
What's	New	in	DAO?

			

DAO	3.5	introduces	a	new	client/server	connection	mode,	called
"ODBCDirect."	ODBCDirect	establishes	a	connection	directly	to	an
ODBC	data	source,	without	loading	the	Microsoft	Jet	database	engine
into	memory,	and	is	useful	in	situations	where	specific	features	of	ODBC
are	required.

For	Microsoft	Jet	databases,	there	are	also	new	interfaces	to	expose
Microsoft	Jet's	new	partial	replication	feature.

Note	You	can	send	DAO	queries	to	a	variety	of	different	database
servers	with	ODBCDirect,	and	different	servers	will	recognize	slightly
different	dialects	of	SQL.	Therefore,	context-sensitive	Help	is	no
longer	provided	for	Microsoft	Jet	SQL,	although	online	Help	for
Microsoft	Jet	SQL	is	still	included	through	the	Help	menu.	Be	sure	to
check	the	appropriate	reference	documentation	for	the	SQL	dialect	of
your	database	server	when	using	either	ODBCDirect	connections	or
pass-through	queries	in	Microsoft	Jet-connected	client/server
applications.

New	DAO	3.5	Interfaces	for	ODBCDirect

Connection	object	—	A	connection	to	an	ODBC	database.

Cancel	method	(on	Connection,	QueryDef,	and	Recordset
objects)	—	Cancels	execution	of	an	asynchronous	operation.

NextRecordset	method	(on	Recordset	objects)	—	Retrieves	the
next	set	of	records,	if	any,	returned	by	a	query	that	returned
multiple	sets	of	records	in	an	OpenRecordset	call,	and	indicates
whether	it	successfully	retrieved	another	set	of	records.

OpenConnection	method	(on	Workspace	objects)	—	Opens	a
Connection	object	on	an	ODBC	data	source.

BatchCollisionCount	property	(on	Recordset	objects)	—	Returns
the	number	of	records	that	did	not	complete	during	the	last	batch
update.

BatchCollisions	property	(on	Recordset	objects)	—	Returns	an
array	of	bookmarks	indicating	the	rows	that	generated	collisions
in	the	last	batch	update.

BatchSize	property	(on	Recordset	objects)	—	Sets	or	returns	the
number	of	statements	sent	back	to	the	server	in	each	batch.

Connection	property	(on	Database	and	Recordset	objects)	—
Returns	the	Connection	object	that	corresponds	to	the	Database,

or	that	owns	the	Recordset.

Database	property	(on	Connection	objects)	—	Returns	the	name
of	the	Database	object	that	corresponds	to	the	Connection.

DefaultCursorDriver	property	(on	Workspace	objects)	—	Sets	or
returns	the	type	of	cursor	driver	used	for	ODBCDirect	Recordset
objects.

DefaultType	property	(on	DBEngine	object)	—	Indicates	what
type	of	workspace	(Microsoft	Jet	or	ODBCDirect)	will	be	created
by	the	next	CreateWorkspace	method	call.

Direction	property	(on	Parameter	objects)	—	Indicates	whether	a
Parameter	object	represents	an	input	parameter,	an	output
parameter,	or	both,	or	if	the	parameter	is	the	return	value	from	a
stored	procedure.

MaxRecords	property	(on	QueryDef	objects)	—	Sets	or	returns
the	maximum	number	of	records	to	return	from	a	query.

OriginalValue	property	(on	Field	objects)	—	Returns	the	value	of
a	Field	in	the	database	that	existed	when	the	last	batch	update
began.

Prepare	property	(on	QueryDef	objects)	—	Returns	a	value	that
indicates	whether	the	query	should	be	prepared	on	the	server	as	a
temporary	stored	procedure	with	the	ODBC	SQLPrepare

function	prior	to	execution,	or	just	executed	using	the	ODBC
SQLExecDirect	function.

RecordStatus	property	(on	Recordset	objects)	—	Returns	a	value
that	indicates	the	update	status	of	the	current	record	if	it	is	part	of
a	batch	update.

StillExecuting	property	(on	Connection,	QueryDef,	and
Recordset	objects)	—	Returns	a	value	indicating	whether	or	not
an	asynchronous	operation	has	finished	executing.

UpdateOptions	property	(on	Recordset	objects)	—	Returns	a
value	that	indicates	how	the	WHERE	clause	is	constructed	for
each	record	during	a	batch	update,	and	how	the	update	should	be
executed.

VisibleValue	property	(on	Recordset	objects)	—	Returns	a	value
currently	in	the	database	that	is	newer	than	the	OriginalValue
property	as	determined	by	a	batch	update	conflict.

New	Capabilities	with	ODBCDirect
Server	Connections

Available	only	in	the	ODBCDirect	object	model,	the	new	Connection
object	contains	information	about	a	connection	to	an	ODBC	data	source,
such	as	the	server	name,	the	data	source	name,	and	so	on.	It	is	similar	to
a	Database	object,	and	will	look	very	familiar	if	you've	ever	opened	a
Database	object	on	an	ODBC	data	source.	In	fact,	a	Connection	object
and	a	Database	object	represent	different	references	to	the	same	object,
and	new	properties	on	each	of	these	two	object	types	allow	you	to	obtain
a	reference	to	the	other	corresponding	object,	which	simplifies	the	task	of
converting	existing	ODBC	client	applications	that	use	Microsoft	Jet	to	use
ODBCDirect	instead.

Batch	Updates

A	new	batch	update	cursor	is	available	for	client	applications	that	need	to
work	with	a	cursor	without	holding	locks	on	the	server	or	issue	update
requests	one	record	at	a	time.	Instead,	the	client	stores	update
information	on	many	records	in	a	local	buffer	(or	"batch"),	and	then
issues	a	batch	update.

Because	of	the	time	lag	between	opening	a	Recordset	and	sending	a
batch	of	updates	from	that	Recordset	back	to	the	server,	other	users
have	an	opportunity	to	change	the	original	data	before	your	changes	are
sent	to	the	server,	so	your	changes	"collide"	with	another	user's	changes.
Several	new	features	are	available	to	help	you	determine	where	such
collisions	have	occurred,	following	a	batch	update,	and	give	you	some
options	for	resolving	them.

Asynchronous	Method	Execution

The	Execute,	MoveLast,	OpenConnection,	and	OpenRecordset
methods	feature	the	dbRunAsync	option.	This	allows	the	client
application	to	do	other	tasks	(such	as	loading	forms,	and	so	on)	while	the
method	is	executing.	You	can	also	poll	to	see	whether	the	task	is

complete,	and	terminate	an	asynchronous	task.

Client	Support	for	ODBC	Cursors

Four	different	Recordset	types	support	the	following	ODBC	cursor	types:

ODBC	Cursor Recordset	type
Dynamic dbOpenDynamic	(New	in	DAO	3.5)
Dynaset dbOpenDynaset

Forward-Only dbOpenForwardOnly	(New	in	DAO
3.5)

Static dbOpenSnapshot

New	DAO	3.5	Interfaces	for	the	Microsoft	Jet
Database	Engine

PopulatePartial	method	(on	Database	objects)	—	Synchronizes
any	changes	in	a	partial	replica	with	the	full	replica,	clears	all
records	in	the	partial	replica,	and	then	repopulates	the	partial
replica	based	on	the	current	replica	filters.

SetOption	method	(on	DBEngine	object)	—	Overrides	the
registry	values	for	the	Microsoft	Jet	database	engine	for	the
duration	of	the	current	instance	of	DAO.

FieldSize	property	(on	Field	objects)	—	Replaces	the	FieldSize
method.	Syntactically,	their	usage	is	the	same,	so	this	will	not
require	changes	to	your	existing	code.

MaxRecords	property	(on	QueryDef	objects)	—	Sets	or	returns
the	maximum	number	of	records	to	return	from	a	query.

ReplicaFilter	property	(on	TableDef	objects)	—	Returns	a	value
that	indicates	which	subset	of	records	is	replicated	to	that	table
from	a	full	replica.

PartialReplica	property	(on	Relation	objects)	—	Indicates	which
Relation	object	should	be	considered	when	populating	a	partial
replica	from	a	full	replica.

New	Capabilities	with	the	Microsoft	Jet	Database
Engine
Partial	Replication

Version	3.5	of	the	Microsoft	Jet	database	engine	allows	users	to	replicate
portions	of	a	table	instead	of	the	whole	table	(only	row	restrictions	are
permitted,	not	columns).	There	are	two	types	of	filters	used	in	a	partial
replica	—	Boolean	and	relationship.	Boolean	filters	select	only	rows	that
meet	a	certain	criteria	to	limit	the	rows	in	a	table	that	are	replicated.	DAO
represents	this	filter	with	the	ReplicaFilter	property	on	a	TableDef.
Relationship	filters	enforce	a	relationship	between	partially	replicated
tables	to	limit	the	rows	in	a	table	that	are	replicated.	With	DAO,	you	can
set	the	PartialReplica	property	on	a	Relation	which	allows	that	Relation
to	be	used	in	partial	replication.

New	Recordset	Type

In	DAO	3.5,	dbOpenForwardOnly	is	a	new	type	argument	for	the
OpenRecordset	method.	This	new	Recordset	type	behaves	in	the	same
way	as	a	DAO	3.0	snapshot-type	Recordset	opened	with	the
dbForwardOnly	option.

Run-time	Registry	Override

The	new	SetOption	method	allows	you	to	override	Microsoft	Jet	Registry
settings	at	run	time.	This	lets	you	fine	tune	Microsoft	Jet	query
performance,	timeout	delays,	and	so	on.

DAO	Overview

			 			

DAO	enables	you	to	use	a	programming	language	to	access	and
manipulate	data	in	local	or	remote	databases,	and	to	manage	databases,
their	objects,	and	their	structure.

Object	Models
DAO	supports	two	different	database	environments,	or	"workspaces."

Microsoft	Jet	workspaces	allow	you	to	access	data	in	Microsoft
Jet	databases,	Microsoft	Jet-connected	ODBC	databases,	and
installable	ISAM	data	sources	in	other	formats,	such	as	Paradox
or	Lotus	1-2-3.

ODBCDirect	workspaces	allow	you	to	access	database	servers
through	ODBC,	without	loading	the	Microsoft	Jet	database
engine.

Use	the	Microsoft	Jet	workspace	when	you	open	a	Microsoft	Jet
database	(.mdb	file)	or	other	desktop	ISAM	database,	or	when	you	need
to	take	advantage	of	Microsoft	Jet's	unique	features,	such	as	the	ability	to
join	data	from	different	database	formats.

The	ODBCDirect	workspace	provides	an	alternative	when	you	only	need
to	execute	queries	or	stored	procedures	against	a	back-end	server,	such
as	Microsoft	SQL	Server,	or	when	your	client	application	needs	the
specific	capabilities	of	ODBC,	such	as	batch	updates	or	asynchronous
query	execution.

DAO	Objects

There	are	17	different	DAO	object	types.	You	can	declare	new	DAO
object	variables	for	any	of	the	object	types.

For	example,	the	following	Visual	Basic	for	Applications	(VBA)	code
creates	object	variables	for	a	Database	object,	a	dynaset-type
Recordset	object,	and	a	Field	object:

Dim	dbsExample	As	Database
Dim	rstExample	As	Recordset

Dim	fldExample	As	Field

Set	dbsExample	=	OpenDatabase("Biblio.mdb")
Set	rstExample	=	dbsExample.OpenRecordset("Authors",	_				dbOpenDynaset)
Set	fldExample	=	rstExample.Fields("Au_ID")

DAO	Collections

Each	DAO	object	type	other	than	DBEngine	also	has	a	corresponding
collection.	A	collection	includes	all	the	existing	objects	of	that	type.	For
example,	the	Recordsets	collection	contains	all	open	Recordset
objects.	Each	collection	is	"owned"	by	another	object	at	the	next	higher
level	in	the	hierarchy.	A	Database	object	"owns"	a	Recordsets
collection.	Except	for	the	Connection	and	Error	objects,	every	DAO
object	has	a	Properties	collection.

Most	DAO	objects	have	default	collections	and	default	properties.	For
example,	the	default	collection	of	a	Recordset	object	is	the	Fields
collection	and	the	default	property	of	a	Field	object	is	the	Value	property.
You	can	simplify	your	code	by	taking	advantage	of	these	defaults.	For
example,	the	following	code	sets	the	value	of	the	PubID	field	in	the
current	record:

rstExample!PubID=99

DBENGINE	AND	WORKSPACE	OBJECTS

All	DAO	objects	are	derived	from	the	DBEngine	object.	You	can	set	the
DefaultType	property	on	the	DBEngine	object	to	determine	the
workspace	type	(Microsoft	Jet	or	ODBCDirect)	to	create	on	subsequent
CreateWorkspace	method	calls,	or	you	can	override	this	property	with
the	type	argument	in	the	CreateWorkspace	method	itself.	When	your
application	creates	a	workspace,	the	appropriate	library	—	the	Microsoft
Jet	database	engine	or	ODBC	—	is	loaded	into	memory	at	that	time.

You	can	open	additional	Workspace	objects	as	needed.	Each
Workspace	object	has	a	user	ID	and	password	associated	with	it.

Using	the	Microsoft	Jet	Workspace
Opening	a	Database

To	open	a	database,	you	simply	open	an	existing	Database	object,	or
create	a	new	one.	This	object	can	represent	a	Microsoft	Jet	database
(.mdb	file),	an	ISAM	database	(for	example,	Paradox),	or	an	ODBC
database	connected	through	the	Microsoft	Jet	database	engine	(also
known	as	a	"Microsoft	Jet-connected	ODBC	database").

Data-Definition	Language

You	can	use	object	variables	and	other	DDL	features	to	modify	your
database	structure.	For	example,	you	can	add	a	new	Field	object	to	an
existing	table	with	the	following	code:

Dim	dbs	As	Database,	tdf	As	TableDef,	fld	As	Field
'	Open	a	database.
Set	dbs	=	OpenDatabase("Biblio.mdb")
'	Open	a	TableDef.
Set	tdf	=	dbs.TableDefs("Authors")
'	Create	a	new	field.
Set	fld	=	tdf.CreateField("Address",	dbText,	20)
'	Append	field	to	the	TableDef	Fields	collection.
tdf.Fields.Append	fld				

This	code	creates	a	new	object	variable	for	a	Field	object	and	adds	it	to	a
TableDef	object	with	the	Append	method.	Because	a	TableDef	object
contains	the	definition	of	a	table,	the	table	now	has	a	field	named
Address	for	entering	data.	In	much	the	same	way,	you	can	create	new
tables	and	new	indexes.

Data	Manipulation

DAO	provides	an	excellent	set	of	data	manipulation	tools.	You	can	create
a	Recordset	object	to	conveniently	query	a	database	and	manipulate	the

resulting	set	of	records.	The	OpenRecordset	method	accepts	an	SQL
string,	or	a	QueryDef	(stored	query)	name	as	a	data	source	argument,	or
it	can	be	opened	from	a	QueryDef	object	or	a	TableDef	object,	using	that
object	as	its	data	source.	The	resulting	Recordset	object	features	an
extremely	rich	set	of	properties	and	methods	with	which	to	browse	and
modify	data.

The	Recordset	object	is	available	in	four	different	types	—	Table,
Dynaset,	Forward-Only,	and	Snapshot.

Transactions

All	Database	objects	opened	against	a	Workspace	object	share	a
common	transaction	scope.	That	is,	when	you	use	the	BeginTrans
method	on	a	Workspace	object,	it	applies	to	all	open	databases	within
that	Workspace	object.	In	the	same	way,	when	you	use	the
CommitTrans	method	against	the	Workspace,	it	applies	to	all	open
databases	in	the	Workspace	object.

Replication

You	can	use	database	replication	to	create	and	maintain	replicas	of	a
master	Microsoft	Jet	database,	using	the	Synchronize	method	to
periodically	update	all	or	part	of	the	replicas,	or	to	copy	new	data	from
one	replica	to	another.	You	can	also	restrict	the	update	to	only	selected
records,	using	the	ReplicaFilter	property,	and	then	synchronize	those
records	with	the	PopulatePartial	method.

Security

You	can	restrict	access	to	one	or	more	.mdb	databases	or	their	tables
using	security	settings	established	and	managed	by	the	Microsoft	Jet
database	engine.	In	your	code,	you	can	establish	Group	and	User
objects	to	define	the	scope	and	level	of	permissions	available	to
individual	users	on	an	object-by-object	basis.	For	example,	you	can
establish	permissions	for	a	specific	user	to	provide	read-only	access	to
one	table	and	full	access	to	another.

Using	the	ODBCDirect	Object	Model
Connecting	to	a	Database

A	Connection	object	is	similar	to	a	Database	object.	In	fact,	a
Connection	object	and	a	Database	object	represent	different	references
to	the	same	object,	and	properties	on	each	of	these	two	object	types
allow	you	to	obtain	a	reference	to	the	other	corresponding	object,	which
simplifies	the	task	of	converting	ODBC	client	applications	that	use
Microsoft	Jet	to	use	ODBCDirect	instead.	Use	the	OpenConnection
method	to	connect	to	an	ODBC	data	source.	The	resulting	Connection
object	contains	information	about	the	connection,	such	as	the	server
name,	the	data	source	name,	and	so	on.

Queries

Although	DAO	does	not	support	stored	queres	in	an	ODBCDirect
workspace,	a	compiled	query	can	be	created	as	a	QueryDef	object	and
used	to	execute	action	queries,	and	can	also	be	used	to	execute	stored
procedures	on	the	server.	The	Prepare	property	lets	you	decide	whether
to	create	a	private,	temporary	stored	procedure	on	the	server	from	a
QueryDef	before	actually	executing	the	query.

Parameter	queries	can	also	be	passed	to	the	server,	using	Parameter
objects	on	the	QueryDef.	The	Direction	property	lets	you	specify	a
Parameter	as	input,	output,	or	both,	or	to	accept	a	return	value	from	a
stored	procedure.

Data	Manipulation

Creating	a	Recordset	object	is	a	convenient	way	to	query	a	database
and	manipulate	the	resulting	set	of	records.	The	OpenRecordset	method
accepts	an	SQL	string,	or	a	QueryDef	object	(stored	query)	as	a	data
source	argument.	The	resulting	Recordset	object	features	an	extremely
rich	set	of	properties	and	methods	with	which	to	browse	and	modify	data.

The	Recordset	object	is	available	in	four	different	types	—	Dynamic,

Dynaset,	Forward-Only,	and	Snapshot	—	corresponding	to	ODBC	cursor
types	—	Dynamic,	Keyset,	Forward-only,	and	Static.

A	batch	update	cursor	library	is	available	for	client	applications	that	need
to	work	with	a	cursor	without	holding	locks	on	the	server	or	without
issuing	update	requests	one	record	at	a	time.	Instead,	the	client	stores
update	information	on	many	records	in	a	local	buffer	(or	"batch"),	and
then	issues	a	batch	update.

Asynchronous	Method	Execution

The	Execute,	MoveLast,	OpenConnection,	and	OpenRecordset
methods	feature	the	dbRunAsync	option.	This	allows	your	client
application	to	do	other	tasks	(such	as	loading	forms,	for	example)	while
the	method	is	executing.	You	can	check	the	StillExecuting	property	to
see	whether	the	task	is	complete,	and	terminate	an	asynchronous	task
with	the	Cancel	method.

DAO	Constants

			 			

DAO	provides	built-in	constants	that	you	can	use	with	methods	or
properties.	These	constants	all	begin	with	the	letters	db	and	are
documented	with	the	method	or	property	to	which	they	apply.

Legend:

Read-only

Read/write

AllPermissions	Property	Constants	(All	Are)

For	any	Container	or	Document	object:

Constant Description

dbSecReadDef Allows	user	to	read	the	table	definition,
including	column	and	index	information.

dbSecWriteDef
Allows	user	to	modify	or	delete	the	table
definition,	including	column	and	index
information.

dbSecRetrieveData Allows	user	to	retrieve	data	from	the
Document	object.

dbSecInsertData Allows	user	to	add	records.
dbSecReplaceData Allows	user	to	modify	records.
dbSecDeleteData Allows	user	to	delete	records.

The	Databases	container	or	any	Document	object	in	a	Documents
collection	may	include	the	following:

Constant Description
dbSecDeleteData Allows	user	to	delete	records.

dbSecDBAdmin Allows	user	to	replicate	the	database	and
change	the	database	password.

dbSecDBCreate

Allows	user	to	create	new	databases.	This
setting	is	valid	only	on	the	Databases
container	in	the	workgroup	information	file
(System.mdw).

dbSecDBExclusive Allows	user	exclusive	access	to	the	database.
dbSecDBOpen Allows	user	to	open	the	database.

Attributes	Property	Constants

For	any	Field	object,	the	Attributes	property	may	include	the	following:

Constant Description

dbFixedField 	Fixed	field	size	(default	for	Numeric
fields)

dbVariableField 	Variable	field	size	(Text	fields	only)

dbAutoIncrField

	New	record	field	value	incremented	to
unique	Long	integer	(in	a	Microsoft	Jet
workspace,	available	only	on	TableDef
objects	opened	from	.mdb	files)

dbUpdatableField 	Field	is	updatable

dbDescending 	Field	sorted	in	descending	order
(Microsoft	Jet	workspaces	only)

dbHyperlinkField
	The	field	contains	hyperlink	information

(Memo	fields	in	Microsoft	Jet	workspaces
only)

dbSystemField

	The	field	is	a	replication	field	(on	a
TableDef	object	in	Microsoft	Jet	databases

only)

For	any	Relation	object,	the	Attributes	property	may	include	the
following:

Constant Description
dbRelationUnique 	One-to-one	relationship

dbRelationDontEnforce 	Relationship	not	enforced	(no	referential
integrity)

dbRelationInherited 	Relationship	exists	in	the	database
containing	the	two	linked	tables

dbRelationUpdateCascade 	Updates	cascade
dbRelationDeleteCascade 	Deletions	cascade

dbRelationLeft
Microsoft	Access	only.	In	Design	view,
display	a	LEFT	JOIN	as	the	default	join
type.

dbRelationRight
Microsoft	Access	only.	In	Design	view,
display	a	RIGHT	JOIN	as	the	default	join
type.

For	any	TableDef	object,	the	Attributes	property	may	include	the
following:

Constant Description

dbAttachExclusive 	Opens	a	linked	Microsoft	Jet	database
engine	table	for	exclusive	use.

dbAttachSavePWD 	Saves	user	ID	and	password	for	linked
remote	table.

dbSystemObject 	System	table
dbHiddenObject 	Hidden	table	(for	temporary	use)
dbAttachedTable 	Linked	non-ODBC	database	table
dbAttachedODBC 	Linked	ODBC	database	table

CollatingOrder	Property	Constants	(All	Are)

Constant Description

dbSortArabic Arabic	collating	order
dbSortChineseSimplified Simplified	Chinese	collating	order
dbSortChineseTraditional Traditional	Chinese	collating	order
dbSortCyrillic Russian	collating	order
dbSortCzech Czech	collating	order
dbSortDutch Dutch	collating	order

dbSortGeneral English,	German,	French,	and	Portuguese
collating	order

dbSortGreek Greek	collating	order
dbSortHebrew Hebrew	collating	order
dbSortHungarian Hungarian	collating	order
dbSortIcelandic Icelandic	collating	order
dbSortJapanese Japanese	collating	order
dbSortKorean Korean	collating	order
dbSortNeutral Neutral	collating	order
dbSortNorw Norwegian	and	Danish	collating	order
dbSortPDXIntl Paradox	international	collating	order

dbSortPDXNor Paradox	Norwegian	and	Danish	collating
order

dbSortPDXSwe Paradox	Swedish	and	Finnish	collating
order

dbSortPolish Polish	collating	order
dbSortSlovenian Slovenian	collating	order
dbSortSpanish Spanish	collating	order
dbSortSwedFin Swedish	and	Finnish	collating	order
dbSortThai Thai	collating	order
dbSortTurkish Turkish	collating	order
dbSortUndefined Collating	order	undefined	or	unknown

DefaultCursorDriver	Property	(All	are)

Constant Description

dbUseDefaultCursor
(Default)	Uses	server-side	cursors	if	the
server	supports	them;	otherwise	uses	the
ODBC	Cursor	Library.
Always	uses	the	ODBC	Cursor	Library.
This	option	provides	better	performance	for

dbUseODBCCursor small	result	sets,	but	degrades	quickly	for
larger	result	sets.

dbUseServerCursor

Always	uses	server-side	cursors.	For	most
large	operations	this	option	provides	better
performance,	but	might	cause	more	network
traffic.

dbUseClientBatchCursor
Always	uses	the	FoxPro	Cursor	Library.
This	option	is	required	for	performing	batch
updates.

dbUseNoCursor

Opens	all	cursors	(that	is,	Recordset
objects)	as	forward-only	type,	read-only,
with	a	rowset	size	of	1.	Also	known	as
"cursorless	queries."

Direction	Property	Constants	(All	Are)

Constant Description

dbParamInput (Default)	Passes	information	to	the
procedure.

dbParamInputOutput Passes	information	both	to	and	from	the
procedure.

dbParamOutput Returns	information	from	the	procedure	as
in	an	output	parameter	in	SQL.

dbParamReturnValue Passes	the	return	value	from	a	procedure.

EditMode	Property	Constants	(All	Are)

Constant Description
dbEditNone No	editing	operation	in	effect.
dbEditInProgress Edit	method	invoked.
dbEditAdd AddNew	method	invoked.

Permissions	Property	Constants	(All	are)

For	any	Container	object,	the	Permissions	property	may	include	the

following:

Constant Description
dbSecNoAccess Denies	user	access	to	the	object.
dbSecFullAccess Allows	user	full	access	to	the	object.
dbSecDelete Allows	user	to	delete	the	object.

dbSecReadSec Allows	user	to	read	the	object's	security-
related	information.

dbSecWriteSec Allows	user	to	alter	access	permissions.

dbSecWriteOwner Allows	user	to	change	the	Owner	property
setting.

For	any	database	Container,	the	Permissions	property	may	include	any
of	the	following	(All	are):

Constant Description

dbSecDBAdmin
Gives	user	permission	to	make	a	database
replicable	and	change	the	database
password.

dbSecDBCreate
Allows	user	to	create	new	databases	(valid
only	on	the	databases	Container	object	in
the	system	database).

dbSecDBOpen Allows	user	to	open	the	database.
dbSecDBExclusive Allows	user	exclusive	access.

For	any	tables	Container,	the	Permissions	property	may	include	any	of
the	following	(All	are):

Constant Description

dbSecCreate

Allows	user	to	create	new	tables	(valid	only
with	a	Container	object	that	represents	a
table	or	with	the	databases	Container	object
in	the	system	database).

dbSecReadDef Allows	user	to	read	the	table	definition,
including	column	and	index	information.

dbSecWriteDef
Allows	user	to	modify	or	delete	the	table
definition,	including	column	and	index

information.

dbSecRetrieveData Allows	user	to	retrieve	data	from	the
document.

dbSecInsertData Allows	user	to	add	records.
dbSecReplaceData Allows	user	to	modify	records.
dbSecDeleteData Allows	user	to	delete	records.

For	any	Document	object,	the	Permissions	property	may	include	any	of
the	following	(All	are):

Constant Description

dbSecCreate
Allows	user	to	create	new	tables	(valid	only
with	a	Container	object	that	represents	a
table).

dbSecDBCreate
Allows	user	to	create	new	databases	(valid
only	on	the	databases	Container	object	in
the	system	database).

dbSecDBOpen Allows	user	to	open	the	database.
dbSecDBExclusive Allows	user	exclusive	access.
dbSecDelete Allows	user	to	delete	the	object.
dbSecDeleteData Allows	user	to	delete	records.
dbSecFullAccess Allows	user	full	access	to	the	object.
dbSecInsertData Allows	user	to	add	records.

dbSecReadDef Allows	user	to	read	the	table	definition,
including	column	and	index	information.

dbSecReadSec Allows	user	to	read	the	object's	security-
related	information.

dbSecReplaceData Allows	user	to	modify	records.

dbSecRetrieveData Allows	user	to	retrieve	data	from	the
document.

dbSecWriteDef
Allows	user	to	modify	or	delete	the	table
definition,	including	column	and	index
information.

dbSecWriteSec Allows	user	to	alter	access	permissions.

dbSecWriteOwner Allows	user	to	change	the	Owner	property
setting.

Prepare	Property	Constants	(All	Are)

Constant Description

dbQPrepare (Default)	The	statement	is	prepared	(that	is,
the	ODBC	SQLPrepare	API	is	called).

dbQUnprepare The	statement	is	not	prepared	(that	is,	the
ODBC	SQLExecDirect	API	is	called).

RecordStatus	Property	Constants	(All	Are)

Constant Description

dbDBDeleted The	record	has	been	deleted	locally	and	in
the	database.

dbDeleted The	record	has	been	deleted,	but	not	yet
deleted	in	the	database.

dbRecordModified The	record	has	been	modified	and	not
updated	in	the	database.

dbRecordNew
The	record	has	been	inserted	with	the
AddNew	method,	but	not	yet	inserted	into
the	database.

dbRecordUnmodified (Default)	The	record	has	not	been	modified
or	has	been	updated	successfully.

Type	Property	Constants

For	any	Field,	Parameter,	or	Property	object,	the	Type	property	may
include	any	of	the	follwing	(All	are):

Constant Description
dbBigInt Big	Integer	data	(ODBCDirect	only)
dbBinary Binary	data
dbBoolean Boolean	(True/False)	data
dbByte Byte	(8-bit)	data
dbChar Character	data	(ODBCDirect	only)
dbCurrency Currency	data
dbDate Date	value	data
dbDecimal Decimal	data	(ODBCDirect	only)

dbDouble Double-precision	floating-point	data
dbFloat Floating-point	data	(ODBCDirect	only)
dbGUID GUID	data
dbInteger Integer	data
dbLong Long	Integer	data
dbLongBinary Binary	data	(bitmap)
dbMemo Memo	data	(extended	text)
dbNumeric Numeric	data	(ODBCDirect	only)
dbSingle Single-precision	floating-point	data
dbText Text	data	(variable	width)
dbTime Data	in	time	format	(ODBCDirect	only)

dbTimeStamp Data	in	time	and	date	format	(ODBCDirect
only)

dbVarBinary Variable	Binary	data	(ODBCDirect	only)

For	any	QueryDef	object,	the	Type	property	may	include	any	of	the
following	(All	are):

Constant Description
dbQAction Action	query
dbQAppend Append	query

dbQCompound Compound	query	(ODBCDirect	workspaces
only)

dbQCrosstab Crosstab	query
dbQDDL Data-definition	language	(DDL)	query
dbQDelete Delete	query
dbQMakeTable Make-table	query

dbQProcedure SQL	procedure	that	executes	a	stored
procedure	(ODBCDirect	workspaces	only)

dbQSelect Select	query
dbQSetOperation Set	operation	query
dbQSPTBulk Bulk	operation	query
dbQSQLPassThrough SQL	pass-through	query
dbQUpdate Update	query

For	any	Recordset	object,	the	Type	property	may	include	any	of	the

following	(All	are):

Constants Description

dbOpenDynamic Opens	a	dynaset-type	Recordset
(ODBCDirect	workspaces	only)

dbOpenDynaset Opens	a	dynaset-type	Recordset
dbOpenForwardOnly Opens	a	forward-only	type	Recordset
dbOpenSnapshot Opens	a	snapshot-type	Recordset

dbOpenTable Opens	a	table-type	Recordset	(Microsoft	Jet
workspaces	only)

UpdateOptions	Property	Constants	(All	Are)

Constant Description

dbCriteriaKey (Default)	Uses	just	the	key	column(s)	in	the
where	clause.

dbCriteriaModValues Uses	the	key	column(s)	and	all	updated
columns	in	the	where	clause.

dbCriteriaAllCols Uses	the	key	column(s)	and	all	the	columns
in	the	where	clause.

dbCriteriaTimeStamp
Uses	just	the	timestamp	column	if	available
(will	generate	a	run-time	error	if	no
timestamp	column	is	in	the	result	set).

dbCriteriaDeleteInsert Uses	a	pair	of	DELETE	and	INSERT
statements	for	each	modified	row.

dbCriteriaUpdate (Default)	Uses	an	UPDATE	statement	for
each	modified	row.

CompactDatabase,	CreateDatabase	Methods	Locale	Argument
Constants	(All	Are)

Constant Description

dbLangGeneral English,	German,	French,	Portuguese,
Italian,	and	Modern	Spanish

dbLangArabic Arabic
dbLangChineseSimplified Simplified	Chinese
dbLangChineseTraditional Traditional	Chinese

dbLangCyrillic Russian
dbLangCzech Czech
dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic
dbLangJapanese Japanese
dbLangKorean Korean
dbLangNordic Nordic
dbLangNorwDan Norwegian	and	Danish
dbLangPolish Polish
dbLangSlovenian Slovenian
dbLangSpanish Spanish
dbLangSwedFin Swedish	and	Finnish
dbLangThai Thai
dbLangTurkish Turkish

CompactDatabase	Method	Options	Argument	Constants	(All	Are)

Constant Description
dbDecrypt Decrypts	database	while	compacting
dbEncrypt Encrypts	database
dbVersion10 Microsoft	Jet	database	engine	version	1.0
dbVersion11 Microsoft	Jet	database	engine	version	1.1
dbVersion20 Microsoft	Jet	database	engine	version	2.0
dbVersion30 Microsoft	Jet	database	engine	version	3.0

CreateDatabase	Method	Options	Argument	Constants	(All	Are)

Constant Description
dbEncrypt Encrypts	database
dbVersion10 Microsoft	Jet	database	engine	version	1.0
dbVersion11 Microsoft	Jet	database	engine	version	1.1
dbVersion20 Microsoft	Jet	database	engine	version	2.0
dbVersion30 Microsoft	Jet	database	engine	version	3.0

CreateWorkspace	Method	Type	Argument	Constants

For	any	Workspace	object	Type	property	and	DBEngine	object
DefaultType	property,	use	any	of	the	following:	(All	Are)

Constant Description

dbUseODBC The	next	workspace	created	will	use
ODBCDirect.

dbUseJet The	next	workspace	created	will	use	the
Microsoft	Jet	database	engine.

Execute	Method	Options	Argument	Constants	(All	Are)

Constant Description

dbDenyWrite Denies	write	permission	to	other	users
(Microsoft	Jet	workspaces	only).

dbInconsistent Allows	inconsistent	updates	(Microsoft	Jet
workspaces	only).

dbConsistent Allows	consistent	updates	(Microsoft	Jet
workspaces	only).

dbSQLPassThrough

An	SQL	pass-through.	Causes	the	SQL
statement	to	be	passed	to	an	ODBC	database
for	processing	(Microsoft	Jet	workspaces
only).

dbFailOnError Rolls	back	updates	if	an	error	occurs
(Microsoft	Jet	workspaces	only).

dbSeeChanges
Generates	a	run-time	error	if	another	user	is
changing	data	you	are	editing	(Microsoft	Jet
workspaces	only).

dbRunAsync Executes	the	query	asynchronously
(ODBCDirect	workspaces	only).

dbExecDirect
Executes	the	query	without	first	calling	the
SQLPrepare	ODBC	function	(ODBCDirect
workspaces	only).

Idle	Method	Optional	Argument	Constant	(This	Is)

Constant Description

dbRefreshCache Forces	any	pending	writes	to	disk,	and
refreshes	memory	from	current	disk	files.

MakeReplica	Method	Optional	Argument	Constants	(All	are)

Constant Description
dbRepMakePartial Creates	a	partial	replica.

dbRepMakeReadOnly Makes	replicable	elements	of	new	database
read-only.

OpenConnection	and	OpenDatabase	Methods	Option	Argument
Constants	(All	Are)

Constant Description

dbDriverNoPrompt

The	driver	manager	uses	the	connection
string	provided	in	connect.	If	sufficient
information	is	not	provided,	a	trappable
error	is	returned.

dbDriverPrompt

The	driver	manager	displays	the	ODBC
Data	Sources	dialog	box.	The	connection
string	used	to	establish	the	connection	is
constructed	from	the	data	source	name
(DSN)	selected	and	completed	by	the	user
via	the	dialog	boxes.

dbDriverComplete

If	the	connection	string	provided	includes
the	DSN	keyword,	the	driver	manager	uses
the	string	as	provided	in	connect,	otherwise
it	behaves	as	it	does	when	dbDriverPrompt
is	specified.

dbDriverCompleteRequired

(Default)	Behaves	like	dbDriverComplete
except	the	driver	disables	the	controls	for
any	information	not	required	to	complete	the
connection.

OpenRecordset	Method	Type	Argument	Constants	(All	Are)

Constant Description

dbOpenDynamic Opens	a	dynamic-type	Recordset
(ODBCDirect	workspaces	only)

dbOpenDynaset Opens	a	dynaset-type	Recordset
dbOpenForwardOnly Opens	a	forward-only	type	Recordset
dbOpenSnapshot Opens	a	snapshot-type	Recordset

dbOpenTable Opens	a	table-type	Recordset	(Microsoft	Jet
workspaces	only)

OpenRecordset	Method	LockEdits	Argument	Constants	(All	Are)

Constant Description

dbPessimistic
Pessimistic	concurrency.	Cursor	uses	the
lowest	level	of	locking	sufficient	to	ensure
the	record	can	be	updated.

dbReadOnly Cursor	is	read-only.	No	updates	are	allowed.

dbOptimistic

Optimistic	concurrency	based	on	record	ID.
Cursor	compares	record	ID	in	old	and	new
records	to	determine	if	changes	have	been
made	since	the	record	was	last	accessed.

dbOptimisticValue

Optimistic	concurrency	based	on	record
values.	Cursor	compares	data	values	in	old
and	new	records	to	determine	if	changes
have	been	made	since	the	record	was	last
accessed	(ODBCDirect	workspaces	only).

dbOptimisticBatch Enables	batch	optimistic	updates
(ODBCDirect	workspaces	only).

OpenRecordset	Method	Options	Argument	Constants	(All	Are)

Constant Description

dbDenyWrite
Prevents	other	users	from	changing
Recordset	records	(Microsoft	Jet
workspaces	only).

dbDenyRead
Prevents	other	users	from	reading
Recordset	records	(table-type	in	Microsoft

Jet	workspaces	only).

dbReadOnly Opens	the	Recordset	as	read-only
(Microsoft	Jet	workspaces	only).

dbAppendOnly

Allows	user	to	add	new	records	to	the
dynaset,	but	prevents	user	from	reading
existing	records	(dynaset-type	in	Microsoft
Jet	workspaces	only).

dbInconsistent

Applies	updates	to	all	dynaset	fields,	even	if
other	records	are	affected	(dynaset-	and
snapshot-type	in	Microsoft	Jet	workspaces
only).

dbConsistent

Applies	updates	only	to	those	fields	that	will
not	affect	other	records	in	the	dynaset
(dynaset-	and	snapshot-type	in	Microsoft	Jet
workspaces	only).

dbSQLPassThrough
Sends	an	SQL	statement	to	an	ODBC
database	(snapshot-type	in	Microsoft	Jet
workspaces	only).

dbForwardOnly
Creates	a	forward-only	scrolling	snapshot-
type	Recordset	(snapshot-type	in	Microsoft
Jet	workspaces	only).

dbSeeChanges
Generates	a	run-time	error	if	another	user	is
changing	data	you	are	editing	(dynaset-type
in	Microsoft	Jet	workspaces	only).

dbRunAsync Executes	the	query	asynchronously
(ODBCDirect	workspaces	only).

dbExecDirect
Executes	the	query	without	first	calling	the
SQLPrepare	ODBC	function	(ODBCDirect
workspaces	only).

SetOption	Method	Parameter	Constants	(All	Are)

Constant Description
dbPageTimeout The	PageTimeout	key
dbSharedAsyncDelay The	SharedAsyncDelay	key
dbExclusiveAsyncDelay The	ExclusiveAsyncDelay	key
dbLockRetry The	LockRetry	key
dbUserCommitSync The	UserCommitSync	key
dbImplicitCommitSync The	ImplicitCommitSync	key

dbMaxBufferSize The	MaxBufferSize	key
dbMaxLocksPerFile The	MaxLocksPerFile	key
dbLockDelay The	LockDelay	key
dbRecycleLVs The	RecycleLVs	key
dbFlushTransactionTimeout The	FlushTransactionTimeout	key

Synchronize	Method	Exchange	Argument	Constants	(All	Are)

Constant Description

dbRepExportChanges Sends	changes	from	current	database	to
target	database.

dbRepImportChanges Receives	changes	from	target	database.

dbRepImpExpChanges Sends	and	receives	data	in	a	bidirectional
exchange.

dbRepSyncInternet Exchanges	data	between	files	connected	via
an	Internet	pathway.

Update	Method	Type	Argument	Constants	(All	Are)

Constant Description

dbUpdateRegular (Default)	Pending	changes	aren't	cached	and
are	written	to	disk	immediately.

dbUpdateBatch All	pending	changes	in	the	update	cache	are
written	to	disk.

dbUpdateCurrentRecord Only	the	current	record's	pending	changes
are	written	to	disk.

CancelUpdate	Method	Type	Argument	Constants	(All	Are)

Constant Description

dbUpdateRegular (Default)	Pending	changes	aren't	cached	and
are	written	to	disk	immediately.

dbUpdateBatch All	pending	changes	in	the	update	cache	are
written	to	disk.

DAO	Objects	and	Collections	Reference

			

DAO	objects	and	collections	provide	a	framework	for	using	code	to
create	and	manipulate	components	of	your	database	system.	Objects
and	collections	have	properties	that	describe	the	characteristics	of
database	components	and	methods	that	you	use	to	manipulate	them.
Together	these	objects	and	collections	form	a	hierarchical	model	of	your
database	structure,	which	you	can	control	programmatically.

Objects	and	collections	provide	different	types	of	containment	relations:
Objects	contain	zero	or	more	collections,	all	of	different	types;	and
collections	contain	zero	or	more	objects,	all	of	the	same	type.	Although
objects	and	collections	are	similar	entities,	the	distinction	differentiates
the	two	types	of	relations.

In	the	following	table,	the	type	of	collection	in	the	first	column	contains
the	type	of	object	in	the	second	column.	The	third	column	describes	what
each	type	of	object	represents.

Collection Object Description

Connections Connection

Information	about	a
connection	to	an	ODBC	data
source	(ODBCDirect
workspaces	only)

Containers Container

Storage	for	information	about
a	predefined	object	type
(Microsoft	Jet	workspaces
only)

Databases Database An	open	database
The	Microsoft	Jet	database

None DBEngine engine

Documents Document
Information	about	a	saved,
predefined	object	(Microsoft
Jet	workspaces	only)

Errors Error Information	about	any	errors
associated	with	this	object

Fields Field
A	column	that	is	part	of	a
table,	query,	index,	relation,
or	recordset

Groups Group
A	group	of	user	accounts
(Microsoft	Jet	workspaces
only)

Indexes Index

Predefined	ordering	and
uniqueness	of	values	in	a
table	(Microsoft	Jet
workspaces	only)

Parameters Parameter A	parameter	for	a	parameter
query

Properties Property A	built-in	or	user-defined
property

QueryDefs QueryDef A	saved	query	definition

Recordsets Recordset The	records	in	a	base	table	or
query

Relations Relation

A	relationship	between	fields
in	tables	and	queries
(Microsoft	Jet	workspaces
only)

TableDefs TableDef
A	saved	table	definition
(Microsoft	Jet	workspaces
only)

Users User A	user	account	(Microsoft	Jet
workspaces	only)

Workspaces Workspace A	session	of	the	Microsoft	Jet
database	engine

DAO	Object	Model	for	Microsoft	Jet	Workspaces

			

	

DAO	Object	Model	for	ODBCDirect	Workspaces

				

	

Connection	Object

			 			

			 			

			

A	Connection	object	represents	a	connection	to	an	ODBC	database
(ODBCDirect	workspaces	only).

	

Remarks

A	Connection	is	a	non-persistent	object	that	represents	a	connection	to
a	remote	database.	The	Connection	object	is	only	available	in
ODBCDirect	workspaces	(that	is,	a	Workspace	object	created	with	the
type	option	set	to	dbUseODBC).

Note	Code	written	for	earlier	versions	of	DAO	can	continue	to	use	the
Database	object	for	backward	compatibility,	but	if	the	new	features	of
a	Connection	are	desired,	you	should	revise	code	to	use	the
Connection	object.	To	help	with	code	conversion,	you	can	obtain	a
Connection	object	reference	from	a	Database	by	reading	the
Connection	property	of	the	Database	object.	Conversely,	you	can
obtain	a	Database	object	reference	from	the	Connection	object’s
Database	property.

Connections	Collection

			 			

			 			

			

A	Connections	collection	contains	the	current	Connection	objects	of	a
Workspace	object.	(ODBCDirect	workspaces	only).

	 	

Remarks

When	you	open	a	Connection	object,	it	is	automatically	appended	to	the
Connections	collection	of	the	Workspace.	When	you	close	a
Connection	object	with	the	Close	method,	it	is	removed	from	the
Connections	collection.	You	should	close	all	open	Recordset	objects

within	the	Connection	before	closing	it.

At	the	same	time	you	open	a	Connection	object,	a	corresponding
Database	object	is	created	and	appended	to	the	Databases	collection	in
the	same	Workspace,	and	vice	versa.	Similarly,	when	you	close	the
Connection,	the	corresponding	Database	is	deleted	from	the
Databases	collection,	and	so	on.

The	Name	property	setting	of	a	Connection	is	a	string	that	specifies	the
path	of	the	database	file.	To	refer	to	a	Connection	object	in	a	collection
by	its	ordinal	number	or	by	its	Name	property	setting,	use	any	of	the
following	syntax	forms:

Connections(0)

Connections("name")

Connections![name]

Note	You	can	open	the	same	data	source	more	than	once,	creating
duplicate	names	in	the	Connections	collection.	You	should	assign
Connection	objects	to	object	variables	and	refer	to	them	by	variable
name.

Connection	Object,	Connections	Collection
Summary

			

Connection	Object

The	Connection	object	contains	these	collections,	methods,	and
properties.

Collections

QueryDefs	(default)
Recordsets

Methods

Cancel
Close
CreateQueryDef
Execute
OpenRecordset

Properties

Connect
Database
Name
QueryTimeout
RecordsAffected

StillExecuting
Transactions
Updatable

Connections	Collection

A	Connections	collection	is	contained	in	each	ODBCDirect	Workspace
object,	and	contains	this	method	and	this	property:

Method

Refresh

Property

Count

Containers	Collection

			 			

			 			

			

A	Containers	collection	contains	all	of	the	Container	objects	that	are
defined	in	a	database	(Microsoft	Jet	databases	only).

	

Remarks

Each	Database	object	has	a	Containers	collection	consisting	of	built-in
Container	objects.	Some	of	these	Container	objects	are	defined	by	the
Microsoft	Jet	database	engine	while	others	may	be	defined	by	other
applications.

Container	Object

			 			

			 			

			

A	Container	object	groups	similar	types	of	Document	objects	together.

	

Remarks

Each	Database	object	has	a	Containers	collection	consisting	of	built-in
Container	objects.	Applications	can	define	their	own	document	types
and	corresponding	containers	(Microsoft	Jet	databases	only);	however,
these	objects	may	not	always	be	supported	through	DAO.

Some	of	these	Container	objects	are	defined	by	the	Microsoft	Jet

database	engine	while	others	may	be	defined	by	other	applications.	The
following	table	lists	the	name	of	each	Container	object	defined	by	the
Microsoft	Jet	database	engine	and	what	type	of	information	it	contains.

Container	name Contains	information	about
Databases Saved	databases
Tables Saved	tables	and	queries
Relations Saved	relationships

Note	Don't	confuse	the	Container	objects	listed	in	the	preceding
table	with	the	collections	of	the	same	name.	The	Databases
Container	object	refers	to	all	saved	database	objects,	but	the
Databases	collection	refers	only	to	database	objects	that	are	open	in
a	particular	workspace.

Each	Container	object	has	a	Documents	collection	containing
Document	objects	that	describe	instances	of	built-in	objects	of	the	type
specified	by	the	Container.	You	typically	use	a	Container	object	as	an
intermediate	link	to	the	information	in	the	Document	object.	You	can	also
use	the	Containers	collection	to	set	security	for	all	Document	objects	of
a	given	type.

With	an	existing	Container	object,	you	can:

Use	the	Name	property	to	return	the	predefined	name	of	the
Container	object.

Use	the	Owner	property	to	set	or	return	the	owner	of	the
Container	object.	To	set	the	Owner	property,	you	must	have
write	permission	for	the	Container	object,	and	you	must	set	the
property	to	the	name	of	an	existing	User	or	Group	object.

Use	the	Permissions	and	UserName	properties	to	set	access
permissions	for	the	Container	object;	any	Document	object

created	in	the	Documents	collection	of	a	Container	object
inherits	these	access	permission	settings.

Because	Container	objects	are	built-in,	you	can't	create	new	Container
objects	or	delete	existing	ones.

To	refer	to	a	Container	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

Containers(0)

Containers("name")

Containers![name]

Container	Object,	Containers	Collection
Summary

			

Container	Object

A	Container	object	contains	no	methods;	it	contains	these	collections	and
properties.

Collections

Documents	(Default)
Properties

Properties

AllPermissions
Inherit
Name
Owner
Permissions
UserName

Containers	Collection

A	Containers	collection	appears	in	each	Database	object	of	a	Microsoft
Jet	database,	and	contains	this	method	and	this	property.

Method

Refresh

Property

Count

Databases	Collection

			 			

			 			

			

A	Databases	collection	contains	all	open	Database	objects	opened	or
created	in	a	Workspace	object.

	

Remarks

When	you	open	an	existing	Database	object	or	create	a	new	one	from	a

Workspace,	it	is	automatically	appended	to	the	Databases	collection.
When	you	close	a	Database	object	with	the	Close	method,	it	is	removed
from	the	Databases	collection	but	not	deleted	from	disk.	You	should
close	all	open	Recordset	objects	before	closing	a	Database	object.

In	a	Microsoft	Jet	workspace,	the	Name	property	setting	of	a	database	is
a	string	that	specifies	the	path	of	the	database	file.	In	an	ODBCDirect
workspace,	the	Name	property	is	the	name	of	the	corresponding
Connection	object.

To	refer	to	a	Database	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

Databases(0)

Databases("name")

Databases![name]

Note	You	can	open	the	same	data	source	or	database	more	than
once,	creating	duplicate	names	in	the	Databases	collection.	You
should	assign	Database	objects	to	object	variables	and	refer	to	them
by	variable	name.

Database	Object

			 			

			 			

			

A	Database	object	represents	an	open	database.

	

Remarks

You	use	the	Database	object	and	its	methods	and	properties	to
manipulate	an	open	database.	In	any	type	of	database,	you	can:

Use	the	Execute	method	to	run	an	action	query.

Set	the	Connect	property	to	establish	a	connection	to	an	ODBC
data	source.

Set	the	QueryTimeout	property	to	limit	the	length	of	time	to	wait
for	a	query	to	execute	against	an	ODBC	data	source.

Use	the	RecordsAffected	property	to	determine	how	many
records	were	changed	by	an	action	query.

Use	the	OpenRecordset	method	to	execute	a	select	query	and
create	a	Recordset	object.

Use	the	Version	property	to	determine	which	version	of	a
database	engine	created	the	database.

With	a	Microsoft	Jet	database	(.mdb	file),	you	can	also	use	other
methods,	properties,	and	collections	to	manipulate	a	Database	object,	as
well	as	create,	modify,	or	get	information	about	its	tables,	queries,	and
relationships.	For	example,	you	can:

Use	the	CreateTableDef	and	CreateRelation	methods	to	create
tables	and	relations,	respectively.

Use	the	CreateProperty	method	to	define	new	Database
properties.

Use	the	CreateQueryDef	method	to	create	a	persistent	or

temporary	query	definition.

Use	MakeReplica,	Synchronize,	and	PopulatePartial	methods
to	create	and	synchronize	full	or	partial	replicas	of	your	database.

Set	the	CollatingOrder	property	to	establish	the	alphabetic
sorting	order	for	character-based	fields	in	different	languages.

In	an	ODBCDirect	workspace,	you	can:

Use	the	Connection	property	to	obtain	a	reference	to	the
Connection	object	that	corresponds	to	the	Database	object.

Note	For	a	complete	list	of	all	methods,	properties,	and	collections
available	on	a	Database	object	in	either	a	Microsoft	Jet	workspace	or
ODBCDirect	workspace,	see	the	Summary	topic.

You	use	the	CreateDatabase	method	to	create	a	persistent	Database
object	that	is	automatically	appended	to	the	Databases	collection,
thereby	saving	it	to	disk.

You	don't	need	to	specify	the	DBEngine	object	when	you	use	the
OpenDatabase	method.

Opening	a	database	with	linked	tables	doesn't	automatically	establish
links	to	the	specified	external	files	or	Microsoft	Jet-connected	ODBC	data
sources.	You	must	either	reference	the	table's	TableDef	or	Field	objects
or	open	a	Recordset	object.	If	you	can't	establish	links	to	these	tables,	a
trappable	error	occurs.	You	may	also	need	permission	to	access	the
database,	or	another	user	might	have	the	database	opened	exclusively.
In	these	cases,	trappable	errors	occur.

You	can	also	use	the	OpenDatabase	method	to	open	an	external
database	(such	as	FoxPro,	dBASE,	and	Paradox)	directly	instead	of
opening	a	Microsoft	Jet	database	that	has	links	to	its	tables.

Note	Opening	a	Database	object	directly	on	a	Microsoft	Jet-
connected	ODBC	data	source,	such	as	Microsoft	SQL	Server,	is	not
recommended	because	query	performance	is	much	slower	than	when
using	linked	tables.	However,	performance	is	not	a	problem	with
opening	a	Database	object	directly	on	an	external	ISAM	database
file,	such	as	FoxPro,	Paradox,	and	so	forth.

When	a	procedure	that	declares	a	Database	object	has	executed,	local
Database	objects	are	closed	along	with	any	open	Recordset	objects.
Any	pending	updates	are	lost	and	any	pending	transactions	are	rolled
back,	but	no	trappable	error	occurs.	You	should	explicitly	complete	any
pending	transactions	or	edits	and	close	Recordset	objects	and
Database	objects	before	exiting	procedures	that	declare	these	object
variables	locally.

When	you	use	one	of	the	transaction	methods	(BeginTrans,
CommitTrans,	or	Rollback)	on	the	Workspace	object,	these
transactions	apply	to	all	databases	opened	on	the	Workspace	from
which	the	Database	object	was	opened.	If	you	want	to	use	independent
transactions,	you	must	first	open	an	additional	Workspace	object,	and
then	open	another	Database	object	in	that	Workspace	object.

Note	You	can	open	the	same	data	source	or	database	more	than
once,	creating	duplicate	names	in	the	Databases	collection.	You
should	assign	Database	objects	to	object	variables	and	refer	to	them
by	variable	name.

Database	Object,	Databases	Collection
Summary

			

Database	Object

A	Database	object	contains	these	collections,	methods,	and	properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Containers	
Properties
QueryDefs	
Recordsets	(Default	for)
Relations	
TableDefs	(Default	for)

Methods

Close
CreateProperty	
CreateQueryDef	
CreateRelation	
CreateTableDef	
Execute

MakeReplica	
NewPassword	
OpenRecordset
PopulatePartial	
Synchronize	

Properties

CollatingOrder	
Connect
Connection	
DesignMasterID	
Name
QueryTimeout
RecordsAffected
Replicable	(user-defined)	
ReplicaID	
Updatable
V1xNullBehavior	
Version

Databases	Collection

A	Databases	collection	appears	in	each	Workspace	object,	and	contains
this	method	and	this	property.

Method

Refresh

Property

Count

DBEngine	Object

			 			

			 			

			

The	DBEngine	object	is	the	top	level	object	in	the	DAO	object	model.

	

Remarks

The	DBEngine	object	contains	and	controls	all	other	objects	in	the
hierarchy	of	DAO	objects.	You	can't	create	additional	DBEngine	objects,
and	the	DBEngine	object	isn't	an	element	of	any	collection.

Note	When	you	reference	an	ODBC	data	source	directly	through
DAO,	it	is	called	an	"ODBCDirect	workspace."	This	is	to	distinguish	it
from	an	ODBC	data	source	that	you	reference	indirectly	through	the

Microsoft	Jet	database	engine,	using	a	"Microsoft	Jet	workspace."	
Each	method	of	accessing	ODBC	data	requires	one	of	two	types	of
Workspace	object;	you	can	set	the	DefaultType	property	to	choose
the	default	type	of	Workspace	object	that	you	will	create	from	the
DBEngine	object.	The	Workspace	type	and	associated	data	source
determines	which	DAO	objects,	methods,	and	properties	you	can	use.

With	any	type	of	database	or	connection,	you	can:

Use	the	Version	property	to	obtain	the	DAO	version	number.

Use	the	LoginTimeout	property	to	obtain	or	set	the	ODBC	login
timeout,	and	the	RegisterDatabase	method	to	provide	ODBC
information	to	the	Microsoft	Jet	database	engine.	You	can	use
these	features	the	same	way,	regardless	of	whether	you	connect	to
the	ODBC	data	source	through	Microsoft	Jet	or	through	an
ODBCDirect	workspace.

Use	the	DefaultType	property	to	set	the	default	type	of	database
connection	that	subsequently	created	Workspace	objects	will	use
—	either	Microsoft	Jet	or	ODBCDirect.

Use	the	DefaultPassword	and	DefaultUser	properties	to	set	the
user	identification	and	password	for	the	default	Workspace
object.

Use	the	CreateWorkspace	method	to	create	a	new	Workspace
object.	You	can	use	optional	arguments	to	override	the	settings	of
the	DefaultType,	DefaultPassword,	and	DefaultUser	properties.

Use	the	OpenDatabase	method	to	open	a	database	in	the	default

Workspace,	and	use	the	BeginTrans,	Commit,	and	Rollback
methods	to	control	transactions	on	the	default	Workspace.

Use	the	Workspaces	collection	to	reference	specific	Workspace
objects.

Use	the	Errors	collection	to	examine	data	access	error	details.

Other	properties	and	methods	are	only	available	when	you	use	DAO	with
the	Microsoft	Jet	database	engine.	You	can	use	them	to	control	the
Microsoft	Jet	database	engine,	manipulate	its	properties,	and	perform
tasks	on	temporary	objects	that	aren't	elements	of	collections.	For
example,	you	can:

Use	the	CreateDatabase	method	to	create	a	new	Microsoft	Jet
Database	object.

Use	the	Idle	method	to	enable	the	Microsoft	Jet	database	engine
to	complete	any	pending	tasks.

Use	the	CompactDatabase	and	RepairDatabase	methods	to
maintain	database	files.

Use	the	IniPath	and	SystemDB	properties	to	specify	the	location
of	Microsoft	Jet	Windows	Registry	information	and	the	Microsoft
Jet	workgroup	information	file,	respectively.		The	SetOption
method	allows	you	override	windows	registry	settings	for	the
Microsoft	Jet	database	engine.

After	you	change	the	DefaultType	and	IniPath	property	settings,	only
subsequent	Workspace	objects	will	reflect	these	changes.

Note	For	a	complete	list	of	all	methods,	properties,	and	collections
available	on	the	DBEngine	object,	see	the	Summary	topic.

To	refer	to	a	collection	that	belongs	to	the	DBEngine	object,	or	to	refer	to
a	method	or	property	that	applies	to	this	object,	use	this	syntax:

[DBEngine.][collection	|	method	|	property]

DBEngine	Object	Summary

			

The	DBEngine	object	contains	these	collections,	methods,	and
properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Errors
Properties
Workspaces	(Default)

Methods

BeginTrans
CommitTrans
CompactDatabase	
CreateDatabase	
CreateWorkspace
Idle	
OpenConnection	
OpenDatabase
RegisterDatabase
RepairDatabase	
Rollback

SetOption	

Properties

DefaultPassword
DefaultType
DefaultUser
IniPath	
LoginTimeout
SystemDB	
Version

Documents	Collection

			 			

			 			

			

A	Documents	collection	contains	all	of	the	Document	objects	for	a
specific	type	of	object	(Microsoft	Jet	databases	only).

