ActiveX Data Objects 2.5 Start Page

ADO
Version 2.5

Purpose

Microsoft ActiveX Data Objects (ADO) enable your client applications to access
and manipulate data from a database server through an OLE DB provider. Its
primary benefits are ease of use, high speed, low memory overhead, and a small
disk footprint. ADO supports key features for building client/server and Web-
based applications.

RDS

ADO also features Remote Data Service (RDS), by which you can move data
from a server to a client application or Web page, manipulate the data on the
client, and return updates to the server in a single round trip.

ADO MD

Microsoft ActiveX Data Objects (Multidimensional) (ADO MD) provides easy
access to multidimensional data from languages such as Microsoft Visual Basic,
Microsoft Visual C++, and Microsoft Visual J++. ADO MD extends Microsoft
ActiveX Data Objects (ADO) to include objects specific to multidimensional
data, such as the CubeDef and Cellset objects. With ADO MD you can browse
multidimensional schema, query a cube, and retrieve the results.

Like ADO, ADO MD uses an underlying OLE DB provider to gain access to
data. To work with ADO MD, the provider must be a multidimensional data
provider (MDP) as defined by the OLE DB for OLAP specification. MDPs
present data in multidimensional views as opposed to tabular data providers
(TDPs) that present data in tabular views. Refer to the documentation for your
OLAP OLE DB provider for more detailed information on the specific syntax
and behaviors supported by your provider.

ADOX

Microsoft ActiveX Data Objects Extensions for Data Definition Language and
Security (ADOX) is an extension to the ADO objects and programming model.
ADOX includes objects for schema creation and modification, as well as
security. Because it is an object-based approach to schema manipulation, you can
write code that will work against various data sources regardless of differences
in their native syntaxes.

ADOX is a companion library to the core ADO objects. It exposes additional
objects for creating, modifying, and deleting schema objects, such as tables and
procedures. It also includes security objects to maintain users and groups and to
grant and revoke permissions on objects.

Main Components of ADO 2.5

Programmer's Guide
An introduction to using ADO, RDS, ADO MD, and ADOX.

Programmer's Reference

This section of the ADO documentation contains topics for each ADO, RDS,
ADO MD, and ADOX object, collection, property, dynamic property, method,
event, and enumeration.

Feedback

You can send feedback about ADO documentation or samples directly to the
ADO documentation team.

See Also

e ADO Technical Articles
e OLE DB

© 1998-2003 Microsoft Corporation. All rights reserved.

mailto:adodoc@microsoft.com
mailto:dacode@microsoft.com

ADO 2.5 Programmer's Guide

ADO Programmer's Guide

For an introduction to the Microsoft ActiveX Data Objects (ADO) Programmer's
Guide, see the following topics:

Introduction

What's New in ADO

Prerequisites

The ADO Family of Libraries

The Role of ADO in Microsoft Data Access
ADQO Task Table

ADOQO Technology Table

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

Introduction

The ADO Programmer's Guide has been created to assist developers who are
new to ADO by giving them a thorough introduction to the technology. This
guide describes the libraries of the ADO family and uses sample code in a
variety of languages to explain how to use the libraries, best practices for using
the libraries, and tips and tricks for maximizing the performance of your ADO
application.

The ADO Programmer's Guide contains the following sections and chapters:

e Section I: ActiveX Data Objects (ADQO)
o Chapter 1: ADO Fundamentals
Chapter 2: Getting Data
Chapter 3: Examining Data
Chapter 4: Editing Data
Chapter 5: Updating and Persisting Data

Chapter 6: Error Handling
Chapter 7: Handling ADO Events

Chapter 8: Understanding Cursors and L.ocks

Chapter 9: Data Shaping

o Chapter 10: Records and Streams
Section II: Remote Data Service (RDS)

o Chapter 11: RDS Fundamentals

o Chapter 12: RDS Tutorial

o Chapter 13: RDS Usage and Security

Section III: ActiveX Data Objects (Multidimensional) (ADO MD)
o Chapter 14: ADO MD Fundamentals

Section I'V: ActiveX Data Objects Extensions for Data Definition L.anguage
and Security (ADOX)
o Chapter 15: ADOX Fundamentals
Section V: Appendixes
Appendix A: Providers
Appendix B: ADO Errors

O
o Appendix C: Programming with ADO
o Appendix D: ADO Samples

0O 0O 0O 0O O O O O

(0]

e ADO Glossary

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

What's New in ADO

The following new features and enhanced documentation are included in the
ADO 2.5 release. This list covers ADO, ADO MD, and ADOX.

New Features

Records and Streams

This release of ADO introduces the Record object, which can represent and
manage things like directories and files in a file system, and folders and
messages in an e-mail system. A Record can also represent a row in a Recordset,
although Record and Recordset objects have different methods and properties.

The new Stream object provides the means to read, write, and manage the binary
stream of bytes or text that comprise a file or message stream.

URL Usage

This release also introduces the use of Uniform Resource Locators (URLSs), as an
alternative to connection strings and command text, to name data store objects.
URLSs may be used with the existing Connection and Recordset objects, as well
as with the new Record and Stream objects.

With this release, ADO supports OLE DB providers that recognize their own
URL schemes. For example, the OLE DB Provider for Internet Publishing,
which accesses the Windows 2000 file system, recognizes the existing HTTP
scheme.

Special Fields for Document Source Providers

A special class of providers, called document source providers, manage folders
and documents. When a Record object represents a document, or a Recordset
object represents a folder of documents, the document source provider populates
those objects with a unique set of fields that describe characteristics of the
document. These fields constitute a resource Record or Recordset.

New Reference Topics

The following new properties are included in this release.

Property

Description

Charset

Indicates the character set into which the contents of
a text Stream object should be translated.

EOS

Indicates whether the current position is at the end of
the stream.

LineSeparator

Indicates the binary character to be used as the line
separator in text Stream objects.

Indicates the available permissions for modifying

Mode : . !
data in a Connection, Record, or Stream object.
ParentURL Indicates an absolute URL string that pO}nts to the
- parent Record of the current Record object.
o Indicates the current position within a Stream
Position .
object.
RecordType Indicates the type of Record object.
Size Indicates the size of the stream in number of bytes.
Indicates the entity represented by the Record
Source .
object.
Indicates for all applicable objects whether the state
of the object is open or closed.
tate Indicates for all applicable objects executing an
asynchronous method, whether the current state of
the object is connecting, executing, or retrieving.
Indicates the type of data contained in the Stream
Type

object (binary or text).

The following new methods are included in this release.

Method Description
ies a file or directory, and i nten nother
CopyRecord Copies a file or directory, and its contents, to anothe

location.

Copies the specified number of characters or bytes

CopyTo (depending on Type) in the Stream object to
another Stream object.
DeleteRecord Deletes a file or directory, and all its subdirectories.
Forces the contents of the Stream object remaining
Flush in the ADO buffer to the underlying object with
which the Stream object is associated.
Returns a Recordset whose rows represent the files
GetChildren and subdirectories in the directory represented by
this Record.
LoadFromFile Lo.ads the contents of an existing file into a Stream
- object.
M file, or a directory and i nten
MoveRecord oves a e,.o a directory and its contents, to
another location.
Opens an existing Record object, or creates a new
Open : :
file or directory.
Opens a Stream object to manipulate streams of
Open :
binary or text data.
Reads a specified number of bytes from a binary
Read :
Stream object.
Reads specified number of characters from a text
ReadText :
Stream object.
SaveToFile Saves the binary contents of a Stream to a file.
SetEOS Sets the position that is the end of the stream.
o Skips one entire line when reading a text Stream
SkipLine .
object.
Write Writes binary data to a Stream object.
WriteText Writes a specified text string to a Stream object.

New and Enhanced Documentation

Code Example Topics

The examples have been expanded to contain code examples written in
Microsoft Visual C++® and Microsoft Visual J++®. You can copy and paste
these code examples into your editor.

Provider Topics

A new topic is included that explains how to use ADO with the OLE DB
Provider for Internet Publishing.

Programming with ADO

This new section contains tips and tricks for using ADO with various
programming languages. It contains the existing syntax indexes for the Visual
C++ Extensions for ADO and ADO/WFC, as well as new information specific to
developers using Microsoft Visual Basic®, Microsoft Visual Basic® Scripting
Edition, Microsoft JScript®, Microsoft Visual C++, or Microsoft Visual J++.

© 1998-2002 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

Prerequisites

The ADO Programmer's Guide will prove useful to developers with a wide
variety of backgrounds. At a minimum, readers should have an intermediate
level of experience in developing applications with Microsoft Visual Basic,
because most of the examples in the guide are written in this language. Other
examples are written in Microsoft Visual C++; Java; Visual Basic, Scripting
Edition (VBScript); and Microsoft JScript.

Because ADO is used for accessing data from a variety of sources, readers might
also need some understanding of fundamental relational database management
system concepts, online analytical processing (OLAP) concepts, and basic
familiarity with the Internet and Internet protocols.

ADO is a part of the Microsoft Data Access (UDA) strategy. (For more
information about UDA, see "The Role of ADO in Microsoft Data Access," later
in this chapter.) As such, it interoperates with the OLE DB technology. OLE DB
is based on the Microsoft Component Object Model (COM). Therefore,
familiarity with COM can also be useful for understanding some of the more
advanced concepts in ADO.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

The ADO Family of Libraries

Three major libraries make up the ADO family: ADO (including RDS), ADO
MD, and ADOX.

ADO

ADO enables your client applications to access and manipulate data from a
database server through an OLE DB provider. The primary benefits of ADO are
ease of use, high speed, low memory overhead, and a small disk footprint. ADO
supports key features for building client/server and Web-based applications.

ADO also features Remote Data Service (RDS), by which you can move data
from a server to a client application or Web page, manipulate the data on the
client, and return updates to the server in a single round trip.

ADO MD

Microsoft ActiveX Data Objects (Multidimensional) (ADO MD) provides easy
access to multidimensional data from languages such as Microsoft Visual Basic,
Microsoft Visual C++, and Microsoft Visual J++. ADO MD extends ADO to
include objects specific to multidimensional data, such as the CubeDef and
Cellset objects. With ADO MD you can browse multidimensional schema, query
a cube, and retrieve the results.

Like ADO, ADO MD uses an underlying OLE DB provider to gain access to
data. To work with ADO MD, the provider must be a multidimensional data
provider (MDP) as defined by the OLE DB for OLAP specification. MDPs
present data in multidimensional views as opposed to tabular data providers
(TDPs) that present data in tabular views. Refer to the documentation for your
OLE DB for OLAP provider for more detailed information about the specific
syntax and behaviors supported by your provider.

ADOX

Microsoft ActiveX Data Objects Extensions for Data Definition Language and
Security (ADOX) is an extension to the ADO objects and programming model.
ADOX includes objects for schema creation and modification as well as security.
Because it is an object-based approach to schema manipulation, you can write
code that will work against various data sources regardless of differences in their
native syntaxes.

ADOX is a companion library to the core ADO objects. It exposes additional
objects for creating, modifying, and deleting schema objects, such as tables and
procedures. It also includes security objects to maintain users and groups, and to
grant and revoke permissions on objects.

See Also
Section I: ActiveX Data Objects (ADQ) | Section II: Remote Data Service

(RDS) | Section III: ADO (Multidimensional) (ADO MD) | Section IV: ADO
Extensions for Data Definition Language and Security (ADOX)

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

The Role of ADO in Microsoft Data
Access

The Microsoft Data Access Components (MDAC) provide data access that is
independent of data stores, tools, and languages. It provides a high-level, easy-
to-use interface, and a low-level, high-performance interface to practically any
data store available. You can use this flexibility to integrate diverse data stores
and use your choice of tools, applications, and platform services to create the
right solutions for your needs. These technologies provide the basic framework
for general-purpose data access in Microsoft Windows operating systems.

There are three primary technologies in MDAC. ActiveX Data Objects (ADO) is
a high-level, easy-to-use interface to OLE DB. OLE DB is a low-level, high-
performance interface to a variety of data stores. ADO and OLE DB both can
work with relational (tabular) and nonrelational (hierarchical or stream) data.
Finally, Open Database Connectivity (ODBC) is another low-level, high-
performance interface that is designed specifically for relational data stores.

ADO provides a layer of abstraction between your client or middle-tier
application and the low-level OLE DB interfaces. ADO uses a small set of
Automation objects to provide a simple and efficient interface to OLE DB. This
interface makes ADO the perfect choice for developers in higher level
languages, such as Visual Basic and even VBScript, who want to access data
without having to learn the intricacies of COM and OLE DB.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

ADO Task Table

The following table lists programming tasks contained in the ADO
Programmer’s Guide and provides references for each task. These references can
be textual descriptions or code examples in which you can find information
about the ADO feature that performs the task.

ADO Task References

Connecting to a data

provider Making a Connection

ExeF uting commands or Using the Command Object
calling stored procedures

Opening a Recordset The Recordset Object Open Method

Determining the size of a
Recordset

Counting Rows and The Limits of a Recordset

Moving to a specific Navigating Through the Data

record

Accessing column values The Fields Collection
Searching for data Working with Recordsets
Modifying data and o "

changing values Editing Existing Records
Adding new data Adding Records

Deleting or removing data Deleting Records Using the Delete Method

Posting changes to the
data source

Updating Data

Beginning, committing,
and rolling back Transaction Processing
transactions

: fil ot
Saving records to a file Persisting Data

(XML or binary)

Handling errors ADO Errors

Handling events,

asynchronous ADO Event Handler Summary

programming

Choosing cursor location
and type

Choosing lock types Types of Locks

Returning related records
in a Recordset

Types of Cursors

Data Shaping Summary

Accessing semi- Chapter 10: Records and Streams
structured data

Publishing to IIS Using ADO for Internet Publishing

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5 Programmer's Guide

ADO Technology Table

The following table lists the Microsoft products, tools, and technologies
discussed in the ADO Programmer's Guide. It provides links, wherever possible,

to relevant topics in the guide.

Microsoft Product or Technology

Access/Jet

Active Directory Service Interfaces

COM/DCOM

FrontPage

Indexing Service

References
Working with Recordsets

Chapter 15: ADOX Fundamentals

Microsoft Jet and Replication Objects

OLE DB Provider for Microsoft Jet

Microsoft OLE DB Provider for
Microsoft Active Directory Service

Prerequisites

Marking Business Objects as Safe for
Scripting

Registering Business Objects on the
Client for Use with DCOM

Setting DCOM Stream Marshaling
Format

Enabling a DLL to Run on DCOM

Running Business Objects in
Component Services

Microsoft OLE DB Provider for
Internet Publishing

Microsoft OLE DB Provider for
Microsoft Indexing Service

Internet Explorer

Internet Information Services

JScript

ODBC

Internet Explorer Error Codes
Chapter 10: Records and Streams

Streams and Persistence

Using ADO for Internet Publishing

Solutions for Remote Data Access

Configuring Virtual Servers on IIS

Specifying Threads Per Processor on
1IS

Securing RDS Applications

"Internet Server Error: Access Denied"

Microsoft OLE DB Provider for
Internet Publishing

Internet Information Services Error
Codes

Handling Errors in Other L.anguages

JScript ADO Programming

ADO Code Examples in Microsoft
JScript

The Role of ADO in Microsoft Data
Access

Using the Connection Object

Using RDS with ODBC Connection
Pooling

Microsoft OLE DB Provider for ODBC

OLE DB

Oracle

SQL Server 2000

Transaction Server

VBScript

The Role of ADO in Microsoft Data
Access

OLE DB Providers

Appendix A: Providers

Provider Errors

Microsoft OLE DB Provider for Oracle
Controlling Transactions

Calling a Stored Procedure with a
Command

Counting Rows

Forward-Only Cursors

Command Streams

Ensuring Sufficient TempDB Space

Minimizing L.og File Space Usage

Microsoft OLE DB Provider for SQL
Server

Running Business Objects in
Component Services

Handling Errors in Other L.anguages

Visual Basic for Applications Functions

Command Streams

Solutions for Remote Data Access

RDS Scenario

Visual Basic

Visual C++

Visual J++

RDS Tutorial (VBScript)

VBScript ADO Programming

ADO Code Examples in Microsoft
Visual Basic Scripting Edition

Errors
ADO Errors

ADOQ Event Instantiation By L.anguage

Visual Basic for Applications Functions

Chapter 12: RDS Tutorial

Using ADO with Microsoft Visual
Basic

ADO Code Examples in Microsoft
Visual Basic

Handling Errors in Other L.anguages

ADOQ Event Instantiation By L.anguage

Using ADO with Microsoft Visual C++

ADO Code Examples in Microsoft
Visual C++

Handling Errors in Other L.anguages

ADOQ Event Instantiation By L.anguage

RDS Tutorial (Visual J++)

Using ADO with Microsoft Visual J++

Visual Studio

Windows 2000

XML

ADO Code Examples in Microsoft
Visual J++

Appendix D: ADO Samples
System Requirements for the Address

Book Application

Granting Guest Privileges to a Web
Server Computer

Registering a Custom Business Object

Securing RDS Applications
Configuring RDS on Windows 2000

Persisting Records in XML Format

Chapter 10: Records and Streams

Command Streams

Retrieving Resultsets into Streams

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Section I: ActiveX Data Objects
(ADO)

This section contains the following chapters:

Chapter 1: ADO Fundamentals

Chapter 2: Getting Data

Chapter 3: Examining Data
Chapter 4: Editing Data

Chapter 5: Updating and Persisting Data

Chapter 6: Error Handling

Chapter 7: Handling ADO Events

Chapter 8: Understanding Cursors and Locks
Chapter 9: Data Shaping

Chapter 10: Records and Streams

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 1: ADO Fundamentals

This chapter is an introduction to the ADO library. It discusses what you can do
with ADO, reviews the objects in the ADO hierarchy, and presents a simple
ADO application that uses many of the ADO objects to retrieve, edit, and update
data from a data source. Finally, this chapter covers two issues that are important
to understand for writing ADO applications: OLE DB providers and errors.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

What You Can Do With ADO

ADO is designed to provide developers with a powerful, logical object model for
programmatically accessing, editing, and updating a wide variety of data sources
through OLE DB system interfaces. The most common usage of ADO is to
query a table or tables in a relational database, retrieve and display the results in
an application, and perhaps allow users to make and save changes to the data.
Other things that can be done programmatically with ADO include:

Querying a database using SQL and displaying the results.

Accessing information in a file store over the Internet.

Manipulating messages and folders in an e-mail system.

Saving data from a database into an XML file.

Allowing a user to review and make changes to data in database tables.

Creating and reusing parameterized database commands.

Executing stored procedures.

Dynamically creating a flexible structure, called a Recordset, to hold,

navigate, and manipulate data.

Performing transactional database operations.

e Filtering and sorting local copies of database information based on run-time
criteria.

¢ Creating and manipulating hierarchical results from databases.

¢ Binding database fields to data-aware components.

e Creating remote, disconnected Recordsets.

ADO must expose a wide variety of options and settings in order to provide such
flexibility. Therefore it's important to take a methodical approach to learning
how to use ADO in an application, breaking down each of your goals into
manageable pieces.

Four primary operations are involved in most ADO programs: getting data,
examining data, editing data, and updating data. The next four chapters examine
each of these operations in more detail.

Before proceeding, familiarize yourself with the objects in the ADO Object
Model. Then review HelloData: A Simple ADO Application. This application is
written in Visual Basic and performs each of the four primary ADO operations.

© 1998-2002 Microsoft Corporation. All rights reserved.

ADO 2.5

The ADO Object Model

ADO requires only nine objects and four collections to provide its entire
functionality. The following table introduces them.

Object or Collection

Connection object

Command object

Recordset object

Record object

Stream object

Description

Represents a unique session with a data
source. In the case of a client/server
database system, it may be equivalent
to an actual network connection to the
server. Depending on the functionality
supported by the provider, some
collections, methods, or properties of a
Connection object may not be
available.

Used to define a specific command,
such as a SQL query, intended to run
against a data source.

Represents the entire set of records
from a base table or the results of an
executed command. All Recordset
objects consist of records (rows) and
fields (columns).

Represents a single row of data, either
from a Recordset or from the provider.
This record could represent a database
record or some other type of object
such as a file or directory, depending
upon your provider.

Represents a stream of binary or text
data. For example, an XML document
can be loaded into a stream for
command input or returned from
certain providers as the results of a
query. A Stream object can be used to

Parameter object

Field object

Property object

Error object

Fields collection
Properties collection

Parameters collection

Errors collection

manipulate fields or records containing
these streams of data.

Represents a parameter or argument
associated with a Command object,
based on a parameterized query or
stored procedure.

Represents a column of data with a
common data type. Each Field object
corresponds to a column in the
Recordset.

Represents a characteristic of an ADO
object that is defined by the provider.
ADO objects have two types of
properties: built-in and dynamic. Built-
in properties are those properties
implemented in ADO and immediately
available to any new object. The
Property object is a container for
dynamic properties, defined by the
underlying provider.

Contains details about data access
errors that pertain to a single operation
involving the provider.

Contains all the Field objects of a
Recordset or Record object.

Contains all the Property objects for a
specific instance of an object.
Contains all the Parameter objects of a
Command object.

Contains all the Error objects created
in response to a single provider-related
failure.

The following figures show the ADO objects and their collections. Click an
object or collection for more information from the ADO Programmer's

Reference.

Connection

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

HelloData: A Simple ADO
Application

To lay the groundwork for an exploration of the ADO library, consider a simple
ADO application called "HelloData." HelloData steps through each of the four
major ADO operations (getting, examining, editing, and updating data). In order
to focus on the fundamentals of ADO and prevent code clutter, minimal error
handling is done in the example.

The application queries the Northwind sample database that is included with
Microsoft SQL Server 2000.

To run HelloData

1.

2.

Create a new Standard Executable Visual Basic Project that references the
ADO 2.5 library.

Create four command buttons at the top of the form, setting the Name and
Caption properties to the values shown in the table below.

Below the buttons, add a Microsoft DataGrid Control (Msdatgrd.ocx).
The Msdatgrd.ocx file comes with Visual Basic and is located in your
\windows\system32 or \winnt\system32 directory. To add the DataGrid
control to your Visual Basic toolbox pane, select Components... from the
Project menu. Then check the box next to "Microsoft DataGrid Control 6.0
(SP3) (OLEDB)" and click OK. To add the control to the project, drag the
DataGrid control from the Toolbox to the Visual Basic form.

Create a TextBox on the form below the grid and set its properties as shown
in the table. The form should look similar to the following figure when you
are finished.

Finally, copy the code listed in "HelloData Code" and paste it into the code
editor window of the form. Press F5 to run the code.

Note In the following example, and throughout the guide, the user id
"Myld" with a password of "123aBc" is used to authenticate against the
server. You should substitute these values with valid logon credentials for
your server. Also, substitute the "MyServer" value with the name of your
server.

For a detailed description of the code, see "HelloData Details."

Control Type Property

Form Name
Height
Width

MS DataGrid Name

TextBox Name
Multiline

Command Button Name
Caption
Command Button Name
Caption
Command Button Name
Caption
Command Button Name
Caption

© 1998-2003 Microsoft Corporation. All rights reserved.

Value
Form1
6500
6500
grdDisplay1
txtDisplay 1
true
cmdGetData
Get Data
cmdExamineData
Examine Data
cmdEditData
Edit Data
cmdUpdateData
Update Data

ADO 2.5

HelloData Details

The HelloData application steps through the basic operations of a typical ADO
application: getting, examining, editing, and updating data. When you start the
application, click the first button, Get Data. This will run the GetData()
subroutine.

GetData

GetData places a valid connection string into a module-level variable,
m_sConnStr. For more information about connection strings, see Creating the

Connection String.

Assign an error handler using a Visual Basic OnError statement. For more
information about error handling in ADO, see Chapter 6: Error Handling. A new
Connection object is created, and the CursorLocation property is set to
adUseClient because the HelloData example creates a disconnected Recordset.
This means that once the data has been fetched from the data source, the
physical connection with the data source is broken, but you can still work with
the data that is cached locally in your Recordset object.

After the connection has been opened, assign a SQL string to a variable (sSQL).
Then instantiate a new Recordset object, m_oRecordset1. In the next line of
code, open the Recordset over the existing Connection, passing in sSQL as the
source of the Recordset. You assist ADO in making the determination that the
SQL string you have passed as the source for the Recordset is a textual
definition of a command by passing adCmdText in the final argument to the
Recordset Open method. This line also sets the LockType and CursorType
associated with the Recordset.

The next line of code sets the MarshalOptions property equal to
adMarshalModifiedOnly. MarshalOptions indicates which records should be
marshaled to the middle tier (or web server). For more information about
marshaling, see the COM documentation. When using
adMarshalModifiedOnly with a client-side cursor (Cursorl.ocation =
adUseClient), only records that have been modified on the client are written
back to the middle tier. Setting MarshalOptions to adMarshalModifiedOnly
can improve performance because fewer rows are marshaled.

Next, disconnect the Recordset by setting its ActiveConnection property equal
to Nothing. For more information, see Disconnecting and Reconnecting the
Recordset in Chapter 5: Updating and Persisting Data.

Close the connection to the data source and destroy the existing Connection
object, thereby releasing the resources it consumed.

The final step is to set the Recordset as the DataSource for the Microsoft
DataBound Grid Control on the form so that you can easily display the data from
the Recordset on the form.

Click the second button, Examine Data. This runs the ExamineData subroutine.

ExamineData

ExamineData uses various methods and properties of the Recordset object to
display information about the data in the Recordset. It reports the number of
records by using the RecordCount property. It loops through the Recordset and
prints the value of the AbsolutePosition property in the display text box on the
form. Also while in the loop, the value of the Bookmark property for the third
record is placed into a variant variable, vBookmark, for later use.

The routine navigates directly back to the third record using the bookmark
variable that it stored earlier. The routine calls the WalkFields subroutine, which
loops through the Fields collection of the Recordset and displays details about
each Field in the collection.

Finally, ExamineData uses the Filter property of the Recordset to screen for
only those records with a Categoryld equal to 2. The result of applying this filter
is immediately visible in the display grid on the form.

For more information about the functionality shown in the ExamineData
subroutine, see Chapter 3: Examining Data.

Next, click the third button, Edit Data. This will run the EditData subroutine.

EditData

When the code enters the EditData subroutine, the Recordset is still filtered on
Categoryld equal to 2, so only those items that meet the filter criteria are visible.
It first loops through the Recordset and increases the price of each visible item
in the Recordset by 10 percent. The value of the Price field is changed by
setting the Value property for that field equal to a new, valid amount.

Remember that the Recordset is disconnected from the data source. The changes
made in EditData are made only to the locally cached copy of the data. For more
information, see Chapter 4: Editing Data.

The changes will not be made on the data source until you click the fourth
button, Update Data. This will run the UpdateData subroutine.

UpdateData

UpdateData first removes the filter that has been applied to the Recordset. The
code removes and resets m_oRecordset1 as the DataSource for the Microsoft
Bound DataGrid on the form so that the unfiltered Recordset appears in the grid.

The code then checks to see whether you can move backward in the Recordset
by using the Supports method with the adMovePrevious argument.

The routine moves to the first record using the MoveFirst method and displays
the field's original and current values, using the OriginalValue and Value
properties of the Field object. These properties, along with the UnderlyingValue
property (not used here), are discussed in Chapter 5: Updating and Persisting
Data.

Next, a new Connection object is created and used to reestablish a connection to
the data source. You reconnect the Recordset to the data source by setting the
new Connection as the ActiveConnection for the Recordset. To send the
updates to the server, the code calls UpdateBatch on the Recordset.

If the batch update succeeds, a module-level flag variable, m_flgPriceUpdated,
is set to True. This will remind you later to clean up all changes made to the
database.

Finally, the code moves back to the first record in the Recordset and displays the
original and current values. The values are the same after the call to
UpdateBatch.

For more detailed information about updating data, including what to do when
data on the server changes while your Recordset is disconnected, see Chapter 5:

Updating and Persisting Data.

Form_Unload

The Form_Unload subroutine is important for several reasons. First, because this
is a sample application, Form_Unload cleans up the changes made to the
database before the application exits. Second, the code shows how a command
can be executed directly from an open Connection object using the Execute
method. Finally, it shows an example of executing a non-row—returning query
(an UPDATE query) against the data source.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

HelloData Code

'BeginHelloData
Option Explicit

Dim m_oRecordset As ADODB.Recordset
Dim m_sConnStr As String
Dim m_flgPriceUpdated As Boolean

Private Sub cmdGetData_Click()
GetData

If Not m_oRecordset Is Nothing Then
If m_oRecordset.State = adStateOpen Then
' Set the proper states for the buttons.
cmdGetData.Enabled = False
cmdExamineData.Enabled = True
End If
End If
End Sub

Private Sub cmdExamineData_Click()
ExamineData
End Sub

Private Sub cmdEditData_Click()
EditData
End Sub

Private Sub cmdUpdateData_Click()
UpdateData

' Set the proper states for the buttons.
cmdUpdateData.Enabled = False
End Sub

Private Sub GetData()
On Error GoTo GetDataError

Dim sSQL As String
Dim oConnectionl As ADODB.Connection

m_sConnStr = "Provider='SQLOLEDB';Data Source='MySqglServer';" &
"Initial Catalog='Northwind';Integrated Security="'SS

' Create and Open the Connection object.

Set oConnectionl = New ADODB.Connection
oConnectionl.CursorLocation = adUseClient
oConnectionl.0pen m_sConnStr

sSQL = "SELECT ProductID, ProductName, CategoryID, UnitPrice " &
"FROM Products"

' Create and Open the Recordset object.

Set m_oRecordset = New ADODB.Recordset

m_oRecordset.Open sSQL, oConnectionl, adOpenStatic, _
adLockBatchOptimistic, adCmdText

m_oRecordset.MarshalOptions = adMarshalModifiedOnly

' Disconnect the Recordset.

Set m_oRecordset.ActiveConnection = Nothing
oConnectionl.Close

Set oConnectionl = Nothing

' Bind Recordset to the DataGrid for display.
Set grdDisplayl.DataSource = m_oRecordset

Exit Sub

GetDataError:
If Err <> 0 Then
If oConnectionl Is Nothing Then
HandleErrs "GetData'", m_oRecordset.ActiveConnection
Else
HandleErrs "GetData", oConnectionil
End If
End If

If Not oConnectionl Is Nothing Then
If oConnectionl.State = adStateOpen Then oConnectionl.Close
Set oConnectionl = Nothing
End If
End Sub

Private Sub ExamineData()
On Err GoTo ExamineDataErr

Dim iNumRecords As Integer
Dim vBookmark As Variant

iNumRecords = m_oRecordset.RecordCount

DisplayMsg "There are " & CStr(iNumRecords) & _
" records in the current Recordset."

