	Expiration	Process.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Scavenging Process'%0AEntLib50_55e9cb69-0c47-4e6d-98a1-9702656594cf%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Caching	Application	Block

In	its	original	state,	the	Caching	Application	Block	works	well	for	typical
caching	situations.	However,	there	may	be	times	when	you	have	to	customize
some	of	the	block's	behavior	to	better	suit	your	application's	particular
requirements.	There	are	two	ways	to	do	this.	You	can	extend	the	Caching
Application	Block	using	the	built-in	extension	points.	You	can	also	modify	the
block	by	making	changes	to	its	source	code.	For	more	details,	see	the	following
topics:

Extending	the	Caching	Application	Block
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Caching Application Block'%0AEntLib50_ec8dd8fc-453b-4313-8056-242813d4fc3e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Caching	Application	Block

You	extend	the	block	through	designated	extension	points.	Typically,	these	are
custom	classes,	written	by	you,	that	implement	a	particular	interface	or	derive
from	an	abstract	class.	Because	these	custom	classes	exist	in	your	application
space,	you	do	not	have	to	modify	or	rebuild	the	block.	Instead,	you	designate
your	extensions	using	configuration	settings.

You	can	extend	the	block	by	adding	a	new	type	of	backing	store	and	storage
encryption	provider,	by	adding	new	expiration	policies,	or	by	replacing	the
default	Cache	Manager.	The	following	table	lists	the	interfaces	and	base	classes
that	you	can	use	to	extend	the	block.

Custom	Provider	or	Extension Interface	or	Base	Class

Backing	Store IBackingStore	or	BaseBackingStore

Cache	Manager ICacheManager

Expiration	Policy ICacheItemExpiration

Storage	Encryption	Provider IStorageEncryptionProvider

For	detailed	information	about	how	to	integrate	custom	providers	with	the
Enterprise	Library	configuration	system	and	configuration	tools	see	Creating
Custom	Providers	for	Enterprise	Library.

Adding	a	New	Backing	Store

Adding	a	New	Expiration	Policy

Replacing	the	Default	Cache	Manager
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Caching Application Block'%0AEntLib50_78f99a1c-9b1d-4c68-a393-a905c8df0b9d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	make	sure	that	the	initial
deployment	of	the	Caching	Application	Block	is	planned	and	managed	and	to
make	sure	that	subsequent	updates	are	deployed	with	minimal	impact	to	existing
applications	that	use	the	block.	For	details	of	deploying	and	updating	Enterprise
Library	and	the	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	whether	they	want	to	use	the
instrumentation	exposed	by	the	block.	For	details	of	how	to	enable	and	disable
instrumentation,	see	Enabling	Instrumentation.	For	information	about	the
instrumentation	contained	within	the	Caching	Application	Block,	see	the
following	topics:

Caching	Application	Block	Performance	Counters
Caching	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_2480c226-9e87-44a1-84e6-97968d1c428a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Caching	Application	Block	Performance	Counters

The	following	table	describes	the	Caching	Application	Block	performance
counters.

Performance
Counter

Description

Cache
Expiries/sec

The	rate	at	which	items	were	expired	from	the	cache.

Cache	Hit	Ratio The	ratio	of	cache	hits	to	reads.	A	cache	hit	occurs	when
the	cache	contains	the	requested	item.

Cache	Hits/sec The	rate	at	which	the	cache	received	requests	for	items	it
contained.

Cache	Misses/sec The	rate	at	which	the	cache	received	requests	for	items	it
did	not	contain.

Cache	Scavenged
Items/sec

The	rate	at	which	items	were	scavenged	from	the	cache.

Total	#	of	Cache
Access	Attempts

The	total	number	of	reads	from	the	cache.

Total	Cache
Entries

The	total	number	of	items	in	the	cache.

Total	Cache
Expiries

The	total	number	of	items	expired	from	the	cache.

Total	Cache	Hits The	total	number	of	requests	for	existing	items	received
by	the	cache.

Total	Cache
Misses

The	total	number	of	requests	for	non-existing	items
received	by	the	cache.

Total	Cache
Scavenged	Items

The	total	number	of	items	scavenged	from	the	cache.

Total	Updated The	total	number	of	items	updated	in	the	cache.	An

Entries update	can	be	either	an	"add"	or	a	"remove"	action.

Updated
Entries/sec

The	rate	at	which	items	in	the	cache	were	updated.	An
update	can	be	either	an	"add"	or	a	"remove"	action.

A	rate	counter	samples	an	increasing	count	of	events	over	time	and	divides	the
values	by	the	change	in	time	to	display	a	rate	of	activity.	For	more	information
about	performance	counters,	see	Overview	of	Performance	Monitoring	in	the
.NET	Framework	Class	Library	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Caching Application Block Performance Counters'%0AEntLib50_6f99b7f6-e746-4218-a53d-7d84f37f99d6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Caching	Application	Block	Event	Log	Entries

This	topic	lists	the	Caching	Application	Block	event	log	entries.	The	listener	is
the	class	that	raised	the	event.

Cache	Failed	Event

	Cache	Callback	Failed	Event

Configuration	Error	Event

Configuration	Changed	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Caching Application Block Event Log Entries'%0AEntLib50_82ea7e9a-51ef-4767-9731-23689cd66375%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Cryptography	Application	Block

Developers	frequently	write	applications	that	require	encryption	and	hashing
capabilities	to	meet	the	security	requirements	of	their	organization.	Data	that	is
created	and	maintained	by	applications,	as	well	as	configuration	information,
often	needs	to	be	encrypted.	Additionally,	passwords	that	are	used	to	access
application	functionality	or	data	need	to	be	hashed.

The	Enterprise	Library	Cryptography	Application	Block	simplifies	the	way
developers	incorporate	cryptographic	functionality	in	their	applications.
Applications	can	use	the	block	for	a	variety	of	tasks,	such	as	encrypting
information,	creating	a	hash	from	data,	and	comparing	hash	values	to	verify	that
data	has	not	been	altered.	In	addition,	you	can	change	the	underlying	providers
through	configuration	without	changing	the	underlying	application	code.

The	Cryptography	Application	Block	includes	support	for	the	following
features:

Encryption	algorithms
Hashing	algorithms
Multiple	cryptography	providers
Additional	implementations	of	cryptography	providers
Key	protection	with	the	data	protection	API	(DPAPI)

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Cryptography	Application	Block:

What	Does	the	Cryptography	Application	Block	Do?	This	topic	provides
a	brief	overview	that	will	help	you	to	understand	what	the	block	can	do,
and	explains	some	of	the	concepts	and	features	it	incorporates.	It	also
provides	a	simple	example	of	writing	code	to	use	the	block.
When	Should	I	Use	the	Cryptography	Application	Block?	This	topic	will
help	you	to	decide	if	the	block	is	suitable	for	your	requirements.	It
explains	the	benefits	of	using	the	block,	and	any	alternative	techniques
you	may	consider.	It	also	provides	details	of	any	limitations	of	the	block
that	may	affect	your	decision	to	use	it.
Developing	Applications	Using	the	Cryptography	Application	Block.
This	topic	describes	how	to	install	the	Cryptography	Application	Block
so	that	you	can	use	it	in	your	applications.	It	also	describes	how	to

configure	the	block	for	common	operations.
Key	Scenarios.	This	topic	then	shows	how	to	use	the	block	to	perform
most	cryptography	tasks.
Design	of	the	Cryptography	Application	Block.	This	topic	explains	the
decisions	that	went	into	the	design	of	the	block	and	the	rationale	behind
those	decisions.
Extending	and	Modifying	the	Cryptography	Application	Block.	This
topic	explains	how	to	extend	the	Cryptography	Application	Block	by
creating	your	own	providers	and	how	to	modify	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	block's	assemblies.	It	also	contains	information	about
configuration.

More	Information
For	more	information,	see	the	following	resources:

Improving	Web	Application	Security:	Threats	and	Countermeasures
How	To:	Use	Authorization	Manager	(AzMan)	with	ASP.NET	2.0
patterns	&	practices	Security	How	To	Index

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=86769
http://go.microsoft.com/fwlink/?LinkId=86768
http://go.microsoft.com/fwlink/?LinkId=86770
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Cryptography Application Block'%0AEntLib50_3df31134-670c-4d8b-a42f-18535233a883%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Cryptography	Application	Block	Do?

The	Cryptography	Application	Block	consists	of	a	facade	that	allows	you	to
access	the	two	types	of	providers	contained	within	the	block.	These	two	types	of
providers	are:

Hashing	providers.	These	providers	can	be	used	to	generate	a	hash	from
a	value	you	supply,	and	compare	two	hash	values.	The	block	includes
hash	providers	that	use	a	range	of	common	hashing	algorithms.
Cryptography	providers.	These	providers	can	be	used	to	encrypt	and
decrypt	values	that	you	supply.	The	block	includes	cryptography
providers	that	use	a	range	of	common	encryption	algorithms.

When	you	use	the	cryptography	providers	to	encrypt	a	value,	you	can	specify
the	value	as	an	array	of	bytes,	and	the	method	will	return	the	result	as	an	array
of	bytes.	Alternatively,	you	can	specify	the	input	value	as	a	string,	and	the
methods	will	return	the	result	as	a	base-64	encoded	string.	The	methods	that
decrypt	values	work	the	same	way,	except	that	string	values	returned	by	the
methods	are	not	base-64	encoded.

When	you	use	the	hashing	providers	to	create	a	hash,	you	can	specify	the	value
to	hash	as	an	array	of	bytes,	and	the	method	will	return	the	result	as	an	array	of
bytes.	Alternatively,	you	can	specify	the	input	value	as	a	string,	and	the	methods
will	return	the	result	as	a	string.	The	methods	that	compare	hash	values	accept
either	an	array	of	bytes	or	a	string,	and	return	either	true	or	false.

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Cryptography Application Block Do?'%0AEntLib50_7b92a72e-a4c1-46bf-908c-45720ecf88bb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Cryptography	Application	Block?

You	should	use	the	Cryptography	Application	Block	when	you	need	hashing
and/or	symmetric	encryption	functionality.	You	can	use	these	functions	in
conjunction	with	the	cryptographic	providers	included	with	the	block	or	with
your	own	custom	cryptographic	providers.	If	the	data	only	needs	to	be
encrypted,	and	it	does	not	need	to	be	decrypted	(for	example,	a	password),	you
can	use	hashing.	If	the	data	needs	to	be	both	encrypted	and	decrypted	(for
example,	to	transmit	sensitive	customer	data),	you	can	use	symmetric
encryption.

Scenarios	for	the	Cryptography	Application	Block

Benefits	of	the	Cryptography	Application	Block

Limitations	of	the	Cryptography	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Cryptography Application Block?'%0AEntLib50_c3784e04-cbf1-4e78-9ee4-89442263ae55%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Cryptography	Application	Block

This	topic	describes	how	to	develop	applications	using	the	Cryptography
Application	Block.	It	explains	how	to	modify	the	configuration	of	the	block	to
perform	particular	tasks	and	how	to	use	the	block	for	particular	scenarios,	such
as	encrypting	data.	This	topic	assumes	that	you	are	using	the	block	in	its
original	state,	without	extending	it.	(To	learn	how	to	add	functionality,	see
Extending	and	Modifying	the	Cryptography	Application	Block.)	This	section
includes	the	following	topics:

Entering	Configuration	Information
Adding	Application	Code

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile	it.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Cryptography Application Block'%0AEntLib50_8decc496-e19a-473d-8aae-d9aae9e7acb3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

These	procedures	explain	how	to	configure	the	Cryptography	Application
Block.	Also	see	Using	the	Cryptographic	Key	Wizard.	For	details	of	the
configuration	schema,	see	Source	Schema	for	the	Cryptography	Application
Block.	You	can	also	configure	the	block	in	code	by	using	an	alternate
configuration	source.	For	more	information,	see	Advanced	Configuration
Scenarios	and	Using	the	Fluent	Configuration	API.

To	add	the	Cryptography	Application	Block
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Cryptography	Settings.
3.	 The	configuration	tool	automatically	adds	the	Cryptography	Settings

section,	and	the	Hash	Providers	and	Symmetric	Cryptography
Providers	sub	sections,	with	default	settings.

4.	 To	edit	the	properties	of	the	Cryptography	Settings	section,	click	the
property	expander	chevron.

To	configure	a	hash	algorithm	provider
1.	 Click	the	Hash	Providers	plus	sign	icon,	point	to	Add	Hash

Providers,	and	then	click	Add	Hash	Algorithm	Provider.
2.	 In	the	type	selector	dialog,	select	the	hash	algorithm	provider	type	you

want	to	use.	If	the	hash	provider	is	not	included,	click	Add	from	File
or	Add	from	GAC	to	locate	the	assembly	that	contains	the	required
type.

3.	 (Optional)	In	the	Name	property	textbox,	change	the	name	of	the	hash
algorithm	provider.	The	default	name	is	the	type	name	you	selected	in
step	2.

4.	 Set	the	Salt	Enabled	property	by	clicking	True	or	False	in	the	drop-
down	list.	The	default	is	True.

Note:
The	Cryptographic	Key	Wizard	appears	for	keyed	hash	algorithm	providers.
For	information	about	generating	and	importing	keys,	see	the	section	Using

the	Cryptographic	Key	Wizard	later	in	this	topic.

To	configure	a	custom	hash	provider
1.	 Click	the	Hash	Providers	plus	sign	icon,	point	to	Add	Hash

Providers,	and	then	click	Add	Custom	Hash	Provider.

2.	 In	the	type	selector	dialog	either	type	the	full	path	name	for	a	custom
hash	provider	or	navigate	to	it	in	the	list.	You	can	filter	the	classes
displayed	by	typing	in	the	text	box.	To	add	a	custom	provider	from
another	assembly,	click	Add	from	File	and	navigate	to	the	assembly
file.	To	add	a	provider	stored	in	the	global	assembly	cache	(GAC),	click
Add	from	GAC.

3.	 (Optional)	Add	custom	AttributesKey/Value	pairs	in	the	edit	box.

4.	 (Optional)	Set	the	Name	property	by	typing	the	name	in	the	edit	box.
The	default	name	is	the	name	of	the	type	selected	by	using	the	Type
Selector	tool.

To	configure	a	DPAPI	symmetric	cryptography	provider
1.	 Click	the	Symmetric	Cryptography	Providers	plus	sign	icon,	point	to

Add	Symmetric	Cryptography	Providers,	and	then	click	Add
DPAPI	Symmetric	Crypto	Provider.

2.	 (Optional)	Change	the	Name	property	of	the	DPAPI	symmetric
cryptography	provider.	The	default	name	is	DPAPI	Symmetric	Crypto
Provider.

3.	 Set	the	Protection	Scope	property.	In	the	drop-down	list,	click
CurrentUser	or	LocalMachine.
The	CurrentUser	value	means	that	DPAPI	uses	a	loaded	user	profile
to	generate	the	key.	Only	that	particular	user	account	can	decrypt	the
encrypted	data.	The	LocalMachine	value	means	that	that	any	code
running	on	the	machine	has	access	to	the	protected	key;	therefore,	it
can	decrypt	any	secret	encrypted	in	LocalMachine	mode.	To
counteract	this,	your	application	code	can	pass	an	entropy	value	when
it	calls	the	Encrypt	or	Decrypt	methods.	Entropy	makes	it	more
difficult	for	one	application,	running	on	the	same	computer,	to
compromise	another	application's	encryption	key.	However,	you	must
protect	the	entropy	value.	If	it	is	simply	saved	to	an	unprotected	file,
attackers	can	access	the	file,	retrieve	the	entropy	value,	and	use	it	to
decrypt	an	application's	data.	The	Cryptography	Application	Block
configuration	does	not	include	the	entropy	value.	This	means	that	you
cannot	use	the	configuration	tools	to	create	or	save	an	entropy	value.

To	configure	a	symmetric	algorithm	provider
1.	 Click	the	Symmetric	Cryptography	Providers	plus	sign	icon,	point	to

Add	Symmetric	Cryptography	Providers,	and	then	click	Add
Symmetric	Algorithm	Provider.

2.	 In	the	type	selector	dialog,	select	the	symmetric	algorithm	provider	type
you	want	to	use.	You	can	filter	the	classes	displayed	by	typing	in	the
text	box.	To	add	a	custom	provider	from	another	assembly,	click	Add
from	File	and	navigate	to	the	assembly	file.	To	add	a	provider	stored	in
the	global	assembly	cache,	click	Add	from	GAC.

3.	 After	selecting	the	algorithm	provider,	the	Cryptographic	Key	Wizard
will	run	to	either	import	or	generate	a	key.	For	more	information	on
using	the	Wizard,	see	Using	the	Cryptographic	Key	Wizard.

4.	 On	the	final	page	of	the	Wizard	click	on	Finish	to	add	the	new
provider.

To	configure	a	custom	symmetric	cryptography	provider
1.	 Click	the	Symmetric	Cryptography	Providers	plus	sign	icon,	point	to

Add	Symmetric	Cryptography	Providers,	and	then	click	Add
Custom	Symmetric	Crypto	Provider.

2.	 In	the	type	selector	dialog	either	type	the	full	path	name	for	the	custom
symmetric	cryptography	provider	or	navigate	to	it.	You	can	filter	the
classes	displayed	by	typing	in	the	text	box.	To	add	a	custom	provider
from	another	assembly,	click	Add	from	File	and	navigate	to	the
assembly	file.	To	add	a	provider	stored	in	the	global	assembly	cache,
click	Add	from	GAC.

3.	 (Optional)	Add	custom	AttributesKey/Value	pairs	in	the	edit	box.
4.	 (Optional)	In	the	Name	property	textbox,	change	the	name	of	the

custom	symmetric	cryptography	provider.	The	default	name	is	the	name
of	the	type	selected	by	using	the	Type	Selector	tool.

To	configure	the	default	providers	for	the	block
1.	 Open	the	Cryptography	Settings	properties	by	either	right	clicking	on

the	Cryptography	Settings	section	or	by	clicking	on	the	property
expander	chevron.

2.	 (Optional)	In	the	properties	pane,	set	the	Default	Hash	Provider
property.	This	sets	the	instance	of	the	hash	provider	that	the
Cryptography	Application	Block	uses	if	the	application	code	does	not
specify	another	provider.	In	the	drop-down	list,	click	the	hash	provider.
The	default	is	none.

3.	 (Optional)	In	the	properties	pane,	set	the	Default	Symmetric	Crypto
Provider	property.	This	sets	the	instance	of	the	symmetric
cryptography	provider	that	the	Cryptography	Application	Block	uses	if
the	application	code	does	not	specify	another	provider.	In	the	drop-
down	list,	click	the	symmetric	provider.	The	default	is	none.

Using	the	Cryptographic	Key	Wizard

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_c1e33058-145c-47fb-a7cd-158e0b1468c5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Cryptography	Application	Block

This	topic	lists	the	XML	elements	and	attributes	used	to	configure	the
Cryptography	Application	Block.	You	can	manually	edit	the	XML	data,	but	the
Enterprise	Library	configuration	tools	greatly	simplify	this	task.	If	you	choose
to	manually	edit	the	XML,	use	the	schema	information	contained	in	this	topic.

The	configuration	file	has	the	following	section-handler	declaration.
XML

<section	name="securityCryptographyConfiguration"

									type="Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration.CryptographySettings,

															Microsoft.Practices.EnterpriseLibrary.Security.Cryptography"	/>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section-handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
securityCryptographyConfiguration.	The	name	of	the	section-handler	class	is
CryptographySettings.	It	is	in	the
Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration
namespace.

securityCryptographyConfiguration	Element

hashProviders	Child	Element

symmetricCryptoProviders	Child	Element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Cryptography Application Block'%0AEntLib50_e96ffd42-238b-46cd-8b30-719f0d0d6780%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Maximizing	Security

Two	important	points	you	should	consider	when	you	use	the	Cryptography
Application	Block	are	how	you	are	going	to	manage	symmetric	encryption	keys
and	which	hashing	algorithm	or	symmetric	encryption	algorithm	you	are	going
to	use.

Managing	and	Distributing	Keys

Selecting	an	Encryption	Algorithm
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Maximizing Security'%0AEntLib50_41441159-bf5b-468f-b6cc-7b51aaa41bca%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Cryptography	Application	Block	is	designed	to	support	common	scenarios
for	symmetric	encryption	and	hashing.	When	you	add	your	application	code,
refer	to	the	scenarios	in	Key	Scenarios	and	select	the	ones	that	best	suit	your
situation.	Use	the	code	that	accompanies	the	scenario	either	as	it	is	shown	here
or	adapt	it	as	needed.

To	prepare	your	application
1.	 Add	a	reference	to	the	Cryptography	Application	Block	assembly.	In

Visual	Studio®,	right-click	your	project	node	in	Solution	Explorer,	and
then	click	Add	Reference.	Click	Browse	to	locate	the
Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.dll
assembly.	Select	the	assembly,	and	then	click	OK.

2.	 Following	the	same	procedure,	set	a	reference	to	the	following
assemblies:

Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.Interception.dll

3.	 (Optional)	To	use	elements	from	the	Cryptography	Application	Block
without	fully	qualifying	the	element	reference,	you	can	add	the
following	using	statement	(C#)	or	Imports	statement	(Visual	Basic)	to
the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

4.	 Next,	add	the	application	code.

Note:
For	Microsoft®	Visual	Basic®	projects,	you	can	also	use	the	References
page	of	the	Project	Designer	to	manage	references	and	imported	namespaces.
To	access	the	References	page,	select	a	project	node	in	Solution	Explorer,
and	then	click	Properties	on	the	Project	menu.	When	the	Project	Designer
appears,	click	the	References	tab.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_1c8f6c8b-6e49-43bf-85c3-47cf55970b11%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	topic	describes	the	most	common	situations	that	developers	must	address
when	providing	cryptography	functionality	in	their	applications.	Each	scenario
explains	the	task,	describes	a	real-world	situation	where	such	a	task	might
occur,	and	includes	code	that	demonstrates	how	to	use	the	Cryptography
Application	Block	to	complete	the	task.	The	scenarios	are	the	following:

Encrypting	Data	Using	a	Symmetric	Provider.	This	scenario	illustrates
how	you	can	use	a	symmetric	algorithm	provider	to	encrypt	a	secret.
Decrypting	Data	Using	a	Symmetric	Provider.	This	scenario	illustrates
how	you	can	use	a	symmetric	algorithm	provider	to	decrypt	a	secret	that
has	been	encrypted.
Obtaining	a	Hash	Value.	This	scenario	illustrates	how	you	can	generate	a
hash	value	from	data.
Checking	Whether	a	Hash	Value	Matches	Some	Text.	This	scenario
illustrates	how	you	can	compare	plaintext	data	with	a	hash	value
previously	generated	from	the	data.	By	doing	this,	you	can	verify	that	the
data	has	not	been	changed	since	the	hash	was	originally	generated.

Note:
The	non-static	facade	named	CryptographyManager	replaces	the	static
Cryptographer	facade	used	in	previous	versions	of	Enterprise	Library.
However,	code	that	uses	the	Cryptographer	facade	will	continue	to	work	in
this	release.	For	information	about	resolving	Enterprise	Library	objects	in
your	applications,	see	Creating	and	Referencing	Enterprise	Library	Objects.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_1e96b2bf-8c26-4617-9ec5-766c443b28ec%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Encrypting	Data	Using	a	Symmetric	Provider

A	common	cryptography	task	is	to	encrypt	data	using	a	symmetric	provider.	You
may	want	to	do	this	when	an	application	has	data	you	want	to	keep	secure.

Typical	Goals

Solution

Using	EncryptSymmetric

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Encrypting Data Using a Symmetric Provider'%0AEntLib50_7984eeb3-96ed-48aa-bb7e-dfa003c5a10d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Decrypting	Data	Using	a	Symmetric	Provider

If	you	encrypt	data	by	using	a	symmetric	encryption	provider,	you	usually	have
to	decrypt	the	data	using	the	same	provider.

Typical	Goals

Solution

Using	DecryptSymmetric

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Decrypting Data Using a Symmetric Provider'%0AEntLib50_b42b8250-1500-42ff-b922-49e6437c3e68%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Obtaining	a	Hash	Value

An	example	of	when	you	might	want	to	obtain	a	hash	value	is	when	you	have	a
password	that	you	do	not	want	to	pass	over	the	network.

Typical	Goals

Solution

Using	CreateHash

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Obtaining a Hash Value'%0AEntLib50_510b7fe1-40eb-4c75-9c46-e57f67381c5d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Checking	Whether	a	Hash	Value	Matches	Some	Text

An	example	of	when	you	would	check	whether	a	hash	matches	some	text	is
when	you	have	to	verify	that	data	has	not	been	changed	in	transit	over	a
network.	In	this	case,	the	hash	value	for	the	data	would	be	stored	at	the	server,
and	when	the	data	arrives	at	the	server,	it	is	compared	against	the	hash	value.

Typical	Goals

Solution

Using	CompareHash

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Checking Whether a Hash Value Matches Some Text'%0AEntLib50_1c18e9a2-6f51-464e-9a94-e7f6878d1d79%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Cryptography	Application	Block

This	topic	describes	the	design	goals,	design	highlights,	and	the	implementation
of	the	Cryptography	Application	Block.

Design	Goals

Design	Highlights

Key	Management	Model
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Cryptography Application Block'%0AEntLib50_31af9345-6f8f-475b-ba2d-e9e88f0ae592%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Simplified	Cryptography	Functionality

Cryptography	in	applications	can	be	implemented	in	many	ways.	Typically,
developers	must	duplicate	code	to	perform	common	tasks.	To	meet	the	needs	of
their	organization,	they	may	have	to	familiarize	themselves	with	many	different
ways	of	implementing	cryptography.	The	Cryptography	Application	Block	is
designed	to	simplify	and	abstract	the	implementation	of	cryptography	in
applications.

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Simplified Cryptography Functionality'%0AEntLib50_fd12ca97-5d05-4dcd-9947-a49c3f04f307%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Algorithm	Abstraction

With	the	Cryptography	Application	Block,	developers	can	refer	to	the	algorithm
to	be	used	by	the	various	methods	by	using	logical	names,	such	as	"hash
provider"	or	"password	encryption."

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Algorithm Abstraction'%0AEntLib50_de12e414-36a0-4cdd-9890-bb6bdeceeb3f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Cryptography	Application	Block

In	its	original	state,	the	Cryptography	Application	Block	works	well	for	typical
cryptography	scenarios.	However,	there	may	be	times	when	you	have	to
customize	some	of	the	block's	behavior	to	better	suit	your	application's
particular	requirements.	There	are	two	ways	to	customize	the	block,	extension
and	modification.

Extending	the	Cryptography	Application	Block

Modifying	the	Cryptography	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Cryptography Application Block'%0AEntLib50_7aec85e0-08ed-41af-8eef-cc7f61be44f8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Cryptography	Application	Block

The	Cryptography	Application	Block	is	designed	to	be	used	in	a	variety	of
applications	and	to	be	a	general-purpose	block.	Extension	points	let	you	adapt
the	block	to	suit	the	needs	of	any	particular	application.	You	can	extend	the
capabilities	of	the	block	by	adding	custom	cryptography	providers.	Typically,
these	custom	providers	are	third-party	cryptography	providers.	The	following
table	lists	the	interfaces	that	you	can	use	to	extend	the	block.

Custom	Provider	or	Extension Interface

Hash	Algorithm	Provider IHashProvider

Symmetric	Encryption	Algorithm	Provider ISymmetricCryptoProvider

To	extend	the	Cryptography	Application	Block
1.	 Create	a	new	custom	class	and	add	it	to	your	project.
2.	 Make	sure	the	class	implements	the	required	interfaces,	constructors,

and	methods.
3.	 Configure	the	generic	provider	in	the	Enterprise	Library	configuration

tools:
Specify	your	custom	class	as	the	type	name.
Specify	any	custom	configuration	properties	by	modifying	the
attributes	of	the	object.

To	create	a	custom	hash	algorithm	provider
1.	 Create	a	new	class,	and	then	add	it	to	your	project.
2.	 (Optional)	To	use	elements	without	fully	qualifying	the	element

reference,	you	can	add	the	following	using	statement	(C#)	or	Imports
statement	(Visual	Basic)	to	the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography;

using	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration;

Copy	Code

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

Imports	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration

Note:
For	Visual	Basic	projects,	you	can	also	use	the	References	page	of
the	Project	Designer	to	manage	references	and	imported
namespaces.	To	access	the	References	page,	select	a	project	node	in
Solution	Explorer,	and	then	click	[project	name]	Properties	on	the
Project	menu.	When	the	Project	Designer	appears,	click	the
References	tab.

3.	 Specify	that	the	class	implements	IHashProvider.
4.	 Add	the	class	attribute	ConfigurationElementType.	Specify	the	type

CustomHashProviderData	as	the	attribute	parameter.
C#

[ConfigurationElementType(typeof(CustomHashProviderData))]

public	class	MyHashProvider	:	IHashProvider

Visual	Basic

<ConfigurationElementType(GetType(CustomHashProviderData))>	_

Public	Class	MyHashProvider

		Implements	IHashProvider

5.	 Add	a	constructor	that	has	a	parameter	of	type	NameValueCollection.
C#

public	MyHashProvider(NameValueCollection	attributes)

{

}

Visual	Basic

Public	Sub	New(ByVal	attributes	As	NameValueCollection)

End	Sub

6.	 Add	the	CreateHash	and	CompareHash	methods	to	your	class,	and
then	implement	the	required	behavior.
C#

public	byte[]	CreateHash(byte[]	plaintext)

{

}

public	bool	CompareHash(byte[]	plaintext,	byte[]	hashedtext)

{

}

Visual	Basic

Public	Function	CreateHash(ByVal	plaintext	As	Byte())	As	Byte()	

End	Function	

Public	Function	CompareHash(ByVal	plaintext	As	Byte(),	ByVal	hashedtext	As	Byte())	As	Boolean	

End	Function

To	create	a	custom	symmetric	encryption	algorithm	provider
1.	 Create	a	new	class,	and	then	add	it	to	your	project.
2.	 (Optional)	To	use	elements	without	fully	qualifying	the	element

reference,	you	can	add	the	following	using	statement	(C#)	or	Imports
statement	(Visual	Basic)	to	the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography;

using	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography

Imports	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.Configuration

Note:
For	Visual	Basic	projects,	you	can	also	use	the	References	page	of
the	Project	Designer	to	manage	references	and	imported
namespaces.	To	access	the	References	page,	select	a	project	node	in
Solution	Explorer,	and	then	click	[project	name]	Properties	on	the
Project	menu.	When	the	Project	Designer	appears,	click	the
References	tab.

3.	 Specify	that	the	class	implements	ISymmetricCryptoProvider.
4.	 Add	the	class	attribute	ConfigurationElementType.	Specify	the	type

CustomSymmetricCryptoProviderData	as	the	attribute	parameter.
C#

[ConfigurationElementType(typeof(CustomSymmetricCryptoProviderData))]

public	class	MyCustomEncryptionProvider	:	ISymmetricCryptoProvider

Visual	Basic

<ConfigurationElementType(GetType(CustomSymmetricCryptoProviderData))>	_

Public	Class	MyCustomEncryptionProvider

		Implements	ISymmetricCryptoProvider

5.	 Add	a	constructor	that	has	a	parameter	of	type	NameValueCollection.
C#

public	MyCustomEncryptionProvider	(NameValueCollection	attributes)

{

}

Visual	Basic

Copy	Code

Public	Sub	New(ByVal	attributes	As	NameValueCollection)

End	Sub

6.	 Add	the	Encrypt	and	Decrypt	methods	to	your	class,	and	then
implement	the	required	behavior.
C#

public	byte[]	Encrypt(byte[]	plaintext)

{

}

public	byte[]	Decrypt(byte[]	ciphertext)

{

}	

Visual	Basic

Public	Function	Encrypt(ByVal	plaintext	As	Byte())	As	Byte()

End	Function	

Public	Function	Decrypt(ByVal	ciphertext	As	Byte())	As	Byte()	

End	Function

For	detailed	information	about	how	to	integrate	custom	providers	with	the
Enterprise	Library	configuration	system	and	configuration	tools	see	Creating
Custom	Providers	for	Enterprise	Library.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Cryptography Application Block'%0AEntLib50_2adb34c9-fd44-4eb1-961d-1d172a0adb1b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Modifying	the	Cryptography	Application	Block

The	Cryptography	Application	Block	was	designed	to	be	used	in	a	variety	of
applications	and	to	be	a	general-purpose	cryptography	application	block.
Extension	points	let	you	adapt	the	block	to	suit	the	requirements	of	any
particular	application.	However,	if	you	want	to	add	new	features	to	the	block,
you	can	do	so	by	modifying	the	source	code	(the	block	includes	both	the	source
code	and	the	binaries).

Note:
When	modifying	the	source	code,	you	should	follow	good	practices
described	in	the	topic	Extending	and	Modifying	Enterprise	Library.

Modifying	the	Key	Management	Code

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/tswxhw92.aspx
http://msdn2.microsoft.com/en-us/library/y0y718c2(en-US,VS.80).aspx
http://msdn2.microsoft.com/en-us/library/34wz2253(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Modifying the Cryptography Application Block'%0AEntLib50_f31b7417-8c71-45e2-a6e6-b0ae7e4fb2d9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	make	sure	that	the	initial
deployment	of	the	Cryptography	Application	Block	is	planned	and	managed
and	to	make	sure	that	subsequent	updates	are	deployed	with	minimal	impact	to
existing	applications	that	use	the	block.	For	details,	see	Deploying	the
Cryptography	Application	Block.

In	addition,	administrators	must	decide	if	they	want	to	use	the	instrumentation
exposed	by	the	block.	For	details	of	how	to	enable	and	disable	instrumentation,
see	Enabling	Instrumentation.	For	information	on	the	instrumentation	contained
within	the	Cryptography	Application	Block,	see	the	following	topics:

Cryptography	Application	Block	Performance	Counters
Cryptography	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_75506864-1e81-40bd-bde6-755964cb15a0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deploying	the	Cryptography	Application	Block

The	Cryptography	Application	Block	is	comprised	of	multiple	assemblies.	Each
assembly	that	belongs	to	the	Cryptography	Application	Block	has	a	file	name
that	begins	with	Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.
Additionally,	the	block	depends	on	the	common	assembly	and	on	the	Unity
subsystem.	For	details	of	deploying	and	updating	Enterprise	Library	and	the
blocks,	see	Deploying	Enterprise	Library.

Distributing	Keys
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deploying the Cryptography Application Block'%0AEntLib50_7bb0dec0-b753-4ace-aa54-6b4c908145c0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Cryptography	Application	Block	Performance	Counters

The	following	table	describes	the	Cryptography	Application	Block	performance
counters.

Performance	Counter Description

Hash	Comparisons/sec The	rate	at	which	hash	comparisons	were
performed.

Hash	Mismatches/sec The	rate	at	which	hash	comparison	mismatches
were	detected.

Hash	Operations/sec The	rate	at	which	plaintext	was	hashed.

Symmetric
Decryptions/sec

The	rate	at	which	symmetric	decryptions	were
performed.

Symmetric
Encryptions/sec

The	rate	at	which	symmetric	encryptions	were
performed.

Total	Hash
Comparisons

The	total	number	of	hash	comparisons	performed.

Total	Hash	Mismatches The	total	number	of	hash	comparison	mismatches
detected.

Total	Hash	Operations The	total	number	of	plain	text	hashing	operations
performed.

Total	Symmetric
Decryptions

The	total	number	of	symmetric	decryptions
performed.

Total	Symmetric
Encryptions

The	total	number	of	symmetric	encryptions
performed.

A	rate	counter	samples	an	increasing	count	of	events	over	time	and	divides	the
values	by	the	change	in	time	to	display	a	rate	of	activity.	For	more	information
about	performance	counters,	see	Overview	of	Performance	Monitoring	in	the
.NET	Framework	Class	Library	on	MSDN.

http://technet.microsoft.com/en-us/library/cc958260.aspx

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Cryptography Application Block Performance Counters'%0AEntLib50_4470b65a-fd7c-4f11-af2a-5dae571b3b4a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Cryptography	Application	Block	Event	Log	Entries

This	topic	lists	the	Cryptography	Application	Block	event	log	entries.	The
listener	is	the	class	that	raised	the	event.

Cryptographic	Operation	Failed	Event	(Symmetric	Algorithm)

Cryptographic	Operation	Failed	Event	(Hash	Algorithm)

Configuration	Failure	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Cryptography Application Block Event Log Entries'%0AEntLib50_c1909b84-91a1-4808-8331-1ad4237db7f3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Data	Access	Application	Block

The	Enterprise	Library	Data	Access	Application	Block	simplifies	the
development	of	tasks	that	implement	common	data	access	functionality.
Applications	can	use	this	application	block	in	a	variety	of	situations,	such	as
reading	data	for	display,	passing	data	through	application	layers,	and	submitting
changed	data	back	to	the	database	system.

The	application	block	includes	support	for	both	stored	procedures	and	inline
SQL	statements.	Common	housekeeping	tasks,	such	as	managing	connections
and	creating	and	caching	parameters,	are	encapsulated	in	the	application	block's
methods.	In	other	words,	the	Data	Access	Application	Block	provides	access	to
the	most	often	used	features	of	ADO.NET	in	simple-to-use	classes	and	provides
a	corresponding	boost	in	developer	productivity.

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Data	Access	Application	Block:

What	Does	the	Data	Access	Application	Block	Do?	This	topic	provides	a
brief	overview	that	will	help	you	to	understand	what	the	block	can	do,
and	explains	some	of	the	concepts	and	features	it	incorporates.	It	also
provides	a	simple	example	of	the	way	that	you	can	write	code	to	use	the
block.
When	Should	I	Use	the	Data	Access	Application	Block?	This	topic	will
help	you	to	decide	if	the	block	is	suitable	for	your	requirements.	It
explains	the	benefits	of	using	the	block,	and	any	alternative	techniques
you	may	consider.	It	also	provides	details	of	any	limitations	of	the	block
that	may	affect	your	decision	to	use	it.
Developing	Applications	Using	the	Data	Access	Application	Block.	This
describes	how	to	configure	the	application	block,	how	to	prepare	your
application	to	use	the	Data	Access	Application	Block,	and	contains
details	of	specific	features	of	the	application	block,	such	as	how	you
create	a	database,	work	with	transactions,	and	handle	parameters	and
exceptions.
Key	Scenarios.	This	section	demonstrates	how	to	use	the	application
block	to	perform	the	most	typical	data	access	operations.
Design	of	the	Data	Access	Application	Block.	This	section	describes	the

decisions	that	went	into	designing	the	application	block	and	the	rationale
behind	those	decisions.
Extending	and	Modifying	the	Data	Access	Application	Block.	This
section	describes	how	to	extend	the	application	block	by	adding	your
own	database	provider	and	gives	suggestions	for	modifying	the	source
code.
Deployment	and	Operations.	This	section	describes	how	to	deploy	and
update	the	application	block	assemblies.	It	also	contains	information
about	configuration	and	Microsoft®	SQL	Server®	security.

More	Information
For	more	information,	see	the	following	resources:

Microsoft	Application	Architecture	Guide,	2nd	Edition	-	Chapter	8:	Data
Layer	Guidelines
.NET	Data	Access	Architecture	Guide
INFO:	Microsoft	Guide	for	Designing	Data	Tier	Components	and
Passing	Data	Through	Tiers
Improving	Web	Application	Security:	Threats	and	Countermeasures
Improving	.NET	Application	Performance	and	Scalability

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ee658127.aspx
http://msdn.microsoft.com/en-us/library/ee817654.aspx
http://support.microsoft.com/kb/829025
http://msdn.microsoft.com/en-us/library/ms994921.aspx
http://msdn.microsoft.com/en-us/library/ms998530.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Data Access Application Block'%0AEntLib50_68577648-b6f9-478f-ad6a-953836e97c53%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Data	Access	Application	Block	Do?

The	Data	Access	Application	Block	includes	a	small	number	of	methods	that
simplify	the	most	common	techniques	for	accessing	a	database.	Each	method
encapsulates	the	logic	required	to	retrieve	the	data	and	manage	the	connection
to	the	database.	The	methods	exposed	by	the	block	allow	you	to	execute
queries,	return	data	in	a	range	of	different	formats,	populate	a	DataSet,	update
the	database	from	a	DataSet,	perform	data	access	asynchronously	(against	SQL
Server	databases),	and	return	data	as	objects	in	a	suitable	format	for	use	with
client-side	query	technologies	such	as	LINQ.

ADO.NET	provides	classes	such	as	the	DbCommand	class	and	the
DbConnection	class;	these	classes	help	to	abstract	the	data	provider	from	any
particular	database	implementation.	The	Data	Access	Application	Block	takes
advantage	of	these	classes	and	provides	a	model	that	further	supports
encapsulation	of	specific	features	of	each	database	type,	such	as	parameter
discovery	and	type	conversion.	As	a	result,	applications	can	often	be	ported
from	one	database	type	to	another	without	modifying	the	client	code.	The	Data
Access	Application	Block	includes	an	abstract	base	class	that	defines	a	common
interface	and	provides	much	of	the	implementation	required	by	the	data	access
methods	available	in	ADO.NET.

The	application	block	also	includes	classes	designed	to	work	with	Microsoft
SQL	Server,	Microsoft	SQL	Server	CE,	and	Oracle.	These	classes	perform
operations	that	are	specific	to	the	database	type.	The	code	for	applications
written	for	one	type	of	database,	such	as	SQL	Server,	looks	much	the	same	as
the	code	for	applications	written	for	another	type	of	database	such	as	Oracle.

Another	feature	of	the	Data	Access	Application	Block	is	that	application	code
can	refer	to	particular	databases	by	an	ADO.NET	connection	string	name,	such
as	"Customer"	or	"Inventory."	The	application	code	can	specify	a	named
instance	of	a	database	when	creating	the	Database	implementation	it	uses	as	a
facade	for	the	majority	of	the	methods.	Each	named	database	has	its	connection
information	stored	in	a	configuration	file.	By	changing	the	settings	in	the
configuration	file,	developers	can	use	their	applications	with	different	database
types	without	recompiling	their	code.

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Data Access Application Block Do?'%0AEntLib50_1926dac4-788f-4222-b2ae-877ec6f307bc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Data	Access	Application	Block?

You	should	consider	using	the	Data	Access	Application	Block	if	your
application	uses	standard	data	access	techniques.	The	block	is	particularly	suited
to	querying,	retrieving,	and	updating	data	through	implementations	based	on	the
ExecuteReader,	ExecuteXmlReader,	and	ExecuteNonQuery	methods
commonly	used	in	ADO.NET—including	the	asynchronous	versions	of	these
methods.	It	also	provides	methods	to	populate	DataSet	instances,	and	flush	the
changes	back	to	the	database.

You	should	also	consider	using	the	block	if	you	want	to	work	with	data	using
client-side	querying	mechanisms	such	as	Language	Integrated	Query	(LINQ).	It
contains	support	for	these	programming	techniques	by	exposing	methods	that
return	data	as	sequences	of	objects.

A	third	reason	for	using	the	Data	Access	Application	Block	is	its	capability	to
abstract	the	database	type.	This	makes	it	easier	to	change	your	application	to	use
a	different	type	of	database	if	required,	although	some	of	the	more	advanced
data	access	methods	do	rely	on	the	specific	capabilities	of	the	underlying
ADO.NET	Data	Provider.

Scenarios	for	the	Data	Access	Application	Block

Benefits	of	the	Data	Access	Application	Block

Limitations	of	the	Data	Access	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/cc656912(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb398202(VS.100).aspx
http://entlibcontrib.codeplex.com/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Data Access Application Block?'%0AEntLib50_dbe9caf2-5dda-466d-beec-0e0ab1a0031b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Data	Access	Application	Block

This	section	describes	how	you	can	use	the	Data	Access	Application	Block	to
develop	applications.	It	first	explains	how	to	configure	the	application	block	and
incorporate	it	into	your	applications.	Next,	it	explains	how	to	use	the	application
block	for	specific	scenarios,	such	as	retrieving	a	single	item	or	using	a	DataSet
object	to	retrieve	multiple	rows.	Lastly,	it	provides	more	information	about
topics	such	as	connection	management,	parameter	handling,	and	handling
exceptions.

This	section	assumes	that	you	are	using	the	application	block	in	its	original
state,	without	extending	it.	(To	learn	how	to	add	functionality,	see	Extending
and	Modifying	the	Data	Access	Application	Block.)	This	section	includes	the
following	topics:

Entering	Configuration	Information
Adding	Application	Code
Creating	a	Database	Object
Creating	a	DbCommand	Object
Managing	Connections
Using	the	TransactionScope	Class
Using	the	Asynchronous	Data	Access	Methods
Returning	Data	as	Objects	for	Client	Side	Querying
Creating	Portable	Database	Applications
Handling	Exceptions
Handling	Parameters

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile	it.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

Note:
The	Data	Access	Block	cannot	be	used	in	applications	that	target	the	.NET
Framework	4.0	Client	Profile.	It	can	only	be	used	in	applications	that	target
the	full	.NET	Framework	4.0	profile.	For	information	about	profiles	in	the

.NET	Framework	4.0,	see	.NET	Framework	Client	Profile	on	MSDN.	For
information	about	changing	the	targeted	profile,	see	How	to:	Target	a
Specific	.NET	Framework	Version	or	Profile	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/cc656912(VS.100).aspx
http://msdn.microsoft.com/en-us/library/bb398202(VS.100).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Data Access Application Block'%0AEntLib50_805fe253-7a47-4799-9802-0989ebf3af5c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

The	following	procedures	describe	how	to	configure	the	Data	Access
Application	Block.	Properties	associated	with	the	nodes	appear	in	the	right	pane
of	the	Configuration	Console	or	the	Properties	window	of	the	Visual	Studio®
Configuration	Editor.	For	details	of	the	schema	for	the	Data	Access	Application
Block	configuration,	see	Source	Schema	for	the	Data	Access	Application	Block.
You	can	also	configure	the	block	in	code	by	using	an	alternate	configuration
source.	For	more	information,	see	Advanced	Configuration	Scenarios	and	Using
the	Fluent	Configuration	API.

To	add	the	Data	Access	Application	Block
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Data	Settings.
3.	 The	configuration	tool	automatically	adds	the	Database	Settings

section	with	default	settings.	Click	the	properties	expander	chevron	in
the	Database	Settings	section	to	view	the	settings	for	this	section.

The	next	procedure	explains	how	to	configure	an	instance	of	the	default
database	that	is	added	automatically	to	the	configuration.	This	instance	is	used	if
the	application	resolves	a	Database	with	no	instance	name.

To	configure	the	default	database
1.	 In	the	Database	Instances	pane,	click	the	expander	arrow	for	the

Connection	String	section.

2.	 (Optional)	Set	the	Name	property	by	typing	a	new	name.	The	default
name	is	ConnectionString.

3.	 Use	the	Database	Provider	property	to	change	the	provider	name	as

required.	Enter	the	name	of	the	provider	or	select	it	from	the	drop-down
list.	The	default	provider	name	is	System.Data.SqlClient.	You	can
choose	a	different	provider	if	you	wish,	such	as	System.Data.OleDb.
The	Database	Provider	property	must	be	a	provider	name	specified	in
a	DBProviderFactory	class.

4.	 Click	the	ellipses	(...)	button	in	the	Connection	String	property	to
show	the	connection	string	in	a	pop-up	window.	Edit	it	as	required.

The	next	procedure	explains	how	to	create	additional	database	instances	for
other	databases.

To	configure	additional	database	instances
1.	 Click	the	plus	sign	icon	in	the	Database	Instances	pane	and	then	click

Add	Database	to	add	a	new	connection	string	section.

2.	 (Optional)	Set	the	Name	property	by	typing	a	new	name.	This	is	the
name	you	will	use	to	refer	to	the	database.

3.	 In	the	Database	Provider	property	section,	enter	the	name	of	the
database	provider	or	select	it	from	the	drop-down	list.	The	Database
Provider	property	must	be	a	provider	name	specified	in	a
DbProviderFactory	class.	If	you	are	using	the	Visual	Studio	integrated
configuration	editor	and	you	do	not	see	the	provider	type	you	require	in
the	list,	you	must	add	a	reference	to	the	assembly	containing	the

provider	to	your	project.
4.	 Click	the	ellipses	(...)	button	in	the	Connection	String	property	to

show	the	connection	string	in	a	pop-up	window.	Type	the	connection
string	that	this	database	will	use.	For	example,	the	following	connection
string	specifies	the	database	named	CorpData1	on	the	SQL	Server
instance	named	DBSERVER1	using	integrated	Windows®	security:

Server=DBSERVER1;	Initial	Catalog=CorpData1;	Integrated	Security=SSPI

The	next	procedure	describes	how	to	change	which	of	the	currently	configured
databases	is	the	default	that	will	be	used	if	the	application	resolves	a	Database
with	no	instance	name.

To	change	the	default	database
1.	 Click	the	properties	expander	chevron	in	the	Database	Settings	section

to	view	the	settings	for	this	section	if	it	is	not	already	open.
2.	 Select	the	database	that	you	want	to	use	as	the	default	in	the	drop-down

list	for	the	Default	Database	Instance	property.

The	next	procedure	describes	how	to	configure	a	SQL	Server	CE	database.
These	steps	are	appropriate	if	your	application	always	uses	a	single	file	that	you
name	during	configuration.	For	more	information	about	SQL	Server	CE,	see
Creating	a	Database	Object.

To	configure	SQL	Server	CE
1.	 Click	the	plus	sign	icon	in	the	Custom	Databases	pane	and	then	click

Add	Custom	Database	Provider.
2.	 Set	the	Name	property	of	the	custom	database	by	typing	a	new	name.

This	name	is	used	to	link	the	SQL	Server	CE	database	provider	to	the
connection	string	you	will	define	for	it.

3.	 In	the	Type	property,	click	the	ellipses	(...)	button,	fully	expand	the
Microsoft.Practices.EnterpriseLibrary.Data.SqlCe	node,	and	select
SqlCeDatabase.	Then	click	OK.

4.	 Click	the	plus	sign	icon	in	the	Database	Instances	pane	and	then	click
Add	Database	Connection	String.	This	adds	a	new	connection	string
to	the	configuration,	which	you	will	use	to	specify	the	connection	string

Copy	Code

for	the	SQL	Server	CE	database.	Alternatively,	you	can	configure	the
default	Connection	String	item	that	the	configuration	tool	adds	if	you
do	not	require	any	other	connection	strings	in	your	configuration.

5.	 (Optional)	Set	the	Name	property	of	the	connection	string	item	by
typing	a	new	name.	This	is	the	name	you	will	use	to	refer	to	the
database	in	your	code.

6.	 Click	the	ellipses	(...)	button	in	the	Connection	String	property	to
show	the	connection	string	in	a	pop-up	window.	Enter	the	appropriate
value	for	the	Connection	String	property;	for	example:

Data	Source='C:\MyApp\MyDatabase.sdf'

Note:
The	SQL	CE	database	is	created	by	the	Enterprise	Library
SQLDatabase	provider,	which	does	not	enforce	password
protection	or	encryption	on	the	database	during	creation.	To	ensure
security	of	yoru	data,	you	should	consider	setting	the	connection
string	to	protect	the	file	and	create	it	with	the	correct	permissions,
and	encrypt	the	file.	For	more	information	see	SqlCEConnection
ConnectionString	Property	on	MSDN.

7.	 The	following	example	enables	encryption	on	the	database:

"Data	Source=MyData.sdf;Encrypt	Database=True;Password=myPassword;File	Mode=shared	read;Persist	Security	Info=False;"

8.	 Set	the	Database	Provider	property	of	your	SQL	Server	CE
connection	string	item	to	the	name	you	entered	for	the	custom	database
provider	in	step	2.	The	following	screenshot	shows	details	of	the
configuration	for	a	SQL	Server	CE	database	in	the	configuration	tools.

http://msdn.microsoft.com/en-us/library/system.data.sqlserverce.sqlceconnection.connectionstring(VS.80).aspx

9.	 For	information	on	using	SQL	Server	CE,	see	the	section	"Using	SQL
Server	CE"	in	the	topic	Creating	a	Database	Object.

The	next	procedure	describes	how	to	add	Oracle	packages.	An	Oracle	package
serves	as	a	way	to	group	stored	procedures	into	common	groups,	typically	based
on	their	functionality.	When	an	application	calls	an	Oracle	stored	procedure
located	in	a	package,	the	code	must	prefix	the	stored	procedure	name	with	the
package	name.	For	example,	to	call	a	procedure	named	GetEmployeeName
that	is	in	a	package	named	Employee_pkg,	you	would	call
Employee_pkg.GetEmployeeName.

Incorporating	this	code	into	the	application	makes	it	less	portable	because	this
syntax	is	specific	to	Oracle.	Instead,	the	Data	Access	Application	Block	can
prefix	the	stored	procedure	with	the	package	name.	This	means	your	client	code
does	not	need	to	specify	the	package	name	to	call	a	stored	procedure.	To	do	this,
the	application	block	uses	information	in	the	configuration	file.	The
OraclePackage	node	stores	a	name/prefix	pair.	The	name	is	the	name	of	the

package.	The	prefix	is	a	string	that	is	associated	with	the	package.	All	stored
procedures	that	start	with	that	prefix	are	assumed	to	be	in	the	associated
package.

When	the	application	calls	a	stored	procedure,	the	Data	Access	Application
Block	checks	to	see	if	it	begins	with	any	of	the	prefixes	in	the	configuration	file.
If	it	does,	the	application	block	prefixes	the	stored	procedure	with	the	associated
package	name.	(The	first	match	it	finds	is	the	one	the	application	block	uses.)	If
you	specify	an	asterisk	("*")	as	the	prefix,	the	associated	package	is	used	for	all
stored	procedure	calls.

To	configure	an	Oracle	package
1.	 Click	the	plus	sign	icon	in	the	Oracle	Connections	pane,	and	click

Add	Oracle	Connection.
2.	 An	Oracle	Packages	for	Oracle	Connection	section	is	added	to	the

Oracle	Connections	pane	and	its	properties	are	displayed.
3.	 (Optional)	Set	the	Name	property	by	typing	a	new	name.
4.	 Click	the	plus	sign	icon	in	the	Packages	row	to	add	a	new	package.

5.	 Change	the	Name	property	by	entering	the	name	of	the	Oracle	package.
The	default	name	is	Package.

6.	 Enter	a	value	for	the	Prefix	property.

Note:
The	OracleClient	data	provider	is	deprecated	in	version	4.0	of	the	.NET
Framework,	although	it	is	still	supported	by	the	Enterprise	Library	5.0.	For
future	development,	consider	choosing	a	different	Oracle	driver,	such	as	that
available	from	the	Enterprise	Library	Contrib	site.

The	next	procedure	describes	how	to	add	custom	provider	mappings	by

http://entlibcontrib.codeplex.com/

associating	a	provider	with	the	fully	qualified	name	of	a	database.

To	configure	a	custom	provider
1.	 Click	the	plus	sign	icon	in	the	Custom	Databases	pane,	and	then	click

on	Add	Custom	Database	Provider.
2.	 (Optional)	Set	the	Name	property	by	typing	a	new	name	or	select	it

from	the	drop-down	list.	The	default	provider	name	is	Custom
Database	Provider.

3.	 In	the	Type	property	text	box,	click	the	ellipsis	button	(…)	and	use	the
type	selector	to	select	the	fully	qualified	name	of	the	Enterprise	Library
database	type.	If	the	provider	is	registered	in	the	global	assembly	cache
(GAC),	click	the	Add	from	GAC	button	to	locate	it.	If	you	are	using
the	Visual	Studio	integrated	configuration	editor	and	you	do	not	see	the
provider	type	you	require	in	the	list,	you	must	add	a	reference	to	the
assembly	containing	the	provider	to	your	project.

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_2487249b-8d44-4ce2-9a7f-ada5d8b0a56b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Data	Access	Application	Block

This	topic	lists	the	XML	elements	and	attributes	used	to	configure	the	Data
Access	Application	Block.	You	can	manually	edit	the	XML	data,	but	the
Enterprise	Library	configuration	tools	greatly	simplify	this	task.	If	you	choose
to	manually	edit	the	XML,	use	the	schema	information	contained	in	this	topic.

The	configuration	file	has	the	following	section-handler	declaration.
XML

<configSections>

		<section	name="dataConfiguration"

											type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,

																	Microsoft.Practices.EnterpriseLibrary.Data"	/>

		<section	name="oracleConnectionSettings"	

											type="Microsoft.Practices.EnterpriseLibrary.Data.Oracle.Configuration.OracleConnectionSettings,

																	Microsoft.Practices.EnterpriseLibrary.Data"	/>

</configSections>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
sections	and	the	names	of	the	section-handler	classes	that	process	configuration
data	in	that	section.	The	name	of	the	first	configuration	settings	section	is
dataConfiguration.	The	name	of	the	section-handler	class	is	DatabaseSettings
(in	the	Microsoft.Practices.EnterpriseLibrary.Data.Configuration
namespace).

The	name	of	the	second	configuration	settings	section	is
oracleConnectionSettings.	The	name	of	the	section-handler	class	is
OracleConnectionSettings	(in	the
Microsoft.Practices.EnterpriseLibrary.Data.Oracle.Configuration
namespace).

connectionStrings	Element

dataConfiguration	Element

providerMappings	Child	Element

oracleConnectionSettings

packages	Child	Element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Data Access Application Block'%0AEntLib50_c970d38b-d1b3-4813-bb16-36f9d4868fce%0APlease provide details of the error you have located...%0A

Copy	Code

Copy	Code

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Data	Access	Application	Block	is	designed	to	support	the	most	common
scenarios	for	accessing	a	database.	When	you	add	your	application	code,	refer
to	the	scenarios	in	the	Key	Scenarios	section	and	select	the	ones	that	best	match
your	situation.	Use	the	code	that	accompanies	the	scenario	as-is	or	adapt	it	as
necessary.

First,	you	must	prepare	your	application	to	use	the	Data	Access	Application
Block.	After	you	do	that,	you	can	create	the	Database	object	and	call	the
appropriate	method	overloads.

To	prepare	your	application
1.	 Add	a	reference	to	the	Data	Access	Application	Block	assembly.	In

Visual	Studio,	right-click	your	project	node	in	Solution	Explorer,	and
then	click	Add	Reference.	Click	the	Browse	tab,	and	then	navigate	to
the	location	of	the	Microsoft.Practices.EnterpriseLibrary.Data.dll
assembly.	Select	the	assembly,	and	then	click	OK	to	add	the	reference.

2.	 Following	the	same	procedure,	add	references	to	the	following
assemblies:

Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.Interception.dll.

3.	 (Optional)	To	use	elements	from	Data	Access	Application	Block
without	fully	qualifying	the	element	reference,	you	can	add	the
following	using	statement	(C#)	or	Imports	statement	(Visual	Basic®)
to	the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Data;

using	System.Data;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Data

Imports	System.Data

Note:
For	Visual	Basic	projects,	you	can	use	the	References	page	of	the	Project
Designer	to	manage	references	and	imported	namespaces.	To	access	the
References	page,	select	a	project	node	in	Solution	Explorer.	On	the	Project
menu,	click	Properties.	When	the	Project	Designer	appears,	click	the
References	tab.

For	information	on	how	to	create	a	Database	object	and	advice	on	using	the
Database	types,	see	Creating	a	Database	Object.

For	information	about	the	key	scenarios	for	using	the	block,	see	Key	Scenarios.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_b4418970-becb-44b5-9c74-57bacd4f6d8b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	a	Database	Object

All	data	access	methods	are	executed	against	a	Database	object.	You	can	use
the	Enterprise	Library	container	to	create	a	Database	object.	The	specific	type
of	Database	object	it	returns	is	determined	by	the	application	configuration
information.	By	changing	the	default	configuration,	the	unmodified	application
can	be	run	against	different	databases.	The	connection	string	information	for
each	database	you	define	is	stored	in	the	<connectionStrings>	section	in	the
application	configuration	file.

This	topic	includes	the	following	sections	that	describe	how	to	create	instances
of	different	types	of	databases,	and	some	things	you	must	consider	when
working	with	specific	types	of	databases:

Creating	a	Default	Database	Instance
Creating	a	Named	Database	Instance
Creating	a	Specific	Database	Type
Creating	a	Database	Instance	Directly
Creating	a	GenericDatabase	Instance
Writing	Code	to	Use	the	Database	Classes
Using	SQL	Server	CE
Using	Oracle	with	the	TransactionScope	Class
Using	the	OracleDataReaderWrapper	Class

Creating	a	Default	Database	Instance

Creating	a	Named	Database	Instance

Creating	a	Specific	Database	Type

Creating	a	Database	Instance	Directly

Creating	a	GenericDatabase	Instance

Writing	Code	to	Use	the	Database	Classes

Using	SQL	Server	CE

http://www.microsoft.com/sqlserver/2008/en/us/compact.aspx
http://msdn2.microsoft.com/en-us/library/system.data.sqlserverce.aspx

Using	Oracle	with	the	TransactionScope	Class

http://support.microsoft.com/kb/843044
http://www.oracle.com/technology/software/tech/windows/ora_mts/htdocs/utilsoft.html

Using	the	OracleDataReaderWrapper	Class
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating a Database Object'%0AEntLib50_856ba3aa-8c49-449f-8f2d-153d0210d5e4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	a	DbCommand	Object

The	Data	Access	Application	Block	provides	a	consistent	way	to	retrieve
ADO.NET	DbCommand	objects.	The	data	access	methods	of	the	application
block	include	overloads	that	accept	a	DbCommand	object.	If	you	use	the
overloads	with	DbCommand	objects,	you	have	more	control	when	you	call
stored	procedures.	For	example,	if	you	use	a	DbCommand	object,	you	can	have
a	stored	procedure	that	returns	several	results	in	the	output	parameters.	In
addition,	a	DbCommand	object	allows	you	to	specify	the	stored	procedure's
timeout	value.

The	methods	that	create	DbCommand	objects	are	separated	into	two	types:
Methods	that	represent	stored	procedure	calls	(for	example,
GetCustomers)
Methods	that	represent	SQL	text	commands	(for	example,	Select
CustomerID,	Fullname	From	Customers)

The	method	you	call	to	retrieve	a	DbCommand	object	is	determined	by
whether	you	want	to	execute	inline	SQL	or	call	a	stored	procedure.	The	method
that	creates	a	DbCommand	object	for	a	stored	procedure	also	provides
parameter	caching.	For	more	information	about	parameter	caching,	see
Handling	Parameters.

All	DbCommand	objects	are	created	using	methods	on	the	Database	class.
These	methods	are	the	following:

GetStoredProcCommand.	This	method	is	for	stored	procedures
commands.
GetSqlStringCommand.	This	method	is	for	SQL	text	commands.

Both	methods	return	a	DbCommand	object.

Note:
SQL	Server	CE	does	not	support	stored	procedures.	Instead,	use	inline	SQL
statements.	For	more	information,	see	the	section	"Using	SQL	Server	CE"	in
Creating	a	Database	Object.

DbCommand	Objects	for	SQL	Statements

DbCommand	Objects	for	Stored	Procedures
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating a DbCommand Object'%0AEntLib50_e34b065d-c6ff-482b-a8b3-36d060bbf2b8%0APlease provide details of the error you have located...%0A

Copy	Code

Microsoft	Enterprise	Library	5.0

Managing	Connections

Database	connections	are	a	limited	resource,	and	proper	management	of	them	is
essential	for	scalable	applications.	It	is	good	practice	to	keep	connections	open
only	as	long	as	they	are	needed	and	to	close	them	as	soon	as	practical.	By
design,	most	of	the	Database	class	methods	handle	the	opening	and	closing	of
connections	to	the	database	on	each	call.	Therefore,	the	application	code	does
not	need	to	include	code	for	managing	connections.	(By	default,	and	for
performance	reasons,	ADO.NET	returns	connections	to	the	connection	pool
without	closing	them.	Therefore,	you	do	not	need	to	cache	your	Database
objects.)

For	example,	the	ExecuteDataSet	method	returns	a	DataSet	object	that
contains	all	the	data.	This	gives	you	your	own	local	copy.	The	call	to
ExecuteDataSet	opens	a	connection,	populates	a	DataSet,	and	closes	the
connection	before	returning	the	result.

The	following	code	demonstrates	the	use	of	the	ExecuteDataSet	method.	It
assumes	that	you	have	resolved	the	Database	class	you	require	and	stored	a
reference	in	the	variable	named	db.

For	more	information	on	instantiating	objects,	see	Creating	and	Referencing
Enterprise	Library	Objects.
C#

string	sql	=	"Select	ProductID,	ProductName	From	Products";

DbCommand	cmd	=	db.GetSqlStringCommand(sql);	

//	No	need	to	open	the	connection;	just	make	the	call.

DataSet	customerDataSet	=	db.ExecuteDataSet(cmd);

Visual	Basic

Dim	sql	As	String	=	"Select	ProductID,	ProductName	From	Products"

Dim	cmd	As	DbCommand	=	db.GetSqlStringCommand(sql)

'	No	need	to	open	the	connection;	just	make	the	call.

Dim	customerDataSet	As	DataSet	=	db.ExecuteDataSet(cmd)

However,	there	are	other	cases	where	it	is	unclear	when	to	close	the	connection.
An	example	is	the	ExecuteReader	method.	This	method	returns	an	object	that
implements	the	IDataReader	interface.	The	Database	base	class	has	a	default
implementation	that	returns	a	DbDataReader	object.	DbDataReader	objects
are	designed	to	read	specific	portions	of	the	data	as	needed,	which	requires	an
open	connection.	In	other	words,	it	is	unknown	when	the	application	no	longer
needs	the	DbDataReader.

If	the	Data	Access	Application	Block	methods	close	the	connection	before
returning	the	DbDataReader,	the	DbDataReader	becomes	useless	to	the	client
code.	Instead,	the	DbDataReader	methods	indicate	to	the	underlying
ADO.NET	call	to	automatically	close	the	connection	when	the	DbDataReader
is	disposed.

Note:
If	you	fail	to	close	the	DbDataReader,	you	can	cause	random	and	hard-to-
find	errors	in	your	code—particularly	when	you	are	operating	under	an
implicit	transaction	created	within	a	TransactionScope	context.	You	should
always	ensure	that	your	application	closes	the	DbDataReader	in	a	timely
fashion,	either	by	explicitly	closing	the	reader	using	the
DbDataReader.Close	method	or	by	forcing	the	disposal	of	the
DbDataReader,	which	results	in	the	Close	method	being	called.

The	following	code	demonstrates	a	call	to	the	ExecuteReader	method.	The
using	statement	(Using	in	Visual	Basic)	ensures	that	the	DbDataReader	object
is	disposed,	which	closes	the	DbDataReader	object.	It	assumes	that	you	have
resolved	the	Database	class	you	require	and	stored	a	reference	in	the	variable
named	db.

For	more	information	on	instantiating	objects,	see	Creating	and	Referencing
Enterprise	Library	Objects.
C#

DbCommand	cmd	=	db.GetSqlStringCommand("Select	Name,	Address	From	Customers");

using	(IDataReader	reader	=	db.ExecuteReader(cmd))

{

		//	Process	results

}	

Visual	Basic

Dim	cmd	As	DbCommand	=	db.GetSqlStringCommand("Select	Name,	Address	From	Customers")

Using	reader	As	IDataReader	=	db.ExecuteReader(cmd)

		'	Process	results

End	Using

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Managing Connections'%0AEntLib50_ab8937b2-cca0-4388-a4bf-2c94f3eeb646%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	TransactionScope	Class

Some	of	the	Database	class	methods	take	advantage	of	the	.NET	Framework
TransactionScope	class.	This	class	automatically	enlists	database	calls	into	an
ambient	transaction.	This	is	useful	for	enlisting	business	objects	in	a	transaction
without	passing	a	transaction	to	those	business	objects.	Here	is	the	basic	model
for	using	the	TransactionScope	class.	It	assumes	that	you	have	resolved	the
Database	class	you	require	and	stored	a	reference	in	the	variable	named	db.

For	more	information	on	instantiating	objects	see	Creating	and	Referencing
Enterprise	Library	Objects.
C#

using	(TransactionScope	scope	=	new	TransactionScope(TransactionScopeOption.RequiresNew))

{

		int	dRows	=	db.ExecuteNonQuery(CommandType.Text,	insertString);

		dRows	=	db.ExecuteNonQuery(CommandType.Text,	insertString2);

}

Visual	Basic

Using	scope	As	New	TransactionScope(TransactionScopeOption.RequiresNew)

		Dim	dRows	As	Integer	=	db.ExecuteNonQuery(CommandType.Text,	insertString)

		dRows	=	db.ExecuteNonQuery(CommandType.Text,	insertString2)

End	Using

The	two	ExecuteNonQuery	methods	insert	the	rows	within	the	transaction	that
you	define	when	you	create	a	new	TransactionScope	instance.

