
Main	Page Related	Pages Modules Classes
Files

MQTT
Client	1.0.0

Related	Pages

Here	is	a	list	of	all	related	documentation	pages:

MQTT	Client	Library	-	App	Notes

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

MQTT
Client	1.0.0

MQTT	Client	Library	-	App	Notes

Overview

This	narrative	outlines	the	usage	/	working	apects	and	operational
modes	that	are	available	to	the	users	to	make	use	of	the	services	of	the
MQTT	Client	Library	to	build	applications	that	are	just	apt	for	the
targeted	use-case.

QoS	Messages

In	MQTT,	a	QoS0	message	does	not	warrant	the	remote	entity	to
acknowledge	the	receipt	of	the	message	and	the	protocol	does	not
guarantee	to	the	sender	the	delivery	of	the	message	to	the	recepient.	In
other	words,	the	message	from	the	sender	may	or	may	not	get
delivered	to	the	receipient	and	therefore,	the	QoS0	messages	get
associated	with	the	"at	most	once"	delivery	concept.	However,	with
QoS1	(at	least	once,	delivery)	and	QoS2	(exactly	once),	the	messages
need	to	be	acknwoledged	(in	a	differing	manner).	This	section
enumerates	the	client	LIB	specific	implementation	aspects	of	QoS1	and
QoS2	messages.

The	non	QoS0	messages	in	MQTT	protocol	need	some	additional
processing.	Specifically,

Ack	QoS1	and	QoS2	packets	(received	from	the	server)
The	client	LIB	'context'	relieves	the	application	from	sending	the
ACK	messages	to	the	server	by	implementing	the	required	support
to	send	the	corresponding	ACK	as	and	when	required.

Track	QoS1	and	QoS2	message	sequences	
The	client	LIB	'context'	manages	the	non-QoS0	packets	to	track
and	ascertain	the	sequence	of	the	message	ID(s)	from	the	server.
In	addition,	the	'context'	resends	the	unacknowledged	QoS1	/
QoS2	packets	to	the	MQTT	server	at	the	time	of	next	MQTT
connection.	The	packets	are	resent	to	the	MQTT	server,	only	if,	the
on-going	session	(connection)	has	not	been	configured	for	the
'clean	session',	the	ACK(s)	for	these	packets	have	not	been
received	and	the	next	iternation	of	the	MQTT	session	(connection)
also	does	not	assert	the	'clean	session'	parameter.

In	case,	the	on-going	session	for	a	'context'	has	been	configured
with	for	a	'clean	session',	the	references	to	un-acknowledged
packets	are	removed	from	the	'context'	at	the	time	of	termination	of
the	network	connection	to	the	server.	In	other	case,	where	the	on-
going	session	in	the	'context'	has	not	been	configured	for	a	'clean
session',	however,	in	the	next	iteration	of	the	MQTT	connection,

the	'clean	session'	parameter	gets	asserted,	the	client	LIB	'context'
will	drop	all	the	references	to	the	un-acknowledged	packets	at	the
time	of	the	establishment	of	the	second	MQTT	connection.	

When	required	to	resend	the	unacknowledged	packets	to	the
server,	the	client	LIB	'context',	when	configured	to	operate	in	the
MQTT	3.1.1	mode,	resends	only	the	PUBLISH	packets	to	the
server.	Whereas,	in	the	MQTT	3.1	mode,	the	client	LIB	'context',
additionally,	resends	to	the	server,any	unacknowledged
SUBSCRIBE	and	UNSUBSCRIBE	messages.

Context	Overview

The	MQTT	Client	LIB	can	support	simultaneous	MQTT	connections	to
the	servers.	And	the	operational	configuration	and	other	related	aspects
of	such	a	connection,	in	this	software	design,	is	referred	as	a	'context'.
Therefore,	the	implied	and	intuitive	sequence	for	the	usage	of	MQTT
Client	library	evolves	to	the	following:

Initialize	LIB	(singleton	operation)
Create	one	or	more	'context(s)'
Bidirectional	transfer	of	MQTT	packets
Delete	'contexts'
Exit	LIB	(singleton	operation)

The	Client	LIB	must	be	initialized	only	once	in	the	system	and	the
'contexts'	can	be	created	and	/	or	deleted	by	one	or	more	applications
(tasks).	In	a	system,	if	more	than	one	application	is	going	utilize	the
services	of	the	Client	LIB,	then	the	user	must	provision	the	platform
specific	support	for	Mutex.

Given,	the	richness	of	the	features	offered	by	the	Client	LIB,	the
services	available	to	manage	the	contexts	and	transfer	of	MQTT
packets	need	some	elaboration.	Specifically,	the	following	aspects	of
the	'context'	makes	the	Client	LIB	flexible	and	scalable	across	the
deployments.

'Context'	Management:	Either	in	a	Group	or	as	an	individual
'Context'	Operation:	Either	callback	(CB)	or	sync-wait	(WT)

The	afore	mentioned	parameters	can	be	configured	for	a	'context'	at	the
time	of	its	creation	but	the	restrictions	outlined	below	must	be	adhered.

There	can	be	only	one	group	of	'contexts'	in	the	system.	However,
there	can	be	as	many	as	possible,	the	individual	'contexts'	in	the
system	along-with	or	without	a	single	group-text.	
All	the	'contexts'	in	the	group	will	use	the	same	mode	of	operation
i.e.	callback	mode	or	otherwise.	In	other	words,	it	is	not	possible	to
operate	the	constituent	'contexts'	of	the	group	in	different	modes.
And	the	table	below	further	enumerates	the	permissible

combination	of	'contexts'	in	the	system.

Permissible	'Context'	combination

The	concept	of	'group	of	contexts'	is	aimed	at	enabling	a	single
application	to	manage	multiple	'contexts'	or	connections	to	the	same	or
different	servers.	Conversely,	a	single	'individual	context'	can	be
managed	by	an	independent	application.	The	Client	LIB,	for	managing
the	'group	contexts'	allocates,	additional	resources	-	primarily,	the	Client
LIB	is	required	to	incorporate	the	'loopback'	(UDP)	port	in	the	system
and	the	user	should	carefully	choose	and	configure,	without	creating
any	conflict,	the	'loopback'	port	in	the	system.

It	is	anticipated	that	an	application	which	utilizes	the	services	of	the
Client	LIB	can	be	a	multi-task	composition	and	the	Client	LIB	will	be
required	to	maintain	integrity	of	the	operation	and	resources.	In	such	a
scenario,	the	application	must	indicate	to	the	Client	LIB	that	a	dedicated
RX	task	is	being	used	to	handle	the	packets	from	the	network	for	a
given	'context'.	Such	a	configuration	for	the	'context'	will	enable	the
Client	LIB	to	enforce	steps	to	maintain	integrity	of	the	network
resources.

Receive	Operation

While	the	services	for	transmission	of	data	to	the	network	remains
same	across	the	various	modes	of	'Context',	the	receive	operation	has
several	flavors	and	are	enumerated	in	the	table	below.	Depending	on
the	needs	of	the	use-case,	the	application	can	choose	the	appropriate
options.

RX	'Context'	operation	-	options

Buffer	Pool

The	client	'context'	allocates	buffer	internally	to	transact	the	network
packets.	Specifically,	the	'context'	needs	to	allocate	a	buffer	for	sending
a	message	to	the	network.	Similarly,	the	'context',	whilst	operating	in	the
call-back	mode,	must	provision	a	buffer	to	receive	a	message	from	the
network	and	hand	it	to	the	application.	In	the	MQTT	client	LIB,	the
allocation	of	a	buffer	is	made	from	a	pre-configured	pool	and	the	user	of
the	client	LIB,	as	part	of	the	initialization	sequence,	must	provision
adequate	resources	in	the	pool.

In	MQTT,	the	QoS1	&	QoS2	messages	/	packets	need	to	be
acknowleged	by	the	remote	entity.	For	transmission,	the	number	of	in-
flight	messages	relates	to	the	maximum	number	of	packets	that	can
remain	un-acknowledged	at	any	given	point	of	time.	For	example,	the
value	of	single	in-flight	message	would	imply	that	there	can	be	only	one
un-acknowledged	message	in	the	client	'context'	and	the	subsequent
packet	can	be	scheduled	for	transmission,	only	if,	the	previous	non-
QoS0	packet	has	been	acknowledged.	After	sending	the	packet	to	the
network	and	if	required,	getting	the	ACK	from	the	peer,	the	client	LIB
returns	the	packet	to	the	buffer	pool.

On	the	receiving	side,	if	required,	the	appliaction	can	take	over	the
ownership	of	a	packet	buffer	delivered	by	the	client	LIB	'context'	for
further	processing.	Such	an	arrangement	promotes	'zero	copy'
philosophy	in	a	low	power	system.	The	mechanism	of	'zero-copy'	is
suitable	for	scenarios,	in	which,	the	application	is	required	to	store	or
queue	the	packet	for	a	differed	or	later	processing.	After	the	compeltion
of	the	processing,	the	application	has	to	'free'	the	packet	that	it	had
taken	from	the	client	LIB	'context'.	When	freed,	the	packet	is	returned	to
the	buffer	pool	of	the	client	LIB.

The	number	of	in-flight	TX	messages	in	the	network	and	the	number	of
RX	packets	including	the	ones	that	can	be	handed	over	to	the
application	are	dependent	on	the	resources	that	have	been	made
available	in	the	buffer	pool.	In	other	words,	the	user	of	the	client	LIB
must	provision	an	adequate	number	of	packet-buffers	to	commensurate
with	the	intended	run	time	configuration	of	transmit	and	receive	buffers

across	all	the	'contexts'.	The	routine	/	interface
mqtt_client_buffers_register	can	be	used	to	set-up	the	buffer	pool.	

Formula	1:	'Context'	buffer	pool	=	'Context'	in-flight	TX	buffers	+
'Context'	RX	buffers	(callback	mode	only)	

Formula	2:	Client	'LIB'	buffer	pool	=	Sum	of	all	'Contexts'	buffer
pool

Note:
:	The	RX	buffers	include	the	buffers	that	can	be	potentially
handed	over	to	the	application.	It	is	strongly	recommended	that
the	application	ensures	that	the	client	'context'	always	has
ownership	of	one	RX	buffer	at	any	time	to	support	the	incoming
message	from	the	network.

Formula	3:	'Context'	buffer	pool	(with	clean	session	as	false)	=
'Context'	buffer	pool	(with	clean	session	as	true)	+	1	(for
CONNECT	message)	

The	additional	buffer	for	the	'clean	session'	=	false	configuration	is
required	to	support	the	dispatch	of	the	CONNECT	message	to	the
network	to	establish	the	MQTT	connection	with	the	broker.	The	need	of
the	additional	buffer	arises	for	the	cases,	in	which,	all	the	previous	non-
QOS0	message(s)	(PUB	/	SUB	/	UNSUB)	has	/	have	not	been
acknowledged	and	the	user	application	is	holding	all	the	RX	buffers.

For	example,	for	a	minimalistic	configuration	of	one	in-flight	message
and	one	RX	buffer	with	no	handover	of	the	packet	to	the	user
application,	the	size	of	the	buffer	pool	for	the	configuration	having	'clean
session'	as	true	will	be	2.	Where	as,	the	size	of	buffer	pool	for	the
configuration	'clean	session'	as	false	will	be	(2	+	1)	=	3.

Note:
:	The	client	LIB	does	not	support	segregation	of	the	buffers	for
sending	(in-flight)	and	receiving.	This	responsibility	is	left	to	the
application	that	uses	the	client	'context'.

Summary:	

The	buffer	pool	must	be	provisioned	with	adequate	resources	to
handle	both	the	TX	and	RX	operations.
The	size	of	the	buffer	pool	must	account	for	all	the	'contexts'	that
will	be	used	or	has	been	configured.
The	number	of	buffers	for	a	'context'	is	established	by	adding	the
count	of	intended	'in-flight'	messages	to	the	network	and	when
operating	the	'context'	in	the	callback	mode,	the	number	of	overall
RX	packets	including	the	ones	that	can	be	handed	over	to	the
application.
The	'context'	with	'clean	session'	=	false	needs	an	additional	buffer
to	ensure	that	it	is	able	to	send	the	CONNECT	message.
The	'context'	that	is	operating	in	the	sync-wait	mode	does	not	need
to	include	the	RX	packets	in	the	configuration	of	the	buffer	pool.
All	the	buffers	in	the	pool	has	same	size,	therefore,	the	pool	must
be	created	for	buffer	that	has	adequeate	length.

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

MQTT
Client	1.0.0

Modules

Here	is	a	list	of	all	modules:

MQTT	Packet	(MQP)	Buffer	structure
Helper	Macros	for	RX	PUBLISH
LIBRARY	Generated	Error	Codes
Information	to	establish	a	secure	connection.
Abstraction	of	Network	Services	on	a	platform
Options	for	platform	to	configure	network
The	Client	Library	API(s)
Options	for	application	to	config	CTX
Options	for	App	to	configure	network

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Classes

MQTT
Client	1.0.0

MQTT	Packet	(MQP)
Buffer	structure

Classes

struct		 mqtt_packet

Detailed	Description

The	core	construct	to	encapsulate,	construct	and	process	a	message

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Defines

MQTT
Client	1.0.0

Helper	Macros	for	RX
PUBLISH

Defines

#define	 MQP_PUB_TOP_BUF(mqp)			(MQP_VHEADER_BUF(mqp)+	2)

#define	 MQP_PUB_TOP_LEN(mqp)			(mqp->vh_len	-	2	-	(mqp->msg_id?	2	:	0))

#define	 MQP_PUB_PAY_BUF(mqp)			(mqp->pl_len?MQP_PAYLOAD_BUF(mqp)	:	NULL)
#define	 MQP_PUB_PAY_LEN(mqp)			(mqp->pl_len)

Define	Documentation

#define	MQP_PUB_PAY_BUF (mqp) 			(mqp->pl_len?	MQP_PAYLOAD_BUF(mqp)	:	NULL)

Yields	pointer	to	payload	data

#define	MQP_PUB_PAY_LEN (mqp) 			(mqp->pl_len)

Length	or	size	of	payload	data

#define	MQP_PUB_TOP_BUF (mqp) 			(MQP_VHEADER_BUF(mqp)	+	2)

Yields	pointer	to	topic	content

#define	MQP_PUB_TOP_LEN (mqp) 			(mqp->vh_len	-	2	-	(mqp->msg_id?	2	:	0))

Length	or	size	of	topic	content

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Defines

MQTT
Client	1.0.0

LIBRARY	Generated
Error	Codes

Defines

#define	 MQP_ERR_NETWORK			(-1)
#define	 MQP_ERR_TIMEOUT			(-2)
#define	 MQP_ERR_NET_OPS			(-3)
#define	 MQP_ERR_FNPARAM			(-4)
#define	 MQP_ERR_PKT_AVL			(-5)
#define	 MQP_ERR_PKT_LEN			(-6)
#define	 MQP_ERR_NOTCONN			(-7)
#define	 MQP_ERR_BADCALL			(-8)
#define	 MQP_ERR_CONTENT			(-9)
#define	 MQP_ERR_LIBQUIT			(-10)
#define	 MQP_ERR_NOT_DEF			(-32)

Detailed	Description

Library	provides	these	codes	as	return	values	in	several	routines

Define	Documentation

#define	MQP_ERR_BADCALL			(-8)

Irrelevant	call	for	LIB	state

#define	MQP_ERR_CONTENT			(-9)

MSG	/	Data	content	has	errors

#define	MQP_ERR_FNPARAM			(-4)

Invalid	parameter(s)	provided

#define	MQP_ERR_LIBQUIT			(-10)

Needs	reboot	library	has	quit

#define	MQP_ERR_NET_OPS			(-3)

Platform	Net	Ops	un-available

#define	MQP_ERR_NETWORK			(-1)

Problem	in	network	(sock	err)

#define	MQP_ERR_NOT_DEF			(-32)

Value	other	than	defined	ones

#define	MQP_ERR_NOTCONN			(-7)

Lib	isn't	CONNECTED	to	server

#define	MQP_ERR_PKT_AVL			(-5)

No	pkts	are	available	in	pool

#define	MQP_ERR_PKT_LEN			(-6)

Inadequate	free	buffer	in	pkt

#define	MQP_ERR_TIMEOUT			(-2)

Net	transaction	has	timed	out

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Classes

MQTT
Client	1.0.0

Information	to
establish	a	secure	connection.

Classes

struct		 secure_conn

Detailed	Description

This	is	implementation	specific	and	is	targeted	for	the	network	services.

Specifically,	the	MQTT	implementation	makes	no	assumption	or	use	of
this	construct.	The	client	library	merely	passes	information	from	the	app
to	the	network	service	layer.

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Classes

MQTT
Client	1.0.0

Abstraction	of	Network
Services	on	a	platform

Classes

struct		 device_net_services

Detailed	Description

Services	to	enable	the	MQTT	Client-Server	communication	over
network

These	services	are	invoked	by	the	MQTT	Library.