	

Remarks

Each	Container	object	has	a	Documents	collection	containing
Document	objects	that	describe	instances	of	built-in	objects	of	the	type
specified	by	the	Container.

To	refer	to	a	Document	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

Documents(0)

Documents("name")

Documents![name]

Document	Object

			 			

			 			

			

A	Document	object	includes	information	about	one	instance	of	an	object.
The	object	can	be	a	database,	saved	table,	query,	or	relationship
(Microsoft	Jet	databases	only).

	

Remarks

Each	Container	object	has	a	Documents	collection	containing
Document	objects	that	describe	instances	of	built-in	objects	of	the	type
specified	by	the	Container.	The	following	table	lists	the	type	of	object
each	Document	describes,	the	name	of	its	Container	object,	and	what
type	of	information	Document	contains.

Document Container Contains	information	about
Database Databases Saved	database
Table	or	query Tables Saved	table	or	query
Relationship Relations Saved	relationship

Note	Don't	confuse	the	Container	objects	listed	in	the	preceding
table	with	the	collections	of	the	same	name.	The	Databases
Container	object	refers	to	all	saved	database	objects,	but	the
Databases	collection	refers	only	to	database	objects	that	are	open	in
a	particular	workspace.

With	a	Document	object,	you	can:

Use	the	Name	property	to	return	the	name	that	a	user	or	the
Microsoft	Jet	database	engine	gave	to	the	object	when	it	was
created.

Use	the	Container	property	to	return	the	name	of	the	Container
object	that	contains	the	Document	object.

Use	the	Owner	property	to	set	or	return	the	owner	of	the	object.
To	set	the	Owner	property,	you	must	have	write	permission	for
the	Document	object,	and	you	must	set	the	property	to	the	name
of	an	existing	User	or	Group	object.

Use	the	UserName	or	Permissions	properties	to	set	or	return	the
access	permissions	of	a	user	or	group	for	the	object.	To	set	these
properties,	you	must	have	write	permission	for	the	Document
object,	and	you	must	set	the	UserName	property	to	the	name	of
an	existing	User	or	Group	object.

Use	the	DateCreated	and	LastUpdated	properties	to	return	the
date	and	time	when	the	Document	object	was	created	and	last
modified.

Because	a	Document	object	corresponds	to	an	existing	object,	you	can't
create	new	Document	objects	or	delete	existing	ones.	To	refer	to	a
Document	object	in	a	collection	by	its	ordinal	number	or	by	its	Name
property	setting,	use	any	of	the	following	syntax	forms:

Documents(0)

Documents("name")

Documents![name]

Document	Object,	Documents	Collection
Summary

			

Document	Object

A	Document	object	contains	this	collection,	this	method,	and	these
properties.

Collection

Properties

Method

CreateProperty

Properties

AllPermissions
Container
DateCreated
KeepLocal	(user-defined)
LastUpdated
Name
Owner
Permissions
Replicable	(user-defined)
UserName

Documents	Collection

A	Documents	collection	appears	in	each	Container	object,	and	contains
this	method	and	this	property.

Method

Refresh

Property

Count

Dynamic-Type	Recordset	Object

			 			

			 			

			

This	Recordset	type	represents	a	query	result	set	from	one	or	more
base	tables	in	which	you	can	add,	change,	or	delete	records	from	a	row-
returning	query.	Further,	records	that	other	users	add,	delete,	or	edit	in
the	base	tables	also	appear	in	your	Recordset.

This	type	is	only	available	in	ODBCDirect	workspaces,	and	corresponds
to	an	ODBC	dynamic	cursor.

Dynaset-Type	Recordset	Object	Summary

			

The	dynaset-type	Recordset	object	contains	these	collections,	methods,
and	properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Fields	(default)
Properties
Methods Restrictions
AddNew
Cancel
CancelUpdate
Clone
Close
CopyQueryDef
Delete
Edit
FillCache
FindFirst
FindLast
FindNext
FindPrevious
GetRows

Move
MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
OpenRecordset
Requery
Update

Properties

The	following	table	indicates	whether	the	property	setting	is	read/write,
read-only,	or	only	available	in	either	Microsoft	Jet	or	ODBCDirect
workspaces.

Read-only

Read/write

Properties Restrictions
AbsolutePosition
BatchCollisionCount
BatchCollisions
BatchSize
BOF
Bookmark
Bookmarkable

CacheSize
	Microsoft	Jet

	ODBCDirect

CacheStart
Connection
EditMode
EOF
Filter

LastModified

LockEdits

Name
NoMatch
PercentPosition
RecordCount
RecordStatus
Restartable
Sort
StillExecuting
Transactions
Type
Updatable
UpdateOptions
ValidationRule
ValidationText

Errors	Collection

			 			

			 			

			

An	Errors	collection	contains	all	stored	Error	objects,	each	of	which
pertains	to	a	single	operation	involving	DAO.

	

Remarks

Any	operation	involving	DAO	objects	can	generate	one	or	more	errors.
As	each	error	occurs,	one	or	more	Error	objects	are	placed	in	the	Errors
collection	of	the	DBEngine	object.	When	another	DAO	operation
generates	an	error,	the	Errors	collection	is	cleared,	and	the	new	set	of
Error	objects	is	placed	in	the	Errors	collection.	The	highest-numbered
object	in	the	Errors	collection	(DBEngine.Errors.Count	-	1)

corresponds	to	the	error	reported	by	the	Microsoft	Visual	Basic	for
Applications	(VBA)	Err	object.

DAO	operations	that	don't	generate	an	error	have	no	effect	on	the	Errors
collection.

Elements	of	the	Errors	collection	aren't	appended	as	they	typically	are
with	other	collections,	so	the	Errors	collection	doesn't	support	the
Append	and	Delete	methods.

The	set	of	Error	objects	in	the	Errors	collection	describes	one	error.	The
first	Error	object	is	the	lowest	level	error,	the	second	the	next	higher
level,	and	so	forth.	For	example,	if	an	ODBC	error	occurs	while	trying	to
open	a	Recordset	object,	the	first	error	object	contains	the	lowest	level
ODBC	error;	subsequent	errors	contain	the	ODBC	errors	returned	by	the
various	layers	of	ODBC.	In	this	case,	the	ODBC	driver	manager,	and
possibly	the	driver	itself,	return	separate	Error	objects.	The	last	Error
object	contains	the	DAO	error	indicating	that	the	object	couldn't	be
opened.

Enumerating	the	specific	errors	in	the	Errors	collection	enables	your
error-handling	routines	to	more	precisely	determine	the	cause	and	origin
of	an	error,	and	take	appropriate	steps	to	recover.

Note	If	you	use	the	New	keyword	to	create	an	object	that	causes	an
error	either	before	or	while	being	placed	into	the	Errors	collection,	the
collection	doesn't	contain	error	information	about	that	object,	because
the	new	object	is	not	associated	with	the	DBEngine	object.	However,
the	error	information	is	available	in	the	VBA	Err	object.

Error	Object

			 			

			 			

			

An	Error	object	contains	details	about	data	access	errors,	each	of	which
pertains	to	a	single	operation	involving	DAO.

	

Remarks

Any	operation	involving	DAO	can	generate	one	or	more	errors.	For
example,	a	call	to	an	ODBC	server	might	result	in	an	error	from	the
database	server,	an	error	from	ODBC,	and	a	DAO	error.	As	each	such
error	occurs,	an	Error	object	is	placed	in	the	Errors	collection	of	the
DBEngine	object.	A	single	event	can	therefore	result	in	several	Error
objects	appearing	in	the	Errors	collection.

When	a	subsequent	DAO	operation	generates	an	error,	the	Errors
collection	is	cleared,	and	one	or	more	new	Error	objects	are	placed	in
the	Errors	collection.	DAO	operations	that	don't	generate	an	error	have
no	effect	on	the	Errors	collection.

The	set	of	Error	objects	in	the	Errors	collection	describes	one	error.	The
first	Error	object	is	the	lowest	level	error	(the	originating	error),	the
second	the	next	higher	level	error,	and	so	forth.	For	example,	if	an	ODBC
error	occurs	while	trying	to	open	a	Recordset	object,	the	first	Error	object
—	Errors(0)	—	contains	the	lowest	level	ODBC	error;	subsequent	errors
contain	the	ODBC	errors	returned	by	the	various	layers	of	ODBC.	In	this
case,	the	ODBC	driver	manager,	and	possibly	the	driver	itself,	return
separate	Error	objects.	The	last	Error	object	—	Errors.Count-1	—
contains	the	DAO	error	indicating	that	the	object	couldn't	be	opened.

Enumerating	the	specific	errors	in	the	Errors	collection	enables	your
error-handling	routines	to	more	precisely	determine	the	cause	and	origin
of	an	error,	and	take	appropriate	steps	to	recover.	On	both	Microsoft	Jet
and	ODBCDirect	workspaces,	you	can	read	the	Error	object’s	properties
to	obtain	specific	details	about	each	error,	including:

The	Description	property,	which	contains	the	text	of	the	error
alert	that	will	be	displayed	on	the	screen	if	the	error	is	not
trapped.

The	Number	property,	which	contains	the	Long	integer	value	of
the	error	constant.

The	Source	property,	which	identifies	the	object	that	raised	the
error.	This	is	particularly	useful	when	you	have	several	Error
objects	in	the	Errors	collection	following	a	request	to	an	ODBC
data	source.

The	HelpFile	and	HelpContext	properties,	which	indicate	the

appropriate	Microsoft	Windows	Help	file	and	Help	topic,
respectively,	(if	any	exist)	for	the	error.

Note	When	programming	in	Microsoft	Visual	Basic	for	Applications
(VBA),	if	you	use	the	New	keyword	to	create	an	object	that
subsequently	causes	an	error	before	that	object	has	been	appended
to	a	collection,	the	DBEngine	object's	Errors	collection	won't	contain
an	entry	for	that	object's	error,	because	the	new	object	is	not
associated	with	the	DBEngine	object.	However,	the	error	information
is	available	in	the	VBA	Err	object.

Your	VBA	error-handling	code	should	examine	the	Errors	collection
whenever	you	anticipate	a	data	access	error.	If	you	are	writing	a
centralized	error	handler,	test	the	VBA	Err	object	to	determine	if	the
error	information	in	the	Errors	collection	is	valid.	If	the	Number
property	of	the	last	element	of	the	Errors	collection
(DBEngine.Errors.Count	-	1)	and	the	value	of	the	Err	object
match,	you	can	then	use	a	series	of	Select	Case	statements	to
identify	the	particular	DAO	error	or	errors	that	occurred.	If	they	do	not
match,	use	the	Refresh	method	on	the	Errors	collection.

Error	Object,	Errors	Collection	Summary

			

Error	Object

An	Error	object	contains	no	methods;no	collections,	and	these	properties:

Properties

Description
HelpContext
HelpFile
Number
Source

Errors	Collection

An	Errors	collection	appears	in	the	DBEngine	object,	and	contains	this
method	and	this	property:

Method

Refresh

Property

Count

Fields	Collection

			 			

			 			

			

A	Fields	collection	contains	all	stored	Field	objects	of	an	Index,
QueryDef	(Microsoft	Jet	workspaces	only),	Recordset,	Relation,	or
TableDef	object.

	

Remarks

The	Fields	collections	of	the	Index,	QueryDef,	Relation,	and	TableDef

objects	contain	the	specifications	for	the	fields	those	objects	represent.
The	Fields	collection	of	a	Recordset	object	represents	the	Field	objects
in	a	row	of	data,	or	in	a	record.	You	use	the	Field	objects	in	a	Recordset
object	to	read	and	to	set	values	for	the	fields	in	the	current	record	of	the
Recordset	object.

To	refer	to	a	Field	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Fields(0)

Fields("name")

Fields![name]

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
Field	object	that	you	create	and	append	to	a	Fields	collection.	The
context	of	the	field	reference	will	determine	whether	you	are	referring	to
the	Field	object	or	the	Value	property	of	the	Field	object.

Field	Object

			 			

			 			

			

A	Field	object	represents	a	column	of	data	with	a	common	data	type	and
a	common	set	of	properties.

	

Remarks

The	Fields	collections	of	Index,	QueryDef,	Relation,	and	TableDef
objects	contain	the	specifications	for	the	fields	those	objects	represent.

The	Fields	collection	of	a	Recordset	object	represents	the	Field	objects
in	a	row	of	data,	or	in	a	record.	You	use	the	Field	objects	in	a	Recordset
object	to	read	and	set	values	for	the	fields	in	the	current	record	of	the
Recordset	object.

In	both	Microsoft	Jet	and	ODBCDirect	workspaces,	you	manipulate	a
field	using	a	Field	object	and	its	methods	and	properties.	For	example,
you	can:

Use	the	OrdinalPosition	property	to	set	or	return	the	presentation
order	of	the	Field	object	in	a	Fields	collection.	(This	property	is
read-only	for	ODBCDirect	databases.)

Use	the	Value	property	of	a	field	in	a	Recordset	object	to	set	or
return	stored	data.

Use	the	AppendChunk	and	GetChunk	methods	and	the
FieldSize	property	to	get	or	set	a	value	in	an	OLE	Object	or
Memo	field	of	a	Recordset	object.

Use	the	Type,	Size,	and	Attributes	properties	to	determine	the
type	of	data	that	can	be	stored	in	the	field.

Use	the	SourceField	and	SourceTable	properties	to	determine
the	original	source	of	the	data.

In	Microsoft	Jet	workspaces,	you	can:

Use	the	ForeignName	property	to	set	or	return	information	about
a	foreign	field	in	a	Relation	object.

Use	the	AllowZeroLength,	DefaultValue,	Required,
ValidateOnSet,	ValidationRule,	or	ValidationText	properties	to
set	or	return	validation	conditions.

Use	the	DefaultValue	property	of	a	field	on	a	TableDef	object	to
set	the	default	value	for	this	field	when	new	records	are	added.

In	ODBCDirect	workspaces,	you	can:

Use	the	Value,	VisibleValue,	and	OriginalValue	properties	to
verify	successful	completion	of	a	batch	update.

Note	For	a	complete	list	of	all	methods,	properties,	and	collections
available	on	a	Field	object	in	any	database	or	connection,	see	the
Summary	topic.

To	create	a	new	Field	object	in	an	Index,	TableDef,	or	Relation	object,
use	the	CreateField	method.

When	you	access	a	Field	object	as	part	of	a	Recordset	object,	data	from
the	current	record	is	visible	in	the	Field	object's	Value	property.	To
manipulate	data	in	the	Recordset	object,	you	don't	usually	reference	the
Fields	collection	directly;	instead,	you	indirectly	reference	the	Value
property	of	the	Field	object	in	the	Fields	collection	of	the	Recordset
object.

To	refer	to	a	Field	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Fields(0)

Fields("name")

Fields![name]

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
Field	object	that	you	create	and	append	to	a	Fields	collection.	The

context	of	the	field	reference	will	determine	whether	you	are	referring	to
the	Field	object	or	the	Value	property	of	the	Field	object.

Field	Object,	Fields	Collection	Summary

			

Field	Object

A	Field	object	contains	this	collection,	these	methods,	and	these
properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collection

Properties

Methods

The	following	table	lists	all	of	the	Field	object	methods.	The	type	of
object	whose	Fields	collection	contains	the	Field	object	determines
which	methods	are	available.

Method Index QueryDef Recordset Relation TableDef
AppendChunk
CreateProperty
GetChunk

Properties

The	following	table	lists	all	of	the	Field	object	properties.	The	type	of
object	whose	Fields	collection	contains	the	Field	object	determines
which	properties	are	available.	All	properties	are	read-only	for	Field
objects	appended	to	Fields	collections	of	Index,	Relation,	and	TableDef
objects.

Read-only

Read/write

Property Index QueryDef Recordset Relation TableDef
AllowZeroLength 	
Attributes
CollatingOrder
DataUpdatable
DefaultValue
FieldSize
ForeignName
Name
OrdinalPosition
OriginalValue 	*
Required
Size
SourceField
SourceTable
Type
ValidateOnSet
ValidationRule
ValidationText
Value
VisibleValue 	*

*	These	properties	are	only	available	in	an	ODBCDirect	workspace	whose	DefaultCursorDriver
property	is	set	to	dbUseClientBatchCursor.

Fields	Collection

A	Fields	collection	appears	in	each	of	the	TableDef,	QueryDef,
Recordset,	Relation,	and	Index	objects,	and	contains	these	methods	and
this	property.

Method Index QueryDefRecordset Relation TableDef
Append
Delete
Refresh

Property Index QueryDefRecordset Relation TableDef
Count

Forward-Only–Type	Recordset	Object

			 			

			 			

			

This	Recordset	type	is	identical	to	a	snapshot	except	that	you	can	only
scroll	forward	through	its	records.	This	improves	performance	in
situations	where	you	only	need	to	make	a	single	pass	through	a	result
set.

In	an	ODBCDirect	workspace,	this	type	corresponds	to	an	ODBC
forward-only	cursor.

Forward-Only–Type	Recordset	Object	Summary

			

The	forward-only	type	Recordset	object	contains	these	collections,
methods,	and	properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Fields	(default)
Properties
Methods Restrictions
AddNew
Cancel
CancelUpdate
Close
CopyQueryDef
Delete
Edit
GetRows

Move Only	with	forward	moves	that	don't	use	a
bookmark	offset.

MoveNext
NextRecordset
Requery
Update

Properties

The	following	table	indicates	whether	each	property	setting	is	read/write,
read-only,	or	always	False	in	either	Microsoft	Jet	or	ODBCDirect
workspaces.

Read-only

Read/write

Properties Restrictions
BatchCollisionCount
BatchCollisions
BatchSize
BOF
Connection
EOF
Filter
Name
RecordCount
RecordStatus
Restartable
StillExecuting
Transactions Always	False	
Type
Updatable False	
UpdateOptions
ValidationRule
ValidationText

Groups	Collection

			 			

			 			

			

A	Groups	collection	contains	all	stored	Group	objects	of	a	Workspace
or	user	account	(Microsoft	Jet	workspaces	only).

	

Remarks

You	can	append	an	existing	Group	object	to	the	Groups	collection	in	a
User	object	to	establish	membership	of	a	user	account	in	that	Group
object.	Alternatively,	you	can	append	a	User	object	to	the	Users
collection	in	a	Group	object	to	give	a	user	account	the	global

permissions	of	that	group.	In	either	case,	the	existing	Group	object	must
already	be	a	member	of	the	Groups	collection	of	the	current	Workspace
object.	If	you	use	a	Groups	or	Users	collection	other	than	the	one	to
which	you	just	appended	an	object,	you	may	need	to	use	the	Refresh
method	to	refresh	the	collection	with	current	information	from	the
database.

To	refer	to	a	Group	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Groups(0)

Groups("name")

Groups![name]

Group	Object

			 			

			 			

			

A	Group	object	represents	a	group	of	user	accounts	that	have	common
access	permissions	when	a	Workspace	object	operates	as	a	secure
workgroup.	(Microsoft	Jet	workspaces	only).

	

Remarks

You	create	Group	objects	and	then	use	their	names	to	establish	and
enforce	access	permissions	for	your	databases,	tables,	and	queries
using	the	Document	objects	that	represent	the	Database,	TableDef,	and

QueryDef	objects	with	which	you're	working.

With	the	properties	of	a	Group	object,	you	can:

Use	the	Name	property	of	an	existing	Group	object	to	return	its
name.	You	can't	return	the	PID	property	setting	of	an	existing
Group	object.

Use	the	Name	and	PID	properties	of	a	newly	created,
unappended	Group	object	to	set	the	identity	of	that	Group
object.

You	can	append	an	existing	Group	object	to	the	Groups	collection	in	a
User	object	to	establish	membership	of	a	user	account	in	that	Group
object.	Alternatively,	you	can	append	a	User	object	to	the	Users
collection	in	a	Group	object	to	give	a	user	account	the	global
permissions	of	that	group.	If	you	use	a	Groups	or	Users	collection	other
than	the	one	to	which	you	just	appended	an	object,	you	may	need	to	use
the	Refresh	method	to	refresh	the	collection	with	current	information
from	the	database.

The	Microsoft	Jet	database	engine	predefines	three	Group	objects
named	Admins,	Users,	and	Guests.	To	create	a	new	Group	object,	use
the	CreateGroup	method	on	a	User	or	Workspace	object.

To	refer	to	a	Group	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Groups(0)

Groups("name")

Groups![name]

Group	Object,	Groups	Collection	Summary

			

Group	Object

A	Group	object	contains	these	collections,	this	method,	and	these
properties.

Collections

Properties
Users	(default)

Method

CreateUser

Properties

Name
PID

Groups	Collection

A	Groups	collection	appears	in	each	User	and	Microsoft	Jet	Workspace
object,	and	contains	these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Indexes	Collection

			 			

			 			

			

An	Indexes	collection	contains	all	the	stored	Index	objects	of	a	TableDef
object	(Microsoft	Jet	workspaces	only).

	

Remarks

When	you	access	a	table-type	Recordset	object,	use	the	object's	Index
property	to	specify	the	order	of	records.	Set	this	property	to	the	Name
property	setting	of	an	existing	Index	object	in	the	Indexes	collection	of
the	the	TableDef	object	underlying	the	Recordset	object.

Note	You	can	use	the	Append	or	Delete	method	on	an	Indexes
collection	only	if	the	Updatable	property	setting	of	the	containing
TableDef	object	is	True.

After	you	create	a	new	Index	object,	you	should	use	the	Append	method
to	add	it	to	the	TableDef	object's	Indexes	collection.

Important	Make	sure	your	data	complies	with	the	attributes	of	your
new	index.	If	your	index	requires	unique	values,	make	sure	that	there
are	no	duplicates	in	existing	data	records.	If	duplicates	exist,	the
Microsoft	Jet	database	engine	can't	create	the	index;	a	trappable
error	results	when	you	attempt	to	use	the	Append	method	on	the	new
index.

Index	Object

			 			

			 			

			

Index	objects	specify	the	order	of	records	accessed	from	database
tables	and	whether	or	not	duplicate	records	are	accepted,	providing
efficient	access	to	data.	For	external	databases,	Index	objects	describe
the	indexes	established	for	external	tables	(Microsoft	Jet	workspaces
only).

	

Remarks

The	Microsoft	Jet	database	engine	uses	indexes	when	it	joins	tables	and
creates	Recordset	objects.	Indexes	determine	the	order	in	which	table-

type	Recordset	objects	return	records,	but	they	don't	determine	the	order
in	which	the	Microsoft	Jet	database	engine	stores	records	in	the	base
table	or	the	order	in	which	any	other	type	of	Recordset	object	returns
records.

With	an	Index	object,	you	can:

Use	the	Required	property	to	determine	whether	the	Field	objects
in	the	index	require	values	that	are	not	Null,	and	then	use	the
IgnoreNulls	property	to	determine	whether	the	Null	values	have
index	entries.

Use	the	Primary	and	Unique	properties	to	determine	the
ordering	and	uniqueness	of	the	Index	object.

The	Microsoft	Jet	database	engine	maintains	all	base	table	indexes
automatically.	It	updates	indexes	whenever	you	add,	change,	or	delete
records	from	the	base	table.	Once	you	create	the	database,	use	the
CompactDatabase	method	periodically	to	bring	index	statistics	up-to-
date.

When	accessing	a	table-type	Recordset	object,	you	specify	the	order	of
records	using	the	object's	Index	property.	Set	this	property	to	the	Name
property	setting	of	an	existing	Index	object	in	the	Indexes	collection.	This
collection	is	contained	by	the	TableDef	object	underlying	the	Recordset
object	that	you're	populating.

Note	You	don't	have	to	create	indexes	for	a	table,	but	for	large,
unindexed	tables,	accessing	a	specific	record	or	processing	joins	can
take	a	long	time.	Conversely,	having	too	many	indexes	can	slow	down
updates	to	the	database	as	each	of	the	table	indexes	is	amended.

The	Attributes	property	of	each	Field	object	in	the	index	determines	the
order	of	records	returned	and	consequently	determines	which	access
techniques	to	use	for	that	index.

Each	Field	object	in	the	Fields	collection	of	an	Index	object	is	a
component	of	the	index.	To	define	a	new	Index	object,	set	its	properties
before	you	append	it	to	a	collection,	making	the	Index	object	available	for
subsequent	use.

Note	You	can	modify	the	Name	property	setting	of	an	existing	Index
object	only	if	the	Updatable	property	setting	of	the	containing
TableDef	object	is	True.

When	you	set	a	primary	key	for	a	table,	the	Microsoft	Jet	database
engine	automatically	defines	it	as	the	primary	index.	A	primary	index
consists	of	one	or	more	fields	that	uniquely	identify	all	records	in	a	table
in	a	predefined	order.	Because	the	primary	index	field	must	be	unique,
the	Microsoft	Jet	database	engine	automatically	sets	the	Unique	property
of	the	primary	Index	object	to	True.	If	the	primary	index	consists	of	more
than	one	field,	each	field	can	contain	duplicate	values,	but	the
combination	of	values	from	all	the	indexed	fields	must	be	unique.	A
primary	index	consists	of	a	key	for	the	table	and	is	always	made	up	of	the
same	fields	as	the	primary	key.

Important	Make	sure	your	data	complies	with	the	attributes	of	your
new	index.	If	your	index	requires	unique	values,	make	sure	that	there
are	no	duplicates	in	existing	data	records.	If	duplicates	exist,	the
Microsoft	Jet	database	engine	can't	create	the	index;	a	trappable
error	results	when	you	attempt	to	use	the	Append	method	on	the	new
index.

When	you	create	a	relationship	that	enforces	referential	integrity,	the
Microsoft	Jet	database	engine	automatically	creates	an	index	with	the
Foreign	property,	set	as	the	foreign	key	in	the	referencing	table.	After
you've	established	a	table	relationship,	the	Microsoft	Jet	database	engine
prevents	additions	or	changes	to	the	database	that	violate	that
relationship.	If	you	set	the	Attributes	property	of	the	Relation	object	to
allow	cascading	updates	and	cascading	deletes,	the	Microsoft	Jet
database	engine	updates	or	deletes	records	in	related	tables
automatically.

To	create	a	new	Index	object

1.	 Use	the	CreateIndex	method	on	a	TableDef	object.

2.	 Use	the	CreateField	method	on	the	Index	object	to	create	a	Field
object	for	each	field	(column)	to	be	included	in	the	Index	object.

3.	 Set	Index	properties	as	needed.

4.	 Append	the	Field	object	to	the	Fields	collection.

5.	 Append	the	Index	object	to	the	Indexes	collection.

Note	The	Clustered	property	is	ignored	for	databases	that	use	the
Microsoft	Jet	database	engine,	which	doesn't	support	clustered
indexes.

Index	Object,	Indexes	Collection	Summary

			

Index	Object

An	Index	object	contains	these	collections,	methods,	and	properties.

Collections

Fields	(default)
Properties

Methods

CreateField
CreateProperty

Properties

Clustered
DistinctCount
Foreign
IgnoreNulls
Name
Primary
Required
Unique

Indexes	Collection

An	Indexes	collection	appears	in	each	TableDef	object,	and	contains
these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Parameters	Collection

			 			

			 			

			

A	Parameters	collection	contains	all	the	Parameter	objects	of	a
QueryDef	object.

	

Remarks

The	Parameters	collection	provides	information	only	about	existing
parameters.	You	can't	append	objects	to	or	delete	objects	from	the
Parameters	collection.

Parameter	Object

			 			

			 			

			

A	Parameter	object	represents	a	value	supplied	to	a	query.	The
parameter	is	associated	with	a	QueryDef	object	created	from	a
parameter	query.

	

Remarks

Parameter	objects	allow	you	to	change	the	arguments	in	a	frequently	run
QueryDef	object	without	having	to	recompile	the	query.

Using	the	properties	of	a	Parameter	object,	you	can	set	a	query
parameter	that	can	be	changed	before	the	query	is	run.	You	can:

Use	the	Name	property	to	return	the	name	of	a	parameter.

Use	the	Value	property	to	set	or	return	the	parameter	values	to	be
used	in	the	query.

Use	the	Type	property	to	return	the	data	type	of	the	Parameter
object.

Use	the	Direction	property	to	set	or	return	whether	the	parameter
is	an	input	parameter,	an	output	parameter,	or	both.

In	an	ODBCDirect	workspace,	you	can	also:

Change	the	setting	of	the	Type	property.		Doing	so	will	also	clear
the	Value	property.

Use	the	Direction	property	to	set	or	return	whether	the	parameter
is	an	input	parameter,	an	output	parameter,	or	both.

Parameter	Object,	Parameters	Collection
Summary

			

Parameter	Object

A	Parameter	object	contains	no	methods;	it	contains	this	collection	and
these	properties.

Legend:

Feature	available	in	ODBCDirect	workspaces	only.

Collection

Properties

Properties

Direction
Name
Type
Value	(Default)

Parameters	Collection

A	Parameters	collection	appears	in	each	QueryDef	object	and	contains
this	method	and	this	property.

Method

Refresh

Property

Count

Properties	Collection

			 			

			 			

			

A	Properties	collection	contains	all	the	Property	objects	for	a	specific
instance	of	an	object.

	

Remarks

Every	DAO	object	except	the	Connection	and	Error	objects	contains	a
Properties	collection,	which	has	certain	built-in	Property	objects.	These
Property	objects	(which	are	often	just	called	properties)	uniquely
characterize	that	instance	of	the	object.

In	addition	to	the	built-in	properties,	you	can	also	create	and	add	your

own	user-defined	properties.	To	add	a	user-defined	property	to	an
existing	instance	of	an	object,	first	define	its	characteristics	with	the
CreateProperty	method,	then	add	it	to	the	collection	with	the	Append
method.	Referencing	a	user-defined	Property	object	that	has	not	yet
been	appended	to	a	Properties	collection	will	cause	an	error,	as	will
appending	a	user-defined	Property	object	to	a	Properties	collection
containing	a	Property	object	of	the	same	name.

You	can	use	the	Delete	method	to	remove	user-defined	properties	from
the	Properties	collection,	but	you	can't	remove	built-in	properties.

Note	A	user-defined	Property	object	is	associated	only	with	the
specific	instance	of	an	object.	The	property	isn't	defined	for	all
instances	of	objects	of	the	selected	type.

You	can	use	the	Properties	collection	of	an	object	to	enumerate	the
object's	built-in	and	user-defined	properties.	You	don't	need	to	know
beforehand	exactly	which	properties	exist	or	what	their	characteristics
(Name	and	Type	properties)	are	to	manipulate	them.	However,	if	you	try
to	read	a	write-only	property,	such	as	the	Password	property	of	a
Workspace	object,	or	try	to	read	or	write	a	property	in	an	inappropriate
context,	such	as	the	Value	property	setting	of	a	Field	object	in	the	Fields
collection	of	a	TableDef	object,	an	error	occurs.

To	refer	to	a	built-in	Property	object	in	a	collection	by	its	ordinal	number
or	by	its	Name	property	setting,	use	any	of	the	following	syntax	forms:

object.Properties(0)

object.Properties("name")

object.Properties![name]

For	a	built-in	property,	you	can	also	use	this	syntax:

object.name

Note	For	a	user-defined	property,	you	must	use	the	full
object.Properties("name")	syntax.

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
Property	object.	The	context	of	the	reference	will	determine	whether	you
are	referring	to	the	Property	object	itself	or	the	Value	property	of	the
Property	object.

Property	Object

			 			

			 			

			

A	Property	object	represents	a	built-in	or	user-defined	characteristic	of	a
DAO	object.

	

Remarks

Every	DAO	object	except	the	Connection	and	Error	objects	contains	a
Properties	collection	which	has	Property	objects	corresponding	to	built-
in	properties	of	that	DAO	object.	The	user	can	also	define	Property
objects	and	append	them	to	the	Properties	collection	of	some	DAO
objects.	These	Property	objects	(which	are	often	just	called	properties)
uniquely	characterize	that	instance	of	the	object.

You	can	create	user-defined	properties	for	the	following	objects:

Database,	Index,	QueryDef,	and	TableDef	objects

Field	objects	in	Fields	collections	of	QueryDef	and	TableDef
objects

To	add	a	user-defined	property,	use	the	CreateProperty	method	to
create	a	Property	object	with	a	unique	Name	property	setting.	Set	the
Type	and	Value	properties	of	the	new	Property	object,	and	then	append
it	to	the	Properties	collection	of	the	appropriate	object.	The	object	to
which	you	are	adding	the	user-defined	property	must	already	be
appended	to	a	collection.	Referencing	a	user-defined	Property	object
that	has	not	yet	been	appended	to	a	Properties	collection	will	cause	an
error,	as	will	appending	a	user-defined	Property	object	to	a	Properties
collection	containing	a	Property	object	of	the	same	name.

You	can	delete	user-defined	properties	from	the	Properties	collection,
but	you	can't	delete	built-in	properties.

Note	A	user-defined	Property	object	is	associated	only	with	the
specific	instance	of	an	object.	The	property	isn't	defined	for	all
instances	of	objects	of	the	selected	type.

You	can	use	the	Properties	collection	of	an	object	to	enumerate	the
object's	built-in	and	user-defined	properties.	You	don't	need	to	know
beforehand	exactly	which	properties	exist	or	what	their	characteristics
(Name	and	Type	properties)	are	to	manipulate	them.	However,	if	you	try
to	read	a	write-only	property,	such	as	the	Password	property	of	a
Workspace	object,	or	try	to	read	or	write	a	property	in	an	inappropriate
context,	such	as	the	Value	property	setting	of	a	Field	object	in	the	Fields
collection	of	a	TableDef	object,	an	error	occurs.

The	Property	object	also	has	four	built-in	properties:

The	Name	property,	a	String	that	uniquely	identifies	the	property.

The	Type	property,	an	Integer	that	specifies	the	property	data
type.

The	Value	property,	a	Variant	that	contains	the	property	setting.

The	Inherited	property,	a	Boolean	that	indicates	whether	the
property	is	inherited	from	another	object.	For	example,	a	Field
object	in	a	Fields	collection	of	a	Recordset	object	can	inherit
properties	from	the	underlying	TableDef	or	QueryDef	object.

To	refer	to	a	built-in	Property	object	in	a	collection	by	its	ordinal	number
or	by	its	Name	property	setting,	use	any	of	the	following	syntax	forms:

object.Properties(0)

object.Properties("name")

object.Properties![name]

For	a	built-in	property,	you	can	also	use	this	syntax:

object.name

Note	For	a	user-defined	property,	you	must	use	the	full
object.Properties("name")	syntax.

With	the	same	syntax	forms,	you	can	also	refer	to	the	Value	property	of	a
Property	object.	The	context	of	the	reference	will	determine	whether	you
are	referring	to	the	Property	object	itself	or	the	Value	property	of	the
Property	object.

Property	Object,	Properties	Collection	Summary

			

Property	Object

A	Property	object	contains	no	methods;	it	contains	this	collection	and
these	properties.

Collection

Properties

Properties

Inherited	(Always	False	in	ODBCDirect	databases)
Name
Type
Value

Properties	Collection

A	Properties	collection	appears	in	each	of	the	other	DAO	objects	except
the	Connection	and	Error	objects,	and	contains	these	methods	and	this
property.

Methods

Append
Delete
Refresh

Property

Count

QueryDefs	Collection

			 			

			 			

			

A	QueryDefs	collection	contains	all	QueryDef	objects	of	a	Database
object	in	a	Microsoft	Jet	database,	and	all	QueryDef	objects	of	a
Connection	object	in	an	ODBCDirect	workspace.

	

Remarks

To	create	a	new	QueryDef	object,	use	the	CreateQueryDef	method.	In	a
Microsoft	Jet	workspace,	if	you	supply	a	string	for	the	name	argument	or

if	you	explicitly	set	the	Name	property	of	the	new	QueryDef	object	to	a
non–zero-length	string,	you	will	create	a	permanent	QueryDef	that	will
automatically	be	appended	to	the	QueryDefs	collection	and	saved	to
disk.	Supplying	a	zero-length	string	as	the	name	argument	or	explicitly
setting	the	Name	property	to	a	zero-length	string	will	result	in	a
temporary	QueryDef	object.

In	an	ODBCDirect	workspace,	a	QueryDef	is	always	temporary.	The
QueryDefs	collection	contains	all	open	QueryDef	objects.	When	a
QueryDef	is	closed,	it	is	automatically	removed	from	the	QueryDefs
collection.

To	refer	to	a	QueryDef	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

QueryDefs(0)

QueryDefs("name")

QueryDefs![name]

You	can	refer	to	temporary	QueryDef	objects	only	by	the	object	variables
that	you	have	assigned	to	them.

QueryDef	Object

			 			

			 			

			

A	QueryDef	object	is	a	stored	definition	of	a	query	in	a	Microsoft	Jet
database,	or	a	temporary	definition	of	a	query	in	an	ODBCDirect
workspace.

	

Remarks

You	can	use	the	QueryDef	object	to	define	a	query.	For	example,	you
can:

Use	the	SQL	property	to	set	or	return	the	query	definition.

Use	the	QueryDef	object's	Parameters	collection	to	set	or	return
query	parameters.	

Use	the	Type	property	to	return	a	value	indicating	whether	the
query	selects	records	from	an	existing	table,	makes	a	new	table,
inserts	records	from	one	table	into	another	table,	deletes	records,
or	updates	records.

Use	the	MaxRecords	property	to	limit	the	number	of	records
returned	from	a	query.

Use	the	ODBCTimeout	property	to	indicate	how	long	to	wait
before	the	query	returns	records.	The	ODBCTimeout	property
applies	to	any	query	that	accesses	ODBC	data.

In	a	Microsoft	Jet	workspace,	you	can	also:

Use	the	ReturnsRecords	property	to	indicate	that	the	query
returns	records.	The	ReturnsRecords	property	is	only	valid	on
SQL	pass-through	queries.

Use	the	Connect	property	to	make	an	SQL	pass-through	query	to
an	ODC	database.

In	an	ODBCDirect	workspace,	you	can	also:

Use	the	Prepare	property	to	determine	whether	to	invoke	the
ODBC	SQLPrepare	API	when	the	query	is	executed.

Use	the	CacheSize	property	to	cache	records	returned	from	a
query.

You	can	also	create	temporary	QueryDef	objects.	Unlike	permanent
QueryDef	objects,	temporary	QueryDef	objects	are	not	saved	to	disk	or
appended	to	the	QueryDefs	collection.	Temporary	QueryDef	objects	are
useful	for	queries	that	you	must	run	repeatedly	during	run	time	but	do	not
not	need	to	save	to	disk,	particularly	if	you	create	their	SQL	statements
during	run	time.

You	can	think	of	a	permanent	QueryDef	object	in	a	Microsoft	Jet
workspaces	as	a	compiled	SQL	statement.	If	you	execute	a	query	from	a
permanent	QueryDef	object,	the	query	will	run	faster	than	if	you	run	the
equivalent	SQL	statement	from	the	OpenRecordset	method.	This	is
because	the	Microsoft	Jet	database	engine	doesn't	need	to	compile	the
query	before	executing	it.

The	preferred	way	to	use	the	native	SQL	dialect	of	an	external	database
engine	accessed	through	the	Microsoft	Jet	database	engine	is	through
QueryDef	objects.	For	example,	you	can	create	a	Microsoft	SQL	Server
query	and	store	it	in	a	QueryDef	object.	When	you	need	to	use	a	non-
Microsoft	Jet	database	engine	SQL	query,	you	must	provide	a	Connect
property	string	that	points	to	the	external	data	source.	Queries	with	valid
Connect	properties	bypass	the	Microsoft	Jet	database	engine	and	pass
the	query	directly	to	the	external	database	server	for	processing.

To	create	a	new	QueryDef	object,	use	the	CreateQueryDef	method.	In	a
Microsoft	Jet	workspace,	if	you	supply	a	string	for	the	name	argument	or
if	you	explicitly	set	the	Name	property	of	the	new	QueryDef	object	to	a
non–zero-length	string,	you	will	create	a	permanent	QueryDef	that	will
automatically	be	appended	to	the	QueryDefs	collection	and	saved	to
disk.	Supplying	a	zero-length	string	as	the	name	argument	or	explicitly
setting	the	Name	property	to	a	zero-length	string	will	result	in	a
temporary	QueryDef	object.

In	an	ODBCDirect	workspace,	a	QueryDef	is	always	temporary.	The
QueryDefs	collection	contains	all	open	QueryDef	objects.	When	a

QueryDef	is	closed,	it	is	automatically	removed	from	the	QueryDefs
collection.

To	refer	to	a	QueryDef	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

QueryDefs(0)

QueryDefs("name")

QueryDefs![name]

You	can	refer	to	temporary	QueryDef	objects	only	by	the	object	variables
that	you	have	assigned	to	them.

QueryDef	Object,	QueryDefs	Collection
Summary

			

QueryDef	Object

A	QueryDef	object	contains	these	collections,	methods,	and	properties.

Legend:

Available	only	in	a	Microsoft	Jet	workspace.

Available	only	in	an	ODBCDirect	workspace.

Collections

Fields	
Parameters	(default)
Properties

Methods

Cancel	
Close
CreateProperty	
Execute
OpenRecordset

Properties

CacheSize	
Connect
DateCreated	
KeepLocal	
LastUpdated	
LogMessages	
MaxRecords
Name
ODBCTimeout
Prepare	
RecordsAffected
Replicable	
ReturnsRecords	
SQL
StillExecuting	
Type
Updatable

QueryDefs	Collection

A	QueryDefs	collection	appears	in	each	Connection	object	in	an
ODBCDirect	workspace,	and	each	Database	object,	and	contains	these
methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Recordsets	Collection

			 			

			 			

			

A	Recordsets	collection	contains	all	open	Recordset	objects	in	a
Connection	or	Database	object.

	

Remarks

When	you	use	DAO	objects,	you	manipulate	data	almost	entirely	using
Recordset	objects.

A	new	Recordset	object	is	automatically	added	to	the	Recordsets

collection	when	you	open	the	Recordset	object,	and	is	automatically
removed	when	you	close	it.

You	can	create	as	many	Recordset	object	variables	as	needed.	Different
Recordset	objects	can	access	the	same	tables,	queries,	and	fields
without	conflicting.

To	refer	to	a	Recordset	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

Recordsets(0)

Recordsets("name")

Recordsets![name]

Note	You	can	open	a	Recordset	object	from	the	same	data	source	or
database	more	than	once,	creating	duplicate	names	in	the
Recordsets	collection.	You	should	assign	Recordset	objects	to
object	variables	and	refer	to	them	by	variable	name.

Recordset	Object

			 			

			 			

			

A	Recordset	object	represents	the	records	in	a	base	table	or	the	records
that	result	from	running	a	query.

	

Remarks

You	use	Recordset	objects	to	manipulate	data	in	a	database	at	the
record	level.	When	you	use	DAO	objects,	you	manipulate	data	almost
entirely	using	Recordset	objects.	All	Recordset	objects	are	constructed
using	records	(rows)	and	fields	(columns).	There	are	five	types	of

Recordset	objects:

Table-type	Recordset	—	representation	in	code	of	a	base	table
that	you	can	use	to	add,	change,	or	delete	records	from	a	single
database	table	(Microsoft	Jet	workspaces	only).

Dynaset-type	Recordset	—	the	result	of	a	query	that	can	have
updatable	records.	A	dynaset-type	Recordset	object	is	a	dynamic
set	of	records	that	you	can	use	to	add,	change,	or	delete	records
from	an	underlying	database	table	or	tables.	A	dynaset-type
Recordset	object	can	contain	fields	from	one	or	more	tables	in	a
database.	This	type	corresponds	to	an	ODBC	keyset	cursor.

Snapshot-type	Recordset	—	a	static	copy	of	a	set	of	records	that
you	can	use	to	find	data	or	generate	reports.	A	snapshot-type
Recordset	object	can	contain	fields	from	one	or	more	tables	in	a
database	but	can't	be	updated.	This	type	corresponds	to	an	ODBC
static	cursor.

Forward-only-type	Recordset	—	identical	to	a	snapshot	except
that	no	cursor	is	provided.	You	can	only	scroll	forward	through
records.	This	improves	performance	in	situations	where	you	only
need	to	make	a	single	pass	through	a	result	set.	This	type
corresponds	to	an	ODBC	forward-only	cursor.

Dynamic-type	Recordset	—	a	query	result	set	from	one	or	more
base	tables	in	which	you	can	add,	change,	or	delete	records	from
a	row-returning	query.	Further,	records	other	users	add,	delete,	or
edit	in	the	base	tables	also	appear	in	your	Recordset.	This	type
corresponds	to	an	ODBC	dynamic	cursor	(ODBCDirect
workspaces	only).

You	can	choose	the	type	of	Recordset	object	you	want	to	create	using
the	type	argument	of	the	OpenRecordset	method.

In	a	Microsoft	Jet	workspace,	if	you	don't	specify	a	type,	DAO	attempts	to
create	the	type	of	Recordset	with	the	most	functionality	available,
starting	with	table.	If	this	type	isn’t	available,	DAO	attempts	a	dynaset,
then	a	snapshot,	and	finally	a	forward-only	type	Recordset	object.

In	an	ODBCDirect	workspace,	if	you	don't	specify	a	type,	DAO	attempts
to	create	the	type	of	Recordset	with	the	fastest	query	response,	starting
with	forward-only.	If	this	type	isn't	available,	DAO	attempts	a	snapshot,
then	a	dynaset,	and	finally	a	dynamic-	type	Recordset	object.

When	creating	a	Recordset	object	using	a	non-linked	TableDef	object	in
a	Microsoft	Jet	workspace,	table-type	Recordset	objects	are	created.
Only	dynaset-type	or	snapshot-type	Recordset	objects	can	be	created
with	linked	tables	or	tables	in	Microsoft	Jet-connected	ODBC	databases.

A	new	Recordset	object	is	automatically	added	to	the	Recordsets
collection	when	you	open	the	object,	and	is	automatically	removed	when
you	close	it.

Note	If	you	use	variables	to	represent	a	Recordset	object	and	the
Database	object	that	contains	the	Recordset,	make	sure	the
variables	have	the	same	scope,	or	lifetime.	For	example,	if	you
declare	a	public	variable	that	represents	a	Recordset	object,	make
sure	the	variable	that	represents	the	Database	containing	the
Recordset	is	also	public,	or	is	declared	in	a	Sub	or	Function
procedure	using	the	Static	keyword.

You	can	create	as	many	Recordset	object	variables	as	needed.	Different
Recordset	objects	can	access	the	same	tables,	queries,	and	fields
without	conflicting.

Dynaset-,	snapshot-,	and	forward-only–type	Recordset	objects	are
stored	in	local	memory.	If	there	isn't	enough	space	in	local	memory	to
store	the	data,	the	Microsoft	Jet	database	engine	saves	the	additional
data	to	TEMP	disk	space.	If	this	space	is	exhausted,	a	trappable	error

occurs.

The	default	collection	of	a	Recordset	object	is	the	Fields	collection,	and
the	default	property	of	a	Field	object	is	the	Value	property.	Use	these
defaults	to	simplify	your	code.

When	you	create	a	Recordset	object,	the	current	record	is	positioned	to
the	first	record	if	there	are	any	records.	If	there	are	no	records,	the
RecordCount	property	setting	is	0,	and	the	BOF	and	EOF	property
settings	are	True.

You	can	use	the	MoveNext,	MovePrevious,	MoveFirst,	and	MoveLast
methods	to	reposition	the	current	record.	Forward-only–type	Recordset
objects	support	only	the	MoveNext	method.	When	using	the	Move
methods	to	visit	each	record	(or	"walk"	through	the	Recordset),	you	can
use	the	BOF	and	EOF	properties	to	check	for	the	beginning	or	end	of	the
Recordset	object.

With	dynaset-	and	snapshot-type	Recordset	objects	in	a	Microsoft	Jet
workspace,	you	can	also	use	the	Find	methods,	such	as	FindFirst,	to
locate	a	specific	record	based	on	criteria.	If	the	record	isn't	found,	the
NoMatch	property	is	set	to	True.	For	table-type	Recordset	objects,	you
can	scan	records	using	the	Seek	method.

The	Type	property	indicates	the	type	of	Recordset	object	created,	and
the	Updatable	property	indicates	whether	you	can	change	the	object's
records.

Information	about	the	structure	of	a	base	table,	such	as	the	names	and
data	types	of	each	Field	object	and	any	Index	objects,	is	stored	in	a
TableDef	object.

To	refer	to	a	Recordset	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

Recordsets(0)

Recordsets("name")

Recordsets![name]

Note	You	can	open	a	Recordset	object	from	the	same	data	source	or
database	more	than	once,	creating	duplicate	names	in	the
Recordsets	collection.	You	should	assign	Recordset	objects	to
object	variables	and	refer	to	them	by	variable	name.

Recordset	Object,	Recordsets	Collection
Summary

			

Recordset	Object

A	Recordset	object	contains	these	collections,	methods,	and	properties.

Legend:

Feature	available	in	both	Microsoft	Jet	and	ODBCDirect	workspaces.

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Fields	(default)
Properties

Recordset	Methods

The	following	table	lists	all	of	the	Recordset	methods,	and	shows	which
Recordset	type	supports	each	method,	and	whether	the	method	is
available	in	either	a	Microsoft	Jet	or	ODBCDirect	workspace,	or	both.

Method Table Dynaset Snapshot Forward-OnlyDynamic
AddNew 	*
Cancel
CancelUpdate 	*

Clone
Close
CopyQueryDef
Delete 	*
Edit 	*
FillCache
FindFirst
FindLast
FindNext
FindPrevious
GetRows

Move

Only	with
forward	moves
that	don't	use	a
bookmark
offset

MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
OpenRecordset
Requery
Seek
Update 	*

*	In	an	ODBCDirect	workspace,	a	snapshot-type	Recordset	may	be	updatable,	depending	on	the
ODBC	driver.	The	AddNew,	Edit,	Delete,	Update,	and	CancelUpdate	methods	are	only
available	on	ODBCDirect	snapshot-type	Recordset	objects	if	the	ODBC	driver	supports
updatable	snapshots.

Recordset	Properties

The	following	table	indicates	which	properties	apply	to	each	type	of
Recordset	object	and	whether	the	property	setting	is	read/write,	read-
only,	or	always	False	in	either	Microsoft	Jet	or	ODBCDirect	databases.

Read-only

Read/write

Property Table Dynaset Snapshot Forward-
Only Dynamic

AbsolutePosition
BatchCollisionCount
BatchCollisions
BatchSize
BOF
Bookmark
Bookmarkable

CacheSize
	for

Microsoft	Jet
workspaces
	for

ODBCDirect
workspaces

CacheStart
Connection
DateCreated
EditMode
EOF
Filter
Index
LastModified 	*
LastUpdated

LockEdits
	for

Microsoft	Jet
workspaces

	for
Microsoft	Jet
workspaces

	for
ODBCDirect
workspaces

	for
ODBCDirect
workspaces

Name
NoMatch
PercentPosition
RecordCount
RecordStatus
Restartable False	

Sort

StillExecuting

Transactions Always
False

Always
False

Type

Updatable

Always
False	in
Microsoft	Jet
workspaces

Always	False
in	Microsoft
Jet
workspaces

	in
ODBCDirect
workspaces	*

	in
ODBCDirect
workspaces	*

UpdateOptions
ValidationRule
ValidationText

*In	an	ODBCDirect	workspace,	a	snapshot-type	Recordset	may	be	updatable,	depending	on	the
ODBC	driver.	The	LastModified	property	is	available,	and	the	Updatable	property	is	True	only	on
ODBCDirect	snapshot-type	Recordset	objects	if	the	ODBC	driver	supports	updatable	snapshots.

Recordsets	Collection

A	Recordsets	collection	appears	in	each	Connection	and	Database
object,	and	contains	this	method	and	this	property.

Method

Refresh

Property

Count

Relations	Collection

			 			

			 			

			

A	Relations	collection	contains	stored	Relation	objects	of	a	Database
object	(Microsoft	Jet	databases	only).

	

Remarks

You	can	use	the	Relation	object	to	create	new	relationships	and	examine
existing	relationships	in	your	database.	To	add	a	Relation	object	to	the
Relations	collection,	first	create	it	with	the	CreateRelation	method,	and
then	append	it	to	the	Relations	collection	with	the	Append	method.	This
will	save	the	Relation	object	when	you	close	the	Database	object.	To

remove	a	Relation	object	from	the	collection,	use	the	Delete	method.

To	refer	to	a	Relation	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Relations(0)

Relations("name")

Relations![name]

Relation	Object

			 			

			 			

			

A	Relation	object	represents	a	relationship	between	fields	in	tables	or
queries	(Microsoft	Jet	databases	only).

	

Remarks

You	can	use	the	Relation	object	to	create	new	relationships	and	examine
existing	relationships	in	your	database.

Using	a	Relation	object	and	its	properties,	you	can:

Specify	an	enforced	relationship	between	fields	in	base	tables	(but
not	a	relationship	that	involves	a	query	or	a	linked	table).

Establish	unenforced	relationships	between	any	type	of	table	or
query	—	native	or	linked.

Use	the	Name	property	to	refer	to	the	relationship	between	the
fields	in	the	referenced	primary	table	and	the	referencing	foreign
table.

Use	the	Attributes	property	to	determine	whether	the	relationship
between	fields	in	the	table	is	one-to-one	or	one-to-many	and	how
to	enforce	referential	integrity.

Use	the	Attributes	property	to	determine	whether	the	Microsoft
Jet	database	engine	can	perform	cascading	update	and	cascading
delete	operations	on	primary	and	foreign	tables.

Use	the	Attributes	property	to	determine	whether	the	relationship
between	fields	in	the	table	is	left	join	or	right	join.

Use	the	Name	property	of	all	Field	objects	in	the	Fields
collection	of	a	Relation	object	to	set	or	return	the	names	of	the
fields	in	the	primary	key	of	the	referenced	table,	or	the
ForeignName	property	settings	of	the	Field	objects	to	set	or
return	the	names	of	the	fields	in	the	foreign	key	of	the	referencing
table.

If	you	make	changes	that	violate	the	relationships	established	for	the

database,	a	trappable	error	occurs.	If	you	request	cascading	update	or
cascading	delete	operations,	the	Microsoft	Jet	database	engine	also
modifies	the	primary	or	foreign	key	tables	to	enforce	the	relationships	you
establish.

For	example,	the	Northwind	database	contains	a	relationship	between	an
Orders	table	and	a	Customers	table.	The	CustomerID	field	of	the
Customers	table	is	the	primary	key,	and	the	CustomerID	field	of	the
Orders	table	is	the	foreign	key.	For	Microsoft	Jet	to	accept	a	new	record
in	the	Orders	table,	it	searches	the	Customers	table	for	a	match	on	the
CustomerID	field	of	the	Orders	table.	If	Microsoft	Jet	doesn't	find	a
match,	it	doesn't	accept	the	new	record,	and	a	trappable	error	occurs.

When	you	enforce	referential	integrity,	a	unique	index	must	already	exist
for	the	key	field	of	the	referenced	table.	The	Microsoft	Jet	database
engine	automatically	creates	an	index	with	the	Foreign	property	set	to
act	as	the	foreign	key	in	the	referencing	table.

To	create	a	new	Relation	object,	use	the	CreateRelation	method.	To
refer	to	a	Relation	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

Relations(0)

Relations("name")

Relations![name]

Relation	Object,	Relations	Collection	Summary

			

Relation	Object

A	Relation	object	contains	these	collections,	this	method,	and	these
properties.

Collections

Fields	(Default)
Properties

Method

CreateField

Properties

Attributes
ForeignTable
Name
PartialReplica
Table

Relations	Collection

A	Relations	collection	is	contained	in	each	Database	object	of	a	Microsoft
Jet	database,	and	contains	these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Snapshot-Type	Recordset	Object

			 			

			 			

			

A	snapshot-type	Recordset	object	is	a	static	set	of	records	that	you	can
use	to	examine	data	in	an	underlying	table	or	tables.	In	an	ODBCDirect
database,	a	snapshot-type	Recordset	object	corresponds	to	a	static
cursor.

Remarks

To	create	a	snapshot-type	Recordset	object,	use	the	OpenRecordset
method	on	an	open	database,	on	another	dynaset-	or	snapshot-type
Recordset	object,	or	on	a	QueryDef	object.

A	snapshot-type	Recordset	object	can	contain	fields	from	one	or	more
tables	in	a	database.	In	a	Microsoft	Jet	workspace,	a	snapshot	can't	be
updated.	In	an	ODBCDirect	workspace,	a	snapshot	may	be	updatable,

depending	on	the	ODBC	driver.

When	you	create	a	snapshot-type	Recordset	object,	data	values	for	all
fields	(except	Memo	and	OLE	Object	(Long	Binary)	field	data	types	in
.mdb	files)	are	brought	into	memory.	Once	loaded,	changes	made	to
base	table	data	aren't	reflected	in	the	snapshot-type	Recordset	object
data.	To	reload	the	snapshot-type	Recordset	object	with	current	data,
use	the	Requery	method,	or	re-execute	the	OpenRecordset	method.

The	order	of	snapshot-type	Recordset	object	data	doesn't	necessarily
follow	any	specific	sequence.	To	order	your	data,	use	an	SQL	statement
with	an	ORDER	BY	clause	to	create	the	Recordset	object.	You	can	also
use	this	technique	to	filter	the	records	so	that	only	certain	records	are
added	to	the	Recordset	object.	Using	this	technique	instead	of	using	the
Filter	or	Sort	properties	or	testing	each	record	individually	generally
results	in	faster	access	to	your	data.

Snapshot-type	Recordset	objects	are	generally	faster	to	create	and
access	than	dynaset-type	Recordset	objects	because	their	records	are
either	in	memory	or	stored	in	TEMP	disk	space,	and	the	Microsoft	Jet
database	engine	doesn't	need	to	lock	pages	or	handle	multiuser	issues.
However,	snapshot-type	Recordset	objects	use	more	resources	than
dynaset-type	Recordset	objects	because	the	entire	record	is	downloaded
to	local	memory.

Snapshot-Type	Recordset	Object	Summary

			

The	snapshot-type	Recordset	object	contains	these	collections,	methods,
and	properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Fields	(default)
Properties
Methods Restrictions
AddNew 	*
Cancel
CancelUpdate 	*
Clone
Close
CopyQueryDef
Delete 	*
Edit 	*
FindFirst
FindLast
FindNext
FindPrevious
GetRows
Move

MoveFirst
MoveLast
MoveNext
MovePrevious
NextRecordset
OpenRecordset
Requery
Update 	*

*	In	an	ODBCDirect	workspace,	a	snapshot-type	Recordset	may	be	updatable,	depending	on	the
ODBC	driver.	The	AddNew,	Edit,	Delete,	Update,	and	CancelUpdate	methods	are	only
available	on	ODBCDirect	snapshot-type	Recordset	objects	if	the	ODBC	driver	supports
updatable	snapshots.

Properties

The	following	table	indicates	whether	the	property	setting	is	read/write,
read-only,	or	always	False	in	either	Microsoft	Jet	or	ODBCDirect
workspaces.

Read-only

Read/write

Properties Restrictions
AbsolutePosition
BatchCollisionCount
BatchCollisions
BatchSize
BOF
Bookmark
Bookmarkable
CacheSize
Connection
EditMode
EOF
Filter
LastModified 	*

LockEdits

Name
NoMatch
PercentPosition
RecordCount
RecordStatus
Restartable
Sort
StillExecuting
Transactions Always	False	
Type

Updatable
Always	False	in	Microsoft	Jet	workspaces;	
	in	ODBCDirect	workspaces	*

UpdateOptions
ValidationRule
ValidationText

*	In	an	ODBCDirect	workspace,	a	snapshot-type	Recordset	may	be	updatable,	depending	on	the
ODBC	driver.	The	LastModified	property	is	available,	and	the	Updatable	property	is	True	only	on
ODBCDirect	snapshot-type	Recordset	objects	if	the	ODBC	driver	supports	updatable	snapshots.