The	TransactionScope	class	creates	a	local,	lightweight	transaction.	It	assumes
that	you	will	use	a	single	connection	for	all	of	the	database	calls	that	occur
within	the	transaction.	This	means	that,	instead	of	passing	the	DbTransaction
instance,	you	simply	pass	the	connection,	and	the	.NET	Framework
automatically	sets	the	transaction	for	each	command	that	you	execute.

Enterprise	Library,	on	the	other	hand,	normally	opens	and	closes	a	connection

for	each	request.	This	approach	is	incompatible	with	the	way	the
TransactionScope	class	works.	If	there	are	multiple	connections,	the
TransactionScope	class	considers	the	transaction	to	be	a	distributed	transaction.
Distributed	transactions	have	a	significant	performance	and	resource	overhead
compared	with	a	local	transaction.

To	avoid	this,	the	Database	class	methods,	such	as	ExecuteDataSet,	recognize
when	a	TransactionScope	instance	is	active	and	they	enlist	database	calls	in
this	transaction.	If	a	transaction	is	currently	active	as	a	result	of	using	a
TransactionScope	instance,	the	Database	class	methods	use	a	single
connection.

In	particular,	the	GetOpenConnection	method	replaces	the	OpenConnection
method	within	the	Database	methods.	The	GetOpenConnection	method
returns	a	connection	inside	a	wrapper.	The	method	disposes	the	wrapper	if	there
is	no	transaction	in	progress.	However,	when	a	transaction	is	in	progress,	the
method	keeps	the	connection	open.

Note:
Multiple	threads	sharing	the	same	transaction	in	a	transaction	scope	will
cause	the	following	exception:	"Transaction	context	in	use	by	another
session."

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the TransactionScope Class'%0AEntLib50_3d30d0c9-c89e-4619-a6ea-e1be36de47e7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Asynchronous	Data	Access	Methods

One	of	the	most	common	factors	that	can	affect	performance	in	applications	is
accessing	a	database,	and	most	system	designs	aim	to	minimize	database	round
trips.	Simply	calling	across	a	network	to	a	database	can	cause	significant	delays,
and	the	additional	delay	while	the	database	processes	a	query	can	be	particularly
troublesome	in	interactive	applications	where	the	delay	can	cause	the	UI	to
become	unresponsive.	To	resolve	this,	you	may	consider	using	asynchronous
methods	to	access	your	database.

The	Data	Access	Application	Block	contains	versions	of	four	of	the	data	access
methods	that	you	can	execute	asynchronously.	These	methods	rely	on	the
features	of	the	underlying	ADO.NET	data	provider,	and	are	therefore	available
only	for	the	SqlDatabase	implementation	of	the	Database	class	in	this	release.
The	Database	class	exposes	a	method	named	SupportsAsync	that	each
database-specific	class	(such	as	SqlDatabase,	OracleDatabase,	and
SqlCeDatabase)	implements	to	return	true	or	false.	The	three	pairs	of
asynchronous	methods	available	are	the	following:

BeginExecuteReader	and	EndExecuteReader.	These	methods	are	used
to	obtain	a	DataReader	populated	with	data	from	the	database.
BeginExecuteScalar	and	EndExecuteScalar.	These	methods	are	used
to	obtain	a	single	value	from	the	database.
BeginExecuteNonQuery	and	EndExecuteNonQuery.	These	methods
are	used	to	execute	a	query	that	does	not	return	data,	but	returns	only	a
count	of	the	number	of	rows	affected.

In	addition,	when	using	SqlDatabase	directly,	an	additional	pair	of
asynchronous	methods	is	available:

BeginExecuteXmlReader	and	EndExecuteXmlReader.	These	methods
are	used	to	obtain	an	XmlReader	populated	with	data	from	the	database.

The	Begin	and	End	versions	of	the	methods	operate	in	the	same	way	as	those
available	when	you	code	directly	against	the	ADO.NET	provider.	When	using
the	Data	Access	Application	Block,	you	pass	to	the	methods	the	same
parameters	as	for	the	non-asynchronous	versions,	such	as	a	DbCommand	and
(optionally)	a	transaction	reference.	The	methods	return	an	instance	of	the
IAsyncResult	interface,	which	you	then	use	as	the	parameter	in	a	call	to	the

End	version	of	the	method	to	obtain	the	result.	Your	code	waits	until	the	method
completes.	However,	you	can	use	an	array	of	the	standard	Windows
WaitHandle	class	to	start	multiple	data	access	operations,	and	the	code	will
return	when	they	all	complete	or	time	out.

If	you	want	to	execute	code	in	your	application	while	the	data	access	call	is
executing,	you	can	use	a	lambda	expression	or	a	separate	callback	that	is
executed	when	data	access	is	complete.	If	you	use	a	separate	callback,	you	pass
a	reference	to	your	callback	method	to	the	Begin	method,	and	optionally	an
object	containing	state	information	that	you	want	to	make	available	in	the
callback	method.	A	common	use	of	this	object	is	to	pass	a	reference	to	the
Database	object	so	that	you	can	call	the	appropriate	End	method	inside	the
callback	handler.	If	you	use	a	lambda	expression,	it	will	have	access	to	the
objects	(such	as	the	Database	instance)	that	you	use	in	the	data	access	code.

As	the	methods	for	performing	asynchronous	execution	match	those	available
for	the	ADO.NET	SqlClient	class,	the	full	range	of	options	and	approaches	to
performing	asynchronous	data	access	are	not	included	in	this	topic.	For	more
information,	see	Asynchronous	Command	Execution	in	ADO.NET	2.0.

http://msdn.microsoft.com/en-us/library/ms379553(VS.80).aspx

Asynchronous	Accessor	Execution

Tips	for	Using	the	Asynchronous	Data	Access	Methods
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Asynchronous Data Access Methods'%0AEntLib50_c6746013-4985-41c9-bf40-724e9a4fb787%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Returning	Data	as	Objects	for	Client	Side	Querying

Developers	often	want	to	retrieve	data	in	a	format	that	better	matches	the	real-
world	objects	that	the	data	represents,	rather	than	in	the	rows	and	columns
format	of	a	DataReader	or	DataSet.	This	is	typically	the	case	when
implementing	common	design	patterns	such	as	Domain	Model,	Table	Module,
and	Repository.

The	Data	Access	Application	Block	includes	support	for	this	scenario	through	a
class	called	an	accessor.	Accessors	accept	information	that	is	required	to	extract
the	data,	and	mappings	that	indicate	how	the	input	parameters	correspond	to	the
parameters	of	the	underlying	query.	They	use	output	mappings	that	define	how
the	returned	columns	map	to	the	properties	of	the	objects	the	developer	wants	to
work	with,	and	return	a	sequence	of	objects	of	the	specified	type.	The	following
schematic	shows	the	high	level	process	when	using	an	accessor	to	retrieve	data
as	an	enumerable	sequence	of	objects.

You	can	execute	both	stored	procedures	and	SQL	statements	using	the	accessor
approach.	The	block	includes	the	SprocAccessor	class	for	stored	procedures

and	the	SqlStringAccessor	class	for	executing	SQL	statements.	Accessors	also
provide	methods	for	asynchronous	data	retrieval	where	the	database	you	are
using	supports	asynchronous	query	execution.

The	mapping	mechanism	is	flexible	and	extensible.	For	stored	procedures
executed	against	SQL	Server	and	Oracle	databases,	the	accessor	will	attempt	to
resolve	the	parameters	automatically	if	you	do	not	specify	a	parameter	mapper
that	defines	the	correlation.	However,	default	parameter	mapping	is	not
available	when	using	SQL	statements,	or	for	other	databases	and	providers.	In
these	cases,	you	must	specify	a	custom	parameter	mapper	that	can	resolve	the
parameters.

Note:
Keep	in	mind	that	creating	stored	procedure	accessors	with	the	default
mapper	may	be	resource	intensive	and	affect	performance.	Consider	caching
the	accessor	and/or	the	mapper.

When	you	execute	an	accessor,	you	can	provide	an	output	mapping	that
indicates	how	the	accessor	should	map	the	values	returned	from	the	database	to
the	properties	of	the	objects	it	returns	to	the	caller.	If	you	do	not	specify	an
output	mapper,	the	block	uses	a	default	map	builder	class	that	maps	the	column
names	of	the	returned	data	to	properties	of	the	objects	it	creates.	Alternatively,
you	can	create	a	custom	mapping	to	specify	the	correlation	between	columns	in
the	row	set	and	the	properties	of	the	objects.

The	accessor	returns	data	as	a	sequence	of	objects	in	the	form
IEnumerable<TResult>,	where	each	object	represents	one	row	of	data	in	the
data	source	and	exposes	properties	that	map	to	the	columns	in	each	row.	You
can	handle	the	results	in	your	code	as	objects	that	are	part	of	your	data	model,	or
query	them	using	client-side	techniques	such	as	Language	Integrated	Query
(LINQ).

The	following	shows	a	simple	example	of	executing	a	stored	procedure	that
takes	no	parameters	and	then	querying	the	results	returned	from	the	accessor.
The	code	assumes	you	have	defined	the	Customer	class	elsewhere,	and	you
have	resolved	an	instance	of	the	Database	class	you	want	to	use	and	stored	it	in
the	variable	named	db.

C#

//	Create	an	output	row	mapper	that	maps	all	properties	based	on	the	column	names

IRowMapper<Customer>	mapper	=	MapBuilder<Customer>.BuildAllProperties();

//	Create	a	stored	procedure	accessor	that	uses	this	output	mapper

var	accessor	=	db.CreateSprocAccessor("Top	Ten	Customers",	mapper);

//	Execute	the	accessor	to	obtain	the	results

var	customerData	=	accessor.Execute();

//	Perform	a	client-side	query	on	the	returned	data	

var	results	=	from	customer	in	customerData

														where	customer.State	==	"WA"

														orderby	customer.Name

														select	new	{	Name	=	customer.Name	};

//	Display	the	results	

foreach	(var	customer	in	results)

{

		Console.WriteLine("{0}	is	a	top	customer	in	Washington	State",	customer);

}

Visual	Basic

'	Create	an	output	row	mapper	that	maps	all	properties	based	on	the	column	names

Dim	mapper	As	IRowMapper(Of	Customer)	=	MapBuilder(Of	Customer).BuildAllProperties()

'	Create	a	stored	procedure	accessor	that	uses	this	output	mapper

Dim	accessor	=	db.CreateSprocAccessor("Top	Ten	Customers",	mapper)

'	Execute	the	accessor	to	obtain	the	results

Dim	customerData	=	accessor.Execute()

'	Perform	a	client-side	query	on	the	returned	data	

Dim	results	=	From	customer	In	customerData	_

														Where	customer.State	=	"WA"	_

														Order	By	customer.Name	_

														Select	Name	=	customer.Name

'	Display	the	results	

For	Each	customer	In	results

		Console.WriteLine("{0}	is	a	top	customer	in	Washington	State",	customer)

Next	

There	are	also	methods	that	allow	you	to	pass	parameters	or	a	parameter	mapper
to	the	accessor,	and	execute	a	query	without	creating	an	accessor	directly.	For
more	information	about	using	accessors	to	retrieve	data	as	objects,	see	the
following	topics:

Defining	Parameter	Mappers
Building	Output	Mappers
Creating	and	Using	Accessors
Executing	Queries	without	Creating	an	Accessor
Executing	Accessor	Queries	Asynchronously
Additional	Information	for	Accessors	and	Client-side	Queries

Note:
The	accessor	feature	in	the	Data	Access	Application	Block	is	not	an
Object/Relational	Mapping	(OR/M)	mechanism,	and	should	not	to	be
confused	with	LINQ	to	SQL,	or	any	other	implementation	that	performs
optimization	of	queries.	It	does	not	provide	support	for	updates,	identity
maps,	foreign	keys,	joins,	or	automatic	SQL	generation.	The	technique	for
client-side	queries	more	closely	resembles	that	of	LINQ	to	Objects.
However,	there	is	no	assumption	on	how	you	will	(or	can)	use	the	returned
object	graph	in	your	applications.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Returning Data as Objects for Client Side Querying'%0AEntLib50_5b8cd6ef-7aca-4435-bea6-427d4bfaac60%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Defining	Parameter	Mappers

A	parameter	mapper	takes	the	set	of	objects	you	want	to	pass	to	a	query	and
converts	each	one	into	a	DbParameter	object.	The	accessor	assigns	these
parameters	to	the	command	object	it	uses	to	access	the	data	source.	For
information	about	using	parameter	mappers	with	an	accessor,	see	Creating	and
Using	Accessors	and	Executing	Queries	without	Creating	an	Accessor.

The	Data	Access	Application	Block	includes	a	default	parameter	mapping
mechanism.	This	mechanism	maps	values	you	provide	as	query	parameters	to
the	DbParameter	instances	the	query	will	use	when	executing	against	the
database.

Note:
The	default	parameter	mapping	mechanism	is	only	available	for	the
SqlDatabase	and	OracleDatabase	classes,	or	for	custom	database	classes
you	create	where	the	database	supports	parameter	discovery.	The	Database
class	exposes	a	Boolean	property	named	SupportsParemeterDiscovery	that
your	code	can	test	(note	that,	for	backward	compatibility	reasons,	the
misspelling	of	this	name	is	preserved	in	the	current	version).	If	you	use	any
other	database	provider,	you	must	create	a	suitable	implementation	of	the
IParameterMapper	interface	that	assigns	the	parameter	values	to	the
DbCommand.	For	more	information,	see	Creating	Custom	Parameter
Mappers	later	in	this	topic.

This	default	mapping	uses	the	position	of	the	parameters	you	provide	in	the
object	array,	and	executes	the	ADO.NET	DeriveParameters	method	to
discover	the	parameters	required	by	the	procedure.	It	maps	your	parameter(0)
to	the	first	parameter	of	the	procedure,	parameter(1)	to	the	second	parameter	of
the	procedure,	and	so	on.	It	converts	the	CLR	types	you	specify	into	the
appropriate	database	types	for	each	DbParameter	it	populates.

The	ADO.NET	DeriveParameters	call	that	resolves	parameters	for	a	stored
procedure	requires	a	round-trip	to	the	database.	The	application	block	provides
parameter	information	caching	to	mitigate	the	performance	hit	that	this	incurs.

After	the	first	call	to	a	stored	procedure	that	requires	parameter	discovery,	the
information	about	each	parameter	is	saved	in	the	parameter	cache.	This	means
that	subsequent	calls	to	the	same	stored	procedure	will	not	require	a	round-	trip
to	the	database.

Creating	Custom	Parameter	Mappers
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Defining Parameter Mappers'%0AEntLib50_f256ad70-9cdc-4404-8056-83be6fa9d1a2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Building	Output	Mappers

An	output	mapper	takes	the	result	set	returned	from	a	database	(in	the	form	of
rows	and	columns)	and	converts	the	data	into	a	sequence	of	objects.	There	are
two	different	types	of	output	mappers	that	you	can	use	to	transform	the	returned
data.	Row	mappers	transform	each	row	into	an	object,	so	that	the	accessor	can
return	a	sequence	of	these	objects.	Result	set	mappers	take	the	entire	result	set
and	generate	a	complete	object	graph	that	represents	the	result	set	as	objects.

The	following	sections	of	this	topic	provide	more	information	about	the	default
mapping	capabilities	and	the	two	types	of	output	mapper:

Using	the	Default	Row	Mapper
Defining	Custom	Row	Mappings
Creating	Result	Set	Mappers

For	information	about	using	output	mappers	with	an	accessor,	see	Creating	and
Using	Accessors	and	Executing	Queries	without	Creating	an	Accessor.

Using	the	Default	Row	Mapper

Defining	Custom	Row	Mappings

Creating	Result	Set	Mappers
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Building Output Mappers'%0AEntLib50_9959e828-5ccd-4b63-81c2-509afe4393cd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	and	Using	Accessors

Accessors	execute	the	query	you	specify	using	the	parameter	values	and	a
parameter	mapper	(if	provided),	and	transform	the	result	into	a	series	of	objects
using	the	output	mapper	you	specify.	You	can	create	an	accessor	by	calling	a
method	on	your	chosen	implementation	of	the	Database	class,	such	as
SqlDatabase	or	OracleDatabase,	or	you	can	create	an	accessor	directly	using
the	new	operator	or	through	dependency	injection.

Note:
Because	of	the	overhead	associated	with	setting	up	Accessors	and	their
associated	mappings,	you	gain	improved	performance	by	creating	the
accessor	in	advance,	maintaining	a	reference	to	it,	and	reusing	the	instance.
Using	this	technique	you	only	incur	the	setup	cost	once	instead	of	every	time
you	call	the	database.	

The	difference	between	using	the	default	mappers	and	providing	your	own
implementation	of	the	mapper	interfaces,	IRowMapper	and
IResultSetMapper,	is	that	when	providing	your	own	implementation	you
can	get	better	performance	through	special	case	code,	or	do	more
sophisticated	data	transformations	than	the	default	column-to-property	direct
mapping.	The	cost	here	is	the	time	to	implement	that	special	case	code	and
the	future	maintenance	burden.

The	Data	Access	Application	Block	provides	two	accessors	that	you	can	use	to
retrieve	data	as	objects.	The	following	sections	of	this	topic	describe	each	one	in
detail:

Stored	Procedure	Accessor
SQL	String	Accessor

See	the	following	topics	for	more	information	about	using	accessors	in	your
applications:

Defining	Parameter	Mappers
Building	Output	Mappers

Executing	Queries	without	Creating	an	Accessor
Executing	Accessor	Queries	Asynchronously
Additional	Information	for	Accessors	and	Client-side	Queries

Stored	Procedure	Accessor

SQL	String	Accessor

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating and Using Accessors'%0AEntLib50_17e750dc-a9dc-42ca-a9aa-d6a8c44d7d4e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Executing	Queries	without	Creating	an	Accessor

Instead	of	creating	an	accessor	first,	and	then	executing	it,	you	can	use	the
methods	of	the	Database	class	to	create	an	accessor	and	execute	it	as	one
operation.	You	can	do	this	with	both	the	SprocAccessor	and
SqlStringAccessor.	The	main	difference	between	this	approach	and	calling	the
Execute	method	explicitly	on	an	existing	accessor	is	that	you	must	also	pass
any	required	parameters	into	the	ExecuteSprocAccessor	method.	The
following	sections	show	the	technique	for	the	two	types	of	accessor:

Stored	Procedure	Accessor
SQL	String	Accessor

See	the	following	topics	for	more	information	about	using	accessors	in	your
applications:

Defining	Parameter	Mappers
Building	Output	Mappers
Creating	and	Using	Accessors
Executing	Accessor	Queries	Asynchronously
Additional	Information	for	Accessors	and	Client-side	Queries

Stored	Procedure	Accessor

SQL	String	Accessor
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/bb384665.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Executing Queries without Creating an Accessor'%0AEntLib50_77b890cd-9282-4dc7-9004-5125f160552c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Executing	Accessor	Queries	Asynchronously

You	can	execute	accessors	asynchronously	if	you	wish,	in	much	the	same	was
as	you	can	execute	many	of	the	other	methods	of	the	Data	Access	Application
Block.	However,	this	is	only	possible	where	the	underlying	database	supports
asynchronous	operations	(in	other	words,	the	Database.SupportsAsync
property	is	true).

The	SprocAccessor	and	SqlStringAccessor	classes	expose	the	BeginExecute
method,	which	takes	as	parameters	a	reference	to	a	callback	method	that	will
execute	when	the	operation	ends,	a	parameter	that	contains	state	you	want	to
pass	to	the	callback	method,	and	an	object	array	containing	the	parameter	values
the	accessor	will	use	when	it	executes	the	query.	Typically	you	will	pass	a
reference	to	the	accessor	as	the	asynchronous	state	parameter	so	that	you	can
call	the	EndExecute	method	on	it	within	the	callback	method.

The	accessors	expose	only	a	single	overload	of	the	BeginExecute	method.	You
can	create	the	accessor	using	any	of	the	techniques	described	in	the	topic
Creating	and	Using	Accessors.

When	the	query	operation	completes,	the	code	in	the	callback	handler	executes
and	you	can	retrieve	the	accessor	and	call	the	EndExecute	method	to	retrieve
the	IEnumerable	sequence	as	the	result.	The	following	code	shows	an	example
of	using	asynchronous	operations	with	an	accessor.	Notice	that	the	connection
string	specifies	a	connection	that	supports	asynchronous	operations.	In	addition,
keep	in	mind	that	the	connection	is	not	closed	until	the	entire	list	is	processed.
You	must	force	complete	evaluation	of	the	result	sequence	to	extract	all	of	the
data	when	you	call	the	EndExecute	method.	For	example,	call	the	ToList
method,	as	shown	in	the	following	code	extract.
C#

String	connectionString	

		=	@"server=(local);	database=Northwind;	Integrated	Security=true;	Asynchronous	Processing=true";

SqlDatabase	db	=	new	SqlDatabase(connectionString);

DbCommand	cmd	=	db.GetStoredProcCommand("Some	Procedure	Name");

try

{

		//	Create	the	accessor.	This	example	uses	the	simplest	overload.

		var	accessor	=	db.CreateSprocAccessor<Customer>("Top	Ten	Customers");

		//	Execute	the	accessor	asynchronously,	passing	in	the	callback	handler,	

		//	the	existing	accessor	as	the	AsyncState,	and	the	parameter	values.

		IAsyncResult	async	=	accessor.BeginExecute(MyEndExecuteCallback,	accessor,	2009,	"WA");

}

catch

{

		//	...

		//	handle	any	execution	initiation	errors	here

}

//==

//	callback	handler	that	executes	when	call	completes

public	void	MyEndExecuteCallback(IAsyncResult	async)	

{

		try

		{

				//	obtain	the	results	from	the	accessor

				DataAccessor	accessor	=	async.AsyncState	as	DataAccessor<Customer>;

				var	customers	=	accessor.EndExecute(async).ToList();

				//	...	

				//	use	the	results	here

				//	...	

		}

		catch

		{

				//	...

				//	handle	any	execution	completion	errors	here

		}

}

Visual	Basic

Dim	connectionString	As	String	_

		=	"server=(local);	database=Northwind;	Integrated	Security=true;	Asynchronous	Processing=true"

Dim	db	As	New	SqlDatabase(connectionString)

Dim	cmd	As	DbCommand	=	db.GetStoredProcCommand("Some	Procedure	Name")

Try

		'	Create	the	accessor.	This	example	uses	the	simplest	overload.

		Dim	accessor	=	db.CreateSprocAccessor(Of	Customer)("Top	Ten	Customers")

		'	Execute	the	accessor	asynchronously,	passing	in	the	callback	handler,	

		'	the	existing	accessor	as	the	AsyncState,	and	the	parameter	values.

		Dim	async	As	IAsyncResult	_

						=	accessor.BeginExecute(AddressOf	MyEndExecuteCallback,	accessor,	2009,	"WA")

Catch

		'	...

		'	handle	any	execution	initiation	errors	here

End	Try

'==

'	callback	handler	that	executes	when	call	completes

Public	Sub	MyEndExecuteCallback(async	As	IAsyncResult)

		Try

				'	obtain	the	results	from	the	accessor

				Dim	accessor	As	DataAccessor	=	TryCast(async.AsyncState,	DataAccessor(Of	Customer))

				Dim	customers	=	accessor.EndExecute(async).ToList()

				'	...	

				'	use	the	results	here

				'	...	

		Catch

				'	...

				'	handle	any	execution	completion	errors	here

		End	Try

End	Sub

An	alternative	approach	to	coding	the	callback	is	to	use	a	lambda	function
declared	within	the	call	to	the	BeginExecute	method	of	the	Accessor.

Note:
There	are	some	limitations	on	using	asynchronous	data	operations,	and
several	issues	you	should	be	aware	of.	For	more	details,	see	Using	the
Asynchronous	Data	Access	Methods.	

In	addition,	when	you	execute	an	accessor	asynchronously,	you	can	only
iterate	over	the	result	set	once.	If	you	attempt	to	iterate	over	it	again,	the
block	will	raise	an	exception.	For	this	reason,	you	may	need	to	use	an
approach	such	as	the	ToList	method	to	force	complete	evaluation	of	the
result	sequence.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Executing Accessor Queries Asynchronously'%0AEntLib50_c47c18f7-8d38-4ee8-b8a5-ef8a29807372%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Additional	Information	for	Accessors	and	Client-side	Queries

This	topic	describes	some	additional	factors	and	issues	related	to	using
accessors	to	retrieve	data	as	a	sequence	of	objects.	It	covers	the	following:

Creating	Accessors	through	Dependency	Injection
Accessing	and	Iterating	the	Results	Set
Querying	the	Results	Set	Using	LINQ
Deferred	Loading	and	Multiple	Iterations	of	the	Result	Set

Creating	Accessors	through	Dependency	Injection

Accessing	and	Iterating	the	Results	Set

http://msdn.microsoft.com/en-us/library/19e6zeyy.aspx

Querying	the	Results	Set	Using	LINQ

http://msdn.microsoft.com/en-us/library/bb308959.aspx

Deferred	Loading	and	Multiple	Iterations	of	the	Result	Set
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Additional Information for Accessors and Client-side Queries'%0AEntLib50_47bc2264-1da1-4771-b611-029a23775874%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Portable	Database	Applications

There	are	issues	that	you	must	consider	if	your	application	must	work	with
multiple	database	types.

Working	with	Oracle	Databases

Suggestions	for	Creating	Portable	Database	Applications
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Portable Database Applications'%0AEntLib50_59250b69-2ea5-4ff1-99de-fc26e9569371%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Handling	Exceptions

Strategies	for	handling	exceptions	are	essential	in	any	enterprise	application.
The	following	information	will	help	you	incorporate	the	Data	Access
Application	Block	into	your	approach	to	managing	exceptions:

The	application	block	uses	configuration	information,	which	may	result
in	configuration-related	exceptions.
The	Database	methods	use	both	ADO.NET	and	the	underlying	database
provider.	Exceptions	thrown	by	ADO.NET	are	caught	by	the	Data
Access	Application	Block	for	instrumentation	purposes,	and	then	they
are	re-thrown.
Adequately	processing	an	exception	often	requires	access	to	the	specific
exception	type.	You	can	include	a	catch	statement	for	a	specific	database
provider	exception	such	as	SqlException.	However,	database	provider–
specific	exception	types	are	not	portable	across	different	providers.

If	you	use	ExecuteReader	within	a	try	block,	you	should	add	a	finally
statement	and	close	the	returned	DataReader	object,	as	shown	in	the	following
example.	It	assumes	that	you	have	resolved	the	Database	class	you	require	and
stored	a	reference	in	the	variable	named	db.	For	more	information	on
instantiating	objects,	see	Creating	and	Referencing	Enterprise	Library	Objects.
C#

DbCommand	cmd	=	db.GetStoredProcCommand("GetProductsByCategory");	

IDataReader	reader	=	null;

try

{

		//...

		reader	=	db.ExecuteReader(cmd);

}

catch(Exception	ex)

{

		//	Process	exception

}

finally

{

		if	(reader	!=	null)

				reader.Close();

}

Visual	Basic

Dim	cmd	As	DbCommand	=	db.GetStoredProcCommand("GetProductsByCategory")

Dim	reader	As	IDataReader	=	Nothing

Try

		'	...

		reader	=	db.ExecuteReader(cmd)

Catch	ex	As	Exception

		'	Process	exception

Finally

		If	(Not	reader	Is	Nothing)	Then

				reader.Close()

		End	If

End	Try

Alternatively,	you	can	include	the	using	statement	to	dispose	of	the
DataReader	object,	which	causes	it	to	close,	as	shown	in	the	following
example.
C#

DbCommand	cmd	=	db.GetStoredProcCommand("GetProductsByCategory");	

using	(IDataReader	reader	=	db.ExecuteReader(cmd))

{

		//	Process	results

}

Visual	Basic

Dim	cmd	As	DbCommand	=	db.GetStoredProcCommand("GetProductsByCategory")

Using	reader	As	IDataReader	=	db.ExecuteReader(cmd)

		'	Process	results

End	Using

For	design	and	implementation	guidelines	for	exception	management	in	.NET,
see	the	Design	Guidelines	for	Exceptions.

http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx

Handling	Asynchronous	Data	Access	Exceptions
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ms379553(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Handling Exceptions'%0AEntLib50_5f1dcd7c-b3fa-468f-864d-62d3bac68f84%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Handling	Parameters

Most	stored	procedures	accept	parameters	whose	values	are	either	used	as	input
to	the	stored	procedure	or	are	set	during	output.	As	with	ADO.NET,	the	Data
Access	Application	Block	allows	developers	to	explicitly	specify	all	of	the
attributes	of	a	parameter.	These	attributes	can	include	direction,	data	type,	and
length.	This	approach	is	named	explicit	parameter	handling.	However,	as	a
convenience,	you	can	specify	only	the	values	when	using	input	parameters.	In
this	case,	the	application	block	will	look	up	and	supply	the	parameter	attributes.
This	approach	is	named	parameter	discovery.

Explicit	Parameter	Handling

Using	Column	Values	as	Parameter	Inputs

Parameter	Discovery

Optional	Parameters
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Handling Parameters'%0AEntLib50_d40074bc-fc16-4a1c-8856-60c515e11f3e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	topic	describes	the	most	common	situations	developers	must	address	when
accessing	a	database.	Each	scenario	explains	the	task,	describes	a	real-world
situation	where	such	a	task	might	arise,	and	includes	code	demonstrating	how	to
use	the	Data	Access	Application	Block	to	complete	the	task.	The	scenarios	are
as	follows:

Using	a	DbDataReader	to	Retrieve	Multiple	Rows.	This	scenario
illustrates	how	you	can	use	the	ExecuteReader	method	to	retrieve
multiple	rows	of	data	from	a	database	for	display	in	tabulated	form—
without	explicitly	caching	the	data,	using	a	DataSet	object	to	manipulate
it,	or	passing	it	to	other	components	within	your	application.	In	other
words,	it	illustrates	how	to	display	the	results	as	quickly	as	possible.
Using	a	DataSet	to	Retrieve	Multiple	Rows.	This	scenario	illustrates	how
you	can	use	the	ExecuteDataSet	method	to	pass	data	between	the
components	and	the	tiers	of	a	multi-tier	application.	The	data	consists	of
one	or	more	data	tables	and,	optionally,	the	relationships	that	link	the
tables	together.
Executing	a	Command	and	Accessing	Output	Parameters.	This	scenario
illustrates	how	you	can	use	the	ExecuteNonQuery	method	to	retrieve	a
single	row	that	contains	multiple	column	values.
Executing	a	Command	and	Accessing	a	Single	Item	Result.	This
scenario	illustrates	how	you	can	use	the	ExecuteScalar	method	to
perform	a	single-item	lookup.
Performing	Multiple	Updates	Within	a	Transaction.	This	scenario
illustrates	how	you	can	use	the	ExecuteNonQuery	method	from	within	a
transaction	to	perform	multiple	operations	against	a	database,	where	it	is
essential	that	either	all	operations	succeed	or	none	succeed.
Using	a	DataSet	to	Update	a	Database.	This	scenario	illustrates	how,
after	changing	a	DataSet	object,	you	can	use	the	UpdateDataSet
method	to	update	the	database	and	make	your	changes	permanent.
Retrieving	Multiple	Rows	as	XML.	This	scenario	illustrates	how	you	can
use	the	ExecuteXmlReader	method	to	retrieve	data	from	a	SQL	Server
and	have	that	data	returned	in	XML	format.
Retrieving	Data	as	Objects.	This	scenario	demonstrates	how	you	can	use

the	data	accessors	included	in	the	block	to	retrieve	data	as	a	sequence	of
objects	of	a	specified	type	from	the	data	store.
Performing	Asynchronous	Data	Access.	This	scenario	demonstrates	how
you	can	use	the	asynchronous	version	of	the	ExecuteReader	method	to
read	data	from	a	data	store	asynchronously,	and	then	access	the	results
using	a	callback	that	indicates	when	the	method	completes.

This	topic	helps	you	implement	your	approach	by	using	the	Data	Access
Application	Block.	It	does	not	help	you	choose	the	correct	approach	for	your
particular	situation	(for	example,	it	does	not	help	you	choose	between	a	DataSet
and	a	DbDataReader).	For	guidance	on	approaches	to	data	access,	see	the
following	Microsoft	patterns	&	practices	guides:

.NET	Data	Access	Architecture	Guide
INFO:	Microsoft	Guide	for	Designing	Data	Tier	Components	and
Passing	Data	Through	Tiers
Improving	.NET	Application	Performance	and	Scalability

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ee817654.aspx
http://support.microsoft.com/default.aspx?scid=kb;en-us;829025
http://msdn.microsoft.com/en-us/library/ms998530.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_da669e93-7f2a-4e21-b46f-ac4cf2241aea%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	a	DbDataReader	to	Retrieve	Multiple	Rows

A	common	database	task	is	to	retrieve	and	display	information.	For	example,	an
online	retail	application	may	need	to	display	a	list	of	products	within	a	specified
category.

Typical	Goals

Solution

Using	ExecuteDataReader

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using a DbDataReader to Retrieve Multiple Rows'%0AEntLib50_ae92b94c-9b51-47d9-b861-718dcaa4d94c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	a	DataSet	to	Retrieve	Multiple	Rows

In	a	multi-tier	system,	you	may	need	to	pass	data	from	a	data	access	component
to	a	middle-tier	business	component.	The	data	is	retrieved	from	the	database	and
sent	back,	through	the	data	access	layer,	to	the	business	layer.	The	information
is	contained	in	the	DataSet	object.

Typical	Goals

Solution

Using	ExecuteDataSet

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using a DataSet to Retrieve Multiple Rows'%0AEntLib50_2ca2db64-8b10-4c26-bb40-6201d4a590f8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Executing	a	Command	and	Accessing	Output	Parameters

A	common	database	task	is	to	retrieve	specific,	multiple-column	values.	For
example,	in	a	Web-based	online	retail	application,	you	may	want	to	retrieve	full
product	details	for	a	certain	product	in	response	to	a	user	request.

Typical	Goals

Solution

Using	ExecuteNonQuery

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Executing a Command and Accessing Output Parameters'%0AEntLib50_cad8e344-87df-4e36-8e89-79c3a86df993%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Executing	a	Command	and	Accessing	a	Single	Item	Result

There	are	many	situations	in	which	you	have	to	perform	a	single-item	lookup.
For	example,	an	online	retailer	may	want	to	use	a	product	ID	to	retrieve	a
product	name	or	use	a	customer	ID	to	retrieve	a	credit	rating.

Typical	Goals

Solution

Using	ExecuteScalar

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ee817654.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Executing a Command and Accessing a Single Item Result'%0AEntLib50_5b9d82a7-9b4d-4954-bfd8-f9bc1f1c9186%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Performing	Multiple	Updates	Within	a	Transaction

When	an	application	executes	multiple	operations	against	a	database,	a	common
requirement	is	that	all	of	the	operations	must	succeed	or	the	database	must	roll
back	to	its	original	state	(that	is,	its	state	before	the	operations	began).	This	all-
or-nothing	requirement	is	referred	to	as	a	transaction.	Transactions	ensure	the
integrity	of	a	database	system's	state.	For	example,	in	a	classic	banking	scenario,
an	application	must	debit	one	account	and	credit	another	with	a	particular
amount	of	money.	For	proper	accounting,	it	is	essential	that	either	both
operations	succeed	or	neither	operation	succeeds.	This	means	that	both
operations	should	be	performed	in	the	context	of	a	single	transaction.

Typical	Goals

Solution

Using	ExecuteNonQuery	in	a	Transaction
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Performing Multiple Updates Within a Transaction'%0AEntLib50_23a1ec97-3c89-4240-bb49-fb1ca1bd843f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	a	DataSet	to	Update	a	Database

Databases	must	be	periodically	updated	with	new	information.	For	example,	in
a	Web-based	online	retail	application,	you	may	want	to	add	a	new	customer	to
the	database,	modify	the	name	associated	with	a	customer	ID,	or	delete	a
customer	record	entirely.

Typical	Goals

Solution

Using	UpdateDataSet

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using a DataSet to Update a Database'%0AEntLib50_4d4d3a93-8b1c-4a98-a8e7-2437abf49689%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Retrieving	Multiple	Rows	as	XML

An	example	of	where	you	may	want	to	use	XML	data	is	within	an	e-commerce
application	that	allows	clients	to	request	a	product	catalog	that	is	in	XML
format.

Typical	Goals

Solution

Using	ExecuteXmlReader

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Retrieving Multiple Rows as XML'%0AEntLib50_02794a88-b67a-412b-b77e-f2798bcc28ca%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Retrieving	Data	as	Objects

This	scenario	demonstrates	one	of	the	ways	that	you	can	use	the	data	accessors
provided	with	the	block	to	read	data	from	a	data	store	and	return	it	as	a
sequence	of	objects	of	the	type	you	specify.	The	Data	Access	Application	Block
provides	two	types	of	accessors,	for	stored	procedures	or	for	use	with	SQL
statements,	in	addition	to	a	range	of	classes	that	help	you	to	map	parameters	to
the	query	and	map	the	returned	data	to	the	type	of	object	you	require.	For
information	about	these	classes,	see	Returning	Data	as	Objects	for	Client	Side
Querying.

Typical	Goals

Solution

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Retrieving Data as Objects'%0AEntLib50_d093c4ad-fcdd-4b66-a6b3-00521c681c90%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Performing	Asynchronous	Data	Access

This	scenario	demonstrates	how	you	can	use	the	asynchronous	version	of	the
ExecuteReader	method	to	read	data	from	a	data	store	asynchronously,	and	then
access	the	results	using	a	callback	that	indicates	when	the	method	completes.
You	do	this	using	the	BeginExecutereader	and	EndExecuteReader	methods
of	the	Database	class.

Note:
Asynchronous	data	access	is	not	supported	by	all	ADO.NET	data	providers.
The	Database	class	exposes	a	Boolean	property	named	SupportsAsync	that
you	can	test	to	check	at	run	time	if	asynchronous	operations	are	supported.	If
this	property	returns	false,	any	asynchronous	methods	you	call	will	throw	an
InvalidOperationException.	In	Enterprise	Library	5.0,	the	only	database
type	that	supports	asynchronous	operation	is	the	SqlDatabase	class.

Typical	Goals

Solution

http://msdn.microsoft.com/en-us/library/ms379553(VS.80).aspx

Using	BeginExecuteReader	and	EndExecuteReader	with	a
Callback

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Performing Asynchronous Data Access'%0AEntLib50_0cc9f22e-d057-44ad-ae33-b66302841947%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Data	Access	Application	Block

The	Data	Access	Application	Block	includes	the	following	features:
A	simple	and	efficient	way	of	working	with	different	database	systems
(see	Designing	for	Simplified	Data	Access)
A	way	of	developing	database-agnostic	applications	(see	Designing	for
Database-Agnostic	Applications)
An	easy	way	to	adjust	and	validate	the	database	configuration	settings

Design	Goals

Design	Highlights
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Data Access Application Block'%0AEntLib50_171e0be4-f2d4-40a4-b5c8-158258c8c807%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Simplified	Data	Access

Developers	face	many	implementation	choices	and	requirements	when	they
build	data	access	solutions.	They	must	access	the	data	in	a	variety	of	ways,	and
their	solutions	must	work	with	different	types	of	databases,	each	of	which
handles	data	access	differently.	As	a	result,	developers	may	find	themselves
duplicating	code	that	performs	common	tasks,	such	as	managing	connections
and	assigning	parameters	to	commands.

Another	challenge	is	maintaining	a	consistent	approach	in	how	data	access
operations	are	implemented.	It	may	be	necessary	to	maintain	this	consistency
across	single	projects,	multiple	projects,	or	enterprise-scale	solutions.	Uniform
methods	of	data	access	make	the	code	easier	to	understand,	more	predictable,
and	easier	to	maintain.

The	Data	Access	Application	Block	simplifies	data	access	by	encapsulating	the
logic	that	performs	common	database	operations.	These	methods	also	handle
common	housekeeping	tasks	such	as	opening	and	closing	connections.	They	are
database-agnostic,	which	means	that	they	work	with	SQL	Server	and	Oracle
databases	and	do	not	require	modification	to	do	so.	Applications	written	for	one
type	of	database	use	the	same	methods	as	those	written	for	another	type	of
database.	This	means	that	applications	are	consistent	in	the	ways	that	they
access	data.	In	addition,	the	GenericDatabase	class	supports	many	of	these
same	features	across	ADO.NET	data	providers.

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Simplified Data Access'%0AEntLib50_28c11fee-5ad6-4efa-a347-7d6644587ffc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Database-Agnostic	Applications

The	Data	Access	Application	Block	provides	an	extensible	framework	for
supporting	multiple	types	of	relational	databases.	Applications	that	use	the
application	block	are	portable	across	different	database	systems.

There	are	a	number	of	general	data	access	tools—such	as	Open	Database
Connectivity	(ODBC)	or	OLE	DB—that	can	provide	access	to	a	variety	of	data
sources.	One	drawback	to	these	tools	is	that	how	they	are	used	depends	on	the
target	database.	That	means	that	programmers	need	to	understand	various
programming	models	to	access	different	database	types.	Moving	an	application
to	a	different	database	could	require	a	significant	amount	of	recoding.

Another	drawback	to	the	ODBC	or	OLE	DB	approach	is	that	performance	may
suffer.	Generic	data	providers	are	slower	than	those	optimized	for	a	particular
data	source.	The	Data	Access	Application	Block	provides	an	implementation
that	features	both	portability	and	optimized	performance.

Copy	Code

Copy	Code

Abstraction	of	the	Database	System
The	Data	Access	Application	Block	builds	on	the	capabilities	provided	by
ADO.NET	to	create	a	database-agnostic	provider	model.	The	following	are
some	of	the	features	it	provides:

It	standardizes	parameter	names.	For	example,	it	supplies	the	"@"
character	for	SQL	parameter	names.
It	configures	the	stored	procedure	package	name	mapping	for	Oracle
databases.
It	uses	ADO.NET	static	methods	for	SQL	Server	and	Oracle	to	support
agnostic	parameter	discovery.
It	adds	the	cursor	parameter	for	results	returned	by	an	Oracle	stored
procedure.

The	majority	of	the	data	access	methods	are	available	through	the	abstract
Database	class.	Client	code	can	refer	to	these	methods	in	their	code	regardless
of	the	actual	Database-derived	object	used.	For	example,	the	following	code
shows	how	to	use	the	ExecuteDataSet	method.
C#

Database	db;

...

db.ExecuteDataSet(cmd);

Visual	Basic

Dim	db	As	Database

...

db.ExecuteDataSet(cmd)

The	block	creates	the	specific	Database-derived	object.	It	returns	an	object	of
type	Database,	thus	allowing	the	client	code	to	remain	generic	regarding	the
actual	database	type	returned.

The	methods	available	on	the	Database	class	require	information	about	the
command	to	be	executed	as	well	as	any	associated	parameters.	Different

database	systems	handle	commands	and	parameters	in	different	ways.
Database-derived	classes	provide	methods	that	accept	parameter	information;
the	specific	database	systems	provide	their	own	derived	implementations	to
handle	parameter	parameters.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Database-Agnostic Applications'%0AEntLib50_7124456c-f9fd-4b11-bb27-9bdf9cb3d82b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Data	Access	Application	Block

In	its	original	state,	the	Data	Access	Application	Block	works	well	for	typical
data	access	scenarios.	However,	there	may	be	times	when	you	need	to
customize	some	of	the	application	block's	behavior	to	better	suit	your
application's	requirements.	You	can	extend	the	Data	Access	Application	Block
using	the	built-in	extension	points.	You	can	also	modify	the	application	block	by
making	changes	to	its	source	code.	For	more	details,	see	the	following	topics:

Extending	the	Data	Access	Application	Block
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Data Access Application Block'%0AEntLib50_50b1d864-39c9-46f2-89a8-9fceea5db05e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Data	Access	Application	Block

You	extend	the	application	block	through	designated	extension	points.
Typically,	these	are	custom	classes	that	you	must	write.	The	custom	classes
implement	a	particular	interface	or	derive	from	an	abstract	class.	Because	these
custom	classes	exist	in	your	application	space,	you	do	not	have	to	modify	or
rebuild	the	application	block.	Instead,	you	use	configuration	settings	to
designate	your	extensions.

Currently,	you	can	extend	the	application	block	by	adding	a	new	database	type.
You	would	do	this	if	your	application	needs	database-specific	features	from	a
database	other	than	the	SQL	Server	database	or	the	Oracle	database.	You	only
need	to	extend	the	application	block	if	the	application	block's	GenericDatabase
class	and	the	ADO.NET	data	provider	for	the	database	system	do	not	provide
the	features	you	require.	For	example,	the	GenericDatabase	object	does	not
support	special	parameter	prefixes	for	stored	procedures	or	invoke	methods	that
are	not	on	the	DbCommand	class	or	the	DbConnection	class.	In	addition,	the
GenericDatabase	class	does	not	support	parameter	discovery.

You	could	extend	the	application	block	by	creating	a	new	database	class	that
supports	features	not	exposed	by	the	ADO.NET	data	provider.	For	example,
your	database	class	could	support	parameter	discovery.	You	could	also	extend
the	application	block	to	allow	your	client	code	to	remain	database-agnostic
through	type	conversions	or	by	managing	SQL	syntax	conversions.	Building	a
custom	database	class	allows	your	application	to	support	the	entire	Data	Access
Application	Block	API	set	and	to	be	more	compatible	with	the	syntaxes	of	other
databases.	To	learn	more,	see	Adding	a	New	Application	Block	Database
Provider.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Data Access Application Block'%0AEntLib50_31e0ccfc-7da3-4ff9-af9b-d377de75fd7e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	a	New	Application	Block	Database	Provider

If	the	relational	database	system	you	are	using	does	not	already	have	an
application	block	database	provider,	you	can	create	your	own.	This	is	only
necessary	if	the	application	block's	GenericDatabase	class	does	not	meet	the
requirements	of	your	application.	(This	assumes	that	there	is	an	ADO.NET
DbProviderFactory	type	for	the	database	system	you	are	using.)	To	create	a
new	database	provider,	you	must	create	a	new	database	class	that	derives	from
the	Database	class.	Additionally,	if	you	want	your	client	code	to	remain
database-agnostic,	you	might	have	to	write	additional	code	to	perform	such
tasks	as	type	conversion.

Creating	a	New	Database	Class

Configuring	Your	Application	to	Use	the	New	Provider

Recommendations	for	Creating	a	Database	Provider
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding a New Application Block Database Provider'%0AEntLib50_e4b62b4c-1b44-4433-8958-dc8dc9d4c9f0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	see	that	the	initial	deployment	of
the	Data	Access	Application	Block	is	planned	and	managed	and	that	subsequent
updates	are	deployed	with	minimal	impact	to	existing	applications	that	use	the
application	block.	For	details	of	deploying	and	updating	Enterprise	Library	and
the	application	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	whether	they	want	to	use	the
instrumentation	exposed	by	the	application	block.	For	details	of	how	to	enable
and	disable	instrumentation,	see	Enabling	Instrumentation.	For	information
about	the	instrumentation	contained	within	the	Data	Access	Application	Block,
see	the	following	topics:

Data	Access	Application	Block	Performance	Counters
Data	Access	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_bde72f4b-38f3-4ee3-95c4-6fb76d5279bc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Data	Access	Application	Block	Performance	Counters

The	following	table	describes	the	Data	Access	Application	Block	performance
counters.

Performance	Counter
Name

Description

Commands
Executed/sec

The	rate	at	which	database	commands	were
executed.

Commands	Failed/sec The	rate	at	which	database	commands	failed	to
execute.

Connections	Failed/sec The	rate	at	which	database	connections	failed	to
open.

Connections
Opened/sec

The	rate	at	which	database	connections	were
opened.

Total	Commands
Executed

The	total	number	of	database	commands	that	were
executed.

Total	Commands	Failed The	total	number	of	database	commands	that
failed	to	execute.

Total	Connections
Failed

The	total	number	of	database	connections	that
failed	to	open.

Total	Connections
Opened

The	total	number	of	database	connections	that
were	opened.

A	rate	counter	samples	an	increasing	count	of	events	over	time	and	divides	the
values	by	the	change	in	time	to	display	a	rate	of	activity.	For	more	information
about	performance	counters,	see	Overview	of	Performance	Monitoring	on
TechNet.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/

pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Data Access Application Block Performance Counters'%0AEntLib50_68ab9e29-a8f6-47ef-a9ab-a6480c5896c4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Data	Access	Application	Block	Event	Log	Entries

The	Data	Access	Application	Block	is	instrumented	to	log	entries	to	the
application	event	log	for	a	variety	of	events.	This	topic	lists	the	Data	Access
Application	Block	event	log	entries.

Connection	Failed	Event

Command	Executed	Event

Command	Failed	Event

Data	Configuration	Failure	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Data Access Application Block Event Log Entries'%0AEntLib50_a4176519-a574-4e38-baf6-98baa5c71293%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Exception	Handling	Application	Block

The	Enterprise	Library	Exception	Handling	Application	Block	helps	developers
and	policy	makers	implement	common	design	patterns	and	create	a	consistent
strategy	for	processing	exceptions	that	occur	in	all	architectural	layers	of	an
enterprise	application.	It	is	designed	to	support	the	typical	code	contained	in
catch	statements	in	application	components.	Instead	of	repeating	this	code	(such
as	code	that	logs	exception	information)	in	identical	catch	blocks	throughout	an
application,	the	Exception	Handling	Application	Block	allows	developers	to
encapsulate	this	logic	as	reusable	exception	handlers.	The	Exception	Handling
Application	Block	includes	four	exception	handlers:

Wrap	handler.	This	exception	handler	wraps	one	exception	around
another.
Replace	handler.	This	exception	handler	replaces	one	exception	with
another.
Logging	handler.	This	exception	handler	formats	exception	information,
such	as	the	message	and	the	stack	trace.	Then	the	logging	handler	passes
this	information	to	the	Enterprise	Library	Logging	Application	Block	so
that	it	can	be	published.
Fault	Contract	exception	handler.	This	exception	handler	is	designed
for	use	at	Windows®	Communication	Foundation	(WCF)	service
boundaries,	and	generates	a	new	Fault	Contract	from	the	exception.

You	can	extend	the	Exception	Handling	Application	Block	by	implementing
custom	handlers,	and	administrators	can	manage	the	configuration	of	the	block
to,	for	example,	turn	on	additional	debugging	instrumentation	or	change	the
behavior	of	the	block	in	line	with	changes	to	business	requirements.	The
configuration	can	even	be	managed	using	Group	Policy	tools.

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Exception	Handling	Application	Block:

What	Does	the	Exception	Handling	Application	Block	Do?	This	topic
provides	a	brief	overview	that	will	help	you	to	understand	what	the	block
can	do,	and	explains	some	of	the	concepts	and	features	it	incorporates.	It
also	provides	a	simple	example	of	the	way	that	you	can	write	code	to	use
the	block.

When	Should	I	Use	the	Exception	Handling	Application	Block?	This
topic	will	help	you	to	decide	if	the	block	is	suitable	for	your
requirements.	It	explains	the	benefits	of	using	the	block,	and	any
alternative	techniques	you	may	consider.	It	also	provides	details	of	any
limitations	of	the	block	that	may	affect	your	decision	to	use	it.
Developing	Applications	Using	the	Exception	Handling	Application
Block.	This	topic	explains	how	to	configure	the	Exception	Handling
Application	Block,	how	to	add	the	block	to	your	applications,	how	to
determine	appropriate	exception	handling	policies,	how	to	specify
different	handling	actions,	and	how	to	send	an	exception	to	the
Exception	Handling	Block.
Key	Scenarios.	This	topic	shows	different	ways	to	use	the	Exception
Handling	Application	Block	in	your	own	applications.
Design	of	the	Exception	Handling	Application	Block.	This	topic	explains
the	decisions	that	went	into	designing	the	block	and	the	rationale	behind
those	decisions.
Extending	and	Modifying	the	Exception	Handling	Application	Block.
This	topic	explains	how	to	extend	the	application	block	by	adding
custom	handlers	and	formatters.	It	also	gives	some	advice	about	how	to
modify	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	block	assemblies.

More	Information
For	more	information,	see	the	following	Microsoft®	patterns	&	practices
guides:

Application	Architecture	for	.NET:	Designing	Applications	and	Services
Design	Guidelines	for	Exceptions

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ee817664.aspx
http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Exception Handling Application Block'%0AEntLib50_cd0fa4e8-4a99-4490-8662-ec9d1ade4b28%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Exception	Handling	Application	Block	Do?

A	robust	and	well-planned	exception	handling	strategy	is	a	vital	feature	of	your
application	design	and	implementation	that	will	help	you	avoid	risks	such	as
exposing	error	messages	containing	sensitive	information,	or	leaving	your
application	and	systems	in	an	inconsistent	state	and	open	to	attack	when	an	error
occurs.

An	exception	handling	strategy	consists	of	a	series	of	policies	that	define	how
you	will	present	clear	and	appropriate	messages	to	users	and	how	you	can
provide	assistance	for	operators,	administrators,	and	support	staff.	A
comprehensive	exception-handling	strategy	will	usually:

Notify	the	user	with	a	friendly	message
Store	details	of	the	exception	in	a	production	log	or	other	repository
Alert	the	customer	service	team	to	the	error
Assist	support	staff	in	cross-referencing	the	exception	and	tracing	the
cause

The	Exception	Handling	Application	Block	can	help	you	to	define	and	create
consistent	exception	management	strategies	by	implementing	three	well-known
design	patterns:

Exception	Shielding.	This	pattern	ensures	that	your	application	does	not
leak	sensitive	information,	no	matter	what	run-time	or	system	event	may
occur	to	interrupt	normal	operation.	And	on	a	more	granular	level,	it	can
prevent	your	assets	from	being	revealed	across	layer,	tier,	process,	or
service	boundaries.
Exception	Logging.	This	pattern	can	help	you	to	diagnose	and
troubleshoot	errors,	audit	user	actions,	and	track	malicious	activity	and
security	issues	by	logging	details	of	exceptions	and	errors	that	occur.
Exception	Translation.	This	pattern	describes	how	you	can	wrap
exceptions	within	other	exceptions	specific	to	a	layer	to	ensure	that	they
actually	reflect	user	or	code	actions	within	the	layer	at	that	time,	and	not
some	miscellaneous	details	that	may	not	be	useful.

The	Exception	Handling	Application	Block	lets	you	associate	exception	types
with	named	policies.	You	do	this	by	using	the	configuration	tools.	Policies
specify	the	exception	handlers	that	execute	when	the	block	processes	a

particular	exception	type.	Exception	handlers	are	.NET	classes	that	encapsulate
exception	handling	logic	and	implement	the	Exception	Handling	Application
Block	interface	named	IExceptionHandler.

You	can	chain	these	handlers	together	so	that	a	series	of	them	execute	when	the
associated	exception	type	is	handled.	The	following	are	some	examples	of
named	policies	and	descriptions	of	what	they	might	provide:

Base	policy.	This	policy	logs	the	exception	and	re-throws	the	original
exception.
Secure	policy.	This	policy	logs	the	exception,	replaces	the	original
exception	with	a	custom	exception,	and	throws	the	new	exception.
Expressive	policy.	This	policy	wraps	the	original	exception	inside
another	exception	and	throws	the	new	exception.

The	following	schematic	illustrates	examples	of	cross-layer	and	single-
application	component	exception	handling.

Figure	1	
Examples	of	exception	handling	policies

In	this	example,	exceptions	that	occur	in	the	data	access	layer	are	logged	and
then	wrapped	inside	another	exception	that	provides	more	meaningful
information	to	the	calling	layer.	Within	the	business	component	layer,	the
exceptions	are	logged	before	they	are	propagated.	Any	exceptions	that	occur	in
the	business	component	layer	and	that	contain	sensitive	information	are
replaced	with	exceptions	that	no	longer	contain	this	information.	These	are	sent
to	the	user	interface	(UI)	layer	and	displayed	to	the	user.

For	information	about	how	to	develop	exception	management	strategies,	see
Determining	Appropriate	Exception	Policies	and	Actions.

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Exception Handling Application Block Do?'%0AEntLib50_fa1a3c57-dbad-4c04-bbb0-5f5b0578ef92%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Exception	Handling	Application	Block?

The	Exception	Handling	Application	Block	is	best	used	in	situations	that	require
uniform	and	flexible	procedures	for	handling	exceptions.	For	example,	you
might	want	consistent	exception	handling	procedures	for	all	components	in	a
particular	tier	of	an	application's	architecture.	In	addition,	because	of	changing
security	or	other	operational	issues,	you	might	want	the	ability	to	change
policies	as	needed,	without	requiring	changes	to	the	application	source	code.
The	Exception	Handling	Application	Block,	in	conjunction	with	the	Enterprise
Library	configuration	tools,	lets	you	accomplish	both	tasks.

For	example,	you	could	use	the	configuration	tools	to	define	a	policy	that	uses
handlers	to	replace	exceptions	that	contain	sensitive	information	with	versions
that	do	not	include	that	information.	The	block	then	implements	this	policy
across	the	components	that	contain	code	that	specifies	this	policy	should	be
used.

The	Exception	Handling	Application	Block	is	not	limited	to	cross-tier
applications.	It	can	also	be	used	within	a	particular	application.	For	example,
you	can	define	policies	that	log	exception	information	or	display	exception
information	to	the	user.

In	either	case,	policies	are	configured	without	changing	the	application's	code.
This	makes	them	easy	to	maintain	or	change	when	new	situations	occur.	Note
that,	in	all	cases,	you	should	use	the	block	to	perform	only	those	tasks	that	are
specific	to	exception	handling	and	that	do	not	intersect	with	the	application's
business	logic.	For	example,	you	can	remove	the	handlers	that	log	an	exception
or	wrap	one	exception	in	another	without	affecting	such	basic	capabilities	as
updating	a	customer	database.

Scenarios	for	the	Exception	Handling	Block

Benefits	of	the	Exception	Handling	Application	Block

Limitations	of	the	Exception	Handling	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Exception Handling Application Block?'%0AEntLib50_10bbd3de-fcb7-4d37-8eef-e95e962feeb1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Exception	Handling	Application	Block

This	topic	describes	how	to	develop	applications	by	using	the	Exception
Handling	Application	Block.	It	first	explains	how	to	configure	the	block	and
reference	it	in	your	applications.	Next,	it	describes	how	to	develop	exception-
handling	strategies	for	your	applications,	and	explains	how	to	use	the	block	in
specific	scenarios	such	as	logging	and	propagating	exceptions.	This	section
includes	the	following	topics:

Entering	Configuration	Information
Adding	Application	Code
Determining	Appropriate	Exception	Policies	and	Actions
Specifying	Different	Handling	Actions	Based	on	Exception	Type	and
Policy
Sending	an	Exception	to	the	Exception	Handling	Application	Block
Handling	and	Throwing	Exceptions

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile	it.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Exception Handling Application Block'%0AEntLib50_a5da2356-d8d2-4418-9add-643b94a0ca0d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

These	procedures	explain	how	to	configure	the	Exception	Handling	Application
Block.	For	information	about	using	the	configuration	tools,	see	Using	the
Configuration	Tools.	For	details	of	the	schema	for	the	Exception	Handling
Application	Block	configuration,	see	Source	Schema	for	the	Exception
Handling	Application	Block.	You	can	also	configure	the	block	in	code	by	using
an	alternate	configuration	source.	For	more	information,	see	Advanced
Configuration	Scenarios	and	Using	the	Fluent	Configuration	API.

To	add	the	Exception	Handling	Application	Block
1.	 Open	your	configuration	file	in	the	configuration	editor.	For	more

information,	see	Configuring	Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Exception	Handling

Settings.
3.	 This	creates	an	Exception	Handling	Settings	section	with	one

exception	handling	policy	that	by	default	is	called	Policy,	and	a	single
item	named	All	Exceptions	in	the	Exception	Types	column	that
defines	all	exceptions	of	type	System.Exception	or	that	inherit	the
System.Exception	class.

4.	 To	edit	the	properties	of	the	Exception	Handling	Settings	section,
click	the	chevron	arrow	the	right	of	the	Exception	Handling	Settings
heading.

5.	 (Optional)	If	you	want	to	encrypt	the	configuration,	make	a	selection
from	the	Protection	Provider	drop-down	list.	You	can	select	the
RsaProtectedConfigurationProvider	or	the
DataProtectedConfigurationProvider.	See	Encrypting	Configuration
Data	for	information	about	the	restrictions	on	using	the
RsaProtectedConfigurationProvider.

6.	 (Optional)	If	you	want	to	run	your	application	in	partial	trust	mode,
change	the	Require	Permission	property	to	False.	The	default	is	True.

To	configure	an	exception	handling	policy
1.	 To	add	an	exception	handling	policy,	click	the	plus	sign	icon	in	the

Policies	column	and	click	Add	Policy.	This	adds	a	new	exception
handling	policy	item.	Click	the	expander	arrow	on	the	left	of	the	policy

heading	if	the	properties	are	not	visible.
2.	 (Optional)	Rename	the	policy.	In	the	Name	text	box,	type	the	required

policy	name.
3.	 To	add	an	exception	type	to	a	policy,	right-click	the	policy	item	and

click	Add	Exception	Type	to	display	the	type	selector	dialog.
4.	 Select	the	exception	type	in	the	type	selector	dialog	box.	To	filter	the

list,	type	the	filter	string	in	the	Filter	edit	box.	For	example,	type
"string"	to	filter	for	all	classes	containing	the	word	string.	If	the	type
you	want	is	not	listed,	click	Add	from	File	or	Add	from	GAC	(from
the	global	assembly	cache)	and	find	the	assembly	containing	the	type
you	want,	and	then	click	OK.	This	creates	the	new	policy	and	a	default
All	Exceptions	item.

5.	 Click	the	expander	arrow	to	the	left	on	the	new	All	Exceptions	node	in
the	Exception	Types	column	to	display	the	properties	if	they	are	not
visible.

6.	 Select	the	Post	handling	action	you	want.	The	post-handling	action
determines	what	action	will	occur	after	the	exception	handling	chain
completes.	By	default,	the	post-handling	action	is	set	to
NotifyRethrow.	In	general,	when	you	use	the	Process	method,	you
will	configure	the	exception	handling	policy	with	a	post-handling
action	of	ThrowNewException	unless	you	want	your	code	to	continue
to	execute	after	the	block	handles	the	exception.	Valid	values	are	the
following:

NotifyRethrow.	The	block	executes	all	handlers	for	this
exception	and	returns	true	to	the	application	at	the	point	at
which	the	policy	was	invoked.	Applications	checking	this	value
re-throw	the	original	exception.	However,	if	you	use	the
Process	method	you	cannot	detect	the	value	returned	by	the
Exception	Handling	Application	Block.	Internally,	the	Process
method	calls	the	HandleException	method,	and	throws	the
exception	if	this	method	returns	true.	Therefore,	typically	your
code	will	just	throw	any	exception	that	is	raised.
ThrowNewException.	The	block	executes	all	handlers	for	this
exception	and	throws	the	exception	that	exists	after	the	final
handler	runs.	However,	if	you	use	the	overload	of	the
HandleException	method	that	takes	an	out	parameter	that
returns	the	final	exception	from	the	handlers,	it	does	not

automatically	throw	the	exception;	you	must	do	this	in	your
code.
None.	The	block	executes	all	handlers	for	this	exception	and
returns	false	to	the	application	at	the	point	at	which	the	policy
method	was	invoked.	Applications	checking	this	value	resume
execution.

7.	 To	add	additional	exception	types	to	the	policy,	repeat	steps	3	to	6.
8.	 To	add	an	exception	handler,	right	click	the	All	Exceptions	item	or	an

exception	item	you	added,	point	to	Add	Handlers,	and	then	click	the
exception	handler	type	that	you	want:

Replace	exception	handler.	This	exception	handler	replaces	one
exception	with	another.
Wrap	exception	handler.	This	exception	handler	wraps	the
exception	that	occurred	with	another	exception.
Logging	exception	handler.	This	exception	handler	formats
exception	information	and	uses	the	Logging	Application	Block
to	log	exception	information.	The	Logging	Application	Block	is
automatically	added	to	the	application	configuration	when	you
select	a	logging	handler.	For	more	information,	see	The
Logging	Application	Block.
Fault	Contract	exception	handler.	This	exception	handler	is
designed	for	use	at	Windows	Communication	Foundation
(WCF)	service	boundaries,	and	generates	a	new	Fault	Contract
from	the	exception.
Custom	exception	handler.	This	option	allows	you	to	configure
custom	exception	handlers.	A	custom	handler	is	a	type	that
implements	the	IExceptionHandler	interface	and	has	a
ConfigurationElementType	of	CustomHandlerData.	Click
Add	from	File	in	the	type	selector	to	add	a	custom	handler	that
is	located	in	a	separate	assembly.

9.	 To	add	additional	exception	handlers	to	the	policy,	repeat	step	8.
10.	 If	required,	change	the	order	of	the	exception	handlers	by	right-clicking

the	handler	item	heading	and	clicking	either	Move	Up	or	Move	Down.
Handlers	are	executed	in	the	order	you	specify.	Typically,	you	will
place	a	Logging	handler	first	in	the	list,	followed	by	a	Wrap	handler	or
a	Replace	Handler.

11.	 See	the	following	section	of	this	topic	for	details	of	how	to	configure

exception	handlers.

Configuring	Exception	Handlers
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_fc8160fe-5e08-4174-9744-79a0473edd3f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Exception	Handling	Application	Block

This	topic	lists	the	XML	elements	and	attributes	used	to	configure	the	Exception
Handling	Application	Block.	You	can	manually	edit	the	XML	data,	but	the
Enterprise	Library	Configuration	Console	greatly	simplifies	this	task.	If	you
choose	to	manually	edit	the	XML,	use	the	schema	information	contained	in	this
topic.

The	configuration	file	has	the	following	section-handler	declaration.
XML

<configSections>

<section	name="exceptionHandling"

									type="Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Configuration.ExceptionHandlingSettings,

															Microsoft.Practices.EnterpriseLibrary.ExceptionHandling"	/>

</configSections>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section-handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
exceptionHandling.	The	name	of	the	section-handler	class	is
ExceptionHandlingSettings.	This	class	is	in	the
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Configuration
namespace.

exceptionHandling	Element

exceptionPolicies	Child	Element

exceptionTypes	Child	Element

exceptionHandlers	Child	Element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Exception Handling Application Block'%0AEntLib50_ddddf570-216e-4e80-90cd-29537d91917a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Exception	Handling	Application	Block	is	designed	to	support	the	most
common	scenarios	for	handling	exceptions.	When	you	add	your	application
code,	refer	to	the	scenarios	in	Key	Scenarios	and	select	the	ones	that	best	suit
your	situation.	Use	the	code	that	accompanies	the	scenario	either	as	it	is	shown
here	or	adapt	it	as	required.

To	prepare	your	application	to	use	the	Exception	Handling	Application
Block

1.	 Add	a	reference	to	the	Exception	Handling	Application	Block
assembly.	In	Visual	Studio®,	right-click	your	project	node	in	Solution
Explorer,	and	then	click	Add	Reference.	Click	the	Browse	tab,	select
the	Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.dll
assembly,	and	then	click	OK.

2.	 Following	the	same	procedure,	set	a	reference	to	the	following
assemblies,

Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll

3.	 If	you	configure	your	application	to	use	the	Logging	Exception
Handler,	set	a	reference	to
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging.dll
and	the	required	Logging	Application	Block	assemblies.	For
information	about	the	Logging	Application	Block	assemblies,	see
Adding	Application	Code	in	the	documentation	for	The	Logging
Application	Block.

4.	 (Optional)	To	use	elements	from	the	Exception	Handling	Application
Block	without	fully	qualifying	the	element	reference,	you	can	add	the
following	using	statement	(C#)	or	Imports	statement	(Visual	Basic®)
to	the	top	of	your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.ExceptionHandling;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.ExceptionHandling

Note:
For	Visual	Basic	projects,	you	can	also	use	the	References	page	of	the
Project	Designer	to	manage	references	and	imported	namespaces.	To	access
the	References	page,	select	a	project	node	in	Solution	Explorer,	and	then
click	Properties	on	the	Project	menu.	When	the	Project	Designer	appears,
click	the	References	tab.

Next,	add	the	application	code.	Generally,	code	that	uses	the	Exception
Handling	Application	Block	must	complete	the	following	steps:

Obtain	an	instance	of	the	ExceptionManager	class.	For	more	details,
see	Creating	Application	Block	Objects.
Catch	an	exception.
Process	an	exception	policy.
Re-throw	the	original	exception	where	appropriate.