' Loop through the Recordset and print the

' value of the AbsolutePosition property.
DisplayMsg "****** Start AbsolutePosition Loop ******"

Do While Not m_oRecordset.EOF
' Store the bookmark for the 3rd record,

' for demo purposes.
If m_oRecordset.AbsolutePosition = 3 Then _
vBookmark = m_oRecordset.Bookmark

DisplayMsg m_oRecordset.AbsolutePosition

m_oRecordset.MoveNext
Loop

DisplayMsg "****** End AbsolutePosition Loop ******" & vbCrLf

' Use our bookmark to move back to 3rd record.

m_oRecordset.Bookmark = vBookmark

MsgBox vbCr & "Moved back to position " & _
m_oRecordset.AbsolutePosition & " using bookmark.", , _

"Hello Data"

' Display meta-data about each field. See WalkFields() sub.
Call walkFields

" Apply a filter on the type field.
MsgBox "Filtering on type field. (CategoryID=2)", _
vbOKOnly, "Hello Data"

m_oRecordset.Filter = "CategoryID=2"

' Set the proper states for the buttons.
cmdExamineData.Enabled = False
cmdEditData.Enabled = True

Exit Sub

ExamineDataErr:
HandleErrs "ExamineData'", m_oRecordset.ActiveConnection

End Sub

Private Sub EditData()
On Error GoTo EditDataErr

'Recordset still filtered on CategoryID=2.
'Increase price by 10% for filtered records.
MsgBox "Increasing unit price by 10%" & vbCr & _
"for all records with CategoryID = 2.", , "Hello Data"

m_oRecordset.MoveFirst

Dim cVal As Currency

Do While Not m_oRecordset.EOF
cVal = m_oRecordset.Fields("UnitPrice").Value
m_oRecordset.Fields("UnitPrice").vValue = (cval * 1.1)
m_oRecordset.MoveNext

Loop

' Set the proper states for the buttons.
cmdEditData.Enabled = False
cmdUpdateData.Enabled = True
Exit Sub
EditDataErr:
HandleErrs "EditData'", m_oRecordset.ActiveConnection
End Sub

Private Sub UpdateData()
On Error GoTo UpdateDataErr

Dim oConnection2 As New ADODB.Connection

MsgBox "Removing Filter (adFilterNone).", , "Hello Data"
m_oRecordset.Filter = adFilterNone

Set grdDisplayl.DataSource
Set grdDisplayl.DataSource

= Nothing

= m_oRecordset

MsgBox "Applying Filter (adFilterPendingRecords).", , "Hello Dat
m_oRecordset.Filter = adFilterPendingRecords

Set grdDisplayl.DataSource
Set grdDisplayl.DataSource

Nothing
m_oRecordset

DisplayMsg "*** PRE-UpdateBatch values for 'UnitPrice' field. **

' Display Value, UnderlyingValue, and OriginalValue for
' type field in first record.
If m_oRecordset.Supports(adMovePrevious) Then
m_oRecordset.MoveFirst
DisplayMsg "OriginalValue =" & _
m_oRecordset.Fields("UnitPrice").0OriginalValue
DisplayMsg "Value =" & _
m_oRecordset.Fields("UnitPrice").Value
End If

oConnection2.ConnectionString = m_sConnStr

oConnection2.0pen

Set m_oRecordset.ActiveConnection = oConnection2
m_oRecordset .UpdateBatch

m_flgPriceUpdated = True
DisplayMsg "*** POST-UpdateBatch values for 'UnitPrice' field **

If m_oRecordset.Supports(adMovePrevious) Then
m_oRecordset.MoveFirst

DisplayMsg "OriginalValue =" & _
m_oRecordset.Fields("UnitPrice").0OriginalVvalue
DisplayMsg "Value =" & _
m_oRecordset.Fields("UnitPrice").Value
End If
MsgBox "See value comparisons in txtDisplay.", , _
"Hello Data"
'Clean up

oConnection2.Close
Set oConnection2 = Nothing
Exit Sub

UpdateDataErr:
If Err <> 0 Then
HandleErrs "UpdateData", oConnection2
End If

If Not oConnection2 Is Nothing Then
If oConnection2.State = adStateOpen Then oConnection2.Close
Set oConnection2 = Nothing
End If
End Sub

Private Sub WalkFields()
On Error GoTo WalkFieldsErr

Dim iFldCnt As Integer

Dim oFields As ADODB.Fields

Dim oField As ADODB.Field

Dim sMsg As String

Set oFields = m_oRecordset.Fields

DisplayMsg "****** BEGIN FIELDS WALK *****xn

For iFldCnt = 0 To (oFields.Count - 1)

Set oField = oFields(iFldCnt)

SMSg = mi

SMsg = sMsg & oField.Name

SMsg = sMsg & vbTab & "Type: " & GetTypeAsString(oField.Type
SMsg = sMsg & vbTab & "Defined Size: " & oField.DefinedSize
SMsg = sMsg & vbTab & "Actual Size: " & oField.ActualSize

grdDisplayl.SelStartCol = iFldCnt
grdDisplayl.SelEndCol = iFldCnt
DisplayMsg sMsg
MsgBox sMsg, , "Hello Data"

Next iFldCnt

DisplayMsg "****** END FIELDS WALK ******" & vbCrLf

'Clean up
Set oField = Nothing
Set oFields = Nothing
Exit Sub

WalkFieldsErr:
Set oField = Nothing
Set oFields = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
End Sub

Private Function GetTypeAsString(dtType As ADODB.DataTypeEnum) As St
' To save space, we are only checking for data types
' that we know are present.
Select Case dtType
Case adChar

GetTypeAsString = "adChar"
Case adVarcChar

GetTypeAsString = "advarChar"
Case adVarWChar

GetTypeAsString = "adVarWChar"
Case adCurrency

GetTypeAsString = "adCurrency"
Case adInteger

GetTypeAsString = "adInteger"

End Select

End Function

Private Sub HandleErrs(sSource As String, ByRef m_oConnection As ADC
DisplayMsg "ADO (OLE) ERROR IN " & sSource
DisplayMsg vbTab & "Error: " & Err.Number
DisplayMsg vbTab & "Description: " & Err.Description

DisplayMsg vbTab & "Source: " & Err.Source

If Not m_oConnection Is Nothing Then
If m_oConnection.Errors.Count <> 0 Then
DisplayMsg "PROVIDER ERROR"
Dim oErrorl As ADODB.Error
For Each oErrorl In m_oConnection.Errors
DisplayMsg vbTab & "Error: " & oErrorl.Number
DisplayMsg vbTab & "Description: " & oErrorl.Descrip
DisplayMsg vbTab & "Source: " & oOErrorl.Source
DisplayMsg vbTab & '"Native Error:" & oErrorl.NativeE
DisplayMsg vbTab & "SQL State: " & oErrorl.SQLState
Next oOErroril
m_oConnection.Errors.Clear
Set oErrorl = Nothing
End If
End If

MsgBox "Error(s) occurred. See txtDisplayl for specific informat
"Hello Data"

Err.Clear
End Sub

Private Sub DisplayMsg(sText As String)
txtDisplayl.Text = (txtDisplayl.Text & vbCrLf & sText)
End Sub

Private Sub Form_Resize()
grdDisplayl.Move 100, 700, Me.ScalewWidth - 200, (Me.ScaleHeight
txtDisplayl.Move 100, grdDisplayl.Top + grdDisplayl.Height + 10C
Me.Scalewidth - 200, (Me.ScaleHeight - 1000) / 2
End Sub

Private Sub Form_Load()
cmdGetData.Enabled = True
cmdExamineData.Enabled = False
cmdEditData.Enabled = False
cmdUpdateData.Enabled = False

grdDisplayl.AllowAddNew = False
grdDisplayl.AllowDelete = False
grdDisplayl.AllowUpdate = False

m_flgPriceUpdated = False
End Sub

Private Sub Form_Unload(Cancel As Integer)
On Error GoTo ErrHandler:

Dim oConnection3 As New ADODB.Connection
Dim sSQL As String
Dim 1lAffected As Long

' Undo the changes we've made to the database on the server.
If m_flgPriceUpdated Then

sSQL = "UPDATE Products SET UnitPrice=(UnitPrice/1.1) " & _

"WHERE CategoryID=2"
oConnection3.0pen m_sConnStr
oConnection3.Execute sSQL, lAffected, adCmdText

MsgBox "Restored prices for " & CStr(lAffected) & _
" records affected.", , "Hello Data"
End If

'"Clean up
oConnection3.Close

Set oConnection3 = Nothing
m_oRecordset.Close

Set m_oRecordset = Nothing
Exit Sub

ErrHandler:

If Not oConnection3 Is Nothing Then

If oConnection3.State = adStateOpen Then oConnection3.Close

Set oConnection3 = Nothing
End If
If Not m_oRecordset Is Nothing Then

If m_oRecordset.State = adStateOpen Then m_oRecordset.Close

Set m_oRecordset = Nothing
End If
End Sub

'"EndHelloData

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

OLE DB Providers

The ADO Programmer's Guide Introduction discusses the relationship between
ADO and the rest of the Microsoft Data Access architecture. OLE DB defines a
set of COM interfaces to provide applications with uniform access to data that is
stored in diverse information sources. This approach allows a data source to
share its data through the interfaces that support the amount of DBMS
functionality appropriate to the data source. By design, the high-performance
architecture of OLE DB is based on its use of a flexible, component-based
services model. Rather than having a prescribed number of intermediary layers
between the application and the data, OLE DB requires only as many
components as are needed to accomplish a particular task.

For example, suppose a user wants to run a query. Consider the following
scenarios:

e The data resides in a relational database for which there currently exists an
ODBC driver but no native OLE DB provider: The application uses ADO
to talk to the OLE DB Provider for ODBC, which then loads the
appropriate ODBC driver. The driver passes the SQL statement to the
DBMS, which retrieves the data.

e The data resides in Microsoft SQL Server for which there is a native OLE
DB provider: The application uses ADO to talk directly to the OLE DB
Provider for Microsoft SQL Server. No intermediaries are required.

e The data resides in Microsoft Exchange Server, for which there is an OLE
DB provider but which does not expose an engine to process SQL queries:
The application uses ADO to talk to the OLE DB Provider for Microsoft
Exchange and calls upon an OLE DB query processor component to handle
the querying.

e The data resides in the Microsoft NTFS file system in the form of
documents: Data is accessed by using a native OLE DB provider over
Microsoft Indexing Service, which indexes the content and properties of
documents in the file system to enable efficient content searches.

In all of the preceding examples, the application can query the data. The user's
needs are met with a minimum number of components. In each case, additional
components are used only if needed, and only the required components are

invoked. This demand-loading of reusable and shareable components greatly
contributes to high performance when OLE DB is used.

Providers fall into two categories: those providing data and those providing
services. A data provider owns its own data and exposes it in tabular form to
your application. A service provider encapsulates a service by producing and
consuming data, augmenting features in your ADO applications. A service
provider may also be further defined as a service component, which must work
in conjunction with other service providers or components.

ADO provides a consistent, higher level interface to the various OLE DB
providers.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Data Providers

Data providers represent diverse sources of data such as SQL databases,
indexed-sequential files, spreadsheets, document stores, and mail files. Providers
expose data uniformly using a common abstraction called the rowset.

ADO is powerful and flexible because it can connect to any of several different
data providers and still expose the same programming model, regardless of the
specific features of any given provider. However, because each data provider is
unique, how your application interacts with ADO will vary by data provider.

For example, the capabilities and features of the OLE DB Provider for SQL
Server, which is used to access Microsoft SQL Server databases, are
considerably different from those of the Microsoft OLE DB Provider for Internet
Publishing, which is used to access file stores on a Web server.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Service Providers and Components

Service providers are components that extend the functionality of data providers
by implementing extended interfaces that are not natively supported by the data
store.

Microsoft Data Access provides a component architecture that allows individual,
specialized components to implement discrete sets of database functionality, or
"services," on top of less capable stores. Thus, rather than forcing each data store
to provide its own implementation of extended functionality or forcing generic
applications to implement database functionality internally, service components
provide a common implementation that any application can use when accessing
any data store. The fact that some functionality is implemented natively by the
data store and some through generic components is transparent to the
application.

For example, a cursor engine, such as the Microsoft Cursor Service for OLE DB,
is a service component that can consume data from a sequential, forward-only
data store to produce scrollable data. Other service providers commonly used by
ADO include the Microsoft OLE DB Persistence Provider (for saving data to a
file), the Microsoft Data Shaping Service for OLE DB (for hierarchical
Recordsets), and the Microsoft OLE DB Remoting Provider (for invoking data
providers on a remote computer).

For more information about service and data providers, see Appendix A:
Providers.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Errors

Any operation involving ADO objects can generate one or more provider errors.
As each error occurs, one or more Error objects are placed in the Errors
collection of the Connection object. For details about handling warnings and
errors in your ADO application, see Chapter 6: Error Handling.

Application errors can be raised by a separate mechanism. For example, in
Visual Basic, the Err object will contain application-level errors.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 2: Getting Data

The preceding chapter introduced four primary operations involved in creating
an ADO application: getting data, examining data, editing data, and updating
data. This chapter will focus on the details of the concepts relevant to the first
operation: getting data.

Several ADO objects can play a role in this operation. First you connect to the
data source using an ADO Connection object (which at times will be created
implicitly). Then you pass instructions to the data source about what you want to
do using an ADO Command object (which also can be created implicitly). The
result of passing a command to a data source and receiving its response usually
will be represented in an ADO Recordset object.

To get data, your application must be in communication with a data source, such
as a DBMS, a file store, or a comma-delimited text file. This communication
represents a connection—the environment necessary for exchanging data.

The ADO object model represents the concept of a connection with the
Connection object—the foundation upon which much ADO functionality is
built. The purpose of a Connection object is to:

¢ Define the information ADO needs to communicate with data sources and
create sessions.

e Define the transactional capabilities of the session.

e Allow you to create and execute commands against the data source.

¢ Provide information about the design of the underlying data source in the
form of schema rowsets. For more information about schema rowsets, see
OpenSchema Method.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Making a Connection

To connect to a data source, you must specify a connection string, the parameters
of which might differ for each provider and data source. For more information,
see Creating the Connection String.

ADO most commonly opens a connection by using the Connection object Open
method. The syntax for the Open method is shown here:

Dim connection as New ADODB.Connection
connection.Open ConnectionString, UserID, Password, OpenOptions

Alternatively, you can invoke a shortcut technique, Recordset.Open, to open an
implicit connection and issue a command over that connection in one operation.
Do this by passing in a valid connection string as the ActiveConnection argument
to the Open method. Here is the syntax for each method in Visual Basic:

Dim recordset as ADODB.Recordset
Set recordset = New ADODB.Recordset
recordset.Open Source, ActiveConnection, CursorType, LockType, Optic

Note When should you use a Connection object vs. the Recordset.Open
shortcut? Use the Connection object if you plan to open more than one
Recordset, or when executing multiple commands. A connection is still
created by ADO implicitly when you use the Recordset.Open shortcut.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using the Connection Object

A Connection object represents a unique session with a data source. In the case
of a client/server database system, it can be equivalent to an actual network
connection to the server. Depending on the functionality supported by the
provider, some collections, methods, or properties of a Connection object might
not be available.

Before opening a Connection object, you must define certain information about
the data source and type of connection. The ConnectionString parameter of the
Connection object Open method—or the ConnectionString property on the
Connection object—usually contains most of this information. A connection
string is a string of characters that defines a variable number of arguments. The
arguments—some required by ADO, but others provider-specific—contain
information that the Connection object must have to carry out its work. The
arguments that make up the ConnectionString parameter are separated with
semicolons (;).

Note You can also specify an ODBC Data Source Name (DSN) or a Data
Link (UDL) file in a connection string. For more information about DSNss,
see Data Sources in Part 1 of the ODBC Programmer's Reference. For more
information about UDLs, see Data Link API Overview in the OLE DB
Programmer's Reference.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Creating the Connection String

ADO directly supports five arguments in a connection string. Other arguments
are passed to the provider that is named in the Provider argument without any

processing by ADO.
Argument

Provider

File Name

URL

Remote Provider

Remote Server

Description

Specifies the name of a provider to use
for the connection.

Specifies the name of a provider-
specific file (for example, a persisted
data source object) containing preset
connection information.

Specifies the connection string as an
absolute URL identifying a resource,
such as a file or directory.

Specifies the name of a provider to use
when opening a client-side connection.
(Remote Data Service only.)

Specifies the path name of the server to
use when opening a client-side
connection. (Remote Data Service
only.)

Note In the following examples and throughout the ADO Programmer's
Guide, the user id "MylId" with a password of "123aBc" is used to
authenticate against the server. You should substitute these values with
valid login credentials for your server. Also, substitute the name of your

server for "MySqlServer".

The HelloData application in Chapter 1 used the following connection string:

m_sConnStr = "Provider='SQLOLEDB';Data Source='MySqglServer';" & _
"Initial Catalog='Northwind';Integrated Security='SSPI'

The only ADO parameter supplied in this connection string was

"Provider=SQLOLEDB", which indicated the Microsoft OLE DB Provider for
SQL Server. Other valid parameters that can be passed in the connection string
can be determined by referring to individual providers' documentation.
According to the OLE DB Provider for SQL Server documentation, you can
substitute "Server" for the Data Source parameter and "Database" for the Initial
Catalog parameter. Thus, the following connection string would produce results
identical to the first:

m_sConnStr = "Provider='SQLOLEDB';Server='MySqlServer';" & _
"Database='Northwind';Integrated Security='SSPI';"

To open the connection, simply pass the connection string as the first argument
in the Connection object Open method:

objConn.Open m_sConnStr

It is also possible to supply much of this information by setting properties of the
Connection object before opening the connection. For example, you could
achieve the same effect as the connection string above by using the following
code:

wWith objConn
.Provider = "SQLOLEDB"
.DefaultDatabase = "Northwind"

.Properties("Data Source") = "MySglServer"
.Properties("Integrated Security") = "SSPI"
.0Open

End wWith

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Controlling Transactions

A transaction delimits the beginning and end of a series of data access
operations that transpire across a connection. Subject to the transactional
capabilities of your data source, the Connection object also allows you to create
and manage transactions. For example, using the Microsoft OLE DB Provider
for SQL Server to access a database on Microsoft SQL Server 2000, you can
create multiple nested transactions for the commands you execute.

ADO ensures that changes to a data source resulting from operations in a
transaction occur successfully together or not at all.

If you cancel the transaction, or if one of its operations fails, the ultimate result
will be as if none of the operations in the transaction occurred. The data source
will remain as it was before the transaction began.

The ADO object model does not explicitly include transactions, but represents
them with a set of Connection object methods (BeginTrans, CommitTrans,
and RollbackTrans).

For more information about transactions, see Chapter 5: Updating and Persisting
Data.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using the Command Object

After connecting to a data source, you need to execute requests against it to
obtain result sets. ADO encapsulates this type of command functionality in the
Command object.

You can use the Command object to request any type of operation from the
provider, assuming that the provider can interpret the command string properly.
A common operation for data providers is to query a database and return records
in a Recordset object. Recordsets will be discussed later in this and other
chapters; for now, think of them as tools to hold and view result sets. As with
many ADO objects, depending on the functionality of the provider, some
Command object collections, methods, or properties might generate errors when
referenced.

It is not always necessary to create a Command object to execute a command
against a data source. You can use the Execute method on the Connection
object or the Open method on the Recordset object. However, you should use a
Command object if you need to reuse a command in your code or if you need to
pass detailed parameter information with your command. These scenarios are
covered in more detail later in this chapter.

Note Certain Commands can return a result set as a binary stream or as a
single Record rather than as a Recordset, if this is supported by the
provider. Also, some Commands are not intended to return any result set at
all (for example, a SQL Update query). This chapter will cover the most
typical scenario, however: executing Commands that return results into a
Recordset object. For more information about returning results into
Records or Streams, see Chapter 10: Records and Streams.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Command Object Overview

With the collections, methods, and properties of a Command object, you can do
the following:

Define the executable text of the command (for example, a SQL statement
or a stored procedure) by using the CommandText property.

Define parameterized queries or stored procedure arguments by using
Parameter objects and the Parameters collection.

Execute a command and return a Recordset object, if appropriate, by using
the Execute method.

Specify the type of command by using the CommandType property prior
to execution to optimize performance.

Control whether the provider saves a prepared (or compiled) version of the
command prior to execution by using the Prepared property.

Set the number of seconds that a provider will wait for a command to
execute by using the CommandTimeout property.

Associate an open connection with a Command object by setting its
ActiveConnection property.

Set the Name property to identify the Command object as a method on the
associated Connection object.

Pass a Command object to the Source property of a Recordset in order to
obtain data.

© 1998-2002 Microsoft Corporation. All rights reserved.

ADO 2.5

Creating and Executing a Simple
Command

Though not a typical usage of the Command object, the following code shows
the basic method of using the Command object to execute a command against a
data source. In this case, it is a row-returning command, so it returns the results
of the command execution into a Recordset object.

'BeginBasicCmd
On Error GoTo ErrHandler:

Dim objConn As New ADODB.Connection
Dim objCmd As New ADODB.Command
Dim objRs As New ADODB.Recordset

"SELECT OrderID, OrderDate, " & _
"RequiredDate, ShippedDate " & _
"FROM Orders " & _

"WHERE CustomerID = 'ALFKI' " & _
"ORDER BY OrderID"

adCmdText

objCmd.CommandText

objCmd.CommandType

' Connect to the data source.
Set objConn = GetNewConnection
objCmd.ActiveConnection = objConn

' Execute once and display...
Set objRs = objCmd.Execute

Debug.Print "ALFKI"
Do While Not objRs.EOF
Debug.Print vbTab & objRs(0) & vbTab & objRs(1) & vbTab & _
objRs(2) & vbTab & objRs(3)
objRs.MoveNext
Loop

'clean up

objRs.Close
objConn.Close

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Exit Sub

ErrHandler:
'clean up
If objRs.State = adStateOpen Then
objRs.Close
End If

If objConn.State = adStateOpen Then
objConn.Close
End If

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
'"EndBasicCmd

The command to be executed is specified with the CommandText property.

Note Several examples in this section call a utility function,
GetNewConnection, to establish a connection with the data provider. To
avoid redundancy, it is listed only once, here:

'BeginNewConnection

Private Function GetNewConnection() As ADODB.Connection
Dim oCn As New ADODB.Connection
Dim sCnStr As String

sCnStr = "Provider='SQLOLEDB';Data Source='MySqlServer';" & _
"Integrated Security='SSPI';Database='Northwind"';"
oCn.Open sCnStr

If oCn.State = adStateOpen Then
Set GetNewConnection = oCn
End If

End Function
'"EndNewConnection

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Command Object Parameters

A more interesting use for the Command object is shown in the next example,
in which the text of the SQL command has been modified to make it
parameterized. This makes it possible to reuse the command, passing in a
different value for the parameter each time. Because the Prepared property on
the Command object is set equal to True, ADO will require the provider to
compile the command specified in CommandText before executing it for the
first time. It also will retain the compiled command in memory. This slows the
execution of the command slightly the first time it is executed because of the
overhead required to prepare it, but results in a performance gain each time the
command is called thereafter. Thus, commands should be prepared only if they
will be used more than once.

'BeginManualParamCmd
On Error GoTo ErrHandler:

Dim objConn As New ADODB.Connection
Dim objCmd As New ADODB.Command
Dim objParml As New ADODB.Parameter
Dim objRs As New ADODB.Recordset

' Set the CommandText as a parameterized SQL query.
objCmd.CommandText = "SELECT OrderID, OrderDate, " & _
"RequiredDate, ShippedDate " & _
"FROM Orders " & _
"WHERE CustomerID = ? " & _
"ORDER BY OrderID"
objCmd.CommandType = adCmdText

' Prepare command since we will be executing it more than once.
objCmd.Prepared = True

' Create new parameter for CustomerID. Initial value is ALFKI.

Set objParml = objCmd.CreateParameter("CustId", adChar, _
adParamInput, 5, "ALFKI")

objCmd.Parameters.Append objParmil

' Connect to the data source.

Set objConn = GetNewConnection

objCmd.ActiveConnection = objConn

' Execute once and display...

Set objRs = objCmd.Execute

Debug.Print objParml.Vvalue
Do While Not objRs.EOF
Debug.Print vbTab & objRs(@) & vbTab & objRs(1) & vbTab & _
objRs(2) & vbTab & objRs(3)
objRs.MoveNext
Loop

' ...then set new param value, re-execute command, and display.
objCmd("CustId") = "CACTU"
Set objRs = objCmd.Execute

Debug.Print objParml.Vvalue
Do While Not objRs.EOF
Debug.Print vbTab & objRs(@) & vbTab & objRs(1) & vbTab & _
objRs(2) & vbTab & objRs(3)
objRs.MoveNext
Loop

'clean up

objRs.Close
objConn.Close

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Set objParml = Nothing
Exit Sub

ErrHandler:
'clean up
If objRs.State = adStateOpen Then
objRs.Close
End If

If objConn.State = adStateOpen Then
objConn.Close
End If

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Set objParml = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
'"EndManualParamCmd

Not all providers support prepared commands. If the provider does not support
command preparation, it might return an error as soon as this property is set to
True. If it does not return an error, it ignores the request to prepare the command
and sets the Prepared property to False.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Calling a Stored Procedure with a
Command

You can also use a command when calling a stored procedure. The following
code calls a stored procedure in the Northwind sample database, called
CustOrdersOrders, which is defined as follows:

CREATE PROCEDURE CustOrdersOrders @CustomerID nchar(5) AS
SELECT OrderID, OrderDate, RequiredDate, ShippedDate

FROM Orders

WHERE CustomerID = @CustomerID

ORDER BY OrderID

This stored procedure is similar to the command used in Command Object
Parameters, in that it takes a customer ID parameter and returns information
about that customer's orders. The code below uses this stored procedure as the
source for an ADO Recordset.

Using the stored procedure allows you to access another capability of ADO: the
Parameters collection Refresh method. By using this method, ADO can
automatically fill in all information about the parameters required by the
command at run time. There is a performance penalty in using this technique,
because ADO must query the data source for the information about the
parameters.

Other important differences exist between the code below and the code in
Command Object Parameters, where the parameters were entered manually.
First, this code does not set the Prepared property to True because it is a SQL
Server stored procedure and is precompiled by definition. Second, the
CommandType property of the Command object changed to
adCmdStoredProc in the second example to inform ADO that the command
was a stored procedure.

'BeginAutoParamCmd
On Error GoTo ErrHandler:

Dim objConn As New ADODB.Connection
Dim objCmd As New ADODB.Command

Dim objParml As New ADODB.Parameter
Dim objRs As New ADODB.Recordset

' Set CommandText equal to the stored procedure name.
objCmd.CommandText "CustOrdersOrders"
objCmd.CommandType adCmdStoredProc

Connect to the data source.
Set objConn = GetNewConnection
objCmd.ActiveConnection = objConn

' Automatically fill in parameter info from stored procedure.
objCmd.Parameters.Refresh

' Set the param value.
objCmd(1) = "ALFKI"

' Execute once and display...
Set objRs = objCmd.Execute

Debug.Print objParml.value
Do While Not objRs.EOF
Debug.Print vbTab & objRs(@) & vbTab & objRs(1) & vbTab & _
objRs(2) & vbTab & objRs(3)
objRs.MoveNext
Loop
' ...then set new param value, re-execute command, and display.
objCmd(1) = "CACTU"
Set objRs = objCmd.Execute

Debug.Print objParml.Vvalue
Do While Not objRs.EOF
Debug.Print vbTab & objRs(@) & vbTab & objRs(1) & vbTab & _
objRs(2) & vbTab & objRs(3)
objRs.MoveNext
Loop

'clean up

objRs.Close
objConn.Close

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Set objParml = Nothing
Exit Sub

ErrHandler:
'clean up
If objRs.State = adStateOpen Then

objRs.Close
End If

If objConn.State = adStateOpen Then
objConn.Close
End If

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Set objParml = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
"EndAutoParamCmd

© 1998-2002 Microsoft Corporation. All rights reserved.

ADO 2.5

Named Commands

You can set the Name property on a Command object and then execute the
command by calling it as if it were a method on the Command object
ActiveConnection property. This is illustrated in the following example, in
which the command is named GetCustomers. Notice that the code passes in a
declared and instantiated Recordset object to the GetCustomers "method." You
can also pass in parameters to the "method" if they are required by the
Command.

'BeginNamedCmd
On Error GoTo ErrHandler:

Dim objConn As New ADODB.Connection
Dim objCmd As New ADODB.Command
Dim objRs As New ADODB.Recordset

' Connect to the data source.
Set objConn = GetNewConnection

objCmd.CommandText "SELECT CustomerID, CompanyName FROM Custon

objCmd.CommandType adCmdText
"Name the command.
objCmd.Name = "GetCustomers"

objCmd.ActiveConnection = objConn

' Execute using Command.Name from the Connection.
objConn.GetCustomers objRs

' Display.

Do While Not objRs.EOF
Debug.Print objRs(0) & vbTab & objRs(1)
objRs.MoveNext

Loop

'clean up

objRs.Close
objConn.Close

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Exit Sub

ErrHandler:
'clean up
If objRs.State = adStateOpen Then
objRs.Close
End If

If objConn.State = adStateOpen Then
objConn.Close
End If

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
"EndNamedCmd

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Adding Data to a Recordset

The Recordset is probably the most used of the ADO objects. In ADO a
Recordset is best thought of as the combination of a result set from a data
source and its associated cursor behaviors. Thus, you can put data into a
Recordset and then use the Recordset methods and properties to navigate
through the rows of data, view the values in the rows, and otherwise manipulate
the result set.

This section will focus on adding data to the Recordset. For information about
navigating through the data or updating the data, see Chapter 4: Editing Data and
Chapter 5: Updating and Persisting Data. You do not always need the advanced
capabilities of a Command object to add your result set to a Recordset. Often,
you can execute your command by setting the Source property on the Recordset
or passing a command string to the Recordset object Open method.

There are a variety of ways to add data from your data source to a Recordset.
The technique you use depends on the needs of your application and the
capabilities of your provider.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Recordset Object Open Method

Everything you need to open an ADO Recordset is built into the Open method.
You can use it without explicitly creating any other objects. The syntax of this
method is as follows:

recordset .Open Source, ActiveConnection, CursorType, LockType, Optic

All arguments are optional because the information they pass can be
communicated to ADO in other ways. However, understanding each argument
will help you to understand many important ADO concepts. The following
topics will examine each argument of this method in more detail.

Source and Options Arguments

The Source and Options arguments appear in the same topic because they are
closely related.

recordset .Open Source, ActiveConnection, CursorType, LockType, Optia

The Source argument is a Variant that evaluates to a valid Command object, a
text command (e.g., a SQL statement), a table name, a stored procedure call, a
URL, or the name of a file or Stream object containing a persistently stored
Recordset. If Source is a file path name, it can be a full path ("C:\dir\file.rst"), a
relative path ("..\file.rst"), or a URL ("http://files/file.rst"). You can also specify
this information in the Recordset object Source property and leave the Source
argument blank.

The Options argument is a Long value that indicates either or both of the
following:

e How the provider should evaluate the Source argument if it represents
something other than a Command object.

e That the Recordset should be restored from a file where it was previously
saved.

This argument can contain a bitmask of CommandTypeEnum or
ExecuteOptionEnum values. A CommandTypeEnum passed in the Options
argument sets the CommandType property of the Recordset.

Note The ExecuteOpenEnum values of adExecuteNoRecords and
adExecuteStream cannot be used with Open.

If the CommandType property value equals adCmdUnknown (the default
value), you might experience diminished performance, because ADO must make
calls to the provider to determine whether the CommandText property is a SQL
statement, a stored procedure, or a table name. If you know what type of
command you are using, setting the CommandType property instructs ADO to
go directly to the relevant code. If the CommandType property does not match
the type of command in the CommandText property, an error occurs when you
call the Open method.

For more information about using these enumerated constants for Options and
with other ADO methods and properties, see CommandTypeEnum and
ExecuteOptionEnum.

ActiveConnection Argument

You can pass in either a Connection object or a connection string as the
ActiveConnection argument.

recordset .Open Source, ActiveConnection, CursorType, LockType, Optic

The ActiveConnection argument corresponds to the ActiveConnection property
and specifies in which connection to open the Recordset object. If you pass a
connection definition for this argument, ADO opens a new connection using the
specified parameters. After opening the Recordset with a client-side cursor
(CursorLocation = adUseClient), you can change the value of this property to
send updates to another provider. Or you can set this property to Nothing (in
Microsoft Visual Basic) or NULL to disconnect the Recordset from any
provider. Changing ActiveConnection for a server-side cursor generates an
error, however.

If you pass a Command object in the Source argument and also pass an
ActiveConnection argument, an error occurs because the ActiveConnection
property of the Command object must already be set to a valid Connection
object or connection string.

CursorType Argument

recordset .Open Source, ActiveConnection, CursorType, LockType, Optic

As discussed in The Significance of Cursor Location, the type of cursor that your
application uses will determine which capabilities are available to the resultant

Recordset (if any). For a detailed examination of cursor types, see Chapter 8:
Understanding Cursors and Locks.

The CursorType argument can accept any of the CursorTypeEnum values.

LockType Argument
recordset .Open Source, ActiveConnection, CursorType, LockType, Optic

Set the LockType argument to specify what type of locking the provider should
use when opening the Recordset. The different types of locking are discussed in
Chapter 8: Understanding Cursors and Locks.

The LockType argument can accept any of the LockTypeEnum values.

Retrieving Multiple Recordsets

You might occasionally need to execute a command that will return more than
one result set. A common example is a stored procedure that runs against a SQL
Server database, as in the following example. The stored procedure contains a
COMPUTE clause to return the average price of all products in the table. The
definition of the stored procedure is as follows:

CREATE PROCEDURE ProductsWithAvgPrice
AS
SELECT ProductID, ProductName, UnitPrice
FROM PRODUCTS
COMPUTE AVG(UnitPrice)

The Microsoft OLE DB Provider for SQL Server returns multiple result sets to
ADO when the command contains a COMPUTE clause. Therefore, the ADO
code must use the NextRecordset method to access the data in the second result
set, as shown here:

'BeginNextRs
On Error GoTo ErrHandler:

Dim objConn As New ADODB.Connection
Dim objCmd As New ADODB.Command
Dim objRs As New ADODB.Recordset

Set objConn = GetNewConnection
objCmd.ActiveConnection = objConn

objCmd.CommandText
objCmd.CommandType

"ProductswWithAvgPrice"
adCmdStoredProc

Set objRs = objCmd.Execute

Do While Not objRs.EOF
Debug.Print objRs(@) & vbTab & objRs(1) & vbTab & _
objRs(2)
objRs.MoveNext
Loop

Set objRs = objRs.NextRecordset

Debug.Print "AVG. PRICE = $ " & 0bjRs(0)

'clean up

objRs.Close
objConn.Close

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing
Exit Sub

ErrHandler:
'clean up
If objRs.State = adStateOpen Then
objRs.Close
End If

If objConn.State = adStateOpen Then
objConn.Close
End If

Set objRs = Nothing
Set objConn = Nothing
Set objCmd = Nothing

If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"

End If
"EndNextRs

For more information, see NextRecordset.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 3: Examining Data

Chapter 2 explained how to retrieve data from a data source as a Recordset
object. This chapter will discuss the Recordset in more detail, including how to
navigate through the Recordset and view its data.

The following diagram illustrates the object model of the Recordset object.
Click an object or collection for more information.

Recordsets have methods and properties designed to make it easy to move
through them and examine their contents. Depending on the functionality
supported by the provider, some Recordset methods or properties might not be
available. To continue exploring the Recordset object, consider a Recordset that
would be returned from the Northwind sample database on Microsoft SQL
Server 2000, using the following code:

'BeginRsTour
Public Sub RecordsetTour ()
On Error GoTo ErrHandler:

Dim objRs As New ADODB.Recordset
Dim strSQL As String

strSQL = "SELECT ProductID, ProductName, UnitPrice FROM Products
"WHERE CategoryID = 7" '7 = Produce

objRs.Open strSQL, strConnStr, adOpenForwardOnly, _
adLockReadOnly, adCmdText

'Clean up
objRs.Close

Set objRs = Nothing
Exit Sub

ErrHandler:
If Not objRs Is Nothing Then
If objRs.State = adStateOpen Then objRs.Close

Set objRs = Nothing

End If
If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
End Sub
"EndRsTour

This SQL query returns a Recordset with five rows (records) and three columns
(fields). The values for each row are shown in the following table.

FIELD 0 FIELD 1 Fl{IEaf‘n]()a E
Name = ProductID Name = ProductName e
UnitPrice
7 Uncle Bob's Organic Dried Pears 30.0000
14 Tofu 23.2500
28 Rssle Sauerkraut 45.6000
51 Manjimup Dried Apples 53.0000
74 Longlife Tofu 10.0000

The next section will explain how to locate the current position of the cursor in
this sample Recordset.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Locating the Current Record

The current position of the cursor in the Recordset delineates the current record
position. Assuming that the command issued returns results, the cursor is
automatically placed at the first record when the Recordset Open method is
called. So, with the sample Recordset, the cursor would be on the first record,
"Uncle Bob's Organic Dried Pears."

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Counting Rows

The RecordCount property returns a Long value that indicates the number of
records in the Recordset. Use the RecordCount property to find out how many
records are in a Recordset object. The property returns -1 when ADO cannot
determine the number of records or if the provider or cursor type does not
support RecordCount. Reading the RecordCount property on a closed
Recordset causes an error.

The RecordCount property depends on the capabilities of the provider and the
type of cursor. The RecordCount property will return -1 for a forward-only
cursor, the actual count for a static or keyset cursor, and either -1 or the actual
count for a dynamic cursor, depending on the data source.

The sample Recordset introduced in Examining Data would return —1 because a
forward-only cursor was opened. In order to use the RecordCount property, you
would need to open the Recordset with a more sophisticated cursor (static or
keyset).

In certain cases, your provider or cursor might be unable to provide the
RecordCount value without first fetching all records from the data source. To
force this type of fetch, call the Recordset MoveLast method before calling
RecordCount.