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Defines

MQTT
Client	1.0.0

Options	for	platform	to
configure	network

Defines

#define	 DEV_NETCONN_OPT_TCP			0x01
#define	 DEV_NETCONN_OPT_UDP			0x02
#define	 DEV_NETCONN_OPT_IP6			0x04
#define	 DEV_NETCONN_OPT_URL			0x08
#define	 DEV_NETCONN_OPT_SEC			0x10

Define	Documentation

#define	DEV_NETCONN_OPT_IP6			0x04

Assert	for	IPv6,	otherwise	it	is	IPv4

#define	DEV_NETCONN_OPT_SEC			0x10

Assert	to	indicate	a	secure	connection

#define	DEV_NETCONN_OPT_TCP			0x01

Assert	to	indicate	TCP	net	connection

#define	DEV_NETCONN_OPT_UDP			0x02

Assert	to	create	a	local	UDP	port	bind

#define	DEV_NETCONN_OPT_URL			0x08

Assert	if	the	network	address	is	a	URL

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Classes	|	Defines	|	Functions

MQTT
Client	1.0.0

The	Client	Library
API(s)

Classes

struct		 mqtt_client_ctx_cbs
struct		 mqtt_client_ctx_cfg
struct		 mqtt_client_lib_cfg

Defines

#define	 MQTT_CLIENT_VERSTR			"1.0.0"
#define	 VHB_CONNACK_RC(vh_buf)			(vh_buf[1])
#define	 MQP_CONNACK_RC(mqp)			(mqp->buffer[3])
#define	 VHB_CONNACK_SP(vh_buf)			(vh_buf[0]	&	0x1)
#define	 MQP_CONNACK_SP(mqp)			(mqp->buffer[2]	&	0x1)

#define	 VHB_CONNACK_VH16(vh_buf)			((vh_buf[0]	<<	8)	|vh_buf[1])

#define	 MQP_CONNACK_VH16(mqp)			((mqp->buffer[2]	<<	8)	|	mqp->buffer[3])

Functions

u16	 mqtt_client_new_msg_id	(void)
bool	 mqtt_client_is_connected	(void	*ctx)

i32	 mqtt_connect_msg_send	(void	*ctx,	bool
clean_session,	u16	ka_secs)

i32	
mqtt_client_pub_msg_send	(void	*ctx,	const
struct	utf8_string	*topic,	const	u8	*data_buf,
u32	data_len,	enum	mqtt_qos	qos,	bool	retain)

i32	
mqtt_client_pub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp,	enum	mqtt_qos	qos,	bool
retain)

i32	 mqtt_sub_msg_send	(void	*ctx,	const	struct
utf8_strqos	*qos_topics,	u32	count)

i32	 mqtt_sub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp)

i32	 mqtt_unsub_msg_send	(void	*ctx,	const	struct
utf8_string	*topics,	u32	count)

i32	 mqtt_unsub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp)

i32	 mqtt_pingreq_send	(void	*ctx)
i32	 mqtt_disconn_send	(void	*ctx)
i32	 mqtt_client_send_progress	(void	*ctx)

i32	
mqtt_client_ctx_await_msg	(void	*ctx,	u8
msg_type,	struct	mqtt_packet	*mqp,	u32
wait_secs)

i32	 mqtt_client_ctx_run	(void	*ctx,	u32	wait_secs)

i32	 mqtt_client_await_msg	(struct	mqtt_packet
*mqp,	u32	wait_secs,	void	**app)

i32	 mqtt_client_run	(u32	wait_secs)
struct	mqtt_packet	*	 mqp_client_alloc	(u8	msg_type,	u8	offset)

i32	
mqtt_client_buffers_register	(u32	num_mqp,
struct	mqtt_packet	*mqp_vec,	u32	buf_len,	u8
*buf_vec)
mqtt_client_ctx_info_register	(void	*ctx,	const
struct	utf8_string	*client_id,	const	struct

i32	 utf8_string	*user_name,	const	struct
utf8_string	*pass_word)

i32	

mqtt_client_ctx_will_register	(void	*ctx,	const
struct	utf8_string	*will_top,	const	struct
utf8_string	*will_msg,	enum	mqtt_qos
will_qos,	bool	retain)

i32	 mqtt_client_net_svc_register	(const	struct
device_net_services	*net)

i32	

mqtt_client_ctx_create	(const	struct
mqtt_client_ctx_cfg	*ctx_cfg,	const	struct
mqtt_client_ctx_cbs	*ctx_cbs,	void	*app,	void
**ctx)

i32	 mqtt_client_ctx_delete	(void	*ctx)

i32	 mqtt_client_lib_init	(const	struct
mqtt_client_lib_cfg	*cfg)

i32	 mqtt_client_lib_exit	(void)

Define	Documentation

#define	MQP_CONNACK_RC (mqp) 			(mqp->buffer[3])

CONNACK	MQP::	Return	Code

#define	MQP_CONNACK_SP (mqp) 			(mqp->buffer[2]	&	0x1)

CONNACK	MQP::	\	Session	Bit

#define	MQTT_CLIENT_VERSTR			"1.0.0"

Version	of	Client	LIB

#define	VHB_CONNACK_RC (vh_buf) 			(vh_buf[1])

Helper	functions	&	macros	to	derive	16	bit	CONNACK	Return	Code
from	broker.	CONNACK	VH::	Return	Code

#define	VHB_CONNACK_SP (vh_buf) 			(vh_buf[0]	&	0x1)

CONNACK	VH::	Session	Bit

Function	Documentation

struct	mqtt_packet*	mqp_client_alloc (u8	 msg_type,
u8	 offset	
) [read]

Allocates	a	free	MQTT	Packet	Buffer.	The	pool	that	will	be	used	by
the	library	to	allocate	a	free	MQP	buffer	must	be	configured	(i.e.
registered)	a-priori	by	the	app.

The	parameter	'offset'	is	used	to	specify	the	number	of	bytes	that	are
reserved	for	the	header	in	the	buffer

Parameters:
[in] msg_type Message	Type	for	which	MQP	buffer	is

being	assigned.
[in] offset Number	of	bytes	to	be	reserved	for	MQTT

headers.

Returns:
A	NULL	on	error,	otherwise	a	reference	to	a	valid	packet	holder.

See	also:
mqtt_client_register_buffers

i32	mqtt_client_await_msg (struct	mqtt_packet	*	 mqp,
u32	 wait_secs,
void	**	 app	
)

Block	to	receive	any	message	for	the	grouped	contexts	within
specified	time.	This	service	is	valid	only	for	the	set-up,	where	the
applicatiion	has	not	configured	the	grouped	contexts	in	the	callback
mode.	The	caller	must	provide	a	packet	buffer	of	adequate	size	to
hold	the	expected	message	from	the	server.

The	wait	time	implies	the	maximum	intermediate	duration	between
the	reception	of	two	successive	messages	from	the	server.	If	no
message	is	received	before	the	expiry	of	the	wait	time,	the	routine
returns.	However,	the	routine	would	continue	to	block,	in	case,
messages	are	being	received	within	the	successive	period	of	wait
time.

Parameters:
[out] mqp packet	buffer	to	hold	the	message	received

from	the	server.
[in] wait_secs Maximum	Time	to	wait	for	a	message	from

the	server.
[out] app place	holder	to	indicate	application	handle

for	the	packet.

Returns:
On	success,	the	number	of	bytes	received	for	'msg_type'	from
server,	otherwise	LIB	defined	error	values	(LIBRARY
Generated	Error	Codes)

Note:
if	the	value	of	MQP_ERR_LIBQUIT	is	returned,	then	system
must	be	restarted.

i32	mqtt_client_buffers_register (u32	 num_mqp,
struct	mqtt_packet	*	 mqp_vec,
u32	 buf_len,
u8	*	 buf_vec	
)

Create	a	pool	of	MQTT	Packet	Buffers	for	the	client	library.	This
routine	creates	a	pool	of	free	MQTT	Packet	Buffers	by	attaching	a
buffer	(buf)	to	a	packet	holder	(mqp).	The	count	of	mqp	elements	and
buf	elements	in	the	routine	are	same.	And	the	size	of	the	buffer	in
constant	across	all	the	elements.

The	MQTT	Packet	Buffer	pool	should	support	(a)	certain	number	of

in-flight	and	stored	packets	that	await	ACK(s)	from	the	server	(b)
certain	number	of	packets	from	server	whose	processing	would	be
deferred	by	the	client	app	(to	another	context)	(c)	a	packet	to	create	a
CONNECT	message	to	re-establish	transaction	with	the	server.

A	meaningful	size	of	the	pool	is	very	much	application	specific	and
depends	on	the	target	functionality.	For	example,	an	application	that
intends	to	have	only	one	in-flight	message	to	the	server	would	need
atmost	three	MQP	buffers	(1	for	TX	(for	Qos1	or	2	store),	1	for	RX
and	1	for	CONNECT	message).	If	the	application	sends	only	QoS0
messages	to	the	server,	then	the	number	of	MQP	buffers	would
reduce	to	two	(i.e.	1	Tx	to	support	CONNECT	/	PUB	out	and	1	RX)

Parameters:
[in] num_mqp Number	or	count	of	elements	in	mqp_vec

and	buf_vec.
[in] mqp_vec An	array	of	MQTT	Packet	Holder	without	a

buffer.
[in] buf_len The	size	or	length	of	the	buffer	element	in

the	'buf_vec'
[in] buf_vec An	array	of	buffers.	0	on	success	otherwise

-1	on	error.

Note:
The	parameters	mqp_vec	and	buf_vec	should	be	peristent
entities.

See	also:
mqtt_client_await_msg
mqtt_client_run

i32	mqtt_client_ctx_await_msg (void	*	 ctx,
u8	 msg_type,
struct	mqtt_packet	*	 mqp,
u32	 wait_secs	
)

Block	on	the	'context'	to	receive	a	message	type	with-in	specified	wait
time.	This	service	is	valid	only	for	the	configuration,	where	the
application	has	not	provided	the	callbacks	to	the	client	LIB	'context'.
The	caller	must	provide	a	packet	buffer	of	adequate	size	to	hold	the
expected	message	from	the	server.

The	wait	time	implies	the	maximum	intermediate	duration	between
the	reception	of	two	successive	messages	from	the	server.	If	no
message	is	received	before	the	expiry	of	the	wait	time,	the	routine
returns.	However,	the	routine	would	continue	to	block,	in	case,
messages	are	being	received	within	the	successive	period	of	wait
time	and	these	messages	are	not	the	one	that	client	is	waiting	for.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] msg_type message	type	to	receive.	A	value	of	0

would	imply	that	caller	is	ready	to	receive
the	next	message,	whatsoever,	from	the
server.

[out] mqp packet	buffer	to	hold	the	message	received
from	the	server.

[in] wait_secs maximum	Time	to	wait	for	a	message	from
the	server.

Returns:
On	success,	the	number	of	bytes	received	for	'msg_type'	from
server,	otherwise	LIB	defined	error	values	(LIBRARY
Generated	Error	Codes)

i32	mqtt_client_ctx_create (const	struct	mqtt_client_ctx_cfg	*	 ctx_cfg
const	struct	mqtt_client_ctx_cbs	*	 ctx_cbs
void	*	 app

void	**	 ctx	
)

Create	a	Network	Connection	Context.	This	routine	sets-up	the
parameters	that	are	required	to	operate	and	manage	the	network
connection	with	a	MQTT	server	/	broker.	As	part	of	the	creation	of	a
context,	the	implementation	also	records	the	handle,	if	provided,	by
the	application.	In	addition,	the	invoker	of	the	routine	must	facilitate	a
place	holder	to	enable	the	client	LIB	to	provision	the	reference	to	the
'context',	so	created.

Specifically,	this	routine	associates	or	ties-up,	in	an	one-to-one
manner,	the	caller	provided	handle	'app'	and	the	client	LIB
provisioned	handle	'ctx'.	The	parameter	'app'	is	returned	by	the	client
LIB	in	certain	other	routines	to	indicate	the	underlying	'context'	with
which	network	transaction	or	event	is	associated.	Similarly,	the	caller
must	specify	the	context	handle	'ctx'	for	which	the	services	are	being
invoked.

A	user	or	a	task	prior	to	utilizing	the	services	of	the	library	to	schedule
MQTT	transactions	must	create	a	'context'.	A	client	LIB	'context'	can
be	operated	in	two	modes:	(a)	sync-wait	or	explicit	receive	mode	and
(b)	the	callback	mode.	Provisioning	or	absence	of	the	callback
parameter	in	this	routine	defines	the	mode	of	operation	of	the
'context'.

Explicit	receive	mode	is	analogous	to	the	paradigm	of	the	socket
programming	in	which	an	application	utilize	the	recv()	function	call.	It
is	anticipated	that	applications	which	would	make	use	of	limited	set	of
MQTT	messages	may	find	this	mode	of	operation	useful.	Applications
which	intend	to	operate	the	'context'	in	this	mode	must	not	provision
any	callbacks.

On	the	other	hand,	certain	applications,	may	prefer	an	asynchronous
mode	of	operation	and	would	want	the	client	LIB	'context'	to	raise
callbacks	into	the	application,	as	and	when,	packets	arrive	from	the
server.	And	such	applications	must	provide	the	callback	routines.

Parameters:

[in] ctx_cfg configuration	information	for	the	Network
Context.

[in] ctx_cbs callback	routines.	Must	be	set	to	NULL,	if	the
application	intends	to	operate	the	context	in
the	sync-wait	/	explicit	receive	mode.

[in] app handle	to	application.	Returned	by	LIB	in
other	routines	to	refere	to	the	underlying
context.

[out] ctx reference	to	the	context	created	and	is
provisioned	by	the	implementation.	(Valid
only	if	routine	returns	a	success)

Returns:
0	on	success	otherwise	-1.

i32	mqtt_client_ctx_delete (void	*	 ctx)

Delete	a	Network	Connection	Context.	This	routines	destroys	the
previously	created	network	'context'	and	releases	resources	that
would	be	assigned	for	maintaining	the	information	about	the	'context'.

A	user	or	a	task	prior	to	deleting	the	'context'	must	ensure	that	there
is	no	active	MQTT	connection	on	this	context.

Parameters:
[in] ctx handle	to	network	context	to	be	deleted.	The

context	must	have	been	previously	created.

Returns:
0	on	success	otherwise	-1

i32	mqtt_client_ctx_info_register (void	*	 ctx,
const	struct	utf8_string	*	 client_id
const	struct	utf8_string	*	 user_name
const	struct	utf8_string	*	 pass_word

)

Register	application	info	and	its	credentials	with	the	client	library.	This
routine	registers	information	for	all	the	specificed	parameters,
therefore,	an	upate	to	single	element	would	imply	re-specification	of
the	other	paramters,	as	well.

Note:
Contents	embedded	in	the	parameters	is	not	copied	by	the
routine,	and	instead	a	reference	to	the	listed	constructs	is
retained.	Therefore,	the	app	must	enable	the	parameter
contents	for	persistency.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] client_id MQTT	UTF8	identifier	of	the	client.	If	set	to

NULL,	then	the	client	will	be	treated	as
zero	length	entity.

[in] user_name MQTT	UTF8	user	name	for	the	client.	If	not
used,	set	it	to	NULL.	If	used,	then	it	can't
be	of	zero	length.

[in] pass_word MQTT	UTF8	pass	word	for	the	client.	If	not
used,	set	it	to	NULL,	If	used,	then	it	can't
be	of	zero	length.

Returns:
0	on	success	otherwise	-1

User	name	without	a	pass	word	is	a	valid	configuration.	A	pass	word
won't	be	processed	if	it	is	not	associated	with	a	valid	user	name.

i32	mqtt_client_ctx_run (void	*	 ctx,

u32	 wait_secs	
)

Run	the	context	for	the	specificed	wait	time.	This	service	is	valid	only
for	the	configuration,	where	the	application	has	populated	the
callbacks	that	can	be	invoked	by	the	client	LIB	'context'.

This	routine	yields	the	control	back	to	the	application	after	the
duration	of	the	wait	time.	Such	an	arrangement	enable	the	application
to	make	overall	progress	to	meet	its	intended	functionality.

The	wait	time	implies	the	maximum	intermediate	duration	between
the	reception	of	two	successive	messages	from	the	server.	If	no
message	is	received	before	the	expiry	of	the	wait	time,	the	routine
returns.	However,	the	routine	would	continue	to	block,	in	case,
messages	are	being	received	within	the	successive	period	of	the	wait
time.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] wait_secs maximum	time	to	wait	for	a	message	from

the	server

Returns:
MQP_ERR_NOTCONN	if	MQTT	connection	is	closed	by	the
application,	MQP_ERR_TIMEOUT	if	there	was	no	MQTT
transaction	in	the	interval	of	wait	time	and	other	values
(LIBRARY	Generated	Error	Codes)

i32	mqtt_client_ctx_will_register (void	*	 ctx,
const	struct	utf8_string	*	 will_top
const	struct	utf8_string	*	 will_msg

enum	mqtt_qos	 will_qos
bool	 retain	
)

Register	WILL	information	of	the	client	application.	This	routine
registers	information	for	all	the	specificed	parameters,	therefore,	an
update	to	single	element	would	imply	re-specification	of	the	other
paramters,	as	well.

Note:
Contents	embedded	in	the	parameters	is	not	copied	by	the
routine,	and	instead	a	reference	to	the	listed	constructs	is
retained.	Therefore,	the	app	must	enable	the	parameter
contents	for	persistency.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] will_top UTF8	WILL	Topic	on	which	WILL	message	is

to	be	published.
[in] will_msg UTF8	WILL	message.
[in] will_qos QOS	for	the	WILL	message
[in] retain asserted	to	indicate	that	published	WILL	must

be	retained

Returns:
0	on	success	otherwise	-1.

Both	will_top	and	will_msg	should	be	either	present	or	should	be
NULL.	will_qos	and	retain	are	relevant	only	for	a	valid	Topic	and
Message	combo.

bool	mqtt_client_is_connected (void	*	 ctx)

Ascertain	whether	connection	/	session	with	the	server	is	active	or
not.	Prior	to	sending	out	any	information	any	message	to	server,	the
application	can	use	this	routine	to	check	the	status	of	the	connection.
If	connection	does	not	exist,	then	client	should	first	CONNECT	to	the
broker.

A	connection	to	server	could	have	been	closed	unsolicitedly	either
due	to	keep	alive	time-out	or	due	to	error	in	RX	/	TX	transactions.

Note:
this	API	does	not	refer	to	network	layer	connection

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Returns:
true	if	connection	is	active	otherwise	false.

i32	mqtt_client_lib_exit (void)

Exit	the	MQTT	client	library.

Returns:
0	on	success	otherwise	-1.

i32	mqtt_client_lib_init (const	struct	mqtt_client_lib_cfg	*	 cfg)

Initialize	the	MQTT	client	library.	This	routine	initializes	all	the
common	constructs	that	are	required	to	manage	the	multiple	network
connetions.	The	client	LIB	must	be	initialized	prior	to	invoking	of	any
other	routine	or	service.

Note:

This	routine	must	be	invoked	only	once	in	an	run	of	the	system.

Depending	upon	the	deployment	needs,	this	routine	can	be	invoked
either	as	part	of	the	platform	initialization	sequence	or	as	part	of	the
application.	Deployments	that	have	more	than	one	application
utilizing	the	services	of	the	client	LIB	should	try	to	invoke	the	routine
from	the	initialization	sequence	of	the	platform.

In	addition,	if	an	application	has	to	manage	more	than	one	network
connections	(i.e.	in	other	words,	if	the	application	has	to	handle	a
group	of	connections),	then	certain	configuration	must	be	set	in	the
LIB

See	also:
struct	mqtt_client_lib_cfg

Note:
There	must	be	only	one	group	of	network	connetions	in	the
system.

Parameters:
[in] cfg Configuration	information	for	the	MQTT	client

Library.