The	following	topics	explain	how	to	incorporate	these	steps	into	an	application:
Determining	Appropriate	Exception	Policies	and	Actions
Specifying	Different	Handling	Actions	Based	on	Exception	Type	and
Policy
Sending	an	Exception	to	the	Exception	Handling	Application	Block
Handling	and	Throwing	Exceptions

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_870e815f-a445-4281-99d0-af07bef60fee%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Determining	Appropriate	Exception	Policies	and	Actions

This	information	provides	an	overview	of	managing	exceptions	in	your
applications.	For	complete	design	and	implementation	guidelines	for	creating
exception	management	systems	that	use	.NET	technologies,	see	Design
Guidelines	for	Exceptions	on	MSDN®.

To	build	successful	and	flexible	applications	that	can	be	maintained	and
supported	easily,	you	must	use	an	appropriate	strategy	for	exception
management.	You	must	design	your	system	to	make	sure	that	it	can	do	the
following:

Detect	exceptions
Log	and	report	information

The	following	topics	provide	useful	advice	about	how	you	should	develop	your
exception	management	strategies:

Generate	Events	That	Can	Be	Monitored	Externally	to	Help	System
Operation
Exception	Handling	Process	and	the	Exception	Handling	Application
Block
When	to	Catch	Exceptions
Exception	Propagation
Hiding	Exception	Information
Exception	Notification
Planning	for	Exception	Handling

http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx

Generate	Events	That	Can	Be	Monitored	Externally	to	Help
System	Operation

Exception	Handling	Process	and	the	Exception	Handling
Application	Block

When	to	Catch	Exceptions

Exception	Propagation

Hiding	Exception	Information

Exception	Notification

Planning	for	Exception	Handling
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Determining Appropriate Exception Policies and Actions'%0AEntLib50_9c728a58-1aad-475e-a3ca-85c4618128c4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Specifying	Different	Handling	Actions	Based	on	Exception	Type	and	Policy

The	Exception	Handling	Application	Block	separates	the	definition	of	how	an
exception	should	be	processed	(which	is	the	exception	policy)	from	the
application	code	that	uses	the	block	to	handle	exceptions.	You	use	the
configuration	tools	to	create	and	name	policies.

By	using	exception	policies,	the	application	behavior	that	occurs	in	response	to
an	exception	can	be	modified	without	changing	the	application	code.

Configuring	Exception	Policies

Configuring	Exception	Types

Understanding	Exception	Handlers
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Specifying Different Handling Actions Based on Exception Type and Policy'%0AEntLib50_803f1617-63ed-48e1-b9db-8eeb250895ce%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Sending	an	Exception	to	the	Exception	Handling	Application	Block

Interaction	between	application	code	and	the	Exception	Handling	Application
Block	occurs	when	the	application	code	catches	an	exception	and	sends	it	to	the
block	to	be	handled.	Application	developers	do	not	have	to	know	how
exceptions	will	be	handled	because	they	have	to	specify	only	the	name	of	the
relevant	exception	policy.

There	are	three	main	scenarios	in	which	you	may	need	to	handle	exceptions.
The	most	common	is	the	first	of	these,	but	this	topic	explains	how	you	can	use
the	block	to	implement	all	three	scenarios.	The	scenarios	are:

Handling	All	Exceptions	in	a	Catch	Section
Handling	Specific	Exceptions	in	a	Catch	Section
Executing	Code	Before	or	After	Handling	an	Exception

Handling	All	Exceptions	in	a	Catch	Section

http://msdn.microsoft.com/en-us/library/bb397687.aspx
http://msdn.microsoft.com/en-us/library/bb531253.aspx
http://msdn.microsoft.com/en-us/library/dd203198.aspx

Handling	Specific	Exceptions	in	a	Catch	Section

Executing	Code	Before	or	After	Handling	an	Exception
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Sending an Exception to the Exception Handling Application Block'%0AEntLib50_7e8fb708-d946-49ef-bea5-4a752180fcc3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Handling	and	Throwing	Exceptions

When	an	exception	occurs,	it	passes	up	the	stack	and	each	catch	block	can
potentially	handle	it.	The	order	of	catch	statements	is	important.	Put	catch
blocks	that	target	specific	exceptions	before	a	general	catch	block.	Otherwise,
the	compiler	might	issue	an	error.	The	common	language	runtime	(CLR)
determines	the	proper	catch	block	by	matching	the	type	of	the	exception	to	the
name	of	the	exception	specified	in	the	catch	block.	If	there	is	no	specific	catch
block,	a	general	catch	block,	if	it	exists,	handles	the	exception.

Debugging	and	Exception	Propagation

Handling	Specific	Exceptions

User-Filtered	Exceptions
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/4dy8x9k9(vs.71).aspx
http://msdn.microsoft.com/en-us/library/seyhszts(VS.71).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Handling and Throwing Exceptions'%0AEntLib50_f7ca52f4-0ebb-4296-bccc-e801dfdb0760%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	topic	describes	the	most	common	situations	that	developers	must	address
when	handling	exceptions.	Each	scenario	explains	the	task,	describes	a	real-
world	situation	where	such	a	task	might	occur,	and	includes	code	that
demonstrates	how	to	use	the	Exception	Handling	Application	Block	to	complete
the	task.	The	scenarios	are	the	following:

Logging	an	Exception.	This	scenario	demonstrates	how	to	use	the
logging	handler	to	collect	exception	information,	format	it,	and	send	it	to
the	Logging	Application	Block.
Replacing	an	Exception.	This	scenario	demonstrates	how	to	use	the
replace	handler	to	create	a	new	exception	of	a	defined	type	that	replaces
the	original	exception.
Wrapping	an	Exception.	This	scenario	demonstrates	how	to	use	the	wrap
handler	to	create	a	new	exception	of	a	defined	type	that	wraps	the
original	exception	with	another	exception	that	is	more	relevant.
Propagating	an	Exception.	This	scenario	demonstrates	how	to	propagate
an	exception	in	its	original	state	after	running	a	chain	of	exception
handlers.
Displaying	User-Friendly	Messages.	This	scenario	demonstrates	how	to
either	replace	or	wrap	an	exception	with	one	that	provides	support	or
instructional	information	for	the	user.
Notifying	the	User.	This	scenario	demonstrates	methods	for	letting	a	user
know	that	an	error	has	occurred.
Assisting	Support	Staff.	This	scenario	demonstrates	how	support	staff
can	match	a	user's	error	message	with	the	detailed	information	that	is
stored	in	the	exception	log.

In	addition,	this	section	contains	the	topic	Shielding	Exceptions	at	WCF	Service
Boundaries,	which	describes	how	unknown	exceptions	occurring	in	Windows
Communication	Foundation	(WCF)	services	should	not	be	sent	to	the	client
application,	in	order	to	prevent	details	of	the	service	implementation	from
escaping	the	secure	boundary	of	the	service.

Exceptions	That	Occur	During	Exception	Handling
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_d8f141fc-223a-4ec7-8dba-a34f88a39826%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	an	Exception

A	frequently	required	exception-handling	task	is	to	log	the	information
associated	with	the	exception.	The	Exception	Handling	Application	Block,	in
conjunction	with	the	Logging	Application	Block,	lets	you	log	formatted
exception	information	in	locations	specified	in	the	configuration	file.	For
example,	client	applications	typically	log	application	information	in	the	event
log,	while	a	server	component	of	an	e-commerce	application	may	log
exceptions	in	a	database.

Typical	Goals

Solution

Using	the	Logging	Handler

Modify	Your	Application

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging an Exception'%0AEntLib50_b5ab286f-434b-4167-82a3-b855de543660%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Replacing	an	Exception

A	frequently	required	exception-handling	task	is	to	replace	the	original
exception	with	another	exception.	For	example,	if	an	exception	is	going	to	cross
a	trust	boundary,	you	may	not	want	to	send	the	original	exception	because	it
contains	sensitive	information.

Typical	Goals

Solution

Using	the	Replace	Handler

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Replacing an Exception'%0AEntLib50_4ddebf5c-9118-4486-9ae2-6f43a4a35753%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Wrapping	an	Exception

A	frequently	required	exception-handling	task	is	wrapping	one	exception	with	a
different	exception.	Wrapping	an	exception	creates	a	new	exception	of	a	defined
type	and	sets	the	original	exception	as	the	InnerException	object	of	the	new
exception.	Use	the	wrapping	capability	in	situations	where	the	original
exception	type	must	be	mapped	to	a	new	exception	type	for	use	by	other	tiers
within	the	architecture	of	the	application.	You	can	encapsulate	and	interpret
details	of	the	underlying	layer's	original	exception	without	losing	any	details
about	that	exception.	You	can	wrap	the	original	exception	either	in	an	existing
exception	type	or	in	a	custom	exception	type	that	you	create.	The	following
explains	a	situation	when	you	would	want	to	wrap	an	exception:

1.	 A	business	service	named	Update	Customer	calls	a	data	layer	service.
2.	 The	data	layer	service	fails	and	throws	an	exception.	This	could	be	any

one	of	many	exceptions	that	indicate	that	the	update	failed.	Some	sets
of	these	exceptions	indicate	that	recovery	may	be	possible	with	a	retry
(for	example,	if	a	record	is	locked)	while	others	are	non-recoverable
(for	example,	if	there	is	a	concurrency	violation	or	a	dirty	record).

3.	 The	exception	handler	maps	and	wraps	these	sets	of	exceptions	into	two
custom	exception	types,	RecoverableUpdateException	and
FatalUpdateException.

4.	 The	business	service	handles	the	exception	based	on	the	wrapping	type
and	takes	the	appropriate	action,	even	though	it	is	insulated	from
detailed	knowledge	of	the	underlying	failure.

Typical	Goals

Solution

Using	the	Wrap	Handler

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Wrapping an Exception'%0AEntLib50_dcf08174-cbdf-4f81-96ce-24400bc19b79%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Propagating	an	Exception

A	frequently	required	exception-handling	task	is	to	allow	the	original	exception
to	propagate	up	the	call	stack	unchanged.	You	may	want	to	do	this	because	the
handlers	only	perform	actions	such	as	logging	that	leave	the	exception
unchanged	or	because	other	actions,	such	as	wrapping	and	replacing,	have	been
turned	off.	For	example,	a	routine	within	a	business	logic	component	may	log
exceptions	at	the	point	where	they	are	detected.	It	then	propagates	that
exception	to	the	caller	for	additional	handling.

Typical	Goals

Solution

Propagating	an	Exception

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Propagating an Exception'%0AEntLib50_2e805c79-f4ad-4526-9dbd-74eee6d20349%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Displaying	User-Friendly	Messages

You	may	want	to	replace	the	message	in	the	original	exception	with	a	more
appropriate,	user-friendly	message.	To	do	this,	you	must	replace	the	original
exception	with	another	exception	that	has	a	more	appropriate	message
associated	with	it.	For	example,	exceptions	that	occur	in	the	data	access	layer	of
an	application	can	be	replaced	with	an	exception	of	type
System.ApplicationException.	This	uses	the	message,	"The	application	is
unable	to	process	your	request	at	this	time."	This	message	is	then	displayed	to
the	user.

Typical	Goals

Solution

Displaying	User-Friendly	Messages
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Displaying User-Friendly Messages'%0AEntLib50_4aef5812-d607-47c9-901f-65ae58367261%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Notifying	the	User

When	you	use	the	Exception	Handling	Application	Block,	a	frequently	required
task	is	to	notify	the	user	when	an	exception	occurs.	(Generally,	this	should	be
completed	after	the	message	has	been	changed	to	one	that	is	suitable	for	the
particular	user.	For	more	information,	see	Displaying	User-Friendly	Messages.)
Depending	on	the	application	type,	you	can	do	this	using	a	Windows	Forms
dialog	box	or	a	Web	page.	When	an	exception	cannot	be	handled	within	the
application,	the	user	must	receive	a	notification	that	an	error	occurred,	along
with	some	guidance	of	what	he	or	she	should	do	next.

Typical	Goals

Solution

Notifying	the	User

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Notifying the User'%0AEntLib50_94d9d4bf-4cb3-4912-9e29-60f0a713ab13%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Assisting	Support	Staff

When	you	use	the	Exception	Handling	Application	Block,	a	frequently	required
task	is	to	allow	support	staff	to	access	detailed	information	to	assist	users	when
exceptions	occur.	When	an	exception	occurs	that	cannot	be	handled,	users	are
generally	shown	a	friendly	error	message.	Users	may	have	to	call	support	staff,
and	support	staff	may	need	more	than	the	user	error	message	to	determine	what
went	wrong	and	how	to	fix	the	problem.	This	scenario	demonstrates	how	to
match	the	user's	error	message	with	the	detailed	exception	log	that	can	be
accessed	by	support	staff.

Typical	Goals

Solution

Assisting	Support	Staff

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Assisting Support Staff'%0AEntLib50_b590664e-bdb0-4c5f-b844-0d7a90da2bc7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Shielding	Exceptions	at	WCF	Service	Boundaries

In	Windows	Communication	Foundation	(WCF),	to	prevent	details	of	the
service	implementation	from	escaping	the	secure	boundary	of	the	service,
unknown	exceptions	should	not	be	sent	to	the	client	application.	This	is
controlled	through	the	includeExceptionDetailInFaults	attribute	in	the
<serviceDebug>	element	in	the	WCF	configuration.	To	enable	exception
shielding,	this	attribute	must	be	set	to	false.	If	not	specified	in	the	configuration
file,	this	property	is	set	to	false.

Note:
The	includeExceptionDetailInFaults	configuration	setting	is	used	only	for
unknown	or	unhandled	exceptions.	It	does	not	have	any	effect	on	known
exceptions,	where	the	operation	has	a	FaultContract	with	the	known	fault
type	and	the	operation	throws	a	FaultException<knownFault>	where
knownFault	is	in	the	fault	contract.

Exception	shielding	helps	prevent	a	Web	service	from	disclosing	information
about	the	internal	implementation	of	the	service	when	an	exception	occurs.	The
following	forces	explain	why	you	should	use	exception	shielding:

Exception	details	may	contain	clues	that	an	attacker	can	use	to	exploit
resources	used	by	the	system.
Information	related	to	anticipated	exceptions	needs	to	be	returned	to	the
client	application.
Exceptions	that	occur	within	a	Web	service	should	be	logged	to	support
troubleshooting.

Only	exceptions	that	have	been	sanitized	or	are	safe	by	design	should	be
returned	to	the	client	application.	Exceptions	that	are	safe	by	design	do	not
contain	sensitive	information	in	the	exception	message	and	they	do	not	contain
a	detailed	stack	trace,	either	of	which	might	reveal	sensitive	information	about
the	Web	service's	inner	workings.	You	should	use	the	Exception	Shielding
pattern	to	sanitize	unsafe	exceptions	by	replacing	them	with	exceptions	that	are
safe	by	design.

The	Exception	Handling	Application	Block	includes	support	for	exception
shielding	at	WCF	service	boundaries.	This	support	consists	of	the	following:

The	Exception	Shielding	Attribute,	which	is	used	to	associate	a	named
exception	handing	policy	configured	in	the	Exception	Handling
Application	Block	with	a	WCF	service	operation.	For	more	information,
see	the	following	section	Using	the	Exception	Shielding	Attribute.
The	Fault	Contract	Exception	Handler,	which	converts	an	exception
to	a	specific	type	of	Fault	Contract	and	maps	the	desired	properties	of	the
exception	to	the	Fault	Contract.	For	more	information,	see	the	following
section	Using	the	Fault	Contract	Exception	Handler.

Using	the	Exception	Shielding	Attribute

Using	the	Fault	Contract	Exception	Handler
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Shielding Exceptions at WCF Service Boundaries'%0AEntLib50_14609680-60a5-48c0-b457-50a079d0a7dc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Exception	Handling	Application	Block

The	Exception	Handling	Application	Block	is	designed	to	achieve	the	following
goals:

Encapsulate	the	logic	used	to	perform	the	most	common	exception
handling	tasks	into	minimal	application	code.
Relieve	developers	of	the	requirement	to	write	duplicate	code	and
custom	code	for	common	exception	handling	tasks.
Allow	exception	handling	policies	to	be	changed	after	they	have	been
deployed	and	to	ensure	that	changes	happen	simultaneously	and
consistently.
Incorporate	best	practices	for	exception	handling,	as	described	in	the
Design	Guidelines	for	Exceptions.

http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx

Design	Highlights
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Exception Handling Application Block'%0AEntLib50_2f60b9fa-0c81-4866-bc77-800db87c26a5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Simplified	Catch	Blocks

Common	exception	handling	behavior,	such	as	logging	and	replacing	exceptions
to	hide	sensitive	information,	typically	requires	multiple	lines	of	code.	Updating
exception-handling	behavior	to	accommodate	a	change	in	an	exception	handling
policy	usually	involves	updating	multiple	files	and	lines	of	code.	This	process
can	be	error-prone,	and	it	is	difficult	to	ensure	that	policies	are	updated
consistently	across	all	layers	of	an	application.

The	Exception	Handling	Application	Block	simplifies	both	the	exception
handling	code	and	the	process	of	updating	that	code.	It	does	this	by	associating
exception-handling	behavior	with	policy	names	such	as	Data	Access	Layer
Policy	and	Trust	Boundary	Policy.	The	behaviors	represented	by	policy	names
are	controlled	externally,	in	the	configuration	for	the	application.	This	means
that	a	developer	needs	to	use	only	two	elements	to	write	code	in	the	catch	block
of	an	application:

A	call	to	the	HandleException	or	Process	method	that	passes	the	policy
name	and	the	exception.
A	check	of	the	return	code	from	the	HandleException	method;	if	it
returns	true,	the	original	exception	should	be	re-thrown.

Design	Implications

API	Support	for	Policy	Names
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Simplified Catch Blocks'%0AEntLib50_7fe3b885-e438-4293-add1-4281faf53765%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Encapsulation	of	Behavior	in	Reusable	Handlers

The	Exception	Handling	Application	Block	helps	developers	to	create	exception
handlers	that	represent	common	exception	handling	tasks.	These	handlers,	as
well	as	combinations	of	handlers,	can	be	used	by	different	policies.

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Encapsulation of Behavior in Reusable Handlers'%0AEntLib50_84690cf3-bbf8-428c-8b61-7e209bc39445%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Exception	Handling	Application	Block

In	its	original	state,	the	Exception	Handling	Application	Block	works	well	for
typical	exception	handling	scenarios,	such	as	logging	an	exception	message,
wrapping	one	exception	with	another,	or	replacing	an	exception	with	a	different
exception.	However,	there	may	be	times	when	you	have	to	customize	certain
behaviors	of	the	block	to	better	suit	your	application's	particular	requirements.
There	are	two	ways	to	do	this.	You	can	extend	the	Exception	Handling
Application	Block	using	the	built-in	extension	points.	In	addition,	you	may
choose	modify	the	block	by	making	changes	to	its	source	code.

You	extend	the	Exception	Handling	Application	Block	through	designated
extension	points.	Typically,	these	are	custom	classes	written	by	you	that
implement	a	particular	interface	or	derive	from	an	abstract	class.	Because	these
custom	classes	exist	in	your	application	space,	you	do	not	have	to	modify	or
rebuild	the	Exception	Handling	Application	Block;	instead,	you	can	designate
your	extensions	through	configuration	settings.

You	can	extend	the	block	by	adding	a	new	type	of	exception	handler	or
exception	formatter.	The	following	table	lists	the	interfaces	and	base	classes	that
you	can	use	to	extend	the	block.

Custom	Provider	or	Extension Interface	or	Base	Class

Exception	Handler IExceptionHandler

Exception	Formatter ExceptionFormatter

For	more	details	of	how	to	extend	and	modify	the	block	and	Enterprise	Library,
see	the	following	topics:

Adding	a	New	Exception	Handler
Adding	a	New	Exception	Formatter
Creating	Custom	Providers	for	Enterprise	Library
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.

http://codeplex.com/entlib/

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Exception Handling Application Block'%0AEntLib50_2d5e95ff-3097-4083-96b8-0cf869196c04%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	a	New	Exception	Handler

To	add	a	new	exception	handler,	you	must	first	create	a	new	class	that
implements	the	IExceptionHandler	interface.	After	you	compile	the	new	class
into	an	assembly,	you	can	use	the	Enterprise	Library	Configuration	Console	to
add	it	to	the	Exception	Handling	Application	Block	configuration	for	your
application.

Creating	a	New	Exception	Handler	Class
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding a New Exception Handler'%0AEntLib50_eb044f0e-a7b5-4645-9119-750f016138ec%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	a	New	Exception	Formatter

To	add	a	new	exception	formatter,	you	must	create	a	new	exception	class	that
derives	from	the	ExceptionFormatter	class.	Your	new	class	can	derive	directly
from	ExceptionFormatter	or	from	one	of	the	exception	formatters	that	ship
with	the	Exception	Handling	Application	Block.	The	block	includes	the	classes
TextExceptionFormatter	and	XmlExceptionFormatter,	both	of	which	derive
from	the	ExceptionFormatter	class.

Exception	formatters	must	include	the	handling	instance	ID,
HandlingInstanceId.	The	handling	instance	ID	value	is	generated	on	each
exception	handling	request.	Each	individual	exception	formatter	handles	the
handling	instance	ID	as	appropriate	for	that	formatter.	The
XmlExceptionFormatter	adds	it	as	an	attribute	of	the	top-level	Exception
element,	while	the	TextFormatter	adds	it	as	the	first	line	of	text.	A
HandlingInstanceId	equal	to	Guid.Empty	can	be	ignored.

The	logging	exception	handler	does	not	add	the	exception	handling	ID	to	the
message	to	log.	The	formatter	handles	the	ID.	Exception	Formatter	types	used
with	the	Logging	exception	handler	must	implement	a	constructor	with
parameters	of	type	TextWriter,	Exception,	and	Guid,	as	shown	in	the
following	code.
C#

public	MyExceptionFormatter(TextWriter	writer,	Exception	ex,	Guid	handlingInstanceId)

		:	base(ex,	handlingInstanceId)

{

		...

}

Visual	Basic

Public	Sub	New(writer	As	TextWriter,	ex	As	Exception,	handlingInstanceId	As	Guid)

		MyBase.New(ex,	handlingInstanceId)

		...	

End	Sub

Note:
If	you	have	custom	formatters	designed	for	use	with	versions	of	Enterprise
Library	prior	to	version	4.1,	you	must	update	them	so	that	the	handling
instance	ID	is	not	lost.

Creating	a	New	Exception	Formatter	Class
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding a New Exception Formatter'%0AEntLib50_4ab95d05-9102-469a-bfc7-199bc043dac1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	make	sure	that	the	initial
deployment	of	the	Exception	Handling	Application	Block	is	planned	and
managed	and	to	make	sure	that	subsequent	updates	are	deployed	with	minimal
impact	to	existing	applications	that	use	the	block.	For	details	of	deploying	and
updating	Enterprise	Library	and	the	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	if	they	wish	to	use	the	instrumentation
exposed	by	the	block.	For	details	of	how	to	enable	and	disable	instrumentation,
see	Enabling	Instrumentation.	For	information	about	the	instrumentation
contained	within	the	Exception	Handling	Application	Block,	see	the	following
topics:

Exception	Handling	Application	Block	Performance	Counters
Exception	Handling	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_4b287cf0-c1ae-48b8-b1ea-b5a885ced512%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Exception	Handling	Application	Block	Performance	Counters

The	following	table	describes	the	Exception	Handling	Application	Block
performance	counters.

Performance	Counter
Name

Description

Exception	Handlers
Executed/sec

The	rate	at	which	exception	handlers	were
executed.

Exceptions	Handled/sec The	rate	at	which	exceptions	were	handled.

Total	Exceptions	Handled The	total	number	of	exceptions	handled.

Total	Exceptions	Handlers
Executed

The	total	number	of	exception	handlers	that
were	executed.

A	rate	counter	samples	an	increasing	count	of	events	over	time	and	divides	the
values	by	the	change	in	time	to	display	a	rate	of	activity.	For	more	information
about	performance	counters,	see	Overview	of	Performance	Monitoring	in	the
.NET	Framework	Class	Library.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Exception Handling Application Block Performance Counters'%0AEntLib50_162590e1-4469-4ae7-b442-9986c6d186c2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Exception	Handling	Application	Block	Event	Log	Entries

The	Exception	Handling	Application	Block	is	instrumented	to	log	entries	to	the
application	event	log	for	a	variety	of	events.	This	topic	lists	the	Exception
Handling	Application	Block	event	log	entries.	The	listener	is	the	class	that
raised	the	event.

Exception	Handling	Error	Event

Configuration	Error	Event

Internal	Error	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Exception Handling Application Block Event Log Entries'%0AEntLib50_ea0fe392-4802-405a-af57-f78d9328efdf%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Logging	Application	Block

Developers	frequently	write	applications	that	require	logging	functionality.
Typically,	these	applications	format	and	log	information	in	response	to
application	events.	For	example,	they	may	be	required	to	log	information	in
response	to	unexpected	conditions,	such	as	an	application	exception,	or	failure
to	connect	to	a	database.	Developers	also	write	code	to	trace	application	flow
through	components	during	the	execution	of	an	application	use	case	or	scenario.
In	addition,	applications	often	need	to	write	information	locally	and	over	a
network.	In	some	cases,	you	may	need	to	collate	events	from	multiple	sources
into	a	single	location.

The	Enterprise	Library	Logging	Application	Block	simplifies	the
implementation	of	common	logging	functions.	You	can	use	the	Logging
Application	Block	to	write	information	to	a	variety	of	locations:

The	event	log
An	e-mail	message
A	database
A	message	queue
A	text	file
A	Windows®	Management	Instrumentation	(WMI)	event
Custom	locations	using	application	block	extension	points

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Logging	Application	Block:

What	Does	the	Logging	Block	Do?	This	topic	provides	a	brief	overview
that	will	help	you	to	understand	what	the	block	can	do,	and	explains
some	of	the	concepts	and	features	it	incorporates.	It	also	provides	a
simple	example	of	how	to	write	code	to	use	the	block.
When	Should	I	Use	the	Logging	Block?	This	topic	will	help	you	to
decide	if	the	block	is	suitable	for	your	requirements.	It	explains	the
benefits	of	using	the	block,	and	any	alternative	techniques	you	may
consider.	It	also	provides	details	of	any	limitations	of	the	block	that	may
affect	your	decision	to	use	it.
Developing	Applications	Using	the	Logging	Application	Block.	This
topic	explains	how	to	use	the	Logging	Application	Block	in	your

applications.	It	shows	how	to	configure	the	application	block	to	perform
common	tasks	and	how	to	add	application	code	to	the	application	block
where	required.
Key	Scenarios.	This	topic	demonstrates	how	to	use	the	application	block
to	perform	the	most	common	logging	operations.
Design	of	the	Logging	Application	Block.	This	topic	explains	the
decisions	that	went	into	designing	the	application	block	and	the	rationale
behind	those	decisions.
Extending	and	Modifying	the	Logging	Application	Block.	This	topic
explains	how	to	extend	the	application	block	by	creating	your	own
custom	trace	listeners,	log	formatters,	and	log	filters;	and	explains	how	to
modify	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	application	block's	assemblies	and	also	contains	information
about	the	instrumentation	in	the	block.

More	Information
For	more	information	about	logging	and	managing	other	crosscutting	concerns,
see	the	following	patterns	&	practices	guides:

Microsoft	Application	Architecture	Guide,	2nd	Edition
Design	Guidelines	for	Exceptions

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/dd673617.aspx
http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Logging Application Block'%0AEntLib50_318c9d2f-1ff6-438b-8d74-0b17074f470d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Logging	Block	Do?

Although	the	process	of	creating	and	writing	log	entries	is	relatively	simple,	the
number	of	options	available	(such	as	the	many	logging	targets	and	the	ability	to
filter	entries)	means	that	the	underlying	structure	of	the	block	and	the	options
available	for	using	it	can	seem	complex.	The	following	schematic	shows	how
the	main	types	of	object	in	the	block	work	together	to	provide	flexibility	when
creating	and	writing	log	entries.

The	five	main	types	of	objects	are:
Log	Writer.	The	log	writer	is	the	main	entry	point	for	creating	log
entries	and	writing	them	to	your	chosen	logging	targets.	It	creates	an
instance	of	a	log	entry	containing	the	information	to	be	logged,	and
interacts	with	the	other	objects	that	filter	the	log	entry,	assign	it	to	one	or
more	categories,	format	it,	and	dispatch	it	to	the	appropriate	targets.
Log	Filters.	Log	filters	can	block	or	allow	a	log	entry	based	on	a	number
of	features.	Each	log	entry	is	assigned	to	one	or	more	categories	(the
default	is	the	General	category),	and	the	category	log	filter	can	use	these
categories	to	pass	or	block	a	log	entry.	In	addition,	two	special	log	filters
can	block	all	logging,	or	block	log	entries	with	a	priority	lower	than	a
specified	value.	You	define	the	categories,	priorities,	and	the	settings	for
the	log	filters	in	the	configuration	for	the	block.
Trace	Sources.	Trace	sources	are	effectively	a	set	of	buckets	into	which
the	block	places	all	log	entries	that	have	not	been	blocked	by	a	log	filter.
You	use	these	buckets	to	define	where	log	entries	will	be	dispatched	to—
you	can	think	of	them	as	being	the	source	of	the	log	entries	that	will
actually	be	dispatched	to	the	target	destinations.	There	are	two	basic
types	of	trace	sources:

There	is	a	trace	source	for	each	category	you	define	in	the
configuration	of	the	block.	These	are	called	Category	Sources.
There	are	three	built-in	trace	sources:	one	that	receives	all	log
entries,	one	that	receives	log	entries	when	an	error	occurs	during
processing	or	dispatching	of	the	log	entry,	and	one	that	receives
all	log	entries	that	do	not	match	any	configured	category.	These
are	called	Special	Sources.

Trace	Listeners.	Trace	listeners	represent	the	targets	for	your	log
entries,	and	you	configure	one	for	each	type	of	target	(such	as	the
Windows®	Event	Log,	a	disk	file,	and	an	e-mail	message)	to	which	you
want	to	send	the	log	entries.	Trace	listeners	listen	for	log	entries	arriving
in	the	trace	source	buckets,	format	each	log	entry	as	required,	and
dispatch	it	to	the	target	configured	for	that	trace	source.	Your
configuration	maps	each	trace	source	(each	category	source	you	define
plus	the	three	special	sources)	to	one	or	more	trace	listeners.	The
important	point	to	note	here	is	that	this	allows	you	to	dispatch	each	log

entry	to	zero,	one,	or	more	targets	(such	as	sending	it	as	e-mail	as	well	as
writing	it	to	the	Windows	Event	Log).
Log	Formatters.	Each	trace	listener	you	add	to	your	configuration	can
use	a	log	formatter	to	convert	the	data	in	the	log	entry	from	a	series	of
properties	into	format	suitable	for	sending	to	the	log	target.	The	block
contains	a	text	formatter	that	you	can	configure	with	trace	listeners	that
dispatch	log	entries	to	targets	such	as	disk	files,	e-mail,	or	Windows
Event	Log;	and	a	binary	formatter	that	serializes	the	log	entry	data	into	a
format	suitable	for	transmission	to	targets	such	as	Windows	Message
Queuing	(MSMQ).	The	text	formatter	is	configurable	so	that	you	can
modify	the	format	and	content	of	the	text	message,	including	using
placeholders	for	the	values	of	the	properties	of	the	log	entry.

The	Logging	Process	Sequence

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Logging Block Do?'%0AEntLib50_75d79ffd-f3cf-48e7-bcbe-03acedf87ac0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Logging	Block?

If	your	applications	have	a	requirement	to	log	information	to	Windows	Event
Log,	e-mail,	a	database,	a	message	queue,	Windows	Management
Instrumentation	(WMI),	or	a	file,	you	should	consider	using	the	Logging
Application	Block	to	provide	this	functionality.	In	particular,	the	Logging
Application	Block	is	useful	if	you	need	to	filter	logging	messages	based	on
category	or	priority,	if	you	need	to	format	the	messages,	or	if	you	need	to
change	the	destination	of	the	message	without	changing	the	application	code.
The	Logging	Application	Block	is	also	designed	to	be	extensible	and	includes
the	facility	to	create	custom	formatters	and	trace	listeners,	which	you	can	adapt
to	meet	your	application's	logging	requirements.

Scenarios	for	the	Logging	Application	Block

Benefits	of	the	Logging	Application	Block

Limitations	of	the	Logging	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Logging Block?'%0AEntLib50_96dff44d-fb3e-4c3d-b6e4-948d0f8ac4f1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Logging	Application	Block

This	topic	describes	how	to	develop	applications	using	the	Logging	Application
Block.	It	explains	how	to	configure	the	application	block	to	perform	particular
tasks	and	how	to	use	the	application	block	according	to	particular	application
scenarios	such	as	populating	and	raising	events	from	code.	It	includes	the
following	topics:

Entering	Configuration	Information
Using	the	Distributor	Service
Adding	Application	Code

If	you	want	to	deliver	log	entries	at	a	central	location	for	processing,	you	can
use	the	Logging	Application	Block	with	Message	Queuing	(also	known	as
MSMQ)	to	allow	you	to	do	this.	By	configuring	multiple	applications	to	use	the
same	message	queue,	you	can	deliver	all	the	log	entries	to	one	place.	For	details
of	how	to	install	and	configure	the	Logging	Application	Block	in	this	scenario,
see	Using	the	Distributor	Service.

If	you	are	using	the	Logging	Application	Block	with	a	Windows
Communication	Foundation	(WCF)	application,	you	must	configure	integration
with	WCF.	For	details,	see	Configuring	WCF	Integration	Trace	Listeners.

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile	it.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

This	topic	assumes	you	are	using	the	application	block	in	its	original	state,
without	extending	it.	(To	learn	how	to	add	functionality,	see	Extending	and
Modifying	the	Logging	Application	Block.)

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Logging Application Block'%0AEntLib50_af68990c-87d7-4af5-bdb8-ad1f3d611075%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

This	section	explains	how	to	configure	the	Logging	Application	Block.	For	an
overview	and	example	of	configuring	the	block,	see	Configuration	Overview.
For	details	of	the	schema	for	the	Logging	Application	Block	configuration,	see
Source	Schema	for	the	Logging	Application	Block.	You	can	also	configure	the
block	in	code	by	using	an	alternate	configuration	source.	For	more	information,
see	Advanced	Configuration	Scenarios	and	Using	the	Fluent	Configuration	API.

Note:
Run	time	changes	to	the	configuration	of	the	Logging	Application	Block	are
automatically	detected	after	a	short	period,	and	the	logging	stack	is	updated.
However,	you	cannot	modify	the	logging	stack	at	run	time	through	code.	For
details	of	using	configuration	mechanisms	that	you	can	update	at	run	time,
see	Updating	Configuration	Settings	at	Run	Time.

To	add	the	Logging	Application	Block
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Logging	Settings.
3.	 This	adds	a	default	general	category,	the	three	standard	special

categories,	a	default	event	log	listener,	and	a	default	text	formatter	to
the	configuration.

4.	 Click	the	chevron	expander	arrow	in	the	Logging	Settings	section	to
view	all	settings	for	this	section.

5.	 Click	the	expander	arrow	at	the	left	of	the	general	category,	the	special
categories,	the	event	log	listener,	or	the	text	formatter	to	view	and	set
their	properties	as	described	in	the	following	topics.

After	you	add	the	Logging	Application	Block	to	the	application	configuration,
you	can	configure	some	or	all	of	the	following	features.	You	should	perform
these	tasks	in	the	following	order:

Configuring	Trace	Listeners
Configuring	Formatters

Configuring	Trace	Source	Categories
Configuring	Logging	Filters
Configuring	the	Application	Block

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_0d425989-6830-4e25-9fcf-e4dc2db4501a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuration	Overview

To	understand	how	you	configure	and	use	the	Logging	Application	Block,	you
must	be	familiar	with	the	way	the	block	processes	log	entries.	The	topic	What
Does	the	Logging	Block	Do?	provides	a	simplified	overview	of	the	process	and
will	help	you	when	you	come	to	configure	the	block.

The	following	steps	illustrate	the	general	process	for	configuring	the	Logging
Application	Block.	It	assumes	you	want	to	use	two	categories	named	Dev	and
Operations.

1.	 Add	the	trace	listeners	you	want	to	use	to	output	the	logging
information	by	clicking	on	the	plus	sign	icon	in	the	Logging	Target
Listeners	section	of	the	Logging	Settings	configuration	pane	and
clicking	Add	Logging	Target	Listeners	to	display	the	list	of	listeners.
When	you	select	a	listener,	it	is	added	to	the	Logging	Target	Listeners
section	where	you	can	then	set	its	properties.

2.	 Add	the	formatters	you	want	the	trace	listeners	to	use	to	format	the
output	by	clicking	on	the	plus	sign	icon	in	the	Log	Message
Formatters	section	of	the	Logging	Settings	configuration	pane	and
clicking	Add	Log	Message	Formatters	to	display	the	list	of
formatters.	When	you	select	a	formatter,	it	is	added	to	the	Log	Message
Formatters	section	where	you	can	then	set	its	properties.

3.	 Set	the	Formatter	Name	property	of	each	trace	listener	in	the	Logging
Target	Listeners	section	of	the	Logging	Settings	configuration	pane	to
specify	the	appropriate	formatter.

4.	 Add	the	category	filters	you	want	to	use	to	the	Categories	section	of
the	Logging	Settings	configuration	pane	by	clicking	on	the	plus	sign
icon	in	the	Categories	section	of	the	Logging	Settings	configuration
pane	and	clicking	Add	Category.	A	new	category	item	is	added	to	the
Categories	section	where	you	can	then	set	its	properties.	Click	on	its
property	expander	arrow	if	the	properties	are	not	visible.

5.	 Add	a	reference	to	each	of	the	trace	listeners	you	want	to	use	to	output
the	logging	information	to	each	of	the	categories	you	created	in	the
Categories	section	of	the	Logging	Settings	configuration	by	clicking
the	Listeners	property	plus	sign	icon	and	selecting	a	configured
logging	target	listener.	Each	entry	here	is	a	reference	to	one	of	the	trace
listeners	you	previously	configured	in	the	Trace	Listeners	section.	You
can	add	more	than	one	trace	listener	reference	to	each	category	filter
you	create.	For	example,	you	could	specify	the	following:

A	log	entry	containing	the	category	name	Dev	will	go	to	an
event	log	trace	listener	(so	that	it	appears	in	Windows	Event
Log)
A	log	entry	containing	the	category	name	Operations	will	go	to
an	e-mail	trace	listener	and	to	an	XML	trace	listener.

6.	 Add	a	reference	to	each	of	the	trace	listeners	you	want	to	use	to	output
the	logging	information	to	the	appropriate	subsections	of	the	Special
Categories	section	of	the	Logging	Settings	configuration	pane.	For
example,	you	may	want	to	do	the	following:

Send	the	log	entry	to	an	e-mail	trace	listener	when	an	error
occurs	within	the	logging	system	by	adding	a	reference	to	this
trace	listener	to	the	Logging	Errors	&	Warnings	section.
Send	the	log	entry	to	an	event	log	trace	listener	when	the	log
entry	does	not	match	any	configured	category	by	adding	a

reference	to	this	trace	listener	to	the	Unprocessed	Category
section.
Send	all	log	entries,	irrespective	of	category	or	content,	to	a	Flat
File	trace	listener	by	adding	a	reference	to	this	trace	listener	to
the	All	Events	section.

7.	 Set	the	remaining	properties	for	each	category	or	special	filter.	Specify
the	logging	level,	such	as	Critical,	Error,	Warning,	or	All,	by	setting
the	Minimum	Severity	property	for	each	category	filter.

8.	 Finally,	add	any	log	filters	you	want	to	use	to	the	Logging	Filters
section	of	the	Logging	Settings	configuration	pane	by	clicking	on	the
plus	sign	icon	in	the	Logging	Filters	section	of	the	Logging	Settings
configuration	pane	and	clicking	Add	Logging	Filters.	The	filter	type
you	select	is	added	to	the	Logging	Filters	section	where	you	can	then
set	its	properties.	Click	on	its	property	expander	arrow	if	the	properties
are	not	visible.	For	example,	you	could	use	a	category	filter	to	block	all
logging	operations	except	those	that	specify	one	of	the	two	categories
named	Dev	or	Operations.

For	specific	details	of	how	to	configure	each	section	of	the	Logging	Application
Block	configuration,	see	Entering	Configuration	Information.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuration Overview'%0AEntLib50_3a6ba613-78b1-4b24-b226-55e368e41554%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Trace	Listeners

Trace	listeners	receive	log	entries	and	write	them	to	the	appropriate	destinations.
The	following	procedure	describes	how	to	configure	the	trace	listeners	supplied
with	Enterprise	Library	and	custom	trace	listeners	that	you	create.	There	is	also
a	specific	procedure	for	configuring	the	two	trace	listeners	that	are	required	for
integration	with	WCF.	For	more	details	of	this	procedure,	see	Configuring	WCF
Integration	Trace	Listeners.

Note:
Trace	listener	logs	have	vulnerabilities	and	should	be	protected	as
appropriate,	depending	on	whether	the	trace	listener	writes	log	entries	to	a
file,	database	or	MSMQ	message	queue.	

For	trace	listeners	that	write	log	entries	to	files	you	should	protect	the	logs	by
using	access	control	lists.	This	includes	Flat	File,	Rolling	flat	file,	WMI	and
XML	trace	listener	logs.

For	trace	listeners	that	write	log	entries	to	databases	you	should	protect
access	to	logs	by	using	usernames	and	passwords.	This	includes	the	database
trace	listener.

For	trace	listeners	that	write	log	entries	to	MSMQ	message	queues	you
should	allow	only	authorized	users	to	read	information	from	MSMQ.	Protect
the	queue	with	relevant	access	control	lists	and	follow	any	security
considerations	specific	to	MSMQ.	This	includes	the	message	queuing	trace
listener.

Configuring	the	Built-in	Trace	Listeners

Configuring	Custom	Trace	Listeners
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Trace Listeners'%0AEntLib50_a0ea0d8b-7675-48b8-9b5f-9d6d8e2382f0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Trace	Listener	Properties

These	tables	explain	the	properties	for	the	different	trace	listeners.	There	are
tables	for	the	following	trace	listeners:

Database	Trace	Listener.	This	trace	listener	writes	formatted	log	entries
to	a	database.
E-mail	Trace	Listener.	This	trace	listener	sends	log	entries	as	e-mail
messages.
Event	Log	Trace	Listener.	This	trace	listener	formats	log	entries	and
writes	them	to	Windows	Event	Log.
Flat	File	Trace	Listener.	This	trace	listener	writes	log	entries	to	a	text
file.
Message	Queuing	Trace	Listener.	This	trace	listener	writes	log	entries	to
a	message	queue.
Rolling	Flat	File	Trace	Listener.	This	trace	listener	creates	a	new	log	file
depending	on	the	current	log	file	age	and/or	size.
System	Diagnostics	Trace	Listener.	This	is	one	of	the	.NET	Framework
trace	listeners	such	as	the	Console	Trace	Listener.
WMI	Trace	Listener.	This	trace	listener	raises	a	WMI	management	event
for	each	log	entry	received.
XML	Trace	Listener.	This	trace	listener	is	used	to	output	log	messages	to
an	XML	formatted	file.

Database	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	a
Database	Trace	Listener.

Property Description

Add
Category
Procedure

The	name	of	the	stored	procedure	that	adds	a	category.	The
default	is	AddCategory.	This	is	required.

Database
Instance

The	name	of	the	database	instance	to	use	as	configured	in	the
Data	Settings	section	of	the	configuration.	This	is	required.

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and	ActivityTracing.
The	setting	effectively	means	"the	specified	level	and
everything	more	important."	For	example,	the	Warning	setting
will	detect	warnings,	errors,	and	critical	events.

Formatter The	formatter	to	use	with	this	trace	listener.	Select	one	from	the
drop-down	list.	The	default	is	none.	This	is	optional.

Name The	name	of	the	trace	listener.	The	default	is	Database	Trace
Listener.	This	is	required.

Trace
Output
Options

A	property	used	by	trace	listeners	that	do	not	output	to	a	text
formatter	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.
This	is	optional.

Write	To
Log
Procedure

The	name	of	the	stored	procedure	that	writes	the	log	entries.
The	default	is	WriteLog.	This	is	required.

Email	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	an	e-mail
trace	listener.

Property Description

Authentication
Mode

A	value	from	the	EmailAuthenticationMode	enumeration
that	specifies	how	the	listener	will	authenticate	the	user.
Valid	values	are	None,	WindowsCredentials,	and
UserNameAndPassword.

Severity	Filter Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and
ActivityTracing.	The	setting	effectively	means	"the
specified	level	and	everything	more	important."	For
example,	the	Warning	setting	will	detect	warnings,	errors,
and	critical	events.

Formatter
Name

The	formatter	to	use	with	this	trace	listener.	Select	one
from	the	drop-down	list.	The	default	is	none.	This	is
optional.

From	Address The	address	where	the	log	entry	originated.	The	default	is
from@example.com.	This	is	required.

Name The	name	of	the	trace	listener.	The	default	is	Email	Trace
Listener.	This	is	required.

Authentication
Password

Password	when	authenticating	with	user	name	and
password.

Smtp	Port The	SMTP	port	that	receives	e-mail	messages.	The	default
is	25.	This	is	optional.

Smtp	Server The	SMTP	server	used	to	send	e-mail	messages.	The
default	is	127.0.0.1.	This	is	optional.

Subject	Line
Suffix

The	subject	line	suffix.	This	is	optional.

Subject	Line The	subject	line	prefix.	This	is	optional.

Prefix

To	Address The	address	where	the	log	entry	is	sent.	The	default	is
to@example.com.	This	is	required.

Trace	Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should
be	included	in	the	trace	output.	Possible	values	are:
CallStack,	DateTime,	LogicalOperationStack,	None,
ProcessId,	ThreadId,	and	Timestamp.	The	default	is
None.	For	an	explanation	of	these	values,	see
TraceOutputOptions	Values.	This	is	optional.

Authentication
User	Name

User	name	when	authenticating	with	user	name	and
password.

Use	SSL Specifies	if	the	e-mail	trace	listener	should	use	SSL	when
connecting	to	the	mail	server.	Set	to	True	to	use	SSL	to
connect,	or	False	to	use	an	unencrypted	connection.	The
default	is	False

Note:
The	configuration	files	are	not	encrypted	by	default.	A	configuration	file	may
contain	sensitive	information	about	connection	strings,	user	IDs,	passwords,
database	servers,	and	catalogs.	You	should	protect	this	information	against
unauthorized	read/write	operations	by	using	encryption	techniques.	For
information	about	how	to	encrypt	configuration	files,	see	Encrypting
Configuration	Data	and	Configuring	Enterprise	Library.

In	addition	to	this	problem,	e-mail	messages	exchanged	with	a	SMTP	server
could	be	intercepted	while	in	transit	by	a	malicious	user	running	a	network
sniffer	or	monitoring	application.	You	can	mitigate	this	problem	by
supporting	Transport	Layer	Security	or	S/Mime	with	encryption	of	the	e-mail
messages.

Flat	File	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	a	flat	file
trace	listener.

Property Description

File	Name The	name	of	the	file	where	entries	are	written.	The	default	name
is	trace.log.	This	is	a	required	value.	It	can	include	environment
variables	such	as	%WINDIR%,	%TEMP%,	and
%USERPROFILE%.

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and	ActivityTracing.
The	setting	effectively	means	"the	specified	level	and
everything	more	important."	For	example,	the	Warning	setting
will	detect	warnings,	errors,	and	critical	events.

Message
Footer

Additional	information	contained	in	the	file	footer.	The	default
is	"--."	This	is	optional.

Formatter
Name

The	formatter	to	use	with	this	trace	listener.	Select	one	from	the
drop-down	list.	The	default	is	none.	This	is	optional.

Message
Header

Additional	information	contained	in	the	file	header.	The	default
is	"--."	This	is	optional.

Name The	name	of	the	trace	listener.	The	default	is	FlatFile	Trace
Listener.	This	is	required.

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.
This	is	optional.

Note:

If	the	file	you	specify	for	the	Flat	FileTraceListener	is	read-only,	the	trace
listener	does	not	write	the	data	to	the	file	and	no	exception	occurs.	Make	sure
that	the	file	attributes	are	set	to	read/write.

When	you	use	the	FlatFileTraceListener	class	to	write	log	information	to	a
file,	the	block	locks	the	file	until	the	application	closes.	It	is	possible	to	open
and	read	the	file,	but	you	cannot	move	or	delete	the	log	file	until	you	close
the	application.

Event	Log	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	an	event
log	trace	listener.

Property Description

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and	ActivityTracing.
The	setting	effectively	means	"the	specified	level	and
everything	more	important."	For	example,	the	Warning	setting
will	detect	warnings,	errors,	and	critical	events.

Formatter
Name

The	formatter	to	use	with	this	trace	listener.	Select	one	from	the
drop-down	list.	The	default	is	none.	This	is	optional.

Log	Name The	name	of	the	event	log	where	entries	are	written.	The	default
is	Application.	This	is	optional.

Machine
Name

The	name	of	the	computer	on	which	to	write	log	entries.	This	is
optional.

Name The	name	of	the	trace	listener.	The	default	is	Event	Log	Trace
Listener.	This	is	required.

Source
Name

The	source	name	to	use	when	writing	to	the	log.	The	default	is
Enterprise	Library	Logging.	This	is	required.

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.
This	is	optional.

Message	Queuing	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	a
Message	Queuing	(MSMQ)	Trace	Listener.

Property Description

Severity	Filter Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and
ActivityTracing.	The	setting	effectively	means	"the
specified	level	and	everything	more	important."	For
example,	the	Warning	setting	will	detect	warnings,	errors,
and	critical	events.

Formatter
Name

The	formatter	to	use	with	this	trace	listener.	Select	one
from	the	drop-down	list.	This	must	be	the	binary	formatter
when	you	use	this	listener	with	the	message	queuing
distributor	service.	This	is	optional.

Message
Priority

Sets	the	priority	of	a	log	entry.	This	determines	its	priority
while	the	log	entry	is	in	transit	and	when	it	is	inserted	into
its	destination	queue.	Possible	values	are	AboveNormal,
High,	Highest,	Low,	Lowest,	Normal,	VeryHigh,	and
VeryLow.	It	applies	to	the	MsmqTraceListener	class.	The
default	is	Normal.	This	is	optional.

Name The	name	of	the	trace	listener.	The	default	is	Message
Queuing	Trace	Listener.

Queue	Path The	path	to	the	queue	that	the	Msmq	TraceListener
instance	uses.	This	attribute	is	a	message	queuing	path,	and
it	applies	to	the	MsmqTraceListener	class.	The	default	is
.\Private$\myQueue.	This	is	required.

Recoverable Specifies	whether	the	log	entry	is	guaranteed	to	be
delivered	if	there	is	a	computer	failure	or	network	problem.
The	default	is	False.	This	is	optional.

Time	To	Be
Received

The	total	time	for	a	log	entry	to	be	received	by	the
destination	queue.	The	default	is	49710.06:28:15.	This	is
optional.

Time	To
Reach	Queue

The	maximum	time	for	the	log	entry	to	reach	the	queue.
The	default	is	49710.06:28:15.	This	is	optional.

Trace	Output
Options

Attaches	additional	information	to	platform-provided	trace
listener	output	for	listeners	that	do	not	output	to	a	text
formatter.	Possible	values	are	CallStack,	DateTime,
LogicalOperationStack,	None,	ProcessId,	ThreadId,	and
Timestamp.	The	default	is	None.	For	an	explanation	of
these	values,	see	TraceOutputOptions	Values.	This	is
optional.

Transaction
Type

The	type	of	a	Message	Queuing	transaction.	Possible
values	are	Automatic,	None,	and	Single.	It	applies	to	the
MsmqTraceListener	class.	The	default	is	None.	This	is
optional.

Use
Authentication

Specifies	whether	the	message	was	(or	must	be)
authenticated	before	being	sent.	The	default	is	False.	This
is	optional.

Use	Dead
Letter	Queue

Specifies	whether	a	copy	of	a	message	that	could	not	be
delivered	should	be	sent	to	a	dead-letter	queue.	The	default
is	False.	This	is	optional.

Use
Encryption

Specifies	whether	to	make	the	message	private.	The	default
is	False.	This	is	optional.

Rolling	Flat	File	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	a	rolling
flat	file	trace	listener.	This	trace	listener	allows	you	to	control	the	size	and	age
of	a	log	file.

Property Description

File	Name This	is	the	name	of	the	rolling	flat	file.	This	is	a	required	value.
It	can	include	environment	variables	such	as	%WINDIR%,
%TEMP%,	and	%USERPROFILE%.	If	you	also	set	the	Max
Archived	Files	property,	See	the	advice	on	choosing	a	file
name	in	the	following	Remarks	section.

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will
detect.	The	valid	values	are	All	(the	default),	Off,	Critical,
Error,	Warning,	Information,	Verbose,	and
ActivityTracing.	The	setting	effectively	means	"the	specified
level	and	everything	more	important."	For	example,	the
Warning	setting	will	detect	warnings,	errors,	and	critical
events.

Message
Footer

Additional	information	contained	in	the	file	footer.	The	default
is	"--."	This	is	optional.

Formatter
Name

The	formatter	to	use	with	this	trace	listener.	Select	one	from
the	drop-down	list.	The	default	is	none.	This	is	optional.

Message
Header

Additional	information	contained	in	the	file	header.	The	default
is	"--."	This	is	optional.

Max
Archived
Files

The	maximum	number	of	log	files	to	retain.	When	set	to	an
integer	value,	the	trace	listener	will	purge	old	files	based	on	the
file	creation	date	when	the	number	exceeds	the	specified	value.
See	the	note	in	the	following	Remarks	section	if	you	set	this
property.

Name This	is	the	name	of	the	trace	listener.	The	default	is	Rolling
Flat	File	Trace	Listener.	This	is	required.

File	Exists
Behavior

This	property	determines	what	occurs	to	an	existing	file	when
it	rolls	over.	If	you	select	Increment,	the	application	block

creates	a	new	file	and	names	it	by	incrementing	the	timestamp.
If	you	select	Overwrite	and	do	not	provide	a	value	for	the
Timestamp	Pattern	property,	the	existing	file	is	overwritten.

Roll
Interval

This	property	determines	when	the	log	file	rolls	over.	You	can
select	None	(the	default),	Midnight	(in	which	case	the	log	will
roll	over	at	midnight),	Minute,	Hour,	Day,	Month,	Week,	or
Year.	This	is	optional.

Roll	Size
KB

This	is	the	maximum	size	the	file	can	reach,	in	kilobytes,
before	it	rolls	over.	This	is	optional.

Timestamp
Pattern

This	is	the	date/time	format	that	is	appended	to	the	new	file
name	(see	the	Remarks	section	that	follows	this	table).

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.
This	is	optional.

Remarks
If	you	set	the	Max	Archived	Files	property,	this	trace	listener	will	delete
(purge)	files	using	the	file	name	pattern	[file-name]	*.file-extension.
Therefore,	it	will	delete	all	log	files	for	any	trace	listener	that	matches
this	pattern	when	it	purges	archived	log	files.	To	prevent	this,	use	a	value
for	the	File	Name	property	that	included	an	additional	period.	For
example,	use	[file-name]	.[additional-name].file-extension.
You	can	control	either	the	size	of	the	file,	its	age,	or	both.	For	example,	if
you	specify	in	configuration	a	Roll	Size	KB	value	of	5	KB	and	a	Roll
Interval	value	of	Day,	the	file	rolls	when	its	size	exceeds	5	KB	and	it
also	rolls	at	the	end	of	the	day.
If	you	select	Increment	for	the	File	Exists	Behavior,	the	application
block	creates	a	new	file	when	the	existing	file	rolls	over.	The	file	name
includes	the	current	timestamp.	If	a	file	with	this	name	already	exists,	the
application	block	adds	an	integer	to	the	end	of	the	timestamp	and
increments	it	until	it	cannot	find	a	file	with	that	name.	For	example,
assume	there	is	a	file	named	mylog2007-01-10.log	and	the	file	rolls	over
while	that	timestamp	is	still	valid.	The	Logging	Application	Block	will
then	look	for	a	file	named	mylog2007-01-10.1.log.	If	no	such	file	exists,
it	will	use	that	file	name	for	the	new	file.	If	that	file	also	exists,	it	will
then	attempt	to	locate	the	log	with	the	next	sequence	number
mylog2007-01-10.2.log.
If	you	select	Overwrite	for	the	File	Exists	Behavior,	the	application
block	replaces	the	existing	file	with	a	new	file	when	the	current	file	rolls
over.	However,	if	you	also	set	the	Timestamp	Pattern	property,	the
application	block	will	create	a	new	file	with	the	current	time	stamp
instead	of	replacing	the	existing	file.	If,	for	some	reason,	it	cannot
overwrite	the	file,	it	will	generate	a	name	using	the	same	process	that	is
used	with	the	Increment	value.
Relative	path	names	resolve	to	a	location	that	is	relative	to	the
AppDomain.CurrentDomain.BaseDirectory	directory.

System	Diagnostics	Trace	Listener
The	TraceListener	class	provides	the	abstract	base	class	for	trace	listeners	that
monitor	trace	and	debug	output.	The	following	table	lists	the	properties	that
appear	when	you	add	a	System	DiagnosticsTrace	Listener.

Property Description

InitData If	supplied,	this	property	is	used	when	the	application	block
constructs	a	trace	listener.	It	is	a	string	whose	meaning	depends
on	the	type	of	trace	listener	being	constructed.	For	the	.NET
Framework	trace	listeners,	the	string	has	the	following	values:
TextWriterTraceListener:	filename;	XmlWriterListener:
filename;	DelimitedLIstTraceListener:	filename;
ConsoleTraceListener:	not	applicable;	DefaultTraceListener:
not	applicable;	EventLogTraceListener:	event	source	name.	If
the	InitData	field	is	not	specified,	the	block	uses	the	default
constructor.	If	the	user	specifies	the	InitData	field	for	a	trace
listener	that	does	not	have	a	constructor	overload	that	accepts	a
string,	an	error	occurs.	This	is	optional.

Name The	name	of	the	trace	listener.	The	default	is	System	Diagnostics
Trace	Listener.	This	is	required.

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will	detect.
The	valid	values	are	All	(the	default),	Off,	Critical,	Error,
Warning,	Information,	Verbose,	and	ActivityTracing.	The
setting	effectively	means	"the	specified	level	and	everything	more
important."	For	example,	the	Warning	setting	will	detect
warnings,	errors,	and	critical	events.

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.	This
is	optional.

Type
Name

The	type	of	the	trace	listener.	Select	by	clicking	the	ellipsis	button
(...).	This	opens	the	Type	Selector.	This	is	required.

Note:
If	you	specify	a	System	Diagnostics	trace	listener	that	writes	to	a	file	and
that	file	is	read-only,	the	trace	listener	does	not	write	the	data	to	the	file	and
no	exception	occurs.	Make	sure	the	file	attributes	are	set	to	read/write.

WMI	Trace	Listener
The	WMI	trace	listener	is	a	trace	listener	that	raises	a	WMI	management	event
for	each	log	entry	it	receives.	The	following	table	lists	the	properties	that	you
can	set	when	you	add	a	WMI	Trace	Listener.

Property Description

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will	detect.
The	valid	values	are	All	(the	default),	Off,	Critical,	Error,
Warning,	Information,	Verbose,	and	ActivityTracing.	The
setting	effectively	means	"the	specified	level	and	everything	more
important."	For	example,	the	Warning	setting	will	detect
warnings,	errors,	and	critical	events.

Name The	name	of	the	trace	listener.	The	default	is	WMI	Trace
Listener.	This	is	required.

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.	This
is	optional.

XML	Trace	Listener
The	following	table	lists	the	properties	that	you	can	set	when	you	add	an	XML
Trace	Listener.

Property Description

File
Name

This	is	the	name	of	the	file	where	the	trace	listener	writes	the	data
it	extracts	from	an	XmlLogEntry	object.	This	is	a	required	value.
It	can	include	environment	variables	such	as	%WINDIR%,
%TEMP%,	and	%USERPROFILE%.

Severity
Filter

Applies	a	filter	that	selects	the	level	of	message	that	it	will	detect.
The	valid	values	are	All	(the	default),	Off,	Critical,	Error,
Warning,	Information,	Verbose,	and	ActivityTracing.	The
setting	effectively	means	"the	specified	level	and	everything	more
important."	For	example,	the	Warning	setting	will	detect
warnings,	errors,	and	critical	events.

Name This	is	the	name	of	the	trace	listener.	The	default	is	XML	Trace
Listener.	This	is	required.

Trace
Output
Options

Trace	listeners	that	do	not	output	to	a	text	formatter	use	this
property	to	determine	which	options,	or	elements,	should	be
included	in	the	trace	output.	Possible	values	are:	CallStack,
DateTime,	LogicalOperationStack,	None,	ProcessId,
ThreadId,	and	Timestamp.	The	default	is	None.	For	an
explanation	of	these	values,	see	TraceOutputOptions	Values.	This
is	optional.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Trace Listener Properties'%0AEntLib50_b45ee518-82b1-426c-b772-1e6c0fde455e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

TraceOutputOptions	Values

The	following	table	lists	the	possible	TraceOutputOptions	values.

Value Description

Callstack Write	the	call	stack,	which	is	represented	by	the
return	value	of	the	Environment.StackTrace
property.	

DateTime Write	the	date	and	time.

LogicalOperationStack Write	the	logical	operation	stack,	which	is
represented	by	the	return	value	of	the
CorrelationManager.LogicalOperationStack
property.	

ProcessId Write	the	process	identity,	which	is	represented	by
the	return	value	of	the	Process.ID	property.	

ThreadId Write	the	ThreadIdentity,	which	is	represented
by	the	return	value	of	the
Thread.ManagedThreadIdProperty	for	the
current	thread.	

Timestamp Write	the	timestamp,	which	is	represented	by	the
return	value	of	the
System.Diagnostics.Stopwatch.GetTimeStamp
method.	

For	more	information	about	these	values,	see	TraceOptions	Fields	in	the	.NET
Framework	Class	Library	on	MSDN®.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/system.environment.stacktrace.aspx
http://msdn2.microsoft.com/en-us/library/system.diagnostics.correlationmanager.logicaloperationstack.aspx
http://msdn2.microsoft.com/en-us/library/system.diagnostics.process.id.aspx
http://msdn2.microsoft.com/en-us/library/system.threading.thread.managedthreadid.aspx
http://msdn2.microsoft.com/en-us/library/system.diagnostics.stopwatch.gettimestamp.aspx
http://msdn2.microsoft.com/en-us/library/system.diagnostics.traceoptions.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'TraceOutputOptions Values'%0AEntLib50_e0902ea8-47a8-465f-a7d4-6809f35f6bc8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	WCF	Integration	Trace	Listeners

Windows	Communication	Foundation	(WCF)	is	able	to	log	directly	only	to
System.Diagnostics	trace	sources,	so	it	is	necessary	to	configure	a	special	trace
listener	named	the	EntLibLoggingProxyTraceListener	in	the
<system.diagnostics>	configuration	section	to	enable	the	Logging	Application
Block	to	process	WCF	log	messages.	This	trace	listener	receives	messages	from
the	trace	source,	wraps	them	in	a	LogEntry	object,	and	forwards	them	to	the
Logging	Application	Block,	where	they	can	be	processed	according	to	the
Logging	Application	Block’s	configuration.	If	the	original	message	is	in	XML
format	(as	is	the	case	when	messages	are	generated	from	WCF),	the
EntLibLoggingProxyTraceListener	creates	an	XmlLogEntry	object	instead
of	a	LogEntry.	The	XmlLogEntry	class	is	derived	from	the	standard
LogEntry	class	and	adds	support	for	an	XML	payload.

The	EntLibLoggingProxyTraceListener	will	add	the	name	of	its	containing
trace	source	as	a	category	to	each	XmlLogEntry	it	creates.	In	addition,	it	is
possible	to	configure	the	EntLibLoggingProxyTraceListener	to	extract
information	from	the	XML	data	for	use	as	additional	categories.	This	can	be
specified	using	XPath	queries	in	the	definition	of	the	trace	listener	in	the
configuration	file.	The	categoriesXPathQueries	attribute	can	be	set	to	a
semicolon-delimited	list	of	XPath	queries,	and	the	namespaces	attribute	can	be
set	to	a	space-delimited	list	of	XML	namespaces	used	in	the	XPath	queries,	as
shown	in	the	following	example.
XML

<add	name="entlibproxywithmultiplexpaths"

					type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.EntLibLoggingProxyTraceListener,	

											Microsoft.Practices.EnterpriseLibrary.Logging"

					categoriesXPathQueries="//MessageLogTraceRecord/@Source;//MessageLogTraceRecord/@Source2"

					namespaces="xmlns:pre='urn:test'	xmlns:pre2='urn:test2'"/>

To	use	the	EntLibLoggingProxyTraceListener	with	WCF,	you	will	need	to
define	a	trace	source	named	System.ServiceModel	in	the
<system.diagnostics>	configuration	section	and	turn	on	logging	in	WCF	by

specifying	appropriate	values	in	the	<diagnostics>	section	in	the
<system.serviceModel>	configuration	section.	Note	that	the	Enterprise	Library
configuration	tools	do	not	support	editing	either	of	these	sections,	so	you	must
use	a	text	editor	or	alternative	editor.	For	more	information,	see
System.ServiceModel	Namespace	on	MSDN.	For	more	information	about	using
tracing	with	WCF,	see	Configuring	Tracing	on	MSDN.

Although	you	can	use	any	of	the	trace	listeners	supported	by	the	Logging
Application	Block	with	WCF,	the	most	common	scenario	is	to	log	the	messages
in	XML	format.	XML	files	logged	from	WCF	can	be	analyzed	in	the	Service
Trace	Viewer	application	that	is	included	in	the	Windows	SDK.	To	configure
the	Logging	Application	Block	to	log	messages	in	this	XML	format,	you	should
use	the	XmlTraceListener.	This	trace	listener	derives	from	the
XmlWriterTraceListener,	which	is	a	part	of	the	.NET	Framework,	and	is	able
to	extract	the	XML	payload	from	an	XmlLogEntry	object	and	write	this	data	to
an	XML	text	file.	You	can	analyze	the	output	of	this	trace	listener	with	the	WCF
log	file	analysis	tools.

A	sample	configuration	file	that	demonstrates	what	the	configuration	should
look	like	follows	the	next	procedure.	The	<system.serviceModel>	section	of
the	file	defines	how	the	WCF	service	behaves	and	is	not	relevant	to	the	actual
logging	process.

The	following	procedure	describes	how	to	integrate	the	Logging	Application
Block	with	applications	that	use	WCF.

To	configure	the	WCF-integration	trace	listeners
1.	 Create	or	open	a	configuration	file	in	one	of	the	Enterprise	Library

configuration	tools,	and	ensure	the	Logging	Application	Block	is	added
to	the	application’s	configuration.	For	more	information,	see
Configuring	Enterprise	Library.

2.	 Click	the	plus	sign	icon	in	the	LoggingTarget	Listeners	pane,	point	to
Add	Logging	Target	Listener,	and	then	click	AddXML	Trace
Listener.

3.	 (Optional)	In	the	properties	pane,	set	the	Name,	the	File	Name	for	the
trace	file,	the	Severity	Filter	for	the	level	of	message	to	detect,	and
select	a	value	for	the	Trace	Output	Options	property	to	specify	which
options	or	elements	should	be	included	in	the	trace	output.	For	more
information,	see	TraceOutputOptions	Values.

http://msdn2.microsoft.com/en-us/library/system.servicemodel.aspx
http://msdn2.microsoft.com/en-us/library/ms733025.aspx

4.	 Click	the	plus	sign	icon	in	the	Categories	pane	and	click	Add
Category.

5.	 In	the	properties	pane,	set	the	Name	to	System.ServiceModel;	set
Auto	Flush	and	Minimum	Severity	as	required.

6.	 Click	the	Listeners	property	plus	sign	icon,	then	select	the	XML	Trace
Listener	from	the	drop-down	list.

7.	 Save	the	configuration	file.
8.	 Open	the	configuration	file	either	in	Visual	Studio®	or	in	the	text	editor

of	your	choice.
9.	 Define	the	EntLib	Proxy	trace	listener	in	the	<system.diagnostics>

section	and	use	System.ServiceModel	as	the	source.	(See	the	sample
configuration	file.)

10.	 Modify	the	WCF	configuration	to	specify	the	desired	level	of	logging,
as	shown	in	the	following	sample	configuration	file.