If you were to replace the line of code that calls the Recordset Open method
with the following:

ORs.Open sSQL, sCnStr, adOpenStatic, adLockOptimistic, adCmdText

you would be able to use the RecordCount property because static cursors with
the Microsoft OLE DB Provider for SQL Server support RecordCount. For
example, the following code would print out the number of records returned by
the command to the debug window, assuming the cursor supports the
RecordCount property:

Debug.Print oRs.RecordCount " Qutput: 4

From this point forward, assume that these more capable (but more expensive)

cursor and lock type settings are used.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Limits of a Recordset

Use the BOF and EOF properties to determine whether a Recordset object
contains records or whether you've gone beyond the limits of a Recordset object
when you move from record to record. Think of BOF and EOF as "phantom”
records that are positioned at the beginning and end of the Recordset. Building
on the sample Recordset from Examining Data, it would now look like this:

ProductID ProductName UnitPrice
BOF
7 Uncle Bob's Organic Dried 30.0000
Pears
14 Tofu 23.2500
28 Rssle Sauerkraut 45.6000
51 Manjimup Dried Apples 53.0000
74 Longlife Tofu 10.0000
EOF

The BOF property returns True (-1) if the current record position is before the
first record and False (0) if the current record position is on or after the first
record.

The EOF property returns True if the current record position is after the last
record and False if the current record position is on or before the last record.

If either the BOF or EOF property is True, there is no current record, as shown
in the following code:

If oRs.BOF And oRs.EOF Then
' Command returned no records.
End If

If you open a Recordset object containing no records, the BOF and EOF
properties are both set to True and the value of the Recordset object's
RecordCount property setting depends on the cursor type. -1 will be returned
for dynamic cursors (CursorType = adOpenDynamic) and 0 will be returned

for other cursors.

When you open a Recordset object that contains at least one record, the first
record is the current record and the BOF and EOF properties are False.

If you delete the last remaining record in the Recordset object, the cursor is left
in an indeterminate state. The BOF and EOF properties may remain False until
you attempt to reposition the current record, depending upon the provider.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Navigating Through the Data

Now that you have executed a command against the data source and determined
that the result set contains data, you can move through the results by using the
navigation methods and properties provided by the Recordset object. The
following topics describe how to use these methods and properties on the sample
Recordset:

Jumping to a Record
More Ways to Move in a Recordset
Using Bookmarks

Using Pages
Recordset Positioning

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Jumping to a Record

The Move method allows you to move forward or backward in the Recordset a
specified number of records by using the following syntax:

ORs.Move NumRecords, Start
The Move method is supported on all Recordset objects.

If the NumRecords argument is greater than zero, the current record position
moves forward (toward the end of the Recordset). If NumRecords is less than
zero, the current record position moves backward (toward the beginning of the
Recordset).

If the Move call would move the current record position to a point before the
first record, ADO sets the current record to the position before the first record in
the Recordset (BOF is True). An attempt to move backward when the BOF
property is already True generates an error.

If the Move call would move the current record position to a point after the last
record, ADO sets the current record to the position after the last record in the
Recordset (EOF is True). An attempt to move forward when the EOF property
is already True generates an error.

Calling the Move method from an empty Recordset object generates an error.

If you pass a bookmark in the Start argument, the move is relative to the record
with this bookmark, assuming the Recordset object supports bookmarks. A
bookmark is obtained by using the Bookmark property. If not specified, the
move is relative to the current record.

If you are using the CacheSize property to locally cache records from the
provider, passing a NumRecords argument that moves the current record position
outside the current group of cached records forces ADO to retrieve a new group
of records, starting from the destination record. The CacheSize property
determines the size of the newly retrieved group, and the destination record is
the first record retrieved.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

More Ways to Move in a Recordset

The following four methods are used to move around, or scroll, in the
Recordset: MoveFirst, MoveL.ast, MoveNext, and MovePrevious. (Some of
these methods are unavailable on forward-only cursors.)

MoveFirst changes the current record position to the first record in the
Recordset. MoveLast changes the current record position to the last record in
the Recordset. To use MoveFirst or MoveLast, the Recordset object must
support bookmarks or backward cursor movement; otherwise, the method call
will generate an error.

MoveNext moves the current record position one place forward. If you are on
the last record when you call MoveNext, EOF will be set to True.
MovePrevious moves the current record position one place backward. If you are
on the first record when you call MovePrevious, BOF will be set to True. It is
wise to check the EOF and BOF properties when using these methods and to
move the cursor back to a valid current record position if you move off either
end of the Recordset, as shown here:

ORs.MoveNext
If oRs.EOF Then oRs.MovelLast

Or, in the case of the MovePrevious method:

ORs.MovePrevious
If oRs.BOF Then oRs.MoveFirst

In cases where the Recordset has been filtered or sorted and the current record's
data is changed, the position may also change. In such cases the MoveNext
method works normally, but be aware that the position is moved one record
forward from the new position, not the old position. For example, changing the
data in the current record, such that the record is moved to the end of the sorted
Recordset, would mean that calling MoveNext results in ADO setting the
current record to the position after the last record in the Recordset (EOF =

True).

The behavior of the various Move methods of the Recordset object depends, to
some extent, on the data within the Recordset. New records added to the
Recordset are initially added in a particular order, which is defined by the data
source and may be dependent implicitly or explicitly on the data in the new
record. For example, if a sort or a join is done within the query that populates the
Recordset, the new record will be inserted in the appropriate place within the
Recordset. If ordering is not explicitly specified when creating the Recordset,
changes in the data source implementation may cause the ordering of the
returned rows to change inadvertently. In addition, the sorting, filtering, and
editing functions of the Recordset can affect the order and possibly which rows
in the recordset will be visible.

Therefore, MoveNext, MovePrevious, MoveFirst, MoveLast, and Move are all
sensitive to other operations performed on the same Recordset. ADO will
always try to maintain your current position until you explicitly move it, but
sometimes intervening changes make it difficult to understand the effects of a
subsequent move. For example, if you call MoveFirst to position on the first
row of a sorted Recordset and you change the sort from ascending order to
descending order, you are still on the same row—but now it is the last row in the
Recordset. MoveFirst will take you to a different row (the new first row).

As another example, if you are positioned on a particular row in the middle of a
Recordset and you call Delete and then call MoveNext, you are now on the
record immediately following the deleted record. But calling MovePrevious
makes the record preceding the one you deleted the current record, because the
deleted record is no longer counted in the active membership of the Recordset.

It is particularly difficult to define consistent move semantics across all
providers for methods that move relative to the current record—MovePrevious,
MoveNext, and Move—in the face of changing data in the current record. For
example, if you are working with a sorted, filtered Recordset, and you change
the data in the current record so that it would precede all other records, but your
changed data also no longer matches the filter, it is not clear where a MoveNext
operation should take you. The safest conclusion is that relative movement
within a Recordset is riskier than absolute movement (such as using MoveFirst
or MoveLast) when the data is changing while records are being edited, added,
or deleted. Sorting and filtering should be based on a primary key or ID, because

this type of value should not change.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using Bookmarks

It is often useful to return directly to a specific record after having moved around
in the Recordset without having to scroll through every record and compare
values. For example, if you attempt to search for a record using the Find method
but the search returns no records, you are automatically placed at either end of
the Recordset. If your provider supports them, bookmarks can be used to mark
your place before using the Find method so you can return to your location. A
bookmark is a Variant type value that uniquely identifies a record in a
Recordset object.

You can also use a variant array of bookmarks with the Recordset Filter method
to filter on a selected set of records. For details about this technique, see
Filtering the Results in the topic, Working with Recordsets, later in this chapter.

You can use the Bookmark property to get a bookmark for a record, or set the
current record in a Recordset object to the record identified by a valid
bookmark. The following code uses the Bookmark property to set a bookmark
and then return to the bookmarked record after moving on to other records. To
determine if your Recordset supports bookmarks, use the Supports method.

'BeginBookmarkEg
Dim varBookmark As Variant
Dim blnCanBkmrk As Boolean

objRs.Open strSQL, strConnStr, adOpenStatic, adLockOptimistic, a

If objRs.RecordCount > 4 Then
objRs.Move 4 ' move to the fifth recor
blnCanBkmrk = objRs.Supports(adBookmark)
If blnCanBkmrk = True Then

varBookmark = objRs.Bookmark ' record the bookmark
objRs.MovelLast ' move to a different rec
objRs.Bookmark = varBookmark " return to the bookmarke
End If
End If
"EndBookmarkEg

The Supports method is covered in more detail later.

Except for the case of cloned Recordsets, bookmarks are unique to the
Recordset in which they were created, even if the same command is used. This
means that you cannot use a Bookmark obtained from one Recordset to move
to the same record in a second Recordset opened with the same command.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using Pages

Use the PageCount property to determine how many pages of data are in the
Recordset object. Pages are groups of records whose size equals the PageSize
property setting. Even if the last page is incomplete because there are fewer
records than the PageSize value, it counts as an additional page in the
PageCount value. If the Recordset object does not support this property,
PageCount will be -1 to indicate that the PageCount is indeterminable.

Use the PageSize property to determine how many records make up a logical
page of data. Establishing a page size allows you to use the AbsolutePage
property to move to the first record of a particular page. This is useful in Web-
server scenarios when you want to allow the user to page through data, viewing
a certain number of records at a time.

This property can be set at any time, and its value will be used for calculating the
location of the first record of a particular page.

Use the AbsolutePage property to identify the page number on which the
current record is located. Again, the provider must support the appropriate
functionality for this property to be available.

AbsolutePage is 1-based and equals 1 when the current record is the first record
in the Recordset. Set this property to move to the first record of a particular
page. Obtain the total number of pages from the PageCount property.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Recordset Positioning

Use the AbsolutePosition property to move to a record, based on its ordinal
position in the Recordset object, or to determine the ordinal position of the
current record. The provider must support the appropriate functionality for this
property to be available.

AbsolutePosition is 1-based and equals 1 when the current record is the first
record in the Recordset. As mentioned previously, you can obtain the total
number of records in the Recordset object from the RecordCount property.

When you set the AbsolutePosition property, even if it is to a record in the
current cache, ADO reloads the cache with a new group of records starting with
the record you specified. The CacheSize property determines the size of this

group.

Note You should not use the AbsolutePosition property as a surrogate
record number. The position of a given record changes when you delete a
preceding record. There also is no assurance that a given record will have
the same AbsolutePosition if the Recordset object is requeried or
reopened. Bookmarks are the recommended way of retaining and returning
to a given position and are the only way of positioning across all types of
Recordset objects.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Understanding Recordset Structure

Every Recordset has a Fields collection consisting of one or more Field objects.
A Field object usually represents a table column. The following topics will
explain how to navigate through the Fields collection and get information about
each field. Then they will discuss what kind of information is available to you
via the Field object and how to use it.

e The Fields Collection
e The Field Object
e Working with Recordsets

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Fields Collection

The Fields collection is one of ADQ's intrinsic collections. A collection is an
ordered set of items that can be referred to as a unit. For more information about
ADO collections, see The ADO Object Model in Chapter 1.

The Fields collection contains a Field object for every field (column) in the
Recordset. Like all ADO collections, it has Count and Item properties, as well
as Append and Refresh methods. It also has CancelUpdate, Delete, Resync,
and Update methods, which are not available to other ADO collections.

Examining the Fields Collection

Consider the Fields collection of the sample Recordset introduced in this
chapter. The sample Recordset was derived from the SQL statement

SELECT ProductID, ProductName, UnitPrice FROM Products WHERE Categor

Thus, you should find that the Recordset Fields collection contains three fields.

'BeginWalkFields
Dim objFields As ADODB.Fields

objRs.Open strSQL, strConnStr, adOpenForwardOnly, adLockReadOnly
Set objFields = objRs.Fields

For intLoop = 0 To (objFields.Count - 1)
Debug.Print objFields.Item(intLoop).Name
Next
'"EndwWalkFields

This code simply determines the number of Field objects in the Fields collection
using the Count property and loops through the collection, returning the value of
the Name property for each Field object. You can use many more Field
properties to get information about a field. For more information about querying
a Field, see The Field Object.

Counting Columns

As you might expect, the Count property returns the actual number of Field
objects in the Fields collection. Because numbering for members of a collection
begins with zero, you should always code loops starting with the zero member
and ending with the value of the Count property minus 1. If you are using
Microsoft Visual Basic and want to loop through the members of a collection
without checking the Count property, use the For Each...Next command.

If the Count property is zero, there are no objects in the collection.

Getting to the Field

As with any ADO collection, the Item property is the default property of the
collection. It returns the individual Field object specified by the name or index
passed to it. Therefore, the following statements are equivalent for the sample
Recordset:

objField = objRecordset.Fields.Item("ProductID")
objField = objRecordset.Fields("ProductID")
objField = objRecordset.Fields.Item(0)

objField = objRecordset.Fields(0)

If these methods are equivalent, which is best? It depends. Using an index to
retrieve a Field from the collection is faster because it accesses the Field directly
without having to perform a string lookup. On the other hand, the order of Fields
within the collection must be known, and if the order changes, the reference to
the Field's index will have to be changed wherever it occurs. Although slightly
slower, using the name of the Field is more flexible because it doesn't depend on
the order of the Fields in the collection.

Using the Refresh Method

Unlike some other ADO collections, using the Refresh method on the Fields
collection has no visible effect. To retrieve changes from the underlying database
structure, you must use either the Requery method, or if the Recordset object
does not support bookmarks, the MoveFirst method, which will cause the
command to be executed against the provider again.

Adding Fields to a Recordset

The Append method is used to add fields to a Recordset.

You can use the Append method to fabricate a Recordset programmatically
without opening a connection to a data source. A run-time error will occur if the
Append method is called on the Fields collection of an open Recordset or on a
Recordset where the ActiveConnection property has been set. You can append
fields only to a Recordset that is not open and has not yet been connected to a
data source. However, to specify values for the newly appended Fields, the
Recordset must first be opened.

Developers often need a place to temporarily store some data, or want some data
to act as if it came from a server so it can participate in data binding in a user
interface. ADO (in conjunction with the Microsoft Cursor Service for OLE DB)
enables the developer to build an empty Recordset object by specifying column
information and calling Open. In the following example, three new fields are
appended to a new Recordset object. Then the Recordset is opened, two new
records are added, and the Recordset is persisted to a file. (For more
information about Recordset persistence, see Chapter 5: Updating and Persisting
Data.)

'BeginFabricate
Dim objRs As New ADODB.Recordset

With objRs.Fields
.Append "StudentID", adChar, 11, adFldUpdatable
.Append "FullName", adVvarChar, 50, adFldUpdatable
.Append "PhoneNmbr", advarChar, 20, adFldUpdatable
End With

wWith objRs
.Open

.AddNew
.Fields(0)
.Fields(1)
.Fields(2)
.Update

"123-45-6789"
"John Doe"
"(425) 555-5555"

.AddNew
.Fields(0)

"123-45-6780"

.Fields(1) = "Jane Doe"
.Fields(2) = "(615) 555-1212"
.Update

End With

objRs.Save App.Path & "\FabriTest.adtg", adPersistADTG

objRs.Close
'"EndFabricate

The usage of the Fields Append method differs between the Recordset object
and the Record object. For more information about the Record object, see

Chapter 10: Records and Streams.

See Also

Fabricating Hierarchical Recordsets

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Field Object

Each Field object usually corresponds to a column in a database table. However,
a Field can also represent a pointer to another Recordset, called a chapter.
Exceptions, such as chapter columns, will be covered later in this guide.

Use the Value property of Field objects to set or return data for the current
record. Depending on the functionality the provider exposes, some collections,
methods, or properties of a Field object may not be available.

With the collections, methods, and properties of a Field object, you can do the
following:

e Return the name of a field by using the Name property.

e View or change the data in the field by using the Value property. Value is
the default property of the Field object.

e Return the basic characteristics of a field by using the Type, Precision, and
NumericScale properties.

e Return the declared size of a field by using the DefinedSize property.

e Return the actual size of the data in a given field by using the ActualSize
property.

e Determine what types of functionality are supported for a given field by
using the Attributes property and Properties collection.

e Manipulate the values of fields containing long binary or long character
data by using the AppendChunk and GetChunk methods.

Resolve discrepancies in field values during batch updating by using the
OriginalValue and UnderlyingValue properties, if the provider supports batch
updates.

Describing a Field

The topics that follow will discuss properties of the Field object that represent
information that describes the Field object itself—that is, metadata about the
field. This information can be used to determine much about the schema of the
Recordset. These properties include Type, DefinedSize and ActualSize, Name,
and NumericScale and Precision.

Discovering the Data Type

The Type property indicates the data type of the field. The data type enumerated
constants that are supported by ADO are described in DataTypeEnum in the
ADO Programmer's Reference.

For floating point numeric types such adNumeric, you can obtain more
information. The NumericScale property indicates how many digits to the right
of the decimal point will be used to represent values for the Field. The Precision
property specifies the maximum number of digits used to represent values for the
Field.

Determining Field Size

Use the DefinedSize property to determine the data capacity of a Field object.

Use the ActualSize property to return the actual length of a Field object's value.
For all fields, the ActualSize property is read-only. If ADO cannot determine the
length of the Field object's value, the ActualSize property returns adUnknown.

The DefinedSize and ActualSize properties have different purposes. For
example, consider a Field object with a declared type of adVarChar and a
DefinedSize property value of 50, containing a single character. The ActualSize
property value it returns is the length in bytes of the single character.

Determining Field Contents

The identifier of the column from the data source is represented by the Name
property of the Field. The Value property of the Field object returns or sets the

actual data content of the field. This is the default property.

To change the data in a field, set the Value property equal to a new value of the
correct type. Your cursor type must support updates to change the contents of a
field. Database validation is not done here in batch mode, so you will need to
check for errors when you call UpdateBatch in such a case. Some providers also
support the ADO Field object's UnderlyingValue and OriginalValue properties
to assist you with resolving conflicts when you attempt to perform batch
updates. For details about how to resolve such conflicts, see Chapter 4: Editing
Data.

Note Recordset Field values cannot be set when appending new Fields to
a Recordset. Rather, new Fields can be appended to a closed Recordset.
Then the Recordset must be opened, and only then can values be assigned
to these Fields.

Getting More Field Information

ADO objects have two types of properties: built-in and dynamic. To this point,
only the built-in properties of the Field object have been discussed.

Built-in properties are those properties implemented in ADO and immediately
available to any new object, using the Myobject.Property syntax. They do not
appear as Property objects in an object's Properties collection.

Dynamic properties are defined by the underlying data provider, and appear in
the Properties collection for the appropriate ADO object. For example, a
property specific to the provider may indicate if a Recordset object supports
transactions or updating. These additional properties will appear as Property
objects in that Recordset object's Properties collection. Dynamic properties can
be referenced only through the collection, using the syntax
MyObject.Properties(@) or MyObject.Properties('"Name").

You cannot delete either kind of property.
A dynamic Property object has four built-in properties of its own:

e The Name property is a string that identifies the property.
e The Type property is an integer that specifies the property data type.

e The Value property is a variant that contains the property setting. Value is
the default property for a Property object.

e The Attributes property is a Long value that indicates characteristics of the
property specific to the provider.

The Properties collection for the Field object contains additional metadata
about the field. The contents of this collection vary depending upon the provider.
The following code example examines the Properties collection of the sample
Recordset introduced at the beginning of this chapter. It first looks at the
contents of the collection. This code uses the OLE DB Provider for SQL Server,
so the Properties collection contains information relevant to that provider.

'BeginFieldProps
Dim objProp As ADODB.Property

For intLoop = 0 To (objFields.Count - 1)
Debug.Print objFields.Item(intLoop).Name

For Each objProp In objFields(intLoop).Properties
Debug.Print vbTab & objProp.Name & " = " & objProp.Value
Next objProp
Next intLoop
'"EndFieldProps

Dealing with Binary Data

Use the AppendChunk method on a Field object to fill it with long binary or
character data. In situations where system memory is limited, you can use the
AppendChunk method to manipulate long values in portions rather than in their
entirety.

If the adFldLong bit in the Attributes property of a Field object is set to True,
you can use the AppendChunk method for that field.

The first AppendChunk call on a Field object writes data to the field,
overwriting any existing data. Subsequent AppendChunk calls add to existing
data. If you are appending data to one field and then you set or read the value of
another field in the current record, ADO assumes that you are finished
appending data to the first field. If you call the AppendChunk method on the
first field again, ADO interprets the call as a new AppendChunk operation and
overwrites the existing data. Accessing fields in other Recordset objects that are

not clones of the first Recordset object will not disrupt AppendChunk
operations.

Use the GetChunk method on a Field object to retrieve part or all of its long
binary or character data. In situations where system memory is limited, you can
use the GetChunk method to manipulate long values in portions, rather than in
their entirety.

The data that a GetChunk call returns is assigned to variable. If Size is greater
than the remaining data, the GetChunk method returns only the remaining data
without padding variable with empty spaces. If the field is empty, the
GetChunk method returns a null value.

Each subsequent GetChunk call retrieves data starting from where the previous
GetChunk call left off. However, if you are retrieving data from one field and
then set or read the value of another field in the current record, ADO assumes
you have finished retrieving data from the first field. If you call the GetChunk
method on the first field again, ADO interprets the call as a new GetChunk
operation and starts reading from the beginning of the data. Accessing fields in
other Recordset objects that are not clones of the first Recordset object will not
disrupt GetChunk operations.

If the adFldLong bit in the Attributes property of a Field object is set to True,
you can use the GetChunk method for that field.

If there is no current record when you use the GetChunk or AppendChunk
method on a Field object, error 3021 (no current record) occurs.

For an example of using these methods to manipulate binary data, see the
AppendChunk Method and GetChunk Method examples in the ADO
Programmer'’s Reference.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Working with Recordsets

The Recordset object has built-in features that make it possible for you to
rearrange the order of the data in the result set, to search for a specific record
based on criteria that you supply, and even to optimize those search operations
using indexes. Whether these features are available for use depends on the
provider and in some cases—such as that of the Index property—the structure of
the data source itself.

Arranging Data

Often, the most efficient way to order the data in your Recordset is by
specifying an ORDER BY clause in the SQL command used to return results to
it. However, you might need to change the order of the data in a Recordset that
has already been created. You can use the Sort property to establish the order in
which rows of a Recordset are traversed. Furthermore, the Filter property
determines which rows are accessible when traversing rows.

The Sort property sets or returns a String value that indicates the field names in
the Recordset on which to sort. Each name is separated by a comma and is
optionally followed by a space and the keyword ASC (which sorts the field in
ascending order) or DESC (which sorts the field in descending order). By
default, if no keyword is specified, the field is sorted in ascending order.

The sort operation is efficient because data is not physically rearranged but is
simply accessed in the order specified by an index.

The Sort property requires the CursorLocation property to be set to
adUseClient. A temporary index will be created for each field specified in the
Sort property if an index does not already exist.

Setting the Sort property to an empty string will reset the rows to their original
order and delete temporary indexes. Existing indexes will not be deleted.

Suppose a Recordset contains three fields named firstName, middlelnitial, and
lastName. Set the Sort property to the string "lastName DESC, firstName
Asc", which will order the Recordset by last name in descending order and then
by first name in ascending order. The middle initial is ignored.

No field referenced in a sort criteria string can be named "ASC" or "DESC"
because those names conflict with the keywords ASC and DESC. Give a field
with a conflicting name an alias by using the AS keyword in the query that
returns the Recordset.

For more details about Recordset filtering, see Filtering the Results later in this
topic.

Finding a Specific Record

ADO provides the Find and Seek methods for locating a particular record in a
Recordset. The Find method is supported by a variety of providers but is
limited to a single search criterion. The Seek method supports searching on
multiple criteria, but is not supported by many providers.

Indexes on fields can greatly enhance the performance of the Recordset object's
Find method and Seort and Filter properties. You can create an internal index for
a Field object by setting its dynamic Optimize property. This dynamic property
is added to the Field object's Properties collection when you set the
CursorLocation property to adUseClient. Remember that this index is internal to
ADO—you cannot gain access to it or use it for any other purpose. Also, this
index is distinct from the Recordset object's Index property.

The Find method quickly locates a value within a column (field) of a Recordset.
You can often improve the speed of the Find method's operation on a column by
using the Optimize property to create an index on it.

The Find method limits your search to the contents of one field. The Seek
method requires that you have an index and has other limitations as well. If you
need to search on multiple fields that aren't the basis of an index, or if your
provider does not support indexes, you can limit your results using the Filter
property of the Recordset object.

Find

The Find method searches a Recordset for the row that satisfies a specified
criterion. Optionally, the direction of the search, starting row, and offset from the
starting row may be specified. If the criterion is met, the current row position is
set on the found record; otherwise, the position is set to the end (or start) of the
Recordset, depending on search direction.

Only a single-column name may be specified for the criterion. In other words,
this method does not support multi-column searches.

The comparison operator for the criterion may be ">" (greater than), "<" (less
than), "=" (equal), ">=" (greater than or equal), "<=" (less than or equal), "<>"

(not equal), or "LIKE" (pattern matching).

The criterion value may be a string, floating-point number, or date. String values
are delimited with single quotes or "#" (number sign) marks (for example, "state
="WA'" or "state = #WA#"). Date values are delimited with "#" (number sign)
marks (for example, "start_date > #7/22/97#").

If the comparison operator is "like", the string value may contain an asterisk (*)
to find one or more occurrences of any character or substring. For example,
"state like 'M*"" matches Maine and Massachusetts. You can also use leading
and trailing asterisks to find a substring contained within the values. For
example, "state like "*as*" matches Alaska, Arkansas, and Massachusetts.

Asterisks can be used only at the end of a criteria string or together at both the
beginning and end of a criteria string, as shown above. You cannot use the
asterisk as a leading wildcard ("*str') or embedded wildcard ('s*r"). This will
cause an error.

Seek and Index

Use the Seek method in conjunction with the Index property if the underlying
provider supports indexes on the Recordset object. Use the Supports(adSeek)
method to determine whether the underlying provider supports Seek, and the
Supports(adIndex) method to determine whether the provider supports indexes.
(For example, the OLE DB Provider for Microsoft Jet supports Seek and Index.)

If Seek does not find the desired row, no error occurs, and the row is positioned
at the end of the Recordset. Set the Index property to the desired index before
executing this method.

This method is supported only with server-side cursors. Seek is not supported
when the Recordset object's CursorLocation property value is adUseClient.

This method can be used only when the Recordset object has been opened with
a CommandTypeEnum value of adCmdTableDirect.

Filtering the Results

The Find method limits your search to the contents of one field. The Seek
method requires that you have an index and has other limitations as well. If you
need to search on multiple fields that are not the basis of an index or if your
provider does not support indexes, you can limit your results using the Filter
property of the Recordset object.

Use the Filter property to selectively screen out records in a Recordset object.
The filtered Recordset becomes the current cursor, which means that records
that do not satisfy the Filter criteria are not available in the Recordset until the
Filter is removed. Other properties that return values based on the current cursor
are affected, such as AbsolutePosition, AbsolutePage, RecordCount, and
PageCount. This is because setting the Filter property to a specific value will
move the current record to the first record that satisfies the new value.

The Filter property takes a variant argument. This value represents one of three
methods for using the Filter property: a criteria string, a FilterGroupEnum
constant, or an array of bookmarks. For more information, see Filtering with a
Criteria String, Filtering with a Constant, and Filtering with Bookmarks later in
this topic.

Note When you know the data you want to select, it is usually more
efficient to open a Recordset with a SQL statement that effectively filters
the result set, rather than relying on the Filter property.

To remove a filter from a Recordset, use the adFilterNone constant. Setting the
Filter property to a zero-length string ("") has the same effect as using the
adFilterNone constant.

Filtering with a Criteria String

The criteria string is made up of clauses in the form FieldName Operator Value
(for example, "LastName = 'Smith'"). You can create compound clauses by
concatenating individual clauses with AND (for example, "LastName = 'Smith'
AND FirstName = 'John'")and OR (for example, "LastName = 'Smith' OR
LastName = 'Jones'"). Use the following guidelines for criteria strings:

e FieldName must be a valid field name from the Recordset. If the field
name contains spaces, you must enclose the name in square brackets.

e Operator must be one of the following: <, >, <=, >= <> = or LIKE.

e Value is the value with which you will compare the field values (for
example, 'Smith', #8/24/95#, 12.345, or $50.00). Use single quotation
marks (') with strings and pound signs (#) with dates. For numbers, you can
use decimal points, dollar signs, and scientific notation. If Operator is
LIKE, Value can use wildcards. Only the asterisk (*) and percent sign (%)
wildcards are allowed, and they must be the last character in the string.
Value cannot be null.

Note To include single quotation marks (') in the filter Value, use two
single quotation marks to represent one. For example, to filter on
O'Malley, the criteria string should be "coll = '0''Malley'". To
include single quotation marks at both the beginning and the end of the
filter value, enclose the string in pound signs (#). For example, to filter
on '1', the criteria string should be "col1 = #'1'#".

There is no precedence between AND and OR. Clauses can be grouped within
parentheses. However, you cannot group clauses joined by an OR and then join
the group to another clause with an AND, like this:

(LastName = 'Smith' OR LastName = 'Jones') AND FirstName

"John'
Instead, you would construct this filter as:

(LastName = 'Smith' AND FirstName = 'John') OR (LastName = 'Jones' A

In a LIKE clause, you can use a wildcard at the beginning and end of the pattern
(for example, LastName Like '*mit*') or only at the end of the pattern (for
example, LastName Like 'Smit*"').

Filtering with a Constant
The following constants are available for filtering Recordsets.

Constant Description

Filters for viewing only records
adFilterAffectedRecords effected by the last Delete, Resync,
UpdateBatch, or CancelBatch call.

Filters for viewing the records that
failed the last batch update.

Filters for viewing the records in the
current cache—that is, the results of the
last call to retrieve records from the
database.

adFilterConflictingRecords

adFilterFetchedRecords

Removes the current filter and restores

adFilterNone L
all records for viewing.

Filters for viewing only records that
have changed but have not yet been
sent to the server. Applicable only for
batch update mode.

adFilterPendingRecords

The filter constants make it easier to resolve individual record conflicts during
batch update mode by allowing you to view, for example, only those records that
were effected during the last UpdateBatch method call, as shown in the
following example:

'BeginDeleteGroup
'add some bogus records
wWith objRs1
For 1 = 0 To 8
.AddNew
.Fields("CompanyName") = "Shipper Number " & i + 1
.Fields("Phone") = "(425) 555-000" & (i + 1)
.Update
Next i

're-connect & update
.ActiveConnection = GetNewConnection
.UpdateBatch

'filter on newly added records
.Filter = adFilterAffectedRecords
Debug.Print "Deleting the " & .RecordCount & _
" records you just added."

'delete the newly added bogus records
.Delete adAffectGroup
.Filter = adFilterNone
Debug.Print .RecordCount & " records remain."

.Close
End With

'"EndDeleteGroup

Filtering with Bookmarks

Finally, you can pass a variant array of bookmarks to the Filter property. The
resulting cursor will contain only those records whose bookmark was passed in
to the property. The following code example creates an array of bookmarks from
the records in a Recordset which have a "B" in the ProductName field. It then
passes the array to the Filter property and displays information about the
resulting filtered Recordset.

'BeginFilterBkmk
Dim vBkmkArray() As Variant
Dim i As Integer

'Recordset created using "SELECT * FROM Products" as command.
'So, we will check to see if ProductName has a capital B, and
'if so, add to the array.
i=0
Do While Not objRs.EOF
If InStr(1, objRs("ProductName"), "B") Then
ReDim Preserve vBkmkArray(1i)
vBkmkArray(i) = objRs.Bookmark
i=1+1
Debug.Print objRs("ProductName")
End If
objRs.MoveNext
Loop

'"Filter using the array of bookmarks.
objRs.Filter = vBkmkArray

objRs.MoveFirst

Do While Not objRs.EOF
Debug.Print objRs("ProductName")
objRs.MoveNext

Loop

"EndFilterBkmk

Creating a Clone of a Recordset

Use the Clone method to create multiple, duplicate Recordset objects,
particularly if you want to maintain more than one current record in a given set
of records. Using the Clone method is more efficient than creating and opening a
new Recordset object with the same definition as the original.

The current record of a newly created clone is originally set to the first record.
The current record pointer in a cloned Recordset is not synchronized with the
original or vice versa. You can navigate independently in each Recordset.

Changes you make to one Recordset object are visible in all of its clones
regardless of cursor type. However, after you execute Requery on the original
Recordset, the clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies, nor does closing a copy
close the original or any of the other copies.

You can clone a Recordset object only if it supports bookmarks. Bookmark
values are interchangeable; that is, a bookmark reference from one Recordset
object refers to the same record in any of its clones.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 4: Editing Data

The preceding two chapters explained how use ADO to connect to a data source,
execute a command, get the results in a Recordset object, and navigate within
the Recordset. This chapter focuses on the next fundamental ADO operation:
editing data.

This chapter continues to use the sample Recordset introduced in Chapter 3—
with one important change. The following code is used to open the Recordset:

'BeginEditIntro
Dim strSQL As String
Dim objRs1 As ADODB.Recordset

strSQL = "SELECT * FROM Shippers"
Set objRs1 = New ADODB.Recordset

objRs1.0pen strSQL, GetNewConnection, adOpenStatic, _
adLockBatchOptimistic, adCmdText

' Disconnect the Recordset from the Connection object.
Set objRsl1l.ActiveConnection = Nothing
'"EndEditIntro

The important change to the code involves setting the Connection object's
CursorLocation property equal to adUseClient in the GetNewConnection
function (shown below), which indicates the use of a client cursor. For more
information about the differences between client-side and server-side cursors,
see Chapter 8: Understanding Cursors and Locks.

The CursorLocation property's adUseClient setting moves the location of the
cursor from the data source (the SQL Server, in this case) to the location of the
client code (the desktop workstation). This setting forces ADO to invoke the
Client Cursor Engine for OLE DB on the client in order to create and manage
the cursor.

You might also have noticed that the LockType parameter of the Open method

changed to adLockBatchOptimistic. This opens the cursor in batch mode. (The
provider caches multiple changes and writes them to the underlying data source

only when you call the UpdateBatch method.) Changes made to the Recordset
will not be updated in the database until the UpdateBatch method is called.

Finally, the code in this chapter uses a modified version of the
GetNewConnection function, introduced in Chapter 2. This version of the
function now returns a client-side cursor. The function looks like this:

'BeginNewConnection

Public Function GetNewConnection() As ADODB.Connection
Dim objConnl As ADODB.Connection
Set objConnl = New ADODB.Connection

strConnStr = "Provider=SQLOLEDB;Initial Catalog=Northwind;" & _
"Data Source=MySrvr;Integrated Security=SSPI;"

objConnl.ConnectionString = strConnStr
objConnl.CursorLocation = adUseClient
objConnl.0Open

Set GetNewConnection = objConnil

End Function
'"EndNewConnection

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Editing Existing Records

To edit existing records, move to the row you want to edit and change the Value
property of the fields you want to change. For more information about the Field
object's Value property, see Chapter 3: Examining Data. Depending on your
cursor type, you will use Update or UpdateBatch to send changes back to the
data source. For more information, see Chapter 5: Updating and Persisting Data.