TableDefs	Collection

			 			

			 			

			

A	TableDefs	collection	contains	all	stored	TableDef	objects	in	a	database
(Microsoft	Jet	workspaces	only).

	

Remarks

You	manipulate	a	table	definition	using	a	TableDef	object	and	its
methods	and	properties.

The	default	collection	of	a	Database	object	is	the	TableDefs	collection.

To	refer	to	a	TableDef	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

TableDefs(0)

TableDefs("name")

TableDefs![name]

TableDef	Object

			 			

			 			

			

A	TableDef	object	represents	the	stored	definition	of	a	base	table	or	a
linked	table	(Microsoft	Jet	workspaces	only).

	

Remarks

You	manipulate	a	table	definition	using	a	TableDef	object	and	its
methods	and	properties.	For	example,	you	can:

Examine	the	field	and	index	structure	of	any	local,	linked,	or

external	table	in	a	database.

Use	the	Connect	and	SourceTableName	properties	to	set	or
return	information	about	linked	tables,	and	use	the	RefreshLink
method	to	update	connections	to	linked	tables.

Use	the	ValidationRule	and	ValidationText	properties	to	set	or
return	validation	conditions.

Use	the	OpenRecordset	method	to	create	a	table-,	dynaset-,
dynamic-,	snapshot-,	or	forward-only–type	Recordset	object,
based	on	the	table	definition.

For	base	tables,	the	RecordCount	property	contains	the	number	of
records	in	the	specified	database	table.	For	linked	tables,	the
RecordCount	property	setting	is	always	-1.

To	create	a	new	TableDef	object,	use	the	CreateTableDef	method.

To	add	a	field	to	a	table

1.	 Make	sure	any	Recordset	objects	based	on	the	table	are	all	closed.

2.	 Use	the	CreateField	method	to	create	a	Field	object	variable	and
set	its	properties.

3.	 Use	the	Append	method	to	add	the	Field	object	to	the	Fields
collection	of	the	TableDef	object.

You	can	delete	a	Field	object	from	a	TableDefs	collection	if	it	doesn't
have	any	indexes	assigned	to	it,	but	you	will	lose	the	field's	data.

To	create	a	table	that	is	ready	for	new	records	in
a	database

4.	 Use	the	CreateTableDef	method	to	create	a	TableDef	object.

5.	 Set	its	properties.

6.	 For	each	field	in	the	table,	use	the	CreateField	method	to	create	a
Field	object	variable	and	set	its	properties.

7.	 Use	the	Append	method	to	add	the	fields	to	the	Fields	collection
of	the	TableDef	object.

8.	 Use	the	Append	method	to	add	the	new	TableDef	object	to	the
TableDefs	collection	of	the	Database	object.

A	linked	table	is	connected	to	the	database	by	the	SourceTableName
and	Connect	properties	of	the	TableDef	object.

To	link	a	table	to	a	database

9.	 Use	the	CreateTableDef	method	to	create	a	TableDef	object.

10.	 Set	its	Connect	and	SourceTableName	properties	(and
optionally,	its	Attributes	property).

11.	 Use	the	Append	method	to	add	it	to	the	TableDefs	collection	of	a
Database.

To	refer	to	a	TableDef	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

TableDefs(0)

TableDefs("name")

TableDefs![name]

TableDef	Object,	TableDefs	Collection	Summary

			

TableDef	Object

A	TableDef	object	contains	these	collections,	methods,	and	properties.

Collections

Fields	(Default)
Indexes
Properties

Methods

CreateField
CreateIndex
CreateProperty
OpenRecordset
RefreshLink

Properties

Attributes
ConflictTable
Connect
DateCreated
KeepLocal	(user-defined)
LastUpdated
Name

RecordCount
Replicable	(user-defined)
ReplicaFilter
SourceTableName
Updatable
ValidationRule
ValidationText

A	TableDef	object	may	also	contain	application-defined	properties.	For
details	on	reading	and	setting	these	properties,	refer	to	the	application's
online	Help.

TableDefs	Collection

A	TableDefs	collection	is	contained	in	each	Database	object	in	a
Microsoft	Jet	database,	and	contains	these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Table-Type	Recordset	Object

			 			

			 			

			

A	table-type	Recordset	object	represents	a	base	table	you	can	use	to
add,	change,	or	delete	records	from	a	table.	Only	the	current	record	is
loaded	into	memory.	A	predefined	index	determines	the	order	of	the
records	in	the	Recordset	object	(Microsoft	Jet	workspaces	only).

Remarks

To	create	a	table-type	Recordset	object,	use	the	OpenRecordset	method
on	an	open	Database	object.

You	can	create	a	table-type	Recordset	object	from	a	base	table	of	a
Microsoft	Jet	database,	but	not	from	an	ODBC	or	linked	table.	You	can
use	the	table-type	Recordset	object	with	ISAM	databases	(like	FoxPro,
dBASE,	or	Paradox)	when	you	open	them	directly.

Unlike	dynaset-	or	snapshot-type	Recordset	objects,	the	table-type
Recordset	object	can't	refer	to	more	than	one	base	table,	and	you	can't
create	it	with	an	SQL	statement	that	filters	or	sorts	the	data.	Generally,
when	you	access	a	table-type	Recordset	object,	you	specify	one	of	the
predefined	indexes	for	the	table,	which	orders	the	data	returned	to	your
application.	If	the	table	doesn't	have	an	index,	the	data	won't	necessarily
be	in	a	particular	order.	If	necessary,	your	application	can	create	an	index
that	returns	records	in	a	specific	order.	To	choose	a	specific	order	for
your	table-type	Recordset	object,	set	the	Index	property	to	a	valid	index.

Also	unlike	dynaset-	or	snapshot-type	Recordset	objects,	you	don't	need
to	explicitly	populate	table-type	Recordset	objects	to	obtain	an	accurate
value	for	the	RecordCount	property.

To	maintain	data	integrity,	table-type	Recordset	objects	are	locked
during	the	Edit	and	Update	methods	operations	so	that	only	one	user
can	update	a	particular	record	at	a	time.	When	the	Microsoft	Jet
database	engine	locks	a	record,	it	locks	the	entire	2K	page	containing	the
record.

Two	kinds	of	locking	are	used	with	non-ODBC	tables	—	pessimistic	and
optimistic.	ODBC-accessed	tables	always	use	optimistic	locking.	The
LockEdits	property	determines	the	locking	conditions	in	effect	during
editing.

Table-Type	Recordset	Object	Summary

			

A	table-type	Recordset	object	contains	these	collections,	methods,	and
properties.	This	type	of	Recordset	and	its	methods	and	properties	are
available	only	in	a	Microsoft	Jet	workspace.

Collections

Fields	(default)
Properties

Methods

AddNew
CancelUpdate
Clone
Close
Delete
Edit
GetRows
Move
MoveFirst
MoveLast
MoveNext
MovePrevious
OpenRecordset
Seek
Update

Properties

The	following	table	indicates	whether	each	property	setting	is	read/write,
read-only,	or	always	False.

Read-only

Read/write

Properties Restrictions
BOF
Bookmark
Bookmarkable
DateCreated
EditMode
EOF
Index
LastModified
LastUpdated
LockEdits
Name
NoMatch
PercentPosition
RecordCount
Restartable Always	False
Transactions
Type
Updatable
ValidationRule
ValidationText

Users	Collection

			 			

			 			

			

A	Users	collection	contains	all	stored	User	objects	of	a	Workspace	or
Group	object	(Microsoft	Jet	workspaces	only).

	

Remarks

You	can	append	an	existing	User	object	to	the	Users	collection	of	a
Group	object	to	give	a	user	account	the	access	permissions	for	that
Group	object.	Alternatively,	you	can	append	the	Group	object	to	the
Groups	collection	in	a	User	object	to	establish	membership	of	the	user

account	in	that	group.	If	you	use	a	Users	or	Groups	collection	other	than
the	one	to	which	you	just	appended	an	object,	you	may	need	to	use	the
Refresh	method.

The	Microsoft	Jet	database	engine	predefines	two	User	objects	named
Admin	and	Guest.	The	user	Admin	is	a	member	of	both	of	the	Group
objects	named	Admins	and	Users;	the	user	Guest	is	a	member	only	of
the	Group	object	named	Guests.

To	refer	to	a	User	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

[workspace	|	group].Users(0)

[workspace	|	group].Users("name")

[workspace	|	group].Users![name]

User	Object

			 			

			 			

			

A	User	object	represents	a	user	account	that	has	access	permissions
when	a	Workspace	object	operates	as	a	secure	workgroup	(Microsoft
Jet	workspaces	only).

	

Remarks

You	use	User	objects	to	establish	and	enforce	access	permissions	for
the	Document	objects	that	represent	databases,	tables,	and	queries.
Also,	if	you	know	the	properties	of	a	specific	User	object,	you	can	create

a	new	Workspace	object	that	has	the	same	access	permissions	as	the
User	object.

You	can	append	an	existing	User	object	to	the	Users	collection	of	a
Group	object	to	give	a	user	account	the	access	permissions	for	that
Group	object.	Alternatively,	you	can	append	the	Group	object	to	the
Groups	collection	in	a	User	object	to	establish	membership	of	the	user
account	in	that	group.	If	you	use	a	Users	or	Groups	collection	other	than
the	one	to	which	you	just	appended	an	object,	you	may	need	to	use	the
Refresh	method.

With	the	properties	of	a	User	object,	you	can:

Use	the	Name	property	to	return	the	name	of	an	existing	user.
You	can't	return	the	PID	and	Password	properties	of	an	existing
User	object.

Use	the	Name,	PID,	and	Password	properties	of	a	newly	created,
unappended	User	object	to	establish	the	identity	of	that	User
object.	If	you	don't	set	the	Password	property,	it's	set	to	a	zero-
length	string	("").

The	Microsoft	Jet	database	engine	predefines	two	User	objects	named
Admin	and	Guest.	The	user	Admin	is	a	member	of	both	of	the	Group
objects	named	Admins	and	Users;	the	user	Guest	is	a	member	only	of
the	Group	object	named	Guests.

To	create	a	new	User	object,	use	the	CreateUser	method.

To	refer	to	a	User	object	in	a	collection	by	its	ordinal	number	or	by	its
Name	property	setting,	use	any	of	the	following	syntax	forms:

[workspace	|	group].Users(0)

[workspace	|	group].Users("name")

[workspace	|	group].Users![name]

User	Object,	Users	Collection	Summary

			

User	Object

A	User	object	contains	these	collections,	methods,	and	properties.

Collections

Groups	(Default)
Properties

Methods

CreateGroup
NewPassword

Properties

Name
Password
PID

Users	Collection

A	Users	collection	is	contained	in	each	Group	and	Microsoft	Jet
Workspace	object,	and	contains	these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

Workspaces	Collection

			 			

			 			

			

A	Workspaces	collection	contains	all	active,	unhidden	Workspace
objects	of	the	DBEngine	object.	(Hidden	Workspace	objects	are	not
appended	to	the	collection	and	referenced	by	the	variable	to	which	they
are	assigned.)

	

Remarks

Use	the	Workspace	object	to	manage	the	current	session	or	to	start	an
additional	session.

When	you	first	refer	to	or	use	a	Workspace	object,	you	automatically
create	the	default	workspace,	DBEngine.Workspaces(0).	The
settings	of	the	Name	and	UserName	properties	of	the	default	workspace
are	"#Default	Workspace#"	and	"Admin,"	respectively.	If	security	is
enabled,	the	UserName	property	setting	is	the	name	of	the	user	who
logged	on.

You	can	create	new	Workspace	objects	with	the	CreateWorkspace
method.	After	you	create	a	new	Workspace	object,	you	must	append	it
to	the	Workspaces	collection	if	you	need	to	refer	to	it	from	the
Workspaces	collection.	You	can,	however,	use	a	newly	created
Workspace	object	without	appending	it	to	the	Workspaces	collection.

To	refer	to	a	Workspace	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

DBEngine.Workspaces(0)

DBEngine.Workspaces("name")

DBEngine.Workspaces![name]

Workspace	Object

			 			

			 			

			

A	Workspace	object	defines	a	named	session	for	a	user.	It	contains
open	databases	and	provides	mechanisms	for	simultaneous	transactions
and,	in	Microsoft	Jet	workspaces,	secure	workgroup	support.	It	also
controls	whether	you	are	going	through	the	Microsoft	Jet	database
engine	or	ODBCDirect	to	access	external	data.

	

Remarks

A	Workspace	is	a	non-persistent	object	that	defines	how	your	application
interacts	with	data	—	either	by	using	the	Microsoft	Jet	database	engine,
or	ODBCDirect.	Use	the	Workspace	object	to	manage	the	current
session	or	to	start	an	additional	session.	In	a	session,	you	can	open
multiple	databases	or	connections,	and	manage	transactions.	For
example,	you	can:

Use	the	Name,	UserName,	and	Type	properties	to	establish	a
named	session.	The	session	creates	a	scope	in	which	you	can
open	multiple	databases	and	conduct	one	instance	of	nested
transactions.

Use	the	Close	method	to	terminate	a	session.

Use	the	OpenDatabase	method	to	open	one	or	more	existing
databases	on	a	Workspace.

Use	the	BeginTrans,	CommitTrans,	and	Rollback	methods	to
manage	nested	transaction	processing	within	a	Workspace	and
use	several	Workspace	objects	to	conduct	multiple,
simultaneous,	and	overlapping	transactions.

Further,	using	a	Microsoft	Jet	database,	you	can	establish	security	based
on	user	names	and	passwords:

Use	the	Groups	and	Users	collections	to	establish	group	and	user
access	permissions	to	objects	in	the	Workspace.

Use	the	IsolateODBCTrans	property	to	isolate	multiple
transactions	that	involve	the	same	Microsoft	Jet-connected	ODBC

database.

Note	For	a	complete	list	of	all	methods,	properties,	and	collections
available	on	a	Workspace	object	in	either	a	Microsoft	Jet	database	or
an	ODBCDirect	database,	see	the	Summary	topic.

When	you	first	refer	to	or	use	a	Workspace	object,	you	automatically
create	the	default	workspace,	DBEngine.Workspaces(0).	The
settings	of	the	Name	and	UserName	properties	of	the	default	workspace
are	"#Default	Workspace#"	and	"Admin,"	respectively.	If	security	is
enabled,	the	UserName	property	setting	is	the	name	of	the	user	who
logged	on.

To	establish	an	ODBCDirect	Workspace	object,	and	thereby	avoid
loading	the	Microsoft	Jet	database	engine	into	memory,	set	the
DBEngine	object's	DefaultType	property	to	dbUseODBC,	or	set	the
type	argument	of	the	CreateWorkspace	method	to	dbUseODBC.

When	you	use	transactions,	all	databases	in	the	specified	Workspace
are	affected	—	even	if	multiple	Database	objects	are	opened	in	the
Workspace.	For	example,	you	use	a	BeginTrans	method,	update
several	records	in	a	database,	and	then	delete	records	in	another
database.	If	you	then	use	the	Rollback	method,	both	the	update	and
delete	operations	are	canceled	and	rolled	back.	You	can	create	additional
Workspace	objects	to	manage	transactions	independently	across
Database	objects.

You	can	create	Workspace	objects	with	the	CreateWorkspace	method.
After	you	create	a	new	Workspace	object,	you	must	append	it	to	the
Workspaces	collection	if	you	need	to	refer	to	it	from	the	Workspaces
collection.

You	can	use	a	newly	created	Workspace	object	without	appending	it	to
the	Workspaces	collection.	However,	you	must	refer	to	it	by	the	object
variable	to	which	you	have	assigned	it.

To	refer	to	a	Workspace	object	in	a	collection	by	its	ordinal	number	or	by
its	Name	property	setting,	use	any	of	the	following	syntax	forms:

DBEngine.Workspaces(0)

DBEngine.Workspaces("name")

DBEngine.Workspaces![name]

Workspace	Object,	Workspaces	Collection
Summary

			

Workspace	Object

A	Workspace	object	contains	these	collections,	methods,	and	properties.

Legend:

Feature	available	in	Microsoft	Jet	workspaces	only.

Feature	available	in	ODBCDirect	workspaces	only.

Collections

Connections	
Databases	(default)
Groups	
Properties
Users	

Methods

BeginTrans
Close
CommitTrans
CreateDatabase	
CreateGroup	
CreateUser	
OpenConnection	

OpenDatabase
Rollback

Properties

DefaultCursorDriver	
IsolateODBCTrans	
LoginTimeout	
Name
Type
UserName

Workspaces	Collection

A	Workspaces	collection	is	contained	in	the	DBEngine	object,	and
contains	these	methods	and	this	property.

Methods

Append
Delete
Refresh

Property

Count

DAO	Methods	by	Object

			

This	reference	groups	all	DAO	methods	by	object.	To	see	whether	a
particular	method	is	available	for	Microsoft	Jet	or	ODBC	workspaces,
check	the	Help	topic	for	that	method.

Connection

Container	—	no	methods

Database

Parameter	—	no	methods

Property	—	no	methods

QueryDef

JavaScript:alink_3.Click()
JavaScript:alink_4.Click()
JavaScript:alink_10.Click()

DBEngine

Document

Error	—	no	methods

Field

Group

Recordset

Relation

TableDef

User

JavaScript:alink_5.Click()
JavaScript:alink_6.Click()
JavaScript:alink_7.Click()
JavaScript:alink_8.Click()
JavaScript:alink_11.Click()
JavaScript:alink_12.Click()
JavaScript:alink_13.Click()
JavaScript:alink_14.Click()

Index Workspace

JavaScript:alink_9.Click()
JavaScript:alink_15.Click()

DAO	Methods	for	Microsoft	Jet	Workspaces

			

This	reference	lists	alphabetically	all	DAO	methods	available	for
Microsoft	Jet	workspaces	(ISAM	database	files).

A-C
AddNew

Append

AppendChunk

BeginTrans

CancelUpdate

Clone

Close

CommitTrans

CompactDatabase

CopyQueryDef

CreateDatabase

CreateField

CreateGroup

CreateIndex

CreateProperty

CreateQueryDef

CreateRelation

CreateTableDef

CreateUser

CreateWorkspace

D-M
Delete

Edit

Execute

FillCache

FindFirst

FindLast

FindNext

FindPrevious

GetChunk

GetRows

Idle

MakeReplica

Move

MoveFirst

MoveLast

MoveNext

MovePrevious

N-Z
NewPassword

OpenDatabase

OpenRecordset

PopulatePartialdamthPopulatePartial>langref

Refresh

RefreshLink

RegisterDatabase

RepairDatabase

Requery

Rollback

Seek

SetOption

Synchronize

Update

DAO	Methods	for	ODBCDirect	Workspaces

			

This	reference	alphabetically	lists	all	DAO	methods	available	for
ODBCDirect	workspaces.

A-C
AddNew

Append

AppendChunk

BeginTrans

Cancel

CancelUpdate

Clone

Close

CommitTrans

CreateQueryDef

CreateWorkspace

D-M
Delete

Edit

Execute

GetChunk

GetRows

Move

MoveFirst

MoveLast

MoveNext

MovePrevious

N-Z
NextRecordset

OpenConnection

OpenDatabase

OpenRecordset

Refresh

RegisterDatabase

Requery

Rollback

Update

AddNew	Method

			 			

			

Creates	a	new	record	for	an	updatable	Recordset	object.

Syntax

recordset.AddNew

The	recordset	placeholder	is	an	object	variable	that	represents	an
updatable	Recordset	object	to	which	you	want	to	add	a	new	record.

Remarks

Use	the	AddNew	method	to	create	and	add	a	new	record	in	the
Recordset	object	named	by	recordset.	This	method	sets	the	fields	to
default	values,	and	if	no	default	values	are	specified,	it	sets	the	fields	to
Null	(the	default	values	specified	for	a	table-type	Recordset).

After	you	modify	the	new	record,	use	the	Update	method	to	save	the
changes	and	add	the	record	to	the	Recordset.	No	changes	occur	in	the
database	until	you	use	the	Update	method.

Caution	If	you	issue	an	AddNew	and	then	perform	any	operation	that

moves	to	another	record,	but	without	using	Update,	your	changes	are
lost	without	warning.	In	addition,	if	you	close	the	Recordset	or	end
the	procedure	that	declares	the	Recordset	or	its	Database	object,	the
new	record	is	discarded	without	warning.

Note	When	you	use	AddNew	in	a	Microsoft	Jet	workspace	and	the
database	engine	has	to	create	a	new	page	to	hold	the	current	record,
page	locking	is	pessimistic.	If	the	new	record	fits	in	an	existing	page,
page	locking	is	optimistic.

If	you	haven't	moved	to	the	last	record	of	your	Recordset,	records	added
to	base	tables	by	other	processes	may	be	included	if	they	are	positioned
beyond	the	current	record.	If	you	add	a	record	to	your	own	Recordset,
however,	the	record	is	visible	in	the	Recordset	and	included	in	the
underlying	table	where	it	becomes	visible	to	any	new	Recordset	objects.

The	position	of	the	new	record	depends	on	the	type	of	Recordset:

In	a	dynaset-type	Recordset	object,	records	are	inserted	at	the
end	of	the	Recordset,	regardless	of	any	sorting	or	ordering	rules
that	were	in	effect	when	the	Recordset	was	opened.

In	a	table-type	Recordset	object	whose	Index	property	has	been
set,	records	are	returned	in	their	proper	place	in	the	sort	order.	If
you	haven't	set	the	Index	property,	new	records	are	returned	at
the	end	of	the	Recordset.

The	record	that	was	current	before	you	used	AddNew	remains	current.	If
you	want	to	make	the	new	record	current,	you	can	set	the	Bookmark
property	to	the	bookmark	identified	by	the	LastModified	property	setting.

Note	To	add,	edit,	or	delete	a	record,	there	must	be	a	unique	index	on
the	record	in	the	underlying	data	source.		If	not,	a	"Permission	denied"
error	will	occur	on	the	AddNew,	Delete,	or	Edit	method	call	in	a
Microsoft	Jet	workspace,	or	an	"Invalid	argument"	error	will	occur	on
the	Update	call	in	an	ODBCDirect	workspace.

Append	Method

			 			

			

Adds	a	new	DAO	object	to	a	collection.

Syntax

collection.Append	object

The	Append	method	syntax	has	these	parts.

Part Description

collection An	object	variable	that	represents	any	collection	that	can	accept
new	objects	(for	limitations,	see	the	table	at	the	end	of	this	topic).

object An	object	variable	that	represents	the	object	being	appended,
which	must	be	of	the	same	type	as	the	elements	of	collection.

Remarks

You	can	use	the	Append	method	to	add	a	new	table	to	a	database,	add
a	field	to	a	table,	and	add	a	field	to	an	index.

The	appended	object	becomes	a	persistent	object,	stored	on	disk,	until
you	delete	it	by	using	the	Delete	method.	If	collection	is	a	Workspaces
collection	(which	is	stored	only	in	memory),	the	object	is	active	until	you

remove	it	by	using	the	Close	method.

The	addition	of	a	new	object	occurs	immediately,	but	you	should	use	the
Refresh	method	on	any	other	collections	that	may	be	affected	by
changes	to	the	database	structure.

If	the	object	you're	appending	isn’t	complete	(such	as	when	you	haven’t
appended	any	Field	objects	to	a	Fields	collection	of	an	Index	object
before	it’s	appended	to	an	Indexes	collection)	or	if	the	properties	set	in
one	or	more	subordinate	objects	are	incorrect,	using	the	Append	method
causes	an	error.	For	example,	if	you	haven’t	specified	a	field	type	and
then	try	to	append	the	Field	object	to	the	Fields	collection	in	a	TableDef
object,	using	the	Append	method	triggers	a	run-time	error.

The	following	table	lists	some	limitations	of	the	Append	method.	The
object	in	the	first	column	is	an	object	containing	the	collection	in	the
second	column.	The	third	column	indicates	whether	you	can	append	an
object	to	that	collection	(for	example,	you	can	never	append	a	Container
object	to	the	Containers	collection	of	a	Database	object).

Object Collection
Can	you	append	new
objects?

DBEngine Workspaces Yes

DBEngine Errors No.	New	Error	objects	are	automatically
appended	when	they	occur.

Workspace Connections No.	Using	the	OpenConnection	method
automatically	appends	new	objects.

Workspace Databases No.	Using	the	OpenDatabase	method
automatically	appends	new	objects.

Workspace Groups Yes
Workspace Users Yes

Connection QueryDefs No.	Using	the	CreateQueryDef	method
automatically	appends	new	objects.

Connection Recordsets No.	Using	the	OpenRecordset	method
automatically	appends	new	objects.

Database Containers No

Database QueryDefs
Only	when	the	QueryDef	object	is	a	new,
unappended	object	created	with	no	name.	See	the
CreateQueryDef	method	for	details.

Database Recordsets No.	Using	the	OpenRecordset	method
automatically	appends	new	objects.

Database Relations Yes
Database TableDefs Yes
Group Users Yes
User Groups Yes
Container Documents No
QueryDef Fields No
QueryDef Parameters No
Recordset Fields No
Relation Fields Yes

TableDef Fields
Only	when	the	Updatable	property	of	the
TableDef	object	is	set	to	True,	or	when	the
TableDef	object	is	unappended.

TableDef Indexes
Only	when	the	Updatable	property	of	the
TableDef	is	set	to	True,	or	when	the	TableDef
object	is	unappended.

Index Fields Only	when	the	Index	object	is	a	new,
unappended	object.

Database,	Field,
Index,	QueryDef,
TableDef

Properties
Only	when	the	Database,	Field,	Index,
QueryDef,	or	TableDef	object	is	in	a	Microsoft
Jet	workspace.

DBEngine,
Parameter,
Recordset,
Workspace

Properties No

AppendChunk	Method

			 			

			

Appends	data	from	a	string	expression	to	a	Memo	or	Long	Binary	Field
object	in	a	Recordset.

Syntax

recordset	!	field.AppendChunk	source

The	AppendChunk	method	syntax	has	these	parts.

Part Description

recordset An	object	variable	that	represents	the	Recordset	object	containing
the	Fields	collection.

field
An	object	variable	that	represents	the	name	of	a	Field	object
whose	Type	property	is	set	to	dbMemo	(Memo),	dbLongBinary
(Long	Binary),	or	the	equivalent.

source A	Variant	(String	subtype)	expression	or	variable	containing	the
data	you	want	to	append	to	the	Field	object	specified	by	field.

Remarks

You	can	use	the	AppendChunk	and	GetChunk	methods	to	access
subsets	of	data	in	a	Memo	or	Long	Binary	field.

You	can	also	use	these	methods	to	conserve	string	space	when	you	work
with	Memo	and	Long	Binary	fields.	Certain	operations	(copying,	for
example)	involve	temporary	strings.	If	string	space	is	limited,	you	may
need	to	work	with	chunks	of	a	field	instead	of	the	entire	field.

If	there	is	no	current	record	when	you	use	AppendChunk,	an	error
occurs.

Notes

The	initial	AppendChunk	operation	(after	an	Edit	or	AddNew
call)	will	simply	place	the	data	in	the	field,	overwriting	any
existing	data.	Subsequent	AppendChunk	calls	within	the	same
Edit	or	AddNew	session	will	then	add	to	the	existing	data.

In	an	ODBCDirect	workspace,	unless	you	first	edit	another	field
in	the	current	record,	using	AppendChunk	will	fail	(though	no
error	occurs)	while	you	are	in	Edit	mode.

In	an	ODBCDirect	workspace,	after	you	use	AppendChunk	on	a
field,	you	cannot	read	or	write	that	field	in	an	assignment
statement	until	you	move	off	the	current	record	and	then	return	to
it.	You	can	do	this	by	using	the	MoveNext	and	MovePrevious
methods.

BeginTrans,	CommitTrans,	Rollback	Methods

			 			

			

The	transaction	methods	manage	transaction	processing	during	a
session	defined	by	a	Workspace	object	as	follows:

BeginTrans	begins	a	new	transaction.

CommitTrans	ends	the	current	transaction	and	saves	the
changes.

Rollback	ends	the	current	transaction	and	restores	the	databases
in	the	Workspace	object	to	the	state	they	were	in	when	the
current	transaction	began.

Syntax

workspace.BeginTrans	|	CommitTrans	[dbForceOSFlush]	|	Rollback

The	workspace	placeholder	is	an	object	variable	that	represents	the
Workspace	containing	the	databases	that	will	use	transactions.

Remarks

You	use	these	methods	with	a	Workspace	object	when	you	want	to	treat
a	series	of	changes	made	to	the	databases	in	a	session	as	one	unit.

Typically,	you	use	transactions	to	maintain	the	integrity	of	your	data	when
you	must	both	update	records	in	two	or	more	tables	and	ensure	changes
are	completed	(committed)	in	all	tables	or	none	at	all	(rolled	back).	For
example,	if	you	transfer	money	from	one	account	to	another,	you	might
subtract	an	amount	from	one	and	add	the	amount	to	another.	If	either
update	fails,	the	accounts	no	longer	balance.	Use	the	BeginTrans
method	before	updating	the	first	record,	and	then,	if	any	subsequent
update	fails,	you	can	use	the	Rollback	method	to	undo	all	of	the
updates.	Use	the	CommitTrans	method	after	you	successfully	update
the	last	record.

In	a	Microsoft	Jet	workspace,	you	can	include	the
dbFlushOSCacheWrites	constant	with	CommitTrans,	This	forces	the
database	engine	to	immediately	flush	all	updates	to	disk,	instead	of
caching	them	temporarily.	Without	using	this	option,	a	user	could	get
control	back	immediately	after	the	application	program	calls
CommitTrans,	turn	the	computer	off,	and	not	have	the	data	written	to
disk.	While	using	this	option	may	affect	your	application’s	performance,	it
is	useful	in	situations	where	the	computer	could	be	shut	off	before
cached	updates	are	saved	to	disk.

Caution	Within	one	Workspace	object,	transactions	are	always
global	to	the	Workspace	and	aren't	limited	to	only	one	Connection	or
Database	object.	If	you	perform	operations	on	more	than	one
connection	or	database	within	a	Workspace	transaction,	resolving
the	transaction	(that	is,	using	the	CommitTrans	or	Rollback	method)
affects	all	operations	on	all	connections	and	databases	within	that
workspace.

After	you	use	CommitTrans,	you	can't	undo	changes	made	during	that
transaction	unless	the	transaction	is	nested	within	another	transaction
that	is	itself	rolled	back.	If	you	nest	transactions,	you	must	resolve	the
current	transaction	before	you	can	resolve	a	transaction	at	a	higher	level

of	nesting.

If	you	want	to	have	simultaneous	transactions	with	overlapping,	non-
nested	scopes,	you	can	create	additional	Workspace	objects	to	contain
the	concurrent	transactions.

If	you	close	a	Workspace	object	without	resolving	any	pending
transactions,	the	transactions	are	automatically	rolled	back.

If	you	use	the	CommitTrans	or	Rollback	method	without	first	using	the
BeginTrans	method,	an	error	occurs.

Some	ISAM	databases	used	in	a	Microsoft	Jet	workspace	may	not
support	transactions,	in	which	case	the	Transactions	property	of	the
Database	object	or	Recordset	object	is	False.	To	make	sure	the
database	supports	transactions,	check	the	value	of	the	Transactions
property	of	the	Database	object	before	using	the	BeginTrans	method.	If
you	are	using	a	Recordset	object	based	on	more	than	one	database,
check	the	Transactions	property	of	the	Recordset	object.	If	a
Recordset	is	based	entirely	on	Microsoft	Jet	tables,	you	can	always	use
transactions.	Recordset	objects	based	on	tables	created	by	other
database	products,	however,	may	not	support	transactions.	For	example,
you	can't	use	transactions	in	a	Recordset	based	on	a	Paradox	table.	In
this	case,	the	Transactions	property	is	False.	If	the	Database	or
Recordset	doesn't	support	transactions,	the	methods	are	ignored	and	no
error	occurs.

You	can't	nest	transactions	if	you	are	accessing	ODBC	data	sources
through	the	Microsoft	Jet	database	engine.

Notes

You	can	often	improve	the	performance	of	your	application	by
breaking	operations	that	require	disk	access	into	transaction
blocks.	This	buffers	your	operations	and	may	significantly	reduce
the	number	of	times	a	disk	is	accessed.

In	a	Microsoft	Jet	workspace,	transactions	are	logged	in	a	file
kept	in	the	directory	specified	by	the	TEMP	environment	variable
on	the	workstation.	If	the	transaction	log	file	exhausts	the
available	storage	on	your	TEMP	drive,	the	database	engine
triggers	a	run-time	error.	At	this	point,	if	you	use	CommitTrans,
an	indeterminate	number	of	operations	are	committed,	but	the
remaining	uncompleted	operations	are	lost,	and	the	operation	has
to	be	restarted.	Using	a	Rollback	method	releases	the	transaction
log	and	rolls	back	all	operations	in	the	transaction.

Closing	a	clone	Recordset	within	a	pending	transaction	will
cause	an	implicit	Rollback	operation.

Cancel	Method

			 			

			

Cancels	execution	of	a	pending	asynchronous	method	call	(ODBCDirect
workspaces	only).

Syntax

object.Cancel

The	Cancel	method	syntax	has	these	parts.

Part Description

object A	string	expression	that	evaluates	to	one	of
the	objects	in	the	"Applies	To"	list.

Remarks

Use	the	Cancel	method	to	terminate	execution	of	an	asynchronous
Execute,	MoveLast,	OpenConnection,	or	OpenRecordset	method	call
(that	is,	the	method	was	invoked	with	the	dbRunAsync	option).	Cancel
will	return	a	run-time	error	if	dbRunAsync	was	not	used	in	the	method
you're	trying	to	terminate.

The	following	table	shows	what	task	is	terminated	when	you	use	the

Cancel	method	on	a	particular	type	of	object.

If	object	is	a This	asynchronous	method	is	terminated
Connection Execute	or	OpenConnection
QueryDef Execute
Recordset MoveLast	or	OpenRecordset

An	error	will	occur	if,	following	a	Cancel	method	call,	you	try	to	reference
the	object	that	would	have	been	created	by	an	asynchronous
OpenConnection	or	OpenRecordset	call	(that	is,	the	Connection	or
Recordset	object	from	which	you	called	the	Cancel	method).

CancelUpdate	Method

			 			

			

Cancels	any	pending	updates	for	a	Recordset	object.

Syntax

recordset.CancelUpdate	type

The	CancelUpdate	method	syntax	has	these	parts.

Part Description

recordset An	object	variable	that	represents	the	Recordset	object	for	which
you	are	canceling	pending	updates.

type Optional.	A	constant	indicating	the	type	of	update,	as	specified	in
Settings.

Settings

You	can	use	the	following	values	for	the	type	argument	only	if	batch
updating	is	enabled.

Constant Description

dbUpdateRegular Default.	Cancels	pending	changes	that	aren’t
cached.

dbUpdateBatch Cancels	pending	changes	in	the	update	cache.

Remarks

You	can	use	the	CancelUpdate	method	to	cancel	any	pending	updates
resulting	from	an	Edit	or	AddNew	operation.	For	example,	if	a	user
invokes	the	Edit	or	AddNew	method	and	hasn't	yet	invoked	the	Update
method,	CancelUpdate	cancels	any	changes	made	after	Edit	or
AddNew	was	invoked.

Check	the	EditMode	property	of	the	Recordset	to	determine	if	there	is	a
pending	operation	that	can	be	canceled.

Note	Using	the	CancelUpdate	method	has	the	same	effect	as
moving	to	another	record	without	using	the	Update	method,	except
that	the	current	record	doesn't	change,	and	various	properties,	such
as	BOF	and	EOF,	aren't	updated.

Clone	Method

			 			

			

Creates	a	duplicate	Recordset	object	that	refers	to	the	original
Recordset	object.

Syntax

Set	duplicate	=	original.Clone

The	Clone	method	syntax	has	these	parts.

Part Description

duplicate An	object	variable	identifying	the	duplicate	Recordset	object
you're	creating.

original An	object	variable	identifying	the	Recordset	object	you	want	to
duplicate.

Remarks

Use	the	Clone	method	to	create	multiple,	duplicate	Recordset	objects.
Each	Recordset	can	have	its	own	current	record.	Using	Clone	by	itself
doesn't	change	the	data	in	the	objects	or	in	their	underlying	structures.
When	you	use	the	Clone	method,	you	can	share	bookmarks	between
two	or	more	Recordset	objects	because	their	bookmarks	are

interchangeable.

You	can	use	the	Clone	method	when	you	want	to	perform	an	operation
on	a	Recordset	that	requires	multiple	current	records.	This	is	faster	and
more	efficient	than	opening	a	second	Recordset.	When	you	create	a
Recordset	with	the	Clone	method,	it	initially	lacks	a	current	record.	To
make	a	record	current	before	you	use	the	Recordset	clone,	you	must	set
the	Bookmark	property	or	use	one	of	the	Move	methods,	one	of	the	Find
methods,	or	the	Seek	method.

Using	the	Close	method	on	either	the	original	or	duplicate	object	doesn't
affect	the	other	object.	For	example,	using	Close	on	the	original
Recordset	doesn't	close	the	clone.

Notes

Closing	a	clone	Recordset	within	a	pending	transaction	will
cause	an	implicit	Rollback	operation.

When	you	clone	a	table-type	Recordset	object	in	a	Microsoft	Jet
workspace,	the	Index	property	setting	is	not	cloned	on	the	new
copy	of	the	Recordset.	You	must	copy	the	Index	property	setting
manually.

You	can	use	the	Clone	method	with	forward-only–type	Recordset
objects	only	in	an	ODBCDirect	workspace.

Close	Method

			 			

			

Closes	an	open	DAO	object.

Syntax

object.Close

The	object	placeholder	is	an	object	variable	that	represents	an	open
Connection,	Database,	Recordset,	or	Workspace	object.

Remarks

Closing	an	open	object	removes	it	from	the	collection	to	which	it's
appended.	Any	attempt	to	close	the	default	workspace	is	ignored.

If	the	Connection,	Database,	Recordset,	or	Workspace	object	named
by	object	is	already	closed	when	you	use	Close,	a	run-time	error	occurs.

Caution	If	you	exit	a	procedure	that	declares	Connection,	Database,
or	Recordset	objects,	those	objects	are	closed,	all	pending
transactions	are	rolled	back,	and	any	pending	edits	to	your	data	are
lost.

If	you	try	to	close	a	Connection	or	Database	object	while	it	has	any
open	Recordset	objects,	the	Recordset	objects	will	be	closed	and	any
pending	updates	or	edits	will	be	canceled.		Similarly,	if	you	try	to	close	a
Workspace	object	while	it	has	any	open	Connection	or	Database
objects,	those	Connection	and	Database	objects	will	be	closed,	which
will	close	their	Recordset	objects.

Using	the	Close	method	on	either	an	original	or	cloned	Recordset	object
doesn't	affect	the	other	Recordset	object.

To	remove	objects	from	updatable	collections	other	than	the
Connections,	Databases,	Recordsets,	and	Workspaces	collections,
use	the	Delete	method	on	those	collections.	You	can't	add	a	new
member	to	the	Containers,	Documents,	and	Errors	collections.

An	alternative	to	the	Close	method	is	to	set	the	value	of	an	object
variable	to	Nothing	(Set	dbsTemp	=	Nothing).

CompactDatabase	Method

			 			

			

Copies	and	compacts	a	closed	database,	and	gives	you	the	option	of
changing	its	version,	collating	order,	and	encryption.	(Microsoft	Jet
workspaces	only).

Syntax

DBEngine.CompactDatabase	olddb,	newdb,	locale,	options,	password

The	CompactDatabase	method	syntax	has	these	parts.

Part Description

olddb

A	String	that	identifies	an	existing,	closed	database.	It	can	be	a	full
path	and	file	name,	such	as	"C:\db1.mdb".	If	the	file	name	has
an	extension,	you	must	specify	it.	If	your	network	supports	it,	you
can	also	specify	a	network	path,	such	as
"\\server1\share1\dir1\db1.mdb".

newdb
A	String	that	is	the	file	name	(and	path)	of	the	compacted	database
that	you're	creating.	You	can	also	specify	a	network	path.	You	can't
use	the	newdb	argument	to	specify	the	same	database	file	as	olddb.

locale
Optional.	A	Variant	that	is	a	string	expression	that	specifies	a
collating	order	for	creating	newdb,	as	specified	in	Settings.	If	you
omit	this	argument,	the	locale	of	newdb	is	the	same	as	olddb.

You	can	also	create	a	password	for	newdb	by	concatenating	the
password	string	(starting	with	";pwd=")	with	a	constant	in	the
locale	argument,	like	this:
dbLangSpanish	&	";pwd=NewPassword"
If	you	want	to	use	the	same	locale	as	olddb	(the	default	value),	but
specify	a	new	password,	simply	enter	a	password	string	for	locale:
";pwd=NewPassword"

options
Optional.	A	constant	or	combination	of	constants	that	indicates	one
or	more	options,	as	specified	in	Settings.	You	can	combine	options
by	summing	the	corresponding	constants.

password

Optional.	A	Variant	that	is	a	string	expression	containing	a
password,	if	the	database	is	password	protected.	The	string
";pwd="	must	precede	the	actual	password.	If	you	include	a
password	setting	in	locale,	this	setting	is	ignored.

Note		Use	strong	passwords	that	combine	upper-	and
lowercase	letters,	numbers,	and	symbols.	Weak	passwords
don't	mix	these	elements.	Strong	password:	Y6dh!et5.	Weak
password:	House27.	Use	a	strong	password	that	you	can
remember	so	that	you	don't	have	to	write	it	down.

Settings

You	can	use	one	of	the	following	constants	for	the	locale	argument	to
specify	the	CollatingOrder	property	for	string	comparisons	of	text.

Constant Collating	order

dbLangGeneral English,	German,	French,	Portuguese,	Italian,	and
Modern	Spanish

dbLangArabic Arabic
dbLangChineseSimplified Simplified	Chinese
dbLangChineseTraditional Traditional	Chinese
dbLangCyrillic Russian
dbLangCzech Czech
dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic

dbLangJapanese Japanese
dbLangKorean Korean

dbLangNordic Nordic	languages	(Microsoft	Jet	database	engine
version	1.0	only)

dbLangNorwDan Norwegian	and	Danish
dbLangPolish Polish
dbLangSlovenian Slovenian
dbLangSpanish Traditional	Spanish
dbLangSwedFin Swedish	and	Finnish
dbLangThai Thai
dbLangTurkish Turkish

You	can	use	one	of	the	following	constants	in	the	options	argument	to
specify	whether	to	encrypt	or	to	decrypt	the	database	while	it's
compacted.

Constant Description
dbEncrypt Encrypt	the	database	while	compacting.
dbDecrypt Decrypt	the	database	while	compacting.

If	you	omit	an	encryption	constant	or	if	you	include	both	dbDecrypt	and
dbEncrypt,	newdb	will	have	the	same	encryption	as	olddb.

You	can	use	one	of	the	following	constants	in	the	options	argument	to
specify	the	version	of	the	data	format	for	the	compacted	database.	This
constant	affects	only	the	version	of	the	data	format	of	newdb	and	doesn't
affect	the	version	of	any	Microsoft	Access-defined	objects,	such	as	forms
and	reports.

Constant Description

dbVersion10 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	1.0	file	format	while	compacting.

dbVersion11 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	1.1	file	format	while	compacting.

dbVersion20 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	2.0	file	format	while	compacting.

dbVersion30
Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	3.0	file	format	(compatible	with	version	3.5)	while
compacting.

You	can	specify	only	one	version	constant.	If	you	omit	a	version	constant,
newdb	will	have	the	same	version	as	olddb.	You	can	compact	newdb
only	to	a	version	that	is	the	same	or	later	than	that	of	olddb.

Remarks

As	you	change	data	in	a	database,	the	database	file	can	become
fragmented	and	use	more	disk	space	than	is	necessary.	Periodically,	you
can	use	the	CompactDatabase	method	to	compact	your	database	to
defragment	the	database	file.	The	compacted	database	is	usually	smaller
and	often	runs	faster.	You	can	also	change	the	collating	order,	the
encryption,	or	the	version	of	the	data	format	while	you	copy	and	compact
the	database.

You	must	close	olddb	before	you	compact	it.	In	a	multiuser	environment,
other	users	can't	have	olddb	open	while	you're	compacting	it.	If	olddb
isn't	closed	or	isn't	available	for	exclusive	use,	an	error	occurs.

Because	CompactDatabase	creates	a	copy	of	the	database,	you	must
have	enough	disk	space	for	both	the	original	and	the	duplicate
databases.	The	compact	operation	fails	if	there	isn't	enough	disk	space
available.	The	newdb	duplicate	database	doesn't	have	to	be	on	the	same
disk	as	olddb.	After	successfully	compacting	a	database,	you	can	delete
the	olddb	file	and	rename	the	compacted	newdb	file	to	the	original	file
name.

The	CompactDatabase	method	copies	all	the	data	and	the	security
permission	settings	from	the	database	specified	by	olddb	to	the	database
specified	by	newdb.

If	you	use	CompactDatabase	to	convert	a	version	1.x	database	to
version	2.5	or	3.x,	only	applications	using	version	Microsoft	Jet	2.5	or	3.x
can	open	the	converted	database.

Note	In	an	ODBCDirect	workspace,	using	the	CompactDatabase
method	doesn't	return	an	error,	but	instead	loads	the	Microsoft	Jet
database	engine	into	memory.

Caution	Because	the	CompactDatabase	method	doesn't	convert
Microsoft	Access	objects,	you	shouldn't	use	CompactDatabase	to
convert	a	database	containing	such	objects.	To	convert	a	database
containing	Microsoft	Access	objects,	on	the	Tools	menu,	point	to
Database	Utilities,	and	then	click	Convert	Database.

CopyQueryDef	Method

			 			

			

Returns	a	QueryDef	object	that	is	a	copy	of	the	QueryDef	used	to	create
the	Recordset	object	represented	by	the	recordset	placeholder	(Microsoft
Jet	workspaces	only).

Syntax

Set	querydef	=	recordset.CopyQueryDef

The	CopyQueryDef	method	syntax	has	these	parts.

Part Description

querydef An	object	variable	that	represents	the	copy	of	a	QueryDef	object
you	want	to	create.

recordset An	object	variable	that	represents	the	Recordset	object	created
with	the	original	QueryDef	object.

Remarks

You	can	use	the	CopyQueryDef	method	to	create	a	new	QueryDef	that
is	a	duplicate	of	the	QueryDef	used	to	create	the	Recordset.

If	a	QueryDef	wasn't	used	to	create	this	Recordset,	an	error	occurs.	You

must	first	open	a	Recordset	with	the	OpenRecordset	method	before
using	the	CopyQueryDef	method.

This	method	is	useful	when	you	create	a	Recordset	object	from	a
QueryDef,	and	pass	the	Recordset	to	a	function,	and	the	function	must
re-create	the	SQL	equivalent	of	the	query,	for	example,	to	modify	it	in
some	way.

CreateDatabase	Method

			 			

			

Creates	a	new	Database	object,	saves	the	database	to	disk,	and	returns
an	opened	Database	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	database	=	workspace.CreateDatabase	(name,	locale,	options)

The	CreateDatabase	method	syntax	has	these	parts.

Part Description

database An	object	variable	that	represents	the	Database	object	you	want	to
create.

workspace
An	object	variable	that	represents	the	existing	Workspace	object
that	will	contain	the	database.	If	you	omit	workspace,
CreateDatabase	uses	the	default	Workspace.

name

A	String	up	to	255	characters	long	that	is	the	name	of	the	database
file	that	you're	creating.	It	can	be	the	full	path	and	file	name,	such
as	"C:\db1.mdb".	If	you	don't	supply	a	file	name	extension,
.mdb	is	appended.	If	your	network	supports	it,	you	can	also	specify
a	network	path,	such	as	"\\server1\share1\dir1\db1".
You	can	only	create	.mdb	database	files	with	this	method.
A	string	expression	that	specifies	a	collating	order	for	creating	the

locale database,	as	specified	in	Settings.	You	must	supply	this	argument
or	an	error	occurs.

You	can	also	create	a	password	for	the	new	Database	object	by
concatenating	the	password	string	(starting	with	";pwd=")	with	a
constant	in	the	locale	argument,	like	this:
dbLangSpanish	&	";pwd=NewPassword"

Note			Use	strong	passwords	that	combine	upper-	and
lowercase	letters,	numbers,	and	symbols.	Weak	passwords
don't	mix	these	elements.	Strong	password:	Y6dh!et5.	Weak
password:	House27.	Use	a	strong	password	that	you	can
remember	so	that	you	don't	have	to	write	it	down.

If	you	want	to	use	the	default	locale,	but	specify	a	password,
simply	enter	a	password	string	for	the	locale	argument:
";pwd=NewPassword"

Note			Use	strong	passwords	that	combine	upper-	and
lowercase	letters,	numbers,	and	symbols.	Weak	passwords
don't	mix	these	elements.	Strong	password:	Y6dh!et5.	Weak
password:	House27.	Use	a	strong	password	that	you	can
remember	so	that	you	don't	have	to	write	it	down.

options
Optional.	A	constant	or	combination	of	constants	that	indicates	one
or	more	options,	as	specified	in	Settings.	You	can	combine	options
by	summing	the	corresponding	constants.

Settings

You	can	use	one	of	the	following	constants	for	the	locale	argument	to
specify	the	CollatingOrder	property	of	text	for	string	comparisons.

Constant Collating	order

dbLangGeneral English,	German,	French,	Portuguese,	Italian,
and	Modern	Spanish

dbLangArabic Arabic
dbLangChineseSimplified Simplified	Chinese
dbLangChineseTraditional Traditional	Chinese
dbLangCyrillic Russian
dbLangCzech Czech

dbLangDutch Dutch
dbLangGreek Greek
dbLangHebrew Hebrew
dbLangHungarian Hungarian
dbLangIcelandic Icelandic
dbLangJapanese Japanese
dbLangKorean Korean

dbLangNordic Nordic	languages	(Microsoft	Jet	database
engine	version	1.0	only)

dbLangNorwDan Norwegian	and	Danish
dbLangPolish Polish
dbLangSlovenian Slovenian
dbLangSpanish Traditional	Spanish
dbLangSwedFin Swedish	and	Finnish
dbLangThai Thai
dbLangTurkish Turkish

You	can	use	one	or	more	of	the	following	constants	in	the	options
argument	to	specify	which	version	the	data	format	should	have	and
whether	or	not	to	encrypt	the	database.

Constant Description
dbEncrypt Creates	an	encrypted	database.

dbVersion10 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	1.0	file	format.

dbVersion11 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	1.1	file	format.

dbVersion20 Creates	a	database	that	uses	the	Microsoft	Jet	database	engine
version	2.0	file	format.

dbVersion30 (Default)	Creates	a	database	that	uses	the	Microsoft	Jet	database
engine	version	3.0	file	format	(compatible	with	version	3.5).

If	you	omit	the	encryption	constant,	CreateDatabase	creates	an	un-
encrypted	database.	You	can	specify	only	one	version	constant.	If	you
omit	a	version	constant,	CreateDatabase	creates	a	database	that	uses
the	Microsoft	Jet	database	engine	version	3.0	file	format.

Remarks

Use	the	CreateDatabase	method	to	create	and	open	a	new,	empty
database,	and	return	the	Database	object.	You	must	complete	its
structure	and	content	by	using	additional	DAO	objects.	If	you	want	to
make	a	partial	or	complete	copy	of	an	existing	database,	you	can	use	the
CompactDatabase	method	to	make	a	copy	that	you	can	customize.

CreateField	Method

			 			

			

Creates	a	new	Field	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	field	=	object.CreateField	(name,	type,	size)

The	CreateField	method	syntax	has	these	parts.

Part Description

field An	object	variable	that	represents	the	Field	object	you	want	to
create.

object An	object	variable	that	represents	the	Index,	Relation,	or	TableDef
object	for	which	you	want	to	create	the	new	Field	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
Field	object.	See	the	Name	property	for	details	on	valid	Field
names.

type Optional.	A	constant	that	determines	the	data	type	of	the	new	Field
object.	See	the	Type	property	for	valid	data	types.

size

Optional.	A	Variant	(Integer	subtype)	that	indicates	the	maximum
size,	in	bytes,	of	a	Field	object	that	contains	text.	See	the	Size
property	for	valid	size	values.	This	argument	is	ignored	for
numeric	and	fixed-width	fields.

Remarks

You	can	use	the	CreateField	method	to	create	a	new	field,	as	well	as
specify	the	name,	data	type,	and	size	of	the	field.	If	you	omit	one	or	more
of	the	optional	parts	when	you	use	CreateField,	you	can	use	an
appropriate	assignment	statement	to	set	or	reset	the	corresponding
property	before	you	append	the	new	object	to	a	collection.	After	you
append	the	new	object,	you	can	alter	some	but	not	all	of	its	property
settings.	See	the	individual	property	topics	for	more	details.

The	type	and	size	arguments	apply	only	to	Field	objects	in	a	TableDef
object.	These	arguments	are	ignored	when	a	Field	object	is	associated
with	an	Index	or	Relation	object.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	a
run-time	error	occurs	when	you	use	the	Append	method.

To	remove	a	Field	object	from	a	Fields	collection,	use	the	Delete	method
on	the	collection.	You	can't	delete	a	Field	object	from	a	TableDef	object's
Fields	collection	after	you	create	an	index	that	references	the	field.

CreateGroup	Method

			 			

			

Creates	a	new	Group	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	group	=	object.CreateGroup	(name,	pid)

The	CreateGroup	method	syntax	has	these	parts.

Part Description
group An	object	variable	that	represents	the	Group	you	want	to	create.

object An	object	variable	that	represents	the	User	or	Workspace	object	for
which	you	want	to	create	the	new	Group	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
Group	object.	See	the	Name	property	for	details	on	valid	Group
names.

pid

Optional.	A	Variant	(String	subtype)	containing	the	PID	of	a
group	account.	The	identifier	must	contain	from	4	to	20
alphanumeric	characters.	See	the	PID	property	for	more
information	on	valid	personal	identifiers.

Remarks

You	can	use	the	CreateGroup	method	to	create	a	new	Group	object	for
a	User	or	Workspace.	If	you	omit	one	or	both	of	the	optional	parts	when
you	use	CreateGroup,	you	can	use	an	appropriate	assignment
statement	to	set	or	reset	the	corresponding	property	before	you	append
the	new	object	to	a	collection.	After	you	append	the	object,	you	can	alter
some	but	not	all	of	its	property	settings.	See	the	individual	property	topics
for	more	details.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	a
run-time	error	occurs	when	you	use	the	Append	method.

To	remove	a	Group	object	from	a	collection,	use	the	Delete	method	on
the	Groups	collection.

CreateIndex	Method

			 			

			

Creates	a	new	Index	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	index	=	tabledef.CreateIndex	(name)

The	CreateIndex	method	syntax	has	these	parts.

Part Description
index An	object	variable	that	represents	the	index	you	want	to	create.

tabledef An	object	variable	that	represents	the	TableDef	object	you	want	to
use	to	create	the	new	Index	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
Index	object.	See	the	Name	property	for	details	on	valid	Index
names.

Remarks

You	can	use	the	CreateIndex	method	to	create	a	new	Index	object	for	a
TableDef	object.	If	you	omit	the	optional	name	part	when	you	use
CreateIndex,	you	can	use	an	appropriate	assignment	statement	to	set	or
reset	the	Name	property	before	you	append	the	new	object	to	a

collection.	After	you	append	the	object,	you	may	or	may	not	be	able	to
set	its	Name	property,	depending	on	the	type	of	object	that	contains	the
Indexes	collection.	See	the	Name	property	topic	for	more	details.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	a
run-time	error	occurs	when	you	use	the	Append	method.

To	remove	an	Index	object	from	a	collection,	use	the	Delete	method	on
the	collection.

CreateProperty	Method

			 			

			

Creates	a	new	user-defined	Property	object	(Microsoft	Jet	workspaces
only).

Syntax

Set	property	=	object.CreateProperty	(name,	type,	value,	DDL)

The	CreateProperty	method	syntax	has	these	parts.

Part Description

property An	object	variable	that	represents	the	Property	object	you	want	to
create.

object
An	object	variable	that	represents	the	Database,	Field,	Index,
QueryDef,	Document,	or	TableDef	object	you	want	to	use	to	create
the	new	Property	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
Property	object.	See	the	Name	property	for	details	on	valid
Property	names.

type Optional.	A	constant	that	defines	the	data	type	of	the	new	Property
object.	See	the	Type	property	for	valid	data	types.

value Optional.	A	Variant	containing	the	initial	property	value.	See	the
Value	property	for	details.

DDL
Optional.	A	Variant	(Boolean	subtype)	that	indicates	whether	or	not
the	Property	is	a	DDL	object.	The	default	is	False.	If	DDL	is	True,
users	can't	change	or	delete	this	Property	object	unless	they	have
dbSecWriteDef	permission.

Remarks

You	can	create	a	user-defined	Property	object	only	in	the	Properties
collection	of	an	object	that	is	persistent.

If	you	omit	one	or	more	of	the	optional	parts	when	you	use
CreateProperty,	you	can	use	an	appropriate	assignment	statement	to
set	or	reset	the	corresponding	property	before	you	append	the	new
object	to	a	collection.	After	you	append	the	object,	you	can	alter	some	but
not	all	of	its	property	settings.	See	the	Name,	Type,	and	Value	property
topics	for	more	details.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	a
run-time	error	occurs	when	you	use	the	Append	method.

To	remove	a	user-defined	Property	object	from	the	collection,	use	the
Delete	method	on	the	Properties	collection.	You	can't	delete	built-in
properties.

Note	If	you	omit	the	DDL	argument,	it	defaults	to	False	(non-DDL).
Because	no	corresponding	DDL	property	is	exposed,	you	must	delete
and	re-create	a	Property	object	you	want	to	change	from	DDL	to	non-
DDL.

CreateQueryDef	Method

			 			

			

Creates	a	new	QueryDef	object	in	a	specified	Connection	or	Database
object.

Syntax

Set	querydef	=	object.CreateQueryDef	(name,	sqltext)

The	CreateQueryDef	method	syntax	has	these	parts.

Part Description

querydef An	object	variable	that	represents	the	QueryDef	object	you	want	to
create.

object An	object	variable	that	represents	an	open	Connection	or	Database
object	that	will	contain	the	new	QueryDef.

name Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
QueryDef.

sqltext

Optional.	A	Variant	(String	subtype)	that	is	an	SQL	statement
defining	the	QueryDef.	If	you	omit	this	argument,	you	can	define
the	QueryDef	by	setting	its	SQL	property	before	or	after	you
append	it	to	a	collection.

Remarks

In	a	Microsoft	Jet	workspace,	if	you	provide	anything	other	than	a	zero-
length	string	for	the	name	when	you	create	a	QueryDef,	the	resulting
QueryDef	object	is	automatically	appended	to	the	QueryDefs	collection.
In	an	ODBCDirect	workspace,	QueryDef	objects	are	always	temporary.

In	an	ODBCDirect	workspace,	the	sqltext	argument	can	specify	an	SQL
statement	or	a	Microsoft	SQL	Server	stored	procedure	and	its
parameters.

If	the	object	specified	by	name	is	already	a	member	of	the	QueryDefs
collection,	a	run-time	error	occurs.	You	can	create	a	temporary	QueryDef
by	using	a	zero-length	string	for	the	name	argument	when	you	execute
the	CreateQueryDef	method.	You	can	also	accomplish	this	by	setting	the
Name	property	of	a	newly	created	QueryDef	to	a	zero-length	string	("").
Temporary	QueryDef	objects	are	useful	if	you	want	to	repeatedly	use
dynamic	SQL	statements	without	having	to	create	any	new	permanent
objects	in	the	QueryDefs	collection.	You	can't	append	a	temporary
QueryDef	to	any	collection	because	a	zero-length	string	isn't	a	valid
name	for	a	permanent	QueryDef	object.	You	can	always	set	the	Name
and	SQL	properties	of	the	newly	created	QueryDef	object	and
subsequently	append	the	QueryDef	to	the	QueryDefs	collection.