XML

<?xml	version="1.0"	encoding="utf-8"	?>

<configuration>

		<configSections>

				<section	name="loggingConfiguration"

													type="Microsoft.Practices.EnterpriseLibrary

																		.Logging.Configuration.LoggingSettings,

																		Microsoft.Practices.EnterpriseLibrary.Logging"	/>

		</configSections>

		<loggingConfiguration	name="Logging	Application	Block"

																								tracingEnabled="true"

																								defaultCategory="System.ServiceModel"

																								logWarningsWhenNoCategoriesMatch="true">

				<listeners>

						<add	fileName="c:\\trace-xml.log"

											listenerDataType="Microsoft.Practices.EnterpriseLibrary

																												.Logging.Configuration.XmlTraceListenerData,

																												Microsoft.Practices.EnterpriseLibrary.Logging"

											traceOutputOptions="None"

											type="Microsoft.Practices.EnterpriseLibrary.Logging

																	.TraceListeners.XmlTraceListener,

																	Microsoft.Practices.EnterpriseLibrary.Logging"

											name="XML	Trace	Listener"	/>

				</listeners>

				<formatters>

				</formatters>

				<categorySources>

						<add	switchValue="All"	name="System.ServiceModel">

								<listeners>

										<add	name="XML	Trace	Listener"	/>

								</listeners>

						</add>

				</categorySources>

				<specialSources>

						<allEvents	switchValue="All"	name="All	Events"	/>

						<notProcessed	switchValue="All"	name="Unprocessed	Category"	/>

						<errors	switchValue="All"	name="Logging	Errors	&	Warnings"	/>

				</specialSources>

		</loggingConfiguration>

		<system.serviceModel>

					<diagnostics>

							<messageLogging	logEntireMessage="true"

																							logMalformedMessages="true"

																							logMessagesAtTransportLevel="true"	/>

					</diagnostics>

				<services>

				<service	name="WCFServiceLibrary1.service1"

													behaviorConfiguration="MyServiceTypeBehaviors"	>

						<endpoint	contract="WCFServiceLibrary1.IService1"

																binding="wsHttpBinding"/>

						<endpoint	contract="IMetadataExchange"	binding="mexHttpBinding"

																address="mex"	/>		

				</service>

		</services>

		<behaviors>

				<serviceBehaviors>

						<behavior	name="MyServiceTypeBehaviors"	>

								<serviceMetadata	httpGetEnabled="true"	/>

						</behavior>

				</serviceBehaviors>

		</behaviors>

		</system.serviceModel>

		<system.diagnostics>

				<sources>

						<source	name="System.ServiceModel"	switchValue="All">

								<listeners>

										<add	name="traceListener"	

															type="Microsoft.Practices.EnterpriseLibrary.Logging

																					.TraceListeners.EntLibLoggingProxyTraceListener,

																					Microsoft.Practices.EnterpriseLibrary.Logging"	/>

								</listeners>

						</source>

				</sources>

		</system.diagnostics>

</configuration>

For	information	about	the	WCF-integration	trace	listener	properties,	see	Trace
Listener	Properties.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring WCF Integration Trace Listeners'%0AEntLib50_4b216b82-b77d-41c3-bb14-cc1bf5d29db2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Formatters

The	first	procedure	describes	how	to	configure	the	formatters.	The	text
formatter	converts	a	log	entry	into	a	text	string.	The	contents	of	the	string	are
determined	by	replacing	tokens	in	the	text	formatter's	Template	property.	The
BinaryLogFormatter	uses	the	.NET	Framework	BinaryFormatter	to	serialize
and	deserialize	the	log	entry	in	binary	format.	The	BinaryLogFormatter	is
required	when	using	the	Message	Queuing	(MSMQ)	trace	listener	with	the
Message	Queuing	distributor	service.

To	configure	formatters
1.	 Click	on	the	plus	sign	icon	in	the	Log	Message	Formatters	section	of

the	Logging	Settings	configuration	pane	and	click	Add	Log	Message
Formatters	to	display	the	list	of	formatters.	When	you	select	a
formatter,	it	is	added	to	the	Log	Message	Formatters	section	where
you	can	then	set	its	properties.

2.	 Click	the	expander	arrow	in	the	formatter	item	you	wish	to	configure	if
the	properties	are	not	visible.

3.	 (Optional)	Change	the	Name	property.	The	default	name	is	the	name	of
the	formatter.

4.	 If	you	are	adding	a	text	formatter	and	want	to	change	the	template	that
contains	the	value	placeholders,	click	the	ellipsis	button	(…)	for	the
Template	property.	Make	the	required	changes	in	the	Template	Editor
dialog.	You	can	use	the	Insert	Token	button	to	add	tokens	with	the
appropriate	syntax.	After	you	finish	making	the	changes,	click	OK.

5.	 If	you	are	adding	a	Custom	Formatter	and	want	to	add	or	edit	the
settings,	change	the	list	of	keys	and	values	in	the	Attributes	property
section.

6.	 Repeat	the	procedure	for	each	formatter	you	want	to	use.
Note:

The	only	property	you	can	change	for	the	binary	formatter	is	the
name.

Text	Formatter	Template	Tokens
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/az4se3k1.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Formatters'%0AEntLib50_8b4b7563-0062-4690-bfc2-df37f15b2d35%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Trace	Source	Categories

Trace	source	categories	associate	log	entries	with	their	target	listener(s).	You
can	configure	the	following	two	category	types:

Categories	that	specify	the	logging	categories	you	want	to	use.	When
you	create	a	log	entry,	you	can	assign	it	to	one	or	more	categories.	Each
category	can	filter	the	log	entry	based	on	its	severity	(such	as	Critical,
Error,	Warning,	or	Information),	and	route	it	to	one	or	more	trace
listeners	(logging	targets).
Special	Categories	that	automatically	receive	all	log	entries,
unprocessed	log	entries,	or	log	entries	where	an	error	occurred	during
logging.	Each	of	these	special	categories	can	filter	the	log	entry	based	on
its	severity	(such	as	Critical,	Error,	Warning,	or	Information),	and
route	it	to	one	or	more	trace	listeners	(logging	targets).

Configuring	Trace	Source	Categories

Configuring	Trace	Sources	Special	Category

Source	Category	Properties

Severity	(SourceLevels)	Values
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Trace Source Categories'%0AEntLib50_9301547d-44c4-490c-91a0-b63e86e4b6a2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Logging	Filters

You	can	filter	log	entries	based	on	their	categories	and	their	priorities.	You	can
also	entirely	enable	or	disable	logging	or	add	a	custom	logging	filter.	The
following	procedure	describes	how	to	configure	the	logging	filters.

To	configure	logging	filters
1.	 Select	Add	Logging	Filters	as	described	in	Configuration	Overview.
2.	 If	the	filter's	property	pane	is	not	displayed,	click	the	property	expander

arrow	or	right-click	the	filters	node	you	wish	to	configure.
3.	 The	Category	Filter	allows	or	denies	log	entries	based	on	their

categories:
If	you	want	to	use	a	Category	Filter,	you	can	select	the	specific
category	filter	by	editing	the	Categories	property.	Click	the
plus	sign	icon	to	add	a	category	filter.
Type	or	select	the	category	name	for	the	category	that	will	be
filtered.	You	can	either	select	a	name	from	the	drop-down	list	or
type	a	category	name.	All	Category	Filters	that	have	been	added
to	the	Category	Filters	section	are	available	for	selection	in	the
drop-down	list.	The	selected	category	name	appears	in	the
lower	pane.
Repeat	to	add	any	other	categories	you	require.
To	remove	a	category,	click	the	delete	(x)	icon	beside	the
category	you	wish	to	remove.
Repeat	to	remove	any	other	categories	you	no	longer	require.
Select	a	filter	mode,	either	AllowAllExceptDenied	or
DenyAllExceptDenied.
(Optional)	Change	the	name	of	the	category	filter.	For
information	about	the	CategoryFilter	properties,	see	Category
Filter	Properties.

4.	 The	Logging	Enabled	Filter	provides	a	global	switch	that	you	can	use
to	turn	logging	on	and	off:

If	you	want	to	log	events,	set	All	Logging	Enabled	to	True.	To
prevent	all	logging,	set	All	Logging	Enabled	to	False.
(Optional)	Change	the	name	of	the	Logging	Enabled	Filter.

For	information	about	the	Logging	Enabled	Filter	properties,
see	Logging	Enabled	Filter	Properties.

5.	 The	Priority	Filter	allows	or	denies	log	entries	based	on	their	priority:
(Optional)	Set	the	Maximum	Priority	property.	This	is	the
maximum	priority	value	a	log	entry	can	have	in	order	to	be
logged.	If	you	do	not	set	this	property,	the	value	is	2147483647
(this	is	the	largest	possible	value	of	a	32-bit	signed	integer).
(Optional)	Set	the	Minimum	Priority	property.	This	is	the
minimum	value	a	log	entry	must	have	to	be	logged.	If	you	do
not	set	this	property,	the	value	is	-1.
(Optional)	Change	the	name	of	the	priority	filter.	For
information	about	the	priority	filter	properties,	see	Priority
Filter	Properties.

6.	 A	Custom	Logging	Filter	is	a	class	that	you	have	created	that	derives
from	the	LogFilter	class.	Its	configuration	information	consists	of	a
collection	of	name/value	string	pairs:

Set	the	Type	property	by	clicking	the	ellipsis	button	(...)	to
display	the	Type	Selector.	Navigate	to	and	click	the	filter	type
name	in	the	Type	Selector	dialog	box.	You	must	select	a	class
that	derives	from	the	LogFilter	class.	It	must	also	have	the	type
CustomLogFilterData	specified	as	the	value	of	the
ConfigurationElementType	attribute	placed	on	the	class.
Enter	a	key/value	pair	in	the	Key	and	Value	text	boxes.	When
you	enter	a	key/value	pair,	a	new	pair	of	blank	text	boxes	are
displayed.
(Optional)	Change	the	name	of	the	Custom	Logging	Filter.
For	information	about	the	Custom	Logging	Filter	properties,
see	Custom	Logging	Filter	Properties.

7.	 Repeat	the	preceding	steps	for	each	filter	you	require.

Category	Filter	Properties

Logging	Enabled	Filter	Properties

Priority	Filter	Properties

Custom	Logging	Filter	Properties
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Logging Filters'%0AEntLib50_ac913544-cc72-4de9-b916-f9d85d473685%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	the	Application	Block

The	following	procedure	describes	how	to	configure	the	Logging	Application
Block	properties.

To	configure	the	Logging	Application	Block
1.	 In	the	Logging	Settings	section,	click	each	property	you	want	to

change.	For	information	about	the	Logging	Application	Block
properties,	see	the	table	that	follows	this	procedure.

2.	 Set	the	properties	if	you	need	to.	If	you	want	to	use	a	default	category,
click	the	drop-down	arrow	and	select	one	of	the	category	names.	Log
entries	that	are	not	assigned	to	a	category	belong	to	the	default
category.

3.	 The	Warn	If	No	Category	Match	property	sends	log	entries	that	are
assigned	to	a	category	that	is	not	specified	in	configuration	to	the
Logging	Errors	&	Warnings	special	source.	The	default	is	True.	If
you	do	not	want	this	to	occur,	click	False	in	the	drop-down	list.

4.	 The	Activity	Tracing	Enabled	property	specifies	whether	activity
tracing	is	enabled.	The	default	is	True.	If	you	do	not	want	this	to	occur,
click	False	in	the	drop-down	list.

Logging	Application	Block	Properties

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring the Application Block'%0AEntLib50_2b5c86d6-f126-4425-9bce-731bb2fcd52d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Logging	Application	Block

This	topic	lists	the	elements	and	attributes	used	to	configure	the	Logging
Application	Block.	The	configuration	file	has	the	following	section-handler
declaration.
XML

<configSections>

<section	name="loggingConfiguration"

									type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings,	

															Microsoft.Practices.EnterpriseLibrary.Logging"	/>

</configSections>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section-handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
loggingConfiguration.	The	name	of	the	section-handler	class	is
Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings

loggingConfiguration	Element

logFilters	Child	Element

categoryFilters	Child	Element

categorySources	Child	Element

http://msdn2.microsoft.com/en-us/library/system.diagnostics.traceeventtype

listeners	Child	Element	(categorySources)

specialSources	Child	Element

listeners	Child	Element	(errors)

notProcessed	Child	Element

listeners	Child	Element	(notProcessed)

allEvents	Child	Element

listeners	Child	Element	(allEvents)

listeners	Child	Element	(loggingConfiguration)

http://msdn2.microsoft.com/en-us/library/system.messaging.messagepriority.aspx
http://msdn2.microsoft.com/en-us/library/system.messaging.messagequeuetransactiontype.aspx

formatters	Child	Element

msmqDistributorSettings	Element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Logging Application Block'%0AEntLib50_12cd1f02-219f-45a3-a711-bd50573de1e4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Distributor	Service

Applications	must	often	send	log	entries	from	multiple	sources	to	a	common
destination.	The	Logging	Application	Block	takes	advantage	of	Message
Queuing	(also	known	as	MSMQ)	to	allow	you	to	do	this.	By	configuring
multiple	applications	to	use	the	same	message	queue,	you	can	process	log
entries	at	a	central	location.

To	distribute	log	entries	to	a	central	destination,	configure	your	application	to
write	log	entries	to	the	message	queuing	trace	listener.	When	the	application
sends	a	log	entry	to	the	Logging	Application	Block,	it	places	the	log	entry	on	a
Message	Queuing	queue.	The	distributor	service	runs	as	a	Windows	service	on
either	the	same	computer	as	the	application	or	on	a	remote	computer.	It	polls	the
queue	to	see	if	there	are	any	log	entries	on	it.	The	polling	interval	is	determined
by	configuration.

If	there	are	log	entries	on	the	queue,	the	distributor	service	uses	an	instance	of
the	Logging	Application	Block	to	forward	the	messages	to	the	trace	listener(s).
The	trace	listener(s)	write	the	log	entries	to	the	destinations,	such	as	an	event
log	or	a	flat	file.

The	distributor	service	requires	that	all	log	entries	be	formatted	using	the
BinaryLogFormatter	class.	If	the	service	cannot	interpret	the	entry,	it	will	log
an	error	to	the	Application	Event	Log	and	shut	down.

The	following	schematic	illustrates	how	multiple	applications	use	the	distributor
service	to	send	log	entries	to	a	central	location.

Each	instance	of	the	Logging	Application	Block	uses	an	instance	of	the	message
queuing	trace	listener	(the	MsmqTraceListener	class)	to	send	the	log	entries	to
a	single	destination	queue.	The	distributor	service	polls	the	queue	and	uses
another	instance	of	the	Logging	Application	Block	to	direct	the	log	entries	to
the	proper	trace	listeners.	Note	that	the	distributor	service	can	run	on	a	remote
computer.	The	following	sections	describe	installing	and	using	the	distributor
service:

Installing	the	Distributor	Service
Starting	the	Distributor	Service
Understanding	the	serviceName	Attribute

Installing	the	Distributor	Service

http://technet.microsoft.com/en-us/library/cc780048(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc758845(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc738910(WS.10).aspx

Starting	the	Distributor	Service

Understanding	the	serviceName	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Distributor Service'%0AEntLib50_ef65d516-04b0-44c2-a750-4e15aab636fd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Logging	Application	Block	is	designed	to	support	the	most	common
scenarios	for	logging	information.	When	adding	your	application	code,	refer	to
the	scenarios	in	the	Key	Scenarios	sections	and	select	the	ones	that	best	suit
your	situation.	Use	the	code	that	accompanies	the	scenario	either	as	it	is	or	adapt
it	as	necessary.

First,	prepare	your	application	to	use	the	Logging	Application	Block.	The
following	procedure	describes	how	to	include	the	necessary	Enterprise	Library
assemblies	and	elements	in	your	code.

To	prepare	your	application
1.	 Set	a	reference	to	the	Logging	Application	Block	assembly:

If	you	are	using	C#,	in	Visual	Studio,	right-click	References	in
Solution	Explorer,	and	then	click	Add	References	to	add
references	to	the	following	assemblies:

Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.EnterpriseLibrary.Logging.dll

If	you	are	using	Visual	Basic®,	double-click	My	Project	in
Visual	Studio,	click	the	References	tab,	and	then	click	Add
Reference	to	select	the	assembly.	In	the	list	of	imported
namespaces	at	the	bottom	of	the	tab,	select	the	following	check
boxes:

Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.EnterpriseLibrary.Logging.dll

2.	 (Optional)	To	use	elements	from	the	Logging	Application	Block
without	fully	qualifying	the	element	reference,	you	can	add	the
following	using	statements	(C#)	or	Imports	statements	(Visual	Basic)
to	the	top	of	your	source	code	file.

C#

using	Microsoft.Practices.EnterpriseLibrary.Logging;

using	Microsoft.Practices.EnterpriseLibrary.Logging.ExtraInformation;

using	Microsoft.Practices.EnterpriseLibrary.Logging.Filters;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Logging

Imports	Microsoft.Practices.EnterpriseLibrary.Logging.ExtraInformation

Imports	Microsoft.Practices.EnterpriseLibrary.Logging.Filters

Note:
For	Visual	Basic	projects,	you	can	also	use	the	References	page	of
the	Project	Designer	to	manage	references	and	imported
namespaces.	To	access	the	References	page,	select	a	project	node	in
Solution	Explorer,	and	then	click	Properties	on	the	Project	menu.
When	the	Project	Designer	appears,	click	the	References	tab.

The	ExtraInformation	providers	gather	context	information	that	is
useful	but	not	always	necessary	because	it	is	expensive	to	collect.
Examples	are	stack	trace	information	and	COM+	information.	The
ExtraInformation	providers	add	the	information	to	a	dictionary.	You
can	choose	which	providers	to	use	(if	any)	and	add	the	resulting
dictionary	to	the	LogEntry.ExtendedProperties	property.
Filters	are	optional.	You	only	need	to	import	the
Microsoft.Practices.EnterpriseLibrary.Logging.Filters	namespace
if	you	are	going	to	refer	to	specific	filters	in	your	application	code.

3.	 If	you	are	using	the	DatabaseTraceListener	class,	you	must	also	do
the	following:

Configure	the	application	to	use	the	Data	Access	Application
Block.	For	more	information,	see	The	Data	Access	Application
Block.
Execute	the	script	named	CreateLoggingDb.cmd	(located	in
the	Source\Blocks\Logging\Src\DatabaseTraceListener\Scripts
folder)	to	create	the	Logging	database.

Note:
It	is	also	a	good	idea	to	add	a	reference	to	the
Microsoft.Practices.EnterpriseLibrary.Logging.Database.dll
to	your	project	so	that	the	assembly	required	at	run	time	is
copied	to	the	output	folder.

4.	 Add	the	application	code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_730d69d7-7e0f-4b21-8ab8-725bcec1bfd3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	series	of	topics	describes	common	situations	developers	must	address
when	providing	logging	functionality	in	their	applications.	Each	scenario
explains	the	task,	describes	a	real-world	situation	where	such	a	task	might	arise,
and	includes	code	demonstrating	how	to	use	the	Logging	Application	Block	to
complete	the	task.	The	scenarios	are	as	follows:

Logging	to	a	Database.	This	topic	describes	the	process	you	should
follow	for	using	the	Logging	Application	Block	to	implement	the
common	requirement	of	logging	to	a	database.
Logging	to	Windows	Event	Log.	This	topic	describes	the	process	you
should	follow	for	using	the	Logging	Application	Block	to	implement	the
common	requirement	of	logging	to	Windows	Event	Log.
Logging	to	a	Disk	File.	This	topic	describes	the	process	you	should
follow	for	using	the	Logging	Application	Block	to	implement	the
common	requirement	of	logging	to	a	disk	file.
Logging	to	Windows	Message	Queuing.	This	topic	describes	the	process
you	should	follow	for	using	the	Logging	Application	Block	to	implement
the	common	requirement	of	logging	to	Windows	Message	Queuing.
Logging	to	WMI.	This	topic	describes	the	process	you	should	follow	for
using	the	Logging	Application	Block	to	implement	the	common
requirement	of	logging	to	the	Windows	Management	Instrumentation
repository.
Logging	as	E-mail	Messages.	This	topic	describes	the	process	you
should	follow	for	using	the	Logging	Application	Block	to	implement	the
common	requirement	of	sending	logging	information	in	e-mail	messages.
Populating	and	Raising	Events	from	Code.	This	scenario	illustrates	how
to	write	code	to	specify	the	data	to	be	logged,	along	with	a	category	and
priority,	and	pass	it	to	the	application	block.
Populating	a	Log	Message	with	Additional	Context	Information.	This
scenario	illustrates	how	to	populate	a	dictionary	of	custom	information	to
be	added	to	a	log	entry.
Tracing	Activities	and	Propagating	Context	Information.	This	scenario
illustrates	how	to	log	the	start	and	end	of	an	activity	and	trace	key
activity	points	in	between.

Checking	Filter	Status	before	Constructing	Log	Messages.	This	scenario
illustrates	how	to	avoid	collecting	log	information	for	messages	that	will
not	be	logged	according	to	the	current	configuration	information.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_33d9998d-fa92-40b4-be49-7e28a72bd22c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	to	a	Database

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	to	a	database.	The	process	involves
configuring	the	block	and	performing	other	tasks	to	prepare	your	application.
This	topic	acts	as	a	reference	to	help	you	quickly	set	up	the	Logging
Application	Block	to	perform	the	required	logging	action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging to a Database'%0AEntLib50_b010d39c-5196-439a-8d7c-92d6cbe1d892%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	to	Windows	Event	Log

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	to	Windows	Event	Log.	The	process
involves	configuring	the	block	and	performing	other	tasks	to	prepare	your
application.	This	topic	acts	as	a	quick	reference	to	help	you	rapidly	set	up	the
Logging	Application	Block	to	perform	the	required	logging	action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/system.diagnostics.eventloginstaller(VS.71).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging to Windows Event Log'%0AEntLib50_45e42198-6a44-4d0b-bb55-691b7c5ed2bf%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	to	a	Disk	File

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	to	a	disk	file.	The	process	involves
configuring	the	block	and	performing	other	tasks	to	prepare	your	application.
This	topic	acts	as	a	quick	reference	to	help	you	quickly	set	up	the	Logging
Application	Block	to	perform	the	required	logging	action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging to a Disk File'%0AEntLib50_d0234cae-d49b-44b0-9f0c-bb79089022af%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	to	Windows	Message	Queuing

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	as	messages	through	Windows	Message
Queuing.	The	process	involves	configuring	the	block	and	performing	other	tasks
to	prepare	your	application.	This	topic	acts	as	a	quick	reference	to	help	you
quickly	set	up	the	Logging	Application	Block	to	perform	the	required	logging
action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging to Windows Message Queuing'%0AEntLib50_7dd3bd7e-c463-4dbd-92f8-472e0eab8d53%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	to	WMI

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	to	the	Windows	Management
Instrumentation	database.	The	process	just	involves	configuring	the	block—
there	are	no	other	tasks	required	to	prepare	your	application.	This	topic	acts	as	a
quick	reference	to	help	you	quickly	set	up	the	Logging	Application	Block	to
perform	the	required	logging	action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging to WMI'%0AEntLib50_5a06c55e-f2c0-49db-9486-af121f8ac4db%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	as	E-mail	Messages

This	scenario	is	one	of	several	that	describe	the	typical	requirements	when	using
the	Logging	Application	Block	in	your	applications.	It	describes	the	process	for
setting	up	the	block	to	send	log	events	as	e-mail	messages.	The	process	involves
configuring	the	block	and	performing	other	tasks	to	prepare	your	application.
This	topic	acts	as	a	quick	reference	to	help	you	rapidly	set	up	the	Logging
Application	Block	to	perform	the	required	logging	action.

Typical	Goals

Solution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging as E-mail Messages'%0AEntLib50_c28f7cd6-7933-47ba-8d30-ac4ecaa96a52%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Populating	and	Raising	Events	from	Code

The	ability	to	populate	and	raise	events	from	code	is	fundamental	to	the
functionality	of	the	Logging	Application	Block.

Typical	Goals

Solution

http://msdn.microsoft.com/en-gb/library/dd203099.aspx

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Populating and Raising Events from Code'%0AEntLib50_3712145d-7fa5-4fd7-b9a7-ea2d018b5fc7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Populating	a	Log	Message	with	Additional	Context	Information

The	LogEntry	class	defines	properties	to	hold	information	common	to	typical
logging	scenarios.	Developers	often	need	to	add	context	information	to	log
entries.	The	same	type	of	context	information	can	be	required	for	multiple	log
entries	in	the	same	application	or	in	multiple	applications.	Because	context
information	can	be	expensive	to	gather,	certain	types	of	information	are	not
automatically	collected.	The	ExtraInformation	providers	gather	context
information	that	is	useful	but	not	always	necessary	because	it	is	expensive	to
collect.	Examples	are	stack	trace	information	and	COM+	information.

Typical	Goals

Solution

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Populating a Log Message with Additional Context Information'%0AEntLib50_62843eda-e525-4531-8d26-4efddd75ccef%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Tracing	Activities	and	Propagating	Context	Information

In	some	cases,	you	will	need	to	log	information	at	the	start	and	end	of	a
particular	activity,	including	timing	information.	In	addition,	you	can	trace	the
progress	of	the	activity	at	selected	points	in	the	application.	Tracing	allows	you
to	associate	all	events	between	the	start	and	end	of	an	activity	with	an
ActivityID	property	and	a	category.	The	ActivityID	property	allows	you	to
correlate	log	entries	that	are	written	during	the	execution	of	an	activity.	You	can
use	filters	and	categories	to	direct	and	control	the	information	produced	for	an
event	that	can	occur	in	the	context	of	any	activity.

Typical	Goals

Solution

http://msdn.microsoft.com/en-gb/library/dd203099.aspx

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Tracing Activities and Propagating Context Information'%0AEntLib50_76ae5d88-2ad5-4d53-a727-c8f80807d6d1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Checking	Filter	Status	before	Constructing	Log	Messages

By	using	the	Logging	Application	Block,	you	can	query	the	filter	status	to
determine	whether	a	log	message	should	be	logged	according	to	the	filter
configuration.

Typical	Goals

Solution

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Checking Filter Status before Constructing Log Messages'%0AEntLib50_37d65dcf-7447-46f6-97ec-6208b9a317b6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Logging	Application	Block

The	Logging	Application	Block	includes	the	following	features:
A	simple	and	consistent	way	of	logging	event	information
Distribution	of	information	to	multiple	sources
Activity	tracing	to	mark	the	start	and	end	of	an	activity	such	as	a	use	case
Simplified	application	block	configuration	using	the	configuration	tools
Extensibility	through	custom	trace	listeners	and	formatters

Design	Goals

Design	Highlights

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Logging Application Block'%0AEntLib50_47589a17-a0d7-4651-93e1-41b9bc975eb6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Simple	and	Consistent	Logging	Functionality

Developers	face	many	implementation	choices	and	requirements	when	they	add
logging	functionality	to	their	applications.	Different	applications	may	log
information	to	different	destinations.	For	example,	one	application	may	use	an
event	log	and	another	application	may	use	a	flat	file.	Even	a	single	application
may	log	information	to	multiple	destinations.	As	a	result,	developers	must	often
write	duplicate	code	for	common	tasks	such	as	writing	to	an	event	log	or	to	a
flat	file.

Uniform	implementations	make	the	code	easier	to	understand,	more	predictable,
and	easier	to	maintain.	However,	different	development	teams	routinely
implement	different	logging	strategies.	The	Logging	Application	Block
encapsulates	the	logic	that	performs	logging	and	tracing	operations	into	a	few
classes	that	have	small	numbers	of	methods.	These	methods	are	the	same	for	all
log	message	destinations.	This	means	that	applications	that	use	the	Logging
Application	Block	are	consistent	in	the	ways	that	they	log	information.	By	using
the	Logging	Application	Block,	this	consistency	remains	across	single	projects,
multiple	projects,	or	enterprise-scale	solutions.

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Simple and Consistent Logging Functionality'%0AEntLib50_1ee4fccf-170c-4650-8282-c46e86902a17%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Logging	Application	Block

In	its	original	state,	the	Logging	Application	Block	works	well	for	typical
logging	scenarios.	However,	there	may	be	times	when	you	need	to	customize
some	of	the	application	block's	behavior	to	better	suit	your	application's
particular	requirements.	There	are	two	ways	to	do	this:	you	can	extend	the
Logging	Application	Block	using	the	built-in	extension	points	or	you	can
modify	the	application	block	by	making	changes	to	its	source	code.	For	more
details,	see	the	following	topics:

Extending	the	Logging	Application	Block
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Logging Application Block'%0AEntLib50_5d44c59c-4981-431a-aa38-5f466d4586c7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Logging	Application	Block

The	Logging	Application	Block	is	designed	to	suit	a	variety	of	applications	and
to	provide	the	most	commonly	used	logging	functions.	You	can	extend	the
application	block	through	designated	extension	points.	Typically,	these	are
custom	classes,	written	by	you,	that	implement	a	particular	interface	or	derive
from	an	abstract	class.	Because	these	custom	classes	exist	in	your	application
space,	you	do	not	need	to	modify	or	rebuild	the	application	block.	Instead,	you
designate	your	extensions	using	configuration	settings.	Additionally,	with
extension	points,	you	can	adapt	the	application	block	to	suit	the	needs	of	any
particular	application.

You	can	extend	the	capabilities	of	the	block	by	adding	custom	formatters,	trace
listeners,	and	log	filters.

Custom	Provider	or	Extension Interface	or	Base	Class

Log	Entry	Formatter ILogFormatter

Trace	Listener CustomTraceListener

Log	Filter ILogFilter
LogFilter

For	detailed	information	about	how	to	integrate	custom	providers	with	the
Enterprise	Library	configuration	system	and	configuration	tools	see	Creating
Custom	Providers	for	Enterprise	Library.

The	following	procedure	describes	the	general	approach	to	extend	the	Logging
Application	Block.

To	extend	the	Logging	Application	Block
1.	 Create	a	new	custom	class	and	add	it	to	your	project.
2.	 Make	sure	that	the	class	implements	the	required	interfaces,

constructors,	and	methods.
3.	 Add	the	custom	object	to	the	configuration	of	the	Logging	Application

Block	using	the	Enterprise	Library	configuration	tools:
Specify	your	custom	class	as	the	type	name.

Specify	any	custom	configuration	properties	by	modifying	the
attributes	of	the	object.

Creating	a	Custom	Log	Entry	Formatter

Creating	a	Custom	Trace	Listener

Creating	a	Custom	Log	Filter
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Logging Application Block'%0AEntLib50_bca61231-bddd-4531-b797-449dfc0639e8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	see	that	the	initial	deployment	of
the	Logging	Application	Block	is	planned	and	managed	and	that	subsequent
updates	are	deployed	with	minimal	impact	to	existing	applications	that	use	the
application	block.	For	details	of	deploying	and	updating	Enterprise	Library	and
the	application	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	whether	they	want	to	use	the
instrumentation	exposed	by	the	application	block.	For	details	of	how	to	enable
and	disable	instrumentation,	see	Enabling	Instrumentation.	For	information
about	the	instrumentation	contained	in	the	Logging	Application	Block,	see	the
following	topics:

Logging	Application	Block	Performance	Counters
Logging	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_11aa70e5-da29-457d-8600-a7507ff538dd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Logging	Application	Block	Performance	Counters

The	following	table	describes	the	Logging	Application	Block	performance
counters.

Performance	Counter
Name

Description

Avg.	Trace	Execution
Time

The	average	execution	time	for	traced	operations.

Logging	Events
Raised/sec

The	rate	at	which	logging	events	were	raised.

Total	Logging	Events
Raised

The	total	number	of	logging	events	raised.

Total	Trace	Listener
Entries	Written

The	total	number	of	entries	that	were	traced	by
individual	trace	listeners.

Total	Trace	Operations
Started

The	total	number	of	tracing	operations	started.

Trace	Listener	Entries
Written/sec

The	rate	at	which	log	entries	were	traced	by
individual	trace	listeners.

Trace	Operations
Started/sec

The	rate	at	which	tracing	operations	were	started.

An	average	counter	measures	a	value	over	time	and	displays	the	average	of	the
last	two	measurements.	A	rate	counter	samples	an	increasing	count	of	events
over	time	and	divides	the	values	by	the	change	in	time	to	display	a	rate	of
activity.	For	more	information	about	performance	counters,	see	Overview	of
Performance	Monitoring	in	the	.NET	Framework	Class	Library	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging Application Block Performance Counters'%0AEntLib50_9cf95b26-a4e5-459f-9086-ea45b5682bae%0APlease provide details of the error you have located...%0A

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

Microsoft	Enterprise	Library	5.0

Logging	Application	Block	Event	Log	Entries

This	topic	lists	the	Logging	Application	Block	event	log	entries.	The	listener	is
the	class	that	raised	the	event.

FailureLoggingError	Event

LockAcquisitionError	Event

ConfigurationFailure	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Logging Application Block Event Log Entries'%0AEntLib50_453fc467-c49f-4958-8449-d4ad4682dff5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Policy	Injection	Application	Block

Policy	injection	can	be	used	to	change	the	behavior	of	your	custom	objects,	and
almost	any	other	.NET	class,	in	order	to	better	manage	crosscutting	concerns	for
these	objects.	In	the	current	version	of	Microsoft®	Enterprise	Library,	policy
injection	is	implemented	through	the	Unity	interception	mechanism.	For	more
information	see	Interception	with	Unity.

While	the	Policy	Injection	Application	Block	is	still	included	in	this	release	of
Enterprise	Library,	it	is	(with	the	exception	of	one	call	handler)	a	set	of	legacy
components	such	as	the	PolicyInjection	facade	that	supports	backwards
compatibility	with	applications	that	use	versions	of	Enterprise	Library	prior	to
version	5.0.

For	information	about	these	legacy	components,	see	the	guidance	for	previous
versions	of	Enterprise	Library.	This	is	available	on	the	Microsoft	Enterprise
Library	site	on	MSDN®,	and	includes	specific	information	for	Creating	an
Instance	of	an	Interceptable	Target	Class,	details	on	using	the	create	method,
details	on	using	the	wrap	method,	and	Specifying	a	Configuration	Instance
When	Creating	and	Wrapping	Objects.	You	can,	in	addition,	use	the
configuration	tools	provided	with	this	release	of	Enterprise	Library	to	configure
policy	injection	if	you	decide	to	use	the	legacy	approach.

Also	be	aware	that,	even	if	you	decide	to	continue	to	use	the	backwards
compatibility	techniques	included	in	the	Policy	Injection	Application	Block,
you	must	still	make	some	changes	to	your	existing	application.	The	location	of
all	of	the	call	handlers	(with	the	exception	of	the	Performance	Counter	Handler)
has	changed,	so	you	must	ensure	that	you	reference	the	appropriate	assemblies
and	namespaces	in	your	code.

The	five	call	handlers	you	can	use,	and	their	assemblies	and	namespaces	are:
Authorization	handler

Class	name:	AuthorizationCallHandler
Assembly:	Microsoft.Practices.EnterpriseLibrary.Security.dll
Namespace:
Microsoft.Practices.EnterpriseLibrary.Security.PolicyInjection

Exception	handling	handler

http://msdn.microsoft.com/entlib/
http://msdn.microsoft.com/en-us/library/dd140038.aspx
http://msdn.microsoft.com/en-us/library/dd203251.aspx
http://msdn.microsoft.com/en-us/library/dd203268.aspx
http://msdn.microsoft.com/en-us/library/dd203320.aspx

Class	name:	ExceptionCallHandler
Assembly:
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.dll
Namespace:
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.PolicyInjection

Logging	handler
Class	name:	LogCallHandler
Assembly:	Microsoft.Practices.EnterpriseLibrary.Logging.dll
Namespace:
Microsoft.Practices.EnterpriseLibrary.Logging.PolicyInjection

Validation	handler
Class	name:	ValidationCallHandler
Assembly:	Microsoft.Practices.EnterpriseLibrary.Validation.dll
Namespace:
Microsoft.Practices.EnterpriseLibrary.Validation.PolicyInjection

Performance	counter	handler
Class	name:	PerformanceCounterCallHandler
Assembly:
Microsoft.Practices.EnterpriseLibrary.PolicyInjection.dll
Namespace:
Microsoft.Practices.EnterpriseLibrary.PolicyInjection.CallHandlers

The	Caching	handler	is	no	longer	included	in	Enterprise	Library	due	to
concerns	around	the	issues	of	cache	contamination	and	other	limitations
previously	documented.	If	you	require	the	Caching	handler,	you	can	download
the	previous	version	from	the	Enterprise	Library	community	Web	site	at
http://www.codeplex.com/entlib/	and	integrate	it	with	Enterprise	Library.

More	information	about	the	changes	to	the	Policy	Injection	Application	Block
can	be	found	in	the	section	Changes	in	This	Release	in	the	introduction	to	this
guidance.	Information	about	migrating	existing	applications	to	use	the	current
version	of	Enterprise	Library	can	be	found	in	the	Migration	Guide	available
from	the	Enterprise	Library	community	Web	site	at
http://www.codeplex.com/entlib/.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to

http://www.codeplex.com/entlib/
http://www.codeplex.com/entlib/
http://codeplex.com/entlib/

pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Policy Injection Application Block'%0AEntLib50_a083e2d0-9020-4482-9d2d-2eae696d2f9f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Security	Application	Block

Developers	frequently	write	applications	that	must	authorize	users	using	one	or
more	security	providers	such	as	Microsoft®	Active	Directory®	directory
service,	Authorization	Manager,	Active	Directory	Lightweight	Directory
Services	(AD	LDS),	and	custom	authorization	providers.	These	applications
may	also	need	to	cache	authentication	or	authorization	data	for	the	duration	of	a
logon	session.

The	Security	Application	Block	simplifies	these	tasks	by	handling	them	in	a
consistent	manner,	abstracting	the	application	code	from	the	specific	security
providers.	You	can	even	change	underlying	providers	through	configuration
without	changing	the	underlying	application	code.

The	Security	Application	Block	provides	code	that	will	help	you	with	the
following	scenarios:

Authorization
Caching	security-related	credentials

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Security	Application	Block:

What	Does	the	Security	Application	Block	Do?	This	topic	provides	a
brief	overview	that	will	help	you	to	understand	what	the	block	can	do,
and	explains	some	of	the	concepts	and	features	it	incorporates.	It	also
provides	a	simple	example	of	the	way	that	you	can	write	code	to	use	the
block.
When	Should	I	Use	the	Security	Application	Block?	This	topic	will	help
you	to	decide	if	the	block	is	suitable	for	your	requirements.	It	explains
the	benefits	of	using	the	block,	and	any	alternative	techniques	you	may
consider.	It	also	provides	details	of	any	limitations	of	the	block	that	may
affect	your	decision	to	use	it.
Developing	Applications	Using	the	Security	Application	Block.	This
topic	explains	how	to	configure	the	Security	Application	Block	to
perform	common	tasks	and	how	to	use	the	block	in	your	applications.
Key	Scenarios.	This	topic	demonstrates	how	to	use	the	Security
Application	Block	to	perform	the	most	typical	security	operations.
Design	of	the	Security	Application	Block.	This	topic	explains	the

decisions	that	went	into	designing	the	Security	Application	Block	and
the	rationale	behind	those	decisions.
Extending	and	Modifying	the	Security	Application	Block.	This	topic
explains	how	to	extend	the	block	by	creating	your	own	providers	and
how	to	modify	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	Security	Application	Block's	assemblies	and	also	contains
information	about	configuration.

More	Information
For	more	information,	see	the	following	patterns	&	practices	guides:

Application	Architecture	for	.NET:	Designing	Applications	and	Services
.NET	Data	Access	Architecture	Guide
Design	Guidelines	for	Exceptions

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/ee817664.aspx
http://msdn.microsoft.com/en-us/library/ee817654.aspx
http://msdn.microsoft.com/en-us/library/ms229014(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Security Application Block'%0AEntLib50_0468b82a-15db-41bd-ad9a-cbe44a448d8b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Security	Application	Block	Do?

The	Security	Application	Block	allows	you	to	perform	two	separate	but	related
tasks.	You	can	authorize	users	against	a	range	of	authorization	providers,	and/or
cache	a	user's	identity	and	security	context	for	use	throughout	your	application.
The	code	required	to	use	these	features	is	simple,	and	the	actual	mechanics	of
accessing	authorization	systems	and	caching	identities	and	security	contexts	are
abstracted	within	the	block.	Often,	you	only	need	to	write	one	line	of	code	to
perform	common	tasks.	The	following	schematic	shows	the	basic	elements	of
the	Security	Application	Block.

The	Security	Application	Block	exposes	two	interfaces	that	you	can	access	in
your	code:

An	Authorization	Provider	interface,	which	exposes	the	single	method
named	Authorize	that	takes	an	instance	of	an	IPrincipal	object
containing	details	of	the	user's	identity	and	roles.	Depending	on	the	way
that	you	configure	the	block,	the	authorization	can	take	place	either
through	Windows®	Authorization	Manager	(AzMan)	against	Active

Directory,	an	XML	file,	or	a	database;	or	by	using	custom	rules	that	you
define	and	are	stored	as	XML	in	the	application	configuration	file.
A	Security	Cache	Provider	interface,	which	exposes	methods	that	allow
you	to	save	and	retrieve	a	user's	identity	or	security	context	as	an
IIdentity	instance,	IPrincipal	instance,	or	ASP.NET	Profile	instance.
Each	cached	identity	or	security	context	is	identified	by	a	token	(by
default	a	GUID,	though	you	can	create	and	use	your	own	implementation
of	the	IToken	interface).	The	block	stores	this	information	in	either	a
database	or	in	Isolated	Storage	using	the	Caching	Application	Block.
You	can	alternatively	create	a	custom	provider	for	the	Caching
Application	Block	and	use	it	to	cache	the	information	in	the	location	and
using	the	techniques	you	implement	in	your	provider.

Your	application	can	use	these	interfaces	to	quickly	and	easily	cache	user
identities	and	security	contexts,	obtain	tokens	that	represent	users,	expire	these
users,	and	check	if	users	are	authorized	to	perform	specific	tasks	or	operations.
However,	to	get	the	most	from	the	block,	you	must	understand	the	differences
between	the	Windows	IIdentity	and	IPrincipal	interfaces	and	commonly	used
concrete	implementations	of	these	types.

An	identity	is	represented	by	a	concrete	implementation	of	the	IIdentity
interface,	usually	a	WindowsIdentity,	GenericIdentity,	PassportIdentity,	or
FormsIdentity	depending	on	the	authentication	technique	used.	The	IPrincipal
interface	provides	the	link	between	an	identity	and	the	roles	for	that	identity.	In
ASP.NET,	the	current	IPrincipal	instance	for	a	user	is	available	from	the
HttpContext.User	property.	The	methods	that	cache	and	retrieve	user	identity
and	security	context	accept	an	instance	of	a	class	that	implements	either	the
IIdentity	or	IPrincipal	interface,	or	an	ASP.NET	Profile	instance.	For	more
information	about	Windows	identities	and	security	contexts,	see	Principal	and
Identity	Objects	and	Role-Based	Security	on	MSDN®.

http://msdn.microsoft.com/en-us/library/ftx85f8x(VS.80).aspx
http://msdn.microsoft.com/en-us/library/52kd59t0(VS.80).aspx

Typical	Usage	of	the	Security	Application	Block

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Security Application Block Do?'%0AEntLib50_2042b096-612e-40c6-8990-c54d462e5ee6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Security	Application	Block?

The	Security	Application	Block	includes	implementations	of	functionality	that
makes	it	easy	to	perform	authorization,	security-related	caching,	and	session
management.	If	your	applications	require	the	provided	implementations,	you
can	use	the	Security	Application	Block	to	provide	this	functionality.	However,
the	block	is	also	designed	to	be	extensible	and	includes	generic	providers	for
each	function.	You	can	adapt	the	providers	to	meet	your	own	security
requirements.

Scenarios	for	the	Security	Application	Block

Benefits	of	the	Security	Application	Block

Limitations	of	the	Security	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Security Application Block?'%0AEntLib50_a9d4059d-2a26-4785-885b-e1160e914ed9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Security	Application	Block

This	topic	describes	how	you	can	use	the	Security	Application	Block	to	develop
applications.	It	explains	how	to	configure	the	block	and	incorporate	it	into	your
applications,	and	how	to	use	the	block	for	specific	scenarios	such	as	authorizing
a	user	for	a	particular	task.	This	topic	assumes	that	you	are	using	the	Security
Application	Block	in	its	original	state,	without	extending	it.	(To	learn	how	to
add	functionality,	see	Extending	the	Security	Application	Block.)	This	section
includes	the	following	topics:

Entering	Configuration	Information
Adding	Application	Code

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Security Application Block'%0AEntLib50_b9f4b643-f8bf-47b3-bc7d-498315e3480e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

These	procedures	explain	how	to	configure	the	Security	Application	Block.	For
details	of	the	schema	for	the	Security	Application	Block	configuration,	see
Source	Schema	for	the	Security	Application	Block.	You	can	also	configure	the
block	in	code	by	using	an	alternate	configuration	source.	For	more	information,
see	Advanced	Configuration	Scenarios	and	Using	the	Fluent	Configuration	API.

To	add	the	Security	Application	Block
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library	.
2.	 Click	Add	Security	Settings	on	the	Blocks	menu.
3.	 The	configuration	tool	automatically	adds	the	Security	Settings	section

with	default	settings.	Click	the	chevron	arrow	at	the	right	of	the	section
heading	to	view	Security	Settings	properties.

4.	 Click	the	Authorization	Providers	plus	sign	icon,	point	to	Add
Authorization	Providers,	then	click	the	type	of	authorization	rule
provider	you	require	and	configure	the	provider	as	shown	in	the
following	procedures.
Note:

The	Windows	Authentication	Manager	(AzMan)	provider	is
available	only	if	you	have	installed	the	required	prerequisites,
including	the	assembly	Microsoft.Interop.Security.AzRoles.dll,
and	compiled	the	Security	Application	Block	to	include	this
provider.	For	more	information,	see	About	the	AzMan	Provider	later
in	this	topic.

5.	 (Optional)	Click	the	Security	Caches	plus	sign	icon,	point	to	Add
Security	Caches,	then	click	the	type	of	security	cache	provider	you
require	and	configure	the	provider	as	shown	in	the	following
procedures.

6.	 (Optional)	In	the	properties	pane	of	the	Security	Settings	section,	set
the	Protection	Provider	property.	The	text	box	drop-down	provides
three	choices	(no	protection),RsaProtectedConfigurationProvider,
and	DataProtectionConfigurationProvider.	The	default	is	no
protection.	See	Encrypting	Configuration	Data	for	information	about

the	restrictions	on	using	the	RsaProtectedConfigurationProvider.
7.	 (Optional)	In	the	properties	pane,	set	the	Require	Permission	property

to	True	or	False.	The	default	is	True.
8.	 (Optional)	In	the	properties	pane,	set	the	Default	Authorization

Provider	property.	This	is	the	authorization	provider	instance	to	use	if
one	is	not	specified	in	the	code.	The	default	is	none.

9.	 (Optional)	In	the	properties	pane,	set	the	Default	Security	Cache
Provider	property.	This	is	the	security	cache	provider	instance	to	use	if
one	is	not	specified	in	the	code.	The	default	is	none.

After	you	add	the	Security	Application	Block	to	the	application	configuration,
you	need	to	configure	some	or	all	of	the	following	elements:

Authorization	Rule	Provider
AzMan	Provider
Custom	Authorization	Provider
Security	Cache
Custom	Security	Cache	Provider

Authorization	Rule	Provider

AzMan	Provider

http://technet.microsoft.com/en-us/library/cc732077(WS.10).aspx
http://support.microsoft.com/kb/324470
http://msdn.microsoft.com/en-us/library/bb897401.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=e487f885-f0c7-436a-a392-25793a25bad7
http://www.microsoft.com/downloads/details.aspx?FamilyID=7edde11f-bcea-4773-a292-84525f23baf7

Custom	Authorization	Provider

Security	Cache

Custom	Security	Cache	Provider
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_f4ab7474-104a-4203-99b8-65931a7c68e6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Security	Application	Block

This	topic	lists	the	XML	elements	and	attributes	used	to	configure	the	Security
Application	Block.	You	can	manually	edit	the	XML	data,	but	the	Enterprise
Library	configuration	tools	greatly	simplify	this	task.	If	you	choose	to	manually
edit	the	XML,	use	the	schema	information	contained	in	this	topic.

The	configuration	file	has	the	following	section-handler	declaration.
XML

<configSections>

		<section	name="securityConfiguration"

											type="Microsoft.Practices.EnterpriseLibrary.Security.Configuration.SecuritySettings,	

																	Microsoft.Practices.EnterpriseLibrary.Security"	/>

</configSections>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section-handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
securityConfiguration.	The	name	of	the	section-handler	class	is
Microsoft.Practices.EnterpriseLibrary.Security.Configuration.SecuritySettings

securityConfiguration	Element

authorizationProviders	Child	Element

rules	Child	Element

securityCacheProviders	Child	element

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Security Application Block'%0AEntLib50_a109681e-bda0-4a48-a2ef-99b40881e235%0APlease provide details of the error you have located...%0A

Copy	Code

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	Security	Application	Block	is	designed	to	support	the	most	common
scenarios	for	authorization	and	caching	of	security	information.	When	you	add
your	application	code,	refer	to	the	scenarios	in	the	Key	Scenarios	section,	and
select	the	ones	that	best	match	your	situation.	Use	the	code	that	accompanies	the
scenario	as-is	or	adapt	it	as	necessary.

First,	you	must	prepare	your	application	to	use	the	Security	Application	Block.

To	prepare	your	application
1.	 Add	a	reference	to	the	Security	Application	Block	assembly.	In	Visual

Studio,	right-click	your	project	node	in	Solution	Explorer,	and	then
click	Add	References.	Click	the	Browse	tab,	and	then	navigate	to	the
location	of	the	Microsoft.Practices.EnterpriseLibrary.Security.dll
assembly.	Select	the	assembly,	and	then	click	OK	to	add	the	reference.

2.	 Follow	the	same	procedure	to	set	a	reference	to	the	following
assemblies:

Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll

3.	 If	you	intend	to	use	security	caching,	set	a	reference	to	the	assembly
Microsoft.Practices.EnterpriseLibrary.Security.Cache.CachingStore.dll
You	also	need	to	add	a	reference	to	the	Data	Access	Application	Block
assembly,	Microsoft.Practices.EnterpriseLibrary.Data.dll,	if	you	are
using	the	Database	Cache	Storage	store	in	the	Caching	Application
Block.

4.	 (Optional)	To	use	elements	from	the	Security	Application	Block
without	fully	qualifying	the	element	reference,	you	can	add	the	using
statement	(C#)	or	Imports	statement	(Visual	Basic)	to	the	top	of	your
source	code	file.	The	following	code	shows	how	to	add	these
statements	for	the	Microsoft.Practices.EnterpriseLibrary.Security
namespace.
C#

using	Microsoft.Practices.EnterpriseLibrary.Security;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Security

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_c2eafe24-9460-4387-b3e8-1ec0862a0fb9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	topic	describes	the	most	common	situations	developers	must	address	when
providing	security	functionality	in	their	applications.	Each	scenario	explains	the
task,	describes	a	real-world	situation	where	such	a	task	might	occur,	and
includes	code	that	demonstrates	how	to	use	the	Security	Application	Block	to
complete	the	task.	The	scenarios	are	the	following:

Obtaining	a	Temporary	Token	for	an	Authenticated	User.	This	scenario
illustrates	how	to	use	the	SaveIdentity	method	to	cache	an	authenticated
identity	and	return	a	temporary	token	that	serves	as	an	alternative	to	user
credentials	for	the	duration	of	the	user	session.	You	can	also	use	this
technique	to	save	a	user	principal	or	a	user	identity.
Authenticating	a	User	Using	a	Token.	This	scenario	illustrates	how	to
use	the	GetIdentity	method	to	return	an	identity	that	has	already	been
cached,	when	provided	with	a	valid	token.	The	same	technique	can	be
used	to	retrieve	a	user	principal	or	user	profile.
Terminating	a	User	Session	(Expiring	a	Token).	This	scenario	illustrates
how	to	use	the	ExpireIdentity	method	to	expire	a	token	corresponding
to	an	identity,	when	the	user	session	ends.	You	can	also	use	this
technique	to	expire	a	user	principal	or	a	user	profile.
Determining	Whether	a	User	Is	Authorized	to	Perform	a	Task.	This
scenario	illustrates	how	to	use	the	Authorize	method	of	an	authorization
provider	to	perform	authorization.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_38631da1-4370-48dd-a411-cd4109b41ccb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Obtaining	a	Temporary	Token	for	an	Authenticated	User

An	example	of	when	you	might	want	to	obtain	a	temporary	token	for	an
authenticated	user	is	when	you	want	to	improve	the	performance	of	your
application	by	passing	the	token	instead	of	frequently	authenticating	the	same
user	during	a	single	session.	You	can	use	the	approach	described	here	to	save	a
user	principal	or	a	user	identity	in	the	security	cache	and	obtain	a	token	that
represents	the	user's	authenticated	identity.

Typical	Goals

Solution

Using	SaveIdentity

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Obtaining a Temporary Token for an Authenticated User'%0AEntLib50_d38d1bbb-5b89-4a2c-b69d-9368b441e7d3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Authenticating	a	User	Using	a	Token

An	example	of	when	you	might	want	to	use	a	temporary	token	for
authentication	is	when	you	want	to	improve	the	performance	of	your	application
by	passing	the	token	instead	of	frequently	authenticating	a	user	during	a	single
session.	You	can	use	the	approach	described	here	to	retrieve	a	saved	user
principal	or	a	user	identity	from	the	security	cache	using	a	token	you	previously
obtained	that	represents	the	user's	authenticated	identity.

Typical	Goals

Solution

Using	GetIdentity

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Authenticating a User Using a Token'%0AEntLib50_1982837c-1981-42b5-98ae-3c4f2bfe0093%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Terminating	a	User	Session	(Expiring	a	Token)

An	example	of	when	you	may	want	to	expire	a	token	is	when	you	want	to	make
sure	that	the	token	cannot	be	used	by	an	attacker	after	the	user	logs	out.	You	can
use	the	approach	described	here	to	expire	a	user	principal	or	a	user	identity.

Typical	Goals

Solution

Using	ExpireIdentity

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Terminating a User Session (Expiring a Token)'%0AEntLib50_5c6b60a1-e93d-4bc8-b8a2-1d9d7eb292c1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Determining	Whether	a	User	Is	Authorized	to	Perform	a	Task

A	common	security	requirement	is	the	need	to	authorize	users	to	perform	tasks.
The	Security	Application	Block	helps	by	standardizing	access	to	authorization
providers	such	as	the	AzManAuthorizationProvider	or	the
AuthorizationRuleProvider,	or	to	authorization	rules	stored	within	the
application	configuration.

Typical	Goals

Solution

Using	Authorize

Usage	Notes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Determining Whether a User Is Authorized to Perform a Task'%0AEntLib50_a843fda6-3226-41c0-be10-b926563f1339%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Security	Application	Block

The	Security	Application	Block	addresses	the	following	areas:
Authorization
Security-related	caching

Design	Goals

http://msdn.microsoft.com/en-us/library/ms994921.aspx

Design	Highlights
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Security Application Block'%0AEntLib50_aa26f732-d76d-42f4-83ee-2d0a86b625ec%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Designing	for	Simplified	Authorization

Uniform	implementations	make	code	easier	to	understand,	more	predictable,
and	easier	to	maintain.	However,	developers	can	implement	authorization	in
applications	in	many	different	ways.	For	example,	they	may	have	to	use	an
approach	that	conforms	to	the	security	policies	of	their	organizations.
Alternatively,	they	may	use	approaches	that	suit	the	needs	of	particular
departments	or	of	the	applications	themselves.

The	Security	Application	Block	encapsulates	the	logic	that	performs
authorization	operations	into	a	single	interface	that	specifies	only	a	small
number	of	methods.	These	methods	can	be	used	by	different	authorization
providers.	This	means	that	applications	that	use	the	Security	Application	Block
are	consistent	in	the	ways	that	they	authorize	users	to	perform	tasks.	By	using
the	Security	Application	Block,	this	consistency	remains	across	single	projects,
multiple	projects,	or	enterprise-scale	solutions.

Design	Implications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Designing for Simplified Authorization'%0AEntLib50_27041f1c-bf13-4b55-92ee-a89bdd0f191b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Security	Application	Block

In	its	original	state,	the	Security	Application	Block	works	well	for	typical
security	scenarios.	However,	there	may	be	times	when	you	have	to	customize
some	of	the	block's	behavior	to	better	suit	your	application's	particular
requirements.	There	are	two	ways	to	do	this.	You	can	extend	the	Caching
Application	Block	using	the	built-in	extension	points.	You	can	also	modify	the
block	by	making	changes	to	its	source	code.	For	more	details,	see	the	following
topics:

Extending	the	Security	Application	Block
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Security Application Block'%0AEntLib50_9433d798-60e9-4f3c-8e9e-c06415c18b21%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Security	Application	Block

You	extend	the	Security	Application	Block	through	designated	extension	points.
Typically,	these	are	custom	classes,	written	by	you,	that	implement	a	particular
interface	or	derive	from	an	abstract	class.	Because	these	custom	classes	exist	in
your	application	space,	you	do	not	have	to	modify	or	rebuild	the	block.	Instead,
you	designate	your	extensions	using	configuration	settings.

You	can	extend	the	block	by	adding	a	new	type	of	Authorization	Provider	or	by
adding	a	new	security	cache	provider	that	integrates	with	your	chosen	caching
mechanism.	The	following	table	lists	the	interfaces	and	base	classes	that	you
can	use	to	extend	the	block.

Custom	Provider	or	Extension Interface	or	Base	Class

Authorization	Provider AuthorizationProvider

Security	Cache	Provider ISecurityCacheProvider

For	detailed	information	about	how	to	integrate	custom	providers	with	the
Enterprise	Library	configuration	system	and	configuration	tools	see	Creating
Custom	Providers	for	Enterprise	Library.

Creating	an	Authorization	Provider
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Security Application Block'%0AEntLib50_e513cc05-64e9-43d1-94b2-012891831399%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	make	sure	that	the	initial
deployment	of	the	Security	Application	Block	is	planned	and	managed,	and	that
subsequent	updates	are	deployed	with	minimal	impact	to	existing	applications
that	use	the	block.	For	details	of	deploying	and	updating	Enterprise	Library	and
the	application	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	whether	they	want	to	use	the
instrumentation	exposed	by	the	block.	For	details	of	how	to	enable	and	disable
instrumentation,	see	Enabling	Instrumentation.	For	information	about	the
instrumentation	contained	within	the	Security	Application	Block,	see	the
following	topics:

Security	Application	Block	Performance	Counters
Security	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_a19232ca-b155-48e8-9870-837eaabbc5e4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Security	Application	Block	Performance	Counters

The	following	table	describes	the	Security	Application	Block	performance
counters.

Performance	counter	name Description

Authorization	Requests
Denied/sec

The	rate	at	which	authorization	requests
were	denied.

Authorization	Requests/sec The	rate	at	which	authorization	requests
were	received.

Security	Cache	Reads/sec The	rate	at	which	security	cache	reads	were
requested.

Total	Authorization	Requests The	total	number	of	authorization	requests
received.

Total	Authorization	Requests
Denied

The	total	number	of	authorization	requests
denied.

Total	Security	Cache	Reads The	total	number	of	security	cache	reads
requested.

A	rate	counter	samples	an	increasing	count	of	events	over	time	and	divides	the
values	by	the	change	in	time	to	display	a	rate	of	activity.	For	more	information
about	performance	counters,	see	Overview	of	Performance	Monitoring	in	the
.NET	Framework	Class	Library	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Security Application Block Performance Counters'%0AEntLib50_12f09ff5-d6e6-44c5-a78b-4071dbbceafe%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Security	Application	Block	Event	Log	Entries

This	topic	lists	the	Security	Application	Block	event	log	entries.	The	listener	is
the	class	that	raised	the	event.

Configuration	Failure	Event
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Security Application Block Event Log Entries'%0AEntLib50_f7f983de-3244-4320-9a51-f6c349dd46a8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Validation	Application	Block

Any	application	that	accepts	input	either	from	users	or	from	other	systems	must
ensure	that	the	information	is	valid	in	terms	of	some	set	of	rules	that	you
specify.	For	example,	when	processing	an	order,	you	may	need	to	check	that	a
customer's	phone	number	has	the	correct	number	of	digits	or	that	a	date	falls
within	a	particular	range.	In	addition,	if	the	validation	fails,	you	may	need	to
send	an	error	message	that	explains	what	is	wrong.

The	Enterprise	Library	Validation	Application	Block	provides	useful	features
that	allow	developers	to	implement	structured	and	easy-to-maintain	validation
scenarios	in	their	applications.	In	addition,	the	Validation	Application	Block
includes	adapters	that	allow	you	to	use	the	application	block	with	the	following
technologies:

ASP.NET
Windows®	Communication	Foundation	(WCF)
Windows	Presentation	Foundation	(WPF)
Windows	Forms

This	section	includes	the	following	topics	that	will	help	you	to	understand	and
use	the	Validation	Application	Block:

What	Does	the	Validation	Application	Block	Do?	This	topic	provides	a
brief	overview	that	will	help	you	to	understand	what	the	block	can	do,
and	explains	some	of	the	concepts	and	features	it	incorporates.	It	also
provides	a	simple	example	of	how	you	can	write	code	to	use	the	block.
When	Should	I	Use	the	Validation	Application	Block?	This	topic	will
help	you	to	decide	if	the	block	is	suitable	for	your	requirements.	It
explains	the	benefits	of	using	the	block,	and	alternative	techniques	you
may	consider.
Developing	Applications	Using	the	Validation	Application	Block.	This
topic	explains	how	to	include	the	Validation	Application	Block	in	your
applications	and	how	to	configure	it.	It	also	contains	more	detailed
information,	such	as	how	to	create	custom	message	templates	and
information	on	how	validation	works	with	inheritance.
Key	Scenarios.	This	topic	shows	different	ways	to	use	the	Validation
Application	Block	in	your	own	applications.

Design	of	the	Validation	Application	Block.	This	topic	includes	a	class
diagram	of	the	Validation	Application	Block.
Extending	and	Modifying	the	Validation	Application	Block.	This	topic
explains	how	to	extend	the	application	block	by	adding	custom
validators	and	attributes.	It	also	contains	advice	about	how	to	modify	the
source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	application	block	assemblies.	It	also	explains	the	application
block's	instrumentation.

More	Information
For	related	information,	see	the	following	patterns	&	practices	guides:

How	To:	Protect	From	Injection	Attacks	in	ASP.NET
Security	Practices:	ASP.NET	Security	Practices	at	a	Glance
Microsoft	Application	Architecture	Guide,	2nd	Edition

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/bb355989.aspx
http://msdn2.microsoft.com/en-us/library/ms998372.aspx
http://msdn.microsoft.com/en-us/library/dd673617.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Validation Application Block'%0AEntLib50_aab84364-c170-478c-b0d6-fa48a662dc80%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	the	Validation	Application	Block	Do?

Unlike	many	other	validation	mechanisms	and	libraries,	which	use	separate
validation	controls	to	validate	individual	UI	elements	such	as	text	boxes,	the
Validation	Application	Block	is	designed	to	allow	you	to	easily	validate
instances	of	objects.	This	means	that	you	can	execute	validation	at	any	point	in
your	application,	and	repeat	it	when	required.	For	example,	you	can	validate	an
instance	of	a	class	populated	with	values	from	the	UI,	validate	an	instance	of	the
class	populated	with	values	received	from	a	Web	service,	and	validate	an
instance	of	the	class	as	it	passes	between	layers	of	your	application.

The	block	provides	a	library	of	classes	named	validators,	which	implement
functionality	for	validating	.NET	Framework	data	types.	You	can	also	group
validators	together	in	a	rule	set.	A	rule	set	allows	you	to	validate	a	complex
object	or	graph	by	composing	different	validators	of	different	types	and
applying	them	to	elements	in	the	object	graph.	Examples	of	these	elements
include	fields,	properties,	and	nested	objects.

You	configure	validation	requirements	for	specific	classes	by	defining	the	set	of
validators	and	the	rules	to	apply	when	validating	parameter	and	property	values
for	instances	of	that	class.	Then,	in	many	situations,	you	can	validate	an
instance	of	the	class	with	a	single	line	of	code.

You	can	define	validation	rules	and	carry	out	validation	in	the	following	ways:
By	using	configuration	to	define	rule	sets	for	specific	classes.	These
rules	sets	are	stored	in	your	application	configuration	file,	and	can	be
created	using	the	graphical	configuration	tools.
By	adding	attributes	to	members	of	your	classes	to	define	individual
rules	for	public,	readable	parameters	and	properties	that	specify	rule	sets
or	individual	validation	rules.	These	may	be	attributes	defined	within	the
Validation	Application	Block	that	directly	target	the	validators	provided
with	the	block,	or	.NET	Data	Annotation	attributes.	The	Validation
Application	Block	works	with	both	of	these	types	of	attributes.
By	adding	code	to	your	classes	that	perform	self	validation	of	the	object
parameters	or	properties.	This	is	a	useful	way	to	implement	very
complex	validation	rules	that	depend	on	the	environment	or	external
factors.

By	using	code	to	create	instances	of	validators	and	then	execute
validation	on	demand.

Note:
The	Validation	Application	Block	only	applies	rules	specified	for	the	return
values	for	public	methods	that	have	no	parameters.	To	validate	parameters
when	a	method	is	invoked,	or	to	validate	return	values	for	methods	that
accept	parameters,	you	can	use	The	Validation	Handler.	This	handler
validates	parameter	values	based	on	the	rules	for	each	parameter's	type	and
any	validation	attributes	on	the	parameters	themselves.

The	Validation	Application	Block	contains	a	wide	variety	of	validators,	and	you
can	easily	create	custom	validators	yourself	for	your	own	specific	scenarios.	As
examples	of	the	validators,	the	block	includes	a	validator	that	checks	for	null
strings	and	another	validator	that	checks	whether	a	number	falls	within	a
specified	range.	There	are	also	special	validators	named	the	And	Composite
Validator	and	the	Or	Composite	Validator.	If	you	create	an	And	Composite
Validator,	which	aggregates	other	validators,	all	validators	in	the	composite
validator	must	return	true	for	successful	validation.	If	you	create	an	Or
Composite	Validator,	at	least	one	of	the	validators	in	the	composite	validator
must	return	true	for	successful	validation.

The	Validation	Application	Block	also	includes	adaptors	that	you	can	use	in
your	application	UI	that	support	the	same	type	of	implementation	as	ASP.NET,
Windows	Presentation	Foundation	(WPF),	and	Windows	Forms	validation
controls	to	provide	feedback	and	information	to	users	when	validation	errors
occur.	In	addition,	the	block	includes	an	adapter	that	makes	it	easy	to	use	in
WCF	applications.

Example	Application	Code
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does the Validation Application Block Do?'%0AEntLib50_b2bd8237-b778-493f-90ff-628b7e1eb871%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	the	Validation	Application	Block?

You	should	consider	using	the	Validation	Application	Block	if	you	want	to
encapsulate	validation	good	practice	into	easily	maintainable	code	that	you	can
reuse.	Encapsulation	also	allows	you	to	separate	the	application	code	from	the
validation	logic.	In	some	situations,	you	may	be	able	to	update	the	validation
logic	without	redeploying	the	application.

In	addition,	consider	using	the	block	when	your	validation	code	must	work
across	multiple	layers	of	the	application's	architecture.	By	defining	rules	in	the
configuration	for	each	segment,	you	can	reuse	the	same	rule	sets	in	multiple
locations	within	your	code.

Scenarios	for	the	Validation	Application	Block

Benefits	of	the	Validation	Application	Block

Alternatives	to	the	Validation	Application	Block
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use the Validation Application Block?'%0AEntLib50_1294c424-60c1-45fa-b653-fcc78e26e86d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Developing	Applications	Using	the	Validation	Application	Block

This	section	describes	how	to	use	the	Validation	Application	Block	in	your
applications.	It	explains	how	to	configure	the	application	block,	and	how	to
incorporate	the	application	block	into	your	application.	This	section	includes	the
following	topics:

Entering	Configuration	Information
Adding	Application	Code
Using	the	Validation	Block	Validators
Understanding	Common	Validator	Properties
Understanding	Validation	Results
How	Validators	Are	Created
Validation	and	Inheritance

All	application	blocks	ship	as	binary	assemblies	and	as	source	code.	If	you	want
to	use	the	source	code,	you	must	compile	it.	To	learn	how	to	compile	the
Enterprise	Library	source	code,	see	Building	Enterprise	Library	from	the	Source
Code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Developing Applications Using the Validation Application Block'%0AEntLib50_53601498-09de-4686-a586-e60372630378%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Entering	Configuration	Information

These	procedures	explain	how	to	configure	the	Validation	Application	Block
with	the	configuration	tools.	The	Validation	Application	Block	also	allows	you
to	use	attributes	and	code	to	perform	many	of	the	tasks	described	here.	For
information	about	how	to	use	attributes	and	code,	see	Using	the	Validation
Block	Validators.	For	information	about	properties	that	are	associated	with
validators	such	as	Tag	and	Message	Template,	see	Understanding	Common
Validator	Properties.