It is usually more efficient to use a stored procedure with a command object to
perform updates, as well as to perform other operations, because a stored
procedure does not require the creation of a cursor. For more information about
cursors, see Chapter 8: Understanding Cursors and Locks.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Adding Records

Use the AddNew method to create and initialize a new record in an existing
Recordset. You can use the Supports method with a CursorOptionEnum
value of adAddNew to verify whether you can add records to the current
Recordset object.

After you call the AddNew method, the new record becomes the current record
and remains current after you call the Update method. If the Recordset object
does not support bookmarks, you might not be able to access the new record
once you move to another record. Therefore, depending on your cursor type, you
might need to call the Requery method to make the new record accessible.

If you call AddNew while editing the current record or while adding a new
record, ADO calls the Update method to save any changes and then creates the
new record.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Adding Records Using AddNew

This is the basic syntax of the AddNew method:

recordset .AddNew FieldlList, Values

The FieldList and Values arguments are optional. FieldList is either a single
name or an array of names or ordinal positions of the fields in the new record.

The Values argument is either a single value or an array of values for the fields in
the new record.

Typically, when you intend to add a single record, you will call the AddNew
method without any arguments. Specifically, you will call AddNew, set the
Value of each field in the new record, and then call Update and/or
UpdateBatch. You can ensure that your Recordset supports adding new records
by using the Supports property with the adAddNew enumerated constant.

The following code uses this technique to add a new Shipper to the sample
Recordset. The ShipperID field value is supplied automatically by SQL Server,
so the code does not attempt to supply a field value for the new records.

'BeginAddNewl.1
If objRsl1.Supports(adAddNew) Then
With objRs1
.AddNew
.Fields("CompanyName") = "Sample Shipper"
.Fields("Phone") = "(931) 555-6334"
.Update
End With
End If
"EndAddNewl.1

Because this code uses a disconnected Recordset with a client-side cursor in
batch mode, you must reconnect the Recordset to the data source with a new
Connection object before you can call the UpdateBatch method to post changes
to the database. This is easily done by using the new function
GetNewConnection.

'BeginAddNewl. 2

'Re-establish a Connection and update
Set objRsl1.ActiveConnection = GetNewConnection
objRs1.UpdateBatch

"EndAddNewl. 2

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Adding Multiple Fields

Occasionally, it might be more efficient to pass in an array of fields and their
corresponding values to the AddNew method, rather than setting Value multiple
times for each new field. If FieldList is an array, Values must also be an array
with the same number of members; otherwise, an error occurs. The order of field
names must match the order of field values in each array. The following code
passes an array of fields and an array of values to the AddNew method.

'BeginAddNew?2
Dim avarFldNames As Variant
Dim avarFldValues As Variant

avarFldNames = Array('"CompanyName", "Phone")
avarFldvalues = Array("Sample Shipper 2", "(931) 555-6334")

If objRsl1.Supports(adAddNew) Then
objRs1.AddNew avarFldNames, avarFldvalues
End If

'Re-establish a Connection and update
Set objRsl1.ActiveConnection = GetNewConnection
objRs1.UpdateBatch

"EndAddNew?2

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Determining Edit Mode

ADO maintains an editing buffer associated with the current record. The
EditMode property indicates whether changes have been made to this buffer or
whether a new record has been created. Use EditMode to determine the editing
status of the current record. You can test for pending changes if an editing
process has been interrupted and determine whether you need to use the Update
or CancelUpdate method.

EditMode returns one of the EditModeEnum constants, which are listed in the
following table.

Constant Description
i Indi hat no editin ration is in
adEditNone dicates that no editing operation is
progress.
' Indi h in the current record
adEditInProgress dicates that data in the current re

has been modified but not saved.

Indicates that the AddNew method has
. been called, and the current record in
adEditAdd the copy buffer is a new record that has
not been saved to the database.

adEditDelete Indicates that the current record has
been deleted.

EditMode can return a valid value only if there is a current record. EditMode

will return an error if BOF or EOF is True or if the current record has been

deleted.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using AddNew in Immediate and
Batch Modes

The behavior of the AddNew method depends on the updating mode of the
Recordset object and whether you pass the FieldList and Values arguments.

In immediate update mode (in which the provider writes changes to the
underlying data source once you call the Update method), calling the AddNew
method without arguments sets the EditMode property to adEditAdd. The
provider caches any field value changes locally. Calling the Update method
posts the new record to the database and resets the EditMode property to
adEditNone. If you pass the FieldList and Values arguments, ADO immediately
posts the new record to the database (no Update call is necessary); the
EditMode property value does not change (adEditNone).

In batch update mode, calling the AddNew method without arguments sets the
EditMode property to adEditAdd. The provider caches any field value changes
locally. Calling the Update method adds the new record to the current
Recordset and resets the EditMode property to adEditNone, but the provider
does not post the changes to the underlying database until you call the
UpdateBatch method. If you pass the FieldList and Values arguments, ADO
sends the new record to the provider for storage in a cache; you need to call the
UpdateBatch method to post the new record to the underlying database. For
more information about Update and UpdateBatch, see Chapter 5: Updating and
Persisting Data.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Determining What is Supported

The Supports method is used to determine whether a specified Recordset object
supports a particular type of functionality. It has the following syntax:

boolean = recordset.Supports(CursorOptions)

Supports returns a Boolean value that indicates whether all of the features
identified by the CursorOptions argument are supported by the provider. You
can use the Supports method to determine what types of functionality a
Recordset object supports. If the Recordset object supports the features whose
corresponding constants are in CursorOptions, the Supports method returns
True. Otherwise, it returns False.

Using the Supports method, you can check for the ability of the Recordset
object to add new records, use bookmarks, use the Find method, use scrolling,
use the Index property, and to perform batch updates. For a complete list of
constants and their meanings, see CursorOptionEnum.

Although the Supports method may return True for a given functionality, it
does not guarantee that the provider can make the feature available under all
circumstances. The Supports method simply returns whether the provider can
support the specified functionality, assuming certain conditions are met. For
example, the Supports method may indicate that a Recordset object supports
updates, even though the cursor is based on a multiple table join—some columns
of which are not updateable.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Deleting Records Using the Delete
Method

Using the Delete method marks the current record or a group of records in a
Recordset object for deletion. If the Recordset object does not allow record
deletion, an error occurs. If you are in immediate update mode, deletions occur
in the database immediately. If a record cannot be successfully deleted (due to
database integrity violations, for example), the record will remain in edit mode
after the call to Update. This means that you must cancel the update using
CancelUpdate before moving off the current record (for example, using Close,
Move, or NextRecordset).

If you are in batch update mode, the records are marked for deletion from the
cache and the actual deletion happens when you call the UpdateBatch method.
(To view the deleted records, set the Filter property to
adFilterAffectedRecords after Delete is called.)

Attempting to retrieve field values from the deleted record generates an error.
After deleting the current record, the deleted record remains current until you
move to a different record. Once you move away from the deleted record, it is no
longer accessible.

If you nest deletions in a transaction, you can recover deleted records by using
the RollbackTrans method. If you are in batch update mode, you can cancel a
pending deletion or group of pending deletions by using the CancelBatch
method.

If the attempt to delete records fails because of a conflict with the underlying
data (for example, a record has already been deleted by another user), the
provider returns warnings to the Errors collection but does not halt program
execution. A run-time error occurs only if there are conflicts on all the requested
records.

If the Unique Table dynamic property is set and the Recordset is the result of
executing a JOIN operation on multiple tables, the Delete method will delete
rows only from the table named in the Unique Table property.

The Delete method takes an optional argument that allows you to specify which
records are affected by the Delete operation. The only valid values for this
argument are either of the following ADO AffectEnum enumerated constants:

e adAffectCurrent Affects only the current record.

e adAffectGroup Affects only records that satisfy the current Filter
property setting. The Filter property must be set to a FilterGroupEnum
value or an array of Bookmarks to use this option.

The following code shows an example of specifying adAffectGroup when
calling the Delete method. This example adds some records to the sample
Recordset and updates the database. Then it filters the Recordset using the
adFilterAffectedRecords filter enumerated constant, which leaves only the
newly added records visible in the Recordset. Finally, it calls the Delete method
and specifies that all of the records that satisfy the current Filter property setting
(the new records) should be deleted.

'BeginDeleteGroup
'add some bogus records
wWith objRs1
For 1 = 0 To 8
.AddNew
.Fields("CompanyName") = "Shipper Number " & i + 1
.Fields("Phone") = "(425) 555-000" & (i + 1)
.Update
Next i

're-connect & update
.ActiveConnection = GetNewConnection
.UpdateBatch

'filter on newly added records
.Filter = adFilterAffectedRecords
Debug.Print "Deleting the " & .RecordCount & _
" records you just added."

'delete the newly added bogus records
.Delete adAffectGroup
.Filter = adFilterNone
Debug.Print .RecordCount & " records remain."

.Close
End wWith
'"EndDeleteGroup

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Alternatives: Using SQL Statements

ADO also allows using commands as alternatives to its built-in properties and
methods for editing data. Depending upon your provider, all operations
mentioned in this chapter could also be accomplished by passing commands to
your data source. For example, SQL UPDATE statements can be used to modify
data without using the Value property of a Field. SQL INSERT statements can
be used to add new records to a data source, rather than the ADO method
AddNew. For more information about SQL or the data-manipulation language of
your provider, see the documentation of your data source.

For example, you can pass a SQL string containing a DELETE statement to a
database, as shown in the following code:

'BeginSQLDelete

strSQL = "DELETE FROM Shippers WHERE ShipperID = " & intId
objConn.Execute strSQL, , adCmdText + adExecuteNoRecords
'"EndSQLDelete

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 5: Updating and Persisting
Data

The preceding chapters have discussed how to use ADO to get to data in a data
source, how to move around in the data, and even how to edit the data. Of
course, if the goal of your application is to allow users to make changes to the
data, you will need to understand how to save those changes. You can either
persist the Recordset changes to a file using the Save method, or you can send
the changes back to the data source for storage using the Update or
UpdateBatch methods.

In the preceding chapters, you changed the data in several rows of the
Recordset. ADO supports two basic notions relating to the addition, deletion,
and modification of rows of data.

The first notion is that changes aren't immediately made to the Recordset;
instead, they are made to an internal copy buffer. If you decide you don't want
the changes, the modifications in the copy buffer are discarded. If you decide to
keep the changes, the changes in the copy buffer are applied to the Recordset.

The second notion is that changes are either propagated to the data source as
soon as you declare the work on a row complete (that is, immediate mode), or all
changes to a set of rows are collected until you declare the work for the set
complete (that is, batch mode). The LockType property determines when the
changes are made to the underlying data source. adLockOptimistic or
adLockPessimistic specifies immediate mode, while adLockBatchOptimistic
specifies batch mode. The CursorLocation property can affect which LockType
settings are available. For instance, the adLockPessimistic setting is not
supported if the CursorLocation property is set to adUseClient.

In immediate mode, each invocation of the Update method propagates the
changes to the data source. In batch mode, each invocation of Update or
movement of the current row position saves the changes to the copy buffer, but
only the UpdateBatch method propagates the changes to the data source.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Updating Data

Update behavior and functionality is largely dependent upon update mode (lock
type), cursor type, and cursor location.

Use the Update method to save any changes you have made to the current
record of a Recordset object since calling the AddNew method or since
changing any field values in an existing record. The Recordset object must
support updates.

If the Recordset object supports batch updating, you can cache multiple changes
to one or more records locally until you call the UpdateBatch method. If you
are editing the current record or adding a new record when you call the
UpdateBatch method, ADO will automatically call the Update method to save
any pending changes to the current record before transmitting the batched
changes to the provider.

The current record remains current after you call the Update or UpdateBatch
methods.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Immediate Mode

Immediate mode is in effect when the LockType property is set to
adLockOptimistic or adLockPessimistic. In immediate mode, changes to a
record are propagated to the data source as soon as you declare the work on a
row complete by calling the Update method.

Calling Update

If you move from the record you are adding or editing before calling the Update
method, ADO will automatically call Update to save the changes. You must call
the CancelUpdate method before navigation if you want to cancel any changes
made to the current record or discard a newly added record.

The current record remains current after you call the Update method.
CancelUpdate

Use the CancelUpdate method to cancel any changes made to the current row or
to discard a newly added row. You cannot cancel changes to the current row or a
new row after you call the Update method, unless the changes are either part of
a transaction that you can roll back with the RollbackTrans method or part of a
batch update. In the case of a batch update, you can cancel the Update with the
CancelUpdate or CancelBatch method.

If you are adding a new row when you call the CancelUpdate method, the
current row becomes the row that was current before the AddNew call.

If you have not changed the current row or added a new row, calling the
CancelUpdate method generates an error.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Batch Mode

Batch mode is in effect when the LockType property is set to
adLockBatchOptimistic and batch updating is supported by the provider.
Certain lock type settings are not available depending on cursor location. For
instance, a pessimistic lock type is not available when the CursorLocation is set
to adUseClient. Conversely, a provider may not support a batch optimistic lock
when the cursor location is on the server. You should use batch updating with
either a keyset or static cursor only.

The UpdateBatch method is used to send Recordset changes held in the copy
buffer to the server to update the data source. In the following section, we will
open a Recordset in batch mode, make changes to the copy buffer, and then
send our changes to the data source using a call to UpdateBatch.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Sending the Updates: UpdateBatch Method

The following code opens a Recordset in batch mode by setting the LockType
property to adLockBatchOptimistic and the CursorLocation to adUseClient.
It adds two new records and changes the value of a field in an existing record,
saving the original values, and then calls UpdateBatch to send the changes back
to the data source.

'BeginBatchUpdate
strSQL = "SELECT ShipperId, CompanyName, Phone FROM Shippers"

objRsl.CursorLocation = adUseClient
objRs1.0pen strSQL, strConn, adOpenStatic, adLockBatchOptimistic

' Change value of Phone field for first record in Recordset, sav
' for later restoration.

intId = objRs1("ShipperId")

strPhone = objRs1("Phone")

objRs1("Phone") = "(111) 555-1111"
'Add two new records

For i = 0 To 1
objRs1.AddNew

objRs1(1) = "New Shipper #" & CStr((i + 1))
objRs1(2) = "(nnn) 555-" & i & 1 & 1 & 1
Next i

' Send the updates
objRs1.UpdateBatch
'"EndBatchUpdate

If you are editing the current record or adding a new record when you call the
UpdateBatch method, ADO will automatically call the Update method to save
any pending changes to the current record before transmitting the batched
changes to the provider.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Filtering for Updated Records

Before you call UpdateBatch, you can use the Recordset Filter property to
view only those records which have been changed since the Recordset was
opened or the last call to UpdateBatch. To do this, set Filter equal to
adFilterPendingRecords to determine how many records will be updated, as
shown below.

This example extends the previous UpdateBatch example by filtering the
Recordset just before calling the UpdateBatch, showing the user which records
will change and allowing her to cancel the update (using the CancelBatch
method).

'BeginFilterAffected
objRs1.Filter = adFilterPendingRecords
objRs1.MoveFirst

strMsg = "The following " & objRsl1l.RecordCount & " values will "
"be updated. Do you wish to proceed?"
While Not objRs1.EOF
strMsg = strMsg & vbCrLf & objRs1(0) & vbTab & objRs1(1) & v
objRs1(2) & vbCrLf
objRs1.MoveNext
Wend

blnResp = MsgBox(strMsg, vbYesNo, "Proceed with Update?")
If blnResp = True Then
objRs1.UpdateBatch
Else
objRs1.CancelBatch
End If
'"EndFilterAffected

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Dealing with Failed Updates

When an update concludes with errors, how you resolve the errors depends on
the nature and severity of the errors and the logic of your application. However,
if the database is shared with other users, a typical error is that someone else
modifies the field before you do. This type of error is called a conflict. ADO
detects this situation and reports an error.

If there are update errors, they will be trapped in an error-handling routine. Filter
the Recordset with the adFilterConflictingRecords constant so that only the
conflicting rows are visible. In this example, the error-resolution strategy is
merely to print the author's first and last names (au_fname and au_Ilname).

The code to alert the user to the update conflict looks like this:

objRs.Filter = adFilterConflictingRecords
objRs.MoveFirst
Do While Not objRst.EOF

Debug.Print "Conflict: Name = "; objRs!au_fname; " "; objRs'au_l
objRs.MoveNext
Loop

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Detecting and Resolving Conflicts

If you are dealing with your Recordset in immediate mode, there is much less
chance for concurrency problems to arise. On the other hand, if your application
uses batch mode updating, there may be a good chance that one user will change
a record before changes made by another user editing the same record are saved.
In such a case, you will want your application to gracefully handle the conflict. It
may be your wish that the last person to send an update to the server "wins." Or
you may want to let the most recent user to decide which update should take
precedence by providing him with a choice between the two conflicting values.

Whatever the case, ADO provides the UnderlyingValue and OriginalValue
properties of the Field object in order to handle these types of conflicts. Use
these properties in combination with the Resync method and Filter property of
the Recordset.

Detecting Errors

When ADO encounters a conflict during a batch update, a warning will be
placed in the Errors collection. Therefore, you should always check for errors
immediately after calling BatchUpdate, and if you find them, begin testing the
assumption that you have encountered a conflict. The first step is to set the
Filter property on the Recordset equal to adFilterConflictingRecords (the
Filter property is discussed in the preceding chapter). This limits the view on
your Recordset to only those records that are in conflict. If the RecordCount
property is equal to zero after this step, you know the error was raised by
something other than a conflict.

When you call BatchUpdate, ADO and the provider are generating SQL
statements to perform updates on the data source. Remember that certain data
sources have limitations on which types of columns can be used in a WHERE
clause.

Next, call the Resync method on the Recordset with the AffectRecords argument
set equal to adAffectGroup and the ResyncValues argument set equal to
adResyncUnderlyingValues. The Resync method refreshes the data in the
current Recordset object from the underlying database. By using

adAffectGroup, you are ensuring that only the records visible with the current
filter setting, that is, only the conflicting records, are resynchronized with the
database. This could make a significant performance difference if you are
dealing with a large Recordset. By setting the ResyncValues argument to
adResyncUnderlyingValues when calling Resync, you ensure that the
UnderlyingValue property will contain the (conflicting) value from the
database, that the Value property will maintain the value entered by the user, and
that the OriginalValue property will hold the original value for the field (the
value it had before the last successful UpdateBatch call was made). You can
then use these values to resolve the conflict programmatically or require the user
to choose the value that will be used.

This technique is shown in the code example below. The example artificially
creates a conflict by using a separate Recordset to change a value in the
underlying table before UpdateBatch is called.

'BeginConflicts
On Error GoTo ErrHandler:

Dim objRs1 As New ADODB.Recordset
Dim objRs2 As New ADODB.Recordset
Dim strSQL As String
Dim strMsg As String

strSQL = "SELECT * FROM Shippers WHERE ShipperID = 2"

'Open Rs and change a value

objRsl1.CursorLocation = adUseClient

objRs1.0pen strSQL, strConn, adOpenStatic, adLockBatchOptimistic
objRs1("Phone") = "(111) 555-1111"

'"Introduce a conflict at the db...

objRs2.0pen strSQL, strConn, adOpenKeyset, adLockOptimistic, adC
objRs2("Phone") = "(999) 555-9999"

objRs2.Update

objRs2.Close

Set objRs2 = Nothing

On Error Resume Next
objRs1.UpdateBatch

If objRsl1l.ActiveConnection.Errors.Count <> 0 Then
Dim intConflicts As Integer

intConflicts = 0

objRs1.Filter = adFilterConflictingRecords
intConflicts = objRsl1.RecordCount

'Resync so we can see the UnderlyingValue and offer user a c
'"This sample only displays all three values and resets to or
objRs1.Resync adAffectGroup, adResyncUnderlyingValues

If intConflicts > 0 Then
strMsg = "A conflict occurred with updates for " & intCc
" record(s)." & vbCrLf & "The values will be re
" to their original values." & vbCrLf & vbCrLf

objRs1.MoveFirst
While Not objRs1.EOF

strMsg = strMsg & "SHIPPER = " & objRs1("CompanyName
strMsg = strMsg & "Value = " & objRs1("Phone").Value
strMsg = strMsg & "Underlyingvalue = " & _
objRs1("Phone").UnderlyingValue &
strMsg = strMsg & "Originalvalue = " & _
objRs1("Phone").0OriginalValue & v
StrMsg = strMsg & vbCrLf & "Original value has been

MsgBox strMsg, vbOKOnly, _
"Conflict " & objRsl1.AbsolutePosition & _
" of " & intConflicts

objRs1("Phone").Value = objRs1("Phone").0OriginalVvalu
objRs1.MoveNext
Wend

objRsl1.UpdateBatch adAffectGroup
Else
'Other error occurred. Minimal handling in this example.
strMsg = "Errors occurred during the update. " & _
objRs1.ActiveConnection.Errors(0Q).Number & "
objRs1.ActiveConnection.Errors(0Q).Descriptic
End If

On Error GoTo 0O
End If

objRs1.MoveFirst

'Clean up
objRs1.Close

Set objRsl1 = Nothing
Exit Sub

ErrHandler:

If Not objRs1l Is Nothing Then
If objRsl.State = adStateOpen Then objRsl1.Close
Set objRs1 = Nothing

End If

If Not objRs2 Is Nothing Then
If objRs2.State = adStateOpen Then objRs2.Close
Set objRs2 = Nothing

End If
If Err <> 0 Then
MsgBox Err.Source & "-->" & Err.Description, , "Error"
End If
'"EndConflicts

You can use the Status property of the current Record or of a specific Field to
determine what kind of a conflict has occurred.

For more detailed information on error handling, see Chapter 6: Error Handling.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Disconnecting and Reconnecting the Recordset

One of the most powerful features found in ADO is the capability to open a
client-side Recordset from a data source and then disconnect the Recordset
from the data source. Once the Recordset has been disconnected, the connection
to the data source can be closed, thereby releasing the resources on the server
used to maintain it. You can continue to view and edit the data in the Recordset
while it is disconnected and later reconnect to the data source and send your
updates in batch mode.

To disconnect a Recordset, open it with a cursor location of adUseClient, and
then set the ActiveConnection property equal to Nothing. (C++ users should set
the ActiveConnection equal to NULL to disconnect.)

We will use a disconnected Recordset later in this chapter when we discuss
Recordset persistence to address a scenario in which we need to have the data in
a Recordset available to an application while the client computer is not
connected to a network.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Updating JOINed Results: Unique Table

ADO enables you to closely control modifications to a particular base table in a
Recordset that was formed by a JOIN operation on multiple base tables using
the Unique Table dynamic property. For details on using Unique Table, refer to
the ADO Programmer's Reference topics on the Unique Table and Update
Resynch dynamic properties.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Transaction Processing

ADO provides the following methods for controlling transactions: BeginTrans,
CommitTrans, and RollbackTrans. Use these methods with a Connection
object when you want to save or cancel a series of changes made to the source
data as a single unit. For example, to transfer money between accounts, you
subtract an amount from one and add the same amount to the other. If either
update fails, the accounts no longer balance. Making these changes within an
open transaction ensures that either all or none of the changes go through.

Note Not all providers support transactions. Verify that the provider-
defined property "Transaction DDL" appears in the Connection object's
Properties collection, indicating that the provider supports transactions. If
the provider does not support transactions, calling one of these methods will
return an error.

After you call the BeginTrans method, the provider will no longer
instantaneously commit changes you make until you call CommitTrans or
RollbackTrans to end the transaction.

Calling the CommitTrans method saves changes made within an open
transaction on the connection and ends the transaction. Calling the
RollbackTrans method reverses any changes made within an open transaction
and ends the transaction. Calling either method when there is no open
transaction generates an error.

Depending on the Connection object's Attributes property, calling either the
CommitTrans or RollbackTrans method may automatically start a new
transaction. If the Attributes property is set to adXactCommitRetaining, the
provider automatically starts a new transaction after a CommitTrans call. If the
Attributes property is set to adXactAbortRetaining, the provider automatically
starts a new transaction after a RollbackTrans call.

Transaction Isolation Level

Use the IsolationLevel property to set the isolation level of a transaction on a
Connection object. The setting does not take effect until the next time you call

the BeginTrans method. If the level of isolation you request is unavailable, the
provider may return the next greater level of isolation. Refer to the
IsolationLevel property in the ADO Programmer's Reference for more details
on valid values.

Nested Transactions

For providers that support nested transactions, calling the BeginTrans method
within an open transaction starts a new, nested transaction. The return value
indicates the level of nesting: a return value of "1" indicates you have opened a
top-level transaction (that is, the transaction is not nested within another
transaction), "2" indicates that you have opened a second-level transaction (a
transaction nested within a top-level transaction), and so forth. Calling
CommitTrans or RollbackTrans affects only the most recently opened
transaction; you must close or roll back the current transaction before you can
resolve any higher-level transactions.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Persisting Data

Portable computing (for example, using laptops) has generated the need for
applications that can run in both a connected and disconnected state. ADO has
added support for this by giving the developer the ability to save a client cursor
Recordset to disk and reload it later.

There are several scenarios in which you could use this type of feature, including
the following:

e Traveling: When taking the application on the road, it is vital to supply the
ability to make changes and add new records that can then be reconnected
to the database later and committed.

¢ Infrequently updated lookups: Often in an application, tables are used as
lookups—for example, state tax tables. They are infrequently updated and
are read-only. Instead of rereading this data from the server each time the
application is started, the application can simply load the data from a
locally persisted Recordset.

In ADO, to save and load Recordsets, use the Recordset.Save and
Recordset.Open(,,,,adCmdFile) methods on the ADO Recordset object.

You can use the Recordset Save method to persist your ADO Recordset to a
file on a disk. (You can also save a Recordset to an ADO Stream object.
Stream objects are discussed later in the guide.) Later, you can use the Open
method to reopen the Recordset when you are ready to use it. By default, ADO
saves the Recordset into the proprietary Microsoft Advanced Data TableGram
(ADTG) format. This binary format is specified using the adPersistADTG
PersistFormatEnum value. Alternatively, you may choose to save your
Recordset out as XML instead using adPersistXML. For more information
about saving Recordsets as XML, see Persisting Records in XML Format.

The syntax of the Save method is as follows:

recordset.Save Destination, PersistFormat

The first time you save the Recordset, it is optional to specify Destination. If

you omit Destination, a new file will be created with a name set to the value of
the Source property of the Recordset.

Omit Destination when you subsequently call Save after the first save or a run-
time error will occur. If you subsequently call Save with a new Destination, the
Recordset is saved to the new destination. However, the new destination and the
original destination will both be open.

Save does not close the Recordset or Destination, so you can continue to work
with the Recordset and save your most recent changes. Destination remains
open until the Recordset is closed, during which time other applications can
read but not write to Destination.

For reasons of security, the Save method permits only the use of low and custom
security settings from a script executed by Microsoft Internet Explorer. For a
more detailed explanation of security issues, see "ADO and RDS Security Issues
in Microsoft Internet Explorer" under ActiveX Data Objects (ADO) Technical
Articles in Microsoft Data Access Technical Articles.

If the Save method is called while an asynchronous Recordset fetch, execute, or
update operation is in progress, Save waits until the asynchronous operation is
complete.

Records are saved beginning with the first row of the Recordset. When the Save
method is finished, the current row position is moved to the first row of the
Recordset.

For best results, set the CursorLocation property to adUseClient with Save. If
your provider does not support all of the functionality necessary to save
Recordset objects, the Cursor Service will provide that functionality.

When a Recordset is persisted with the CursorLocation property set to
adUseServer, the update capability for the Recordset is limited. Typically, only
single-table updates, insertions, and deletions are allowed (dependent on
provider functionality). The Resync method is also unavailable in this
configuration.

Because the Destination parameter can accept any object that supports the OLE
DB IStream interface, you can save a Recordset directly to the ASP Response
object.

In the following example, the Save and Open methods are used to persist a
Recordset and later reopen it:

'BeginPersist
conn.ConnectionString = _
"Provider="'SQLOLEDB';Data Source='MySqlServer';" _
& "Integrated Security='SSPI';Initial Catalog='pubs'"
conn.Open

conn.Execute '"create table testtable (dbkey int " & _
"primary key, fieldl char(10))"
conn.Execute "insert into testtable values (1, 'stringi')"

Set rst.ActiveConnection = conn
rst.CursorLocation = adUseClient

rst.Open "select * from testtable", conn, adOpenStatic,
adLockBatchOptimistic

'Change the row on the client
rst!fieldl = "NewValue"

'Save to a file--the .dat extension is an example; choose
'your own extension. The changes will be saved in the file
'as well as the original data.
MyFile = Dir("c:\temp\temptbl.dat")
If MyFile <> "" Then

Kill "c:\temp\temptbl.dat"
End If

rst.Save "c:\temp\temptbl.dat", adPersistADTG
rst.Close
Set rst = Nothing

"Now reload the data from the file

Set rst = New ADODB.Recordset

rst.Open "c:\temp\temptbl.dat", , adOpenStatic, _
adLockBatchOptimistic, adCmdFile

Debug.Print "After Loading the file from disk"
Debug.Print " Current Edited Value: " & rst!fieldl.Value
Debug.Print " Value Before Editing: " & rst!fieldl.0riginalval

'"Note that you can reconnect to a connection and
'submit the changes to the data source
Set rst.ActiveConnection = conn
rst.UpdateBatch
"EndPersist

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

More About Recordset Persistence

The ADO Recordset object supports storing a Recordset object's contents in a
file using its Save method. The persistently stored file may exist on a local drive,
network server, or as a URL on a Web site. Later, the file can be restored with
either the Recordset object's Open method or the Connection object's Execute
method.

In addition, the GetString method converts a Recordset object to a form in
which the columns and rows are delimited with characters you specify.

To persist a Recordset, begin by converting it to a form that can be stored in a
file. Recordset objects can be stored in the proprietary Advanced Data
TableGram (ADTG) format or the open Extensible Markup Language (XML)
format. ADTG examples are shown below. For more information about XML
persistence, see Persisting Records in XML format.

Save any pending changes in the persisted file. Doing this allows you to issue a
query that returns a Recordset object, edits the Recordset, saves it and the
pending changes, later restores the Recordset, and then updates the data source
with the saved pending changes.

For information about persistently storing Stream objects, see Streams and
Persistence in Chapter 10.

For an example of Recordset persistence, see the XML Recordset Persistence
Scenario.

Example

Save a Recordset:

Dim rs as New ADODB.Recordset
rs.Save "c:\yourFile.adtg", adPersistADTG

Open a persisted file with Recordset.Open:

Dim rs as New ADODB.Recordset

rs.open "c:\yourFile.adtg", "Provider='MSPersist'",,6,adCmdFile

Optionally, if the Recordset does not have an active connection, you can accept
all the defaults and simply code the following:

Dim rs as New ADODB.Recordset
rs.open "c:\yourFile.adtg"

Open a persisted file with Connection.Execute:

Dim conn as New ADODB.Connection

Dim rs as ADODB.Recordset

conn.Open "Provider='MSPersist'"

Set rs = conn.execute('"c:\yourFile.adtg")

Open a persisted file with RDS.DataControl:

In this case, the Server property is not set.

Dim dc as New RDS.DataControl

dc.Connection = "Provider='MSPersist'"
dc.SQL = "c:\yourFile.adtg"

dc.Refresh

See Also

GetString Method | Microsoft OLE DB Persistence Provider | Recordset Object |
Streams and Persistence

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Persisting Filtered and Hierarchical
Recordsets

If the Filter property is in effect for the Recordset, only the rows accessible
under the filter are saved. If the Recordset is hierarchical, the current child
Recordset and its children are saved, including the parent Recordset. If the
Save method of a child Recordset is called, the child and all its children are
saved, but the parent is not. For more information about hierarchical Recordsets,
see Chapter 9: Data Shaping.

Note Some limitations apply when saving hierarchical Recordsets (data
shapes) in XML format. For more information, see Hierarchical Recordsets
in XML.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Persisting Records in XML Format

Like ADTG format, Recordset persistence in XML format is implemented with
the Microsoft OLE DB Persistence Provider. This provider generates a forward-
only, read-only rowset from a saved XML file or stream that contains the schema
information generated by ADO. Similarly, it can take an ADO Recordset,
generate XML, and save it to a file or any object that implements the COM
IStream interface. (In fact, a file is just another example of an object that
supports IStream.) For versions 2.5 and later, ADO relies on the Microsoft
XML Parser (MSXML) to load the XML into the Recordset; therefore
msxml.dll is required. For version 2.5, MSXML shipped with Internet Explorer
5. For version 2.6, MSXML shipped with SQL Server 2000.

Note Some limitations apply when saving hierarchical Recordsets (data
shapes) to XML format. You cannot save to XML if the hierarchical
Recordset contains pending updates, and you cannot save a parameterized
hierarchical Recordset. For more information, see Hierarchical Recordsets
in XML.

The easiest way to persist data into XML and load it back again through ADO is
with the Save and Open methods, respectively. The following ADO code
example demonstrates saving the data in the Titles table to a file named
titles.sav.

Dim rs as new Recordset
Dim rs2 as new Recordset
Dim ¢ as new Connection
Dim s as new Stream

' Query the Titles table.

c.0Open "provider='sqloledb';data source='mydb';initial catalog="'pubs
rs.cursorlocation = adUseClient

rs.open "select * from titles", c, adOpenStatic

' Save to the file in the XML format. Note that if you don't specify
' adPersistXML, a binary format (ADTG) will be used by default.
rs.Save "titles.sav", adPersistXML

' Save the Recordset into the ADO Stream object.
rs.save s, adPersistXML

rs.Close
c.Close

set rs = nothing

' Reopen the file.

rs.Open "titles.sav",,,,adCmdFile

' Open the Stream back into a Recordset.
rs2.open s

ADO always persists the entire Recordset object. If you wish to only persist a
subset of rows of the Recordset object, use the Filter method to narrow down
the rows or change your selection clause. However, you must open a Recordset
object with a client-side cursor (CursorLocation = adUseClient) to use the
Filter method for saving a subset of rows. For example, to retrieve titles that
start with the letter "b," you can apply a filter to an open Recordset object:

rs.Filter "title_id like 'B*'"
rs.Save "btitles.sav'", adPersistXML

ADO always uses the Client Cursor Engine rowset to produce a scrollable,
bookmarkable Recordset object on top of the forward-only data generated by
the Persistence Provider.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

XML Persistence Format

ADO uses UTF-8 encoding for the XML stream it persists.

The ADO XML format is broken into two sections, a schema section followed
by the data section. The following is an example XML file for the Shippers table
from the Northwind database. Various parts of the XML are discussed following
the example.