Returns:
0	on	success	otherwise	-1.

i32	mqtt_client_net_svc_register (const	struct	device_net_services

Abstraction	for	the	device	specific	network	services.	Network	services
for	communication	with	the	server

Parameters:
[in] net refers	to	network	services	supported	by	the	platform

Returns:
on	success,	0,	otherwise	-1

Abstraction	of	Network	Services	on	a	platform

Note:
all	entries	in	net	must	be	supported	by	the	platform.

u16	mqtt_client_new_msg_id (void)

Provides	a	new	MSG	Identifier	for	a	packet	dispatch	to	server

Returns:
MSG	/	PKT	Transaction	identifier

i32	mqtt_client_pub_dispatch (void	*	 ctx,
struct	mqtt_packet	*	 mqp,
enum	mqtt_qos	 qos,
bool	 retain	
)

Dispatch	application	constructed	PUBLISH	message	to	the	server.
Prior	to	sending	the	message	to	the	server,	this	routine	will	prepare	a
fixed	header	to	account	for	the	size	of	the	contents	and	the	flags	that
have	been	indicated	by	the	caller.

After	the	packet	has	been	sent	to	the	server,	if	the	associated	QoS	of
the	dispatched	packet	is	ether	level	1	or	2,	the	client	LIB	'context'	will
then	store	the	packet	until	the	time,	a	corresponding	PUB-ACK	(for
QoS1)	or	PUB-REC	(QoS2)	message	is	received	from	the	server.

If	the	client	LIB	'context'	has	been	configured	to	assert	'clean
session',	then	the	references	to	all	the	stored	and	unacknowledged
PUBLISH	messages	are	dropped	at	the	time	of	MQTT	disconnection
(or	network	disconnection).	Otherwise,	these	unacknowledged
packets	continue	to	be	availalbe	for	the	next	iteration	of	the	MQTT
connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	PUBLISH	messages,	if	any,	are

dropped.

The	caller	must	populate	the	payload	information	with	topic	and	data
before	invoking	this	service.

This	service	facilitates	direct	writing	of	topic	and	(real-time)	payload
data	into	the	buffer,	thereby,	avoiding	power	consuming	and	wasteful
intermediate	data	copies.

In	case,	the	routine	returns	an	error,	the	caller	is	responsbile	for
freeing	up	or	re-using	the	packet	buffer.	For	all	other	cases,	the	client
library	will	manage	the	return	of	the	packet	buffer	to	the	pool.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] mqp app	created	PUBLISH	message	without	the	fixed

header
[in] qos QoS	with	which	the	message	needs	to	send	to

server
[in] retain Asserted	if	the	message	is	to	be	retained	by

server.

Returns:
on	success,	the	transaction	Message	ID,	otherwise	LIB	defined
errors	(LIBRARY	Generated	Error	Codes)

i32	mqtt_client_pub_msg_send (void	*	 ctx,
const	struct	utf8_string	*	 topic,
const	u8	*	 data_buf
u32	 data_len
enum	mqtt_qos	 qos,
bool	 retain	

)

Send	a	PUBLISH	message	to	the	server	(don't	wait	for	PUBACK	/
PUBREC).	This	routine	creates	a	PUBLISH	message	in	an	internally
allocated	packet	buffer	by	embedding	the	'topic'	and	'data'	contents,
then	prepares	the	packet	header	and	finally,	dispatches	the	message
to	the	server.

After	the	packet	has	been	sent	to	the	server,	if	the	associated	QoS	of
the	dispatched	packet	is	ether	level	1	or	2,	the	client	LIB	'context'	will
then	store	the	packet	until	the	time,	a	corresponding	PUB-ACK	(for
QoS1)	or	PUB-REC	(QoS2)	message	is	received	from	the	server.

If	the	client	LIB	'context'	has	been	configured	to	assert	'clean
session',	then	the	references	to	all	the	stored	and	unacknowledged
PUBLISH	messages	are	dropped	at	the	time	of	MQTT	disconnection
(or	network	disconnection).	Otherwise,	these	unacknowledged
packets	continue	to	be	availalbe	for	the	next	iteration	of	the	MQTT
connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	PUBLISH	messages,	if	any,	are
dropped.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] topic UTF8	based	Topic	Name	for	which	data	is

being	published.
[in] data_buf The	binary	data	that	is	being	published	for	the

topic.
[in] data_len The	length	of	the	binary	data.
[in] qos quality	of	service	of	the	message
[in] retain should	the	server	retain	the	message.

Returns:
on	success,	a	transaction	message	id	otherwise,	LIB	defined
errors	(LIBRARY	Generated	Error	Codes)

i32	mqtt_client_run (u32	 wait_secs)

Run	the	LIB	for	the	specified	wait	time.	This	service	is	valid	only	for
the	set-up	of	grouped	contexts,	where	the	application	has	populated
the	callbacks	that	can	be	invoked	by	the	LIB.

This	routine	yields	the	control	back	to	the	application	after	the
specified	duration	of	wait	time.	Such	an	arrangement	enable	the
application	to	make	overall	progress	to	meet	it	intended	functionality.

The	wait	time	implies	the	maximum	intermediate	duration	between
the	reception	of	two	successive	messages	from	the	server.	If	no
message	is	received	before	the	expiry	of	the	wait	time,	the	routine
returns.	However,	the	routine	would	continue	to	block,	in	case,
messages	are	being	received	within	the	successive	period	of	wait
time.

Parameters:
[in] wait_secs maximum	time	to	wait	for	a	message	from

the	server

Returns:
on	connection	close	by	client	app,	number	of	bytes	received	for
the	last	msg	from	broker,	otherwise	LIB	defined	error	values.

Note:
if	the	value	of	MQP_ERR_LIBQUIT	is	returned,	then	system
must	be	restarted.

i32	mqtt_client_send_progress (void	*	 ctx)

Send	remaining	data	or	contents	of	the	scheduled	message	to	the
server.	This	routine	tries	to	send	the	remaining	data	in	an	active

transfer	of	a	message	to	the	server.	This	service	is	valid,	only	if	the
network	layer	of	the	platform	is	not	able	to	send	out	the	entire
message	in	one	TCP	packet	and	has	to	"back-off"	or	"give	up	the
control"	before	it	can	schedule	or	dispatch	the	next	packet.	In	such	a
scenario,	the	network	layer	sends	the	first	part	(segment)	of	the
scheduled	message	in	the	mqtt_xxx_send()	API	and	the	subsequent
parts	or	the	segments	are	sent	using	this	routine.

This	routine	is	not	applicable	to	the	platforms	or	the	scenarios,	where
the	implementation	of	the	platform	can	segment	the	MQTT	message
in	a	manner	to	schedule	consercutive	or	back-to-back	blocking	socket
transactions.	Specifically,	this	API	must	be	used	by	an	application,
only	if	the	network	layer	can	indicate	in	an	asynchronous	manner,	its
readiness	to	send	the	next	packet	to	the	server.	And	the	mechanism
to	indicate	readiness	of	the	network	layer	for	the	next	send
transaction	is	out	of	band	and	out	of	scope	for	the	Client	LIB	and
depends	on	the	platform.

A	platform	that	resorts	to	partial	send	of	a	message	and	has	to	back-
off	from	transmission	implies	the	following	the	considerations	on	to
the	application.	(a)	The	next	segment	/	part	of	the	currently	active
MQTT	packet	can	be	sent	or	scheduled	only	after	receiving	the
indication	from	the	network	layer	to	do	so.	(b)	The	next	or	new	MQTT
message	(or	its	first	segment)	can	be	scheduled	for	transmission	only
after	receiving	the	indication	for	completion	of	handling	of	the	last
segment	of	currently	active	message.

Note:
The	application	developer	should	refer	to	the	platform	specific
network	implementation	for	details.

The	routine	returns	the	number	of	remaining	bytes	in	the	message	to
be	sent.	However,	as	described	earlier,	the	application	is	expected	to
wait	for	an	indication	about	the	readiness	of	the	network	layer	prior	to
sending	or	scheduling	another	segment,	if	so	available,	to	the	server.
Now,	the	new	segment	can	be	a	next	part	of	the	currently	active
message	or	it	can	be	the	first	segment	of	a	new	message.	A	return
value	of	zero	means	that	there	is	no	more	data	left	in	the	scheduled
message	to	be	sent	to	the	server	and	the	application	should	wait	for

an	appropriate	event	to	indicate	the	transmission	of	the	last	segment.

In	case	of	an	error,	the	transfer	of	the	remaining	segments	or	parts	of
the	scheduled	message	is	aborted.	Depending	on	the	configuration	of
the	'clean	session'	in-conjunction	with	the	revision	of	the	MQTT
protocol,	the	active	message	would	be	stored	for	re-transmission,
MQTT	connection	is	established	again.	To	store	a	message	for	re-
transmission,	at	least	one	segment	of	the	message	must	have	been
successfully	sent	to	the	server.

Note:
This	API	must	be	used	by	the	application	only	if	the	platform
has	the	capability	to	indicate	the	completion	of	the	sending	of	an
active	segment.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Returns:
the	number	of	bytes	remaining	to	be	sent	in	the	message.
Otherwise,	LIB	defined	errors	(LIBRARY	Generated	Error
Codes)

i32	mqtt_connect_msg_send (void	*	 ctx,
bool	 clean_session,
u16	 ka_secs	
)

Send	the	CONNECT	message	to	the	server	(and	don't	wait	for
CONNACK).	This	routine	accomplishes	multiple	sequences.	As	a	first
step,	it	tries	to	establish	a	network	connection	with	the	server.	Then,	it
populates	an	internaly	allocated	packet	buffer	with	all	the	previously
provided	payload	data	information,	prepares	the	requisite	headers
and	finally,	dispatches	the	constructed	message	to	the	server.

Prior	to	invoking	this	service,	the	client	application	should	provision
the	intended	payload	contents	of	the	CONNECT	message	by	using
the	API(s)	mqtt_client_ctx_info_register	and
mqtt_client_ctx_will_register.	And	information	about	the	server	of
interest	must	be	provided	in	the	client	LIB	'context'	creation
(mqtt_client_ctx_create).

The	client	application	must	invoke	an	appropriate	receive	routine	to
know	about	the	corresponding	response	CONNACK	from	the	server.
The	client	LIB	will	close	the	network	connection	to	the	server,	if	the
server	happens	to	refuse	the	CONNECT	request.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] clean_session asserted	to	delete	references	to

previous	session	at	both	server	and
client

[in] ka_secs Keep	Alive	Time

Returns:
number	of	bytes	sent	or	LIB	defined	errors	(LIBRARY
Generated	Error	Codes)

i32	mqtt_disconn_send (void	*	 ctx)

Send	a	DISCONNECT	message	to	the	server.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Returns:
number	of	bytes	sent	or	Lib	define	errors	(LIBRARY	Generated
Error	Codes)

i32	mqtt_pingreq_send (void	*	 ctx)

Send	a	PINGREQ	message	to	the	server	(and	don't	wait	for
PINGRSP).

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Returns:
number	of	bytes	sent	or	Lib	define	errors	(LIBRARY	Generated
Error	Codes)

i32	mqtt_sub_dispatch (void	*	 ctx,
struct	mqtt_packet	*	 mqp	
)

Dispatch	application	constructed	SUSBSCRIBE	message	to	the
server.	Prior	to	sending	the	message	to	the	server,	this	routine	will
prepare	a	fixed	header	to	account	for	the	size	of	the	size	of	the
contents.

After	the	packet	has	been	dispatched	to	the	server,	the	library	will
store	the	packet	until	the	time,	a	corresponding	SUB-ACK	has	been
received	from	the	server.	This	mechanism	enables	the	client	LIB
'context'	to	trace	the	sequence	of	the	message-ID	and	/	or	resend	the
SUB	packets	to	the	server.

The	client	LIB	'context',	if	configured	to	operate	in	the	MQTT	3.1.1
mode	will	drop	or	remove	the	un-acknowledged	SUB	messages	at

the	time	of	the	termination	of	the	network	connection.

In	the	MQTT	3.1	mode,	the	client	LIB	'context'	will	remove	the
unacknowledged	SUB	messages	at	the	time	of	the	termination	of	the
network	connection,	if	the	'clean	session'	has	been	asserted.	In	case,
the	'clean	session'	has	not	been	asserted,	the	stored	SUB	messages
will	continue	to	be	available	for	the	next	iteration	of	the	MQTT
connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	SUBSCRIBE	messages,	if	any,	are
dropped.

The	caller	must	populate	the	payload	information	of	topic	along	with
qos	before	invoking	this	service.

This	service	facilitates	direct	writing	of	topic	and	(real-time)	payload
data	into	the	buffer,	thereby,	avoiding	power	consuming	and	wasteful
intermediate	data	copies.

In	case,	the	routine	returns	an	error,	the	caller	is	responsbile	for
freeing	up	or	re-using	the	packet	buffer.	For	all	other	cases,	the	client
library	will	manage	the	return	of	the	packet	buffer	to	the	pool.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] mqp app	created	SUBSCRIBE	message	without	the

fixed	header.

Returns:
on	success,	the	transaction	Message	ID,	otherwise	Lib	defined
errors	(LIBRARY	Generated	Error	Codes)

i32	mqtt_sub_msg_send (void	*	 ctx,

const	struct	utf8_strqos	*	 qos_topics,
u32	 count	
)

Send	a	SUBSCRIBE	message	to	the	server	(and	don't	wait	for
SUBACK).	This	routine	creates	a	SUBSCRIBE	message	in	an
internally	allocated	packet	buffer	by	embedding	the	'qos_topics',	then
prepares	the	message	header	and	finally,	dispatches	the	packet	to
the	server.

After	the	packet	has	been	dispatched	to	the	server,	the	library	will
store	the	packet	until	the	time,	a	corresponding	SUB-ACK	has	been
received	from	the	server.	This	mechanism	enables	the	client	LIB
'context'	to	trace	the	sequence	of	the	message-ID	and	/	or	resend	the
SUB	packets	to	the	server.

The	client	LIB	'context',	if	configured	to	operate	in	the	MQTT	3.1.1
mode	will	drop	or	remove	the	un-acknowledged	SUB	messages	at
the	time	of	the	termination	of	the	network	connection.

In	the	MQTT	3.1	mode,	the	client	LIB	'context'	will	remove	the
unacknowledged	SUB	messages	at	the	time	of	the	termination	of	the
network	connection,	if	the	'clean	session'	has	been	asserted.	In	case,
the	'clean	session'	has	not	been	asserted,	the	stored	SUB	messages
will	continue	to	be	available	for	the	next	iteration	of	the	MQTT
connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	SUBSCRIBE	messages,	if	any,	are
dropped.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] qos_topics an	array	of	topic	along-with	its	qos

[in] count the	number	of	elements	in	the	array

Returns:
on	success,	the	transaction	Message	ID,	otherwise	Lib	defined
errors	(LIBRARY	Generated	Error	Codes)

i32	mqtt_unsub_dispatch (void	*	 ctx,
struct	mqtt_packet	*	 mqp	
)

Dispatch	application	constructed	UNSUSBSCRIBE	message	to	the
server.	Prior	to	sending	the	message	to	the	server,	this	routine	will
prepare	a	fixed	header	to	account	for	the	size	of	the	size	of	the
contents.

After	the	packet	has	been	dispatched	to	the	server,	the	library	will
store	the	packet	until	the	time,	a	corresponding	UNSUB-ACK	has
been	received	from	the	server.	This	mechanism	enables	the	client	LIB
'context'	to	trace	the	sequence	of	the	message-ID	and	/	or	resend	the
UNSUB	packets	to	the	server.

The	client	LIB	'context',	if	configured	to	operate	in	the	MQTT	3.1.1
mode	will	drop	or	remove	the	un-acknowledged	SUB	messages	at
the	time	of	the	termination	of	the	network	connection.

In	the	MQTT	3.1	mode,	the	client	LIB	'context'	will	remove	the
unacknowledged	UNSUB	messages	at	the	time	of	the	termination	of
the	network	connection,	if	the	'clean	session'	has	been	asserted.	In
case,	the	'clean	session'	has	not	been	asserted,	the	stored	UNSUB
messages	will	continue	to	be	available	for	the	next	iteration	of	the
MQTT	connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	UNSUBSCRIBE	messages,	if	any,
are	dropped.

The	caller	must	populate	the	payload	information	of	topics	before
invoking	this	service.

This	service	facilitates	direct	writing	of	topic	and	(real-time)	payload
data	into	the	buffer,	thereby,	avoiding	power	consuming	and	wasteful
intermediate	data	copies.

In	case,	the	routine	returns	an	error,	the	caller	is	responsbile	for
freeing	up	or	re-using	the	packet	buffer.	For	all	other	cases,	the	client
library	will	manage	the	return	of	the	packet	buffer	to	the	pool.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] Packet Buffer	that	holds	UNSUBSCRIBE	message

without	a	fixed	header

Returns:
on	success,	the	transaction	Message	ID,	otherwise	LIB	defined
errors	(LIBRARY	Generated	Error	Codes)

i32	mqtt_unsub_msg_send (void	*	 ctx,
const	struct	utf8_string	*	 topics,
u32	 count	
)

Send	an	UNSUBSCRIBE	message	to	the	server	(and	don't	wait	for
UNSUBACK).	This	routine	creates	an	UNSUBSCRIBE	message	in	an
internally	allocated	packet	buffer	by	embedding	the	'topics',	then
prepares	the	message	header	and	finally,	dispatches	the	packet	to
the	server.

After	the	packet	has	been	dispatched	to	the	server,	the	library	will
store	the	packet	until	the	time,	a	corresponding	UNSUB-ACK	has
been	received	from	the	server.	This	mechanism	enables	the	client	LIB
'context'	to	trace	the	sequence	of	the	message-ID	and	/	or	resend	the

UNSUB	packets	to	the	server.

The	client	LIB	'context',	if	configured	to	operate	in	the	MQTT	3.1.1
mode	will	drop	or	remove	the	un-acknowledged	SUB	messages	at
the	time	of	the	termination	of	the	network	connection.

In	the	MQTT	3.1	mode,	the	client	LIB	'context'	will	remove	the
unacknowledged	UNSUB	messages	at	the	time	of	the	termination	of
the	network	connection,	if	the	'clean	session'	has	been	asserted.	In
case,	the	'clean	session'	has	not	been	asserted,	the	stored	UNSUB
messages	will	continue	to	be	available	for	the	next	iteration	of	the
MQTT	connection.	However,	if	the	client	application	asserts	the	'clean
session'	parameter	in	the	next	iteration	of	the	CONNECT	operation,
then	references	to	all	the	stored	UNSUBSCRIBE	messages,	if	any,
are	dropped.