This	procedure	explains	how	to	add	the	Validation	Application	Block	to	the
configuration	file.	For	details	of	the	schema	for	the	Validation	Application
Block	configuration,	see	Source	Schema	for	the	Validation	Application	Block.

To	add	the	Validation	Application	Block	by	using	the	configuration	tool
1.	 Open	the	configuration	file.	For	more	information,	see	Configuring

Enterprise	Library.
2.	 Open	the	Blocks	menu	and	then	click	Add	Validation	Settings.
3.	 (Optional)	If	you	want	to	encrypt	the	configuration	file,	click	the

chevron	expander	arrow	to	show	the	properties,	and	then	select	a
protection	provider	from	the	drop-down	list	in	the	Protection	Provider
field.

The	next	procedure	shows	how	to	define	a	rule	set	for	the	members	of	a	type.	It
assumes	that	you	have	already	added	the	Validation	Application	Block	to	your
configuration.	Members	of	a	type	that	you	will	validate	can	be	fields,	methods,
or	properties.	Note	that	it	is	possible	for	a	type	to	have	multiple	rule	sets
associated	with	each	type	you	configure.	For	example,	in	the	following
screenshot,	the	Product	type	has	two	rule	sets,	Ruleset1	and	Ruleset2.

Ruleset1	specifies	a	not	null	validator	and	a	regular	expression	validator
for	the	ID	property,	and	a	string	length	validator	for	the	Name	property.
Ruleset2	specifies	a	not	null	validator	and	a	string	length	validator	for
the	ID	property,	and	a	range	validator	for	the	InStock	property.

When	you	click	on	an	item	in	the	configuration	tool,	related	items	are
highlighted	and	links	appear	between	them,	as	shown	for	the	Property:	ID	item
in	the	screenshot.

To	define	a	rule	set	for	members	of	a	type	by	using	the	configuration	tool
1.	 If	the	settings	for	the	Validation	Settings	section	are	not	visible,	click

the	child	expander	arrow	to	the	left	of	Validation	Settings.
2.	 Click	the	plus	sign	icon	in	Validated	Types	and	click	Add	Type	to

Validate.
3.	 In	the	type	selector	dialog	box,	expand	the	assembly	you	want	to	use.

To	filter	the	list,	type	part	of	the	name	in	the	Type	name	edit	box;	for
example,	type	"string"	to	filter	for	all	classes	containing	the	word
"string".	If	the	assembly	is	not	shown	in	the	list,	click	Add	from	GAC
(the	global	assembly	cache)	or	Add	from	File	and	navigate	to	it.	Select
the	type	you	want	to	validate	and	click	OK.

4.	 To	define	a	rule	set,	right-click	on	the	type	in	the	Validated	Types
column	and	then	click	Add	Validation	Ruleset.	This	adds	a	rule	set
with	the	default	name	Validation	Ruleset	and	a	Validators	item	that
you	can	use	to	validate	the	type	itself.

5.	 Edit	the	Name	property	of	the	rule	set	as	required.
6.	 To	add	a	validator	that	applies	to	an	instance	of	a	class	as	a	whole,

rather	than	to	individual	members	of	that	class,	right-click	the
Validators	item	in	the	Validation	Targets	column,	point	to	Add
Validators,	and	then	click	the	validator	you	want	to	apply.	Repeat	this

step	to	add	additional	validators	that	will	be	applied	at	the	type	level	if
required.	Typically	you	will	use	this	feature	for	only	a	not	null
validator,	object	collection	validator,	composite	validator,	or	a	custom
validator.

7.	 To	select	the	individual	members	of	a	type	to	be	validated,	you	can	use
either	of	the	following	methods:

Right-click	on	the	heading	of	the	rule	set	item,	and	then	click
Add	Field	to	Validate,	Add	Method	to	Validate,	or	Add
Property	to	Validate.	Then	enter	the	name	of	the	field,	method,
or	property	in	the	Validation	Targets	pane.
Alternatively,	you	can	select	several	members	of	a	type
simultaneously.	Right-click	on	the	rule	set	and	click	Select
Members.	In	the	Member	Selector	dialog	box,	select	the
Properties,	Methods,	and/or	Fields	that	you	want	to	validate,
and	then	click	OK.

8.	 To	add	a	validator	for	a	type	member,	right-click	the	heading	of	a	field,
method,	or	property	of	a	member	for	the	type	in	the	Validation	Targets
column,	point	to	Add	Validators,	and	then	click	the	validator	you	want
to	apply.	Repeat	this	step	to	add	additional	validators	that	will	be
applied	to	individual	type	members	as	required.

9.	 Edit	the	properties	of	each	validator	you	added	to	the	configuration:
(Optional)	Edit	the	default	Name	property.
Specify	the	validation	error	message.	Enter	either	a	Message
Template	(which	may	include	the	validation	message	tokens
described	in	Understanding	Common	Validator	Properties),	or
set	the	Template	Resource	Name	and	Template	Resource
Type	properties	if	you	want	to	load	the	message	template	from
a	resources	file.	To	use	a	resources	file,	enter	the	name	of	the
resource	for	the	Template	Resource	Name	then	click	on	the
ellipsis	button	(...)	in	the	Template	Resource	Type	property
and	use	the	type	selector	to	locate	and	select	the	resources	file.
(Optional)	If	you	want	the	validator	to	operate	in	reverse,	so
that	the	validator	will	return	false	(failed	validation)	when	the
validation	rule	is	satisfied,	and	true	(no	error)	when	the
validation	test	fails,	set	the	Negated	property	to	True.	The
default	is	False.
(Optional)	If	you	want	to	pass	an	additional	text	value	to	the

application	when	validation	fails,	enter	this	text	as	the	Tag
property.	You	can	filter	validation	results	on	the	values	you
specify	for	this	property.
Enter	values	for	the	remaining	validator	properties.	The
properties	available	differ	for	each	type	of	validator.	For	a	list	of
properties	for	each	type	of	validator,	see	Using	the	Validation
Block	Validators.

The	next	procedure	explains	how	to	define	an	AndCompositeValidator	or	an
OrCompositeValidator.	Composite	validators	contain	individual	validators	that
are	combined	with	a	Boolean	AND	or	OR	operation.	For	example,	the
following	screenshot	shows	an	Or	composite	validator	applied	to	the	ID
property	of	a	type	in	Ruleset1.	The	validation	specifies	that	either	the	rule
defined	by	a	property	comparison	validator	or	the	rule	defined	by	a	range
validator	must	be	satisfied	for	validation	of	the	ID	property	value	to	succeed.

You	can	also	nest	composite	validators	to	create	complex	logic	for	a	member,
such	as	(A	OR	(B	AND	C)).

To	define	composite	validators
1.	 Right-click	the	member	of	the	type	you	want	to	validate,	or	on	the

Validator	item	to	add	a	validator	for	the	type	itself,	and	click	Add
Validators.	Then	click	either	Add	And	Composite	Validator	or	Add
Or	Composite	Validator.

2.	 Right-click	the	And	Composite	Validator	or	the	Or	Composite	Validator
you	added,	point	to	Add	Validators	and	then	click	one	of	the	validators
that	will	be	a	part	of	the	composite	validator.	Repeat	this	step	to	add
additional	validators	as	required.

3.	 Edit	the	properties	of	the	And	Composite	Validator	or	the	Or	Composite
Validator,	and	edit	the	properties	of	each	validator	you	add	to	the
composite	validator:

(Optional)	Edit	the	default	Name	property.

Specify	the	validation	error	message.	Enter	either	a	Message
Template	(which	may	include	the	validation	message	tokens
described	in	Understanding	Common	Validator	Properties),	or
set	the	Template	Resource	Name	and	Template	Resource
Type	properties	if	you	want	to	load	the	message	template	from
a	resources	file.	To	use	a	resources	file,	enter	the	name	of	the
resource	for	the	Template	Resource	Name	then	click	on	the
ellipsis	button	(...)	in	the	Template	Resource	Type	property
and	use	the	type	selector	to	locate	and	select	the	resources	file.
(Optional)	If	you	want	the	validator	to	operate	in	reverse,	so
that	the	validator	will	return	false	(failed	validation)	when	the
validation	rule	is	satisfied,	and	true	(no	error)	when	the
validation	test	fails,	set	the	Negated	property	to	True.	The
default	is	False.
(Optional)	If	you	want	to	pass	an	additional	text	value	to	the
application	when	validation	fails,	enter	this	text	as	the	Tag
property.
Enter	values	for	the	remaining	validator	properties.	The
properties	available	differ	for	each	type	of	validator.	For	a	list	of
properties	for	each	type	of	validator,	see	Using	the	Validation
Block	Validators.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Entering Configuration Information'%0AEntLib50_1f739afc-873e-4894-b5f5-c4cc8d902091%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Source	Schema	for	the	Validation	Application	Block

This	topic	lists	the	elements	and	attributes	used	to	configure	the	Validation
Application	Block.	The	configuration	file	has	the	following	section-handler
declaration:
XML

<configSections>

			<section	name="validation"

												type="Microsoft.Practices.EnterpriseLibrary.Validation.Configuration.ValidationSettings,

																	Microsoft.Practices.EnterpriseLibrary.Validation"	/>

</configSections>

The	section-handler	declaration	contains	the	name	of	the	configuration	settings
section	and	the	name	of	the	section-handler	class	that	processes	configuration
data	in	that	section.	The	name	of	the	configuration	settings	section	is
validation.	The	name	of	the	section-handler	class	is
Microsoft.Practices.EnterpriseLibrary.Validation.Configuration.ValidationSettings

validation	Element

EncryptedData	Element

http://www.w3.org/TR/xmlenc-core/

type	Element

ruleset	Element

fields	Element

methods	Element

properties	Element

validator	Element
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Source Schema for the Validation Application Block'%0AEntLib50_2e21634d-41ca-46c1-b9be-2ca5d4918de5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Application	Code

The	following	procedure	explains	how	to	incorporate	the	Validation	Application
Block	into	your	application.

To	prepare	your	application
1.	 Add	a	reference	to	the	Validation	Application	Block	assembly.	In

Visual	Studio,	right-click	your	project	node	in	Solution	Explorer,	and
then	click	Add	Reference.	Click	the	Browse	tab	and	find	the	location
of	the	Microsoft.Practices.EnterpriseLibrary.Validation.dll
assembly.	Select	the	assembly,	and	then	click	OK	to	add	the	reference.

2.	 Use	the	same	procedure	to	set	a	reference	to	the	following	assemblies:
Microsoft.Practices.EnterpriseLibrary.Common.dll
Microsoft.Practices.ServiceLocation.dll
Microsoft.Practices.Unity.dll
Microsoft.Practices.Unity.Interception.dll

3.	 If	you	are	using	the	ASP.NET,	WPF,	Windows	Forms,	or	WCF
integration	assemblies,	add	one	of	the	following	references	as
appropriate.

Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WinForms.dll
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet.dll
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WPF.dll
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WCF.dll

4.	 (Optional)	To	use	elements	from	the	Validation	Application	Block
without	fully	qualifying	the	type	with	the	namespace,	add	the	following
using	statements	(C#)	or	Imports	statements	(Visual	Basic)	to	the	top	of
your	source	code	file.
C#

using	Microsoft.Practices.EnterpriseLibrary.Validation;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Validation

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Validators

Note:
For	Visual	Basic	projects,	you	can	use	the	References	page	of	the	Project
Designer	to	manage	references	and	imported	namespaces.	To	access	the
References	page,	select	a	project	node	in	Solution	Explorer.	On	the	Project
menu,	click	Properties.	When	the	Project	Designer	appears,	click	the
References	tab.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Application Code'%0AEntLib50_972f39f2-7f0b-4307-be73-259c35b6d0f9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Validation	Block	Validators

The	Validation	Application	Block	includes	classes	named	validators,	which
derive	from	the	Validator	class.	There	is	a	generic	version	of	this	class	named
Validator<T>.

Every	validator	is	associated	with	a	specific	type.	For	example,	the
StringLengthValidator	class	checks	to	see	if	a	System.String	value	has	a
length	within	a	predefined	range.

There	are	four	ways	that	you	can	associate	validators	with	your	types:
You	can	use	configuration.	For	more	information,	see	Entering
Configuration	Information.
You	can	use	attributes.	For	more	information,	see	Using	Validation	Block
Attributes	and	Using	Data	Annotation	Attributes.
You	can	use	a	combination	of	configuration	and	attributes.
You	can	use	self	validation,	which	means	that	you	include	validation
logic	within	the	object	you	want	to	validate.	For	more	information,	see
Using	Self	Validation.

You	can	also	instantiate	validators	within	your	code	without	associating	them
with	a	specific	type.	For	more	information,	see	Creating	Validators
Programmatically.

The	following	sections	describe	the	validator	types	that	are	included	with	the
Validation	Application	Block.	These	validators	are	the	following:

And	Composite	Validator
Contains	Characters	Validator
Date	Time	Range	Validator
Domain	Validator
Enum	Conversion	Validator
Not	Null	Validator
Object	Collection	Validator
Object	Validator
Or	Composite	Validator
Property	Comparison	Validator
Range	Validator

Regular	Expression	Validator
Relative	Date	Time	Validator
String	Length	Validator
Type	Conversion	Validator
Single	Member	Validators

Each	entry	contains	examples	for	how	to	use	the	validator	with	attributes	and
with	code.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Validation Block Validators'%0AEntLib50_a018f049-2f2a-4383-924f-3d186dfc9ec3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

And	Composite	Validator

Class	Name:	AndCompositeValidator

Attribute	Name:	ValidatorCompositionAttribute

Configuration	tool	name:	And	Composite	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'And Composite Validator'%0AEntLib50_fbad360d-1f4e-48ba-b974-187cc695256d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Contains	Characters	Validator

Class	Name:	ContainsCharactersValidator

Attribute	Name:	ContainsCharactersValidatorAttribute

Configuration	tool	name:	Contains	Characters	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Contains Characters Validator'%0AEntLib50_520d5cd0-975e-4f07-87d6-4730989a5366%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Date	Time	Range	Validator

Class	Name:	DateTimeRangeValidator

Attribute	Name:	DateTimeRangeValidatorAttribute

Configuration	tool	name:	Date	Time	Range	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Date Time Range Validator'%0AEntLib50_f6674ae4-cb64-4873-87fa-e01428cd9e4b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Domain	Validator

Class	Name:	DomainValidator<T>

Attribute	Name:	DomainValidatorAttribute

Configuration	tool	name:	Domain	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Domain Validator'%0AEntLib50_6d7856b6-a10b-4a1f-859c-520d314dcd2b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Enum	Conversion	Validator

Class	Name:	EnumConversionValidator

Attribute	Name:	EnumConversionValidatorAttribute

Configuration	tool	name:	Enum	Conversion	Validator

Description

Properties

Examples

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Enum Conversion Validator'%0AEntLib50_508f15aa-7749-4cbe-a157-dfac279d6bbc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Not	Null	Validator

Class	Name:	NotNullValidator

Attribute	Name:	NotNullValidatorAttribute

Configuration	tool	name:	Not	Null	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Not Null Validator'%0AEntLib50_257e3cf3-7ba6-42c5-bdad-6cb6f1a767a5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Object	Collection	Validator

Class	Name:	ObjectCollectionValidator

Attribute	Name:	ObjectCollectionValidatorAttribute

Configuration	tool	name:	Object	Collection	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Object Collection Validator'%0AEntLib50_90c5c693-44a2-4929-ac36-88b31c58e6d3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Object	Validator

Class	Name:	ObjectValidator

Attribute	Name:	ObjectValidatorAttribute

Configuration	tool	name:	Object	Validator

Description

Properties

Example

Differences	between	the	Object	Validator	and	the	Factory-
Created	Validators
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Object Validator'%0AEntLib50_c91d5ad6-7339-4395-bb66-ef58ad859b2c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Or	Composite	Validator

Class	Name:	OrCompositeValidator

Attribute	Name:	ValidatorCompositionAttribute

Configuration	tool	name:	Or	Composite	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Or Composite Validator'%0AEntLib50_69471c90-4f25-4fd4-a877-d24b39ce430b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Property	Comparison	Validator

Class	Name:	PropertyComparisonValidator

Attribute	Name:	PropertyComparisonAttribute

Configuration	tool	name:	Property	Comparison	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Property Comparison Validator'%0AEntLib50_1e57e241-3139-4dbc-bcd9-ac33c6a7a3db%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Range	Validator

Class	Name:	RangeValidator<T>

Attribute	Name:	RangeValidatorAttribute

Configuration	tool	name:	Range	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Range Validator'%0AEntLib50_956d433e-e39d-41b4-940e-2af8fd35b0d6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Regular	Expression	Validator

Class	Name:	RegexValidator

Attribute	Name:	RegexValidatorAttribute

Configuration	tool	name:	Regular	Expression	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Regular Expression Validator'%0AEntLib50_e2d06e0b-becc-439a-94a9-eeb87f8028eb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Relative	Date	Time	Validator

Class	Name:	RelativeDateTimeValidator

Attribute	Name:	RelativeDateTimeValidatorAttribute

Configuration	tool	name:	Relative	Date	Time	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Relative Date Time Validator'%0AEntLib50_a4d8fef5-59a5-48f9-b7c1-035c8cef7259%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

String	Length	Validator

Class	Name:	StringLengthValidator

Attribute	Name:	StringLengthValidatorAttribute

Configuration	tool	name:	String	Length	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'String Length Validator'%0AEntLib50_987ea2b2-748f-462a-b04a-1fd9746ec520%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Type	Conversion	Validator

Class	Name:	TypeConversionValidator

Attribute	Name:	TypeConversionValidatorAttribute

Configuration	tool	name:	Type	Conversion	Validator

Description

Properties

Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Type Conversion Validator'%0AEntLib50_62fff51a-7b01-4304-8ca8-b98e93c4cdb1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Single	Member	Validators

The	Validation	Application	Block	contains	three	validators	that	you	can	use	to
validate	individual	members	of	types,	instead	of	validating	the	entire	type	using
attributes	or	rule	sets.	While	not	a	common	scenario,	this	technique	may	be
useful	when	integrating	with	other	frameworks	such	as	WPF	and	Windows
Forms.	The	three	validators	are:

FieldValueValidator.	Use	this	validator	to	validate	a	field	of	a	type.
MethodReturnValueValidator.	Use	this	validator	to	validate	the	return
value	of	a	method	of	a	type.
PropertyValueValidator.	Use	this	validator	to	validate	the	value	of	a
property	of	a	type.

For	example,	you	can	programmatically	create	a	validator	for	an	instance	of	a
class	named	MyClass	that	validates	the	value	of	a	property	named	MyProperty
using	a	regular	expression	validator	as	shown	here.
C#

Validator	propValidator	=	new	PropertyValueValidator<MyClass>("MyProperty",	

																														new	RegexValidator("some-regular-expression"));

MyClass	myInstance	=	new	MyClass();

myInstance.MyProperty	=	"Some	value";

ValidationResults	results	=	propValidator.Validate(myInstance);

Visual	Basic

Dim	propValidator	As	New	PropertyValueValidator(Of	MyClass)("MyProperty",	_

																									New	RegexValidator("some-regular-expression"))

Dim	myInstance	As	New	MyClass()

myInstance.MyProperty	=	"Some	value"

Dim	results	As	ValidationResults	=	propValidator.Validate(myInstance)

That	second	parameter	to	the	constructor	is	the	validator	to	use	for	the	property
value.	You	can	also	create	a	composite	validator	from	a	combination	of
validators,	and	specify	this	composite	validator	in	the	code	above.	A	similar

technique	can	be	used	with	the	FieldValueValidator	and
MethodReturnValueValidator.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Single Member Validators'%0AEntLib50_58561dbd-2906-46e0-808c-f20a6e4b03b7%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Understanding	Common	Validator	Properties

There	are	a	number	of	properties	defined	for	the	Validator	class.	These
properties	are	also	exposed	by	the	ValidatorAttribute	class,	which	means	that
they	can	be	used	with	any	attribute	that	derives	from	this	class.

These	properties	are	the	following:
MessageTemplate.	For	more	details,	see	Using	the	Message	Template
Property.
MessageTemplateResourceName	and
MessageTemplateResourceType	.	For	more	details,	see	Using	the
Message	Template	Resources.
Negate.	For	more	details,	see	Using	the	Negate	Property.
Tag.	For	more	details,	see	Using	the	Tag	Property.
Ruleset.	For	more	details,	see	Using	the	Ruleset	Property.

Using	the	Message	Template	Property

Using	the	Message	Template	Resources

Understanding	Message	Template	Tokens

http://msdn2.microsoft.com/en-us/library/system.string.format.aspx

Using	the	Negate	Property

Using	the	Tag	Property

Using	the	Ruleset	Property
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Understanding Common Validator Properties'%0AEntLib50_b0eadaf4-a85e-4cae-8b18-a0f4b4403629%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Understanding	Validation	Results

The	ValidationResults	type	is	a	collection	of	ValidationResult	objects.	Each
ValidationResult	object	contains	a	report	that	includes	references	to	the
Validator	instance,	the	object	that	was	validated,	and	error	messages.

The	following	table	lists	the	properties	and	methods	of	the	ValidationResults
collection	class.

Member Description

AddAllResults Takes	a	collection	of	ValidationResult	instances	and	adds
them	to	an	existing	ValidationResults	instance.

AddResult Creates	a	new	ValidationResult	instance	and	adds	it	to	an
existing	ValidationResults	instance.

Count Returns	the	number	of	ValidationResult	instances	in	the
collection.

FindAll Filters	a	ValidationResults	instance	and	eliminates	results
that	do	not	match	the	value	of	the	Tag	property	that	was
specified	for	the	validator.	This	method	returns	a	new
ValidationResults	object	that	contains	the	required	set	of
ValidationResult	instances	and	leaves	the	original
ValidationResults	instance	unchanged.

IsValid This	property	returns	true	if	validation	succeeded	or	false	if
validation	failed.

The	following	table	lists	the	properties	of	the	ValidationResult	class.

Property Description

Key This	is	a	name	that	describes	the	location	of	the
validation	result.	It	contains	the	name	of	the
member	that	is	associated	with	the	validator.	It	is
null	if	the	validator	is	defined	at	the	type	level.

NestedVlidationResults The	nested	validation	results	for	a	composite

failed	validation.

Message This	is	a	message	that	describes	the	validation
failure.

Tag This	is	a	value	supplied	by	the	user	as	the	Tag
property	of	the	validator.	Typically,	it	is	used	for
categorization	or	filtering.	The	tag	can	be	supplied
through	the	constructor	but	it	is	typically	set	either
by	using	a	property	in	the	validation	attributes	or
with	configuration.

Target This	is	the	object	to	which	the	validation	rule	was
applied.

Validator This	is	the	validator	that	performed	the	validation.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Understanding Validation Results'%0AEntLib50_94056593-c3ff-4335-85e2-db7366bdf646%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

How	Validators	Are	Created

When	the	application	block	creates	a	validator,	it	uses	a	set	of	requirements	to
determine	which	types	and	members	of	those	types	can	be	associated	with	that
validator.	(Members	can	be	methods,	properties,	and	fields.)

In	general,	when	the	application	block	creates	a	validator,	it	evaluates	the
associated	type	and	its	members.	Only	members	that	have	the	following
characteristics	can	be	associated	with	a	validator:

They	must	be	public	members.
Methods	must	be	non-void	and	take	no	parameters.
Properties	must	be	readable.

Self	validation	has	a	different	set	of	requirements.	They	are	the	following:
Self	validation	applies	only	to	methods.
A	self	validation	method	can	be	non-public.
The	method	signature	must	be	void	[method](ValidationResults).
Self	validation	can	apply	to	inherited	methods	but	not	to	methods	that	are
private	and	inherited.

Creating	Validators	with	Configuration

Creating	Validators	with	Attributes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'How Validators Are Created'%0AEntLib50_88136f06-f91b-4776-87ba-b17cc7f47cf1%0APlease provide details of the error you have located...%0A

Copy	Code

Microsoft	Enterprise	Library	5.0

Validation	and	Inheritance

If	you	use	inheritance,	you	need	to	know	how	the	validation	rules	are	applied
throughout	the	class	hierarchy.	Here	is	an	example	of	a	simple	hierarchy,	where
class	PreferredCustomer	inherits	from	class	Customer.	(The	validator
attributes	used	in	the	example,	such	as	CustomerNameValidator	refer	to
custom	validators	and	are	not	validators	included	with	the	Validation
Application	Block.)
C#

public	class	Customer

{

		[CustomerNameValidator]

		public	string	Name

		{

				get	{	...	}	

				set	{	...	}

		}

		[DiscountValidator]

		public	virtual	double	Discount

		{

				get	{	...	}

				set	{	...	}

		}

}

public	class	PreferredCustomer	:	Customer

{

		[PreferredDiscountValidator]

		public	override	double	Discount

		{

				get	{	...	}

				set	{	...	}

		}

}

Visual	Basic

Public	Class	Customer

		<CustomerNameValidator()>	_

		Public	Property	Name(ByVal	_name	As	String)

				Get

						'	...

				End	Get

				Set(ByVal	value)

						'	...

				End	Set

		End	Property

		<DiscountValidator()>	_

		Public	Overridable	Property	Discount(ByVal	_discount	As	Double)

				Get

						'	...

				End	Get

				Set(ByVal	value)

						'	...

				End	Set

		End	Property

End	Class

Public	Class	PreferredCustomer

		Inherits	Customer

		<PreferredDiscountValidator()>	_

		Overrides	Public	Property	Discount(ByVal	_discount	As	Double)

				Get

						'	...

				End	Get

				Set(ByVal	value)

						'	...

				End	Set

		End	Property

End	Class

In	this	example,	the	PreferredCustomer	class	derives	from	the	Customer
class,	and	it	also	overrides	the	Discount	property.

There	are	two	rules	for	how	validators	work	within	a	class	hierarchy:
If	a	derived	class	inherits	a	member	and	does	not	override	it,	the
member's	validators	from	the	base	class	apply	to	the	derived	class.
If	a	derived	class	inherits	a	member	but	overrides	it,	the	member's
attributes	from	the	base	class	do	not	apply	to	the	derived	class.

In	this	example,	the	CustomerNameValidator	attribute	applies	to	the
PreferredCustomer	class,	but	the	DiscountValidator	attribute	does	not.
Instead,	the	PreferredDiscountValidator	attribute	applies.

If	this	is	not	the	desired	behavior,	you	can	use	validators	of	base	classes	to
check	instances	of	derived	classes.	The	following	code	example	shows	how	to
do	this.	It	assumes	that	you	have	resolved	an	instance	of	the	Validation
Application	Block	ValidatorFactory	class	and	stored	it	in	a	variable	named
valFactory.
C#

Validator<Customer>	customerValidator	=	valFactory.CreateValidator<Customer>();

PreferredCustomer	myPreferredCustomer	=	new	PreferredCustomer();

//	Set	properties	of	PreferredCustomer	here

ValidationResults	r	=	customerValidator.Validate(myPreferredCustomer);

Visual	Basic

Dim	customerValidator	As	Validator(Of	Customer)	=	valFactory.CreateValidator(Of	Customer)()

Dim	myPreferredCustomer	As	PreferredCustomer	=	New	PreferredCustomer()

'	Set	properties	of	PreferredCustomer	here

Dim	r	As	ValidationResults	=	customerValidator.Validate(myPreferredCustomer)

This	example	validates	a	PreferredCustomer	object.	However,	the	validation	is
based	on	the	attributes	of	the	Customer	base	class.	The	validation	rules	defined

on	the	PreferredCustomer	class	are	not	applied.

You	can	use	the	CreateValidator(Type)	overload	of	the	ValidatorFactory	class
to	create	a	validator	that	is	specific	to	a	class	that	you	provide	at	run	time.
C#

public	ValidationResults	CheckObject(object	obj)

{

		if	(obj	!=	null)

		{

				Validator	v	=	valFactory.CreateValidator(obj.GetType());

				return	v.Validate(obj);

		}

		else

		{

				return	null;

		}

}

Visual	Basic

Public	Function	ValidationResults(ByVal	obj	As	Object)

		If	Not	obj	Is	Nothing	Then

				Dim	v	As	Validator	=	valFactory.CreateValidator(obj.GetType())

				Return	v.Validate(obj)

		Else

				Return	Nothing

		End	If

End	Function

This	example	creates	a	validator	based	on	the	run	time	type	of	the	input
argument	to	the	CheckObject	method.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Validation and Inheritance'%0AEntLib50_62e026bd-11aa-4b03-b7e0-74c60a17f8eb%0APlease provide details of the error you have located...%0A

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

Microsoft	Enterprise	Library	5.0

Key	Scenarios

This	section	describes	the	most	common	situations	developers	must	address
when	using	the	Validation	Application	Block.	The	following	scenarios	are
included:

Validating	Objects
Creating	Validators	Programmatically
Using	Validation	Block	Attributes
Using	Data	Annotation	Attributes
Defining	Attributes	in	Metadata	Classes
Using	Self	Validation
Integrating	with	ASP.NET,	WPF,	Windows	Forms,	and	WCF

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Key Scenarios'%0AEntLib50_63ee45e2-4476-4ba9-9f31-ea108f69c755%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Validating	Objects

You	can	validate	an	object	once	you	have	obtained	a	reference	to	a	validation
factory	and	attached	the	validators	and	the	rule	sets.	The	easiest	way	to	obtain	a
reference	to	a	validation	factory	is	through	the	Enterprise	Library	container,	as
described	in	Creating	and	Referencing	Enterprise	Library	Objects.	This	topic
demonstrates	the	following	techniques:

Creating	Validator	Instances
Specifying	the	Location	of	Validation	Rules
Validating	an	Object
Validating	Objects	Using	Rule	Sets

Note:
In	previous	releases	of	Enterprise	Library,	you	could	use	the	static
Validation	facade	to	validate	objects	without	first	creating	a	validator.	You
could	also	use	the	static	ValidationFactory	class	(as	opposed	to	the
replacement	non-static	ValidatorFactory	class)	to	create	validator	instances.
These	approaches	are	supported	in	this	release	for	backwards	compatibility
with	existing	application	code.	However,	to	take	advantage	of	benefits
available	when	using	dependency	injection,	you	should	use	the	techniques
described	in	this	section.	For	information	about	using	the	static	facades,	see
the	Enterprise	Library	documentation	on	MSDN.

http://msdn.microsoft.com/entlib/

Creating	Validator	Instances

Specifying	the	Location	of	Validation	Rules

Validating	an	Object

Validating	Objects	Using	Rule	Sets
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Validating Objects'%0AEntLib50_4b3ee87e-84f6-492b-9c91-4f79686dfcdc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Validators	Programmatically

Using	attributes	to	create	rule	sets	is	only	possible	if	you	have	the	source	code
for	the	class	that	you	want	to	validate.	In	some	cases,	this	may	not	be	the	case.
Another	team,	or	a	utility	such	as	the	Web	Services	Description	Language	Tool
(Wsdl.exe),	may	create	the	class—and	you	have	only	the	binary	assembly.

In	addition,	you	may	want	to	validate	individual	values,	rather	than	entire
objects.	For	both	of	these	scenarios,	you	can	create	validators	programmatically.
This	is	shown	in	the	following	code	example.
C#

Validator<string>	emailAddressValidator	

				=	new	RegexValidator(@"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*");

ValidationResults	r	=	emailAddressValidator.Validate(myEmailAddress);

Validator	shortStringValidator	

				=	new	AndCompositeValidator(new	NotNullValidator(),	new	StringLengthValidator(1,	5));

shortStringValidator.Validate(myStringValue,	r);

Visual	Basic

Dim	emailAddressValidator	As	Validator(Of	String)	_

				=	New	RegexValidator("\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*")

Dim	r	As	ValidationResults	=	emailAddressValidator.Validate(myEmailAddress)

Dim	shortStringValidator	As	Validator	_

				=	New	AndCompositeValidator(New	NotNullValidator(),	New	StringLengthValidator(1,	5))

shortStringValidator.Validate(myStringValue,	r)

In	this	example,	the	first	line	uses	new	to	create	an	instance	of	the
RegExValidator	class	with	the	parameter	value	set	to	the	@"\w+([-
+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"	regular	expression	string.	The
variable	emailAddressValidator	contains	the	reference	to	this	instance.	The
second	line	uses	new	to	create	an	instance	of	the	AndCompositeValidator

class.	The	variable	shortStringValidator	contains	the	reference	to	this	instance.
You	can	use	the	AndCompositeValidator	class	to	create	a	composite	validator.
In	this	example,	the	composite	validator	contains	a	NotNullValidator	instance
and	a	StringLengthValidator	instance.

After	you	programmatically	create	a	Validator	object,	you	can	use	the	Validate
method	to	validate	an	object	as	described	in	the	topic	Validating	Objects.	Notice
how	the	second	call	to	the	Validate	method	uses	the	overload	that	accepts	an
existing	instance	of	the	ValidationResults	class	and	adds	any	validation	errors
it	finds	to	the	list.

As	an	alternative	to	creating	validators	by	executing	the	constructor,	you	can
resolve	individual	validators	through	the	Enterprise	Library	Container.	If	you
specify	a	name	when	you	resolve	the	instance,	this	is	interpreted	as	the	name	of
the	rule	set	for	that	validator	to	use	when	validating	objects.	You	must	add	the
Validation	Block	Extension	to	the	container	to	use	this	approach.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Validators Programmatically'%0AEntLib50_c29ba824-b735-45ee-a5bc-26b97d13b7fc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Validation	Block	Attributes

Validation	attributes	(both	the	built-in	Validation	Application	Block	attributes
and	those	described	in	the	topic	Using	Data	Annotation	Attributes)	can	be	used
with	various	targets	that	include	classes,	fields,	properties,	methods,	and	(in
limited	cases)	parameters.	For	information,	see	Validation	Attribute	Targets.
There	is	also	a	set	of	attributes	that	allow	you	to	change	the	behavior	of	other
attributes.	These	are	discussed	in	Validation	Modifier	Attributes.	You	can	also
specify	the	attributes	you	want	to	use	in	a	separate	metadata	class.	For	more
details	of	this,	see	Defining	Attributes	in	Metadata	Classes.

Using	Validation	Block	Attributes	to	Define	Validation	Rule	Sets

Validation	Attribute	Targets

Validation	Modifier	Attributes
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Validation Block Attributes'%0AEntLib50_af182675-ba7f-4721-8f3c-22e0b519a22e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Data	Annotation	Attributes

The	System.ComponentModel.DataAnnotations	namespace	in	the	.NET
Framework	contains	a	series	of	attributes	that	you	can	add	to	your	classes	and
class	members	to	signify	metadata	for	these	classes	and	members.	They	include
a	range	of	validation	attributes	that	you	can	use	to	apply	validation	rules	to	your
classes,	in	much	the	same	way	as	you	can	with	the	Validation	block	attributes.
For	example,	the	following	shows	how	you	can	use	the	Range	attribute	to
specify	that	the	value	of	the	property	named	OnOrder	must	be	between	0	and
50.
C#

[Range(0,	50,	ErrorMessage	=	"Quantity	on	order	must	be	between	0	and	50.")]

public	int	OnOrder	{	get;	set;	}	

Visual	Basic

<Range(0,	50,	ErrorMessage:="Quantity	on	order	must	be	between	0	and	50.")>	_

Public	Property	OnOrder()	As	Integer

		...

End	Property

Compared	to	the	validation	attributes	provided	with	the	Validation	block,	there
are	some	limitations	when	using	the	validation	attributes	from	the
DataAnnotations	namespace:

The	range	of	supported	validation	operations	is	less	comprehensive,
though	there	are	some	new	validation	types	available	in	version	4.0	of
the	.NET	Framework	that	extend	the	range.	However,	some	validation
operations	such	as	property	value	comparison,	enumeration	membership
checking,	and	relative	date	and	time	comparison	are	not	available	when
using	data	annotation	validation	attributes.
There	is	no	capability	to	use	Or	composition,	as	there	is	with	the	Or
composite	validator	in	the	Validation	Application	Block.	The	only
composition	available	with	data	annotation	validation	attributes	is	the

And	operation.
You	cannot	specify	rule	sets	names,	and	so	all	rules	implemented	with
data	annotation	validation	attributes	belong	to	the	default	rule	set.	You
will	see	more	details	about	rule	sets	later	in	this	chapter.
There	is	no	simple	built-in	support	self-validation,	as	there	is	in	the
Validation	block.

Note:
Data	Annotation	validators	can	only	be	applied	to	properties.

You	can,	of	course,	include	both	data	annotation	and	Validation	block	attributes
in	the	same	class	if	you	wish,	and	implement	Self	validation	using	the
Validation	block	mechanism	in	a	class	that	contains	data	annotation	validation
attributes.	The	validation	methods	in	the	Validation	block	will	process	both
types	of	attributes.

For	more	information	about	data	annotations,	see
System.ComponentModel.DataAnnotations	Namespace	(.NET	Framework
version	3.5)	and	System.ComponentModel.DataAnnotations	Namespace	(.NET
Framework	version	4.0).

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations(VS.100).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Data Annotation Attributes'%0AEntLib50_7c70f9ca-e5a4-4089-9f59-6fc5adae16ef%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Defining	Attributes	in	Metadata	Classes

In	some	cases,	you	may	want	to	locate	your	validation	attributes	(both
Validation	block	attributes	and	.NET	Data	Annotation	validation	attributes)	in	a
separate	file	to	the	one	that	defines	the	class	that	you	will	validate.	This	is	a
common	scenario	when	you	are	using	tools	that	generate	the	class	files,	and
would	therefore	overwrite	your	validation	attributes.	To	avoid	this	you	can
locate	your	validation	attributes	in	a	separate	file	that	forms	a	partial	class	along
with	the	main	class	file.	This	approach	makes	use	of	the	MetadataType
attribute	from	the	System.ComponentModel.DataAnnotations	namespace.

You	apply	the	MetadataType	attribute	to	your	main	class	file,	specifying	the
type	of	the	class	that	stores	the	validation	attributes	you	want	to	apply	to	your
main	class	members.	You	must	define	this	as	partial	class,	as	shown	here.	The
only	change	to	the	content	of	this	class	compared	to	the	attributed	versions	you
saw	in	the	previous	sections	of	this	chapter	is	that	it	contains	no	validation
attributes.
C#

[MetadataType(typeof(ProductMetadata))]

public	partial	class	Product

{

		...	Existing	members	defined	here,	but	without	attributes	or	annotations	...

}

Visual	Basic

<MetadataType(GetType(ProductMetadata))>	_

Partial	Public	Class	Product

		...	Existing	members	defined	here,	but	without	attributes	or	annotations	...

End	Class

You	then	define	the	metadata	type	as	a	normal	class,	except	that	you	declare
simple	properties	for	each	of	the	members	to	which	you	want	to	apply
validation	attributes.	The	actual	type	of	these	properties	is	not	important,	and	is

ignored	by	the	compiler.	The	accepted	approach	is	to	declare	them	all	as	of	type
Object.	As	an	example,	if	your	Product	class	contains	the	ID	and	Description
properties,	you	can	define	the	metadata	class	for	it	as	shown	here.
C#

public	class	ProductMetadata

{

		[Required(ErrorMessage	=	"ID	is	required.")]

		[RegularExpression("[A-Z]{2}[0-9]{4}",	

										ErrorMessage	=	"Product	ID	must	be	2	capital	letters	and	4	numbers.")]

		public	object	ID;

		[StringLength(100,	ErrorMessage	=	"Description	must	be	less	than	100	chars.")]

		public	object	Description;

}

Visual	Basic

Public	Class	ProductMetadata

		<Required(ErrorMessage:="ID	is	required.")>	_

		<RegularExpression("[A-Z]{2}[0-9]{4}",	_

										ErrorMessage:="Product	ID	must	be	2	capital	letters	and	4	numbers.")>	_

		Public	ID	As	Object

		<StringLength(100,	ErrorMessage:="Description	must	be	less	than	100	chars.")>	_

		Public	Description	As	Object

End	Class

For	more	information,	see	MetadataTypeAttribute	Class	on	MSDN.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.metadatatypeattribute.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Defining Attributes in Metadata Classes'%0AEntLib50_39033729-17d6-45e5-bb55-9f787641ae02%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Self	Validation

Self	validation	allows	you	to	implement	validation	logic	within	the	class	you
want	to	validate.	Use	the	HasSelfValidation	attribute	to	mark	the	class	that
contains	the	validation	logic.	Use	the	SelfValidation	attribute	to	mark	each	Self
validation	method	within	that	class.	The	following	code	example	shows	how	to
do	this.
C#

using	Microsoft.Practices.EnterpriseLibrary.Common.Configuration;

using	Microsoft.Practices.EnterpriseLibrary.Validation;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

[HasSelfValidation]

public	class	TemperatureRange

{

		private	int	min;

		private	int	max;

		//	...

		[SelfValidation]

		public	void	CheckTemperature(ValidationResults	results)

		{

				if	(max	<	min)

						results.AddResult(new	ValidationResult("Max	less	than	min",	this,	"",	"",	null));

		}

}

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Imports	Microsoft.Practices.EnterpriseLibrary.Validation

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Validators

Copy	Code

Copy	Code

<HasSelfValidation()>	_

Public	Class	TemperatureRange

		Private	min	As	Integer

		Private	max	As	Integer

		'...

		<SelfValidation()>	_

		Sub	CheckTemperature(ByVal	results	As	ValidationResults)

				If	max	<	min	Then

						results.AddResult(New	ValidationResult("Max	less	than	min",	Me,	"",	"",	Nothing))

				End	If

		End	Sub

End	Class

In	this	example,	the	CheckTemperature	method	provides	self	validation.	When
the	Validation.Validate	method	is	called	on	an	instance	of
TemperatureRange,	the	CheckTemperature	method	is	invoked.

If	you	do	not	specify	a	rule	set	name	in	the	SelfValidation	attribute,	the	self
validation	routine	is	part	of	the	default	rule	set.	To	specify	a	rule	set	name,
include	the	Ruleset	parameter	in	the	SelfValidation	attribute	as	shown	below.
You	can	include	more	than	one	SelfValidation	method	in	a	class	and
differentiate	them	using	rule	set	names.
C#

[SelfValidation(Ruleset="SimpleRuleset")]

public	void	Validate(ValidationResults	results)

{

		...

}

Visual	Basic

<SelfValidation(Ruleset:="SimpleRuleset")>	_

Public	Sub	Validate(results	As	ValidationResults)

		...

End	Sub

Each	Self	validation	method	must	have	a	void	return	value	and	take	a
ValidationResults	instance	as	its	only	parameter.	The	Self	validation	method
should	update	the	ValidationResults	instance	after	performing	the	validation	if
the	validation	fails.	For	more	information	about	the	ValidationResults	class,
see	Understanding	Validation	Results.

If	you	have	a	derived	class	and	you	want	it	to	inherit	the	Self	validation
behavior	of	its	base	class,	you	must	mark	both	the	base	class	and	the	derived
class	with	the	HasSelfValidation	attribute.	The	Self	validation	methods	in	the
base	class	must	be	public	in	order	for	them	to	be	included	in	the	self	validation
of	the	derived	class.

Self	validation	works	in	combination	with	any	validators	that	are	assigned	to	a
class.	Therefore,	the	ValidationResults	for	an	object	instance	will	include	both
the	results	from	the	self	validation	as	well	as	the	results	from	validators	within
the	class.	In	the	following	code	example,	the	Address	class	uses	self-validation,
and	the	string	ZipCode	has	the	StringLengthValidator	assigned.
C#

using	Microsoft.Practices.EnterpriseLibrary.Common.Configuration;

using	Microsoft.Practices.EnterpriseLibrary.Validation;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

[HasSelfValidation]

public	class	Address

{

		private	string	_zipCode;

		[StringLengthValidator(1,10,	MessageTemplate="ZipCode	Invalid	Length")]

		public	string	ZipCode

		{

				get	{	return	_zipCode;	}

				set	{	_zipCode	=	value;	}

		}

		[SelfValidation]

		public	void	DoValidate(ValidationResults	results)

		{

				ValidationResult	result	=	new	ValidationResult("Error	Message",	typeof(Address),	"",	"",	null);

				ValidationResult	result2	=	new	ValidationResult("Error	Message2",	typeof(Address),	"",	"",	null);

				results.AddResult(result);

				results.AddResult(result2);

		}

}

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Imports	Microsoft.Practices.EnterpriseLibrary.Validation

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Validators

<HasSelfValidation()>	_

Public	Class	Address

		Private	_zipCode	As	String

		<StringLengthValidator(1,	10,	MessageTemplate:="ZipCode	Invalid	Length")>	_

		Public	Property	ZipCode()	As	String

				Get

						Return	_zipCode

				End	Get

				Set(ByVal	value	As	String)

						_zipCode	=	value

				End	Set

		End	Property

		<SelfValidation()>	_

		Sub	DoValidate(ByVal	results	As	ValidationResults)

				Dim	result	As	New	ValidationResult("Error	Message",	GetType(Address),	"",	"",	Nothing)

				Dim	result2	As	New	ValidationResult("Error	Message2",	GetType(Address),	"",	"",	Nothing)

				results.AddResult(result)

				results.AddResult(result2)

		End	Sub

End	Class

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Self Validation'%0AEntLib50_949240d5-f9c7-4779-a8fd-19e0912a6a74%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Integrating	with	ASP.NET,	WPF,	Windows	Forms,	and	WCF

Integration	allows	you	reuse	the	validators	that	are	associated	with	your
application	classes	when	you	perform	validation	at	the	user-interface	level	(for
ASP.NET,	WPF,	and	Windows	Forms	applications)	or	at	the	message-sending
level	of	a	multi-tiered	application	(for	WCF	applications).	By	integrating	the
Validation	Application	Block	with	your	applications,	you	can	reuse	your
validation	rules	across	several	levels	of	your	system	architecture.

The	integration	provided	by	the	Validation	Application	Block	at	the	user-
interface	level	does	the	following:

It	provides	a	way	to	associate	properties	of	validated	application	objects
with	user-interface	controls.
It	provides	a	way	to	convert	values	from	an	input	data	type	to	an
application-specific	data	type.	For	example,	you	can	convert	a	string
input	to	a	System.DateTime	value.
It	helps	avoid	coding	errors	in	type	names	and	property	names.	For
example,	it	throws	exceptions	when	type	names	or	property	names
cannot	be	found.
It	does	not	require	instances	of	application	objects	to	be	created	in	order
for	validators	to	be	invoked	at	the	user-interface	level.	In	other	words,
you	do	not	need	to	instantiate	a	Customer	object	just	to	check	whether
an	input	string	entered	by	the	user	meets	the	validation	requirements	of
the	Customer.Name	property.

The	integration	provided	by	the	Validation	Application	Block	for	the	message-
passing	level	allows	you	to	validate	WCF	messages,	data	contracts,	and
parameters.

The	Validation	Application	Block	is	designed	to	integrate	with	a	range	of
presentation	technologies.	For	details,	see	the	flowing	topics:

Integrating	with	ASP.NET
Integrating	with	WPF
Integrating	with	Windows	Forms
Integrating	with	WCF

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.

http://codeplex.com/entlib/

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integrating with ASP.NET, WPF, Windows Forms, and WCF'%0AEntLib50_8d3c2b6c-46e8-4d1f-8297-bff4131187e2%0APlease provide details of the error you have located...%0A

Copy	Code

Microsoft	Enterprise	Library	5.0

Integrating	with	ASP.NET

You	can	integrate	the	Validation	Application	Block	with	ASP.NET	applications.
For	example,	you	can	use	the	application	block	to	validate	information	a	user
enters	into	a	Web	form.	ASP.NET	is	integrated	with	the	Validation	Application
Block	through	the	types	defined	in	the
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet
assembly.

The	PropertyProxyValidator	class	defined	in	this	assembly	provides	the	main
integration	point.	Its	purpose	is	to	check	an	ASP.NET	control's	value	using	the
validators	that	are	included	in	a	user-provided	application	class.	The
PropertyProxyValidator	class	acts	as	a	wrapper	that	links	a	control	to	a
validator	in	an	application-level	class.

The	PropertyProxyValidator	class	raises	the	ValueConvert	event	when	it
needs	to	convert	the	type	of	a	value	entered	into	the	associated	edit	control.	You
can	handle	this	event	to	provide	a	custom	type	converter	for	converting	values
entered	by	the	user	to	values	required	by	the	validators.	If	you	do	not	specify	a
handler,	a	default	conversion	is	performed	by	the	ASP.NET	TypeConverter
services.

To	use	the	PropertyProxyValidator	control,	you	must	manually	add	the	code
to	an	.aspx	file,	as	shown	in	the	following	example.

<cc1:propertyproxyvalidator

					id="firstNameValidator"

					runat="server"

					ControlToValidate="firstNameTextBox"

					PropertyName="FirstName"

					RulesetName="RuleSetA"

					SourceTypeName="BusinessEntities.Customer">

</cc1:propertyproxyvalidator>

The	SourceTypeName	attribute	shown	in	the	designer-generated	source

references	the	Customer	class	defined	elsewhere	in	the	application.	This	is	the
class	whose	validators	will	be	used.

When	using	ASP.NET	with	the	Validation	Application	Block,	you	may	need	to
convert	data	types	such	as	dates	before	you	can	validate	the	data.	The
integration	library	provides	a	way	for	you	to	insert	code	that	performs	this
conversion.	To	do	this,	you	need	to	provide	an	event	handler	for	the	conversion
and	then	reference	this	handler	in	the	.aspx	file.	The	following	code	excerpt
shows	a	handler	that	converts	a	date	of	birth	string	into	a	date.
C#

using	Microsoft.Practices.EnterpriseLibrary.Common.Configuration;

using	Microsoft.Practices.EnterpriseLibrary.Validation;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Validators;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Integration;

using	Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet;

protected	void	dateOfBirthValidator_ValueConvert(object	sender,	ValueConvertEventArgs	e)

{

		string	value	=	e.ValueToConvert	as	string;

		try

		{

				e.ConvertedValue	=	DateTime.Parse(value,	System.Globalization.CultureInfo.CurrentCulture);

		}

		catch

		{

				e.ConversionErrorMessage	=	"Date	Of	Birth	is	not	in	the	correct	format.";

				e.ConvertedValue	=	null;

		}

}

Visual	Basic

Imports	Microsoft.Practices.EnterpriseLibrary.Common.Configuration

Imports	Microsoft.Practices.EnterpriseLibrary.Validation

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Validators

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Integration

Imports	Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet

Protected	Sub	dateOfBirthValidator_ValueConvert(ByVal	sender	As	Object,	ByVal	e	As	ValueConvertEventArgs)	_

										Handles	dateOfBirthValidator.ValueConvert

		Dim	stringValue	As	String	=	CStr(e.ValueToConvert)

		Dim	dateValue	As	DateTime

		Dim	success	As	Boolean	=	DateTime.TryParse(stringValue,	dateValue)

		If	success	Then

				e.ConvertedValue	=	dateValue

		Else

				e.ConversionErrorMessage	=	"Date	Of	Birth	is	not	in	the	correct	format."

				e.ConvertedValue	=	Nothing

		End	If

End	Sub

The	following	code	shows	the	dateOfBirthTextBox	control	and	the
dateOfBirthValidator	in	an	ASP.NET	page.	The	OnValueConvert	attribute	of
the	PropertyProxyValidator	specifies	the	name	of	the	event	handler	shown	in
the	previous	code,	and	is	located	in	the	associated	ASP.NET	code-behind	file.

<asp:TextBox	ID="dateOfBirthTextBox"	runat="server"	/>

<cc1:PropertyProxyValidator	ID="dateOfBirthValidator"	runat="server"	

													ControlToValidate="dateOfBirthTextBox"

													PropertyName="DateOfBirth"

													RulesetName="RuleSetA"				

													SourceTypeName="Customer"

													OnValueConvert="dateOfBirthValidator_ValueConvert">

</cc1:PropertyProxyValidator>

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integrating with ASP.NET'%0AEntLib50_58e249cd-6d83-4d55-9773-dcd6f081b2cf%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Integrating	with	WPF

You	can	integrate	the	Validation	Application	Block	with	Windows	Presentation
Foundation	(WPF)	applications.	For	example,	you	can	use	the	application	block
to	validate	the	values	in	UI	controls	in	accordance	with	rules	defined	for	bound
properties	of	an	object.	Validation	is	performed	as	part	of	the	general	Binding
mechanism.	For	information	about	the	WPF	binding	mechanism,	see	Data
Binding	Overview	on	MSDN.	The	validation	rules	you	specify	can	be
configured	to	validate	at	different	stages	in	the	binding	processing	pipeline.	For
information	about	applying	validation	rules,	see	How	to:	Implement	Binding
Validation	and	ValidationStep	Enumeration	on	MSDN.

Note:
The	Validation	Application	Block	cannot	be	used	in	XML	Browser
Applications	(XBAP)	due	to	issues	with	the	partial	trust	environment	that
XBAP	mandates.

To	use	the	WPF	integration	feature,	you	must	add	a	reference	to	the	assembly
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WPF.	The
integration	is	performed	through	a	custom	ValidationRule	named
ValidatorRule	defined	in	this	assembly,	which	performs	its	validation	by
invoking	the	Validation	Application	Block	validator	for	a	specific	property	on	a
given	type.	Validation	only	occurs	if	a	binding	exists,	and	that	binding	is
connected	(if	the	source	of	the	binding	exists).

You	can	add	a	validation	rule	directly	to	a	binding	by	specifying	the	desired
type	and	property	names,	as	shown	here.
XAML

<TextBox	x:Name="TextBox1">

		<TextBox.Text>

				<Binding	Path="ValidatedStringProperty"	UpdateSourceTrigger="PropertyChanged">

						<Binding.ValidationRules>

								<vab:ValidatorRule	

http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://msdn.microsoft.com/en-us/library/ms753962.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.validationstep.aspx

													SourceType="{x:Type	test:ValidatedObject}"	

													SourcePropertyName="ValidatedStringProperty"/>

						</Binding.ValidationRules>

				</Binding>

		</TextBox.Text>

</TextBox>

You	can	also	set	the	RulesetName	and	ValidationSpecificationSource
properties	to	refine	how	the	validator	for	the	specified	property	is	created.

If	the	value	of	the	validated	control	that	carries	the	Required	validation
attribute	is	empty	to	begin	with,	and	remains	empty	during	validation,	the
source	is	not	updated	and	validation	does	not	occur.	In	this	particular	case	the
ValidateOnTargetUpdate	property	will	not	work	either	because	the	null
default	value	of	the	target	will	not	change.	Instead,	you	can	invoke
UpdateSource	on	the	binding	to	force	validation	to	occur,	as	shown	here.
C#

this.Required.GetBindingExpression(TextBox.TextProperty).UpdateSource();

Visual	Basic

Me.Required.GetBindingExpression(TextBox.TextProperty).UpdateSource()

The	validation	rule	operates	in	the	ConvertedProposedValue	step,	after	the
value	has	been	converted	but	before	it	is	set	on	the	source.	This	means	that
value	conversion	errors	must	be	detected	through	other	mechanism.	One
approach	is	to	enable	the	ValidatesOnDataErrors	property	on	the	validated
binding.

Configuring	Validation	through	Attached	Properties
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integrating with WPF'%0AEntLib50_8279cff2-91a2-4af7-ac5a-928e1bc64a3e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Integrating	with	Windows	Forms

You	can	integrate	the	Validation	Application	Block	with	Windows	Forms
applications.	For	example,	you	can	use	the	application	block	to	validate
information	a	user	enters	into	a	Windows	Form.	Windows	Forms	is	integrated
with	the	Validation	Application	Block	through	the	types	defined	in	the
Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WinForms
assembly.

The	ValidationProvider	class	defined	in	this	assembly	provides	the	main
integration	point.	This	class	is	an	extender	provider	that	adds	properties	to
Windows	Forms	controls.	This	provider	allows	you	to	specify	how	to	use	the
Validation	Application	Block	to	validate	the	controls'	values.

You	can	perform	validation	automatically	by	using	the	Control.Validating
event	or	you	can	initiate	it	in	your	code	by	invoking	the
ValidationProvider.PerformValidation(Control)	method.	In	both	cases,	you
must	use	the	validation	provider	to	configure	the	control.

You	can	also	specify	an	instance	of	the	ErrorProvider	class	for	the	control.	If
you	do	this,	the	validation	errors	that	result	if	the	validation	fails	are	sent	to	the
error	provider	as	a	properly	formatted	error	message.

The	ValidationProvider.Enabled	property	enables	and	disables	the	validation
provider.	When	it	is	disabled	no	validation	occurs,	the	validation	provider	is
considered	valid,	and	any	error	messages	posted	to	the	ErrorProvider	are
cleared.	When	it	is	re-enabled,	the	provider	continues	to	be	valid	and	does	not
post	any	error	messages	until	validation	is	triggered	again.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integrating with Windows Forms'%0AEntLib50_a37f938a-f41d-4ad5-acd5-ae1871f84239%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Integrating	with	WCF

Windows	Communication	Foundation	(WCF)	provides	extension	points	that
allow	you	to	support	custom	scenarios	such	as	checking	security	attributes	and
performing	policy	assertions.	The	Validation	Application	Block	includes	a	WCF
integration	library	that	adds	a	custom	behavior,	and	a	parameter	inspector.	This
extension	allows	the	application	block	to	validate	WCF	messages,	data
contracts,	and	parameters.

When	the	WCF	service	begins,	it	invokes	the	custom	behavior.	This	custom
behavior	then	adds	the	parameter	inspector.	WCF	calls	the	parameter	inspector
twice	for	each	message	it	processes.	The	first	time	is	before	it	sends	the	call	to
the	service	implementation.	The	second	time	is	after	the	service	generates	the
return	message.	This	section	explains	how	you	can	use	the	Validation
Application	Block	with	your	WCF	applications.	In	general,	you	must	do	the
following:

Include	the	Validation	Application	Block	in	your	service	contract.
Define	a	behavior	that	uses	the	application	block.
Define	an	endpoint	that	uses	the	behavior.
Modify	the	service	contract	so	that	the	client	can	receive	relevant	failure
information.
Add	validators	to	parameters	as	required.

Including	the	Validation	Application	Block

Defining	a	Behavior

Defining	an	Endpoint

Reporting	Validation	Faults

Validating	Parameters
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/ms735119.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Integrating with WCF'%0AEntLib50_bd65d946-ec7a-4e8d-844f-b9e3285bf224%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	the	Validation	Application	Block

The	Validation	Application	Block	is	designed	to	do	the	following:
Encapsulate	the	logic	used	to	perform	the	most	common	validation	tasks
into	minimal	application	code.
Relieve	developers	of	the	requirement	to	write	duplicate	code	and
custom	code	for	common	validation	tasks.
Allow	validation	rules	to	be	changed	after	the	application	has	been
deployed,	and	ensure	that	changes	happen	simultaneously	and
consistently.

Design	Highlights
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of the Validation Application Block'%0AEntLib50_063a2fba-d573-4928-aaab-8611e5c50b91%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	the	Validation	Application	Block

In	its	original	state,	the	Validation	Application	Block	works	well	for	typical
validation	scenarios,	such	as	validating	data	for	an	ASP.NET	application.
However,	there	may	be	times	when	you	have	to	customize	certain	behaviors	of
the	application	block	to	better	suit	your	application's	particular	requirements.
There	are	two	ways	to	do	this.	You	can	extend	the	Validation	Application	Block
using	the	built-in	extension	points.	You	can	also	modify	the	application	block	by
making	changes	to	its	source	code.	For	more	details,	see	the	following	topics:

Extending	the	Validation	Application	Block
Extending	and	Modifying	Enterprise	Library

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying the Validation Application Block'%0AEntLib50_a68e1e80-6a81-4d65-ac1f-d8b0d1ad602a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Validation	Application	Block

You	extend	the	Validation	Application	Block	through	designated	extension
points.	Typically,	these	are	custom	classes	written	by	you	that	implement	a
particular	interface	or	derive	from	an	abstract	class.	Because	these	custom
classes	exist	in	your	application	space,	you	do	not	have	to	modify	or	rebuild	the
Validation	Application	Block;	instead,	you	can	designate	your	extensions
through	configuration	settings.

You	can	extend	the	Validation	Application	Block	by	implementing	new
validators.	You	can	create	your	own	Validator	classes	and	your	own	attributes
if	the	ones	provided	with	the	Validation	Application	Block	do	not	fit	your
requirements.	These	classes	could	validate	data	types	in	new	ways	or	they	could
deal	with	more	complex	data	types,	such	as	a	Customer	data	type	that	includes
many	different	data	types.

The	following	table	lists	the	base	classes	that	you	can	use	to	extend	the	block.

Custom	Provider	or	Extension Base	Class

Validator Validator<T>	or	Validator

Validator	Attribute ValueValidatorAttribute

You	can	extend	the	Validator<T>	base	class	to	create	strongly	typed	validators.
You	can	use	the	Validator	base	class	to	create	loosely	typed	validators.

For	detailed	information	about	how	to	integrate	custom	providers	with	the
Enterprise	Library	configuration	system	and	configuration	tools	see	Creating
Custom	Providers	for	Enterprise	Library.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Validation Application Block'%0AEntLib50_491dae6e-3c21-4ec1-900b-74098bb9cffe%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

Two	of	an	administrator's	main	tasks	will	be	to	see	that	the	initial	deployment	of
the	Validation	Application	Block	is	planned	and	managed	and	that	subsequent
updates	are	deployed	with	minimal	impact	to	existing	applications	that	use	the
application	block.	For	details	of	deploying	and	updating	Enterprise	Library	and
the	application	blocks,	see	Deploying	Enterprise	Library.

In	addition,	administrators	must	decide	whether	they	want	to	use	the
instrumentation	exposed	by	the	application	block.	For	details	of	how	to	enable
and	disable	instrumentation,	see	Enabling	Instrumentation.	For	information
about	the	instrumentation	contained	within	the	Validation	Application	Block,
see	the	following	topics:

Validation	Application	Block	Performance	Counters
Validation	Application	Block	Event	Log	Entries

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_13938ec0-548a-4e42-850d-01e1672cbec2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Validation	Application	Block	Performance	Counters

The	following	table	lists	the	Validation	Application	Block	performance	counters
and	their	types.

Performance	Counter Counter	Type

%	Validation	Successes RawFraction

Number	of	Validation	Calls NumberOfItems32

Number	of	Validation	Failures NumberOfItems32

Number	of	Validation	Successes NumberOfItems32

Validation	Calls/sec RateOfCountsPerSecond32

Validation	Failures/sec RateOfCountsPerSecond32

Validation	Successes	Base RawBase

Validation	Successes/sec RateOfCountsPerSecond32

These	performance	counters	are	in	the	Enterprise	Library	Validation
Counters	category.	Each	performance	counter	has	two	instances:

AppDomain	-	Total,	where	Total	is	all	of	the	types	that	are	validated
within	the	application	domain.
AppDomain	-	TypeName,	where	TypeName	is	the	name	of	the	type
being	validated.

For	more	information	about	performance	counters,	see	Overview	of
Performance	Monitoring	in	the	.NET	Framework	Class	Library	on	TechNet.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://technet.microsoft.com/en-us/library/cc958260.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Validation Application Block Performance Counters'%0AEntLib50_87060073-b797-43c5-a367-28e736622d0d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Validation	Application	Block	Event	Log	Entries

The	Validation	Application	Block	is	instrumented	to	log	entries	to	the
application	event	log	if	a	validation	fails.	The	failure	is	attributed	to	Enterprise
Library	Validation	and	it	is	described	as	an	Error.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Validation Application Block Event Log Entries'%0AEntLib50_b8b67b0c-059f-4d0b-8fbb-29903023f5ce%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Unity	Dependency	Injection	and	Interception

Welcome	to	Unity.	The	following	sections	of	this	guidance	describe	the	ways
that	you	can	use	Unity	dependency	injection	and	Unity	interception	in	your
applications.	The	sections	are:

What	Is	Unity?
What	Does	Unity	Do?
When	Should	I	Use	Unity?
About	This	Release	of	Unity
Configuring	Unity

Using	Unity	in	Applications
Design	of	Unity
Extending	and	Modifying	Unity
Deployment	and	Operations
Unity	QuickStarts.	This	topic	walks	through	the	QuickStart	applications
that	demonstrate	how	to	execute	common	operations	in	your
applications.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Unity Dependency Injection and Interception'%0AEntLib50_16137689-c8fb-46b0-87f5-7f975241832f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Is	Unity?

Unity	is	a	lightweight,	extensible	dependency	injection	container	that	supports
interception,	constructor	injection,	property	injection,	and	method	call	injection.
You	can	use	Unity	in	a	variety	of	different	ways	to	help	decouple	the
components	of	your	applications,	to	maximize	coherence	in	components,	and	to
simplify	design,	implementation,	testing,	and	administration	of	these
applications.

Unity	is	a	general-purpose	container	for	use	in	any	type	of	Microsoft®	.NET
Framework-based	application.	It	provides	all	of	the	features	commonly	found	in
dependency	injection	mechanisms,	including	methods	to	register	type	mappings
and	object	instances,	resolve	objects,	manage	object	lifetimes,	and	inject
dependent	objects	into	the	parameters	of	constructors	and	methods	and	as	the
value	of	properties	of	objects	it	resolves.

In	addition,	Unity	is	extensible.	You	can	write	container	extensions	that	change
the	behavior	of	the	container,	or	add	new	capabilities.	For	example,	the
interception	feature	provided	by	Unity,	which	you	can	use	to	add	policies	to
objects,	is	implemented	as	a	container	extension.

The	following	sections	of	this	guidance	describe	what	Unity	can	do,	when	you
should	choose	Unity,	and	the	ways	that	you	can	use	it	in	your	applications:

What	Does	Unity	Do?	This	topic	provides	a	brief	overview	that	will	help
you	to	understand	what	Unity	can	do,	and	explains	some	of	the	concepts
and	features	it	incorporates.	It	also	provides	a	simple	example	of	the	way
that	you	can	write	code	to	use	Unity.
When	Should	I	Use	Unity?	This	topic	will	help	you	to	decide	if	Unity	is
suitable	for	your	requirements.	It	explains	the	benefits	of	using	Unity,
and	any	alternative	techniques	you	may	consider.	It	also	provides	details
of	any	limitations	of	Unity	that	may	affect	your	decision	to	use	it.
About	This	Release	of	Unity.	This	topic	contains	information	about	the
changes	in	this	release,	the	target	audience	and	system	requirements,
migration	and	side-by-side	execution,	and	links	to	other	Microsoft
patterns	&	practices	resources.
Configuring	Unity.	This	topic	describes	how	you	can	populate	a	Unity
container	with	the	type	registrations,	mappings,	extensions,	and	other

information	required	by	your	application.
Using	Unity	in	Applications.	This	topic	explains	how	to	use	Unity	in
your	own	applications.	It	explains	how	to	add	Unity	to	your	application,
how	to	resolve	objects,	and	how	to	take	advantage	of	the	many	other
capabilities	of	Unity.
Design	of	Unity.	This	topic	explains	the	decisions	that	went	into
designing	Unity	and	the	rationale	behind	those	decisions.
Extending	and	Modifying	Unity.	This	topic	explains	how	to	extend
Unity	and	how	to	modify	the	source	code.
Deployment	and	Operations.	This	topic	explains	how	to	deploy	and
update	the	Unity	assemblies	and	use	the	instrumentation	exposed	by
Unity.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Is Unity?'%0AEntLib50_4a39f9d3-4d76-4f71-8eb0-d171a9619c4e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

What	Does	Unity	Do?

By	using	dependency	injection	frameworks	and	inversion	of	control
mechanisms,	you	can	generate	and	assemble	instances	of	custom	classes	and
objects	that	can	contain	dependent	object	instances	and	settings.	The	following
sections	explain	the	ways	that	you	can	use	Unity,	and	the	features	it	provides:

The	Types	of	Objects	Unity	Can	Create
Registering	Existing	Types	and	Object	Instances
Managing	the	Lifetime	of	Objects
Specifying	Values	for	Injection
Populating	and	Injecting	Arrays,	Including	Generic	Arrays
Intercepting	Calls	to	Objects

The	Types	of	Objects	Unity	Can	Create

Registering	Existing	Types	and	Object	Instances

Managing	the	Lifetime	of	Objects

Configuring	Types	for	Injection	into	Constructors,	Methods,
and	Properties

Populating	and	Injecting	Arrays,	Including	Generic	Arrays

Intercepting	Calls	to	Objects

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'What Does Unity Do?'%0AEntLib50_7dcce5cc-4513-4205-a020-4d1522257d91%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

When	Should	I	Use	Unity?