To	run	the	SQL	statement	in	a	QueryDef	object,	use	the	Execute	or
OpenRecordset	method.

Using	a	QueryDef	object	is	the	preferred	way	to	perform	SQL	pass-
through	queries	with	ODBC	databases.

To	remove	a	QueryDef	object	from	a	QueryDefs	collection	in	a	Microsoft
Jet	database,	use	the	Delete	method	on	the	collection.	For	an
ODBCDirect	database,	use	the	Close	method	on	the	QueryDef	object.

CreateRelation	Method

			 			

			

Creates	a	new	Relation	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	relation	=	database.CreateRelation	(name,	table,	foreigntable,
attributes)

The	CreateRelation	method	syntax	uses	these	parts.

Part Description

relation An	object	variable	that	represents	the	Relation	object	you	want	to
create.

database An	object	variable	that	represents	the	Database	object	for	which	you
want	to	create	the	new	Relation	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
Relation	object.	See	the	Name	property	for	details	on	valid	Relation
names.

table
Optional.	A	Variant	(String	subtype)	that	names	the	primary	table	in
the	relation.	If	the	table	doesn't	exist	before	you	append	the	Relation
object,	a	run-time	error	occurs.

foreigntable
Optional.	A	Variant	(String	subtype)	that	names	the	foreign	table	in
the	relation.	If	the	table	doesn't	exist	before	you	append	the	Relation

object,	a	run-time	error	occurs.

attributes
Optional.	A	constant	or	combination	of	constants	that	contains
information	about	the	relationship	type.	See	the	Attributes	property	for
details.

Remarks

The	Relation	object	provides	information	to	the	Microsoft	Jet	database
engine	about	the	relationship	between	fields	in	two	TableDef	or	QueryDef
objects.	You	can	implement	referential	integrity	by	using	the	Attributes
property.

If	you	omit	one	or	more	of	the	optional	parts	when	you	use	the
CreateRelation	method,	you	can	use	an	appropriate	assignment
statement	to	set	or	reset	the	corresponding	property	before	you	append
the	new	object	to	a	collection.	After	you	append	the	object,	you	can't	alter
any	of	its	property	settings.	See	the	individual	property	topics	for	more
details.

Before	you	can	use	the	Append	method	on	a	Relation	object,	you	must
append	the	appropriate	Field	objects	to	define	the	primary	and	foreign
key	relationship	tables.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection	or	if
the	Field	object	names	provided	in	the	subordinate	Fields	collection	are
invalid,	a	run-time	error	occurs	when	you	use	the	Append	method.

You	can't	establish	or	maintain	a	relationship	between	a	replicated	table
and	a	local	table.

To	remove	a	Relation	object	from	the	Relations	collection,	use	the	Delete
method	on	the	collection.

CreateTableDef	Method

			 			

			

Creates	a	new	TableDef	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	tabledef	=	database.CreateTableDef	(name,	attributes,	source,
connect)

The	CreateTableDef	method	syntax	has	these	parts.

Part Description

tabledef An	object	variable	that	represents	the	TableDef	object	you	want	to
create.

database An	object	variable	that	represents	the	Database	object	you	want	to
use	to	create	the	new	TableDef	object.

name
Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new
TableDef	object.	See	the	Name	property	for	details	on	valid
TableDef	names.

attributes
Optional.	A	constant	or	combination	of	constants	that	indicates	one
or	more	characteristics	of	the	new	TableDef	object.	See	the
Attributes	property	for	more	information.

source
Optional.	A	Variant	(String	subtype)	containing	the	name	of	a
table	in	an	external	database	that	is	the	original	source	of	the	data.

The	source	string	becomes	the	SourceTableName	property	setting
of	the	new	TableDef	object.

connect

Optional.	A	Variant	(String	subtype)	containing	information	about
the	source	of	an	open	database,	a	database	used	in	a	pass-through
query,	or	a	linked	table.	See	the	Connect	property	for	more
information	about	valid	connection	strings.

Remarks

If	you	omit	one	or	more	of	the	optional	parts	when	you	use	the
CreateTableDef	method,	you	can	use	an	appropriate	assignment
statement	to	set	or	reset	the	corresponding	property	before	you	append
the	new	object	to	a	collection.	After	you	append	the	object,	you	can	alter
some	but	not	all	of	its	properties.	See	the	individual	property	topics	for
more	details.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	or
you	specify	an	invalid	property	in	the	TableDef	or	Field	object	you're
appending,	a	run-time	error	occurs	when	you	use	the	Append	method.
Also,	you	can't	append	a	TableDef	object	to	the	TableDefs	collection
until	you	define	at	least	one	Field	for	the	TableDef	object.

To	remove	a	TableDef	object	from	the	TableDefs	collection,	use	the
Delete	method	on	the	collection.

CreateUser	Method

			 			

			

Creates	a	new	User	object	(Microsoft	Jet	workspaces	only).

Syntax

Set	user	=	object.CreateUser	(name,	pid,	password)

The	CreateUser	method	syntax	has	these	parts.

Part Description
user An	object	variable	that	represents	the	User	object	you	want	to	create.

object An	object	variable	that	represents	the	Group	or	Workspace	object	for
which	you	want	to	create	the	new	User	object.

name Optional.	A	Variant	(String	subtype)	that	uniquely	names	the	new	User
object.	See	the	Name	property	for	details	on	valid	User	names.

pid

Optional.	A	Variant	(String	subtype)	containing	the	PID	of	a	user
account.	The	identifier	must	contain	from	4	to	20	alphanumeric
characters.	See	the	PID	property	for	more	information	on	valid	personal
identifiers.
Optional.	A	Variant	(String	subtype)	containing	the	password	for	the
new	User	object.	The	password	can	be	up	to	14	characters	long	and	can
include	any	characters	except	the	ASCII	character	0	(null).	See	the
Password	property	for	more	information	on	valid	passwords.

password Note		Use	strong	passwords	that	combine	upper-	and	lowercase
letters,	numbers,	and	symbols.	Weak	passwords	don't	mix	these
elements.	Strong	password:	Y6dh!et5.	Weak	password:	House27.
Use	a	strong	password	that	you	can	remember	so	that	you	don't
have	to	write	it	down.

Remarks

If	you	omit	one	or	more	of	the	optional	parts	when	you	use	the
CreateUser	method,	you	can	use	an	appropriate	assignment	statement
to	set	or	reset	the	corresponding	property	before	you	append	the	new
object	to	a	collection.	After	you	append	the	object,	you	can	alter	some	but
not	all	of	its	property	settings.	See	the	PID,	Name,	and	Password
property	topics	for	more	details.

If	name	refers	to	an	object	that	is	already	a	member	of	the	collection,	a
run-time	error	occurs	when	you	use	the	Append	method.

To	remove	a	User	object	from	the	Users	collection,	use	the	Delete
method	on	the	collection.

CreateWorkspace	Method

			 			

			

Creates	a	new	Workspace	object.

Syntax

Set	workspace	=	CreateWorkspace(name,	user,	password,	type)

The	CreateWorkspace	method	syntax	has	these	parts.

Part Description

workspace An	object	variable	that	represents	the	Workspace	object	you
want	to	create.

name A	String	that	uniquely	names	the	new	Workspace	object.	See
the	Name	property	for	details	on	valid	Workspace	names.

user A	String	that	identifies	the	owner	of	the	new	Workspace
object.	See	the	UserName	property	for	more	information.

password

A	String	containing	the	password	for	the	new	Workspace
object.	The	password	can	be	up	to	14	characters	long	and	can
include	any	characters	except	ASCII	character	0	(null).	See
the	Password	property	for	more	information	on	valid
passwords.

Note		Use	strong	passwords	that	combine	upper-	and

lowercase	letters,	numbers,	and	symbols.	Weak
passwords	don't	mix	these	elements.	Strong	password:
Y6dh!et5.	Weak	password:	House27.	Use	a	strong
password	that	you	can	remember	so	that	you	don't
have	to	write	it	down.

type Optional.	A	constant	that	indicates	the	type	of	workspace,	as
described	in	Settings.

Settings

You	can	use	the	following	constants	for	type.

Constant Description
dbUseJet Creates	a	Microsoft	Jet	workspace.

dbUseODBC Creates	an	ODBCDirect
workspace.

Remarks

Once	you	use	the	CreateWorkspace	method	to	create	a	new
Workspace	object,	a	Workspace	session	is	started,	and	you	can	refer	to
the	Workspace	object	in	your	application.

Workspace	objects	aren't	permanent,	and	you	can't	save	them	to	disk.
Once	you	create	a	Workspace	object,	you	can't	alter	any	of	its	property
settings,	except	for	the	Name	property,	which	you	can	modify	before
appending	the	Workspace	object	to	the	Workspaces	collection.

You	don't	have	to	append	the	new	Workspace	object	to	a	collection
before	you	can	use	it.	You	append	a	newly	created	Workspace	object
only	if	you	need	to	refer	to	it	through	the	Workspaces	collection.

The	type	option	determines	whether	the	new	Workspace	is	a	Microsoft
Jet	or	ODBCDirect	workspace.	If	you	set	type	to	dbUseODBC	and	you
haven't	already	created	any	Microsoft	Jet	workspaces,	then	the	Microsoft
Jet	database	engine	will	not	be	loaded	into	memory,	and	all	activity	will
occur	with	the	ODBC	data	source	subsequently	identified	in	a	Connection

object.	If	you	omit	type,	the	DefaultType	property	of	DBEngine	will
determine	which	type	of	data	source	the	Workspace	is	connected	to.
You	can	have	both	Microsoft	Jet	and	ODBCDirect	workspaces	open	at
the	same	time.

To	remove	a	Workspace	object	from	the	Workspaces	collection,	close
all	open	databases	and	connections	and	then	use	the	Close	method	on
the	Workspace	object.

Delete	Method

			 			

			

Recordset	objects	—	deletes	the	current	record	in	an	updatable
Recordset	object.	For	ODBCDirect	workspaces,	the	type	of
driver	determines	whether	Recordset	objects	are	updatable	and
therefore	support	the	Delete	method.

Collections	—	deletes	a	persistent	object	from	a	collection.

Syntax

recordset.Delete

collection.Delete	objectname

The	Delete	method	syntax	has	these	parts.

Part Description

recordset An	object	variable	that	represents	an	updatable	Recordset	object
containing	the	record	you	want	to	delete.

collection An	object	variable	that	represents	a	collection	from	which	you	are
deleting	objectname.

objectname A	String	that	is	the	Name	property	setting	of	an	object	in
collection.

Remarks

You	can	use	the	Delete	method	to	delete	a	current	record	from	a
Recordset	or	a	member	from	a	collection,	such	as	a	stored	table	from	a
database,	a	stored	field	from	a	table,	or	a	stored	index	from	a	table.

Recordsets

A	Recordset	must	contain	a	current	record	before	you	use	Delete;
otherwise,	a	run-time	error	occurs.

In	an	updatable	Recordset	object,	Delete	removes	the	current	record
and	makes	it	inaccessible.	Although	you	can't	edit	or	use	the	deleted
record,	it	remains	current.	Once	you	move	to	another	record,	however,
you	can't	make	the	deleted	record	current	again.	Subsequent	references
to	a	deleted	record	in	a	Recordset	are	invalid	and	produce	an	error.

You	can	undo	a	record	deletion	if	you	use	transactions	and	the	Rollback
method.

If	the	base	table	is	the	primary	table	in	a	cascading	delete	relationship,
deleting	the	current	record	may	also	delete	one	or	more	records	in	a
foreign	table.

Note	To	add,	edit,	or	delete	a	record,	there	must	be	a	unique	index	on
the	record	in	the	underlying	data	source.	If	not,	a	"Permission	denied"
error	will	occur	on	the	AddNew,	Delete,	or	Edit	method	call	in	a
Microsoft	Jet	workspace,	or	an	"Invalid	argument"	error	will	occur	on
the	Update	method	call	in	an	ODBCDirect	workspace.

Collections

You	can	use	the	Delete	method	to	delete	a	persistent	object.	However,	if
the	collection	is	a	Databases,	Recordsets,	or	Workspaces	collection
(each	of	which	is	stored	only	in	memory),	you	can	remove	an	open	or

active	object	only	by	closing	that	object	with	the	Close	method.

The	deletion	of	a	stored	object	occurs	immediately,	but	you	should	use
the	Refresh	method	on	any	other	collections	that	may	be	affected	by
changes	to	the	database	structure.

When	you	delete	a	TableDef	object	from	the	TableDefs	collection,	you
delete	the	table	definition	and	the	data	in	the	table.

The	following	table	lists	some	limitations	of	the	Delete	method.	The
object	in	the	first	column	contains	the	collection	in	the	second	column.
The	third	column	indicates	if	you	can	delete	an	object	from	that	collection
(for	example,	you	can	never	delete	a	Container	object	from	the
Containers	collection	of	a	Database	object).

Object Collection Can	you	use	the	Delete	method?

DBEngine Workspaces No.	Closing	the	objects	deletes
them.

DBEngine Errors No

Workspace Connections No.	Closing	the	objects	deletes
them.

Workspace Databases No.	Closing	the	objects	deletes
them.

Workspace Groups Yes
Workspace Users Yes
Connection QueryDefs No

Connection Recordsets No.	Closing	the	objects	deletes
them.

Database Containers No
Database QueryDefs Yes

Database Recordsets No.	Closing	the	objects	deletes
them.

Database Relations Yes
Database TableDefs Yes
Group Users Yes
User Groups Yes
Container Documents No
QueryDef Fields No

QueryDef Parameters No
Recordset Fields No

Relation Fields Only	when	the	Relation	object	is
a	new,	unappended	object.

TableDef Fields

Only	when	the	TableDef	object	is
new	and	hasn’t	been	appended	to
the	database,	or	when	the
Updatable	property	of	the
TableDef	is	set	to	True.

TableDef Indexes

Only	when	the	TableDef	object	is
new	and	hasn’t	been	appended	to
the	database,	or	when	the
Updatable	property	of	the
TableDef	is	set	to	True.

Index Fields
Only	when	the	Index	object	is	new
and	hasn’t	been	appended	to	the
database.

Database,	Field,	Index,
QueryDef,	TableDef Properties Only	when	the	property	is	user-

defined.
DBEngine,	Parameter,
Recordset,	Workspace Properties No

Edit	Method

			 			

			

Copies	the	current	record	from	an	updatable	Recordset	object	to	the
copy	buffer	for	subsequent	editing.

Syntax

recordset.Edit

The	recordset	placeholder	represents	an	open,	updatable	Recordset
object	that	contains	the	record	you	want	to	edit.

Remarks

Once	you	use	the	Edit	method,	changes	made	to	the	current	record's
fields	are	copied	to	the	copy	buffer.	After	you	make	the	desired	changes
to	the	record,	use	the	Update	method	to	save	your	changes.

The	current	record	remains	current	after	you	use	Edit.

Caution	If	you	edit	a	record	and	then	perform	any	operation	that
moves	to	another	record,	but	without	first	using	Update,	your	changes
are	lost	without	warning.	In	addition,	if	you	close	recordset	or	end	the

procedure	which	declares	the	Recordset	or	the	parent	Database	or
Connection	object,	your	edited	record	is	discarded	without	warning.

Using	Edit	produces	an	error	if:

There	is	no	current	record.

The	Connection,	Database,	or	Recordset	object	was	opened	as
read-only.

No	fields	in	the	record	are	updatable.

The	Database	or	Recordset	was	opened	for	exclusive	use	by
another	user	(Microsoft	Jet	workspace).

Another	user	has	locked	the	page	containing	your	record
(Microsoft	Jet	workspace).

In	a	Microsoft	Jet	workspace,	when	the	Recordset	object's	LockEdits
property	setting	is	True	(pessimistically	locked)	in	a	multiuser
environment,	the	record	remains	locked	from	the	time	Edit	is	used	until
the	update	is	complete.	If	the	LockEdits	property	setting	is	False
(optimistically	locked),	the	record	is	locked	and	compared	with	the	pre-
edited	record	just	before	it's	updated	in	the	database.	If	the	record	has
changed	since	you	used	the	Edit	method,	the	Update	operation	fails	with
a	run-time	error	if	you	use	OpenRecordset	without	specifying
dbSeeChanges.	By	default,	Microsoft	Jet-connected	ODBC	and
installable	ISAM	databases	always	use	optimistic	locking.

In	an	ODBCDirect	workspace,	once	you	edit	(and	use	Update	to	update)
a	record’s	primary	key	field,	you	can	no	longer	edit	fields	in	that	record
until	you	close	the	Recordset,	and	then	retrieve	the	record	again	in	a
subsequent	query.

Note	To	add,	edit,	or	delete	a	record,	there	must	be	a	unique	index	on
the	record	in	the	underlying	data	source.	If	not,	a	"Permission	denied"
error	will	occur	on	the	AddNew,	Delete,	or	Edit	method	call	in	a
Microsoft	Jet	workspace,	or	an	"Invalid	argument"	error	will	occur	on
the	Update	call	in	an	ODBCDirect	workspace.

Execute	Method

			 			

			

Runs	an	action	query	or	executes	an	SQL	statement	on	a	specified
Connection	or	Database	object.

Syntax

object.Execute	source,	options

querydef.Execute	options

The	Execute	method	syntax	has	these	parts.

Part Description

object A	Connection	or	Database	object	variable	on	which	the	query
will	run.

querydef An	object	variable	that	represents	the	QueryDef	object	whose	SQL
property	setting	specifies	the	SQL	statement	to	execute.

source A	String	that	is	an	SQL	statement	or	the	Name	property	value	of	a
QueryDef	object.

options
Optional.	A	constant	or	combination	of	constants	that	determines
the	data	integrity	characteristics	of	the	query,	as	specified	in
Settings.

Settings

You	can	use	the	following	constants	for	options.

Constant Description

dbDenyWrite Denies	write	permission	to	other	users	(Microsoft	Jet
workspaces	only).

dbInconsistent (Default)	Executes	inconsistent	updates	(Microsoft	Jet
workspaces	only).

dbConsistent Executes	consistent	updates	(Microsoft	Jet	workspaces
only).

dbSQLPassThrough
Executes	an	SQL	pass-through	query.	Setting	this	option
passes	the	SQL	statement	to	an	ODBC	database	for
processing	(Microsoft	Jet	workspaces	only).

dbFailOnError Rolls	back	updates	if	an	error	occurs	(Microsoft	Jet
workspaces	only).

dbSeeChanges Generates	a	run-time	error	if	another	user	is	changing	data
you	are	editing	(Microsoft	Jet	workspaces	only).

dbRunAsync Executes	the	query	asynchronously	(ODBCDirect
Connection	and	QueryDef	objects	only).

dbExecDirect
Executes	the	statement	without	first	calling	SQLPrepare
ODBC	API	function	(ODBCDirect	Connection	and
QueryDef	objects	only).

Note	The	constants	dbConsistent	and	dbInconsistent	are	mutually
exclusive.	You	can	use	one	or	the	other,	but	not	both	in	a	given
instance	of	OpenRecordset.	Using	both	dbConsistent	and
dbInconsistent	causes	an	error.

Remarks

The	Execute	method	is	valid	only	for	action	queries.	If	you	use	Execute
with	another	type	of	query,	an	error	occurs.	Because	an	action	query
doesn't	return	any	records,	Execute	doesn't	return	a	Recordset.
(Executing	an	SQL	pass-through	query	in	an	ODBCDirect	workspace	will
not	return	an	error	if	a	Recordset	isn't	returned.)

Use	the	RecordsAffected	property	of	the	Connection,	Database,	or

QueryDef	object	to	determine	the	number	of	records	affected	by	the
most	recent	Execute	method.	For	example,	RecordsAffected	contains
the	number	of	records	deleted,	updated,	or	inserted	when	executing	an
action	query.	When	you	use	the	Execute	method	to	run	a	query,	the
RecordsAffected	property	of	the	QueryDef	object	is	set	to	the	number
of	records	affected.

In	a	Microsoft	Jet	workspace,	if	you	provide	a	syntactically	correct	SQL
statement	and	have	the	appropriate	permissions,	the	Execute	method
won't	fail	—	even	if	not	a	single	row	can	be	modified	or	deleted.
Therefore,	always	use	the	dbFailOnError	option	when	using	the
Execute	method	to	run	an	update	or	delete	query.	This	option	generates
a	run-time	error	and	rolls	back	all	successful	changes	if	any	of	the
records	affected	are	locked	and	can't	be	updated	or	deleted.

In	earlier	versions	of	the	Microsoft	Jet	Database	Engine,	SQL	statements
were	automatically	embedded	in	implicit	transactions.	If	part	of	a
statement	executed	with	dbFailOnError	failed,	the	entire	statement
would	be	rolled	back.	To	improve	performance,	these	implicit	transactions
were	removed	starting	with	version	3.5.	If	you	are	updating	older	DAO
code,	be	sure	to	consider	using	explicit	transactions	around	Execute
statements.

For	best	performance	in	a	Microsoft	Jet	workspace,	especially	in	a
multiuser	environment,	nest	the	Execute	method	inside	a	transaction.
Use	the	BeginTrans	method	on	the	current	Workspace	object,	then	use
the	Execute	method,	and	complete	the	transaction	by	using	the
CommitTrans	method	on	the	Workspace.	This	saves	changes	on	disk
and	frees	any	locks	placed	while	the	query	is	running.

In	an	ODBCDirect	workspace,	if	you	include	the	optional	dbRunAsync
constant,	the	query	runs	asynchronously.	To	determine	whether	an
asynchronous	query	is	still	executing,	check	the	value	of	the
StillExecuting	property	on	the	object	from	which	the	Execute	method	was
called.	To	terminate	execution	of	an	asynchronous	Execute	method	call,
use	the	Cancel	method.

For	ODBCDirect,	use	single	quotes	to	signify	strings	or	an	error	will	be

returned.

FillCache	Method

			 			

			

Fills	all	or	a	part	of	a	local	cache	for	a	Recordset	object	that	contains	data
from	a	Microsoft	Jet-connected	ODBC	data	source	(Microsoft	Jet-
connected	ODBC	databases	only).

Syntax

recordset.FillCache	rows,	startbookmark

The	FillCache	method	syntax	has	these	parts.

Part Description

recordset
An	object	variable	that	represents	a	Recordset	object	created	from
an	ODBC	data	source,	such	as	a	TableDef	representing	a	linked
table	or	a	QueryDef	object	derived	from	such	a	TableDef.

rows
Optional.	A	Variant	(Integer	subtype)	that	specifies	the	number	of
rows	to	store	in	the	cache.	If	you	omit	this	argument,	the	value	is
determined	by	the	CacheSize	property	setting.

startbookmark

Optional.	A	Variant	(String	subtype)	that	specifies	a	bookmark.
The	cache	is	filled	starting	from	the	record	indicated	by	this
bookmark.	If	you	omit	this	argument,	the	cache	is	filled	starting
from	the	record	indicated	by	the	CacheStart	property.

Remarks

Caching	improves	the	performance	of	an	application	that	retrieves	data
from	a	remote	server.	A	cache	is	space	in	local	memory	that	holds	the
data	most	recently	retrieved	from	the	server;	this	assumes	that	the	data
will	probably	be	requested	again	while	the	application	is	running.	When	a
user	requests	data,	the	Microsoft	Jet	database	engine	checks	the	cache
for	the	data	first	rather	than	retrieving	it	from	the	server,	which	takes	more
time.	The	cache	doesn't	save	data	that	doesn't	come	from	an	ODBC	data
source.

Rather	than	waiting	for	the	cache	to	be	filled	with	records	as	they	are
retrieved,	you	can	use	the	FillCache	method	to	explicitly	fill	the	cache	at
any	time.	This	is	a	faster	way	to	fill	the	cache	because	FillCache
retrieves	several	records	at	once	instead	of	one	at	a	time.	For	example,
while	you	view	each	screenful	of	records,	your	application	uses
FillCache	to	retrieve	the	next	screenful	of	records	for	viewing.

Any	Microsoft	Jet-connected	ODBC	data	source	that	you	access	with
Recordset	objects	can	have	a	local	cache.	To	create	the	cache,	open	a
Recordset	object	from	the	remote	data	source,	and	then	set	the
CacheSize	and	CacheStart	properties	of	the	Recordset.

If	rows	and	startbookmark	create	a	range	of	records	that	is	partially	or
entirely	outside	the	range	of	records	specified	by	the	CacheSize	and
CacheStart	properties,	the	portion	of	the	recordset	outside	this	range	is
ignored	and	will	not	be	loaded	into	the	cache.

If	FillCache	requests	more	records	than	the	number	remaining	in	the
remote	data	source,	Microsoft	Jet	retrieves	only	the	remaining	records,
and	no	error	occurs.

Notes

Records	retrieved	from	the	cache	don't	reflect	concurrent	changes
that	other	users	made	to	the	source	data.

FillCache	only	retrieves	records	not	already	cached.	To	force	an
update	of	all	the	cached	data,	set	the	CacheSize	property	of	the
Recordset	to	0,	reset	it	to	the	size	of	the	cache	you	originally
requested,	and	then	use	FillCache.

FindFirst,	FindLast,	FindNext,	FindPrevious
Methods

			 			

			

Locates	the	first,	last,	next,	or	previous	record	in	a	dynaset-	or	snapshot-
type	Recordset	object	that	satisfies	the	specified	criteria	and	makes	that
record	the	current	record	(Microsoft	Jet	workspaces	only).

Syntax

recordset.{FindFirst	|	FindLast	|	FindNext	|	FindPrevious}	criteria

The	Find	methods	have	these	parts.

Part Description

recordset An	object	variable	that	represents	an	existing	dynaset-	or	snapshot-
type	Recordset	object.

criteria A	String	used	to	locate	the	record.	It	is	like	the	WHERE	clause	in
an	SQL	statement,	but	without	the	word	WHERE.

Remarks

If	you	want	to	include	all	the	records	in	your	search	—	not	just	those	that
meet	a	specific	condition	—	use	the	Move	methods	to	move	from	record

mk:@MSITStore:daosdk.chm::/dajsql02_91t1.htm

to	record.	To	locate	a	record	in	a	table-type	Recordset,	use	the	Seek
method.

If	a	record	matching	the	criteria	isn't	located,	the	current	record	pointer	is
unknown,	and	the	NoMatch	property	is	set	to	True.	If	recordset	contains
more	than	one	record	that	satisfies	the	criteria,	FindFirst	locates	the	first
occurrence,	FindNext	locates	the	next	occurrence,	and	so	on.

Each	of	the	Find	methods	begins	its	search	from	the	location	and	in	the
direction	specified	in	the	following	table.

Find	method Begins	searching	at Search	direction
FindFirst Beginning	of	recordsetEnd	of	recordset

FindLast End	of	recordset Beginning	of
recordset

FindNext Current	record End	of	recordset

FindPrevious Current	record Beginning	of
recordset

When	you	use	the	FindLast	method,	the	Microsoft	Jet	database	engine
fully	populates	your	Recordset	before	beginning	the	search,	if	this	hasn't
already	happened.

Using	one	of	the	Find	methods	isn't	the	same	as	using	a	Move	method,
however,	which	simply	makes	the	first,	last,	next,	or	previous	record
current	without	specifying	a	condition.	You	can	follow	a	Find	operation
with	a	Move	operation.

Always	check	the	value	of	the	NoMatch	property	to	determine	whether
the	Find	operation	has	succeeded.	If	the	search	succeeds,	NoMatch	is
False.	If	it	fails,	NoMatch	is	True	and	the	current	record	isn't	defined.	In
this	case,	you	must	position	the	current	record	pointer	back	to	a	valid
record.

Using	the	Find	methods	with	Microsoft	Jet-connected	ODBC-accessed
recordsets	can	be	inefficient.	You	may	find	that	rephrasing	your	criteria	to
locate	a	specific	record	is	faster,	especially	when	working	with	large

recordsets.

In	an	ODBCDirect	workspace,	the	Find	and	Seek	methods	are	not
available	on	any	type	of	Recordset	object,	because	executing	a	Find	or
Seek	through	an	ODBC	connection	is	not	very	efficient	over	the	network.
Instead,	you	should	design	the	query	(that	is,	using	the	source	argument
to	the	OpenRecordset	method)	with	an	appropriate	WHERE	clause	that
restricts	the	returned	records	to	only	those	that	meet	the	criteria	you
would	otherwise	use	in	a	Find	or	Seek	method.

When	working	with	Microsoft	Jet-connected	ODBC	databases	and	large
dynaset-type	Recordset	objects,	you	might	discover	that	using	the	Find
methods	or	using	the	Sort	or	Filter	property	is	slow.	To	improve
performance,	use	SQL	queries	with	customized	ORDER	BY	or	WHERE
clauses,	parameter	queries,	or	QueryDef	objects	that	retrieve	specific
indexed	records.

You	should	use	the	U.S.	date	format	(month-day-year)	when	you	search
for	fields	containing	dates,	even	if	you're	not	using	the	U.S.	version	of	the
Microsoft	Jet	database	engine;	otherwise,	the	data	may	not	be	found.
Use	the	Visual	Basic	Format	function	to	convert	the	date.	For	example:

rstEmployees.FindFirst	"HireDate	>	#"	_
			&	Format(mydate,	'm-d-yy')	&	"#"

If	criteria	is	composed	of	a	string	concatenated	with	a	non-integer	value,
and	the	system	parameters	specify	a	non-U.S.	decimal	character	such	as
a	comma	(for	example,	strSQL	=	"PRICE	>	"	&	lngPrice,	and
lngPrice	=	125,50),	an	error	occurs	when	you	try	to	call	the	method.
This	is	because	during	concatenation,	the	number	will	be	converted	to	a
string	using	your	system's	default	decimal	character,	and	Microsoft	Jet
SQL	only	accepts	U.S.	decimal	characters.

Notes

For	best	performance,	the	criteria	should	be	in	either	the	form
"field	=	value"	where	field	is	an	indexed	field	in	the	underlying

base	table,	or	"field	LIKE	prefix"	where	field	is	an	indexed	field
in	the	underlying	base	table	and	prefix	is	a	prefix	search	string
(for	example,	"ART*").

In	general,	for	equivalent	types	of	searches,	the	Seek	method
provides	better	performance	than	the	Find	methods.	This	assumes
that	table-type	Recordset	objects	alone	can	satisfy	your	needs.

GetChunk	Method

			 			

			

Returns	all	or	a	portion	of	the	contents	of	a	Memo	or	Long	Binary	Field
object	in	the	Fields	collection	of	a	Recordset	object.

Syntax

Set	variable	=	recordset	!	field.GetChunk	(offset,	numbytes)

The	GetChunk	method	syntax	has	these	parts.

Part Description

variable A	Variant	(String	subtype)	that	receives	the	data	from	the	Field
object	named	by	field.

recordset An	object	variable	that	represents	the	Recordset	object	containing
the	Fields	collection.

field
An	object	variable	that	represents	a	Field	object	whose	Type
property	is	set	to	dbMemo	(Memo)	or	dbLongBinary	(Long
Binary).

offset A	Long	value	equal	to	the	number	of	bytes	to	skip	before	copying
begins.

numbytes A	Long	value	equal	to	the	number	of	bytes	you	want	to	return.

Remarks

The	bytes	returned	by	GetChunk	are	assigned	to	variable.	Use
GetChunk	to	return	a	portion	of	the	total	data	value	at	a	time.	You	can
use	the	AppendChunk	method	to	reassemble	the	pieces.

If	offset	is	0,	GetChunk	begins	copying	from	the	first	byte	of	the	field.

If	numbytes	is	greater	than	the	number	of	bytes	in	the	field,	GetChunk
returns	the	actual	number	of	remaining	bytes	in	the	field.

Caution	Use	a	Memo	field	for	text,	and	put	binary	data	only	in	Long
Binary	fields.	Doing	otherwise	will	cause	undesirable	results.

GetRows	Method

			 			

			

Retrieves	multiple	rows	from	a	Recordset	object.

Syntax

Set	varArray	=	recordset.GetRows	(numrows)

The	GetRows	method	syntax	has	the	following	parts.

Part Description
varArray A	Variant	that	stores	the	returned	data.
recordset An	object	variable	that	represents	a	Recordset	object.

numrows A	Variant	that	is	equal	to	the	number	of	rows	to
retrieve.

Remarks

Use	the	GetRows	method	to	copy	records	from	a	Recordset.	GetRows
returns	a	two-dimensional	array.	The	first	subscript	identifies	the	field	and
the	second	identifies	the	row	number.	For	example,	intField
represents	the	field,	and	intRecord	identifies	the	row	number:

avarRecords(intField,	intRecord)

To	get	the	first	field	value	in	the	second	row	returned,	use	code	like	the
following:

field1	=	avarRecords(0,1)

To	get	the	second	field	value	in	the	first	row,	use	code	like	the	following:

field2	=	avarRecords(1,0)

The	avarRecords	variable	automatically	becomes	a	two-dimensional
array	when	GetRows	returns	data.

If	you	request	more	rows	than	are	available,	then	GetRows	returns	only
the	number	of	available	rows.	You	can	use	the	Visual	Basic	for
Applications	UBound	function	to	determine	how	many	rows	GetRows
actually	retrieved,	because	the	array	is	sized	to	fit	the	number	of	returned
rows.	For	example,	if	you	returned	the	results	into	a	Variant	called	varA,
you	could	use	the	following	code	to	determine	how	many	rows	were
actually	returned:

numReturned	=	UBound(varA,2)	+	1

You	need	to	use	"+	1"	because	the	first	row	returned	is	in	the	0	element
of	the	array.	The	number	of	rows	that	you	can	retrieve	is	constrained	by
the	amount	of	available	memory.	You	shouldn't	use	GetRows	to	retrieve
an	entire	table	into	an	array	if	it	is	large.

Because	GetRows	returns	all	fields	of	the	Recordset	into	the	array,
including	Memo	and	Long	Binary	fields,	you	might	want	to	use	a	query
that	restricts	the	fields	returned.

After	you	call	GetRows,	the	current	record	is	positioned	at	the	next
unread	row.	That	is,	GetRows	has	the	same	effect	on	the	current	record
as	Move	numrows.

If	you	are	trying	to	retrieve	all	the	rows	by	using	multiple	GetRows	calls,

use	the	EOF	property	to	be	sure	that	you're	at	the	end	of	the	Recordset.
GetRows	returns	less	than	the	number	requested	if	it's	at	the	end	of	the
Recordset,	or	if	it	can't	retrieve	a	row	in	the	range	requested.	For
example,	if	you're	trying	to	retrieve	10	records,	but	you	can't	retrieve	the
fifth	record,	GetRows	returns	four	records	and	makes	the	fifth	record	the
current	record.	This	will	not	generate	a	run-time	error.	This	might	occur	if
another	user	deletes	a	record	in	a	dynaset-type	Recordset.	See	the
example	for	a	demonstration	of	how	to	handle	this.

Idle	Method

			 			

			

Suspends	data	processing,	enabling	the	Microsoft	Jet	database	engine	to
complete	any	pending	tasks,	such	as	memory	optimization	or	page
timeouts	(Microsoft	Jet	workspaces	only).

Syntax

DBEngine.Idle	[dbRefreshCache]

Remarks

The	Idle	method	allows	the	Microsoft	Jet	database	engine	to	perform
background	tasks	that	may	not	be	up-to-date	because	of	intense	data
processing.	This	is	often	true	in	multiuser,	multitasking	environments	that
don't	have	enough	background	processing	time	to	keep	all	records	in	a
Recordset	current.

Usually,	read	locks	are	removed	and	data	in	local	dynaset-type
Recordset	objects	are	updated	only	when	no	other	actions	(including
mouse	movements)	occur.	If	you	periodically	use	the	Idle	method,
Microsoft	Jet	can	catch	up	on	background	processing	tasks	by	releasing
unneeded	read	locks.

Specifying	the	optional	dbRefreshCache	argument	refreshes	memory
with	only	the	most	current	data	from	the	.mdb	file.	The	dbForceOSFlush
argument	forces	pending	writes	to	.mdb	files	as	part	of	the	CommitTrans
method.

You	don't	need	to	use	this	method	in	single-user	environments	unless
multiple	instances	of	an	application	are	running.	The	Idle	method	may
increase	performance	in	a	multiuser	environment	because	it	forces	the
database	engine	to	write	data	to	disk,	releasing	locks	on	memory.

Note	You	can	also	release	read	locks	by	making	operations	part	of	a
transaction.

MakeReplica	Method

			 			

			

Makes	a	new	replica	from	another	database	replica	(Microsoft	Jet
workspaces	only).

Syntax

database.MakeReplica	replica,	description,	options

The	MakeReplica	method	syntax	has	the	following	parts.

Part Description

database An	object	variable	that	represents	an	existing	Database	that	is	a
replica.

replica A	String	that	is	the	path	and	file	name	of	the	new	replica.	If	replica
is	an	existing	file	name,	then	an	error	occurs.

description A	String	that	describes	the	replica	that	you	are	creating.

options
Optional.	A	constant	or	combination	of	constants	that	specifies
characteristics	of	the	replica	you	are	creating,	as	specified	in
Settings.

Settings

You	can	use	one	or	more	of	the	following	constants	in	the	options

argument.

Constant Description
dbRepMakePartial Creates	a	partial	replica.

dbRepMakeReadOnly

Prevents	users	from	modifying	the	replicable	objects	of	the
new	replica;	however,	when	you	synchronize	the	new
replica	with	another	member	of	the	replica	set,	design	and
data	changes	will	be	propagated	to	the	new	replica.

Remarks

A	newly	created	partial	replica	will	have	all	ReplicaFilter	properties	set	to
False,	meaning	that	no	data	will	be	in	the	tables.

Move	Method

			 			

			

Moves	the	position	of	the	current	record	in	a	Recordset	object.

Syntax

recordset.Move	rows,	start

The	Move	method	syntax	has	these	parts.

Part Description

recordset An	object	variable	that	represents	the	Recordset	object	whose
current	record	position	is	being	moved.

rows

A	signed	Long	value	specifying	the	number	of	rows	the	position
will	move.	If	rows	is	greater	than	0,	the	position	is	moved	forward
(toward	the	end	of	the	file).	If	rows	is	less	than	0,	the	position	is
moved	backward	(toward	the	beginning	of	the	file).

startbookmark
Optional.	A	Variant	(String	subtype)	value	identifying	a	bookmark.
If	you	specify	startbookmark,	the	move	begins	relative	to	this
bookmark.	Otherwise,	Move	begins	from	the	current	record.

Remarks

If	you	use	Move	to	position	the	current	record	pointer	before	the	first

record,	the	current	record	pointer	moves	to	the	beginning	of	the	file.	If	the
Recordset	contains	no	records	and	its	BOF	property	is	True,	using	this
method	to	move	backward	causes	an	error.

If	you	use	Move	to	position	the	current	record	pointer	after	the	last
record,	the	current	record	pointer	position	moves	to	the	end	of	the	file.	If
the	Recordset	contains	no	records	and	its	EOF	property	is	True,	then
using	this	method	to	move	forward	causes	an	error.

If	either	the	BOF	or	EOF	property	is	True	and	you	attempt	to	use	the
Move	method	without	a	valid	bookmark,	a	run-time	error	occurs.

Notes

When	you	use	Move	on	a	forward-only-type	Recordset	object,
the	rows	argument	must	be	a	positive	integer	and	bookmarks
aren't	allowed.	This	means	you	can	only	move	forward.

To	make	the	first,	last,	next,	or	previous	record	in	a	Recordset	the
current	record,	use	either	the	MoveFirst,	MoveLast,	MoveNext,
or	MovePrevious	method.

Using	Move	with	rows	equal	to	0	is	an	easy	way	to	retrieve	the
underlying	data	for	the	current	record.	This	is	useful	if	you	want
to	make	sure	that	the	current	record	has	the	most	recent	data	from
the	base	tables.	It	will	also	cancel	any	pending	Edit	or	AddNew
calls.

MoveFirst,	MoveLast,	MoveNext,	MovePrevious
Methods

			 			

			

Move	to	the	first,	last,	next,	or	previous	record	in	a	specified	Recordset
object	and	make	that	record	the	current	record.

Syntax

recordset.{MoveFirst	|	MoveLast	[dbRunAsync]	|	MoveNext	|
MovePrevious}

The	recordset	placeholder	is	an	object	variable	that	represents	an	open
Recordset	object.

Remarks

Use	the	Move	methods	to	move	from	record	to	record	without	applying	a
condition.

Caution	If	you	edit	the	current	record,	be	sure	you	use	the	Update
method	to	save	the	changes	before	you	move	to	another	record.	If
you	move	to	another	record	without	updating,	your	changes	are	lost
without	warning.

When	you	open	a	Recordset,	the	first	record	is	current	and	the	BOF
property	is	False.	If	the	Recordset	contains	no	records,	the	BOF
property	is	True,	and	there	is	no	current	record.

If	the	first	or	last	record	is	already	current	when	you	use	MoveFirst	or
MoveLast,	the	current	record	doesn't	change.

If	you	use	MovePrevious	when	the	first	record	is	current,	the	BOF
property	is	True,	and	there	is	no	current	record.	If	you	use
MovePrevious	again,	an	error	occurs,	and	BOF	remains	True.

If	you	use	MoveNext	when	the	last	record	is	current,	the	EOF	property	is
True,	and	there	is	no	current	record.	If	you	use	MoveNext	again,	an	error
occurs,	and	EOF	remains	True.

If	recordset	refers	to	a	table-type	Recordset	(Microsoft	Jet	workspaces
only),	movement	follows	the	current	index.	You	can	set	the	current	index
by	using	the	Index	property.	If	you	don't	set	the	current	index,	the	order	of
returned	records	is	undefined.

Important	You	can	use	the	MoveLast	method	to	fully	populate	a
dynaset-	or	snapshot-type	Recordset	to	provide	the	current	number
of	records	in	the	Recordset.	However,	if	you	use	MoveLast	in	this
way,	you	can	slow	down	your	application's	performance.	You	should
only	use	MoveLast	to	get	a	record	count	if	it	is	absolutely	necessary
to	obtain	an	accurate	record	count	on	a	newly	opened	Recordset.	If
you	use	the	dbRunAsync	constant	with	MoveLast,	the	method	call	is
asynchronous.	You	can	use	the	StillExecuting	property	to	determine
when	the	Recordset	is	fully	populated,	and	you	can	use	the	Cancel
method	to	terminate	execution	of	the	asynchronous	MoveLast
method	call.

You	can't	use	the	MoveFirst,	MoveLast,	and	MovePrevious	methods
on	a	forward-only–type	Recordset	object.

To	move	the	position	of	the	current	record	in	a	Recordset	object	a
specific	number	of	records	forward	or	backward,	use	the	Move	method.

NewPassword	Method

			 			

			

Changes	the	password	of	an	existing	user	account	or	Microsoft	Jet
database	(Microsoft	Jet	workspaces	only).

Note		Use	strong	passwords	that	combine	upper-	and	lowercase	letters,
numbers,	and	symbols.	Weak	passwords	don't	mix	these	elements.
Strong	password:	Y6dh!et5.	Weak	password:	House27.	Use	a	strong
password	that	you	can	remember	so	that	you	don't	have	to	write	it	down.

Syntax

object.NewPassword	oldpassword,	newpassword

The	NewPassword	method	syntax	has	these	parts.

Part Description

object
An	object	variable	that	represents	the	User	object	or	a	Microsoft
Jet	3.x	Database	object	whose	Password	property	you	want	to
change.

oldpassword A	String	that	is	the	current	setting	of	the	Password	property	of	the
User	or	Jet	3.x	Database	object.
A	String	that	is	the	new	setting	of	the	Password	property	of	the
User	or	Jet	3.x	Database	object.

newpassword
Note		Use	strong	passwords	that	combine	upper-	and
lowercase	letters,	numbers,	and	symbols.	Weak	passwords
don't	mix	these	elements.	Strong	password:	Y6dh!et5.	Weak
password:	House27.	Use	a	strong	password	that	you	can
remember	so	that	you	don't	have	to	write	it	down.

Remarks

The	oldpassword	and	newpassword	strings	can	be	up	to	14	characters
long	and	can	include	any	characters	except	the	ASCII	character	0	(null).
To	clear	the	password,	use	a	zero-length	string	("")	for	newpassword.

Passwords	are	case-sensitive.

If	object	refers	to	a	User	object	that	is	not	yet	appended	to	a	Users
collection,	an	error	occurs.	To	set	a	new	password,	you	must	either	log
on	as	the	user	whose	account	you're	changing,	or	you	must	be	a
member	of	the	Admins	group.	The	Password	property	of	a	User	object	is
write-only	—	users	can't	read	the	current	value.

If	object	refers	to	a	Microsoft	Jet	version	3.0	or	later	Database	object,
this	method	offers	some	security	by	means	of	password	protection.	When
you	create	or	open	a	Microsoft	Jet	3.x	.mdb	file,	part	of	the	Connect
connection	string	can	describe	the	password.

If	a	database	has	no	password,	Microsoft	Jet	will	automatically	create
one	by	passing	a	zero-length	string	("")	for	the	old	password.

Caution	If	you	lose	your	password,	you	can	never	open	the	database
again.

NextRecordset	Method

			 			

			

Gets	the	next	set	of	records,	if	any,	returned	by	a	multi-part	select	query
in	an	OpenRecordset	call,	and	returns	a	Boolean	value	indicating
whether	one	or	more	additional	records	are	pending	(ODBCDirect
workspaces	only).

Syntax

boolean	=	recordset.NextRecordset

The	NextRecordset	method	syntax	has	these	parts:

Part Description

boolean

A	Boolean	variable.	True	indicates	the	next
set	of	records	is	available	in	recordset;	False
indicates	that	no	more	records	are	pending
and	recordset	is	now	empty.

recordset An	existing	Recordset	variable	to	which
you	want	to	return	pending	records.

Remarks

In	an	ODBCDirect	workspace,	you	can	open	a	Recordset	containing

more	than	one	select	query	in	the	source	argument	of	OpenRecordset,
or	the	SQL	property	of	a	select	query	QueryDef	object,	as	in	the	following
example.

SELECT	LastName,	FirstName	FROM	Authors	
WHERE	LastName	=	'Smith';
SELECT	Title,	ISBN	FROM	Titles	
WHERE	Pub_ID	=	9999

The	returned	Recordset	will	open	with	the	results	of	the	first	query.	To
obtain	the	result	sets	of	records	from	subsequent	queries,	use	the
NextRecordset	method.

If	more	records	are	available	(that	is,	there	was	another	select	query	in
the	OpenRecordset	call	or	in	the	SQL	property),	the	records	returned
from	the	next	query	will	be	loaded	into	the	Recordset,	and
NextRecordset	will	return	True,	indicating	that	the	records	are	available.
When	no	more	records	are	available	(that	is,	results	of	the	last	select
query	have	been	loaded	into	the	Recordset),	then	NextRecordset	will
return	False,	and	the	Recordset	will	be	empty.

You	can	also	use	the	Cancel	method	to	flush	the	contents	of	a
Recordset.	However,	Cancel	also	flushes	any	additional	records	not	yet
loaded.

OpenConnection	Method

			 			

			

Opens	a	Connection	object	on	an	ODBC	data	source	(ODBCDirect
workspaces	only).

Syntax

Set	connection	=	workspace.OpenConnection	(name,	options,	readonly,
connect)

The	OpenConnection	method	syntax	has	these	parts.

Part Description

connection A	Connection	object	variable	to	which	the
new	connection	will	be	assigned.

workspace

Optional.	A	variable	of	a	Workspace	object
data	type	that	references	the	existing
Workspace	object	that	will	contain	the	new
connection.

name A	string	expression.	See	the	discussion
under	Remarks.

options

Optional.	A	Variant	that	sets	various	options
for	the	connection,	as	specified	in	Settings.
Based	on	this	value,	the	ODBC	driver

manager	prompts	the	user	for	connection
information	such	as	data	source	name
(DSN),	user	name,	and	password.

readonly

Optional.	A	Boolean	value	that	is	True	if	the
connection	is	to	be	opened	for	read-only
access	and	False	if	the	connection	is	to	be
opened	for	read/write	access	(default).

connect

Optional.	An	ODBC	connect	string.	See	the
Connect	property	for	the	specific	elements
and	syntax	of	this	string.	A	prepended
"ODBC;"	is	required.	If	connect	is	omitted,
the	UID	and/or	PWD	will	be	taken	from	the
UserName	and	Password	properties	of	the
Workspace.

Settings

The	options	argument	determines	if	and	when	to	prompt	the	user	to
establish	the	connection,	and	whether	or	not	to	open	the	connection
asynchronously.	You	can	use	one	of	the	following	constants.

Constant Description

dbDriverNoPrompt

The	ODBC	Driver	Manager	uses	the	connection
string	provided	in	dbname	and	connect.	If	you
don't	provide	sufficient	information,	a	run-time
error	occurs.

dbDriverPrompt

The	ODBC	Driver	Manager	displays	the	ODBC
Data	Sources	dialog	box,	which	displays	any
relevant	information	supplied	in	dbname	or
connect.	The	connection	string	is	made	up	of
the	DSN	that	the	user	selects	via	the	dialog
boxes,	or,	if	the	user	doesn't	specify	a	DSN,	the
default	DSN	is	used.

dbDriverComplete

Default.	If	the	connect	argument	includes	all	the
necessary	information	to	complete	a	connection,
the	ODBC	Driver	Manager	uses	the	string	in
connect.	Otherwise	it	behaves	as	it	does	when
you	specify	dbDriverPrompt.

dbDriverCompleteRequired

This	option	behaves	like	dbDriverComplete
except	the	ODBC	driver	disables	the	prompts
for	any	information	not	required	to	complete	the

connection.

dbRunAsync
Execute	the	method	asynchronously.	This
constant	may	be	used	with	any	of	the	other
options	constants.

Remarks

Use	the	OpenConnection	method	to	establish	a	connection	to	an	ODBC
data	source	from	an	ODBCDirect	workspace.	The	OpenConnection
method	is	similar	but	not	equivalent	to	OpenDatabase.	The	main
difference	is	that	OpenConnection	is	available	only	in	an	ODBCDirect
workspace.

If	you	specify	a	registered	ODBC	data	source	name	(DSN)	in	the	connect
argument,	then	the	name	argument	can	be	any	valid	string,	and	will	also
provide	the	Name	property	for	the	Connection	object.	If	a	valid	DSN	is
not	included	in	the	connect	argument,	then	name	must	refer	to	a	valid
ODBC	DSN,	which	will	also	be	the	Name	property.	If	neither	name	nor
connect	contains	a	valid	DSN,	the	ODBC	driver	manager	can	be	set	(via
the	options	argument)	to	prompt	the	user	for	the	required	connection
information.	The	DSN	supplied	through	the	prompt	then	provides	the
Name	property.

OpenConnection	returns	a	Connection	object	which	contains
information	about	the	connection.	The	Connection	object	is	similar	to	a
Database	object.	The	principal	difference	is	that	a	Database	object
usually	represents	a	database,	although	it	can	be	used	to	represent	a
connection	to	an	ODBC	data	source	from	a	Microsoft	Jet	workspace.

OpenDatabase	Method

			 			

			

Opens	a	specified	database	in	a	Workspace	object	and	returns	a
reference	to	the	Database	object	that	represents	it.

Syntax

Set	database	=	workspace.OpenDatabase	(dbname,	options,	read-only,
connect)

The	OpenDatabase	method	syntax	has	these	parts.

Part Description

database An	object	variable	that	represents	the	Database	object	that	you
want	to	open.

workspace

Optional.	An	object	variable	that	represents	the	existing
Workspace	object	that	will	contain	the	database.	If	you	don't
include	a	value	for	workspace,	OpenDatabase	uses	the	default
workspace.

dbname
A	String	that	is	the	name	of	an	existing	Microsoft	Jet	database	file,
or	the	data	source	name	(DSN)	of	an	ODBC	data	source.	See	the
Name	property	for	more	information	about	setting	this	value.

options Optional.	A	Variant	that	sets	various	options	for	the	database,	as
specified	in	Settings.

read-only
Optional.	A	Variant	(Boolean	subtype)	value	that	is	True	if	you
want	to	open	the	database	with	read-only	access,	or	False	(default)
if	you	want	to	open	the	database	with	read/write	access.

connect Optional.	A	Variant	(String	subtype)	that	specifies	various
connection	information,	including	passwords.

Settings

For	Microsoft	Jet	workspaces,	you	can	use	the	following	values	for	the
options	argument.

Setting Description
True Opens	the	database	in	exclusive	mode.

False (Default)	Opens	the	database	in	shared
mode.

For	ODBCDirect	workspaces,	the	options	argument	determines	if	and
when	to	prompt	the	user	to	establish	the	connection.	You	can	use	one	of
the	following	constants.

Constant Description

dbDriverNoPrompt

The	ODBC	Driver	Manager	uses	the	connection
string	provided	in	dbname	and	connect.	If	you
don't	provide	sufficient	information,	a	run-time
error	occurs.

dbDriverPrompt

The	ODBC	Driver	Manager	displays	the	ODBC
Data	Sources	dialog	box,	which	displays	any
relevant	information	supplied	in	dbname	or
connect.	The	connection	string	is	made	up	of
the	DSN	that	the	user	selects	via	the	dialog
boxes,	or,	if	the	user	doesn't	specify	a	DSN,	the
default	DSN	is	used.

dbDriverComplete

(Default)	If	the	connect	and	dbname	arguments
include	all	the	necessary	information	to
complete	a	connection,	the	ODBC	Driver
Manager	uses	the	string	in	connect.	Otherwise	it
behaves	as	it	does	when	you	specify
dbDriverPrompt.
This	option	behaves	like	dbDriverComplete

dbDriverCompleteRequired except	the	ODBC	driver	disables	the	prompts
for	any	information	not	required	to	complete	the
connection.

Remarks

When	you	open	a	database,	it	is	automatically	added	to	the	Databases
collection.	Further,	in	an	ODBCDirect	workspace,	the	Connection	object
corresponding	to	the	new	Database	object	is	also	created	and	appended
to	the	Connections	collection	of	the	same	Workspace	object.

Some	considerations	apply	when	you	use	dbname:

If	it	refers	to	a	database	that	is	already	open	for	exclusive	access
by	another	user,	an	error	occurs.

If	it	doesn't	refer	to	an	existing	database	or	valid	ODBC	data
source	name,	an	error	occurs.	

If	it's	a	zero-length	string	("")	and	connect	is	"ODBC;",	a	dialog
box	listing	all	registered	ODBC	data	source	names	is	displayed	so
the	user	can	select	a	database.

If	you're	opening	a	database	through	an	ODBCDirect	workspace
and	you	provide	the	DSN	in	connect,	you	can	set	dbname	to	a
string	of	your	choice	that	you	can	use	to	reference	this	database	in
subsequent	code.

The	connect	argument	is	expressed	in	two	parts:	the	database	type,
followed	by	a	semicolon	(;)	and	the	optional	arguments.	You	must	first
provide	the	database	type,	such	as	"ODBC;"	or	"FoxPro	2.5;".	The
optional	arguments	follow	in	no	particular	order,	separated	by
semicolons.	One	of	the	parameters	may	be	the	password	(if	one	is

assigned).	For	example:

"FoxPro	2.5;	pwd=mypassword"

Using	the	NewPassword	method	on	a	Database	object	other	than	an
ODBCDirect	database	changes	the	password	parameter	that	appears	in
the	";pwd=..."	part	of	this	argument.	You	must	supply	the	options	and
read-only	arguments	to	supply	a	source	string.	See	the	Connect	property
for	syntax.

To	close	a	database,	and	thus	remove	the	Database	object	from	the
Databases	collection,	use	the	Close	method	on	the	object.

Note	When	you	access	a	Microsoft	Jet-connected	ODBC	data
source,	you	can	improve	your	application's	performance	by	opening	a
Database	object	connected	to	the	ODBC	data	source,	rather	than	by
linking	individual	TableDef	objects	to	specific	tables	in	the	ODBC	data
source.

OpenRecordset	Method

			 			

			

Creates	a	new	Recordset	object	and	appends	it	to	the	Recordsets
collection.

Syntax

For	Connection	and	Database	objects:

Set	recordset	=	object.OpenRecordset	(source,	type,	options,	lockedits)

For	QueryDef,	Recordset,	and	TableDef	objects:

Set	recordset	=	object.OpenRecordset	(type,	options,	lockedits)

The	OpenRecordset	method	syntax	has	these	parts.

Part Description

recordset An	object	variable	that	represents	the	Recordset	object	you	want
to	open.

object An	object	variable	that	represents	an	existing	object	from	which
you	want	to	create	the	new	Recordset.
A	String	specifying	the	source	of	the	records	for	the	new
Recordset.	The	source	can	be	a	table	name,	a	query	name,	or	an

source SQL	statement	that	returns	records.	For	table-type	Recordset
objects	in	Microsoft	Jet	databases,	the	source	can	only	be	a	table
name.

type Optional.	A	constant	that	indicates	the	type	of	Recordset	to	open,
as	specified	in	Settings.

options Optional.	A	combination	of	constants	that	specify	characteristics	of
the	new	Recordset,	as	listed	in	Settings.

lockedits Optional.	A	constant	that	determines	the	locking	for	the
Recordset,	as	specified	in	Settings.

Settings

You	can	use	one	of	the	following	constants	for	the	type	argument.

Constant Description

dbOpenTable Opens	a	table-type	Recordset	object	(Microsoft
Jet	workspaces	only).

dbOpenDynamic
Opens	a	dynamic-type	Recordset	object,	which	is
similar	to	an	ODBC	dynamic	cursor.
(ODBCDirect	workspaces	only)

dbOpenDynaset Opens	a	dynaset-type	Recordset	object,	which	is
similar	to	an	ODBC	keyset	cursor.

dbOpenSnapshot Opens	a	snapshot-type	Recordset	object,	which	is
similar	to	an	ODBC	static	cursor.

dbOpenForwardOnly	 Opens	a	forward-only-type	Recordset	object.

Note	If	you	open	a	Recordset	in	a	Microsoft	Jet	workspace	and	you
don't	specify	a	type,	OpenRecordset	creates	a	table-type
Recordset,	if	possible.	If	you	specify	a	linked	table	or	query,
OpenRecordset	creates	a	dynaset-type	Recordset.	In	an
ODBCDirect	workspace,	the	default	setting	is	dbOpenForwardOnly.

You	can	use	a	combination	of	the	following	constants	for	the	options
argument.

Constant Description

dbAppendOnly	

Allows	users	to	append	new	records	to	the
Recordset,	but	prevents	them	from	editing	or
deleting	existing	records	(Microsoft	Jet	dynaset-type

Recordset	only).

dbSQLPassThrough	
Passes	an	SQL	statement	to	a	Microsoft	Jet-
connected	ODBC	data	source	for	processing
(Microsoft	Jet	snapshot-type	Recordset	only).

dbSeeChanges

Generates	a	run-time	error	if	one	user	is	changing
data	that	another	user	is	editing	(Microsoft	Jet
dynaset-type	Recordset	only).	This	is	useful	in
applications	where	multiple	users	have	simultaneous
read/write	access	to	the	same	data.

dbDenyWrite	 Prevents	other	users	from	modifying	or	adding
records	(Microsoft	Jet	Recordset	objects	only).

dbDenyRead	 Prevents	other	users	from	reading	data	in	a	table
(Microsoft	Jet	table-type	Recordset	only).

dbForwardOnly	

Creates	a	forward-only	Recordset	(Microsoft	Jet
snapshot-type	Recordset	only).	It	is	provided	only
for	backward	compatibility,	and	you	should	use	the
dbOpenForwardOnly	constant	in	the	type
argument	instead	of	using	this	option.

dbReadOnly	

Prevents	users	from	making	changes	to	the
Recordset	(Microsoft	Jet	only).	The	dbReadOnly
constant	in	the	lockedits	argument	replaces	this
option,	which	is	provided	only	for	backward
compatibility.

dbRunAsync Runs	an	asynchronous	query	(ODBCDirect
workspaces	only).

dbExecDirect	

Runs	a	query	by	skipping	SQLPrepare	and	directly
calling	SQLExecDirect	(ODBCDirect	workspaces
only).	Use	this	option	only	when	you’re	not	opening
a	Recordset	based	on	a	parameter	query.	For	more
information,	see	the	"Microsoft	ODBC	3.0
Programmer’s	Reference."

dbInconsistent	 Allows	inconsistent	updates	(Microsoft	Jet	dynaset-
type	and	snapshot-type	Recordset	objects	only).

dbConsistent	
Allows	only	consistent	updates	(Microsoft	Jet
dynaset-type	and	snapshot-type	Recordset	objects
only).