Parameters:
[in] ctx handle	to	the	underlying	network	context	in	the	LIB

See	also:
mqtt_client_ctx_create

Parameters:
[in] topics an	array	of	topic	to	unsubscribe
[in] count the	number	of	elements	in	the	array

Returns:
on	success,	the	transaction	Message	ID,	otherwise	Lib	defined
errors	(LIBRARY	Generated	Error	Codes)

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Defines

MQTT
Client	1.0.0

Options	for	application
to	config	CTX

Defines

#define	 MQTT_CFG_PROTOCOL_V31			0x0001
#define	 MQTT_CFG_APP_HAS_RTSK			0x0002
#define	 MQTT_CFG_MK_GROUP_CTX			0x0004

Define	Documentation

#define	MQTT_CFG_APP_HAS_RTSK			0x0002

Assert	if	APP	has	dedicated	RX	Task

#define	MQTT_CFG_MK_GROUP_CTX			0x0004

Assert	if	task	manages	>	1	contexts

#define	MQTT_CFG_PROTOCOL_V31			0x0001

Assert	for	ver3.1,	default	is	3.1.1

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files

Defines

MQTT
Client	1.0.0

Options	for	App	to
configure	network

Defines

#define	 MQTT_NETCONN_OPT_IP6			DEV_NETCONN_OPT_IP6
#define	 MQTT_NETCONN_OPT_URL			DEV_NETCONN_OPT_URL
#define	 MQTT_NETCONN_OPT_SEC			DEV_NETCONN_OPT_SEC

Define	Documentation

#define	MQTT_NETCONN_OPT_IP6			DEV_NETCONN_OPT_IP6

Options	for	platform	to	configure	network

#define	MQTT_NETCONN_OPT_SEC			DEV_NETCONN_OPT_SEC

Options	for	platform	to	configure	network

#define	MQTT_NETCONN_OPT_URL			DEV_NETCONN_OPT_URL

Options	for	platform	to	configure	network

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

Class	List

Here	are	the	classes,	structs,	unions	and	interfaces	with	brief
descriptions:
client_ctx
device_net_services
mqtt_ack_wlist
mqtt_client_ctx_cbs
mqtt_client_ctx_cfg
mqtt_client_lib_cfg
mqtt_packet
pub_qos2_cq
secure_conn
utf8_string
utf8_strqos

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

client_ctx	Struct
Reference

List	of	all	members.

Public	Attributes

void	*	 usr
i32	 net
i8	 remote_ip	[16]

u32	 ip_length
u32	 timeout
u16	 ka_secs
u32	 flags

struct	client_ctx	*	 next

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

device_net_services
Struct	Reference
Abstraction	of	Network	Services	on	a	platform

List	of	all	members.

Public	Attributes

i32(*	 open)(u32	nwconn_opts,	const	i8	*server_addr,	u16port_number,	const	struct	secure_conn	*nw_security)
i32(*	 send)(i32	comm,	const	u8	*buf,	u32	len,	void	*ctx)

i32(*	 recv)(i32	comm,	u8	*buf,	u32	len,	u32	wait_secs,	bool*err_timeo,	void	*ctx)

i32(*	 send_dest)(i32	comm,	const	u8	*buf,	u32	len,	u16	dest_port,const	i8	*dest_ip,	u32	ip_len)

i32(*	 recv_from)(i32	comm,	u8	*buf,	u32	len,	u16	*from_port,	i8
*from_ip,	u32	*ip_len)

i32(*	 close)(i32	comm)

i32(*	 listen)(u32	nwconn_opts,	u16	port_number,	const	structsecure_conn	*nw_security)
i32(*	 accept)(i32	listen,	i8	*client_ip,	u32	*ip_length)

i32(*	 io_mon)(i32	*recv_cvec,	i32	*send_cvec,	i32	*rsvd_cvec,	u32
wait_secs)

u32(*	 time)(void)

Member	Data	Documentation

i32(*	device_net_services::accept)(i32	listen,	i8	*client_ip,	u32	*ip_length)

Accept	an	incominng	connection.	This	routine	creates	a	new
communication	channel	for	the	(remote)	requesting	client.

Parameters:
[in] listen handle	to	listen	for	the	incoming

connection	requests	from	the	remote
clients

[out] client_ip IP	address	of	the	connected	client.	This
value	is	valid	only	on	successful	return
of	the	routine.	The	place	holder	must
provide	memory	to	store	atleast	16
bytes.

[in,out] ip_length Length	of	IP	address.	It	is	provided	by
the	caller	to	declare	the	length	of	the
place	holder	and	updated	by	routine	to
indicate	the	length	of	the	connected
client's	IP	address.

Returns:
on	success,	a	valid	handle	to	the	new	connection,	otherwise
NULL

i32(*	device_net_services::close)(i32	comm)

Close	communication	connection

i32(*	device_net_services::io_mon)(i32	*recv_cvec,	i32	*send_cvec,	i32	*rsvd_cvec,	u32	wait_secs)

Monitor	activity	on	communication	handles.	The	routine	blocks	for	the
specified	period	of	time	to	monitor	activity,	if	any,	on	each	of	the

communication	handle	that	has	been	provided	in	one	or	more	vector
sets.	At	the	expiry	of	the	wait	time,	this	function	must	identify	the
handles,	on	which,	acitvities	were	observed.

A	particular	collection	of	communication	handles	are	packed	as	an
array	or	in	a	vector	and	is	passed	to	the	routine.	A	NULL	handle	in	the
vector	indicates	the	termination	of	the	vector	and	can	effectively	used
to	account	for	the	size	of	the	vector.

Similarly,	at	end	the	end	of	the	wait	period,	the	routine	must	provide	a
vector	of	the	handles	for	which	activity	was	observed.

Parameters:
[in,out] recv_hvec a	vector	of	handles	which	must	be

monitored	for	receive	activities.
[in,out] send_hvec a	vector	of	handles	which	must	be

monitored	for	send	activities.
[in,out] rsvd_hvec reserved	for	future	use.
[in] wait_secs time	to	wait	and	monitor	activity	on

communication	handles	provided	in
one	or	more	sets.	If	set	to	0,	the
routine	returns	immediately.

Returns:
on	success,	the	total	number	of	handles	for	which	activity	was
observed.	This	number	can	be	0,	if	no	activity	was	observed	on
any	of	the	provided	handle	in	the	specified	time.	Otherwise,	-1
on	error.

i32(*	device_net_services::listen)(u32	nwconn_opts,	u16	port_number,	const	struct	

Listen	to	incoming	connection	from	clients.	This	routine	prepares	the
system	to	listen	on	the	specified	port	for	the	incoming	network
connections	from	the	remote	clients.

Parameters:
[in] nwconn_opts Implementation	specific	construct	to

enumerate	server	address	and	/	or
connection	related	details

[in] port_number Network	port	number,	typically,	1883	or
8883

[in] nw_security Information	to	establish	a	secure
connection	with	client.	Set	it	to	NULL,	if
not	used.	Information	to	establish	a
secure	connection.

Returns:
a	valid	handle	to	listening	contruct,	otherwise	NULL

i32(*	device_net_services::open)(u32	nwconn_opts,	const	i8	*server_addr,	u16	port_number,	const	struct	

Set	up	a	communication	channel	with	a	server	or	set	up	a	local	port.
This	routine	opens	up	either	a	"connection	oriented"	communication
channel	with	the	specified	server	or	set	up	a	local	configuration	for
"connectionless"	transactions.

Parameters:
[in] nwconn_opts Implementation	specific	construct	to

enumerate	server	address	and	/	or
connection	related	details

[in] server_addr URL	or	IP	address	(string)	or	other
server	reference.	For	setting	up	a	local
(UDP)	port,	set	it	to	NULL.

[in] port_number Network	port	number,	typically,	1883	or
8883	for	remote	severs.	For	setting	up	a
local	(UDP)	port,	use	an	intended	port
number.

[in] nw_security Information	to	establish	a	secure
connection	with	server.	Set	it	to	NULL,	if
not	used.	Information	to	establish	a
secure	connection.

Returns:
a	valid	handle	to	connection,	otherwise	NULL

i32(*	device_net_services::recv)(i32	comm,	u8	*buf,	u32	len,	u32	wait_secs,	bool	*err_timeo,	void	*ctx)

Receive	data	from	the	"connection	oriented"	channel.	The	routine
blocks	till	the	time,	there	is	either	a	data	that	has	been	received	from
the	server	or	the	time	to	await	data	from	the	server	has	expired.

Parameters:
[in] comm Handle	to	network	connection	as	returned

by	accept().
[out] buf place-holder	to	which	data	from	network

should	be	written	into.
[in] len maximum	length	of	'buf'
[in] wait_secs maximum	time	to	await	data	from	network.

If	exceeded,	the	routine	returns	error	with
the	err_timeo	flag	set	as	true.

[out] err_timeo if	set,	indicates	that	error	is	due	to	timeout.
[in] ctx reference	to	the	MQTT	connection	context

Returns:
on	success,	number	of	bytes	received,	0	on	connection	reset,
otherwise	-1	on	error.	In	case,	error	(-1)	is	due	to	the	time-out,
then	the	implementation	should	set	flag	err_timeo	as	true.

i32(*	device_net_services::recv_from)(i32	comm,	u8	*buf,	u32	len,	u16	*from_port,	i8	*from_ip,	u32	*ip_len)

Receive	data	on	a	local	port	sent	by	any	network	element.	The
routine	blocks	till	the	time,	data	has	been	received	on	the	local	port
from	any	remote	network	element.

Parameters:
[in] comm handle	to	network	connection	as	return

by	open().
[in] buf place-holder	to	which	data	from

network	should	be	written	into.

[in] len maximum	lengh	of	'buf'
[out] from_port place-holder	for	the	port	of	the	sender

network	entity
[out] from_ip place-holder	to	retrieve	the	IP	address

of	the	sender	network	entity.	The
memory	space	must	be	provisioned	to
store	atleast	16	bytes.

[in,out] ip_len length	of	IP	address.	It	is	provided	by
the	caller	to	declare	the	length	of	the
place	holder	and	updated	by	routine	to
indicate	the	length	of	the	remote
network	entity's	IP	address.

Returns:
on	success,	number	of	bytes	received,	0	on	connection	reset,
otherwise	-1	on	errir.

i32(*	device_net_services::send)(i32	comm,	const	u8	*buf,	u32	len,	void	*ctx)

Send	data	onto	the	"connection	oriented"	network.	The	routine	blocks
till	the	time,	the	data	has	been	copied	into	the	network	stack	for
dispatch	on	to	the	"connection	oriented"	network.

Parameters:
[in] comm handle	to	network	connection	as	returned	by

open().
[in] buf refers	to	the	data	that	is	intended	to	be	sent
[in] len length	of	the	data
[in] ctx reference	to	the	MQTT	connection	context

Returns:
on	success,	the	number	of	bytes	sent,	0	on	connection	reset,
otherwise	-1

i32(*	device_net_services::send_dest)(i32	comm,	const	u8	*buf,	u32	len,	u16	dest_port,	const	i8	*dest_ip,	u32	ip_len)

Send	data	to	particular	port	on	the	specified	network	element.	The
routine	blocks	till	the	time,	the	data	has	been	copied	into	the	network
stack	for	dispatch	to	the	"specified"	network	entity.

Parameters:
[in] comm handle	to	network	connection	as	returned	by

open().
[in] buf refers	to	data	that	is	intended	to	be	sent
[in] len length	of	the	data
[in] dest_port network	port	to	which	data	is	to	be	sent.
[in] dest_ip IP	address	of	the	entity	to	which	data	is	to	be

sent.
[in] ip_len length	of	the	destination	IP	address.

Returns:
on	success,	the	number	of	bytes	sent,	0	on	connection	reset,
otherwise	-1.

u32(*	device_net_services::time)(void)

Get	Time	(in	seconds).	Provides	a	monotonically	incrementing	value
of	a	time	service	in	unit	of	seconds.	The	implementation	should
ensure	that	associated	timer	hardware	or	the	clock	module	remains
active	through	the	low	power	states	of	the	system.	Such	an
arrangement	ensures	that	MQTT	Library	is	able	to	track	the	Keep-
Alive	time	across	the	cycles	of	low	power	states.	It	would	be	typical	of
battery	operated	systems	to	transition	to	low	power	states	during	the
period	of	inactivity	or	otherwise	to	conserve	battery.

In	the	absence	of	a	sustained	time	reference	across	the	low	power
states,	if	the	system	transitions	away	from	the	active	state,	the	MQTT
Library,	then	may	not	be	able	to	effectively	monitor	the	Keep	Alive
duration.

It	is	the	responsbililty	of	the	implementation	to	manage	the	roll-	over
problem	of	the	hardware	and	ensure	the	integrity	of	the	time	value	is
maintained.

Returns:
time	in	seconds

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

mqtt_ack_wlist	Struct
Reference

List	of	all	members.

Public	Attributes

struct	mqtt_packet	*	 head
struct	mqtt_packet	*	 tail

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

mqtt_client_ctx_cbs
Struct	Reference
The	Client	Library	API(s)

#include	<mqtt_client.h>

List	of	all	members.

Public	Attributes

bool(*	 publish_rx)(void	*app,	bool	dup,	enum	mqtt_qos	qos,	bool
retain,	struct	mqtt_packet	*mqp)

void(*	 ack_notify)(void	*app,	u8	msg_type,	u16	msg_id,	u8	*buf,	u32len)
void(*	 disconn_cb)(void	*app,	i32	cause)

Detailed	Description

Callbacks	to	be	invoked	by	MQTT	Client	library	onto	Client	application

Member	Data	Documentation

void(*	mqtt_client_ctx_cbs::ack_notify)(void	*app,	u8	msg_type,	u16	msg_id,	u8	*buf,	u32	len)

Notifies	the	client	application	about	an	ACK	or	a	response	from	the
server.	Following	are	the	messages	that	are	notified	by	the	client	LIB
to	the	application.

CONNACK,	PINGRSP,	PUBACK,	PUBCOMP,	SUBACK,	UNSUBACK

Parameters:
[in] app application	to	which	this	ACK	message	is	targeted

See	also:
mqtt_client_ctx_create

Parameters:
[in] msg_type Type	of	the	MQTT	messsage
[in] msg_id transaction	identity	of	the	message
[in] buf refers	to	contents	of	message	and	depends

on	msg_type
[in] len length	of	the	buf

Returns:
none

Note:
The	size	of	the	buf	parameter	i.e	len	is	non-zero	for	the
SUBACK	and	CONNACK	messages.	For	SUBACK	the	buf
carries	an	array	of	QOS	responses	provided	by	the	server.	For
CONNACK,	the	buf	carries	variable	header	contents.	Helper
macro	VHB_CONNACK_RC()	and	VHB_CONNACK_SP()
can	be	used	to	access	contents	provided	by	the	server.	For	all
other	messages,	the	value	of	len	parameter	is	zero.
The	parameter	msg_id	is	not	relevant	for	the	messages
CONNACK	and	PINGRSP	and	is	set	to	zero.

void(*	mqtt_client_ctx_cbs::disconn_cb)(void	*app,	i32	cause)

Notifies	the	client	application	about	the	termination	of	connection	with
the	server.	After	servicing	this	callback,	the	application	can	destroy
associated	context	if	it	no	longer	required

Parameters:
[in] app application	whose	connection	got	terminated

See	also:
mqtt_client_ctx_create

Parameters:
[in] cause reason	that	created	disconnection	(LIBRARY

Generated	Error	Codes)

bool(*	mqtt_client_ctx_cbs::publish_rx)(void	*app,	bool	dup,	enum	

Provides	a	PUBLISH	message	from	server	to	the	client	application.
The	application	can	utilize	the	associated	set	of	helper	macros	to	get
references	to	the	topic	and	the	data	information	contained	in	the
message.	Helper	Macros	for	RX	PUBLISH

Depending	upon	the	QoS	level	of	the	message,	the	MQTT	client
library	shall	dispatch	the	correponding	acknowlegement	(PUBACK	or
PUBREC)	to	the	server,	thereby,	relieving	application	of	this	support.

If	the	application	completes	the	processing	of	the	packet	within	the
implementation	of	this	callback	routine,	then	a	value	of	'true'	must	be
returned	to	the	client	LIB	'context'.	The	library,	in	this	case,	does	not
handover	the	packet	to	application	and	instead,	frees	it	up	on	return
from	this	routine.

If	the	application	intends	to	defer	the	processing	of	the	PUBLISH
message	to	a	different	execution	task,	then	it	must	takeover	the
owernship	of	the	packet	by	returning	a	value	of	'false'	to	the	client	LIB
'context.	In	this	arrangement,	the	client	LIB	'context'	hands	over	the

packet	to	the	application.	The	responsibility	of	storing,	managing	and
eventually	freeing	up	the	packet	back	to	the	pool,	now,	lies	with	the
app.

Parameters:
[in] app application	to	which	this	PUBLISH	message	is

targeted

See	also:
mqtt_client_ctx_create

Parameters:
[in] dup asserted	to	indicate	a	DUPLICATE	PUBLISH
[in] qos quality	of	Service	of	the	PUBLISH	message
[in] retain Asserted	to	indicate	message	at	new

subscription
[in] mqp Packet	Buffer	that	holds	the	PUBLISH	message

Returns:
true	to	indicate	that	processing	of	the	packet	has	been
completed	and	it	can	freed-up	and	returned	back	to	the	pool	by
the	library.	Otherwise,	false.

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

mqtt_client_ctx_cfg
Struct	Reference
The	Client	Library	API(s)

List	of	all	members.

Public	Attributes

u16	 config_opts
u32	 nwconn_opts
i8	*	 server_addr
u16	 port_number

struct	secure_conn	*	 nw_security

Member	Data	Documentation

u16	mqtt_client_ctx_cfg::config_opts

Context	config	Opt,	Options	for	application	to	config	CTX

struct	secure_conn*	mqtt_client_ctx_cfg::nw_security

Refer	to	Information	to	establish	a	secure	connection.

u32	mqtt_client_ctx_cfg::nwconn_opts

Network	Options,	Options	for	App	to	configure	network

u16	mqtt_client_ctx_cfg::port_number

Network	Listening	Port	number	of	the	server

i8*	mqtt_client_ctx_cfg::server_addr

Reference	to	'\0'	terminated	address	string

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

mqtt_client_lib_cfg
Struct	Reference
The	Client	Library	API(s)

#include	<mqtt_client.h>

List	of	all	members.

Public	Attributes

u16	 loopback_port
bool	 grp_uses_cbfn

void	*	 mutex
void(*	 mutex_lockin)(void	*mutex)
void(*	 mutex_unlock)(void	*mutex)
i32(*	 debug_printf)(const	i8	*format,...)
bool	 aux_debug_en

Detailed	Description

Contruct	/	Data	to	initialize	MQTT	Client	Library

Member	Data	Documentation

bool	mqtt_client_lib_cfg::aux_debug_en

Assert	to	indicate	additional	debug	info

i32(*	mqtt_client_lib_cfg::debug_printf)(const	i8	*format,...)