Dependency	injection	provides	opportunities	to	simplify	code,	abstract
dependencies	between	objects,	and	automatically	generate	dependent	object
instances.	In	general,	you	should	use	Unity	when:

You	wish	to	build	your	application	according	to	sound	object	oriented
principles	(following	the	five	principles	of	class	design,	or	SOLID),	but
doing	so	would	result	in	large	amounts	of	difficult-to-maintain	code	to
connect	objects	together.
Your	objects	and	classes	may	have	dependencies	on	other	objects	or
classes.
Your	dependencies	are	complex	or	require	abstraction.
You	want	to	take	advantage	of	constructor,	method,	or	property	call
injection	features.
You	want	to	manage	the	lifetime	of	object	instances.
You	want	to	be	able	to	configure	and	change	dependencies	at	run	time.
You	want	to	intercept	calls	to	methods	or	properties	to	generate	a	policy
chain	or	pipeline	containing	handlers	that	implement	crosscutting	tasks.
You	want	to	be	able	to	cache	or	persist	the	dependencies	across	post
backs	in	a	Web	application.

The	following	sections	provide	more	information	to	help	you	decide	whether
Unity	is	suitable	for	your	requirements:

Scenarios	for	Unity
Benefits	of	Unity
Limitations	of	Unity

Note:
Enterprise	Library,	also	from	the	Microsoft	patterns	&	practices	group,	uses
Unity	as	its	primary	mechanism	for	generating	instances	of	Enterprise
Library	objects.	For	information	about	this	and	other	features	of	Enterprise
Library,	see	the	Enterprise	Library	Community	site	on	CodePlex,	or	the
Microsoft	Enterprise	Library	pages	on	MSDN®.

http://www.codeplex.com/entlibcontrib/
http://msdn.microsoft.com/entlib/

Scenarios	for	Unity

Benefits	of	Unity

Limitations	of	Unity
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'When Should I Use Unity?'%0AEntLib50_d6246175-9719-4e2c-a636-1ad4dfc37e98%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

About	This	Release	of	Unity

This	section	contains	the	following	topics	that	will	help	you	to	understand	this
release	of	Unity	and	help	you	understand	how	to	use	it	alongside	earlier
versions	or	migrate	your	applications	to	this	version.	This	section	includes	the
following	topics:

Changes	in	This	Release
Target	Audience	and	System	Requirements
Migration	and	Side-by-Side	Execution
Related	patterns	&	practices	Links
Copyright	and	Terms	of	Use

How	to	Use	This	Guidance

http://www.codeplex.com/unity/

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/unity/
http://msdn.microsoft.com/en-us/magazine/cc337885.aspx
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://msdn.microsoft.com/en-us/magazine/cc301356.aspx
http://msdn2.microsoft.com/en-us/library/aa288717.aspx
http://msdn.microsoft.com/en-us/magazine/cc164085.aspx
http://msdn2.microsoft.com/en-us/library/aa905331.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'About This Release of Unity'%0AEntLib50_1443c48a-8487-4e61-883b-05bc40b0db87%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Changes	in	This	Release

Unity	2.0	–	April	2010	is	a	new	release	of	the	Microsoft	patterns	&	practices
Unity	dependency	injection	and	interception	system.	This	release	also	includes
additions	in	functionality,	and	has	been	adapted	to	work	with	Microsoft	Visual
Studio®	2010;	and	with	the	Microsoft	.NET	Framework	versions	3.5	SP1	and
4.0.

Go	to	CodePlex	for	information	on	Known	Issues.

The	following	sections	discuss	the	changes	to	Unity:

Breaking	Changes	to	Unity

Changes	in	Unity

http://go.microsoft.com/fwlink/?LinkId=188428

Breaking	Changes	to	Unity

Changes	in	Unity
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Changes in This Release'%0AEntLib50_d3c06077-2924-4fa0-bde8-3276f28c5859%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Target	Audience	and	System	Requirements

This	guidance	is	intended	for	software	architects	and	software	developers.	To
get	the	greatest	benefit	from	this	guidance,	you	should	have	an	understanding	of
the	following	technologies:

Microsoft	Visual	C#®	or	Microsoft	Visual	Basic	.NET
Microsoft	.NET	Framework

System	Requirements	and	Prerequisites

System	Requirements	for	Unity	for	Silverlight
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Target Audience and System Requirements'%0AEntLib50_c678b828-6309-41e9-bc24-04c290d448bb%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Migration	and	Side-by-Side	Execution

In	general,	applications	that	use	previous	versions	of	Unity	will	function	with
this	release	without	the	need	for	any	code	changes.	It	will	be	necessary,
however,	to	update	the	references	to	refer	to	the	new	assemblies	and	to	update
the	configuration	files	to	reference	the	correct	version	of	the	assemblies.

This	version	of	Unity	can	also	be	installed	side	by	side	with	earlier	versions.
You	can	deploy	new	applications	written	for	this	version	of	Unity	along	with
applications	written	for	earlier	versions.	In	addition,	you	can	also	choose	to
migrate	existing	applications	to	the	new	version.

If	you	decide	to	use	side-by-side	execution,	you	must	deploy	the	different	Unity
versions	in	different	directories.	In	any	specific	directory,	you	cannot	mix	and
match	assemblies	from	different	versions.

The	shipped	project	files	use	data	in	the	AssemblyInfo.cs	file	to	build
assemblies	that	have	different	version	information.	This	allows	you	to	use
strong	names	and	to	add	different	versions	to	the	global	assembly	cache	(GAC)
for	side-by-side	execution.

Partial	Migration
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/entlib/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Migration and Side-by-Side Execution'%0AEntLib50_e6057c7c-8fb1-4474-8a4a-3216a08f6980%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Reusing	Configuration	Files	Based	on	a	Previous	Schema

Although	this	documentation	is	based	on	the	Unity	2.0	configuration	schema
and	all	examples	use	Unity	2.0,	partial	backward	compatibility	is	provided	for
the	Unity	1.2	configuration	schema.	However,	you	cannot	simply	use	a	Unity
1.2	configuration	file.	In	order	to	use	the	contents	of	a	Unity	1.2	configuration
file	you	must:

1.	 Create	a	new	configuration	file.
2.	 Edit	the	<configSections>	to	point	to	the	correct	assembly.
3.	 Add	a	<sectionExtension>	section	if	you	are	using	container

extensions	for	Unity.
4.	 Cut	and	paste	the	portions	of	the	Unity	1.2	configuration	file	you	wish

to	reuse.
Note:

Check	the	results	as	you	still	may	get	errors	depending	upon	the
specific	portions	you	cut	and	paste.

For	information	on	using	the	Unity	1.2	configuration	schema	see	Unity
Configuration	Schematic	on	MSDN®.

http://msdn.microsoft.com/en-us/library/dd203139.aspx

Migrating	Custom	Extensions
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Reusing Configuration Files Based on a Previous Schema'%0AEntLib50_31182987-ac03-4ebd-94bd-8c00e87c2948%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Related	patterns	&	practices	Links

For	information	related	to	Unity	and	other	tools,	and	guidance	for	designing	and
building	applications,	see	the	patterns	&	practices	website	and	guides:

Microsoft	patterns	&	practices	Developer	Center
Microsoft	Application	Architecture	Guide,	2nd	Edition
Solution	Development	Fundamentals
Security	Guidance	for	Applications	Index
.NET	Data	Access	Architecture	Guide
Improving	.NET	Application	Performance	and	Scalability
Monitoring	in	.NET	Distributed	Application	Design
Deploying	.NET	Framework-based	Applications

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://go.microsoft.com/fwlink/?LinkId=86354
http://msdn.microsoft.com/en-us/library/dd673617.aspx
http://msdn.microsoft.com/en-us/library/dd327566.aspx
http://msdn.microsoft.com/en-us/library/ms998408.aspx
http://msdn.microsoft.com/en-us/library/ee817654(v=MSDN.10).aspx
http://go.microsoft.com/fwlink/?LinkId=86538
http://msdn.microsoft.com/en-us/library/ee817668(v=MSDN.10).aspx
http://msdn.microsoft.com/en-us/library/ee817655(v=MSDN.10).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Related patterns & practices Links'%0AEntLib50_8c366d7f-d13d-4b0a-9714-ebef804d19ea%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Copyright	and	Terms	of	Use

This	document	is	provided	"as-is".	Information	and	views	expressed	in	this
document,	including	URL	and	other	Internet	website	references,	may	change
without	notice.	You	bear	the	risk	of	using	it.

Some	examples	depicted	herein	are	provided	for	illustration	only	and	are
fictitious.	No	real	association	or	connection	is	intended	or	should	be	inferred.

This	document	does	not	provide	you	with	any	legal	rights	to	any	intellectual
property	in	any	Microsoft	product.	You	may	copy	and	use	this	document	for
your	internal,	reference	purposes.

©	2010	Microsoft.	All	rights	reserved.

Microsoft,	Windows,	Windows	Server,	Windows	Vista,	Visual	C#,	Visual	Basic,
and	Visual	Studio	are	trademarks	of	the	Microsoft	group	of	companies.	All
other	trademarks	are	property	of	their	respective	owners.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Copyright and Terms of Use'%0AEntLib50_7aaacbb6-adda-470d-bbe1-242c84a52f8c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	Unity

One	of	the	key	tasks	you	need	to	perform	when	using	Unity	is	to	configure	the
container	with	the	required	aliases,	type	registrations,	mappings,	and	other
information	that	it	requires	in	order	to	resolve	objects	at	run	time	and	inject	the
appropriate	objects	and	values	into	dependent	objects.	This	section	covers	all	of
the	configuration	options	for	Unity,	and	describes	how	you	can	configure	the
container	using	a	configuration	file,	or	at	run	time	using	code.

Unity	can	read	configuration	information	from	an	XML	configuration	file.	By
default,	this	is	the	App.config	or	Web.config	file	for	your	application.	However,
you	can	load	configuration	information	from	any	other	XML	format	file	or	from
other	sources	if	required.

In	addition,	Unity	exposes	a	series	of	methods	that	you	use	in	your	application
code	to	configure	the	container.	This	approach	is	useful	when	the	registrations
and	mappings	depend	on	the	environment	or	run-time	information,	and	you	can
change	the	configuration	at	run	time	using	these	methods.	Run-time
configuration	is	also	a	good	choice	if	you	want	to	be	able	to	manipulate
container	hierarchies	at	run	time	to	change	the	overall	behavior	of	type
resolution,	injection,	and	interception.

You	can,	of	course,	use	a	combination	of	design-time	(configuration	files)	and
run-time	configuration	to	achieve	exactly	the	configuration	you	require	at	any
point	during	application	execution.

To	help	you	understand	how	to	configure	Unity,	this	section	divides	the
information	into	two	separate	subsections—one	for	design-time	configuration
and	one	for	run-time	configuration.	Each	section	contains	basically	the	same	set
of	topics	that	describe	specific	configuration	scenarios.

Note:
The	configuration	files	are	not	encrypted	by	default.	A	configuration	file	may
contain	sensitive	information	about	connection	strings,	user	IDs,	passwords,
database	servers,	and	catalogs.	You	should	protect	this	information	against
unauthorized	read/write	operations	by	using	encryption	techniques.	
If	you	wish	to	restrict	access	to	the	configuration	file,	it	must	be	encrypted	or

protected	using	Access	Control	Lists.	It	is	recommended	that	the
configuration	store	is	in	the	same	trust	boundary	and	that	decrypting	the
configuration	is	done	in	the	same	trust	boundary	after	the	configuration	is
read.

The	complete	set	of	topics	in	this	section	is	as	follows:
Design-Time	Configuration

Using	the	Configuration	Tool
Using	Design-Time	Configuration
Specifying	Types	in	the	Configuration	File
Specifying	Values	for	Injection
Extending	the	Unity	Configuration	Schema
Configuration	Files	for	Interception
Default	Aliases	and	Assemblies

Run-Time	Configuration
Using	Run	Time	Configuration
Registering	Types	and	Type	Mappings
Creating	Instance	Registrations
Registering	Injected	Parameter	and	Property	Values
Registering	Generic	Parameters	and	Types
Registering	Container	Extensions
Registering	Interception

For	information	about	using	container	hierarchies,	see	Using	Container
Hierarchies.	For	information	about	using	Unity,	see	Using	Unity	in
Applications.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/aa374872(VS.85).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring Unity'%0AEntLib50_62fd666c-08c5-424a-b484-9e0b87994997%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design-Time	Configuration

This	topic	describes	the	techniques	you	can	use	to	configure	Unity	containers
using	a	configuration	file	or	a	configuration	you	load	into	the	container	at	run
time.

Note:
This	documentation	is	based	on	the	Unity	2.0	configuration	schema	and	all
examples	use	Unity	2.0.	Partial	backward	compatibility	is	provided	for	the
Unity	1.2	configuration	schema.

The	following	topics	describe	Unity	configuration:
Using	the	Configuration	Tool.	Not	available	for	Unity	configuration.
Using	the	Unity	XSD	to	Enable	Visual	Studio	IntelliSense.	This	topic
explains	how	to	use	the	Unity	XSD	to	enable	IntelliSense®	in	Visual
Studio	to	assist	in	manually	editing	the	Unity	configuration.
Reusing	Configuration	Files	Based	on	a	Previous	Schema.	This	topic
explains	how	to	create	a	current	configuration	file	by	reusing	a
configuration	file	based	on	a	previous	Unity	schema.
Using	Design-Time	Configuration.	This	topic	explains	the	overall
structure	of	the	Unity	configuration	file,	how	you	load	configuration
information	at	run	time,	and	how	you	can	use	alternative	configuration
sources	with	Unity.
Specifying	Types	in	the	Configuration	File.	This	topic	explains	how	to
configure	mappings	in	the	container	between	types.	In	general,	you	will
create	mappings	between	an	interface	and	a	type	that	implements	the
interface,	or	between	a	base	class	and	a	type	that	inherits	that	base	class.
You	can	also	use	this	section	to	specify	concrete	types	for	which	you
want	Unity	to	manage	the	lifetime.
The	Unity	Configuration	Schema.	This	topic	describes	the	configuration
schema	elements	for	Unity.
Specifying	Values	for	Injection.	This	topic	explains	how	to	configure
registrations	for	instance	types	such	as	string,	date	and	time,	or	integer

values	that	you	can	resolve	in	your	application.
Extending	the	Unity	Configuration	Schema.	This	topic	explains	how	to
configure	Unity	to	load	and	use	container	extensions	that	add	additional
functionality	to	the	container,	and	how	you	can	specify	configuration
information	for	these	extensions.
Configuration	Files	for	Interception.	This	topic	explains	how	to
configure	interceptors,	behaviors,	policies,	handlers,	and	matching	rules
that	Unity	will	use	when	creating	instances	of	types	to	which	you	want	to
add	interception	capabilities	in	order	to	change	the	behavior	of	that
object	or	type.

For	information	about	how	to	configure	Unity	using	code	that	executes	at	run
time	and	calls	the	registration	methods	of	the	Unity	container,	see	Run-Time
Configuration.	For	information	about	resolving	types	at	run	time,	see	Resolving
Objects.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design-Time Configuration'%0AEntLib50_d084d31d-6894-4cd3-ab6b-40f7a69899b2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Configuration	Tool

Not	available	for	Unity	configuration.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Configuration Tool'%0AEntLib50_c1996f16-1bd5-4f6b-b400-6d206cee9a1f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	the	Unity	XSD	to	Enable	Visual	Studio	IntelliSense

You	can	enable	IntelliSense	in	Visual	Studio	to	assist	the	manual	editing	of
Unity	configuration	files.

Note:
The	XSD	is	not	required.	Configuration	will	work	at	run	time	without	it.	It	is
only	required	for	IntelliSense	in	Visual	Studio.

In	order	for	the	XSD	to	be	used	by	the	Visual	Studio	editor	the	<unity>	element
must	have	an	XMLNS	attribute	with	the	correct	namespace.	The	following	are
the	two	ways	to	get	the	correct	namespace	instead	of	manually	entering	it:

You	can	force	the	editor	to	use	the	schema	by	clicking	Schemas	on	the
XML	menu	and	selecting	the	entry	for	the	unity	configuration	schema.
After	that,	the	<unity>	element	will	appear	as	an	alternative	in	the
IntelliSense	dropdown	and	by	choosing	it	from	IntelliSense	the	xmlns
attribute	will	be	populated.	This	is	a	per-user	and	per-project	setting,	so
every	user	working	on	the	project	would	be	required	to	select	this	setting.
You	can	enter	<unity	xmlns="	and	then	IntelliSense	will	show	a	list	of
namespaces	which	are	targeted	by	a	known	schema.	You	can	then	choose
the	right	namespace,
http://schemas.microsoft.com/practices/2010/unity,	which	will	show
up	in	the	IntelliSense	list	when	you	click	on	the	xmlns	attribute	and
complete	the	entry.	Visual	Studio	will	then	associate	the	URL	with	the
actual	physical	file.	This	is	the	recommended	option,	since	the	setting
persists	when	you	pass	the	configuration	file	to	another	user.

Collection	elements,	such	as	aliases,	containers,	extensions,	namespaces,	and
assemblies	are	not	supported	by	the	xsd,	but	they	do	work	in	the	configuration
file.

There	are	some	pre-defined	type	names	for	some	type	attributes,	such	as	for
lifetime	managers,	but	these	are	just	suggestions	and	any	type	name	is	accepted.

The	schema	for	the	register	element	imposes	a	specific	order	for	its	children,	an

order	that	is	not	required	by	the	configuration	runtime	but	makes	the	schema
more	robust.	The	order	of	children	is	as	follows:	one	optional	lifetime,	one
optional	constructor,	and	then	as	many	of	method,	property,	interceptor,
interceptionBehavior,	addInterface	and	any	custom	element	as	desired,	in	any
order.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using the Unity XSD to Enable Visual Studio IntelliSense'%0AEntLib50_6291a046-272b-47e5-97a1-836dca7da77e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Design-Time	Configuration

Using	Unity	typically	requires	the	configuration	of	a	Dependency	Injection	(DI)
container.	You	can	configure	a	container	by	using	the	Unity	API,	a	.NET
configuration	file,	or	to	a	limited	degree	by	using	attributes.	This	topic	describes
how	to	use	an	XML	configuration	file	to	supply	the	required	configuration
information..

Dependency	injection	is	a	very	flexible	pattern,	and	to	be	used	successfully
requires	the	developer	to	provide	information	to	the	container	about	his
applications.	The	two	most	common	configuration	tasks	are	setting	up	type
mappings	and	configuring	injection	of	a	type.	Type	mappings	enable	you	to
request	a	type	from	the	container	that	results	in	the	container	returning	an
instance	of	a	different	type	(typically	a	derived	class	or	interface
implementation).	Configuring	injection	for	a	type	entails	specifying	information
such	as	which	constructor	gets	called,	which	properties	get	injected,	and	what
their	values	are.	The	Unity	configuration	schema	encompasses	these	types	of
configuration	and	is	also	extensible	to	allow	for	additional	kinds	of
configuration	such	as	Unity	interception	configuration,	see	The	Unity
Configuration	Schema.	The	following	sections	provide	more	details:

Format	of	the	Unity	Configuration	File
Loading	Configuration	File	Information	into	a	Container
Loading	the	Configuration	from	Alternative	Files

Format	of	the	Unity	Configuration	File

Loading	Configuration	File	Information	into	a	Container

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/system.configuration.configurationmanager.openmappedexeconfiguration.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Design-Time Configuration'%0AEntLib50_032275ef-ab31-4d95-84b2-6c39a79f80a2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Specifying	Types	in	the	Configuration	File

This	topic	explains	how	to	use	types	in	Unity	configuration	files.	At	the	core	of
Unity's	functionality	are	types	and	how	you	specify	and	handle	them.	You	will
need	to	specify	types	many	times	in	the	typical	configuration	file.	The
configuration	files	have	their	own	set	of	rules	for	writing	type	names—rules	that
differ	from	those	for	types	written	in	C#	or	Visual	Basic.	These	rules	apply
everywhere	you	can	specify	a	type	in	the	Unity	configuration	section.

This	topic	contains	the	following	section	that	describe	how	you	can	specify
types:

CLR	Type	Names
Type	Aliases
Automatic	Type	Lookup
Default	Aliases	and	Assemblies
Generic	Types

Copy	Code

Copy	Code

CLR	Type	Names
You	can	specify	a	type	name	by	using	the	CLR	standard	type	name	syntax,	as
shown	in	the	following	example:

<namespace>.<typename>,	<assembly>

You	can	use	either	partial	assembly	names	or	fully	qualified	assembly	names
which	include	the	culture,	version,	and	public	key	token.	These	names	are
straightforward	for	simple	types.

In	order	to	specify	a	name	for	a	type	that	is	in	the	global	assembly	cache,	you
must	use	the	fully	qualified	assembly	name	for	the	type	to	be	correctly	loaded.
For	example,	for	System.String,	a	type	in	mscorlib,	you	cannot	use
System.String,	mscorlib.	You	must	use	the	fully	qualified	assembly	name,
System.String,	mscorlib,	Version=2.0.0.0,	Culture=neutral,
PublicKeyToken=b77a5c561934e089.

CLR	type	names	can	be	very	verbose,	especially	when	working	with	generic
types.	For	example,	compare	the	following	simple	dictionary	in	C#	or	Visual
Basic	with	the	CLR	example:
C#

Dictionary<string,	int>

Visual	Basic

Dictionary(Of	String,	Integer)

CLR

System.Collections.Generic.Dictionary`2[[System.String,	mscorlib,	2.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089],	[System.Int32,	mscorlib,	Version=2.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089]],	mscorlib,	Version=2.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089

In	order	to	expedite	the	process	and	make	type	names	less	error	prone,	Unity
configuration	provides	two	options	you	can	use	in	the	configuration	file:	aliases
and	automatic	type	lookup.

Type	Aliases
An	alias	is	simply	a	shorthand	name	that	will	be	replaced	with	the	full	type
name	when	configuration	is	applied	to	the	container.	You	specify	an	alias	in	the
configuration	file	inside	the	section,	but	outside	any	<container>	elements,	as
shown	in	the	following	example:
XML

<unity	xmlns="http://schemas.microsoft.com/practices/2010/unity">

				<alias	alias="MyAlias"	type="full	type	name"	/>

				...

</unity>

There	are	the	following	rules	for	using	aliases:
You	can	have	an	arbitrary	number	of	<alias>	elements	in	the
configuration	file.
Anywhere	you	can	give	a	type	name	you	can	use	an	alias	instead.
There	are	no	recursive	aliases,	which	means	that	you	cannot	use	an	alias
to	define	the	type	for	an	alias.
Alias	names	are	case	sensitive:	<alias	alias="int"	/>	and	<alias
alias="Int"	/>	are	two	different	aliases	and	are	not	interchangeable.

Note:
Aliases	only	exist	at	configuration	time.	They	are	not	available	at	run	time.

Automatic	Type	Lookup
In	many	cases,	like	for	ILogger	in	the	Format	of	the	Unity	Configuration	File
example,	the	name	of	a	type	is	all	that	is	required.	But	given	Unity's	dependence
on	types	and	the	large	number	of	types	typically	involved	in	a	configuration,	the
ability	to	perform	automatic	type	lookups	further	expedites	the	process.	By
incorporating	automatic	type	lookups,	Unity	also	eliminates	the	need	to	define
an	alias	for	every	type	in	an	assembly,	which	saves	effort	and	serves	to	reduce
the	chance	for	error	from	repeatedly	typing	the	namespace	and	assembly	name.

The	Unity	configuration	system	can	search	for	types.	However,	it	will	only	look
for	types	if	the	type	name	specified	is	not	a	full	type	name	and	it	is	not	an	alias.
You	can	provide	the	configuration	section	with	the	namespaces	and	assemblies
to	look	through	by	using	the	<namespace>	and	<assembly>	elements,	as
shown	in	the	following	example.
XML

<unity	xmlns="http://schemas.microsoft.com/practices/2010/unity">

				<namespace	name="MyApp.Interfaces"	/>

				<namespace	name="System"	/>

				<assembly	name="MyApp”	/>

				<assembly	name="mscorlib,	2.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089"	/>	

				...

</unity>

With	the	configuration	shown	in	the	previous	example,	when	the	configuration
system	hits	a	name	it	does	not	recognize	as	a	type	name	or	alias,	it	will	then
search	through	the	assemblies	and	namespaces	for	a	match.	So,	to	find	ILogger,
it	will	try	to	match	the	following	names	in	order:

1.	 MyApp.Interfaces.ILogger,	MyApp
2.	 System.ILogger,	MyApp
3.	 MyApp.Interfaces.ILogger,	mscorlib,	2.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089
4.	 System.ILogger,	mscorlib,	2.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

The	search	will	stop	at	the	first	matching	type.

The	system	uses	simple	string	concatenation	to	create	the	type	name	it	attempts
to	load.	However,	you	cannot	specify	a	namespace	qualified	name	plus	the	type,
MyApp.Interfaces.ILogger,	MyApp,	if	you	have	any	namespace	elements	in
your	configuration	section,	<namespace	name="System"	/>.The	namespace
from	the	configuration	section	will	be	appended	to	the	namespace,	resulting	in	a
search	on	the	wrong	name,	System.MyApp.Interfaces.ILogger.	You	should
put	namespaces	in	the	<namespace>	elements	instead	of	on	the	type	names	in
the	configuration	file	to	avoid	this	possibility.

If	you	have	a	large	number	of	assemblies	and	namespaces,	then	the	system	type
search	could	take	a	significant	amount	of	time	to	complete.	Normally,
containers	are	only	configured	at	application	startup,	so	this	time	hit	will	not	be
significant	during	the	operation	of	your	application.	If	you	find	it	becomes	a
significant	issue,	then	you	should	consider	using	an	explicit	alias	for	the	types
that	take	the	greatest	search	times,	since	aliases	are	matched	first.

When	matching	a	name	with	a	type,	the	configuration	system	performs	the
following	steps	in	order.	The	first	one	to	succeed	stops	the	process:

1.	 Attempt	to	load	a	type	using	the	name	directly	(treated	as	a	full	type
name)

2.	 Attempt	to	match	a	name	to	an	alias
3.	 Do	automatic	type	search

Default	Aliases	and	Assemblies
Some	types	and	assemblies	are	used	frequently	in	Unity	configuration	files.	The
Unity	configuration	system	provides	a	set	of	predefined	default	aliases	so	you
do	not	have	to	explicitly	add	aliases	for	these	common	types.	Any	user-defined
entries	will	overwrite	the	default	ones.

Note:
Aliases	are	case	sensitive.

In	addition	to	the	default	aliases,	the	Unity	configuration	system	also
automatically	adds	System	and	mscorlib	assemblies	to	the	list	of	assemblies	that
are	searched	for	types.

The	following	table	has	the	complete	list	of	pre-defined	type	aliases	provided	by
Unity:

Default	Alias Type

sbyte System.SByte

short System.Int16

int System.Int32

integer System.Int32

long System.Int64

byte System.Byte

ushort System.UInt16

uint System.UInt32

ulong System.UInt64

float System.Single

single System.Single

double System.Double

decimal System.Decimal

char System.Char

bool System.Boolean

object System.Object

string System.String

datetime System.DateTime

DateTime System.DateTime

date System.DateTime

singleton Microsoft.Practices.Unity.ContainerControlledLifetimeManager

ContainerControlledLifetimeManager Microsoft.Practices.Unity.ContainerControlledLifetimeManager

transient Microsoft.Practices.Unity.TransientLifetimeManager

TransientLifetimeManager Microsoft.Practices.Unity.TransientLifetimeManager

perthread Microsoft.Practices.Unity.PerThreadLifetimeManager

PerThreadLifetimeManager Microsoft.Practices.Unity.PerThreadLifetimeManager

external Microsoft.Practices.Unity.ExternallyControlledLifetimeManager

ExternallyControlledLifetimeManager Microsoft.Practices.Unity.ExternallyControlledLifetimeManager

hierarchical Microsoft.Practices.Unity.HierarchicalLifetimeManager

HierarchicalLifetimeManager Microsoft.Practices.Unity.HierarchicalLifetimeManager

resolve Microsoft.Practices.Unity.PerResolveLifetimeManager

perresolve Microsoft.Practices.Unity.PerResolveLifetimeManager

PerResolveLifetimeManager Microsoft.Practices.Unity.PerResolveLifetimeManager

Copy	Code

Generic	Types
The	CLR	type	name	syntax	for	generic	types	is	extremely	verbose,	and	it	also
does	not	allow	for	things	like	aliases.	The	Unity	configuration	system	allows	for
a	shorthand	syntax	for	generic	types	that	also	allows	for	aliases	and	type
searching.

To	specify	a	closed	generic	type,	you	provide	the	type	name	followed	by	the
type	parameters	in	a	comma-separated	list	in	square	brackets.

The	Unity	shorthand	would	look	like	the	following	example.
XML

<container>

				<register	type="IDictionary[string,int]"	</register>

</container>

If	you	wish	to	use	an	assembly	name-qualified	type	as	a	type	parameter,	rather
than	an	alias	or	an	automatically	found	type,	you	must	place	that	entire	name	in
square	brackets,	as	shown	in	the	following	example:
XML

<register	type="IDictionary[string,	[MyApp.Interfaces.ILogger,	MyApp]]"/>

To	specify	an	open	generic	type	you	simply	leave	out	the	type	parameters.	You
have	two	options:

Use	the	CLR	notation	of	`N	where	N	is	the	number	of	generic
parameters.
Use	the	square	brackets,	with	commas,	to	indicate	the	number	of	generic
parameters.

Generic	Type Configuration	file
XML	using	CLR
notation

Configuration	file
XML	using	comma
notation

IList<T> IList`1 IList[]

IDictionary<K,V> IDictionary`2 IDictionary[,]

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Specifying Types in the Configuration File'%0AEntLib50_e796f090-a8b9-4cd3-b5dd-aead46cc3333%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Unity	Configuration	Schema

Unity	2.0	uses	a	new	streamlined	configuration	schema	for	configuring	Unity.

The	following	sections	describe	the	schema	configuration	elements,	their	child
elements,	and	their	attributes	in	more	detail:

The	<unity>	Configuration	Section
The	<container>	Element
The	<register>	Element
The	<lifetime>	Element
The	<constructor>	Element
The	<property>	Element
The	<method>	Element
The	<param>	Element
The	<dependency>	Element
The	<value>	Element
The	<optional>	Element
The	<array>	Element
The	<extension>	Element
The	<instance>	Element
The	<namespace	>	Element
The	<alias>	Element
The	<sectionExtension>	Element

The	<unity>	Configuration	Section

http://schemas.microsoft.com/practices/2010/unity

The	<register>	Element

The	<lifetime>	Element

The	<constructor>	Element

The	<property>	Element

The	<method>	Element

The	<param>	Element

The	<dependency>	Element

The	<value>	Element

The	<optional>	Element

The	<array>	Element

The	<extension>	Element

The	<instance>	Element

The	<namespace>	Element

The	<assembly>	Element

The	<alias>	Element

The	<sectionExtension>	Element
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Unity Configuration Schema'%0AEntLib50_d3f74a92-c473-4a9e-83ca-dfcff759912f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Specifying	Values	for	Injection

This	topic	explains	how	to	configure	the	information	required	so	that	Unity	will
automatically	populate	constructor	and	method	parameters	and	property	values
when	it	resolves	instances	of	types.	The	<param>	and	<property>	elements
both	let	you	specify	a	value	to	be	supplied	for	the	parameter	or	property,
respectively.	There	are	many	different	kinds	of	values	that	can	be	specified,
each	with	a	separate	element.	In	addition,	the	Unity	configuration	schema
supports	a	shorthand	notation	for	the	most	common	cases.

For	more	information	about	the	format	of	the	Unity	configuration	file,	see	Using
Design-Time	Configuration.

This	topic	contains	the	following	sections	describing	values	for	injection:

Resolving	Values	from	the	Container

Giving	Values	in	Configuration

Configuring	Array	Values

Resolving	Values	from	the	Container

Giving	Values	in	Configuration

Configuring	Array	Values
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Specifying Values for Injection'%0AEntLib50_2995dc15-f75b-43ed-8eb4-79950cfc6d78%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	the	Unity	Configuration	Schema

The	Unity	container	is	highly	customizable.	No	one	fixed	configuration	format
can	cover	everything	that	you	might	want	to	do	with	the	container.	As	a	result,
the	Unity	configuration	system	itself	is	extensible,	allowing	you	to	add	new
valid	elements	to	your	configuration	file.	The	<sectionExtension>	element
allows	you	to	load	the	code	that	adds	these	new	options	to	the	configuration	file.
This	lets	you	specify	an	implementation	of	the	SectionExtension	type.

Section	extensions	can	do	the	following	to	the	configuration:
Add	new	predefined	aliases
Add	new	container-level	elements
Add	new	registration-level	elements
Add	new	value-level	elements

You	can	create	your	own	custom	extensions,	or	use	extensions	created	by	third
parties,	with	Unity.	Unity	also	uses	default	extensions	to	implement	its	own
functionality.	For	information	about	using	extensions,	see	Creating	and	Using
Container	Extensions.

One	example	of	a	section	extension	is	the
InterceptionConfigurationExtension	section	extension,	which	ships	with	the
Unity	package.	This	section	extension	adds	the	following	elements	and	aliases
to	the	schema:

Aliases	are	defined	for	each	of	the	types	(like
VirtualMethodInterceptor,	TransparentProxyInterceptor,	and
various	matching	rules)	that	are	used	by	the	interception	configuration.
The	<interception>	element	is	added	as	a	valid	element	child	element
for	the	<container>	element.
The	<interceptor>,	<interceptionBehavior>,	<addInterface>,	and
<policyInjection>	elements	are	added	as	valid	child	elements	for	the
<register>	element.

This	extension	mechanism	allows	for	almost	unlimited	extensibility	of	the
configuration	file	on	an	opt-in	basis.	Though	the	schema	extension	will	modify
the	schema	allowed	at	run	time,	it	does	not	modify	the	XSD	file	used	by	Visual
Studio	IntelliSense.	As	a	result,	you	will	still	get	warnings	in	the	Visual	Studio

XML	editor	even	though	the	file	will	work	fine	at	run	time.	In	order	to	resolve
this	problem,	the	section	extension	author	must	provide	an	updated	XSD
document	for	use	with	their	extension.
Note:

The	InterceptionConfigurationExtension	is	supported	by	the	schema
shipped	with	Unity.

The	<sectionExtension>	element	also	accepts	a	user-provided	prefix	attribute.
This	is	useful	in	the	case	where	two	section	extensions	both	provide	extension
elements	with	the	same	name.	In	the	case	of	a	collision,	you	can	specify	a	prefix
for	one	or	both	section	extensions,	and	then	use	that	prefix	to	disambiguate
them.

Consider	two	schema	extensions,	both	of	which	add	a
<containerCustomization>	element.	Using	the	prefix	attribute,	a	configuration
file	that	uses	both	would	look	like	the	following	example.
XML

<unity>

				<sectionExtension	prefix="ext1"	type="MyFirstExtension,	MyStuff"	/>

				<sectionExtension	prefix="ext2"	type="MySecondExtension,	MyOtherStuff"	/>

				<container>

								<ext1.containerCustomization	/>

								<ext2.containerCustomization	/>

				</container>

</unity>

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending the Unity Configuration Schema'%0AEntLib50_467eca90-d4fc-4159-8387-a718194ca5dd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuration	Files	for	Interception

Unity	2.0	treats	interception	like	any	extension	you	add	to	Unity.	As	with	any
extension	in	Unity	2.0,	the	Unity	interception	mechanism	can	be	configured
through	either	the	API	or	through	a	Unity	configuration	section.

Note:
Unity	provides	partial	backward	compatibility	for	implementing	interception
through	a	container.	Earlier	versions	used	a	container	extension	named
InterceptionExtension,	which	resides	in	the	assembly	named
Microsoft.Practices.Unity.Interception.dll.	To	configure	interception,	you
specify	this	extension	in	the	<extensions>	element	of	your	application
configuration,	and	then	define	the	behavior	of	interception	in	the
<extensionConfig>	section.	
Using	the	extension	and	register	elements	in	Unity	2.0	is	comparable	to
Interceptor	element	use	in	the	extensionConfig	section	in	earlier	versions.
For	more	information	on	backward	compatibility,	see	Reusing	Configuration
Files	Based	on	a	Previous	Schema.
For	more	information	about	Unity	1.2	interception,	see	Using	Interception
with	Unity	on	MSDN.

This	topic	contains	the	following	sections	to	describe	the	interception
configuration	file:

Using	the	Configuration	File	to	Enable	Interception
Standard	Interception	Aliases
Enabling	Interception	of	a	Type
Configuring	Policy	Injection	Policies
Legacy	Interception	Configuration
Interception	Configuration	Schema	Elements
Registering	Interception	at	Run	Time

http://msdn.microsoft.com/en-us/library/dd203214.aspx

Using	the	Configuration	File	to	Enable	Interception

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn.microsoft.com/en-us/library/dd203214.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuration Files for Interception'%0AEntLib50_af2f3726-4a3e-4e31-8f97-ebca0db3d907%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Interception	Configuration	Schema	Elements

When	configuring	files	for	interception,	the	following	elements	may	appear	as
children	of	a	<register>	element.	For	more	information	see	The	register
Element.	These	elements	are	used	to	describe	the	<interceptors>	and
<policies>	elements,	their	child	elements,	and	their	attributes	in	more	detail:

The	<interceptor>	Element
The	<interceptionBehavior>	Element
The	<addInterface>	Element
The	<interception>	Element
The	<policy>	Element
The	<matchingRule>	Element
The	<callHandler>	Element
The	<interceptors>	Element
The	interceptors	<interceptor>	Element
The	<default>	Element
The	<key>	Element

For	more	information	about	interception,	and	selecting	the	objects	and	their
members	to	add	a	handler	pipeline,	see	Using	Interception	and	Policy	Injection.

The	<interceptor>	Element

The	<interceptionBehavior>	Element

The	<addInterface>	Element

The	<interception>	Element

The	<policy>	Element

The	<matchingRule>	Element

The	<callHandler>	Element

The	<interceptors>	Element

The	interceptors	<interceptor>	Element

The	<default>	Element

The	<key>	Element
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Interception Configuration Schema Elements'%0AEntLib50_8e2227ed-85a0-47a9-8161-9f363668fb16%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Run-Time	Configuration

This	topic	explores	the	techniques	you	can	use	to	configure	Unity	containers
using	code	that	executes	at	run	time	and	calls	the	registration	methods	of	the
Unity	container.	It	contains	the	following	topics:

Using	Run-Time	Configuration.	This	topic	describes	the	fluent	interface
that	Unity	exposes,	and	other	issues	you	should	be	aware	of	when
configuring	the	container	at	run	time	using	code.
Registering	Types	and	Type	Mappings.	This	topic	explains	how	to
register	mappings	in	the	container	between	types.	In	general,	you	will
create	mappings	between	an	interface	and	a	type	that	implements	the
interface,	or	between	a	base	class	and	a	type	that	inherits	that	base	class.
Creating	Instance	Registrations.	This	topic	explains	how	to	register
existing	objects	in	the	container	that	you	can	resolve	in	your	application.
This	technique	is	useful	if	you	want	Unity	to	manage	the	lifetime	of	the
objects	you	register.
Registering	Injected	Parameter	and	Property	Values.	This	topic	explains
how	to	register	the	information	required	so	that	Unity	will	automatically
populate	constructor	and	method	parameters	and	property	values	when	it
resolves	instances	of	types.
Registering	Generic	Parameters	and	Types.	This	topic	explains	how	you
can	register	the	information	required	for	injection	for	generic	types,
including	generic	arrays.
Registering	Container	Extensions.	This	topic	explains	how	to	register
information	that	instructs	Unity	to	load	and	use	container	extensions	that
add	additional	functionality	to	the	container,	and	how	you	can	register
configuration	information	for	these	extensions.
Registering	Interception.	This	topic	explains	how	to	register	behaviors,
policies,	handlers,	and	matching	rules	that	Unity	will	use	when	creating
instances	of	types	to	which	you	want	to	add	interception	capabilities	to
change	the	behavior	of	that	object	or	type.

For	information	about	how	to	configure	Unity	at	design	time,	including	the
techniques	for	loading	configuration	from	a	file	or	other	source,	see	Design-
Time	Configuration.	For	information	about	resolving	types	at	run	time,	see

Resolving	Objects.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Run-Time Configuration'%0AEntLib50_38639e6f-345a-4049-8015-f670458dccad%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Run	Time	Configuration

This	topic	discusses	some	of	the	factors	you	should	keep	in	mind	when	using
run-time	configuration,	and	explains	some	features	of	the	Unity	run-time
configuration	mechanism.	For	details	on	how	to	specify	configuration	using	a
configuration	file,	see	Design-Time	Configuration.

Using	the	UnityContainer	Fluent	Interface
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Run Time Configuration'%0AEntLib50_82d55160-31da-43ad-8d60-1445fd1e87cd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Types	and	Type	Mappings

This	topic	explains	how	to	register	types	in	the	container.	Registering	a	type	lets
you	configure	how	the	container	creates	instances	of	the	specified	type.	In
general,	you	will	create	mappings	between	an	interface	and	a	type	that
implements	the	interface,	or	between	a	base	class	and	a	type	that	inherits	that
base	class.	However,	you	can	register	types	in	the	container	without	creating	a
mapping.

The	RegisterType	method	registers	a	type	with	the	container.	At	the	appropriate
time,	the	container	will	build	an	instance	of	the	type	you	specify.	This	could	be
in	response	to	dependency	injection	through	class	attributes	or	when	you	call
the	Resolve	method.	The	lifetime	of	the	object	it	builds	will	correspond	to	the
lifetime	you	specify	in	the	parameters	of	the	method.	If	you	do	not	specify	a
value	for	the	lifetime,	the	type	is	registered	for	a	transient	lifetime,	which	means
that	a	new	instance	will	be	created	on	each	call	to	Resolve.

This	topic	contains	the	following	sections	that	explain	use	of	the	RegisterType
method:

Registering	an	Interface	or	Class	Mapping	to	a	Concrete	Type
Registering	a	Named	Type
Registering	Type	Mappings	with	the	Container
Using	a	Lifetime	Manager	with	the	RegisterType	Method
Summary	of	the	RegisterType	Method	Overloads
More	Information

Registering	an	Interface	or	Class	Mapping	to	a	Concrete	Type

Registering	a	Named	Type

Registering	Type	Mappings	with	the	Container

Using	a	Lifetime	Manager	with	the	RegisterType	Method

Summary	of	the	RegisterType	Method	Overloads

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Types and Type Mappings'%0AEntLib50_468496dd-dd87-484c-94d6-bee08bdd1929%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Instance	Registrations

This	topic	explains	how	to	register	existing	objects	in	the	container	that	you	can
resolve	in	your	application.	This	technique	is	useful	if	you	already	have	an
instance	of	an	object	that	you	have	previously	created	and	want	Unity	to
manage	its	lifetime,	or	if	you	want	Unity	to	inject	that	object	into	other	objects
that	it	is	resolving.

The	RegisterInstance	method	registers	an	existing	instance	with	the	container.
You	specify	the	instance	type	and	optional	lifetime	in	the	parameter	list.	The
container	will	return	the	specified	existing	instance	for	the	duration	of	the
specified	lifetime.	The	RegisterInstance	method	overloads	are	very	similar	to
the	RegisterType	method	overloads,	but	they	accept	an	additional	parameter,
the	object	instance	to	register.	The	use	of	the	registration	type	and	an	optional
name	are	identical	for	the	two	methods.

When	resolving	types	with	dependencies,	instances	of	objects	added	to	the
container	with	the	RegisterInstance	method	act	just	like	those	registered
through	RegisterType.	The	RegisterType	method	with	a
ContainerControlledLifetimeManager	automatically	generates	this	single
instance	the	first	time	your	code	calls	it,	while	the	RegisterInstance	method
accepts	an	existing	instance	for	which	it	will	return	references.	If	you	do	not
specify	a	lifetime	manager,	the	container	will	use	a
ContainerControlledLifetimeManager	and	it	will	return	a	reference	to	the
original	object	on	each	call	to	Resolve.

This	topic	contains	the	following	sections,	which	explain	the	use	of	the
RegisterInstance	method:

Registering	an	Existing	Object	Instance	of	an	Interface	or	Type	to	a
Container
Using	a	Lifetime	Manager	with	the	RegisterInstance	Method
Summary	of	the	RegisterInstances	Method	Overloads
More	Information	on	Using	the	RegisterInstance	Method

Registering	an	Existing	Object	Instance	of	an	Interface	or	Type
to	a	Container

Using	a	Lifetime	Manager	with	the	RegisterInstance	Method

Summary	of	the	RegisterInstance	Overloads

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Instance Registrations'%0AEntLib50_e8b7c7ca-f197-45c2-aeec-33d9953b11e3%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Injected	Parameter	and	Property	Values

This	topic	explains	how	to	configure	a	container	to	perform	dependency
injection	at	run	time	by	using	the	RegisterType	method	overloads	with	the
InjectionMembers	parameter	and	avoid	relying	on	annotating	the	classes	to
resolve	with	attributes.	This	topic	includes	information	on	configuring	Unity	to
automatically	populate	constructor	and	method	parameters	and	property	values
when	it	resolves	instances	of	types.

This	topic	contains	the	following	sections	to	explain	the	use	of	the
InjectionMembers	methods:

Registering	Injection	for	Parameters	Properties	and	Methods	Using
InjectionMembers
Injecting	Arrays	at	Run	Time
Summary	of	the	InjectionMember	Methods	and	Overloads
For	More	Information	on	InjectionMembers

Copy	Code

Copy	Code

Registering	Injection	for	Parameters,	Properties,	and	Methods
using	InjectionMembers
The	RegisterType	overloads	allow	for	configuring	injection	by	accepting
InjectionMembers.	Include	the	InjectionConstructor,	InjectionProperty,	and
InjectionMethod	classes	as	a	RegisterType	parameter	to	provide	dependency
injection	configuration	in	a	container	for	InjectionMember	objects.

The	following	example	shows	the	general	syntax	for	using	an
InjectionMember	subclass,	InjectionConstructor,	with	the	RegisterType
method.	In	this	example	the	default	constructor	is	called.
C#

IUnityContainer	container	=	new	UnityContainer()

				.RegisterType<AType>(new	InjectionConstructor());

AType	aType	=	container.Resolve<AType>();

Visual	Basic

Dim	container	As	IUnityContainer	=	New	UnityContainer()_

				.RegisterType(Of	AType)(New	InjectionConstructor())

Dim	aType	As	AType	=	container.Resolve(Of	AType)()

You	can	also	use	attributes	applied	to	target	class	members	to	instruct	Unity	to
inject	dependent	objects.	For	more	information,	see	Using	Injection	Attributes.

You	can	use	the	RegisterType	overloads	to	do	the	following:
Register	Constructors	and	Parameters
Specify	a	Property	for	Injection
Specify	a	Method	for	Injection

Register	Constructors	and	Parameters

Specify	a	Property	for	Injection

Specify	a	Method	for	Injection

Injecting	Specific	Array	Instances

Injecting	All	Array	Named	Instances

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Injected Parameter and Property Values'%0AEntLib50_b3a80395-9fff-44ef-8123-666a2ea79131%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Generic	Parameters	and	Types

This	topic	explains	how	you	can	register	the	information	required	for	injection
for	generic	types,	including	generic	arrays.	You	can	specify	a	generic	type	when
you	register	a	type	in	the	Unity	container	in	almost	exactly	the	same	way	as	you
register	non-generic	types.	Unity	provides	two	classes	specifically	for
registering	generics,	GenericParameter	for	specifying	that	an	instance	of	a
generic	type	parameter	should	be	resolved,	and
GenericResolvedArrayParameter	for	specifying	that	an	array	containing	the
registered	instances	of	a	generic	type	parameter	should	be	resolved.

See	the	"Specifying	Types	in	the	Configuration	File"	section	in	the	Specifying
Types	in	the	Configuration	File	topic	for	more	details	on	generics,	including	a
discussion	of	unbounded,	closed,	and	open	generic	types.

This	topic	contains	the	following	sections	that	explain	registering	generics:
Registering	Generic	Interfaces	and	Classes
Registering	Type	Mappings	For	Generics
Registering	Generic	Arrays
Support	for	Generic	Decorator	Chains
Methods	for	Registering	Generic	Parameters	and	Types
More	Information

Registering	Generic	Interfaces	and	Classes

Registering	Type	Mappings	for	Generics

Registering	Generic	Arrays

Methods	for	Registering	Generic	Parameters	and	Types

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Generic Parameters and Types'%0AEntLib50_0394f9ca-6683-4020-a13e-a156ff2046d8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Container	Extensions

This	topic	explains	how	to	register	information	that	instructs	Unity	to	load	and
use	container	extensions	that	add	additional	functionality	to	the	container,	and
how	you	can	register	configuration	information	for	these	extensions.

This	topic	contains	the	following	sections	that	explain	container	extensions:
Adding	and	Removing	Extensions
Accessing	Configuration	Information	for	Extensions
Methods	for	Registering	and	Configuring	Container	Extensions
More	Information

Adding	and	Removing	Extensions

Accessing	Configuration	Information	for	Extensions

Methods	for	Registering	and	Configuring	Container	Extensions

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Container Extensions'%0AEntLib50_9bf7c7a4-74ad-47a5-92ac-c7e497663b2a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Interception

This	topic	explains	run-time	registration	of	the	various	interception	elements,
including	interceptors,	behaviors,	policies,	handlers,	and	matching	rules	that
Unity	uses	to	configure	a	container	for	interception.	The	configuration
information	is	used	when	creating	instances	of	types	for	which	you	want	to	add
interception	capabilities	to	change	the	behavior	of	that	object	or	type.	In	order	to
provide	backward	compatibility,	Unity	2.0	supports	calling	the	older	API
SetInterceptorFor	and	SetDefaultInterceptorFor	methods	on	the
Interception	container	extension	in	addition	to	supporting	the	Unity	2.0
approach	using	the	RegisterType	API	to	explicitly	configure	interceptors,
behaviors,	and	additional	interfaces.

Registering	Interceptors	and	Interceptor	Behaviors	Explicitly	Using
RegisterType
Default	Interceptor	for	a	Type
Registering	Additional	Interface
Registering	Policy	Injection	Components

For	information	on	using	a	configuration	file	to	configure	a	container	for
interception,	see	Configuration	Files	for	Interception.

For	information	on	the	design	of	Unity	interception	see	Interception	with	Unity.

For	information	on	using	interception	without	a	dependency	injection	(DI)
container,	see	the	"Stand	Alone	Unity	Interception"	section	in	Using
Interception	in	Applications.

Copy	Code

Copy	Code

Registering	Interceptors	and	Interceptor	Behaviors	Explicitly
Using	RegisterType
Unity	2.0	enables	interception	like	any	other	container	extension	by	using
container.AddNewExtension.	Then	you	can	configure	a	type	for	interception
using	an	interceptor	of	your	choosing,	with	behaviors	of	your	choosing.	In
Unity	2.0	you	explicitly	configure	which	object	is	to	be	intercepted	by	which
interception	mechanism	and	specify	the	behavior	by	using
InterceptionBehavior;	Unity	1.2	implicitly	set	up	policy	injection	when	you
configured	an	interceptor.	The	following	example	shows	how	to	configure
interception	for	a	type	and	turn	on	a	custom	behavior.	This	example	first	adds
the	Interception	extension	by	calling	AddNewExtension,	and	then	uses
RegisterType	to	register	a	VirtualMethodInterceptor	and	an	interception
behavior.	The	behavior	must	be	defined	elsewhere.
C#

IUnityContainer	container	=	new	UnityContainer();

container.AddNewExtension<Interception>();

container.RegisterType<TypeToIntercept>(

										new	Interceptor<VirtualMethodInterceptor>(),

										new	InterceptionBehavior<CustomBehavior>());

Visual	Basic

Dim	container	As	IUnityContainer	=	New	UnityContainer()

container.AddNewExtension(Of	Interception)()

container.RegisterType(Of	TypeToIntercept)(_

										New	Interceptor(Of	VirtualMethodInterceptor)(),	_

										New	InterceptionBehavior(Of	CustomBehavior)())

Using	this	overload	of	the	Interceptor	constructor	actually	tells	the	container	to
resolve	the	interceptor	through	the	container.	You	can	pass	an	optional	string,
which	becomes	the	name	to	resolve	with.	In	most	applications	you	would
simply	leave	this	blank,	but	if	you	have	implemented	custom	interceptors,	you
might	want	to	provide	additional	configuration.	There	is	another	overload	of	the
Interceptor	constructor	you	can	use	to	specify	the	interceptors	and	behaviors

Copy	Code

Copy	Code

by	creating	instances	and	passing	the	actual	instances	into	the	container,	as	done
in	the	following	example:
C#

//	Add	the	interception	extension	to	the	container

IUnityContainer	container	=	new	UnityContainer();

container.AddNewExtension<Interception>();

//	Configure	interception

container.RegisterType<IInterface,	BaseClass>(

				"myInterceptor",

				new	Interceptor(new	InterfaceInterceptor()),

				new	InterceptionBehavior(new	CustomBehavior()),

				new	InterceptionBehavior(new	SomeOtherBehavior()));

Visual	Basic

'	Add	the	interception	extension	to	the	container

Dim	container	As	IUnityContainer	=	New	UnityContainer()

container.AddNewExtension(Of	Interception)()

'	Configure	interception

container.RegisterType(Of	IInterface,	BaseClass)	_

								("myInterceptor",	_

								New	Interceptor(New	InterfaceInterceptor()),	_

								New	InterceptionBehavior(New	CustomBehavior()),	_

								New	InterceptionBehavior(New	SomeOtherBehavior()))

Default	Interceptor	for	a	Type

http://msdn.microsoft.com/en-us/library/dd139966.aspx

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Interception'%0AEntLib50_53570dcb-4520-4e42-b64d-84c9222841c0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Registering	Policy	Injection	Components

This	topic	explains	how	to	register	the	various	elements,	including	interceptors,
behaviors,	policies,	call	handlers,	and	matching	rules	that	Unity	uses	to
configure	a	container	for	interception	and	for	a	policy	injection	behavior.

When	you	configure	policy	injection	you	must	specify	which	objects	will	be
intercepted	with	the	policy	injection	behavior	and	which	policies	in	the
container	are	to	be	used.	Then	when	building	the	object,	the	policy	injection
behavior	is	set	up	using	the	policies	already	defined	in	the	container.

This	topic	contains	the	following	sections:
Policy	Injection	Run-Time	Configuration
Defining	Policies	by	Using	the	API

Policy	Injection	Run-Time	Configuration
There	are	two	steps	to	configuring	a	type	for	policy	injection.	First,	you	must
register	the	type	in	the	container.	In	that	registration,	you	must	configure	an
interceptor	and	enable	the	PolicyInjectionBehavior.	Second,	you	must
configure	the	policy	injection	policies	that	determine	which	call	handlers
execute	on	which	methods.
C#

int	intercepted	=	0;

var	container	=	new	UnityContainer();

container

				.AddNewExtension<Interception>()

				.RegisterType<ActionCallHandler>()

				//	Register	the	type	to	be	intercepted

				.RegisterType<InterceptedType>(

												new	Interceptor<TransparentProxyInterceptor>(),

												new	InterceptionBehavior<PolicyInjectionBehavior>())

				//	Configure	policies

				.Configure<Interception>()

								.AddPolicy("policy")

												.AddCallHandler(new	ActionCallHandler(()	=>	intercepted++))

												.AddMatchingRule(new	MemberNameMatchingRule("MethodX"));

Visual	Basic

Dim	intercepted	As	Integer	=	0

Dim	container	=	New	UnityContainer()

container	_

				.AddNewExtension(Of	Interception)()	_

				.RegisterType(Of	ActionCallHandler)()	_

				'	Register	the	type	to	be	intercepted

				.RegisterType(Of	InterceptedType)(_

												New	Interceptor(Of	TransparentProxyInterceptor)(),	_

												New	InterceptionBehavior(Of	PolicyInjectionBehavior)())	_

				'	Configure	policies

				.Configure(Of	Interception)()	_

								.AddPolicy("policy")	_

												.AddCallHandler	(New	ActionCallHandler(Function()	_

													System.Math.Max(System.Threading.Interlocked.Increment	_

																	(intercepted),intercepted	-	1)))

Defining	Policies	by	Using	the	API
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Registering Policy Injection Components'%0AEntLib50_2090aa6d-38c7-4527-a211-aa4fa966e855%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Unity	in	Applications

This	topic	describes	how	to	develop	applications	using	Unity,	and	how	to	create
and	build	instances	of	objects.	It	assumes	that	you	understand	how	to	configure
the	Unity	container.	This	section	includes	the	following	topics:

Application	Design	Concepts	with	Unity.	This	topic	explains	how	Unity
can	help	you	to	implement	common	design	patterns	and	achieve
decoupling	and	coherence	in	your	designs.
Adding	Unity	to	Your	Application.	This	topic	describes	how	to	add
Unity	to	your	project,	and	how	to	reference	the	appropriate	assemblies	in
your	code.
Resolving	Objects.	This	topic	contains	a	series	of	sections	that	describe
how	you	can	resolve	objects	through	the	Unity	container	so	that	it	creates
the	appropriate	type	and	optionally	populates	any	dependencies	specified
for	these	types.
Understanding	Lifetime	Managers.	This	topic	describes	the	way	that
Unity	manages	the	lifetime	of	objects	it	creates,	and	how	you	can	use	the
lifetime	managers	included	with	Unity.
Using	Container	Hierarchies.	This	topic	explains	how	you	can	use	a
hierarchy	of	nested	Unity	containers	to	achieve	finely	grained	control
over	the	configuration	of	Unity	and	manage	this	configuration	at	run
time.

For	information	on	how	to	configure	Unity,	see	Configuring	Unity.

Unity	ships	as	both	source	code	and	signed	binary	assemblies.	You	can	use	the
signed	assemblies	directly.	If	you	intend	to	compile	the	source	code,	see	Target
Audience	and	System	Requirements.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Unity in Applications'%0AEntLib50_5b85cb17-d9cc-4eea-b07b-030c2b740ef6%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Application	Design	Concepts	with	Unity

Features	such	as	inversion	of	control,	dependency	injection,	interception,
factory,	and	lifetime	(some	of	which	are	described	in	the	"Scenarios	for	Unity"
section	of	the	topic	When	Should	I	Use	Unity?)	provide	several	major
advantages	when	building	applications	that	consist	of	many	individual	classes
and	components.	Designing	applications	that	conform	to	these	patterns	can
provide	the	following:

The	capability	to	substitute	one	component	for	another	using	a	pluggable
architecture.
The	capability	to	centralize	and	abstract	common	features	and	to	manage
crosscutting	concerns	such	as	logging,	authentication,	caching,	and
validation.
Increased	configuration	flexibility.
The	capability	to	locate	and	instantiate	services	and	components,
including	singleton	instances	of	these	services	and	components.
Simplified	testability	for	individual	components	and	sections	of	the
application.
Simplified	overall	design,	with	faster	and	less	error-prone	development.
Ease	of	reuse	for	common	components	within	other	applications.

Of	course,	implementing	these	patterns	can	initially	make	the	design	and
development	process	more	complex,	but	the	advantages	easily	justify	this	extra
complexity.	In	addition,	the	use	of	a	comprehensive	dependency	injection
mechanism	can	actually	make	the	task	of	designing	and	developing	applications
much	easier.

Fundamentally,	there	are	two	approaches	to	using	a	dependency	injection
mechanism:

You	can	arrange	to	have	dependent	objects	automatically	injected,	using
techniques	such	as	constructor	injection,	property	(setter)	injection,	and
method	call	injection	that	inject	dependent	objects	immediately	when
you	instantiate	the	parent	object.	This	approach	is	generally	most
appropriate	for	applications	that	require	a	pluggable	architecture	or
where	you	want	to	manage	crosscutting	concerns.
You	can	have	objects	injected	only	on	demand,	by	calling	the	Resolve

method	of	the	container	only	when	you	need	to	retrieve	a	reference	to	a
specific	object.
This	approach	is	known	as	service	locator.	It	is	more	intrusive	into	your
application,	but	can	be	simpler	if	your	architecture	does	not	lend	itself	to
having	a	central	container.

In	addition	to	dependency	injection,	developers	may	wish	to	implement	patterns
such	as	Interception,	Decorator,	Chain	Of	Responsibility,	and	Intercepting	Filter,
where	a	call	from	a	client	or	process	passes	through	a	graph	of	objects,	with
each	one	able	to	access	and	act	upon	details	of	the	call,	such	as	the	method	or
property	name,	the	parameter	types	and	values,	the	returned	type	and	value,	and
other	information.	Unity	achieves	this	through	interception	of	method	calls,
providing	opportunities	to	apply	policies	to	objects	using	a	technique	often
referred	to	as	policy	injection.

Unity	provides	a	comprehensive	dependency	injection	and	interception
mechanism,	and	is	easy	to	incorporate	into	your	applications.	However,	it	does
change	the	way	that	you	design	these	applications.	The	following	sections	of
this	topic	describe	areas	where	dependency	injection	is	useful:

Pluggable	Architectures
Managing	Crosscutting	Concerns
Service	and	Component	Location
Policy	Injection	through	Interception

Pluggable	Architectures

Managing	Crosscutting	Concerns

Service	and	Component	Location

Policy	Injection	through	Interception
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Application Design Concepts with Unity'%0AEntLib50_c7f3bc41-de51-44aa-a88f-9fe411ca0bed%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Adding	Unity	to	Your	Application

Unity	is	designed	to	support	a	range	of	common	scenarios	for	resolving
instances	of	objects	that,	themselves,	depend	on	other	objects	or	services.
However,	you	must	first	prepare	your	application	to	use	Unity.	The	following
procedure	describes	how	to	include	the	necessary	assemblies	and	elements	in
your	code.

To	prepare	your	application
1.	 Add	a	reference	to	the	Unity	assembly.	In	Visual	Studio,	right-click

your	project	node	in	Solution	Explorer,	and	then	click	Add	Reference.
Click	the	Browse	tab	and	find	the	location	of	the
Microsoft.Practices.Unity.dll	assembly.	Select	the	assembly,	and	then
click	OK	to	add	the	reference.

2.	 (Optional)	If	you	intend	to	use	the	configuration	types	when	you	create
extensions	for	Unity,	use	the	same	procedure	to	set	a	reference	to	the
Unity	configuration	assembly,	named
Microsoft.Practices.Unity.Configuration.dll.

3.	 (Optional)	If	you	intend	to	use	the	interception	and	policy	injection
features	of	Unity,	use	the	same	procedure	to	set	a	reference	to	the	Unity
interception	assembly,	named
Microsoft.Practices.Unity.Interception.dll.

4.	 (Optional)	If	you	intend	to	use	the	configuration	types	for	the
interception	and	policy	injection	features	of	Unity,	use	the	same
procedure	to	set	a	reference	to	the	Unity	interception	configuration
assembly,	named
Microsoft.Practices.Unity.Interception.Configuration.dll.

5.	 (Optional)	To	use	elements	from	Unity	without	fully	qualifying	the
element	reference,	add	the	following	using	statements	(C#)	or	Imports
statements	(Visual	Basic)	to	the	top	of	your	source	code	file	as	required.
C#

using	Microsoft.Practices.Unity;

using	Microsoft.Practices.Unity.Configuration;

using	Microsoft.Practices.Unity.InterceptionExtension;

Visual	Basic

Imports	Microsoft.Practices.Unity

Imports	Microsoft.Practices.Unity.Configuration

Imports	Microsoft.Practices.Unity.InterceptionExtension

6.	 (Optional)	If	you	are	using	the	IServiceLocator	interface,	add	a
reference	to	the	service	location	binary
Microsoft.Practices.ServiceLocation.dll.	Visual	Studio	may
automatically	copy	this	file	to	your	bin	directory	when	it	compiles,	but
you	do	not	need	to	include	it	unless	you	are	explicitly	using	the
UnityServiceLocatorAdapter	class.

7.	 Add	your	application	code.	For	more	information	about	how	you	can
use	Unity	in	your	own	applications,	see	What	Does	Unity	Do?

For	Visual	Basic	projects,	you	can	also	use	the	References	page	of	the	Project
Designer	to	manage	references	and	imported	namespaces.	To	access	the
References	page,	select	a	project	node	in	Solution	Explorer,	and	then	click
Properties	on	the	Project	menu.	When	the	Project	Designer	appears,	click	the
References	tab.

Note:
There	are	limitations	when	using	Unity	in	a	partial	trust	environment.	For
more	information,	see	Using	Unity	in	Partial	Trust	Environments.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Adding Unity to Your Application'%0AEntLib50_b9fbb764-15cf-4214-aa87-cfa773a1279e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	Objects

You	can	use	the	Unity	container	to	generate	instances	of	any	object	that	has	a
public	constructor	(in	other	words,	objects	that	you	can	create	using	the	new
operator),	without	registering	a	mapping	for	that	type	with	the	container.	When
you	call	the	Resolve	method	and	specify	the	default	instance	of	a	type	that	is	not
registered,	the	container	simply	generates	and	returns	an	instance	of	that	type.
However,	the	only	time	that	this	is	realistically	practical	is	when	the	object	you
are	generating	contains	dependency	attributes	that	the	container	will	use	to
inject	dependent	objects	into	the	requested	object.

The	Unity	container	identifies	type	registrations	and	type	mappings	in	the
container	using	a	type	and,	optionally,	a	name.	The	type	is	an	interface	or	a	class
(usually	an	interface	or	base	class)	that	the	desired	concrete	object	type
implements	or	inherits.	This	identifies	the	mapping	so	that	the	container	can
retrieve	the	correct	object	type	in	response	to	a	call	to	the	Resolve	or
ResolveAll	method.	Where	there	is	more	than	one	mapping	for	the	same	type,
the	optional	name	differentiates	these	mappings	and	allows	code	to	specify
which	of	the	mappings	for	that	type	to	use.

The	provision	of	both	generic	and	non-generic	overloads	of	many	of	the	Unity
container	methods	ensures	that	Unity	can	be	used	in	languages	that	do	not
support	generics.	You	can	use	either	approach	(the	generic	or	the	non-generic
overloads)	in	your	code	and	mix	them	as	required.	For	example,	you	can
register	mappings	using	the	generic	overloads	and	then	retrieve	object	instances
using	the	non-generic	overloads,	and	vice	versa.

Note:
When	you	attempt	to	resolve	an	abstract	base	class	or	interface	where	there	is
no	matching	type	mapping	in	the	container,	Unity	will	attempt	to	create	a
new	instance	of	the	class	you	specified.	As	it	cannot	construct	and	populate
an	instance	of	an	abstract	class	or	an	interface,	Unity	will	raise	an	exception.

When	you	attempt	to	resolve	a	non-mapped	concrete	class	that	does	not	have
a	matching	registration	in	the	container,	Unity	will	create	an	instance	of	that
class	and	populate	any	dependencies.

The	following	topics	describe	how	you	can	resolve	objects	using	the	Resolve	or
ResolveAll	methods:

Resolving	an	Object	by	Type.
Resolving	an	Object	by	Type	and	Registration	Name.
Resolving	All	Objects	of	a	Particular	Type.
Resolving	Objects	by	Using	Overrides
Retrieving	Container	Registration	Information

For	more	information	about	how	you	can	configure	Unity	with	type
registrations	and	mappings,	see	Configuring	Unity.

For	more	information	about	how	you	can	perform	dependency	injection	on
existing	object	instances,	see	Using	BuildUp	to	Wire	Up	Objects	Not	Created	by
the	Container.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving Objects'%0AEntLib50_d6f7381e-3f53-4f83-8e59-7094c4eb20d1%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	an	Object	by	Type

Unity	provides	a	method	named	Resolve	that	you	can	use	to	resolve	an	object
by	type,	and	optionally	by	providing	a	registration	name.	Registrations	that	do
not	specify	a	name	are	referred	to	as	default	registrations.	This	topic	describes
how	to	use	the	Resolve	method	to	resolve	types	and	mappings	registered	as
default	registrations.	For	information	about	resolving	named	registrations,	see
Resolving	an	Object	by	Type	and	Registration	Name.

The	Resolve	Method	Overloads	for	Default	Registrations

Using	the	Resolve	Method	with	Default	Registrations

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving an Object by Type'%0AEntLib50_ba44ce62-c3fc-4d90-b5b6-5fbc4606123d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	an	Object	by	Type	and	Registration	Name

Unity	provides	a	method	named	Resolve	that	you	can	use	to	resolve	an	object
by	type,	and	optionally	by	providing	a	registration	name.	Registrations	that
specify	a	name	are	referred	to	as	named	registrations.	This	topic	describes	how
to	use	the	Resolve	method	to	resolve	types	and	mappings	registered	as	named
registrations.	For	information	about	resolving	default	registrations,	see
Resolving	an	Object	by	Type.