Note	The	constants	dbConsistent	and	dbInconsistent	are	mutually
exclusive,	and	using	both	causes	an	error.	Supplying	a	lockedits

argument	when	options	uses	the	dbReadOnly	constant	also	causes
an	error.

You	can	use	the	following	constants	for	the	lockedits	argument.

Constant Description

dbReadOnly

Prevents	users	from	making	changes	to	the
Recordset	(default	for	ODBCDirect	workspaces).
You	can	use	dbReadOnly	in	either	the	options
argument	or	the	lockedits	argument,	but	not	both.	If
you	use	it	for	both	arguments,	a	run-time	error
occurs.

dbPessimistic	

Uses	pessimistic	locking	to	determine	how	changes
are	made	to	the	Recordset	in	a	multiuser
environment.	The	page	containing	the	record	you're
editing	is	locked	as	soon	as	you	use	the	Edit
method	(default	for	Microsoft	Jet	workspaces).

dbOptimistic	

Uses	optimistic	locking	to	determine	how	changes
are	made	to	the	Recordset	in	a	multiuser
environment.	The	page	containing	the	record	is	not
locked	until	the	Update	method	is	executed.

dbOptimisticValue	 Uses	optimistic	concurrency	based	on	row	values
(ODBCDirect	workspaces	only).

dbOptimisticBatch	 Enables	batch	optimistic	updating	(ODBCDirect
workspaces	only).

Remarks

In	a	Microsoft	Jet	workspace,	if	object	refers	to	a	QueryDef	object,	or	a
dynaset-	or	snapshot-type	Recordset,	or	if	source	refers	to	an	SQL
statement	or	a	TableDef	that	represents	a	linked	table,	you	can't	use
dbOpenTable	for	the	type	argument;	if	you	do,	a	run-time	error	occurs.	If
you	want	to	use	an	SQL	pass-through	query	on	a	linked	table	in	a
Microsoft	Jet-connected	ODBC	data	source,	you	must	first	set	the
Connect	property	of	the	linked	table's	database	to	a	valid	ODBC
connection	string.	If	you	only	need	to	make	a	single	pass	through	a
Recordset	opened	from	a	Microsoft	Jet-connected	ODBC	data	source,
you	can	improve	performance	by	using	dbOpenForwardOnly	for	the

type	argument.

If	object	refers	to	a	dynaset-	or	snapshot-type	Recordset,	the	new
Recordset	is	of	the	same	type	object.	If	object	refers	to	a	table-type
Recordset	object,	the	type	of	the	new	object	is	a	dynaset-type
Recordset.	You	can't	open	new	Recordset	objects	from	forward-only–
type	or	ODBCDirect	Recordset	objects.

In	an	ODBCDirect	workspace,	you	can	open	a	Recordset	containing
more	than	one	select	query	in	the	source	argument,	such	as

"SELECT	LastName,	FirstName	FROM	Authors	
WHERE	LastName	=	'Smith';
SELECT	Title,	ISBN	FROM	Titles	
WHERE	ISBN	Like	'1-55615-*'"

The	returned	Recordset	will	open	with	the	results	of	the	first	query.	To
obtain	the	result	sets	of	records	from	subsequent	queries,	use	the
NextRecordset	method.

Note	You	can	send	DAO	queries	to	a	variety	of	different	database
servers	with	ODBCDirect,	and	different	servers	will	recognize	slightly
different	dialects	of	SQL.	Therefore,	context-sensitive	Help	is	no
longer	provided	for	Microsoft	Jet	SQL,	although	online	Help	for
Microsoft	Jet	SQL	is	still	included	through	the	Help	menu.	Be	sure	to
check	the	appropriate	reference	documentation	for	the	SQL	dialect	of
your	database	server	when	using	either	ODBCDirect	connections	or
pass-through	queries	in	Microsoft	Jet-connected	client/server
applications.

Use	the	dbSeeChanges	constant	in	a	Microsoft	Jet	workspace	if	you
want	to	trap	changes	while	two	or	more	users	are	editing	or	deleting	the
same	record.	For	example,	if	two	users	start	editing	the	same	record,	the
first	user	to	execute	the	Update	method	succeeds.	When	the	second
user	invokes	the	Update	method,	a	run-time	error	occurs.	Similarly,	if	the
second	user	tries	to	use	the	Delete	method	to	delete	the	record,	and	the
first	user	has	already	changed	it,	a	run-time	error	occurs.

Typically,	if	the	user	gets	this	error	while	updating	a	record,	your	code
should	refresh	the	contents	of	the	fields	and	retrieve	the	newly	modified
values.	If	the	error	occurs	while	deleting	a	record,	your	code	could
display	the	new	record	data	to	the	user	and	a	message	indicating	that	the
data	has	recently	changed.	At	this	point,	your	code	can	request	a
confirmation	that	the	user	still	wants	to	delete	the	record.

You	should	also	use	the	dbSeeChanges	constant	if	you	open	a
Recordset	in	a	Microsoft	Jet-connected	ODBC	workspace	against	a
Microsoft	SQL	Server	6.0	(or	later)	table	that	has	an	IDENTITY	column,
otherwise	an	error	may	result.

In	an	ODBCDirect	workspace,	you	can	execute	asynchronous	queries	by
setting	the	dbRunAsync	constant	in	the	options	argument.	This	allows
your	application	to	continue	processing	other	statements	while	the	query
runs	in	the	background.	But,	you	cannot	access	the	Recordset	data	until
the	query	has	completed.	To	determine	whether	the	query	has	finished
executing,	check	the	StillExecuting	property	of	the	new	Recordset.	If	the
query	takes	longer	to	complete	than	you	anticipated,	you	can	terminate
execution	of	the	query	with	the	Cancel	method.

Opening	more	than	one	Recordset	on	an	ODBC	data	source	may	fail
because	the	connection	is	busy	with	a	prior	OpenRecordset	call.	One
way	around	this	is	to	use	a	server-side	cursor	and	ODBCDirect,	if	the
server	supports	this.	Another	solution	is	to	fully	populate	the	Recordset
by	using	the	MoveLast	method	as	soon	as	the	Recordset	is	opened.

If	you	open	a	Connection	object	with	DefaultCursorDriver	set	to
dbUseClientBatchCursor,	you	can	open	a	Recordset	to	cache
changes	to	the	data	(known	as	batch	updating)	in	an	ODBCDirect
workspace.	Include	dbOptimisticBatch	in	the	lockedits	argument	to
enable	update	caching.	See	the	Update	method	topic	for	details	about
how	to	write	changes	to	disk	immediately,	or	to	cache	changes	and	write
them	to	disk	as	a	batch.

Closing	a	Recordset	with	the	Close	method	automatically	deletes	it	from
the	Recordsets	collection.

Note	If	source	refers	to	an	SQL	statement	composed	of	a	string
concatenated	with	a	non-integer	value,	and	the	system	parameters
specify	a	non-U.S.	decimal	character	such	as	a	comma	(for	example,
strSQL	=	"PRICE	>	"	&	lngPrice,	and	lngPrice	=
125,50),	an	error	occurs	when	you	try	to	open	the	Recordset.	This
is	because	during	concatenation,	the	number	will	be	converted	to	a
string	using	your	system's	default	decimal	character,	and	SQL	only
accepts	U.S.	decimal	characters.

PopulatePartial	Method

			 			

			

Synchronizes	any	changes	in	a	partial	replica	with	the	full	replica,	clears
all	records	in	the	partial	replica,	and	then	repopulates	the	partial	replica
based	on	the	current	replica	filters.	(Microsoft	Jet	databases	only.)

Syntax

database.PopulatePartial	dbname

The	PopulatePartial	method	syntax	has	the	following	parts.

Part Description

database
An	object	variable	that	references	the	partial
replica	Database	object	that	you	want	to
populate.

dbname A	string	specifying	the	path	and	name	of	the
full	replica	from	which	to	populate	records.

Remarks

When	you	synchronize	a	partial	replica	with	a	full	replica,	it	is	possible	to
create	"orphaned"	records	in	the	partial	replica.	For	example,	suppose
you	have	a	Customers	table	with	its	ReplicaFilter	set	to	"Region	=

'CA'".	If	a	user	changes	a	customer's	region	from	CA	to	NY	in	the
partial	replica,	and	then	a	synchronization	occurs	via	the	Synchronize
method,	the	change	is	propagated	to	the	full	replica	but	the	record
containing	NY	in	the	partial	replica	is	orphaned	because	it	now	doesn't
meet	the	replica	filter	criteria.

To	solve	the	problem	of	orphaned	records,	you	can	use	the
PopulatePartial	method.	The	PopulatePartial	method	is	similar	to	the
Synchronize	method,	but	it	synchronizes	any	changes	with	the	full
replica,	removes	all	records	in	the	partial	replica,	and	then	repopulates
the	partial	replica	based	on	the	current	replica	filters.	Even	if	your	replica
filters	have	not	changed,	PopulatePartial	will	always	clear	all	records	in
the	partial	replica	and	repopulate	it	based	on	the	current	filters.

Generally,	you	should	use	the	PopulatePartial	method	when	you	create
a	partial	replica	and	whenever	you	change	your	replica	filters.	If	your
application	changes	replica	filters,	you	should	follow	these	steps:

1.	 Synchronize	your	full	replica	with	the	partial	replica	in	which	the
filters	are	being	changed.

2.	 Use	the	ReplicaFilter	and	PartialReplica	properties	to	make	the
desired	changes	to	the	replica	filter.

3.	 Call	the	PopulatePartial	method	to	remove	all	records	from	the
partial	replica	and	transfer	all	records	from	the	full	replica	that
meet	the	new	replica	filter	criteria.

If	a	replica	filter	has	changed,	and	the	Synchronize	method	is	invoked
without	first	invoking	PopulatePartial,	a	trappable	error	occurs.

The	PopulatePartial	method	can	only	be	invoked	on	a	partial	replica	that
has	been	opened	for	exclusive	access.	Furthermore,	you	can't	call	the
PopulatePartial	method	from	code	running	within	the	partial	replica
itself.	Instead,	open	the	partial	replica	exclusively	from	the	full	replica	or

another	database,	then	call	PopulatePartial.

Note	Although	PopulatePartial	performs	a	one-way	synchronization
before	clearing	and	repopulating	the	partial	replica,	it	is	still	a	good
idea	to	call	Synchronize	before	calling	PopulatePartial.	This	is
because	if	the	call	to	Synchronize	fails,	a	trappable	error	occurs.	You
can	use	this	error	to	decide	whether	or	not	to	proceed	with	the
PopulatePartial	method	(which	removes	all	records	in	the	partial
replica).	If	PopulatePartial	is	called	by	itself	and	an	error	occurs	while
records	are	being	synchronized,	records	in	the	partial	replica	will	still
be	cleared,	which	may	not	be	the	desired	result.

Refresh	Method

			 			

			

Updates	the	objects	in	a	collection	to	reflect	the	current	database's
schema.

Syntax

collection.Refresh

The	collection	placeholder	is	an	object	variable	that	represents	a
persistent	collection.

Remarks

You	can't	use	the	Refresh	method	with	collections	that	aren't	persistent,
such	as	Connections,	Databases,	Recordsets,	Workspaces,	or	the
QueryDefs	collection	of	a	Connection	object.

To	determine	the	position	that	the	Microsoft	Jet	database	engine	uses	for
Field	objects	in	the	Fields	collection	of	a	QueryDef,	Recordset,	or
TableDef	object,	use	the	OrdinalPosition	property	of	each	Field	object.
Changing	the	OrdinalPosition	property	of	a	Field	object	may	not	change
the	order	of	the	Field	objects	in	the	collection	until	you	use	the	Refresh

method.

Use	the	Refresh	method	in	multiuser	environments	in	which	other	users
may	change	the	database.	You	may	also	need	to	use	it	on	any
collections	that	are	indirectly	affected	by	changes	to	the	database.	For
example,	if	you	change	a	Users	collection,	you	may	need	to	refresh	a
Groups	collection	before	using	the	Groups	collection.

A	collection	is	filled	with	objects	the	first	time	it's	referred	to	and	won't
automatically	reflect	subsequent	changes	other	users	make.	If	it's	likely
that	another	user	has	changed	a	collection,	use	the	Refresh	method	on
the	collection	immediately	before	carrying	out	any	task	in	your	application
that	assumes	the	presence	or	absence	of	a	particular	object	in	the
collection.	This	will	ensure	that	the	collection	is	as	up-to-date	as	possible.
On	the	other	hand,	using	Refresh	can	unnecessarily	slow	performance.

RefreshLink	Method

			 			

			

Updates	the	connection	information	for	a	linked	table	(Microsoft	Jet
workspaces	only).

Syntax

tabledef.RefreshLink

The	tabledef	placeholder	specifies	the	TableDef	object	representing	the
linked	table	whose	connection	information	you	want	to	update.

Remarks

To	change	the	connection	information	for	a	linked	table,	reset	the
Connect	property	of	the	corresponding	TableDef	object	and	then	use	the
RefreshLink	method	to	update	the	information.	Using	RefreshLink
method	doesn't	change	the	linked	table's	properties	and	Relation	objects.

For	this	connection	information	to	exist	in	all	collections	associated	with
the	TableDef	object	that	represents	the	linked	table,	you	must	use	the
Refresh	method	on	each	collection.

RegisterDatabase	Method

			 			

			

Enters	connection	information	for	an	ODBC	data	source	in	the	Windows
Registry.	The	ODBC	driver	needs	connection	information	when	the
ODBC	data	source	is	opened	during	a	session.

Syntax

DBEngine.RegisterDatabase	dbname,	driver,	silent,	attributes

The	RegisterDatabase	method	syntax	has	these	parts.

Part Description

dbname

A	String	that	is	the	name	used	in	the	OpenDatabase	method.	It
refers	to	a	block	of	descriptive	information	about	the	data	source.
For	example,	if	the	data	source	is	an	ODBC	remote	database,	it
could	be	the	name	of	the	server.

driver

A	String	that	is	the	name	of	the	ODBC	driver.	This	isn't	the	name
of	the	ODBC	driver	DLL	file.	For	example,	SQL	Server	is	a	driver
name,	but	SQLSRVR.dll	is	the	name	of	a	DLL	file.	You	must	have
ODBC	and	the	appropriate	driver	already	installed.

silent

A	Boolean	that	is	True	if	you	don't	want	to	display	the	ODBC
driver	dialog	boxes	that	prompt	for	driver-specific	information;	or
False	if	you	want	to	display	the	ODBC	driver	dialog	boxes.	If

silent	is	True,	attributes	must	contain	all	the	necessary	driver-
specific	information	or	the	dialog	boxes	are	displayed	anyway.

attributes A	String	that	is	a	list	of	keywords	to	be	added	to	the	Windows
Registry.	The	keywords	are	in	a	carriage-return–delimited	string.

Remarks

If	the	database	is	already	registered	(connection	information	is	already
entered)	in	the	Windows	Registry	when	you	use	the	RegisterDatabase
method,	the	connection	information	is	updated.

If	the	RegisterDatabase	method	fails	for	any	reason,	no	changes	are
made	to	the	Windows	Registry,	and	an	error	occurs.

For	more	information	about	ODBC	drivers	such	as	SQL	Server,	see	the
Help	file	provided	with	the	driver.

You	should	use	the	ODBC	Data	Sources	dialog	box	in	the	Control	Panel
to	add	new	data	sources,	or	to	make	changes	to	existing	entries.
However,	if	you	use	the	RegisterDatabase	method,	you	should	set	the
silent	option	to	True.

RepairDatabase	Method

			 			

			

Note			The	RepairDatabase	function	is	no	longer	available.	Use	the
CompactDatabase	method	instead.

Attempts	to	repair	a	corrupted	Microsoft	Jet	database	(Microsoft	Jet
databases	only).

Syntax

DBEngine.RepairDatabase	dbname

The	dbname	argument	is	a	String	that	is	the	path	and	file	name	for	an
existing	Microsoft	Jet	database	file.	If	you	omit	the	path,	only	the	current
directory	is	searched.	If	your	system	supports	the	uniform	naming
convention	(UNC),	you	can	also	specify	a	network	path,	such	as
"\\server1\share1\dir1\db1.mdb".

Remarks

You	must	close	the	database	specified	by	dbname	before	you	repair	it.	In
a	multiuser	environment,	other	users	can't	have	dbname	open	while
you're	repairing	it.	If	dbname	isn't	closed	or	isn't	available	for	exclusive

use,	an	error	occurs.

This	method	attempts	to	repair	a	database	that	was	marked	as	possibly
corrupt	by	an	incomplete	write	operation.	This	can	occur	if	an	application
using	the	Microsoft	Jet	database	engine	is	closed	unexpectedly	because
of	a	power	outage	or	computer	hardware	problem.	The	database	won't
be	marked	as	possibly	corrupt	if	you	use	the	Close	method	or	if	you	quit
your	application	in	a	usual	way.

The	RepairDatabase	method	also	attempts	to	validate	all	system	tables
and	all	indexes.	Any	data	that	can't	be	repaired	is	discarded.	If	the
database	can't	be	repaired,	a	run-time	error	occurs.

When	you	attempt	to	open	or	compact	a	corrupted	database,	a	run-time
error	usually	occurs.	In	some	situations,	however,	a	corrupted	database
may	not	be	detected,	and	no	error	occurs.	It's	a	good	idea	to	provide	your
users	with	a	way	to	use	the	RepairDatabase	method	in	your	application
if	their	database	behaves	unpredictably.

Some	types	of	databases	can	become	corrupted	if	a	user	ends	an
application	without	closing	Database	or	Recordset	objects	and	the
Microsoft	Jet	database	engine;	Microsoft	Windows	doesn't	have	a
chance	to	write	data	caches	to	disk.	To	avoid	corrupt	databases,
establish	procedures	for	closing	applications	and	shutting	down	systems
that	ensure	that	all	cached	pages	are	saved	to	the	database.	In	some
cases,	power	supplies	that	can't	be	interrupted	may	be	necessary	to
prevent	accidental	data	loss	during	power	fluctuations.

Note	After	repairing	a	database,	it's	also	a	good	idea	to	compact	it
using	the	CompactDatabase	method	to	defragment	the	file	and	to
recover	disk	space.

Requery	Method

			 			

			

Updates	the	data	in	a	Recordset	object	by	re-executing	the	query	on
which	the	object	is	based.

Syntax

recordset.Requery	newquerydef

The	Requery	method	syntax	has	the	following	parts.

Part Description

recordset
An	object	variable	that	represents	an	existing	Microsoft	Jet
dynaset-,	snapshot-,	or	forward-only–type	Recordset	object,	or	an
ODBCDirect	Recordset	object.

newquerydef Optional.	A	Variant	that	represents	the	Name	property	value	of	a
QueryDef	object	(Microsoft	Jet	workspaces	only).

Remarks

Use	this	method	to	make	sure	that	a	Recordset	contains	the	most	recent
data.	This	method	re-populates	the	current	Recordset	by	using	either	the
current	query	parameters	or	(in	a	Microsoft	Jet	workspace)	the	new	ones
supplied	by	the	newquerydef	argument.

In	an	ODBCDirect	workspace,	if	the	original	query	was	asynchronous,
then	Requery	will	also	execute	an	asynchronous	query.

If	you	don't	specify	a	newquerydef	argument,	the	Recordset	is	re-
populated	based	on	the	same	query	definition	and	parameters	used	to
originally	populate	the	Recordset.	Any	changes	to	the	underlying	data
will	be	reflected	during	this	re-population.	If	you	didn't	use	a	QueryDef	to
create	the	Recordset,	the	Recordset	is	re-created	from	scratch.

If	you	specify	the	original	QueryDef	in	the	newquerydef	argument,	then
the	Recordset	is	requeried	using	the	parameters	specified	by	the
QueryDef.	Any	changes	to	the	underlying	data	will	be	reflected	during
this	re-population.	To	reflect	any	changes	to	the	query	parameter	values
in	the	Recordset,	you	must	supply	the	newquerydef	argument.

If	you	specify	a	different	QueryDef	than	what	was	originally	used	to
create	the	Recordset,	the	Recordset	is	re-created	from	scratch.

When	you	use	Requery,	the	first	record	in	the	Recordset	becomes	the
current	record.

You	can't	use	the	Requery	method	on	dynaset-	or	snapshot-type
Recordset	objects	whose	Restartable	property	is	set	to	False.	However,
if	you	supply	the	optional	newquerydef	argument,	the	Restartable
property	is	ignored.

If	both	the	BOF	and	EOF	property	settings	of	the	Recordset	object	are
True	after	you	use	the	Requery	method,	the	query	didn't	return	any
records	and	the	Recordset	contains	no	data.

Seek	Method

			 			

			

Locates	the	record	in	an	indexed	table-type	Recordset	object	that
satisfies	the	specified	criteria	for	the	current	index	and	makes	that	record
the	current	record	(Microsoft	Jet	workspaces	only).

Syntax

recordset.Seek	comparison,	key1,	key2...key13

The	Seek	method	syntax	has	the	following	parts.

Part Description

recordset
An	object	variable	that	represents	an	existing	table-type	Recordset
object	that	has	a	defined	index	as	specified	by	the	Recordset
object's	Index	property.

comparison One	of	the	following	string	expressions:	<,	<=,	=,	>=,	or	>.

key1,	key2...key13
One	or	more	values	corresponding	to	fields	in	the	Recordset
object's	current	index,	as	specified	by	its	Index	property	setting.
You	can	use	up	to	13	key	arguments.

Remarks

You	must	set	the	current	index	with	the	Index	property	before	you	use

Seek.	If	the	index	identifies	a	nonunique	key	field,	Seek	locates	the	first
record	that	satisfies	the	criteria.

The	Seek	method	searches	through	the	specified	key	fields	and	locates
the	first	record	that	satisfies	the	criteria	specified	by	comparison	and
key1.	Once	found,	it	makes	that	record	current	and	sets	the	NoMatch
property	to	False.	If	the	Seek	method	fails	to	locate	a	match,	the
NoMatch	property	is	set	to	True,	and	the	current	record	is	undefined.

If	comparison	is	equal	(=),	greater	than	or	equal	(>=),	or	greater	than	(>),
Seek	starts	at	the	beginning	of	the	index	and	searches	forward.

If	comparison	is	less	than	(<)	or	less	than	or	equal	(<=),	Seek	starts	at
the	end	of	the	index	and	searches	backward.	However,	if	there	are
duplicate	index	entries	at	the	end	of	the	index,	Seek	starts	at	an	arbitrary
entry	among	the	duplicates	and	then	searches	backward.

You	must	specify	values	for	all	fields	defined	in	the	index.	If	you	use	Seek
with	a	multiple-column	index,	and	you	don't	specify	a	comparison	value
for	every	field	in	the	index,	then	you	cannot	use	the	equal	(=)	operator	in
the	comparison.	That's	because	some	of	the	criteria	fields	(key2,	key3,
and	so	on)	will	default	to	Null,	which	will	probably	not	match.	Therefore,
the	equal	operator	will	work	correctly	only	if	you	have	a	record	which	is	all
Null	except	the	key	you're	looking	for.	It's	recommended	that	you	use	the
greater	than	or	equal	(>=)	operator	instead.

The	key1	argument	must	be	of	the	same	field	data	type	as	the
corresponding	field	in	the	current	index.	For	example,	if	the	current	index
refers	to	a	number	field	(such	as	Employee	ID),	key1	must	be	numeric.
Similarly,	if	the	current	index	refers	to	a	Text	field	(such	as	Last	Name),
key1	must	be	a	string.

There	doesn't	have	to	be	a	current	record	when	you	use	Seek.

You	can	use	the	Indexes	collection	to	enumerate	the	existing	indexes.

To	locate	a	record	in	a	dynaset-	or	snapshot-type	Recordset	that
satisfies	a	specific	condition	that	is	not	covered	by	existing	indexes,	use

the	Find	methods.	To	include	all	records,	not	just	those	that	satisfy	a
specific	condition,	use	the	Move	methods	to	move	from	record	to	record.

You	can't	use	the	Seek	method	on	a	linked	table	because	you	can't	open
linked	tables	as	table-type	Recordset	objects.	However,	if	you	use	the
OpenDatabase	method	to	directly	open	an	installable	ISAM	(non-ODBC)
database,	you	can	use	Seek	on	tables	in	that	database.

In	an	ODBCDirect	workspace,	the	Find	and	Seek	methods	are	not
available	on	any	type	of	Recordset	object,	because	executing	a	Find	or
Seek	through	an	ODBC	connection	is	not	very	efficient	over	the	network.
Instead,	you	should	design	the	query	(that	is,	using	the	source	argument
to	the	OpenRecordset	method)	with	an	appropriate	WHERE	clause	that
restricts	the	returned	records	to	only	those	that	meet	the	criteria	you
would	otherwise	use	in	a	Find	or	Seek.

SetOption	Method

			 			

			

Temporarily	overrides	values	for	the	Microsoft	Jet	database	engine	keys
in	the	Windows	Registry	(Microsoft	Jet	workspaces	only).

Syntax

DBEngine.SetOption	parameter,	newvalue

The	SetOption	method	syntax	has	these	parts.

Part Description
parameter A	Long	constant	as	described	in	Settings.

newvalue A	Variant	value	that	you	want	to	set	parameter
to.

Settings

Each	constant	refers	to	the	corresponding	registry	key	in	the	path
Jet\3.5\Engines\Jet	3.5\	(that	is,	dbSharedAsyncDelay	corresponds	to
the	key	Jet\3.5\Engines\Jet	3.5\SharedAsyncDelay,	and	so	on.).

Constant Description
dbPageTimeout The	PageTimeout	key

dbSharedAsyncDelay The	SharedAsyncDelay	key
dbExclusiveAsyncDelay The	ExclusiveAsyncDelay	key
dbLockRetry The	LockRetry	key
dbUserCommitSync The	UserCommitSync	key
dbImplicitCommitSync The	ImplicitCommitSync	key
dbMaxBufferSize The	MaxBufferSize	key
dbMaxLocksPerFile The	MaxLocksPerFile	key
dbLockDelay The	LockDelay	key
dbRecycleLVs The	RecycleLVs	key
dbFlushTransactionTimeoutThe	FlushTransactionTimeout	key

Remarks

Use	the	SetOption	method	to	override	registry	values	at	run-time.	New
values	established	with	the	SetOption	method	remain	in	effect	until
changed	again	by	another	SetOption	call,	or	until	the	DBEngine	object
is	closed.

For	further	details	on	what	the	registry	keys	do,	and	appropriate	values	to
set	them	to,	see	Initializing	the	Microsoft	Jet	3.5	Database	Engine.

mk:@MSITStore:daosdk.chm::/dawreg01_51bk.htm

Synchronize	Method

			 			

			

Synchronizes	two	replicas.	(Microsoft	Jet	databases	only).

Syntax

database.Synchronize	pathname,	exchange

The	Synchronize	method	syntax	has	the	following	parts.

Part Description

database An	object	variable	that	represents	a	Database	object	that	is	a
replica.

pathname
A	String	that	contains	the	path	to	the	target	replica	with	which
database	will	be	synchronized.	The	.mdb	file	name	extension	is
optional.

exchange Optional.	A	constant	indicating	which	direction	to	synchronize
changes	between	the	two	databases,	as	specified	in	Settings.

Settings

You	can	use	the	following	constants	in	the	exchange	argument.	You	can
use	one	of	the	first	three	constants	with	or	without	the	fourth	constant.

Constant Description
dbRepExportChanges Sends	changes	from	database	to	pathname.
dbRepImportChanges Sends	changes	from	pathname	to	database.

dbRepImpExpChanges (Default)	Sends	changes	from	database	to	pathname,	and
vice-versa,	also	known	as	bidirectional	exchange.

dbRepSyncInternet	 Exchanges	data	between	files	connected	by	an	Internet
pathway.

Remarks

You	use	Synchronize	to	exchange	data	and	design	changes	between
two	databases.	Design	changes	always	happen	first.	Both	databases
must	be	at	the	same	design	level	before	they	can	exchange	data.	For
example,	an	exchange	of	type	dbRepExportChanges	might	cause
design	changes	at	a	replica	even	though	data	changes	flow	only	from	the
database	to	pathname.

The	replica	identified	in	pathname	must	be	part	of	the	same	replica	set.	If
both	replicas	have	the	same	ReplicaID	property	setting	or	are	Design
Masters	for	two	different	replica	sets,	the	synchronization	fails.

When	you	synchronize	two	replicas	over	the	Internet,	you	must	use	the
dbRepSyncInternet	constant.	In	this	case,	you	specify	a	Uniform
Resource	Locator	(URL)	address	for	the	pathname	argument	instead	of
specifying	a	local	area	network	path.

Note	You	can't	synchronize	partial	replicas	with	other	partial	replicas.
See	the	PopulatePartial	method	for	more	information.

Synchronization	over	the	Internet	requires	the	Replication	Manager,
which	is	only	available	in	the	Microsoft	Office	97,	Developer	Edition.

Update	Method

			 			

			

Saves	the	contents	of	the	copy	buffer	to	an	updatable	Recordset	object.

Syntax

recordset.Update	(type,	force)

The	Update	method	syntax	has	the	following	parts.

Part Description

recordset An	object	variable	that	represents	an	open,	updatable	Recordset
object.

type Optional.	A	constant	indicating	the	type	of	update,	as	specified	in
Settings	(ODBCDirect	workspaces	only).

force

Optional.	A	Boolean	value	indicating	whether	or	not	to	force	the
changes	into	the	database,	regardless	of	whether	the	underlying
data	has	been	changed	by	another	user	since	the	AddNew,	Delete,
or	Edit	call.	If	True,	the	changes	are	forced	and	changes	made	by
other	users	are	simply	overwritten.	If	False	(default),	changes
made	by	another	user	while	the	update	is	pending	will	cause	the
update	to	fail	for	those	changes	that	are	in	conflict.	No	error
occurs,	but	the	BatchCollisionCount	and	BatchCollisions
properties	will	indicate	the	number	of	conflicts	and	the	rows

affected	by	conflicts,	respectively	(ODBCDirect	workspaces	only).

Settings

You	can	use	the	following	values	for	the	type	argument.	You	can	use	the
non-default	values	only	if	batch	updating	is	enabled.

Constant Description

dbUpdateRegular Default.	Pending	changes	aren’t	cached	and	are	written
to	disk	immediately.

dbUpdateBatch All	pending	changes	in	the	update	cache	are	written	to
disk.

dbUpdateCurrentRecord Only	the	current	record’s	pending	changes	are	written
to	disk.

Remarks

Use	Update	to	save	the	current	record	and	any	changes	you've	made	to
it.

Caution	Changes	to	the	current	record	are	lost	if:

You	use	the	Edit	or	AddNew	method,	and	then	move	to	another
record	without	first	using	Update.

You	use	Edit	or	AddNew,	and	then	use	Edit	or	AddNew	again
without	first	using	Update.

You	set	the	Bookmark	property	to	another	record.

You	close	recordset	without	first	using	Update.

You	cancel	the	Edit	operation	by	using	CancelUpdate.

To	edit	a	record,	use	the	Edit	method	to	copy	the	contents	of	the	current
record	to	the	copy	buffer.	If	you	don't	use	Edit	first,	an	error	occurs	when
you	use	Update	or	attempt	to	change	a	field's	value.

In	an	ODBCDirect	workspace,	you	can	do	batch	updates,	provided	the
cursor	library	supports	batch	updates,	and	the	Recordset	was	opened
with	the	optimistic	batch	locking	option.

In	a	Microsoft	Jet	workspace,	when	the	Recordset	object's	LockEdits
property	setting	is	True	(pessimistically	locked)	in	a	multiuser
environment,	the	record	remains	locked	from	the	time	Edit	is	used	until
the	Update	method	is	executed	or	the	edit	is	canceled.	If	the	LockEdits
property	setting	is	False	(optimistically	locked),	the	record	is	locked	and
compared	with	the	pre-edited	record	just	before	it	is	updated	in	the
database.	If	the	record	has	changed	since	you	used	the	Edit	method,	the
Update	operation	fails.	Microsoft	Jet-connected	ODBC	and	installable
ISAM	databases	always	use	optimistic	locking.	To	continue	the	Update
operation	with	your	changes,	use	the	Update	method	again.	To	revert	to
the	record	as	the	other	user	changed	it,	refresh	the	current	record	by
using	Move	0.

Note	To	add,	edit,	or	delete	a	record,	there	must	be	a	unique	index	on
the	record	in	the	underlying	data	source.	If	not,	a	“Permission	denied”
error	will	occur	on	the	AddNew,	Delete,	or	Edit	method	call	in	a
Microsoft	Jet	workspace,	or	an	“Invalid	argument”	error	will	occur	on
the	Update	call	in	an	ODBCDirect	workspace.

DAO	Properties	by	Object

			

This	reference	groups	all	DAO	properties	by	object	or	collection.	To
determine	whether	a	particular	property	is	available	to	Microsoft	Jet	or
ODBC	databases,	check	the	Help	topic	for	that	property.

Connection

Container

Database

Parameter

Property

JavaScript:alink_3.Click()
JavaScript:alink_4.Click()
JavaScript:alink_5.Click()
JavaScript:alink_12.Click()
JavaScript:alink_13.Click()

DBEngine

Document

Error

Field

QueryDef

Recordset

Relation

TableDef

JavaScript:alink_6.Click()
JavaScript:alink_7.Click()
JavaScript:alink_8.Click()
JavaScript:alink_9.Click()
JavaScript:alink_14.Click()
JavaScript:alink_15.Click()
JavaScript:alink_16.Click()
JavaScript:alink_17.Click()

Group

Index

User

Workspace

JavaScript:alink_10.Click()
JavaScript:alink_11.Click()
JavaScript:alink_18.Click()
JavaScript:alink_19.Click()

DAO	Properties	for	Microsoft	Jet	Workspaces

			

This	reference	lists	alphabetically	all	DAO	properties	available	to
Microsoft	Jet	workspaces.

A-C
AbsolutePosition

AllowZeroLength

AllPermissions

Attributes

BOF

Bookmark

Bookmarkable

CacheSize

CacheStart

Clustered

CollatingOrder

ConflictTable

Connect

Container

Count

D-H
DataUpdatable

DateCreated

DefaultUser

DefaultPassword

DefaultValue

Description

DesignMasterID

DistinctCount

EditMode

EOF

FieldSize

Filter

Foreign

ForeignName

ForeignTable

HelpContext

HelpFile

I-O
IgnoreNulls

Index

Inherit

Inherited

IniPath

IsolateODBCTrans

KeepLocal

LastModified

LastUpdated

LockEdits

LoginTimeout

LogMessages

MaxRecords

Name

NoMatch

Number

ODBCTimeout

OrdinalPosition

Owner

P-R
PartialReplicadaproPartialReplica>langref

Password

PercentPosition

Permissions

PID

Primary

QueryTimeout

RecordCount

RecordsAffected

Replicable

ReplicableBool

ReplicaFilter

ReplicaID

Required

Restartable

ReturnsRecords

S-Z
Size

Sort

Source

SourceField

SourceTable

SourceTableName

SQL

SystemDB

Table

Transactions

Type

Unique

Updatable

UserName

V1xNullBehavior

ValidateOnSet

ValidationRule

ValidationText

Value

Version

DAO	Properties	for	ODBCDirect	Workspaces

			

This	reference	lists	alphabetically	all	DAO	properties	available	to
ODBCDirect	workspaces.

A-D
AbsolutePosition

Attributes

BatchCollisionCount

BatchCollisions

BatchSize

BOF

Bookmark

Bookmarkable

CacheSize

Connect

Connection

Count

Database

DataUpdatable

DefaultCursorDriver

DefaultType

Description

Direction

E-Q
EditMode

EOF

FieldSize

HelpContext

HelpFile

LastModified

LockEdits

LoginTimeout

LogMessages

MaxRecordsdaproMaxRecords>langref

Name

Number

ODBCTimeout

OrdinalPosition

OriginalValue

PercentPosition

Prepare

QueryTimeout

R-Z
RecordCount

RecordsAffected

RecordStatus

Restartable

Size

Source

SourceField

SourceTable

SQL

StillExecuting

Transactions

Type

Updatable

UpdateOptions

UserName

Value

Version

VisibleValue

AbsolutePosition	Property

			 			

			

Sets	or	returns	the	relative	record	number	of	a	Recordset	object's	current
record.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Long	integer	from	0	to	one	less	than	the
number	of	records	in	the	Recordset	object.	It	corresponds	to	the	ordinal
position	of	the	current	record	in	the	Recordset	object	specified	by	the
object.

Remarks

You	can	use	the	AbsolutePosition	property	to	position	the	current
record	pointer	to	a	specific	record	based	on	its	ordinal	position	in	a
dynaset-	or	snapshot-type	Recordset	object.	You	can	also	determine	the
current	record	number	by	checking	the	AbsolutePosition	property
setting.

Because	the	AbsolutePosition	property	value	is	zero-based	(that	is,	a
setting	of	0	refers	to	the	first	record	in	the	Recordset	object),	you	cannot
set	it	to	a	value	greater	than	or	equal	to	the	number	of	populated	records;

doing	so	causes	a	trappable	error.	You	can	determine	the	number	of
populated	records	in	the	Recordset	object	by	checking	the
RecordCount	property	setting.	The	maximum	allowable	setting	for	the
AbsolutePosition	property	is	the	value	of	the	RecordCount	property
minus	1.

If	there	is	no	current	record,	as	when	there	are	no	records	in	the
Recordset	object,	AbsolutePosition	returns	–1.	If	the	current	record	is
deleted,	the	AbsolutePosition	property	value	isn't	defined,	and	a
trappable	error	occurs	if	it's	referenced.	New	records	are	added	to	the
end	of	the	sequence.

You	shouldn't	use	this	property	as	a	surrogate	record	number.
Bookmarks	are	still	the	recommended	way	of	retaining	and	returning	to	a
given	position	and	are	the	only	way	to	position	the	current	record	across
all	types	of	Recordset	objects.	In	particular,	the	position	of	a	record
changes	when	one	or	more	records	preceding	it	are	deleted.	There	is
also	no	assurance	that	a	record	will	have	the	same	absolute	position	if
the	Recordset	object	is	re-created	again	because	the	order	of	individual
records	within	a	Recordset	object	isn't	guaranteed	unless	it's	created
with	an	SQL	statement	by	using	an	ORDER	BY	clause.

Notes

Setting	the	AbsolutePosition	property	to	a	value	greater	than	zero
on	a	newly	opened	but	unpopulated	Recordset	object	causes	a
trappable	error.	Populate	the	Recordset	object	first	with	the
MoveLast	method.

The	AbsolutePosition	property	isn't	available	on	forward-only–
type	Recordset	objects,	or	on	Recordset	objects	opened	from
pass-through	queries	against	Microsoft	Jet-connected	ODBC
databases.

AllowZeroLength	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	a	zero-length	string	("")	is	a
valid	setting	for	the	Value	property	of	the	Field	object	with	a	Text	or	Memo
data	type	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	data	type	that	indicates	if	a	value
is	valid.	The	value	is	True	if	the	Field	object	accepts	a	zero-length	string
as	its	Value	property;	the	default	value	is	False.

Remarks

For	an	object	not	yet	appended	to	the	Fields	collection,	this	property	is
read/write.

Once	appended	to	a	Fields	collection,	the	availability	of	the
AllowZeroLength	property	depends	on	the	object	that	contains	the
Fields	collection,	as	shown	in	the	following	table.

If	the	Fields	collection	belongs	to	an Then	AllowZeroLength
is

Index	object Not	supported
QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read/write

You	can	use	this	property	along	with	the	Required,	ValidateOnSet,	or
ValidationRule	property	to	validate	a	value	in	a	field.

AllPermissions	Property

			 			

			

Returns	all	the	permissions	that	apply	to	the	current	UserName	property
of	the	Container	or	Document	object,	including	permissions	that	are
specific	to	the	user	as	well	as	the	permissions	a	user	inherits	from
memberships	in	groups	(Microsoft	Jet	workspaces	only).

Return	Values

For	any	Container	or	Document	object,	the	return	value	is	a	Long	value
or	constant(s)	that	may	include	the	following.

Constant Description

dbSecReadDef The	user	can	read	the	table	definition,	including
column	and	index	information.

dbSecWriteDef The	user	can	modify	or	delete	the	table	definition,
including	column	and	index	information.

dbSecRetrieveData The	user	can	retrieve	data	from	the	Document
object.

dbSecInsertData The	user	can	add	records.
dbSecReplaceData The	user	can	modify	records.
dbSecDeleteData The	user	can	delete	records.

In	addition,	the	Databases	container	or	any	Document	object	in	a
Documents	collection	may	include	the	following.

Constant Description
dbSecDeleteData The	user	can	delete	records.

dbSecDBAdmin The	user	can	replicate	the	database	and	change	the
database	password.

dbSecDBCreate
The	user	can	create	new	databases.	This	setting	is
valid	only	on	the	Databases	container	in	the
workgroup	information	file	(System.mdw).

dbSecDBExclusive The	user	has	exclusive	access	to	the	database.
dbSecDBOpen The	user	can	open	the	database.

Remarks

This	property	contrasts	with	the	Permissions	property,	which	returns	only
the	permissions	that	are	specific	to	the	user	and	doesn't	include	any
permissions	that	the	user	may	also	have	as	a	member	of	groups.	If	the
current	value	of	the	UserName	property	is	a	group,	then	the
AllPermissions	property	returns	the	same	values	as	the	Permissions
property.

Attributes	Property

			 			

			

Sets	or	returns	a	value	that	indicates	one	or	more	characteristics	of	a
Field,	Relation,	or	TableDef	object.

Settings	and	Return	Values

The	setting	or	return	value	is	Long	data	type,	and	the	default	value	is	0.

For	a	Field	object,	the	value	specifies	characteristics	of	the	field
represented	by	the	Field	object	and	can	be	a	combination	of	these
constants.

Constant Description

dbAutoIncrField

The	field	value	for	new	records	is
automatically	incremented	to	a	unique	Long
integer	that	can't	be	changed	(in	a	Microsoft
Jet	workspace,	supported	only	for	Microsoft
Jet	database(.mdb)	tables).

dbDescending

The	field	is	sorted	in	descending	(Z	to	A	or
100	to	0)	order;	this	option	applies	only	to	a
Field	object	in	a	Fields	collection	of	an
Index	object.	If	you	omit	this	constant,	the
field	is	sorted	in	ascending	(A	to	Z	or	0	to

100)	order.	This	is	the	default	value	for
Index	and	TableDef	fields	(Microsoft	Jet
workspaces	only).

dbFixedField The	field	size	is	fixed	(default	for	Numeric
fields).

dbHyperlinkField The	field	contains	hyperlink	information
(Memo	fields	only).

dbSystemField
The	field	stores	replication	information	for
replicas;	you	can't	delete	this	type	of	field
(Microsoft	Jet	workspaces	only).

dbUpdatableField The	field	value	can	be	changed.
dbVariableField The	field	size	is	variable	(Text	fields	only).

For	a	Relation	object,	the	value	specifies	characteristics	of	the
relationship	represented	by	the	Relation	object	and	can	be	a
combination	of	these	constants.

Constant Description
dbRelationUnique The	relationship	is	one-to-one.

dbRelationDontEnforce The	relationship	isn't	enforced	(no
referential	integrity).

dbRelationInherited The	relationship	exists	in	a	non-current
database	that	contains	the	two	linked	tables.

dbRelationUpdateCascade Updates	will	cascade.
dbRelationDeleteCascade Deletions	will	cascade.

dbRelationLeft
Microsoft	Access	only.	In	Design	view,
display	a	LEFT	JOIN	as	the	default	join
type.

dbRelationRight
Microsoft	Access	only.	In	Design	view,
display	a	RIGHT	JOIN	as	the	default	join
type.

Note	If	you	set	the	Relation	object's	Attributes	property	to	activate
cascading	operations,	the	Microsoft	Jet	database	engine
automatically	updates	or	deletes	records	in	one	or	more	other	tables
when	changes	occur	in	related	primary	tables.

For	example,	suppose	you	establish	a	cascading	delete	relationship

between	a	Customers	table	and	an	Orders	table.	When	you	delete
records	from	the	Customers	table,	records	in	the	Orders	table	related
to	that	customer	are	also	deleted.	In	addition,	if	you	establish
cascading	delete	relationships	between	the	Orders	table	and	other
tables,	records	from	those	tables	are	automatically	deleted	when	you
delete	records	from	the	Customers	table.

For	a	TableDef	object,	the	value	specifies	characteristics	of	the	table
represented	by	the	TableDef	object	and	can	be	a	combination	of	these
Long	constants.

Constant Description

dbAttachExclusive

For	databases	that	use	the	Microsoft	Jet
database	engine,	the	table	is	a	linked	table
opened	for	exclusive	use.	You	can	set	this
constant	on	an	appended	TableDef	object
for	a	local	table,	but	not	on	a	remote	table.

dbAttachSavePWD

For	databases	that	use	the	Microsoft	Jet
database	engine,	the	user	ID	and	password
for	the	remotely	linked	table	are	saved	with
the	connection	information.	You	can	set	this
constant	on	an	appended	TableDef	object
for	a	remote	table,	but	not	on	a	local	table.

dbSystemObject

The	table	is	a	system	table	provided	by	the
Microsoft	Jet	database	engine.	You	can	set
this	constant	on	an	appended	TableDef
object.

dbHiddenObject

The	table	is	a	hidden	table	provided	by	the
Microsoft	Jet	database	engine.	You	can	set
this	constant	on	an	appended	TableDef
object.

dbAttachedTable
The	table	is	a	linked	table	from	a	non-
ODBC	data	source	such	as	a	Microsoft	Jet
or	Paradox	database	(read-only).

dbAttachedODBC
The	table	is	a	linked	table	from	an	ODBC
data	source,	such	as	Microsoft	SQL	Server
(read-only).

Remarks

For	an	object	not	yet	appended	to	a	collection,	this	property	is	read/write.

For	an	appended	Field	object,	the	availability	of	the	Attributes	property
depends	on	the	object	that	contains	the	Fields	collection.

If	the	Field	object	belongs	to	an Then	Attributes	is

Index	object

Read/write	until	the	TableDef	object	that
the	Index	object	is	appended	to	is	appended
to	a	Database	object;	then	the	property	is
read-only.

QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read/write

For	an	appended	Relation	object,	the	Attributes	property	setting	is	read-
only.

For	an	appended	TableDef	object,	the	property	is	read/write,	although
you	can't	set	all	of	the	constants	if	the	object	is	appended,	as	noted	in
Settings	and	Return	Values.

When	you	set	multiple	attributes,	you	can	combine	them	by	summing	the
appropriate	constants.	Any	invalid	values	are	ignored	without	producing
an	error.

BatchCollisionCount	Property

			 			

			

Returns	the	number	of	records	that	did	not	complete	the	last	batch
update	(ODBCDirect	workspaces	only).

Return	Value

The	return	value	is	a	Long	that	indicates	the	number	of	failing	records,	or
0	if	all	records	were	successfully	updated.

Remarks

This	property	indicates	how	many	records	encountered	collisions	or
otherwise	failed	to	update	during	the	last	batch	update	attempt.	The
value	of	this	property	corresponds	to	the	number	of	bookmarks	in	the
BatchCollisions	property.

If	you	set	the	working	Recordset	object's	Bookmark	property	to	bookmark
values	in	the	BatchCollisions	array,	you	can	move	to	each	record	that
failed	to	complete	the	most	recent	batch	Update	operation.

After	the	collision	records	are	corrected,	a	batch-mode	Update	method
can	be	called	again.	At	this	point	DAO	attempts	another	batch	update,

and	the	BatchCollisions	property	again	reflects	the	set	of	records	that
failed	the	second	attempt.	Any	records	that	succeeded	in	the	previous
attempt	are	not	sent	in	the	current	attempt,	because	they	now	have	a
RecordStatus	property	of	dbRecordUnmodified.	This	process	can
continue	as	long	as	collisions	occur,	or	until	you	abandon	the	updates
and	close	the	result	set.

BatchCollisions	Property

			 			

			

Returns	an	array	of	bookmarks	indicating	the	rows	that	generated
collisions	in	the	last	batch	update	operation	(ODBCDirect	workspaces
only).

Return	Value

The	return	value	is	a	variant	expression	containing	an	array	of
bookmarks.

Remarks

This	property	contains	an	array	of	bookmarks	to	rows	that	encountered	a
collision	during	the	last	attempted	batch	Update	call.	The
BatchCollisionCount	property	indicates	the	number	of	elements	in	the
array.

If	you	set	the	working	Recordset	object's	Bookmark	property	to	bookmark
values	in	the	BatchCollisions	array,	you	can	move	to	each	record	that
failed	to	complete	the	most	recent	batch-mode	Update	operation.

After	the	collision	records	are	corrected,	you	can	call	the	batch	mode

Update	method	again.	At	this	point	DAO	attempts	another	batch	update,
and	the	BatchCollisions	property	again	reflects	the	set	of	records	that
failed	the	second	attempt.	Any	records	that	succeeded	in	the	previous
attempt	are	not	sent	in	the	current	attempt,	as	they	now	have	a
RecordStatus	property	of	dbRecordUnmodified.	This	process	can
continue	as	long	as	collisions	occur,	or	until	you	abandon	the	updates
and	close	the	result	set.

This	array	is	re-created	each	time	you	execute	a	batch-mode	Update
method.

BatchSize	Property

			 			

			

Sets	or	returns	the	number	of	statements	sent	back	to	the	server	in	each
batch	(ODBCDirect	workspaces	only).

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	indicates	the	number	of	batched
statements	sent	the	server	in	a	single	batch	update.	The	default	value	is
15.

Remarks

The	BatchSize	property	determines	the	batch	size	used	when	sending
statements	to	the	server	in	a	batch	update.	The	value	of	the	property
determines	the	number	of	statements	sent	to	the	server	in	one	command
buffer.	By	default,	15	statements	are	sent	to	the	server	in	each	batch.
This	property	can	be	changed	at	any	time.	If	a	database	server	doesn't
support	statement	batching,	you	can	set	this	property	to	1,	causing	each
statement	to	be	sent	separately.

BOF,	EOF	Properties

			 			

			

BOF	?	returns	a	value	that	indicates	whether	the	current	record
position	is	before	the	first	record	in	a	Recordset	object.

EOF	?	returns	a	value	that	indicates	whether	the	current	record
position	is	after	the	last	record	in	a	Recordset	object.

Return	Values

The	return	values	for	the	BOF	and	EOF	properties	are	Boolean	values.

The	BOF	property	returns	True	if	the	current	record	position	is	before	the
first	record,	and	False	if	the	current	record	position	is	on	or	after	the	first
record.

The	EOF	property	returns	True	if	the	current	record	position	is	after	the
last	record,	and	False	if	the	current	record	position	is	on	or	before	the
last	record.

Remarks

You	can	use	the	BOF	and	EOF	properties	to	determine	whether	a
Recordset	object	contains	records	or	whether	you've	gone	beyond	the
limits	of	a	Recordset	object	when	you	move	from	record	to	record.

The	location	of	the	current	record	pointer	determines	the	BOF	and	EOF
return	values.

If	either	the	BOF	or	EOF	property	is	True,	there	is	no	current	record.

If	you	open	a	Recordset	object	containing	no	records,	the	BOF	and	EOF
properties	are	set	to	True,	and	the	Recordset	object's	RecordCount
property	setting	is	0.	When	you	open	a	Recordset	object	that	contains	at
least	one	record,	the	first	record	is	the	current	record	and	the	BOF	and
EOF	properties	are	False;	they	remain	False	until	you	move	beyond	the
beginning	or	end	of	the	Recordset	object	by	using	the	MovePrevious	or
MoveNext	method,	respectively.	When	you	move	beyond	the	beginning
or	end	of	the	Recordset,	there	is	no	current	record	or	no	record	exists.

If	you	delete	the	last	remaining	record	in	the	Recordset	object,	the	BOF
and	EOF	properties	may	remain	False	until	you	attempt	to	reposition	the
current	record.

If	you	use	the	MoveLast	method	on	a	Recordset	object	containing
records,	the	last	record	becomes	the	current	record;	if	you	then	use	the
MoveNext	method,	the	current	record	becomes	invalid	and	the	EOF
property	is	set	to	True.	Conversely,	if	you	use	the	MoveFirst	method	on	a
Recordset	object	containing	records,	the	first	record	becomes	the
current	record;	if	you	then	use	the	MovePrevious	method,	there	is	no
current	record	and	the	BOF	property	is	set	to	True.

Typically,	when	you	work	with	all	the	records	in	a	Recordset	object,	your
code	will	loop	through	the	records	by	using	the	MoveNext	method	until
the	EOF	property	is	set	to	True.

If	you	use	the	MoveNext	method	while	the	EOF	property	is	set	to	True	or
the	MovePrevious	method	while	the	BOF	property	is	set	to	True,	an
error	occurs.

This	table	shows	which	Move	methods	are	allowed	with	different
combinations	of	the	BOF	and	EOF	properties.

MoveFirst,
MoveLast

MovePrevious,
Move	<	0 Move	0

MoveNext,
Move	>	0

BOF=True,
EOF=False Allowed Error Error Allowed

BOF=False,
EOF=True Allowed Allowed Error Error

Both	True Error Error Error Error
Both	False Allowed Allowed Allowed Allowed

Allowing	a	Move	method	doesn't	mean	that	the	method	will	successfully
locate	a	record.	It	merely	indicates	that	an	attempt	to	perform	the
specified	Move	method	is	allowed	and	won't	generate	an	error.	The	state
of	the	BOF	and	EOF	properties	may	change	as	a	result	of	the	attempted
Move.

An	OpenRecordset	method	internally	invokes	a	MoveFirst	method.
Therefore,	using	an	OpenRecordset	method	on	an	empty	set	of	records
sets	the	BOF	and	EOF	properties	to	True.	(See	the	following	table	for	the
behavior	of	a	failed	MoveFirst	method.)

All	Move	methods	that	successfully	locate	a	record	will	set	both	BOF	and
EOF	to	False.

In	a	Microsoft	Jet	workspace,	if	you	add	a	record	to	an	empty	Recordset,
BOF	will	become	False,	but	EOF	will	remain	True,	indicating	that	the
current	position	is	at	the	end	of	Recordset.	In	an	ODBCDirect
workspace,	both	BOF	and	EOF	will	become	False,	indicating	that	the
current	position	is	on	the	new	record.

Any	Delete	method,	even	if	it	removes	the	only	remaining	record	from	a
Recordset,	won't	change	the	setting	of	the	BOF	or	EOF	property.

The	following	table	shows	how	Move	methods	that	don't	locate	a	record
affect	the	BOF	and	EOF	property	settings.

BOF EOF
MoveFirst,	MoveLast True True
Move	0 No	change No	change
MovePrevious,	Move	<	0True No	change
MoveNext,	Move	>	0 No	change True

Bookmark	Property

			 			

			

Sets	or	returns	a	bookmark	that	uniquely	identifies	the	current	record	in	a
Recordset	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	string	expression	or	variant	expression
that	evaluates	to	a	valid	bookmark.	The	data	type	is	a	Variant	array	of
Byte	data.

Remarks

For	a	Recordset	object	based	entirely	on	Microsoft	Jet	tables,	the	value
of	the	Bookmarkable	property	is	True,	and	you	can	use	the	Bookmark
property	with	that	Recordset.	Other	database	products	may	not	support
bookmarks,	however.	For	example,	you	can't	use	bookmarks	in	any
Recordset	object	based	on	a	linked	Paradox	table	that	has	no	primary
key.

When	you	create	or	open	a	Recordset	object,	each	of	its	records	already
has	a	unique	bookmark.	You	can	save	the	bookmark	for	the	current
record	by	assigning	the	value	of	the	Bookmark	property	to	a	variable.	To

quickly	return	to	that	record	at	any	time	after	moving	to	a	different	record,
set	the	Recordset	object's	Bookmark	property	to	the	value	of	that
variable.

There	is	no	limit	to	the	number	of	bookmarks	you	can	establish.	To	create
a	bookmark	for	a	record	other	than	the	current	record,	move	to	the
desired	record	and	assign	the	value	of	the	Bookmark	property	to	a
String	variable	that	identifies	the	record.

To	make	sure	the	Recordset	object	supports	bookmarks,	check	the
value	of	its	Bookmarkable	property	before	you	use	the	Bookmark
property.	If	the	Bookmarkable	property	is	False,	the	Recordset	object
doesn't	support	bookmarks,	and	using	the	Bookmark	property	results	in
a	trappable	error.

If	you	use	the	Clone	method	to	create	a	copy	of	a	Recordset	object,	the
Bookmark	property	settings	for	the	original	and	the	duplicate	Recordset
objects	are	identical	and	can	be	used	interchangeably.	However,	you
can't	use	bookmarks	from	different	Recordset	objects	interchangeably,
even	if	they	were	created	by	using	the	same	object	or	the	same	SQL
statement.

If	you	set	the	Bookmark	property	to	a	value	that	represents	a	deleted
record,	a	trappable	error	occurs.

The	value	of	the	Bookmark	property	isn't	the	same	as	a	record	number.

Bookmarkable	Property

			 			

			

Returns	a	value	that	indicates	whether	a	Recordset	object	supports
bookmarks,	which	you	can	set	by	using	the	Bookmark	property.

Return	Values

The	return	value	is	a	Boolean	data	type	that	returns	True	if	the	object
supports	bookmarks.

Remarks

Check	the	Bookmarkable	property	setting	of	a	Recordset	object	before
you	attempt	to	set	or	check	the	Bookmark	property.

For	Recordset	objects	based	entirely	on	Microsoft	Jet	tables,	the	value
of	the	Bookmarkable	property	is	True,	and	you	can	use	bookmarks.
Other	database	products	may	not	support	bookmarks,	however.	For
example,	you	can't	use	bookmarks	in	any	Recordset	object	based	on	a
linked	Paradox	table	that	has	no	primary	key.

CacheSize	Property

			 			

			

Sets	or	returns	the	number	of	records	retrieved	from	an	ODBC	data
source	that	will	be	cached	locally.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Long	value	and	must	be	between	5	and
1200,	but	not	greater	than	available	memory	will	allow.	A	typical	value	is
100.	A	setting	of	0	turns	off	caching.

Remarks

Data	caching	improves	performance	if	you	use	Recordset	objects	to
retrieve	data	from	a	remote	server.	A	cache	is	a	space	in	local	memory
that	holds	the	data	most	recently	retrieved	from	the	server;	this	is	useful	if
users	request	the	data	again	while	the	application	is	running.	When	users
request	data,	the	Microsoft	Jet	database	engine	checks	the	cache	for	the
requested	data	first	rather	than	retrieving	it	from	the	server,	which	takes
more	time.	The	cache	only	saves	data	that	comes	from	an	ODBC	data
source.

Any	Microsoft	Jet-connected	ODBC	data	source,	such	as	a	linked	table,

can	have	a	local	cache.	To	create	the	cache,	open	a	Recordset	object
from	the	remote	data	source,	set	the	CacheSize	and	CacheStart
properties,	and	then	use	the	FillCache	method,	or	step	through	the
records	by	using	the	Move	methods.

An	ODBCDirect	workspace	can	use	a	local	cache.	To	create	the	cache,
set	the	CacheSize	property	on	a	QueryDef	object.	On	a	Relation	object,
CacheSize	is	read-only	and	depends	on	the	value	of	the	QueryDef
object's	CacheSize	property.	You	can't	use	the	CacheStart	property	on
FillCache	method	in	an	ODBCDirect	workspace.	In	a	Microsoft	Jet
workspace,	the	CacheSize	property	is	not	available	on	a	QueryDef
object.