Debug,	mandatory

bool	mqtt_client_lib_cfg::grp_uses_cbfn

Assert	if	grouped	contexts	use	call-backs

u16	mqtt_client_lib_cfg::loopback_port

If	an	application	has	more	than	one	contexts	(i.e.	grouped	contexts)
to	manage	in	a	single	task,	then	a	non-zero	value	must	be	provided.
Otherwise,	this	parameter	must	be	set	to	zero.

void*	mqtt_client_lib_cfg::mutex

For	a	multi-task	environment,	provide	a	handle	to	platform	mutex

void(*	mqtt_client_lib_cfg::mutex_lockin)(void	*mutex)

Take	platform	mutex	function

void(*	mqtt_client_lib_cfg::mutex_unlock)(void	*mutex)

Give	platform	mutex	function

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

mqtt_packet	Struct
Reference
MQTT	Packet	(MQP)	Buffer	structure

List	of	all	members.

Public	Attributes

u8	 msg_type
u8	 fh_byte1
u16	 msg_id
u8	 n_refs
u8	 pad	[3]
u8	 offset
u8	 fh_len
u16	 vh_len
u32	 pl_len
u32	 private
u32	 maxlen
u8	*	 buffer

void(*	 free)(struct	mqtt_packet	*mqp)
struct	mqtt_packet	*	 next

Member	Data	Documentation

u8*	mqtt_packet::buffer

The	attached	buffer

u8	mqtt_packet::fh_byte1

Fixed	Header:	Byte1

u8	mqtt_packet::fh_len

Fix	Header	Length

void(*	mqtt_packet::free)(struct	mqtt_packet	*mqp)

Method	to	free	this	packet	to	a	particular	pool

u32	mqtt_packet::maxlen

Maximum	buffer	size

u16	mqtt_packet::msg_id

Msg	transaction	ID

u8	mqtt_packet::msg_type

MQTT	Message	Type

u8	mqtt_packet::n_refs

#	users	of	this	msg

u8	mqtt_packet::offset

Start	of	data	index

u32	mqtt_packet::pl_len

Pay	Load	Length

u16	mqtt_packet::vh_len

Var	Header	Length

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

pub_qos2_cq	Struct
Reference

List	of	all	members.

Public	Attributes

u16	 id_vec	[MAX_PUBREL_INFLT]
u8	 n_free
u8	 rd_idx
u8	 wr_idx

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

secure_conn	Struct
Reference
Information	to	establish	a	secure	connection.

List	of	all	members.

Public	Attributes

void	*	 method
void	*	 cipher
u32	 n_file

char	**	 files

Member	Data	Documentation

void*	secure_conn::cipher

Reference	to	information	about	cryptograph	ciphers

char**	secure_conn::files

Reference	to	array	of	file-names	used	for	security

void*	secure_conn::method

Reference	to	information	about	protocol	or	methods

u32	secure_conn::n_file

Count	of	secure	connection	related	files,	certs...

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

utf8_string	Struct
Reference

#include	<mqtt_common.h>

List	of	all	members.

Public	Attributes

i8	*	 buffer
u16	 length

Detailed	Description

Description	of	UTF8	information	as	used	by	MQTT	Library.

Member	Data	Documentation

i8*	utf8_string::buffer

Refers	to	UTF8	content

u16	utf8_string::length

Length	of	UTF8	content

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

Public	Attributes

MQTT
Client	1.0.0

utf8_strqos	Struct
Reference

#include	<mqtt_common.h>

List	of	all	members.

Public	Attributes

i8	*	 buffer
u16	 length

enum	mqtt_qos	 qosreq

Detailed	Description

Construct	to	create	Topic	to	SUBSCRIBE

Member	Data	Documentation

i8*	utf8_strqos::buffer

Refers	to	UTF8	content

u16	utf8_strqos::length

Length	of	UTF8	content

enum	mqtt_qos	utf8_strqos::qosreq

QoS	Level	for	content

The	documentation	for	this	struct	was	generated	from	the	following	file:

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

Class	Index

C	|	D	|	M	|	P	|	S	|	U

		C		 		M		 mqtt_client_lib_cfg			 pub_qos2_cq

client_ctx			 mqtt_ack_wlist			 mqtt_packet			

		D		 mqtt_client_ctx_cbs			 		P		 secure_conn

device_net_services			 mqtt_client_ctx_cfg			
C	|	D	|	M	|	P	|	S	|	U

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

All Variables

a b c d f g i l m n o p q r s t v

MQTT
Client	1.0.0

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class
documentation	for	each	member:

-	a	-

accept	:	device_net_services
ack_notify	:	mqtt_client_ctx_cbs
aux_debug_en	:	mqtt_client_lib_cfg

-	b	-

buffer	:	mqtt_packet	,	utf8_strqos	,	utf8_string

-	c	-

cipher	:	secure_conn
close	:	device_net_services
config_opts	:	mqtt_client_ctx_cfg

-	d	-

debug_printf	:	mqtt_client_lib_cfg
disconn_cb	:	mqtt_client_ctx_cbs

-	f	-

fh_byte1	:	mqtt_packet

fh_len	:	mqtt_packet
files	:	secure_conn
free	:	mqtt_packet

-	g	-

grp_uses_cbfn	:	mqtt_client_lib_cfg

-	i	-

io_mon	:	device_net_services

-	l	-

length	:	utf8_string	,	utf8_strqos
listen	:	device_net_services
loopback_port	:	mqtt_client_lib_cfg

-	m	-

maxlen	:	mqtt_packet
method	:	secure_conn
msg_id	:	mqtt_packet
msg_type	:	mqtt_packet
mutex	:	mqtt_client_lib_cfg
mutex_lockin	:	mqtt_client_lib_cfg
mutex_unlock	:	mqtt_client_lib_cfg

-	n	-

n_file	:	secure_conn
n_refs	:	mqtt_packet
nw_security	:	mqtt_client_ctx_cfg
nwconn_opts	:	mqtt_client_ctx_cfg

-	o	-

offset	:	mqtt_packet
open	:	device_net_services

-	p	-

pl_len	:	mqtt_packet
port_number	:	mqtt_client_ctx_cfg
publish_rx	:	mqtt_client_ctx_cbs

-	q	-

qosreq	:	utf8_strqos

-	r	-

recv	:	device_net_services
recv_from	:	device_net_services

-	s	-

send	:	device_net_services
send_dest	:	device_net_services
server_addr	:	mqtt_client_ctx_cfg

-	t	-

time	:	device_net_services

-	v	-

vh_len	:	mqtt_packet

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

MQTT
Client	1.0.0

File	List

Here	is	a	list	of	all	documented	files	with	brief	descriptions:
client_notes.h	[code]
MainPage.h	[code]
D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h	[code]
D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h
[code]

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

Classes	|	Defines	|	Functions

MQTT
Client	1.0.0

D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h
File	Reference
#include	"mqtt_common.h"

Go	to	the	source	code	of	this	file.

Classes

struct		 mqtt_client_ctx_cbs
struct		 mqtt_client_ctx_cfg
struct		 mqtt_client_lib_cfg

Defines

#define	 MQTT_CLIENT_VERSTR			"1.0.0"
#define	 VHB_CONNACK_RC(vh_buf)			(vh_buf[1])
#define	 MQP_CONNACK_RC(mqp)			(mqp->buffer[3])
#define	 VHB_CONNACK_SP(vh_buf)			(vh_buf[0]	&	0x1)
#define	 MQP_CONNACK_SP(mqp)			(mqp->buffer[2]	&	0x1)

#define	 VHB_CONNACK_VH16(vh_buf)			((vh_buf[0]	<<	8)	|vh_buf[1])

#define	 MQP_CONNACK_VH16(mqp)			((mqp->buffer[2]	<<	8)	|	mqp->buffer[3])
#define	 MQTT_CFG_PROTOCOL_V31			0x0001
#define	 MQTT_CFG_APP_HAS_RTSK			0x0002
#define	 MQTT_CFG_MK_GROUP_CTX			0x0004
#define	 MQTT_NETCONN_OPT_IP6			DEV_NETCONN_OPT_IP6
#define	 MQTT_NETCONN_OPT_URL			DEV_NETCONN_OPT_URL
#define	 MQTT_NETCONN_OPT_SEC			DEV_NETCONN_OPT_SEC

Functions

u16	 mqtt_client_new_msg_id	(void)
bool	 mqtt_client_is_connected	(void	*ctx)

i32	 mqtt_connect_msg_send	(void	*ctx,	bool
clean_session,	u16	ka_secs)

i32	
mqtt_client_pub_msg_send	(void	*ctx,	const
struct	utf8_string	*topic,	const	u8	*data_buf,
u32	data_len,	enum	mqtt_qos	qos,	bool	retain)

i32	
mqtt_client_pub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp,	enum	mqtt_qos	qos,	bool
retain)

i32	 mqtt_sub_msg_send	(void	*ctx,	const	struct
utf8_strqos	*qos_topics,	u32	count)

i32	 mqtt_sub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp)

i32	 mqtt_unsub_msg_send	(void	*ctx,	const	struct
utf8_string	*topics,	u32	count)

i32	 mqtt_unsub_dispatch	(void	*ctx,	struct
mqtt_packet	*mqp)

i32	 mqtt_pingreq_send	(void	*ctx)
i32	 mqtt_disconn_send	(void	*ctx)
i32	 mqtt_client_send_progress	(void	*ctx)

i32	
mqtt_client_ctx_await_msg	(void	*ctx,	u8
msg_type,	struct	mqtt_packet	*mqp,	u32
wait_secs)

i32	 mqtt_client_ctx_run	(void	*ctx,	u32	wait_secs)

i32	 mqtt_client_await_msg	(struct	mqtt_packet
*mqp,	u32	wait_secs,	void	**app)

i32	 mqtt_client_run	(u32	wait_secs)
struct	mqtt_packet	*	 mqp_client_alloc	(u8	msg_type,	u8	offset)

i32	
mqtt_client_buffers_register	(u32	num_mqp,
struct	mqtt_packet	*mqp_vec,	u32	buf_len,	u8
*buf_vec)
mqtt_client_ctx_info_register	(void	*ctx,	const
struct	utf8_string	*client_id,	const	struct

i32	 utf8_string	*user_name,	const	struct
utf8_string	*pass_word)

i32	

mqtt_client_ctx_will_register	(void	*ctx,	const
struct	utf8_string	*will_top,	const	struct
utf8_string	*will_msg,	enum	mqtt_qos
will_qos,	bool	retain)

i32	 mqtt_client_net_svc_register	(const	struct
device_net_services	*net)

i32	

mqtt_client_ctx_create	(const	struct
mqtt_client_ctx_cfg	*ctx_cfg,	const	struct
mqtt_client_ctx_cbs	*ctx_cbs,	void	*app,	void
**ctx)

i32	 mqtt_client_ctx_delete	(void	*ctx)

i32	 mqtt_client_lib_init	(const	struct
mqtt_client_lib_cfg	*cfg)

i32	 mqtt_client_lib_exit	(void)

Detailed	Description

This	C	library	provisions	the	interface	/	API(s)	for	the	MQTT	Client.

This	is	a	light-weight	library	to	enable	the	services	of	the	MQTT	protocol
for	one	or	more	client	applications	(that	would	typically	run	on	a
resource	constrained	system).	The	key	consideration	in	the	design	of
small	footprint	library	has	been	the	abstraction	of	the	low	level	details	of
the	message	transactions	with	the	server	and	yet,	provide	rudimentary
API(s),	such	that,	the	capabilities	and	features	of	the	protocol	are
availalbe	to	be	utilized	by	existing	and	new	applications	in	an	un-
restrictive	manner.

The	library	is	targeted	to	conform	to	MQTT	3.1.1	specification.

The	MQTT	Client	library	is	a	highly	portable	software	and	implies	a	very
limited	set	of	dependencies	on	a	platform.	Importantly,	these	limited
dependencies	are	the	commonly	used	features	used	in	the	embedded
and	the	networking	world,	and	can	be	easily	adapted	to	the	target
platforms.

The	services	of	the	library	are	multi-task	safe.	Platform	specific
atomicity	constructs	are	used,	through	abstractions,	by	the	library	to
maintain	data	coherency	and	synchronization.	In	addition,	the	library
can	be	configured	to	support	several	in-flight	messages.

The	client	library	supports	multiple	and	simultaneous	MQTT
connections	to	one	or	more	servers.	In	this	client	LIB,	the	reference	to
an	individual	connection	in	conjunction	with	the	associated
configuration	parameters	has	been	termed	as	a	'context'.	Therefore,	the
client	library	supports	multiple	'contexts'.	An	application	that	intends	to
make	use	of	the	client	library	must	set-up	or	create	a	'context'	prior	to
establishing	a	connection	with	the	server.	The	application	can	choose
to	destroy	the	'context'	after	the	connection	with	the	server	has	been
terminated.	The	client	LIB	can	only	support	a	finite	set	of	'contexts'	and
the	number	can	be	configured	by	using	a	compiler	line	option	/	flag	-
DCFG_CL_MQTT_CTXS	.

Once,	the	'context'	is	set-up,	the	application	can	send	and	receive	the

MQTT	packets	to	/	from	the	server.	Among	several	features	supported
by	the	client	LIB,	the	'context'	manages	the	keep-alive	mechanism	by
automatically	sending	PING	request	to	the	server,	if	there	has	been	no
other	packet	send	to	the	server	with	the	keep-alive	duration.

Note:
Any	future	extensions	&	development	must	follow	the	following
guidelines.	A	new	API	or	an	extension	to	the	existing	API	a)	must
be	rudimentary	b)	must	not	imply	a	rule	or	policy	(including	a	state
machine)	b)	must	ensure	simple	design	and	implementation

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

Classes	|	Defines	|	Typedefs	|
Enumerations	|	Functions

MQTT
Client	1.0.0

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h
File	Reference

#include	<stdbool.h>	#include	<stdlib.h>
#include	<stdio.h>

Go	to	the	source	code	of	this	file.

Classes

struct		 mqtt_packet
struct		 utf8_string
struct		 mqtt_ack_wlist
struct		 utf8_strqos
struct		 secure_conn
struct		 device_net_services
struct		 pub_qos2_cq
struct		 client_ctx

Defines

#define	 MQTT_COMMON_VERSTR			"1.0.0"
#define	 MIN(a,	b)			((a	>	b)?	b	:	a)
#define	 MQTT_CONNECT			0x01
#define	 MQTT_CONNACK			0x02
#define	 MQTT_PUBLISH			0x03
#define	 MQTT_PUBACK			0x04
#define	 MQTT_PUBREC			0x05
#define	 MQTT_PUBREL			0x06
#define	 MQTT_PUBCOMP			0x07
#define	 MQTT_SUBSCRIBE			0x08
#define	 MQTT_SUBACK			0x09
#define	 MQTT_UNSUBSCRIBE			0x0A
#define	 MQTT_UNSUBACK			0x0B
#define	 MQTT_PINGREQ			0x0C
#define	 MQTT_PINGRSP			0x0D
#define	 MQTT_DISCONNECT			0x0E
#define	 MAX_FH_LEN			0x05
#define	 MAX_REMLEN_BYTES			(MAX_FH_LEN	-	1)
#define	 MAKE_FH_BYTE1(msg_type,flags)			(u8)((msg_type	<<	4)	|	flags)

#define	 MAKE_FH_FLAGS(bool_dup,	enum_qos,	bool_retain)			(u8)(((bool_dup	<<3)	|	(enum_qos	<<	1)	|	bool_retain)	&	0xF)
#define	 QOS_VALUE(enum_qos)			(u8)(enum_qos	&	0x3)
#define	 QFL_VALUE			0x80
#define	 DUP_FLAG_VAL(bool_val)			(u8)(bool_val	<<	3)
#define	 BOOL_RETAIN(fh_byte1)			((fh_byte1	&	0x1)?	true	:	false)
#define	 BOOL_DUP(fh_byte1)			((fh_byte1	&	0x8)?	true	:	false)
#define	 ENUM_QOS(fh_byte1)			(enum	mqtt_qos)((fh_byte1	&	0x6)	>>	1)
#define	 MSG_TYPE(fh_byte1)			(u8)((fh_byte1	&	0xf0)	>>	4)
#define	 MQP_FHEADER_BUF(mqp)			(mqp->buffer	+	mqp->offset)

#define	 MQP_VHEADER_BUF(mqp)			(MQP_FHEADER_BUF(mqp)	+	mqp->fh_len)

#define	 MQP_PAYLOAD_BUF(mqp)			(MQP_VHEADER_BUF(mqp)	+	mqp->vh_len)

#define	 MQP_CONTENT_LEN(mqp)			(mqp->fh_len	+	mqp->vh_len	+	mqp->pl_len)
#define	 MQP_FREEBUF_LEN(mqp)
#define	 MQP_FHEADER_VAL(mqp)			(mqp->fh_byte1)
#define	 MQP_FHEADER_MSG(mqp)			(MSG_TYPE(MQP_FHEADER_VAL(mqp)))
#define	 MQP_FHEADER_FLG(mqp)			(MSG_FLAGS(MQP_FHEADER_VAL(mqp)))

#define	 DEFINE_MQP_VEC(num_mqp,	mqp_vec)			static	struct	mqtt_packet
mqp_vec[num_mqp];

#define	 DEFINE_MQP_BUF_VEC(num_mqp,	mqp_vec,	buf_len,	buf_vec)
#define	 MQP_PUB_TOP_BUF(mqp)			(MQP_VHEADER_BUF(mqp)	+	2)
#define	 MQP_PUB_TOP_LEN(mqp)			(mqp->vh_len	-	2	-	(mqp->msg_id?	2	:	0))

#define	 MQP_PUB_PAY_BUF(mqp)			(mqp->pl_len?	MQP_PAYLOAD_BUF(mqp)	:NULL)
#define	 MQP_PUB_PAY_LEN(mqp)			(mqp->pl_len)
#define	 MQP_ERR_NETWORK			(-1)
#define	 MQP_ERR_TIMEOUT			(-2)
#define	 MQP_ERR_NET_OPS			(-3)
#define	 MQP_ERR_FNPARAM			(-4)
#define	 MQP_ERR_PKT_AVL			(-5)
#define	 MQP_ERR_PKT_LEN			(-6)
#define	 MQP_ERR_NOTCONN			(-7)
#define	 MQP_ERR_BADCALL			(-8)
#define	 MQP_ERR_CONTENT			(-9)
#define	 MQP_ERR_LIBQUIT			(-10)
#define	 MQP_ERR_NOT_DEF			(-32)
#define	 DEV_NETCONN_OPT_TCP			0x01
#define	 DEV_NETCONN_OPT_UDP			0x02
#define	 DEV_NETCONN_OPT_IP6			0x04
#define	 DEV_NETCONN_OPT_URL			0x08
#define	 DEV_NETCONN_OPT_SEC			0x10
#define	 MAX_PUBREL_INFLT			8
#define	 KA_TIMEOUT_NONE			0xffffffff