<xml xmlns:s="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882"
xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
xmlns:rs="urn:schemas-microsoft-com:rowset"
xmlns:z="#RowsetSchema'">
<s:Schema id="RowsetSchema'>
<s:ElementType name="row" content="eltOnly" rs:updatable="true">
<s:AttributeType name="ShipperID" rs:number="1"
rs:basetable="shippers" rs:basecolumn="ShipperID"
rs:keycolumn="true">
<s:datatype dt:type="int" dt:maxLength="4" rs:precision="10"
rs:fixedlength="true" rs:maybenull="false"/>
</s:AttributeType>
<s:AttributeType name="CompanyName" rs:number="2"
rs:nullable="true" rs:write="true" rs:basetable="shippers"
rs:basecolumn="CompanyName">
<s:datatype dt:type="string" dt:maxLength="40" />
</s:AttributeType>
<s:AttributeType name="Phone" rs:number="3" rs:nullable="true"
rs:write="true" rs:basetable="shippers"
rs:basecolumn="Phone">
<s:datatype dt:type="string" dt:maxLength="24"/>
</s:AttributeType>
<s:extends type="rs:rowbase'"/>
</s:ElementType>
</s:Schema>

<rs:data>
<z:row ShipperID="1" CompanyName="Speedy Express"
Phone="(503) 555-9831"/>
<z:row ShipperID="2" CompanyName="United Package"
Phone="(503) 555-3199"/>
<z:row ShipperID="3" CompanyName="Federal Shipping"
Phone="(503) 555-9931"/>
</rs:data>
</xml>

The schema shows the declarations of namespaces, the schema section, and the
data section. The schema section contains definitions for row, ShipperID,
CompanyName, and Phone.

Schema definitions conform to the XML-Data specification and are able to be
fully validated (though validation will not occur in Internet Explorer 5). You can
view this specification at http://www.w3.0rg/TR/1998/NOTE-XMIL.-data/. XML-
Data is the only supported schema format for Recordset persistence currently.

The data section has three rows containing information about shippers. For an
empty rowset, the data section may be empty, but the <rs:data> tags must be
present. With no data, you could write the tag shorthand as simply <rs:data/>.
Any tag prefixed with "rs" indicates that it is in the namespace defined by
urn:schemas-microsoft-com:rowset. The full definition of this schema is defined
in the appendix to this document.

© 1998-2003 Microsoft Corporation. All rights reserved.

http://www.w3.org/TR/1998/NOTE-XML-data/

ADO 2.5

Namespaces

The XML persistence format in ADO uses the following four namespaces.

Prefix Description
Refers to the "XML-Data" namespace containing the
S elements and attributes that define the schema of the current
Recordset.
dt Refers to the data type definitions specification.

Refers to the namespace containing elements and attributes
specific to ADO Recordset properties and attributes.

zZ Refers to the schema of the current rowset.

I'S

A client should not add its own tags to these namespaces, as defined by the
specification. For example, a client should not define a namespace as
"urn:schemas-microsoft-com:rowset" and then write out something such as
"rs:MyOwnTag." To learn more about namespaces, see

http:// www.w3.0org/TR/REC-xml-names/.

Important The ID for the schema tag must be "RowsetSchema," and the
namespace used to refer to the schema of the current rowset must point to
"#RowsetSchema."

Note that the prefix of the namespace, that part to the right of the colon and to
the left of the equal sign, is arbitrary.

xmlns:rs="urn:schemas-microsoft-com:rowset"

The user can define this to be any name as long as this name is consistently used
throughout the XML document. ADO always writes out "s," "rs," "dt," and "z,"
but these prefix names are not hard-coded into the loading component.

© 1998-2003 Microsoft Corporation. All rights reserved.

http://www.w3.org/TR/REC-xml-names/

ADO 2.5

Schema Section

The schema section is required. As the previous example shows, ADO writes out
detailed metadata about each column to preserve the semantics of the data values
as much as possible for updating. However, to load in the XML, ADO only
requires the names of the columns and the rowset to which they belong. Here is
an example of a minimal schema:

<xml xmlns:s="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882"
xmlns:rs="urn:schemas-microsoft-com:rowset"
xmlns:z="#RowsetSchema'">
<s:Schema id="RowsetSchema'>
<s:ElementType name="row" content="eltOnly">
<s:AttributeType name="ShipperID"/>
<s:AttributeType name="CompanyName"/>
<s:AttributeType name="Phone"/>
<s:Extends type="rs:rowbase'"/>
</s:ElementType>
</s:Schema>
<rs:data>

</rs:data>
</xml>

In the case above, ADO will treat the data as variable length strings because no
type information is included in the schema.

Creating Aliases for Column Names

The rs:name attribute allows you to create an alias for a column name so that a
friendly name may appear in the column information exposed by the rowset and
a shorter name may be used in the data section. For example, the schema above
could be modified to map ShipperID to s1, CompanyName to s2, and Phone to
s3 as follows:

<s:Schema id="RowsetSchema">
<s:ElementType name="row" content="eltOnly" rs:updatable="true">
<s:AttributeType name="s1" rs:name="ShipperID" rs:number="1" ...>

</s:AttributeType>
<s:AttributeType name="s2" rs:name="CompanyName" rs:number="2" ...>

</s:AttributeType>
<s:AttributeType name="s3" rs:name="Phone" rs:number="3" ...>

</s:AttributeType>

</s:ElementType>
</s:Schema>

Then, in the data section, the row would use the name attribute (not rs:name) to
refer to that column:

"<row s1="1" s2="Speedy Express" s3="(503) 555-9831"/>

Creating aliases for column names is required whenever a column name is not a
legal attribute or tag name in XML. For example, "LastName" must have an
alias because names with embedded spaces are illegal attributes. The following
line won't be correctly handled by the XML parser, so you must create an alias to
some other name that does not have an embedded space:

<row last name="Jones"/>

Whatever value you use for the name attribute must be used consistently in each
place that the column is referenced in both the schema and data sections of the
XML document. The following example shows the consistent use of s1:

<s:Schema id="RowsetSchema'>
<s:ElementType name="row" content="eltOnly'">
<s:attribute type="s1"/>
<s:attribute type="CompanyName"/>
<s:attribute type="s3"/>
<s:extends type="rs:rowbase"/>
</s:ElementType>
<s:AttributeType name="s1" rs:name="ShipperID" rs:number="1"
rs:maydefer="true" rs:writeunknown="true">
<s:datatype dt:type="i4" dt:maxLength="4" rs:precision="10"
rs:fixedlength="true" rs:maybenull="true"/>
</s:AttributeType>
</s:Schema>
<rs:data>
<z:row s1="1" CompanyName="Speedy Express" s3="(503) 555-9831"/>
</rs:data>

Similarly, because there is no alias defined for CompanyName above,
CompanyName must be used consistently throughout the document.

Data Types

You can apply a data type to a column with the dt:type attribute. For the
definitive guide to allowable XML types, see

http:// www.w3.0rg/TR/1998/NOTE-XMI.-data-0105/#Datatypes. You can
specify a data type in two ways: either specify the dt:type attribute directly on
the column definition itself or use the s:datatype construct as a nested element
of the column definition. For example,

<s:AttributeType name='"Phone" >
<s:datatype dt:type="string"/>
</s:AttributeType>

is equivalent to

<s:AttributeType name="Phone" dt:type="string"/>

If you omit the dt:type attribute entirely from the row definition, by default, the
column's type will be a variable length string.

If you have more type information than simply the type name (for example,
dt:maxLength), it makes it more readable to use the s:datatype child element.
This is merely a convention, however, and not a requirement.

The following examples show further how to include type information in your
schema:

<!-- 1. String with no max length -->
<s:AttributeType name="title_id"/>
<l—or -->

<s:AttributeType name="title_ id" dt:type="string"/>

<!—- 2. Fixed length string with max length of 6 -->
<s:AttributeType name="title id">

<s:datatype dt:type="string" dt:maxLength="6" rs:fixedlength="tr
</s:AttributeType>

<!—- 3. Variable length string with max length of 6 -->
<s:AttributeType name="title id">

<s:datatype dt:type="string" dt:maxLength="6" />
</s:AttributeType>

<l—- 4, Integer -->
<s:AttributeType name="title_ id" dt:type="int"/>

http://www.w3.org/TR/1998/NOTE-XML-data-0105/#Datatypes

There is a subtle use of the rs:fixedlength attribute in the second example. A
column with the rs:fixedlength attribute set to true means that the data must
have the length defined in the schema. In this case, a legal value for title_id is
"123456," as is "123 ." However, "123" would not be valid because its length is
3, not 6. See the OLE DB Programmer's Guide for a more complete description
of the fixedlength property.

Handling Nulls

Null values are handled by the rs:maybenull attribute. If this attribute is set to
true, the contents of the column may contain a null value. Furthermore, if the
column is not found in a row of data, the user reading the data back from the
rowset will get a null status from IRowset::GetData(). Consider the following
column definitions from the Shippers table:

<s:AttributeType name="ShipperID">
<s:datatype dt:type="int" dt:maxLength="4"/>
</s:AttributeType>
<s:AttributeType name="CompanyName'>
<s:datatype dt:type="string" dt:maxLength="40" rs:maybenull="true"
</s:AttributeType>

The definition allows CompanyName to be null, but ShipperID cannot contain a
null value. If the data section contained the following row, the Persistence
Provider would set the status of the data for the CompanyName column to the
OLE DB status constant DBSTATUS_S_ISNULL:

<z:row ShipperID="1"/>

If the row was entirely empty, as follows, the Persistence Provider would return
an OLE DB status of DBSTATUS_E_UNAVAILABLE for ShipperID and
DBSTATUS_S_ISNULL for CompanyName.

<z:row/>
Note that a zero-length string is not the same as null.

<z:row ShipperID="1" CompanyName=""/>

For the preceding row, the Persistence Provider will return an OLE DB status of
DBSTATUS_S_OK for both columns. The CompanyName in this case is simply
"" (a zero-length string).

For further information about the OLE DB constructs available for use within
the schema of an XML document for OLE DB, see the definition of
"urn:schemas-microsoft-com:rowset" and the OLE DB Programmer's Guide.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Data Section

The data section defines the data of the rowset along with any pending updates,
insertions, or deletions. The data section may contain zero or more rows. It may
only contain data from one rowset where the row is defined by the schema. Also,
as noted before, columns without any data may be omitted. If an attribute or
subelement is used in the data section and that construct has not been defined in
the schema section, it is silently ignored.

String

Reserved XML characters in text data must be replaced with appropriate
character entities. For example, in the company name "Joe's Garage," the single
quote character must be replaced by an entity. The actual row would look like:

<z:row CompanyName="Joe's Garage'"/>

The following characters are reserved in XML and must be replaced by character
entities: {',",&,<,>}.

Binary

Binary data is bin.hex encoded (that is, one byte maps to two characters, one
character per nibble).

DateTime

The variant VT_DATE format is not directly supported by XML-Data data
types. The correct format for dates with both a data and time component is yyyy-
mm-ddThh:mm:ss.

For more information about date formats specified by XML, refer to
http://www.w3.0rg/TR/1998/NOTE-XMI.-data-0105/#Datatypes.

When the XML-Data specification defines two equivalent data types (for
example, i4 == int), ADO will write out the friendly name but read in both.

http://www.w3.org/TR/1998/NOTE-XML-data-0105/#Datatypes

Managing Pending Changes

A Recordset can be opened in immediate or batch update mode. When opened
in batch update mode with client-side cursors, all changes made to the
Recordset are in a pending state until the UpdateBatch method is called.
Pending changes are also persisted when the Recordset is saved. In XML, they
are represented by the use of the "update" elements defined in urn:schemas-
microsoft-com:rowset. In addition, if a rowset can be updated, the updatable
property must be set to true in the definition of the row. For example, to define
that the Shippers table contains pending changes, the row definition would look
like the following:

<s:ElementType name="row" content="eltOnly" updatable="true">
<s:attribute type="ShipperID"/>
<s:attribute type="CompanyName"/>
<s:attribute type="Phone"/>
<s:extends type="rs:rowbase'"/>
</s:ElementType>

This tells the Persistence Provider to surface data so that ADO can construct an
updatable Recordset object.

The following sample data shows how insertions, changes, and deletions look in
the persisted file:

<rs:data>
<z:row ShipperID="2" CompanyName="United Package"
Phone="(503) 555-3199"/>
<rs:update>
<rs:original>
<z:row ShipperID="3" CompanyName="Federal Shipping"
Phone="(503) 555-9931"/>
</rs:original>
<z:row Phone="(503) 552-7134"/>
</rs:update>
<rs:insert>
<z:row ShipperID="12" CompanyName="Lightning Shipping"
Phone="(505) 111-2222"/>
<z:row ShipperID="13" CompanyName="Thunder Overnight"
Phone="(505) 111-2222"/>
<z:row ShipperID="14" CompanyName="Blue Angel Air Delivery"
Phone="(505) 111-2222"/>
</rs:insert>
<rs:delete>
<z:row ShipperID="1" CompanyName="Speedy Express" Phone="(503) 55E&

</rs:.delete>
</rs:data>

An update always contains the entire original row data followed by the changed
row data. The changed row may contain all of the columns or only those
columns that have actually changed. In the previous example, the row for
Shipper 2 is not changed, while only the Phone column has changed values for
Shipper 3 and is therefore the only column included in the changed row. The
inserted rows for Shippers 12, 13, and 14 are batched together under one
rs:insert tag. Note that deleted rows may also be batched together, although this
is not shown above.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Hierarchical Recordsets in XML

ADO allows persistence of hierarchical Recordset objects into XML. With
hierarchical Recordset objects, the value of a field in the parent Recordset is
another Recordset. Such fields are represented as child elements in the XML
stream rather than an attribute. The following example demonstrates this case:

Rs.Open "SHAPE {select stor_id, stor_name, state from stores} APPENC

The following is the XML format of the persisted Recordset:

<xml xmlns:s="uuid:BDC6E3F0O-6DA3-11d1-A2A3-00AA00C14882" xmlns:d
xmlns:z="#RowsetSchema'">
<s:Schema id="RowsetSchema'">
<s:ElementType name="row" content="eltOnly" rs:updatable="true">
<s:AttributeType name="stor_id" rs:number="1"
rs:writeunknown="true">
<s:datatype dt:type="string" dt:maxLength="4"
rs:fixedlength="true" rs:maybenull="false"/>
</s:AttributeType>
<s:AttributeType name="stor_name" rs:number="2" rs:nullable="t
rs:writeunknown="true'">
<s:datatype dt:type="string" dt:maxLength="40"/>
</s:AttributeType>
<s:AttributeType name="state" rs:number="3" rs:nullable="true"
rs:writeunknown="true">
<s:datatype dt:type="string" dt:maxLength="2"
rs:fixedlength="true"/>
</s:AttributeType>
<s:ElementType name="rsSales" content="eltOnly"
rs:updatable="true" rs:relation="010000000100000000000000">
<s:AttributeType name="stor_id" rs:number="1"
rs:writeunknown="true'">
<s:datatype dt:type="string" dt:maxLength="4"
rs:fixedlength="true" rs:maybenull="false"/>
</s:AttributeType>
<s:AttributeType name="ord_num" rs:number="2"
rs:writeunknown="true'">
<s:datatype dt:type="string" dt:maxLength="20"
rs:maybenull="false"/>
</s:AttributeType>
<s:AttributeType name="ord_date" rs:number="3"
rs:writeunknown="true'">
<s:datatype dt:type="dateTime" dt:maxLength="16"
rs:scale="3" rs:precision="23" rs:fixedlength="true"

rs:maybenull="false"/>
</s:AttributeType>
<s:AttributeType name="qty" rs:number="4" rs:writeunknown="t
<s:datatype dt:type="i2" dt:maxLength="2" rs:precision="5"
rs:fixedlength="true" rs:maybenull="false"/>
</s:AttributeType>
<s:extends type="rs:rowbase"/>
</s:ElementType>
<s:extends type="rs:rowbase"/>
</s:ElementType>
</s:Schema>
<rs:data>
<z:row stor_id="6380" stor_name="Eric the Read Books" state="WA"
<rsSales stor_id="6380" ord_num="6871"
ord_date="1994-09-14T00:00:00" qty="5"/>
<rsSales stor_id="6380" ord_num="722a"
ord_date="1994-09-13T00:00:00" qty="3"/>
</zZ:row>
<z:row stor_id="7066" stor_name="Barnum's" state="CA">
<rsSales stor_id="7066" ord_num="A2976"
ord_date="1993-05-24T00:00:00" qty="50"/>
<rsSales stor_id="7066" ord_num="QA7442.3"
ord_date="1994-09-13T00:00:00" qty="75"/>
</zZ:row>
<z:row stor_id="7067" stor_name="News & Brews" state="CA">
<rsSales stor_id="7067" ord_num="D4482"
ord_date="1994-09-14T00:00:00" qty="10"/>
<rsSales stor_id="7067" ord_num="P2121"
ord_date="1992-06-15T00:00:00" qty="40"/>
<rsSales stor_id="7067" ord_num="P2121"
ord_date="1992-06-15T00:00:00" qty="20"/>
<rsSales stor_id="7067" ord_num="P2121"
ord_date="1992-06-15T00:00:00" qty="20"/>
</zZ:row>

</rs:data>
</xml>

The exact order of the columns in the parent Recordset is not obvious when it is
persisted in this manner. Any field in the parent may contain a child Recordset.
The Persistence Provider persists out all scalar columns first as attributes and
then persists out all child Recordset "columns" as child elements of the parent
row. The ordinal position of the field in the parent Recordset can be obtained by
looking at the schema definition of the Recordset. Every field has an OLE DB
property, rs:number, defined in the Recordset schema namespace that contains
the ordinal number for that field.

The names of all fields in the child Recordset are concatenated with the name of
the field in the parent Recordset that contains this child. This is to ensure that
there are no name collisions in cases where parent and child Recordsets both
contain a field that is obtained from two different tables but is named singularly.

When saving hierarchical Recordsets into XML, you should be aware of the
following restrictions in ADO:

e A hierarchical Recordset with pending updates cannot be persisted into
XML.

e A hierarchical Recordset created with a parameterized shape command
cannot be persisted (in either XML or ADTG format).

e ADO currently saves the relationship between the parent and the child
Recordsets as a binary large object (BLOB). XML tags to describe this
relationship have not yet been defined in the rowset schema namespace.

¢ When a hierarchical Recordset is saved, all child Recordsets are saved
along with it. If the current Recordset is a child of another Recordset, its
parent is not saved. All child Recordsets that form the subtree of the
current Recordset are saved.

When a hierarchical Recordset is reopened from its XML-persisted format, you
must be aware of the following limitations:

e If the child record contains records for which there are no corresponding
parent records, these rows are not written out in the XML representation of
the hierarchical Recordset. Thus, these rows will be lost when the
Recordset is reopened from its persisted location.

e If a child record has references to more than one parent record, then on
reopening the Recordset, the child Recordset may contain duplicate
records. However, these duplicates will only be visible if the user works
directly with the underlying child rowset. If a chapter is used to navigate the
child Recordset (that is the only way to navigate through ADO), the
duplicates are not visible.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Recordset Dynamic Properties in XML

The following Recordset provider-specific properties (from the Client Cursor
Engine) are currently persisted into the XML format:

Update Resync
Unique Table
Unique Schema
Unique Catalog
Resync Command
IRowsetChange
24IRowsetUpdate
CommandTimeout
BatchSize
UpdateCriteria
Reshape Name
AutoRecalc

These properties are saved in the schema section as attributes of the element
definition for the Recordset being persisted. These attributes are defined in the
rowset schema namespace and must have the prefix "rs:".

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

XSLT Transformations

XSLT can be applied to the generated XML to transform it into another format.
Understanding the XML format in ADO helps in developing XSLT templates
that can transform it into a more user-friendly form.

For example, you know that each row of the Recordset is saved as the z:row
element inside the rs:data element. Similarly, each field of the Recordset is
saved as an attribute-value pair for this element.

The following XSLT script can be applied to the XML shown in the previous
section to transform it into an HTML table to be displayed in the browser:

<?xml version="1.0" encoding="IS0-8859-1"?>
<html xmlns:xsl="http://www.w3.0rg/TR/WD-xs1">
<body STYLE="font-family:Arial, helvetica, sans-serif; font-size:12p
<table border="1" style="table-layout:fixed" width="600">
<col width="200"></col>
<tr bgcolor="teal">
<th>CustomerId</th>
<th>CompanyName</th>
<th>ContactName</th>
</tr>
<xsl:for-each select="xml/rs:data/z:row">
<tr bgcolor="navy">
<td><xsl:value-of select="@CustomerID"/></fc
<td><xsl:value-of select="@CompanyName"/></f
<td><xsl:value-of select="@ContactName"/></f
</tr>
</xsl:for-each>
</table>
</body>
</html>

The XSLT converts the XML stream generated by the ADO Save method into an
HTML table which displays each field of the Recordset along with a table
heading. Table headings and rows also are assigned different fonts and colors.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Saving to the XML DOM Object

You can save a Recordset in XML format to an instance of an MSXML DOM
object, as shown in the following Visual Basic code:

Dim xDOM As New MSXML.DOMDocument
Dim rsXML As New ADODB.Recordset
Dim sSQL As String, sConn As String

sSQL = "SELECT customerid, companyname, contactname FROM customers"

sConn="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Program Files
"\Common Files\System\msadc\samples\Nwind.mdb"

rsXML.Open sSQL, sConn

rsXML.Save xDOM, adPersistADO 'Save Recordset directly into a DOM

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

XML Security Considerations

The ADO Save and Open methods on the Recordset object are not considered
safe operations to run in Internet Explorer. Thus, if these methods are used in a
script code that is running in an application or control that is hosted in a browser,
the security configuration of the browser will have an effect on its behavior.

Internet Explorer 5 provides security restrictions for such operations by default
in the Internet zones. Under that configuration, the Recordset cannot make any
access to the local file system on the client or access any data sources outside the
domain of the server from which the page has been downloaded. Specifically,
when running inside the browser host, a Recordset can be saved back to a file
only if it is on the same server from which the page was downloaded. Similarly,
you can open a Recordset by loading it from a file only if that file is on the same
server from which the page was downloaded.

For more information about security in Internet Explorer, see the technical article
"ADO and RDS Security Issues in Microsoft Internet Explorer."

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

XML Recordset Persistence Scenario

In this scenario, you will create an Active Server Pages (ASP) application that
saves the contents of a Recordset object directly to the ASP Response object.

Note This scenario requires that your server have Internet Information
Server 5.0 (IIS) or later installed.

The returned Recordset is displayed in Internet Explorer using an
RDS.DataControl.

The following steps are necessary to create this scenario:

1. Set up the application.

2. Get the data.

3. Send the data.

4. Receive and display the data.

Next Step 1: Set Up the Application

See Also

Save Method

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Step 1: Set Up the Application

Create an IIS virtual directory named "XMLPersist" with script permissions.
Create two new text files in the folder to which the virtual directory points, one
named "XMLResponse.asp," the other named "Default.htm."

Next Step 2: Get the Data

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Step 2: Get the Data

In this step, you will write the code to open an ADO Recordset and prepare to
send it to the client. Open the file XMLResponse.asp with a text editor, such as
Windows Notepad, and insert the following code:

<%@ language="VBScript" %>
<!-- #include file='adovbs.inc' -->

<%
Dim strSQL, strCon
Dim adoRec
Dim adoCon
Dim xmlDoc

" You will need to change "slgServer'" below to the name of the SQL

' server machine to which you want to connect.

strCon = "Provider=sqgloledb;Data Source=sqlServer;Initial Catalog=

Set adoCon = server.createObject("ADODB.Connection")
adoCon.Open strCon

strSQL = "SELECT Title, Price FROM Titles ORDER BY Price"
Set adoRec = Server.CreateObject("ADODB.Recordset")

adoRec.0Open strSQL, adoCon, adOpenStatic, adLockOptimistic, adCmdT

Be sure to change the value of the Data Source parameter in strcon to the name
of your Microsoft SQL Server computer.

Keep the file open and go on to the next step.

Next Step 3: Send the Data

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Step 3: Send the Data

Now that you have a Recordset, you need to send it to the client by saving it as
XML to the ASP Response object. Add the following code to the bottom of
XMLResponse.asp:

Response.ContentType = "text/xml"
Response.Expires = 0
Response.Buffer = False

Response.Write "<?xml version='1.0'?>" & vbNewLine
adoRec.save Response, adPersistXML
adoRec.Close
Set adoRec=Nothing
%>

Notice that the ASP Response object is specified as the destination for the
Recordset Save method. The destination of the Save method can be any object
that supports the IStream interface, such as an ADO Stream object, or a file
name that includes the complete path to which the Recordset is to be saved.

Save and close XMLResponse.asp before going to the next step. Also copy the
adovbs.inc file from C:\Program Files\Common Files\System\Ado folder to the
same folder where you have the XMLResponse.asp file.

Next Step 4: Receive the Data

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Step 4: Receive and Display the Data

In this step you will create an HTML file with an embedded RDS.DataControl
object that points at the XMLResponse.asp file to get the Recordset. Open
default.htm with a text editor, such as Windows Notepad, and add the code
below. Replace "sqlserver" in the URL with the name of your server computer.

<HTML>
<HEAD><TITLE>ADO Recordset Persistence Sample</TITLE></HEAD>
<BODY>

<TABLE DATASRC="#RDC1" border="1">
<TR>

<TD></TD>

<TD></TD>
</TR>

</TABLE>

<OBJECT CLASSID="clsid:BD96C556-65A3-11D0-983A-00CO4FC29E33" ID="RDC
<PARAM NAME="URL" VALUE="XMLResponse.asp">

</0OBJECT>

</BODY>
</HTML>

Close the default.htm file and save it to the same folder where you saved
XMLResponse.asp. Using Internet Explorer 4.0 or later, open the URL
http://sqlserver/XMLPersist/default.htm and observe the results. The data is
displayed in a bound DHTML table. Now open the URL
http://sqlserver/XMLPersist/ XMLResponse.asp and observe the results. The
XML is displayed.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 6: Error Handling

ADO uses several different methods to notify an application of errors that occur.
This chapter discusses the types of errors that can occur when you are using
ADO and how your application is notified. It concludes by making suggestions
about how to handle those errors.

How Does ADO Report Errors?

ADO notifies you about errors in several ways:

e ADO errors generate a run-time error. Handle an ADO error the same way
you would any other run-time error, such as using an On Error statement
in Visual Basic.

* Your program can receive errors from OLE DB. An OLE DB error
generates a run-time error as well.

o If the error is specific to your data provider, one or more Error objects are
placed in the Errors collection of the Connection object that was used to
access the data store when the error occurred.

e If the process that raised an event also produced an error, error information
is placed in an Error object and passed as a parameter to the event. See
Chapter 7: Handling ADO Events for more information about events.

e Problems that occur when processing batch updates or other bulk operations
involving a Recordset can be indicated by the Status property of the
Recordset. For example, schema constraint violations or insufficient
permissions can be specified by RecordStatusEnum values.

e Problems that occur involving a particular Field in the current record are
also indicated by the Status property of each Field in the Fields collection
of the Record or Recordset. For example, updates that could not be
completed or incompatible data types can be specified by
FieldStatusEnum values.

The following sections describe each of these notification methods in more
detail.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

ADO Errors

ADO Errors are reported to your program as run-time errors. You can use the
error-trapping mechanism of your programming language to trap and handle
them. For example, in Visual Basic, use the On Error statement. In Visual J++,
use a try-catch block. In Visual C++, it depends on the method you are using to
access the ADO libraries. With #import, use a try-catch block. Otherwise, C++
programmers need to explicitly retrieve the error object by calling
GetErrorInfo. The following Visual Basic sub procedure demonstrates trapping
an ADO error:

' BeginErrorHandlingVvB0O1
Private Sub Form_Load()

" Turn on error handling

On Error GoTo FormLoadError

'Open the database and the recordset for processing.

Dim strCnn As String
strCnn = "Provider='sqloledb';" & _
"Data Source='MySqglServer';" & _
"Initial Catalog='Northwind';Integrated Security='SSPI';"

' cnn is a Public Connection Object because
' it was defined WithEvents

Set cnn = New ADODB.Connection

chn.Open strcCnn

' The next line of code intentionally causes
' an error by trying to open a connection

' that has already been opened.

cnn.Open strCnn

' rst is a Public Recordset because it
was defined WithEvents

Set rst = New ADODB.Recordset

rst.Open "Customers", cnn

Exit Sub
' Error handler
FormLoadError:

Dim strErr As String

Select Case Err

Case adErrObjectOpen

strErr = "Error #" & Err.Number & ": " & Err.Description
strErr = strErr & "Error reported by: " & Err.Source & v
StrErr = strErr & "Help File: " & Err.HelpFile & vbCrLf
strErr = strErr & "Topic ID: " & Err.HelpContext

MsgBox strErr
Debug.Print StrErr
Err.Clear
Resume Next
' If some other error occurs that
' has nothing to do with ADO, show
' the number and description and exit.
Case Else
strErr = "Error #" & Err.Number & ": " & Err.Description
MsgBox strErr
Debug.Print StrErr
Unload Me
End Select
End Sub
' EndErrorHandlingVvB0O1

This Form_Load event procedure intentionally creates an error by trying to
open the same Connection object twice. The second time the Open method is
called, the error handler is activated. In this case the error is of type
adErrObjectOpen, so the error handler displays the following message before
resuming program execution:

Error #3705: Operation is not allowed when the object is open.
Error reported by: ADODB.Connection
Help File: E:\WINNT\HELP\ADO0260.CHM Topic ID: 1003705

The error message includes each piece of information provided by the Visual
Basic Err object except for the LastDLLError value, which does not apply
here. The error number tells you which error has occurred. The description is
useful in cases in which you do not want to handle the error yourself. You can
simply pass it along to the user. Although you will usually want to use messages
customized for your application, you cannot anticipate every error; the
description gives some clue as to what went wrong. In the sample code, the error
was reported by the Connection object. You will see the object's type or
programmatic ID here—not a variable name.

Note The Visual Basic Err object only contains information about the
most recent error. The ADO Errors collection of the Connection object
contains one Error object for each error raised by the most recent ADO

operation. Use the Errors collection rather than the Err object to handle
multiple errors. For more information about the Errors collection, see
Provider Errors. However, if there is no valid Connection object, the Err
object is the only source for information about ADO errors.

What kinds of operations are likely to cause ADO errors? Common ADO errors
can involve opening an object such as a Connection or Recordset, attempting to
update data, or calling a method or property that is not supported by your
provider.

OLE DB errors can also be passed to your application as run-time errors in the
Errors collection. For more information about OLE DB error numbers, see
Chapter 16 of the OLE DB Programmer's Reference.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

ADO Error Reference

The ErrorValueEnum constant describes the ADO error values. For a complete
listing of these enumerated constants, including values, see Appendix B: ADO

Errors. This section will examine some of the more interesting errors and explain
some specific situations that can raise them, or solutions to fix the problem. Both
the ErrorValueEnum constant and the short positive decimal number are listed.

Number ErrorValueEnum constant Description/Possible caus¢

Provider failed to perform the

3000 adErrProviderFailed .
requested operation.

Arguments are of the wrong typ
out of acceptable range, or are i1
conflict with one another. This e
often caused by a typographical
in an SQL SELECT statement. I

3001 adErrInvalidArgument example, a misspelled field nam
table name can generate this err
This error can also occur when ¢
or table named in a SELECT
statement does not exist in the d
store.

File could not be opened. A
misspelled file name was specifi
a file has been moved, renamed,

3002 adErrOpeningFile deleted. Over a network, the dri
might be temporarily unavailabl
network traffic might be prevent
connection.

File could not be read. The nam
the file is specified incorrectly, t

3003 adErrReadFile file might have been moved or
deleted, or the file might have b
corrupted.

Write to file failed. You might h

3004

3021

3219

3220

3246

3251

3265

adErrWriteFile

adErrNoCurrentRecord

adErrlllegalOperation

adErrCantChangeProvider

adErrInTransaction

adErrFeatureNotAvailable

adErrItemNotFound

closed a file and then tried to wr
it, or the file might be corrupted
the file is located on a network ¢
transient network conditions mijy
prevent writing to a network dri

Either BOF or EOF is True, or i
current record has been deleted.
Requested operation requires a
current record.

An attempt was made to update
records by using Find or Seek t
move the record pointer to the d
record. If the record is not founc
EOF will be True. This error ca
occur after a failed AddNew or
Delete because there is no curre
record when these methods fail.

Operation is not allowed in this
context.

Supplied provider is different fr«
the one already in use.

Connection object cannot be
explicitly closed while in a
transaction. A Recordset or
Connection object that is currer
participating in a transaction car
be closed. Call either Rollback]
or CommitTrans before closing
object.

The object or provider is not caf
of performing the requested

operation. Some operations depe
on a particular provider version.
[tem cannot be found in the coll

corresponding to the requested r
or ordinal. An incorrect field or

3367

3420

3421

3704

3705

3706

3707

adErrObjectInCollection

adErrObjectNotSet

adErrDataConversion

adErrObjectClosed

adErrObjectOpen

adErrProviderNotFound

adErrBoundToCommand

name has been specified.

Object is already in collection.
Cannot append. An object cannc
added to the same collection twi

Object is no longer valid.

Application uses a value of the y
type for the current operation. Y
might have supplied a string to ¢
operation that expects a stream,
example.

Operation is not allowed when t
object is closed. The Connectio
Recordset has been closed. For
example, some other routine mij
have closed a global object. You
prevent this error by checking tt
State property before you attem
operation.

Operation is not allowed when t
object is open. An object that is
cannot be opened. Fields cannot
appended to an open Recordset

Provider cannot be found. It ma
be properly installed.

The name of the provider might
incorrectly specified, the specifi
provider might not be installed ¢
computer where your code is be
executed, or the installation mig
have become corrupted.

The ActiveConnection propert)
Recordset object, which has a
Command object as its source,
cannot be changed. The applicat
attempted to assign a new
Connection object to a Records

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

adErrInvalidParamInfo

adErrInvalidConnection

adErrNotReentrant

adErrStillExecuting

adErrOperationCancelled

adErrStillConnecting
adErrInvalidTransaction

adErrNotExecuting

adErrUnsafeOperation

adWrnSecurityDialog

that has a Command object as i
source.

Parameter object is improperly
defined. Inconsistent or incompl
information was provided.

The connection cannot be used t
perform this operation. It is eiths
closed or invalid in this context.

Operation cannot be performed-
processing event. An operation

cannot be performed within an e
handler that causes the event to -
again. For example, navigation

methods should not be called frc
within a WillMove event handle

Operation cannot be performed -
executing asynchronously.

Operation has been canceled by
user. The application has called
CancelUpdate or CancelBatch
method and the current operatio
been canceled.

Operation cannot be performed -
connecting asynchronously.

Coordinating transaction is inva
has not started.

Operation cannot be performed -
not executing.

Safety settings on this computer
prohibit accessing a data source
another domain.