The	Resolve	Method	Overloads	for	Named	Registrations

Using	the	Resolve	Method	with	Named	Registrations

Resolving	Generic	Types	by	Name

More	Information

Resolving	Generic	Types

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving an Object by Type and Registration Name'%0AEntLib50_3f2abbd5-5f86-4bbd-89df-b0edb33dc88c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	All	Objects	of	a	Particular	Type

When	you	want	to	obtain	a	list	of	all	the	registered	objects	of	a	specific	type,
you	can	use	the	ResolveAll	method.	The	two	overloads	of	this	method	accept
either	an	interface	or	a	type	name,	and	they	return	an	instance	of	IEnumerable
that	contains	references	to	all	registered	objects	of	that	type	that	are	not	default
mappings.	The	list	returned	by	the	ResolveAll	method	contains	only	named
instance	registrations.	The	ResolveAll	method	is	useful	if	you	have	registered
multiple	object	or	interface	types	using	the	same	type	but	different	names.	You
can	also	use	the	params	to	provide	constructor	overrides	for	the	ResolveAll
calls.

The	ResolveAll	Method	Overloads

Using	the	ResolveAll	Method

Resolving	All	Generic	Types	by	Name
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving All Objects of a Particular Type'%0AEntLib50_fee9ada9-400c-4e64-894a-f075e7dfe0c2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Resolving	Objects	by	Using	Overrides

The	parameter	and	dependency	overrides,	ParameterOverride	and
DependencyOverride,	are	ResolverOverride	implementations	that	provide
support	for	overriding	the	registration	information	for	resolving	instances	of
types.	When	you	call	the	Resolve	method,	these	classes	enable	you	to	override
values	specified	when	the	type	was	registered,	such	as	by	a	RegisterType	or
RegisterInstance	statement.	In	effect,	RegisterType	supplied	values	are
overridden	by	Resolve	supplied	values.

Use	ParameterOverride	to	override	the	specified	constructor	parameter	or
parameters.	The	override	applies	everywhere	the	parameter	appears	unless	you
use	OnType	to	constrain	the	override	to	a	specified	type.	Since	the	purpose	of
overrides	is	to	affect	the	resolution	of	dependencies	for	all	relevant	created
objects,	not	just	the	object	requested	in	the	call	to	Resolve,	unconstrained
overrides	can	produce	errors	if	there	are	unconstrained	ParameterOverride
parameters	that	match	parameters	with	the	same	name	but	different	types	on	the
selected	constructors	for	objects	created	in	a	given	resolve	operation.

Use	PropertyOverride	to	override	the	value	of	the	specified	property	or
properties.	The	override	applies	everywhere	the	property	appears	unless	you	use
OnType	to	constrain	the	override	to	a	specified	type.

Use	DependencyOverride	to	override	the	value	injected	whenever	there	is	a
dependency	of	the	given	type.	DependencyOverride	overrides	all	instances
where	the	type	matches.	Both	parameter	overrides	and	dependency	overrides
support	generic	types	and	multiple	overrides.

Note:
If	the	overridden	object	was	previously	created	and	is	a	Singleton,	the
override	is	ignored.	The	lifetime	manager	takes	precedence	and	Singletons
always	return	the	same	instance.
The	container	does	not	store	a	reference	for	the	overridden	object.

Overrides	work	with	the	constructor	that	is	selected	for	the	type,	by	attribute	or
configuration.	If	the	constructor	to	be	used	is	not	identified	with	an	attribute	or

explicit	container	configuration,	then	the	default	behavior	is	that	the	constructor
with	the	most	parameters	will	be	used.

A	parameter	and	property	override	never	affects	what	element	gets	selected.
They	only	control	the	value	of	the	specified	parameter	or	property.	You	do	not
change	which	constructor	is	called	with	an	override,	and	you	do	not	change
which	properties	get	set	with	an	override.

Note:
If	the	property	is	not	set	as	a	dependency	through	attribute,	container	API,	or
configuration	file,	then	the	override	does	nothing.

This	topic	contains	the	following	sections	to	explain	overrides	in	more	detail:
Using	Parameter	Overrides
Using	Property	Overrides
Using	Dependency	Overrides
More	Information

Using	Parameter	Overrides

Using	Property	Overrides

Using	Dependency	Overrides

More	information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Resolving Objects by Using Overrides'%0AEntLib50_bd0c4006-a871-4c62-b154-0a7e4de6775f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deferring	the	Resolution	of	Objects

Unity	provides	a	technique	to	facilitate	holding	a	reference	to	an	object	you
need,	but	do	not	want	to	construct	right	away.	You	wish	to	defer	resolution	of
the	object.	Instead	of	creating	a	factory	for	the	type	and	injecting	the	factory
into	your	class,	then	using	it	to	create	the	type	you	want	you	can	use	the	.NET
standard	type	Func<T>	(C#)	or	Func(Of	T)	(Visual	Basic)	with	the	Resolve
method.	This	returns	a	delegate	that,	when	invoked,	calls	into	the	container	and
returns	an	instance	of	the	specified	type	(in	this	case,	T).

You	can	even	create	a	delegate	in	this	way	without	creating	a	registration	or
mapping	for	the	specified	type	in	the	container	if	you	wish.	Because	the	resolve
action	only	takes	place	when	you	invoke	the	delegate,	subsequent	registrations
added	to	the	container	are	available	when	the	target	object	is	resolved.	This
means	that	you	can	manipulate	the	registrations	and	mappings	in	the	container
at	any	point	before	you	resolve	the	target	object	(although	you	can	obviously
register	the	type	before	you	create	the	delegate	if	you	prefer).

For	example,	you	can	create	a	delegate	for	a	component	named	MyClass,	and
then	register	a	mapping	for	it	and	perform	deferred	resolution	when	required
using	the	following	code.
C#

//	Create	a	Unity	container

IUnityContainer	myContainer	=	new	UnityContainer();

//	Create	a	delegate	for	the	IMyClass	interface	type

var	resolver	=	myContainer.Resolve<Func<IMyClass>>();

//	...	other	code	here...

//	Register	a	mapping	for	the	IMyClass	interface	to	the	MyClass	type

myContainer.RegisterType<IMyClass,	MyClass>();

//	Resolve	the	mapped	target	object

IMyClass	myClassInstance	=	resolver();

Visual	Basic

'	Create	a	Unity	container

Dim	myContainer	As	IUnityContainer	=	New	UnityContainer()

'	Create	a	delegate	for	the	IMyClass	interface	type

Dim	resolver	=	myContainer.Resolve(Of	Func(Of	IMyClass))()

'	...	other	code	here...

'	Register	a	mapping	for	the	IMyClass	interface	to	the	MyClass	type

myContainer.RegisterType(Of	IMyClass,	MyClass)()

'	Resolve	the	mapped	target	object

Dim	myClassInstance	As	IMyClass	=	resolver()

You	can	use	this	approach	when	you	resolve	the	type	using	the	Resolve	method,
or	you	can	specify	the	delegate	when	you	configure	constructor,	property	setter,
or	method	call	injection.	You	can	also	use	named	(non-default)	registrations	by
including	the	registration	name	in	the	call	to	the	Resolve	method	and	the
RegisterType	method,	just	as	you	would	when	using	these	methods	for	non-
deferred	resolution.

In	addition,	you	can	use	this	feature	to	perform	deferred	resolution	of	multiple
named	registrations,	as	an	alternative	to	using	the	ResolveAll	method.	For
example,	if	you	have	multiple	named	registrations	for	the	IMyClass	interface	to
suitable	concrete	types,	you	can	obtain	a	collection	of	the	resolved	types.	The
following	code	illustrates	this.
C#

//	Create	a	Unity	container

IUnityContainer	myContainer	=	new	UnityContainer();

//	Create	an	IEnumerable	resolver	for	the	IMyClass	interface	type

var	resolver	=	myContainer.Resolve<Func<IEnumerable<IMyClass>>>();

//	...	other	code	here...

//	Register	mappings	for	the	IMyClass	interface	to	appropriate	concrete	types

myContainer.RegisterType<IMyClass,	FirstClass>("First");

myContainer.RegisterType<IMyClass,	SecondClass>("Second");

myContainer.RegisterType<IMyClass,	ThidClass>("Third");

//	Resolve	a	collection	of	the	mapped	target	objects

IEnumerable<IMyClass>	myClassInstances	=	resolver();

Visual	Basic

'	Create	a	Unity	container

Dim	myContainer	As	IUnityContainer	=	New	UnityContainer()

'	Create	an	IEnumerable	resolver	for	the	IMyClass	interface	type

Dim	resolver	=	myContainer.Resolve(Of	Func(Of	IEnumerable(Of	IMyClass)))()

'	...	other	code	here...

'	Register	mappings	for	the	IMyClass	interface	to	appropriate	concrete	types

myContainer.RegisterType(Of	IMyClass,	FirstClass)("First")

myContainer.RegisterType(Of	IMyClass,	SecondClass)("Second")

myContainer.RegisterType(Of	IMyClass,	ThidClass)("Third")

'	Resolve	a	collection	of	the	mapped	target	objects

Dim	myClassInstances	As	IEnumerable(Of	IMyClass)	=	resolver()

You	can	also	use	the	deferred	resolver	to	resolve	instance	registrations.	For
example,	the	following	code	shows	how	you	can	resolve	an	IEnumerable
collection	of	string	values.
C#

//	Create	a	Unity	container

IUnityContainer	myContainer	=	new	UnityContainer();

//	Create	an	IEnumerable	resolver	for	string	instance	registrations

var	resolver	=	myContainer.Resolve<Func<IEnumerable<string>>>();

//	...	other	code	here...

//	Register	mappings	for	the	IMyClass	interface	to	appropriate	concrete	types

myContainer.RegisterInstance("one",	"FirstString");

myContainer.RegisterInstance("two",	"SecondString");

myContainer.RegisterInstance("three",	"ThirdString");

//	Resolve	a	collection	of	the	strings

IEnumerable<string>	myStringInstances	=	resolver();

Visual	Basic

'	Create	a	Unity	container

Dim	myContainer	As	IUnityContainer	=	New	UnityContainer()

'	Create	an	IEnumerable	resolver	for	string	instance	registrations

Dim	resolver	=	myContainer.Resolve(Of	Func(Of	IEnumerable(Of	String)))()

'	...	other	code	here...

'	Register	mappings	for	the	IMyClass	interface	to	appropriate	concrete	types

myContainer.RegisterInstance("one",	"FirstString")

myContainer.RegisterInstance("two",	"SecondString")

myContainer.RegisterInstance("three",	"ThirdString")

'	Resolve	a	collection	of	the	strings

Dim	myStringInstances	As	IEnumerable(Of	String)	=	resolver()

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deferring the Resolution of Objects'%0AEntLib50_6e58e973-df39-4653-9735-2b61221fb1ae%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Retrieving	Container	Registration	Information

You	can	retrieve	a	list	of	registrations	from	a	container,	and	check	if	a	specific
registration	is	in	the	container.

This	topic	contains	the	following	sections:
Viewing	the	Container	Registrations	and	Mappings
Checking	for	the	Existence	of	a	Specific	Registration

Viewing	the	Container	Registrations	and	Mappings

Checking	for	the	Existence	of	a	Specific	Registration
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Retrieving Container Registration Information'%0AEntLib50_509da7f8-bc1b-459b-ab80-9d537631f2f0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Container	Hierarchies

Unity	supports	nested	containers,	allowing	you	to	build	container	hierarchies.
Nesting	containers	enables	you	to	control	the	scope	and	lifetime	of	singleton
objects,	and	register	different	mappings	for	specific	types.	This	topic	contains
the	following	sections	that	describe	how	you	can	create	container	hierarchies
and	use	them	in	your	applications:

Constructing	and	Disposing	Unity	Containers
Controlling	Object	Scope	and	Lifetime
Registering	Different	Mappings	for	Specific	Types

Constructing	and	Disposing	Unity	Containers

Controlling	Object	Scope	and	Lifetime

Registering	Different	Mappings	for	Specific	Types
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Container Hierarchies'%0AEntLib50_73172960-d09d-4617-838d-f075cf358c0f%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Understanding	Lifetime	Managers

The	Unity	container	manages	the	creation	and	resolution	of	objects	based	on	a
lifetime	you	specify	when	you	register	the	type	of	an	existing	object,	and	uses
the	default	lifetime	if	you	do	not	specify	a	lifetime	manager	for	your	type
registration.

When	you	register	a	type	in	configuration,	or	by	using	the	RegisterType
method,	the	default	behavior	is	for	the	container	to	use	a	transient	lifetime
manager.	It	creates	a	new	instance	of	the	registered,	mapped,	or	requested	type
each	time	you	call	the	Resolve	or	ResolveAll	method	or	when	the	dependency
mechanism	injects	instances	into	other	classes.	The	container	does	not	store	a
reference	to	the	object.	However,	when	you	want	nontransient	behavior	(such	as
a	singleton)	for	objects	Unity	creates,	the	container	must	store	a	reference	to
these	objects.	It	must	also	take	over	management	of	the	lifetime	of	these	objects.

Unity	uses	specific	types	that	inherit	from	the	LifetimeManager	base	class
(collectively	referred	to	as	lifetime	managers)	to	control	how	it	stores	references
to	object	instances	and	how	the	container	disposes	of	these	instances.

When	you	register	an	existing	object	using	the	RegisterInstance	method,	the
default	behavior	is	for	the	container	to	take	over	management	of	the	lifetime	of
the	object	you	pass	to	this	method	using	the
ContainerControlledLifetimeManager.	This	means	that	at	the	end	of	the
container	lifetime,	the	existing	object	is	disposed.	You	can	also	use	this	lifetime
manager	when	defining	registrations	in	configuration,	or	when	using	the
RegisterType	method,	to	specify	that	Unity	should	manage	the	object	as	a
singleton	instance.

Using	a	non-default	lifetime	manager	with	RegisterInstance	will	result	in
different	behaviors,	depending	on	the	context	of	the	requests.

Resolve	requests	in	the	same	context	where	the	RegisterInstance	call
was	made,	such	as	the	same	thread	if	using	a	per-thread	manager,	or	the
same	parent	container	when	using	the	hierarchical	one,	will	return	the
registered	instances.
Resolve	requests	in	other	contexts,	such	as	a	different	thread	if	using	a
per-thread	manager,	or	a	child	container	when	using	the	hierarchical

lifetime	manager,	will	result	in	a	new	instance	being	created	by	the
container	and	it	will	be	made	the	singleton	for	that	context.	The	creation
of	an	instance	under	these	circumstances	could	fail	if	the	container
cannot	resolve	the	instance,	for	example	if	you	registered	an	instance	for
an	interface	with	no	mappings	to	a	matching	class.

For	information	about	using	lifetime	managers	with	the	RegisterType	and
RegisterInstance	methods,	see	Registering	Types	and	Type	Mappings	and
Creating	Instance	Registrations	in	the	Run-Time	Configuration	section	of	this
documentation.	For	information	about	specifying	the	lifetime	of	objects	at
design	time,	see	Specifying	Types	in	the	Configuration	File,	and	The	<instance>
Element	in	the	Design-Time	Configuration	section	of	this	documentation.

Unity	Built-In	Lifetime	Managers

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Understanding Lifetime Managers'%0AEntLib50_45c2dde9-86e0-48dd-af0f-26a7fa3a9cb9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Dependency	Injection	with	Unity

If	you	are	using	dependency	injection	(DI)	through	a	DI	container	approach	to
your	application	development,	you	can	use	any	available	DI	container	including
the	container	provided	by	Unity.	Using	the	Unity	dependency	injection
container	provides	opportunities	for	you	to	more	easily	decouple	components,
business	objects,	and	services	you	use	in	applications,	and	can	simplify	how	you
organize	and	architect	these	applications.

You	can	create	instances	of	objects	using	the	DI	container	provided	by	Unity.
Unity	is	available	as	a	stand-alone	dependency	injection	mechanism.

The	following	sections	of	this	topic	will	help	you	to	understand	the	overall
process,	and	use	Unity	dependency	injection	in	your	applications:

Using	BuildUp	to	Wire	Up	Objects	Not	Created	by	the	Container.	This
topic	explains	how	to	use	BuildUp	to	pass	existing	object	instances
through	the	container	in	order	to	apply	dependency	injection	to	that
object.	This	is	an	alternative	to	resolving	the	object	using	any	of	the
other	techniques	available	with	Unity.
Using	Injection	Attributes.	This	topic	contains	a	series	of	sections	that
describe	how	you	can	use	attributes	applied	to	members	of	target	classes
to	instruct	Unity	to	inject	dependent	objects	for	constructor	and	method
parameters,	and	as	the	values	of	properties.
Circular	References	with	Dependency	Injection.	This	topic	describes
how	you	should	be	aware	of	the	possibility	of	circular	references	arising
when	using	dependency	injection	techniques.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Dependency Injection with Unity'%0AEntLib50_2e466f36-5b63-4a02-9922-ab4c1c98c36d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	BuildUp	to	Wire	Up	Objects	Not	Created	by	the	Container

Unity	exposes	a	method	named	BuildUp	that	you	can	use	to	pass	existing	object
instances	through	the	container	in	order	to	apply	dependency	injection	to	that
object.	This	is	an	alternative	to	resolving	the	object	using	any	of	the	other
techniques	available	with	Unity.	However,	remember	that	the	BuildUp	method
cannot	inject	dependent	objects	into	constructor	parameters,	because	the	object
has	already	been	created;	it	is	not	created	by	Unity.

The	BuildUp	method	is	useful	when	you	do	not	have	control	of	the	construction
of	an	instance,	but	you	still	want	property	or	method	call	injection	performed.
For	example,	ASP.NET	pages,	Windows	Communication	Foundation	(WCF)
applications,	and	XAML	code	often	create	instances	of	objects	and	pass	a
reference	to	your	code.	The	BuildUp	method	will	usually	return	the	original
object	after	passing	it	through	the	container,	although	container	extensions	may
add	other	features	that	cause	the	method	to	return	a	different	object	that	is	type-
compatible	with	the	existing	object.	For	example,	an	injection	strategy	may
create	and	return	a	proxy	for	an	object	or	a	derived	object	instead	of	the	actual
object.

If	you	have	created	or	added	extensions	to	the	Unity	container,	these	extensions
can	access	and	use	a	name	that	you	specify	when	you	execute	the	BuildUp
method.	This	allows	the	extensions	to	change	their	behavior,	depending	on	the
value	you	specify.	For	example,	they	may	use	the	name	to	control	how
dependencies	are	resolved	or	to	control	features	such	as	event	wiring	or
interception.	The	actual	behavior	depends	on	the	individual	extension.

The	BuildUp	Method	Overloads

Using	the	BuildUp	Method

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using BuildUp to Wire Up Objects Not Created by the Container'%0AEntLib50_028b8060-a816-4e7b-a7ab-9a2a1b9168ab%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Injection	Attributes

One	of	the	most	useful	and	powerful	techniques	when	using	Unity	is	to	take
advantage	of	dependency	injection	for	the	parameters	of	class	constructors	and
methods,	and	for	the	values	of	properties.	This	approach	allows	you	to	resolve
and	populate	the	entire	hierarchy	of	objects	used	in	your	application	based	on
type	registrations	and	mappings	defined	in	the	container,	with	the	subsequent
advantages	this	offers.

You	can	specify	constructor,	property,	and	method	call	injection	information	in
configuration	or	by	adding	registrations	to	the	container	at	run	time.	You	can
also	apply	attributes	to	members	of	your	classes.	When	you	resolve	these
classes	through	the	container,	Unity	will	generate	instances	of	the	dependent
objects	and	wire	up	the	target	class	with	these	instances.

Unity	performs	constructor	injection	automatically	on	resolved	classes,
choosing	the	most	complex	constructor	and	populating	any	parameters	for
which	you	do	not	provide	values	when	it	constructs	the	object.	You	can	also
specify	which	constructor	Unity	should	use	to	construct	the	object.	For	more
information,	see	Annotating	Objects	for	Constructor	Injection.

Property	and	method	call	injection	do	not	occur	automatically	unless	you	have
registered	injection	types	in	the	container	at	design	time	or	run	time.	If	you	have
not	registered	injection	types	in	the	container,	you	can	add	attributes	to	the
members	of	your	resolved	class	to	force	injection	of	dependent	objects	when	the
target	class	is	resolved.	For	more	information,	see	Annotating	Objects	for
Property	(Setter)	Injection	and	Annotating	Objects	for	Method	Call	Injection.

For	information	about	registering	injection	types	in	the	configuration	at	design
time	or	run	time,	see	Configuring	Unity.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Injection Attributes'%0AEntLib50_d545e9f6-0bf5-4ebb-a5b5-7520f96d8a78%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Annotating	Objects	for	Constructor	Injection

Unity	supports	automatic	dependency	injection	for	class	constructors.	You	can
use	the	Unity	container	to	generate	instances	of	dependent	objects	and	wire	up
the	target	class	with	these	instances.	This	topic	explains	how	to	use	both	the
automatic	constructor	injection	mechanism	and	an	attribute	applied	to	the
constructor	of	a	class	to	define	the	dependency	injection	requirements	of	that
class.	The	attribute	can	also	specify	parameters	that	the	constructor	will	pass	to
the	dependent	object	that	the	container	generates.

To	perform	injection	of	dependent	classes	into	objects	you	create	through	the
Unity	container,	you	can	use	the	following	techniques:

Single	Constructor	Automatic	Injection.	With	this	technique,	you	allow
the	Unity	container	to	satisfy	any	constructor	dependencies	defined	in
parameters	of	the	constructor	automatically.	You	use	this	technique	when
there	is	a	single	constructor	in	the	target	class.
Specifying	Named	Type	Mappings.	With	this	technique,	you	specify
named	mappings	for	dependencies	in	the	parameters	of	a	class
constructor.	Named	mappings	allow	you	to	specify	more	than	one
mapping	for	an	interface	or	base	class,	or	for	a	type	registration.
Multiple	Constructor	Injection	Using	an	Attribute.	With	this	technique,
you	apply	attributes	to	the	class	constructor(s)	that	specify	the
dependencies.	You	use	this	technique	when	there	is	more	than	one
constructor	in	the	target	class.

Constructor	injection	is	a	form	of	mandatory	injection	of	dependent	objects,	as
long	as	developers	use	the	Unity	container	to	generate	the	target	object.	The
dependent	object	instance	is	generated	when	the	Unity	container	creates	an
instance	of	the	target	class	using	the	constructor.	For	more	information,	see
Notes	on	Using	Constructor	Injection.

Copy	Code

Copy	Code

Single	Constructor	Automatic	Injection
For	automatic	constructor	injection,	you	simply	specify	as	parameters	of	the
constructor	the	dependent	object	types.	You	can	specify	the	concrete	type,	or
specify	an	interface	or	base	class	for	which	the	Unity	container	contains	a
registered	mapping.

To	use	automatic	single-constructor	injection	to	create	dependent	objects
1.	 Define	a	constructor	in	the	target	class	that	takes	as	a	parameter	the

concrete	type	of	the	dependent	class.	For	example,	the	following	code
shows	a	target	class	named	MyObject	containing	a	constructor	that	has
a	dependency	on	a	class	named	MyDependentClass.
C#

public	class	MyObject

{

		public	MyObject(MyDependentClass	myInstance)

		{	

				//	work	with	the	dependent	instance

				myInstance.SomeProperty	=	"SomeValue";

				//	or	assign	it	to	a	class-level	variable

		}

}	

Visual	Basic

Public	Class	MyObject

		Public	Sub	New(myInstance	As	MyDependentClass)

				'	work	with	the	dependent	instance

				myInstance.SomeProperty	=	"SomeValue"

				'	or	assign	it	to	a	class-level	variable

		End	Sub

End	Class	

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will
instantiate	the	dependent	concrete	class	and	inject	it	into	the	target

Copy	Code

class.	For	example,	the	following	code	shows	how	you	can	instantiate
the	example	target	class	named	MyObject	containing	a	constructor	that
has	a	dependency	on	a	class	named	MyDependentClass.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

3.	 Alternatively,	you	can	define	a	target	class	that	contains	more	than	one
dependency	defined	in	constructor	parameters.	The	Unity	container	will
instantiate	and	inject	an	instance	of	each	one.	For	example,	the
following	code	shows	a	target	class	named	MyObject	containing	a
constructor	that	has	dependencies	on	two	classes	named
DependentClassA	and	DependentClassB.
C#

public	class	MyObject

{

		public	MyObject(DependentClassA	depA,	DependentClassB	depB)

		{	

				//	work	with	the	dependent	instances

				depA.SomeClassAProperty	=	"SomeValue";

				depB.SomeClassBProperty	=	"AnotherValue";

				//	or	assign	them	to	class-level	variables

		}

}	

Visual	Basic

Public	Class	MyObject

Copy	Code

		Public	Sub	New(depA	As	DependentClassA,	depB	As	DependentClassB)

				'	work	with	the	dependent	instance

				depA.SomeClassAProperty	=	"SomeValue"

				depB.SomeClassBProperty	=	"AnotherValue"

				'	or	assign	them	to	class-level	variables

		End	Sub

End	Class	

4.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will	create	an
instance	of	each	of	the	dependent	concrete	classes	and	inject	them	into
the	target	class.	For	example,	the	following	code	shows	how	you	can
instantiate	the	example	target	class	named	MyObject	containing	a
constructor	that	has	constructor	dependencies.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

5.	 In	addition	to	using	concrete	types	as	parameters	of	the	target	object
constructor,	you	can	use	interfaces	or	base	class	types	and	then	register
mappings	in	the	Unity	container	to	translate	these	types	into	the	correct
concrete	types.	Define	a	constructor	in	the	target	class	that	takes	as
parameters	the	interface	or	base	types	of	the	dependent	class.	For
example,	the	following	code	shows	a	target	class	named	MyObject
containing	a	constructor	that	has	a	dependency	on	a	class	that
implements	the	interface	named	IMyInterface	and	a	class	that	inherits
from	MyBaseClass.
C#

Copy	Code

public	class	MyObject

{

		public	MyObject(IMyInterface	interfaceObj,	MyBaseClass	baseObj)

		{	

				//	work	with	the	concrete	dependent	instances

				//	or	assign	them	to	class-level	variables

		}

}	

Visual	Basic

Public	Class	MyObject

		Public	Sub	New(interfaceObj	As	IMyInterface,	baseObj	As	MyBaseClass)

				'	work	with	the	dependent	instance

				'	or	assign	them	to	class-level	variables

		End	Sub

End	Class	

6.	 In	your	run-time	code,	register	the	mappings	you	require	for	the
interface	and	base	class	types,	and	then	use	the	Resolve	method	of	the
container	to	create	an	instance	of	the	target	class.	The	Unity	container
will	instantiate	an	instance	of	each	of	the	mapped	concrete	types	for	the
dependent	classes	and	inject	them	into	the	target	class.	For	example,	the
following	code	shows	how	you	can	instantiate	the	example	target	class
named	MyObject	containing	a	constructor	that	has	a	dependency	on
the	two	objects	of	type	IMyInterface	and	MyBaseClass.
C#

IUnityContainer	uContainer	=	new	UnityContainer()

			.RegisterType<IMyInterface,	FirstObject>()

			.RegisterType<MyBaseClass,	SecondObject>();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()	_

			.RegisterType(Of	IMyInterface,	FirstObject)()	_

			.RegisterType(Of	MyBaseClass,	SecondObject)()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

Specifying	Named	Type	Mappings
The	preceding	example	shows	how	you	can	resolve	types	for	constructor
parameters	using	the	default	(unnamed)	mappings	in	the	container.	If	you
register	more	than	one	mapping	for	a	type,	you	must	differentiate	them	by	using
a	name.	In	this	case,	you	can	specify	which	named	mapping	the	container	will
use	to	resolve	each	constructor	parameter	type.

To	use	attributed	constructor	injection	with	named	container	type
mappings

1.	 Define	a	constructor	in	the	target	class	that	takes	as	a	parameter	the
concrete	type	of	the	dependent	class,	and	apply	a	Dependency	attribute
to	the	parameter	that	specifies	the	name	of	the	registered	mapping	to
use.	For	example,	the	following	code	shows	a	target	class	named
MyObject	containing	a	constructor	that	has	a	dependency	on	a	service
registered	with	the	name	myDataService,	and	which	implements	the
IMyService	interface.	It	assumes	that	the	container	contains	a	mapping
defined	with	the	name	DataService	between	the	IMyService	interface
and	a	concrete	implementation	of	this	interface.
C#

public	class	MyObject

{

		public	MyObject([Dependency("DataService")]	IMyService	myDataService)

		{	

				//	work	with	the	service	here

		}

}	

Visual	Basic

Public	Class	MyObject

		Public	Sub	New(<Dependency("DataService")>	myDataService	As	IMyService)

				'	work	with	the	service	here

		End	Sub

End	Class	

Copy	Code

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will
instantiate	the	dependent	concrete	class	defined	in	the	mapping	named
DataService	and	inject	it	into	the	target	class.	For	example,	the
following	code	shows	how	you	can	instantiate	the	example	target	class
shown	above.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

You	can	use	the	Dependency	attribute	on	more	than	one	constructor	parameter.
You	can	also	use	it	when	the	constructor	defines	more	than	one	parameter	of	the
same	type	to	differentiate	the	mappings	and	ensure	that	the	appropriate	concrete
type	is	returned	for	each	parameter.

Note:
If	you	specify	a	named	mapping	and	there	is	no	mapping	registered	for	that
type	and	name,	the	container	will	raise	an	exception.

Copy	Code

Copy	Code

Multiple	Constructor	Injection	Using	an	Attribute
When	a	target	class	contains	more	than	one	constructor	with	the	same	number
of	parameters,	you	must	apply	the	InjectionConstructor	attribute	to	the
constructor	that	the	Unity	container	will	use	to	indicate	which	constructor	the
container	should	use.	As	with	automatic	constructor	injection,	you	can	specify
the	constructor	parameters	as	a	concrete	type,	or	you	can	specify	an	interface	or
base	class	for	which	the	Unity	container	contains	a	registered	mapping.

To	use	attributed	constructor	injection	when	there	is	more	than	one
constructor

1.	 Apply	the	InjectionConstructor	attribute	to	the	constructor	in	the
target	class	that	you	want	the	container	to	use.	In	the	simplest	case,	the
target	constructor	takes	as	a	parameter	the	concrete	type	of	the
dependent	class.	For	example,	the	following	code	shows	a	target	class
named	MyObject	containing	two	constructors,	one	of	which	has	a
dependency	on	a	class	named	MyDependentClass	and	has	the
InjectionConstructor	attribute	applied.
C#

public	class	MyObject

{

		public	MyObject(SomeOtherClass	myObjA)

		{	

				...

		}

		[InjectionConstructor]

		public	MyObject(MyDependentClass	myObjB)

		{	

				...

		}

}	

Visual	Basic

Copy	Code

Public	Class	MyObject

		Public	Sub	New(myObjA	As	SomeOtherClass)

				...

		End	Sub

		<InjectionConstructor()>	_

		Public	Sub	New(myObjB	As	MyDependentClass)

				...

		End	Sub

End	Class	

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will
instantiate	the	dependent	concrete	class	defined	in	the	attributed
constructor	and	inject	it	into	the	target	class.	For	example,	the	following
code	shows	how	you	can	instantiate	the	example	target	class	named
MyObject	containing	an	attributed	constructor	that	has	a	dependency
on	a	class	named	MyDependentClass.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

3.	 Alternatively,	you	can	define	a	multiple-constructor	target	class	that
contains	more	than	one	dependency	defined	in	the	target	constructor
parameters.	The	Unity	container	will	instantiate	and	inject	an	instance
of	each	one.	For	example,	the	following	code	shows	a	target	class
named	MyObject	containing	an	attributed	constructor	that	has
dependencies	on	two	classes,	DependentClassA	and

DependentClassB.
C#

public	class	MyObject

{

		public	MyObject(SomeClassA	objA,	SomeClassB	objB)

		{	

				...

		}

		[InjectionConstructor]

		public	MyObject(DependentClassA	depA,	DependentClassB	depB)

		{	

				...

		}

}	

Visual	Basic

Public	Class	MyObject

		Public	Sub	New(objA	As	SomeClassA,	objB	As	SomeClassB)

				...

		End	Sub

		<InjectionConstructor()>	_

		Public	Sub	New(depA	As	DependentClassA,	depB	As	DependentClassB)

				...

		End	Sub

End	Class	

4.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will	create	an
instance	of	each	of	the	dependent	concrete	classes	defined	in	the

Copy	Code

attributed	constructor	and	inject	them	into	the	target	class.	For	example,
the	following	code	shows	how	you	can	instantiate	the	example	target
class	named	MyObject	containing	a	constructor	that	has	constructor
dependencies
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

5.	 In	addition	to	using	concrete	types	as	parameters	of	the	target	object
constructor,	you	can	use	interfaces	or	base	class	types,	and	then	register
mappings	in	the	Unity	container	to	translate	these	types	into	the	correct
concrete	types.	For	details,	see	steps	5	and	6	of	the	procedure	Single
Constructor	Automatic	Injection.

Notes	on	Using	Constructor	Injection

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Annotating Objects for Constructor Injection'%0AEntLib50_f173149f-03fc-4604-be5f-4f2a20ec470f%0APlease provide details of the error you have located...%0A

Copy	Code

Microsoft	Enterprise	Library	5.0

Annotating	Objects	for	Property	(Setter)	Injection

Unity	supports	dependency	injection	to	set	the	values	or	properties	through
attributes	applied	to	members	of	the	target	class.	You	can	use	the	Unity
container	to	generate	instances	of	dependent	objects	and	wire	up	the	target	class
properties	with	these	instances.	This	topic	explains	how	to	use	an	attribute	that
is	applied	to	one	or	more	property	declarations	of	a	class	to	define	the
dependency	injection	requirements	of	that	class.	The	attribute	can	specify
parameters	for	the	attribute	to	control	its	behavior,	such	as	the	name	of	a
registered	mapping.

To	perform	property	injection	of	dependent	classes	into	objects	you	create
through	the	Unity	container,	you	apply	the	Dependency	attribute	to	the	property
declarations	of	a	class.	The	Unity	container	will	create	an	instance	of	the
dependent	class	within	the	scope	of	the	target	object	(the	object	you	specify	in	a
Resolve	method	call)	and	assign	this	dependent	object	to	the	attributed	property
of	the	target	object.

Property	injection	is	a	form	of	optional	injection	of	dependent	objects,	as	long
as	developers	use	the	Unity	container	to	generate	the	target	object.	The
dependent	object	instance	is	generated	before	the	container	returns	the	target
object.	In	addition,	unlike	constructor	injection,	you	must	apply	the	appropriate
attribute	in	the	target	class	to	initiate	property	injection.	You	can	also	perform
property	injection	of	optional	dependent	classes	by	applying	the
OptionalDependency	attribute.	This	simply	marks	a	dependency	as	optional,
which	means	that	the	container	will	try	to	resolve	it,	and	return	null	if	the
resolution	fails	rather	than	throw	an	exception.	For	more	information,	see	Notes
on	Using	Property	(Setter)	Injection.

To	use	property	(setter)	injection	to	create	dependent	objects	for	a	class
1.	 Define	a	property	in	the	target	class	and	apply	the	Dependency

attribute	to	it	to	indicate	that	the	type	defined	and	exposed	by	the
property	is	a	dependency	of	the	class.	The	following	code	demonstrates
property	injection	for	a	class	named	MyObject	that	exposes	as	a
property	a	reference	to	an	instance	of	another	class	named
SomeOtherObject	(not	defined	in	this	code).
C#

public	class	MyObject

{

		private	SomeOtherObject	_dependentObject;

		[Dependency]

		public	SomeOtherObject	DependentObject	

		{

				get	{	return	_dependentObject;	}

				set	{	_dependentObject	=	value;	}

		}

}	

Visual	Basic

Public	Class	MyObject

		Private	_dependentObject	As	SomeOtherObject

		<Dependency()>	_

		Public	Property	DependentObject()	As	SomeOtherObject

				Get

						Return	_dependentObject

				End	Get

				Set(ByVal	value	As	SomeOtherObject)

						_dependentObject	=	value

				End	Set

		End	Property

End	Class	

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class,	and	then	reference	the	property
containing	the	dependent	object.	The	Unity	container	will	instantiate
the	dependent	concrete	class	defined	in	the	attributed	property	and
inject	it	into	the	target	class.	For	example,	the	following	code	shows
how	you	can	instantiate	the	example	target	class	named	MyObject
containing	an	attributed	property	that	has	a	dependency	on	a	class

Copy	Code

Copy	Code

named	SomeOtherObject	and	then	retrieve	the	dependent	object	from
the	DependentObject	property.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

//	now	access	the	property	containing	the	dependency

SomeOtherObject	depObj	=	myInstance.DependentObject;

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

'	now	access	the	property	containing	the	dependency

Dim	depObj	As	SomeOtherObject	=	myInstance.DependentObject

3.	 In	addition	to	using	concrete	types	for	the	dependencies	in	target	object
properties,	you	can	use	interfaces	or	base	class	types,	and	then	register
mappings	in	the	Unity	container	to	translate	these	types	into	the	correct
concrete	types.	Define	a	property	in	the	target	class	as	an	interface	or
base	type.	For	example,	the	following	code	shows	a	target	class	named
MyObject	containing	properties	named	InterfaceObject	and
BaseObject	that	have	dependencies	on	a	class	that	implements	the
interface	named	IMyInterface	and	on	a	class	that	inherits	from
MyBaseClass.
C#

public	class	MyObject

{

		private	IMyInterface	_interfaceObj;

		private	MyBaseClass	_baseObj;

		[Dependency]

Copy	Code

		public	IMyInterface	InterfaceObject

		{

				get	{	return	_interfaceObj;	}

				set	{	_interfaceObj	=	value;	}

		}

		[Dependency]

		public	MyBaseClass	BaseObject

		{

				get	{	return	_baseObj;	}

				set	{	_baseObj	=	value;	}

		}

}	

Visual	Basic

Public	Class	MyObject

		Private	_interfaceObj	As	IMyInterface

		Private	_baseObj	As	MyBaseClass

		<Dependency()>	_

		Public	Property	InterfaceObject()	As	IMyInterface

				Get

						Return	_interfaceObj

				End	Get

				Set(ByVal	value	As	IMyInterface)

						_interfaceObj	=	value

				End	Set

		End	Property

		<Dependency()>	_

		Public	Property	BaseObject()	As	MyBaseClass

				Get

						Return	_baseObj

				End	Get

				Set(ByVal	value	As	MyBaseClass)

						_baseObj	=	value

				End	Set

		End	Property

End	Class	

4.	 In	your	run-time	code,	register	the	mappings	you	require	for	the
interface	and	base	class	types,	and	then	use	the	Resolve	method	of	the
container	to	create	an	instance	of	the	target	class.	The	Unity	container
will	create	an	instance	of	each	of	the	mapped	concrete	types	for	the
dependent	classes	and	inject	them	into	the	target	class.	For	example,	the
following	code	shows	how	you	can	instantiate	the	example	target	class
named	MyObject	containing	two	properties	that	have	dependencies	on
the	two	classes	named	FirstObject	and	SecondObject.
C#

IUnityContainer	uContainer	=	new	UnityContainer()

			.RegisterType<IMyInterface,	FirstObject>()

			.RegisterType<MyBaseClass,	SecondObject>();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

//	now	access	the	properties	containing	the	dependencies

IMyInterface	depObjA	=	myInstance.InterfaceObject;

MyBaseClass	depObjB	=	myInstance.BaseObject;

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()	_

			.RegisterType(Of	IMyInterface,	FirstObject)()	_

			.RegisterType(Of	MyBaseClass,	SecondObject)()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

'	now	access	the	properties	containing	the	dependencies

Dim	depObjA	As	IMyInterface	=	myInstance.InterfaceObject

Dim	depObjB	As	MyBaseClass	=	myInstance.BaseObject

Copy	Code

Copy	Code

5.	 You	can	register	multiple	named	mappings	with	the	container	for	each
dependency	type,	if	required,	and	then	use	a	parameter	of	the
Dependency	attribute	to	specify	the	mapping	you	want	to	use	to
resolve	the	dependent	object	type.	For	example,	the	following	code
specifies	the	mapping	names	for	the	Key	property	of	the	Dependency
attribute	for	two	properties	of	the	same	type	(in	this	case,	an	interface)
in	the	class	MyObject.
C#

public	class	MyObject

{

		private	IMyInterface	_objA,	_objB;

		[Dependency("MapTypeA")]

		public	IMyInterface	ObjectA

		{

				get	{	return	_objA;	}

				set	{	_objA	=	value;	}

		}

		[Dependency("MapTypeB")]

		public	IMyInterface	ObjectB

		{

				get	{	return	_objB;	}

				set	{	_objB	=	value;	}

		}

}	

Visual	Basic

Public	Class	MyObject

		Private	_objA,	_objB	As	IMyInterface

		<Dependency("MapTypeA")>	_

		Public	Property	ObjectA()	As	IMyInterface

				Get

						Return	_objA

				End	Get

				Set(ByVal	value	As	IMyInterface)

						_objA	=	value

				End	Set

		End	Property

		<Dependency("MapTypeB")>	_

		Public	Property	ObjectB()	As	IMyInterface

				Get

						Return	_objB

				End	Get

				Set(ByVal	value	As	IMyInterface)

						_objB	=	value

				End	Set

		End	Property

End	Class	

6.	 In	your	run-time	code,	register	the	named	(non-default)	mappings	you
require	for	the	two	concrete	types	that	the	properties	will	depend	on,
and	then	use	the	Resolve	method	of	the	container	to	create	an	instance
of	the	target	class.	The	Unity	container	will	instantiate	an	instance	of
each	of	the	mapped	concrete	types	for	the	dependent	classes	and	inject
them	into	the	target	class.	For	example,	the	following	code	shows	how
you	can	instantiate	the	example	target	class	named	MyObject
containing	two	properties	that	have	dependencies	on	the	two	classes
named	FirstObject	and	SecondObject.
C#

IUnityContainer	uContainer	=	new	UnityContainer()

			.RegisterType<IMyInterface,	FirstObject>("MapTypeA")

			.RegisterType<IMyInterface,	SecondObject>("MapTypeB");

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

//	now	access	the	properties	containing	the	dependencies

IMyInterface	depObjA	=	myInstance.ObjectA;

IMyInterface	depObjB	=	myInstance.ObjectB;

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()	_

			.RegisterType(Of	IMyInterface,	FirstObject)("MapTypeA")	_

			.RegisterType(Of	IMyInterface,	SecondObject)("MapTypeB")

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

'	now	access	the	properties	containing	the	dependencies

Dim	depObjA	As	IMyInterface	=	myInstance.ObjectA

Dim	depObjB	As	IMyInterface	=	myInstance.ObjectB

Using	Optional	Dependencies

Notes	on	Using	Property	(Setter)	Injection

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Annotating Objects for Property (Setter) Injection'%0AEntLib50_135fa151-4553-43bf-87c2-e71935a1075a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Annotating	Objects	for	Method	Call	Injection

Unity	supports	dependency	injection	to	set	the	values	of	parameters	of	methods
specified	through	attributes	applied	to	members	of	the	target	class.	You	can	use
the	Unity	container	to	generate	instances	of	dependent	objects	and	wire	up	the
target	class	method	parameters	with	these	instances.	This	topic	explains	how	to
use	an	attribute	that	is	applied	to	one	or	more	method	declarations	of	a	class	to
define	the	dependency	injection	requirements	of	that	class.

To	perform	injection	of	dependent	classes	into	objects	you	create	through	the
Unity	container,	you	apply	the	InjectionMethod	attribute	to	the	method
declarations	of	a	class.	The	Unity	container	will	force	the	target	object	(the
object	you	specify	in	a	Resolve	method	call)	to	create	an	instance	of	the
dependent	class	and	then	call	the	target	method.	If	required,	your	code	in	the
method	can	save	this	instance	by	assigning	it	to	a	class-level	variable.

Method	call	injection	is	a	form	of	optional	injection	of	dependent	objects	that
you	can	use	if	you	use	the	Unity	container	to	generate	the	target	object.	Unity
instantiates	dependent	objects	defined	in	parameters	of	methods	that	carry	the
InjectionMethod	attribute	within	the	scope	of	the	target	object.	Then	it	calls	the
attributed	method	of	the	target	object	before	returning	the	object	to	the	caller.
You	must	apply	the	InjectionMethod	attribute	in	the	target	class	to	initiate
method	call	injection.	For	more	information,	see	Notes	on	Using	Method	Call
Injection.

To	use	method	call	injection	to	create	dependent	objects	for	a	class
1.	 Define	a	method	in	the	target	class	and	apply	the	InjectionMethod

attribute	to	it	to	indicate	that	any	types	defined	in	parameters	of	the
method	are	dependencies	of	the	class.	The	following	code	demonstrates
the	most	common	scenario—saving	the	dependent	object	instance	in	a
class-level	variable—for	a	class	named	MyObject	that	exposes	a
method	named	Initialize	that	takes	as	a	parameter	a	reference	to	an
instance	of	another	class	named	SomeOtherObject	(not	defined	in	this
code).
C#

Copy	Code

public	class	MyObject

{

		private	SomeOtherObject	dependentObject;

		[InjectionMethod]

		public	void	Initialize(SomeOtherObject	dep)	

		{

				//	assign	the	dependent	object	to	a	class-level	variable

				dependentObject	=	dep;

		}

}	

Visual	Basic

Public	Class	MyObject

		Private	dependentObject	As	SomeOtherObject

		<InjectionMethod()>	_

		Public	Sub	Initialize(dep	As	SomeOtherObject)

				'	assign	the	dependent	object	to	a	class-level	variable

				dependentObject	=	dep

		End	Sub

End	Class	

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will
instantiate	the	dependent	concrete	class	defined	in	the	attributed
method,	inject	it	into	the	target	class,	and	execute	the	method.	For
example,	the	following	code	shows	how	you	can	instantiate	the
example	target	class	named	MyObject	containing	an	attributed	method
that	has	a	dependency	on	a	class	named	SomeOtherObject.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

3.	 In	addition	to	using	concrete	types	for	the	dependencies	in	target	object
methods,	you	can	use	interfaces	or	base	class	types	and	then	register
mappings	in	the	Unity	container	to	translate	these	types	into	the
appropriate	concrete	types.	Define	a	method	in	the	target	class	that
takes	as	parameters	interfaces	or	base	types.	For	example,	the	following
code	shows	a	target	class	named	MyObject	containing	a	method
named	Initialize	that	takes	as	parameters	an	object	named
interfaceObj	that	implements	the	interface	named	IMyInterface	and
an	object	named	baseObj	that	inherits	from	the	class	MyBaseClass.
C#

public	class	MyObject

{

		private	IMyInterface	depObjectA;

		private	MyBaseClass	depObjectB;

		[InjectionMethod]

		public	void	Initialize(IMyInterface	interfaceObj,	MyBaseClass	baseObj)	

		{

				depObjectA	=	interfaceObj;

				depObjectB	=	baseObj;

		}

}	

Visual	Basic

Public	Class	MyObject

Copy	Code

		Private	depObjectA	As	IMyInterface

		Private	depObjectB	As	MyBaseClass

		<InjectionMethod()>	_

		Public	Sub	Initialize(interfaceObj	As	IMyInterface,	baseObj	As	MyBaseClass)

				depObjectA	=	interfaceObj

				depObjectB	=	baseObj

		End	Sub

End	Class	

4.	 In	your	run-time	code,	register	the	mappings	you	require	for	the
interface	and	base	class	types,	and	then	use	the	Resolve	method	of	the
container	to	create	an	instance	of	the	target	class.	The	Unity	container
will	instantiate	an	instance	of	each	of	the	mapped	concrete	types	for	the
dependent	classes,	and	inject	them	into	the	target	class.	For	example,
the	following	code	shows	how	you	can	instantiate	the	example	target
class	named	MyObject	containing	an	attributed	method	that	has
dependencies	on	the	two	classes,	FirstObject	and	SecondObject.
C#

IUnityContainer	uContainer	=	new	UnityContainer()

			.RegisterType<IMyInterface,	FirstObject>()

			.RegisterType<MyBaseClass,	SecondObject>();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()	_

			.RegisterType(Of	IMyInterface,	FirstObject)()	_

			.RegisterType(Of	MyBaseClass,	SecondObject)()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

Specifying	Named	Type	Mappings
The	preceding	example	shows	how	you	can	resolve	types	for	method
parameters	using	the	default	(unnamed)	mappings	in	the	container.	If	you
register	more	than	one	mapping	for	a	type,	you	must	differentiate	them	by	using
a	name.	In	this	case,	you	can	specify	which	named	mapping	the	container	will
use	to	resolve	the	method	parameter	types.

To	use	attributed	method	call	injection	with	named	container	type
mappings

1.	 Define	a	method	in	the	target	class	that	takes	as	a	parameter	the
concrete	type	of	the	dependent	class,	and	apply	a	Dependency	attribute
to	the	parameter	that	specifies	the	name	of	the	registered	mapping	to
use.	For	example,	the	following	code	shows	a	target	class	named
MyObject	containing	a	method	named	Initialize	that	has	a	dependency
on	a	service	that	implements	the	IMyService	interface.	The	code
assumes	that	the	container	contains	a	mapping	defined	with	the	name
DataService	between	the	IMyService	interface	and	a	concrete
implementation	of	that	interface.
C#

public	class	MyObject

{

		private	IMyService	myDataService;

		[InjectionMethod]

		public	void	Initialize([Dependency("DataService")]	IMyService	theService)	

		{

				//	assign	the	dependent	object	to	a	class-level	variable

				myDataService	=	theService;

		}

}	

Visual	Basic

Public	Class	MyObject

Copy	Code

		Private	myDataService	As	IMyService

		<InjectionMethod()>	_

		Public	Sub	Initialize(<Dependency("DataService")>	theService	As	IMyService)

				'	assign	the	dependent	object	to	a	class-level	variable

				myDataService	=	theService

		End	Sub

End	Class	

2.	 In	your	run-time	code,	use	the	Resolve	method	of	the	container	to
create	an	instance	of	the	target	class.	The	Unity	container	will
instantiate	the	dependent	concrete	class	defined	in	the	attributed
method,	inject	it	into	the	target	class,	and	execute	the	method.	For
example,	the	following	code	shows	how	you	can	instantiate	the
example	class	shown	above.
C#

IUnityContainer	uContainer	=	new	UnityContainer();

MyObject	myInstance	=	uContainer.Resolve<MyObject>();

Visual	Basic

Dim	uContainer	As	IUnityContainer	=	New	UnityContainer()

Dim	myInstance	As	MyObject	=	uContainer.Resolve(Of	MyObject)()

Note:
If	you	specify	a	named	mapping	and	there	is	no	mapping	registered	for	that
type	and	name,	the	container	will	raise	an	exception.

Notes	on	Using	Method	Call	Injection

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Annotating Objects for Method Call Injection'%0AEntLib50_f6bbc4ca-d485-4129-89e1-1380ce97f27c%0APlease provide details of the error you have located...%0A

Copy	Code

Copy	Code

Microsoft	Enterprise	Library	5.0

Circular	References	with	Dependency	Injection

Dependency	injection	mechanisms	carry	the	risk	of	unintentional	circular
references,	which	are	not	easy	to	detect	or	prevent.	This	topic	describes	the
situations	where	you	may	inadvertently	cause	circular	references	to	occur,
resulting	in	a	stack	overflow	and	application	error.	The	most	common	causes	of
circular	references	with	dependency	injection	are	the	following:

Objects	generated	through	constructor	injection	that	reference	each	other
in	their	constructor	parameters
Objects	generated	through	constructor	injection	where	an	instance	of	a
class	is	passed	as	a	parameter	to	its	own	constructor
Objects	generated	through	method	call	injection	that	reference	each	other
Objects	generated	through	property	(setter)	injection	that	reference	each
other

For	example,	the	following	code	shows	two	classes	that	reference	each	other	in
their	constructors.
C#

public	class	Class1

{

		public	Class1(Class2	test2)

		{	...	}

}

public	class	Class2

{

		public	Class2(Class1	test1)

		{	...	}

}

Visual	Basic

Public	Class	Class1

		Public	Sub	New(test2	As	Class2)

				...

		End	Sub

End	Class

Public	Class	Class2

		Public	Sub	New	(test	1	As	Class1)

				...	

		End	Sub

End	Class

It	is	the	responsibility	of	the	developer	to	prevent	this	type	of	error	by	ensuring
that	the	members	of	classes	they	use	with	dependency	injection	do	not	contain
circular	references.

Note:
You	could	use	constructor	injection	to	specify	any	of	a	series	of	constructors
or	method	overloads;	however,	you	could	inadvertently	cause	endless
recursion.	To	avoid	the	endless	recursion,	specify	which	constructor	to	call	in
the	RegisterType	call.

Unity's	default	behavior	is	to	resolve	the	constructor	with	the	most	parameters.
This	would	cause	endless	recursion	in	the	following	example.
C#

container.RegisterType<IServiceProvider,	ServiceContainer>();

var	sp	=	container.Resolve<IServiceProvider>();

Visual	Basic

container.RegisterType(Of	IServiceProvider,	ServiceContainer)()

Dim	sp	=	container.Resolve(Of	IServiceProvider)()

To	avoid	the	endless	recursion,	specify	which	constructor	to	call	in	the
RegisterType	call,	as	in	the	following	example:

C#

container.RegisterType<IServiceProvider,	ServiceContainer>(new	InjectionConstructor());

Visual	Basic

container.RegisterType(Of	IServiceProvider,	ServiceContainer)	_

										(New	InjectionConstructor())

In	this	case,	when	creating	the	service	container,	the	zero	argument	constructor
is	explicitly	requested.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Circular References with Dependency Injection'%0AEntLib50_567330c5-a09a-4c40-8dcf-1c0ceb5f3198%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Interception	with	Unity

Unity	interception	enables	you	to	effectively	capture	calls	to	objects	and	add
additional	functionality	to	the	target	object.	Interception	is	useful	when	you
want	to	modify	the	behavior	for	individual	objects	but	not	the	entire	class,	very
much	as	you	would	do	when	using	the	Decorator	pattern.	It	provides	a	flexible
approach	for	adding	new	behaviors	to	an	object	at	run	time.

This	section	contains	the	following	topics	that	will	help	you	to	understand
interception:

About	Unity	Interception.	This	section	of	this	topic	describes	the	basic
principles	of	interception	in	Unity.
Scenarios	for	Interception.	This	topic	describes	common	scenarios
addressed	by	Unity	interception.
Behaviors	for	Interception.	This	topic	describes	behaviors	you	might
implement	with	the	IInterceptionBehavior	interface	to	configure	a
container	through	the	RegisterType	method.
Configuring	a	Container	for	Interception.	This	topic	describes	how	to
configure	the	Unity	container	for	interception.
Unity	Interception	Techniques.	This	topic	describes	in	detail	the	design
of	Unity	interception.
Using	Interception	in	Applications.	This	topic	describes	how	you	use
Unity	interception	in	your	applications.
Using	Interception	and	Policy	Injection.	This	topic	explains	how	policy
injection	through	interception	works	in	Unity,	how	you	can	use	matching
rules	to	select	target	classes	and	class	members	for	policy	injection,	and
how	you	can	use	the	Enterprise	Library	call	handlers	with	Unity.

http://en.wikipedia.org/wiki/Decorator_pattern

About	Unity	Interception
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Interception with Unity'%0AEntLib50_8354c203-e77a-4873-80c9-b9041b468795%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Scenarios	for	Interception

Unity	interception	addresses	the	following	scenarios:
Adding	responsibilities	to	individual	objects	and	not	the	entire	class	and
avoiding	a	static	solution,	much	as	in	a	decorator	pattern.	In	a	manner
similar	to	the	way	a	decorator	forwards	requests	to	the	object	and	enables
you	to	perform	additional	actions	before	or	after	forwarding	the	request,
interception	intercepts	the	call	to	the	target	object	and	dynamically	adds
behaviors	to	individual	objects	without	affecting	any	other	objects.	This
can	be	useful	in	managing	crosscutting	concerns	that	access	common
features	such	as	logging	or	validation.
To	augment	or	modify	the	behavior	from	existing	classes	that	you	cannot
modify,	provided	that	they	are	interceptable	by	the	available	interception
mechanisms.
Enabling	the	developer	and	administrator	to	configure	the	behavior	of
objects	in	an	application	through	configuration	when	used	in	conjunction
with	a	dependency	injection	(DI)	container,	by	adding	or	removing
behaviors	that	execute	common	tasks	or	add	custom	features.
Enabling	the	developer	and	administrator	to	capture	calls	to	objects	and
add	or	remove	behaviors	that	execute	common	tasks	or	add	custom
features	at	run	time,	but	in	this	case	independent	of	a	DI	container.
Minimizing	the	work	required	and	the	code	that	the	developer	must	write
to	perform	common	tasks	within	an	application,	such	as	logging,
validation,	authorization,	and	instrumentation.
Reducing	development	time	and	cost,	and	minimizing	bugs	in	complex
applications	that	use	common	and	shared	tasks	and	services.

Benefits	of	Using	Unity	Interception

Limitations	of	Unity	Interception

Alternatives	to	Using	Unity	Interception

http://www.springframework.net/

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Scenarios for Interception'%0AEntLib50_ed7289ac-2407-409a-8a4d-04bc2a0c763a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Behaviors	for	Interception

Interception	is	based	on	a	behavior	or	series	of	behaviors	in	the	behaviors
pipeline	that	describe	what	to	do	when	an	object	is	intercepted.	Unity	provides	a
built-in	default	policy	injection	behavior	to	facilitate	the	implementation	of
policy	injection.	The	policy	injection	behavior	attaches	or	injects	some
functionality	to	specific	methods	by	using	call	handlers	and	matching	rules	on	a
per-method	basis.	For	more	information	on	policy	injection	see	Using
Interception	and	Policy	Injection.

You	can	also	create	your	own	custom	behaviors	by	implementing	the
IInterceptionBehavior	interface.	The	interception	behaviors	are	added	to	a
pipeline	and	are	called	for	each	invocation	of	that	pipeline.	You	have	wide
latitude	in	what	functionality	you	design	for	your	behavior.	Some	practical	uses
of	behaviors	include	implementing	custom	tasks	and	business	rules,
implementing	INotifyPropertyChanged	to	support	a	property	change	event,	to
provide	support	for	the	ErrorProvider/IDataErrorInfo	approach	to	validation
in	Windows®	Presentation	Foundation	(WPF),	and	to	implement	a	Mocking
framework.

Custom	tasks	and	business	rules	you	might	chose	to	implement	with	individual
custom	behaviors	would	include	tasks	such	as	validating	parameters	or
authorizing	users.

When	implementing	a	WPF	view	model,	in	order	to	get	the	property	change
event	action	you	must	implement	INotifyPropertyChanged.	Rather	than
implementing	this	every	time,	you	can	create	a	behavior	that	adds	and
implements	the	interface.

There	is	no	built-in	support	for	the	ErrorProvider/IDataErrorInfo	approach	to
validation	in	WPF;	hence	there	is	no	ErrorProvider	component	in	WPF	either.
You	must	create	an	ErrorProvider	for	use	in	WPF	applications.	The	DataGrid
(1.1)	and	DataGridView	(2.0)	in	Windows	Forms	both	automatically	detected
the	presence	of	this	interface	on	objects	they	were	bound	to,	and	showed	any
errors	without	any	work.	The	Windows	Forms	ErrorProvider	could	be	used	to
automatically	display	errors	on	any	control	that	came	from	the	objects	they	(and
the	ErrorProvider)	were	bound	to,	all	without	any	extra	code	being	written.
You	can	use	IDataErrorInfo	to	take	advantage	of	the	validation	work	in	the

.NET	Framework.	You	can	implement	IDataErrorInfo	in	a	class	and	bind	the
class	concrete	object	to	the	DataGridView	control	through	the	Bindingsource
property.	Then	use	the	Validation	Application	Block	to	validate	the	class	object
and	store	the	results	for	each	property.

Implementing	a	mocking	framework	through	an	interception	behavior	could	be
useful	in	cases	where	the	code	requires	an	interface	that	has	no	implementation.
The	behavior	can	give	you	a	mock	up	interface.	You	could	use	a	mocking
framework	to	implement	a	mock	database,	mock	logger,	or	mock	builder
context.

The	following	topics	explain	or	demonstrate	interception	behaviors	in	more
detail:

Custom	Interception	Behaviors
Implement	IDataErrorInfo	Example

Custom	Interception	Behaviors

Implement	INotifyPropertyChanged	Example
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Behaviors for Interception'%0AEntLib50_73690eea-cce2-48aa-a143-d6fcd80e1654%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Configuring	a	Container	for	Interception

You	can	use	interception	with	or	without	a	dependency	injection	(DI)	container
such	as	Unity.	Using	a	DI	container	relieves	you	of	the	need	to	manually	create
all	the	dependencies	and	pass	them	into	the	correct	objects.	If	you	choose	to	use
the	Unity	DI	container,	you	can	configure	the	container	by	using	a	configuration
file	or	at	run	time	by	using	the	API.

In	Unity,	interception	is	just	another	extension	point	instead	of	a	self-contained
part	of	the	configuration	file,	as	in	previous	versions.	Prior	to	Unity	2.0	when
you	specified	interception,	policy	injection	was	implicitly	configured	by	the
underlying	code.	Where	the	behavior	of	interception	was	implicit	before,	it	is
explicit	now;	you	specify	that	interception	is	to	happen	and	you	specify	what	is
to	happen	upon	interception.	Interception	becomes	just	one	more	thing	that	you
can	describe	about	how	an	object	is	resolved.	Unity	version	2.0	enables	you	to
modify	how	interception	happens	and	how	the	object	is	created.

There	are	two	approaches	for	setting	up	Unity	interception:
The	approach	introduced	in	Unity	2.0	in	which	interception	is	configured
as	just	another	extension	point	element	in	the	entry	for	a	container	type.
Configure	an	extension	point	by	using	the	<sectionExtension>	and
<extension>	tags	in	the	configuration	file	or	by	using	the	RegisterType
method	at	run	time.
The	pre-Unity	2.0	approach	used	in	earlier	versions	of	Unity	in	which
interception	is	a	self-contained	part	of	the	container	configured	by	using
the	interception	extension	elements,	<extensionConfig>	and
<interceptors>	in	the	configuration	file	or	by	using	the
SetInterceptorFor	or	SetDefaultInterceptorFor	methods	on	the
interception	container	extension.	This	earlier	style	is	still	available
primarily	for	backward	compatibility.

You	can	use	a	configuration	file	to	specify	a	container-created	behavior	with	any
logical	configuration.	For	detailed	interception	schema	information,	see
Configuration	Files	for	Interception.

This	topic	contains	the	following	sections	to	describe	how	to	configure	a
container	for	interception:

Adding	the	Interception	Extension	to	the	Container
Configuring	Interception	of	a	Type
More	Information

Adding	the	Interception	Extension	to	the	Container

Configuring	Interception	of	a	Type

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Configuring a Container for Interception'%0AEntLib50_6a974ef0-4f5e-407f-b196-b126a08f9205%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Unity	Interception	Techniques

In	order	to	perform	interception,	Unity	must	be	able	to	capture	the	original	call
and	pass	it	through	a	behaviors	pipeline	to	the	target	object,	then	pass	the	result
back	through	the	behaviors	pipeline	to	the	original	caller.	The	two	common
approaches	to	the	interception	process	are	instance	interception	and	type
interception,	and	Unity	provides	techniques	for	both.	Instance	interceptors	work
by	creating	a	proxy	to	the	intercepted	instance.	Type	interceptors	work	by
deriving	a	new	type	that	implements	interception.	The	instance	interception
target	is	the	original,	non-intercepted	object,	but	when	performing	type
interception	the	target	is	intercepted	and	a	derived	object	used.

Note:
Instance	interception	works	only	on	instance	methods;	it	does	not	work	for
static	methods	or	constructors	since	the	constructor	has	already	executed	by
the	time	the	client	code	gets	back	an	interception-ready	object.	Instance
interception	can	only	intercept	public	instance	methods.	Type	interception
can	intercept	public	and	protected	methods.

This	topic	contains	the	following	sections	that	will	help	you	to	understand
interception:

Instance	Interception
Type	Interception
Comparison	of	Interception	Techniques
Summary	of	Interception	Approaches

Instance	Interception
Instance	interception	works	with	both	existing	instances	of	objects,	and	with
new	instances	created	by	Unity.	The	following	schematic	shows	the	basic
process	of	instance	interception.

When	the	application	resolves	the	object	through	the	Unity	container,	the	Unity
interception	container	extension	manages	the	process.	It	obtains	a	new	or
existing	instance	of	the	object	from	the	container,	and	creates	a	proxy	to	the
object.	Then	it	creates	the	handler	pipeline	and	connects	it	to	the	target	object
before	returning	a	reference	to	the	proxy.	The	client	then	calls	methods	and	sets
properties	on	the	proxy	as	though	it	were	the	target	object.

Note:
Unity	interception	can	be	used	without	a	Unity	DI	container	by	using	the
stand-alone	API	through	the	static	Intercept	class.	For	more	information,	see
Using	Interception	in	Applications.

These	calls	pass	through	the	interception	behaviors,	executing	the	preprocessing
stage	of	each	one,	with	the	final	behavior	in	the	chain	passing	the	call	to	the
target	object.	The	return	value	from	the	target	object	passes	back	through	the
behaviors	in	the	reverse	order,	executing	the	post-processing	stage	of	each	one.
The	first	behavior	in	the	pipeline	then	passes	the	result	back	to	the	caller.

Instance	interception	is	the	most	common	and	widely	used	technique.	It	can	be
used	with	objects	that	either	implement	the	MarshalByRefObject	abstract
class,	or	implement	a	public	interface	that	defines	all	of	the	methods	to	be
intercepted.	Unity	provides	the	two	interceptors,
TransparentProxyInterceptor	and	InterfaceInterceptor,	that	support	these
two	scenarios.	For	more	details,	see	the	tables	in	Comparison	of	Interception
Techniques	later	in	this	topic.

Type	Interception
Type	interception	uses	a	derived	class	instead	of	a	proxy.	As	described	in	the
previous	section,	instance	interception	works	by	creating	a	proxy	to	the	target
object.	Type	interception,	on	the	other	hand,	more	closely	resembles	aspect-
oriented	programming	(AOP)	techniques	common	in	Java-based	systems.	Type
interception	avoids	the	possible	performance	penalties	of	using	a	proxy	object
by	dynamically	deriving	a	new	class	from	the	original	class,	and	inserting	calls
to	the	behaviors	that	make	up	the	pipeline.	The	following	schematic	shows	the
basic	process	of	type	interception.

When	the	application	resolves	the	required	type	through	the	Unity	container,	the
Unity	interception	container	extension	creates	the	new	derived	type	and	passes
it,	rather	than	the	resolved	type,	back	to	the	caller.	Because	the	type	passed	to
the	caller	derives	from	the	original	class,	it	can	be	used	in	the	same	way	as	the
original	class.	The	caller	simply	calls	the	object,	and	the	derived	class	will	pass
the	call	through	the	behaviors	in	the	pipeline	just	as	is	done	when	using	instance
interception.

Note:

Unity	interception	can	be	used	without	a	Unity	DI	container	by	using	the
stand-alone	API	through	the	static	Intercept	class.	For	more	information,	see
Using	Interception	in	Applications.

However,	due	to	the	nature	of	the	dynamic	type	generation,	there	are	some
limitations	with	this	approach.	It	can	only	be	used	to	intercept	public	and
protected	virtual	methods,	and	cannot	be	used	with	existing	object	instances.	In
general,	type	interception	is	most	suited	to	scenarios	where	you	create	objects
especially	to	support	interception	and	allow	for	the	flexibility	and	decoupling
provided	by	policy	injection,	or	when	you	have	mappings	in	your	container	for
base	classes	that	expose	virtual	methods.	For	more	details,	see	the	tables	of
comparisons	in	the	following	topic	Comparison	of	Interception	Techniques.

Comparison	of	Interception	Techniques
The	previous	sections	demonstrated	how	it	is	important	to	choose	the
appropriate	interception	technique	based	on	your	requirements	and	the	type	of
object	you	want	to	intercept.	The	following	table	lists	the	three	interceptor
classes	included	in	Unity,	and	describes	when	you	should	use	each	type.

Type Description Use

Transparent
Proxy
Interceptor

An	instance	interceptor.	The
proxy	is	created	by	using	the
.NET
TransparentProxy/RealProxy
infrastructure.

When	the	type	to	intercept
is	a	MarshalByRefObject
or	when	only	methods
from	the	type's
implemented	interfaces
need	to	be	intercepted.

Interface
Interceptor

An	instance	interceptor.	It	can
proxy	only	one	interface	on	the
object.	It	uses	dynamic	code
generation	to	create	the	proxy
class.

When	resolving	an
interface	mapped	to	a	type.

Virtual
Method
Interceptor

A	type	interceptor.	It	uses
dynamic	code	generation	to
create	a	derived	class	that	is
instantiated	instead	of	the
original	intercepted	class,	and	to
hook	up	the	behaviors.

When	only	virtual	methods
need	to	be	intercepted.