Typedefs

typedef	int	 i32
typedef	unsigned	int	 u32

typedef	unsigned	char	 u8
typedef	char	 i8

typedef	unsigned	short	 u16
typedef	short	 i16

Enumerations

enum		 mqtt_qos	{	MQTT_QOS0,	MQTT_QOS1,	MQTT_QOS2	}

Functions

void	 mqp_free	(struct	mqtt_packet	*mqp)
void	 mqp_reset	(struct	mqtt_packet	*mqp)
void	 mqp_init	(struct	mqtt_packet	*mqp,	u8	offset)

i32	 mqp_buf_wr_utf8	(u8	*buf,	const	struct
utf8_string	*utf8)

i32	 mqp_buf_tail_wr_remlen	(u8	*buf,	u32
remlen)

i32	 mqp_buf_rd_remlen	(u8	*buf,	u32	*remlen)

i32	
mqp_pub_append_topic	(struct	mqtt_packet
*mqp,	const	struct	utf8_string	*topic,	u16
msg_id)

i32	 mqp_pub_append_data	(struct	mqtt_packet
*mqp,	const	u8	*data_buf,	u32	data_len)

bool	 mqp_proc_msg_id_ack_rx	(struct
mqtt_packet	*mqp_raw,	bool	has_payload)

bool	 mqp_proc_pub_rx	(struct	mqtt_packet
*mqp_raw)

bool	 mqp_ack_wlist_append	(struct
mqtt_ack_wlist	*list,	struct	mqtt_packet	*elem)

struct	mqtt_packet	*	 mqp_ack_wlist_remove	(struct
mqtt_ack_wlist	*list,	u16	msg_id)

void	 mqp_ack_wlist_purge	(struct	mqtt_ack_wlist
*list)

i32	 mqp_prep_fh	(struct	mqtt_packet	*mqp,	u8
flags)

i32	

mqp_recv	(i32	net,	const	struct
device_net_services	*net_ops,	struct
mqtt_packet	*mqp,	u32	wait_secs,	bool
*timed_out,	void	*ctx)

void	 qos2_pub_cq_reset	(struct	pub_qos2_cq	*cq)

bool	 qos2_pub_cq_logup	(struct	pub_qos2_cq*cq,	u16	msg_id)

bool	
qos2_pub_cq_unlog	(struct	pub_qos2_cq
*cq,	u16	msg_id)

bool	 qos2_pub_cq_check	(struct	pub_qos2_cq*cq,	u16	msg_id)
void	 cl_ctx_reset	(struct	client_ctx	*cl_ctx)

void	 cl_ctx_timeout_insert	(struct	client_ctx
**head,	struct	client_ctx	*elem)

void	 cl_ctx_remove	(struct	client_ctx	**head,	struct
client_ctx	*elem)

void	 cl_ctx_timeout_update	(struct	client_ctx
*cl_ctx,	u32	now_secs)

Detailed	Description

This	file	incorporates	constructs	that	are	common	to	both	client	and
server	implementation.

The	applications	are	not	expected	to	utlize	the	routines	made	available
in	this	module	module.

Note:
the	routines	in	this	module	do	not	check	for	availability	and
correctness	of	the	input	parameters

Warning:
The	module	is	expected	to	under-go	changes	whilst	incorporating
support	for	the	server.	Therefore,	it	is	suggested	that	applications
do	not	rely	on	the	services	provided	in	this	module.

Define	Documentation

#define	DEFINE_MQP_BUF_VEC (num_mqp,
	 mqp_vec,
	 buf_len,
	 buf_vec	
)

Value:
DEFINE_MQP_VEC(num_mqp,	mqp_vec);																

													\

								static	u8	buf_vec[num_mqp][buf_len];

#define	MAX_FH_LEN			0x05

MAX	Length	of	Fixed	Header

#define	MAX_REMLEN_BYTES			(MAX_FH_LEN	-	1)

Max	number	of	bytes	in	remaining	length	field

#define	MQP_FREEBUF_LEN (mqp)
Value:
(mqp->maxlen	-	mqp->offset	-						\

																															MQP_CONTENT_LEN(mq

p))

#define	MQTT_COMMON_VERSTR			"1.0.0"

Version	of	Common	LIB

#define	MQTT_CONNECT			0x01

MQTT	Message	Types

#define	QFL_VALUE			0x80

QOS	Failure	value	(SUBACK)

Enumeration	Type	Documentation

enum	mqtt_qos

MQTT	Quality	of	Service

Enumerator:

MQTT_QOS0	 QoS	Level	0

MQTT_QOS1	 QoS	Level	1

MQTT_QOS2	 QoS	Level	2

Function	Documentation

i32	mqp_buf_rd_remlen (u8	*	 buf,
u32	*	 remlen	
)

Read	MQTT	construct	'Remaining	Length'	from	leading	bytes	of	the
buffer.	The	'remaining	length'	is	written	in	the	format	as	outlined	in	the
MQTT	specification.

Parameters:
[in] buf refers	to	memory	to	head-read	'Remaining

Length'	from
[in] remlen place-holder	for	The	'Remaining	Length'	value

Returns:
in	success,	number	of	header	bytes	read,	otherwise	-1	on	error

i32	mqp_buf_tail_wr_remlen (u8	*	 buf,
u32	 remlen	
)

Write	the	MQTT	construct	'Remaining	Length'	into	trailing	end	of
buffer.	The	'remaining	length'	is	written	in	the	format	as	outlined	in	the
MQTT	specification.

The	implementation	assumes	availability	of	at-least	4	bytes	in	the
buffer.	Depending	on	the	value	of	'Remaining	Length'	appropriate
trailing	bytes	in	the	buffer	would	be	used.

Parameters:
[in] buf refers	to	memory	to	tail-write	'Remaining

Length'	into
[in] remlen The	'Remaining	Length'	value

Returns:
in	success,	number	of	trailing	bytes	used,	otherwise	-1	on	error

i32	mqp_buf_wr_utf8 (u8	*	 buf,
const	struct	utf8_string	*	 utf8	
)

Write	UTF8	information	into	the	buffer.	The	UTF8	information	includes
content	and	its	length.

Warning:
The	routine	does	not	check	for	correctness	of	the	paramters.

Parameters:
[in] buf refers	to	memory	to	write	UTF8	information	into
[in] utf8 contains	UTF8	information	to	be	written

Returns:
on	success,	number	of	bytes	written,	otherwise	-1	on	error.

void	mqp_free (struct	mqtt_packet	*	 mqp)

Free	a	MQTT	Packet	Buffer	Puts	back	the	packet	buffer	in	to	the
appropriate	pool.

Parameters:
[in] mqp packet	buffer	to	be	freed

Returns:
none

void	mqp_init (struct	mqtt_packet	*	 mqp,
u8	 offset	
)

Initializes	attributes	of	the	MQTT	Packet	Holder.	This	routine	sets
number	of	users	of	the	MQTT	Packet	Holder	to	1.	However,	it	leaves,
if	already	provisioned,	the	reference	to	buffer	and	its	size	un-altered.

Parameters:
[in] mqp packet	buffer	to	be	initialized
[in] offset index	in	buffer	to	indicate	start	of	the	contents

Returns:
none

i32	mqp_prep_fh (struct	mqtt_packet	*	 mqp,
u8	 flags	
)

Prepare	the	Fixed-Header	of	the	MQTT	Packet	(before	being	sent	to
network)	Based	on	the	contents	of	the	mqtt	packet	and	the
combination	of	DUP,	QoS	and	Retain	flags	as	outlined	the	MQTT
specification,	the	routine	updates,	among	others,	significant	internal
fields	such	as	'remaining	length'	and	'fixed	header	length'	in	the
packet	construct	and	embeds	the	fixed	header,	so	created,	in	the
packet	buffer.

This	service	must	be	utilized	on	a	packet	that	has	been	already
populated	with	all	the	payload	data,	topics	and	other	contents.	The
fixed	header	must	be	the	final	step	in	the	compostion	of	MQTT	packet
prior	to	its	dispatch	to	the	server.

Returns	size,	in	bytes,	of	the	fixed-header,	otherwise	-1	on	error.

bool	mqp_proc_msg_id_ack_rx (struct	mqtt_packet	*	 mqp_raw,
bool	 has_payload
)

Construct	a	packet	for	Message	ID	enabled	ACK	received	from
network	Process	the	raw	ACK	message	information	to	update	the

packet	holder.

Warning:
This	routine	does	not	check	for	correctness	of	the	input
parameters.

Parameters:
[in] mqp_raw holds	a	raw	buffer	from	the	network
[in] has_payload asserted,	if	ACK	message	should	have	a

payload

Returns:
on	success,	true,	otherwise	false

bool	mqp_proc_pub_rx (struct	mqtt_packet	*	 mqp_raw)

Construct	a	packet	for	PUBLISH	message	received	from	the	network
Process	the	raw	PUB	message	information	to	update	the	packet
holder.

Warning:
This	routine	does	not	check	for	correctness	of	the	input
parameters.

Parameters:
[in] mqp_raw holds	a	raw	buffer	from	the	network

Returns:
on	success,	true,	other	wise	false

i32	mqp_pub_append_data (struct	mqtt_packet	*	 mqp,
const	u8	*	 data_buf,
u32	 data_len	
)

Include	payload	data	for	publishing	The	payload	data	is	associated

with	a	topic.

Warning:
This	routine	does	not	check	for	correctness	of	the	input
parameters.

Parameters:
[in] mqp packet	buffer	in	which	payload	data	must	be

included.
[in] data_buf data	to	be	included	in	the	packet	buffer
[in] data_len length	of	the	data	to	be	included	in	the

packet.

Returns:
on	success,	number	of	bytes	appended,	otherwise	-1	on	error.

Note:
A	'topic'	must	be	appended	prior	to	inclusion	of	pulished	data.

i32	mqp_pub_append_topic (struct	mqtt_packet	*	 mqp,
const	struct	utf8_string	*	 topic,
u16	 msg_id	
)

Include	variable	header	Topic	as	part	of	PUB	Message	construction.
Inclusion	of	a	Topic	also	encompasses	incorporation	of	the	message
ID.

The	topic	refers	to	the	subject	for	which	data	will	be	published	by	the
client	or	the	server.	The	topic	entity	must	be	appended	into	the	packet
buffer	prior	to	the	inclusion	of	the	payload	(data).

Warning:
This	routine	does	not	check	for	correctness	of	the	input
parameters.

Parameters:

[in] mqp packet	buffer	in	which	topic	must	be	included.
[in] topic UTF8	information
[in] msg_id Message	or	Packet	transaction	ID

Returns:
on	success,	number	of	bytes	appended,	otherwise	-1	on	error.

Note:
A	'topic'	must	be	appended	prior	to	inclusion	of	pulished	data.

void	mqp_reset (struct	mqtt_packet	*	 mqp)

Resets	the	attributes	of	MQTT	Packet	Holder	to	its	init	state	Not	all
fields	are	reset	-	entities	such	as	offset,	n_refs	in	addition	to	buffer
information	are	not	updated.

Parameters:
[in] mqp packet	buffer	to	be	reset

Returns:
none

See	also:
mqp_init

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

All Functions Enumerations Enumerator Defines

d m q v

MQTT
Client	1.0.0

Here	is	a	list	of	all	documented	file	members	with	links	to	the
documentation:

-	d	-

DEV_NETCONN_OPT_IP6	:	mqtt_common.h
DEV_NETCONN_OPT_SEC	:	mqtt_common.h
DEV_NETCONN_OPT_TCP	:	mqtt_common.h
DEV_NETCONN_OPT_UDP	:	mqtt_common.h
DEV_NETCONN_OPT_URL	:	mqtt_common.h

-	m	-

MAX_FH_LEN	:	mqtt_common.h
MAX_REMLEN_BYTES	:	mqtt_common.h
mqp_buf_rd_remlen()	:	mqtt_common.h
mqp_buf_tail_wr_remlen()	:	mqtt_common.h
mqp_buf_wr_utf8()	:	mqtt_common.h
mqp_client_alloc()	:	mqtt_client.h
MQP_CONNACK_RC	:	mqtt_client.h
MQP_CONNACK_SP	:	mqtt_client.h
MQP_ERR_BADCALL	:	mqtt_common.h
MQP_ERR_CONTENT	:	mqtt_common.h
MQP_ERR_FNPARAM	:	mqtt_common.h
MQP_ERR_LIBQUIT	:	mqtt_common.h
MQP_ERR_NET_OPS	:	mqtt_common.h

MQP_ERR_NETWORK	:	mqtt_common.h
MQP_ERR_NOT_DEF	:	mqtt_common.h
MQP_ERR_NOTCONN	:	mqtt_common.h
MQP_ERR_PKT_AVL	:	mqtt_common.h
MQP_ERR_PKT_LEN	:	mqtt_common.h
MQP_ERR_TIMEOUT	:	mqtt_common.h
mqp_free()	:	mqtt_common.h
mqp_init()	:	mqtt_common.h
mqp_prep_fh()	:	mqtt_common.h
mqp_proc_msg_id_ack_rx()	:	mqtt_common.h
mqp_proc_pub_rx()	:	mqtt_common.h
mqp_pub_append_data()	:	mqtt_common.h
mqp_pub_append_topic()	:	mqtt_common.h
MQP_PUB_PAY_BUF	:	mqtt_common.h
MQP_PUB_PAY_LEN	:	mqtt_common.h
MQP_PUB_TOP_BUF	:	mqtt_common.h
MQP_PUB_TOP_LEN	:	mqtt_common.h
mqp_reset()	:	mqtt_common.h
MQTT_CFG_APP_HAS_RTSK	:	mqtt_client.h
MQTT_CFG_MK_GROUP_CTX	:	mqtt_client.h
MQTT_CFG_PROTOCOL_V31	:	mqtt_client.h
mqtt_client_await_msg()	:	mqtt_client.h
mqtt_client_buffers_register()	:	mqtt_client.h
mqtt_client_ctx_await_msg()	:	mqtt_client.h
mqtt_client_ctx_create()	:	mqtt_client.h
mqtt_client_ctx_delete()	:	mqtt_client.h
mqtt_client_ctx_info_register()	:	mqtt_client.h
mqtt_client_ctx_run()	:	mqtt_client.h
mqtt_client_ctx_will_register()	:	mqtt_client.h
mqtt_client_is_connected()	:	mqtt_client.h
mqtt_client_lib_exit()	:	mqtt_client.h
mqtt_client_lib_init()	:	mqtt_client.h
mqtt_client_net_svc_register()	:	mqtt_client.h
mqtt_client_new_msg_id()	:	mqtt_client.h
mqtt_client_pub_dispatch()	:	mqtt_client.h
mqtt_client_pub_msg_send()	:	mqtt_client.h
mqtt_client_run()	:	mqtt_client.h
mqtt_client_send_progress()	:	mqtt_client.h
MQTT_CLIENT_VERSTR	:	mqtt_client.h

MQTT_COMMON_VERSTR	:	mqtt_common.h
MQTT_CONNECT	:	mqtt_common.h
mqtt_connect_msg_send()	:	mqtt_client.h
mqtt_disconn_send()	:	mqtt_client.h
MQTT_NETCONN_OPT_IP6	:	mqtt_client.h
MQTT_NETCONN_OPT_SEC	:	mqtt_client.h
MQTT_NETCONN_OPT_URL	:	mqtt_client.h
mqtt_pingreq_send()	:	mqtt_client.h
mqtt_qos	:	mqtt_common.h
MQTT_QOS0	:	mqtt_common.h
MQTT_QOS1	:	mqtt_common.h
MQTT_QOS2	:	mqtt_common.h
mqtt_sub_dispatch()	:	mqtt_client.h
mqtt_sub_msg_send()	:	mqtt_client.h
mqtt_unsub_dispatch()	:	mqtt_client.h
mqtt_unsub_msg_send()	:	mqtt_client.h

-	q	-

QFL_VALUE	:	mqtt_common.h

-	v	-

VHB_CONNACK_RC	:	mqtt_client.h
VHB_CONNACK_SP	:	mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

client_ctx	Member	List

This	is	the	complete	list	of	members	for	client_ctx,	including	all
inherited	members.
flags	(defined	in	client_ctx) client_ctx
ip_length	(defined	in	client_ctx) client_ctx
ka_secs	(defined	in	client_ctx) client_ctx
net	(defined	in	client_ctx) client_ctx
next	(defined	in	client_ctx) client_ctx
remote_ip	(defined	in	client_ctx) client_ctx
timeout	(defined	in	client_ctx) client_ctx
usr	(defined	in	client_ctx) client_ctx

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

MQTT
Client	1.0.0

D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

Go	to	the	documentation	of	this	file.
00001	/***

00002	*

00003	*			Copyright	(C)	2014	Texas	Instruments	Inc

orporated

00004	*

00005	*			All	rights	reserved.	Property	of	Texas	I

nstruments	Incorporated.

00006	*			Restricted	rights	to	use,	duplicate	or	d

isclose	this	code	are

00007	*			granted	through	contract.

00008	*

00009	*			The	program	may	not	be	used	without	the	

written	permission	of

00010	*			Texas	Instruments	Incorporated	or	agains

t	the	terms	and	conditions

00011	*			stipulated	in	the	agreement	under	which	

this	program	has	been	supplied,

00012	*			and	under	no	circumstances	can	it	be	use

d	with	non-TI	connectivity	device.

00013	*

00014	**

**********************************/

00015	

00016	/*

00017			mqtt_common.h

00018	

00019			This	module	outlines	the	interfaces	that	a

re	common	to	both	client	amd

00020			server	components.	The	applications	are	no

t	expected	to	utilize	the

00021			services	outlined	in	this	module.