For internal use only. Don't use.
(Entry was included for the sake
completeness. This error should
appear in your code.)

For internal use only. Don't use.
(Entry included for the sake of

3718

3719

3720

3721

3722

3723

3724

3725

adWrnSecurityDialogHeader

adErrIntegrityViolation

adErrPermissionDenied

adErrDataOverflow

adErrSchemaViolation

adErrSignMismatch

adErrCantConvertvalue

adErrCantCreate

completeness. This error should
appear in your code.)

Data value conflicts with the int
constraints of the field. A new v.
for a Field would cause a duplic
key. A value that forms one side
relationship between two record
might not be updatable.

Insufficient permission prevents
writing to the field. The user nar
in the connection string does not
the proper permissions to write {
Field.

Data value is too large to be

represented by the field data typ
numeric value that is too large fq
intended field was assigned. For
example, a long integer value w.
assigned to a short integer field.

Data value conflicts with the dat
type or constraints of the field.]
data store has validation constra
that differ from the Field value.

Conversion failed because the d.
value was signed and the field d
type used by the provider was
unsigned.

Data value cannot be converted
reasons other than sign mismatc
data overflow. For example,
conversion would have truncate
data.

Data value cannot be set or retri
because the field data type was
unknown, or the provider had
insufficient resources to perform
operation.

3726

3727

3728

3729

3730

adErrColumnNotOnThisRow

adErrURLDoesNotExist

adErrTreePermissionDenied

adErrInvalidURL

adErrResourceLocked

Record does not contain this fiel
incorrect field name was specifi;
a field not in the Fields collectic
the current record was reference

Either the source URL or the pai
of the destination URL does not
There is a typographical error in
either the source or destination {

You might have
http://mysite/photo/myphotao

when you should actually have
http://mysite/photos/myphot

instead. The typographical error
parent URL (in this case, photo
instead of photos) has caused th
erTor.

Permissions are insufficient to a
tree or subtree. The user named
connection string does not have
appropriate permissions.

URL contains invalid characters
Make sure the URL is typed cor
The URL follows the scheme
registered to the current provide
example, Internet Publishing Pr
is registered for http).

Object represented by the specif
URL is locked by one or more o
processes. Wait until the process
finished and attempt the operatic
again. The object you are trying
access has been locked by anoth
user or by another process in yo
application. This is most likely t
arise in a multi-user environmen

Copy operation cannot be perfoi
Object named by destination UF
already exists. Specify

3731

3732

3733

3734

3735

3736

3737

adErrResourceExists

adErrCannotComplete

adErrVolumeNotFound

adErrOutOfSpace

adErrResourceOutOfScope

adErrUnavailable

adCopyOverwrite to replace th
object. If you do not specify
adCopyOverwrite when copyir
files in a directory, the copy fail:
when you try to copy an item thi
already exists in the destination
location.

The server cannot complete the
operation. This might be becaus
server is busy with other operati
it might be low on resources.

Provider cannot locate the storag
device indicated by the URL. M
sure the URL is typed correctly.
URL of the storage device migh
incorrect, but this error can occu
other reasons. The device might
offline or a large volume of netv
traffic might prevent the connec
from being made.

Operation cannot be performed.
Provider cannot obtain enough
storage space. There might not t
enough RAM or hard-drive spac
temporary files on the server.

Source or destination URL is ou
the scope of the current record.

Operation failed to complete anc
status is unavailable. The field n
unavailable or the operation was
attempted. Another user might h
changed or deleted the field you
trying to access.

Record named by this URL does
exist. While attempting to open

adErrURLNamedRowDoesNotExist using a Record object, either thy

name or the path to the file was
misspelled.

3738

3747

3748

3749

3750

3751

adErrDelResOutOfScope

adErrCatalogNotSet

adErrCantChangeConnection

adErrFieldsUpdateFailed

adErrDenyNotSupported

adErrDenyTypeNotSupported

The URL of the object to be del:
outside the scope of the current
record.

Operation requires a valid
ParentCatalog.

Connection was denied. The ney
connection you requested has
different characteristics than the
already in use.

Fields update failed. For further
information, examine the Status
property of individual field obje
This error can occur in two situe
when changing a Field object's
in the process of changing or ad
record to the database; and wher
changing the properties of the F
object itself.

The Record or Recordset updat
failed due to a problem with one
the fields in the current record.
Enumerate the Fields collection
check the Status property of eac
field to determine the cause of tl
problem.

Provider does not support sharin
restrictions. An attempt was ma
restrict file sharing and your pro
does not support the concept.

Provider does not support the

requested kind of sharing restric
An attempt was made to establis
particular type of file-sharing

restriction that is not supported |
your provider. See the provider's
documentation to determine whi

sharing restrictions are supporte

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Provider Errors

When a provider error occurs, a run-time error of -2147467259 is returned.
When you receive this error, check the active Connection object's Errors
collection, which will contain one or more errors describing what happened.

The ADO Errors Collection

Because a particular ADO operation can produce multiple provider errors, ADO
exposes a collection of error objects through the Connection object. This
collection contains no objects if an operation concludes successfully and
contains one or more Error objects if something went wrong and the provider
raised one or more errors. Examine each individual error object in order to
determine the exact cause of the error.

Once you have finished handling any errors that have occurred, you can clear the
collection by calling the Clear method. It is particularly important to explicitly
clear the Errors collection before you call the Resync, UpdateBatch, or
CancelBatch method on a Recordset object, the Open method on a Connection
object, or set the Filter property on a Recordset object. By clearing the
collection explicitly, you can be certain that any Error objects in the collection
are not left over from a previous operation.

Some operations can generate warnings as well as errors. Warnings are also
represented by Error objects in the Errors collection. When a provider adds a
warning to the collection, it does not generate a run-time error. Check the Count
property of the Errors collection to determine if a warning was produced by a
particular operation. If the count is one or greater, an Error object has been
added to the collection. Once you have determined that the Errors collection
contains errors or warnings, you can iterate through the collection and retrieve
information about each of the Error objects it contains. The following short
Visual Basic example demonstrates this:

' BeginErrorHandlingVB02
Private Function DeleteCustomer (ByVal CompanyName As String) As Long
On Error GoTo DeleteCustomerError

rst.Find "CompanyName='" & CompanyName & "'"
DeleteCustomerError:

Dim objError As ADODB.Error
Dim strError As String

If cnn.Errors.Count > 0@ Then
For Each objError In cnn.Errors
strError = strError & "Error #" & objError.Number & _

" " & objError.Description & vbCrLf & _
"NativeError: " & objError.NativeError & vbCrLf & _
"SQLState: " & objError.SQLState & vbCrLf & _
"Reported by: " & objError.Source & vbCrLf & _
"Help file: " & objError.HelpFile & vbCrLf & _
"Help Context ID: " & objError.HelpContext
Next
MsgBox strError
End If
End Function
' EndErrorHandlingVvB02

The error-handling routine includes a For Each loop that examines each object
in the Errors collection. In this example, it simply accumulates a message for
display. In a working program, you would write code to perform an appropriate
task for each error, such as closing all open files and shutting down the program
in an orderly fashion.

The Error Object

By examining an Error object you can determine what error occurred, and more
importantly, what application or what object caused the error. The Error object
has the following properties:

Property name Description
D . A text description of the error that
escription
occurred.
Refers to the help topic and help file
HelpContext, HelpFile that contain a description of the error

that occurred.
NativeError The provider-specific error number.

A Long Integer that represents the
number (listed in the

Number
ErrorValueEnum) of the error that
occurred.
Indicates the name of the object or
Source

application that generated an error.

A five-character error code that the
SQLState provider returns during the process of a
SQL statement.

The ADO Error object is quite similar to the standard Visual Basic Err object.
Its properties describe the error that occurred. In addition to the number of the
error, you also receive two related pieces of information. The NativeError
property contains an error number specific to the provider you are using. In the
previous example, the provider is the Microsoft OLE DB Provider for SQL
Server, so NativeError will contain errors specific to SQL Server. The
SQLState property has a five-letter code that describes an error in a SQL
statement.

Event-Related Errors

The Error object is also used when event-related errors occur. You can
determine if an error occurred in the process that raised an ADO event by
checking the Error object passed as an event parameter.

If the operation that causes an event is concluded successfully, the adStatus
parameter of the event handler will be set to adStatusOK. On the other hand, if
the operation that raised the event was unsuccessful, the adStatus parameter is
set to adStatusErrorsOccurred. In that case, the pError parameter will contain an
Error object that describes the error.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Field-Related Error Information

If an error is directly related to a field—for example, if the data is missing or if it
is the wrong type for the field—you can retrieve more information about the
cause of the problem by examining the Field object's Status property. This
property has been enhanced to provide specific information about the problem.
So, for example, when a call to UpdateBatch fails, the cause of the problem can
be determined by examining the Status property of the Fields in each of the
effected records. The property will contain one of the values in the
FieldStatusEnum constant. The following table includes those values that are of
particular interest when an error occurs.

Constant Value Description

Indicates that the field cannot be

adFieldCantConvertValue 2 retrieved or stored without loss of data.

Indicates that the data returned from
adFieldDataOverflow 6 the provider overflowed the data type
of the field.

Indicates that the default value for the
field was used when setting data.
Indicates that this field was skipped
adFieldIgnore 15 when setting data values in the source.

No value was set by the provider.

Indicates that the field cannot be
adFieldIntegrityViolation 10 modified because it is a calculated or
derived entity.

adFieldDefault 13

Indicates that the provider returned a

adFieldIsNull 3
null value.

Indicates that the provider is unable to
adFieldOutOfSpace 22 obtain enough storage space to
complete a move or copy operation.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Recordset-Related Error Information

During batch processing, the Status property of the Recordset object provides
information about the individual records in the Recordset. Before a batch update
takes place, the Status property of the Recordset reflects information about
records to be added, changed and deleted. After UpdateBatch has been called,
the Status property indicates the success or failure of the operation. As you
move from record to record in the Recordset, the value of the Status property
changes to describe the status of the current record.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Handling Errors in other Languages

So far, this chapter has discussed errors from a Microsoft Visual Basic point of
view. The remainder of this section will give you an overview of error handling
in languages other than Visual Basic.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Handling Errors in VBScript

There is little difference between the methods used in Visual Basic and those
used with VBScript. The primary difference is that VBScript does not support
the concept of error handling by continuing execution at a label. In other words,
you cannot use On Error GoTo in VBScript. Instead, use on Error Resume
Next and then check both Err.Number and the Count property of the Errors
collection, as shown in the following example:

<!-- BeginErrorExampleVBS -->

<HTML>

<HEAD>

<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Error Handling Example (VBScript)</TITLE>

</HEAD>

<BODY>

<h1>Error Handling Example (VBScript)</h1>

<%
Dim errLoop
Dim strError

On Error Resume Next

' Intentionally trigger an error.
Set cnnl = Server.CreateObject("ADODB.Connection")
cnnl.0pen "nothing"

If cnnl.Errors.Count > 0@ Then
' Enumerate Errors collection and display
' properties of each Error object.
For Each errLoop In cnnl.Errors

streError = "Error #" & errLoop.Number & "
" & _
" " & errLoop.Description & "
" & _
" (Source: " & errLoop.Source & ")" & "
" & _
" (SQL State: " & errLoop.SQLState & ")" & "
"
" (NativeError: " & errLoop.NativeError & ")" & "<
If errLoop.HelpFile = "" Then

StrError = strError & _
" No Help file available" & _
"
<pr>"
Else
StrError = strError & _

" (HelpFile: " & errLoop.HelpFile & ")" & "<br
" (HelpContext: " & errLoop.HelpContext & ")"

"
<pr>"
End If
Response.Write ("<p>" & strError & "</p>")
Next
End If
%>
</BODY>
</HTML>

<!-- EndErrorExampleVBS -->

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Handling Errors in Visual C++

In COM, most operations return an HRESULT return code that indicates whether
a function completed successfully. The #import directive generates wrapper code
around each "raw" method or property and checks the returned HRESULT. If the
HRESULT indicates failure, the wrapper code throws a COM error by calling
_com_issue_errorex() with the HRESULT return code as an argument. COM
error objects can be caught in a try-catch block. (For efficiency's sake, catch a
reference to a _com_error object.)

Remember, these are ADO errors: they result from the ADO operation failing.
Errors returned by the underlying provider appear as Error objects in the
Connection object's Errors collection.

The #import directive only creates error-handling routines for methods and
properties declared in the ADO .dll. However, you can take advantage of this
same error-handling mechanism by writing your own error-checking macro or
inline function. See the topic Visual C++ Extensions for examples.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Handling Errors in Visual J++

Handle ADO errors in your Microsoft Visual J++ applications using a try catch
block. Once an error has been thrown, you can iterate through the collection,
successively handling each error. The following Visual J++ example shows a
console application that deliberately causes an error.

When the catch block is activated, it calls the PrintProviderError function to
display the errors. The PrintProviderError function iterates through the Errors
collection and sends a line to the standard output device that describes each error
in the collection.

// BeginErrorExampleV]

/**
* This class can take a variable number of parameters on the comman
* line. Program execution begins with the main() method. The class
* constructor is not invoked unless an object of type 'Classi'
* created in the main() method.
*/

import com.ms.wfc.data.*;
import java.io.* ;

public class ErrorExample
{
/**
* The main entry point for the application.
*
* @param args Array of parameters passed to the application
* via the command line.
*/
public static void main (String[] args)
{
DescriptionX();
System.exit(0);
¥

static void DescriptionX()

{

BufferedReader in = new
BufferedReader (new InputStreamReader (System.in));

// Define ADO Objects.

Connection cnConnl = null;

try

{
// Create an error by trying to
// Open a database that doesn't exist.
cnConnl = new Connection();
cnConnl.open("nothing");

catch(AdoException ae)

¢ // Notify user of any errors that result from ADO.
PrintProviderError(cnConnl);

¥

try

{
System.out.println("\nPress <Enter> key to continue.");
in.readLine();

by

// System read requires this catch.
catch(java.io.IOException je)

{
b

PrintIOError(je);

}

// PrintProviderError Function
static void PrintProviderError(Connection Cnnl)
{
// Print Provider errors from Connection object.
// ErrItem is an item object in the Connections Errors colle
com.ms.wfc.data.Error ErrItem = null;
long nCount = 0;
int i 0;

nCount = Cnnl.getErrors().getCount();

// If there are any errors in the collection, print them.
if(nCount > 0);

// Collection ranges from 0@ to nCount - 1
for (1 = 0; i< nCount; 1i++)

{
ErrItem = Cnnl.getErrors().getItem(i);
System.out.println("\t Error number: " + ErrItem.get
+ "\t" + ErrItem.getDescription());
¥

// PrintIOError Function

static void PrintIOError(java.io.IOException je)

{

System.out.println("Error \n");

System.out.println("\tSource = " + je.getClass() + "\n");
System.out.println("\tDescription = " + je.getMessage() + "\

¥
by
// EndErrorExampleVJ

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Handling Errors in JScript

Your Microsoft JScript code must check the Count property of the Connection
object's Errors collection. If the value is greater than 0, iterate through the
collection and print the values as you would in any of the other languages.

<!-- BeginErrorExamplelds -->

<%@ Language=JScript %>

<HTML>

<HEAD>

<title>Error Handling Example (JScript)</title>

</HEAD>

<BODY>

<h1>Error Handling Example (JScript)</h1>

<%
var cnnl = Server.CreateObject("ADODB.Connection");
var errLoop = Server.CreateObject("ADODB.Error");
var strError = new String;

try
{ . .
// Intentionally trigger an error.
cnnl.0pen("nothing");
catch(e)
{
Response.Write(e.message);
¥
%>
</BODY>
</HTML>
<!-- EndErrorExamplelS -->

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Anticipating Errors

Error prevention is at least as important as error handling. This final section
contains a short list of precautions your application can take to help make errors
less likely to occur.

Check the state of objects by checking the value in the State property before
trying to perform an operation using those objects. For example, if your
application uses a global Connection, check its State property to see if it is
already open before calling the Open method.

e Any program that accepts data from a user must include code to validate
that data before sending it to the data store. You cannot rely on the data
store, the provider, ADO, or even your programming language to notify you
of problems. You must check every byte entered by your users, making sure
that data is the correct type for its field and that required fields are not
empty.

Check the data before you try to write any data to the data store. The easiest way
to do so is to handle the WillMove event or the WillUpdateRecordset event.
For a more complete discussion of handling ADO events, see Chapter 7:

Handling ADO Events.

Make sure that Recordset objects are not beyond the boundaries of the
Recordset before attempting to move the record pointer. If you try to MoveNext
when EOF is True or MovePrev when BOF is True, an error will occur. If you
perform any of the Move methods when both EOF and BOF are True, an error
will be generated.

Errors also will occur if you try to perform operations such as Seek and Find on
an empty Recordset.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 7: Handling ADO Events

The ADO event model supports certain synchronous and asynchronous ADO
operations that issue events, or notifications, before the operation starts or after it
completes. An event is actually a call to an event-handler routine that you define
in your application.

If you provide handler functions or procedures for the group of events that occur
before the operation starts, you can examine or modify the parameters that were
passed to the operation. Because it has not been executed yet, you can either
cancel the operation or allow it to complete.

The group of events that occur after an operation completes are especially
important if you use ADO asynchronously. For example, an application that
starts an asynchronous Recordset.Open operation is notified by an execution
complete event when the operation concludes.

Using the ADO event model adds some overhead to your application but
provides far more flexibility than other methods of dealing with asynchronous
operations, such as monitoring the State property of an object with a loop.

See Also

ADO Event Handler Summary | ADO Event Instantiation by Language | ADO
Events | Event Parameters | Types of Events

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

ADO Event Handler Summary

Two ADO objects can raise events: the Connection object and the Recordset
object. The ConnectionEvent family pertains to operations on the Connection
object, and the RecordsetEvent family pertains to operations on the Recordset

object.

e Connection Events: Events are issued when a transaction on a connection
begins, is committed, or is rolled back; when a Command executes; when a
warning occurs during a Connection Event operation; or when a
Connection starts or ends.

¢ Recordset Events: Events are issued around asynchronous fetch operations
as well as when you navigate through the rows of a Recordset object,
change a field in a row of a Recordset, change a row in a Recordset, open
a Recordset with a server-side cursor, close a Recordset, or make any
change whatsoever in the Recordset.

The following tables summarize the events and their descriptions.

ConnectionEvent

BeginTransComplete,
CommitTransComplete,
RollbackTransComplete
WillConnect,
ConnectCombplete,
Disconnect

WillExecute,
ExecuteComplete

InfoMessage

RecordsetEvent

FetchProgress,

Description

Transaction Management—Notification that the
current transaction on the connection has started,
committed, or rolled back.

Connection Management—Notification that the
current connection will start, has started, or has
ended.

Command Execution Management—Notification

that the execution of the current command on the

connection will start or has ended.

Informational—Notification that there is

additional information about the current operation.
Description

Retrieval Status—Notification of the progress of a
data retrieval operation, or that the retrieval
operation has completed. These events are only

FetchComplete

WillChangeField,
FieldChangeComplete

WillMove, MoveComplete,
EndOfRecordset

WillChangeRecord,
RecordChangeComplete

WillChangeRecordset,
RecordsetChangeComplete

See Also

available if the Recordset was opened using a
client-side cursor.

Field Change Management—Notification that the
value of the current field will change, or has
changed.

Navigation Management—Notification that the
current row position in a Recordset will change,
has changed, or has reached the end of the
Recordset.

Row Change Management—Notification that
something in the current row of the Recordset will
change, or has changed.

Recordset Change Management—Notification
that something in the current Recordset will
change, or has changed.

ADO Event Instantiation by Language | ADO Events | Event Parameters | How

Event Handlers Work Together | Types of Events

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Types of Events

There are two basic types of events. "Will Events," which are called before an
operation starts, usually include "Will" in their names—for example,
WillChangeRecordset or WillConnect. Events that are called after an event has
been completed usually include "Complete" in their names—for example,
RecordChangeComplete or ConnectComplete. Exceptions exist—such as
InfoMessage—but these occur after the associated operation has completed.

Will Events

Event handlers called before the operation starts offer you the opportunity to
examine or modify the operation parameters, and then either cancel the operation
or allow it to complete. These event-handler routines usually have names of the
form WillEvent.

Complete Events

Event handlers called after an operation completes can notify your application
that an operation has concluded. Such an event handler is also notified when a
Will event handler cancels a pending operation. These event-handler routines
usually have names of the form EventComplete.

Will and Complete events are typically used in pairs.

Other Events
The other event handlers—that is, events whose names are not of the form

WillEvent or EventComplete—are called only after an operation completes.
These events are Disconnect, EndOfRecordset, and InfoMessage.

See Also

ADO Event Handler Summary | ADO Event Instantiation by L.anguage | Event
Parameters | How Event Handlers Work Together

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Event Parameters

Every event handler has a status parameter that controls the event handler. For
Complete events, this parameter is also used to indicate the success or failure of
the operation that generated the event. Most Complete events also have an error
parameter to provide information about any error that might have occurred, as
well as one or more object parameters that refer to the ADO objects used to
perform the operation. For example, the ExecuteComplete event includes object
parameters for the Command, Recordset, and Connection objects associated
with the event. In the following Microsoft Visual Basic example, you can see the
pCommand, pRecordset and pConnection objects which represent the
Command, Recordset, and Connection objects used by the Execute method.

Private Sub connEvent_ExecuteComplete(ByVal RecordsAffected As Long,
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByvVal pCommand As ADODB.Command, _
ByVal pRecordset As ADODB.Recordset, _
ByVal pConnection As ADODB.Connection)

Except for the Error object, the same parameters are passed to the Will events.
This gives you the opportunity to examine each of the objects to be used in the
pending operation and determine whether the operation should be allowed to
complete.

Some event handlers have a Reason parameter, which provides additional
information about why the event occurred. For example, the WillMove and
MoveComplete events can occur due to any one of the navigation methods
(MoveNext, MovePrevious, and so on) being called or as the result of a requery.

Status Parameter

When the event-handler routine is called, the Status parameter is set to one of the
following values.

Value Description
Passed to both Will and Complete
events. This value means that the
operation that caused the event
completed successfully.

adStatusOK

Passed to Complete events only. This
value means that the operation that
caused the event was unsuccessful, or a
Will event canceled the operation.
Check the Error parameter for more
details.

Passed to Will events only. This value
means that the operation cannot be
canceled by the Will event. It must be
performed.

adStatusErrorsOccurred

adStatusCantDeny

If you determine in your Will event that the operation should continue, leave the
Status parameter unchanged. As long as the incoming status parameter was not
set to adStatusCantDeny, however, you can cancel the pending operation by
changing Status to adStatusCancel. When you do so, the Complete event
associated with the operation has its Status parameter set to
adStatusErrorsOccurred. The Error object passed to the Complete event will
contain the value adErrOperationCancelled.

If you no longer want to process an event, you can set Status to
adStatusUnwantedEvent and your application will no longer receive
notification of that event. Remember, however, that some events can be raised
for more than one reason. In that case, you must specify
adStatusUnwantedEvent for each possible reason. For example, in order to
stop receiving notification of pending RecordChange events, you must set the
Status parameter to adStatusUnwantedEvent for adRsnAddNew,
adRsnDelete, adRsnUpdate, adRsnUndoUpdate, adRsnUndoAddNew,

adRsnUndoDelete, and adRsnFirstChange as they occur.

Value

adStatusUnwantedEvent

adStatusCancel

Description
Request that this event handler receive
no further notifications.
Request cancellation of the operation
that is about to occur.

Error Parameter

The Error parameter is a reference to an ADO Error object. When the Status
parameter is set to adStatusErrorsOccurred, the Error object contains details
about why the operation failed. If the Will event associated with a Complete
event has canceled the operation by setting the Status parameter to
adStatusCancel, the error object is always set to adErrOperationCancelled.

Object Parameter

Each event receives one or more objects representing the objects that are
involved in the operation. For example, the ExecuteComplete event receives a
Command object, a Recordset object, and a Connection object.

Reason Parameter

The Reason parameter, adReason, provides additional information about why the
event occurred. Events with an adReason parameter may be called several times,
even for the same operation, each time for a different reason. For example, the
WillChangeRecord event handler is called for operations that are about to do or
undo the insertion, deletion, or modification of a record. If you want to process
an event only when it occurs for a particular reason, you can use the adReason
parameter to filter out the occurrences you are not interested in. For example, if
you wanted to process record-change events only when they occur because a
record was added, you can do something like this:

' BeginEventExampleVB0O1
Private Sub rsTest_WillChangeRecord(ByVal adReason As ADODB.EventRea
If adReason = adRsnAddNew Then
' Process event

Else
' Cancel event notification for all
' other possible adReason values.
adStatus = adStatusUnwantedEvent
End If
End Sub
' EndEventExampleVB0O1

In this case, notification can potentially occur for each of the other reasons.
However, it will occur only once for each reason. After the notification has
occurred once for each reason, you will receive notification only for the addition
of a new record.

In contrast, you need to set adStatus to adStatusUnwantedEvent only one time
to request that an event handler without an adReason parameter stop receiving
event notifications.

See Also

ADO Event Handler Summary | ADO Event Instantiation by L.anguage | How
Event Handlers Work Together | Types of Events

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

How Event Handlers Work Together

Unless you are programming in Visual Basic, all event handlers for Connection
and Recordset events must be implemented, regardless of whether you actually
process all of the events. The amount of implementation work you have to do

depends on your programming language. For more information, see ADO Event

Instantiation by Language.

Paired Event Handlers

Each Will event handler has an associated Complete event handler. For example,
when your application changes the value of a field, the WillChangeField event
handler is called. If the change is acceptable, your application leaves the
adStatus parameter unchanged and the operation is performed. When the
operation completes, a FieldChangeComplete event notifies your application
that the operation has finished. If it completed successfully, adStatus contains
adStatusOK; otherwise, adStatus contains adStatusErrorsOccurred and you
must check the Error object to determine the cause of the error.

When WillChangeField is called, you might determine that the change should
not be made. In that case, set adStatus to adStatusCancel. The operation is
canceled and the FieldChangeComplete event receives an adStatus value of
adStatusErrorsOccurred. The Error object contains
adErrOperationCancelled so that your FieldChangeComplete handler knows
that the operation was canceled. However, you need to check the value of the
adStatus parameter before changing it, because setting adStatus to
adStatusCancel has no effect if the parameter was set to adStatusCantDeny on
entry to the procedure.

Sometimes an operation can raise more than one event. For example, the
Recordset object has paired events for Field changes and Record changes.
When your application changes the value of a Field, the WillChangeField event
handler is called. If it determines that the operation can continue, the
WillChangeRecord event handler is also raised. If this handler also allows the
event to continue, the change is made and the FieldChangeComplete and
RecordChangeComplete event handlers are called. The order in which the Will
event handlers for a particular operation are called is not defined, so you should
avoid writing code that depends on calling handlers in a particular sequence.

In instances when multiple Will events are raised, one of the events might cancel
the pending operation. For example, when your application changes the value of
a Field, both WillChangeField and WillChangeRecord event handlers would
normally be called. However, if the operation is canceled in the first event
handler, its associated Complete handler is immediately called with
adStatusOperationCancelled. The second handler is never called. If, however,
the first event handler allows the event to proceed, the other event handler will

be called. If it then cancels the operation, both Complete events will be called as
in the earlier examples.

Unpaired Event Handlers

As long as the status passed to the event is not adStatusCantDeny, you can turn
off event notifications for any event by returning adStatusUnwantedEvent in
the Status parameter. For example, when your Complete event handler is called
the first time, you can return adStatusUnwantedEvent. You will subsequently
receive only Will events. However, some events can be triggered for more than
one reason. In that case, the event will have a Reason parameter. When you
return adStatusUnwantedEvent, you will stop receiving notifications for that
event only when they occur for that particular reason. In other words, you will
potentially receive notification for each possible reason that the event could be
triggered.

Single Will event handlers can be useful when you want to examine the
parameters that will be used in an operation. You can modify those operation
parameters or cancel the operation.

Alternatively, leave Complete event notification enabled. When your first Will
event handler is called, return adStatusUnwantedEvent. You will subsequently
receive only Complete events.

Single Complete event handlers can be useful for managing asynchronous
operations. Each asynchronous operation has an appropriate Complete event.

For example, it can take a long time to populate a large Recordset object. If your
application is appropriately written, you can start a
Recordset.Open(...,adAsyncExecute) operation and continue with other
processing. You will eventually be notified when the Recordset is populated by
an ExecuteComplete event.

Single Event Handlers and Multiple Objects

The flexibility of a programming language like Microsoft Visual C++ enables
you to have one event handler process events from multiple objects. For
example, you could have one Disconnect event handler process events from
several Connection objects. If one of the connections ended, the Disconnect
event handler would be called. You could tell which connection caused the event
because the event-handler object parameter would be set to the corresponding
Connection object.

Note This technique cannot be used in Visual Basic because that language
can correlate only one object to an event handler.

See Also

ADO Event Handler Summary | ADO Event Instantiation by L.anguage | Event
Parameters | Types of Events

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

ADO Event Instantiation by
L.anguage

Each programming language creates instances of ADO events differently. All of
the following examples create a ConnectComplete event handler.

Visual Basic
Visual C++
Visual J++

VBScript

JScript
ADO/WEC

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Visual Basic

In order to handle ADO events in Microsoft Visual Basic, you must declare a
module-level variable using the WithEvents keyword. The variable can be
declared only as part of a class module and must be declared at the module level.
This is not as restrictive as it seems, however, because Visual Basic Form
objects are also classes. The simplest way to handle ADO events is to declare a
variable using WithEvents. The following example handles the
ConnectComplete event for a Connection object:

' BeginEventExampleVB02

Dim WithEvents connEvent As Connection
Attribute connEvent.VB_VarHelpID = -1
Dim strMsg As String

Private Sub Form_Load()
On Error GoTo ErrHandler:

Dim strConn As String

' Create a new object with event

' handling enabled.

strConn = "Provider='sqloledb';" & _
"Data Source='MySqglServer';" & _
"Initial Catalog='Northwind';" & _
"Integrated Security='SSPI';"

Set connEvent = New ADODB.Connection

connEvent.Open strConn

Exit Sub

ErrHandler:
MsgBox strMsg
End Sub

Private Sub connEvent_ConnectComplete(ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum, _
ByVal pConnection As ADODB.Connection)

If adStatus = adStatusErrorsOccurred Then
If Not pError Is Nothing Then
Select Case pError.Number
Case adErrOperationCancelled
' The operation was cancelled in the

" Will event. Notify the user and exit.
strMsg = "I'm sorry you can't connect right now.
strMsg = strMsg & " Click OK to exit."
Unload Me
Case Else
strMsg = "Error " & Format(pError.Number) & vbCr
strMsg = strMsg & pError.Description
strMsg = strMsg & " Click OK to exit."
Unload Me
End Select
Else
strMsg = "Error occured. Click OK to exit."
Unload Me
End If
End If
'frmWait.btnOK.Enabled = True

End Sub
" EndEventExampleVB02

The Connection object is declared at the Form level using the WithEvents
keyword to enable event handling. The Form_Load event handler actually
creates the object by assigning a new Connection object to connEvent and then
opens the connection. Of course, a real application would do more processing in
the Form_Load event handler than is shown here.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Visual C++

This is a schematic description of how to instantiate ADO events in Microsoft

Visual C++. See ADO Events Model Example (VC++) for a complete

description.

Create classes derived from the ConnectionEventsVt and RecordsetEventsVt
interfaces found in the file adoint.h.

// BeginEventExampleVC0O1
class CConnEvent : public ConnectionEventsVt

{
public:
STDMETHODIMP InfoMessage(
ADOError *pError,
EventStatusEnum *adStatus,
_ADOConnection *pConnection);
}
class CRstEvent : public RecordsetEventsVt
{
public:
STDMETHODIMP WillChangeField(
LONG cFields,
VARIANT Fields,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset);
}

// EndEventExampleVCO1

Implement each of the event-handler methods in both classes. It is sufficient that
each method merely return an HRESULT of S_OK. However, when you make it
known that your event handlers are available, they will be called continuously by
default. Instead, you might want to request no further notification after the first
time by setting adStatus to adStatusUnwantedEvent.

// BeginEventExampleVC02

STDMETHODIMP CConnEvent::ConnectComplete(
ADOError *pError,
EventStatusEnum *adStatus,
_ADOConnection *pConnection)

{

*adStatus = adStatusUnwantedEvent;
return S_OK,

}

// EndEventExampleVC02

The event classes inherit from IUnknown, so you must also implement the
QuerylInterface, AddRef, and Release methods. Also implement class
constructors and destructors. Choose the Visual C++ tools with which you are
most comfortable to simplify this part of the task.

Make it known that your event handlers are available by issuing QueryInterface
on the Recordset and Connection objects for the IConnectionPointContainer
and IConnectionPoint interfaces. Then issue IConnectionPoint::Advise for
each class.

For example, assume you are using a Boolean function that returns True if it
successfully informs a Recordset object that you have event handlers available.

// BeginEventExampleVC03
HRESULT hr;

DWORD dwEvtClass;
IConnectionPointContainer *pCPC = NULL;
IConnectionPoint *pCP = NULL;
CRstEvent *pRStEvent = NULL;
_RecordsetPtr pPRs;

pRs.CreateInstance(__uuidof(Recordset));
pRStEvent = new CRstEvent;
if (pRStEvent == NULL) return FALSE;

hr = pRs->QueryInterface(IID_IConnectionPointContainer, (LPVOID *)&p
if (FAILED(hr)) return FALSE;

hr = pCPC->FindConnectionPoint (RecordsetEvents, &pCP);
pCPC->Release(); // Always Release now, even before checking.

if (FAILED(hr)) return FALSE;

hr = pCP->Advise(pRstEvent, &dwEvtClass); //Turn on event support.
pCP->Release();

if (FAILED(hr)) return FALSE;

return TRUE;
// EndEventExampleVC03

At this point, events for the RecordsetEvent family are enabled and your

methods will be called as Recordset events occur.

Later, when you want to make your event handlers unavailable, get the
connection point again and issue the IConnectionPoint::Unadvise method.

// BeginEventExampleVC04

hr = pCP->Unadvise(dwEvtClass); //Turn off event support.
pCP->Release();

if (FAILED(hr)) return FALSE;

)}.EndEventExampleVC04
You must release interfaces and destroy class objects as appropriate.

The following code shows a complete example of a Recordset Event sink class.