You	can	base	the	CacheSize	property	setting	on	the	number	of	records
your	application	can	handle	at	one	time.	For	example,	if	you're	using	a
Recordset	object	as	the	source	of	the	data	to	be	displayed	on	screen,
you	could	set	its	CacheSize	property	to	20	to	display	20	records	at	one
time.

The	Microsoft	Jet	database	engine	requests	records	within	the	cache
range	from	the	cache,	and	it	requests	records	outside	the	cache	range
from	the	server.

Records	retrieved	from	the	cache	don't	reflect	concurrent	changes	that
other	users	made	to	the	source	data.

To	force	an	update	of	all	the	cached	data,	set	the	CacheSize	property	of
the	Recordset	object	to	0,	re-set	it	to	the	size	of	the	cache	you	originally
requested,	and	then	use	the	FillCache	method.

CacheStart	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	bookmark	of	the	first	record	in	a
dynaset-type	Recordset	object	containing	data	to	be	locally	cached	from
an	ODBC	data	source	(Microsoft	Jet	workspaces	only).

Settings	And	Return	Values

The	setting	or	return	value	is	a	String	that	specifies	a	bookmark.

Remarks

Data	caching	improves	the	performance	of	an	application	that	retrieves
data	from	a	remote	server	through	dynaset-type	Recordset	objects.	A
cache	is	a	space	in	local	memory	that	holds	the	data	most	recently
retrieved	from	the	server	in	the	event	that	the	data	will	be	requested
again	while	the	application	is	running.	When	data	is	requested,	the
Microsoft	Jet	database	engine	checks	the	cache	for	the	requested	data
first	rather	than	retrieving	it	from	the	server,	which	takes	more	time.	Only
data	from	an	ODBC	data	source	can	be	saved	in	the	cache.

Any	Microsoft	Jet-connected	ODBC	data	source,	such	as	a	linked	table,
can	have	a	local	cache.	To	create	the	cache,	open	a	Recordset	object

from	the	remote	data	source,	set	the	CacheSize	and	CacheStart
properties,	and	then	use	the	FillCache	method	or	step	through	the
records	using	the	Move	methods.

The	CacheStart	property	setting	is	the	bookmark	of	the	first	record	in	the
Recordset	object	to	be	cached.	You	can	use	the	bookmark	of	any	record
to	set	the	CacheStart	property.	Make	the	record	you	want	to	start	the
cache	the	current	record,	and	set	the	CacheStart	property	equal	to	the
Bookmark	property.

The	Microsoft	Jet	database	engine	requests	records	within	the	cache
range	from	the	cache,	and	it	requests	records	outside	the	cache	range
from	the	server.

Records	retrieved	from	the	cache	don't	reflect	changes	made
concurrently	to	the	source	data	by	other	users.

To	force	an	update	of	all	the	cached	data,	set	the	CacheSize	property	of
the	Recordset	object	to	0,	set	it	to	the	size	of	the	cache	you	originally
requested,	and	then	use	the	FillCache	method.

Clustered	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	an	Index	object	represents
a	clustered	index	for	a	table	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	data	type	that	is	True	if	the	Index
object	represents	a	clustered	index.

Remarks

Some	IISAM	desktop	database	formats	use	clustered	indexes.	A
clustered	index	consists	of	one	or	more	nonkey	fields	that,	taken
together,	arrange	all	records	in	a	table	in	a	predefined	order.	A	clustered
index	provides	efficient	access	to	records	in	a	table	in	which	the	index
values	may	not	be	unique.

The	Clustered	property	is	read/write	for	a	new	Index	object	not	yet
appended	to	a	collection	and	read-only	for	an	existing	Index	object	in	an
Indexes	collection.

Notes

Microsoft	Jet	databases	ignore	the	Clustered	property	because
the	Microsoft	Jet	database	engine	doesn't	support	clustered
indexes.

For	ODBC	data	sources	the	Clustered	property	always	returns
False;	it	does	not	detect	whether	or	not	the	ODBC	data	source	has
a	clustered	index.

CollatingOrder	Property

			 			

			

Returns	a	value	that	specifies	the	sequence	of	the	sort	order	in	text	for
string	comparison	or	sorting	(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	Long	value	or	constant	that	can	be	one	of	the
following	values.

Constant Sort	order

dbSortGeneral General	(English,	French,	German,
Portuguese,	Italian,	and	Modern	Spanish)

dbSortArabic Arabic
dbSortChineseSimplified Simplified	Chinese
dbSortChineseTraditional Traditional	Chinese
dbSortCyrillic Russian
dbSortCzech Czech
dbSortDutch Dutch
dbSortGreek Greek
dbSortHebrew Hebrew
dbSortHungarian Hungarian
dbSortIcelandic Icelandic

dbSortJapanese Japanese
dbSortKorean Korean
dbSortNeutral Neutral
dbSortNorwDan Norwegian	or	Danish
dbSortPDXIntl Paradox	International
dbSortPDXNor Paradox	Norwegian	or	Danish
dbSortPDXSwe Paradox	Swedish	or	Finnish
dbSortPolish Polish
dbSortSlovenian Slovenian
dbSortSpanish Spanish
dbSortSwedFin Swedish	or	Finnish
dbSortThai Thai
dbSortTurkish Turkish
dbSortUndefined Undefined	or	unknown

Remarks

The	availability	of	the	CollatingOrder	property	depends	on	the	object
that	contains	the	Fields	collection,	as	shown	in	the	following	table.

If	the	Fields	collection	belongs	to	anThen	CollatingOrder	is
Index	object Not	supported
QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read-only

The	CollatingOrder	property	setting	corresponds	to	the	locale	argument
of	the	CreateDatabase	method	when	the	database	was	created	or	the
CompactDatabase	method	when	the	database	was	most	recently
compacted.

Check	the	CollatingOrder	property	setting	of	a	Database	or	Field	object
to	determine	the	string	comparison	method	for	the	database	or	field.	You
can	set	the	CollatingOrder	property	of	a	new,	unappended	Field	object
if	you	want	the	setting	of	the	Field	object	to	differ	from	that	of	the
Database	object	that	contains	it.

The	CollatingOrder	and	Attributes	property	settings	of	a	Field	object	in	a
Fields	collection	of	an	Index	object	together	determine	the	sequence
and	direction	of	the	sort	order	in	an	index.	However,	you	can't	set	a
collating	order	for	an	individual	index—you	can	only	set	it	for	an	entire
table.

ConflictTable	Property

			 			

			

Returns	the	name	of	a	conflict	table	containing	the	database	records	that
conflicted	during	the	synchronization	of	two	replicas	(Microsoft	Jet
workspaces	only).

Return	Values

The	return	value	is	a	String	data	type	that	is	a	zero-length	string	if	there	is
no	conflict	table	or	the	database	isn't	a	replica.

Remarks

If	two	users	at	two	separate	replicas	each	make	a	change	to	the	same
record	in	the	database,	the	changes	made	by	one	user	will	fail	to	be
applied	to	the	other	replica.	Consequently,	the	user	with	the	failed	change
must	resolve	the	conflicts.

Conflicts	occur	at	the	record	level,	not	between	fields.	For	example,	if	one
user	changes	the	Address	field	and	another	updates	the	Phone	field	in
the	same	record,	then	one	change	is	rejected.	Because	conflicts	occur	at
the	record	level,	the	rejection	occurs	even	though	the	successful	change
and	the	rejected	change	are	unlikely	to	result	in	a	true	conflict	of

information.

The	synchronization	mechanism	handles	the	record	conflicts	by	creating
conflict	tables,	which	contain	the	information	that	would	have	been
placed	in	the	table,	if	the	change	had	been	successful.	You	can	examine
these	conflict	tables	and	work	through	them	row	by	row,	fixing	whatever
is	appropriate.

All	conflict	tables	are	named	table_conflict,	where	table	is	the	original
name	of	the	table,	truncated	to	the	maximum	table	name	length.

Connect	Property

			 			

			

Sets	or	returns	a	value	that	provides	information	about	the	source	of	an
open	connection,	an	open	database,	a	database	used	in	a	pass-through
query,	or	a	linked	table.	For	Database	objects,	new	Connection	objects,
linked	tables,	and	TableDef	objects	not	yet	appended	to	a	collection,	this
property	setting	is	read/write.	For	QueryDef	objects	and	base	tables,	this
property	is	read-only.

Syntax

object.Connect	=	databasetype;parameters;

The	Connect	property	syntax	has	these	parts.

Part Description

object An	object	expression	that	evaluates	to	an	object	in	the
Applies	To	list.

databasetype
Optional.	A	String	that	specifies	a	database	type.	For
Microsoft	Jet	databases,	exclude	this	argument;	if	you
specify	parameters,	use	a	semicolon	(;)	as	a	placeholder.

parameters
Optional.	A	String	that	specifies	additional	parameters	to
pass	to	ODBC	or	installable	ISAM	drivers.	Use
semicolons	to	separate	parameters.

Settings

The	Connect	property	setting	is	a	String	composed	of	a	database	type
specifier	and	zero	or	more	parameters	separated	by	semicolons.	The
Connect	property	passes	additional	information	to	ODBC	and	certain
ISAM	drivers	as	needed.

To	perform	an	SQL	pass-through	query	on	a	table	linked	to	your
Microsoft	Jet	database	(.mdb)	file,	you	must	first	set	the	Connect
property	of	the	linked	table's	database	to	a	valid	ODBC	connection	string.

For	a	TableDef	object	that	represents	a	linked	table,	the	Connect
property	setting	consists	of	one	or	two	parts	(a	database	type	specifier
and	a	path	to	the	database),	each	of	which	ends	with	a	semicolon.

The	path	as	shown	in	the	following	table	is	the	full	path	for	the	directory
containing	the	database	files	and	must	be	preceded	by	the	identifier
DATABASE=.	In	some	cases	(as	with	Microsoft	Excel	and	Microsoft	Jet
databases),	you	should	include	a	specific	file	name	in	the	database	path
argument.

The	following	table	shows	possible	database	types	and	their
corresponding	database	specifiers	and	paths	for	the	Connect	property
setting.	In	an	ODBCDirect	workspace,	only	the	"ODBC"	specifier	can	be
used.

Database	type Specifier Example
Microsoft	Jet	Database [database]; drive:\path\filename.mdb
dBASE	III dBASE	III; drive:\path
dBASE	IV dBASE	IV; drive:\path
dBASE	5 dBASE	5.0; drive:\path
Paradox	3.x Paradox	3.x; drive:\path
Paradox	4.x Paradox	4.x; drive:\path
Paradox	5.x Paradox	5.x; drive:\path
Microsoft	FoxPro	2.0 FoxPro	2.0; drive:\path
Microsoft	FoxPro	2.5 FoxPro	2.5; drive:\path
Microsoft	FoxPro	2.6 FoxPro	2.6; drive:\path
Microsoft	Visual

FoxPro	3.0 FoxPro	3.0; drive:\path

Microsoft	Excel	3.0 Excel	3.0; drive:\path\filename.xls
Microsoft	Excel	4.0 Excel	4.0; drive:\path\filename.xls
Microsoft	Excel	5.0	or
Microsoft	Excel	95 Excel	5.0; drive:\path\filename.xls

Microsoft	Excel	97 Excel	8.0; drive:\path\filename.xls
Lotus	1-2-3	WKS	and
WK1 Lotus	WK1; drive:\path\filename.wk1

Lotus	1-2-3	WK3 Lotus	WK3; drive:\path\filename.wk3
Lotus	1-2-3	WK4 Lotus	WK4; drive:\path\filename.wk4
HTML	Import HTML	Import; drive:\path\filename
HTML	Export HTML	Export; drive:\path
Text Text; drive:\path

ODBC

ODBC;
DATABASE=database;
UID=user;	
PWD=password;
DSN=	datasourcename;
[LOGINTIMEOUT=seconds;]

None

Microsoft	Exchange

Exchange	4.0;	
MAPILEVEL=folderpath;
[TABLETYPE={	0	|	1	}];
[PROFILE=profile;]
[PWD=password;]
[DATABASE=database;]

drive:\path\filename.mdb

Remarks

If	the	specifier	is	only	"ODBC;",	the	ODBC	driver	displays	a	dialog	box
listing	all	registered	ODBC	data	source	names	so	that	the	user	can	select
a	database.

If	a	password	is	required	but	not	provided	in	the	Connect	property
setting,	a	login	dialog	box	is	displayed	the	first	time	a	table	is	accessed
by	the	ODBC	driver	and	again	if	the	connection	is	closed	and	reopened.

For	data	in	Microsoft	Exchange,	the	required	MAPILEVEL	key	should	be

set	to	a	fully-resolved	folder	path	(for	example,	"Mailbox	-	Pat
SmithIAlpha/Today").	The	path	does	not	include	the	name	of	the	folder
that	will	be	opened	as	a	table;	that	folder’s	name	should	instead	be
specified	as	the	name	argument	to	the	CreateTable	method.	The
TABLETYPE	key	should	be	set	to	"0"	to	open	a	folder	(default)	or	"1"	to
open	an	address	book.	The	PROFILE	key	defaults	to	the	profile	currently
in	use.

For	base	tables	in	a	Micorosoft	Jet	database	(.mdb),	the	Connect
property	setting	is	a	zero-length	string	("").

You	can	set	the	Connect	property	for	a	Database	object	by	providing	a
source	argument	to	the	OpenDatabase	method.	You	can	check	the
setting	to	determine	the	type,	path,	user	ID,	password,	or	ODBC	data
source	of	the	database.

On	a	QueryDef	object	in	a	Microsoft	Jet	workspace,	you	can	use	the
Connect	property	with	the	ReturnsRecords	property	to	create	an	ODBC
SQL	pass-through	query.	The	databasetype	of	the	connection	string	is
"ODBC;",	and	the	remainder	of	the	string	contains	information	specific	to
the	ODBC	driver	used	to	access	the	remote	data.	For	more	information,
see	the	documentation	for	the	specific	driver.

Notes

You	must	set	the	Connect	property	before	you	set	the
ReturnsRecords	property.

You	must	have	access	permissions	to	the	computer	that	contains
the	database	server	you're	trying	to	access.

Connection	Property

			 			

			

On	a	Database	object,	returns	the	Connection	object	that	corresponds	to
the	database	(ODBCDirect	workspaces	only).

On	a	Recordset	object,	returns	the	Connection	object	that	owns	the
Recordset	(ODBCDirect	workspaces	only).

Settings	And	Return	Values

The	return	value	is	an	object	variable	that	represents	the	Connection.
On	a	Database	object,	the	Connection	property	is	read-only,	while	on	a
Recordset	object	the	property	is	read-write.

Remarks

On	a	Database	object,	use	the	Connection	property	to	obtain	a
reference	to	a	Connection	object	that	corresponds	to	the	Database.	In
DAO,	a	Connection	object	and	its	corresponding	Database	object	are
simply	two	different	object	variable	references	to	the	same	object.	The
Database	property	of	a	Connection	object	and	the	Connection	property
of	a	Database	object	make	it	easier	to	change	connections	to	an	ODBC
data	source	through	the	Microsoft	Jet	database	engine	to	use

ODBCDirect.

Container	Property

			 			

			

Returns	the	name	of	the	Container	object	to	which	a	Document	object
belongs	(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	String	data	type.

Count	Property

			 			

			

Returns	the	number	of	objects	in	a	collection.

Return	Value

The	return	value	is	an	Integer	data	type.

Remarks

Because	members	of	a	collection	begin	with	0,	you	should	always	code
loops	starting	with	the	0	member	and	ending	with	the	value	of	the	Count
property	minus	1.	If	you	want	to	loop	through	the	members	of	a	collection
without	checking	the	Count	property,	you	can	use	a	For	Each...Next
command.

The	Count	property	setting	is	never	Null.	If	its	value	is	0,	there	are	no
objects	in	the	collection.

Database	Property

			 			

			

Returns	the	Database	object	that	corresponds	to	this	connection
(ODBCDirect	workspaces	only).

Return	Values

The	return	value	is	an	object	variable	that	represents	a	Database	object.

Remarks

On	a	Connection	object,	use	the	Database	property	to	obtain	a	reference
to	a	Database	object	that	corresponds	to	the	Connection.	In	DAO,	a
Connection	object	and	its	corresponding	Database	object	are	simply
two	different	object	variable	references	to	the	same	object.	The
Database	property	of	a	Connection	object	and	the	Connection	property
of	a	Database	object	make	it	easier	to	change	connections	to	an	ODBC
data	source	through	the	Microsoft	Jet	database	engine	to	use
ODBCDirect.

DataUpdatable	Property

			 			

			

Returns	a	value	that	indicates	whether	the	data	in	the	field	represented
by	a	Field	object	is	updatable.

Return	Values

The	return	value	is	a	Boolean	data	type	that	returns	True	if	the	data	in
the	field	is	updatable.

Remarks

Use	this	property	to	determine	whether	you	can	change	the	Value
property	setting	of	a	Field	object.	This	property	is	always	False	on	a
Field	object	whose	Attributes	property	is	dbAutoIncrField.

You	can	use	the	DataUpdatable	property	on	Field	objects	that	are
appended	to	the	Fields	collection	of	QueryDef,	Recordset,	and	Relation
objects,	but	not	the	Fields	collection	of	Index	or	TableDef	objects.

DateCreated,	LastUpdated	Properties

			 			

			

DateCreated	?	returns	the	date	and	time	that	an	object	was
created,	or	the	date	and	time	a	base	table	was	created	if	the	object
is	a	table-type	Recordset	object	(Microsoft	Jet	workspaces	only).

LastUpdated	?	returns	the	date	and	time	of	the	most	recent
change	made	to	an	object,	or	to	a	base	table	if	the	object	is	a
table-type	Recordset	object	(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	Variant	(Date/Time	subtype).

Remarks

For	table-type	Recordset	objects,	the	date	and	time	settings	are	derived
from	the	computer	on	which	the	base	table	was	created	or	last	updated.
For	other	objects,	DateCreated	and	LastUpdated	return	the	date	and
time	that	the	object	was	created	or	last	updated.	In	a	multiuser
environment,	users	should	get	these	settings	directly	from	the	file	server

to	avoid	discrepancies	in	the	DateCreated	and	LastUpdated	property
settings.

DefaultCursorDriver	Property

			 			

			

Sets	or	returns	the	type	of	cursor	driver	used	on	the	connection	created
by	the	OpenConnection	or	OpenDatabase	methods	(ODBCDirect
workspaces	only).

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	can	be	set	to	one	of	the
following	constants:

Constant Description

dbUseDefaultCursor
(Default)	Uses	server-side	cursors	if	the
server	supports	them;	otherwise	use	the
ODBC	Cursor	Library.

dbUseODBCCursor

Always	uses	the	ODBC	Cursor	Library.
This	option	provides	better	performance	for
small	result	sets,	but	degrades	quickly	for
larger	result	sets.

dbUseServerCursor

Always	uses	server-side	cursors.	For	most
large	operations	this	option	provides	better
performance,	but	might	cause	more	network
traffic.

dbUseClientBatchCursor Always	uses	the	client	batch	cursor	library.

This	option	is	required	for	batch	updates.

dbUseNoCursor

Opens	all	cursors	(that	is,	Recordset
objects)	as	forward-only	type,	read-only,
with	a	rowset	size	of	1.	Also	known	as
"cursorless	queries."

Remarks

This	property	setting	only	affects	connections	established	after	the
property	has	been	set.	Changing	the	DefaultCursorDriver	property	has
no	effect	on	existing	connections.

DefaultType	Property

			 			

			

Sets	or	returns	a	value	that	indicates	what	type	of	workspace	(Microsoft
Jet	or	ODBCDirect)	will	be	used	by	the	next	Workspace	object	created.

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	can	be	set	to	either	of	the
following	constants:

Constant Description

dbUseJet Creates	Workspace	objects	connected	to	the
Microsoft	Jet	database	engine

dbUseODBC Creates	Workspace	objects	connected	to	an
ODBC	data	source

Remarks

The	setting	can	be	overridden	for	a	single	Workspace	by	setting	the
type	argument	to	the	CreateWorkspace	method.

DefaultUser,	DefaultPassword	Properties

			 			

			

DefaultUser	?	sets	the	user	name	used	to	create	the	default
Workspace	when	it	is	initialized.

DefaultPassword	?	sets	the	password	used	to	create	the	default
Workspace	when	it	is	initialized.

Settings

The	setting	for	DefaultUser	is	a	String	data	type.	It	can	be	1–20
characters	long	in	Microsoft	Jet	workspaces	and	any	length	in
ODBCDirect	workspaces,	and	it	can	include	alphabetic	characters,
accented	characters,	numbers,	spaces,	and	symbols	except	for:	"
(quotation	marks),	/	(forward	slash),	\	(backslash),	[]	(brackets),	:	(colon),
|	(pipe),	<	(less-than	sign),	>	(greater-than	sign),	+	(plus	sign),	=	(equal
sign),	;	(semicolon),	,	(comma),	?	(question	mark),	*	(asterisk),	leading
spaces,	and	control	characters	(ASCII	00	to	ASCII	31).

The	setting	for	DefaultPassword	is	a	String	data	type	that	can	be	up	to
14	characters	long	in	Microsoft	Jet	databases	and	any	length	in

ODBCDirect	connections.	It	can	contain	any	character	except	ASCII	0.

Note		Use	strong	passwords	that	combine	upper-	and	lowercase	letters,
numbers,	and	symbols.	Weak	passwords	don't	mix	these	elements.
Strong	password:	Y6dh!et5.	Weak	password:	House27.	Use	a	strong
password	that	you	can	remember	so	that	you	don't	have	to	write	it	down.

By	default,	the	DefaultUser	property	is	set	to	"admin"	and	the
DefaultPassword	property	is	set	to	a	zero-length	string	("").

Remarks

User	names	aren't	usually	case-sensitive;	however,	if	you're	re-creating	a
user	account	that	was	deleted	or	created	in	a	different	workgroup,	the
user	name	must	be	an	exact	case-sensitive	match	of	the	original	name.
Passwords	are	case-sensitive.

Typically,	you	use	the	CreateWorkspace	method	to	create	a	Workspace
object	with	a	given	user	name	and	password.	However,	for	backward
compatibility	with	earlier	versions	and	for	convenience	when	you	don't
implement	a	secured	database,	the	Microsoft	Jet	database	engine
automatically	creates	a	default	Workspace	object	when	needed	if	one
isn't	already	open.	In	this	case,	the	DefaultUser	and	DefaultPassword
property	values	define	the	user	and	password	for	the	default	Workspace
object.

For	this	property	to	take	effect,	you	should	set	it	before	calling	any	DAO
methods.

DefaultValue	Property

			 			

			

Sets	or	returns	the	default	value	of	a	Field	object.	For	a	Field	object	not
yet	appended	to	the	Fields	collection,	this	property	is	read/write
(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	can	contain	a
maximum	of	255	characters.	It	can	be	either	text	or	an	expression.	If	the
property	setting	is	an	expression,	it	can't	contain	user-defined	functions,
Microsoft	Jet	database	engine	SQL	aggregate	functions,	or	references	to
queries,	forms,	or	other	Field	objects.

Note	You	can	also	set	the	DefaultValue	property	of	a	Field	object	on
a	TableDef	object	to	a	special	value	called	"GenUniqueID()".	This
causes	a	random	number	to	be	assigned	to	this	field	whenever	a	new
record	is	added	or	created,	thereby	giving	each	record	a	unique
identifier.	The	field's	Type	property	must	be	Long.

Remarks

The	availability	of	the	DefaultValue	property	depends	on	the	object	that

contains	the	Fields	collection,	as	shown	in	the	following	table.

If	the	Fields	collection	belongs	to	anThen	DefaultValue	is
Index	object Not	supported
QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read/write

When	a	new	record	is	created,	the	DefaultValue	property	setting	is
automatically	entered	as	the	value	for	the	field.	You	can	change	the	field
value	by	setting	its	Value	property.

The	DefaultValue	property	doesn't	apply	to	AutoNumber	and	Long
Binary	fields.

Description	Property

			 			

			

Returns	a	descriptive	string	associated	with	an	error.	This	is	the	default
property	for	the	Error	object.

Return	Values

The	return	value	is	a	String	data	type	that	describes	the	error.

Remarks

The	Description	property	comprises	a	short	description	of	the	error.	Use
this	property	to	alert	the	user	about	an	error	that	you	cannot	or	do	not
want	to	handle.

DesignMasterID	Property

			 			

			

Sets	or	returns	a	16-byte	value	that	uniquely	identifies	the	Design	Master
in	a	replica	set	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	GUID	that	uniquely	identifies	the	Design
Master.

Remarks

You	should	set	the	DesignMasterID	property	only	if	you	need	to	move
the	current	Design	Master.	Setting	this	property	makes	a	specific	replica
in	the	replica	set	the	Design	Master.

Caution	Never	create	a	second	Design	Master	in	a	replica	set.	The
existence	of	a	second	Design	Master	can	result	in	the	loss	of	data.

Under	extreme	circumstances	—	for	example,	if	the	Design	Master	is
erased	or	corrupted	—	you	can	set	this	property	at	the	current	replica.
However,	setting	this	property	at	a	replica	when	there	is	already	another
Design	Master	in	the	set	might	partition	your	replica	set	into	two

irreconcilable	sets	and	prevent	any	further	synchronization	of	data.

If	you	decide	to	make	a	replica	the	new	Design	Master	for	the	set,
synchronize	it	with	all	the	replicas	in	the	replica	set	before	setting	the
DesignMasterID	property	in	the	replica.	The	replica	must	be	open	in
exclusive	mode	in	order	to	make	it	the	Design	Master.

If	you	make	a	replica	that	is	designated	read-only	into	the	Design	Master,
the	target	replica	is	made	read/write;	the	old	Design	Master	also	remains
read/write.

The	DesignMasterID	property	setting	is	stored	in	the	MSysRepInfo
system	table.

Direction	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	a	Parameter	object
represents	an	input	parameter,	an	output	parameter,	both,	or	the	return
value	from	the	procedure	(ODBCDirect	workspaces	only).

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	can	be	set	to	one	of	the
following	constants:

Constant Description

dbParamInput (Default)	Passes	information	to	the
procedure.

dbParamInputOutput Passes	information	both	to	and	from	the
procedure.

dbParamOutput Returns	information	from	the	procedure	as
in	an	output	parameter	in	SQL.

dbParamReturnValue Passes	the	return	value	from	a	procedure.

Remarks

Use	the	Direction	property	to	determine	whether	the	parameter	is	an

input	parameter,	output	parameter,	both,	or	the	return	value	from	the
procedure.	Some	ODBC	drivers	do	not	provide	information	on	the
direction	of	parameters	to	a	SELECT	statement	or	procedure	call.	In
these	cases,	it	is	necessary	to	set	the	direction	prior	to	executing	the
query.

For	example,	the	following	procedure	returns	a	value	from	a	stored
procedure	named	"get_employees":

{?	=	call	get_employees}

This	call	produces	one	parameter	—	the	return	value.	You	need	to	set	the
direction	of	this	parameter	to	dbParamOutput	or	dbParamReturnValue
before	executing	the	QueryDef.

You	need	to	set	all	parameter	directions	except	dbParamInput	before
accessing	or	setting	the	values	of	the	parameters	and	before	executing
the	QueryDef.

You	should	use	dbParamReturnValue	for	return	values,	but	in	cases
where	that	option	is	not	supported	by	the	driver	or	the	server,	you	can
use	dbParamOutput	instead.

Note	The	Microsoft	SQL	Server	6.0	driver	automatically	sets	the
Direction	property	for	all	procedure	parameters.	Not	all	ODBC	drivers
can	determine	the	direction	of	a	query	parameter.	In	these	cases,	it	is
necessary	to	set	the	direction	prior	to	executing	the	query.

DistinctCount	Property

			 			

			

Returns	a	value	that	indicates	the	number	of	unique	values	for	the	Index
object	that	are	included	in	the	associated	table	(Microsoft	Jet	workspaces
only).

Return	Values

The	return	value	is	a	Long	data	type.

Remarks

Check	the	DistinctCount	property	to	determine	the	number	of	unique
values,	or	keys,	in	an	index.	Any	key	is	counted	only	once,	even	though
there	may	be	multiple	occurrences	of	that	value	if	the	index	permits
duplicate	values.	This	information	is	useful	in	applications	that	attempt	to
optimize	data	access	by	evaluating	index	information.	The	number	of
unique	values	is	also	known	as	the	cardinality	of	an	Index	object.

The	DistinctCount	property	won't	always	reflect	the	actual	number	of
keys	at	a	particular	time.	For	example,	a	change	caused	by	a	rolled	back
transaction	won't	be	reflected	immediately	in	the	DistinctCount	property.
The	DistinctCount	property	value	also	may	not	reflect	the	deletion	of

records	with	unique	keys.	The	number	will	be	accurate	immediately	after
you	use	the	CreateIndex	method.

EditMode	Property

			 			

			

Returns	a	value	that	indicates	the	state	of	editing	for	the	current	record.

Return	Values

The	return	value	is	a	Long	that	indicates	the	state	of	editing,	as	listed	in
the	following	table.

Constant Description
dbEditNone No	editing	operation	is	in	progress.

DbEditInProgress The	Edit	method	has	been	invoked,	and	the	current
record	is	in	the	copy	buffer.

dbEditAdd
The	AddNew	method	has	been	invoked,	and	the
current	record	in	the	copy	buffer	is	a	new	record	that
hasn't	been	saved	in	the	database.

Remarks

The	EditMode	property	is	useful	when	an	editing	process	is	interrupted,
for	example,	by	an	error	during	validation.	You	can	use	the	value	of	the
EditMode	property	to	determine	whether	you	should	use	the	Update	or
CancelUpdate	method.

You	can	also	check	to	see	if	the	LockEdits	property	setting	is	True	and
the	EditMode	property	setting	is	dbEditInProgress	to	determine
whether	the	current	page	is	locked.

FieldSize	Property

			 			

			

Returns	the	number	of	bytes	used	in	the	database	(rather	than	in
memory)	of	a	Memo	or	Long	Binary	Field	object	in	the	Fields	collection	of
a	Recordset	object.

Return	Values

The	return	value	is	a	Long	that	indicates	the	number	of	characters	(for	a
Memo	field)	or	the	number	of	bytes	(for	a	Long	Binary	field).

Remarks

You	can	use	FieldSize	with	the	AppendChunk	and	GetChunk	methods	to
manipulate	large	fields.

Because	the	size	of	a	Long	Binary	or	Memo	field	can	exceed	64K,	you
should	assign	the	value	returned	by	FieldSize	to	a	variable	large	enough
to	store	a	Long	variable.

To	determine	the	size	of	a	Field	object	other	than	Memo	and	Long	Binary
types,	use	the	Size	property.

Note	In	an	ODBCDirect	workspace,	the	FieldSize	property	is	not
available	in	the	following	situations:

If	the	database	server	or	ODBC	driver	does	not	support	server-
side	cursors.	

If	you	are	using	the	ODBC	cursor	library	(that	is,	the
DefaultCursorDriver	property	is	set	to	dbUseODBC,	or	to
dbUseDefault	when	the	server	does	not	support	server-side
cursors).

If	you	are	using	a	cursorless	query	(that	is,	the
DefaultCursorDriver	property	is	set	to	dbUseNoCursor).

For	example,	Microsoft	SQL	Server	version	4.21	does	not	support
server-side	cursors,	so	the	FieldSize	property	is	not	available.

The	FieldSize	property	and	the	VBA	Len()	or	LenB()	functions	may
return	different	values	as	the	length	of	the	same	string.	Strings	are	stored
in	a	Microsoft	Jet	database	in	multi-byte	character	set	(MBCS)	form,	but
exposed	through	VBA	in	Unicode	format.	As	a	result,	the	Len()	function
will	always	return	the	number	of	characters,	LenB	will	always	return	the
number	of	characters	X	2	(Unicode	uses	two	bytes	for	each	character),
but	FieldSize	will	return	some	value	in	between	if	the	string	has	any
MBCS	characters.	For	example,	given	a	string	consisting	of	three	normal
characters	and	two	MBCS	characters,	Len()	will	return	5,	LenB()	will
return	10,	and	FieldSize	will	return	7,	the	sum	of	1	for	each	normal
character	and	2	for	each	MBCS	character.

Filter	Property

			 			

			

Sets	or	returns	a	value	that	determines	the	records	included	in	a
subsequently	opened	Recordset	object	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	contains	the	WHERE
clause	of	an	SQL	statement	without	the	reserved	word	WHERE.

Remarks

Use	the	Filter	property	to	apply	a	filter	to	a	dynaset-,	snapshot-,	or
forward-only–type	Recordset	object.

You	can	use	the	Filter	property	to	restrict	the	records	returned	from	an
existing	object	when	a	new	Recordset	object	is	opened	based	on	an
existing	Recordset	object.

In	many	cases,	it's	faster	to	open	a	new	Recordset	object	by	using	an
SQL	statement	that	includes	a	WHERE	clause.

Use	the	U.S.	date	format	(month-day-year)	when	you	filter	fields

containing	dates,	even	if	you're	not	using	the	U.S.	version	of	the
Microsoft	Jet	database	engine	(in	which	case	you	must	assemble	any
dates	by	concatenating	strings,	for	example,	strMonth	&	"-"	&
strDay	&	"-"	&	strYear).	Otherwise,	the	data	may	not	be	filtered
as	you	expect.

If	you	set	the	property	to	a	string	concatenated	with	a	non-integer	value,
and	the	system	parameters	specify	a	non-U.S.	decimal	character	such	as
a	comma	(for	example,	strFilter	=	"PRICE	>	"	&	lngPrice,
and	lngPrice	=	125,50),	an	error	occurs	when	you	try	to	open	the
next	Recordset.	This	is	because	during	concatenation,	the	number	will
be	converted	to	a	string	using	your	system's	default	decimal	character,
and	Microsoft	Jet	SQL	only	accepts	U.S.	decimal	characters.

Foreign	Property

			 			

			

Returns	a	value	that	indicates	whether	an	Index	object	represents	a
foreign	key	in	a	table	(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	Boolean	data	type	that	returns	True	if	the	Index
object	represents	a	foreign	key.

Remarks

A	foreign	key	consists	of	one	or	more	fields	in	a	foreign	table	that
uniquely	identify	all	rows	in	a	primary	table.

The	Microsoft	Jet	database	engine	creates	an	Index	object	for	the
foreign	table	and	sets	the	Foreign	property	when	you	create	a
relationship	that	enforces	referential	integrity.

ForeignName	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	name	of	the	Field	object	in	a
foreign	table	that	corresponds	to	a	field	in	a	primary	table	for	a
relationship	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	evaluates	to	the
name	of	a	Field	in	the	associated	TableDef	object's	Fields	collection.

If	the	Relation	object	isn't	appended	to	the	Database,	but	the	Field	is
appended	to	the	Relation	object,	the	ForeignName	property	is
read/write.	Once	the	Relation	object	is	appended	to	the	database,	the
ForeignName	property	is	read-only.

Remarks

Only	a	Field	object	that	belongs	to	the	Fields	collection	of	a	Relation
object	can	support	the	ForeignName	property.

The	Name	and	ForeignName	property	settings	for	a	Field	object	specify
the	names	of	the	corresponding	fields	in	the	primary	and	foreign	tables	of

a	relationship.	The	Table	and	ForeignTable	property	settings	for	a
Relation	object	determine	the	primary	and	foreign	tables	of	a
relationship.

For	example,	if	you	had	a	list	of	valid	part	codes	(in	a	field	named
PartNo)	stored	in	a	ValidParts	table,	you	could	establish	a	relationship
with	an	OrderItem	table	such	that	if	a	part	code	were	entered	into	the
OrderItem	table,	it	would	have	to	already	exist	in	the	ValidParts	table.	If
the	part	code	didn't	exist	in	the	ValidParts	table	and	you	had	not	set	the
Attributes	property	of	the	Relation	object	to	dbRelationDontEnforce,	a
trappable	error	would	occur.

In	this	case,	the	ValidParts	table	is	the	foreign	table,	so	the	ForeignTable
property	of	the	Relation	object	would	be	set	to	ValidParts	and	the	Table
property	of	the	Relation	object	would	be	set	to	OrderItem.	The	Name
and	ForeignName	properties	of	the	Field	object	in	the	Relation	object's
Fields	collection	would	be	set	to	PartNo.

The	following	illustration	depicts	the	relation	described	above.

ForeignTable	Property

			 			

			

Sets	or	returns	the	name	of	the	foreign	table	in	a	relationship	(Microsoft
Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	evaluates	to	the
name	of	a	table	in	the	Database	object's	TableDefs	collection.	This
property	is	read/write	for	a	new	Relation	object	not	yet	appended	to	a
collection	and	read-only	for	an	existing	Relation	object	in	the	Relations
collection.

Remarks

The	ForeignTable	property	setting	of	a	Relation	object	is	the	Name
property	setting	of	the	TableDef	or	QueryDef	object	that	represents	the
foreign	table	or	query;	the	Table	property	setting	is	the	Name	property
setting	of	the	TableDef	or	QueryDef	object	that	represents	the	primary
table	or	query.

For	example,	if	you	had	a	list	of	valid	part	codes	(in	a	field	named
PartNo)	stored	in	a	ValidParts	table,	you	could	establish	a	relationship

with	an	OrderItem	table	such	that	if	a	part	code	were	entered	into	the
OrderItem	table,	it	would	have	to	already	be	in	the	ValidParts	table.	If	the
part	code	didn't	exist	in	the	ValidParts	table	and	you	had	not	set	the
Attributes	property	of	the	Relation	object	to	dbRelationDontEnforce,	a
trappable	error	would	occur.

In	this	case,	the	ValidParts	table	is	the	primary	table,	so	the	Table
property	of	the	Relation	object	would	be	set	to	ValidParts	and	the
ForeignTable	property	of	the	Relation	object	would	be	set	to	OrderItem.
The	Name	and	ForeignName	properties	of	the	Field	object	in	the
Relation	object's	Fields	collection	would	be	set	to	PartNo.

The	following	illustration	depicts	the	relation	described	above.

IgnoreNulls	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	records	that	have	Null
values	in	their	index	fields	have	index	entries	(Microsoft	Jet	workspaces
only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	the	fields	with	Null
values	don't	have	an	index	entry.	This	property	is	read/write	for	a	new
Index	object	not	yet	appended	to	a	collection	and	read-only	for	an
existing	Index	object	in	an	Indexes	collection.

Remarks

To	speed	up	the	process	of	searching	for	records,	you	can	define	an
index	for	a	field.	If	you	allow	Null	entries	in	an	indexed	field	and	expect
many	of	the	entries	to	be	Null,	you	can	set	the	IgnoreNulls	property	for
the	Index	object	to	True	to	reduce	the	amount	of	storage	space	that	the
index	uses.

The	IgnoreNulls	property	setting	and	the	Required	property	setting
together	determine	whether	a	record	with	a	Null	index	value	has	an	index

entry.

If	IgnoreNulls	is And	Required	is Then

True False
A	Null	value	is	allowed	in	the
index	field;	no	index	entry
added.

False False
A	Null	value	is	allowed	in	the
index	field;	index	entry
added.

True	or	False True
A	Null	value	isn't	allowed	in
the	index	field;	no	index	entry
added.

Index	Property

			 			

			

Sets	or	returns	a	value	that	indicates	the	name	of	the	current	Index	object
in	a	table-type	Recordset	object	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	evaluates	to	the
name	of	an	Index	object	in	the	Indexes	collection	of	the	Tabledef	or
table-type	Recordset	object's	TableDef	object.

Remarks

Records	in	base	tables	aren't	stored	in	any	particular	order.	Setting	the
Index	property	changes	the	order	of	records	returned	from	the	database;
it	doesn't	affect	the	order	in	which	the	records	are	stored.

The	specified	Index	object	must	already	be	defined.	If	you	set	the	Index
property	to	an	Index	object	that	doesn't	exist	or	if	the	Index	property	isn't
set	when	you	use	the	Seek	method,	a	trappable	error	occurs.

Examine	the	Indexes	collection	of	a	TableDef	object	to	determine	what
Index	objects	are	available	to	table-type	Recordset	objects	created	from

that	TableDef	object.

You	can	create	a	new	index	for	the	table	by	creating	a	new	Index	object,
setting	its	properties,	appending	it	to	the	Indexes	collection	of	the
underlying	TableDef	object,	and	then	reopening	the	Recordset	object.

Records	returned	from	a	table-type	Recordset	object	can	be	ordered
only	by	the	indexes	defined	for	the	underlying	TableDef	object.	To	sort
records	in	some	other	order,	you	can	open	a	dynaset-,	snapshot-,	or
forward-only–type	Recordset	object	by	using	an	SQL	statement	with	an
ORDER	BY	clause.

Notes

You	don't	have	to	create	indexes	for	tables.	With	large,	unindexed
tables,	accessing	a	specific	record	or	creating	a	Recordset	object
can	take	a	long	time.	On	the	other	hand,	creating	too	many
indexes	slows	down	update,	append,	and	delete	operations
because	all	indexes	are	automatically	updated.

Records	read	from	tables	without	indexes	are	returned	in	no
particular	sequence.

The	Attributes	property	of	each	Field	object	in	the	Index	object
determines	the	order	of	records	and	consequently	determines	the
access	techniques	to	use	for	that	index.

A	unique	index	helps	optimize	finding	records.

Indexes	don't	affect	the	physical	order	of	a	base	table	?	indexes
affect	only	how	the	records	are	accessed	by	the	table-type
Recordset	object	when	a	particular	index	is	chosen	or	when

Recordset	is	opened.

Inherit	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	new	Document	objects	will
inherit	a	default	Permissions	property	setting	(Microsoft	Jet	workspaces
only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	data	type.	If	you	set	the	property
to	True,	Document	objects	inherit	a	default	Permissions	property
setting.

Remarks

Use	the	Inherit	property	in	conjunction	with	the	Permissions	property	to
define	what	permissions	new	documents	will	automatically	have	when
they're	created.	If	you	set	the	Inherit	property	to	True,	and	then	set	a
permission	on	a	container,	then	whenever	a	new	document	is	created	in
that	container,	that	permission	will	be	set	on	the	new	document.	This	is	a
very	convenient	way	of	presetting	permissions	on	an	object.

Setting	the	Inherit	property	will	not	affect	existing	documents	in	the
container	?	you	can't	modify	all	the	permissions	on	all	existing	documents

in	a	container	by	setting	the	Inherit	property	and	a	new	permission.	It	will
affect	only	new	documents	that	are	created	after	the	Inherit	property	is
set.

Inherited	Property

			 			

			

Returns	a	value	that	indicates	whether	a	Property	object	is	inherited	from
an	underlying	object.

Return	Values

The	return	value	is	a	Boolean	data	type	that	is	True	if	the	Property
object	is	inherited.	For	built-in	Property	objects	that	represent	predefined
properties,	the	only	possible	return	value	is	False.	This	property	is
always	False	in	an	ODBCDirect	workspace.

Remarks

You	can	use	the	Inherited	property	to	determine	whether	a	user-defined
Property	was	created	for	the	object	it	applies	to,	or	whether	the	Property
was	inherited	from	another	object.	For	example,	suppose	you	create	a
new	Property	for	a	QueryDef	object	and	then	open	a	Recordset	object
from	the	QueryDef	object.	This	new	Property	will	be	part	of	the
Recordset	object's	Properties	collection,	and	its	Inherited	property	will
be	set	to	True	because	the	property	was	created	for	the	QueryDef
object,	not	the	Recordset	object.

IniPath	Property

			 			

			

Sets	or	returns	information	about	the	Windows	Registry	key	that	contains
values	for	the	Microsoft	Jet	database	engine	(Microsoft	Jet	workspaces
only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	data	type	that	points	to	a	user-
supplied	portion	of	the	Windows	Registry	key	containing	Microsoft	Jet
database	engine	settings	or	parameters	needed	for	installable	ISAM
databases.

Remarks

You	can	configure	the	Microsoft	Jet	engine	with	the	Windows	Registry.
You	can	use	the	Registry	to	set	options,	such	as	installable	ISAM	DLLs.

For	this	option	to	have	any	effect,	you	must	set	the	IniPath	property
before	your	application	invokes	any	other	DAO	code.	The	scope	of	this
setting	is	limited	to	your	application	and	can't	be	changed	without
restarting	your	application.

You	also	use	the	Registry	to	provide	initialization	parameters	for	some
installable	ISAM	database	drivers.	For	example,	to	use	Paradox	version
4.0,	set	the	IniPath	property	to	a	part	of	the	Registry	containing	the
appropriate	parameters.

This	property	recognizes	either	HKEY_LOCAL_MACHINE	or
HKEY_LOCAL_USER.	If	no	root	key	is	supplied,	the	default	is
HKEY_LOCAL_MACHINE.

Microsoft	Jet	versions	2.5	or	earlier	kept	initialization	information	in	.ini
files.

IsolateODBCTrans	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	multiple	transactions	that
involve	the	same	Microsoft	Jet-connected	ODBC	data	source	are	isolated
(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	data	type	that	is	True	if	you	want
to	isolate	transactions	involving	the	same	ODBC	(Open	Database
Connectivity)	connection.	False	(the	default)	will	allow	multiple
transactions	involving	the	same	ODBC	connection.

Remarks

In	some	situations,	you	need	to	have	multiple	simultaneous	transactions
pending	on	the	same	ODBC	connection.	To	do	this,	you	need	to	open	a
separate	Workspace	for	each	transaction.	Although	each	Workspace
can	have	its	own	ODBC	connection	to	the	database,	this	slows	system
performance.	Because	transaction	isolation	isn't	usually	required,	ODBC
connections	from	multiple	Workspace	objects	opened	by	the	same	user
are	shared	by	default.

Some	ODBC	servers,	such	as	Microsoft	SQL	Server,	don't	allow
simultaneous	transactions	on	a	single	connection.	If	you	need	to	have
more	than	one	transaction	at	a	time	pending	against	such	a	database,
set	the	IsolateODBCTrans	property	to	True	on	each	Workspace	as
soon	as	you	open	it.	This	forces	a	separate	ODBC	connection	for	each
Workspace.

KeepLocal	Property

			 			

			

Sets	or	returns	a	value	on	a	table,	query,	form,	report,	macro,	or	module
that	you	do	not	want	to	replicate	when	the	database	is	replicated
(Microsoft	Jet	workspaces	only).

Note	Before	getting	or	setting	the	KeepLocal	property	on	a	TableDef,
or	QueryDef	object,	you	must	create	it	by	using	the	CreateProperty
method	and	append	it	to	the	Properties	collection	for	the	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Text	data	type.	If	you	set	this	property	to
"T",	the	object	will	remain	local	when	the	database	is	replicated.	You
can't	use	the	KeepLocal	property	on	objects	after	they	have	been
replicated.

Remarks

Once	you	set	the	KeepLocal	property,	it	will	appear	in	the	Properties
collection	for	the	Document	object	representing	the	host	object.

Before	setting	the	KeepLocal	property,	you	should	check	the	value	of	the

Replicable	property.

After	you	make	a	database	replicable,	all	new	objects	created	within	the
Design	Master,	or	in	any	other	replicas	in	the	set,	are	local	objects.	Local
objects	remain	in	the	replica	in	which	they're	created	and	aren't	copied
throughout	the	replica	set.	Each	time	you	make	a	new	replica	in	the	set,
the	new	replica	contains	all	the	replicable	objects	from	the	source	replica,
but	none	of	the	local	objects	from	the	source	replica.

If	you	create	a	new	object	in	a	replica	and	want	to	change	it	from	local	to
replicable	so	that	all	users	can	use	it,	you	can	either	create	the	object	in
or	import	it	into	the	Design	Master.	Be	sure	to	delete	the	local	object	from
any	replicas;	otherwise,	you	will	encounter	a	design	error.	After	the	object
is	part	of	the	Design	Master,	set	the	object's	Replicable	property	to	True.

The	object	on	which	you	are	setting	the	KeepLocal	property	might	have
already	inherited	that	property	from	another	object.	However,	the	value
set	by	the	other	object	has	no	effect	on	the	behavior	of	the	object	you
want	to	keep	local.	You	must	explicitly	set	the	property	for	each	object.

LastModified	Property

			 			

			

Returns	a	bookmark	indicating	the	most	recently	added	or	changed
record.

Return	Values

The	return	value	is	a	Variant	array	of	Byte	data.

Remarks

You	can	use	the	LastModified	property	to	move	to	the	most	recently
added	or	updated	record.	Use	the	LastModified	property	with	table-	and
dynaset-type	Recordset	objects.	A	record	must	be	added	or	modified	in
the	Recordset	object	itself	in	order	for	the	LastModified	property	to
have	a	value.

LockEdits	Property

			 			

			

Sets	or	returns	a	value	indicating	the	type	of	locking	that	is	in	effect	while
editing.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	indicates	the	type	of	locking,
as	specified	in	the	following	table.

Value Description

True

Default.	Pessimistic	locking	is	in	effect.	The
2K	page	containing	the	record	you're	editing
is	locked	as	soon	as	you	call	the	Edit
method.

False
Optimistic	locking	is	in	effect	for	editing.
The	2K	page	containing	the	record	is	not
locked	until	the	Update	method	is	executed.

Remarks

You	can	use	the	LockEdits	property	with	updatable	Recordset	objects.

If	a	page	is	locked,	no	other	user	can	edit	records	on	the	same	page.	If

you	set	LockEdits	to	True	and	another	user	already	has	the	page
locked,	an	error	occurs	when	you	use	the	Edit	method.	Other	users	can
read	data	from	locked	pages.

If	you	set	the	LockEdits	property	to	False	and	later	use	the	Update
method	while	another	user	has	the	page	locked,	an	error	occurs.	To	see
the	changes	made	to	your	record	by	another	user,	use	the	Move	method
with	0	as	the	argument;	however,	if	you	do	this,	you	will	lose	your
changes.

When	working	with	Microsoft	Jet-connected	ODBC	data	sources,	the
LockEdits	property	is	always	set	to	False,	or	optimistic	locking.	The
Microsoft	Jet	database	engine	has	no	control	over	the	locking
mechanisms	used	in	external	database	servers.

Note	You	can	preset	the	value	of	LockEdits	when	you	first	open	the
Recordset	by	setting	the	lockedits	argument	of	the	OpenRecordset
method.	Setting	the	lockedits	argument	to	dbPessimistic	will	set	the
LockEdits	property	to	True,	and	setting	lockedits	to	any	other	value
will	set	the	LockEdits	property	to	False.

LoginTimeout	Property

			 			

			

Sets	or	returns	the	number	of	seconds	before	an	error	occurs	when	you
attempt	to	log	on	to	an	ODBC	database.

Settings	and	Return	Values

The	setting	or	return	value	is	an	Integer	representing	the	number	of
seconds	before	a	login	timeout	error	occurs.	The	default	LoginTimeout
property	setting	is	20	seconds.	When	the	LoginTimeout	property	is	set
to	0,	no	timeout	occurs.

Remarks

When	you're	attempting	to	log	on	to	an	ODBC	database,	such	as
Microsoft	SQL	Server,	the	connection	can	fail	as	a	result	of	network
errors	or	because	the	server	isn't	running.	Rather	than	waiting	for	the
default	20	seconds	to	connect,	you	can	specify	how	long	to	wait	before
raising	an	error.	Logging	on	to	the	server	happens	implicitly	as	part	of	a
number	of	different	events,	such	as	running	a	query	on	an	external	server
database.

You	can	use	LoginTimeout	on	the	DBEngine	object	in	both	Microsoft	Jet

and	ODBCDirect	workspaces.	You	can	use	LoginTimeout	on	the
Workspace	object	only	in	ODBCDirect	workspaces.	Setting	the	property
to	-1	on	a	Workspace	will	default	to	the	current	setting	of
DBEngine.LoginTimeout.	You	can	change	this	property	in	a
Workspace	at	any	time,	and	the	new	setting	will	take	effect	with	the	next
Connection	or	Database	object	opened.

The	default	value	is	determined	by	the	ODBC	driver.	In	a	Microsoft	Jet
workspace,	you	can	override	the	driver’s	default	value	by	creating	a	new
“ODBC”	key	in	the	Registry	path
\HKEY_LOCAL_MACHINE\SOFTWARE\Jet\3.5\,	creating	a
LoginTimeout	parameter	in	this	key,	and	setting	the	value	as	desired.

LogMessages	Property

			 			

			

Sets	or	returns	a	value	that	specifies	if	the	messages	returned	from	a
Microsoft	Jet-connected	ODBC	data	source	are	recorded	(Microsoft	Jet
workspaces	only).

Note	Before	you	can	set	or	get	the	value	of	the	LogMessages
property,	you	must	create	the	LogMessages	property	with	the
CreateProperty	method,	and	append	it	to	the	Properties	collection	of	a
QueryDef	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	ODBC-generated
messages	are	recorded.

Remarks

Some	pass-through	queries	can	return	messages	in	addition	to	data.	If
you	set	the	LogMessages	property	to	True,	the	Microsoft	Jet	database
engine	creates	a	table	that	contains	returned	messages.	The	table	name
is	the	user	name	concatenated	with	a	hyphen	(-)	and	a	sequential
number	starting	at	00.	For	example,	because	the	default	user	name	is

Admin,	the	tables	returned	would	be	named	Admin-00,	Admin-01,	and	so
on.

If	you	expect	the	query	to	return	messages,	create	and	append	a	user-
defined	LogMessages	property	for	the	QueryDef	object,	and	set	its	type
to	Boolean	and	its	value	to	True.

Once	you've	processed	the	results	from	these	tables,	you	may	want	to
delete	them	from	the	database	along	with	the	temporary	query	used	to
create	them.

MaxRecords	Property

			 			

			

Sets	or	returns	the	maximum	number	of	records	to	return	from	a	query
against	an	ODBC	data	source.

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	represents	the	number	of
records	to	be	returned.	The	default	value	is	0,	indicating	no	limit	on	the
number	of	records	returned.

Remarks

Once	the	number	of	rows	specified	by	MaxRecords	is	returned	to	your
application	in	a	Recordset,	the	query	processor	will	stop	returning
additional	records	even	if	more	records	would	qualify	for	inclusion	in	the
Recordset.	This	property	is	useful	in	situations	where	limited	client
resources	prohibit	management	of	large	numbers	of	records.

Note	The	MaxRecords	property	can	only	be	used	with	an	ODBC
data	source,	connected	through	either	a	Microsoft	Jet	or
ODBCDirect	workspace.

Name	Property

			 			

			

Sets	or	returns	a	user-defined	name	for	a	DAO	object.	For	an	object	not
appended	to	a	collection,	this	property	is	read/write.

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	specifies	a	name.	The	name
must	start	with	a	letter.	The	maximum	number	of	characters	depends	on
the	type	of	object	Name	applies	to,	as	shown	in	Remarks.	It	can	include
numbers	and	underscore	characters	(_)	but	can't	include	punctuation	or
spaces.

Remarks

TableDef,	QueryDef,	Field,	Index,	User,	and	Group	objects	can't	share
the	same	name	with	any	object	in	the	same	collection.

The	Name	property	of	a	Recordset	object	opened	by	using	an	SQL
statement	is	the	first	256	characters	of	the	SQL	statement.

You	can	use	an	object's	Name	property	with	the	Visual	Basic	for
Applications	Dim	statement	in	code	to	create	other	instances	of	the

object.

Note	For	many	of	the	DAO	objects,	the	Name	property	reflects	the
name	as	known	to	the	Database	object,	as	in	the	name	of	a
TableDef,	Field,	or	QueryDef	object.	There	is	no	direct	link	between
the	name	of	the	DAO	object	and	the	object	variable	used	to	reference
it.

The	read/write	usage	of	the	Name	property	depends	on	the	type	of	object
it	applies	to,	and	whether	or	not	the	object	has	been	appended	to	a
collection.	In	an	ODBCDirect	workspace,	the	Name	property	of	an
appended	object	is	always	read-only.	The	following	table	indicates
whether	the	Name	property	in	a	Microsoft	Jet	workspace	is	read/write	or
read-only	for	an	object	that	is	appended	to	a	collection	(unless	otherwise
noted),	and	also	indicates	its	maximum	length	in	cases	where	it	is
read/write.

Object Usage Maximum	length
Container Read-only
Connection Read-only
Database Read-only
Document Read-only
Field
Unappended Read/write 64
Appended	to	Index Read-only
Appended	to	QueryDef Read-only
Appended	to	Recordset Read-only
Appended	to	TableDef	(native) Read/write 64
Appended	to	TableDef	(linked)Read-only
Appended	to	Relation Read-only
Group
Unappended Read/write 20
Appended Read-only
Index
Unappended Read/write 64
Appended Read-only
Parameter Read-only
Property

Unappended Read/write 64
Appended Read-only
Built-in Read-only
QueryDef
Unappended Read/write 64
Temporary Read-only
Appended Read/write 64
Recordset Read-only
Relation
Unappended Read/write 64
Appended Read-only
TableDef Read/write 64
User
Unappended Read/write 20
Appended Read-only
Workspace
Unappended Read/write 20
Appended Read-only

NoMatch	Property

			 			

			

Indicates	whether	a	particular	record	was	found	by	using	the	Seek
method	or	one	of	the	Find	methods	(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	Boolean	that	is	True	if	the	desired	record	was	not
found.	When	you	open	or	create	a	Recordset	object,	its	NoMatch
property	is	set	to	False.

Remarks

To	locate	a	record,	use	the	Seek	method	on	a	table-type	Recordset
object	or	one	of	the	Find	methods	on	a	dynaset-	or	snapshot-type
Recordset	object.	Check	the	NoMatch	property	setting	to	see	whether
the	record	was	found.

If	the	Seek	or	Find	method	is	unsuccessful	and	the	NoMatch	property	is
True,	the	current	record	will	no	longer	be	valid.	Be	sure	to	obtain	the
current	record's	bookmark	before	using	the	Seek	method	or	a	Find
method	if	you'll	need	to	return	to	that	record.

Note	Using	any	of	the	Move	methods	on	a	Recordset	object	won't
affect	its	NoMatch	property	setting.

Number	Property

			 			

			

Returns	a	numeric	value	specifying	an	error.

Return	Values

The	return	value	is	a	Long	data	type	that	represents	an	error	number.

Remarks

Use	the	Number	property	to	determine	the	error	that	occurred.	The	value
of	the	property	corresponds	to	a	unique	trap	number	that	corresponds	to
an	error	condition.	For	a	complete	list	of	all	trap	numbers	and	error
conditions,	see	Trappable	Microsoft	Jet	and	DAO	Errors.

mk:@MSITStore:daosdk.chm::/idxmsgdb_0x9v.htm

ODBCTimeout	Property

			 			

			

Indicates	the	number	of	seconds	to	wait	before	a	timeout	error	occurs
when	a	QueryDef	is	executed	on	an	ODBC	database.

Settings	and	Return	Values

The	setting	or	return	value	is	an	Integer	representing	the	number	of
seconds	to	wait	before	a	timeout	error	occurs.

When	the	ODBCTimeout	property	is	set	to	-1,	the	timeout	defaults	to	the
current	setting	of	the	QueryTimeout	property	of	the	Connection	or
Database	object	that	contains	the	QueryDef.	When	the	ODBCTimeout
property	is	set	to	0,	no	timeout	error	occurs.

Remarks

When	you're	using	an	ODBC	database,	such	as	Microsoft	SQL	Server,
delays	can	occur	because	of	network	traffic	or	heavy	use	of	the	ODBC
server.	Rather	than	waiting	indefinitely,	you	can	specify	how	long	to	wait
before	returning	an	error.

Setting	the	ODBCTimeout	property	of	a	QueryDef	object	overrides	the

value	specified	by	the	QueryTimeout	property	of	the	Connection	or
Database	object	containing	the	QueryDef,	but	only	for	that	QueryDef
object.

Note	In	an	ODBCDirect	workspace,	after	setting	ODBCTimeout	to	an
explicit	value	you	can	reset	it	back	to	the	default	(i.e.,	-1)	only	once
during	the	life	of	the	QueryDef	object.		Otherwise,	an	error	will	occur.