00022	*/

00023	

00024	#ifndef	__MQTT_COMMON_H__

00025	#define	__MQTT_COMMON_H__

00026	

00042	#include	<stdbool.h>

00043	#include	<stdlib.h>

00044	#include	<stdio.h>

00045	

00046	#define	MQTT_COMMON_VERSTR	"1.0.0"	

00048	typedef	int												i32;

00049	typedef	unsigned	int			u32;

00050	typedef	unsigned	char			u8;

00051	typedef	char												i8;

00052	typedef	unsigned	short	u16;

00053	typedef	short										i16;

00054	

00055	#define	MIN(a,	b)	((a	>	b)?	b	:	a)

00056	

00058	#define	MQTT_CONNECT						0x01

00059	#define	MQTT_CONNACK						0x02

00060	#define	MQTT_PUBLISH						0x03

00061	#define	MQTT_PUBACK							0x04

00062	#define	MQTT_PUBREC							0x05

00063	#define	MQTT_PUBREL							0x06

00064	#define	MQTT_PUBCOMP						0x07

00065	#define	MQTT_SUBSCRIBE				0x08

00066	#define	MQTT_SUBACK							0x09

00067	#define	MQTT_UNSUBSCRIBE		0x0A

00068	#define	MQTT_UNSUBACK					0x0B

00069	#define	MQTT_PINGREQ						0x0C

00070	#define	MQTT_PINGRSP						0x0D

00071	#define	MQTT_DISCONNECT			0x0E

00072	

00073	#define	MAX_FH_LEN								0x05				

00076	#define	MAX_REMLEN_BYTES		(MAX_FH_LEN	-	1)		

00077	

00078	#define	MAKE_FH_BYTE1(msg_type,		flags)	(u8)

((msg_type	<<	4)	|	flags)

00079	

00080	#define	MAKE_FH_FLAGS(bool_dup,	enum_qos,	bo

ol_retain)																		\

00081									(u8)(((bool_dup	<<	3)	|	(enum_qos	<<

	1)	|	bool_retain)	&	0xF)

00082	

00083	#define	QOS_VALUE(enum_qos)	(u8)(enum_qos	&	

0x3)

00084	#define	QFL_VALUE											0x80		

00086	#define	DUP_FLAG_VAL(bool_val)	(u8)(bool_val

	<<	3)

00087	

00088	#define	BOOL_RETAIN(fh_byte1)		((fh_byte1	&	

0x1)?	true	:	false)

00089	#define	BOOL_DUP(fh_byte1)					((fh_byte1	&	

0x8)?	true	:	false)

00090	#define	ENUM_QOS(fh_byte1)					(enum	mqtt_qo

s)((fh_byte1	&	0x6)	>>	1)

00091	

00092	#define	MSG_TYPE(fh_byte1)		(u8)((fh_byte1	&

	0xf0)	>>	4)

00093	

00094	static	inline	u32	buf_wr_nbytes(u8	*dst,	con

st	u8	*src,	u32	n)

00095	{

00096									u32	c	=	n;	

00097									while(c--)

00098																	*dst++	=	*src++;

00099	

00100									return	n;

00101	}

00102	

00103	static	inline	u32	buf_set(u8	*dst,	u8	val,	u

32	n)

00104	{

00105									u32	c	=	n;	

00106									while(c--)

00107																	*dst++	=	val;

00108	

00109									return	n;

00110	}

00111	

00113	static	inline	u32	buf_wr_nbo_2B(u8	*buf,	u16

	val)

00114	{

00115									buf[0]	=	(u8)((val	>>	8)	&	0xFF);	/*

	MSB	*/

00116									buf[1]	=	(u8)((val)						&	0xFF);	/*

	LSB	*/

00117									return	2;

00118	}

00119	

00121	static	inline	u32	buf_rd_nbo_2B(const	u8	*bu

f,	u16	*val)

00122	{

00123									*val	=	(u16)((buf[0]	<<	8)	|	(buf[1]

));

00124									return	2;

00125	}

00126	

00132	struct	mqtt_packet	{

00133	

00134									u8																					msg_type;			

00135									u8																					fh_byte1;			

00137									u16																				msg_id;					

00139									u8																					n_refs;					

00140									u8																					pad[3];

00141	

00142									u8																					offset;					

00143									u8																					fh_len;					

00144									u16																				vh_len;					

00145									u32																				pl_len;					

00147									u32																				private;

00148	

00149									u32																				maxlen;					

00150									u8																				*buffer;					

00153									void																		(*free)(struct	

mqtt_packet	*mqp);

00154	

00155									struct	mqtt_packet				*next;

00156	};

00157	

00160	#define	MQP_FHEADER_BUF(mqp)		(mqp->buffer	+

	mqp->offset)

00161	#define	MQP_VHEADER_BUF(mqp)		(MQP_FHEADER_B

UF(mqp)	+	mqp->fh_len)

00162	#define	MQP_PAYLOAD_BUF(mqp)		(MQP_VHEADER_B

UF(mqp)	+	mqp->vh_len)

00163	

00164	#define	MQP_CONTENT_LEN(mqp)		(mqp->fh_len	+

	mqp->vh_len	+	mqp->pl_len)

00165	#define	MQP_FREEBUF_LEN(mqp)		(mqp->maxlen	-

	mqp->offset	-						\

00166																																MQP_CONTENT_L

EN(mqp))

00167	

00168	#define	MQP_FHEADER_VAL(mqp)		(mqp->fh_byte1)

00169	#define	MQP_FHEADER_MSG(mqp)		(MSG_TYPE(MQP_

FHEADER_VAL(mqp)))

00170	#define	MQP_FHEADER_FLG(mqp)		(MSG_FLAGS(MQP

_FHEADER_VAL(mqp)))

00171	

00172	#define	DEFINE_MQP_VEC(num_mqp,	mqp_vec)				

												\

00173									static	struct	mqtt_packet	mqp_vec[nu

m_mqp];

00174	

00175	#define	DEFINE_MQP_BUF_VEC(num_mqp,	mqp_vec,

	buf_len,	buf_vec)								\

00176									DEFINE_MQP_VEC(num_mqp,	mqp_vec);			

																										\

00177									static	u8	buf_vec[num_mqp][buf_len];

00178	

00179	/*--

00180		*	Heleper	MACROS	for	PUBLISH-RX	Message	Pro

cessing

00181		*--

00182		*/

00183	

00189	#define	MQP_PUB_TOP_BUF(mqp)	(MQP_VHEADER_BU

F(mqp)	+	2)

00190	

00192	#define	MQP_PUB_TOP_LEN(mqp)	(mqp->vh_len	-	

2	-	(mqp->msg_id?	2	:	0))

00193	

00195	#define	MQP_PUB_PAY_BUF(mqp)	(mqp->pl_len?	M

QP_PAYLOAD_BUF(mqp)	:	NULL)

00196	

00198	#define	MQP_PUB_PAY_LEN(mqp)	(mqp->pl_len)

00199	

00205	#define	WILL_RETAIN_VAL	0x20

00206	#define	WILL_CONFIG_VAL	0x04

00207	#define	CLEAN_START_VAL	0x02

00208	#define	USER_NAME_OPVAL	0x80

00209	#define	PASS_WORD_OPVAL	0x40

00210	

00219	#define	MQP_ERR_NETWORK			(-1)		

00220	#define	MQP_ERR_TIMEOUT			(-2)		

00221	#define	MQP_ERR_NET_OPS			(-3)		

00222	#define	MQP_ERR_FNPARAM			(-4)		

00223	#define	MQP_ERR_PKT_AVL			(-5)		

00224	#define	MQP_ERR_PKT_LEN			(-6)		

00225	#define	MQP_ERR_NOTCONN			(-7)		

00226	#define	MQP_ERR_BADCALL			(-8)		

00227	#define	MQP_ERR_CONTENT			(-9)		

00228	#define	MQP_ERR_LIBQUIT		(-10)		

00231	#define	MQP_ERR_NOT_DEF		(-32)		

00235	/*--

00236		*	Common	Operations

00237		*--

00238		*/

00239	

00246	void	mqp_free(struct	mqtt_packet	*mqp);

00247	

00257	void	mqp_reset(struct	mqtt_packet	*mqp);

00258	

00268	void	mqp_init(struct	mqtt_packet	*mqp,	u8	of

fset);

00269	

00271	static	

00272	inline	void	mqp_buffer_attach(struct	mqtt_pa

cket	*mqp,	u8	*buffer,	u32	length,

00273																															u8	offset)

00274	{

00275									mqp_init(mqp,	offset);

00276	

00277									mqp->buffer	=	buffer;

00278									mqp->maxlen	=	length;

00279									mqp->free			=	NULL;

00280	

00281									return;

00282	}

00283	

00285	struct	utf8_string	{

00286									

00287									i8			*buffer;			

00288									u16			length;			

00289	};

00290	

00300	i32	mqp_buf_wr_utf8(u8	*buf,	const	struct	ut

f8_string	*utf8);

00301	

00314	i32	mqp_buf_tail_wr_remlen(u8	*buf,	u32	reml

en);

00315	

00324	i32	mqp_buf_rd_remlen(u8	*buf,	u32	*remlen);

00325	

00343	i32	

00344	mqp_pub_append_topic(struct	mqtt_packet	*mqp

,	const	struct	utf8_string	*topic,

00345																						u16	msg_id);

00346	

00360	i32	mqp_pub_append_data(struct	mqtt_packet	*

mqp,	const	u8	*data_buf,

00361																									u32	data_len);

00362	

00373	bool	mqp_proc_msg_id_ack_rx(struct	mqtt_pack

et	*mqp_raw,	bool	has_payload);

00374	

00384	bool	mqp_proc_pub_rx(struct	mqtt_packet	*mqp

_raw);

00385	

00386	/*

00387				Wait-List	of	MQTT	Messages	for	which	ackn

oledge	is	pending	from	remote	node.

00388	*/

00389	struct	mqtt_ack_wlist	{

00390									

00391									struct	mqtt_packet	*head;		/*	Points

	to	head	of	single	linked-list.	*/

00392									struct	mqtt_packet	*tail;		/*	Points

	to	tail	of	single	linked-list.	*/

00393	};

00394	

00395	static	inline	bool	mqp_ack_wlist_is_empty(st

ruct	mqtt_ack_wlist	*list)

00396	{

00397									return	(NULL	==	list->head)	?	true	:	

false;

00398	}

00399	

00400	/*

00401				Add	specified	element	into	trailing	end	o

f	list.

00402	

00403				Returns,	on	success,	true,	otherwise	fals

e.

00404	*/

00405	bool	mqp_ack_wlist_append(struct	mqtt_ack_wl

ist	*list,

00406																											struct	mqtt_packet

				*elem);

00407	

00408	/*

00409				Removes	element	that	has	specified	msg_id

	from	list.	

00410	

00411				Returns,	on	success,	pointer	to	removed	e

lement,	otherwise	NULL.

00412	*/

00413	struct	mqtt_packet	*mqp_ack_wlist_remove(str

uct	mqtt_ack_wlist	*list,

00414																																											u1

6	msg_id);

00415	/*	

00416				Removes	and	frees	all	elements	in	list.	

00417	*/

00418	void	mqp_ack_wlist_purge(struct	mqtt_ack_wli

st	*list);

00419	

00420	static	inline	bool	is_wlist_empty(const	stru

ct	mqtt_ack_wlist	*list)

00421	{

00422									return	list->head?	false	:	true;

00423	}

00424	

00439	i32	mqp_prep_fh(struct	mqtt_packet	*mqp,	u8	

flags);

00440	

00442	enum	mqtt_qos	{

00443									

00444									MQTT_QOS0,		

00445									MQTT_QOS1,		

00446									MQTT_QOS2			

00447	};

00448	

00450	struct	utf8_strqos	{

00451	

00452									i8													*buffer;		

00453									u16													length;		

00454									enum	mqtt_qos			qosreq;		

00455	};

00456	

00457	

00467	struct	secure_conn	{

00468									

00469									void	*method;		

00470									void	*cipher;		

00471									u32			n_file;		

00472									char	**files;		

00473	};

00474	

00484	struct	device_net_services	{

00485	

00489	#define	DEV_NETCONN_OPT_TCP		0x01		

00490	#define	DEV_NETCONN_OPT_UDP		0x02		

00491	#define	DEV_NETCONN_OPT_IP6		0x04		

00492	#define	DEV_NETCONN_OPT_URL		0x08		

00493	#define	DEV_NETCONN_OPT_SEC		0x10		

00512									i32	(*open)(u32	nwconn_opts,	const	i

8	*server_addr,	u16	port_number,

00513																					const	struct	secure_conn

	*nw_security);

00514	

00526									i32			(*send)(i32	comm,	const	u8	*bu

f,	u32	len,	void	*ctx);

00527	

00548									i32			(*recv)(i32	comm,	u8	*buf,	u32

	len,	u32	wait_secs,

00549																							bool	*err_timeo,	void	

*ctx);

00550	

00565									i32			(*send_dest)(i32	comm,	const	u

8	*buf,	u32	len,	u16	dest_port,

00566																												const	i8	*dest_ip

,	u32	ip_len);

00567	

00588									i32			(*recv_from)(i32	comm,	u8	*buf

,	u32	len,	u16	*from_port,

00589																												i8	*from_ip,	u32	

*ip_len);

00590	

00592									i32			(*close)(i32	comm);

00593	

00605									i32	(*listen)(u32	nwconn_opts,	u16	p

ort_number,

00606																							const	struct	secure_co

nn	*nw_security);

00607	

00623									i32	(*accept)(i32	listen,	i8	*client

_ip,	u32	*ip_length);

00624	

00653									i32			(*io_mon)(i32	*recv_cvec,	i32	

*send_cvec,

00654																									i32	*rsvd_cvec,		u32

	wait_secs);

00655	

00677									u32			(*time)(void);

00678	};

00679		/*	device_net_services	*/

00681	

00682	/*	Receive	data	from	the	specified	network	a

nd	read	into	the	'mqp'	*/

00683	i32	mqp_recv(i32		net,					const	struct	devi

ce_net_services	*net_ops,

00684														struct	mqtt_packet	*mqp,	u32	wa

it_secs,	bool	*timed_out,

00685														void	*ctx);

00686	

00687	/*--

00688		*	Data	structure	for	managing	the	QoS2	PUB	

RX	packets	and	follow-ups

00689		*--

---------------------------------*/

00690	

00691	#define	MAX_PUBREL_INFLT	8	/*	Must	be	kept	a

s	a	value	of	2^n	*/

00692	

00693	struct	pub_qos2_cq	{	/*	Circular	Queue	CQ	to

	track	QOS2	PUB	RX	messages	*/

00694	

00695									u16	id_vec[MAX_PUBREL_INFLT];		/*	Ve

ctor	to	store	RX	Message-IDs	*/

00696									u8		n_free;																				/*	Nu

m	of	free	elements	in	vector	*/

00697									u8		rd_idx;																				/*	In

dex	to	Read		next	Message-ID	*/

00698									u8		wr_idx;																				/*	In

dex	to	Write	next	Message-ID	*/

00699	};

00700	

00701	/*	Reset	the	specified	Circular	Queue	(CQ)	*/

00702	void	qos2_pub_cq_reset(struct	pub_qos2_cq	*c

q);

00703	

00704	/*	Append	the	message-id	into	the	CQ	tail.	R

eturn	true	on	success,	else	false	*/

00705	bool	qos2_pub_cq_logup(struct	pub_qos2_cq	*c

q,	u16	msg_id);

00706	

00707	/*	Remove	the	message-id	from	the	CQ	head.	R

eturn	true	on	success,	else	false	*/

00708	bool	qos2_pub_cq_unlog(struct	pub_qos2_cq	*c

q,	u16	msg_id);

00709	

00710	/*	Is	the	message-id	available	in	the	CQ	?	R

eturn	true	on	success,	else	false	*/

00711	bool	qos2_pub_cq_check(struct	pub_qos2_cq	*c

q,	u16	msg_id);

00712	

00713	/*	Get	the	count	of	message-ID(s)	availalbe	

in	the	CQ	*/

00714	static	inline	i32	qos2_pub_cq_count(struct	p

ub_qos2_cq	*cq)

00715	{

00716									return	MAX_PUBREL_INFLT	-	cq->n_free

;

00717	}

00718	

00719	struct	client_ctx	{

00720	

00721									void								*usr;		/*	Client	Usr	*/

00722									i32										net;		/*	Socket	HND	*/

00723	

00724									i8											remote_ip[16];

00725									u32										ip_length;

00726	

00727									u32										timeout;

00728									u16										ka_secs;

00729	

00730									u32										flags;

00731	

00732									struct	client_ctx	*next;

00733	};

00734	

00735	void	cl_ctx_reset(struct	client_ctx	*cl_ctx)

;

00736	void	cl_ctx_timeout_insert(struct	client_ctx

	**head,

00737																												struct	client_ctx

	*elem);

00738	

00739	void	cl_ctx_remove(struct	client_ctx	**head,

00740																				struct	client_ctx	*elem);

00741	

00742	#define	KA_TIMEOUT_NONE	0xffffffff		/*	Diffe

rent	than	KA	SECS	=	0	*/

00743	void	cl_ctx_timeout_update(struct	client_ctx

	*cl_ctx,	u32	now_secs);

00744	

00745	#endif

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

device_net_services	Member	List

This	is	the	complete	list	of	members	for	device_net_services,
including	all	inherited	members.
accept device_net_services
close device_net_services
io_mon device_net_services
listen device_net_services
open device_net_services
recv device_net_services
recv_from device_net_services
send device_net_services
send_dest device_net_services
time device_net_services

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

mqtt_ack_wlist	Member	List

This	is	the	complete	list	of	members	for	mqtt_ack_wlist,	including	all
inherited	members.
head	(defined	in	mqtt_ack_wlist)mqtt_ack_wlist
tail	(defined	in	mqtt_ack_wlist) mqtt_ack_wlist

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

MQTT
Client	1.0.0

D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h

Go	to	the	documentation	of	this	file.
00001	

00002	/***

00003	*

00004	*			Copyright	(C)	2014	Texas	Instruments	Inc

orporated

00005	*

00006	*			All	rights	reserved.	Property	of	Texas	I

nstruments	Incorporated.

00007	*			Restricted	rights	to	use,	duplicate	or	d

isclose	this	code	are

00008	*			granted	through	contract.

00009	*

00010	*			The	program	may	not	be	used	without	the	

written	permission	of

00011	*			Texas	Instruments	Incorporated	or	agains

t	the	terms	and	conditions

00012	*			stipulated	in	the	agreement	under	which	

this	program	has	been	supplied,

00013	*			and	under	no	circumstances	can	it	be	use

d	with	non-TI	connectivity	device.