Selection	of	a	specific	interceptor	depends	on	your	specific	needs,	because	each
one	has	various	tradeoffs.	The	following	table	summarizes	the	three	interceptors
and	their	advantages	and	disadvantages.

Type Advantages Disadvantages

Transparent
Proxy
Interceptor

Can	intercept	all	methods	of	the
target	object	(virtual,	non-
virtual,	or	interface).

The	object	must	either
implement	an	interface	or
inherit	from
System.MarshalByRefObject
If	the	marshal	by	reference

object	is	not	a	base	class,	you
can	only	proxy	interface
methods.	The	Transparent
Proxy	process	is	much	slower
than	a	regular	method	call.

Interface
Interceptor

Allows	interception	on	any
object	that	implements	the
target	interface.	It	is	much
faster	than	the
TransparentProxyInterceptor.

It	only	intercepts	methods	on	a
single	interface.	It	cannot	cast	a
proxy	back	to	the	target	object's
class	or	to	other	interfaces	on
the	target	object.

Virtual
Method
Interceptor

Calls	are	much	faster	than	the
Transparent	Proxy	Interceptor.

Interception	only	happens	on
virtual	methods.	You	must	set
up	interception	at	object
creation	time	and	cannot
intercept	an	existing	object.

Summary	of	Interception	Approaches
Unity	provides	instance	and	type	interception	with	intercepted	objects	for	which
you	have	obtained	a	reference	either	through	the	container,	or	by	using	the
stand-alone	API	to	explicitly	intercept	a	known	instance.	Instance	interceptors
use	a	separate	proxy	object	between	your	code	and	your	target	object.	Using
interception,	you	make	a	call	on	the	proxy	object	instead	of	directly	calling	the
target	object.	The	proxy	invokes	the	various	interception	behaviors,	and	then	it
forwards	the	call	to	the	target	object.	Different	implementations	of	instance
interceptors	can	have	different	constraints.	Instance	interceptors	have	the
following	characteristics:

They	can	intercept	objects	created	by	the	container.
They	can	intercept	objects	not	created	by	the	container.
The	TransparentProxyInterceptor	can	intercept	more	than	one
interface,	and	marshal-by-reference	objects.
The	InterfaceInterceptor	can	only	be	used	to	intercept	a	single
interface.

Type	interceptors	create	a	new	type	that	inherits	from	the	target	type.	This	new
type	is	then	instantiated	instead	of	the	original	type	you	requested.	The	new	type
overrides	all	the	virtual	methods	on	the	original	target	type.	Type	instance
interceptors	have	the	following	characteristics:

Only	one	object	is	created;	there	is	no	proxy	object	between	the	caller
and	the	new	object.
The	new	object	has	full	type	compatibility	because	it	is	derived	from	the
target	type.
They	are	able	to	intercept	objects	only	at	creation,	and	cannot	intercept
existing	instances.
They	can	only	intercept	virtual	public	and	protected	methods.

The	system	that	Unity	uses	to	automatically	create	a	derived	target	object,	or	a
proxy	and	behaviors	pipeline,	is	similar	to	the	aspect-oriented	programming
(AOP)	approach.	However,	Unity	is	not	an	AOP	framework	implementation	for
the	following	reasons:

It	uses	interception	to	enable	only	preprocessing	behaviors	and	post-
processing	behaviors.
It	does	not	insert	code	into	methods,	although	it	can	create	derived

classes	containing	policy	pipelines.
It	does	not	provide	interception	for	class	constructors.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Unity Interception Techniques'%0AEntLib50_9765b670-328a-488c-a219-d114381b7c75%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Interception	in	Applications

This	topic	describes	how	to	use	Unity	interception	in	your	applications.	You	can
use	Unity	interception	with	a	dependency	injection	(DI)	container	or	as	a	stand-
alone	feature	with	no	DI	container.

When	you	use	a	DI	container,	the	container	provides	a	reference	to	the
intercepted	object.	When	the	container	resolves	an	object	that	is	configured	for
interception,	the	object	is	intercepted	as	defined	in	the	configuration.	When
performing	stand-alone	interception,	you	must	already	have	a	reference	to	the
object	you	want	intercepted.	You	invoke	the	stand-alone	interception	API	and
explicitly	intercept	the	object.	For	more	information	on	using	containers,	see
Dependency	Injection	with	Unity.

Unity	interception	requires	an	interceptor,	and	a	collection	of	interception

behaviors	that	comprise	a	pipeline.	Interceptors	are	used	when	performing
interception	through	the	container	and	through	the	stand-alone	API.	Using	the
container	results	in	adding	interception	objects	that	are	being	resolved,	while
using	the	stand-alone	API	enables	you	to	perform	just	interception.

In	both	cases	you	can	implement	additional	interfaces	on	intercepted	objects.
You	must	provide	the	information	for	the	additional	interfaces	that	will	be	added
for	interception.	Using	additional	interfaces	has	some	limitations.	You	cannot
add	open	generic	interfaces	and	you	cannot	reimplement	an	interface	that	has
already	been	implemented	with	nonvirtual	methods.	Additional	interfaces	are
supported	by	all	three	types	of	interceptors.	When	you	are	performing	interface
interception,	you	can	only	invoke	methods	on	the	particular	interface	you	used
to	intercept	and	any	additional	interfaces	that	you	have	specified.	Casts	to	other
interfaces	implemented	by	the	intercepted	object	will	fail.

Though	behaviors	normally	can	have	both	pre-	and	post-processing
functionality,	with	any	additional	interfaces	the	behaviors	must	handle	the
processing	in	its	entirety.	There	cannot	be	any	post-processing	because	the
original	object	has	no	implementation	for	the	additional	interfaces’	methods.
Any	calls	to	the	additional	interface	methods	handled	by	the	behaviors	will
result	in	a	NotImplementedException	being	thrown.

You	can	also	intercept	abstract	classes	with	abstract	methods,	allowing	the
behaviors	pipeline	to	provide	the	implementation	for	these	abstract	methods.
This	is	similar	to	adding	interfaces	in	that	in	both	cases	there	are	undefined
methods	for	which	an	implementation	must	be	provided,	but	they	are	different
mechanisms.	Abstract	class	interception	only	works	with	the
VirtualMethodInterceptor.	You	can	implement	abstract	classes	with	abstract
methods.	If	you	intercept	a	type	that	already	implements	some	interfaces,	both
virtual	method	and	transparent	proxy	interception	allow	for	casting	to	these
interfaces	and	invoke	methods	on	them,	which	will	be	intercepted.	There	cannot
be	any	post	processing	because	the	original	object	has	no	implementation	for
the	additional	interfaces’	methods

This	topic	contains	the	following	sections:
Stand-alone	Unity	Interception	describes	how	to	use	Unity	interception
as	a	stand-alone	feature.
Interception	Behavior	Pipeline	describes	how	to	add	a	behavior	and
interceptor	to	a	new	interception	behaviors	pipeline.

Interception	with	a	Container	describes	interception	with	a	container.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Interception in Applications'%0AEntLib50_67c6df4d-4c1b-4020-82c8-f2cf87defbc2%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Stand-alone	Unity	Interception

You	can	use	Unity	interception	as	a	stand-alone	feature	with	no	dependency
injection	container	by	using	the	Intercept	class.	As	with	a	container,
interception	as	a	stand-alone	feature	enables	you	to	perform	instance	or	type
interception.	The	Intercept	class	contains	the
NewInstance,NewInstanceWithAdditionalInterfaces,ThroughProxy,	and
ThroughProxyWithAdditionalInterfaces	methods,	enabling	you	to	perform
either	proxy	or	instance	interception.	And	both	methods	include	the
AdditionalInterfaces	parameter,	enabling	you	to	implement	additional
interfaces	on	the	target	object.	This	corresponds	to	the	AdditionalInterface
feature	when	using	interception	with	a	container.
Note:

The	first	parameter	on	Intercept.ThroughProxy,
Intercept.ThroughProxyWithAdditionalInterfaces	and	Intercept.
NewInstance	is	the	corresponding	interceptor	when	setting	up	interception
through	the	stand-alone	API.

The	AdditionalInterfaces	parameter	on	the	object	enables	you	to	receive	more
messages	and	to	augment	the	set	of	methods	the	object	can	respond	to.

This	section	contains	the	following	sections	describing	stand-alone	interception:
Stand-Alone	Interception	with	a	Proxy	describes	creating	a	proxy	to	the
intercepted	instance.
Stand-Alone	Interception	with	a	Derived	Type	describes	interception	by
using	a	derived	type.

Stand-Alone	Interception	with	a	Proxy

Stand-alone	Interception	with	a	Derived	Type
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Stand-alone Unity Interception'%0AEntLib50_29f44713-c61a-4b7c-a21e-9cd4d183ace3%0APlease provide details of the error you have located...%0A

Copy	Code

Copy	Code

Copy	Code

Microsoft	Enterprise	Library	5.0

Interception	Behavior	Pipeline

You	must	add	behaviors	to	the	behavior	pipeline	to	use	them.	The	pipeline
maintains	a	list	of	interception	behaviors	and	manages	them,	calling	them	in	the
proper	order	with	the	correct	inputs.

The	following	example	adds	a	behavior	and	interceptor	to	a	new	interception
behaviors	pipeline.

First	create	an	interception	behaviors	pipeline.
C#

private	InterceptionBehaviorPipeline	pipeline	=	new	InterceptionBehaviorPipeline();

Visual	Basic

Private	pipeline	As	New	InterceptionBehaviorPipeline()

Then	add	an	interception	behavior	to	the	pipeline.
C#

pipeline.Add(interceptor);

Visual	Basic

pipeline.Add(interceptor)

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Interception Behavior Pipeline'%0AEntLib50_7f7a1362-150a-417c-8b15-ba4f7d08cd5a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Interception	with	a	Container

The	Unity	container	extension	enables	you	to	configure	a	container	for
interception.	You	can	use	the	container	configuration	to	determine	whether	an
object	should	be	intercepted,	which	mechanism	should	be	used	to	perform	the
interception,	and	what	to	do	when	the	object	is	intercepted.	It	also	provides	a
convenient	set	of	methods	for	configuring	injection	for
Microsoft.Practices.Unity.InterceptionExtension.RuleDrivenPolicy
instances.

For	more	information	about	configuring	a	container	see	Configuring	a
Container	for	Interception	and	Configuring	Unity.

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Interception with a Container'%0AEntLib50_20b2c058-da8b-43ba-b0b5-40d919915481%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Interception	and	Policy	Injection

Policy	injection	by	a	combination	of	Unity	and	the	patterns	&	practices
Enterprise	Library	uses	a	set	of	call	handlers	and	the	equivalent	call	handler
attributes	in	conjunction	with	the	underlying	Unity	interception	mechanism.
Interception	enables	you	to	effectively	capture	calls	to	objects	and	provide
additional	functionality	to	the	target	object	by	using	behaviors	and	call	handlers
in	the	pipeline	to	define	and	manage	the	results	of	the	interception.	In	Enterprise
Library,	policy	injection	is	just	one	implementation	of	a	Unity	interception
behavior.	The	PolicyInjectionBehavior	captures	calls	to	objects	you	resolve
through	the	container,	and	applies	a	policy	that	uses	call	handlers	and	matching
rules	inherited	from	Unity	to	define	its	policy	injection	behavior	on	a	per-
method	basis.

Typically,	you	will	use	this	technique	to	change	the	behavior	of	existing	objects,
or	to	implement	the	management	of	crosscutting	concerns	through	reusable
handlers.	You	can	specify	how	to	match	the	target	object	using	a	wide	range	of
matching	rules,	and	construct	a	behavior	which	is	effectively	a	policy	pipeline
that	contains	one	or	more	call	handlers.

Calls	to	the	intercepted	methods	or	properties	of	the	target	object	are	passed
through	the	call	handlers	in	the	order	in	which	you	add	them	to	the	pipeline,	and
returned	through	them	in	the	reverse	order.	Your	call	handlers	can	access	the
values	in	the	call,	change	these	values,	and	control	execution	of	the	call.	For
example,	the	call	handlers	might	authorize	users,	validate	parameter	values,
cache	the	return	value,	and,	if	the	logic	so	dictates,	shortcut	execution	so	that	the
target	method	does	not	actually	execute.

Unity	enables	you	to	specify	and	customize	any	interception	behavior	and	also
enables	you	to	use	interception	with	or	without	a	container.	The	earlier	approach
to	policy	injection	is	still	supported,	but	you	can	also	provide	policy	injection	by
using	interception	behaviors.

For	information	on	using	behaviors	see	Behaviors	for	Interception.

For	information	on	using	interception	without	a	container	see	the	"Stand-Alone
Unity	Interception"	section	in	the	Using	Interception	in	Applications	topic.

This	topic	contains	the	following	sections	that	describe	using	policy	injection

http://msdn.microsoft.com/entlib/

and	containers	with	interception:
Process	Flow	for	Interception	Using	Policy	Injection
Using	the	Built-In	Policy	Injection	Behavior
Interception	Policies
Matching	Rules
Call	Handlers	and	Policy	Injection
More	Information

Process	Flow	for	Interception	Using	Policy	Injection

Using	the	Built-In	Policy	Injection	Behavior

Interception	Policies

Matching	Rules

Call	Handlers	and	Policy	Injection

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Interception and Policy Injection'%0AEntLib50_7a2c7fa6-28c2-479e-8df9-b4651824eb94%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Policy	Injection	Matching	Rules

Unity	includes	matching	rule	implementations	that	provide	a	wide	range	of
capabilities	for	selecting	the	objects	and	their	members	to	which	Unity	will	add
a	handler	pipeline.	Interception	policies	use	the	matching	rules	to	define	which
methods	will	be	intercepted.

A	matching	rule	is	essentially	a	predicate	that	Unity	checks	each	time	it
intercepts	object	creation.	If	all	of	the	specified	matching	rules	evaluate	to	True
for	any	particular	invocation,	the	application	block	will	create	and	add	the
handler	pipeline	for	that	policy.	If	any	one	of	the	matching	rules	does	not
evaluate	to	true,	Unity	generates	an	instance	of	the	original	object	or	a	derived
object,	and	does	not	create	a	proxy	or	a	handler	pipeline.

The	following	table	lists	the	matching	rules	provided	with	Unity,	and
summarizes	their	use	and	parameters.

Matching	rule Description

Assembly
Matching	Rule

Selects	classes	in	a	specified	assembly.

Custom	Attribute
Matching	Rule

Selects	classes	or	members	that	have	an	arbitrary
attribute	applied.

Member	Name
Matching	Rule

Selects	class	members	based	on	the	member	name.

Method	Signature
Matching	Rule

Selects	class	methods	that	have	a	specific	signature.

Namespace
Matching	Rule

Selects	classes	based	on	the	namespace	name.

Parameter	Type
Matching	Rule

Selects	class	members	based	on	the	type	name	of	a
parameter	for	a	member	of	the	target	object.

Property
Matching	Rule

Selects	class	properties	by	name	and	accessor	type.

Return	Type Selects	class	members	that	return	an	object	of	the

Matching	Rule specified	type.

Tag	Attribute
Matching	Rule

Selects	class	members	that	carry	a	Tag	attribute	with
the	specified	name.

Type	Matching
Rule

Selects	classes	that	are	of	a	specified	type.

The	following	sections	describe	the	built-in	matching	rules	in	detail:
The	Assembly	Matching	Rule
The	Custom	Attribute	Matching	Rule
The	Member	Name	Matching	Rule
The	Method	Signature	Matching	Rule
The	Namespace	Matching	Rule
The	Parameter	Type	Matching	Rule
The	Property	Matching	Rule
The	Return	Type	Matching	Rule
The	Tag	Attribute	Matching	Rule
The	Type	Matching	Rule

You	can	also	create	and	use	custom	matching	rules.	For	more	information,	see
Creating	Policy	Injection	Matching	Rules.	For	information	about	using
interception,	see	Using	Interception	and	Policy	Injection.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Policy Injection Matching Rules'%0AEntLib50_412f3261-e0f5-4998-8373-5dc2ebda16af%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Assembly	Matching	Rule

The	assembly	matching	rule	allows	developers,	operators,	and	administrators	to
select	target	classes	based	on	the	assembly	name	or	by	specifying	a	reference	to
an	assembly.

Behavior	of	the	Assembly	Matching	Rule

Creating	an	Assembly	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Assembly Matching Rule'%0AEntLib50_4c47f30e-455d-4056-b773-69e6618c96fd%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Custom	Attribute	Matching	Rule

The	custom	attribute	matching	rule	allows	developers,	operators,	and
administrators	to	select	target	classes	based	on	a	custom	attribute	type	that	is
applied	to	class	members.

Behavior	of	the	Custom	Attribute	Matching	Rule

Creating	a	Custom	Attribute	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Custom Attribute Matching Rule'%0AEntLib50_e3c1e47a-2b21-4bff-8a1a-34f9191e4e65%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Member	Name	Matching	Rule

The	member	name	matching	rule	allows	developers,	operators,	and
administrators	to	select	target	classes	based	on	the	name	of	the	class	members
(methods	or	properties),	and	allows	you	to	use	wildcard	characters	for	the
member	name.

Behavior	of	the	Member	Name	Matching	Rule

Creating	a	Member	Name	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Member Name Matching Rule'%0AEntLib50_78c97c0f-62c4-4008-81c2-858b34e954cc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Method	Signature	Matching	Rule

The	method	signature	matching	rule	allows	developers,	operators,	and
administrators	to	select	target	classes	based	on	the	name	and	signature	(the	list
of	parameter	types)	of	its	members.	This	rule	allows	the	use	of	wildcard
characters	for	the	member	names.

Behavior	of	the	Method	Signature	Matching	Rule

Creating	a	Method	Signature	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Method Signature Matching Rule'%0AEntLib50_ebe602cf-d251-4bec-ad5c-d41bbef7550b%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Namespace	Matching	Rule

The	namespace	matching	rule	allows	developers,	operators,	and	administrators
to	select	target	classes	based	on	their	namespace,	using	wildcard	characters	for
the	child	namespace	names	but	not	for	the	root	namespace	name.

Behavior	of	the	Namespace	Matching	Rule

Creating	a	Namespace	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Namespace Matching Rule'%0AEntLib50_f5b9b0a8-66fd-4c47-b379-b49865ccc2c9%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Parameter	Type	Matching	Rule

The	parameter	type	matching	rule	allows	developers,	operators,	and
administrators	to	select	target	classes	based	on	the	type	name	of	a	parameter	for
a	member	of	the	target	object.

Behavior	of	the	Parameter	Type	Matching	Rule

Creating	a	Parameter	Type	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Parameter Type Matching Rule'%0AEntLib50_ff549bb6-e05a-4ea9-82e8-11516e1eafea%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Property	Matching	Rule

The	property	matching	rule	allows	developers,	operators,	and	administrators	to
select	individual	properties	of	the	target	classes	based	on	their	name,	including
using	wildcard	characters,	and	the	combination	of	accessors	they	implement.

Behavior	of	the	Property	Matching	Rule

Creating	a	Property	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Property Matching Rule'%0AEntLib50_07573c82-9f99-4474-8e16-d2b8b6ea62a8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Return	Type	Matching	Rule

The	return	type	matching	rule	allows	developers,	operators,	and	administrators
to	select	target	classes	based	on	the	type	or	the	type	name	of	the	return	value,
using	wildcard	characters	if	required.

Behavior	of	the	Return	Type	Matching	Rule

Creating	a	Return	Type	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Return Type Matching Rule'%0AEntLib50_4b09e824-1e73-4230-988f-9a8ed8f5968a%0APlease provide details of the error you have located...%0A

Copy	Code

Copy	Code

Microsoft	Enterprise	Library	5.0

The	Tag	Attribute	Matching	Rule

The	tag	attribute	matching	rule	allows	developers,	operators,	and	administrators
to	select	target	classes	based	on	the	name	of	an	attribute	of	type	Tag	that	is
applied	to	a	class,	or	to	members	(methods	or	properties)	within	a	class.	For
example,	the	following	code	shows	a	class	with	two	tagged	members.
C#

public	class	AnnotatedWithTags

{

		[Tag("MyTagName")]

		public	void	TaggedMethod(string	parameter1)

		{	

				...	method	implementation	here	...

		}

		[Tag("AnotherTagName")]

		public	string	TaggedProperty

		{

					...	property	implementation	here	...	

		}

}

Visual	Basic

Public	Class	AnnotatedWithTags

		<Tag("MyTagName")>	_

		Public	Sub	TaggedMethod(parameter1	As	String)

				...	method	implementation	here	...

		End	Sub

		<Tag("AnotherTagName")>	_

		Public	Property	TaggedProperty	As	String

Copy	Code

Copy	Code

					...	property	implementation	here	...	

		End	Property

End	Class

The	following	code	shows	a	tagged	class.
C#

[Tag("MyClassTagName")]

public	class	AnnotatedWithTagOnClass

{

		...	class	implementation	here	...

}

Visual	Basic

<Tag("MyClassTagName")>	_

Public	Class	AnnotatedWithTagOnClass

		...	class	implementation	here	...

End	Class

Behavior	of	the	Tag	Attribute	Matching	Rule

Creating	a	Tag	Attribute	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Tag Attribute Matching Rule'%0AEntLib50_fc17bbda-834f-4f22-88f3-ccbba75bd917%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Type	Matching	Rule

The	type	matching	rule	allows	developers,	operators,	and	administrators	to
specify	the	target	class	using	the	namespace	and	class	name	of	the	target	type.

Behavior	of	the	Type	Matching	Rule

Creating	a	Type	Matching	Rule	at	Run	Time
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Type Matching Rule'%0AEntLib50_f745650b-dd5f-4703-be36-7b3ece55cb19%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Attribute-Driven	Policies

A	common	scenario	when	using	any	policy	injection	framework	is	the
requirement	to	specify	policies	for	classes	and	their	members	using	attributes
directly	applied	to	the	appropriate	classes	and	members.	Unity	interception
supports	this	technique—it	actively	discovers	classes	and	members	with
attributes	that	define	call	handlers	and	applies	the	appropriate	policies.

Developers	specify	handlers	for	classes	and	their	members	(methods	and
properties)	using	call	handler	attributes.	Each	attribute	automatically	instantiates
the	appropriate	call	handler,	and	applies	the	values	of	the	attribute	parameters	to
the	properties	of	the	call	handler.	Using	directly	applied	attributes	has	the
following	advantages:

Developers	can	ensure	that	Unity	adds	handlers	that	are	specifically
required	in	all	circumstances	and	which	should	never	be	removed	from
the	handler	pipeline.
Developers	can	fix	the	settings	or	values	of	specific	parameters	on
classes	and	class	members—for	example,	by	defining	that	specific
parameter	values	must	always	be	greater	than	zero	or	that	logging	will
always	occur	for	specific	methods.
Developers	can	prevent	the	application	of	a	handler	pipeline	to	specific
methods	and	properties,	or	to	whole	classes,	using	the
ApplyNoPoliciesAttribute	attribute.

However,	applying	policies	through	attributes	applied	directly	to	members	of
the	target	classes	means	that	developers,	administrators,	and	operators	can	no
longer	control	the	behavior	of	interception	without	changing	the	source	code
and	recompiling	the	solution.	In	addition,	using	the	ApplyNoPoliciesAttribute
attribute	may	cause	unexpected	behavior	for	developers,	administrators,	and
operators,	who	may	attempt	to	add	policies	to	an	application	without	being
aware	of	the	applied	attributes.

Policy	and	Handler	Precedence	with	Attributes

Example	of	an	Attribute-Driven	Policy
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Attribute-Driven Policies'%0AEntLib50_456aac54-4ba3-4904-adae-36fb5227fabc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Enterprise	Library	Call	Handlers

The	patterns	&	practices	Enterprise	Library	includes	a	set	of	call	handlers	and
the	equivalent	call	handler	attributes	designed	for	use	with	the	Unity
PolicyInjectionBehavior.	This	section	discusses	some	of	the	common
scenarios	for	using	the	Policy	Injection	Application	Block	call	handlers.	It
examines	the	following	common	scenarios	where	the	block	can	simplify	and
accelerate	application	development:

Logging	Method	Invocation	and	Property	Access
Handling	Exceptions	in	a	Structured	Manner
Validating	Parameter	Values
Authorizing	Method	and	Property	Requests
Measuring	Target	Method	Performance

http://msdn.microsoft.com/entlib/

Logging	Method	Invocation	and	Property	Access

Handling	Exceptions	in	a	Structured	Manner

Validating	Parameter	Values

Authorizing	Method	and	Property	Requests

Measuring	Target	Method	Performance

More	Information
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Enterprise Library Call Handlers'%0AEntLib50_969b6f02-4da3-41d1-8527-c9e0009d1632%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Authorization	Handler

The	authorization	handler	provides	the	capability	to	check	that	the	current	user
(the	security	principal	for	the	current	thread)	has	the	requisite	permission	to
access	the	selected	object	method	or	property.	This	handler	uses	the	Security
Application	Block	and	takes	advantage	of	the	features	that	it	exposes.

The	authorization	handler	applies	the	security	check	before	invocation	of	the
selected	method	or	setting	of	the	selected	property	of	the	target	object.	If	the
current	user	does	not	have	permission	to	access	the	method	or	property	accessor,
the	authorization	handler	aborts	execution	during	the	preprocessing	stage	and
does	not	invoke	the	target	method	or	set	the	target	property.	It	also	generates	an
UnauthorizedAccessException	and	packages	it	into	the	message	passed	back
to	the	previous	handler	in	the	pipeline.

Note:
This	call	handler	is	implemented	in	the
Microsoft.Practices.EnterpriseLibrary.Security.PolicyInjection	namespace	of
the	Security	Application	Block	in	the
Microsoft.Practices.EnterpriseLibrary.Security.dll	assembly.

Behavior	of	the	Authorization	Handler

Creating	Instances	of	the	Authorization	Handler

Using	the	Authorization	Handler	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Authorization Handler'%0AEntLib50_f27ca9a4-3284-4917-91b9-f2b8c73f24f0%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Exception	Handling	Handler

The	exception	handling	handler	provides	the	capability	to	manage	and	process
exceptions	in	a	standard	way.	This	handler	uses	the	Exception	Handling
Application	Block,	taking	advantage	of	the	wide	range	of	options	that	it
supports.

The	exception	handler	applies	after	invocation	of	the	selected	method	or	access
to	the	selected	property	of	the	target	object.	If	the	method	or	property	accessor
raises	an	exception,	the	exception	handling	handler	will	invoke	a	named
exception	handling	policy	defined	within	the	Exception	Handling	Application
Block.	This	policy	may	ignore	the	exception,	return	the	original	exception,	or
replace	it	with	a	new	exception.	The	exception	handling	handler	then	packages
the	exception	(if	the	Exception	Handling	Application	Block	returns	one)	into	the
message	passed	back	to	the	previous	handler	in	the	chain.

Each	instance	of	the	exception	handling	handler	maintains	its	own	hierarchy	of
exception	policies	and	any	dependent	objects.	When	using	the	logging	handler
with	the	Exception	Handling	Application	Block,	each	exception	handling
handler	instance	will	contain	its	own	LogWriter	instance	and	set	of
TraceListeners.	If	the	Logging	Application	Block	is	configured	to	use	a	flat	file
trace	listener	or	a	rolling	flat	file	trace	listener,	you	may	see	multiple	log	files
with	GUIDs	in	their	file	names	because	multiple	instances	of	the	trace	listeners
are	not	able	to	write	to	the	configured	log	file	at	the	same	time.

Note:
This	call	handler	is	implemented	in	the
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.PolicyInjection
namespace	of	the	Exception	Handling	Application	Block	in	the
Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.dll	assembly.

Behavior	of	the	Exception	Handling	Handler

Creating	Instances	of	the	Exception	Handling	Handler

Using	the	Exception	Handling	Handler	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Exception Handling Handler'%0AEntLib50_d874dee7-1158-4cd7-900a-d592b5da5e69%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Logging	Handler

The	logging	handler	provides	the	capability	to	write	log	messages	and	trace
messages	as	the	client	code	invokes	the	selected	method	or	accesses	the	selected
property	of	the	target	object.	This	handler	uses	the	Logging	Application	Block,
taking	advantage	of	the	wide	range	of	log	types,	formatting,	and	tracing	features
that	it	provides.

The	logging	handler	applies	both	before	and	after	the	invocation	of	the	selected
method	or	accessing	the	selected	property	of	the	target	object,	depending	on
settings	in	the	application	configuration.

Note:
This	call	handler	is	implemented	in
Microsoft.Practices.EnterpriseLibrary.Logging.PolicyInjection	namespace	of
the	Logging	Application	Block	in	the	assembly
Microsoft.Practices.EnterpriseLibrary.Logging.dll.

The	logging	handler	will	initialize	the	Logging	Application	Block	using	the
same	configuration	source	as	used	to	create	the	logging	handler.	By	default,	this
will	be	the	default	configuration	source.	It	is	possible	to	specify	an	alternative
configuration	source	if	you	instantiate	the	logging	handler	yourself	using	code.
If	you	do	this,	you	should	create	the	configuration	source	once	and	use	the	same
instance	each	time	you	create	a	logging	handler	to	prevent	performance	issues
and	memory	leaks.

Note:
The	Enterprise	Library	5.0	Configuration	tool	does	not	support
Environmental	Overrides	for	the	logging	handler	Categories.	This	means
you	will	not	be	able	to	use	the	configuration	tools	at	design	time	to	customize
the	run-time	settings	of	your	logging	handler	Categories	configuration	to
suit	a	particular	environment	such	as	a	test	or	instrumentation	environment.

Behavior	of	the	Logging	Handler

Creating	Instances	of	the	Logging	Handler

Using	the	Logging	Handler	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Logging Handler'%0AEntLib50_e7d4bacf-a864-4a50-b7c3-88acec5c4d7d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Performance	Counter	Handler

The	performance	counter	handler	increments	a	specific	counter	each	time	it
executes	in	response	to	invocation	of	the	selected	method	or	setting	of	the
selected	property.	This	handler	uses	the	instrumentation	features	that	are	part	of
the	Enterprise	Library	Core.

The	performance	counter	handler	applies	both	before	and	after	invocation	of	the
selected	method	or	access	to	the	selected	property	of	the	target	object.	The
handler	can	increment	different	types	of	counters	and	increment	more	than	one
counter	each	time	(such	as	a	single	instance	and	a	total	counter).

Note:
This	call	handler	is	implemented	in	the
Microsoft.Practices.EnterpriseLibrary.PolicyInjection.CallHandlers
namespace	of	the	Microsoft.Practices.EnterpriseLibrary.PolicyInjection.dll
assembly.

Installing	and	Removing	Performance	Counters

Behavior	of	the	Performance	Counter	Handler

Creating	Instances	of	the	Performance	Counter	Handler

Using	the	Performance	Counter	Handler	Attribute
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Performance Counter Handler'%0AEntLib50_7f7053e1-9db6-433c-878f-b8a41b1d2a49%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

The	Validation	Handler

The	validation	handler	provides	the	capability	to	test	whether	the	value	provided
for	the	selected	property,	or	the	values	specified	for	the	parameters	of	the
selected	method,	are	valid	against	specific	rules.	This	handler	uses	the
Validation	Application	Block,	taking	advantage	of	the	wide	range	of	capabilities
that	it	offers.

The	validation	handler	applies	the	validation	before	invoking	the	method	or
setting	the	property	of	the	target	object.	If	validation	fails,	the	validation	handler
aborts	execution	of	the	preprocessing	handler	pipeline,	does	not	invoke	the
method	or	set	the	property,	and	raises	an	ArgumentValidationException.

Note:
This	call	handler	is	implemented	in
Microsoft.Practices.EnterpriseLibrary.Validation.PolicyInjection	namespace
of	the	Validation	Application	Block,	in	the	assembly
Microsoft.Practices.EnterpriseLibrary.Validation.dll.

Behavior	of	the	Validation	Handler

Creating	Instances	of	the	Validation	Handler

Using	the	Validation	Handler	Attribute

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'The Validation Handler'%0AEntLib50_ad452cb9-20c7-4db2-9801-73417714f46c%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Design	of	Unity

This	topic	describes	the	design	goals,	the	architecture,	and	the	design	highlights
of	Unity.	You	do	not	have	to	understand	the	design	to	use	Unity;	however,	this
topic	will	help	you	to	understand	how	it	works	and	how	it	interacts	with	the
underlying	ObjectBuilder	subsystem.

Design	Goals

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Design of Unity'%0AEntLib50_d07ea269-a63f-4817-8dd0-10019c9914b4%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Extending	and	Modifying	Unity

If	required,	you	can	extend	and	modify	Unity	to	better	suit	your	own
requirements.	You	can	extend	Unity	by	doing	the	following:

Creating	Lifetime	Managers	that	control	how	and	when	the	container
will	dispose	of	instances	of	objects	it	resolves.
Creating	and	Using	Container	Extensions	that	can	change	the	behavior	of
the	container,	the	instance	generation	mechanism,	and	the	dependency
injection	and	interception	features.
Creating	Policy	Injection	Matching	Rules	that	provides	alternative
techniques	for	selecting	classes	and	class	members	to	which	Unity	will
attach	a	handler	pipeline.
Creating	Interception	Policy	Injection	Call	Handlers	that	perform	the
task-specific	processing	you	require	for	method	invocations	and	property
accessors.
Creating	Interception	Handler	Attributes	that	cause	Unity	to	add	built-in
or	custom	call	handlers	to	the	handler	pipeline.	If	you	create	a	custom
handler,	you	may	also	want	to	create	a	custom	attribute	that	developers
can	use	to	apply	your	handler	by	adding	the	attribute	directly	to	classes
or	class	members	within	the	source	code	of	an	application.
Creating	Interception	Behaviors	that	describe	what	to	do	when	an	object
is	intercepted.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Extending and Modifying Unity'%0AEntLib50_13f11174-8fd1-4406-8bc7-9da9c762811d%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Lifetime	Managers

Unity	supports	several	approaches	for	registering	classes,	interfaces,	and
instances	of	existing	objects.	You	can	use	the	RegisterType	and
RegisterInstance	methods	to	register	object	instances	at	run	time,	or	specify	the
mappings	and	registrations	at	design	time	in	configuration.	You	can	also	specify
a	lifetime	manager	with	all	of	these	approaches	that	will	control	how	Unity
resolves	instances	of	the	specified	types	and	how	it	holds	references	to	these
instances.	The	built-in	lifetime	managers	allow	you	to	specify	objects	as
singletons,	with	weak	references,	or	as	per-thread	instances.	For	more	details,
see	Understanding	Lifetime	Managers.

You	can	create	custom	LifetimeManager	classes	if	you	require	additional
functionality	not	available	in	the	default	lifetime	managers.	Documentation	to
help	you	do	this	is	available	from	the	Unity	Community	Web	site	on	CodePlex.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/unity/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Lifetime Managers'%0AEntLib50_35ea2347-02e3-4d6a-a787-cd3bc7f89538%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	and	Using	Container	Extensions

You	can	create	your	own	custom	Unity	container	extensions,	or	use	container
extensions	created	by	third	parties	with	Unity.	Unity	uses	default	container
extensions	to	implement	its	own	functionality.	For	example,	the	interception
mechanism	provided	by	Unity	is	implemented	as	a	container	extension.

Documentation	to	help	you	understand	ObjectBuilder,	and	the	steps	required	to
create	custom	container	extensions,	is	available	from	the	Unity	Community
Web	site	on	CodePlex.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/unity/
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating and Using Container Extensions'%0AEntLib50_d2dab81f-3acb-40ba-8fe5-5253e948e6fa%0APlease provide details of the error you have located...%0A

Copy	Code

Copy	Code

Microsoft	Enterprise	Library	5.0

Creating	Policy	Injection	Matching	Rules

Unity	defines	an	interface	named	IMatchingRule,	which	all	classes	that
implement	matching	rules	must	implement.	This	interface	declares	a	single
method	named	Matches	that	takes	a	MethodBase	instance	and	returns	a
Boolean	value.
C#

public	interface	IMatchingRule

{

		bool	Matches(MethodBase	member);

}

Visual	Basic

Public	Interface	IMatchingRule

		Function	Matches(ByVal	member	As	MethodBase)	As	Boolean

End	Interface

Inside	a	concrete	implementation	of	this	interface,	a	custom	matching	rule	class
can	access	details	of	the	current	member	(method	or	property)	of	the	target
object	and	determine	whether	Unity	should	add	a	handler	pipeline	to	this
member.	The	Matches	method	should	return	True	if	the	current	member
matches	the	requirements	of	this	matching	rule;	if	the	current	member	does	not
match	the	requirements	of	this	matching	rule,	it	should	return	False.

Note:
Remember	that	there	may	be	several	matching	rules	defined	for	a	policy,	and
every	one	must	return	True	when	Unity	calls	their	Matches	method	in	order
for	Unity	to	add	the	handler	pipeline	to	the	target	class	member.

Example:	The	TagAttributeMatchingRule
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Policy Injection Matching Rules'%0AEntLib50_17137b99-e7a8-4944-b784-87db6ab429af%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Interception	Policy	Injection	Call	Handlers

To	create	a	call	handler	for	policy	injection,	you	must	understand	the	way	that
Unity	passes	calls	through	the	policy	pipeline.	This	topic	explains	how	the
pipeline	executes	call	handlers,	and	how	it	can	block	or	abort	execution	when	an
error	occurs,	or	on	demand	(such	as	when	a	validation	handler	detects	a
validation	error	or	an	authorization	handler	detects	an	unauthorized	user).	This
topic	contains	the	following	sections:

The	ICallHandler	Interface	and	Pipeline	Execution
Outline	Implementation	of	a	Call	Handler
Exceptions	and	Aborted	Pipeline	Execution

The	ICallHandler	Interface	and	Pipeline	Execution

Outline	Implementation	of	a	Call	Handler

Exceptions	and	Aborted	Pipeline	Execution
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Interception Policy Injection Call Handlers'%0AEntLib50_587afe3d-d6c7-447f-bb9b-8fd750174bcc%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Interception	Handler	Attributes

Handler	attributes	allow	developers	to	apply	handlers	to	classes	and	class
members	directly,	without	configuring	them	in	the	application	configuration
file.	Developers	creating	custom	handlers	may	want	to	provide	an	attribute	for
their	handlers.	To	build	a	custom	handler	attribute,	you	create	a	class	that
derives	from	the	HandlerAttribute	base	class	shown	here.
C#

public	abstract	class	HandlerAttribute	:	Attribute

{

		///	Derived	classes	implement	this	method.	When	called,	it	creates	a	

		///	new	call	handler	as	specified	in	the	attribute	configuration.

		///	The	parameter	"container"	specifies	the	IUnityContainer	

		///	to	use	when	creating	handlers,	if	necessary.

		///	returns	a	new	call	handler	object.

		public	abstract	ICallHandler	CreateHandler(IUnityContainer	container);

		private	int	executionorder;

		///	<summary>

		///	Gets	or	sets	the	order	in	which	the	handler	will	be	executed.

		///	</summary>

		public	int	Order

		{

				get	{	return	this.executionorder;	}

				set	{	this.order	=	value;	}

		}

}

Visual	Basic

Public	MustInherit	Class	HandlerAttribute	:	Inherits	Attribute

		'''	Derived	classes	implement	this	method.	When	called,	it	creates	a	

		'''	new	call	handler	as	specified	in	the	attribute	configuration.

		'''	The	parameter	container	specifies	the	IUnityContainer	

		'''	to	use	when	creating	handlers,	if	necessary.

		'''	Returns	a	new	call	handler	object.

		Public	MustOverride	Function	CreateHandler(container	As	IUnityContainer)	As	ICallHandler

		Private	executionorder	As	Integer

		'''	<summary>

		'''	Gets	or	sets	the	order	in	which	the	handler	will	be	executed.

		'''	</summary>

		Public	Property	Order	As	Integer

				Get	

						Return	Me.	executionorder	

				End	Get

				Set	

						Me.order	=	value

				End	Set

		End	Property

End	Class

In	your	custom	attribute	class,	you	must	implement	one	or	more	constructors
that	accept	values	from	the	attribute,	and/or	implement	named	properties	that
the	developer	can	use	to	set	the	properties	of	the	class.	Then	you	simply
override	the	CreateHandler	abstract	method	declared	within	the	base	class	to
create	and	return	the	required	handler	class	as	an	ICallHandler	instance.

Example	Call	Handler	Attribute
As	an	example,	you	could	create	a	call	handler	attribute	for	a	call	handler
similar	to	that	described	in	the	topic	Creating	Interception	Policy	Injection	Call
Handlers	that	prevents	invocation	of	business	processes	on	weekend	days.	In
this	case,	assume	that	the	handler	has	a	property	named	SaturdayOK	that
allows	you	to	set	it	to	allow	calls	to	occur	on	a	Saturday.	The	call	handler	has
two	constructors:	one	that	takes	a	parameter	that	sets	the	value	of	the
SaturdayOK	property	to	the	specified	value	(true	or	false),	and	one	that	takes
no	parameters	and	sets	the	default	value	(false)	for	the	SaturdayOK	property.
The	following	code	shows	an	implementation	of	the
WeekdayOnlyCallHandlerAttribute.
C#

[AttributeUsage(AttributeTargets.Class	|	AttributeTargets.Property	|	AttributeTargets.Method)]

public	class	WeekdayOnlyCallHandlerAttribute	:	HandlerAttribute

{

		private	bool	allowSaturday;

		public	WeekdayOnlyCallHandlerAttribute()

		{

				allowSaturday	=	false;

		}

		public	WeekdayOnlyCallHandlerAttribute(bool	SaturdayOK)

		{

				allowSaturday	=	SaturdayOK;

		}

		public	override	ICallHandler	CreateHandler(IUnityContainer	ignored)

		{

				return	new	WeekdayOnlyCallHandler(allowSaturday,	Order);

		}

}

Visual	Basic

<AttributeUsage(AttributeTargets.Class	Or	AttributeTargets.Property	Or	AttributeTargets.Method)>	_

Public	Class	WeekdayOnlyCallHandlerAttribute	:	Inherits	HandlerAttribute

				Private	allowSaturday	As	Boolean

				Public	Sub	New()

								allowSaturday	=	False

				End	Sub

				Public	Sub	New(SaturdayOK	As	Boolean)

								allowSaturday	=	SaturdayOK

				End	Sub

				Public	Overrides	Function	CreateHandler(ignored	As	IUnityContainer)	As	ICallHandler

								Return	New	WeekdayOnlyCallHandler(allowSaturday,	Order)

				End	Function

End	Class

Notice	the	AttributeUsage	attribute	that	specifies	where	developers	can	apply
the	new	custom	attribute	(on	a	class,	a	property,	or	a	method),	and—in	this	case
—the	provision	of	two	constructors.	The	first	(default)	constructor	uses	the
default	value	(false),	while	the	second	accepts	a	value	for	the	SaturdayOK
property.	The	CreateHandler	method	override	instantiates	the
WeekdayOnlyCallHandler	class	with	the	appropriate	values	and	returns	this	as
an	ICallHandler	reference.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Interception Handler Attributes'%0AEntLib50_f9822e7e-003d-482d-9d72-5f795704367a%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Creating	Interception	Behaviors

Unity	uses	the	Interceptor	class	to	specify	how	interception	happens,	and	the
InterceptionBehavior	class	to	describe	what	to	do	when	an	object	is
intercepted.	Unity	interception	utilizes	a	behavior	pipeline	to	for	the	behaviors.
The	Interception	Behavior	Pipeline	maintains	a	list	of	interception	behaviors
and	manages	them,	calling	them	in	the	proper	order	with	the	correct	inputs.

For	information	on	the	details	about	interception	behaviors	see	Interception	with
Unity	and	Behaviors	for	Interception.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Creating Interception Behaviors'%0AEntLib50_d2ef0985-d33a-422c-b202-b0f47dfa316e%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Deployment	and	Operations

When	you	use	Unity	in	your	applications,	you	must	deploy	the	required
assemblies	with	your	application	or	install	the	assemblies	on	the	target	computer
in	the	global	assembly	cache	(GAC).	You	must	include	the	assembly	named
Microsoft.Practices.Unity.dll.	If	you	are	using	interception,	you	will	also
require	the	assembly	named	Microsoft.Practices.Unity.Interception.dll.

You	can	deploy	an	application	that	uses	Unity	in	one	of	two	configurations:
As	private	assemblies	in	the	application	folder	hierarchy
As	shared	assemblies	in	any	file	system	location	or	in	the	global
assembly	cache

For	advice	on	using	Unity	with	applications	that	run	in	partial	trust	modes,	see
Using	Unity	in	Partial	Trust	Environments.

For	advice	on	updating	existing	versions	of	Unity	assemblies,	see	Updating	the
Unity	Assemblies.

When	you	compile	the	installed	version	of	Unity	source	code,	the	assemblies
produced	will	not	be	strong	named.	As	a	result,	they	cannot	be	installed	in	the
global	assembly	cache,	nor	will	they	have	the	other	benefits	associated	with
strong-named	assemblies.	To	learn	how	to	strong	name	Unity	assemblies,	see
Strong	Naming	the	Unity	Assemblies.

Note:
Unity	throws	(and	handles	internally)	LockSynchronization	exceptions.
LockSynchronization	exceptions	may	be	observed	in	the	debugger	output
but	they	are	handled	internally	and	no	action	is	required.

Using	XCopy

Using	the	Global	Assembly	Cache

http://msdn2.microsoft.com/en-us/library/ms954585.aspx

Versioning
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/wd40t7ad(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/aa288479.aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Deployment and Operations'%0AEntLib50_11c11eec-a77e-4060-b08b-77e389d1a916%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Using	Unity	in	Partial	Trust	Environments

Unity	uses	dynamically	generated	methods	to	perform	injection,	and	the	.NET
Framework	security	model	imposes	some	security	limitations	that	you	should	be
aware	of	if	you	want	to	use	Unity	in	applications	that	will	run	in	less	than	full
trust	environments.	The	limitation	when	using	Unity	in	a	partial	trust
environment	is	that	you	cannot	register	and	use	mappings	using	the
RegisterType	methods	where	the	target	class	is	internal	(C#),	Friend	(Visual
Basic	.NET),	private	(C#),	or	Private	(Visual	Basic	.NET).

For	more	information	about	security	issues	when	using	dynamically	generated
Microsoft	intermediate	language	(MSIL)	code,	see	Security	Issues	in	Reflection
Emit	for	.NET	3.5	and	Security	Issues	in	Reflection	Emit	for	.NET	2.0.

To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://msdn2.microsoft.com/en-us/library/9syytdak.aspx
http://msdn2.microsoft.com/en-us/library/9syytdak(VS.80).aspx
http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Using Unity in Partial Trust Environments'%0AEntLib50_d76a8dac-cfa3-4884-8156-14d96324f732%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Updating	the	Unity	Assemblies

If	an	upgraded	version	of	Unity	becomes	available,	you	can	install	the	new
version	and	have	all	applications	use	the	updated	assembly.	However,	if	the	new
version	introduces	compatibility	problems	for	certain	applications,	you	can
install	the	new	version	in	the	global	assembly	cache	and	configure	some
applications	to	use	the	updated	version,	while	others	continue	to	use	the	earlier
version.

Updating	Private	Assemblies

Updating	Shared	Assemblies
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Updating the Unity Assemblies'%0AEntLib50_935dd061-fa01-4f9b-a330-1a89e3397346%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Strong	Naming	the	Unity	Assemblies

If	you	build	Unity	from	the	source	code,	you	may	decide	to	apply	strong	naming
to	the	assemblies.	A	strong	name	consists	of	the	assembly's	identity—the	simple
text	name,	version	number,	and	culture	information	(if	provided)—plus	a	public
key	and	a	digital	signature.	The	strong	name	is	generated	from	an	assembly	file
(the	file	that	contains	the	assembly	manifest,	which	in	turn	contains	the	names
and	hashes	of	all	the	files	that	make	up	the	assembly),	using	the	corresponding
private	key.	Signing	an	assembly	with	a	strong	name	ensures	that	its	name	is
globally	unique.	Assemblies	with	the	same	strong	name	are	expected	to	be
identical.

For	example,	if	you	intend	to	share	Unity	assemblies	among	several
applications,	you	can	install	them	into	the	global	assembly	cache.	Each
assembly	in	the	global	assembly	cache	must	have	a	globally	unique	name.	You
can	use	a	strong	name	to	ensure	this.	Even	if	you	only	use	the	assemblies	within
a	single	application,	you	can	strong	name	the	assemblies	to	ensure	that	your
application	uses	the	correct	version	of	the	assemblies.

Strong	names	satisfy	the	following	requirements:
Strong	names	guarantee	name	uniqueness	by	relying	on	unique	key
pairs.	No	one	can	generate	the	same	assembly	name	that	you	can	because
an	assembly	generated	with	one	private	key	has	a	different	name	than	an
assembly	generated	with	another	private	key.
Strong	names	protect	the	version	lineage	of	an	assembly.	A	strong	name
can	ensure	that	no	one	can	produce	a	subsequent	version	of	your
assembly.	Users	can	be	sure	that	a	version	of	the	assembly	they	are
loading	comes	from	the	same	publisher	that	created	the	version
originally	provided	with	the	application.
Strong	names	provide	a	strong	integrity	check.	Passing	the	.NET
Framework	security	checks	guarantees	that	the	contents	of	the	assembly
have	not	been	changed	since	it	was	built.	However,	note	that	strong
names	themselves	do	not	imply	a	level	of	trust	such	as	the	level	provided
by,	for	example,	a	digital	signature	and	supporting	certificate.

For	information	about	deploying	assemblies	into	the	global	assembly	cache,	see
Working	with	Assemblies	and	the	Global	Assembly	Cache.

http://msdn2.microsoft.com/en-us/library/6axd4fx6.aspx

Using	Visual	Studio	to	Strong	Name	the	Unity	Assemblies
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Strong Naming the Unity Assemblies'%0AEntLib50_bb0e725c-8c94-4355-b26f-d59998cee743%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Unity	QuickStarts

The	instructions	in	this	QuickStart	topic	are	directed	at	the	Silverlight	solution.
Though	there	are	many	similarities,	some	instructions	in	this	topic,	such	as
references	to	Program.cs	or	Program.vb,	do	not	apply	to	the	Silverlight	project.
The	following	QuickStart	applications	demonstrate	some	of	the	key	features	of
Unity:

Walkthrough:	The	Unity	StopLight	QuickStart.	This	QuickStart
demonstrates	dependency	injection	techniques.	This	is	the	only
QuickStart	project	in	the	Silverlight	solution.
Walkthrough:	The	Unity	Event	Broker	Extension	QuickStart.	This
QuickStart	provides	an	example	extension	for	the	Unity	container.	The
Silverlight	solution	does	no	include	the	Event	Broker	QuickStart.

Note:
Unity	QuickStarts	are	only	available	if	you	install	the	standalone	Unity	MSI.
The	Unity	MSI	is	available	at	patterns	&	practices	-	Unity	on	CodePlex.

http://unity.codeplex.com/Project/ProjectRss.aspx?ProjectRSSFeed=codeplex://sourcecontrol/unity

Building	the	QuickStarts
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Unity QuickStarts'%0AEntLib50_d01aa11a-d50d-401c-8936-839432eb9df8%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Walkthrough:	The	Unity	StopLight	QuickStart

The	StopLight	QuickStart	demonstrates	the	ways	that	you	can	use	Unity	and	the
Unity	container	in	your	applications.	The	user	interface	is	a	simple	Windows
Forms	application	that	displays	the	three	colors	of	a	stop	light	or	traffic	light—it
shows	red,	yellow,	and	green,	in	turn,	for	specified	periods.	You	can	configure
the	display	periods	for	each	color.	The	following	illustration	shows	the	user
interface.

The	StopLight	QuickStart	demonstrates	the	following	features	of	Unity:
Registering	mappings	for	types	with	the	container
Implementing	the	Model	View	Presenter	pattern	by	injecting	a	presenter
into	the	user	interface
Injecting	a	business	component	into	objects	using	property	(setter)
injection
Implementing	a	configurable	pluggable	architecture

The	following	diagram	shows	the	classes	and	architecture	of	the	StopLight
QuickStart	application.

Registering	Mappings	for	Types	with	the	Container

Implementing	the	Model-View-Presenter	Pattern

Injecting	a	Business	Component	using	Property	(Setter)
Injection

Implementing	a	Configurable	Pluggable	Architecture
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Walkthrough: The Unity StopLight QuickStart'%0AEntLib50_8de96653-280c-450c-b8e8-543066c623a5%0APlease provide details of the error you have located...%0A

Microsoft	Enterprise	Library	5.0

Walkthrough:	The	Unity	Event	Broker	Extension	QuickStart

The	Event	Broker	Extension	QuickStart	demonstrates	how	you	can	extend	the
Unity	container	by	adding	a	custom	extension.	The	QuickStart	implements	an
event	broker	for	the	container	as	a	container	extension	and	demonstrates	the
new	extension	using	the	StopLight	application	discussed	in	Walkthrough:	The
Unity	StopLight	QuickStart.

The	Event	Broker	Extension	QuickStart	contains	five	projects:
SimpleEventBroker.	This	project	implements	a	simple	publish	and
subscribe	mechanism	that	supports	multiple	event	publishers	and
multiple	subscribers.
EventBrokerExtension.	This	project	implements	the	custom	container
extension	that	allows	applications	to	publish	and	subscribe	to	events
using	attributes	or	explicitly	using	code.
StopLight.	This	project	is	basically	the	same	as	that	described	in	the
Unity	StopLight	QuickStart,	but	it	uses	the	custom	container	extension	to
manage	the	publishing	of,	and	subscription	to,	two	events	within	the
application.
Tests.EventBrokerExtension.	A	test	fixture	for	the
EventBrokerExtension.
Tests.SimpleEventBroker.	A	test	fixture	for	the	SimpleEventBroker.

For	information	about	how	you	can	create	and	use	custom	container	extensions,
see	Creating	and	Using	Container	Extensions.

The	following	diagram	shows	the	classes	and	architecture	of	the	Event	Broker
Extension	QuickStart.

If	you	compare	this	diagram	to	the	structure	of	the	StopLight	QuickStart	shown
in	Walkthrough:	The	Unity	StopLight	QuickStart,	you	can	see	that	the
EventBroker	Extension	QuickStart	has	the	following	additional	features:

The	Program	class,	which	registers	the	type	mappings	in	the	container
and	calls	the	Resolve	method	to	instantiate	the	main	StopLight	form,
also	adds	the	SimpleEventBrokerExtension	to	the	container.
The	SimpleEventBrokerExtension,	which	inherits	from	the
UnityContainerExtension	base	class,	creates	an	instance	of	the
EventBroker	class	that	implements	the	publish	and	subscribe	pattern	for
distributed	events.
The	EventBroker	class	creates	an	instance	of	the	PublishedEvent	class
that	provides	the	facilities	for	maintaining	a	list	of	event	subscriptions
and	raising	events	to	registered	subscribers.
The	StopLightPresenter,	StopLightSchedule,	and	RealTimeTimer
classes	include	attributes	that	register	event	publications	and
subscriptions	with	the	SimpleEventBrokerExtension	class.

The	Event	Broker	Extension	QuickStart	demonstrates	the	following	features	of
Unity	and	the	custom	container	extension	mechanism:

Creating	the	custom	Unity	container	extension
Adding	an	extension	to	the	Unity	container	at	run	time
Using	the	example	Event	Broker	Extension

Creating	a	Custom	Unity	Container	Extension

Adding	an	Extension	to	the	Unity	Container	at	Run	Time

Using	the	Example	Event	Broker	Extension
To	provide	feedback,	get	assistance,	or	download	additional	content,	please	visit	the	Enterprise	Library
Community	Web	site.
To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com.

Copyright	©	2010	by	Microsoft	Corporation.	All	rights	reserved.

http://codeplex.com/entlib/
mailto:pagdoc@microsoft.com?Subject=EntLib 5.0 Documentation Feedback&Body=Topic: 'Walkthrough: The Unity Event Broker Extension QuickStart'%0AEntLib50_7b1ead79-2418-4b48-8630-e152a3a0a60e%0APlease provide details of the error you have located...%0A

	Welcome to Enterprise Library
	What Is Enterprise Library?
	About This Release of Enterprise Library
	Changes in This Release
	Target Audience and System Requirements
	Contents of Enterprise Library
	The Enterprise Library Application Blocks
	The Enterprise Library Core
	The Enterprise Library Configuration Tools
	The Instance Creation and Dependency Injection Mechanism
	Utilities, Tools, and Guidance

	Migration and Side-by-Side Execution
	Related patterns & practices Links
	Copyright and Terms of Use

	Developing Applications with Enterprise Library
	Configuring Enterprise Library
	Using the Configuration Tools
	Advanced Configuration Scenarios
	Using a Non-default Configuration Store
	Sharing Configuration Sections across Multiple Applications
	Applying a Common Configuration Structure for Applications
	Merge Rules for Inherited Configuration
	About the Configuration System

	Using Group Policy with Enterprise Library
	Configuring a Deployment Environment
	Using the Fluent Configuration API
	Using the appSettings Section
	Updating Configuration Settings at Run Time
	Encrypting Configuration Data
	Enabling Instrumentation
	Source Schema for Enterprise Library Core

	Using Enterprise Library in Applications
	Referencing Enterprise Library Assemblies
	Dependencies in Enterprise Library
	Creating and Referencing Enterprise Library Objects
	Storing a Reference to the Container
	Windows Forms and WPF Applications
	ASP.NET Web Forms Applications
	ASP.NET Dependency Injection HTTP Module
	ASP.NET Application State Extension

	WCF and ASP.NET Web Service Applications

	Creating Application Block Objects
	Injecting Resolved Types into Other Classes
	Resolving Instances of Types Using Unity
	Creating Application Block Objects Directly

	Deploying Enterprise Library
	Preparation and Versioning
	Building Enterprise Library from the Source Code
	Strong Naming the Enterprise Library Assemblies
	Updating Application Block Assemblies
	Partial Trust Environments
	Customizing the Medium Trust Policy
	Limitations When Using Partial Trust

	Administering Enterprise Library
	Extending and Modifying Enterprise Library
	Creating Custom Providers for Enterprise Library
	Enterprise Library Extension Points
	Enterprise Library Configuration Integration
	Creating a Custom Provider

	Design of Enterprise Library
	Design Patterns
	The Enterprise Library Core
	Providers
	Design Time Configuration
	The Dependency Injection Model
	Instrumentation
	Group Policy Support
	The Manageable Configuration Source Class
	Integration of Group Policy with Enterprise Library Applications

	Unit Tests

	The Caching Application Block
	What Does the Caching Application Block Do?
	When Should I Use the Caching Application Block?
	Developing Applications Using the Caching Application Block
	Entering Configuration Information
	Source Schema for the Caching Application Block

	Adding Application Code
	Selecting a Backing Store

	Key Scenarios
	Adding Items to the Cache
	Removing Items from the Cache
	Retrieving Items from the Cache
	Flushing the Cache
	Loading the Cache

	Design of the Caching Application Block
	Design of the Expiration Process
	Design of the Scavenging Process

	Extending and Modifying the Caching Application Block
	Extending the Caching Application Block

	Deployment and Operations
	Caching Application Block Performance Counters
	Caching Application Block Event Log Entries

	The Cryptography Application Block
	What Does the Cryptography Application Block Do?
	When Should I Use the Cryptography Application Block?
	Developing Applications Using the Cryptography Application Block
	Entering Configuration Information
	Source Schema for the Cryptography Application Block

	Maximizing Security
	Adding Application Code

	Key Scenarios
	Encrypting Data Using a Symmetric Provider
	Decrypting Data Using a Symmetric Provider
	Obtaining a Hash Value
	Checking Whether a Hash Value Matches Some Text

	Design of the Cryptography Application Block
	Designing for Simplified Cryptography Functionality
	Designing for Algorithm Abstraction

	Extending and Modifying the Cryptography Application Block
	Extending the Cryptography Application Block
	Modifying the Cryptography Application Block

	Deployment and Operations
	Deploying the Cryptography Application Block
	Cryptography Application Block Performance Counters
	Cryptography Application Block Event Log Entries

	The Data Access Application Block
	What Does the Data Access Application Block Do?
	When Should I Use the Data Access Application Block?
	Developing Applications Using the Data Access Application Block
	Entering Configuration Information
	Source Schema for the Data Access Application Block

	Adding Application Code
	Creating a Database Object
	Creating a DbCommand Object
	Managing Connections
	Using the TransactionScope Class
	Using the Asynchronous Data Access Methods
	Returning Data as Objects for Client Side Querying
	Defining Parameter Mappers
	Building Output Mappers
	Creating and Using Accessors
	Executing Queries without Creating an Accessor
	Executing Accessor Queries Asynchronously
	Additional Information for Accessors and Client-side Queries

	Creating Portable Database Applications
	Handling Exceptions
	Handling Parameters

	Key Scenarios
	Using a DbDataReader to Retrieve Multiple Rows
	Using a DataSet to Retrieve Multiple Rows
	Executing a Command and Accessing Output Parameters
	Executing a Command and Accessing a Single Item Result
	Performing Multiple Updates Within a Transaction
	Using a DataSet to Update a Database
	Retrieving Multiple Rows as XML
	Retrieving Data as Objects
	Performing Asynchronous Data Access

	Design of the Data Access Application Block
	Designing for Simplified Data Access
	Designing for Database-Agnostic Applications

	Extending and Modifying the Data Access Application Block
	Extending the Data Access Application Block
	Adding a New Application Block Database Provider

	Deployment and Operations
	Data Access Application Block Performance Counters
	Data Access Application Block Event Log Entries

	The Exception Handling Application Block
	What Does the Exception Handling Application Block Do?
	When Should I Use the Exception Handling Application Block?
	Developing Applications Using the Exception Handling Application Block
	Entering Configuration Information
	Source Schema for the Exception Handling Application Block

	Adding Application Code
	Determining Appropriate Exception Policies and Actions
	Specifying Different Handling Actions Based on Exception Type and Policy
	Sending an Exception to the Exception Handling Application Block
	Handling and Throwing Exceptions

	Key Scenarios
	Logging an Exception
	Replacing an Exception
	Wrapping an Exception
	Propagating an Exception
	Displaying User-Friendly Messages
	Notifying the User
	Assisting Support Staff
	Shielding Exceptions at WCF Service Boundaries

	Design of the Exception Handling Application Block
	Designing for Simplified Catch Blocks
	Designing for Encapsulation of Behavior in Reusable Handlers

	Extending and Modifying the Exception Handling Application Block
	Adding a New Exception Handler
	Adding a New Exception Formatter

	Deployment and Operations
	Exception Handling Application Block Performance Counters
	Exception Handling Application Block Event Log Entries

	The Logging Application Block
	What Does the Logging Block Do?
	When Should I Use the Logging Block?
	Developing Applications Using the Logging Application Block
	Entering Configuration Information
	Configuration Overview
	Configuring Trace Listeners
	Trace Listener Properties
	TraceOutputOptions Values

	Configuring WCF Integration Trace Listeners
	Configuring Formatters
	Configuring Trace Source Categories
	Configuring Logging Filters
	Configuring the Application Block
	Source Schema for the Logging Application Block

	Using the Distributor Service
	Adding Application Code

	Key Scenarios
	Logging to a Database
	Logging to Windows Event Log
	Logging to a Disk File
	Logging to Windows Message Queuing
	Logging to WMI
	Logging as E-mail Messages
	Populating and Raising Events from Code
	Populating a Log Message with Additional Context Information
	Tracing Activities and Propagating Context Information
	Checking Filter Status before Constructing Log Messages

	Design of the Logging Application Block
	Designing for Simple and Consistent Logging Functionality

	Extending and Modifying the Logging Application Block
	Extending the Logging Application Block

	Deployment and Operations
	Logging Application Block Performance Counters
	Logging Application Block Event Log Entries

	The Policy Injection Application Block
	The Security Application Block
	What Does the Security Application Block Do?
	When Should I Use the Security Application Block?
	Developing Applications Using the Security Application Block
	Entering Configuration Information
	Source Schema for the Security Application Block

	Adding Application Code

	Key Scenarios
	Obtaining a Temporary Token for an Authenticated User
	Authenticating a User Using a Token
	Terminating a User Session (Expiring a Token)
	Determining Whether a User Is Authorized to Perform a Task

	Design of the Security Application Block
	Designing for Simplified Authorization

	Extending and Modifying the Security Application Block
	Extending the Security Application Block

	Deployment and Operations
	Security Application Block Performance Counters
	Security Application Block Event Log Entries

	The Validation Application Block
	What Does the Validation Application Block Do?
	When Should I Use the Validation Application Block?
	Developing Applications Using the Validation Application Block
	Entering Configuration Information
	Source Schema for the Validation Application Block

	Adding Application Code
	Using the Validation Block Validators
	And Composite Validator
	Contains Characters Validator
	Date Time Range Validator
	Domain Validator
	Enum Conversion Validator
	Not Null Validator
	Object Collection Validator
	Object Validator
	Or Composite Validator
	Property Comparison Validator
	Range Validator
	Regular Expression Validator
	Relative Date Time Validator
	String Length Validator
	Type Conversion Validator
	Single Member Validators

	Understanding Common Validator Properties
	Understanding Validation Results
	How Validators Are Created
	Validation and Inheritance

	Key Scenarios
	Validating Objects
	Creating Validators Programmatically
	Using Validation Block Attributes
	Using Data Annotation Attributes
	Defining Attributes in Metadata Classes
	Using Self Validation
	Integrating with ASP.NET, WPF, Windows Forms, and WCF
	Integrating with ASP.NET
	Integrating with WPF
	Integrating with Windows Forms
	Integrating with WCF

	Design of the Validation Application Block
	Extending and Modifying the Validation Application Block
	Extending the Validation Application Block

	Deployment and Operations
	Validation Application Block Performance Counters
	Validation Application Block Event Log Entries

	Unity Dependency Injection and Interception
	What Is Unity?
	What Does Unity Do?
	When Should I Use Unity?
	About This Release of Unity
	Changes in This Release
	Target Audience and System Requirements
	Migration and Side-by-Side Execution
	Reusing Configuration Files Based on a Previous Schema

	Related patterns & practices Links
	Copyright and Terms of Use

	Configuring Unity
	Design Time Configuration
	Using the Configuration Tool
	Using the Unity XSD to Enable Visual Studio IntelliSense
	Using Design-Time Configuration
	Specifying Types in the Configuration File
	The Unity Configuration Schema
	Specifying Values for Injection
	Extending the Unity Configuration Schema
	Configuration Files for Interception
	Interception Configuration Schema Elements

	Run-Time Configuration
	Using Run Time Configuration
	Registering Types and Type Mappings
	Creating Instance Registrations
	Registering Injected Parameter and Property Values
	Registering Generic Parameters and Types
	Registering Container Extensions
	Registering Interception
	Registering Policy Injection Components

	Using Unity in Applications
	Application Design Concepts with Unity
	Adding Unity to Your Application
	Resolving Objects
	Resolving an Object by Type
	Resolving an Object by Type and Registration Name
	Resolving All Objects of a Particular Type
	Resolving Objects by Using Overrides
	Deferring the Resolution of Objects
	Retrieving Container Registration Information

	Using Container Hierarchies
	Understanding Lifetime Managers

	Dependency Injection with Unity
	Using BuildUp to Wire Up Objects Not Created by the Container
	Using Injection Attributes
	Annotating Objects for Constructor Injection
	Annotating Objects for Property (Setter) Injection
	Annotating Objects for Method Call Injection

	Circular References with Dependency Injection

	Interception with Unity
	Scenarios for Interception
	Behaviors for Interception
	Configuring a Container for Interception
	Unity Interception Techniques
	Using Interception in Applications
	Stand-alone Unity Interception
	Interception Behavior Pipeline
	Interception with a Container

	Using Interception and Policy Injection
	Policy Injection Matching Rules
	The Assembly Matching Rule
	The Custom Attribute Matching Rule
	The Member Name Matching Rule
	The Method Signature Matching Rule
	The Namespace Matching Rule
	The Parameter Type Matching Rule
	The Property Matching Rule
	The Return Type Matching Rule
	The Tag Attribute Matching Rule
	The Type Matching Rule

	Attribute-Driven Policies
	Enterprise Library Call Handlers
	The Authorization Handler
	The Exception Handling Handler
	The Logging Handler
	The Performance Counter Handler
	The Validation Handler

	Design of Unity
	Extending and Modifying Unity
	Creating Lifetime Managers
	Creating and Using Container Extensions
	Creating Policy Injection Matching Rules
	Creating Interception Policy Injection Call Handlers
	Creating Interception Handler Attributes
	Creating Interception Behaviors

	Deployment and Operations
	Using Unity in Partial Trust Environments
	Updating the Unity Assemblies
	Strong Naming the Unity Assemblies

	Unity QuickStarts
	Walkthrough: The Unity StopLight QuickStart
	Walkthrough: The Unity Event Broker Extension QuickStart