// BeginEventExampleVC05
#include <adoint.h>

class CADORecordsetEvents : public RecordsetEventsVt

{
public

ULONG m_ulRefCount;
CADORecordsetEvents():m_ulRefCount(1){}

STDMETHOD (QueryInterface) (REFIID iid, LPVOID * ppvObject)

{
if (IsEqualIID(__uuidof(IUnknown), iid) ||

IsequalIID(__ uuidof(RecordsetEventsvt), iid))

{
*ppvObject = this;
return S_OK;
}
else
return E_NOINTERFACE;
}
STDMETHOD_ (ULONG, AddRef) ()
{
return m_ulRefCount++;
}
STDMETHOD_ (ULONG, Release)()
{

if (--m_ulRefCount == 0)
{

delete this;
return 0,

}

else
return m_ulRefCount;

STDMETHOD (WillChangeField)(
LONG cFields,

VARIANT Fields,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

{
*adStatus = adStatusUnwantedEvent;
return S_OK;

}

STDMETHOD (FieldChangeComplete) (
LONG cFields,
VARIANT Fields,

ADOError *pError,
EventStatusEnum *adStatus,

_ADORecordset *pRecordset)

{
*adStatus = adStatusUnwantedEvent;
return S_OK;

}

STDMETHOD(WillChangeRecord) (
EventReasonEnum adReason,

LONG cRecords,
EventStatusEnum *adStatus,

_ADORecordset *pRecordset)

{
*adStatus = adStatusUnwantedEvent;
return S_OK;
}
STDMETHOD (RecordChangeComplete) (
EventReasonEnum adReason,

LONG cRecords,

ADOError *pError,
EventStatusEnum *adStatus,

_ADORecordset *pRecordset)

{
*adStatus = adStatusUnwantedEvent;
return S_OK;

STDMETHOD(WillChangeRecordset) (
EventReasonEnum adReason,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

*adStatus = adStatusUnwantedEvent;
return S_OK;

STDMETHOD (RecordsetChangeComplete)(
EventReasonEnum adReason,
ADOError *pError,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

{
*adStatus = adStatusUnwantedEvent;
return S_OK;
}
STDMETHOD (WillMove) (
EventReasonEnum adReason,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)
{
*adStatus = adStatusUnwantedEvent;
return S_OK;
}

STDMETHOD (MoveComplete) (
EventReasonEnum adReason,
ADOError *pError,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

{

*adStatus = adStatusUnwantedEvent;
return S_OK;

}

STDMETHOD (EndOfRecordset) (
VARIANT_BOOL *fMoreData,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

*adStatus = adStatusUnwantedEvent;
return S_OK;

STDMETHOD (FetchProgress) (
long Progress,
long MaxProgress,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

*adStatus = adStatusUnwantedEvent;
return S_OK;

STDMETHOD (FetchComplete) (
ADOError *pError,
EventStatusEnum *adStatus,
_ADORecordset *pRecordset)

*adStatus = adStatusUnwantedEvent;
return S_OK;

iy
// EndEventExampleVC0O5

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Visual J++

This short Microsoft Visual J++ example shows how you can associate your own
function with a particular event.

// BeginEventExampleVJ
import com.ms.wfc.data.*;

public class EventExampleVJ

{
ConnectionEventHandler handler = new ConnectionEventHandler(this
public void onConnectComplete(Object sender,ConnectionEvent e)
{
if (e.adStatus == AdoEnums.EventStatus.ERRORSOCCURRED)
System.out.println("Connection failed");
else
System.out.println("Connection completed");
return;
¥
public static void main (String[] args)
{
EventExampleVJ Classl = new EventExampleVJ();
Connection conn = new Connection();
conn.addonConnectComplete(Classl.handler); // Enable eve
conn.open("DSN=Pubs");
conn.close();
conn.removeOnConnectComplete(Classl.handler); // Disable ev
¥
}

// EndEventExampleVJ

First, the class method onConnectionComplete is associated with the
ConnectionComplete event by creating a new ConnectionEventHandler
object and assigning the onConnectComplete function to the object.

The main function then creates a Connection object and enables event handling
by calling the addOnConnectComplete method and passing it the address of
the handler function.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

VBScript

Microsoft Visual Basic Scripting Edition does not support ADO events.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

JScript

Microsoft JScript does not support ADO events.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

ADO/WEC

ADO for Windows Foundation Classes (ADO/WFC) builds on the ADO event
model and presents a simplified application programming interface. In general,
ADO/WEC intercepts ADO events, consolidates the event parameters into a
single event class, and then calls your event handler.

To use ADO events in ADO/WFC

1. Define your own event handler to process an event. For example, if you
wanted to process the ConnectComplete event in the ConnectionEvent
family, you might use this code:

public void onConnectComplete(Object sender,ConnectionEvent e)

{
}

System.out.println("onConnectComplete:" + e);

2. Define a handler object to represent your event handler. The handler object
should be of data type ConnectEventHandler for an event of type
ConnectionEvent, or data type RecordsetEventHandler for an event of
type RecordsetEvent. For example, code the following for your
ConnectComplete event handler:

ConnectionEventHandler handler =
new ConnectionEventHandler(this, "onConnectComplete");

The first argument of the ConnectionEventHandler constructor is a
reference to the class that contains the event handler named in the second
argument.

The Microsoft Visual J++ compiler also supports an equivalent syntax:

ConnectionEventHandler handler =
new ConnectionEventHandler(this.onConnectComplete);

The single argument is a reference to the desired class (this) and method
within the class (onConnectComplete).

3. Add your event handler to a list of handlers designated to process a

particular type of event. Use the method with a name such as
addOnEventName(handler).

4. ADO/WEC internally implements all the ADO event handlers. Therefore,
an event caused by a Connection or Recordset operation is intercepted by
an ADO/WEFC event handler.

The ADO/WFC event handler passes ADO ConnectionEvent parameters
in an instance of the ADO/WFC ConnectionEvent class, or ADO
RecordsetEvent parameters in an instance of the ADO/WFC
RecordsetEvent class. These ADO/WEFEC classes consolidate the ADO
event parameters; that is, each ADO/WFC class contains one data member
for each unique parameter in all the ADO ConnectionEvent or
RecordsetEvent methods.

5. ADO/WEC then calls your event handler with the ADO/WFC event object.
For example, your onConnectComplete handler has a signature like this:

public void onConnectComplete(Object sender,ConnectionEvent

The first argument is the type of object that sent the event (Connection or
Recordset), and the second argument is the ADO/WFC event object
(ConnectionEvent or RecordsetEvent).

The signature of your event handler is simpler than an ADO event.
However, you must still understand the ADO event model to know what
parameters apply to an event and how to respond.

6. Return from your event handler to the ADO/WFC handler for the ADO
event. ADO/WFC copies pertinent ADO/WFC event data members back to
the ADO event parameters, and then the ADO event handler returns.

7. When you are finished processing, remove your handler from the list of
ADO/WEC event handlers. Use the method with a name such as
removeOnEventName(handler).

See Also

ADO Event Handler Summary | ADO/WFC Programming | ADO/WFC Syntax
Index | Event Parameters | How Event Handlers Work Together | Types of Events

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 8: Understanding Cursors
and Locks

It is important to understand how cursors operate so you can select the best and
most efficient cursor type for an application's data-access requirements. A less-
than-optimal cursor configuration can make data-access operations painfully
slow.

Many capabilities of the ADO Recordset object are determined by the type and
location of the cursor, as well as the lock type.

This chapter covers the following topics:

What is a Cursor?

Types of Cursors

The Significance of Cursor Location

The Microsoft Cursor Service for OLE DB
What is a L.ock?

Using CacheSize
Cursor and L.ock Characteristics

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

What is a Cursor?

Operations in a relational database act on a complete set of rows. The set of rows
returned by a SELECT statement consists of all the rows that satisfy the
conditions in the WHERE clause of the statement. This complete set of rows
returned by the statement is known as the result set. Applications, especially
those that are interactive and online, cannot always work effectively with the
entire result set as a unit. These applications need a mechanism to work with one
row or a small block of rows at a time. Cursors are an extension to result sets
that provide that mechanism.

A cursor is implemented by a cursor library. A cursor library is software, often
implemented as a part of a database system or a data access API, that is used to
manage attributes of data returned from a data source (a result set). These
attributes include concurrency management, position in the result set, number of
rows returned, and whether or not you can move forward and/or backward
through the result set (scrollability).

A cursor keeps track of the position in the result set, and allows you to perform
multiple operations row by row against a result set, with or without returning to
the original table. In other words, cursors conceptually return a result set based
on tables within the databases. The cursor is so named because it indicates the
current position in the result set, just as the cursor on a computer screen indicates
current position.

It is important to become familiar with the concept of cursors before moving on
to learn the specifics of their usage in ADO.

Using cursors, you can:

Specify positioning at specific rows in the result set.

Retrieve one row or a block of rows based on the current result set position.
Modify data in the rows at the current position in the result set.

Define different levels of sensitivity to data changes made by other users.

For example, consider an application that displays a list of available products to
a potential buyer. The buyer scrolls through the list to see product details and

cost, and finally selects a product for purchase. Additional scrolling and
selection occurs for the remainder of the list. As far as the buyer is concerned,
the products appear one at a time, but the application uses a scrollable cursor to
browse up and down through the result set.

You can use cursors in a variety of ways:

With no rows at all.

With some or all of the rows in a single table.

With some or all of the rows from logically joined tables.

As read-only or updateable at the cursor or field level.

As forward-only or fully scrollable.

With the cursor keyset located on the server.

Sensitive to underlying table changes caused by other applications (such as
membership, sort, inserts, updates, and deletes).

e Existing on either the server or the client.

Read-only cursors help users browse through the result set, and read/write
cursors can implement individual row updates. Complex cursors can be defined
with keysets that point back to base table rows. While some cursors are read-
only in a forward direction, others can move back and forth and provide a
dynamic refresh of the result set based on changes that other applications are
making to the database.

Not all applications need to use cursors to access or update data. Some queries
simply do not require direct row updating by using a cursor. Cursors should be
one of the last techniques you choose to retrieve data—and then you should
choose the lowest impact cursor possible. When you create a result set by using
a stored procedure, the result set is not updateable using cursor edit or update
methods.

Concurrency

In some multi-user applications it is vitally important for the data presented to
the end user to be as current as possible. A classic example of such a system is
an airline reservation system, where many users might be contending for the
same seat on a given flight (and thus, a single record). In a case like this, the
application design must handle concurrent operations on a single record.

In other applications, concurrency is not as important. In such cases, the expense
involved in keeping the data current at all times cannot be justified.

Position

A cursor also keeps track of the current position in a result set. Think of the
cursor position as a pointer to the current record, similar to the way an array
index points to the value at that particular location in the array.

Scrollability

The type of cursor employed by your application also affects the ability to move
forward and backward through the rows in a result set; this is sometimes called
scrollability. The ability to move forward and backward through a result set adds
to the complexity of the cursor, and is therefore more expensive to implement.
For this reason, you should ask for a cursor with this functionality only when
necessary.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Types of Cursors

As a general rule, your application should use the simplest cursor that provides
the required data access. Each additional cursor characteristic beyond the basics
(forward-only, read-only, static, scrolling, unbuffered) has a price—in client
memory, network load, or performance. In many cases, the default cursor options
generate a more complex cursor than your application actually needs.

Your choice of cursor type depends on how your application uses the result set
and also on several design considerations, including the size of the result set, the
percentage of the data likely to be used, sensitivity to data changes, and
application performance requirements.

At its most basic, your cursor choice depends on whether you need to change or
simply view the data:

e If you just need to scroll through a set of results, but not change data, use a
forward-only or static cursor.

e If you have a large result set and need to select just a few rows, use a keyset
cursor.

e If you want to synchronize a result set with recent adds, changes, and
deletes by all concurrent users, use a dynamic cursor.

Although each cursor type seems to be distinct, keep in mind that these cursor
types are not so much different varieties as simply the result of overlapping
characteristics and options.

See Also

Forward-Only Cursors | Static Cursors | Keyset Cursors | Dynamic Cursors

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Forward-Only Cursors

The typical default cursor type, called a forward-only (or non-scrollable) cursor,
can move only forward through the result set. A forward-only cursor does not
support scrolling (the ability to move forward and backward in the result set); it
only supports fetching rows from the start to the end of the result set. With some
forward-only cursors (such as with the SQL Server cursor library), all insert,
update, and delete statements made by the current user (or committed by other
users) that affect rows in the result set are visible as the rows are fetched.
Because the cursor cannot be scrolled backward, however, changes made to rows
in the database after the row was fetched are not visible through the cursor.

After the data for the current row is processed, the forward-only cursor releases
the resources that were used to hold that data. Forward-only cursors are dynamic
by default, meaning that all changes are detected as the current row is processed.
This provides faster cursor opening and enables the result set to display updates
made to the underlying tables.

While forward-only cursors do not support backward scrolling, your application
can return to the beginning of the result set by closing and reopening the cursor.
This is an effective way to work with small amounts of data. As an alternative,
your application could read the result set once, cache the data locally, and then
browse the local data cache.

If your application does not require scrolling through the result set, the forward-
only cursor is the best way to retrieve data quickly with the least amount of
overhead. Use the adOpenForwardOnly CursorTypeEnum to indicate that
you want to use a forward-only cursor in ADO.

See Also

Static Cursors | Keyset Cursors | Dynamic Cursors

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Static Cursors

The static cursor always displays the result set as it was when the cursor was
first opened. Depending on implementation, static cursors are either read-only or
read/write and provide forward and backward scrolling. The static cursor does
not usually detect changes made to the membership, order, or values of the result
set after the cursor is opened. Static cursors may detect their own updates,
deletes, and inserts, although they are not required to do so.

Static cursors never detect other updates, deletes, and inserts. For example,
suppose a static cursor fetches a row, and another application then updates that
row. If the application refetches the row from the static cursor, the values it sees
are unchanged, despite the changes made by the other application. All types of
scrolling are supported, but providers may or may not support bookmarks.

If your application does not need to detect data changes and requires scrolling,
the static cursor is the best choice. Use the adOpenStatic CursorTypeEnum to
indicate that you want to use a static cursor in ADO.

See Also

Forward-Only Cursors | Keyset Cursors | Dynamic Cursors

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Keyset Cursors

The keyset cursor provides functionality between a static and a dynamic cursor
in its ability to detect changes. Like a static cursor, it does not always detect
changes to the membership and order of the result set. Like a dynamic cursor, it
does detect changes to the values of rows in the result set.

Keyset-driven cursors are controlled by a set of unique identifiers (keys) known
as the keyset. The keys are built from a set of columns that uniquely identify the
rows in the result set. The keyset is the set of key values from all the rows
returned by the query statement.

With keyset-driven cursors, a key is built and saved for each row in the cursor
and stored either on the client workstation or on the server. When you access
each row, the stored key is used to fetch the current data values from the data
source. In a keyset-driven cursor, result set membership is frozen when the
keyset is fully populated. Thereafter, additions or updates that affect membership
are not a part of the result set until it is reopened.

Changes to data values (made either by the keyset owner or other processes) are
visible as the user scrolls through the result set. Inserts made outside the cursor
(by other processes) are visible only if the cursor is closed and reopened. Inserts
made from inside the cursor are visible at the end of the result set.

When a keyset-driven cursor attempts to retrieve a row that has been deleted, the
row appears as a "hole" in the result set. The key for the row exists in the keyset,
but the row no longer exists in the result set. If the key values in a row are
updated, the row is considered to have been deleted and then inserted, so such
rows also appear as holes in the result set. While a keyset-driven cursor can
always detect rows deleted by other processes, it can optionally remove the keys
for rows it deletes itself. Keyset-driven cursors that do this cannot detect their
own deletes because the evidence has been removed.

An update to a key column operates like a delete of the old key followed by an
insert of the new key. The new key value is not visible if the update was not
made through the cursor. If the update was made through the cursor, the new key
value is visible at the end of the result set.

There is a variation on keyset-driven cursors called keyset-driven standard
cursors. In a keyset-driven standard cursor, the membership of rows in the result
set and the order of the rows are fixed at cursor open time, but changes to values
that are made by the cursor owner and committed changes made by other
processes are visible. If a change disqualifies a row for membership or affects
the order of a row, the row does not disappear or move unless the cursor is
closed and reopened. Inserted data does not appear, but changes to existing data
do appear as the rows are fetched.

The keyset-driven cursor is difficult to use correctly because the sensitivity to
data changes depends on many differing circumstances, as described above.
However, if your application is not concerned with concurrent updates, can
programmatically handle bad keys, and must directly access certain keyed rows,
the keyset-driven cursor might work for you. Use the adOpenKeyset
CursorTypeEnum to indicate that you want to use a keyset cursor in ADO.

See Also

Forward-Only Cursors | Static Cursors | Dynamic Cursors

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Dynamic Cursors

Dynamic cursors detect all changes made to the rows in the result set, regardless
of whether the changes occur from inside the cursor or by other users outside the
cursor. All insert, update, and delete statements made by all users are visible
through the cursor. The dynamic cursor can detect any changes made to the
rows, order, and values in the result set after the cursor is opened. Updates made
outside the cursor are not visible until they are committed (unless the cursor
transaction isolation level is set to "uncommitted").

For example, suppose a dynamic cursor fetches two rows and another
application, and then updates one of those rows and deletes the other. If the
dynamic cursor then fetches those rows, it will not find the deleted row, but it
will display the new values for the updated row.

The dynamic cursor is a good choice if your application must detect all
concurrent updates made by other users. Use the adOpenDynamic
CursorTypeEnum to indicate that you want to use a dynamic cursor in ADO.

Forward-Only Cursors | Static Cursors | Keyset Cursors

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Significance of Cursor Location

Every cursor uses temporary resources to hold its data. These resources can be
memory, a disk paging file, temporary disk files, or even temporary storage in
the database. The cursor is called a client-side cursor when these resources are
located on the client computer. The cursor is called a server-side cursor when
these resources are located on the server.

Client-Side Cursors

In ADQ, call for a client-side cursor by using the adUseClient
CursorLocationEnum. With a non-keyset client-side cursor, the server sends
the entire result set across the network to the client computer. The client
computer provides and manages the temporary resources needed by the cursor
and result set. The client-side application can browse through the entire result set
to determine which rows it requires.

Static and keyset-driven client-side cursors may place a significant load on your
workstation if they include too many rows. While all of the cursor libraries are
capable of building cursors with thousands of rows, applications designed to
fetch such large rowsets may perform poorly. There are exceptions, of course.
For some applications, a large client-side cursor might be perfectly appropriate
and performance might not be an issue.

One obvious benefit of the client-side cursor is quick response. After the result
set has been downloaded to the client computer, browsing through the rows is
very fast. Your application is generally more scalable with client-side cursors
because the cursor's resource requirements are placed on each separate client and
not on the server.

Server-Side Cursors

In ADQO, call for a server-side cursor by using the adUseServer
CursorLocationEnum. With a server-side cursor, the server manages the result
set using resources provided by the server computer. The server-side cursor
returns only the requested data over the network. This type of cursor can
sometimes provide better performance than the client-side cursor, especially in
situations where excessive network traffic is a problem.

However, it is important to point out that a server-side cursor is—at least
temporarily—consuming precious server resources for every active client. You
must plan accordingly to ensure that your server hardware is capable of
managing all of the server-side cursors requested by active clients. Also, a
server-side cursor can be slow because it provides only single row access—there
is no batch cursor available.

Server-side cursors are useful when inserting, updating, or deleting records. With
server-side cursors, you can have multiple active statements on the same
connection.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

The Microsoft Cursor Service for
OLE DB

When you select a client-side cursor, or set the CursorLocation property to
adUseClient, you are invoking the Microsoft Cursor Service for OLE DB. You
might also see references to the "Client Cursor Engine", which is essentially the
same thing in the context of ADO. This service supplements the cursor-support
functions of data providers. As a result, you can perceive relatively uniform
functionality from all data providers.

The Cursor Service for OLE DB makes dynamic properties available and
enhances the behavior of certain methods. For example, the Optimize dynamic
property enables the creation of temporary indexes to facilitate certain
operations, such as the Find method.

The Cursor Service enables support for batch updating in all cases. It also

simulates more capable cursor types, such as dynamic cursors, when a data
provider can only supply less capable cursors, such as static cursors.

See Also

Microsoft Cursor Service for OLE DB

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

What is a Lock?

Locking is the process by which a DBMS restricts access to a row in a multi-
user environment. When a row or column is exclusively locked, other users are
not permitted to access the locked data until the lock is released. This ensures
that two users cannot simultaneously update the same column in a row.

Locks can be very expensive from a resource perspective and should be used
only when required to preserve data integrity. In a database where hundreds or
thousands of users could be trying to access a record every second—such as a
database connected to the Internet—unnecessary locking could quickly result in
slower performance in your application.

You can control how the data source and the ADO cursor library manage
concurrency by choosing the appropriate locking option.

Set the LockType property before opening a Recordset to specify what type of
locking the provider should use when opening it. Read the property to return the
type of locking in use on an open Recordset object.

Providers might not support all lock types. If a provider cannot support the
requested LockType setting, it will substitute another type of locking. To
determine the actual locking functionality available in a Recordset object, use
the Supports method with adUpdate and adUpdateBatch.

The adLockPessimistic setting is not supported if the CursorL.ocation property
is set to adUseClient. If an unsupported value is set, no error will result; the
closest supported LockType will be used instead.

The LockType property is read/write when the Recordset is closed, and read-
only when it is open.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Types of Locks

adLockBatchOptimistic

Indicates optimistic batch updates. Required for batch update mode.

Many applications fetch a number of rows at once and then need to make
coordinated updates that include the entire set of rows to be inserted, updated, or
deleted. With batch cursors, only one round trip to the server is needed, thus
improving update performance and decreasing network traffic. Using a batch
cursor library, you can create a static cursor and then disconnect from the data
source. At this point you can make changes to the rows and subsequently
reconnect and post the changes to the data source in a batch.

adLockOptimistic

Indicates that the provider uses optimistic locking—Ilocking records only when
you call the Update method. This means that there is a chance that the data may
be changed by another user between the time you edit the record and when you
call Update, which creates conflicts. Use this lock type in situations where the
chances of a collision are low or where collisions can be readily resolved.

adLockPessimistic

Indicates pessimistic locking, record by record. The provider does what is
necessary to ensure successful editing of the records, usually by locking records
at the data source immediately before editing. Of course, this means that the
records are unavailable to other users once you begin to edit, until you release
the lock by calling Update. Use this type of lock in a system where you cannot
afford to have concurrent changes to data, such as in a reservation system.

adLockReadOnly

Indicates read-only records. You cannot alter the data. A read-only lock is the
"fastest" type of lock because it does not require the server to maintain a lock on
the records.

adLockUnspecified

Does not specify a type of lock.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using CacheSize

Use the CacheSize property to control how many records to retrieve at one time
into local memory from the provider. For example, if the CacheSize is 10, after
first opening the Recordset object, the provider retrieves the first 10 records into
local memory. As you move through the Recordset object, the provider returns
the data from the local memory buffer. As soon as you move past the last record
in the cache, the provider retrieves the next 10 records from the data source into
the cache.

Note CacheSize is based on the Maximum Open Rows provider-specific
property (in the Properties collection of the Recordset object). You cannot
set CacheSize to a value greater than Maximum Open Rows. To modify
the number of rows that can be opened by the provider, set Maximum
Open Rows.

The value of CacheSize can be adjusted during the life of the Recordset object,
but changing this value only affects the number of records in the cache after
subsequent retrievals from the data source. Changing the property value alone
will not change the current contents of the cache.

If there are fewer records to retrieve than CacheSize specifies, the provider
returns the remaining records and no error occurs.

A CacheSize setting of zero is not allowed and returns an error.

Records retrieved from the cache do not reflect concurrent changes that other
users made to the source data. To force an update of all the cached data, use the
Resync method.

If CacheSize is set to a value greater than 1, the navigation methods (Move,
MoveFirst, MoveLast, MoveNext, and MovePrevious) may result in navigation
to a deleted record, if deletion occurs after the records were retrieved. After the
initial fetch, subsequent deletions will not be reflected in your data cache until
you attempt to access a data value from a deleted row. However, setting
CacheSize to 1 eliminates this issue because deleted rows cannot be fetched.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Cursor and Lock Characteristics

While the characteristics of a cursor depend upon capabilities of the provider, the
following advantages and disadvantages generally apply to the various types of

cursors and locks.

Cursor or lock type

adOpenForwardOnly

adOpenStatic

adOpenKeyset

adOpenDynamic

adLockReadOnly

adLockBatchOptimistic

Advantages

Low resource
requirements

Scrollable

Some data
concurrency
Scrollable

High data
concurrency
Scrollable

Low resource
requirements
Highly scalable

Batch updates
Allows disconnected
scenarios

Other users able to

Disadvantages

Cannot scroll
backward
No data concurrency

No data concurrency

Higher resource
requirements

Not available in
disconnected scenario

Highest resource
requirements

Not available in
disconnected scenario

Data not updatable
through cursor

Data can be changed
by multiple users at
once

access data

e Data cannot be e Prevents other users
adLockPessimistic changed by other from accessing data
users while locked while locked

e Data can be changed
by multiple users at
once

e Other users able to

adLockOptimistic
access data

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 9: Data Shaping

Data shaping provides a way to query a data source and return a Recordset that
represents a parent-child relationship between two or more logical entities (a
hierarchy). A classic example of a hierarchical relationship is customers and
orders. For every customer in a database, there can be zero or more orders.
Regular SQL provides a means of retrieving the data using JOIN syntax, but this
can be inefficient and unwieldy because redundant parent data is repeated in
each record returned for a given parent-child relationship. Data shaping can
relate a single parent record in the parent Recordset to multiple child records in
the child Recordset, avoiding the redundancy of a JOIN. Most people find the
parent-child multiple Recordset programming model more natural and easier to
work with than the single Recordset JOIN model.

The data shaping syntax also provides other capabilities. Developers can create
new Recordset objects without an underlying data source by using the NEW
keyword to describe the fields of the parent and child Recordsets. The new
Recordset object can be populated with data and persistently stored. Developers
can also perform various calculations or aggregations (for example, SUM, AVG,
and MAX) on child fields. Data shaping can also create a parent Recordset from
a child Recordset by grouping records in the child and placing one row in the
parent for each group in the child.

See the following topics to learn more about data shaping:

Data Shaping Summary
Required Providers for Data Shaping

Shape Commands in General

Shape APPEND Clause

Shape COMPUTE Clause

Fabricating Hierarchical Recordsets
Accessing Rows in a Hierarchical Recordset

Formal Shape Grammar
Visual Basic for Applications Functions

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Data Shaping Summary

The following sections describe concepts of data shaping, hierarchical
recordsets, reshaping, grandchild aggregates, parameterized shapes, and saving
shapes to files.

Data Shaping
Reshaping
Grandchild Aggregates

Parameterized Commands with Intervening COMPUTE Commands
Persisting Hierarchical Recordsets

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Data Shaping

Data shaping enables you to define the columns of a shaped Recordset, the
relationships between the entities represented by the columns, and the manner in
which the Recordset is populated with data.

Columns of a shaped Recordset may contain data from a data provider such as
Microsoft SQL Server, references to another Recordset, values derived from a
calculation on a single row of a Recordset, values derived from an operation
over a column of an entire Recordset; or they may be a newly fabricated, empty
column.

When you retrieve the value of a column that contains a reference to another
Recordset, ADO automatically returns the actual Recordset represented by the
reference. A Recordset that contains another Recordset is called a hierarchical
recordset. Hierarchical recordsets exhibit a parent-child relationship, in which
the parent is the containing recordset and the child is the contained recordset.
The reference to a Recordset is actually a reference to a subset of the child,
called a chapter. A single parent may reference more than one child Recordset.

The shape command syntax enables you to programmatically create a shaped
Recordset. You can then access the components of the Recordset
programmatically or through an appropriate visual control. A shape command is
issued like any other ADO command text.

You can make hierarchical Recordset objects in two ways with the shape
command syntax. The first appends a child Recordset to a parent Recordset.
The parent and child typically have at least one column in common: the value of
the column in a row of the parent is the same as the value of the column in all
rows of the child.

The second way generates a parent Recordset from a child Recordset. The
records in the child Recordset are grouped, typically using the BY clause, and
one row is added to the parent Recordset for each resulting group in the child. If
the BY clause is omitted, the child Recordset will form a single group and the
parent Recordset will contain exactly one row. This is useful for computing
"grand total" aggregates over the entire child Recordset.

Regardless of which way the parent Recordset is formed, it will contain a
chapter column that is used to relate it to a child Recordset. If you wish, the
parent Recordset may also have columns that contain aggregates (SUM, MIN,
MAX, and so on) over the child rows. Both the parent and the child Recordset
may have columns which contain an expression on the row in the Recordset, as
well as columns which are new and initially empty.

You can nest hierarchical Recordset objects to any depth (that is, create child
Recordset objects of child Recordset objects, and so on).

You can access the Recordset components of the shaped Recordset
programmatically or through an appropriate visual control.

Microsoft provides a visual tool that generates shape commands (see The Data
Environment Designer in the Visual Basic documentation) and another that
displays hierarchical cursors (see Using the Microsoft Hierarchical Flexgrid
Control in the Visual Basic documentation).

For examples of shape commands and their resulting hierarchies, see Using the
Data Shaping Service for OLE DB: A Closer Look.

© 1998-2003 Microsoft Corporation. All rights reserved.

http://msdn.microsoft.com/library/devprods/vs6/vbasic/vb98/vbrgndedesigner.htm
http://msdn.microsoft.com/library/devprods/vs6/vbasic/vbcon98/vbconhflexgridcontrol.htm

ADO 2.5

Reshaping

A Recordset created by a clause of a shape command may be assigned an alias
name (typically with the AS keyword). The alias of a shaped Recordset can be
referenced in an entirely different command. That is, you may reuse, or reshape,
a previously shaped Recordset in a new shape command. To support this
feature, ADO provides a property, Reshape Name.

Reshaping has two main functions. The first is to associate an existing
Recordset with a new parent Recordset.

Example

rsl.0pen "SHAPE {select * from Customers} " & _
"APPEND ({select * from Orders} AS chapOrders " & _
"RELATE CustomerID to CustomerID)", cn

rs2.0pen "SHAPE {select * from Employees} " & _
"APPEND (chapOrders RELATE EmployeeID to EmployeeID)", cn

The second function is to enable non-chaptered access to existing child
Recordset objects, using the syntax "SHAPE <recordset reshape name>".

Note You cannot append columns to an existing Recordset, reshape a
parameterized Recordset or the Recordset objects in any intervening
COMPUTE clause, or perform aggregate operations on any Recordset
descendant from the Recordset being reshaped. The Recordset being
reshaped and the new shape command must both use the same Connection.

See Also

Data Shaping

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Grandchild Aggregates

The chapter column created in a clause of a shape command may be given a
chapter-alias name (typically with the AS keyword). You may identify any
column in any chapter of the shaped Recordset with a fully qualified name
identifying the child containing the column. For example, if the parent chapter,
chap1, contains a child chapter, chap2, that has an amount column, amt, then the
qualified name would be chap1.chap2.amt. The qualified name may then be used
as an argument to one of the aggregate functions (SUM, AVG, MAX, MIN,
COUNT, STDEYV, or ANY).

See Also

Data Shaping

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Parameterized Commands with
Intervening COMPUTE Commands

A typical parameterized shape APPEND command has a clause that creates a
parent Recordset with a query command and another clause that creates a child
Recordset with a parameterized query command—that is, a command
containing a parameter placeholder (a question mark, "?"). The resulting shaped
Recordset has two levels, in which the parent occupies the upper level and the
child occupies the lower level.

The clause that creates the child Recordset may now be an arbitrary number of
nested shape COMPUTE commands, where the most deeply nested command
contains the parameterized query. The resulting shaped Recordset has multiple
levels, in which the parent occupies the uppermost level, the child occupies the
lowermost level, and an arbitrary number of Recordsets generated by the shape
COMPUTE commands occupy the intervening levels.

The typical use for this feature is to invoke the aggregate function and grouping
abilities of shape COMPUTE commands to create intervening Recordset objects
with analytical information about the child Recordset. Furthermore, because this
is a parameterized shape command, each time a chapter column of the parent is
accessed, a new child Recordset may be retrieved. Because the intervening
levels are derived from the child, they also will be recomputed.

See Also

Data Shaping

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Persisting Hierarchical Recordsets

You can save a hierarchical Recordset to a file in either ADTG or XML format
by calling the Save method. However, two limitations apply when saving
hierarchical Recordsets in XML format: You cannot save in XML if the
hierarchical Recordset contains pending updates, and you cannot save a
parameterized hierarchical Recordset.

For more information about the Data Shaping provider, see Microsoft Data
Shaping Service for OLE DB (ADO) and The Data Shaping Service for OLE
DB(OLE DB).

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Required Providers for Data Shaping

Data shaping typically requires two providers. The service provider, Data
Shaping Service for OLE DB, supplies the data shaping functionality, and a data
provider, such as the OLE DB Provider for SQL Server, supplies rows of data to
populate the shaped Recordset.

The name of the service provider (MSDataShape) can be specified as the value
of the Connection object Provider property or the connection string keyword
"Provider=MSDataShape;".

The name of the data provider can be specified as the value of the Data
Provider dynamic property, which is added to the Connection object Properties
collection by the Data Shaping Service for OLE DB, or the connection string
keyword "Data Provider=provider".

No data provider is required if the Recordset is not populated (for example, as
in a fabricated Recordset where columns are created with the NEW keyword).
In that case, specify "Data Provider=none;".

Example

Dim cnn As New ADODB.Connection
cnn.Provider = "MSDataShape"
cnn.Open "Data Provider=SQLOLEDB;Integrated Security=SSPI;Database=N

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Shape Commands in General

Data shaping defines the columns of a shaped Recordset, the relationships
between the entities represented by the columns, and the manner in which the
Recordset is populated with data.

A shaped Recordset may consist of the following types of columns.

Column type

data

chapter

aggregate

calculated
expression

new

Description

Fields from a Recordset returned by a query command to a
data provider, table, or previously shaped Recordset.

A reference to another Recordset, called a chapter. Chapter
columns make it possible to define a parent-child
relationship where the parent is the Recordset containing the
chapter column and the child is the Recordset represented by
the chapter.

The value of the column is derived by executing an
aggregate function on all the rows or a column of all the
rows of a child Recordset. (See Aggregate Functions in the
following topic, Aggregate Functions, the CALC Function,
and the NEW Keyword.)

The value of the column is derived by calculating a Visual
Basic for Applications expression on columns in the same
row of the Recordset. The expression is the argument to the
CALC function. (See Calculated Expression in the following
topic, Aggregate Functions, the CAL.C Function, and the
NEW Keyword and in Visual Basic for Applications
Functions.)

Empty, fabricated fields, which may be populated with data
at a later time. The column is defined with the NEW
keyword. (See NEW keyword in the following topic,
Aggregate Functions, the CAL.C Function, and the NEW

Keyword.)