OrdinalPosition	Property

			 			

			

Sets	or	returns	the	relative	position	of	a	Field	object	within	a	Fields
collection.	For	an	object	not	yet	appended	to	the	Fields	collection,	this
property	is	read/write.

Settings	and	Return	Values

The	setting	or	return	value	is	an	Integer	that	specifies	the	numeric	order
of	fields.	The	default	is	0.

Remarks

The	availability	of	the	OrdinalPosition	property	depends	on	the	object
that	contains	the	Fields	collection,	as	shown	in	the	following	table.

If	the	Fields	collection	belongs	to	aThen	OrdinalPosition	is
Index	object Not	supported
QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read/write

Generally,	the	ordinal	position	of	an	object	that	you	append	to	a	collection
depends	on	the	order	in	which	you	append	the	object.	The	first	appended
object	is	in	the	first	position	(0),	the	second	appended	object	is	in	the
second	position	(1),	and	so	on.	The	last	appended	object	is	in	ordinal
position	count	–	1,	where	count	is	the	number	of	objects	in	the	collection
as	specified	by	the	Count	property	setting.

You	can	use	the	OrdinalPosition	property	to	specify	an	ordinal	position
for	new	Field	objects	that	differs	from	the	order	in	which	you	append
those	objects	to	a	collection.	This	enables	you	to	specify	a	field	order	for
your	tables,	queries,	and	recordsets	when	you	use	them	in	an
application.	For	example,	the	order	in	which	fields	are	returned	in	a
SELECT	*	query	is	determined	by	the	current	OrdinalPosition	property
values.

You	can	permanently	reset	the	order	in	which	fields	are	returned	in
recordsets	by	setting	the	OrdinalPosition	property	to	any	positive
integer.

Two	or	more	Field	objects	in	the	same	collection	can	have	the	same
OrdinalPosition	property	value,	in	which	case	they	will	be	ordered
alphabetically.	For	example,	if	you	have	a	field	named	Age	set	to	4	and
you	set	a	second	field	named	Weight	to	4,	Weight	is	returned	after	Age.

You	can	specify	a	number	that	is	greater	than	the	number	of	fields	minus
1.	The	field	will	be	returned	in	an	order	relative	to	the	largest	number.	For
example,	if	you	set	a	field's	OrdinalPosition	property	to	20	(and	there
are	only	5	fields)	and	you've	set	the	OrdinalPosition	property	for	two
other	fields	to	10	and	30,	respectively,	the	field	set	to	20	is	returned
between	the	fields	set	to	10	and	30.

Note	Even	if	the	Fields	collection	of	a	TableDef	has	not	been
refreshed,	the	field	order	in	a	Recordset	opened	from	the	TableDef
will	reflect	the	OrdinalPosition	data	of	the	TableDef	object.	A	table-
type	Recordset	will	have	the	same	OrdinalPosition	data	as	the
underlying	table,	but	any	other	type	of	Recordset	will	have	new
OrdinalPosition	data	(starting	with	0)	that	follow	the	order
determined	by	the	OrdinalPosition	data	of	the	TableDef.

OriginalValue	Property

			 			

			

Returns	the	value	of	a	Field	in	the	database	that	existed	when	the	last
batch	update	began	(ODBCDirect	workspaces	only).

Return	Values

The	return	value	is	a	variant	expression.

Remarks

During	an	optimistic	batch	update,	a	collision	may	occur	where	a	second
client	modifies	the	same	field	and	record	in	between	the	time	the	first
client	retrieves	the	data	and	the	first	client's	update	attempt.	The
OriginalValue	property	contains	the	value	of	the	field	at	the	time	the	last
batch	Update	began.	If	this	value	does	not	match	the	value	actually	in	the
database	when	the	batch	Update	attempts	to	write	to	the	database,	a
collision	occurs.	When	this	happens,	the	new	value	in	the	database	will
be	accessible	through	the	VisibleValue	property.

Owner	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	owner	of	the	object	(Microsoft
Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	evaluates	to	either	the	name	of
a	User	object	in	the	Users	collection	or	the	name	of	a	Group	object	in	the
Groups	collection.

Remarks

The	owner	of	an	object	has	certain	access	privileges	denied	to	other
users.	Any	individual	user	account	(represented	by	a	User	object)	or
group	of	user	accounts	(represented	by	a	Group	object)	can	change	the
Owner	property	setting	at	any	time	if	it	has	the	appropriate	permissions.

PartialReplica	Property

			 			

			

Sets	or	returns	a	value	on	a	Relation	object	indicating	whether	that
relation	should	be	considered	when	populating	a	partial	replica	from	a	full
replica.	(Microsoft	Jet	databases	only.)

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	data	type	that	is	True	when	the
relation	should	be	enforced	during	synchronization.

Remarks

This	property	enables	you	to	replicate	data	from	the	full	replica	to	the
partial	replica	based	on	relationships	between	tables.	You	can	use	the
PartialReplica	property	when	setting	the	ReplicaFilter	property	alone
can't	adequately	specify	what	data	should	be	replicated	to	the	partial.	For
example,	suppose	you	have	a	database	in	which	the	Customers	table
has	a	one-to-many	relationship	with	the	Orders	table,	and	you	want	to
configure	a	partial	replica	that	only	replicates	orders	from	customers	in
the	California	region	(instead	of	all	orders).	It	is	not	possible	to	set	the
ReplicaFilter	property	on	the	Orders	table	to	Region	=	'CA'	because
the	Region	field	is	in	the	Customers	table,	not	the	Orders	table.

To	replicate	all	orders	from	the	California	region,	you	must	indicate	that
the	relation	between	the	Orders	and	Customers	tables	will	be	active
during	replication.	Once	you've	created	a	partial	replica,	the	following
steps	will	populate	it	with	all	orders	from	the	California	region:

1.	 Set	the	ReplicaFilter	property	on	the	Customers	TableDef	object
to	"Region	=	'CA'".

2.	 Set	the	value	of	the	PartialReplica	property	to	True	on	the
Relation	object	corresponding	to	the	relationship	between	Orders
and	Customers.

3.	 Invoke	the	PopulatePartial	method.

Caution	When	you	set	a	replica	filter	or	replica	relation,	be	aware	that
records	in	the	partial	replica	that	don't	satisfy	the	restriction	criteria	will
be	removed	from	the	partial	replica,	but	not	from	the	full	replica.	For
example,	suppose	you	set	the	ReplicaFilter	property	on	the
Customers	TableDef	in	the	partial	replica	to	"Region	=	'CA'"	and
you	then	repopulate	the	database.	This	will	insert	or	update	all
records	for	California-based	customers.	If	you	then	reset	the
ReplicaFilter	property	to	"Region	=	'FL'"	and	repopulate	the
database,	all	California	region	records	in	the	partial	replica	will	be
removed,	and	all	records	from	Florida-based	customers	will	be
inserted	from	the	full	replica.	No	records	in	the	full	replica	will	be
deleted.

Before	setting	either	the	ReplicaFilter	or	PartialReplica	property,	it's
a	good	idea	to	synchronize	the	partial	replica	in	which	you	are	setting
these	properties	with	the	full	replica.	This	will	ensure	that	pending
changes	in	the	partial	replica	will	be	merged	into	the	full	replica	before
any	records	are	removed	in	the	partial	replica.

Password	Property

			 			

			

Sets	the	password	for	a	user	account	(Microsoft	Jet	workspaces	only).

Note		Use	strong	passwords	that	combine	upper-	and	lowercase	letters,
numbers,	and	symbols.	Weak	passwords	don't	mix	these	elements.
Strong	password:	Y6dh!et5.	Weak	password:	House27.	Use	a	strong
password	that	you	can	remember	so	that	you	don't	have	to	write	it	down.

Settings

The	setting	is	a	String	that	can	be	up	to	14	characters	long	and	can
include	any	characters	except	the	ASCII	character	0	(null).	This	property
setting	is	write-only	for	new	objects	not	yet	appended	to	a	collection,	and
is	not	available	for	existing	objects.

Remarks

Set	the	Password	property	along	with	the	PID	property	when	you	create
a	new	User	object.

Use	the	NewPassword	method	to	change	the	Password	property	setting
for	an	existing	User	object.	To	clear	a	password,	set	the	newpassword

argument	of	the	NewPassword	method	to	a	zero-length	string	("").

Passwords	are	case-sensitive.

Note	If	you	don't	have	access	permission,	you	can't	change	the
password	of	any	other	user.

PercentPosition	Property

			 			

			

Sets	or	returns	a	value	indicating	the	approximate	location	of	the	current
record	in	the	Recordset	object	based	on	a	percentage	of	the	records	in
the	Recordset.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Single	that	is	a	number	between	0.0	and
100.00.

Remarks

To	indicate	or	change	the	approximate	position	of	the	current	record	in	a
Recordset	object,	you	can	check	or	set	the	PercentPosition	property.
When	working	with	a	dynaset-	or	snapshot-type	Recordset	object
opened	directly	from	a	base	table,	first	populate	the	Recordset	object	by
moving	to	the	last	record	before	you	set	or	check	the	PercentPosition
property.	If	you	use	the	PercentPosition	property	before	fully	populating
the	Recordset	object,	the	amount	of	movement	is	relative	to	the	number
of	records	accessed	as	indicated	by	the	RecordCount	property	setting.
You	can	move	to	the	last	record	by	using	the	MoveLast	method.

Note	Using	the	PercentPosition	property	to	move	the	current	record
to	a	specific	record	in	a	Recordset	object	isn't	recommended?the
Bookmark	property	is	better	suited	for	this	task.

Once	you	set	the	PercentPosition	property	to	a	value,	the	record	at	the
approximate	position	corresponding	to	that	value	becomes	current,	and
the	PercentPosition	property	is	reset	to	a	value	that	reflects	the
approximate	position	of	the	current	record.	For	example,	if	your
Recordset	object	contains	only	five	records,	and	you	set	its
PercentPosition	property	value	to	77,	the	value	returned	from	the
PercentPosition	property	may	be	80,	not	77.

The	PercentPosition	property	applies	to	all	types	of	Recordset	objects
except	for	forward-only–type	Recordset	objects	or	Recordset	objects
opened	from	pass-through	queries	against	remote	databases.

You	can	use	the	PercentPosition	property	with	a	scroll	bar	on	a	form	or
text	box	to	indicate	the	location	of	the	current	record	in	a	Recordset
object.

Permissions	Property

			 			

			

Sets	or	returns	a	value	that	establishes	the	permissions	for	the	user	or
group	identified	by	the	UserName	property	of	a	Container	or	Document
object	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Long	constant	that	establishes
permissions.	The	following	tables	list	the	valid	constants	for	the
Permissions	property	of	various	DAO	objects.	Unless	otherwise	noted,
all	constants	shown	in	all	tables	are	valid	for	Document	objects.

The	following	table	lists	possible	values	for	Container	objects	other	than
Tables	and	Databases	containers.

Constant Description

dbSecNoAccess The	user	doesn't	have	access	to	the	object
(not	valid	for	Document	objects).

dbSecFullAccess The	user	has	full	access	to	the	object.
dbSecDelete The	user	can	delete	the	object.

dbSecReadSec The	user	can	read	the	object's	security-
related	information.

dbSecWriteSec The	user	can	alter	access	permissions.

dbSecWriteOwner The	user	can	change	the	Owner	property
setting.

The	following	tables	lists	the	possible	settings	and	return	values	for	the
Tables	container.

Constant Description

dbSecCreate The	user	can	create	new	documents	(not
valid	for	Document	objects).

dbSecReadDef The	user	can	read	the	table	definition,
including	column	and	index	information.

dbSecWriteDef
The	user	can	modify	or	delete	the	table
definition,	including	column	and	index
information.

dbSecRetrieveData The	user	can	retrieve	data	from	the
Document	object.

dbSecInsertData The	user	can	add	records.
dbSecReplaceData The	user	can	modify	records.
dbSecDeleteData The	user	can	delete	records.

The	following	tables	lists	the	possible	settings	and	return	values	for	the
Databases	container.

Constant Description

dbSecDBAdmin
The	user	can	replicate	a	database	and
change	the	database	password	(not	valid	for
Document	objects).

dbSecDBCreate

The	user	can	create	new	databases.	This
option	is	valid	only	on	the	Databases
container	in	the	workgroup	information	file
(Systen.mdw).	This	constant	isn't	valid	for
Document	objects.

dbSecDBExclusive The	user	has	exclusive	access	to	the
database.

dbSecDBOpen The	user	can	open	the	database.

Remarks

Use	this	property	to	establish	or	determine	the	type	of	read/write
permissions	the	user	has	for	a	Container	or	Document	object.

A	Document	object	inherits	the	permissions	for	users	from	its	Container
object,	provided	the	Inherit	property	of	the	Container	object	is	set	for
those	users	or	for	a	group	to	which	the	users	belong.	By	setting	a
Document	object's	Permissions	and	UserName	properties	later,	you
can	further	refine	the	access	control	behavior	of	your	object.

If	you	want	to	set	or	return	permissions	for	a	user	that	includes
permissions	inherited	from	any	groups	to	which	the	user	belongs,	use	the
AllPermissions	property.

PID	Property

			 			

			

Sets	the	personal	identifier	(PID)	for	either	a	group	or	a	user	account
(Microsoft	Jet	workspaces	only).

Settings

The	setting	is	a	String	containing	4-20	alphanumeric	characters.	This
property	setting	is	write-only	for	new	objects	not	yet	appended	to	a
collection,	and	is	not	available	for	existing	objects.

Remarks

Set	the	PID	property	along	with	the	Name	property	when	you	create	a
new	Group	object.	Set	the	PID	property	along	with	the	Name	and
Password	properties	when	you	create	a	new	User	object.

Prepare	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	the	query	should	be
prepared	on	the	server	as	a	temporary	stored	procedure,	using	the
ODBC	SQLPrepare	API	function,	prior	to	execution,	or	just	executed
using	the	ODBC	SQLExecDirect	API	function	(ODBCDirect	workspaces
only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Long	value	that	can	be	one	of	the
following	constants:

Constant Description

dbQPrepare (Default)	The	statement	is	prepared	(that	is,
the	ODBC	SQLPrepare	API	is	called).

dbQUnprepare The	statement	is	not	prepared	(that	is,	the
ODBC	SQLExecDirect	API	is	called).

Remarks

You	can	use	the	Prepare	property	to	either	have	the	server	create	a
temporary	stored	procedure	from	your	query	and	then	execute	it,	or	just

have	the	query	executed	directly.	By	default	the	Prepare	property	is	set
to	dbQPrepare.	However,	you	can	set	this	property	to	dbQUnprepare	to
prohibit	preparing	of	the	query.	In	this	case,	the	query	is	executed	using
the	SQLExecDirect	API.

Creating	a	stored	procedure	can	slow	down	the	initial	operation,	but
increases	performance	of	all	subsequent	references	to	the	query.
However,	some	queries	cannot	be	executed	in	the	form	of	stored
procedures.	In	these	cases,	you	must	set	the	Prepare	property	to
dbQUnprepare.

If	Prepare	is	set	to	dbQPrepare,	this	can	be	overridden	when	the	query
is	executed	by	setting	the	Execute	method's	options	argument	to
dbExecDirect.

Note	The	ODBC	SQLPrepare	API	is	called	as	soon	as	the	DAO	SQL
property	is	set.	Therefore,	if	you	want	to	improve	performance	using
the	dbQUnprepare	option,	you	must	set	the	Prepare	property	before
setting	the	SQL	property.

Primary	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	an	Index	object	represents
a	primary	key	index	for	a	table	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	the	Index	object
represents	a	primary	key	index.

The	Primary	property	setting	is	read/write	for	a	new	Index	object	not	yet
appended	to	a	collection	and	read-only	for	an	existing	Index	object	in	an
Indexes	collection.	If	the	Index	object	is	appended	to	the	TableDef	object
but	the	TableDef	object	isn't	appended	to	the	TableDefs	collection,	the
Index	property	is	read/write.

Remarks

A	primary	key	index	consists	of	one	or	more	fields	that	uniquely	identify
all	records	in	a	table	in	a	predefined	order.	Because	the	index	field	must
be	unique,	the	Unique	property	of	the	Index	object	is	set	to	True.	If	the
primary	key	index	consists	of	more	than	one	field,	each	field	can	contain
duplicate	values,	but	each	combination	of	values	from	all	the	indexed

fields	must	be	unique.	A	primary	key	index	consists	of	a	key	for	the	table
and	usually	contains	the	same	fields	as	the	primary	key.

Note	You	don't	have	to	create	indexes	for	tables,	but	in	large,
unindexed	tables,	accessing	a	specific	record	can	take	a	long	time.
The	Attributes	property	of	each	Field	object	in	the	Index	object
determines	the	order	of	records	and	consequently	determines	the
access	techniques	to	use	for	that	index.	When	you	create	a	new	table
in	your	database,	it's	a	good	idea	to	create	an	index	on	one	or	more
fields	that	uniquely	identify	each	record,	and	then	set	the	Primary
property	of	the	Index	object	to	True.

When	you	set	a	primary	key	for	a	table,	the	primary	key	is	automatically
defined	as	the	primary	key	index	for	the	table.

QueryTimeout	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	number	of	seconds	to	wait
before	a	timeout	error	occurs	when	a	query	is	executed	on	an	ODBC
data	source.

Settings	and	Return	Values

The	setting	or	return	value	is	an	Integer	representing	the	number	of
seconds	to	wait.	The	default	value	is	60.

Remarks

When	you're	using	an	ODBC	database,	such	as	Microsoft	SQL	Server,
there	may	be	delays	due	to	network	traffic	or	heavy	use	of	the	ODBC
server.	Rather	than	waiting	indefinitely,	you	can	specify	how	long	to	wait.

When	you	use	QueryTimeout	with	a	Connection	or	Database	object,	it
specifies	a	global	value	for	all	queries	associated	with	the	database.	You
can	override	this	value	for	a	specific	query	by	setting	the	ODBCTimeout
property	of	the	particular	QueryDef	object.

In	a	Microsoft	Jet	workspace,	you	can	override	the	default	value	by

creating	a	new	“ODBC”	key	in	the	Registry	path
\HKEY_LOCAL_MACHINE\SOFTWARE\Jet\3.5\,	creating	a
QueryTimeout	parameter	in	this	key,	and	setting	the	value	as	desired.

RecordCount	Property

			 			

			

Returns	the	number	of	records	accessed	in	a	Recordset	object,	or	the
total	number	of	records	in	a	table-type	Recordset	or	TableDef	object.

Return	Values

The	return	value	is	a	Long	data	type.

Remarks

Use	the	RecordCount	property	to	find	out	how	many	records	in	a
Recordset	or	TableDef	object	have	been	accessed.	The	RecordCount
property	doesn't	indicate	how	many	records	are	contained	in	a	dynaset-,
snapshot-,	or	forward-only–type	Recordset	object	until	all	records	have
been	accessed.	Once	the	last	record	has	been	accessed,	the
RecordCount	property	indicates	the	total	number	of	undeleted	records	in
the	Recordset	or	TableDef	object.	To	force	the	last	record	to	be
accessed,	use	the	MoveLast	method	on	the	Recordset	object.	You	can
also	use	an	SQL	Count	function	to	determine	the	approximate	number	of
records	your	query	will	return.

Note	Using	the	MoveLast	method	to	populate	a	newly	opened

Recordset	negatively	impacts	performance.	Unless	it	is	necessary	to
have	an	accurate	RecordCount	as	soon	as	you	open	a	Recordset,
it's	better	to	wait	until	you	populate	the	Recordset	with	other	portions
of	code	before	checking	the	RecordCount	property.

As	your	application	deletes	records	in	a	dynaset-type	Recordset	object,
the	value	of	the	RecordCount	property	decreases.	However,	records
deleted	by	other	users	aren't	reflected	by	the	RecordCount	property	until
the	current	record	is	positioned	to	a	deleted	record.	If	you	execute	a
transaction	that	affects	the	RecordCount	property	setting	and	you
subsequently	roll	back	the	transaction,	the	RecordCount	property	won't
reflect	the	actual	number	of	remaining	records.

The	RecordCount	property	of	a	snapshot-	or	forward-only–type
Recordset	object	isn't	affected	by	changes	in	the	underlying	tables.

A	Recordset	or	TableDef	object	with	no	records	has	a	RecordCount
property	setting	of	0.

When	you	work	with	linked	TableDef	objects,	the	RecordCount	property
setting	is	always	–1.

Using	the	Requery	method	on	a	Recordset	object	resets	the
RecordCount	property	just	as	if	the	query	were	re-executed.

RecordsAffected	Property

			 			

			

Returns	the	number	of	records	affected	by	the	most	recently	invoked
Execute	method.

Return	Values

The	return	value	is	a	Long	from	0	to	the	number	of	records	affected	by
the	most	recently	invoked	Execute	method	on	either	a	Database	or
QueryDef	object.

Remarks

When	you	use	the	Execute	method	to	run	an	action	query	from	a
QueryDef	object,	the	RecordsAffected	property	will	contain	the	number
of	records	deleted,	updated,	or	inserted.

When	you	use	RecordsAffected	in	an	ODBCDirect	workspace,	it	will	not
return	a	useful	value	from	an	SQL	DROP	TABLE	action	query.

RecordStatus	Property

			 			

			

Returns	a	value	indicating	the	update	status	of	the	current	record	if	it	is
part	of	a	batch	update	(ODBCDirect	workspaces	only).

Return	Values

The	return	value	is	a	Long	that	can	be	any	of	the	following	constants:

Constant Description

dbRecordUnmodified (Default)	The	record	has	not	been	modified
or	has	been	updated	successfully.

dbRecordModified The	record	has	been	modified	and	not
updated	in	the	database.

dbRecordNew
The	record	has	been	inserted	with	the
AddNew	method,	but	not	yet	inserted	into
the	database.

dbRecordDeleted The	record	has	been	deleted,	but	not	yet
deleted	in	the	database.

dbRecordDBDeleted The	record	has	been	deleted	locally	and	in
the	database.

Remarks

The	value	of	the	RecordStatus	property	indicates	whether	and	how	the
current	record	will	be	involved	in	the	next	optimistic	batch	update.

When	a	user	changes	a	record,	the	RecordStatus	for	that	record
automatically	changes	to	dbRecordModified.	Similarly,	if	a	record	is
added	or	deleted,	RecordStatus	reflects	the	appropriate	constant.	When
you	then	use	a	batch-mode	Update	method,	DAO	will	submit	an
appropriate	operation	to	the	remote	server	for	each	record,	based	on	the
record's	RecordStatus	property.

Replicable	Property

			 			

			

Sets	or	returns	a	value	that	determines	whether	a	database	or	object	in	a
database	can	be	replicated	(Microsoft	Jet	workspaces	only).

Note	Before	getting	or	setting	the	Replicable	property	on	a
Database,	TableDef,	or	QueryDef	object,	you	must	create	it	by	using
the	CreateProperty	method	and	append	it	to	the	Properties	collection
for	the	object.

Setting	and	Return	Values

The	setting	or	return	value	is	a	Text	data	type.

On	a	Database	object,	setting	this	property	to	"T"	makes	the	database
replicable.	Once	you	set	the	property	to	"T",	you	can't	change	it;	setting
the	property	to	"F"	(or	any	value	other	than	"T")	causes	an	error.

On	an	object	in	a	database,	setting	this	property	to	"T"	replicates	the
object	(and	subsequent	changes	to	the	object)	at	all	replicas	in	the
replica	set.	You	can	also	set	this	property	in	the	object's	property	sheet	in
Microsoft	Access.

Note	Microsoft	Jet	3.5	also	supports	the	Boolean	ReplicableBool
property.	Its	functionality	is	identical	to	the	Replicable	property,
except	that	it	takes	a	Boolean	value.	Setting	ReplicableBool	to	True
makes	the	object	replicable.

Remarks

Before	setting	the	Replicable	property	on	a	database,	make	a	backup
copy	of	the	database.	If	setting	the	Replicable	property	fails,	you	should
delete	the	partially	replicated	database,	make	a	new	copy	from	the
backup,	and	try	again.

When	you	set	this	property	on	a	Database	object,	Microsoft	Jet	adds
fields,	tables,	and	properties	to	objects	within	the	database.	Microsoft	Jet
uses	these	fields,	tables,	and	properties	to	synchronize	database	objects.
For	example,	all	existing	tables	have	three	new	fields	added	to	them	that
help	identify	which	records	have	changed.	The	addition	of	these	fields
and	other	objects	increase	the	size	of	your	database.

On	forms,	reports,	macros,	and	modules	defined	by	a	host	application
(such	as	Microsoft	Access),	you	set	this	property	on	the	host-defined
object	through	the	host	user	interface.	Once	set,	the	Replicable	property
will	appear	in	the	Properties	collection	for	the	Document	object
representing	the	host	object.

If	the	Replicable	property	has	already	been	set	on	an	object	using	the
Replicated	check	box	in	the	property	sheet	for	the	object,	you	cannot	set
the	Replicable	property	in	code.

When	you	create	a	new	table,	query,	form,	report,	macro,	or	module	at	a
replica,	the	object	is	considered	local	and	is	stored	only	at	that	replica.	If
you	want	users	at	other	replicas	to	be	able	to	use	the	object,	you	must
change	it	from	local	to	replicable.	Either	create	the	object	at	or	import	it
into	the	Design	Master	and	then	set	the	Replicable	property	to	"T".

The	object	on	which	you	are	setting	the	Replicable	property	might	have
already	inherited	that	property	from	another	object.	However,	the	value
set	by	the	other	object	has	no	effect	on	the	behavior	of	the	object	you

want	to	make	replicable.	You	must	explicitly	set	the	property	for	each
object.

ReplicaFilter	Property

			 			

			

Sets	or	returns	a	value	on	a	TableDef	object	within	a	partial	replica	that
indicates	which	subset	of	records	is	replicated	to	that	table	from	a	full
replica.	(Microsoft	Jet	databases	only.)

Settings	And	Return	Values

The	setting	or	return	value	is	a	String	or	Boolean	that	indicates	which
subset	of	records	is	replicated,	as	specified	in	the	following	table:

Value Description

A	string A	criteria	that	a	record	in	the	partial	replica	table	must
satisfy	in	order	to	be	replicated	from	the	full	replica.

True Replicates	all	records.
False (Default)	Doesn't	replicate	any	records.

Remarks

This	property	is	similar	to	an	SQL	WHERE	clause	(without	the	word
WHERE),	but	you	cannot	specify	subqueries,	aggregate	functions	(such
as	Count),	or	user-defined	functions	within	the	criteria.

You	can	only	synchronize	data	between	a	full	replica	and	a	partial	replica.
You	can't	synchronize	data	between	two	partial	replicas.	Also,	with	partial
replication	you	can	set	restrictions	on	which	records	are	replicated,	but
you	can't	indicate	which	fields	are	replicated.

Usually,	you	reset	a	replica	filter	when	you	want	to	replicate	a	different	set
of	records.	For	example,	when	a	sales	representative	temporarily	takes
over	another	sales	representative's	region,	the	database	application	can
temporarily	replicate	data	for	both	regions	and	then	return	to	the	previous
filter.	In	this	scenario,	the	application	resets	the	ReplicaFilter	property
and	then	repopulates	the	partial	replica.

If	your	application	changes	replica	filters,	you	should	follow	these	steps:

1.	 Use	the	Synchronize	method	to	synchronize	your	full	replica	with
the	partial	replica	in	which	the	filters	are	being	changed.

2.	 Use	the	ReplicaFilter	property	to	make	the	desired	changes	to
the	replica	filter.

3.	 Use	the	PopulatePartial	method	to	remove	all	records	from	the
partial	replica	and	transfer	all	records	from	the	full	replica	that
meet	the	new	replica	filter	criteria.

To	remove	a	filter,	set	the	ReplicaFilter	property	to	False.	If	you	remove
all	filters	and	invoke	the	PopulatePartial	method,	no	records	will	appear
in	any	replicated	tables	in	the	partial	replica.

Note	If	a	replica	filter	has	changed,	and	the	Synchronize	method	is
invoked	without	first	invoking	PopulatePartial,	a	trappable	error
occurs.

ReplicaID	Property

			 			

			

Returns	a	16-byte	value	that	uniquely	identifies	a	database	replica
(Microsoft	Jet	workspaces	only).

Return	Values

The	return	value	is	a	GUID	value	that	uniquely	identifies	the	replica	or
Design	Master.

Remarks

The	Microsoft	Jet	database	engine	automatically	generates	this	value
when	you	create	a	new	replica.

The	ReplicaID	property	of	each	replica	(and	the	Design	Master)	is	stored
in	the	MSysReplicas	system	table.

Required	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	a	Field	object	requires	a
non-Null	value	or	whether	all	the	fields	in	an	Index	object	must	have	a
value.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	a	field	can't	contain
a	Null	value.

For	an	object	not	yet	appended	to	a	collection,	this	property	is	read/write.
For	an	Index	object,	this	property	setting	is	read-only	for	objects
appended	to	Indexes	collections	in	Recordset	and	TableDef	objects.

Remarks

The	availability	of	the	Required	property	depends	on	the	object	that
contains	the	Fields	collection,	as	shown	in	the	following	table.

If	the	Fields	collection	belongs	to
a Then	Required	is

Index	object Not	supported

QueryDef	object Read-only
Recordset	object Read-only
Relation	object Not	supported
TableDef	object Read/write

For	a	Field	object,	you	can	use	the	Required	property	along	with	the
AllowZeroLength,	ValidateOnSet,	or	ValidationRule	property	to	determine
the	validity	of	the	Value	property	setting	for	that	Field	object.	If	the
Required	property	is	set	to	False,	the	field	can	contain	Null	values	as
well	as	values	that	meet	the	conditions	specified	by	the
AllowZeroLength	and	ValidationRule	property	settings.

Note	When	you	can	set	this	property	for	either	an	Index	object	or	a
Field	object,	set	it	for	the	Field	object.	The	validity	of	the	property
setting	for	a	Field	object	is	checked	before	that	of	an	Index	object.

Restartable	Property

			 			

			

Returns	a	value	that	indicates	whether	a	Recordset	object	supports	the
Requery	method,	which	re-executes	the	query	on	which	the	Recordset
object	is	based.

Return	Values

The	return	value	is	a	Boolean	data	type	that	is	True	if	the	Recordset
object	supports	the	Requery	method.	Table-type	Recordset	objects
always	return	False.

Remarks

Check	the	Restartable	property	before	using	the	Requery	method	on	a
Recordset	object.	If	the	object's	Restartable	property	is	set	to	False,
use	the	OpenRecordset	method	on	the	underlying	QueryDef	object	to	re-
execute	the	query.

ReturnsRecords	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	an	SQL	pass-through
query	to	an	external	database	returns	records	(Microsoft	Jet	workspaces
only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	(default)	if	a	pass-
through	query	returns	records.

Remarks

Not	all	SQL	pass-through	queries	to	external	databases	return	records.
For	example,	an	SQL	UPDATE	statement	updates	records	without
returning	records,	while	an	SQL	SELECT	statement	does	return	records.
If	the	query	returns	records,	set	the	ReturnsRecords	property	to	True;	if
the	query	doesn't	return	records,	set	the	ReturnsRecords	property	to
False.

Note	You	must	set	the	Connect	property	before	you	set	the
ReturnsRecords	property.

Size	Property

			 			

			

Sets	or	returns	a	value	that	indicates	the	maximum	size,	in	bytes,	of	a
Field	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	constant	that	indicates	the	maximum	size
of	a	Field	object.	For	an	object	not	yet	appended	to	the	Fields	collection,
this	property	is	read/write.	The	setting	depends	on	the	Type	property
setting	of	the	Field	object,	as	discussed	under	Remarks.

Remarks

For	fields	(other	than	Memo	type	fields)	that	contain	character	data,	the
Size	property	indicates	the	maximum	number	of	characters	that	the	field
can	hold.	For	numeric	fields,	the	Size	property	indicates	how	many	bytes
of	storage	are	required.

Use	of	the	Size	property	depends	on	the	object	that	contains	the	Fields
collection	to	which	the	Field	object	is	appended,	as	shown	in	the
following	table.

Object	appended	toUsage
Index Not	supported
QueryDef Read-only
Recordset Read-only
Relation Not	supported
TableDef Read-only

When	you	create	a	Field	object	with	a	data	type	other	than	Text,	the	Type
property	setting	automatically	determines	the	Size	property	setting;	you
don't	need	to	set	it.	For	a	Field	object	with	the	Text	data	type,	however,
you	can	set	Size	to	any	integer	up	to	the	maximum	text	size	(255	for
Microsoft	Jet	databases).	If	you	do	not	set	the	size,	the	field	will	be	as
large	as	the	database	allows.

For	Long	Binary	and	Memo	Field	objects,	Size	is	always	set	to	0.	Use
the	FieldSize	property	of	the	Field	object	to	determine	the	size	of	the
data	in	a	specific	record.	The	maximum	size	of	a	Long	Binary	or	Memo
field	is	limited	only	by	your	system	resources	or	the	maximum	size	that
the	database	allows.

Sort	Property

			 			

			

Sets	or	returns	the	sort	order	for	records	in	a	Recordset	object	(Microsoft
Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	contains	the	ORDER	BY
clause	of	an	SQL	statement	without	the	reserved	words	ORDER	BY.

Remarks

You	can	use	the	Sort	property	with	dynaset-	and	snapshot-type
Recordset	objects.

When	you	set	this	property	for	an	object,	sorting	occurs	when	a
subsequent	Recordset	object	is	created	from	that	object.	The	Sort
property	setting	overrides	any	sort	order	specified	for	a	QueryDef	object.

The	default	sort	order	is	ascending	(A	to	Z	or	0	to	100).

The	Sort	property	doesn't	apply	to	table-	or	forward-only–type
Recordset	objects.	To	sort	a	table-type	Recordset	object,	use	the	Index

property.

Note	In	many	cases,	it's	faster	to	open	a	new	Recordset	object	by
using	an	SQL	statement	that	includes	the	sorting	criteria.

Source	Property

			 			

			

Returns	the	name	of	the	object	or	application	that	originally	generated	the
error.

Return	Values

The	return	value	is	a	String	representing	the	object	or	application	that
generated	the	error.

Remarks

The	Source	property	value	is	usually	the	object's	class	name	or
programmatic	ID.	Use	the	Source	property	to	provide	your	users	with
information	when	your	code	is	unable	to	handle	an	error	generated	in	an
object	in	another	application.

For	example,	if	you	access	Microsoft	Excel	and	it	generates	a	"Division
by	zero"	error,	Microsoft	Excel	sets	Error.Number	to	the	Microsoft	Excel
code	for	that	error	and	sets	the	Source	property	to
Excel.Application.	Note	that	if	the	error	is	generated	in	another
object	called	by	Microsoft	Excel,	Microsoft	Excel	intercepts	the	error	and
still	sets	Error.Number	to	the	Microsoft	Excel	code.	However,	the	other

Error	object	properties	(including	Source)	will	retain	the	values	as	set	by
the	object	that	generated	the	error.	The	Source	property	always	contains
the	name	of	the	object	that	originally	generated	the	error.

Based	on	all	of	the	error	documentation,	you	can	write	code	that	will
handle	the	error	appropriately.	If	your	error	handler	fails,	you	can	use	the
Error	object	information	to	describe	the	error	to	your	user,	using	the
Source	property	and	the	other	Error	properties	to	give	the	user
information	about	which	object	originally	caused	the	error,	the	description
of	the	error,	and	so	forth.

Note	The	On	Error	Resume	Next	construct	may	be	preferable	to	On
Error	GoTo	when	dealing	with	errors	generated	during	access	to
other	objects.	Checking	the	Error	object	property	after	each
interaction	with	an	object	removes	ambiguity	about	which	object	your
code	was	accessing	when	the	error	occurred.	Thus,	you	can	be	sure
which	object	placed	the	error	code	in	Error.Number,	as	well	as	which
object	originally	generated	the	error	(Error.Source).

SourceField,	SourceTable	Properties

			 			

			

SourceField	—	returns	a	value	that	indicates	the	name	of	the
field	that	is	the	original	source	of	the	data	for	a	Field	object.

SourceTable	—	returns	a	value	that	indicates	the	name	of	the
table	that	is	the	original	source	of	the	data	for	a	Field	object.

Return	Values

The	return	value	is	a	String	specifying	the	name	of	the	field	or	table	that
is	the	source	of	data.

Remarks

For	a	Field	object,	use	of	the	SourceField	and	SourceTable	properties
depends	on	the	object	that	contains	the	Fields	collection	that	the	Field
object	is	appended	to,	as	shown	in	the	following	table.

Object	appended	toUsage
Index Not	supported
QueryDef Read-only

Recordset Read-only
Relation Not	supported
TableDef Read-only

These	properties	indicate	the	original	field	and	table	names	associated
with	a	Field	object.	For	example,	you	could	use	these	properties	to
determine	the	original	source	of	the	data	in	a	query	field	whose	name	is
unrelated	to	the	name	of	the	field	in	the	underlying	table.

Note	The	SourceTable	property	will	not	return	a	meaningful	table
name	if	used	on	a	Field	object	in	the	Fields	collection	of	a	table-type
Recordset	object.

SourceTableName	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	name	of	a	linked	table	or	the
name	of	a	base	table	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	specifies	a	table	name.	For	a
base	table,	the	setting	is	a	zero-length	string	("").	This	property	setting	is
read-only	for	a	base	table	and	read/write	for	a	linked	table	or	an	object
not	appended	to	a	collection.

SQL	Property

			 			

			

Sets	or	returns	the	SQL	statement	that	defines	the	query	executed	by	a
QueryDef	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	contains	an	SQL	statement.

Remarks

The	SQL	property	contains	the	SQL	statement	that	determines	how
records	are	selected,	grouped,	and	ordered	when	you	execute	the	query.
You	can	use	the	query	to	select	records	to	include	in	a	Recordset	object.
You	can	also	define	action	queries	to	modify	data	without	returning
records.

The	SQL	syntax	used	in	a	query	must	conform	to	the	SQL	dialect	of	the
query	engine,	which	is	determined	by	the	type	of	workspace.	In	a
Microsoft	Jet	workspace,	use	the	Microsoft	Jet	SQL	dialect,	unless	you
create	an	SQL	pass-through	query,	in	which	case	you	should	use	the
dialect	of	the	server.	In	an	ODBCDirect	workspace,	use	the	SQL	dialect
of	the	server.

Note	You	can	send	DAO	queries	to	a	variety	of	different	database
servers	with	ODBCDirect,	and	different	servers	will	recognize	slightly
different	dialects	of	SQL.	Therefore,	context-sensitive	Help	is	no
longer	provided	for	Microsoft	Jet	SQL,	although	online	Help	for
Microsoft	Jet	SQL	is	still	included	through	the	Help	menu.	Be	sure	to
check	the	appropriate	reference	documentation	for	the	SQL	dialect	of
your	database	server	when	using	either	ODBCDirect	connections	or
pass-through	queries	in	Microsoft	Jet-connected	client/server
applications.

If	the	SQL	statement	includes	parameters	for	the	query,	you	must	set
these	before	execution.	Until	you	reset	the	parameters,	the	same
parameter	values	are	applied	each	time	you	execute	the	query.

In	an	ODBCDirect	workspace,	you	can	also	use	the	SQL	property	to
execute	a	prepared	statement	on	the	server.	For	example,	setting	the
SQL	property	to	the	following	string	will	execute	a	prepared	statement
named	“GetData”	with	one	parameter	on	a	Microsoft	SQL	Server	back-
end.

"{call	GetData	(?)}"

In	a	Microsoft	Jet	workspace,	using	a	QueryDef	object	is	the	preferred
way	to	perform	SQL	pass-through	operations	on	Microsoft	Jet-connected
ODBC	data	sources.	By	setting	the	QueryDef	object's	Connect	property
to	an	ODBC	data	source,	you	can	use	non–Microsoft-Jet-database	SQL
in	the	query	to	be	passed	to	the	external	server.	For	example,	you	can
use	TRANSACT	SQL	statements	(with	Microsoft	SQL	Server	or	Sybase
SQL	Server	databases),	which	the	Microsoft	Jet	database	engine	would
otherwise	not	process.

Note	If	you	set	the	property	to	a	string	concatenated	with	a	non-
integer	value,	and	the	system	parameters	specify	a	non-U.S.	decimal
character	such	as	a	comma	(for	example,	strSQL	=	"PRICE	>	"
&	lngPrice,	and	lngPrice	=	125,50),	an	error	will	result	when
you	try	to	execute	the	QueryDef	object	in	a	Microsoft	Jet	database.
This	is	because	during	concatenation,	the	number	will	be	converted	to
a	string	using	your	system's	default	decimal	character,	and	Microsoft

Jet	SQL	only	accepts	U.S.	decimal	characters.

StillExecuting	Property

			 			

			

Indicates	whether	or	not	an	asynchronous	operation	(that	is,	a	method
called	with	the	dbRunAsync	option)	has	finished	executing	(ODBCDirect
workspaces	only).

Settings	And	Return	Values

The	return	value	is	a	Boolean	that	is	True	if	the	query	is	still	executing,
and	False	if	the	query	has	completed.

Remarks

Use	the	StillExecuting	property	to	determine	if	the	most	recently	called
asynchronous	Execute,	MoveLast,	OpenConnection,	or
OpenRecordset	method	(that	is,	a	method	executed	with	the
dbRunAsync	option)	is	complete.	While	the	StillExecuting	property	is
True,	any	returned	object	cannot	be	accessed.

The	following	table	shows	what	method	is	evaluated	when	you	use
StillExecuting	on	a	particular	type	of	object.

If	StillExecuting	is	used	on This	asynchronous	method	is	evaluated

Connection Execute	or	OpenConnection
QueryDef Execute
Recordset MoveLast	or	OpenRecordset

Once	the	StillExecuting	property	on	a	Connection	or	Recordset	object
returns	False,	follwing	the	OpenConnection	or	OpenRecordset	call	that
returns	the	associated	Recordset	or	Connection	object,	the	object	can
be	referenced.	So	long	as	StillExecuting	remains	True,	the	object	may
not	be	referenced,	other	than	to	read	the	StillExecuting	property.	When
you	use	the	NextRecordset	method	to	complete	processing	of	a
Recordset,	the	StillExecuting	property	is	reset	to	True	while
subsequent	result	sets	are	retrieved.

Use	the	Cancel	method	to	terminate	execution	of	a	task	in	progress.

SystemDB	Property

			 			

			

Sets	or	returns	the	path	for	the	current	location	of	the	workgroup
information	file	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	describing	the	fully	resolved	path	to
the	workgroup	information	file.

Remarks

The	Microsoft	Jet	database	engine	allows	you	to	define	a	workgroup	and
set	different	access	permissions	to	each	object	in	the	database	for	each
user	in	the	workgroup.	The	workgroup	is	defined	by	the	workgroup
information	file,	typically	called	"system.mdw".	For	users	to	gain	access
to	the	secured	objects	in	your	database,	DAO	must	have	the	location	of
this	workgroup	information	file.	The	location	can	be	identified	to	DAO
either	by	specifying	it	in	the	Windows	Registry	or	by	setting	the
SystemDB	property.	On	setup,	the	default	setting	is	simply
"system.mdw"	with	no	path.

For	this	option	to	have	any	effect,	you	must	set	the	SystemDB	property

before	your	application	initializes	the	DBEngine	object	(that	is,	before
creating	an	instance	of	any	other	DAO	object).	The	scope	of	this	setting
is	limited	to	your	application	and	can't	be	changed	without	restarting	your
application.

Table	Property

			 			

			

Indicates	the	name	of	a	Relation	object's	primary	table.	This	should	be
equal	to	the	Name	property	setting	of	a	TableDef	or	QueryDef	object
(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	evaluates	to	the	name	of	a
table	in	the	TableDefs	collection	or	query	in	the	QueryDefs	collection.	The
Table	property	setting	is	read/write	for	a	new	Relation	object	not	yet
appended	to	a	collection	and	read-only	for	an	existing	Relation	object	in
a	Relations	collection.

Remarks

Use	the	Table	property	with	the	ForeignTable	property	to	define	a
Relation	object,	which	represents	the	relationship	between	fields	in	two
tables	or	queries.	Set	the	Table	property	to	the	Name	property	setting	of
the	primary	TableDef	or	QueryDef	object,	and	set	the	ForeignTable
property	to	the	Name	property	setting	of	the	foreign	(referencing)
TableDef	or	QueryDef	object.	The	Attributes	property	determines	the
type	of	relationship	between	the	two	objects.

For	example,	if	you	had	a	list	of	valid	part	codes	(in	a	field	named
PartNo)	stored	in	a	ValidParts	table,	you	could	establish	a	one-to-many
relationship	with	an	OrderItem	table	such	that	if	a	part	code	were	entered
into	the	OrderItem	table,	it	would	have	to	already	be	in	the	ValidParts
table.	If	the	part	code	didn't	exist	in	the	ValidParts	table	and	you	had	not
set	the	Attributes	property	of	the	Relation	object	to
dbRelationDontEnforce,	a	trappable	error	would	occur.

In	this	case,	the	ValidParts	table	is	the	primary	table,	so	the	Table
property	of	the	Relation	object	would	be	set	to	ValidParts	and	the
ForeignTable	property	of	the	Relation	object	would	be	set	to	OrderItem.
The	Name	and	ForeignName	properties	of	the	Field	object	in	the
Relation	object's	Fields	collection	would	be	set	to	PartNo.

The	following	illustration	depicts	this	relation.

Transactions	Property

			 			

			

Returns	a	value	that	indicates	whether	an	object	supports	transactions.

Return	Values

The	return	value	is	a	Boolean	data	type	that	is	True	if	the	object	supports
transactions.

Remarks

In	an	ODBCDirect	workspace,	the	Transactions	property	is	available	on
Connection	and	Database	objects,	and	indicates	whether	or	not	the
ODBC	driver	you	are	using	supports	transactions.

In	a	Microsoft	Jet	workspace,	you	can	also	use	the	Transactions
property	with	dynaset-	or	table-type	Recordset	objects.	Snapshot-	and
forward-only–type	Recordset	objects	always	return	False.

If	a	dynaset-	or	table-type	Recordset	is	based	on	a	Microsoft	Jet
database	engine	table,	the	Transactions	property	is	True	and	you	can
use	transactions.	Other	database	engines	may	not	support	transactions.
For	example,	you	can't	use	transactions	in	a	dynaset-type	Recordset

object	based	on	a	Paradox	table.

Check	the	Transactions	property	before	using	the	BeginTrans	method
on	the	Recordset	object's	Workspace	object	to	make	sure	that
transactions	are	supported.	Using	the	BeginTrans,	CommitTrans,	or
Rollback	methods	on	an	unsupported	object	has	no	effect.

Type	Property

			 			

			

Sets	or	returns	a	value	that	indicates	the	operational	type	or	data	type	of
an	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	constant	that	indicates	an	operational	or
data	type.	For	a	Field	or	Property	object,	this	property	is	read/write	until
the	object	is	appended	to	a	collection	or	to	another	object,	after	which	it's
read-only.	For	a	QueryDef,	Recordset,	or	Workspace	object,	the	property
setting	is	read-only.	For	a	Parameter	object	in	a	Microsoft	Jet	workspace
the	property	is	read-only,	while	in	an	ODBCDirect	workspace	the	property
is	always	read-write.

For	a	Field,	Parameter,	or	Property	object,	the	possible	settings	and
return	values	are	described	in	the	following	table.

Constant Description
dbBigInt Big	Integer
dbBinary Binary
dbBoolean Boolean
dbByte Byte

dbChar Char
dbCurrency Currency
dbDate Date/Time
dbDecimal Decimal
dbDouble Double
dbFloat Float
dbGUID GUID
dbInteger Integer
dbLong Long
dbLongBinary Long	Binary	(OLE	Object)
dbMemo Memo
dbNumeric Numeric
dbSingle Single
dbText Text
dbTime Time
dbTimeStamp Time	Stamp
dbVarBinary VarBinary

For	a	QueryDef	object,	the	possible	settings	and	return	values	are
shown	in	the	following	table.

Constant Query	type
dbQAction Action
dbQAppend Append
dbQCompound CompounddadefCompoundQuery@jetdef35.hlp
dbQCrosstab Crosstab
dbQDDL Data-definition
dbQDelete Delete
dbQMakeTable Make-table
dbQProcedure Procedure	(ODBCDirect	workspaces	only)
dbQSelect Select
dbQSetOperation Union

dbQSPTBulk Used	with	dbQSQLPassThrough	to	specify	a	query	that
doesn't	return	records	(Microsoft	Jet	workspaces	only).

dbQSQLPassThrough Pass-through	(Microsoft	Jet	workspaces	only)
dbQUpdate Update

Note	To	create	an	SQL	pass-through	query	in	a	Microsoft	Jet
workspace,	you	don't	need	to	explicitly	set	the	Type	property	to
dbQSQLPassThrough.	The	Microsoft	Jet	database	engine
automatically	sets	this	when	you	create	a	QueryDef	object	and	set
the	Connect	property.

For	a	Recordset	object,	the	possible	settings	and	return	values	are	as
follows.

Constant Recordset	type
dbOpenTable Table	(Microsoft	Jet	workspaces	only)
dbOpenDynamic Dynamic	(ODBCDirect	workspaces	only)
dbOpenDynaset Dynaset
dbOpenSnapshot Snapshot
dbOpenForwardOnlyForward-only

For	a	Workspace	object,	the	possible	settings	and	return	values	are	as
follows.

Constant Workspace	type

dbUseJet The	Workspace	is	connected	to	the	Microsoft	Jet
database	engine.

dbUseODBC The	Workspace	is	connected	to	an	ODBC	data	source.

Remarks

When	you	append	a	new	Field,	Parameter,	or	Property	object	to	the
collection	of	an	Index,	QueryDef,	Recordset,	or	TableDef	object,	an
error	occurs	if	the	underlying	database	doesn't	support	the	data	type
specified	for	the	new	object.

Unique	Property

			 			

			

Sets	or	returns	a	value	that	indicates	whether	an	Index	object	represents
a	unique	(key)	index	for	a	table	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	the	Index	object
represents	a	unique	index.	For	an	Index	object,	this	property	setting	is
read/write	until	the	object	is	appended	to	a	collection,	after	which	it's
read-only.

Remarks

A	unique	index	consists	of	one	or	more	fields	that	logically	arrange	all
records	in	a	table	in	a	unique,	predefined	order.	If	the	index	consists	of
one	field,	values	in	that	field	must	be	unique	for	the	entire	table.	If	the
index	consists	of	more	than	one	field,	each	field	can	contain	duplicate
values,	but	each	combination	of	values	from	all	the	indexed	fields	must
be	unique.

If	both	the	Unique	and	Primary	properties	of	an	Index	object	are	set	to
True,	the	index	is	unique	and	primary:	It	uniquely	identifies	all	records	in

the	table	in	a	predefined,	logical	order.	If	the	Primary	property	is	set	to
False,	the	index	is	a	secondary	index.	Secondary	indexes	(both	key	and
nonkey)	logically	arrange	records	in	a	predefined	order	without	serving	as
an	identifier	for	records	in	the	table.

Notes

You	don't	have	to	create	indexes	for	tables,	but	in	large,
unindexed	tables,	accessing	a	specific	record	can	take	a	long	time.

Records	retrieved	from	tables	without	indexes	are	returned	in	no
particular	sequence.

The	Attributes	property	of	each	Field	object	in	the	Index	object
determines	the	order	of	records	and	consequently	determines	the
access	techniques	to	use	for	that	Index	object.

A	unique	index	helps	optimize	finding	records.

Indexes	don't	affect	the	physical	order	of	a	base	table	?	indexes
affect	only	how	the	records	are	accessed	by	the	table-type
Recordset	object	when	a	particular	index	is	chosen	or	when	the
Microsoft	Jet	database	engine	creates	Recordset	objects.

Updatable	Property

			 			

			

Returns	a	value	that	indicates	whether	you	can	change	a	DAO	object.

Return	Values

The	return	value	is	a	Boolean	data	type	that	is	True	if	the	object	can	be
changed	or	updated.	(Snapshot-	and	forward-only–type	Recordset
objects	always	return	False.)

Remarks

Depending	on	the	object,	if	the	Updatable	property	setting	is	True,	the
associated	statement	in	the	following	table	is	true.

Object Type	indicates
Connection Data	in	the	connected	database	can	be	changed.
Database The	object	can	be	changed
QueryDef The	query	definition	can	be	changed
Recordset The	records	can	be	updated
TableDef The	table	definition	can	be	changed

The	Updatable	property	setting	is	always	True	for	a	newly	created

TableDef	object	and	False	for	a	linked	TableDef	object.	A	new	TableDef
object	can	be	appended	only	to	a	database	for	which	the	current	user
has	write	permission.

Many	types	of	objects	can	contain	fields	that	can't	be	updated.	For
example,	you	can	create	a	dynaset-type	Recordset	object	in	which	only
some	fields	can	be	changed.	These	fields	can	be	fixed	or	contain	data
that	increments	automatically,	or	the	dynaset	can	result	from	a	query	that
combines	updatable	and	nonupdatable	tables.

If	the	object	contains	only	read-only	fields,	the	value	of	the	Updatable
property	is	False.	When	one	or	more	fields	are	updatable,	the	property's
value	is	True.	You	can	edit	only	the	updatable	fields.	A	trappable	error
occurs	if	you	try	to	assign	a	new	value	to	a	read-only	field.

The	Updatable	property	of	a	QueryDef	object	is	set	to	True	if	the	query
definition	can	be	updated,	even	if	the	resulting	Recordset	object	isn't
updatable.

Because	an	updatable	object	can	contain	read-only	fields,	check	the
DataUpdatable	property	of	each	field	in	the	Fields	collection	of	a
Recordset	object	before	you	edit	a	record.

UpdateOptions	Property

			 			

			

Sets	or	returns	a	value	that	indicates	how	the	WHERE	clause	is
constructed	for	each	record	during	a	batch	update,	and	whether	the
batch	update	should	use	an	UPDATE	statement	or	a	DELETE	followed
by	an	INSERT	(ODBCDirect	workspaces	only).

Settings	And	Return	Values

The	setting	or	return	value	is	a	Long	that	can	be	any	of	the	following
constants:

Constant Description

dbCriteriaKey (Default)	Uses	just	the	key	column(s)	in	the
where	clause.

dbCriteriaModValues Uses	the	key	column(s)	and	all	updated
columns	in	the	where	clause.

dbCriteriaAllCols Uses	the	key	column(s)	and	all	the	columns
in	the	where	clause.

dbCriteriaTimeStamp
Uses	just	the	timestamp	column	if	available
(will	generate	a	run-time	error	if	no
timestamp	column	is	in	the	result	set).

dbCriteriaDeleteInsert Uses	a	set	of	DELETE	and	INSERT
statements	for	each	modified	row.

dbCriteriaUpdate (Default)	Uses	an	UPDATE	statement	for
each	modified	row.

Remarks

When	a	batch-mode	Update	is	executed,	DAO	and	the	client	batch
cursor	library	create	a	series	of	SQL	UPDATE	statements	to	make	the
needed	changes.	An	SQL	WHERE	clause	is	created	for	each	update	to
isolate	the	records	that	are	marked	as	changed	by	the	RecordStatus
property.	Because	some	remote	servers	use	triggers	or	other	ways	to
enforce	referential	integrity,	is	it	often	important	to	limit	the	fields	being
updated	to	just	those	affected	by	the	change.	To	do	this,	set	the
UpdateOptions	property	to	one	of	the	constants	dbCriteriaKey,
dbCriteriaModValues,	dbCriteriaAllCols,	or	dbCriteriaTimeStamp.
This	way,	only	the	absolute	minimum	amount	of	trigger	code	is	executed.
As	a	result,	the	update	operation	is	executed	more	quickly,	and	with
fewer	potential	errors.

You	can	also	concatenate	either	of	the	constants	dbCriteriaDeleteInsert
or	dbCriteriaUpdate	to	determine	whether	to	use	a	set	of	SQL	DELETE
and	INSERT	statements	or	an	SQL	UPDATE	statement	for	each	update
when	sending	batched	modifications	back	to	the	server.	In	the	former
case,	two	separate	operations	are	required	to	update	the	record.	In	some
cases,	especially	where	the	remote	system	implements	DELETE,
INSERT,	and	UPDATE	triggers,	choosing	the	correct	UpdateOptions
property	setting	can	significantly	impact	performance.

If	you	don't	specify	any	constants,	dbCriteriaUpdate	and	dbCriteriaKey
will	be	used.

Newly	added	records	will	always	generate	INSERT	statements	and
deleted	records	will	always	generate	DELETE	statements,	so	this
property	only	applies	to	how	the	cursor	library	updates	modified	records.

UserName	Property

			 			

			

Sets	or	returns	a	value	that	represents	a	user,	a	group	of	users,	or	the
owner	of	a	Workspace	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	evaluates	to	the	name	of	a
user.	In	a	Microsoft	Jet	workspace,	this	represents	a	User	object	in	the
Users	collection	or	a	Group	object	in	the	Groups	collection.	For	Microsoft
Jet	Container	and	Document	objects,	this	property	setting	is	read/write.
For	all	Workspace	objects,	this	property	setting	is	read-only.

Remarks

Depending	on	the	type	of	object,	the	UserName	property	represents	the
following.

The	owner	of	a	Workspace	object.	

A	user	or	group	of	users	when	you	manipulate	the	access
permissions	of	a	Container	object	or	a	Document	object

(Microsoft	Jet	workspaces	only).

To	find	or	set	the	permissions	for	a	particular	user	or	group	of	users,	first
set	the	UserName	property	to	the	user	or	group	name	that	you	want	to
examine.	Then	check	the	Permissions	property	setting	to	determine	what
permissions	that	user	or	group	of	users	has,	or	set	the	Permissions
property	to	change	the	permissions.

For	a	Workspace	object,	check	the	UserName	property	setting	to
determine	the	owner	of	the	Workspace	object.	Set	the	UserName
property	to	establish	the	owner	of	the	Workspace	object	before	you
append	the	object	to	the	Workspaces	collection.

V1xNullBehavior	Property

			 			

			

Indicates	whether	zero-length	strings	("")	used	in	code	to	fill	Text	or
Memo	fields	are	converted	to	Null.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	is	True	if	zero-length	strings
are	converted	to	Null.

Remarks

This	property	applies	to	Microsoft	Jet	database	engine	version	1.x
databases	that	have	been	converted	to	Microsoft	Jet	database	engine
version	2.0	or	3.0	databases.

Note	The	Microsoft	Jet	database	engine	automatically	creates	this
property	when	it	converts	a	version	1.x	database	to	a	version	2.0	or
3.x	database.	A	2.0	database	will	retain	this	property	when	it	is
converted	to	a	3.x	database.

If	you	change	this	property	setting,	you	must	close	and	then	reopen	the
database	for	your	change	to	take	effect.

For	fastest	performance,	modify	code	that	sets	any	Text	or	Memo	fields
to	zero-length	strings	so	that	the	fields	are	set	to	Null	instead,	and
remove	the	V1xNullBehavior	property	from	the	Properties	collection.

ValidateOnSet	Property

			 			

			

Sets	or	returns	a	value	that	specifies	whether	or	not	the	value	of	a	Field
object	is	immediately	validated	when	the	object's	Value	property	is	set
(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	Boolean	that	can	be	one	of	the	following
values.

Value Description

True
The	validation	rule	specified	by	the	ValidationRule	property
setting	of	the	Field	object	is	checked	when	you	set	the	object's
Value	property.

False (Default)	Validate	when	the	record	is	updated.

Only	Field	objects	in	Recordset	objects	support	the	ValidateOnSet
property	as	read/write.

Remarks

Setting	the	ValidateOnSet	property	to	True	can	be	useful	in	a	situation
when	a	user	is	entering	records	that	include	substantial	Memo	data.

Waiting	until	the	Update	call	to	validate	the	data	can	result	in
unnecessary	time	spent	writing	the	lengthy	Memo	data	to	the	database	if
it	turns	out	that	the	data	was	invalid	anyway	because	a	validation	rule
was	broken	in	another	field.