00014	*

00015	**

**********************************/

00016	

00017	/*

00018			mqtt_client.h

00019			

00020			This	module	enumerates	the	public	interfac

es	/	API	of	the	MQTT	Client

00021			Library.

00022	*/

00023	

00024	

00025	#ifndef	__MQTT_CLIENT_H__

00026	#define	__MQTT_CLIENT_H__

00027	

00076	#include	"mqtt_common.h"

00077	

00078	/*--

00079		*		MQTT	Client	Messaging	Routines	/	Services

00080		*--

00081		*/

00082	

00087	#define	MQTT_CLIENT_VERSTR	"1.0.0"	

00093	u16	mqtt_client_new_msg_id(void);

00094	

00110	bool	mqtt_client_is_connected(void	*ctx);

00111	

00137	i32	mqtt_connect_msg_send(void	*ctx,	bool	cl

ean_session,	u16	ka_secs);

00138	

00168	i32	mqtt_client_pub_msg_send(void	*ctx,

00169																														const		struct	u

tf8_string	*topic,

00170																														const	u8	*data_

buf,	u32	data_len,

00171																														enum	mqtt_qos	q

os,		bool	retain);

00172	

00211	i32	mqtt_client_pub_dispatch(void	*ctx,	stru

ct	mqtt_packet	*mqp,

00212																														enum	mqtt_qos	q

os,	bool	retain);

00213	

00243	i32	mqtt_sub_msg_send(void	*ctx,	const	struct

	utf8_strqos	*qos_topics,	u32	count);

00244	

00283	i32	mqtt_sub_dispatch(void	*ctx,	struct	mqtt

_packet	*mqp);

00284	

00315	i32	mqtt_unsub_msg_send(void	*ctx,	const	str

uct	utf8_string	*topics,	u32	count);

00316	

00356	i32	mqtt_unsub_dispatch(void	*ctx,	struct	mq

tt_packet	*mqp);

00357	

00365	i32	mqtt_pingreq_send(void	*ctx);

00366	

00373	i32	mqtt_disconn_send(void	*ctx);

00374	

00375	

00431	i32	mqtt_client_send_progress(void	*ctx);

00432	

00455	i32	mqtt_client_ctx_await_msg(void	*ctx,	u8	

msg_type,	struct	mqtt_packet	*mqp,

00456																															u32	wait_secs)

;

00457	

00462	static	inline

00463	i32	mqtt_client_ctx_recv(void	*ctx,	struct	m

qtt_packet	*mqp,	u32	wait_secs)

00464	{

00465									/*	Receive	next	and	any	MQTT	Message

	from	the	broker	*/

00466									return	mqtt_client_ctx_await_msg(ctx

,	0x00,	mqp,	wait_secs);

00467	}

00468	

00491	i32	mqtt_client_ctx_run(void	*ctx,	u32	wait_

secs);

00492	

00513	i32	mqtt_client_await_msg(struct	mqtt_packet

	*mqp,	u32	wait_secs,	void	**app);

00514	

00537	i32	mqtt_client_run(u32	wait_secs);

00538	

00539	/*--

00540		*		MQTT	Client	Library:	Packet	Buffer	Pool	

and	its	management

00541		*--

00542		*/

00543	

00557	struct	mqtt_packet	*mqp_client_alloc(u8	msg_

type,	u8	offset);

00558	

00564	static	inline	struct	mqtt_packet	*mqp_client

_send_alloc(u8	msg_type)

00565	{

00566									return	mqp_client_alloc(msg_type,	MA

X_FH_LEN);

00567	}

00568	

00574	static	inline	struct	mqtt_packet	*mqp_client

_recv_alloc(u8	msg_type)

00575	{

00576									return	mqp_client_alloc(msg_type,	0)

;

00577	}

00578	

00609	i32	mqtt_client_buffers_register(u32	num_mqp

,	struct	mqtt_packet	*mqp_vec,

00610																																		u32	buf_len

,	u8	*buf_vec);

00611	

00612	/*--

00613		*		MQTT	Client	Library:	Register	applicatio

n,	platform	information	and	services.

00614		*--

00615		*/

00616	

00639	i32	mqtt_client_ctx_info_register(void	*ctx,

00640																																			const	stru

ct	utf8_string	*client_id,

00641																																			const	stru

ct	utf8_string	*user_name,

00642																																			const	stru

ct	utf8_string	*pass_word);

00643	

00664	i32	mqtt_client_ctx_will_register(void	*ctx,

00665																																			const	stru

ct	utf8_string		*will_top,

00666																																			const	stru

ct	utf8_string		*will_msg,

00667																																			enum	mqtt_

qos	will_qos,	bool	retain);

00668	

00678	i32	mqtt_client_net_svc_register(const	struct

	device_net_services	*net);

00679	

00682	#define	VHB_CONNACK_RC(vh_buf)	(vh_buf[1])		

			

00683	#define	MQP_CONNACK_RC(mqp)				(mqp->buffer[

3])

00685	#define	VHB_CONNACK_SP(vh_buf)	(vh_buf[0]	&	

0x1)

00686	#define	MQP_CONNACK_SP(mqp)				(mqp->buffer[

2]	&	0x1)	

00689	#define	VHB_CONNACK_VH16(vh_buf)((vh_buf[0]	

<<	8)	|	vh_buf[1])	

00690	#define	MQP_CONNACK_VH16(mqp)			((mqp->buffe

r[2]	<<	8)	|	mqp->buffer[3])

00691	

00693	struct	mqtt_client_ctx_cbs	{

00694	

00729									bool	(*publish_rx)(void	*app,

00730																												bool	dup,	enum	mq

tt_qos	qos,	bool	retain,	

00731																												struct	mqtt_packet

	*mqp);

00732	

00757									void	(*ack_notify)(void	*app,	u8	msg

_type,	u16	msg_id,	u8	*buf,	u32	len);

00758	

00768									void	(*disconn_cb)(void	*app,	i32	ca

use);

00769	};

00770	

00771	struct	mqtt_client_ctx_cfg	{

00772	

00776	#define	MQTT_CFG_PROTOCOL_V31		0x0001	

00777	#define	MQTT_CFG_APP_HAS_RTSK		0x0002	

00778	#define	MQTT_CFG_MK_GROUP_CTX		0x0004	

00781									u16			config_opts;		

00786	#define	MQTT_NETCONN_OPT_IP6		DEV_NETCONN_OP

T_IP6	

00787	#define	MQTT_NETCONN_OPT_URL		DEV_NETCONN_OP

T_URL	

00788	#define	MQTT_NETCONN_OPT_SEC		DEV_NETCONN_OP

T_SEC	

00791									u32			nwconn_opts;		

00793									i8			*server_addr;		

00794									u16			port_number;		

00795									struct	secure_conn	*nw_security;		

00796	};

00797	

00840	i32	mqtt_client_ctx_create(const	struct	mqtt

_client_ctx_cfg	*ctx_cfg,

00841																												const	struct	mqtt

_client_ctx_cbs	*ctx_cbs,

00842																												void	*app,	void	*

*ctx);

00843	

00858	i32	mqtt_client_ctx_delete(void	*ctx);

00859	

00861	struct	mqtt_client_lib_cfg	{

00862	

00867									u16			loopback_port;

00868									bool		grp_uses_cbfn;		

00871									void		*mutex;

00872									void	(*mutex_lockin)(void	*mutex);	

00873									void	(*mutex_unlock)(void	*mutex);	

00875									i32		(*debug_printf)(const	i8	*forma

t,	...);			

00876									bool		aux_debug_en;				

00877	};

00878	

00904	i32	mqtt_client_lib_init(const	struct	mqtt_c

lient_lib_cfg		*cfg);

00905	

00909	i32	mqtt_client_lib_exit(void);

00910		/*	End	group	client_api	*/

00912	

00913	#endif

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

mqtt_client_ctx_cbs	Member	List

This	is	the	complete	list	of	members	for	mqtt_client_ctx_cbs,
including	all	inherited	members.
ack_notify mqtt_client_ctx_cbs
disconn_cbmqtt_client_ctx_cbs
publish_rx mqtt_client_ctx_cbs

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

mqtt_client_ctx_cfg	Member	List

This	is	the	complete	list	of	members	for	mqtt_client_ctx_cfg,	including
all	inherited	members.
config_opts mqtt_client_ctx_cfg
nw_security mqtt_client_ctx_cfg
nwconn_opts mqtt_client_ctx_cfg
port_number mqtt_client_ctx_cfg
server_addr mqtt_client_ctx_cfg

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

mqtt_client_lib_cfg	Member	List

This	is	the	complete	list	of	members	for	mqtt_client_lib_cfg,	including
all	inherited	members.
aux_debug_en mqtt_client_lib_cfg
debug_printf mqtt_client_lib_cfg
grp_uses_cbfn mqtt_client_lib_cfg
loopback_port mqtt_client_lib_cfg
mutex mqtt_client_lib_cfg
mutex_lockin mqtt_client_lib_cfg
mutex_unlock mqtt_client_lib_cfg

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

mqtt_packet	Member	List

This	is	the	complete	list	of	members	for	mqtt_packet,	including	all
inherited	members.
buffer mqtt_packet
fh_byte1 mqtt_packet
fh_len mqtt_packet
free mqtt_packet
maxlen mqtt_packet
msg_id mqtt_packet
msg_type mqtt_packet
n_refs mqtt_packet
next	(defined	in	mqtt_packet) mqtt_packet
offset mqtt_packet
pad	(defined	in	mqtt_packet) mqtt_packet
pl_len mqtt_packet
private	(defined	in	mqtt_packet)mqtt_packet
vh_len mqtt_packet

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

pub_qos2_cq	Member	List

This	is	the	complete	list	of	members	for	pub_qos2_cq,	including	all
inherited	members.
id_vec	(defined	in	pub_qos2_cq) pub_qos2_cq
n_free	(defined	in	pub_qos2_cq) pub_qos2_cq
rd_idx	(defined	in	pub_qos2_cq) pub_qos2_cq
wr_idx	(defined	in	pub_qos2_cq) pub_qos2_cq

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

secure_conn	Member	List

This	is	the	complete	list	of	members	for	secure_conn,	including	all
inherited	members.
cipher secure_conn
files secure_conn
method secure_conn
n_file secure_conn

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

utf8_string	Member	List

This	is	the	complete	list	of	members	for	utf8_string,	including	all
inherited	members.
buffer utf8_string
length utf8_string

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

MQTT
Client	1.0.0

utf8_strqos	Member	List

This	is	the	complete	list	of	members	for	utf8_strqos,	including	all
inherited	members.
buffer utf8_strqos
length utf8_strqos
qosreq utf8_strqos

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
Class	List Class	Index Class	Members

All Variables

a b c d f g i l m n o p q r s t v

MQTT
Client	1.0.0

	

-	a	-

accept	:	device_net_services
ack_notify	:	mqtt_client_ctx_cbs
aux_debug_en	:	mqtt_client_lib_cfg

-	b	-

buffer	:	mqtt_packet	,	utf8_strqos	,	utf8_string

-	c	-

cipher	:	secure_conn
close	:	device_net_services
config_opts	:	mqtt_client_ctx_cfg

-	d	-

debug_printf	:	mqtt_client_lib_cfg
disconn_cb	:	mqtt_client_ctx_cbs

-	f	-

fh_byte1	:	mqtt_packet
fh_len	:	mqtt_packet

files	:	secure_conn
free	:	mqtt_packet

-	g	-

grp_uses_cbfn	:	mqtt_client_lib_cfg

-	i	-

io_mon	:	device_net_services

-	l	-

length	:	utf8_string	,	utf8_strqos
listen	:	device_net_services
loopback_port	:	mqtt_client_lib_cfg

-	m	-

maxlen	:	mqtt_packet
method	:	secure_conn
msg_id	:	mqtt_packet
msg_type	:	mqtt_packet
mutex	:	mqtt_client_lib_cfg
mutex_lockin	:	mqtt_client_lib_cfg
mutex_unlock	:	mqtt_client_lib_cfg

-	n	-

n_file	:	secure_conn
n_refs	:	mqtt_packet
nw_security	:	mqtt_client_ctx_cfg
nwconn_opts	:	mqtt_client_ctx_cfg

-	o	-

offset	:	mqtt_packet
open	:	device_net_services

-	p	-

pl_len	:	mqtt_packet
port_number	:	mqtt_client_ctx_cfg
publish_rx	:	mqtt_client_ctx_cbs

-	q	-

qosreq	:	utf8_strqos

-	r	-

recv	:	device_net_services
recv_from	:	device_net_services

-	s	-

send	:	device_net_services
send_dest	:	device_net_services
server_addr	:	mqtt_client_ctx_cfg

-	t	-

time	:	device_net_services

-	v	-

vh_len	:	mqtt_packet

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

MQTT
Client	1.0.0

client_notes.h

00001	

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

MQTT
Client	1.0.0

MainPage.h

00001	

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

All Functions Enumerations Enumerator Defines

m

MQTT
Client	1.0.0

	

-	m	-

mqp_buf_rd_remlen()	:	mqtt_common.h
mqp_buf_tail_wr_remlen()	:	mqtt_common.h
mqp_buf_wr_utf8()	:	mqtt_common.h
mqp_client_alloc()	:	mqtt_client.h
mqp_free()	:	mqtt_common.h
mqp_init()	:	mqtt_common.h
mqp_prep_fh()	:	mqtt_common.h
mqp_proc_msg_id_ack_rx()	:	mqtt_common.h
mqp_proc_pub_rx()	:	mqtt_common.h
mqp_pub_append_data()	:	mqtt_common.h
mqp_pub_append_topic()	:	mqtt_common.h
mqp_reset()	:	mqtt_common.h
mqtt_client_await_msg()	:	mqtt_client.h
mqtt_client_buffers_register()	:	mqtt_client.h
mqtt_client_ctx_await_msg()	:	mqtt_client.h
mqtt_client_ctx_create()	:	mqtt_client.h
mqtt_client_ctx_delete()	:	mqtt_client.h
mqtt_client_ctx_info_register()	:	mqtt_client.h
mqtt_client_ctx_run()	:	mqtt_client.h
mqtt_client_ctx_will_register()	:	mqtt_client.h
mqtt_client_is_connected()	:	mqtt_client.h
mqtt_client_lib_exit()	:	mqtt_client.h

mqtt_client_lib_init()	:	mqtt_client.h
mqtt_client_net_svc_register()	:	mqtt_client.h
mqtt_client_new_msg_id()	:	mqtt_client.h
mqtt_client_pub_dispatch()	:	mqtt_client.h
mqtt_client_pub_msg_send()	:	mqtt_client.h
mqtt_client_run()	:	mqtt_client.h
mqtt_client_send_progress()	:	mqtt_client.h
mqtt_connect_msg_send()	:	mqtt_client.h
mqtt_disconn_send()	:	mqtt_client.h
mqtt_pingreq_send()	:	mqtt_client.h
mqtt_sub_dispatch()	:	mqtt_client.h
mqtt_sub_msg_send()	:	mqtt_client.h
mqtt_unsub_dispatch()	:	mqtt_client.h
mqtt_unsub_msg_send()	:	mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

All Functions Enumerations Enumerator Defines

MQTT
Client	1.0.0

	

mqtt_qos	:	mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

All Functions Enumerations Enumerator Defines

MQTT
Client	1.0.0

	

MQTT_QOS0	:	mqtt_common.h
MQTT_QOS1	:	mqtt_common.h
MQTT_QOS2	:	mqtt_common.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

Main	Page Related	Pages Modules Classes
Files
File	List File	Members

All Functions Enumerations Enumerator Defines

d m q v

MQTT
Client	1.0.0

	

-	d	-

DEV_NETCONN_OPT_IP6	:	mqtt_common.h
DEV_NETCONN_OPT_SEC	:	mqtt_common.h
DEV_NETCONN_OPT_TCP	:	mqtt_common.h
DEV_NETCONN_OPT_UDP	:	mqtt_common.h
DEV_NETCONN_OPT_URL	:	mqtt_common.h

-	m	-

MAX_FH_LEN	:	mqtt_common.h
MAX_REMLEN_BYTES	:	mqtt_common.h
MQP_CONNACK_RC	:	mqtt_client.h
MQP_CONNACK_SP	:	mqtt_client.h
MQP_ERR_BADCALL	:	mqtt_common.h
MQP_ERR_CONTENT	:	mqtt_common.h
MQP_ERR_FNPARAM	:	mqtt_common.h
MQP_ERR_LIBQUIT	:	mqtt_common.h
MQP_ERR_NET_OPS	:	mqtt_common.h
MQP_ERR_NETWORK	:	mqtt_common.h
MQP_ERR_NOT_DEF	:	mqtt_common.h
MQP_ERR_NOTCONN	:	mqtt_common.h
MQP_ERR_PKT_AVL	:	mqtt_common.h
MQP_ERR_PKT_LEN	:	mqtt_common.h

MQP_ERR_TIMEOUT	:	mqtt_common.h
MQP_PUB_PAY_BUF	:	mqtt_common.h
MQP_PUB_PAY_LEN	:	mqtt_common.h
MQP_PUB_TOP_BUF	:	mqtt_common.h
MQP_PUB_TOP_LEN	:	mqtt_common.h
MQTT_CFG_APP_HAS_RTSK	:	mqtt_client.h
MQTT_CFG_MK_GROUP_CTX	:	mqtt_client.h
MQTT_CFG_PROTOCOL_V31	:	mqtt_client.h
MQTT_CLIENT_VERSTR	:	mqtt_client.h
MQTT_COMMON_VERSTR	:	mqtt_common.h
MQTT_CONNECT	:	mqtt_common.h
MQTT_NETCONN_OPT_IP6	:	mqtt_client.h
MQTT_NETCONN_OPT_SEC	:	mqtt_client.h
MQTT_NETCONN_OPT_URL	:	mqtt_client.h

-	q	-

QFL_VALUE	:	mqtt_common.h

-	v	-

VHB_CONNACK_RC	:	mqtt_client.h
VHB_CONNACK_SP	:	mqtt_client.h

Generated	on	Mon	Nov	17	2014	12:11:04	for	MQTT	Client	by		 	1.7.4

http://www.doxygen.org/index.html

	Related Pages
	MQTT Client Library - App Notes

	Modules
	MQTT Packet (MQP) Buffer structure
	Helper Macros for RX PUBLISH
	LIBRARY Generated Error Codes
	Information to establish a secure connection.
	Abstraction of Network Services on a platform
	Options for platform to configure network
	The Client Library API(s)
	Options for application to config CTX
	Options for App to configure network

	Class List
	client_ctx
	device_net_services
	mqtt_ack_wlist
	mqtt_client_ctx_cbs
	mqtt_client_ctx_cfg
	mqtt_client_lib_cfg
	mqtt_packet
	pub_qos2_cq
	secure_conn
	utf8_string
	utf8_strqos

	Class Index
	Class Members
	File List
	D:/my_data/GIT/network_apps/netapps/mqtt/client/mqtt_client.h
	D:/my_data/GIT/network_apps/netapps/mqtt/common/mqtt_common.h

	File Members