A shape command may contain a clause specifying a query command to an

underlying data provider that will return a Recordset object. The query's syntax
depends on the requirements of the underlying data provider. This will usually
be Structured Query Language (SQL), although ADO does not require the use of
any particular query language.

You could use a SQL JOIN clause to relate two tables; however, a hierarchical
Recordset may represent the information more efficiently. Each row of a
Recordset created by a JOIN repeats information redundantly from one of the
tables. A hierarchical Recordset has only one parent Recordset for each of
multiple child Recordset objects.

Shape commands can be issued by Recordset objects or by setting the
CommandText property of the Command object and then calling the Execute
method.

Shape commands can be nested. That is, the parent-command or child-command
may itself be another shape command.

The shape provider always returns a client cursor, even when the user specifies a
cursor location of adUseServer.

For information about navigating a hierarchical Recordset, see Accessing Rows
in a Hierarchical Recordset.

For precise information about syntactically correct shape commands, see Formal
Shape Grammar.

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Aggregate Functions, the CALC
Function, and the NEW Keyword

Data shaping supports the following functions. The name assigned to the chapter
containing the column to be operated on is the chapter-alias.

A chapter-alias may be fully qualified, consisting of each chapter column name
leading to the chapter containing the column-name, all separated by periods. For
example, if the parent chapter, chap1, contains a child chapter, chap2, that has an
amount column, amt, then the qualified name would be chap1.chap2.amit.

Aggregate Functions Description

Calculates the sum of all values in the

SUM(chapter-alias.column-name) specified column

Calculates the average of all values in

AVG(chapter-alias.column-name) the specified column

Calculates the maximum value in the

MAX(chapter-alias.column-name) specified column

Calculates the minimum value in the

MIN(chapter-alias.column-name) specified column

Counts the number of rows in the
specified alias. If a column is specified,
only rows for which that column is
non-Null are included in the count.

Calculates the standard deviation in the
specified column.

A value of the specified column. ANY
has a predictable value only when the
value of the column is the same for all
rows in the chapter.

COUNT(chapter-alias[.column-name])

STDEV(chapter-alias.column-name)

. Note If the column does not
ANY (chapter-alias.column-name) contain the same value for all of
the rows in the chapter, the

Calculated expression

CALC(expression)

NEW keyword

NEW field-type [(width | scale |
precision | error [, scale | error])]

SHAPE command arbitrarily
returns one of the values to be the
value of the ANY function.

Description

Calculates an arbitrary expression, but
only on the row of the Recordset
containing the CALC function. Any

expression using these Visual Basic for

Applications (VBA) Functions is
allowed.

Description

Adds an empty column of the specified
type to the Recordset.

The field-type passed with the NEW keyword can be any of the following data

types.

OLE DB data types

DBTYPE_BSTR
DBTYPE_BOOL
DBTYPE_DECIMAL
DBTYPE_UI1
DBTYPE_I1
DBTYPE_UI2
DBTYPE_UI4
DBTYPE_I8
DBTYPE_UIS8
DBTYPE_GUID

DBTYPE_BYTES
DBTYPE_STR
DBTYPE_WSTR
DBTYPE_NUMERIC

ADO data type equivalent(s)
adBSTR
adBoolean
adDecimal
adUnsignedTinyInt
adTinyInt
adUnsignedSmallInt
adUnsignedInt
adBiglnt
adUnsignedBiglInt
adGuid

adBinary, AdVarBinary,
adLongVarBinary

adChar, adVarChar, adLongVarChar

adWChar, adVarWChar,
adLongVarWChar

adNumeric

DBTYPE_DBDATE adDBDate

DBTYPE_DBTIME adDBTime
DBTYPE_DBTIMESTAMP adDBTimeStamp
DBTYPE_VARNUMERIC adVarNumeric
DBTYPE_FILETIME adFileTime
DBTYPE_ERROR adError

When the new field is of type decimal (in OLE DB, DBTYPE_DECIMAL, or in
ADO, adDecimal), you must specify the precision and scale values.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Issuing Commands to the Underlying
Data Provider

Any command that does not begin with SHAPE is passed through to the data
provider. This is equivalent to issuing a shape command in the form "SHAPE
{provider command}". These commands do not have to produce a Recordset.
For instance, "SHAPE {DROP TABLE MyTable} is a perfectly valid shape
command, assuming the data provider supports DROP TABLE.

This capability allows both normal provider commands and shape commands to
share the same connection and transaction.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Shape APPEND Clause

The shape command APPEND clause appends a column or columns to a
Recordset. Often these columns are chapter columns, which refer to a child
Recordset.

Syntax

SHAPE [parent-command [[AS] parent-alias]] APPEND column-1ist
Description

The parts of this clause are as follows:

parent-command
Zero or one of the following (you may omit the parent-command entirely):
e A provider command within curly braces ("{}") that returns a
Recordset object. The command is issued to the underlying data
provider, and its syntax depends on the requirements of that provider.
This will typically be the SQL language, although ADO does not
require any particular query language.
e Another shape command embedded in parentheses.
e The TABLE keyword, followed by the name of a table in the data
provider.
parent-alias
An optional alias that refers to the parent Recordset.
column-list
One or more of the following:
An aggregate column.
A calculated column.
A new column created with the NEW clause.
A chapter column. A chapter column definition is enclosed in
parentheses ("()"). See syntax below:

SHAPE [parent-command [[AS] parent-alias]]
APPEND (child-recordset [[[AS] child-alias]
RELATE parent-column TO child-column | PARAMETER param-number,

[[AS] chapter-alias]
[roeee]

child-recordset
e A provider command within curly braces ("{}") that returns a
Recordset object. The command is issued to the underlying data
provider, and its syntax depends on the requirements of that provider.
This will typically be the SQL language, although ADO does not
require any particular query language.
e Another shape command embedded in parentheses.
e The name of an existing shaped Recordset.
e The TABLE keyword, followed by the name of a table in the data
provider.
child-alias
An alias that refers to the child Recordset.
parent-column
A column in the Recordset returned by the parent-command.
child-column
A column in the Recordset returned by the child-command.
param-number
See Operation of Parameterized Commands.
chapter-alias
An alias that refers to the chapter column appended to the parent.

Note The "parent-column TO child-column" clause is actually a list,
where each relation defined is separated by a comma.

Note The clause after the APPEND keyword is actually a list, where each
clause is separated by a comma and defines another column to be appended
to the parent.

Remarks

When you construct provider commands from user input as part of a SHAPE
command, SHAPE will treat the user-supplied a provider command as an opaque
string and pass them faithfully to the provider. For example, in the following
SHAPE command,

SHAPE {select * from t1} APPEND ({select * from t2} RELATE k1 TO k2)

SHAPE will execute two commands: select * from t1and (select * from
t2 RELATE k1 TO k2). If the user supplies a compound command consisting of
multiple provider commands separated by semicolons, SHAPE is not able to
discern the difference. So in the following SHAPE command,

SHAPE {select * from t1; drop table t1} APPEND ({select * from t2} R

SHAPE executes select * from t1; drop table t1 and (select * from t2
RELATE k1 TO k2), notrealizing that drop table t1 is a separate and in this
case, dangerous, provider command. Applications must always validate the user
input to prevent such potential hacker attacks from happening.

Remarks

When you construct provider commands from user input as part of a SHAPE
command, SHAPE will treat the user-supplied a provider command as an opaque
string and pass them faithfully to the provider. For example, in the following
SHAPE command,

SHAPE {select * from t1} APPEND ({select * from t2} RELATE k1 TO k2)

SHAPE will execute two commands: select * from t1and (select * from
t2 RELATE k1 TO k2). If the user supplies a compound command consisting of
multiple provider commands separated by semicolons, SHAPE is not able to
discern the difference. So in the following SHAPE command,

SHAPE {select * from t1; drop table t1} APPEND ({select * from t2} FE
SHAPE executes select * from t1; drop table t1 and (select * from t2
RELATE k1 TO k2), notrealizing that drop table t1 is a separate and in this

case, dangerous, provider command. Applications must always validate the user
input to prevent such potential hacker attacks from happening.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Operation of Non-Parameterized
Commands

For non-parameterized commands, all of the provider commands are executed
and the Recordsets are created during command execution. If the command is
executed synchronously, all of the Recordsets will be fully populated. If an
asynchronous population mode was selected, the populated state of the
Recordsets will depend on the population mode and the size of the Recordsets.

For example, the parent-command could return a Recordset of customers for a
company from a Customers table, and the child-command could return a
Recordset of orders for all customers from an Orders table.

SHAPE {SELECT * FROM Customers}
APPEND ({SELECT * FROM Orders} AS chapOrders
RELATE customerID TO customerID)

For non-parameterized parent-child relationships, each parent and child
Recordset object must have a column in common to associate them. The
columns are named in the RELATE clause, parent-column first and then child-
column. The columns may have different names in their respective Recordset
objects but must refer to the same information in order to specify a meaningful
relation. For example, the Customers and Orders Recordset objects could both
have a customerID field. Because the membership of the child Recordset is
determined by the provider command, it is possible for the child Recordset to
contain orphaned rows. These orphaned rows are inaccessible without further
reshaping.

Data shaping appends a chapter column to the parent Recordset. The values in
the chapter column are references to rows in the child Recordset, which satisfy
the RELATE clause. That is, the same value is in the parent-column of a given
parent row as is in the child-column of all the rows of the chapter child. When
multiple TO clauses are used in the same RELATE clause, they are implicitly
combined using an AND operator. If the parent columns in the relate clause do
not constitute a key to the parent Recordset, a single child row may have
multiple parent rows.

When you access the reference in the chapter column, ADO automatically
retrieves the Recordset represented by the reference. Note that in a non-
parameterized command, although the entire child Recordset has been retrieved,
the chapter only presents a subset of rows.

If the appended column has no chapter-alias, a name will be generated for it
automatically. A Field object for the column will be appended to the Recordset
object's Fields collection, and its data type will be adChapter.

For information about navigating a hierarchical Recordset, see Accessing Rows
in a Hierarchical Recordset.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Operation of Parameterized
Commands

If you are working with a large child Recordset, especially compared to the size
of the parent Recordset, but need to access only a few child chapters, you might
find it more efficient to use a parameterized command.

A non-parameterized command retrieves both the entire parent and child
Recordsets, appends a chapter column to the parent, and then assigns a
reference to the related child chapter for each parent row.

A parameterized command retrieves the entire parent Recordset, but retrieves
only the chapter Recordset when the chapter column is accessed. This
difference in retrieval strategy can yield significant performance benefits.

For example, you can specify the following:

SHAPE {SELECT * FROM customer}
APPEND ({SELECT * FROM orders WHERE cust_id = ?}
RELATE cust_id TO PARAMETER 0)

The parent and child tables have a column name in common, cust_id. The child-
command has a "?" placeholder, to which the RELATE clause refers (that is,
"...PARAMETER 0").

Note The PARAMETER clause pertains solely to the shape command
syntax. It is not associated with either the ADO Parameter object or the
Parameters collection.

When the parameterized shape command is executed, the following occurs:

1. The parent-command is executed and returns a parent Recordset from the
Customers table.

2. A chapter column is appended to the parent Recordset.

3. When the chapter column of a parent row is accessed, the child-command is
executed using the value of the customer.cust_id as the value of the
parameter.

4. All rows in the data provider rowset created in step 3 are used to populate
the child Recordset. In this example, that is all the rows in the Orders table
in which the cust_id equals the value of customer.cust_id. By default, the
child Recordsets will be cached on the client until all references to the
parent Recordset are released. To change this behavior, set the Recordset
dynamic property Cache Child Rows to False.

5. Areference to the retrieved child rows (that is, the chapter of the child
Recordset) is placed in the chapter column of the current row of the parent
Recordset.

6. Steps 3-5 are repeated when the chapter column of another row is accessed.

The Cache Child Rows dynamic property is set to True by default. The caching
behavior varies depending upon the parameter values of the query. In a query
with a single parameter, the child Recordset for a given parameter value will be
cached between requests for a child with that value. The following code
demonstrates this:

SCmd = "SHAPE {select * from customer} " & _
"APPEND({select * from orders where cust_id = ?} " & _
"RELATE cust_id TO PARAMETER @) AS chpCustOrder"
Rst1.0pen sCmd, Cnnl
Set RstChild = Rstl1("chpCustOrder").Value

Rstl.MoveNext ' Next cust_id passed to Param 0, & new rs fetche
' into RstChild.
Rstl.MovePrevious ' RstChild now holds cached rs, saving round trip

In a query with two or more parameters, a cached child is used only if all the
parameter values match the cached values.

Parameterized Commands and Complex Parent Child Relations

In addition to using parameterized commands to improve performance of an
equi-join type hierarchy, parameterized commands can be used to support more
complex parent-child relationships. For example, consider a Little League
database with two tables: one consisting of the teams (team_id, team_name) and
the other of games (date, home_team, visiting_team).

Using a non-parameterized hierarchy, there is no way to relate the teams and
games tables in such a way that the child Recordset for each team contains its

complete schedule. You can create chapters that contain the home schedule or
the road schedule, but not both. This is because the RELATE clause limits you to
parent-child relationships of the form (pc1=cc1) AND (pc2=pc2). So, if your
command included "RELATE team_id TO home_team, team_id TO
visiting_team", you would get only games where a team was playing itself. What
you want is "(team_id=home_team) OR (team_id=visiting_team)", but the
Shape provider does not support the OR clause.

To obtain the desired result, you can use a parameterized command. For
example:

SHAPE {SELECT * FROM teams}
APPEND ({SELECT * FROM games WHERE home_team = ? OR visiting_team =
RELATE team_id TO PARAMETER 0,
team_id TO PARAMETER 1)

This example exploits the greater flexibility of the SQL WHERE clause to get
the result you need.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Hybrid Commands

Hybrid commands are partially parameterized commands. For example:
SHAPE {select * from plants}
APPEND({select * from customers where country = ?}

RELATE PlantCountry TO PARAMETER O,
PlantRegion TO CustomerRegion)

The caching behavior for a hybrid command is the same as that of regular
parameterized commands.

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Intervening Shape COMPUTE
Clauses

It is valid to embed one or more COMPUTE clauses between the parent and
child in a parameterized shape command, as in the following example:

SHAPE {select au_lname, state from authors} APPEND
((SHAPE
(SHAPE
{select * from authors where state = ?} rs
COMPUTE rs, ANY(rs.state) state, ANY(rs.au_lname) au_lname
BY au_id) rs2
COMPUTE rs2, ANY(rs2.state) BY au_lname)
RELATE state TO PARAMETER 0)

See Also

Data Shaping | Formal Shape Grammar | Shape Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Shape COMPUTE Clause

A shape COMPUTE clause generates a parent Recordset, whose columns
consist of a reference to the child Recordset; optional columns whose contents
are chapter, new, or calculated columns, or the result of executing aggregate
functions on the child Recordset or a previously shaped Recordset; and any
columns from the child Recordset listed in the optional BY clause.

Syntax

SHAPE child-command [AS] child-alias
COMPUTE child-alias [[AS] name], [appended-column-1list]
[BY grp-field-1ist]

Description

The parts of this clause are as follows:

child-command
Consists of one of the following:

e A query command within curly braces ("{}") that returns a child
Recordset object. The command is issued to the underlying data
provider, and its syntax depends on the requirements of that provider.
This will typically be the SQL language, although ADO does not
require any particular query language.

e The name of an existing shaped Recordset.

e Another shape command.

e The TABLE keyword, followed by the name of a table in the data
provider.

child-alias
An alias used to refer to the Recordset returned by the child-command. The
child-alias is required in the list of columns in the COMPUTE clause and
defines the relation between the parent and child Recordset objects.
appended-column-list
A list in which each element defines a column in the generated parent. Each
element contains either a chapter column, a new column, a calculated

column, or a value resulting from an aggregate function on the child
Recordset.

grp-field-list
A list of columns in the parent and child Recordset objects that specifies
how rows should be grouped in the child.

For each column in the grp-field-list, there is a corresponding column in the
child and parent Recordset objects. For each row in the parent Recordset,
the grp-field-list columns have unique values, and the child Recordset
referenced by the parent row consists solely of child rows whose grp-field-
list columns have the same values as the parent row.

If the BY clause is included, the child Recordset's rows will be grouped based
on the columns in the COMPUTE clause. The parent Recordset will contain one
row for each group of rows in the child Recordset.

If the BY clause is omitted, the entire child Recordset is treated as a single
group and the parent Recordset will contain exactly one row. That row will
reference the entire child Recordset. Omitting the BY clause allows you to
compute "grand total" aggregates over the entire child Recordset.

For example:

SHAPE {select * from Orders} AS orders
COMPUTE orders, SUM(orders.OrderAmount) as TotalSales

Regardless of which way the parent Recordset is formed (using COMPUTE or
using APPEND), it will contain a chapter column that is used to relate it to a
child Recordset. If you wish, the parent Recordset may also contain columns
that contain aggregates (SUM, MIN, MAX, and so on) over the child rows. Both
the parent and the child Recordset may contain columns that contain an
expression on the row in the Recordset, as well as columns that are new and
initially empty.

Operation

The child-command is issued to the provider, which returns a child Recordset.

The COMPUTE clause specifies the columns of the parent Recordset, which
may be a reference to the child Recordset, one or more aggregates, a calculated

expression, or new columns. If there is a BY clause, the columns it defines are
also appended to the parent Recordset. The BY clause specifies how the rows of
the child Recordset are grouped.

For example, assume you have a table—Demographics—consisting of State,
City, and Population fields (the population figures are solely for illustration).

State City Population
WA Seattle 700,000
OR Medford 200,000
OR Portland 400,000
CA Los Angeles 800,000
CA San Diego 600,000
WA Tacoma 500,000
OR Corvallis 300,000

Now, issue this shape command:

rst.Open "SHAPE {select * from demographics} AS rs " & _
"COMPUTE rs, SUM(rs.population) BY state", _
objConnection

This command opens a shaped Recordset with two levels. The parent level is a
generated Recordset with an aggregate column (SUM(rs.population)), a
column referencing the child Recordset (rs), and a column for grouping the
child Recordset (state). The child level is the Recordset returned by the query
command (select * from demographics).

The child Recordset detail rows will be grouped by state, but otherwise in no
particular order. That is, the groups will not be in alphabetical or numerical
order. If you want the parent Recordset to be ordered, you can use the
Recordset Sort method to order the parent Recordset.

You can now navigate the opened parent Recordset and access the child detail
Recordset objects. For more information, see Accessing Rows in a Hierarchical
Recordset.

Resultant Parent and Child Detail Recordsets

Parent

SUM (rs.Population) rs State
1,300,000 Reference to childl CA
1,200,000 Reference to child2 WA
1,100,000 Reference to child3 OR
Child1
State City Population
CA Los Angeles 800,000
CA San Diego 600,000
Child2
State City Population
WA Seattle 700,000
WA Tacoma 500,000
Child3
State City Population
OR Medford 200,000
OR Portland 400,000
OR Corvallis 300,000
See Also

Accessing Rows in a Hierarchical Recordset | Data Shaping Summary | Field
Object | Formal Shape Grammar | Recordset Object | Required Providers for
Data Shaping | Shape APPEND Clause | Shape Commands in General | Value
Property | Visual Basic for Applications Functions

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Fabricating Hierarchical Recordsets

The following example shows how to fabricate a hierarchical Recordset without
an underlying data source by using the data shaping grammar to define columns
for parent, child, and grandchild Recordsets.

To fabricate a hierarchical Recordset, you must specify the Microsoft Data
Shaping Service for OLE DB (MSDataShape), and you may specify a Data
Provider value of NONE in the connection string parameter of the Connection
object's Open method. For more information, see Required Providers for Data

Shaping.

Dim cn As New ADODB.Connection
Dim rsCustomers As New ADODB.Recordset

cn.Open "Provider=MSDataShape;Data Provider=NONE;"

strShape = _
"SHAPE APPEND NEW adInteger AS CustID," & _
" NEW adChar(25) AS FirstName," & _
" NEW adChar(25) AS LastName," & _
" NEW adChar(12) AS SSN," & _
" NEW adChar(50) AS Address," & _
" ((SHAPE APPEND NEW adChar(80) AS VIN_NO," & _
" NEW adInteger AS CustID," & _
" NEW adChar(20) AS BodyColor, " & _
" ((SHAPE APPEND NEW adChar(80) AS VIN_NO," & _
" NEW adChar(20) AS Make, " & _
" NEW adChar(20) AS Model," & _
" NEW adChar(4) AS Year) " & _
" AS VINS RELATE VIN_NO TO VIN_NO))" & _
" AS Vehicles RELATE CustID TO CustID) "

rsCustomers.Open strShape, cn, adOpenStatic, adLockOptimistic, -1

Once the Recordset has been fabricated, it can be populated, manipulated, or
persisted to a file.

See Also

Accessing Rows in a Hierarchical Recordset | Formal Shape Grammar |

Required Providers for Data Shaping | Shape APPEND Clause | Shape
Commands in General

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Accessing Rows in a Hierarchical
Recordset

The following example shows the steps necessary to access rows in a
hierarchical Recordset:

1. Recordset objects from the authors and titleauthor tables are related by
author ID.

2. The outer loop displays each author's first and last name, state, and
identification.

3. The appended Recordset for each row is retrieved from the Fields
collection and assigned to rstTitleAuthor.

4. The inner loop displays four fields from each row in the appended
Recordset.

(The StayInSync property is set to FALSE for purposes of illustration—so you
can see the chapter change explicitly in each iteration of the outer loop.
However, the example will be more efficient if the assignment in step 3 is moved
before the first line in step 2, so that the assignment is performed only once.
Then set the StayInSync property to TRUE, so that rstTitleAuthor will implicitly
and automatically change to the corresponding chapter whenever rst moves to a
new row.)

Example

Sub datashape()
Dim cnn As New ADODB.Connection
Dim rst As New ADODB.Recordset
Dim rstTitleAuthor As New ADODB.Recordset

cnn.Provider = "MSDataShape"
cnn.Open "Data Provider=MSDASQL;" & _
"Data Source=SRV;" & _
"User Id=MyUserName;Password=MyPassword;Database=Pubs

' STEP 1
rst.StayInSync = FALSE
rst.open "SHAPE {select * from authors} " &

"APPEND ({select * from titleauthor} "e
"RELATE au_id TO au_id) AS chapTitleAuthor", _

cnn

' STEP 2
While Not rst.EOF
Debug.Print rst("au_fname"), rst("au_lname"), _
rst("state"), rst("au_id")
' STEP 3

Set rstTitleAuthor = rst("chapTitleAuthor").Value
' STEP 4
While Not rstTitleAuthor.EOF
Debug.Print rstTitleAuthor(©), rstTitleAuthor(1), _
rstTitleAuthor(2), rstTitleAuthor(3)
rstTitleAuthor.MoveNext
Wend
rst.MoveNext
Wend
End Sub

See Also

Data Shaping Summary | Field Object | Fields Collection | Formal Shape
Grammar | Microsoft Data Shaping Service for OLE DB | Recordset Object |

Required Providers for Data Shaping | Shape APPEND Clause | Shape
Commands in General | Shape COMPUTE Clause | Visual Basic for

Applications Functions

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Formal Shape Grammar

This is the formal grammar for creating any shape command:

"

e Required grammatical terms are text strings delimited by angle brackets (
<>M).

Optional terms are delimited by square brackets ("[]").

Alternatives are indicated by a virgule ("|").

Repeating alternatives are indicated by an ellipsis ("...").

Alpha indicates a string of alphabetical letters.

Digit indicates a string of numbers.

Unicode-digit indicates a string of unicode digits.

All other terms are literals.

Term Definition

<shape-command> SHAPE [<table-exp> [[AS] <alias>]][<shape-act

{<provider-command-text>} |
<table-exp> (<shape-command>) |

TABLE <quoted-name> |
<quoted-name>

APPEND <aliased-field-list> |
<shape-action>
COMPUTE <aliased-field-1list> [BY <field-list>

<aliased-field-1list> <aliased-field> [, <aliased-field...>]

<aliased-field> <field-exp> [[AS] <alias>]
(<relation-exp>) |

<field-exp> <calculated-exp> |

<aggregate-exp> |
<new-exp>

<table-exp> [[AS] <alias>]
<relation_exp>
RELATE <relation-cond-list>

<relation-cond-1list> <relation-cond> [, <relation-cond>...]
<relation-cond> <field-name> TO <child-ref>

<field-name> |
<child-ref>
PARAMETER <param-ref>

<param-ref> <number>
<field-list> <field-name> [, <field-name>]

SUM(<qualified-field-name>) |

AVG(<qualified-field-name>) |
MIN(<qualified-field-name>) |
MAX(<qualified-field-name>) |
COUNT(<qualified-alias> | <qualified-name>) |
STDEV(<qualified-field-name>) |
ANY(<qualified-field-name>)

<aggregate-exp>

<calculated-exp> CALC(<expression>)

<qualified-field-name><alias>.[<alias>...]<field-name>

<alias> <quoted-name>

<field-name> <quoted-name> [[AS] <alias>]
"<string>" |

<quoted-name> '<string>' |

[<string>] |

<qualified-name>

<name>

<number>

<new-exp>

<field-type>

<string>

<expression>

See Also

<name>
alias[.alias...]

alpha [alpha | digit | _ | # | : | ...]
digit [digit...]

NEW <field-type> [(<number> [, <number>])]

An OLE DB or ADO data type.

unicode-char [unicode-char...]

A Visual Basic for Applications expression whose ope
are other non-CALC columns in the same row.

Accessing Rows in a Hierarchical Recordset | Data Shaping Summary | Required

Providers for Data Shaping | Shape APPEND Clause | Shape Commands in

General | Shape COMPUTE Clause | Visual Basic for Applications Functions

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Visual Basic for Applications
Functions

The following Visual Basic for Applications functions can be used in data
shaping CALC expressions:

Abs
CDate
ChrB$
Cvar
DateDiff
Error
FV

Int
IsNull
LeftB
LTrim$
Now
PPmt
RightB
Second
Sqr
String$

TimeSerial TimeValue

UCase$

See Also

Asc
CDbl
Clnt
CVDate
DatePart
Error$
Hex
IPmt
IsNumeric
Left$
Mid
NPer
PV
Right$
Sgn

Str

SYD

Val

Atn

Chr
CLng
CVEIrr
DateSerial
Exp
Hex$
IRR
IsObject
LeftB$
Mid$
NPV
QBColor
RightB$
Sin

Str$

Tan

Trim
VarType

CBool
ChrB
Cos
Date

DateValue

Fix
Hour
IsDate
LCase
Len
Minute
Oct

Rate
Rnd
SLN
StrComp
Time
Trim$
Weekday

CByte
Chrw
CSng
Date$
Day
Format
IIF
IsEmpty
LCase$
Log
MIRR
Oct$
RGB
RTrim
Space
StrConv
Time$

CCur
Chr$
CStr
DateAdd
DDB
Format$
InStr
IsError
Left
LTrim
Month
Pmt
Right
RTrim$
Space$
String
Timer

TypeName UCase

Year

Accessing Rows in a Hierarchical Recordset | Data Shaping Summary | Formal

Shape Grammar | Required Providers for Data Shaping | Shape APPEND Clause

| Shape Commands in General | Shape COMPUTE Clause

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Chapter 10: Records and Streams

ADO currently provides theRecordset object as the primary means of accessing
information in data sources, such as relational databases. However, some
providers support the Record and Stream objects as alternative or
complementary objects with which data from providers can be manipulated. For
specifics on Record behavior, see your provider's documentation.

Records

Record objects essentially function as one-row Recordsets. However, Records
have limited functionality compared to Recordsets and they have different
properties and methods.The source for the data in a Record object can be a
command which returns one row of data from the provider. Using Record
objects rather than Recordset objects to receive the results from a query that
returns one row of data eliminates the overhead of instantiating the more
complex Recordset object.

Record objects can serve another purpose, particularly with providers for data
sources other than traditional relational databases, such as the Microsoft OLE
DB Provider for Internet Publishing. Much of the information that must be
processed exists, not as tables in databases, but as messages in electronic mail
systems and files in modern file systems. The Record and Stream objects
facilitate access to information stored in sources other than relational databases.

The Record object can represent and manage data such as directories and files in
a file system or folders and messages in an e-mail system. For these purposes,
the source for the Record can be the current row of an open Recordset, an
absolute URL, or a relative URL in conjunction with an open Connection object.

Typically, a Recordset can be used to represent a container or parent in a
hierarchy such as a folder or directory. A Record can be used to return specific
information about one node in the parent container, such as a file or document.
The primary reason Records are used to represent this type of information is that
these sources of data are heterogenous. This means that each Record may have a
different set and number of fields. Traditional Recordsets containing rows from
a database are homogenous, which means that each row has the same number
and type of fields.

For more information about using the Record object for processing this
heterogeneous data from providers such as the Internet Publishing Provider, see
Using ADO for Internet Publishing.

Streams

The Stream object provides the means to read, write, and manage a stream of
bytes. This byte stream may be text or binary and is limited in size only by
system resources. Typically, ADO Stream objects are used for the following
purposes:

e To contain the text or bytes that comprise a file or message, typically used
with providers such as the Microsoft OLE DB Provider for Internet
Publishing. For more information about this use of Stream objects, see
Using ADO for Internet Publishing.

A Stream object can be opened on:

e A simple file specified with a URL.

e A field of a Record or Recordset containing a Stream object.

e The default stream of a Record or Recordset object representing a
directory or compound file.

e Aresource field containing the URL of a simple file.

e No particular source at all. In this case, a Stream object is opened in
memory. Data can be written to it and then saved in another Stream or file.

e A BLOB field in a Recordset.

© 1998-2002 Microsoft Corporation. All rights reserved.

ADO 2.5

Streams and Persistence

The Recordset object Save method stores, or persists, a Recordset in a file, and
the Open method restores the Recordset from that file.

With ADO 2.5, the Save and Open methods can persist a Recordset to a Stream
object as well. This feature is especially useful when working with Remote Data
Service (RDS) and Active Server Pages (ASP).

For more information about how persistence can be used by itself on ASP pages,
see the current ASP documentation.

The following are a few scenarios that show how Stream objects and persistence
can be used.

Scenario 1

This scenario simply saves a Recordset to a file and then to a Stream. It then
opens the persisted stream into another Recordset.

Dim rs1 As ADODB.Recordset
Dim rs2 As ADODB.Recordset
Dim stm As ADODB.Stream

Set rsl1 = New ADODB.Recordset
Set rs2 = New ADODB.Recordset
Set stm = New ADODB.Stream

rsi.open "SELECT * FROM Customers", "Provider=sqloledb;" & _
"Data Source=MyServer;Initial Catalog=Northwind;" & _
"Integrated Security=SSPI;""", adopenStatic, adLockReadOnly,

rsi.Save "c:\myfolder\mysubfolder\myrs.xml", adPersistXML

rsl.Save stm, adPersistXML

rs2.0pen stm

Scenario 2

This scenario persists a Recordset into a Stream in XML format. It then reads
the Stream into a string that you can examine, manipulate, or display.

Dim
Dim
Dim

Set
Set

rs As ADODB.Recordset
stm As ADODB.Stream
strRst As String

rs = New ADODB.Recordset
stm = New ADODB.Stream

' Open, save, and close the recordset.
rs.open "SELECT * FROM Customers", "Provider=sqloledb;" & _

"Data Source=MyServer;Initial Catalog=Northwind;" & _
"Integrated Security=SSPI;"""

rs.Save stm, adPersistXML
rs.Close

Set

rs = nothing

' Put saved Recordset into a string variable.
strRst = stm.ReadText(adReadAll)

' Examine, manipulate, or display the XML data.

Scenario 3

This example code shows ASP code persisting a Recordset as XML directly to
the Response object:

<%

response.ContentType = "text/xml"

' Create and open a Recordset.

Set rs = Server.CreateObject("ADODB.Recordset")

rs.open "select * from Customers", "Provider=sqloledb;" & _
"Data Source=MyServer;Initial Catalog=Northwind;" & _
"Integrated Security=SSPI;"""

' Save Recordset directly into output stream.
rs.Save Response, adPersistXML

' Close Recordset.
rs.Close

Set rs = nothing
%>

Scenario 4

In this scenario, ASP code writes the contents of the Recordset in ADTG format
to the client. The Microsoft Cursor Service for OLE DB can use this data to
create a disconnected Recordset.

A new property on the RDS DataControl, URL, points to the .asp page that
generates the Recordset. This means a Recordset object can be obtained

without RDS using the server-side DataFactory object or the user writing a
business object. This simplifies the RDS programming model significantly.

Server-side code, named http://server/directory/recordset.asp:

<%

Dim rs

Set rs = Server.CreateObject("ADODB.Recordset")

rs.open "select au_fname, au_lname, phone from Authors", ""& _
"Provider=sqloledb;Data Source=MyServer;" & _
"Initial Catalog=Pubs;Integrated Security=SSPI;"

response.ContentType = "multipart/mixed"

rs.Save response, adPersistADTG

%>

Client-side code:

<HTML>
<HEAD>
<TITLE>RDS Query Page</TITLE>
</HEAD>
<body>
<CENTER>
<H1>Remote Data Service 2.5</H1>
<TABLE DATASRC="#DC1">
<TR>
<TD></TD>
<TD></TD>
<TD></TD>
</TR>
</TABLE>

<OBJECT classid="clsid:BD96C556-65A3-11D0-983A-00CO4FC29E33"
ID=DC1 HEIGHT=1 WIDTH = 1>
<PARAM NAME="URL" VALUE="http://server/directory/recordset.asp">

</0BJECT>

</SCRIPT>
</BODY>
</HTML>

Developers also have the option of using a Recordset object on the client:

function GetRs()

{
rs = CreateObject("ADODB.Recordset");

rs.open "http://server/directory/recordset.asp"
DC1.SourceRecordset = rs;

}
See Also

Open Method (ADO Recordset) | Record Object | Save Method

© 1998-2003 Microsoft Corporation. All rights reserved.

ADO 2.5

Using ADO for Internet Publishing

The OLE DB Provider for Internet Publishing shows a specific example of
accessing heterogeneous data with ADO. While the examples in this section will

be specific to using the Internet Publishing Provider, the principles demonstrated
should be similar when using ADO with other providers to heterogeneous data,
such as a provider to an e-mail store.

URLs

Uniform Resource Locators (URLs) can be used as an alternative to connection
strings and command text to specify data sources and the location of files and
directories. You can use URLs with the existing Connection and Recordset
objects as well as with the Record and Stream objects.

For more information about using URLSs, see Absolute and Relative URLSs.

Record Fields

The distinguishing difference between heterogeneous data and homogeneous
data is that for the former, each row of data, or Record, can have a different set
of columns, or Fields. For homogeneous data, each row has the same set o