ValidationRule	Property

			 			

			

Sets	or	returns	a	value	that	validates	the	data	in	a	field	as	it's	changed	or
added	to	a	table	(Microsoft	Jet	workspaces	only).

Settings	and	Return	Values

The	settings	or	return	values	is	a	String	that	describes	a	comparison	in
the	form	of	an	SQL	WHERE	clause	without	the	WHERE	reserved	word.
For	an	object	not	yet	appended	to	the	Fields	collection,	this	property	is
read/write.	See	Remarks	for	the	more	specific	read/write	characteristics
of	this	property.

Remarks

The	ValidationRule	property	determines	whether	or	not	a	field	contains
valid	data.	If	the	data	is	not	valid,	a	trappable	run-time	error	occurs.	The
returned	error	message	is	the	text	of	the	ValidationText	property,	if
specified,	or	the	text	of	the	expression	specified	by	ValidationRule.

For	a	Field	object,	use	of	the	ValidationRule	property	depends	on	the
object	that	contains	the	Fields	collection	to	which	the	Field	object	is
appended.

Object	appended	toUsage
Index Not	supported
QueryDef Read-only
Recordset Read-only
Relation Not	supported
TableDef Read/write

For	a	Recordset	object,	use	of	the	ValidationRule	property	is	read-only.
For	a	TableDef	object,	use	of	the	ValidationRule	property	depends	on
the	status	of	the	TableDef	object,	as	the	following	table	shows.

TableDef Usage
Base	table Read/write
Linked	tableRead-only

Validation	is	supported	only	for	databases	that	use	the	Microsoft	Jet
database	engine.

The	string	expression	specified	by	the	ValidationRule	property	of	a	Field
object	can	refer	only	to	that	Field.	The	expression	can't	refer	to	user-
defined	functions,	SQL	aggregate	functions,	or	queries.	To	set	a	Field
object's	ValidationRule	property	when	its	ValidateOnSet	property	setting
is	True,	the	expression	must	successfully	parse	(with	the	field	name	as
an	implied	operand)	and	evaluate	to	True.	If	its	ValidateOnSet	property
setting	is	False,	the	ValidationRule	property	setting	is	ignored.

The	ValidationRule	property	of	a	Recordset	or	TableDef	object	can
refer	to	multiple	fields	in	that	object.	The	restrictions	noted	earlier	in	this
topic	for	the	Field	object	apply.

For	a	table-type	Recordset	object,	the	ValidationRule	property	inherits
the	ValidationRule	property	setting	of	the	TableDef	object	that	you	use
to	create	the	table-type	Recordset	object.

For	a	TableDef	object	based	on	an	linked	table,	the	ValidationRule
property	inherits	the	ValidationRule	property	setting	of	the	underlying
base	table.	If	the	underlying	base	table	doesn't	support	validation,	the

value	of	this	property	is	a	zero-length	string	("").

Note	If	you	set	the	property	to	a	string	concatenated	with	a	non-
integer	value,	and	the	system	parameters	specify	a	non-U.S.	decimal
character	such	as	a	comma	(for	example,	strRule	=	"PRICE	>	"
&	lngPrice,	and	lngPrice	=	125,50),	an	error	will	result	when
your	code	attempts	to	validate	any	data.	This	is	because	during
concatenation,	the	number	will	be	converted	to	a	string	using	your
system's	default	decimal	character,	and	Microsoft	Jet	SQL	only
accepts	U.S.	decimal	characters.

ValidationText	Property

			 			

			

Sets	or	returns	a	value	that	specifies	the	text	of	the	message	that	your
application	displays	if	the	value	of	a	Field	object	doesn't	satisfy	the
validation	rule	specified	by	the	ValidationRule	property	setting	(Microsoft
Jet	workspaces	only).

Settings	and	Return	Values

The	setting	or	return	value	is	a	String	that	specifies	the	text	displayed	if	a
user	tries	to	enter	an	invalid	value	for	a	field.	For	an	object	not	yet
appended	to	a	collection,	this	property	is	read/write.	For	a	Recordset
object,	this	property	setting	is	read-only.	For	a	TableDef	object,	this
property	setting	is	read-only	for	a	linked	table	and	read/write	for	a	base
table.

Remarks

For	a	Field	object,	use	of	the	ValidationText	property	depends	on	the
object	that	contains	the	Fields	collection	to	which	the	Field	object	is
appended,	as	the	following	table	shows.

Object	appended	toUsage

Index Not	supported
QueryDef Read-only
Recordset Read-only
Relation Not	supported
TableDef Read/write

Value	Property

			 			

			

Sets	or	returns	the	value	of	an	object.

Settings	and	Return	Values

The	setting	or	return	value	is	a	Variant	data	type	that	evaluates	to	a	value
appropriate	for	the	data	type,	as	specified	by	the	Type	property	of	an
object.

Remarks

Generally,	the	Value	property	is	used	to	retrieve	and	alter	data	in
Recordset	objects.

The	Value	property	is	the	default	property	of	the	Field,	Parameter,	and
Property	objects.	Therefore,	you	can	set	or	return	the	value	of	one	of
these	objects	by	referring	to	them	directly	instead	of	specifying	the	Value
property.

Trying	to	set	or	return	the	Value	property	in	an	inappropriate	context	(for
example,	the	Value	property	of	a	Field	object	in	the	Fields	collection	of	a
TableDef	object)	will	cause	a	trappable	error.

Notes

In	an	ODBCDirect	workspace,	you	cannot	read	or	set	the	Value
property	of	a	Recordset	field	more	than	once	without	refreshing
the	current	record.	For	example,	to	read	and	then	set	the	Value
property,	first	read	the	property,	then	use	the	Move	0	method	to
refresh	the	current	record,	then	write	the	new	value.

When	reading	decimal	values	from	a	Microsoft	SQL	Server
database,	they	will	be	formatted	using	scientific	notation	through
a	Microsoft	Jet	workspace,	but	will	appear	as	normal	decimal
values	through	an	ODBCDirect	workspace.

Version	Property

			 			

			

Microsoft	Jet	workspace	?	On	the	DBEngine	object,	returns	the
version	of	DAO	currently	in	use.	On	the	Database	object,	returns
the	version	of	Jet	that	created	the	.mdb	file.

ODBCDirect	workspace	?	On	the	DBEngine	object,	returns	the
version	of	DAO	currently	in	use.	On	the	Database	object,	returns
the	version	of	the	ODBC	driver	currently	in	use.

Return	Values

The	return	value	is	a	String	that	evaluates	to	a	version	number,	formatted
as	follows.

Microsoft	Jet	workspace	?	represents	the	version	number	in	the
form	"major.minor".	For	example,	"3.0".	The	product	version
number	consists	of	the	version	number	(3),	a	period,	and	the
release	number	(0).

ODBCDirect	workspace	?	represents	the	DAO	version	number	in
the	form	"major.minor",	or	represents	the	ODBC	driver	version
number	in	the	form	"major.minor.build".	For	example,	the
DBEngine.Version	value	of	“3.5”	indicated	DAO	version	3.5.	A
Database	object's	Version	value	of	2.50.1032	indicates	that	the
current	instance	of	DAO	is	connected	to	ODBC	version	2.5,	build
1032.

Remarks

In	a	Microsoft	Jet	workspace,	the	Version	property	of	a	Database	object
corresponds	to	a	version	of	the	Microsoft	Jet	database	engine,	and
doesn’t	necessarily	match	the	version	number	of	the	Microsoft	product
with	which	the	database	engine	was	included.	For	example,	the	Version
property	of	a	Database	object	created	with	Microsoft	Visual	Basic	3.0	will
be	1.1,	not	3.0.

The	following	table	shows	which	version	of	the	database	engine	was
included	with	various	versions	of	Microsoft	products.

Microsoft	Jet
Version	(year
released)

Microsoft
Access

Microsoft	Visual
Basic

Microsoft
Excel

Microsoft	Visual
C++

1.0	(1992) 1.0 N/A N/A N/A
1.1	(1993) 1.1 3.0 N/A N/A
2.0	(1994) 2.0 N/A N/A N/A
2.5	(1995) N/A 4.0	(16-bit) N/A N/A
3.0	(1995) ‘95	(7.0) 4.0	(32-bit) ‘95	(7.0) 4.x
3.5	(1996) ‘97	(8.0) 5.0 ‘97	(8.0) 5.0

VisibleValue	Property

			 			

			

Returns	a	value	currently	in	the	database	that	is	newer	than	the
OriginalValue	property	as	determined	by	a	batch	update	conflict
(ODBCDirect	workspaces	only).

Return	Values

The	return	value	is	a	variant	expression.

Remarks

This	property	contains	the	value	of	the	field	that	is	currently	in	the
database	on	the	server.	During	an	optimistic	batch	update,	a	collision
may	occur	where	a	second	client	modified	the	same	field	and	record	in
between	the	time	the	first	client	retrieved	the	data	and	the	first	client's
update	attempt.	When	this	happens,	the	value	that	the	second	client	set
will	be	accessible	through	this	property.

ODBCDirect

A	technology	that	allows	you	to	access	ODBC	data	sources	directly	by
using	DAO	features	that	bypass	the	Microsoft	Jet	database	engine.

ODBC	data	source

A	term	used	to	refer	to	a	database	or	database	server	used	as	a	source
of	data.	ODBC	data	sources	are	referred	to	by	their	Data	Source	Name
(DSN).	Data	sources	can	be	created	by	using	the	Windows	Control	Panel
or	the	RegisterDatabase	method.

Microsoft	Jet	database	engine

A	database	management	system	that	retrieves	data	from	and	stores	data
in	user	and	system	databases.	The	Microsoft	Jet	database	engine	can	be
thought	of	as	a	data	manager	component	with	which	other	data	access
systems,	such	as	Microsoft	Access	and	Visual	Basic,	are	built.

Microsoft	Jet	database

A	database	created	with	the	Microsoft	Jet	database	engine.	The	file
name	extension	for	a	Microsoft	Jet	database	is	.mdb.

batch	update

A	cursor	model	for	clients	that	work	with	cursors	but	don't	hold
locks	on	the	server	or	issue	updates	by	row.	Instead,	the	client
updates	many	rows	that	are	buffered	locally,	and	then	it	issues	a
batch	update.	This	cursor	model	also	allows	the	client	to	drop	the
connection	to	the	server	and	re-establish	it	with	the	same	server	or
even	a	different	server.

To	use	batch	updating	in	DAO	3.5,	you	must	use	an	ODBCDirect
workspace,	the	DefaultCursorDriver	property	must	be	set	to
dbUseClientBatchCursor	at	the	time	the	Connection	is	opened,	and	the
Recordset	must	be	opened	with	the	OpenRecordset	method's	locktype
argument	set	to	dbOptimisticBatch.

collision

A	conflict	that	occurs	during	a	batch	update.

A	collision	occurs	when	a	client	reads	data	from	the	server	and	then
attempts	to	modify	that	data	in	a	batch	update,	but	before	the	update
attempt	is	actually	executed	another	client	changes	the	original	server
data.	In	this	situation,	the	first	client	is	attempting	to	modify	server	data
without	knowing	what	data	actually	exists	on	the	server.

replica

A	copy	of	a	database,	including	its	tables,	queries,	forms,	reports,
macros,	and	modules.	A	replica	is	a	member	of	a	replica	set	and	can	be
synchronized	with	other	replicas	in	the	set.	Changes	to	the	data	in	a
replicated	table	in	one	replica	are	sent	and	applied	to	the	other	members
in	the	replica	set.

Note	The	Design	Master	is	also	a	replica.

partial	replica

A	database	that	contains	only	a	subset	of	the	records	in	a	full	replica.
With	a	partial	replica,	you	can	set	filters	and	identify	relationships	that
define	which	subset	of	the	records	in	the	full	replica	should	be	present	in
the	database.

Microsoft	Jet	workspace

A	workspace	that	uses	the	Microsoft	Jet	database	engine	to	access	a
data	source.	The	data	source	can	be	a	Microsoft	Jet	database	file	(.mdb),
an	ODBC	database,	such	as	a	Paradox	database,	or	an	ISAM	database.

Microsoft	Jet-connected	ODBC	data	source

An	ODBC	data	source	that	is	accessed	by	using	Data	Access	Objects
(DAO)	and	the	Microsoft	Jet	database	engine.

installable	ISAM

A	driver	you	can	specify	that	allows	access	to	external	database	formats
such	as	dBASE,	Microsoft	Excel,	and	Paradox.	ISAM	is	an	acronym	for
Indexed	Sequential	Access	Method.	The	Microsoft	Jet	database	engine
installs	(loads)	these	ISAM	drivers	when	referenced	by	your	application.
The	location	of	these	drivers	is	maintained	in	the	Microsoft	Windows
Registry.

ODBCDirect	workspace

A	workspace	that	uses	ODBCDirect	to	access	an	ODBC	data	source
directly,	bypassing	the	Microsoft	Jet	database	engine.

ODBC	(Open	Database	Connectivity)

A	standard	protocol	that	permits	applications	to	connect	to	a	variety	of
external	database	servers	or	files.	ODBC	drivers	used	by	the	Microsoft
Jet	database	engine	permit	access	to	Microsoft	SQL	Server	and	several
other	external	databases.

The	ODBC	application	programming	interface	(API)	may	also	be	used	to
access	ODBC	drivers	and	the	databases	they	connect	to	without	using
the	Microsoft	Jet	database	engine.

asynchronous	query

A	type	of	query	in	which	SQL	queries	return	immediately,	even	though	the
results	are	still	pending.	This	enables	an	application	to	continue	with
other	processing	while	the	query	is	pending	completion.

object	variable

A	variable	that	contains	a	reference	to	an	object.

DDL	(Data	Definition	Language)

The	language	used	to	describe	attributes	of	a	database,	especially
tables,	fields,	indexes,	and	storage	strategy.

database	replication

The	process	of	reproducing	a	database	so	that	two	or	more	copies
(replicas)	of	the	same	database	can	stay	synchronized.	Changes	to	the
data	in	a	replicated	table	in	one	replica	are	sent	and	applied	to	the	other
replicas	in	the	replica	set.	Changes	made	to	the	design	of	the	database
in	the	Design	Master	are	sent	and	applied	to	all	replicas	in	the	set.

permission

One	or	more	attributes	that	specify	what	kind	of	access	a	user	has	to
data	or	objects	in	a	database.	For	example,	if	a	user	has	read	data
permission	for	a	table	or	query,	the	user	can	view	or	retrieve	but	not	edit
data	in	the	table	or	query.

method

A	procedure	similar	to	a	function	that	operates	on	specific	objects.

property

A	named	attribute	of	an	object.	Properties	define	object	characteristics
such	as	size,	color,	and	screen	location,	or	the	state	of	an	object,	such	as
enabled	or	disabled.

replicate

Produce	a	replica,	or	copy,	of	something	?	for	example,	a	database.

exclusive

A	type	of	access	that	protects	data	in	a	database	shared	over	a	network.
When	you	open	a	database	in	exclusive	mode,	you	prevent	others	from
opening	the	database.

one-to-one	relationship

An	association	between	two	tables	in	which:

The	primary	key	value	of	each	record	in	the	primary	table
corresponds	to	the	value	in	the	matching	field	or	fields	of	one	and
only	one	record	in	the	related	table.

The	primary	key	value	of	each	record	in	the	related	table
corresponds	to	the	value	in	the	matching	field	or	fields	of	one	and
only	one	record	in	the	primary	table.

relationship

An	association	established	between	common	fields	(columns)	in	two
tables.	A	relationship	can	be	one-to-one,	many-to-many,	or	one-to-many.

referential	integrity

Rules	that	you	set	to	establish	and	preserve	relationships	between	tables
when	you	add,	change,	or	delete	records.	Enforcing	referential	integrity
prohibits	users	from	adding	records	to	a	joined	table	for	which	there	is	no
primary	key,	changing	values	in	a	primary	table	that	would	result	in
orphaned	records	in	a	joined	table,	and	deleting	records	from	a	primary
table	when	there	are	matching	related	records.

If	you	select	the	dbRelationDeleteCascade	or
dbRelationUpdateCascade	option	for	a	relationship,	the	Microsoft	Jet
database	engine	allows	changes	and	deletions	but	changes	or	deletes
related	records	to	make	sure	the	rules	are	still	enforced.

linked	table

A	table	in	another	database	linked	to	a	Microsoft	Jet	database.	Data	for
linked	tables	remains	in	the	external	database	where	it	can	be
manipulated	by	other	applications.	(Formerly	known	as	attached	tables.)

server-side	cursor

Cursors	that	reside	on	the	server,	as	opposed	to	residing	on	the	client
computer.	While	client-side	cursors	copy	the	cursor	to	the	workstation,
server-side	cursors	use	the	resources	of	the	database	server	to	maintain
the	cursors.

replicated	database

A	database	to	which	additional	tables,	fields,	and	properties	have	been
added	to	record	information	about	changes	to	data	and	the	design	of
replicated	objects	in	the	database.

action	query

A	query	that	copies	or	changes	data.	Action	queries	include	append,
delete,	make-table,	and	update	queries.	Delete	and	update	queries
change	existing	data;	append	and	make-table	queries	copy	existing	data.
In	contrast,	select	queries	return	data	records.	An	SQL	pass-through
query	may	also	be	an	action	query.

append	query

An	action	query	that	adds	new	records	to	the	end	of	an	existing	table	or
query.	Append	queries	don't	return	records	(rows).

compound	query

A	query	that	is	composed	of	at	least	one	action	query	(a	query	that
copies	or	changes	data)	and	at	least	one	select	query	(a	query	that
returns	a	Recordset	without	changing	data).	In	DAO,	a	compound	query
is	created	by	putting	two	or	more	SQL	statements	(separated	by
semicolons)	in	the	SQL	property	of	a	QueryDef	object.

crosstab	query

A	query	that	calculates	a	sum,	average,	count,	or	other	type	of	total	on
records,	and	then	groups	the	result	by	two	types	of	information	?	one
down	the	left	side	of	a	grid	(row	headings)	and	the	other	across	the	top
(column	headings).	For	example,	the	Quarterly	Orders	by	Product	query
in	the	Northwind	sample	database	is	a	crosstab	query.

data-definition	query

An	SQL-specific	query	that	can	create,	alter,	or	delete	a	table,	or	create
or	delete	an	index	in	a	database.

delete	query

An	action	query	that	deletes	a	set	of	rows	that	match	the	criteria	you
specify.	A	delete	query	doesn’t	return	rows.

make-table	query

An	action	query	that	creates	a	new	table	from	the	Recordset	object	of	an
existing	query.

select	query

A	query	that	asks	a	question	about	the	data	stored	in	your	tables	and
returns	a	Recordset	object	without	changing	the	data.	Once	the
Recordset	data	is	retrieved,	you	can	examine	and	make	changes	to	the
data	in	the	underlying	tables.	In	contrast,	action	queries	can	make
changes	to	your	data,	but	they	don't	return	data	records.

pass-through	query

An	SQL-specific	query	you	use	to	send	commands	directly	to	a	SQL
database	server	(such	as	Microsoft	SQL	Server).	With	pass-through
queries,	you	work	with	the	tables	on	the	server	instead	of	linking	them.
Pass-through	queries	are	used	to	execute	SQL	queries	and	system-
specific	commands	written	by	using	SQL	dialects	known	only	to	the
server.

A	pass-through	query	may	or	may	not	return	records.	If	it	does,	they	are
always	returned	in	a	snapshot.

update	query

An	action	query	that	changes	a	set	of	records	according	to	criteria	you
specify.	An	update	query	doesn’t	return	any	records.

inconsistent

The	state	of	a	multiple-table	Recordset	object	that	enables	you	to	update
all	fields	(columns).	For	example,	in	a	Recordset	created	by	joining	two
tables	in	a	one-to-many	join	(as	in	a	Customers	and	Orders	table),	you
can	update	Orders.CustomerID	so	that	it	doesn’t	match
Customers.CustomerID,	unless	referential	integrity	disables	the
update.

consistent

The	state	of	a	multiple-table	Recordset	object	that	allows	you	to	perform
only	updates	that	result	in	a	consistent	view	of	the	data.	For	example,	in
a	Recordset	that	is	a	join	of	two	or	more	tables	(a	one-to-many
relationship),	a	consistent	query	would	not	allow	you	to	set	the	many-side
key	to	a	value	that	isn’t	in	the	one-side	table.

ODBC	Driver	Manager

An	application	that	manages	connections	between	ODBC-enabled	data
sources	and	the	drivers	used	to	access	them.

connection	string

A	string	used	to	define	the	source	of	data	for	an	external	database.	The
connection	string	is	usually	assigned	to	the	Connect	property	of	a
QueryDef,	TableDef,	Connection,	or	Database	object	or	as	an
argument	to	the	OpenDatabase	method.

dynaset

A	type	of	Recordset	object	that	returns	a	dynamic	set	of	pointers	to	live
database	data.	Like	a	table-	or	a	snapshot-type	Recordset,	a	dynaset
returns	data	in	records	(rows)	and	fields	(columns).	Unlike	a	table-type
Recordset,	a	dynaset-type	Recordset	can	be	the	result	of	a	query	that
joins	two	or	more	tables.	The	records	in	a	dynaset-type	Recordset	object
are	updatable	if	the	Updatable	property	of	the	Recordset	is	True,	the
Field	being	changed	is	updatable,	and	the	data	page	containing	the
current	record	isn’t	locked.	The	data	page	is	locked	when	the	Update
method	is	used	(when	the	LockEdits	property	is	False),	or	the	Edit
method	is	used	(when	the	LockEdits	property	is	True).

SQL	statement/string

An	expression	that	defines	a	Structured	Query	Language	(SQL)
command,	such	as	SELECT,	UPDATE,	or	DELETE,	and	may	include
clauses	such	as	WHERE	and	ORDER	BY.	SQL	strings	and	statements
are	typically	used	in	queries,	Recordset	objects,	and	aggregate	functions
but	can	also	be	used	to	create	or	modify	a	database	structure.

DAO	object

An	object	that	is	defined	by	the	Data	Access	Objects	(DAO)	library.	You
can	use	DAO	objects,	such	as	the	Database,	TableDef,	Recordset,	and
QueryDef	objects,	to	represent	objects	that	are	used	to	organize	and
manipulate	data,	such	as	tables	and	queries,	in	code.

group

A	collection	of	user	accounts	in	a	Workgroup	object,	identified	by	group
name	and	personal	identifier	(PID).	Permissions	assigned	to	a	group
apply	to	all	users	in	the	group.

parameter	query

A	query	that	requires	you	to	provide	one	or	more	criteria	values,	such	as
Redmond	for	City,	before	the	query	is	run.	A	parameter	query	isn’t,	strictly
speaking,	a	separate	kind	of	query;	rather,	it	extends	the	flexibility	of
other	queries.

base	table

A	table	in	a	Microsoft	Jet	database.	A	table	defines	the	structure	of	a
relational	database,	and	is	an	object	that	stores	data	in	records	and
fields.	You	can	manipulate	the	structure	of	a	base	table	by	using	the	DAO
objects	or	data	definition	SQL	statements,	and	you	can	modify	data	in	a
base	table	by	using	Recordset	objects	or	action	queries.

user	account

An	account	identified	by	a	user	name	and	personal	identifier	(PID)	that	is
created	to	manage	access	to	database	objects	in	a	Microsoft	Jet
database	Workgroup	object.

session

A	session	delineates	a	sequence	of	operations	performed	by	the
Microsoft	Jet	database	engine.	A	session	begins	when	a	user	logs	on
and	ends	when	a	user	logs	off.	All	operations	performed	during	a	session
form	one	transaction	scope	and	are	subject	to	permissions	determined	by
the	logon	user	name	and	password.	Sessions	are	implemented	as
Workspace	objects	by	DAO.

persistent	object

An	object	stored	in	the	database;	for	example,	a	database	table	or
QueryDef	object.	Dynaset-type	or	snapshot-type	Recordset	objects	are
not	considered	persistent	objects	because	they	are	created	in	memory	as
needed.

transaction

A	series	of	changes	made	to	a	database's	data	and	schema.	Mark	the
beginning	of	a	transaction	with	the	BeginTrans	statement,	commit	the
transaction	by	using	the	CommitTrans	statement,	and	undo	all	your
changes	since	BeginTrans	by	using	the	Rollback	statement.

Transactions	are	optional	and	can	be	nested	up	to	five	levels.
Transactions	increase	the	speed	of	operations	that	change	data	and
enable	you	to	reverse	changes	easily.

Transactions	are	global	to	the	referenced	database	object's	Workspace.

Data	Access	Objects	(DAO)

A	programming	interface	to	access	and	manipulate	database	objects.

dynamic	cursor

A	dynamic	set	of	rows	that	you	can	use	to	add,	change,	or	delete	rows
from	an	underlying	database	table	or	tables.	A	dynamic	cursor	can
contain	columns	from	one	or	more	tables	in	a	database.	Membership	is
not	fixed.

Dynaset-Type	Recordset	Object

			 			

			 			

			

A	dynaset-type	Recordset	object	is	a	dynamic	set	of	records	that	can
contain	fields	from	one	or	more	tables	or	queries	in	a	database	and	may
be	updatable.	In	an	ODBCDirect	database,	a	dynaset-type	Recordset
object	corresponds	to	an	ODBC	keyset	cursor.

Remarks

A	dynaset-type	Recordset	object	is	a	type	of	Recordset	object	you	can
use	to	manipulate	data	in	an	underlying	database	table	or	tables.

It	differs	from	a	snapshot-type	Recordset	object	because	the	dynaset
stores	only	the	primary	key	for	each	record,	instead	of	actual	data.	As	a
result,	a	dynaset	is	updated	with	changes	made	to	the	source	data,	while
the	snapshot	is	not.	Like	the	table-type	Recordset	object,	a	dynaset

retrieves	the	full	record	only	when	it's	needed	for	editing	or	display
purposes.

To	create	a	dynaset-type	Recordset	object,	use	the	OpenRecordset
method	on	an	open	database,	against	another	dynaset-	or	snapshot-type
Recordset	object,	on	a	QueryDef	object,	or	on	a	TableDef	object.
(Opening	Recordset	objects	on	other	Recordset	objects	or	TableDef
objects	is	available	only	in	Microsoft	Jet	workspaces.)

If	you	request	a	dynaset-type	Recordset	object	and	the	Microsoft	Jet
database	engine	can't	gain	read/write	access	to	the	records,	the
Microsoft	Jet	database	engine	may	create	a	read-only,	dynaset-type
Recordset	object.

As	users	update	data,	the	base	tables	reflects	these	changes.	Therefore,
current	data	is	available	to	your	application	when	you	reposition	the
current	record.	In	a	multiuser	database,	more	than	one	user	can	open	a
dynaset-type	Recordset	object	referring	to	the	same	records.	Because	a
dynaset-type	Recordset	object	is	dynamic,	when	one	user	changes	a
record,	other	users	have	immediate	access	to	the	changed	data.
However,	if	one	user	adds	a	record,	other	users	won’t	see	the	new	record
until	they	use	the	Requery	method	on	the	Recordset	object.	If	a	user
deletes	a	record,	other	users	are	notified	when	they	try	to	access	it.

Records	added	to	the	database	don't	become	a	part	of	your	dynaset-type
Recordset	object	unless	you	add	them	by	using	the	AddNew	and	Update
methods.	For	example,	if	you	use	an	action	query	containing	an	INSERT
INTO	SQL	statement	to	add	records,	the	new	records	aren't	included	in
your	dynaset-type	Recordset	object	until	you	either	use	the	Requery
method	or	you	rebuild	your	Recordset	object	using	the	OpenRecordset
method.

To	maintain	data	integrity,	the	Microsoft	Jet	database	engine	can	lock
dynaset-	and	table-type	Recordset	objects	during	Edit	(pessimistic
locking)	or	Update	operations	(optimistic	locking)	so	that	only	one	user
can	update	a	particular	record	at	a	time.	When	the	Microsoft	Jet
database	engine	locks	a	record,	it	locks	the	entire	2K	page	containing	the
record.

You	can	also	use	optimistic	and	pessimistic	locking	with	non-ODBC
tables.	When	you	access	external	tables	using	ODBC	through	a
Microsoft	Jet	workspace,	you	should	always	use	optimistic	locking.	The
LockEdits	property	and	the	lockedits	parameter	of	the	OpenRecordset
method	determine	the	locking	conditions	during	editing.

Not	all	fields	can	be	updated	in	all	dynaset-type	Recordset	objects.	To
determine	whether	you	can	update	a	particular	field,	check	the
DataUpdatable	property	setting	of	the	Field	object.

A	dynaset-type	Recordset	object	may	not	be	updatable	if:

There	isn't	a	unique	index	on	the	ODBC	or	Paradox	table	or
tables.

The	data	page	is	locked	by	another	user.

The	record	has	changed	since	you	last	read	it.

The	user	doesn't	have	permission.

One	or	more	of	the	tables	or	fields	are	read-only.

The	database	is	opened	as	read-only.

The	Recordset	object	was	either	created	from	multiple	tables
without	a	JOIN	statement	or	the	query	was	too	complex.

The	order	of	a	dynaset-type	Recordset	object	or	Recordset	data	doesn't
necessarily	follow	any	specific	sequence.	If	you	need	to	order	your	data,
use	an	SQL	statement	with	an	ORDER	BY	clause	to	create	the

Recordset	object.	You	can	also	use	a	WHERE	clause	to	filter	the
records	so	that	only	certain	records	are	added	to	the	Recordset	object.
Using	SQL	statements	in	this	way	to	select	a	subset	of	records	and	order
them	usually	results	in	faster	access	to	your	data	than	using	the	Filter
and	Sort	properties.

Long	data	type

A	fundamental	data	type	that	holds	long-integer	numbers.	A	Long
variable	is	stored	as	a	32-bit	(4-byte)	number	ranging	in	value	from
-2,147,483,648	to	2,147,483,647.

HelpContext,	HelpFile	Properties

			 			

			

HelpContext—returns	a	context	ID,	as	a	Long	variable,	for	a
topic	in	a	Microsoft	Windows	Help	file.

HelpFile—returns	a	String	that	is	a	fully	qualified	path	to	the
Help	file.

Remarks

If	you	specify	a	Microsoft	Windows	Help	file	in	HelpFile,	you	can	use	the
HelpContext	property	to	automatically	display	the	Help	topic	it	identifies.

Note	You	should	write	procedures	in	your	application	to	handle	typical
errors.	When	programming	with	an	object,	you	can	use	the	Help
supplied	by	the	object's	Help	file	to	improve	the	quality	of	your	error
handling,	or	to	display	a	meaningful	message	to	your	user	if	the	error
is	not	recoverable.

current	record

The	record	in	a	Recordset	object	that	you	can	use	to	modify	or	examine
data.	Use	the	Move	methods	to	reposition	the	current	record	in	a
recordset.	Use	the	Find	methods	(with	a	dynaset-	or	snapshot-type
Recordset	object)	or	the	Seek	method	(with	a	table-type	Recordset
object)	to	change	the	current	record	position	according	to	specific	criteria.

Only	one	record	in	a	Recordset	can	be	the	current	record;	however,	a
Recordset	may	have	no	current	record.	For	example,	after	a	dynaset-
type	Recordset	record	has	been	deleted,	or	when	a	Recordset	has	no
records,	the	current	record	is	undefined.	In	this	case,	operations	that
refer	to	the	current	record	result	in	a	trappable	error.

data	type

The	characteristics	of	a	variable	that	determine	what	kind	of	data	the
variable	can	hold.	Data	types	include	Big	Integer,	Binary,	Byte,
Boolean,	Char,	Currency,	Date,	Decimal,	Double,	Float,	GUID,
Integer,	Long,	Long	Binary	(OLE	Object),	Memo,	Numeric,	Single,
String,	Text,	Time,	TimeStamp,	VarBinary,	Variant	(default),	user-
defined	types	(created	with	the	Type	statement),	and	object	data	types,
which	include	host-defined	object	data	types	and	DAO	object	types.

OLE	Object	data	type

A	field	data	type	you	use	for	objects	created	in	other	applications	that	can
be	linked	or	embedded	in	a	Microsoft	Jet	database.	For	example,	you
could	use	an	OLE	Object	field	to	store	a	collection	of	pictures.

Memo	data	type

A	field	data	type.	Such	fields	can	contain	up	to	1.2	GB	of	text	data.

forward-only	cursor

A	result	set	where	the	current	position	can	only	move	forward	by	a
specified	number	of	records,	or	to	the	very	last	record.	The	current
position	cannot	be	moved	back	to	the	beginning	of	the	result	set	or	to
previous	records.	The	cursor	membership,	order,	and	values	are
generally	fixed	when	the	cursor	is	opened.	If	other	users	update,	delete,
or	insert	rows,	the	cursor	doesn't	reflect	these	changes	until	you	close
and	reopen	it.

secure	workgroup

A	Microsoft	Jet	database	Workgroup	object	to	which	users	log	on	with	a
user	name	and	password	and	in	which	access	to	database	objects	is
restricted	according	to	permissions	specified	for	user	accounts	and
groups.

Null

A	value	that	indicates	missing	or	unknown	data.	Null	values	can	be
entered	in	fields	for	which	information	is	unknown	and	in	expressions	and
queries.	In	Visual	Basic,	the	Null	keyword	indicates	a	Null	value.	Some
fields,	such	as	those	defined	as	containing	the	primary	key,	can’t	contain
Null	values.

join

A	database	operation	that	combines	some	or	all	records	from	two	or
more	tables,	such	as	an	equi-join,	outer	join,	or	self-join.	Generally,	a	join
refers	to	an	association	between	a	field	in	one	table	and	a	field	of	the
same	data	type	in	another	table.	You	create	a	join	with	an	SQL
statement.

When	you	define	a	relationship	between	two	tables,	you	create	a	join	by
specifying	the	primary	and	foreign	table	fields.	When	you	add	a	table	to	a
query,	you	need	to	create	a	join	between	appropriate	fields	in	the	SQL
statement	that	defines	the	query.

primary	key

One	or	more	fields	whose	value	or	values	uniquely	identify	each	record	in
a	table.	In	a	relationship,	a	primary	key	is	used	to	refer	to	specific	records
in	one	table	from	another	table.	A	primary	key	is	called	a	foreign	key
when	it	is	referred	to	from	another	table.	You	can	have	only	one	primary
key.	An	Employees	table,	for	example,	could	use	the	social	security
number	for	the	primary	key.

foreign	key

One	or	more	table	fields	that	refer	to	the	primary	key	field	or	fields	in
another	table.	A	foreign	key	indicates	how	the	tables	are	related	?	the
data	in	the	foreign	key	and	primary	key	fields	must	match.	For	example,	a
list	of	valid	part	numbers	would	contain	a	foreign	key	to	an	inventory	table
containing	references	to	valid	part	numbers.	Used	when	establishing
referential	integrity	for	a	database.

cascading	update

For	relationships	enforcing	referential	integrity	between	tables,	an	option
that	causes	a	change	to	the	primary	key	in	a	record	in	the	primary	table
to	automatically	update	the	foreign	key	in	all	related	records	in	the	related
foreign	table	or	tables.

For	example,	suppose	you	establish	a	relationship	between	a	Customers
(primary)	table	and	an	Orders	(foreign)	table	with	the	cascading	update
option	enabled.	When	the	primary	key	in	a	record	in	the	Customers	table
is	changed,	all	orders	associated	with	that	customer	would	also	be
changed	in	the	foreign	Orders	table.

cascading	delete

For	relationships	that	enforce	referential	integrity	between	tables,	an
option	that	causes	the	deletion	of	a	record	from	the	primary	table	to
automatically	delete	all	related	records	in	the	related	foreign	table	or
tables.

For	example,	suppose	you	establish	a	relationship	between	a	Customers
(primary)	table	and	an	Orders	(foreign)	table	with	the	cascading	delete
option	enabled.	When	a	record	in	the	Customers	table	is	deleted,	all
orders	associated	with	that	customer	would	also	be	deleted	in	the	foreign
Orders	table.

String	data	type

A	fundamental	data	type	that	holds	character	information.	A	String
variable	is	either	fixed-length	or	variable-length	and	contains	one
character	per	byte.	Fixed-length	strings	are	declared	to	be	a	specific
length	and	can	contain	1	to	approximately	64K	(2^16)	characters.
Variable-length	strings	can	be	any	length	up	to	2	billion	(2^31)	characters
(approximately	64K	[2^16]	characters	for	Microsoft	Windows	version	3.1
and	earlier),	less	a	small	amount	of	storage	overhead.

Integer	data	type

A	fundamental	data	type	that	holds	integer	numbers.	An	Integer	variable
is	stored	as	a	16-bit	(2-byte)	number	ranging	in	value	from	-32,768	to
32,767.

Variant	data	type

A	special	data	type	that	can	contain	numeric,	string,	or	date	data	as	well
as	the	special	values	Empty	and	Null.	The	VarType	function	defines	how
the	data	in	a	Variant	is	treated.	All	variables	become	variant	types	if	not
explicitly	declared	as	some	other	type.

Boolean	data	type

A	True/False	or	yes/no	value.	Boolean	values	are	usually	stored	in	Bit
fields	in	a	Microsoft	Jet	database;	however,	some	databases	don't
support	this	data	type	directly.

zero-length	string

A	string	containing	no	characters	("").	The	Len	function	of	a	zero-length
string	returns	0.

query

A	formalized	instruction	to	a	database	to	either	return	a	set	of	records	or
perform	a	specified	action	on	a	set	of	records	as	specified	in	the	query.
For	example,	the	following	SQL	query	statement	returns	records:

SELECT	CompanyName	FROM	Publishers	WHERE	Region	=	'NY'

You	can	create	and	run	select,	action,	crosstab,	parameter,	and	SQL-
specific	queries.

record

A	set	of	related	data	about	a	person,	place,	event,	or	some	other	item.
Table	data	is	stored	in	records	(rows)	in	the	database.	Each	record	is
composed	of	a	set	of	related	fields	(columns)	?	each	field	defining	one
attribute	of	information	for	the	record.	Taken	together,	a	record	defines
one	specific	unit	of	retrievable	information	in	a	database.

field

A	category	of	information	stored	in	a	table	in	a	database	?	a	column	of
data.	An	element	of	a	database	table	that	contains	a	specific	item	of
information,	such	as	last	name.

keyset	cursor

A	set	of	rows	that	you	can	use	to	add,	change,	or	delete	rows	from	an
underlying	database	table	or	tables.	Movement	within	the	keyset	is
unrestricted.	A	keyset	cursor	can	contain	columns	from	one	or	more
tables	in	a	database.	Membership	is	fixed.

static	cursor

A	result	set	where	the	membership,	order,	and	values	are	generally	fixed
when	the	cursor	is	opened.	If	other	users	update,	delete,	or	insert	rows,
the	cursor	doesn't	reflect	these	changes	until	you	close	and	reopen	it.

scope

The	attribute	of	a	variable	or	procedure	that	determines	which	sections	of
which	modules	recognize	it.	There	are	three	levels	of	scope:	public,
module,	and	procedure.	Variables	that	you	declare	with	Public	can	be
accessed	by	any	module,	while	variables	that	you	declare	in	a	specific
module	can	be	used	only	within	that	module.	Also,	variables	that	you
declare	in	a	Sub	or	Function	procedure	can	be	used	only	in	that
particular	procedure.

TEMP

A	TEMP	environment	variable	is	set	by	your	autoexec.bat	file	when	you
start	your	system.	Generally,	TEMP	points	to	an	area	on	your	hard	disk
used	by	Microsoft	Windows	and	other	programs,	like	the	Microsoft	Jet
database	engine,	to	store	information	that	doesn't	need	to	be	saved	after
you	shut	down	your	system.	For	example,	the	following	line	in	your
autoexec.bat	file	points	the	TEMP	environment	variable	to	the
D:\TempArea	folder:

SET	TEMP=D:\TempArea

primary	table

The	"one"	side	of	two	related	tables	in	a	one-to-many	relationship	with	a
foreign	table.	Generally,	a	primary	key	table	is	used	to	establish	or
enforce	referential	integrity.

foreign	table

A	table	that	provides	a	foreign	key	to	another	table	in	the	database.
Generally,	you	use	a	foreign	table	to	establish	or	enforce	referential
integrity.	The	foreign	table	is	usually	on	the	"many"	side	of	a	one-to-many
relationship.	An	example	of	a	foreign	table	is	a	table	of	customer	orders.

one-to-many	relationship

An	association	between	two	tables	in	which:

The	primary	key	value	of	each	record	in	the	primary	table
corresponds	to	the	value	in	the	matching	field	or	fields	of	many
records	in	the	related	table.

The	primary	key	value	of	each	record	in	the	related	table
corresponds	to	the	value	in	the	matching	field	or	fields	of	one	and
only	one	record	in	the	primary	table.

left	join

A	left	outer	join	includes	all	of	the	records	from	the	first	(left)	of	two	tables,
even	if	there	are	no	matching	values	for	records	in	the	second	(right)
table.

right	join

A	right	outer	join	includes	all	of	the	records	from	the	second	(right)	of	two
tables,	even	if	there	are	no	matching	values	for	records	in	the	first	(left)
table.

For	example,	you	could	use	LEFT	JOIN	with	the	Departments	(left)	and
Employees	(right)	tables	to	select	all	departments,	including	those	that
have	no	employees	assigned	to	them.	To	select	all	employees,	including
those	who	aren't	assigned	to	a	department,	you	would	use	RIGHT	JOIN.

index

A	dynamic	cross-reference	of	one	or	more	table	data	fields	(columns)	that
permits	faster	retrieval	of	specific	records	from	a	table.	As	records	are
added,	changed,	or	deleted,	the	database	management	system
automatically	updates	the	index	to	reflect	the	changes.

When	used	with	a	table-type	Recordset	object,	the	current	index
determines	the	order	in	which	data	records	are	returned	to	the
Recordset.	A	table	may	have	several	indexes	defined	for	its	data.

A	DAO	Index	object	represents	an	index	for	a	TableDef	object.

locked

The	condition	of	a	data	page,	Recordset	object,	or	Database	object	that
makes	it	read-only	to	all	users	except	the	one	who	is	currently	entering
data	in	it.

page

A	portion	of	the	database	in	which	record	data	is	stored.	Depending	on
the	size	of	the	records,	a	page	may	contain	more	than	one	record.	In
Microsoft	Jet	databases	(.mdb),	a	page	is	2048	(2K)	bytes	in	length.

pessimistic

A	type	of	locking	in	which	the	page	containing	one	or	more	records,
including	the	record	being	edited,	is	unavailable	to	other	users	when	you
use	the	Edit	method,	and	remains	unavailable	until	you	use	the	Update
method.	Pessimistic	locking	is	enabled	when	the	LockEdits	property	of
the	Recordset	object	is	set	to	True.

optimistic

A	type	of	locking	in	which	the	data	page	containing	one	or	more	records,
including	the	record	being	edited,	is	unavailable	to	other	users	only	while
the	record	is	being	updated	by	the	Update	method,	but	is	available
between	the	Edit	and	Update	methods.	Optimistic	locking	is	used	when
accessing	ODBC	databases	or	when	the	LockEdits	property	of	the
Recordset	object	is	set	to	False.

default	workspace

The	Workspace	object	that	DAO	automatically	establishes	when	your
application	first	references	any	DAO	object.	This	Workspace	is
referenced	by	DBEngine.Workspaces(0)	or	simply	Workspaces(0).

sort	order

A	sequencing	principle	used	to	order	data,	alphabetically	or	numerically.
The	sort	order	can	be	either	ascending	or	descending.

bookmark

A	property	of	the	Recordset	object	that	contains	a	binary	string
identifying	the	current	record.	If	you	assign	the	Bookmark	value	to	a
variable	and	then	move	to	another	record,	you	can	make	the	earlier
record	current	again	by	setting	the	Bookmark	property	to	that	string
variable.

collection

An	object	that	contains	a	set	of	related	objects.	An	object's	position	in	the
collection	can	change	whenever	a	change	occurs	in	the	collection;
therefore,	the	position	of	any	specific	object	in	the	collection	may	vary.

string	expression

Any	expression	that	evaluates	to	a	sequence	of	contiguous	characters.
Elements	of	the	expression	can	include	a	function	that	returns	a	string,	a
string	literal,	a	string	constant,	a	string	variable,	a	string	Variant,	or	a
function	that	returns	a	string	Variant	(VarType	8).

Long	Binary	data	type

A	type	of	field	that	can	hold	1.2	GB	of	data.	Long	Binary	fields	can
contain	any	type	of	binary	data.	(Also	known	as	an	OLE	Object	data	type
in	Microsoft	Access).

current	transaction

All	changes	made	to	a	Recordset	object	after	you	use	the	last
BeginTrans	method	and	before	you	use	the	Rollback	or	CommitTrans
method.

update

The	process	that	saves	changes	to	data	in	a	record.	Until	the	record	is
saved,	changes	are	stored	in	a	temporary	record	called	the	copy	buffer.
The	UPDATE	clause	in	an	SQL	statement	changes	data	values	in	one	or
more	records	(rows)	in	a	database	table.

forward-only	–	type	Recordset

A	Recordset	object	in	which	records	can	be	searched	only	from
beginning	to	end;	the	current	record	position	can't	be	moved	back	to	the
first	record.	Forward-only	–	type	recordsets	reduce	processing	overhead
on	remote	databases.	For	example,	you	can	use	a	forward-only	–	type
Recordset	on	a	linked	remote	table	to	quickly	process	data	in	one	pass,
such	as	when	you’re	building	a	customized	report.

personal	identifier	(PID)

A	case-sensitive	alphanumeric	string	4-20	characters	long	that	the
Microsoft	Jet	database	engine	uses	in	combination	with	the	account
name	to	identify	a	user	or	group	in	a	Workgroup	object.	You	provide	the
PID	and	the	account	name	when	you	create	a	new	user	or	group.

replicated	object

A	table,	query,	form,	report,	macro,	or	module	that	is	in	all	replicas	in	the
replica	set.	You	can	change	the	replicated	object	only	at	the	Design
Master,	and	these	changes	are	dispersed	to	other	replicas	in	the	replica
set	during	a	synchronization.

local	object

A	table,	query,	form,	report,	macro,	or	module	that	remains	in	the	replica
where	it	was	created.	Neither	the	object	nor	changes	to	the	object	are
dispersed	to	other	members	in	the	replica	set.

ASCII	Character	Set

American	Standard	Code	for	Information	Interchange	(ASCII)	7-bit
character	set	widely	used	to	represent	letters	and	symbols	found	on	a
standard	U.S.	keyboard.	The	ASCII	character	set	is	the	same	as	the	first
128	characters	(0	?	127)	in	the	ANSI	character	set.

copy	buffer

A	location	created	by	the	Microsoft	Jet	database	engine	for	the	contents
of	a	record	that	is	open	for	editing.	The	Edit	method	copies	the	current
record	to	the	copy	buffer;	the	AddNew	method	clears	the	buffer	for	a	new
record	and	sets	the	default	values;	and	the	Update	method	saves	the
data	from	the	copy	buffer	to	the	database,	replacing	the	current	record	or
inserting	the	new	record.	Any	statement	that	resets	or	moves	the	current
record	pointer	discards	the	copy	buffer.	For	example,	using	the
MoveNext	method	or	changing	the	Index	property	of	a	table	would
discard	the	contents	of	the	copy	buffer.

array

A	variable	that	contains	a	finite	number	of	elements	that	have	a	common
name	and	data	type.	Each	element	of	an	array	is	identified	by	a	unique
index	number.	Changes	made	to	one	element	of	an	array	do	not	affect
the	other	elements.

run-time	error

An	error	that	occurs	when	code	is	running.	A	run-time	error	results	when
a	statement	attempts	an	invalid	operation.

replica	set

Replicas	that	share	the	same	database	design	and	unique	replica	set
identifier.	Synchronization	occurs	between	replica	set	members.

current	index

For	an	indexed	table-type	Recordset	object,	the	index	most	recently	set
with	the	Index	property.	This	index	is	the	basis	for	ordering	records	in	a
table-type	Recordset,	and	is	used	by	the	Seek	method	to	locate	records.
A	Recordset	object	can	have	more	than	one	index	but	can	use	only	one
index	at	a	time	(although	a	TableDef	object	may	have	several	indexes
defined	on	it).	The	Microsoft	Jet	database	engine	may	use	more	than	one
index	to	evaluate	a	query.

case-sensitive

Capable	of	distinguishing	between	uppercase	and	lowercase	letters.	A
case-sensitive	search	finds	only	text	that	is	an	exact	match	of	uppercase
and	lowercase	letters.	Such	a	search	would,	for	instance,	treat
“ZeroLengthStr”	and	“zerolengthstr”	as	different.	Microsoft	Jet	database
operations	are	not	case-sensitive.	However,	case	sensitivity	is	a	feature
of	some	other	database	management	systems.

ODBC	driver

A	dynamic-link	library	(DLL)	used	to	connect	a	specific	Open	Database
Connectivity	data	source	with	another	(client)	application.

DLL	(dynamic-link	library)

A	set	of	routines	that	can	be	called	from	procedures	and	are	loaded	and
linked	into	your	application	at	run	time.

field	data	types

The	following	table	lists	the	Field	data	types.

DAO	Field	data	type Constant
Big	Integer dbBigInt
Binary dbBinary
Boolean dbBoolean
Byte dbByte
Char dbChar
Currency dbCurrency
Date/Time dbDate
Decimal dbDecimal
Double dbDouble
Float dbFloat
GUID dbGUID
Integer dbInteger
Long dbLong
Long	Binary	(OLE	Object) dbLongBinary
Memo dbMemo
Numeric dbNumeric
Single dbSingle
Text dbText
Time dbTime
TimeStamp dbTimeStamp
VarBinary dbVarBinary

Internet

A	worldwide	network	of	thousands	of	smaller	computer	networks	and
millions	of	commercial,	educational,	government,	and	personal
computers.	The	Internet	is	like	an	electronic	city	with	virtual	libraries,
storefronts,	business	offices,	art	galleries,	and	so	on.

Design	Master

A	database	to	which	system	tables,	system	fields,	and	replication
properties	have	been	added.	A	Design	Master	is	the	first	replica	in	a
replica	set.	You	can	make	changes	to	the	database	structure	only	with
the	Design	Master.	Replicas	in	the	same	replica	set	can	take	turns	being
the	Design	Master,	but	there	can	be	only	one	Design	Master	at	a	time	in
each	replica	set.

synchronization

The	process	of	updating	two	replicas	in	which	all	updated	records	and
objects	are	exchanged.	The	exchange	of	data	between	two	replicas	can
be	one-way	or	two-way	and	may	be	handled	by	a	Synchronizer.

Text	data	type

A	field	data	type.	Text	fields	can	contain	up	to	255	characters	or	the
number	of	characters	specified	by	the	Size	property	of	the	Field	object,
whichever	is	less.	If	the	Size	property	of	the	text	field	is	set	to	0,	the	text
field	can	hold	up	to	255	characters	of	data.

current	database

The	Database	object	returned	by	the	CurrentDB()	function.	A	reference
of	DBEngine.Workspaces(0).Databases(0)	returns	the	first
database	opened.	This	concept	applies	only	to	Microsoft	Access.

variant	expression

Any	expression	that	can	evaluate	to	numeric,	string,	or	date	data	as	well
as	the	special	values	Empty	and	Null.

Byte	data	type

A	fundamental	data	type	used	to	hold	small	positive	integer	numbers
ranging	from	0	to	255.

ODBCDirect	data	source

A	data	source	that	is	accessed	by	using	the	DAO	ODBCDirect	features,
which	bypass	the	Microsoft	Jet	database	engine.

clustered	index

The	physical	order	of	rows	is	the	same	as	the	indexed	order	of	rows.

string	comparison

The	use	of	an	operator	to	determine	whether	one	string	is	greater	than	or
equal	to	another	string.	If	you	use	Option	Compare	Text	in	the
Declarations	section	of	a	module,	string	comparisons	are	not	case-
sensitive.	If	you	use	Option	Compare	Binary,	comparisons	are	case-
sensitive.	If	you	use	Option	Compare	Database,	the	comparison
method	is	set	by	the	current	database.

conflict	table

A	table	that	is	generated	when	a	synchronization	conflict	occurs	between
two	replicas.	The	conflict	table	appears	only	in	the	replica	with	rejected
changes.

object	expression

An	expression	that	specifies	a	particular	object.	This	expression	can
include	any	of	the	object's	containers.	For	example,	if	your	application
has	an	Application	object	that	contains	a	Document	object	that	contains
a	Text	object,	the	following	are	valid	object	expressions:

Application.Document.Text
Application.Text
Document.Text
Text

expression

Any	combination	of	operators,	constants,	literal	values,	functions,	and
names	of	fields,	controls,	and	properties	that	evaluates	to	a	single	value.
You	can	use	expressions	as	settings	for	many	properties	and	action
arguments,	to	set	criteria,	or	define	calculated	fields	in	queries.

aggregate	function

A	function,	such	as	Sum,	Count,	Avg,	and	Var,	that	you	can	use	to
calculate	totals.	In	writing	expressions	and	in	programming,	you	can	use
SQL	aggregate	functions	(including	the	four	listed	here)	and	domain
aggregate	functions	to	determine	various	statistics.

AutoNumber	field

A	field	data	type	that	automatically	stores	a	unique	number	for	each
record	as	it's	added	to	a	table.	An	AutoNumber	field	always	uses	the
Long	data	type,	and	numbers	generated	by	an	AutoNumber	field	can't	be
modified.	(Also	known	as	a	Counter	field.)

GUID	data	type

Globally	Unique	Identifier/Universally	Unique	Identifier.	A	unique
identification	string	used	with	remote	procedure	calls.	Every	interface	and
object	class	uses	a	GUID	for	identification.	A	GUID	is	a	128-bit	value.	For
example,	12345678-1234-1234-1234-123456789ABC	is	a	syntactically
correct	GUID.	The	GUIDs	on	the	client	and	server	must	match	for	the
client	and	server	to	bind.	Vendors	of	objects	can	request	that	Microsoft
allocate	one	or	more	sets	of	256	GUIDs	for	their	exclusive	use.
Alternatively,	if	you	have	a	network	card,	you	can	run	a	tool	named
Uuidgen.exe,	which	provides	a	set	of	256	GUIDs	based	on	the	time	of
day,	the	date,	and	a	unique	number	contained	in	your	network	card.

filter

A	set	of	criteria	applied	to	records	in	order	to	create	a	subset	of	the
records.

instance

Any	one	of	a	set	of	objects	sharing	the	same	class.	For	example,	multiple
instances	of	a	Form	class	share	the	same	code	and	are	loaded	with	the
same	controls	with	which	the	Form	class	was	designed.	During	run	time,
the	individual	properties	of	controls	on	each	instance	can	be	set	to
different	values.

Single	data	type

A	fundamental	data	type	that	holds	single-precision	floating-point
numbers	in	IEEE	format.	A	Single	variable	is	stored	as	a	32-bit	(4-byte)
number	ranging	in	value	from	-3.402823E38	to	-1.401298E-45	for
negative	values,	from	1.401298E-45	to	3.402823E38	for	positive	values,
and	0.

class

The	formal	definition	of	an	object.	The	class	acts	as	the	template	from
which	an	instance	of	an	object	is	created	at	run	time.	The	class	defines
the	properties	of	the	object	and	the	methods	used	to	control	the	object's
behavior.

parameter

An	element	containing	a	value	that	you	can	change	to	affect	the	results	of
the	query.	For	example,	a	query	returning	data	about	an	employee	might
have	a	parameter	for	the	employee's	name.	You	can	then	use	one
QueryDef	object	to	find	data	about	any	employee	by	setting	the
parameter	to	a	specific	name	before	running	the	query.

Boolean	expression

An	expression	that	evaluates	to	either	True	or	False.

Big	Integer	data	type

A	data	type	that	stores	a	signed,	exact	numeric	value	with	precision	19
(signed)	or	20	(unsigned),	scale	0	(signed:	-263	≤	n	≤	263-1;	unsigned:	0
≤	n	≤	264-1).

Binary	data	type

A	data	type	that	stores	fixed-length	binary	data.	The	maximum	length	is
255	bytes.

Char	data	type

A	data	type	that	stores	a	fixed-length	character	string.	The	length	is	set
by	the	Size	property.

Currency	data	type

A	data	type	that	is	useful	for	calculations	involving	money	or	for	fixed-
point	calculations	in	which	accuracy	is	extremely	important.	This	data
type	is	used	to	store	numbers	with	up	to	15	digits	to	the	left	of	the
decimal	point	and	4	digits	to	the	right.	Because	the	Currency	data	type
uses	discrete	values	for	all	amounts,	binary	round-off	isn’t	a	factor	when
calculating	totals.

dates	and	times

Dates	and	times	are	stored	internally	as	different	parts	of	a	real	number.

The	value	to	the	left	of	the	decimal	represents	a	date	between	December
30,	1899	and	December	30,	9999,	inclusive.	Negative	values	represent
dates	prior	to	December	30,	1899.

The	value	to	the	right	of	the	decimal	represents	a	time	between	0:00:00
and	23:59:59,	inclusive.	Midday	is	represented	by	.5.

Decimal	data	type

A	data	type	that	stores	a	signed,	exact	numeric	value	with	precision	p
and	scale	s	(1	≤	p	≤15;	0	≤	s	≤	p).

Double	data	type

A	fundamental	data	type	that	holds	double-precision	floating-point
numbers	in	IEEE	format.	A	Double	variable	is	stored	as	a	64-bit	(8-byte)
number	ranging	in	value	from	-1.79769313486231E308	to
-4.94065645841247E-324	for	negative	values,	from
4.94065645841247E-324	to	1.79769313486231E308	for	positive	values,
and	0.

Float	data	type

A	data	type	that	stores	a	signed,	approximate	numeric	value	with
mantissa	precision	15	(zero	or	absolute	value	10-308	to	10308).

Numeric	data	type

A	data	type	that	stores	a	signed,	exact	numeric	value	with	precision	p
and	scale	s	(1	≤	p	≤15;	0	≤	s	≤	p).

Time	data	type

A	data	type	that	stores	a	time	value.	The	value	is	dependent	on	the	clock
setting	of	the	data	source.

TimeStamp	data	type

A	data	type	that	stores	a	TimeStamp.	The	value	is	dependent	on	the
clock	setting	of	the	data	source.

VarBinary	data	type

A	data	type	that	stores	variable-length	binary	data.	The	maximum	length
is	255	bytes.

procedural	query

An	SQL	statement	that	executes	a	stored	procedure.

union	query

An	SQL-specific	select	query	that	creates	a	snapshot-type	Recordset
object	containing	data	from	all	specified	records	in	two	or	more	tables
with	any	duplicate	records	removed.	To	include	the	duplicates,	add	the
keyword	ALL.

For	instance,	a	union	query	of	the	Customers	table	and	the	Suppliers
table	results	in	a	snapshot-type	Recordset	that	contains	all	suppliers	that
are	also	customers.

client	batch	cursor	library

A	library	that	provides	client-side	cursor	support	for	ODBCDirect
database	applications.	This	library	supports	all	four	types	of	cursors
(keyset,	static,	dynamic,	and	forward-only)	and	provides	a	number	of
other	features	including	the	ability	to	dissociate	connections	and	perform
optimistic	batch	updates.

validation

The	process	of	checking	whether	entered	data	meets	certain	conditions
or	limitations.

validation	rule

A	rule	that	sets	limits	or	conditions	on	what	can	be	entered	in	one	or
more	fields.	Validation	rules	can	be	set	for	a	Field	or	TableDef	object.
Validation	rules	are	checked	when	you	update	a	record	containing	fields
requiring	validation.	If	the	rule	is	violated,	a	trappable	error	results.

message

A	packet	of	information	passed	from	one	application	to	another.

multiuser	database

A	database	that	permits	more	than	one	user	to	access	and	modify	the
same	set	of	data	at	the	same	time.	In	some	cases,	the	additional	"user"
may	be	another	instance	of	your	application	or	another	application
running	on	your	system	that	accesses	the	same	data	as	some	other
application.

